WorldWideScience

Sample records for afex-treated wheat straw

  1. BIOPULPING OF WHEAT STRAW WITH PHANEROCHAETE CHRYSOSPORIUM

    Institute of Scientific and Technical Information of China (English)

    Hong Yu; Menghua Qin; Xuemei Lu; Yinbo Qu; Peiji Gao

    2004-01-01

    Wheat straw was cut into a certain size range and treated with a strain of the white rot fungus Phanerochatete Chrysosporium for 5 days before subjected to a chemi-mechanical treatment. Chemical analyses revealed the effects of the white rot fungus on the wheat straw components. SEM was applied to observe the changes in fiber micromorphological structures. CODcr of the effluent from the sulfonation treatment of wheat straw was also discussed. Handsheets made from the treated and untreated wheat straw exhibited different optical and physical properties after chemi-mechanical pulping.

  2. BIOPULPING OF WHEAT STRAW WITH PHANEROCHAETE CHRYSOSPORIUM

    Institute of Scientific and Technical Information of China (English)

    HongYu; MenghuaQin; XuemeiLu; YinboQu; PeijiGao

    2004-01-01

    Wheat straw was cut into a certain size range and treated with a strain of the white rot fungus Phaneroehatete Chrysosporium for 5 days before subjected to a chemi-mechanical treatment. Chemical analyses revealed the effects of the white rot fungus on the wheat straw components. SEM was applied to observe the changes in fiber micromorphological structures. CODcr of the effluent from the sulfonation treatment of wheat straw was also discussed. Handsheets made from the treated anduntreated wheat straw exhibited different optical and physical properties after chemi-mechanical pulping.

  3. Effects of compositional changes of AFEX-treated and H-AFEX-treated corn stover on enzymatic digestibility.

    Science.gov (United States)

    Zhao, Chao; Ding, Weimin; Chen, Feng; Cheng, Cheng; Shao, Qianjun

    2014-03-01

    Corn stover is one of the main agricultural residues being considered as a cellulosic ethanol feedstock. This work evaluated the effectiveness of AFEX™(1) pretreatment for converting corn stover to fermentable sugars, both with and without pre-soaking in hydrogen peroxide. The compositional changes and enzymatic digestibility of AFEX-treated and H-AFEX-treated biomass were investigated. Results showed that most of the polysaccharides remained intact following each of these two methods. Compared with AFEX pretreatment, the H-AFEX process enhanced delignification and enzymatic hydrolysis yields of both glucose and xylose. The maximum glucan and xylan digestibility of H-AFEX process were 87.78% and 90.64%, respectively, and were obtained using 0.7 (w/w) water loading, 1.0 (w/w) ammonia loading, 0.5 (w/w) 30wt.% hydrogen peroxide loading, and 130°C for 10min. The results of the present work show that H-AFEX is a feasible pretreatment to improve the enzymatic saccharification of corn stover for bioethanol production.

  4. Plasma-Assisted Pretreatment of Wheat Straw

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Leipold, Frank; Bindslev, Henrik;

    2011-01-01

    and milled particle size (the extent to which the wheat straw was milled) were investigated and optimized. The developed methodology offered the advantage of a simple and relatively fast (0.5–2 h) pretreatment allowing a dry matter concentration of 45–60%. FTIR measurements did not suggest any structural...... straw with desired lignin content because of the online analysis. The O3 consumption of wheat straw and its polymeric components, i.e., cellulose, hemicellulose, and lignin, as well as a mixture of these, dry as well as with 50% water, were studied. Furthermore, the process parameters dry matter content...... effects on cellulose and hemicellulose by the O3 treatment. The cost and the energy consumption for lignin degradation of 100 g of wheat straw were calculated....

  5. Pelletizing properties of torrefied wheat straw

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Nielsen, Niels Peter; Hansen, Hans Ove;

    2013-01-01

    Combined torrefaction and pelletization are used to increase the fuel value of biomass by increasing its energy density and improving its handling and combustion properties. However, pelletization of torrefied biomass can be challenging and in this study the torrefaction and pelletizing properties...... of wheat straw have been analyzed. Laboratory equipment has been used to investigate the pelletizing properties of wheat straw torrefied at temperatures between 150 and 300 °C. IR spectroscopy and chemical analyses have shown that high torrefaction temperatures change the chemical properties of the wheat...... straw significantly, and the pelletizing analyses have shown that these changes correlate to changes in the pelletizing properties. Torrefaction increase the friction in the press channel and pellet strength and density decrease with an increase in torrefaction temperature....

  6. Fungal upgrading of wheat straw for straw-thermoplastics production.

    Science.gov (United States)

    Houghton, Tracy P; Thompson, David N; Hess, J Richard; Lacey, Jeffrey A; Wolcott, Michael P; Schirp, Anke; Englund, Karl; Dostal, David; Loge, Frank

    2004-01-01

    Combining biologic pretreatment with storage is an innovative approach for improving feedstock characteristics and cost, but the magnitude of responses of such systems to upsets is unknown. Unsterile wheat straw stems were upgraded for 12 wk with Pleurotus ostreatus at constant temperature to estimate the variation in final compositions with variations in initial moisture and inoculum. Degradation rates and conversions increased with both moisture and inoculum. A regression analysis indicated that system performance was quite stable with respect to inoculum and moisture content after 6 wk of treatment. Scale-up by 150x indicated that system stability and final straw composition are sensitive to inoculum source, history, and inoculation method. Comparative testing of straw-thermoplastic composites produced from upgraded stems is under way.

  7. Nutraceutical and functional scenario of wheat straw.

    Science.gov (United States)

    Pasha, Imran; Saeed, Farhan; Waqas, Khalid; Anjum, Faqir Muhammad; Arshad, Muhammad Umair

    2013-01-01

    In the era of nutrition, much focus has been remunerated to functional and nutraceutical foodstuffs. The health endorsing potential of such provisions is attributed to affluent phytochemistry. These dynamic constituents have functional possessions that are imperative for cereal industry. The functional and nutraceutical significance of variety of foods is often accredited to their bioactive molecules. Numerous components have been considered but wheat straw and its diverse components are of prime consideration. In this comprehensive dissertation, efforts are directed to elaborate the functional and nutraceutical importance of wheat straw. Wheat straw is lignocellulosic materials including cellulose, hemicellulose and lignin. It hold various bioactive compounds such as policosanols, phytosterols, phenolics, and triterpenoids, having enormous nutraceutical properties like anti-allergenic, anti-artherogenic, anti-inflammatory, anti-microbial, antioxidant, anti-thrombotic, cardioprotective and vasodilatory effects, antiviral, and anticancer. These compounds are protecting against various ailments like hypercholesterolemia, intermittent claudication, benign prostatic hyperplasia and cardiovascular diseases. Additionally, wheat straw has demonstrated successfully, low cost, renewable, versatile, widely distributed, easily available source for the production of biogas, bioethanol, and biohydrogen in biorefineries to enhance the overall effectiveness of biomass consumption in protected and eco-friendly environment. Furthermore, its role in enhancing the quality and extending the shelf life of bakery products through reducing the progression of staling and retrogradation is limelight of the article.

  8. Bioconversion of lime pretreated wheat straw to fuel ethanol

    Science.gov (United States)

    Lime pretreatment and enzymatic saccharification methods were evaluated for conversion of wheat straw cellulose and hemicellulose to fermentable sugars. The maximum yield of monomeric sugars from wheat straw (8.6%, w/v) by lime pretreatment (100 mg/g straw, 121 deg C, 1 h) and enzymatic hydrolysis ...

  9. Production of Protease Enzyme from Wheat Straw

    Directory of Open Access Journals (Sweden)

    Mohammed A. Atiya

    2008-01-01

    Full Text Available Protease enzyme production was studied and optimized as a first step to collect information about solid state fermenter to produce protease enzyme. A local isolated Aspergillus niger was used for this study with constant spores feeding in every experiment at (105/g. Experiments carried out in conical flasks with (250 ml containing (10 g of wheat straw as a substrate with different conditions included temperature, pH, hydration ratio, and fermentation time, the results comprised by measuring protease activity (u. The results showed that the best activity can be obtained at (T = 32°C, t= 100 hrs, pH= 2.5 and hydration ratio is 1:3. On the other hand the results is courage to proceed to design a solid state protease fermenter from wheat straw.

  10. Alkali pretreated of wheat straw and its enzymatic hydrolysis

    OpenAIRE

    Lirong Han; Juntao Feng; Shuangxi Zhang; Zhiqing Ma; Yonghong Wang; Xing Zhang

    2012-01-01

    The efficiency of enzymatic hydrolysis of cellulose can be improved by various pretreatments of the substrate. In order to increase the efficiency of enzymatic saccharification of the wheat straw, we determined the effect of different pretreatments on the physical structure, chemical components and enzymatic saccharification of wheat straw. Our results showed that combination of grinding and sodium hydroxide (NaOH) treatment had high effect on the enzymatic hydrolysis of wheat straws. The opt...

  11. Production of Protease Enzyme from Wheat Straw

    OpenAIRE

    Mohammed A. Atiya

    2008-01-01

    Protease enzyme production was studied and optimized as a first step to collect information about solid state fermenter) to produce protease enzyme. A local isolated Aspergillus niger was used for this study with constant spores feeding in every experiment at (105/g). Experiments carried out in conical flasks with (250 ml) containing (10 g) of wheat straw as a substrate with different conditions included temperature, pH, hydration ratio, and fermentation time, the results comprised by measuri...

  12. Changes of chemical and mechanical behavior of torrefied wheat straw

    DEFF Research Database (Denmark)

    Shang, Lei; Ahrenfeldt, Jesper; Holm, Jens Kai;

    2012-01-01

    The purpose of the study was to investigate the influence of torrefaction on the grindability of wheat straw. Straw samples were torrefied at temperatures between 200 °C and 300 °C and with residence times between 0.5 and 3 h. Spectroscopic information obtained from ATR-FTIR indicated that below...... wheat straw and torrefied wheat straw showed a clear reduction with increasing torrefaction temperature. In addition, Hardgrove Grindability Index (HGI) of wheat straw torrefied at different conditions was determined on a standard Hardgrove grinder. Both results showed an improvement of grindability...... in the torrefaction temperature range 250–300 °C, which can be well explained by the findings from FTIR analysis. At a torrefaction temperature of 260 °C and with a residence time of 2 h, wheat straw samples produced similar HGI values as coal (RUKUZN) with 0% moisture content. Under this condition, the Anhydrous...

  13. Thermal transitions of the amorphous polymers in wheat straw

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.;

    2011-01-01

    determined at 2, −1 and 5 °C, respectively. Differences are likely due to different compositions of lignin and hemicelluloses from straw and spruce and structural differences between the raw materials. The high wax content in wheat straw resulted in a transition at about 40 °C which was absent in solvent......The thermal transitions of the amorphous polymers in wheat straw were investigated using dynamic mechanical thermal analysis (DMTA). The study included both natural and solvent extracted wheat straw, in moist (8–9% water content) and dry conditions, and was compared to spruce samples. Under...

  14. Wet explosion og wheat straw and codigestion with swine manure

    DEFF Research Database (Denmark)

    Wang, Guangtao; Gavala, Hariklia N.; Skiadas, Ioannis V.;

    2009-01-01

    compared to that from the raw biomas s. On the other hand, the results from the codigestion of raw (non-pretreated) wheat straw with swine manure were very promising, suggesting that 4.6 kg of straw added to 1 t of manure increase the methane production by 10%. Thus, wheat straw can be considered...... as a promising, low-cost biomass for increasing the methane productivity of biogas plants that are based mainly on swine manure....

  15. Wettability changes of wheat straw treated with chemicals and enzymes

    Institute of Scientific and Technical Information of China (English)

    SHEN Jiang-hua; LIU Zhi-ming; LI Jing; NIU Jing

    2011-01-01

    A study was conducted to test wettability changes of the wheat straw treated with different methods for the preparation of wheat straw particle board. The wheat straws were separately sprayed with two chemicals (0.6% NaOH, 0.3% H2O2) and three enzymes (lipase, xylanase,cellulase). The contact angle between water and the surface of wheat straw was measured and the spreading-penetration parameters (K-values) were also calculated with wetting model. The surfaces of treated wheat straw and control sample were scanned by means of Micro-FTIR, and their peaks arrangements were analyzed. The surface morphologies of treated wheat straw and control sample were also observed by SEM.Chemical etching was found on the exterior surfaces of the straws treated separately with 0.6% NaOH and 0.3% H2O2; furthermore, the spreading-penetration parameters (K-values) of the distilled water on the exterior surfaces of the treated wheat straw along the grain were higher than that of control. The wettability of exterior surfaces of the wheat straws treated separately with lipase, xylanase and cellulose were improved after treating for seven days, and among the three enzymes treatments, the tipase treatment showed best result. The lipase treatment and NaOH treatment were determined as better methods for improving the wettability of wheat straw surfaces. However, in the economic aspect, NaOHtreatment was more practical and easier in the pretreatment for the manufacture of straw particle board.

  16. Production of Biocellulosic Ethanol from Wheat Straw

    Directory of Open Access Journals (Sweden)

    Ismail

    2012-01-01

    Full Text Available Wheat straw is an abundant lignocellulosic feedstock in many parts of the world, and has been selected for producing ethanol in an economically feasible manner. It contains a mixture of sugars (hexoses and pentoses.Two-stage acid hydrolysis was carried out with concentrates of perchloric acid, using wheat straw. The hydrolysate was concentrated by vacuum evaporation to increase the concentration of fermentable sugars, and was detoxified by over-liming to decrease the concentration of fermentation inhibitors. After two-stage acid hydrolysis, the sugars and the inhibitors were measured. The ethanol yields obtained from by converting hexoses and pentoses in the hydrolysate with the co-culture of Saccharomyces cerevisiae and Pichia stipites were higher than the ethanol yields produced with a monoculture of S. cerevisiae. Various conditions for hysdrolysis and fermentation were investigated. The ethanol concentration was 11.42 g/l in 42 h of incubation, with a yield of 0.475 g/g, productivity of 0.272 gl ·h, and fermentation efficiency of 92.955 %, using a co-culture of Saccharomyces cerevisiae and Pichia stipites

  17. Wheat straw: An inefficient substrate for rapid natural lignocellulosic composting.

    Science.gov (United States)

    Zhang, Lili; Jia, Yangyang; Zhang, Xiaomei; Feng, Xihong; Wu, Jinjuan; Wang, Lushan; Chen, Guanjun

    2016-06-01

    Composting is a promising method for the management of agricultural wastes. However, results for wheat straw composts with different carbon-to-nitrogen ratios revealed that wheat straw was only partly degraded after composting for 25days, with hemicellulose and cellulose content decreasing by 14% and 33%, respectively. No significant changes in community structure were found after composting according to 454-pyrosequencing. Bacterial communities were represented by Proteobacteria and Bacteroidetes throughout the composting process, including relatively high abundances of pathogenic microbes such as Pseudomonas and Flexibacter, suggesting that innocent treatment of the composts had not been achieved. Besides, the significant lignocellulose degrader Thermomyces was not the exclusively dominant fungus with relative abundance only accounting for 19% of fungal communities. These results indicated that comparing with maize straw, wheat straw was an inefficient substrate for rapid natural lignocellulose-based composting, which might be due to the recalcitrance of wheat straw. PMID:26980627

  18. RECYCLING OF CHEMICAL PULP FROM WHEAT STRAW AND CORN STOVER

    Directory of Open Access Journals (Sweden)

    James Barsness

    2007-11-01

    Full Text Available Handsheets produced from corn stalks and wheat straw soda AQ pulps were recycled in the lab. Pulping of corn stalks resulted in a low pulp yield, low bonding strength, and low recyclability. Conversely, wheat straw fiber had a better yield, very good tensile properties, and showed a considerably better response to recycling. The tensile index of wheat straw fibers retained 67% of its original value after four cycles. It could be shown that recycling caused only small changes in chemical compo-sition, but that the crystallinity index increased considerably. To be able to understand the behavior of wheat straw fiber as part of a commercial papermaking furnish, a paper containing 20% wheat straw fiber was produced on a 24 inch pilot paper machine and was recycled using a handsheet mold with white water return. Chemical analysis of the control (no wheat fiber and the wheat-containing paper demonstrated slightly higher xylan content for the wheat-containing material. Recyclability increased slightly with addition of wheat fibers to a commercial furnish.

  19. Cleaner Production of Wheat Straw Pulp

    Institute of Scientific and Technical Information of China (English)

    黄国林; 陈中胜; 张成芳

    2002-01-01

    A pulping method using NH4OH with less amount of KOH as cooking liquor on wheat straw was developed. KOH could reduce consumption of NH3 and cooking time for its strong alkalinity. The effects of various pulping conditions such as composition of cooking liquor, liquid-to-solid ratio, maximum temperature, cooking time to the maximum temperature and cooking time at the maximum temperature were studied. Experimental results indicated that the rate of delignification was 85.12( and the pulp yield was 49.65% under suitable pulping conditions. It looks promising to use black liquor containing nitrogen, phosphorus, potassium and organic substance as fertilizer resources for agricultural production. A new pattern of ecological cycling may be set up between paper industry and farming.

  20. POLYETHER POLYURETHANE FROM MODIFIED WHEAT STRAW OXYGEN-ALKALINE LIGNIN

    Institute of Scientific and Technical Information of China (English)

    QuanxiaoLiu; HuaiyuZhan; BeihaiHe; ShuhuiYang; JianhuaLiu; JianluLiu(1); ZhenxingPang

    2004-01-01

    Polyether polyurethane was synthesized from modified wheat straw oxygen-alkaline lignin, polyethylene glycol and two different diisocyanates (diphenylemethane-4, 4'-diisocyanate, tolulene diisocyanate) by solution casting method, its properties were investigated. The results show that modified wheat straw oxygen-alkaline lignin can substitute part of polyethylene glycol to react with diisocyanate to synthesize polyurethane. The molar ratio of NCO to OH and modified wheat straw oxygen-alkaline lignin content affect the properties of lignin-based polyether polyurethane respectively. The addition of plasticizer in the polyurethane synthesis process improves the properties of synthesized polyurethane, especially the elasticity of polyurethane. The synthesized polyurethane from modified wheat straw oxygen-alkali lignin can be used as both engineering plastic and hard foam plastic in future.

  1. POLYETHER POLYURETHANE FROM MODIFIED WHEAT STRAW OXYGEN-ALKALINE LIGNIN

    Institute of Scientific and Technical Information of China (English)

    Quanxiao Liu; Huaiyu Zhan; Beihai He; Shuhui Yang; Jianhua Liu; Jianlu Liu; Zhenxing Pang

    2004-01-01

    Polyether polyurethane was synthesized from modified wheat straw oxygen-alkaline lignin,polyethylene glycol and two different diisocyanates (diphenylemethane-4, 4′-diisocyanate, tolulene diisocyanate) by solution casting method, its properties were investigated. The results show that modified wheat straw oxygen-alkaline lignin can substitute part of polyethylene glycol to react with diisocyanate to synthesize polyurethane. The molar ratio of NCO to OH and modified wheat straw oxygen-alkaline lignin content affect the properties of lignin-based polyether polyurethane respectively. The addition of plasticizer in the polyurethane synthesis process improves the properties of synthesized polyurethane, especially the elasticity of polyurethane. The synthesized polyurethane from modified wheat straw oxygen-alkali lignin can be used as both engineering plastic and hard foam plastic in future.

  2. Ethanol production from steam-explosion pretreated wheat straw.

    Science.gov (United States)

    Ballesteros, Ignacio; Negro, Ma José; Oliva, José Miguel; Cabañas, Araceli; Manzanares, Paloma; Ballesteros, Mercedes

    2006-01-01

    Bioconversion of cereal straw to bioethanol is becoming an attractive alternative to conventional fuel ethanol production from grains. In this work, the best operational conditions for steam-explosion pretreatment of wheat straw for ethanol production by a simultaneous saccharification and fermentation process were studied, using diluted acid [H2SO4 0.9% (w/w)] and water as preimpregnation agents. Acid- or water-impregnated biomass was steam-exploded at different temperatures (160-200 degrees C) and residence times (5, 10, and 20 min). Composition of solid and filtrate obtained after pretreatment, enzymatic digestibility and ethanol production of pretreated wheat straw at different experimental conditions was analyzed. The best pretreatment conditions to obtain high conversion yield to ethanol (approx 80% of theoretical) of cellulose-rich residue after steam-explosion were 190 degrees C and 10 min or 200 degrees C and 5 min, in acid-impregnated straw. However, 180 degrees C for 10 min in acid-impregnated biomass provided the highest ethanol yield referred to raw material (140 L/t wheat straw), and sugars recovery yield in the filtrate (300 g/kg wheat straw).

  3. Examining the Potential of Plasma-Assisted Pretreated Wheat Straw for Enzyme Production by Trichoderma reesei

    DEFF Research Database (Denmark)

    Rodríguez Gómez, Divanery; Lehmann, Linda Olkjær; Schultz-Jensen, Nadja;

    2012-01-01

    Plasma-assisted pretreated wheat straw was investigated for cellulase and xylanase production by Trichoderma reesei fermentation. Fermentations were conducted with media containing washed and unwashed plasma-assisted pretreated wheat straw as carbon source which was sterilized by autoclavation...

  4. Reprint of: Pelletizing properties of torrefied wheat straw

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Nielsen, Niels Peter K.; Hansen, Hans Ove;

    2013-01-01

    Combined torrefaction and pelletization are used to increase the fuel value of biomass by increasing its energy density and improving its handling and combustion properties. However, pelletization of torrefied biomass can be challenging and in this study the torrefaction and pelletizing properties...... of wheat straw have been analyzed. Laboratory equipment has been used to investigate the pelletizing properties of wheat straw torrefied at temperatures between 150 and 300 °C. IR spectroscopy and chemical analyses have shown that high torrefaction temperatures change the chemical properties of the wheat...... straw significantly, and the pelletizing analyses have shown that these changes correlate to changes in the pelletizing properties. Torrefaction increase the friction in the press channel and pellet strength and density decrease with an increase in torrefaction temperature....

  5. Optimization of wet oxidation pretreatment of wheat straw

    DEFF Research Database (Denmark)

    Schmidt, A.S.; Thomsen, A.B.

    1998-01-01

    The wet oxidation process (water; oxygen and elevated temperature) was investigated under alkaline conditions for fractionation of hemicellulose, cellulose, and lignin from wheat straw. At higher temperature and longer reaction time, a purified cellulose fraction (69% w/w) was produced with high...

  6. Optimization of the dilute maleic acid pretreatment of wheat straw

    NARCIS (Netherlands)

    Kootstra, A.M.J.; Beeftink, H.H.; Scott, E.L.; Sanders, J.P.M.

    2009-01-01

    Background - In this study, the dilute maleic acid pretreatment of wheat straw is optimized, using pretreatment time, temperature and maleic acid concentration as design variables. A central composite design was applied to the experimental set up. The response factors used in this study are: (1) glu

  7. [Effect of pretreatment on storage and biogas production of baling wheat straw].

    Science.gov (United States)

    Ma, Hui-Juan; Chen, Guang-Yin; Du, Jing; Chang, Zhi-Zhou; Ye, Xiao-Mei

    2013-08-01

    Long-term storage of crop straw is very important for biogas plant while pretreatment is always used to improve biogas production of crop straw. Feasibility of integrating the storage with pretreatment of baling wheat straw was studied. Changes of physicochemical properties and the biogas productivity of wheat straw obtained before and after 120 days storage were analyzed. The results showed that it was feasible to directly bale wheat straw for storage (control) and storage treatment had little effect on the physicochemical properties, structure and biogas productivity of wheat straw. After 120 day's storage, biogas production potential of the surface wheat straw of pile was decreased by 7.40%. Integrating NaOH pretreatment with straw storage was good for biogas production of wheat straw and the total solid (TS) biogas yield was increased by 7.02%-8.31% (compared to that of wheat straw without storage) and 5.68% -16.96% (compared to that of storage without alkaline pretreatment), respectively. Storage with urea treatment was adverse to biogas production of wheat straw and the contents of cellulose and hemicellulose of wheat straw were decreased by 18.25%-27.22% and 5.31%-16.15% and the TS biogas yield was decreased by 2.80%-7.71% after 120 day's storage. Exposing wheat straw to the air during the storage process was adverse to the conserving of organic matter and biogas utilization of wheat straw, but the influence was very slight and the TS biogas yield of wheat straw obtained from pile surface of control and urea treatment was decreased by 7.40% and 4.25%, respectively.

  8. ALKALINE PEROXIDE BLEACHING OF HOT WATER TREATED WHEAT STRAW

    Directory of Open Access Journals (Sweden)

    Suvi Mustajoki

    2010-05-01

    Full Text Available The aim of this study was to evaluate the possibilities for chemical consumption reduction in P-P-Paa-P bleaching (P alkaline peroxide stage, Paa peracetic stage of hot water treated straw and the effect of the wheat straw variability on the process. Papermaking fibre production from wheat straw using such a process could be implemented on a small scale if chemical consumption was low enough to eliminate the need for chemical recovery. The pulp properties obtained with this process are equal to or even superior to the properties of wheat straw soda pulp. The possibility of enhancing the first peroxide stage with oxygen and pressure was studied. The possibility for substitution of sodium hydroxide partially with sodium carbonate was also investigated. The objective was to achieve International Standardization Organization (ISO brightness of 75%, with minimal sodium hydroxide consumption, whilst maintaining the pulp properties. The optimization of the peroxide bleaching is challenging if the final brightness target cannot be reduced. Results indicate that up to 25% of the sodium hydroxide could be substituted with sodium carbonate without losing brightness or affecting pulp properties. Another possibility is a mild alkali treatment between the hot water treatment and the bleaching sequence.

  9. Cavitation assisted delignification of wheat straw: a review.

    Science.gov (United States)

    Iskalieva, Asylzat; Yimmou, Bob Mbouyem; Gogate, Parag R; Horvath, Miklos; Horvath, Peter G; Csoka, Levente

    2012-09-01

    Wheat is grown in most of the Indian and Chinese regions and after harvesting, the remaining straw offers considerable promise as a renewable source most suitable for papermaking and as a pulping resource. Delignification of wheat straw offers ample scope for energy conservation by way of the application of the process intensification principles. The present work reviews the pretreatment techniques available for improving the effectiveness of the conventional approach for polysaccharide component separation, softening and delignification. A detailed overview of the cavitation assisted delignification process has been presented based on the earlier literature illustrations and important operational guidelines have been presented for overall low-cost and amenable energy utilization in the processes. The effectiveness of the methods has been evaluated according to yield and properties of the isolated fibers in comparison to the conventional treatment. Also the experimental results of one such non-conventional treatment scheme based on the use of hydrodynamic cavitation have been presented for the pulping of wheat straw. The effect of hydrodynamically induced cavitation on cell wall matrix and its components have been characterized using FT-IR analysis with an objective of understanding the cavitation assisted digestion mechanism on straws. It has been observed that the use of hydrodynamic cavitation does not degrade the fibrillar structure of cellulose but causes relocalisation and partial removal of lignin. Overall it appears that considerable improvement can be obtained due to the use of pretreatment or alternate techniques for delignification, which is an energy intensive step in the paper making industries.

  10. Enhanced cellulase production from Trichoderma reesei QM 9414 on physically treated wheat straw

    Energy Technology Data Exchange (ETDEWEB)

    Acebal, C.; Castillon, M.P.; Estrada, P.; Mata, I.; Costa, E.; Aguado, J.; Romero, D.; Jimenez, F.

    1986-06-01

    Trichoderma reesei QM 9414 was grown on wheat straw as the sole carbon source. The straw was pretreated by physical and chemical methods. The particle size of straw was less than 0.177 mm. Growth of T. reesei QM 9414 was maximal with alkali-pretreated straw whereas cellulase production was optimal when physically pretreated straw was used as substrate. Cellulase yields expressed as IU enzyme activity/g cellulose present in the cultures were considerably higher when alkali pretreatment of wheat straw was omitted. Cellulase yields of 666 IU/g cellulose for filter paper activity (FPA) are the highest described for cultures of T. reesei QM 9414 carried out in analogous conditions. Crystallinity index of the cellulose contained in wheat straw increased slightly after alkali pretreatment. This increase did not decrease cellulose accessibility to the fungus. Delignification of wheat straw was not necessary to achieve the best cellulase production.

  11. Wheat straw burning and its associated impacts on Beijing air quality

    Institute of Scientific and Technical Information of China (English)

    LI LingJun; WANG Ying; ZHANG Qiang; LI JinXiang; YANG XiaoGuang; JIN Jun

    2008-01-01

    Based on MODIS images, large-scale flow field charts and environmental monitoring data, we thoroughly analyzed the spatial distribution of wheat straw burning in North China, with focus on its environmental impacts on the air quality of Beijing and pollution transport paths. And we anatomized changes of air quality in Beijing under the impacts of pollution generated by wheat straw burning around. The results indicate that: (1) The North China Plain, a winter-wheat growing area, is the main source of pollutants induced by wheat straw burning in Beijing. The direction of south-west is the dominant heavy pollution transport path. (2) Impacts of wheat straw burning on air quality are mainly manifested by significantly increasing CO concentration. (3) Precursors of O3 generated by wheat straw burning, combining with favorable meteorological conditions, can induce increasing O3 concentration greatly. NO concentration will be greatly increased due to decreasing O3 concentration at night.(4) Atmospheric particles, especially the fine ones, from wheat straw burning exert considerable influence on Beijing air quality. (5) Different contributions of wheat straw burning to pollutants are identified.Ratios of PM10/SO2, CO/SO2, etc., can be applied to indicate pollution extent of wheat straw burning.High ratios of PM10/SO2 and CO/SO2 show that the air quality was heavily impacted by wheat straw burning and these ratios can be employed as indicators of contribution of wheat straw burning to the degradation of Beijing air quality. (6) Randomness of wheat straw burning activities renders random outbreak of air pollution of this type. Regional and extensive wheat straw burning activities can cause serious air pollution event.

  12. Wheat straw burning and its associated impacts on Beijing air quality

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on MODIS images, large-scale flow field charts and environmental monitoring data, we thor- oughly analyzed the spatial distribution of wheat straw burning in North China, with focus on its envi- ronmental impacts on the air quality of Beijing and pollution transport paths. And we anatomized changes of air quality in Beijing under the impacts of pollution generated by wheat straw burning around. The results indicate that: (1) The North China Plain, a winter-wheat growing area, is the main source of pollutants induced by wheat straw burning in Beijing. The direction of south-west is the dominant heavy pollution transport path. (2) Impacts of wheat straw burning on air quality are mainly manifested by significantly increasing CO concentration. (3) Precursors of O3 generated by wheat straw burning, combining with favorable meteorological conditions, can induce increasing O3 concentration greatly. NO concentration will be greatly increased due to decreasing O3 concentration at night. (4) Atmospheric particles, especially the fine ones, from wheat straw burning exert considerable influ- ence on Beijing air quality. (5) Different contributions of wheat straw burning to pollutants are identified. Ratios of PM10/SO2, CO/SO2, etc., can be applied to indicate pollution extent of wheat straw burning. High ratios of PM10/SO2 and CO/SO2 show that the air quality was heavily impacted by wheat straw burning and these ratios can be employed as indicators of contribution of wheat straw burning to the degradation of Beijing air quality. (6) Randomness of wheat straw burning activities renders random outbreak of air pollution of this type. Regional and extensive wheat straw burning activities can cause serious air pollution event.

  13. Optimization of microwave pretreatment on wheat straw for ethanol production

    DEFF Research Database (Denmark)

    Xu, Jian; Chen, Hongzhang; Kádár, Zsófia;

    2011-01-01

    An orthogonal design (L9(34)) was used to optimize the microwave pretreatment on wheat straw for ethanol production. The orthogonal analysis was done based on the results obtained from the nine pretreatments. The effect of four factors including the ratio of biomass to NaOH solution, pretreatment...... time, microwave power, and the concentration of NaOH solution with three different levels on the chemical composition, cellulose/hemicellulose recoveries and ethanol concentration was investigated. According to the orthogonal analysis, pretreatment with the ratio of biomass to liquid at 80 g kg−1......, the NaOH concentration of 10 kg m−3, the microwave power of 1000 W for 15 min was confirmed to be the optimal condition. The ethanol yield was 148.93 g kg−1 wheat straw at this condition, much higher than that from the untreated material which was only 26.78 g kg−1....

  14. Plasma-Assisted Pretreatment of Wheat Straw for Ethanol Production

    DEFF Research Database (Denmark)

    Schultz-Jensen, Nadja; Kádár, Zsófia; Thomsen, Anne Belinda;

    2011-01-01

    The potential of wheat straw for ethanol production after pretreatment with O3 generated in a plasma at atmospheric pressure and room temperature followed by fermentation was investigated. We found that cellulose and hemicellulose remained unaltered after ozonisation and a subsequent washing step...... (0–7 h), e.g., oxalic acid and acetovanillon. Interestingly, washing had no effect on the ethanol production with pretreatment times up to 1 h. Washing improved the glucose availability with pretreatment times of more than 2 h. One hour of ozonisation was found to be optimal for the use of washed...... and unwashed wheat straw for ethanol production (maximum ethanol yield, 52%). O3 cost estimations were made for the production of ethanol at standard conditions....

  15. Intrinsic kinetics and devolatilization of wheat straw during torrefaction

    DEFF Research Database (Denmark)

    Shang, Lei; Ahrenfeldt, Jesper; Holm, Jens Kai;

    2013-01-01

    Torrefaction is a mild thermal treatment (200–300 °C) in an inert atmosphere, which is known to increase the energy density of biomass by evaporating water and a proportion of volatiles. In this work, the degradation kinetics and devolatilization of wheat straw was studied in a thermogravimetric...... analyzer by coupling with a mass spectrometer. The kinetic parameters obtained by applying a two-step reaction in series model and taking initial dynamic heating period into account can accurately describe the experimental results with different heating programs. Activation energies and pre......-exponential parameters obtained for the two steps are: 71.0 and 76.6 kJ mol−1, 3.48 × 104 and 4.34 × 103 s−1, respectively. The model and these parameters were also proven to be able to predict the residual mass of wheat straw in a batch scale torrefaction reactor. By analyzing the gas products in situ, the formation...

  16. Wheat straw lignin degradation induction to aromatics by por Aspergillus spp. and Penicillium chrysogenum

    OpenAIRE

    Baltierra-Trejo Eduardo; Silva-Espino Eliseo; Márquez-Benavides Liliana; Sánchez-Yáñez Juan Manuel

    2016-01-01

    Wheat straw is a recalcitrant agricultural waste; incineration of this material represents an important environmental impact. Different reports have been made regarding the use of the structural components of wheat straw, i.e. cellulose, hemicellulose and lignin; however, lignin has been less exploited because it is largely considered the recalcitrant part. Residual wheat straw lignin (REWSLI) has a potential biotech-nological value if depolymerization is attained to produce aromatics. Lignin...

  17. BLEACHING OF SULFONATED CMP FROM BIO-TREATED WHEAT STRAW

    Institute of Scientific and Technical Information of China (English)

    HongYu; MenghuaQin; XuemeiLu; YinboQu; PeijiGao

    2004-01-01

    Wheat straw chemi-mechanical pulp was pretreated with a crude xylanase which was secreted by white rot fungus Phanerochaete Chrysosporium prior to hydrogen peroxide bleaching. The process of xylanase pretreatment and hydrogen peroxide bleaching was optimized. The xylanase treated pulp achieved a brightness gain of 5.8% ISO over the untreated pulp. The xylanase treatment was found to liberate reducing sugars and facilitating lignin removal. Fiber morphology of pulp treated with xylanase was also studied by SEM.

  18. A thermomechanical pretreatment to improve enzymatic hydrolysis of wheat straw

    OpenAIRE

    Maache-Rezzoug, Zoulikha; Maugard, Thierry; Nouviaire, Armelle; Goude, Romain; Geoffroy, Stanley; Rezzoug, Sid-Ahmed

    2009-01-01

    International audience Wheat straw was pretreated with a thermomechanical process developed in our laboratory to increase the enzymatic hydrolysis extent of potentially fermentable sugars. This process involves subjecting the lignocellulosic biomass for a short time to saturated steam pressure, followed by an instantaneous decompression to vacuum at 50 mbar. Increasing of the heat induced by the saturated steam result in intensive vapour formation in the capillary porous structure of the p...

  19. WHEAT STRAW ALKALINE LIGNIN AND ITS DERIVATIVES AS RETENTION AID

    Institute of Scientific and Technical Information of China (English)

    Quanxiao Liu; Beihai He; Huaiyu Zhan; Shuhui Yang; Jianlu Liu; Zhenxing Pan; Jianhua Liu

    2004-01-01

    In this paper, a new type of retention system of PEO/cofactor retention system is introduced, the cofactors used are phenol-formaldehyde resin, wheat straw alkaline lignin and its derivatives such as hydroxymethylated lignin, sulfited lignin and lignin-based phenol-formaldehyde resin. The first pass retention of newsprint slurry and the properties of handsheet are improved by using the system. The results indicate that a new application field for lignin has been exploited.

  20. Synthesis of magnetic wheat straw for arsenic adsorption

    International Nuclear Information System (INIS)

    Highlights: → This work provides a way for fabricating low-cost arsenic adsorbents using agro- or plant-residues. → The introduction of wheat straw template highly enhances the arsenic adsorption of Fe3O4. → This magnetic adsorbent can be separated and collected by magnetic control easily and rapidly. → This adsorbent can be regenerated. → - Abstract: Magnetic wheat straw (MWS) with different Fe3O4 content was synthesized by using in-situ co-precipitation method. It was characterized by powder X-ray diffraction (XRD) and vibrating sample magnetometer (VSM). This material can be used for arsenic adsorption from water, and can be easily separated by applied magnetic field. The introduction of wheat straw template highly enhanced the arsenic adsorption of Fe3O4. Among three adsorption isotherm models examined, the data fitted Langmuir model better. Fe3O4 content and initial pH value influenced its adsorption behavior. Higher Fe3O4 content corresponded to a higher adsorption capacity. In the pH range of 3-11, As(V) adsorption was decreased with increasing of pH; As(III) adsorption had the highest capacity at pH 7-9. Moreover, by using 0.1 mol L-1 NaOH aqueous solution, it could be regenerated. This work provided an efficient way for making use of agricultural waste.

  1. Induction of wheat straw delignification by Trametes species.

    Science.gov (United States)

    Knežević, Aleksandar; Stajić, Mirjana; Jovanović, Vladimir M; Kovačević, Višnja; Ćilerdžić, Jasmina; Milovanović, Ivan; Vukojević, Jelena

    2016-01-01

    Wheat straw is the major crop residue in European countries which makes it the most promising material for bioconversion into biofuels. However, cellulose and hemicellulose are protected with lignin, so delignification is an inevitable phase in lignocellulose processing. The organisms predominantly responsible for its degradation are white-rot fungi and among them Trametes species represent promising degraders due to a well-developed ligninolytic enzyme system. Although numerous studies have confirmed that low molecular weight compounds can induce the production and activity of ligninolytic enzymes it is not clear how this reflects on the extent of delignification. The aim of the study was to assess the capacity of p-anisidine and veratryl alcohol to induce the production and activity of Mn-oxidizing peroxidases and laccases, and wheat straw delignification by six Trametes species. Significant inter- and intraspecific variations in activity and features of these enzymes were found, as well as differences in the potential of lignocellulose degradation in the presence or absence of inducers. Differences in the catalytic properties of synthesized enzyme isoforms strongly affected lignin degradation. Apart from enhanced lignin degradation, the addition of p-anisidine could significantly improve the selectivity of wheat straw ligninolysis, which was especially evident for T. hirsuta strains. PMID:27216645

  2. DETERMINATION OF THE EXERGY OF FOUR WHEAT STRAWS

    Directory of Open Access Journals (Sweden)

    Yaning Zhang

    2013-01-01

    Full Text Available Exergy is a measurement of how far a certain material deviates from a state of equilibrium with the environment. It is a useful tool for improving the efficiency of energy-resource use. The exergy values of four wheat straws (Absolvant, Max, Monopol and Vuka were determined in this study. The effects of physical and chemical properties (moisture content, ash content, LHV and S, C, O, H and N contents were evaluated. The moisture related exergy varied from 281.834 kJ kg-1 (Monopol to 366.766 kJ kg-1 (Absolvant, accounting for 1.311-1.734% of the total exergy of wheat straws. A negative linear relationship between the exergy value and moisture content was observed. The ash related exergy varied from 53.468 kJ kg-1 (Absolvant to 117.675 kJ kg-1 (Vuka, accounting for 0.253-0.556% of the total exergy of wheat straws. A negative linear relationship between the exergy value and ash content was observed. The S related exergy ranged from 6.817 kJ kg-1 (Max to 11.077 kJ kg-1 (Vuka, accounting for 0.032-0.052% of the total exergy of wheat straws. A positive linear relationship between the exergy value and S content was observed. The O/C, H/C and N/C atomic ratios and the correlation factors varied in ranges of 0.7133-0.7537, 1.3475-1.5457, 0.0063-0.0225 and 1.133-1.138, respectively. The exergy values of the four wheat straws were between 21.156 MJ kg-1 (Absolvant and 21.503 MJ kg-1 (Monopol. They were mainly determined by the correlation factors and the LHVs. A positive linear relationship between the exergy value and LHV was observed. The combined contribution of ash, moisture and S related exergy to the total exergy was very small (1.694-2.212% and can be neglected.

  3. Determination of Performance of Yearlings Fed with Rations Containing Wheat, Maize and Buckwheat Straws

    Directory of Open Access Journals (Sweden)

    Zeynel Acar

    2014-09-01

    Full Text Available As well as cereal straw, the use of maize straw in ruminant feeding has been increasing as the feed shortage widens. In addition, cultivation of buckwheat with high straw yield potential is becoming widespread. Thus, performance of 15 female Karya yearlings fed with ration containing wheat, maize or buckwheat straws were compared. The yearlings fed either containing wheat, maize or buckwheat straws in three total mixed rations (30% straw in dry matter that were consisted of, maize silage, concentrate and cracked maize, formulated to provide 150 g daily live weight gain for 21 d. Total mixed rations was prepared based on the nutritive value of wheat straw. Prior to feeding trial yearlings were acclimatized to their respective feed for a period of 14 d. Straws were included in total mixed rations following the chopping at 1-2 cm. Daily live weight gain and dry matter intake of yearlings fed with mixed ration containing wheat, maize or buckwheat straw were 88, 85 and 135 g/d (P=0.10 and 954, 931 and 1078 g/d (P=0.09, respectively. However, crude protein intake of yearlings (g/d fed with the ration containing buckwheat straw 14% higher than yearlings fed with the ration containing wheat or maize straw. It was concluded that performance of yearling fed with ration containing buckwheat straws was superior to performance of yearlings fed with ration containing wheat and maize straw, while performance of yearling fed with ration containing wheat or maize straw was similar.

  4. Delignification of wheat straw by Pleurotus spp. under mushroom-growing conditions

    Energy Technology Data Exchange (ETDEWEB)

    Tsang, L.J.; Reid, I.D.; Coxworth, E.C.

    1987-06-01

    Pleurotus sajor-caju, P. sapidus, P. cornucopiae, and P. ostreatus mushrooms were produced on unsupplemented wheat straw. The yield of mushrooms averaged 3.6% (dry-weight basis), with an average 18% straw weight loss. Lignin losses (average, 11%) were lower than cellulose (20%) and hemicellulose (50%) losses. The cellulase digestibility of the residual straw after mushroom harvest was generally lower than that of the original straw. It does not appear feasible to simultaneously produce Pleurotus mushrooms and a highly delignified residue from wheat straw. (Refs. 24).

  5. Effect of Alkali Treatment of Wheat Straw on Adsorption of Cu(II under Acidic Condition

    Directory of Open Access Journals (Sweden)

    Yiping Guo

    2016-01-01

    Full Text Available The convenient and feasible pretreatment method of alkali treatment is very common in the degradation process of wheat straw. However, its utilization in the pretreatment of wheat straw as alternative adsorbents for aqueous heavy metals remediation is rarely reported. The present study investigated the removal efficiency of Cu(II ions using wheat straw with alkali pretreatment. The condition of alkali treatment on wheat straw was optimized with the adsorption capacity of Cu(II as indicator using single-factor experiments. The influences of wheat straw dosages, pH values, contact time, and temperatures on adsorption performance for both untreated wheat straw (UWS and alkali-treated wheat straw (AWS were investigated. Results showed that the relatively large removal rate of Cu(II could be obtained, and chemical behavior occurred during the adsorption process. Characteristic analysis found that the major function of alkali treatment to wheat straw was to introduce the hydroxy group, which resulted in the increase of -C-O- group. Although the adsorption capacity is not as high as the one of ligands supported adsorbents, the method is easy to operate and has a wide range of application; at the same time, it could realize both purposes of treating heavy metal pollution and solid wastes.

  6. Use of ground wheat straw in container nursery substrates to overwinter daylily divisions

    Science.gov (United States)

    Wheat (Triticum sp.) straw is being evaluated as a potential component in soilless container mixes either alone or combined with compost to replace a significant portion of the substrate currently supplied by pine bark and peat moss. The objective of this study was to evaluate wheat straw and horse...

  7. Enhancement of enzymatic hydrolysis of wheat straw by gamma irradiation-alkaline pretreatment

    Science.gov (United States)

    Yin, Yanan; Wang, Jianlong

    2016-06-01

    Pretreatment of wheat straw with gamma irradiation and NaOH was performed to enhance the enzymatic hydrolysis of wheat straw for production of reducing sugar. The results showed that the irradiation of wheat straw at 50 kGy decreased the yield of reducing sugar, however, the reducing sugar yield increased with increasing dose from 50 kGy to 400 kGy. The irradiation of wheat straw at 100 kGy can significantly decrease NaOH consumption and treatment time. The reducing sugar yield could reach 72.67% after irradiation at 100 kGy and 2% NaOH treatment for 1 h. The combined pretreatment of wheat straw by gamma radiation and NaOH immersion can increase the solubilization of hemicellulose and lignin as well as the accessible surface area for enzyme molecules.

  8. Comparing the performance of Miscanthus x giganteus and wheat straw biomass in sulfuric acid based pretreatment.

    Science.gov (United States)

    Kärcher, M A; Iqbal, Y; Lewandowski, I; Senn, T

    2015-03-01

    The objective of this study was to assess and compare the suitability of Miscanthus x giganteus and wheat straw biomass in dilute acid catalyzed pretreatment. Miscanthus and wheat straw were treated in a dilute sulfuric acid/steam explosion pretreatment. As a result of combining dilute sulfuric acid- and steam explosion pretreatment the hemicellulose hydrolysis yields (96% in wheat straw and 90% in miscanthus) in both substrates were higher than reported in literature. The combined severity factor (=CSF) for optimal hemicellulose hydrolysis was 1.9 and 1.5 in for miscanthus and wheat straw respectively. Because of the higher CSF value more furfural, furfuryl alcohol, 5-hydroxymethylfurfural and acetic acid was formed in miscanthus than in wheat straw pretreatment.

  9. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept

    DEFF Research Database (Denmark)

    Kaparaju, Prasad Laxmi-Narasimha; Serrano, Maria; Thomsen, Anne Belinda;

    2009-01-01

    The production of bioethanol, biohydrogen and biogas from wheat straw was investigated within a biorefinery framework. Initially, wheat straw was hydrothermally liberated to a cellulose rich fiber fraction and a hemicellulose rich liquid fraction (hydrolysate). Enzymatic hydrolysis and subsequent....... Additionally, evaluation of six different wheat straw-to-biofuel production scenaria showed that either use of wheat straw for biogas production or multi-fuel production were the energetically most efficient processes compared to production of mono-fuel such as bioethanol when fermenting C6 sugars alone. Thus......, multiple biofuels production from wheat straw can increase the efficiency for material and energy and can presumably be more economical process for biomass utilization. (C) 2008 Elsevier Ltd. All rights reserved....

  10. Integration of first and second generation biofuels: Fermentative hydrogen production from wheat grain and straw

    NARCIS (Netherlands)

    Panagiotopoulos, I.A.; Bakker, R.R.C.; Vrije, de G.J.; Claassen, P.A.M.; Koukios, E.G.

    2013-01-01

    Integrating of lignocellulose-based and starch-rich biomass-based hydrogen production was investigated by mixing wheat straw hydrolysate with a wheat grain hydrolysate for improved fermentation. Enzymatic pretreatment and hydrolysis of wheat grains led to a hydrolysate with a sugar concentration of

  11. Bioprocessing of wheat straw into nutritionally rich and digested cattle feed

    OpenAIRE

    Shrivastava, Bhuvnesh; Jain, Kavish Kumar; Kalra, Anup; Kuhad, Ramesh Chander

    2014-01-01

    Wheat straw was fermented by Crinipellis sp. RCK-1, a lignin degrading fungus, under solid state fermentation conditions. The fungus degraded 18.38% lignin at the expense of 10.37% cellulose within 9 days. However, when wheat straw fermented for different duration was evaluated in vitro, the 5 day fungal fermented wheat straw called here “Biotech Feed” was found to possess 36.74% organic matter digestibility (OMD) and 5.38 (MJ/Kg Dry matter) metabolizable energy (ME). The Biotech Feed was als...

  12. A multi-scale biomechanical model based on the physiological structure and lignocellulose components of wheat straw.

    Science.gov (United States)

    Chen, Longjian; Li, Aiwei; He, Xueqin; Han, Lujia

    2015-11-20

    Biomechanical behavior is a fundamental property for the efficient utilization of wheat straw in such applications as fuel and renewable materials. Tensile experiments and lignocellulose analyses were performed on three types of wheat straw. A multi-scale finite element model composed of the microscopic model of the microfibril equivalent volume element and the macroscopic model of straw tissue was proposed based on the physiological structure and lignocellulose components of wheat straw. The tensile properties of wheat straw were simulated by ANSYS software. The predicted stress-strain data were compared with the observed data, and good correspondence was achieved for all three types of wheat straw. The validated multi-scale finite-element (FE) model was then used to investigate the effect of the lignocellulose components on the biomechanical properties of wheat straw. More than 80% of stress is carried by the cellulose fiber, whereas the strain is mainly carried by the amorphous cellulose. PMID:26344265

  13. Wet explosion of wheat straw and codigestion with swine manure: effect on the methane productivity.

    Science.gov (United States)

    Wang, G; Gavala, H N; Skiadas, I V; Ahring, B K

    2009-11-01

    The continuously increasing demand for renewable energy sources renders anaerobic digestion to one of the most promising technologies for renewable energy production. Twenty-two (22) large-scale biogas plants are currently under operation in Denmark. Most of these plants use manure as the primary feedstock but their economical profitable operation relies on the addition of other biomass products with a high biogas yield. Wheat straw is the major crop residue in Europe and the second largest agricultural residue in the world. So far it has been used in several applications, i.e. pulp and paper making, production of regenerated cellulose fibers as an alternative to wood for cellulose-based materials and ethanol production. The advantage of exploiting wheat straw for various applications is that it is available in considerable quantity and at low-cost. In the present study, the codigestion of swine manure with wheat straw in a continuous operated system was investigated, as a method to increase the efficiency of biogas plants that are based on anaerobic digestion of swine manure. Also, the pretreatment of wheat straw with the wet explosion method was studied and the efficiency of the wet explosion process was evaluated based on (a) the sugars release and (b) the methane potential of the pretreated wheat straw compared to that of the raw biomass. It was found that, although a high release of soluble sugars was observed after wet explosion, the methane obtained from the wet-exploded wheat straw was slightly lower compared to that from the raw biomas s. On the other hand, the results from the codigestion of raw (non-pretreated) wheat straw with swine manure were very promising, suggesting that 4.6 kg of straw added to 1t of manure increase the methane production by 10%. Thus, wheat straw can be considered as a promising, low-cost biomass for increasing the methane productivity of biogas plants that are based mainly on swine manure.

  14. Wet explosion of wheat straw and codigestion with swine manure: effect on the methane productivity.

    Science.gov (United States)

    Wang, G; Gavala, H N; Skiadas, I V; Ahring, B K

    2009-11-01

    The continuously increasing demand for renewable energy sources renders anaerobic digestion to one of the most promising technologies for renewable energy production. Twenty-two (22) large-scale biogas plants are currently under operation in Denmark. Most of these plants use manure as the primary feedstock but their economical profitable operation relies on the addition of other biomass products with a high biogas yield. Wheat straw is the major crop residue in Europe and the second largest agricultural residue in the world. So far it has been used in several applications, i.e. pulp and paper making, production of regenerated cellulose fibers as an alternative to wood for cellulose-based materials and ethanol production. The advantage of exploiting wheat straw for various applications is that it is available in considerable quantity and at low-cost. In the present study, the codigestion of swine manure with wheat straw in a continuous operated system was investigated, as a method to increase the efficiency of biogas plants that are based on anaerobic digestion of swine manure. Also, the pretreatment of wheat straw with the wet explosion method was studied and the efficiency of the wet explosion process was evaluated based on (a) the sugars release and (b) the methane potential of the pretreated wheat straw compared to that of the raw biomass. It was found that, although a high release of soluble sugars was observed after wet explosion, the methane obtained from the wet-exploded wheat straw was slightly lower compared to that from the raw biomas s. On the other hand, the results from the codigestion of raw (non-pretreated) wheat straw with swine manure were very promising, suggesting that 4.6 kg of straw added to 1t of manure increase the methane production by 10%. Thus, wheat straw can be considered as a promising, low-cost biomass for increasing the methane productivity of biogas plants that are based mainly on swine manure. PMID:19666217

  15. Simulation of the ozone pretreatment of wheat straw.

    Science.gov (United States)

    Bhattarai, Sujala; Bottenus, Danny; Ivory, Cornelius F; Gao, Allan Haiming; Bule, Mahesh; Garcia-Perez, Manuel; Chen, Shulin

    2015-11-01

    Wheat straw is a potential feedstock in biorefinery for sugar production. However, the cellulose, which is the major source of sugar, is protected by lignin. Ozonolysis deconstructs the lignin and makes cellulose accessible to enzymatic digestion. In this study, the change in lignin concentration with different ozonolysis times (0, 1, 2, 3, 5, 7, 10, 15, 20, 30, 60min) was fit to two different kinetic models: one using the model developed by Garcia-Cubero et al. (2012) and another including an outer mass transfer barrier or "cuticle" region where ozone mass transport is reduced in proportion to the mass of unreacted insoluble lignin in the cuticle. The kinetic parameters of two mathematical models for predicting the soluble and insoluble lignin at different pretreatment time were determined. The results showed that parameters derived from the cuticle-based model provided a better fit to experimental results compared to a model without a cuticle layer.

  16. Simulation of the ozone pretreatment of wheat straw.

    Science.gov (United States)

    Bhattarai, Sujala; Bottenus, Danny; Ivory, Cornelius F; Gao, Allan Haiming; Bule, Mahesh; Garcia-Perez, Manuel; Chen, Shulin

    2015-11-01

    Wheat straw is a potential feedstock in biorefinery for sugar production. However, the cellulose, which is the major source of sugar, is protected by lignin. Ozonolysis deconstructs the lignin and makes cellulose accessible to enzymatic digestion. In this study, the change in lignin concentration with different ozonolysis times (0, 1, 2, 3, 5, 7, 10, 15, 20, 30, 60min) was fit to two different kinetic models: one using the model developed by Garcia-Cubero et al. (2012) and another including an outer mass transfer barrier or "cuticle" region where ozone mass transport is reduced in proportion to the mass of unreacted insoluble lignin in the cuticle. The kinetic parameters of two mathematical models for predicting the soluble and insoluble lignin at different pretreatment time were determined. The results showed that parameters derived from the cuticle-based model provided a better fit to experimental results compared to a model without a cuticle layer. PMID:26231127

  17. XYLANASE PREBLEACHING ON NAOH-AQ WHEAT STRAW PULP

    Institute of Scientific and Technical Information of China (English)

    Caixia Li; Yongjun Deng; Ping Li; Guigan Fang; Shuchai Liu

    2004-01-01

    Before calcium hypochlorite bleaching (H) and chlorination,alkaline extraction, calcium hypochlorite three-stage-bleaching (CEH),we used a kind of hemicellulase, xylanase, to treat wheat straw pulp from Gaoyou Papermill.Xylanase pretreatment contained tow stages, the first stage was xylanase treatment, which was followed by alkaline extraction, the second stage. The xylanase could act on partial lignin and carbohydrate, chiefly xylan. The following alkaline extraction could dissolve something that could not be removed during the first stage. The result of pretreatment was to facilitate penetration of bleaching chemicals, to reduce effective chlorine consumption and to lower pollution loading of bleaching effluent. In the case of these two bleaching processes, the enzymatic pretreatment substantially enhanced the optical properties of the pulps. To calcium hypochlorite bleaching, strength properties of pulps were improved.

  18. XYLANASE PREBLEACHING ON NaOH-AQ WHEAT STRAW PULP

    Institute of Scientific and Technical Information of China (English)

    CaixiaLi; YongjunDeng; PingLi; GuiganFang; ShuchaiLiu

    2004-01-01

    Before calcium hypochlorite bleaching (H) and chlorination, alkaline extraction, calcium hypochlorite three-stage-bleaching (CEH),we used a kind of hemicellulase, xylanase, to treat wheat straw pulpfrom Gaoyou Papermill. Xylanase pretreatment contained tow stages, the first stage was xylanase treatment, which was followed by alkaline extraction, the second stage. The xylanase could act on partial lignin and carbohydrate, chiefly xylan. The following alkaline extraction could dissolve something that could not be removed during the first stage. The result of pretreatment was to facilitate penetration of bleaching chemicals, to reduce effective chlorine consumption and to lower pollution loading of bleaching effluent. In the case of these two bleaching processes, the enzymatic pretreatment substantially enhanced the optical properties of the pulps. To calcium hypochlorite bleaching, strength properties of pulps wereimproved.

  19. Biohydrogen and carboxylic acids production from wheat straw hydrolysate.

    Science.gov (United States)

    Chandolias, Konstantinos; Pardaev, Sindor; Taherzadeh, Mohammad J

    2016-09-01

    Hydrolyzed wheat straw was converted into carboxylic acids and biohydrogen using digesting bacteria. The fermentations were carried out using both free and membrane-encased thermophilic bacteria (55°C) at various OLRs (4.42-17.95g COD/L.d), in semi-continuous conditions using one or two bioreactors in a series. The highest production of biohydrogen and acetic acid was achieved at an OLR of 4.42g COD/L.d, whilst the highest lactic acid production occurred at an OLR of 9.33g COD/L.d. Furthermore, the bioreactor with both free and membrane-encased cells produced 60% more lactic acid compared to the conventional, free-cell bioreactor. In addition, an increase of 121% and 100% in the production of acetic and isobutyric acid, respectively, was achieved in the 2nd-stage bioreactor compared to the 1st-stage bioreactor.

  20. Comparison of dilute mineral and organic acid pretreatment for enzymatic hydrolysis of wheat straw

    NARCIS (Netherlands)

    Kootstra, A.M.J.; Beeftink, H.H.; Scott, E.L.; Sanders, J.P.M.

    2009-01-01

    The efficiencies of fumaric, maleic, and sulfuric acid in wheat straw pretreatment were compared. As a measure for pretreatment efficiency, enzymatic digestibility of the lignocellulose was determined. Monomeric glucose and xylose concentrations were measured after subsequent enzymatic hydrolysis, a

  1. Earthworms promote the reduction of Fusarium biomass and deoxynivalenol content in wheat straw under field conditions

    OpenAIRE

    Wolfarth, F.; Schrader, S.; Oldenburg, E.; Weinert, J.; BRUNOTTE, J.

    2011-01-01

    Earthworms provide numerous ecosystem services within the context of Conservation Agriculture. Two species of earthworms, Lumbricus terrestris and Aporrectodea caliginosa, were field-tested to determine their impacts on decomposing Fusarium culmorum-infected and deoxynivalenol (DON)-contaminated wheat straw on the soil surface. Earthworms were inoculated into systems containing infected straw with high contamination levels of DON on non-infected straw for an 8 week period in Northern Germany....

  2. Impact of removing straw from wheat and barley fields: A literature review

    Science.gov (United States)

    The sustainability of straw removal from wheat and barley fields from the standpoint of its effects on soil properties and nutrient cycling is a concern. A recent literature review reveals that there is no negative effect of small grain straw removal on soil organic carbon (SOC) content with irriga...

  3. Search for optimum conditions of wheat straw hemicelluloses cold alkaline extraction process

    OpenAIRE

    García Domínguez, Juan Carlos; Díaz Blanco, Manuel Jesús; García Domínguez, M. T.; Feria Infante, Manuel Javier; Gómez Lozano, D. M.; López Baldovín, Francisco

    2013-01-01

    A method for the selective extraction of hemicellulose from wheat straw involving cold alkaline extraction and subsequent separation by precipitation with ethanol is proposed. Wheat straw affords selective separation of the hemicellulose fraction from the cellulose and lignin fractions with the proposed method. The hemicellulose yield was optimized by using a 2n factor design to examine the influence of temperatures (temperature was designed between 20 and 40 ◦C), operation times ...

  4. Enhancing Biogas Production from Anaerobically Digested Wheat Straw Through Ammonia Pretreatment

    Institute of Scientific and Technical Information of China (English)

    杨懂艳; 庞云芝; 袁海荣; 陈树林; 马晶伟; 郁亮; 李秀金

    2014-01-01

    Aqueous ammonia was used to pretreat wheat straw to improve biodegradability and provide nitrogen source for enhancing biogas production. Three doses of ammonia (2%, 4%, and 6%, dry matter) and three moisture contents (30%, 60%, and 80%, dry matter) were applied to pretreat wheat straw for 7 days. The pretreated wheat straws were anaerobically digested at three loading rates (50, 65, and 80 g·L-1) to produce biogas. The results indi-cated that the wheat straw pretreated with 80%moisture content and 4%ammonia achieved the highest methane yield of 199.7 ml·g-1 (based on per unit volatile solids loaded), with shorter digestion time (T80) of 25 days at the loading rate of 65 g·L-1 compared to untreated one. The main chemical compositions of wheat straw were also ana-lyzed. The cellulose and hemicellulose contents were decomposed by 2%-20%and 26%-42%, respectively, while the lignin content was hardly removed, cold-water and hot-water extracts were increased by 4%-44%, and 12%-52%, respectively, for the ammonia-pretreated wheat straws at different moisture contents. The appropriate C/N ratio and decomposition of original chemical compositions into relatively readily biodegradable substances will improve the biodegradability and biogas yield.

  5. Wheat straw pretreatment with KOH for enhancing biomethane production and fertilizer value in anaerobic digestion☆

    Institute of Scientific and Technical Information of China (English)

    Muhammad Jaffar; Yunzhi Pang; Hairong Yuan; Dexun Zou; Yanping Liu; Baoning Zhu; Rashid Mustafa Korai; Xiujin Li

    2016-01-01

    Wheat straw biodegradability during anaerobic digestion was improved by treatment with potassium hydroxide (KOH) to decrease digestion time and enhance biomethane production and fertility value. KOH concentrations of 1%(K1), 3%(K2), 6%(K3) and 9%(K4) were tested for wheat straw pretreatment at ambient temperature with a C:N ratio of 25:1. 86%of total solids (TS), 89%of volatile solids (VS) and 22%of lignocel ulose, cellulose and hemi-cellulose (LCH) (22%) were decomposed effectively with the wheat straw pretreated by 6%KOH. Enhanced bio-gas production and cumulative biomethane yield of 258 ml·(g VS)−1 were obtained increased by 45%and 41%respectively, compared with untreated wheat straw. Pretreated wheat straw digestion also yielded a digestate with higher fertilizer values potassium (138%), calcium (22%) and magnesium (16%). These results show that TS, VS and LCH can be effectively removed from wheat straw pretreated with KOH, improving biodegradability biomethane production and fertilizer value.

  6. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw.

    Science.gov (United States)

    Rosgaard, Lisa; Pedersen, Sven; Meyer, Anne S

    2007-12-01

    In biomass-to-ethanol processes a physico-chemical pretreatment of the lignocellulosic biomass is a critical requirement for enhancing the accessibility of the cellulose substrate to enzymatic attack. This report evaluates the efficacy on barley and wheat straw of three different pretreatment procedures: acid or water impregnation followed by steam explosion versus hot water extraction. The pretreatments were compared after enzyme treatment using a cellulase enzyme system, Celluclast 1.5 L from Trichoderma reesei, and a beta-glucosidase, Novozyme 188 from Aspergillus niger. Barley straw generally produced higher glucose concentrations after enzymatic hydrolysis than wheat straw. Acid or water impregnation followed by steam explosion of barley straw was the best pretreatment in terms of resulting glucose concentration in the liquid hydrolysate after enzymatic hydrolysis. When the glucose concentrations obtained after enzymatic hydrolyses were related to the potential glucose present in the pretreated residues, the highest yield, approximately 48% (g g-1), was obtained with hot water extraction pretreatment of barley straw; this pretreatment also produced highest yields for wheat straw, producing a glucose yield of approximately 39% (g g-1). Addition of extra enzyme (Celluclast 1.5 L+Novozyme 188) during enzymatic hydrolysis resulted in the highest total glucose concentrations from barley straw, 32-39 g L-1, but the relative increases in glucose yields were higher on wheat straw than on barley straw. Maldi-TOF MS analyses of supernatants of pretreated barley and wheat straw samples subjected to acid and water impregnation, respectively, and steam explosion, revealed that the water impregnated + steam-exploded samples gave a wider range of pentose oligomers than the corresponding acid-impregnated samples.

  7. Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2004-09-30

    Wheat straw (Triticum aestivum L.) is an abundant source of plant fiber. It is regenerated, in large quantities, every year. At present, this potentially valuable resource is greatly under-exploited. Most of the excess straw biomass (i.e., tonnage above that required for agronomic cropping system sustainability) is managed through expensive chopping/tillage operations and/or burnt in the field following harvest, resulting in air pollution and associated health problems. Potential applications for wheat straw investigated within this project include energy and composites manufacture. Other methods of straw utilization that will potentially benefit from the findings of this research project include housing and building, pulp and paper, thermal insulation, fuels, and chemicals. This project focused on components of the feedstock assembly system for supplying a higher value small grains straw residue for (1) gasification/combustion and (2) straw-thermoplastic composites. This project was an integrated effort to solve the technological, infrastructural, and economic challenges associated with using straw residue for these bioenergy and bioproducts applications. The objective of the research is to contribute to the development of a low-capital distributed harvesting and engineered storage system for upgrading wheat straw to more desirable feedstocks for combustion and for straw-plastic composites. They investigated two processes for upgrading wheat straw to a more desirable feedstock: (1) an efficient combine-based threshing system for separating the intermodal stems from the leaves, sheaths, nodes, and chaff. (2) An inexpensive biological process using white-rot fungi to improve the composition of the mechanically processed straw stems.

  8. Distributed Physical and Molecular Separations for Selective Harvest of Higher Value Wheat Straw Components Project

    Energy Technology Data Exchange (ETDEWEB)

    Hess, J.R

    2005-01-31

    Wheat straw (Triticum aestivum L.) is an abundant source of plant fiber. It is regenerated, in large quantities, every year. At present, this potentially valuable resource is greatly under-exploited. Most of the excess straw biomass (i.e., tonnage above that required for agronomic cropping system sustainability) is managed through expensive chopping/tillage operations and/or burnt in the field following harvest, resulting in air pollution and associated health problems. Potential applications for wheat straw investigated within this project include energy and composites manufacture. Other methods of straw utilization that will potentially benefit from the findings of this research project include housing and building, pulp and paper, thermal insulation, fuels, and chemicals. This project focused on components of the feedstock assembly system for supplying a higher value small grains straw residue for (1) gasification/combustion and (2) straw-thermoplastic composites. This project was an integrated effort to solve the technological, infrastructural, and economic challenges associated with using straw residue for these bioenergy and bioproducts applications. The objective of the research is to contribute to the development of a low-capital distributed harvesting and engineered storage system for upgrading wheat straw to more desirable feedstocks for combustion and for straw-plastic composites. We investigated two processes for upgrading wheat straw to a more desirable feedstock: (1) An efficient combine-based threshing system for separating the internodal stems from the leaves, sheaths, nodes, and chaff. (2) An inexpensive biological process using white-rot fungi to improve the composition of the mechanically processed straw stems.

  9. Comparison of different pretreatment strategies for enzymatic hydrolysis of wheat and barley straw

    DEFF Research Database (Denmark)

    Rosgaard, Lisa; Pedersen, Sven; Meyer, Anne Boye Strunge

    2007-01-01

    procedures: acid or water impregnation followed by steam explosion versus hot water extraction. The pretreatments were compared after enzyme treatment using a cellulase enzyme system, Celluclast 1.5 L (R) from Trichoderma reesei, and a beta-glucosidase, Novozyme 188 from Aspergillus niger. Barley straw...... generally produced higher glucose concentrations after enzymatic hydrolysis than wheat straw. Acid or water impregnation followed by steam explosion of barley straw was the best pretreatment in terms of resulting glucose concentration in the liquid hydrolysate after enzymatic hydrolysis. When the glucose...... straw. Maldi-TOF MS analyses of supernatants of pretreated barley and wheat straw samples subjected to acid and water impregnation, respectively, and steam explosion, revealed that the water impregnated + steam-exploded samples gave a wider range of pentose oligomers than the corresponding acid...

  10. Pyrolysis Kinetic Modelling of Wheat Straw from the Pannonian Region

    Directory of Open Access Journals (Sweden)

    Ivan Pešenjanski

    2016-01-01

    Full Text Available The pyrolysis/devolatilization is a basic step of thermochemical processes and requires fundamental characterization. In this paper, the kinetic model of pyrolysis is specified as a one-step global reaction. This type of reaction is used to describe the thermal degradation of wheat straw samples by measuring rates of mass loss of solid matter at a linear increase in temperature. The mentioned experiments were carried out using a derivatograph in an open-air environment. The influence of different factors was investigated, such as particle size, humidity levels, and the heating rate in the kinetics of devolatilization. As the measured values of mass loss and temperature functions transform in Arrhenius coordinates, the results are shown in the form of saddle curves. Such characteristics cannot be approximated with one equation in the form of Arrhenius law. For use in numerical applications, transformed functions can be approximated by linear regression for three separate intervals. Analysis of measurement resulting in granulation and moisture content variations shows that these factors have no significant influence. Tests of heating rate variations confirm the significance of this impact, especially in warmer regions. The influence of this factor should be more precisely investigated as a general variable, which should be the topic of further experiments.

  11. Purification, structural characterization, and modification of organosolv wheat straw lignin.

    Science.gov (United States)

    Mbotchak, Laurie; Le Morvan, Clara; Duong, Khanh Linh; Rousseau, Brigitte; Tessier, Martine; Fradet, Alain

    2015-06-01

    Biolignin, a wheat straw lignin produced by acetic acid/formic acid/water hydrolysis, was characterized by (31)P and (13)C-(1)H 2D NMR spectroscopy and by size-exclusion chromatography. Biolignin is a mixture of low molar mass compounds (Mn = 1660 g/mol) made up of S, G, and H units and of coumaric and ferulic acid units. β-5 and β-O-4 interunit linkages are partially acylated in the γ-position by acetate and p-coumarate groups. Deacylated samples with a low content of contaminants were obtained by combining alkaline hydrolysis and solvent extraction. The high phenolic OH content found by (31)P NMR reflects the presence of condensed aromatic units, such as 5-5 units. Reaction of purified lignin with ethanol and ethane-1,2-diol yielded esterified lignins much more soluble than Biolignin in common organic solvents. During this reaction, the secondary OH of β-O-4 linkages was simultaneously etherified. Phenol hydroxyethylation by 2-chloroethanol yielded samples containing only aliphatic hydroxyl groups. PMID:25961961

  12. WHEAT STRAW CONVERSION BY ENZYMATIC SYSTEM OF GANODERMA LUCIDUM

    Directory of Open Access Journals (Sweden)

    Mirjana Stajic

    2010-09-01

    Full Text Available The purpose of this study was to resolve the question of whether various nitrogen sources and concentrations affect characteristics of selected G. lucidum ligninolytic enzymes participating in wheat straw fermentation. This is the first study reporting the presence of versatile peroxidase activity in crude extract of G. lucidum culture, as well as isoforms profile of Mn-oxidizing peroxidases. NH4NO3 was the optimum nitrogen source for laccase and Mn-dependent peroxidase activity, while peptone was the optimum one for versatile peroxidase activity. Four bands with laccase activity were obtained by native PAGE and IEF separations from medium enriched with inorganic nitrogen source, and only two bands from medium containing organic source. Medium composition was not shown to affect isoenzyme patterns of Mn-oxidizing peroxidases. Four isoforms of Mn-dependent peroxidase and three of versatile peroxidase were obtained on native PAGE. By IEF separation, five isoforms of Mn-dependent peroxidase and only two of versatile peroxidase were observed. The results demonstrated that G. lucidum has potential for mineralization and transformation of various agricultural residues and should take more significant participation in large-scale biotechnological processes.

  13. Enhanced saccharification of biologically pretreated wheat straw for ethanol production.

    Science.gov (United States)

    López-Abelairas, M; Lu-Chau, T A; Lema, J M

    2013-02-01

    The biological pretreatment of lignocellulosic biomass with white-rot fungi for the production of bioethanol is an alternative to the most used physico-chemical processes. After biological treatment, a solid composed of cellulose, hemicellulose, and lignin-this latter is with a composition lower than that found in the initial substrate-is obtained. On the contrary, after applying physico-chemical methods, most of the hemicellulose fraction is solubilized, while cellulose and lignin fractions remain in the solid. The optimization of the combination of cellulases and hemicellulases required to saccharify wheat straw pretreated with the white-rot fungus Irpex lacteus was carried out in this work. The application of the optimal dosage made possible the increase of the sugar yield from 33 to 54 %, and at the same time the reduction of the quantity of enzymatic mixture in 40 %, with respect to the initial dosage. The application of a pre-hydrolysis step with xylanases was also studied. PMID:23306886

  14. Modification of wheat straw in a high-shear mixer

    Energy Technology Data Exchange (ETDEWEB)

    Carr, M.E.; Doane, W.M.

    1984-01-01

    Wheat straw (WS) was treated in a pilot-scale continuous mixer to disrupt the lignin-hemicellulose-cellulose (LHC) complex. An efficient and practical method was desired to remove lignin and hemicellulose (pentosans) rapidly and efficiently from the lignocellulose complex and to make the cellulose accessible to enzymatic hydrolysis. Milled WS in the presence of various chemicals in aqueous solutions was extruded from the mixer under several processing conditions. Chemicals used were sodium hydroxide (NaOH), sodium sulfide (Na/sub 2/S), anthraquinone (AQ), anthrahydroquinone (AHQ), hexamethylenediamine (HMDA), hexamethylenetetramine (HMTA), hydrogen peroxide (H/sub 2/O/sub 2/), and ferrous ammonium sulfate (FAS), which were used alone and in selected combinations. Concomitantly, WS was treated in laboratory batches using similar reaction conditions, except for mixing shearing. In extrusion treatments of WS at 20% concentration at 97/sup 0/C for 5.5 min with NaOH (15.7%, dry WS basis), NaOH (15.7%) + AHQ (0.3%), and NaOH (12.7%) + Na/sub 2/S (5.0%), 64-72% of the WS lignin and 36-43% of the pentosans were removed from aqueously washed extrudates (residues). This compares with 46-56% and 23-27%, respectively, for batch treatments. AHQ and Na/sub 2/S enhanced delignification. Cellulase treatment of the residues, which contai

  15. Acidic Pretreatment of Wheat Straw in Decanol for the Production of Surfactant, Lignin and Glucose

    Directory of Open Access Journals (Sweden)

    Boris Estrine

    2011-12-01

    Full Text Available Wheat straw is an abundant residue of agriculture which is increasingly being considered as feedstock for the production of fuels, energy and chemicals. The acidic decanol-based pre-treatment of wheat straw has been investigated in this work. Wheat straw hemicellulose has been efficiently converted during a single step operation into decyl pentoside surfactants and the remaining material has been preserved keeping all its promises as potential feedstock for fuels or value added platform chemicals such as hydroxymethylfurfural (HMF. The enzymatic digestibility of the cellulose contained in the straw residue has been evaluated and the lignin prepared from the material characterized. Wheat-based surfactants thus obtained have exhibited superior surface properties compared to fossil-based polyethoxylates decyl alcohol or alkyl oligoglucosides, some of which are largely used surfactants. In view of the growing importance of renewable resource-based molecules in the chemical industry, this approach may open a new avenue for the conversion of wheat straw into various chemicals.

  16. Wheat straw as ruminant feed. Effect of supplementation and ammonia treatment on voluntary intake and nutrient availability.

    NARCIS (Netherlands)

    Oosting, S.J.

    1993-01-01

    This thesis describes the results of experiments with goats, sheep and cattle fed untreated or ammonia-treated wheat straw. Aim of the experiments was to identify factors limiting voluntary intake and digestion of these low-quality feeds. Supplementation of urea to untreated wheat straw increased in

  17. Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw

    NARCIS (Netherlands)

    Kabel, M.A.; Bos, G.; Zeevalking, J.; Voragen, A.G.J.; Schols, H.A.

    2007-01-01

    The effect of process conditions used for wheat straw pretreatments on the liquor- and residue-composition was studied. Hereto, the pretreatment conditions were expressed in a `combined severity -factor¿. The higher the combined severity factor () the more xylan was released from the wheat straw, bu

  18. Nitrogen fertilization affects silicon concentration, cell wall composition and biofuel potential of wheat straw

    DEFF Research Database (Denmark)

    Murozuka, Emiko; Laursen, Kristian Holst; Lindedam, Jane;

    2014-01-01

    Nitrogen is an essential input factor required for plant growth and biomass production. However, very limited information is available on how nitrogen fertilization affects the quality of crop residues to be used as lignocellulosic feedstock. In the present study, straw of winter wheat plants grown...... at six different levels of nitrogen supply ranging from 48 to 288kg nitrogen ha-1 was analyzed for major cell wall components and mineral elements. Enzymatic digestion of the straw was carried out to evaluate the saccharification efficiency. The nitrogen concentration in the straw dry matter increased...... saccharification efficiency was negatively correlated with the rate of nitrogen supply. We conclude that the level of nitrogen supply to wheat plants alters the composition of cell wall components in the straw and that this may result in reduced saccharification efficiency. © 2014 Elsevier Ltd....

  19. Bulk density and compaction behavior of knife mill chopped switchgrass, wheat straw, and corn stover.

    Science.gov (United States)

    Chevanan, Nehru; Womac, Alvin R; Bitra, Venkata S P; Igathinathane, C; Yang, Yuechuan T; Miu, Petre I; Sokhansanj, Shahab

    2010-01-01

    Bulk density of comminuted biomass significantly increased by vibration during handling and transportation, and by normal pressure during storage. Compaction characteristics affecting the bulk density of switchgrass, wheat straw, and corn stover chopped in a knife mill at different operating conditions and using four different classifying screens were studied. Mean loose-filled bulk densities were 67.5+/-18.4 kg/m(3) for switchgrass, 36.1+/-8.6 kg/m(3) for wheat straw, and 52.1+/-10.8 kg/m(3) for corn stover. Mean tapped bulk densities were 81.8+/-26.2 kg/m(3) for switchgrass, 42.8+/-11.7 kg/m(3) for wheat straw, and 58.9+/-13.4 kg/m(3) for corn stover. Percentage changes in compressibility due to variation in particle size obtained from a knife mill ranged from 64.3 to 173.6 for chopped switchgrass, 22.2-51.5 for chopped wheat straw and 42.1-117.7 for chopped corn stover within the tested consolidation pressure range of 5-120 kPa. Pressure and volume relationship of chopped biomass during compression with application of normal pressure can be characterized by the Walker model and Kawakita and Ludde model. Parameter of Walker model was correlated to the compressibility with Pearson correlation coefficient greater than 0.9. Relationship between volume reduction in chopped biomass with respect to number of tappings studied using Sone's model indicated that infinite compressibility was highest for chopped switchgrass followed by chopped wheat straw and corn stover. Degree of difficulty in packing measured using the parameters of Sone's model indicated that the chopped wheat straw particles compacted very rapidly by tapping compared to chopped switchgrass and corn stover. These results are very useful for solving obstacles in handling bulk biomass supply logistics issues for a biorefinery.

  20. Heat and microbial treatments for nutritional upgrading of wheat straw

    Energy Technology Data Exchange (ETDEWEB)

    Milstein, O.; Vered, Y.; Sharma, A.; Gressel, J.; Flowers, H.M.

    1986-03-01

    The ligninolytic activities of four cellulolytic organisms were compared using straw. Only Aspergillus japonicus and Polyporous versicolor appreciably degraded lignin with A. japonicus yielding the most protein. In solid culture, most protein was produced by P. versicolor, closely followed by A. japonicus. Pertreatment of the straw by hot water facilitated biodegradation and protein production. The nutritional value of the residual straw was also increased by some fungal cultures. The greatest amount of degradable polysaccharide in the straw was made available by A. japonicus in liquid media and Pleurotus ostreatus in solid media. 29 references.

  1. Decomposition Dynamics and Changes in Chemical Composition of Wheat Straw Residue under Anaerobic and Aerobic Conditions

    Science.gov (United States)

    Gao, Hongjian; Chen, Xi; Wei, Junling; Zhang, Yajie; Zhang, Ligan; Chang, Jiang; Thompson, Michael L.

    2016-01-01

    Soil aeration is a crucial factor that regulates crop residue decomposition, and the chemical composition of decomposing crop residues may change the forms and availability of soil nutrients, such as N and P. However, to date, differences in the chemical composition of crop straw residues after incorporation into soil and during its decomposition under anaerobic vs. aerobic conditions have not been well documented. The objective of the present study was to assess changes in the C-containing functional groups of wheat straw residue during its decomposition in anaerobic and aerobic environments. A 12-month incubation experiment was carried out to investigate the temporal variations of mass, carbon, and nitrogen loss, as well as changes in the chemical composition of wheat (Triticum aestivum L) straw residues under anaerobic and aerobic conditions by measuring C-containing functional groups using solid state nuclear magnetic resonance (NMR) spectroscopy. The residual mass, carbon content, and nitrogen content of the straw residue sharply declined during the initial 3 months, and then slowly decreased during the last incubation period from 3 to 12 months. The decomposition rate constant (k) for mass loss under aerobic conditions (0.022 d-1) was higher than that under anaerobic conditions (0.014 d-1). The residual mass percentage of cellulose and hemicellulose in the wheat straw gradually declined, whereas that of lignin gradually increased during the entire 12-month incubation period. The NMR spectra of C-containing functional groups in the decomposing straw under both aerobic and anaerobic conditions were similar at the beginning of the incubation as well as at 1 month, 6 months, and 12 months. The main alterations in C-containing functional groups during the decomposition of wheat straw were a decrease in the relative abundances of O-alkyl C and an increase in the relative abundances of alkyl C, aromatic C and COO/N-C = O functional groups. The NMR signals of alkyl C

  2. Bioethanol production using genetically modified and mutant wheat and barley straws

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z. [Washington State Univ., Pullman, WA (US). Dept. of Biological Engineering; East China Univ. of Science and Technology, Shanghai (CN). State Key Laboratory of Bioreactor Engineering; Liu, Y. [Michigan State Univ., East Lansing, MI (US). Biosystems and Agricultural Engineering; Chen, S. [Washington State Univ., Pullman, WA (US). Dept. of Biological Systems Engineering; Zemetra, R.S. [Univ. of Idaho, Moscow, ID (US). Plant, Soil, and Entomological Sciences

    2011-01-15

    To improve the performance of wheat and barley straws as feedstocks for ethanol biorefining, the genetic modifications of down regulating Cinnamoyl-CoA reductase and low phytic acid mutation have been introduced into wheat and barley respectively. In this study, total 252 straw samples with different genetic background and location were collected from the field experiment based on a randomized complete block design. The fiber analysis (neutral detergent fiber, acid detergent fiber, and acid detergent lignin) indicated that there were no significant differences between modified and wild type straw lines in terms of straw compositions. However, the difference did exist among straw lines on fiber utilization. 16 straw samples were further selected to conduct diluted acid pretreatment, enzymatic hydrolysis and fermentation. The data indicated that the phytic acid mutant and transgenic straws have changed the fiber structure, which significantly influences their hydrolysibility. These results may lead to a possible solution of mutant or genetic modified plant species that is capable to increase the hydrolysibility of biomass without changing their compositions and sacrificing their agronomy performance. (author)

  3. Utilization of hydrothermally pretreated wheat straw for production of bioethanol and carotene-enriched biomass

    DEFF Research Database (Denmark)

    Petrik, SiniŠa; Márová, Ivana; Kádár, Zsófia

    2013-01-01

    In this work hydrothermally pretreated wheat straw was used for production of bioethanol by Saccharomyces cerevisiae and carotene-enriched biomass by red yeasts Rhodotorula glutinis, Cystofilobasidium capitatum and Sporobolomyces roseus. To evaluate the convertibility of pretreated wheat straw into...... ethanol, simultaneous saccharification and fermentation of S. cerevisiae was performed under semi-anaerobic conditions. The highest ethanol production efficiency of 65-66% was obtained following pretreatment at 200°C without the catalytic action of acetic acid, and at 195 and 200°C respectively in the...

  4. Assessment of pretreatments and enzymatic hydrolysis of wheat straw as a sugar source for bioprocess industry

    Directory of Open Access Journals (Sweden)

    Bohdan Volynets, Yaser Dahman

    2011-05-01

    Full Text Available Environmental concerns and rising oil prices have led to development of biofuels from crop residue lignocelluloses, among which wheat straw is an important feedstock used in leading commercial bioethanol processes. Lignocellulose is structured in a way that makes direct bioconversion of biomass into sugars by hydrolytic enzymes difficult and unfeasible, requiring a pretreatment step. Common biomass pretreatment technologies are assessed for potential application in obtaining fermentable sugars of wheat straw. Current outlook, challenges and opportunities on enzymatic hydrolysis of lignocellulose are also presented.

  5. Ammonia treatment of wheat straw. 1. Voluntary intake, chewing behaviour, rumen pool size and turnover and partition of digestion along the gastrointestinal tract of sheep.

    OpenAIRE

    Bruchem, van, G.; Oosting, S.J.; Lammers-Wienhoven, S.C.W.; Leffering, C.P.

    1993-01-01

    Intake and digestion and rate of passage kinetics were studied in 6 wether sheep fed on ammoniated wheat straw (AWS) plus pelleted sugarbeet pulp, untreated wheat straw plus sugarbeet pulp, and untreated wheat straw supplemented with urea. Ammonia treatment increased intake and whole tract digestion (rumen small intestine large intestine) without significantly affecting rumen pool size and rate of passage. 91% of the increased intake of cell wall material in ammonia-treated straw was due to a...

  6. Biorefining of wheat straw using an acetic and formic acid based organosolv fractionation process

    NARCIS (Netherlands)

    Snelders, J.; Dornez, E.; Benjelloun-Mlayah, B.; Huijgen, W.J.J.; Wild, de P.J.; Gosselink, R.J.A.; Gerritsma, J.; Courtin, C.M.

    2014-01-01

    To assess the potential of acetic and formic acid organosolv fractionation of wheat straw as basis of an integral biorefinery concept, detailed knowledge on yield, composition and purity of the obtained streams is needed. Therefore, the process was performed, all fractions extensively characterized

  7. Rapid pyrolysis of wheat straw in a Bench-Scale circulating Fluidized-Bed downer reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ding, T. [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing (China); Graduate School of Chinese Academy of Sciences, Beijing (China); Li, S.; Xie, J.; Song, W.; Yao, J.; Lin, W. [State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing (China)

    2012-12-15

    The effects of acid washing treatment on the pyrolysis product distribution and product properties were investigated in a bench-scale circulating fluidized-bed (CFB) downer reactor with wheat straw as feedstock. The acid treatment not only removes most of the inorganic species present in the biomass but also alters the distribution of the remaining organic constituents. It was found that the removal of the inorganic species increases the yield of liquid product and reduces char formation and gas yield. CO and CO{sub 2} are the dominant components in the gaseous product, accounting for over 90 %. The concentration of CO in the gaseous product increases after acid treatment, while the CO{sub 2} concentration decreases. The oxygen and water contents in the liquid product are decreased on acid treatment, leading to a relatively high heating value and viscosity. More volatiles can be found in the char derived from the acid-treated wheat straw than from the raw wheat straw. This may suggest that a longer residence time is needed for pyrolysis of the acid-treated wheat straw in order to obtain the maximal yield of volatile matter. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  8. OPTIMIZING SULFITE PRRETREATMENT FOR SACCHARIFICATION OF WHEAT STRAW USING ORTHOGONAL DESIGN

    Directory of Open Access Journals (Sweden)

    Jiayi Yang

    2011-04-01

    Full Text Available An orthogonal designed experiment was used to investigate the effects of sulfite pretreatment on the components separation and saccharification of wheat straw. The process involved sulfite pretreatment of wheat straw under acidic conditions followed by mechanical size reduction using a high consistency refiner. Reaction temperature, retention time, and charges of sodium bisulfite and sulphuric acid were considered as key factors. The results showed the four factors had impact on saccharification of wheat straw. Raising the temperature, increasing the charge of sodium bisulfite or sulphuric acid, or extending the retention time would improve the dissolution of pentosan, lignin, and saccharification efficiency, while causing further conversion of pentose. The separation of lignin and pentosan from wheat straw was the main cause of improvements in saccharification. With an enzyme loading of 5 FPU cellulase plus 4 CBU β-glucosidase per gram of o.d. substrate, a glucose yield 72.45% was achieved using the substrate pretreated under the conditions of temperature 180 oC, sodium bisulfite charge 3%, sulfuric acid charge 1.48%, and retention time 20 min.

  9. Xylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation

    OpenAIRE

    Canilha, Larissa; Carvalho, Walter; Felipe, Maria das Graças Almeida; de Almeida e Silva, João Batista

    2008-01-01

    Wheat straw hemicellulosic hydrolysate was used for xylitol bioproduction. The use of a xylose-containing medium to grow the inoculum did not favor the production of xylitol in the hydrolysate, which was submitted to a previous detoxification treatment with 2.5% activated charcoal for optimized removal of inhibitory compounds.

  10. Fermentation of biologically pretreated wheat straw for ethanol production: comparison of fermentative microorganisms and process configurations.

    Science.gov (United States)

    López-Abelairas, María; Lu-Chau, Thelmo Alejandro; Lema, Juan Manuel

    2013-08-01

    The pretreatment of lignocellulosic biomass with white-rot fungi to produce bioethanol is an environmentally friendly alternative to the commonly used physico-chemical processes. After biological pretreatment, a solid substrate composed of cellulose, hemicellulose and lignin, the two latter with a composition lower than that of the initial substrate, is obtained. In this study, six microorganisms and four process configurations were utilised to ferment a hydrolysate obtained from wheat straw pretreated with the white-rot fungus Irpex lacteus. To enhance total sugars utilisation, five of these microorganisms are able to metabolise, in addition to glucose, most of the pentoses obtained after the hydrolysis of wheat straw by the application of a mixture of hemicellulolytic and cellulolytic enzymes. The highest overall ethanol yield was obtained with the yeast Pachysolen tannophilus. Its application in combination with the best process configuration yielded 163 mg ethanol per gram of raw wheat straw, which was between 23 and 35 % greater than the yields typically obtained with a conventional bioethanol process, in which wheat straw is pretreated using steam explosion and fermented with the yeast Saccharomyces cerevisiae.

  11. Lactic acid production from wheat straw hemicellulose hydrolysate by Lactobacillus pentosus and Lactobacillus brevis

    DEFF Research Database (Denmark)

    Garde, Arvid; Jonsson, Gunnar Eigil; Schmidt, A. S.;

    2002-01-01

    Lactic acid production by Lactobacillus brevis and Lactobacillus pentosus on a hemicellulose hydrolysate (HH) of wet-oxidized wheat straw was evaluated. The potential of 11-12 g/l fermentable sugars was released from the HH through either enzymatic or acidic pretreatment. Fermentation of added...

  12. Performance Monitoring: Evaluating a Wheat Straw PRB for Nitrate Removal at an Agricultural Operation

    Science.gov (United States)

    The U.S. EPA Office of Research and Development’s National Risk Management Research Laboratory (NRMRL) is conducting long-term monitoring of a wheat straw permeable reactive barrier (PRB) for remediation of ground water contaminated with nitrate from a now-closed swine concentrat...

  13. Ensiling of wheat straw decreases the required temperature in hydrothermal pretreatment

    DEFF Research Database (Denmark)

    Ambye-Jensen, Morten; Thomsen, Sune Tjalfe; Kádár, Zsófia;

    2013-01-01

    of the produced organic acids. RESULTS: Ensiling for 4 weeks was accomplished in a vacuum bag system after addition of an inoculum of Lactobacillus buchneri and 7% w/w xylose to wheat straw biomass at 35% final dry matter. Both glucan and xylan were preserved, and the DM loss after ensiling was less than 0...

  14. Xylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation

    Science.gov (United States)

    Canilha, Larissa; Carvalho, Walter; Felipe, Maria das Graças Almeida; de Almeida e Silva, João Batista

    2008-01-01

    Wheat straw hemicellulosic hydrolysate was used for xylitol bioproduction. The use of a xylose-containing medium to grow the inoculum did not favor the production of xylitol in the hydrolysate, which was submitted to a previous detoxification treatment with 2.5% activated charcoal for optimized removal of inhibitory compounds. PMID:24031226

  15. Production of ethanol from wheat straw by pretreatment and fermentation at high dry matter concentrations

    NARCIS (Netherlands)

    Groenestijn, J.W. van; Slomp, R.S.

    2011-01-01

    High concentrations of substrate and product are important for the economy of second-generation bioethanol production. By a dilute acid thermal pretreatment of large pieces of relatively dry wheat straw using a novel rapid heating method, followed by fed-batch preliquefaction with hydrolytic enzymes

  16. Degradation of Biomacromolecules during High-rate Composting of Wheat Straw-Amended Pig Feces.

    NARCIS (Netherlands)

    Veeken, A.H.M.; Adani, F.; Nierop, K.G.J.; Jager, de P.A.; Hamelers, H.V.M.

    2001-01-01

    Pig (Sus scrofa) feces, separately collected and amended with wheat straw, was composted in a tunnel reactor connected with a cooler. The composting process was monitored for 4 wk and the degradation of organic matter was studied by two chemical extraction methods, 13C cross polarization magic angle

  17. Assessment of leaf/stem ratio in wheat straw feedstock and impact on enzymatic conversion

    DEFF Research Database (Denmark)

    Zhang, Heng; Fangel, Jonatan Ulrik; Willats, William George Tycho;

    2014-01-01

    conversion processes and additionally in feedstock breeding. Furthermore, this highlights the need for rapid techniques for determining L/S ratio in wheat straw harvests. The CoMPP data on specific carbohydrates and leaf pectin highlight carbohydrate epitopes that may be useful as markers in the development...

  18. Pyrolysis and Combustion of Pulverized Wheat Straw in a Pressurized Entrained Flow Reactor

    DEFF Research Database (Denmark)

    Fjellerup, Jan Søren; Gjernes, Erik; Hansen, Lars Kresten

    1996-01-01

    at relevant conditions. The pressurized entrained now reactor designed at Rise is introduced. Pyrolysis and combustion at 10 and 20 bar pressure have been studied using pulverized wheat straw. Samples of partly reacted particles are collected, and the conversion is calculated using the ash tracer technique...

  19. Wheat straw, household waste and hay as a source of lignocellulosic biomass for bioethanol and biogas production

    DEFF Research Database (Denmark)

    Tomczak, Anna; Bruch, Magdalena; Holm-Nielsen, Jens Bo

    2010-01-01

    To meet the increasing need for bioenergy three lignocellulosic materials: raw hay, pretreated wheat straw and pretreated household waste were considered for the production of bioethanol and biogas. Several mixtures of household waste supplemented with different fractions of wheat straw and hay in...... fermentation process with Saccharomyces cerevisiae were investigated. Wheat straw and household wastes were pretreated using IBUS technology, patented by Dong Energy, which includes milling, stem explosion treatment and enzymatic hydrolysis. Methane production was investigated using stillages, the effluents...... from bioethanol fermentation experiment. Previous trial of biogas production from above mentioned household wastes was enclosed....

  20. Enhanced ethanol production by removal of cutin and epicuticular waxes of wheat straw by plasma assisted pretreatment

    DEFF Research Database (Denmark)

    Kádár, Zsófia; Schultz-Jensen, Nadja; Jensen, J. S.;

    2015-01-01

    The removal of cutin and epicuticular waxes of wheat straw by PAP (plasma assisted pretreatment) was investigated. Wax removal was observed by Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) as chemical change on the surface of most intensively pretreated samples as well...... as with Scanning Electron Microscopy (SEM) imaging. Compounds resulting from wax degradation were analyzed in the washing water of PAP wheat straw. The wax removal enhanced enzymatic hydrolysis yield and, consequently, the efficiency of wheat straw conversion into ethanol. In total, PAP increased the conversion...

  1. Improved enzymatic hydrolysis of wheat straw by combined use of gamma ray and dilute acid for bioethanol production

    Science.gov (United States)

    Hyun Hong, Sung; Taek Lee, Jae; Lee, Sungbeom; Gon Wi, Seung; Ju Cho, Eun; Singh, Sudhir; Sik Lee, Seung; Yeoup Chung, Byung

    2014-01-01

    Pretreating wheat straw with a combination of dilute acid and gamma irradiation was performed in an attempt to enhance the enzymatic hydrolysis for bioethanol production. The glucose yield was significantly affected by combined pretreatment (3% sulfuric acid-gamma irradiation), compared with untreated wheat straw and individual pretreatment. The increasing enzymatic hydrolysis after combined pretreatment is resulting from decrease in crystallinity of cellulose, loss of hemicelluloses, and removal or modification of lignin. Therefore, combined pretreatment is one of the most effective methods for enhancing the enzymatic hydrolysis of wheat straw biomass.

  2. Isotherm and Kinetics of Arsenic (V Adsorption fromAqueous Solution Using Modified Wheat Straw

    Directory of Open Access Journals (Sweden)

    A Eslami

    2011-01-01

    Full Text Available "nBackgrounds and Objectives:Water contamination with arsenic has been recognized as a serious problem and its epidemiological problems to human health have been reported. The objective of this study was to explore the possibility modified wheat straw using sodium bicarbonate for removing arsenic from aqueous solution."nMaterials and Methods: Adsorption process was accomplished in a laboratory-scale batch with emphasis on the effect of various parameters such as pH, contact time, arsenic concentration and adsorbent dosage on adsorption efficiency. In order to understand the adsorption process, sorption kinetics and equilibrium isotherms were also determined."nResults: It was found that adsorption of the arsenic was influenced by several parameters such as arsenic initial concentration, adsorbent dosage and solution pH. Maximum absorption efficiency was achieved at pH 7. As expected the amount of arsenic adsorbed on wheat straw incresed as its concentration went up. Among the models tested, namely the Langmuir, Freundlich, and Dubinin Radushkevich isotherms, the adsorption equilibrium for arsenic was best described by the Langmuir and Freundlich models. It was also found that adsorption of arsenic by wheat straw followed pseudo second-order kinetics. Mean free energy of adsorption (15.8 kJ mol-1 indicates that adsorption of arsenic by wheat straw might follow a chemisorption mechanism. Desorption studies show that arsenic ions are strongly bounded with the adsorbent and exhibit low desorption."nConclusion: It is concluded that that adsorption by modified wheat straw is an efficient and reliable method for arsenic removal from liquid solutions.

  3. Effects of Straw Processing Methods and Irrigation Sources on Enzymatic Activity of Soils under Winter Wheat

    Institute of Scientific and Technical Information of China (English)

    Zhiwei LU; Guofeng WAN; Zijun YANG; Lei HOU; Wenhui ZHANG

    2012-01-01

    [Objective] The aim was to study on effects of "straw returning and ir-re- turning" and "irrigation with ground water and water in the Yellow River" on changes of enzyme activity in soils under wheat at different developmental stages. [Method] Jimai 22, a kind of winter wheat, was made use of in fields to study on effects of " straw returning and Jr-returning" and "irrigation with ground water and water in the Yellow River" on changes of enzyme activity in soils under wheat in different devel- opmental stages. [Result] With advancement of developmental stage, urease activity of wheat in the four groups all showed the trend of "increasing-decreasing-increas- ing" and activities of invertase and phosphatase both changed from increasing to de- creasing. In addition, urease activities of soils in wheat roots were improved by straw returning in four developmental stages. Meanwhile, activity of soil enzyme was better promoted by irrigation with ground water than with water in the Yellow River, except in grain-filling stage. Before developmental stage, different processing meth- ods had a significant effect on phosphatase activity, for example, straw returning and ground water significantly enhanced activities of two kinds of phosphatase and pro- moted P absorption and transferring by plants and microorganisms in jointing stage; activity of acid phosphatase was higher in the group where irrigation with ground water and straw returning were adopted than those in the rest three groups in boot- ing stage. [Conclusion] The research laid a foundation for dynamic relationship among activity of soil enzyme, crop growth and microorganisms.

  4. Cultivar variation and selection potential relevant to the production of cellulosic ethanol from wheat straw

    DEFF Research Database (Denmark)

    Lindedam, Jane; Andersen, Sven Bode; DeMartini, J.;

    2012-01-01

    Optimizing cellulosic ethanol yield depends strongly on understanding the biological variation of feedstocks. Our objective was to study variation in capacity for producing fermentable sugars from straw of winter wheat cultivars with a high-throughput pretreatment and hydrolysis well-plate techni......Optimizing cellulosic ethanol yield depends strongly on understanding the biological variation of feedstocks. Our objective was to study variation in capacity for producing fermentable sugars from straw of winter wheat cultivars with a high-throughput pretreatment and hydrolysis well......-plate technique. This technique enabled us to estimate cultivar-related and environmental correlations between sugar yield, chemical composition, agronomic qualities, and distribution of botanical plant parts of wheat straw cultivars. Straws from 20 cultivars were collected in duplicates on two sites in Denmark....... Following hydrothermal pretreatment (180 °C for 17.6 min) and co-hydrolysis, sugar release and sugar conversion were measured. Up to 26% difference in sugar release between cultivars was observed. Sugar release showed negative cultivar correlation with lignin and ash content, whereas sugar release showed...

  5. One step conversion of wheat straw to sugars by simultaneous ball milling, mild acid, and fungus Penicillium simplicissimum treatment.

    Science.gov (United States)

    Yuan, Li; Chen, Zhenhua; Zhu, Yonghua; Liu, Xuanming; Liao, Hongdong; Chen, Ding

    2012-05-01

    Wheat straw is one of the major lignocellulosic plant residues in many countries including China. An attractive alternative is the utilization of wheat straw for bioethanol production. This article mainly studies a simple one-step wet milling with Penicillium simplicissimum and weak acid to hydrolysis of wheat straw. The optimal condition for hydrolysis was ball milling 48 h in citrate solvent (pH = 4) with P. simplicissimum H5 at the speed of 500 rpm and the yield of sugar increased with increased milling time. Corresponding structure transformations before and after milling analyzed by X-ray diffraction, transmission Fourier transform infrared spectroscopy, and environmental scanning electron microscopy clearly indicated that this combined treatment could be attributed to the crystalline and chemical structure changes of cellulose in wheat straw during ball milling. This combined treatment of ball milling, mild acid, and fungus hydrolysis enabled the conversion of the wheat straw. Compared with traditional method of ball milling, this work showed a more simple, novel, and environmentally friendly way in mechanochemical treatment of wheat straw.

  6. Effects of long-term full straw return on yield and potassium response in wheat-maize rotation

    Institute of Scientific and Technical Information of China (English)

    BAI You-lu; WANG Lei; LU Yan-li; YANG Li-ping; ZHOU Li-ping; NI Lu; CHENG Ming-fang

    2015-01-01

    The effect of long-term straw return on crop yield, soil potassium (K) content, soil organic matter, and crop response to K from both straw and chemical K fertilizer (K2SO4) were investigated in a ifxed site ifeld experiment for winter wheat-summer maize rotation in 6 years for 12 seasons. The ifeld experiment was located in northern part of North China Plain with a sandy soil in relatively low yield potential. Two factors, straw return and chemical K fertilizer, were studied with two levels in each factor. Field split design was employed, with two straw treatments, ful straw return of previous crop (St) and no straw return, in main plots, and two chemical K fertilizer treatments, 0 and 60 kg K2O ha–1, as sub-plots. The results showed that straw return signiifcantly increased yields of winter wheat and summer maize by 16.5 and 13.2% in average, respectively, and the positive effect of straw return to crop yield showed more effective in lower yield season. Straw return signiifcantly increased K absorption by the crops, with signiifcant increase in straw part. In treatment with straw return, the K content in crop straw increased by 15.9 and 21.8%in wheat and maize, respectively, compared with no straw return treatment. But, straw return had little effect on K content in grain of the crops. Straw return had signiifcant inlfuences on total K uptake by wheat and maize plants, with an increase of 32.7 and 30.9%, respectively. There was a signiifcant correlation between crop yield and K uptake by the plant. To produce 100 kg grain, the wheat and maize plants absorbed 3.26 and 2.24 kg K2O, respectively. The contents of soil available K and soil organic matter were signiifcantly affected by the straw return with an increase of 6.07 and 23.0%, respectively, compared to no straw return treatment. K2SO4 application in rate of 60 kg K2O ha–1 showed no signiifcant effect on wheat and maize yield, K content in crop straw, total K uptake by the crops, soil available K content

  7. Composition, texture and methane potential of cellulosic residues from Lewis acids organosolv pulping of wheat straw.

    Science.gov (United States)

    Constant, Sandra; Barakat, Abdellatif; Robitzer, Mike; Di Renzo, Francesco; Dumas, Claire; Quignard, Françoise

    2016-09-01

    Cellulosic pulps have been successfully isolated from wheat straw through a Lewis acids organosolv treatment. The use of Lewis acids with different hardness produced pulps with different delignification degrees. The cellulosic residue was characterised by chemical composition, X-ray diffraction, FT-IR spectroscopy, N2 physisorption, scanning electron microscopy and potential for anaerobic digestibility. Surface area and pore volume increased with the hardness of the Lewis acid, in correspondence with the decrease of the amount of lignin and hemicellulose in the pulp. The non linearity of the correlation between porosity and composition suggests that an agglomeration of cellulose fibrils occurs in the early stages of pulping. All organosolv pulps presented a significantly higher methane potential than the parent straw. A methane evolution of 295Ncm(3)/g OM was reached by a moderate improvement of the accessibility of the native straw. PMID:27295251

  8. Comparative culturing of Pleurotus spp. on coffee pulp and wheat straw: biomass production and substrate biodegradation.

    Science.gov (United States)

    Salmones, Dulce; Mata, Gerardo; Waliszewski, Krzysztof N

    2005-03-01

    The results of the cultivation of six strains of Pleurotus (P. djamor (2), P. ostreatus (2) and P. pulmonarius (2)) on coffee pulp and wheat straw are presented. Metabolic activity associated with biomass of each strain was determined, as well as changes in lignin and polysaccharides (cellulose and hemicellulose), phenolic and caffeine contents in substrate samples colonized for a period of up to 36 days. Analysis were made of changes during the mycelium incubation period (16 days) and throughout different stages of fructification. Greater metabolic activity was observed in the wheat straw samples, with a significant increase between 4 and 12 days of incubation. The degradation of polysaccharide compounds was associated with the fruiting stage, while the reduction in phenolic contents was detected in both substrates samples during the first eight days of incubation. A decrease was observed in caffeine content of the coffee pulp samples during fruiting stage, which could mean that some caffeine accumulates in the fruiting bodies.

  9. CHARACTERISTICS OF LIGNIN REACTIONS IN SODA COOKING OF WHEAT STRAW-- PART 1 REACTION OF UNCONDENSED LIGNIN

    Institute of Scientific and Technical Information of China (English)

    Huamin Zhai; Yuanzong Lai

    2004-01-01

    Characteristics of uncondensed lignin reactions in soda cooking of wheat straw were studied. Mild and intense cooking conditions were used to get the pulp sample in which lignin was dissolved physically and the pulp sample in which lignin was dissolved chemically respectively. The pulp samples were analyzed by phenolic group determination, alkaline nitrobenzene oxidation and ozonation method. The results indicated that around 90% of lignin in wheat straw is alkali-soluble at the mild conditions, is basically dissolved physically without chemical change. The phenolic group content was not changed greatly, the nitrobenzene oxidation yield only changed slightly during the mild cooking. The phenolic group content was increased obviously and uncondensed lignin content was decreased very much when the intense cooking conditions were applied and the delignification was over 90%. The lignin structure was changed greatly during this period.

  10. Degradation of wheat straw cell wall by white rot fungi Phanerochaete chrysosporium

    Science.gov (United States)

    Zeng, Jijiao

    The main aim of this dissertation research was to understand the natural microbial degradation process of lignocellulosic materials in order to develop a new, green and more effective pretreatment technology for bio-fuel production. The biodegradation of wheat straw by white rot fungi Phanerochaete chrysosporium was investigated. The addition of nutrients significantly improved the performance of P.chrysosporium on wheat straw degradation. The proteomic analysis indicated that this fungus produced various pepetides related to cellulose and lignin degradation while grown on the biomass. The structural analysis of lignin further showed that P.chrysosporium preferentially degraded hydroxycinnamtes in order to access cellulose. In details, the effects of carbon resource and metabolic pathway regulating compounds on manganeses peroxidase (MnP) were studied. The results indicated that MnP activity of 4.7 +/- 0.31 U mL-1 was obtained using mannose as a carbon source. The enzyme productivity further reached 7.36 +/- 0.05 U mL-1 and 8.77 +/- 0.23 U mL -1 when the mannose medium was supplemented with cyclic adenosine monophosphate (cAMP) and S-adenosylmethionine (SAM) respectively, revealing highest MnP productivity obtained by optimizing the carbon sources and supplementation with small molecules. In addition, the effects of nutrient additives for improving biological pretreatment of lignocellulosic biomass were studied. The pretreatment of wheat straw supplemented with inorganic salts (salts group) and tween 80 was examined. The extra nutrient significantly improved the ligninase expression leading to improve digestibility of lignocellulosic biomass. Among the solid state fermentation groups, salts group resulted in a substantial degradation of wheat straw within one week, along with the highest lignin loss (25 %) and ˜ 250% higher efficiency for the total sugar release through enzymatic hydrolysis. The results were correlated with pyrolysis GC-MS (Py

  11. Cellulosic ethanol: interactions between cultivar and enzyme loading in wheat straw processing

    Directory of Open Access Journals (Sweden)

    Felby Claus

    2010-11-01

    Full Text Available Abstract Background Variations in sugar yield due to genotypic qualities of feedstock are largely undescribed for pilot-scale ethanol processing. Our objectives were to compare glucose and xylose yield (conversion and total sugar yield from straw of five winter wheat cultivars at three enzyme loadings (2.5, 5 and 10 FPU g-1 dm pretreated straw and to compare particle size distribution of cultivars after pilot-scale hydrothermal pretreatment. Results Significant interactions between enzyme loading and cultivars show that breeding for cultivars with high sugar yields under modest enzyme loading could be warranted. At an enzyme loading of 5 FPU g-1 dm pretreated straw, a significant difference in sugar yields of 17% was found between the highest and lowest yielding cultivars. Sugar yield from separately hydrolyzed particle-size fractions of each cultivar showed that finer particles had 11% to 21% higher yields than coarse particles. The amount of coarse particles from the cultivar with lowest sugar yield was negatively correlated with sugar conversion. Conclusions We conclude that genetic differences in sugar yield and response to enzyme loading exist for wheat straw at pilot scale, depending on differences in removal of hemicellulose, accumulation of ash and particle-size distribution introduced by the pretreatment.

  12. Understanding External Plasticization of Melt Extruded PHBV-Wheat Straw Fibers Biodegradable Composites for Food Packaging

    OpenAIRE

    Martino, Lucrezia; Berthet, Marie-Alix; Gontard, Nathalie

    2015-01-01

    The objective of this work is to get further knowledge on the external plasticization mechanisms of melt extruded polyhydroxyl-3-butyrate-co-3-valerate (PHBV) when combined with wheat straw fibers (WSF). Different types of biodegradable substances, all authorized for food contact according to the European regulation, i.e., acetyltributyl citrate (ATBC), glycerol triacetate (GTA) and (PEG) at different molecular weights, were tested at different percentages (5, 10 and 20 wt %). Thermal and mec...

  13. Twin screw extrusion pre-treatment of wheat straw for biofuel and lignin biorefinery applications

    OpenAIRE

    Ng, Thian Hong

    2013-01-01

    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University. Pre-treatment of wheat straw(lignocellulosic) biomass is a crucial step as it has direct impact on the subsequent yield of enzymatic saccharification and alcohol fermentation processes in the production of biofuel. Twin screw extrusion is a highly feasible pretreatment method and has been received great interest in the recent year pre-treatment studies. Twin screw extrusion is a continuous pr...

  14. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    OpenAIRE

    Jørgensen Henning; Felby Claus; Thygesen Lisbeth G; Kristensen Jan B; Elder Thomas

    2008-01-01

    Abstract Background Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw for these processes without the application of additional chemicals. In the current work, the effect of t...

  15. Pre-treatment of lignocellulosic biomass using ionic liquids: Wheat straw fractionation

    OpenAIRE

    da Costa Lopes, André M.; João, Karen G.; Rubik, Djonatam F.; Bogel-Łukasik, Ewa; Duarte, Luís C.; Andreaus, Jürgen; Bogel-Łukasik, Rafał

    2013-01-01

    This work is devoted to study pre-treatment methodologies of wheat straw with 1-ethyl-3-methylimidazolium acetate ([emim][CH3COO]) and subsequent fractionation to cellulose, hemicellulose and lignin. The method developed and described here allows the separation into high purity carbohydrate and lignin fractions and permits an efficient IL recovery. A versatility of the established method was confirmed by the IL reuse. The fractionation of completely dissolved biomass led to cellulose-rich and...

  16. CHARACTERISTICS OF BENTONITE AND ITS SYNERGISTIC RETENTION EFFECT WITH CPAM ON WHEAT STRAW PULP

    Institute of Scientific and Technical Information of China (English)

    Na Liu; Wenxia Liu

    2004-01-01

    The various properties of bentonite samples with different sources and their synergistic retention effect with CPAM on wheat straw pulps were investigated.The investigated properties of bentonite included adsorptive capacity based on methylene blue,cation-exchange capacity, swelling volume, colloidal volume, particle size and charge properties. The results show that particle size is the most important properties of bentonite for its synergistic retention effect with CPAM. Using Wyoming type sodium bentonite without drying after modification can obtain the excellent furnishes retention.

  17. Synergistic effects of mixing hybrid poplar and wheat straw biomass for bioconversion processes

    OpenAIRE

    Vera, Rodrigo Morales; Bura, Renata; Gustafson, Rick

    2015-01-01

    Background Low cost of raw materials and good process yields are necessary for future lignocellulosic biomass biorefineries to be sustainable and profitable. A low cost feedstock will be diverse, changing as a function of seasonality and price and will most likely be available from multiple sources to the biorefinery. The efficacy of the bioconversion process using mixed biomass, however, has not been thoroughly investigated. Considering the seasonal availability of wheat straw and the year r...

  18. Biorefinery valorization of autohydrolysis wheat straw hemicellulose to be applied in a polymer-blend film

    OpenAIRE

    Ruiz, Héctor A.; Cerqueira, M. A.; Ruíz, Héctor A.; Rodríguez-Jasso, Rosa María; Vicente, A.A.; J. A. Teixeira

    2013-01-01

    The aims of this study were the extraction of hemicellulose from wheat straw (WS) and its utilization in the reinforcement of a κ-carrageenan/locust bean gum (κ-car/LBG) polymeric blend films (PBFs). WS hemicellulose extraction was performed under autohydrolysis process and hemicellulose extracted (HE) under optimum condition was used in PBFs. PBFs were prepared varying different proportions of HE into the κ-car/LBG film-forming solutions. Barrier properties (water vapor permeability, WVP), m...

  19. Bioprocessing of wheat straw into nutritionally rich and digested cattle feed.

    Science.gov (United States)

    Shrivastava, Bhuvnesh; Jain, Kavish Kumar; Kalra, Anup; Kuhad, Ramesh Chander

    2014-01-01

    Wheat straw was fermented by Crinipellis sp. RCK-1, a lignin degrading fungus, under solid state fermentation conditions. The fungus degraded 18.38% lignin at the expense of 10.37% cellulose within 9 days. However, when wheat straw fermented for different duration was evaluated in vitro, the 5 day fungal fermented wheat straw called here "Biotech Feed" was found to possess 36.74% organic matter digestibility (OMD) and 5.38 (MJ/Kg Dry matter) metabolizable energy (ME). The Biotech Feed was also observed to be significantly enriched with essential amino acids and fungal protein by fungal fermentation, eventually increasing its nutritional value. The Biotech Feed upon in vitro analysis showed potential to replace 50% grain from concentrate mixture. Further, the calves fed on Biotech Feed based diets exhibited significantly higher (p<0.05) dry matter intake (DMI: 3.74 Kg/d), dry matter digestibility (DMD: 57.82%), total digestible nutrients (TDN: 54.76%) and comparatively gained 50 g more daily body weight. PMID:25269679

  20. Novel bioconversion of wheat straw to bio-organic fertilizer in a solid-state bioreactor.

    Science.gov (United States)

    Chen, Hongzhang; Sun, Fubao

    2007-03-01

    In order to increase the eco-efficiency and overall availability of naturally renewable resource, the novel bioconversion of steam-exploded wheat straw to bio-organic fertilizer containing N(2)-fixer, P and K solubilizers was investigated. The conversion was performed in solid-state fermentation (SSF) with periodic air-forced pressure oscillation (PAPO). The results showed that SSF-PAPO was competitive with the conventional solid-state fermentation (cSSF) in biomass accumulation and wheat straw digestion. With solid-liquid ratio 1:3, microbial biomass production at 72 h was high up to 2 x 10(11) cfu g(-1), nearly twice as that in cSSF. The degradation rate of cellulose, hemicellulose and lignin after fermentation in SSF-PAPO reached 48.57 +/- 10.66, 84.77 +/- 2.75 and 2.15 +/- 10.11, respectively, which was greater than that of 29.30 +/- 10.28%, 33.47 +/- 4.85% and 0.53 +/- 9.07% in cSSF, correspondingly. The SSF-PAPO system displayed unique advantage, by a novel gas phase control strategy on gas concentration and heat gradient, on the bioconversion of wheat straw to the bio-organic fertilizer.

  1. Optimization of ethanol production from microfluidized wheat straw by response surface methodology.

    Science.gov (United States)

    Turhan, Ozge; Isci, Asli; Mert, Behic; Sakiyan, Ozge; Donmez, Sedat

    2015-01-01

    In this study, wheat straw was pretreated with a microfluidizer to improve its enzymatic hydrolysis and ethanol yields. The pretreatment was performed at various pressures (500, 1000, and 1500 bar) and solid loadings (1, 2, and 3%). The microfluidized biomass was then subjected to hydrolysis and simultaneous saccharification and co-fermentation (SSCF) experiments at different enzyme loadings (5, 10, and 15 FPU/g dry wheat straw) using a mutant yeast. The results indicated that the microfluidization method alters the structure of biomass and leads to a reduction in lignin content. The samples pretreated at 1% solid loading contained the minimum lignin concentration and provided the maximum sugar and ethanol yields. These results signified that the microfluidization method is more effective on biomass at low solid loadings. The process conditions were optimized for higher ethanol and sugar yields using response surface methodology (RSM). The optimum pressure and solid and enzyme loadings were found as 1500 bar, 1%, and 15 FPU/g dry wheat straw, respectively. The yields obtained at this condition were 82%, 94%, and 65% for glucose, xylose, and ethanol, respectively. High sugar yields implied that microfluidization is an effective pretreatment method for cellulosic ethanol production. On the other hand, low ethanol yield may indicate that the microorganism was sensitive to inhibitory compounds present in the fermentation medium. PMID:25181638

  2. Fuel Pellets from Wheat Straw: The Effect of Lignin Glass Transition and Surface Waxes on Pelletizing Properties

    DEFF Research Database (Denmark)

    Stelte, Wolfgang; Clemons, Craig; Holm, Jens K.;

    2012-01-01

    and a high concentration of hydrophobic waxes on its outer surface that may limit the pellet strength. The present work studies the impact of the lignin glass transition on the pelletizing properties of wheat straw. Furthermore, the effect of surface waxes on the pelletizing process and pellet strength....... Pellets are pressed from wheat straw and straw where the waxes have been extracted from. Two pelletizing temperatures were chosen—one below and one above the glass transition temperature of lignin. The pellets compression strength, density, and fracture surface were compared to each other. Pellets pressed...... no such effect is observed at elevated temperatures. Fuel pellets made from extracted wheat straw have a slightly higher compression strength which might be explained by a better interparticle adhesion in the absence of hydrophobic surface waxes....

  3. Comparison of characterization and microbial communities in rice straw- and wheat straw-based compost for Agaricus bisporus production.

    Science.gov (United States)

    Wang, Lin; Mao, Jiugeng; Zhao, Hejuan; Li, Min; Wei, Qishun; Zhou, Ying; Shao, Heping

    2016-09-01

    Rice straw (RS) is an important raw material for the preparation of Agaricus bisporus compost in China. In this study, the characterization of composting process from RS and wheat straw (WS) was compared for mushroom production. The results showed that the temperature in RS compost increased rapidly compared with WS compost, and the carbon (C)/nitrogen (N) ratio decreased quickly. The microbial changes during the Phase I and Phase II composting process were monitored using denaturing gradient gel electrophoresis (DGGE) and phospholipid fatty acid (PLFA) analysis. Bacteria were the dominant species during the process of composting and the bacterial community structure dramatically changed during heap composting according to the DGGE results. The bacterial community diversity of RS compost was abundant compared with WS compost at stages 4-5, but no distinct difference was observed after the controlled tunnel Phase II process. The total amount of PLFAs of RS compost, as an indicator of microbial biomass, was higher than that of WS. Clustering by DGGE and principal component analysis of the PLFA compositions revealed that there were differences in both the microbial population and community structure between RS- and WS-based composts. Our data indicated that composting of RS resulted in improved degradation and assimilation of breakdown products by A. bisporus, and suggested that the RS compost was effective for sustaining A. bisporus mushroom growth as well as conventional WS compost. PMID:27337959

  4. Effects of different tillage and straw return on soil organic carbon in a rice-wheat rotation system.

    Directory of Open Access Journals (Sweden)

    Liqun Zhu

    Full Text Available Soil management practices, such as tillage method or straw return, could alter soil organic carbon (C contents. However, the effects of tillage method or straw return on soil organic C (SOC have showed inconsistent results in different soil/climate/cropping systems. The Yangtze River Delta of China is the main production region of rice and wheat, and rice-wheat rotation is the most important cropping system in this region. However, few studies in this region have been conducted to assess the effects of different tillage methods combined with straw return on soil labile C fractions in the rice-wheat rotation system. In this study, a field experiment was used to evaluate the effects of different tillage methods, straw return and their interaction on soil total organic C (TOC and labile organic C fractions at three soil depths (0-7, 7-14 and 14-21 cm for a rice-wheat rotation in Yangzhong of the Yangtze River Delta of China. Soil TOC, easily oxidizable C (EOC, dissolved organic C (DOC and microbial biomass C (MBC contents were measured in this study. Soil TOC and labile organic C fractions contents were significantly affected by straw returns, and were higher under straw return treatments than non-straw return at three depths. At 0-7 cm depth, soil MBC was significantly higher under plowing tillage than rotary tillage, but EOC was just opposite. Rotary tillage had significantly higher soil TOC than plowing tillage at 7-14 cm depth. However, at 14-21 cm depth, TOC, DOC and MBC were significantly higher under plowing tillage than rotary tillage except for EOC. Consequently, under short-term condition, rice and wheat straw both return in rice-wheat rotation system could increase SOC content and improve soil quality in the Yangtze River Delta.

  5. Feed intake, digestibility, nitrogen utilization, and body weight change of sheep consuming wheat straw supplemented with local agricultural and agro-industrial by-products.

    Science.gov (United States)

    Nurfeta, Ajebu

    2010-06-01

    Effects of supplementing sheep consuming wheat straw with local agro-industrial by-products on feed intake, growth, digestibility and nitrogen utilization were determined. Thirty 1-year-old local wethers, with a mean (+/-SD) live weight of 19.8 (+/-1.06) kg, were assigned to five treatments: wheat straw + atella (T1), wheat straw + atella + poultry litter (T2), wheat straw + atella + coffee pulp (T3), wheat straw + atella + coffee pulp + poultry litter (T4), hay + concentrate (T5). A 7-day digestibility experiment and a 112-day growth trial were conducted. Total dry matter (DM) and organic matter (OM) intake as well as body weight gain was similar for all treatments. The highest (P coffee pulp are available, smallholder farmers could feed the mixtures as a supplement to straw with a good performance without using concentrate feeds.

  6. Influence of maize straw amendment on soil-borne diseases of winter wheat

    Institute of Scientific and Technical Information of China (English)

    Wenchao ZHEN; Shutong WANG; Chengyin ZHANG; Zhiying MA

    2009-01-01

    A field experiment was conducted during the 2006-2007 wheat growing season at Baoding, Hebei Province, China, aiming at exploring the influence of different amendment rates of maize straw on winter wheat soil-borne diseases induced by Rhizoctonia cereali, Gaeumannomyces graminis and Bipolaris sorokiniana in field conditions. Wheat root vitality, ion infiltration, SOD activity, MDA content and microbial population of the tillage layer were measured. The results showed that the occurrence of three soil-borne diseases tested was significantly different under different amendment rates. During the greening stage and jointing stage, the disease indexes of three soil-borne diseases were reduced signi-ficantly by treatments at the maize straw amendment rates indexes of wheat common rot and sharp eyespot increased dramatically when the amendment rate decreased, and ion infiltration and cell membrane-lipid peroxidation level increased, respectively. In the mean-time, higher amounts of bacteria and actinomycetes ment, while a higher amount of fungi was recorded in the 15000kg·hm-2 amendment rate treatment.

  7. Utilization of the water soluable fraction of wheat straw as a plant nutrient source

    Science.gov (United States)

    Mackowiak, C. L.; Garland, J. L.

    1990-01-01

    Recovery of water soluble, inorganic nutrients from the inedible portion of wheat was found to be an effective means of recycling nutrients within hydroponic systems. Through aqueous extraction (leaching), 60 percent of the total inorganic nutrient weight was removed from wheat straw and roots, although the recovery of individual nutrients varied. Leaching also removed about 20 percent of the total organic carbon from the biomass. In terms of dry weight, the leachate was comprised of approximately 60 percent organic and 40 percent inorganic compounds. Direct use of wheat straw leachate in static hydroponic systems had an inhibitory effect on wheat growth, both in the presence and absence of microorganisms. Biological treatment of leachate either with a mixed microbial community or the oyster mushroom Pleurotus ostreatus L., prior to use in hydroponic solutions, significantly reduced both the organic content and the inhibitory effects of the leachate. The inhibitory effects of unprocessed leachate appear to be a result of rapidly acting phytotoxic compounds that are detoxified by microbial activity. Leaching holds considerable promise as a method for nutrient recycling in a Controlled Ecological Life Support System (CELSS).

  8. Cement-bonded particleboard with a mixture of wheat straw and poplar wood

    Institute of Scientific and Technical Information of China (English)

    Morteza Nazerian; Vajiihe Sadeghiipanah

    2013-01-01

    We investigated the hydration behavior and some physical/mechanical properties of cement-bonded particleboard (CBPB) containing particles of wheat straw and poplar wood at various usage ratios and bonded with Portland cement mixed with different levels of inorganic additives.We determined the setting time and compression strength of cement pastes containing different additives and particles,and studied the effects of these additives and particles on thickness swelling,internal bond strength and modulus of rupture of CBPB by using RSM (Response Surface Methodology).The mathematical model equations (second-order response functions) were derived to optimize properties of CBPB by computer simulation programming.Predicted values were in agreement with experimental values (R2 values of 0.93,0.96 and 0.96 for TS,IB and MOR,respectively).RSM can be efficiently applied to model panel properties.The variables can affect the properties of panels.The cement composites with bending strength > 12.5 MPa and internal bond strength > 0.28 MPa can be made by using wheat straw as a reinforcing material.Straw particle usage up to 11.5% in the mixture satisfies the minimum requirements of International Standard,EN 312 (2003) for IB and MOR.The dose of 4.95% calcium chloride,by weight of cement,can improve mechanical properties of the panels at the minimum requirement of EN 312.By increasing straw content from 0 to 30%,TS was reduced by increasing straw particle usage up to 1.5% and with 5.54% calcium chloride in the mixture,TS satisfied the EN 312 standard.

  9. Different physical and chemical pretreatments of wheat straw for enhanced biobutanol production in simultaneous saccharification and fermentation

    Directory of Open Access Journals (Sweden)

    Chumangalah Thirmal, Yaser Dahman

    2011-07-01

    Full Text Available The objective of this study is to increase butanol product yields using wheat straw as the biomass. First this study examined different pretreatment and saccharification processes to obtain the maximum sugar concentration. Three different physical and chemical pretreatment methods for the wheat straws were examined in the present work in comparison with physical pretreatment alone as a reference. This included water, acidic, and alkaline pretreatment. For all cases, physical pretreatment represented by 1 mm size reduction of the straws was applied prior to each pretreatment. Results showed that 13.91 g/L glucose concentration was produced from saccharification with just the physical pretreatment (i.e., no chemical pretreatment. This represented ~5-20 % lower sugar release in saccharification compared to the other three pretreatment processes. Saccharification with acid pretreatment obtained the highest sugar concentrations, which were 18.77 g/L glucose and 12.19 g/L xylose. Second this study produced butanol from simultaneous saccharification and fermentation (SSF using wheat straw hydrolysate and Clostridium beijerinckii BA101. Water pretreatment was applied to separate lignin and polysaccharides from the wheat straw. Physical pretreatment was applied prior to water pretreatment where, wheat straw was grounded into fine particles less than 1 mm size. Another experiment was conducted where physical pretreatment was applied alone prior to SSF (i.e. no chemical pretreatment was applied. Both processes converted more than 10% of wheat straw into butanol product. This was 2% higher than previous studies. The results illustrated that SSF with physical pretreatment alone obtained 2.61 g/L butanol.

  10. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    Directory of Open Access Journals (Sweden)

    Jørgensen Henning

    2008-04-01

    Full Text Available Abstract Background Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw for these processes without the application of additional chemicals. In the current work, the effect of the pretreatment on the straw cell-wall matrix and its components are characterised microscopically (atomic force microscopy and scanning electron microscopy and spectroscopically (attenuated total reflectance Fourier transform infrared spectroscopy in order to understand this increase in digestibility. Results The hydrothermal pretreatment does not degrade the fibrillar structure of cellulose but causes profound lignin re-localisation. Results from the current work indicate that wax has been removed and hemicellulose has been partially removed. Similar changes were found in wheat straw pretreated by steam explosion. Conclusion Results indicate that hydrothermal pretreatment increases the digestibility by increasing the accessibility of the cellulose through a re-localisation of lignin and a partial removal of hemicellulose, rather than by disruption of the cell wall.

  11. Cell-wall structural changes in wheat straw pretreated for bioethanol production

    Science.gov (United States)

    Kristensen, Jan B; Thygesen, Lisbeth G; Felby, Claus; Jørgensen, Henning; Elder, Thomas

    2008-01-01

    Background Pretreatment is an essential step in the enzymatic hydrolysis of biomass and subsequent production of bioethanol. Recent results indicate that only a mild pretreatment is necessary in an industrial, economically feasible system. The Integrated Biomass Utilisation System hydrothermal pretreatment process has previously been shown to be effective in preparing wheat straw for these processes without the application of additional chemicals. In the current work, the effect of the pretreatment on the straw cell-wall matrix and its components are characterised microscopically (atomic force microscopy and scanning electron microscopy) and spectroscopically (attenuated total reflectance Fourier transform infrared spectroscopy) in order to understand this increase in digestibility. Results The hydrothermal pretreatment does not degrade the fibrillar structure of cellulose but causes profound lignin re-localisation. Results from the current work indicate that wax has been removed and hemicellulose has been partially removed. Similar changes were found in wheat straw pretreated by steam explosion. Conclusion Results indicate that hydrothermal pretreatment increases the digestibility by increasing the accessibility of the cellulose through a re-localisation of lignin and a partial removal of hemicellulose, rather than by disruption of the cell wall. PMID:18471316

  12. Enhanced biomethane potential from wheat straw by low temperature alkaline calcium hydroxide pre-treatment.

    Science.gov (United States)

    Reilly, Matthew; Dinsdale, Richard; Guwy, Alan

    2015-08-01

    A factorially designed experiment to examine the effectiveness of Ca(OH)2 pre-treatment, enzyme addition and particle size, on the mesophilic (35 °C) anaerobic digestion of wheat straw was conducted. Experiments used a 48 h pre-treatment with Ca(OH)2 7.4% (w/w), addition of Accellerase®-1500, with four particle sizes of wheat straw (1.25, 2, 3 and 10mm) and three digestion time periods (5, 15 and 30 days). By combining particle size reduction and Ca(OH)2 pre-treatment, the average methane potential was increased by 315% (from 48 NmL-CH4 g-VS(-1) to 202 NmL-CH4 g-VS(-1)) after 5 days of anaerobic digestion compared to the control. Enzyme addition or Ca(OH)2 pre-treatment with 3, 2 and 1.25 mm particle sizes had 30-day batch yields of between 301 and 335 NmL-CH4 g-VS(-1). Alkali pre-treatment of 3mm straw was shown to have the most potential as a cost effective pre-treatment and achieved 290 NmL-CH4 g-VS(-1), after only 15 days of digestion. PMID:25898087

  13. Acetone-butanol-ethanol (ABE) production by Clostridium beijerinckii from wheat straw hydrolysates: efficient use of penta and hexa carbohydrates.

    Science.gov (United States)

    Bellido, Carolina; Loureiro Pinto, Marina; Coca, Mónica; González-Benito, Gerardo; García-Cubero, María Teresa

    2014-09-01

    ABE fermentation by Clostridium beijerinckii of steam-exploded and ozonated wheat straw hydrolysates was investigated. In steam-exploded hydrolysates, highest yields of 0.40 g/g ABE yield and 127.71 g ABE/kg wheat straw were achieved when the whole slurry from the pretreatment was used. In ozonated hydrolysates, 0.32 g/g ABE yield and 79.65 g ABE/kg wheat straw were obtained from washed ozonated wheat straw. Diverse effects were observed in steam explosion and ozonolysis of wheat straw which resulted in hemicellulose removal and acid insoluble lignin solubilization, respectively. SEM analysis showed structural differences in untreated and pretreated biomass. Depending on the operational strategy, after pretreatment and enzymatic hydrolysis, the glucose recovery ranged between 65.73-66.49% and 63.22-65.23% and the xylose recovery ranged between 45.19-61.00% and 34.54-40.91% in steam-exploded and ozonated hydrolysates, respectively. The effect of the main inhibitory compounds found in hydrolysates (oxalic acid, acetic acid, 5-hydroxymethylfurfural and furfural) was studied through ABE fermentation in model media.

  14. Pretreatment and fractionation of wheat straw for production of fuel ethanol and value-added co-products in a biorefinery

    Science.gov (United States)

    An integrated process has been developed for a wheat straw biorefinery. In this process wheat straw was pretreated by soaking in aqueous ammonia (SAA), which extensively removed lignin but preserved high percentages of the carbohydrate fractions for subsequent bioconversion. The pretreatment condi...

  15. The effect of fungal decay (Agaricus bisporus) on wheat straw lignin using pyrolysis-GC-MS in the presence of tetramethylammonium hydroxide (TMAH)

    Energy Technology Data Exchange (ETDEWEB)

    Vane, C.H.; Abbott, G.D.; Head, I.M. [Department of Fossil Fuels and Environmental Geochemistry (Postgraduate Institute), NRG, Drummond Building, University of Newcastle upon Tyne, NE1 7RU Newcastle upon Tyne (United Kingdom)

    2001-06-01

    Pyrolysis-gas chromatography-mass spectrometry, in the presence of tetramethylammonium hydroxide (TMAH), was used in the molecular characterisation of lignin in wheat straw during its fungal degradation by Agaricus bisporus. The decayed wheat straw had a lower proportion of syringyl to guaiacyl derived moieties than its native counterpart. The ratio of methyl 3,4-dimethoxybenzoate to 3,4-dimethoxybenzaldehyde increased from 1.0 in native wheat straw to 6.4 following fungal degradation. Similarly the ratio of methyl 3,4,5-trimethoxybenzoate to 3,4,5-trimethoxybenzaldehyde increased from 1.6 in native wheat straw to 3.1 upon decay. The increase in both guaiacyl and syringyl acid to aldehyde ratios indicated that A. bisporus induces oxidative cleavage of lignin at the C{alpha}-C{beta} bonds. Both the threo- and erythro- isomers of 1-(3,4-dimethoxyphenyl)-1,2,3-trimethoxypropane decreased in intensity relative to other thermochemolysis products in degraded wheat straw. The increase in the ratio of methyl 3,4,-dimethoxybenzoate to the sum of 1-(3,4-dimethoxyphenyl)-1,2,3-trimethoxypropane (threo- and erythro- isomers) from 1.0 in native wheat straw to 10.9 in A. bisporus decayed wheat straw confirmed that the fungus had cleaved alkyl side chains. Pyrolysis-gas chromatography-mass spectrometry in the presence of TMAH provides a sensitive method for tracking the oxidative degradation of lignin during the fungal decay of wheat straw.

  16. Optimisation of a microwave pretreatment of wheat straw for methane production.

    Science.gov (United States)

    Jackowiak, D; Bassard, D; Pauss, A; Ribeiro, T

    2011-06-01

    This study aims at the optimisation of a microwave pretreatment for wheat straw solubilisation and anaerobic biodegradability. The maximum yield of methane production was obtained at 150°C with an improvement of 28% compared to an untreated sample. In addition, at this temperature, the time to reach 80% of the methane volume obtained from untreated straw was about 35%. The study of ramp time and holding time at targeted temperature showed that they had no improvement effect. Thus, the best conditions are the highest heating rate for a final temperature 150°C without any holding time. The reading of energy consumed by pretreatment and energy overproduced by pretreated samples showed that increasing tVS amount and heating rate led to a saving of energy consumption. Nevertheless, to obtain a positive energy balance, a microwave device should consume less than 2.65 kJ/g(tVS).

  17. Biomechanics of Wheat/Barley Straw and Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T. Wright; Peter A. Pryfogle; Nathan A. Stevens; Eric D. Steffler; J. Richard Hess; Thomas H. Ulrich

    2005-03-01

    The lack of understanding of the mechanical characteristics of cellulosic feedstocks is a limiting factor in economically collecting and processing crop residues, primarily wheat and barley stems and corn stover. Several testing methods, including compression, tension, and bend have been investigated to increase our understanding of the biomechanical behavior of cellulosic feedstocks. Biomechanical data from these tests can provide required input to numerical models and help advance harvesting, handling, and processing techniques. In addition, integrating the models with the complete data set from this study can identify potential tools for manipulating the biomechanical properties of plant varieties in such a manner as to optimize their physical characteristics to produce higher value biomass and more energy efficient harvesting practices.

  18. Comparison of high temperature chars of wheat straw and rice husk with respect to chemistry, morphology and reactivity

    DEFF Research Database (Denmark)

    Trubetskaya, Anna; Jensen, Peter Arendt; Jensen, Anker Degn;

    2016-01-01

    Fast pyrolysis of wheat straw and rice husk was carried out in an entrained flow reactor at hightemperatures(1000e1500) C. The collected char was analyzed using X-ray diffractometry, N2-adsorption,scanning electron microscopy, particle size analysis with CAMSIZER XT, 29Si and 13C solid-statenucle......Fast pyrolysis of wheat straw and rice husk was carried out in an entrained flow reactor at hightemperatures(1000e1500) C. The collected char was analyzed using X-ray diffractometry, N2-adsorption,scanning electron microscopy, particle size analysis with CAMSIZER XT, 29Si and 13C solid......), which led to the formation of a glassy char shell, resulting in a preserved particlesize and shape of chars. The high alkali content in the wheat straw resulted in higher char reactivity,whereas the lower silicon content caused variations in the char shape from cylindrical to near...

  19. Effect of reactor configuration on biogas production from wheat straw hydrolysate.

    Science.gov (United States)

    Kaparaju, Prasad; Serrano, María; Angelidaki, Irini

    2009-12-01

    The potential of wheat straw hydrolysate for biogas production was investigated in continuous stirred tank reactor (CSTR) and up-flow anaerobic sludge bed (UASB) reactors. The hydrolysate originated as a side stream from a pilot plant pretreating wheat straw hydrothermally (195 degrees C for 10-12 min) for producing 2nd generation bioethanol [Kaparaju, P., Serrano, M., Thomsen, A.B., Kongjan, P., Angelidaki, I., 2009. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept. Bioresource Technology 100 (9), 2562-2568]. Results from batch assays showed that hydrolysate had a methane potential of 384 ml/g-volatile solids (VS)(added). Process performance in CTSR and UASB reactors was investigated by varying hydrolysate concentration and/or organic loading rate (OLR). In CSTR, methane yields increased with increase in hydrolysate concentration and maximum yield of 297 ml/g-COD was obtained at an OLR of 1.9 g-COD/l d and 100% (v/v) hydrolysate. On the other hand, process performance and methane yields in UASB were affected by OLR and/or substrate concentration. Maximum methane yields of 267 ml/g-COD (COD removal of 72%) was obtained in UASB reactor when operated at an OLR of 2.8 g-COD/l d but with only 10% (v/v) hydrolysate. However, co-digestion of hydrolysate with pig manure (1:3 v/v ratio) improved the process performance and resulted in methane yield of 219 ml/g-COD (COD removal of 72%). Thus, anaerobic digestion of hydrolysate for biogas production was feasible in both CSTR and UASB reactor types. However, biogas process was affected by the reactor type and operating conditions.

  20. Wheat straw lignin degradation induction to aromatics by por Aspergillus spp. and Penicillium chrysogenum

    Directory of Open Access Journals (Sweden)

    Baltierra-Trejo Eduardo

    2016-02-01

    Full Text Available Wheat straw is a recalcitrant agricultural waste; incineration of this material represents an important environmental impact. Different reports have been made regarding the use of the structural components of wheat straw, i.e. cellulose, hemicellulose and lignin; however, lignin has been less exploited because it is largely considered the recalcitrant part. Residual wheat straw lignin (REWSLI has a potential biotech-nological value if depolymerization is attained to produce aromatics. Ligninolytic mitosporic fungus represent an alternative where very little research has been done, even though they are capable of depol-ymerize REWSLI in simple nutritional conditions in relatively short periods, when compared to basidio-mycetes. The aim of this research was to study the depolymerization activity of Aspergillus spp and Penicillium spp on semipurified REWSLI as the sole carbon source to produce aromatics. The depoly-merization capacity was determined by the activity of the laccase, lignin peroxidase and manganese peroxidase enzymes. The generated aromatics derived from the REWSLI depolymerization were identi-fied by gas chromatography. Obtained results revealed that Penicillium chrysogenum depolymerized the lignin material by 34.8% during the 28-day experimentation period. Laccase activity showed the largest activity with 111 U L-1 in a seven-day period, this enzyme induction was detected in a smaller period than that required by basidiomycetes to induce it. Moreover, the enzymatic activity was produced with-out the addition of an extra carbon source as metabolic inductor. Aspergillus spp and Penicillium spp generated guaiacol, vanillin, and hydroxybenzoic, vanillinic, syringic and ferulic acid with a maximum weekly production of 3.5, 3.3, 3.2, 3.3, 10.1 and 21.9 mg mL-1, respectively.

  1. Persistence of Pendimethalin in/on Wheat, Straw, Soil and Water.

    Science.gov (United States)

    Chopra, Indu; Chauhan, Reena; Kumari, Beena

    2015-11-01

    Pendimethalin, a dinitroaniline group of organic herbicide compounds used as pre emergence weed control in wheat, onion and soyabean crops in India. The experiments were designed to study the harvest time residues of pendimethalin in wheat grain and straw its dissipation behaviour in soil and water. At harvest time, the residues of pendimethalin in wheat grain and straw were found to be below determination limit of 0.001 mg kg(-1) following single application of the herbicide at the rate of 1 (T1/single dose) and 2 (T2/double dose) kg a.i. ha(-1). Soil samples from the field were collected periodically and analysed by GC-ECD system. In soil, initial deposits of 4.069 and 10.473 mg kg(-1) of pendimethalin persisted up to 90 days and dissipation followed first order kinetics with half life period of 12.03 days in T1 and 13.00 days in T2. Residues of pendimethalin studied in water under laboratory conditions at 0.5 (T1) and 1.0 (T2) mg L(-1) levels persisted up to 90 days. Dissipation kinetics followed first order kinetics with half-life values of 12.70 and 13.78 days at single and double dose, respectively. Limit of determination in grain, straw and soil were 0.001 mg kg(-1) and in water was 0.001 mg L(-1). Application of the herbicide is considered quite safe from consumer and environmental point of view. PMID:26193835

  2. Psychrophilic dry anaerobic digestion of cow feces and wheat straw: Feasibility studies

    International Nuclear Information System (INIS)

    This paper reports a novel psychrophilic dry anaerobic digestion (PDAD) of cow feces (feces) and wheat straw (WS). Three feeding strategies (WS, feces, and feces plus WS) were assessed in pseudo sequential batch reactors (PSBR) during three successive cycles of around 21 days hydraulic retention time (HRT). Average specific methane yields on VS fed (L kg−1) of 129 ± 17 (WS only), 164 ± 23 (feces only (10–11% TS)) and 152 ± 6 (a mixture of feces plus WS (16% TS)) were obtained during the last three successive cycles. The average methane production rates on VS fed were 3.5 ± 1.5 and 3.6 ± 1.3 and 4.1 ± 0.4 L kg−1 d−1 for the three feeding strategies, respectively. The successive cycles revealed that the psychrophilic anaerobic digestion of high-solid content of cow feces and wheat straw is a reproducible process, practically feasible, and as efficient as mesophilic dry anaerobic digestion given that a well-adapted inoculum is developed and maintained. - Highlights: • Cow feces and wheat straw (CFWS) psychrophilic dry anaerobic digestion (PDAD). • PDAD of CFWS (TS 16% mass fraction) is feasible and as efficient as mesophilic DAD. • VS OLR 1.5 g kg−1 d−1 produced VS-based SMY of 152 ± 6 L kg−1 • Inoculum adaptation is a prerequisite to a stable PDAD

  3. USING Mg(OH2 IN PEROXIDE BLEACHING OF WHEAT STRAW SODA-AQ PULP

    Directory of Open Access Journals (Sweden)

    Yanlan Liu

    2011-04-01

    Full Text Available The peroxide bleaching of high yield pulps from wood with Mg(OH2 has been developing recently in the pulp and paper industry. However, there is still a lack of data on the application of Mg(OH2 in peroxide bleaching of non-wood fibres. In this work, our purpose was to study the effect of Mg(OH2 on peroxide bleaching of wheat straw soda-AQ pulp. The results showed that Mg(OH2 significantly improved peroxide bleaching efficiency (expressed as the ratio between the brightness gain and the H2O2 consumption and selectivity (expressed as the ratio between the brightness gain and the viscosity losses of wheat straw soda-AQ pulp. The brightness, viscosity, and yield of bleached pulp can be significantly enhanced by increasing the replacement ratio of Mg(OH2. However, at 100% replacement of NaOH with Mg(OH2, the brightness of bleached pulp was much lower than that of the bleached pulp with NaOH as the sole alkaline source. When 24 to 73% of the NaOH was replaced with Mg(OH2, the COD of the bleaching filtrate was 11 to 38% lower than that of the NaOH as the sole alkaline source. The lower solubility and alkalinity of Mg(OH2, as well as the reduction of Cu ion content in bleached pulp were proposed as accounting for the favorable effect of Mg(OH2 on peroxide bleaching of wheat straw soda-AQ pulp.

  4. Analysis of methane potentials of steam-exploded wheat straw and estimation of energy yields of combined ethanol and methane production.

    Science.gov (United States)

    Bauer, Alexander; Bösch, Peter; Friedl, Anton; Amon, Thomas

    2009-06-01

    Agrarian biomass as a renewable energy source can contribute to a considerable CO(2) reduction. The overriding goal of the European Union is to cut energy consumption related greenhouse gas emission in the EU by 20% until the year 2020. This publication aims at optimising the methane production from steam-exploded wheat straw and presents a theoretical estimation of the ethanol and methane potential of straw. For this purpose, wheat straw was pretreated by steam explosion using different time/temperature combinations. Specific methane yields were analyzed according to VDI 4630. Pretreatment of wheat straw by steam explosion significantly increased the methane yield from anaerobic digestion by up to 20% or a maximum of 331 l(N)kg(-1) VS compared to untreated wheat straw. Furthermore, the residual anaerobic digestion potential of methane after ethanol fermentation was determined by enzymatic hydrolysis of pretreated wheat straw using cellulase. Based on the resulting glucose concentration the ethanol yield and the residual sugar available for methane production were calculated. The theoretical maximum ethanol yield of wheat straw was estimated to be 0.249 kg kg(-1) dry matter. The achievable maximum ethanol yield per kg wheat straw dry matter pretreated by steam explosion and enzymatic hydrolysis was estimated to be 0.200 kg under pretreatment conditions of 200 degrees C and 10 min corresponding to 80% of the theoretical maximum. The residual methane yield from straw stillage was estimated to be 183 l(N)kg(-1) wheat straw dry matter. Based on the presented experimental data, a concept is proposed that processes wheat straw for ethanol and methane production. The concept of an energy supply system that provides more than two forms of energy is met by (1) upgrading obtained ethanol to fuel-grade quality and providing methane to CHP plants for the production of (2) electric energy and (3) utility steam that in turn can be used to operate distillation columns in the

  5. Fabrication of cellulose aerogel from wheat straw with strong absorptive capacity

    Directory of Open Access Journals (Sweden)

    Jian LI,Caichao WAN,Yun LU,Qingfeng SUN

    2014-02-01

    Full Text Available An effectively mild solvent solution containing NaOH/PEG was employed to dissolve the cellulose extracted from the wheat straw. With further combined regeneration process and freeze-drying, the cellulose aerogel was successfully obtained. Scanning electron microscope, X-ray diffraction technique, Fourier transform infrared spectroscopy, and Brunauer-Emmett-Teller were used to characterize this cellulose aerogel of low density (about 40 mg·cm-3 and three-dimensional network with large specific surface area (about 101 m2·g-1. Additionally, with a hydrophobic modification by trimethylchlorosilane, the cellulose aerogel showed a strong absorptive capacity for oil and dye solutions.

  6. THREE -PHASE CIRCULATING FLUIDIZED BED EVAPORATOR FOR WHEAT STRAW BLACK LIQUOR EVAPORATION

    Institute of Scientific and Technical Information of China (English)

    Yuan-yuanJia

    2004-01-01

    A novel vapor-liquid-solid circulating fluidized bed evaporator, meaning for enhancing heat transfer and preventing fouling, is applied to wheat straw black liquor, which is the primary pollutant in China's papermaking industry. It is treated by alkali recovery, in which evaporation is a key process. The experimental results show that the vapor-liquid-solid three-phase boiling heat transfer coefficient is enhanced by 20%-40% than that of vapor-liquid two-phase boiling flow, also, the novel evaporator exhibits an excellent function of fouling prevention.

  7. THREE -PHASE CIRCULATING FLUIDIZED BED EVAPORATOR FOR WHEAT STRAW BLACK LIQUOR EVAPORATION

    Institute of Scientific and Technical Information of China (English)

    Yuan-yuan Jia

    2004-01-01

    A novel vapor-liquid-solid circulating fluidized bed evaporator, meaning for enhancing heat transfer and preventing fouling, is applied to wheat straw black liquor, which is the primary pollutant in China′s papermaking industry. It is treated by alkali recovery,in which evaporation is a key process. The experimental results show that the vapor-liquid-solid three-phase boiling heat transfer coefficient is enhanced by 20% ~40% than that of vapor-liquid two-phase boiling flow, also, the novel evaporator exhibits an excellent function of fouling prevention.

  8. Particle size and hydration medium effects on hydration properties and sugar release of wheat straw fibers

    International Nuclear Information System (INIS)

    Wheat straw is gaining importance as a feedstock for the production of biofuels and high value-added bioproducts. Several pretreatments recover the fermentable fraction involving the use of water or aqueous solutions. Therefore, hydration properties of wheat straw fibers play an important role in improving pretreatment performance. In this study, the water retention capacity (WRC) and swelling of wheat straw fibers were studied using water, propylene glycol (PPG) and an effluent from a H2-producing reactor as the hydration media with three particle sizes (3.35, 2.00 and 0.212 mm). The effects of swelling were analyzed by optical and confocal laser scanning microscopy (CLSM). The highest WRC was reached with the effluent medium (9.84 ± 0.87 g g−1 in 4 h), followed by PPG (8.52 ± 0.18 g g−1 in 1 h) and water (8.74 ± 0.76 g g−1 in 10 h). The effluent hydration treatment had a synergic effect between the enzymes present and the water. The particle size had a significant effect on the WRC (P < 0.01), the highest values were reached with 3.35 mm fibers. The CLSM images showed that finer fibers were subjected to a shaving effect due to the grinding affecting its capacity to absorb the hydration medium. The microscopic analysis showed the increase in the width of the epidermal cells after the hydration and a more undulating cell wall likely due to the hydration of the amorphous regions in the cellulose microfibrils. The sugar release was determined, achieving the highest glucose content with the effluent hydration treatment. - Highlights: • Water retention capacity (WRC) and swelling of wheat straw fibers were studied. • The highest WRC was achieved with a biological effluent. • The enzymatic activity in the biological effluent yielded the highest sugar release. • Finer fibers showed a shaving effect that affected its capacity to absorb water. • A more undulating cell wall was visualized after the hydration

  9. Production of cellulose and hemicellulose-degrading enzymes by filamentous fungi cultivated on wet-oxidised wheat straw

    DEFF Research Database (Denmark)

    Thygesen, A.; Thomsen, A.B.; Schmidt, A.S.;

    2003-01-01

    The production of cellulose and hemicellulose-degrading enzymes by cultivation of Aspergillus niger ATCC 9029, Botrytis cinerea ATCC 28466, Penicillium brasilianum IBT 20888, Schizophyllum commune ATCC 38548, and Trichoderma reesei Rut-C30 was studied. Wet-oxidised wheat straw suspension suppleme......The production of cellulose and hemicellulose-degrading enzymes by cultivation of Aspergillus niger ATCC 9029, Botrytis cinerea ATCC 28466, Penicillium brasilianum IBT 20888, Schizophyllum commune ATCC 38548, and Trichoderma reesei Rut-C30 was studied. Wet-oxidised wheat straw suspension...

  10. Direct measures of mechanical energy for knife mill size reduction of switchgrass, wheat straw, and corn stover.

    Science.gov (United States)

    Bitra, Venkata S P; Womac, Alvin R; Igathinathane, C; Miu, Petre I; Yang, Yuechuan T; Smith, David R; Chevanan, Nehru; Sokhansanj, Shahab

    2009-12-01

    Lengthy straw/stalk of biomass may not be directly fed into grinders such as hammer mills and disc refiners. Hence, biomass needs to be preprocessed using coarse grinders like a knife mill to allow for efficient feeding in refiner mills without bridging and choking. Size reduction mechanical energy was directly measured for switchgrass (Panicum virgatum L.), wheat straw (Triticum aestivum L.), and corn stover (Zea mays L.) in an instrumented knife mill. Direct power inputs were determined for different knife mill screen openings from 12.7 to 50.8 mm, rotor speeds between 250 and 500 rpm, and mass feed rates from 1 to 11 kg/min. Overall accuracy of power measurement was calculated to be +/-0.003 kW. Total specific energy (kWh/Mg) was defined as size reduction energy to operate mill with biomass. Effective specific energy was defined as the energy that can be assumed to reach the biomass. The difference is parasitic or no-load energy of mill. Total specific energy for switchgrass, wheat straw, and corn stover chopping increased with knife mill speed, whereas, effective specific energy decreased marginally for switchgrass and increased for wheat straw and corn stover. Total and effective specific energy decreased with an increase in screen size for all the crops studied. Total specific energy decreased with increase in mass feed rate, but effective specific energy increased for switchgrass and wheat straw, and decreased for corn stover at increased feed rate. For knife mill screen size of 25.4 mm and optimum speed of 250 rpm, optimum feed rates were 7.6, 5.8, and 4.5 kg/min for switchgrass, wheat straw, and corn stover, respectively, and the corresponding total specific energies were 7.57, 10.53, and 8.87 kWh/Mg and effective specific energies were 1.27, 1.50, and 0.24 kWh/Mg for switchgrass, wheat straw, and corn stover, respectively. Energy utilization ratios were calculated as 16.8%, 14.3%, and 2.8% for switchgrass, wheat straw, and corn stover, respectively. These

  11. Effect of Additions on Ensiling and Microbial Community of Senesced Wheat Straw

    Energy Technology Data Exchange (ETDEWEB)

    David N. Thompson; Joni M. Barnes; Tracy P. Houghton

    2005-04-01

    Crop residues collected during or after grain harvest are available once per year and must be stored for extended periods. The combination of air, high moisture, and high microbial loads leads to shrinkage during storage and risk of spontaneous ignition. Ensiling is a wet preservation method that could be used to store these residues stably. To economically adapt ensiling to biomass that is harvested after it has senesced, the need for nutrient, moisture, and microbial additions must be determined. We tested the ensiling of senesced wheat straw in sealed columns for 83 d. The straw was inoculated with Lactobacillus plantarum and amended with several levels of water and free sugars. The ability to stabilize the straw polysaccharides was strongly influenced by both moisture and free sugars. Without the addition of sugar, the pH increased from 5.2 to as much as 9.1, depending on moisture level, and losses of 22% of the cellulose and 21% of the hemicellulose were observed. By contrast, when sufficient sugars were added and interstitial water was maintained, a final pH of 4.0 was attainable, with correspondingly low (<5%) losses of cellulose and hemicellulose. The results show that ensiling should be considered a promising method for stable storage of wet biorefinery feedstocks.

  12. Improvement Enzymatic Hydrolysis of Wheat Straw for Bioethanol Production by Combined Treatment of Radiation and Acid

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Sung Hyun; Lee, Seung Sik; Bai, Hyoung Woo; Chung, Byung Yeoup [Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2012-05-15

    The cost of ethanol production from starch and sucrose for use as a vehicle fuel is ultimately high. Consequently, it has been suggested that the large-scale use of ethanol as a fuel will require the utilization of cellulosic feedstock. Lignocellulosic biomass has the potential to serve as a low cost and renewable feedstock for bioconversion into fermentable sugars, which can be further utilized for biofuel production. It is estimated that there is over one billion tons of biomass available for conversion into biofuels on a renewable basis to displace a substantial portion of the fossil fuels currently consumed within the transportation sector. Among different pretreatment methods such as biological, physical, chemical, and physic-chemical pretreatments, chemical pretreatment using dilute acid as catalyst, which has been extensively evaluated for treating a variety of lignocellulosic feedstocks, is reported as one of the leading pretreatment technologies. Ionizing radiation can easily penetrate lignocellulosic structure and undoubtedly produce free radicals useful in modification of lignin structure as well as breakdown cellulose crystal regions. Phenoxy radicals appeared to be important radical intermediates that ultimately transformed into o-quinonoid structures in lignin. Therefore, ionizing radiation such as gamma ray and electron beam can be a great alternative. In this study, the effect of ionizing irradiation of wheat straw prior to dilute sulfuric acid treatment is investigated. The combined pretreatment for wheat straw was performed to evaluate the efficiency of enzymatic hydrolysis and compared with that of the effect of enzymatic hydrolysis by individual pretreatment

  13. Study of simultaneous saccharification and fermentation for steam exploded wheat straw to ethanol

    Institute of Scientific and Technical Information of China (English)

    Peng LUO; Zhong LIU; Chuanmin YANG; Gaosheng WANG

    2008-01-01

    Although simultaneous saccharification and fermentation (SSF) has been investigated extensively, the optimum condition for SSF of wheat straw has not yet been determined. Dilute sulfuric acid impregnated and steam explosion pretreated wheat straw was used as a substrate for the production of ethanol by SSF through orthogonal experiment design in this study. Cellulase mix-ture (Celluclast 1.5 1 and β-glucosidase Novozym 188) were adopted in combination with the yeast Sacchar-omyces cerevisiae AS2.1. The effects of reaction temper-ature, substrate concentration, initial fermentation liquid pH value and enzyme loading were evaluated and the SSF conditions were optimized. The ranking, from high to low, of influential extent of the SSF affecting factors to ethanol concentration and yield was substrate concentra-tion, enzyme loading, initial fermentation liquid pH value and reaction temperature, respectively. The optimal SSF conditions were: reaction temperature, 35℃; substrate the ethanol concentration increased with reaction time, and after 72 h, ethanol was obtained in 65.8% yield with

  14. Characterization and swelling-deswelling properties of wheat straw cellulose based semi-IPNs hydrogel.

    Science.gov (United States)

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu

    2014-07-17

    A novel wheat straw cellulose-g-poly(potassium acrylate)/polyvinyl alcohol (WSC-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) hydrogel was prepared by polymerizing wheat straw and an aqueous solution of acrylic acid (AA), and further semi-interpenetrating with PVA occurred during the chemosynthesis. The swelling and deswelling properties of WSC-g-PKA/PVA semi-IPNs hydrogel and WSC-g-PKA hydrogel were studied and compared in various pH solutions, salt solutions, temperatures, particle sizes and ionic strength. The results indicated that both hydrogels had the largest swelling capacity at pH=6, and the effect of ions on the swelling of hydrogels was in the order: Na(+)>K(+)>Mg(2+)>Ca(2+). The Schott's pseudo second order model can be effectively used to evaluate swelling kinetics of hydrogels. Moreover, the semi-IPNs hydrogel had improved swelling-deswelling properties compared with that of WSC-g-PKA hydrogel. PMID:24702940

  15. Characterization, stability, and plant effects of kiln-produced wheat straw biochar.

    Science.gov (United States)

    O'Toole, A; Knoth de Zarruk, K; Steffens, M; Rasse, D P

    2013-01-01

    Biochar is a promising technology for improving soil quality and sequestering C in the long term. Although modern pyrolysis technologies are being developed, kiln technologies often remain the most accessible method for biochar production. The objective of the present study was to assess biochar characteristics, stability in soil, and agronomic effects of a kiln-produced biochar. Wheat-straw biochar was produced in a double-barrel kiln and analyzed by solid-state C nuclear magneticresonance spectroscopy. Two experiments were conducted with biochar mixed into an Ap-horizon sandy loam. In the first experiment, CO efflux was monitored for 3 mo in plant-free soil columns across four treatments (0, 10, 50, and 100 Mg biochar ha). In the second experiment, ryegrass was grown in pots having received 17 and 54 Mg biochar ha combined with four N rates from 144 to 288 kg N ha. Our kiln method generated a wheat-straw biochar with carbon content composed of 92% of aromatic structures. Our results suggest that the biochar lost impact on ryegrass yields. PMID:23673835

  16. Ethanol from Cellulosic Biomass with Emphasis of Wheat Straw Utilization. Analysis of Strategies for Process Development

    Directory of Open Access Journals (Sweden)

    Alexander Dimitrov Kroumov

    2015-12-01

    Full Text Available The "Green and Blue Technologies Strategies in HORIZON 2020" has increased the attention of scientific society on global utilization of renewable energy sources. Agricultural residues can be a valuable source of energy because of drastically growing human needs for food. The goal of this review is to show the current state of art on utilization of wheat straw as a substrate for ethanol production. The specifics of wheat straw composition and the chemical and thermodynamic properties of its components pre-determined the application of unit operations and engineering strategies for hydrolysis of the substrate and further its fermentation. Modeling of this two processes is crucially important for optimal overall process development and scale up. The authors gave much attention on main hydrolisis products as a glucose and xylose (C6 and C5 sugars, respectivelly and on the specifics of their metabolization by ethanol producing microorganisms. The microbial physiology reacting on C6 and C5 sugars and mathematical aproaches describing these phenomena are discussing, as well.

  17. A new pulping process for wheat straw to reduce problems with the discharge of black liquor.

    Science.gov (United States)

    Huang, Guolin; Shi, Jeffrey X; Langrish, Tim A G

    2007-11-01

    Aqueous ammonia mixed with caustic potash as wheat straw pulping liquor was investigated. The caustic potash did not only reduce the NH3 usage and cooking time, but also provided a potassium source as a fertilizer in the black liquor. Excess NH3 in the black liquor was recovered and reused by batch distillation with a 98% recovery rate of free NH3. The black liquor was further treated for reuse by coagulation under alkaline conditions. The effects of different flocculation conditions, such as the dosage of 10% aluminium polychloride, the dosage of 0.1% polyacrylamide, the reaction temperature and the pH of the black liquor on the flocculating process were studied. The supernatant was recycled as cooking liquor by adding extra NH4OH and KOH. The amount of delignification and the pulp yield for the process remained steady at 82-85% and 48-50%, respectively, when reusing the supernatant four times. The coagulated residues could be further processed as solid fertilizers. This study provided a new pulping process for wheat straw to reduce problems of discharge black liquor. PMID:17092702

  18. The Effects of Three Mineral Nitrogen Sources and Zinc on Maize and Wheat Straw Decomposition and Soil Organic Carbon

    Institute of Scientific and Technical Information of China (English)

    Ogunniyi Jumoke Esther; GUO Chun-hui; TIAN Xiao-hong; LI Hong-yun; ZHOU Yang-xue

    2014-01-01

    The incorporation of straw in cultivated ifelds can potentially improve soil quality and crop yield. However, the presence of recalcitrant carbon compounds in straw slow its decomposition rate. The objective of this study was to determine the effects of different nitrogen sources, with and without the application of zinc, on straw decomposition and soil quality. Soils were treated with three different nitrogen sources, with and without zinc: urea (CO(NH2)2), ammonium sulfate ((NH4)2SO4), and ammonium chloride (NH4Cl). The combined treatments were as follows:maize (M) and wheat (W) straw incorporated into urea-, ammonium sulfate-, or ammonium chloride-treated soil (U, S, and C, respectively) with and without zinc (Z) (MU, MUZ, WU, WUZ;MS, MSZ, WS, WSZ;MC, MCZ, WC, WCZ, respectively);straw with zinc only (MZ, WZ);straw with untreated soil (MS, WS);and soil-only or control conditions (NT). The experiment consisted of 17 treatments with four replications. Each pot contained 150 g soil and 1.125 g straw, had a moisture content of 80%of the ifeld capacity, and was incubated for 53 days at 25°C. The rates of CO2-C emission, cumulative CO2-C evolution, total CO2 production in the soils of different treatments were measured to infer decomposition rates. The total organic carbon (TOC), labile organic carbon (LOC), and soil microbial biomass in the soils of different treatments were measured to infer soil quality. All results were signiifcantly different (P<0.05) with the exception of the labile organic carbon (LOC). The maize and wheat straw showed different patterns in CO2 evolution rates. For both straw types, Zn had a synergic effect with U, but an antagonistic effect with the other N sources as determined by the total CO2 produced. The MUZ treatment showed the highest decomposition rate and cumulative CO2 concentration (1 120.29 mg/pot), whereas the WACZ treatment had the lowest cumulative CO2 concentration (1 040.57 mg/pot). The addition of NH4Cl resulted in the

  19. Effect of enzyme extracts isolated from white-rot fungi on chemical composition and in vitro digestibility of wheat straw

    NARCIS (Netherlands)

    Rodrigues, M.A.M.; Pinto, P.; Bezerra, R.M.F.; Dias, A.A.; Guedes, C.M.; Cone, J.W.

    2008-01-01

    A series of in vitro experiments were completed to evaluate the potential of enzyme extracts, obtained from the white-rot fungi Trametes versicolor (TV1, TV2), Bjerkandera adusta (BA) and Fomes fomentarius (FF), to increase degradation of cell wall components of wheat straw. The studies were conduct

  20. Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by Thermoanaerobacter mathranii

    DEFF Research Database (Denmark)

    Klinke, Helene Bendstrup; Thomsen, A.B.; Ahring, Birgitte Kiær

    2001-01-01

    Alkaline wet oxidation (WO) (using water, 6.5 g/l sodium carbonate, and 12 bar oxygen at 195 degreesC) was used for pre-treating wheat straw (60 g/l), resulting in a hemicellulose-rich hydrolysate and a cellulose-rich solid fraction. The hydrolysate consisted of soluble hemicellulose (9 g/l), ali...

  1. Sulfur Distribution during Hydrothermal Liquefaction of Lignite, Wheat Straw and Plastic Waste in Sub-Critical Water

    Institute of Scientific and Technical Information of China (English)

    Wang Baofeng; Huang Yaru; Zhang Jinjun

    2015-01-01

    The distribution and transformation of sulfur in products during hydrothermal liquefaction of lignite, wheat straw and plastic waste in sub-critical water were investigated in an autoclave. The inlfuence of blending ratio, temperature, initial nitrogen pressure, residence time and additives on sulfur distribution was studied systematically. The results showed that most of sulfur existed as organic sulfur and transferred into the residue, and only a small part of sulfur transferred into oil and gas during hydrothermal liquefaction of lignite, wheat straw and plastic waste in sub-critical water. The results also showed that lower temperature (less than 300℃) was favorable for obtaining oil with low sulfur content. It can be also seen from the results that the best condition to obtain the oil with low sulfur content should be implemented at a lignite/wheat straw/plastic waste blending ratio of 5:4:1, an initial nitrogen pressure of 3 MPa and a residence time of 30 minutes. Fur-thermore, the results indicated that adding tourmaline during hydrothermal liquefaction of lignite, wheat straw and plastic waste was beneifcial to production of oil with low sulfur content.

  2. Pretreating wheat straw by the concentrated phosphoric acid plus hydrogen peroxide (PHP): Investigations on pretreatment conditions and structure changes.

    Science.gov (United States)

    Wang, Qing; Hu, Jinguang; Shen, Fei; Mei, Zili; Yang, Gang; Zhang, Yanzong; Hu, Yaodong; Zhang, Jing; Deng, Shihuai

    2016-01-01

    Wheat straw was pretreated by PHP (the concentrated H3PO4 plus H2O2) to clarify effects of temperature, time and H3PO4 proportion on hemicellulose removal, delignification, cellulose recovery and enzymatic digestibility. Overall, hemicellulose removal was intensified by PHP comparing to the concentrated H3PO4. Moreover, efficient delignification specially happened in PHP pretreatment. Hemicellulose removal and delignification by PHP positively responded to temperature and time. Increasing H3PO4 proportion in PHP can promote hemicellulose removal, however, decrease the delignification. Maximum hemicellulose removal and delignification were achieved at 100% and 83.7% by PHP. Enzymatic digestibility of PHP-pretreated wheat straw was greatly improved by increasing temperature, time and H3PO4 proportion, and complete hydrolysis can be achieved consequently. As temperature of 30-40°C, time of 2.0 h and H3PO4 proportion of 60% were employed, more than 92% cellulose was retained in the pretreated wheat straw, and 29.1-32.6g glucose can be harvested from 100g wheat straw.

  3. Solid-state anaerobic co-digestion of spent mushroom substrate with yard trimmings and wheat straw for biogas production.

    Science.gov (United States)

    Lin, Yunqin; Ge, Xumeng; Li, Yebo

    2014-10-01

    Spent mushroom substrate (SMS) is a biomass waste generated from mushroom production. About 5 kg of SMS is generated for every kg of mushroom produced. In this study, solid state anaerobic digestion (SS-AD) of SMS, wheat straw, yard trimmings, and their mixtures was investigated at different feedstock to effluent ratios. SMS was found to be highly degradable, which resulted in inhibition of SS-AD due to volatile fatty acid (VFA) accumulation and a decrease in pH. This issue was addressed by co-digestion of SMS with either yard trimmings or wheat straw. SS-AD of SMS/yard trimmings achieved a cumulative methane yield of 194 L/kg VS, which was 16 and 2 times higher than that from SMS and yard trimmings, respectively. SS-AD of SMS/wheat straw obtained a cumulative methane yield of 269 L/kg VS, which was 23 times as high as that from SMS and comparable to that from wheat straw.

  4. Improving lactic acid productivity from wheat straw hydrolysates by membrane integrated repeated batch fermentation under non-sterilized conditions

    DEFF Research Database (Denmark)

    Zhang, Yuming; Chen, Xiangrong; Qi, Benkun;

    2014-01-01

    Bacillus coagulans IPE22 was used to produce lactic acid (LA) from mixed sugar and wheat straw hydrolysates, respectively. All fermentations were conducted under non-sterilized conditions and sodium hydroxide was used as neutralizing agent to avoid the production of insoluble CaSO4. In order...

  5. Rapid estimation of sugar release from winter wheat straw during bioethanol production using FTIR-photoacoustic spectroscopy

    DEFF Research Database (Denmark)

    Bekiaris, Georgios; Lindedam, Jane; Peltre, Clément;

    2015-01-01

    are affecting the degradability of plant material. In this study, Fourier transform infrared photoacoustic spectroscopy (FTIR-PAS) was combined with advanced chemometrics to develop calibration models predicting the amount of sugars released after pretreatment and enzymatic hydrolysis of wheat straw during...

  6. Comparison of the chemical properties of wheat straw and beech fibers following alkaline wet oxidation and laccase treatments

    DEFF Research Database (Denmark)

    Schmidt, A. S.; Mallon, S.; Thomsen, Anne Belinda;

    2002-01-01

    treatment gave a more reactive surface than alkaline wet oxidation for wheat straw, whereas the opposite was observed for beech. Fourier transform infrared (FT-IR) spectroscopy showed an almost complete loss of the ester carbonyl stretching signal and the corresponding C-C-O stretching in wet...

  7. Separate hydrolysis and co-fermentation for improved xylose utilization in integrated ethanol production from wheat meal and wheat straw

    Directory of Open Access Journals (Sweden)

    Erdei Borbála

    2012-03-01

    Full Text Available Abstract Background The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation. Most naturally occurring ethanol-fermenting microorganisms do not utilize xylose, but a genetically modified yeast strain, TMB3400, has the ability to co-ferment glucose and xylose. However, the xylose uptake rate is only enhanced when the glucose concentration is low. Results Separate hydrolysis and co-fermentation of steam-pretreated wheat straw (SPWS combined with wheat-starch hydrolysate feed was performed in two separate processes. The average yield of ethanol and the xylose consumption reached 86% and 69%, respectively, when the hydrolysate of the enzymatically hydrolyzed (18.5% WIS unwashed SPWS solid fraction and wheat-starch hydrolysate were fed to the fermentor after 1 h of fermentation of the SPWS liquid fraction. In the other configuration, fermentation of the SPWS hydrolysate (7.0% WIS, resulted in an average ethanol yield of 93% from fermentation based on glucose and xylose and complete xylose consumption when wheat-starch hydrolysate was included in the feed. Increased initial cell density in the fermentation (from 5 to 20 g/L did not increase the ethanol yield, but improved and accelerated xylose consumption in both cases. Conclusions Higher ethanol yield has been achieved in co-fermentation of xylose and glucose in SPWS hydrolysate when wheat-starch hydrolysate was used as feed, then in co-fermentation of the liquid fraction of SPWS fed with the mixed hydrolysates. Integration of first-generation and

  8. Recovery of ammonium onto wheat straw to be reused as a slow-release fertilizer.

    Science.gov (United States)

    Xie, Lihua; Lü, Shaoyu; Liu, Mingzhu; Gao, Chunmei; Wang, Xinggang; Wu, Lan

    2013-04-10

    With the aim of improving fertilizer use efficiency and minimizing the negative impact of nitrogen pollution, a new multifunctional slow-release fertilizer was prepared by recovery of ammonium from aqueous solutions onto a superabsorbent composite. An eco-friendly superabsorbent composite based on wheat straw (WS) was synthesized and used as the carrier to control the release of nutrients. The adsorption studies with NH₄⁺ indicated that the superabsorbent composite showed good affinity for NH₄⁺, with an adsorption capacity of 7.15 mmol g⁻¹ when 20 wt % of WS was incorporated and that the adsorption system can reach equilibrium within 40 min. Afterward, the feasibility of reusing the composite as a multifunctional slow-release nitrogen fertilizer was investigated. The results showed that the product with good water-retention and slow-release capacities could regulate soil acidity and was economical and eco-friendly for application in agriculture and horticulture. PMID:23495955

  9. Improvement of bleached wheat straw pulp properties by using aspen high-yield pulp.

    Science.gov (United States)

    Zhang, Hongjie; Li, Jianguo; Hu, Huiren; He, Zhibin; Ni, Yonghao

    2012-09-01

    The bleached wheat straw pulp (BWSP) accounts for about 25% of the virgin fiber supply in the Chinese Pulp and Paper Industry. As a non-wood chemical pulp, BWSP is known to have low bulk, low light scattering coefficient and poor drainage due to its high content of parenchyma cells. In this study, a high-quality aspen high-yield pulp (HYP) was used to improve the BWSP properties at the laboratory scale. The results indicate that adding 5-20% aspen HYP into unrefined or refined BWSP can minimize many of the drawbacks associated with the BWSP: improving its drainage, bulk, light scattering coefficient and opacity. The addition of a small amount (up to 20%) of aspen HYP can also significantly increase the tear index of BWSP with only a slight decrease of the tensile index.

  10. Electricity generation by microbial fuel cells fuelled with wheat straw hydrolysate

    DEFF Research Database (Denmark)

    Thygesen, Anders; Poulsen, Finn Willy; Angelidaki, Irini;

    2011-01-01

    Electricity production from microbial fuel cells fueled with hydrolysate produced by hydrothermal treatment of wheat straw can achieve both energy production and domestic wastewater purification. The hydrolysate contained mainly xylan, carboxylic acids, and phenolic compounds. Power generation...... density with the hydrolysate was higher than the one with only xylan (120 mW m−2) and carboxylic acids as fuel. The higher power density can be caused by the presence of phenolic compounds in the hydrolysates, which could mediate electron transport. Electricity generation with the hydrolysate resulted...... in 95% degradation of the xylan and glucan. The study demonstrates that lignocellulosic hydrolysate can be used for co-treatment with domestic wastewater for power generation in microbial fuel cells....

  11. Butyric acid fermentation from pre-treated wheat straw by a mutant clostridium tyrobutyricum strain

    DEFF Research Database (Denmark)

    Baroi, George Nabin; Baumann, Ivan; Westermann, Peter;

    acid (higher selectivity), has a higher yield and a higher productivity of butyric acid from pre-treated lignocellulosic biomass. Pre-treated wheat straw was used as the main carbon source. After one year of serial adaptation and selection a mutant strain of C. tyrobutyricum was developed. This new......Only little research on butyric acid fermentation has been carried out in relationship to bio-refinery perspectives involving strain selection, development of adapted strains, physiological analyses for higher yield, productivity and selectivity. However, a major step towards the development......’s platform for a variety of products for industrial use. Butyric acid is considered as a potential chemical building-block for the production of chemicals for e.g. polymeric compounds and the aim of this work was to develop a suitable and robust strain of Clostridium tyrobutyricum that produces less acetic...

  12. Recovery of ammonium onto wheat straw to be reused as a slow-release fertilizer.

    Science.gov (United States)

    Xie, Lihua; Lü, Shaoyu; Liu, Mingzhu; Gao, Chunmei; Wang, Xinggang; Wu, Lan

    2013-04-10

    With the aim of improving fertilizer use efficiency and minimizing the negative impact of nitrogen pollution, a new multifunctional slow-release fertilizer was prepared by recovery of ammonium from aqueous solutions onto a superabsorbent composite. An eco-friendly superabsorbent composite based on wheat straw (WS) was synthesized and used as the carrier to control the release of nutrients. The adsorption studies with NH₄⁺ indicated that the superabsorbent composite showed good affinity for NH₄⁺, with an adsorption capacity of 7.15 mmol g⁻¹ when 20 wt % of WS was incorporated and that the adsorption system can reach equilibrium within 40 min. Afterward, the feasibility of reusing the composite as a multifunctional slow-release nitrogen fertilizer was investigated. The results showed that the product with good water-retention and slow-release capacities could regulate soil acidity and was economical and eco-friendly for application in agriculture and horticulture.

  13. Surface functionalization of nanofibrillated cellulose extracted from wheat straw: Effect of process parameters.

    Science.gov (United States)

    Singh, Mandeep; Kaushik, Anupama; Ahuja, Dheeraj

    2016-10-01

    Aggregates of microfibrillated cellulose isolated from wheat straw fibers were subjected to propionylation under different processing conditions of time, temperature and concentration. The treated fibers were then homogenized to obtain surface modified nanofibrillated cellulose. For varying parameters, progress of propionylation and its effects on various characteristics was investigated by FTIR, degree of substitution, elemental analysis, SEM, EDX, TEM, X-ray diffraction, static and dynamic contact angle measurements. Thermal stability of the nanofibrils was also investigated using thermogravimetric technique. FTIR analysis confirmed the propionylation of the hydroxyl groups of the cellulose fibers. The variations in reaction conditions such as time and temperature had shown considerable effect on degree of substitution (DS) and surface contact angle (CA). These characterization results represent the optimizing conditions under which cellulose nanofibrils with hydrophobic characteristics up to contact angle of 120° can be obtained. PMID:27312612

  14. Influence of high gravity process conditions on the environmental impact of ethanol production from wheat straw

    DEFF Research Database (Denmark)

    Janssen, Matty; Tillman, Anne-Marie; Cannella, David;

    2014-01-01

    Biofuel production processes at high gravity are currently under development. Most of these processes however use sugars or first generation feedstocks as substrate. This paper presents the results of a life cycle assessment (LCA) of the production of bio-ethanol at high gravity conditions from...... a second generation feedstock, namely, wheat straw. The LCA used lab results of a set of 36 process configurations in which dry matter content, enzyme preparation and loading, and process strategy were varied. The LCA results show that higher dry matter content leads to a higher environmental impact...... of the ethanol production, but this can be compensated by reducing the impact of enzyme production and use, and by polyethylene glycol addition at high dry matter content. The results also show that the renewable and non-renewable energy use resulting from the different process configurations ultimately...

  15. Pre-treatment of lignocellulosic biomass using ionic liquids: wheat straw fractionation.

    Science.gov (United States)

    da Costa Lopes, André M; João, Karen G; Rubik, Djonatam F; Bogel-Łukasik, Ewa; Duarte, Luís C; Andreaus, Jürgen; Bogel-Łukasik, Rafał

    2013-08-01

    This work is devoted to study pre-treatment methodologies of wheat straw with 1-ethyl-3-methylimidazolium acetate ([emim][CH3COO]) and subsequent fractionation to cellulose, hemicellulose and lignin. The method developed and described here allows the separation into high purity carbohydrate and lignin fractions and permits an efficient IL recovery. A versatility of the established method was confirmed by the IL reuse. The fractionation of completely dissolved biomass led to cellulose-rich and hemicellulose-rich fractions. A high purity lignin was also achieved. To verify the potential further applicability of the obtained carbohydrate-rich fractions, and to evaluate the pre-treatment efficiency, the cellulose fraction resulting from the treatment with [emim][CH3COO] was subjected to enzymatic hydrolysis. Results showed a very high digestibility of the cellulose samples and confirmed a high glucose yield for the optimized pre-treatment methodology. PMID:23735803

  16. HYDROLYSIS OF WHEAT STRAW HEMICELLULOSE AND DETOXIFICATION OF THE HYDROLYSATE FOR XYLITOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Junping Zhuang

    2009-05-01

    Full Text Available Xylitol can be obtained from wheat straw hemicellulose containing a high content of xylan. This study describes a new system of hydrolysis, utilizing a mixed solution of formic acid and hydrochloric acid in which xylan can be hydrolyzed effectively. The hydrolysate contains a high content of formic acid, which markedly inhibits the fermentation. One of the most efficient methods for removing inhibiting compounds is treatment of the hydrolysate with ion-exchange resins. Formate can be removed by a factor of 77.78%, and furfural, acetic acid, phenolic compounds can be removed by 90.36%, 96.29%, and 77.44%, respectively after the hydrolysate has been treated with excess Ca(OH2 and D311 ion-exchange resin. The xylose from the hydrolysis process can be fermented by Candida tropicalis strain (AS2.1776 to produce xylitol with a yield of 41.88 % (xylitol/xylose.

  17. Characterization of the newly isolated Geobacillus sp. T1, the efficient cellulase-producer on untreated barley and wheat straws.

    Science.gov (United States)

    Assareh, Reza; Shahbani Zahiri, Hossein; Akbari Noghabi, Kambiz; Aminzadeh, Saeed; Bakhshi Khaniki, Gholamreza

    2012-09-01

    A thermophile cellulase-producing bacterium was isolated and identified as closely related to Geobacillus subterraneus. The strain, named Geobacillus sp. T1, was able to grow and produce cellulase on cellobiose, microcrystalline cellulose, carboxymethylcellulose (CMC), barley straw, wheat straw and Whatman No. 1 filter paper. However, barley and wheat straws were significantly better substrates for cellulase production. When Geobacillus sp. T1 was cultivated in the presence of 0.5% barley straw, 0.1% Tween 80 and pH 6.5 at 50°C, the maximum level of free cellulase up to 143.50 U/mL was produced after 24h. This cellulase (≈ 54 kDa) was most active at pH 6.5 and 70°C. The enzyme in citrate phosphate buffer (10mM) was stable at 60°C for at least 1h. Geobacillus sp. T1 with efficient growth and cellulase production on straws seems a potential candidate for conversion of agricultural biomass to fuels.

  18. Enhanced bioproduction of poly-3-hydroxybutyrate from wheat straw lignocellulosic hydrolysates.

    Science.gov (United States)

    Cesário, M Teresa; Raposo, Rodrigo S; de Almeida, M Catarina M D; van Keulen, Frederik; Ferreira, Bruno S; da Fonseca, M Manuela R

    2014-01-25

    Polyhydroxyalkanoates (PHAs) are bioplastics that can replace conventional petroleum-derived products in various applications. One of the major barriers for their widespread introduction in the market is the higher production costs compared with their petrochemical counterparts. In this work, a process was successfully implemented with high productivity based on wheat straw, a cheap and readily available agricultural residue, as raw material. The strain Burkholderia sacchari DSM 17165 which is able to metabolise glucose, xylose and arabinose, the main sugars present in wheat straw hydrolysates (WSHs), was used. Results in shake flask showed that B. sacchari cells accumulated about 70%gpoly(3-hydroxybutyrate)(P(3HB))/g cell dry weight (CDW) with a yield of polymer on sugars (YP/S) of 0.18g/g when grown on a mixture of commercial C6 and C5 sugars (control), while these values reached about 60%gP(3HB)/g CDW and 0.19g/g, respectively, when WSHs were used as carbon source. In fed-batch cultures carried out in 2L stirred-tank reactors (STRs) on WSH, a maximum polymer concentration of 105 g/L was reached after 61 hours of cultivation corresponding to an accumulation of 72% of CDW. Polymer yield and productivity were 0.22 gP(3HB)/g total sugar consumed and 1.6g/L hour, respectively. The selected feeding strategy successfully overcame the carbon catabolite repression (CCR) phenomenon observed with sugar mixtures containing hexoses and pentoses. This is the first work describing fed-batch cultivations aiming at PHA production using real lignocellulosic hydrolysates. Additionally, the P(3HB) volumetric productivities attained are by far the highest ever achieved on agricultural waste hydrolysates. PMID:24157713

  19. Field investigation on effects of wheat-straw/corn-stalk mulch on ecological environment of upland crop farmland

    Institute of Scientific and Technical Information of China (English)

    董志勇; 钱炳法

    2002-01-01

    This work systematically investigates the effects of wheat-straw/corn-stalk mulch on the ecological environment in upland crops (winter wheat, summer corn) field from 1997 to 1998. With and without mulch soil moisture distribution, water demand, day and night variation of soil temperature, weeds control, crop yields, water and soil conservation, as well as improvement of soil texture were experimentally investigated. The optimal mulch rate for both water saving and yield-increase was determined. Ineffective interplant evaporation can be turned into effective transpiration of leaf by application of wheat-straw/corn-stalk mulch, which enhances the utility factor of soil moisture and reduces irrigation norm, and may also regulate soil temperature, increase soil fertility, and improve soil texture after being returned to the field. Wheat-straw/corn-stalk mulch inhibits evaporation of moisture so that accumulation of salinity near the soil surface is prevented, and thus ameliorates salinization of land. In the region of severe soil erosion, mulch is used to cover land so as to forestall hydraulic and wind erosion of the soil.

  20. ANALYSIS ON COMPOSITION OF FOULANTS FROM ALKALINE WHEAT STRAW BLACK LIQUOR AND DISCUSSION ON ITS FORMING MECHANISM

    Institute of Scientific and Technical Information of China (English)

    Yuan-yuan Jia

    2004-01-01

    Analysis on foulants shows that: the elements(except for C, H and O) in foulants formed during evaporating alkaline wheat straw black liquor are Si,Ca, K, Na, Mg and Al; Si and Ca account for about 36% of the weight of foulants; The organic ingredients amout to about 20% of the foulant;Rhodesite (Ca,K,Na)8Si16O40 @llH2O is the main composition in foulants.The fouling mechanism of wheat black liquor is quite different from that of soft/hard wood black liquor,because the content of Si inside wheat straw black liquor is much more than that of soft/hard wood black liquor. Complex chemical reactions occur when evaporating wheat straw black liquor. The author considers that colloid H2SiO3 plays an important role in the process. The minerals produced by reactions between H2SiO3, with anion charges and positive ions, such as Ca2+, K+, Na+, etc. Further investigation on the process should be done.The fractal theory is used to analyze the fouling geometric texture. The fractal dimension values D of foulants are also calculated.

  1. ANALYSIS ON COMPOSITION OF FOULANTS FROM ALKALINE WHEAT STRAW BLACK LIQUOR AND DISCUSSION ON ITS FORMING MECHANISM

    Institute of Scientific and Technical Information of China (English)

    Yuan-yuanJia

    2004-01-01

    Analysis on foulants shows that: the elements (except for C, H and O) in foulants formed during evaporating alkaline wheat straw black liquor are Si,Ca, K, Na, Mg and AI; Si and Ca account for about 36% of the weight of foulants, The organic ingredients about to about 20% of the foulant; Rhodesite (Ca,K,Na)8Si16O40 ·11H2O is the main composition in foulants. The fouling mechanism of wheat black liquor is quite different from that of soft/hard wood black liquor, because the content of Si inside wheat straw black liquor is much more than that of soft/hard wood black liquor. Complex chemical reactions occur when evaporating wheat straw black liquor. The author considers that colloid H2SiO3 plays an important role in the process. The minerals produced by reactions between H2SiO3, with anion charges and positive ions, such as Ca2-, K-, Na-, etc. Further investigation on the process should be done. The fractal theory is used to analyze the fouling geometric texture. The fractal dimension values D of foulants are also calculated.

  2. How mushrooms feed on compost: conversion of carbohydrates and linin in industrial wheat straw based compost enabling the growth of Agaricus bisporus

    OpenAIRE

    Jurak, E.

    2015-01-01

    Abstract In this thesis, the fate of carbohydrates and lignin was studied in industrial wheat straw based compost during composting and growth of Agaricus bisporus. The aim was to understand the availability and degradability of carbohydrates in order to help improve their utilization in the compost. The wheat straw based compost was characterized as being composed mainly of cellulose and lowly substituted xylan. During the first phase of composting, ester-bound substituents were removed from...

  3. Improved Anaerobic Fermentation of Wheat Straw by Alkaline Pre-Treatment and Addition of Alkali-Tolerant Microorganisms

    Directory of Open Access Journals (Sweden)

    Heike Sträuber

    2015-04-01

    Full Text Available The potential of two alkali-tolerant, lignocellulolytic environmental enrichment cultures to improve the anaerobic fermentation of Ca(OH2-pre-treated wheat straw was studied. The biomethane potential of pre-treated straw was 36% higher than that of untreated straw. The bioaugmentation of pre-treated straw with the enrichment cultures did not enhance the methane yield, but accelerated the methane production during the first week. In acidogenic leach-bed fermenters, a 61% higher volatile fatty acid (VFA production and a 112% higher gas production, mainly CO2, were observed when pre-treated instead of untreated straw was used. With one of the two enrichment cultures as the inoculum, instead of the standard inoculum, the VFA production increased by an additional 36% and the gas production by an additional 110%, again mainly CO2. Analysis of the microbial communities in the leach-bed processes revealed similar bacterial compositions in the fermenters with pre-treated straw, which developed independently of the used inoculum. It was suggested that the positive metabolic effects with the enrichment cultures observed in both systems were due to initial activities of the alkali-tolerant microorganisms tackling the alkaline conditions better than the standard inocula, whereas the latter dominated in the long term.

  4. Unconfined Compressive Strength Comparison between Saline Soils Reinforced with Rice Straw and with Wheat Straw%稻草加筋土和麦秸秆加筋土的无侧限抗压强度比较

    Institute of Scientific and Technical Information of China (English)

    张瑞敏; 王晓燕; 柴寿喜

    2011-01-01

    In order to increase the compressive characteristic of saline soil, saline soils reinforced with rice straw and with wheat straw were used to solve the problem of soil strength decrease due to salt expansion and dissolution. And then the unconfined compressive strengths of the saline soils reinforced with rice straw and with wheat straw were compared by selecting reinforced length, reinforced quality ratio, shapes, anticorrosive processing as influence factors. Test results show that: ①Unconfined compressive strength of the saline soil reinforced with natural rice straw and with antiseptic rice straw is higher than the saline soil reinforced with natural wheat straw and with antiseptic wheat straw; unconfined compressive strength of the two reinforced saline soils are higher than saline soil. ②The appropriate reinforcement condition office straw is as follows: reinforced length of 15 mm, reinforced quality ratio of 0.2%; the condition of wheat straw is as follows: reinforced length of 10 mm or 15 ram, reinforced quality ratio of 0.2% or 0.25%. ③As far as the shapes of rice straw and wheat straw are concerned, half tube shape is better than tubular shape, and the shape of a quarter is better than half. ④ Both rice straw and wheat straw need anti-corrosion treatment before reinforcing to improve the strength and durability of the rein- forced saline soil. Rice straw and wheat straw are suitable for reinforcement materials, rice straw reinforcement is better than that of wheat straw; both of them can be used for handling saline soil.%为解决因溶陷和盐胀引起土的强度降低问题,分别采用稻草和麦秸秆加筋滨海盐渍土,以提高其抗压性能.选择加筋长度、质量加筋率、筋材形状及防腐处理作为影响因素,比较稻草加筋土和麦秸秆加筋土的无侧限抗压强度.试验结果为:①天然稻草加筋土和防腐稻草加筋土的无侧限抗压强度相应地高于天然麦秸秆加筋土

  5. Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant

    Directory of Open Access Journals (Sweden)

    Thelen Kurt D

    2010-06-01

    Full Text Available Abstract Background Corn grain is an important renewable source for bioethanol production in the USA. Corn ethanol is currently produced by steam liquefaction of starch-rich grains followed by enzymatic saccharification and fermentation. Corn stover (the non-grain parts of the plant is a potential feedstock to produce cellulosic ethanol in second-generation biorefineries. At present, corn grain is harvested by removing the grain from the living plant while leaving the stover behind on the field. Alternatively, whole corn plants can be harvested to cohydrolyze both starch and cellulose after a suitable thermochemical pretreatment to produce fermentable monomeric sugars. In this study, we used physiologically immature corn silage (CS and matured whole corn plants (WCP as feedstocks to produce ethanol using ammonia fiber expansion (AFEX pretreatment followed by enzymatic hydrolysis (at low enzyme loadings and cofermentation (for both glucose and xylose using a cellulase-amylase-based cocktail and a recombinant Saccharomyces cerevisiae 424A (LNH-ST strain, respectively. The effect on hydrolysis yields of AFEX pretreatment conditions and a starch/cellulose-degrading enzyme addition sequence for both substrates was also studied. Results AFEX-pretreated starch-rich substrates (for example, corn grain, soluble starch had a 1.5-3-fold higher enzymatic hydrolysis yield compared with the untreated substrates. Sequential addition of cellulases after hydrolysis of starch within WCP resulted in 15-20% higher hydrolysis yield compared with simultaneous addition of hydrolytic enzymes. AFEX-pretreated CS gave 70% glucan conversion after 72 h of hydrolysis for 6% glucan loading (at 8 mg total enzyme loading per gram glucan. Microbial inoculation of CS before ensilation yielded a 10-15% lower glucose hydrolysis yield for the pretreated substrate, due to loss in starch content. Ethanol fermentation of AFEX-treated (at 6% w/w glucan loading CS hydrolyzate (resulting

  6. Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant

    Science.gov (United States)

    2010-01-01

    Background Corn grain is an important renewable source for bioethanol production in the USA. Corn ethanol is currently produced by steam liquefaction of starch-rich grains followed by enzymatic saccharification and fermentation. Corn stover (the non-grain parts of the plant) is a potential feedstock to produce cellulosic ethanol in second-generation biorefineries. At present, corn grain is harvested by removing the grain from the living plant while leaving the stover behind on the field. Alternatively, whole corn plants can be harvested to cohydrolyze both starch and cellulose after a suitable thermochemical pretreatment to produce fermentable monomeric sugars. In this study, we used physiologically immature corn silage (CS) and matured whole corn plants (WCP) as feedstocks to produce ethanol using ammonia fiber expansion (AFEX) pretreatment followed by enzymatic hydrolysis (at low enzyme loadings) and cofermentation (for both glucose and xylose) using a cellulase-amylase-based cocktail and a recombinant Saccharomyces cerevisiae 424A (LNH-ST) strain, respectively. The effect on hydrolysis yields of AFEX pretreatment conditions and a starch/cellulose-degrading enzyme addition sequence for both substrates was also studied. Results AFEX-pretreated starch-rich substrates (for example, corn grain, soluble starch) had a 1.5-3-fold higher enzymatic hydrolysis yield compared with the untreated substrates. Sequential addition of cellulases after hydrolysis of starch within WCP resulted in 15-20% higher hydrolysis yield compared with simultaneous addition of hydrolytic enzymes. AFEX-pretreated CS gave 70% glucan conversion after 72 h of hydrolysis for 6% glucan loading (at 8 mg total enzyme loading per gram glucan). Microbial inoculation of CS before ensilation yielded a 10-15% lower glucose hydrolysis yield for the pretreated substrate, due to loss in starch content. Ethanol fermentation of AFEX-treated (at 6% w/w glucan loading) CS hydrolyzate (resulting in 28 g/L ethanol

  7. Comparison of the substrate enzymatic digestibility and lignin structure of wheat straw stems and leaves pretreated by green liquor.

    Science.gov (United States)

    Jiang, Bo; Wang, Wangxia; Gu, Feng; Cao, Tingyue; Jin, Yongcan

    2016-01-01

    In this work, the substrate enzymatic digestibility (SED) and the lignin structure of green liquor (GL) pretreated wheat straw stems and leaves were investigated. Compared with wheat straw stems, leaves showed higher delignification selectivity in GL pretreatment and higher SED in enzymatic hydrolysis. Wet chemical analysis indicated that, characterized with lower content of syringyl units and less β-O-4 linkages, leaf lignin is structurally different from stem lignin. After GL pretreatment, the drops of both nitrobenzene oxidation and ozonation products yield of leaves were obviously higher than those of stems, which means that more β-O-4 linkages of leaf lignin were broken than that of stem lignin. The SED of total sugar in GL-pretreated leaves was about 50% higher than that in GL-pretreated stems. The less content and lower S/G ratio of lignin are suggested to be the important factors for the better SED of GL-pretreated leaves. PMID:26342786

  8. Hydrothermal Liquefaction of Wheat Straw in Sub-critical Water/Ethanol with Ionic Liquid for Bio-oil Production

    Institute of Scientific and Technical Information of China (English)

    Wang Baofeng; Han Shaohua; Zhang Jinjun

    2015-01-01

    Hydrothermal liquefaction of wheat straw in sub-critical water with ionic liquid was investigated in an autoclave. The product distribution at different temperatures and pressures was studied. The liquid oil and the residuals were tested by 1H NMR, FTIR and SEM techniques. The results indicated that under the same conditions, the oil yield from liquefaction of wheat straw in water/ethanol was higher than that in sub-critical water. The result also showed that under the investigated conditions, adding 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) could increase the total conversion and gas yield, while at the same time the yield ofn-hexane insoluble fraction and the tetrahydrofuran soluble fraction was reduced. More-over, the results also showed that upon adding [Bmim]Cl the contents of the aliphatic hydrogen and phenols in liquid oil also increased along with improved oil quality.

  9. [Effects of nitrogen application rates on apparent soil nitrogen surplus of late sowing wheat with straw returning in rice-wheat rotation].

    Science.gov (United States)

    Shi, Zu-Liang; Gu, Dong-Xiang; Gu, Ke-Jun; Zhang, Chuan-Hui; Zhang, Si-Mei; Yu, Jian-Guang; Yang, Si-Jun

    2014-11-01

    Field experiments were conducted to study the effects of varying rates of nitrogen application on soil mineral nitrogen content, amount of nitrogen released from the straw, and grain yield of late sowing wheat with straw returning. The result showed that a high nitrogen fertilizer application rate enhanced the mineral nitrogen content in the soil layer of 0 to 50 cm, and also in the lower soil layers when using N at 270 and 360 kg · hm(-2) with the advance of growth stages. The amount of nitrogen released form the straw increased as the nitrogen application rate increased; the lowest appeared from overwintering to jointing, and the highest from jointing to maturity. During the whole growing season, apparent nitrogen surplus occurred when the nitrogen application rate was higher than 180 kg · hm(-2). The N surplus before jointing was significantly higher than that from jointing to maturity. Grain yield reached the highest at a nitrogen application rate of 270 kg · hm(-2), and a higher application rate obviously decreased the nitrogen use efficiency. It could be concluded that applying nitrogen at 270 kg · him(-2) could improve the grain yield of late sowing wheat with straw returning with the optimal ecological benefit.

  10. Improving the nutritive value of wheat straw with urea and yeast culture for dry season feeding of dairy cows.

    Science.gov (United States)

    Kashongwe, Olivier Basole; Migwi, Preminius; Bebe, Bockline Omedo; Ooro, Patrick Auwor; Onyango, Tobias Atali; Osoo, John Odhiambo

    2014-08-01

    The study evaluated the effects of feeding urea treated/supplemented wheat straw-based diets with addition of yeast culture (YC) as a dry season feed for dairy cows. Wheat straw diets with 3.6% urea and 5.8% molasses were formulated to upgrade nonprotein nitrogen levels and fibre degradation in the rumen. Yeast culture was included at 0 and 10 g/cow/day in mixer with commercial dairy meal to improve on fibre degradation and milk yield. Two experiments were conducted. Firstly, an in sacco dry matter degradability (DMD) trial with three steers in a completely randomized design (CRD) with a 3 × 2 factorial arrangement to determine the effects on intake and rumen degradation parameters. Secondly, feeding trial with 18 lactating cows in a 3 × 2 factorial arrangement at two levels of yeast culture (0 and 10 g/cow/day) and three types of urea interventions: No intervention (WS); addition of urea to straw at the time of feeding (USWS); and 7 days incubation of straw with urea (UTWS). Yeast cultures addition had no effect on rumen pH and NH3-N, but urea intervention showed an effect on rumen pH with USWS being lowest (p urea interventions and yeast culture addition had no effect (p > 0.05) on dry matter intake, milk yield, and milk composition but they increased (p < 0.05) propionate yields.

  11. Fate of Carbohydrates and Lignin during Composting and Mycelium Growth of Agaricus bisporus on Wheat Straw Based Compost

    OpenAIRE

    Edita Jurak; Arjen M Punt; Wim Arts; Mirjam A Kabel; Harry Gruppen

    2015-01-01

    In wheat straw based composting, enabling growth of Agaricus bisporus mushrooms, it is unknown to which extent the carbohydrate-lignin matrix changes and how much is metabolized. In this paper we report yields and remaining structures of the major components. During the Phase II of composting 50% of both xylan and cellulose were metabolized by microbial activity, while lignin structures were unaltered. During A. bisporus' mycelium growth (Phase III) carbohydrates were only slightly consumed a...

  12. Determination of lab-scale biomethane potential of wheat straw pellets and their influence on anaerobic digestion

    OpenAIRE

    Kolbl, Sabina; Stres, Blaž

    2015-01-01

    Laboratory scale degradation of wheat straw pellets as an additional substrate for methane production was monitored as an example of controlled usage of unconventional substrates. In the laboratory biomethane potential of input feedstock from biogas plant (BGP) Organica Nova to which pellets were added in different proportions was determined. Organic loading (volatile solids, VS) was 5 g VS/L in all cases. Measurements were carried out by AMPTS I (Bioprocess Control, Sweden). Amou...

  13. Hybrid Composites from Wheat Straw, Inorganic Filler, and Recycled Polypropylene: Morphology and Mechanical and Thermal Expansion Performance

    OpenAIRE

    Min Yu; Runzhou Huang; Chunxia He; Qinglin Wu; Xueni Zhao

    2016-01-01

    Reinforcing effect of hybrid filler including wheat straw (WS) and inorganic filler (heavy calcium carbonate, silicon dioxide, and fly ash) in recycled polypropylene (R-PP) has been investigated. The effects of individual filler (WS) and combined fillers (WS and inorganic filler) on morphological, mechanical, and thermal expansion and water absorption properties of hybrid composites were investigated. The flexural modulus and flexural strength were both reduced when reinforced with three kind...

  14. Determination of lab-scale biomethane potential of wheat straw pellets and their influence on anaerobic digestion

    OpenAIRE

    Kolbl, Sabina; Stres, Blaž

    2013-01-01

    Laboratory scale degradation of wheat straw pellets as an additional substrate for methane production was monitored as an example of controlled usage of unconventional substrates. In the laboratory biomethane potential of input feedstock from biogas plant (BGP) Organica Nova to which pellets were added in different proportions was determined. Organic loading (volatile solids, VS) was 5 g VS/L in all cases. Measurements were carried out by AMPTS I (Bioprocess Control, Sweden). Amount of produc...

  15. Land Use History Shifts In Situ Fungal and Bacterial Successions following Wheat Straw Input into the Soil

    OpenAIRE

    Tardy, Vincent; Chabbi, Abad; Charrier, Xavier; De Berranger, Christophe; Reignier, Tiffanie; Dequiedt, Samuel; Faivre-Primot, Céline; Terrat, Sébastien; Ranjard, Lionel; Maron, Pierre-Alain

    2015-01-01

    Soil microbial communities undergo rapid shifts following modifications in environmental conditions. Although microbial diversity changes may alter soil functioning, the in situ temporal dynamics of microbial diversity is poorly documented. Here, we investigated the response of fungal and bacterial diversity to wheat straw input in a 12-months field experiment and explored whether this response depended on the soil management history (grassland vs. cropland). Seasonal climatic fluctuations ha...

  16. FIBRILLATION OF FLAX AND WHEAT STRAW CELLULOSE: EFFECTS ON THERMAL, MORPHOLOGICAL, AND VISCOELASTIC PROPERTIES OF POLY(VINYLALCOHOL/FIBRE COMPOSITES

    Directory of Open Access Journals (Sweden)

    Marta Hrabalova

    2011-03-01

    Full Text Available Nano-fibrillated cellulose was produced from flax and wheat straw cellulose pulps by high pressure disintegration. The reinforcing potential of both disintegrated nano-celluloses in a polyvinyl-alcohol matrix was evaluated. Disintegration of wheat straw was significantly more time and energy consuming. Disintegration did not lead to distinct changes in the degree of polymerization; however, the fibre diameter reduction was more than a hundredfold, creating a nano-fibrillated cellulose network, as shown through field-emission-scanning electron microscopy. Composite films were prepared from polyvinyl alcohol and filled with nano-fibrillated celluloses up to 40% mass fractions. Nano-fibrillated flax showed better dispersion in the polyvinyl alcohol matrix, compared to nano-fibrillated wheat straw. Dynamic mechanical analysis of composites revealed that the glass transition and rubbery region increased more strongly with included flax nano-fibrils. Intermolecular interactions between cellulose fibrils and polyvinyl alcohol matrix were shown through differential scanning calorimetry and attenuated total reflection-Fourier transform infrared spectroscopy. The selection of appropriate raw cellulose material for high pressure disintegration was an indispensable factor for the processing of nano-fibrillated cellulose, which is essential for the functional optimization of products.

  17. Improvement of yield of the edible and medicinal mushroom Lentinula edodes on wheat straw by use of supplemented spawn

    Directory of Open Access Journals (Sweden)

    Rigoberto Gaitán-Hernández

    2014-06-01

    Full Text Available The research evaluated the interactions of two main factors (strain / types of spawn on various parameters with the purpose to assess its effect on yield and biochemical composition of Lentinula edodes fruiting bodies cultivated on pasteurized wheat straw. The evaluation was made with four strains (IE-40, IE-105, IE-124 and IE-256. Different types of spawns were prepared: Control (C (millet seed, 100%, F1 (millet seed, 88.5%; wheat bran, 8.8%; peat moss, 1.3%; and CaS0(4, 1.3% and F2 (the same formula as F1, but substituting the wheat bran with powdered wheat straw. Wheat straw was pasteurized by soaking it for 1 h in water heated to 65 °C. After this the substrate (2 kg wet weight was placed in polypropylene bags. The bags were inoculated with each spawn (5% w/w and incubated in a dark room at 25 °C. A proximate analysis of mature fruiting bodies was conducted. The mean Biological Efficiency (BE varied between 66.0% (C-IE-256 and 320.1% (F1-IE-124, with an average per strain of 125.6%. The highest mean BE was observed on spawn F1 (188.3%, significantly different from C and F2. The protein content of fruiting bodies was high, particularly in strain IE-40-F1 (17.7%. The amount of fat varied from 1.1 (F1-IE-40 to 2.1% (F2-IE-105 on dry matter. Carbohydrates ranged from 58.8% (F1-IE-40 to 66.1% (F1-IE-256. The energy value determined ranged from 302.9 kcal (F1-IE-40 to 332.0 kcal (F1-IE-256. The variability on BE observed in this study was significantly influenced by the spawn's formulation and genetic factors of the different strains.

  18. Relationship of Deoxynivalenol Content in Grain, Chaff, and Straw with Fusarium Head Blight Severity in Wheat Varieties with Various Levels of Resistance

    Directory of Open Access Journals (Sweden)

    Fang Ji

    2015-03-01

    Full Text Available A total of 122 wheat varieties obtained from the Nordic Genetic Resource Center were infected artificially with an aggressive Fusariumasiaticum strain in a field experiment. We calculated the severity of Fusarium head blight (FHB and determined the deoxynivalenol (DON content of wheat grain, straw and glumes. We found DON contamination levels to be highest in the glumes, intermediate in the straw, and lowest in the grain in most samples. The DON contamination levels did not increase consistently with increased FHB incidence. The DON levels in the wheat varieties with high FHB resistance were not necessarily low, and those in the wheat varieties with high FHB sensitivity were not necessarily high. We selected 50 wheat genotypes with reduced DON content for future research. This study will be helpful in breeding new wheat varieties with low levels of DON accumulation.

  19. [Comparing the ammonia volatilization characteristic of two typical paddy soil with total wheat straw returning in Taihu Lake region].

    Science.gov (United States)

    Wang, Jun; Wang, De-Jian; Zhang, Gang; Wang, Yuan

    2013-01-01

    An experiment using monolith lysimeter was conducted to compare the characteristic of N loss by ammonia (NH3) volatilization between the gleyed paddy soil (G soil) and hydromorphic paddy soil (H soil) the Changshu National Agro-ecological Experimental Station of the Chinese Academy of Sciences(31 degrees 33' N, 123 degrees 38' E). Three treatments were designed for each soil type, i. e. control (no urea and straw applied), nitrogen solely and nitrogen plus wheat straw. Ammonia volatilization, flood water NH4(+) -N concentration, pH and top soil Eh were measured during the rice-growing season. Results showed that the NH3 volatilization flux and cumulative N losses by NH3 volatilization from G soil were significantly higher than those from H soil, the average cumulative N losses being about 41.8 kg x hm(-2) and 11.2 kg x hm(-2), or 15.2% and 3.8% of the fertilizer N, respectively. The average N loss by NH3 volatilization during the tillering stage was the highest among the three fertilization stages, accounting for 29.4% and 8.3% of the fertilizer N for G soil and H soil, respectively. Wheat straw returning significantly increased paddy filed NH3 volatilization losses. Comparing with the sole application of fertilizer-N, the cumulative N loss by NH3 volatilization of fertilizer-N in combination with wheat straw was increased by 19.8% and 20.6% for G soil and H soil, respectively. In addition, ammonia volatilization fluxes showed a positive relationship with the flood water NH4(+) -N concentration and pH for both soils, but the relationship with top soil Eh still needs further study. PMID:23487914

  20. Sorption of nitrate onto amine-crosslinked wheat straw: characteristics, column sorption and desorption properties.

    Science.gov (United States)

    Xing, Xu; Gao, Bao-Yu; Zhong, Qian-Qian; Yue, Qin-Yan; Li, Qian

    2011-02-15

    The nitrate removal process was evaluated using a fixed-bed column packed with amine-crosslinked wheat straw (AC-WS). Column sorption and desorption characteristics of nitrate were studied extensively. Solid-state (13)C NMR and zeta potential analysis validated the existence of crosslinked amine groups in AC-WS. Raman shift of the nitrate peaks suggested the electrostatic attraction between the adsorbed ions and positively charged amine sites. The column sorption capacity (q(ed)) of the AC-WS for nitrate was 87.27 mg g(-1) in comparison with the raw WS of 0.57 mg g(-1). Nitrate sorption in column was affected by bed height, influent nitrate concentration, flow rate and pH, and of all these, influent pH demonstrated an essential effect on the performance of the column. In addition, desorption and dynamic elution tests were repeated for several cycles, with high desorption rate and slight losses in its initial column sorption capacity. PMID:21112141

  1. Microbiota of Soil-Like Substrate Depending on Wheat Straw Processing Method in Experimental LSS Model

    Science.gov (United States)

    Tirranen, Lyalya; Sysoeva, Olga

    In previous experiments conducted in the closed environmental system BIOS-3 plant waste and test persons' exometabolites were carried away from the life-support system (LSS). It is possible to create a new-generation LSS with a higher degree of matter cycle closure by adding to the soil-like substrate inedible plant waste used for cultivation of plants in the experimental LSS model. Using single-factor analysis of variance, we estimated the effect of the introduced inedible plant waste on the microbiota of the soil-like substrate (SLS). The plant waste was used: to increase the degree of matter cycle closure in the system; to replace the volume of soil-like substrate in the system; as a fertilizer for growing higher plants in the experimental LSS model. A statistically significant effect of wheat straw processing method on the number of all microorganism groups was observed in different variants of the experiment. The obtained results can be used in planning and carrying out of subsequent experiments with higher plants cultivated on SLS with waste in a closed environmental system including humans.

  2. Optimisation of the biological pretreatment of wheat straw with white-rot fungi for ethanol production.

    Science.gov (United States)

    López-Abelairas, M; Álvarez Pallín, M; Salvachúa, D; Lú-Chau, T; Martínez, M J; Lema, J M

    2013-09-01

    The biological pretreatment of lignocellulosic biomass for the production of bioethanol is an environmentally friendly alternative to the most frequently used process, steam explosion (SE). However, this pretreatment can still not be industrially implemented due to long incubation times. The main objective of this work was to test the viability of and optimise the biological pretreatment of lignocellulosic biomass, which uses ligninolytic fungi (Pleurotus eryngii and Irpex lacteus) in a solid-state fermentation of sterilised wheat straw complemented with a mild alkali treatment. In this study, the most important parameters of the mechanical and thermal substrate conditioning processes and the most important parameters of the fungal fermentation process were optimised to improve sugar recovery. The largest digestibilities were achieved with fermentation with I. lacteus under optimised conditions, under which cellulose and hemicellulose digestibility increased after 21 days of pretreatment from 16 to 100 % and 12 to 87 %, respectively. The maximum glucose yield (84 %) of cellulose available in raw material was obtained after only 14 days of pretreatment with an overall ethanol yield of 74 % of the theoretical value, which is similar to that reached with SE.

  3. Electrocoagulation treatment of black liquor from soda-AQ pulping of wheat straw.

    Science.gov (United States)

    Rastegarfar, N; Behrooz, R; Bahramifar, N

    2015-02-01

    The effect of electrocoagulation treatment was investigated on black liquor from soda-anthraquinone (AQ) pulping of wheat straw. Removal of phenol, chemical oxygen demand (COD), color, total suspended solids (TSS), total dissolved solids (TDS), and total solids (TS) from black liquor was investigated at different current densities by using aluminum electrodes at various electrolysis times (10, 25, 40, 55, and 70 min) and pH levels (3, 5, 7, 9, and 10.5). It was observed that at 16 V, electrolysis time of 55 min and current density of 61.8 mA/cm(2) were sufficient for the removal of the pollutants. Energy consumption was evaluated as an important cost-relation parameter. Results showed that the electrocoagulation treatment reduced color intensity from the high initial value of 18,750 to 220 PCU. This was strongly influenced by the pH level of the wastewater. In addition, it was found that the removal efficiency increased with increasing of current density. The maximum efficiencies for removal were 98.8, 81, 80, 92, 61, and 68 % for color, phenol, COD, TSS, TDS, and TS, respectively. The lowest energy consumption values were obtained at neutral pH after 55 min. Electrocoagulation was found to be an effective, simple, and low-cost technique to treat black liquor.

  4. Lignocellulosic Wheat Straw-Derived Ion-Exchange Adsorbent for Heavy Metals Removal.

    Science.gov (United States)

    Krishnani, K K

    2016-02-01

    The aim of this work is to develop partially delignified Ca(2+)-and-Mg(2+)-ion-exchanged product from lignocellulosic wheat straw for the removal of eight different heavy metals Pb(2+), Cd(2+), Hg(2+), Co(2+), Ni(2+), Mn(2+), Zn(2+), and Cu(2+) and for detoxification of Cr(VI). Maximum fixation capacity, pH, and initial metal concentration dependence were determined to confirm strong affinity of Pb(2+), Cd(2+), Cu(2+), Zn(2+), and Hg(2+) ions onto the product, whereas Co(2+), Ni(2+), and Mn(2+) were the least fixed. Morphology of the product characterized by scanning electron microscope showed its physical integrity. Different experimental approaches were applied to determine the role of cations such as Ca(2+), Mg(2+), and Na(+) and several functional groups present in the product in an ion exchange for the fixation of metal ions. Potentiometric titration and Scatchard and Dahlquist interpretation were employed for determination of binding site heterogeneity. Results showed strong and weak binding sites in the product. This product has advantages over other conventional processes by virtue of abundance, easy operational process, and cost reduction in waste disposal of its raw material.

  5. Synergic Effect of Wheat Straw Ash and Rice-Husk Ash on Strength Properties of Mortar

    Science.gov (United States)

    Goyal, Ajay; Kunio, Hattori; Ogata, Hidehiko; Garg, Monika; Anwar, A. M.; Ashraf, M.; Mandula

    Pozzolan materials obtained from various sources; when used as partial replacement for Portland cement in cement based applications play an important role not only towards sustainable development but in reducing the construction costs as well. Present study was conducted to investigate the synergic effect of Rice-Husk Ash (RHA) and Wheat Straw Ash (WSA) on the strength properties of ash substituted mortar. Ash materials were obtained after burning the wastes at 600°C for 5 h at a control rate of 2°C min. Two binary blends of mortar substituting 15% cement with WSA and RHA and three combinations of ternary blend with (10+5)%, (5+10)% and (7.5+7.5)% mix ratios of WSA and RHA, together with a control specimen were subjected to destructive (compressive and flexural strength) as well as non-destructive (ultrasonic pulse velocity) tests till 180 days of curing. Ternary blend with (7.5 + 7.5)% combination of WSA and RHA showed better strength results than control and other blends and proved to be the optimum combination for achieving maximum synergic effect.

  6. Thermal Degradation, Mechanical Properties and Morphology of Wheat Straw Flour Filled Recycled Thermoplastic Composites

    Directory of Open Access Journals (Sweden)

    Kadir Karakus

    2008-01-01

    Full Text Available Thermal behaviors of wheat straw flour (WF filled thermoplastic compositeswere measured applying the thermogravimetric analysis and differential scanningcalorimetry. Morphology and mechanical properties were also studied using scanningelectron microscope and universal testing machine, respectively. Presence of WF inthermoplastic matrix reduced the degradation temperature of the composites. One for WFand one for thermoplastics, two main decomposition peaks were observed. Morphologicalstudy showed that addition of coupling agent improved the compatibility between WFs andthermoplastic. WFs were embedded into the thermoplastic matrix indicating improvedadhesion. However, the bonding was not perfect because some debonding can also be seenon the interface of WFs and thermoplastic matrix. In the case of mechanical properties ofWF filled recycled thermoplastic, HDPE and PP based composites provided similar tensileand flexural properties. The addition of coupling agents improved the properties ofthermoplastic composites. MAPE coupling agents performed better in HDPE while MAPPcoupling agents were superior in PP based composites. The composites produced with thecombination of 50-percent mixture of recycled HDPE and PP performed similar with theuse of both coupling agents. All produced composites provided flexural properties requiredby the ASTM standard for polyolefin-based plastic lumber decking boards.

  7. Effects of tillage practices and straw returning methods on greenhouse gas emissions and net ecosystem economic budget in rice-wheat cropping systems in central China

    Science.gov (United States)

    Zhang, Z. S.; Guo, L. J.; Liu, T. Q.; Li, C. F.; Cao, C. G.

    2015-12-01

    Significant efforts have been devoted to assess the effects of conservation tillage (no-tillage [NT] and straw returning) on greenhouse gas (GHG) emissions, global warming potential (GWP), greenhouse gas intensity (GHGI), and net economic budget in crop growing seasons. However, only a few studies have evaluated the effects conservation tillage on the net ecosystem economic budget (NEEB) in a rice-wheat cropping system. Therefore, a split-plot field experiment was performed to comprehensively evaluate the effects of tillage practices (i.e., conventional intensive tillage [CT] and NT) and straw returning methods (i.e., straw returning or removal of preceding crop) on the soil total organic carbon (TOC), GHG emissions, GWP, GHGI, and NEEB of sandy loam soil in a rice-wheat cropping system in central China. Conservation tillage did not affect rice and wheat grain yields. Compared with CT and straw removal, NT and straw returning significantly increased the TOC of 0-5 cm soil layer by 2.9% and 7.8%, respectively. However, the TOC of 0-20 cm soil layer was not affected by tillage practices and straw returning methods. NT did not also affect the N2O emissions during the rice and wheat seasons; NT significantly decreased the annual CH4 emissions by 7.5% and the annual GWP by 7.8% compared with CT. Consequently, GHGI under NT was reduced by 8.1%. Similar to NT, straw returning did not affect N2O emissions during the rice and wheat seasons. Compared with straw removal, straw returning significantly increased annual CH4 emissions by 35.0%, annual GWP by 32.0%, and annual GHGI by 31.1%. Straw returning did not also affect NEEB; by contrast, NT significantly increased NEEB by 15.6%. NT without straw returning resulted in the lowest GWP, the lowest GHGI, and the highest NEEB among all treatments. This finding suggested that NT without straw returning may be applied as a sustainable technology to increase economic and environmental benefits. Nevertheless, environmentally straw

  8. Effect of Long-Term Application of K Fertilizer and Wheat Straw to Soil on Crop Yield and Soil K Under Different Planting Systems

    Institute of Scientific and Technical Information of China (English)

    TAN De-shui; JIN Ji-yun; HUANG Shao-wen; LI Shu-tian; HE Ping

    2007-01-01

    Effect of application of K fertilizer and wheat straw to soil on crop yield and status of soil K in the plough layer under different planting systems was studied. The experiments on long-term application of K fertilizer and wheat straw to soil in Hebei fluvo aquic soil and Shanxi brown soil in northern China were begun in 1992. The results showed that K fertilizer and straw could improve the yields of wheat and maize with the order of NPK + St > NPK > NP + St > NP, and treatment of K fertilizer made a significant difference to NP, and the efficiency of K fertilizer in maize was higher than in wheat under rotation system of Hebei. In contrast with Shanxi, the wastage of soil potassium was a more serious issue in the rotation system in Hebei, only treatment of NPK + St showed a surplus of potassium and the others showed a wane. K fertilizer and straw could improve the content of water-soluble K, nonspecifically adsorbed K, non-exchangeable K, mineral K, and total K in contrast to NP; however, K fertilizer and straw reduce the proportion of mineral K and improve proportion of other forms of potassium in the two locating sites. Compared with the beginning of orientation, temporal variability character of soil K content and proportion showed a difference between the two soil types; furthermore, there was a decrease in the content of mineral K and total K simultaneously in the two locating sites. As a whole, the effect of K fertilizer applied to soil directly excelled to wheat straw to soil. Wheat straw to soil was an effective measure to complement potassium to increase crop yield and retard the decrease of soil K.

  9. Greenhouse gas emissions and reactive nitrogen releases from rice production with simultaneous incorporation of wheat straw and nitrogen fertilizer

    Science.gov (United States)

    Xia, Longlong; Xia, Yongqiu; Ma, Shutan; Wang, Jinyang; Wang, Shuwei; Zhou, Wei; Yan, Xiaoyuan

    2016-08-01

    Impacts of simultaneous inputs of crop straw and nitrogen (N) fertilizer on greenhouse gas (GHG) emissions and N losses from rice production are not well understood. A 2-year field experiment was established in a rice-wheat cropping system in the Taihu Lake region (TLR) of China to evaluate the GHG intensity (GHGI) as well as reactive N intensity (NrI) of rice production with inputs of wheat straw and N fertilizer. The field experiment included five treatments of different N fertilization rates for rice production: 0 (RN0), 120 (RN120), 180 (RN180), 240 (RN240), and 300 kg N ha-1 (RN300, traditional N application rate in the TLR). Wheat straws were fully incorporated into soil before rice transplantation. The meta-analytic technique was employed to evaluate various Nr losses. Results showed that the response of rice yield to N rate successfully fitted a quadratic model, while N fertilization promoted Nr discharges exponentially (nitrous oxide emission, N leaching, and runoff) or linearly (ammonia volatilization). The GHGI of rice production ranged from 1.20 (RN240) to 1.61 kg CO2 equivalent (CO2 eq) kg-1 (RN0), while NrI varied from 2.14 (RN0) to 10.92 g N kg-1 (RN300). Methane (CH4) emission dominated the GHGI with a proportion of 70.2-88.6 % due to direct straw incorporation, while ammonia (NH3) volatilization dominated the NrI with proportion of 53.5-57.4 %. Damage costs to environment incurred by GHG and Nr releases from current rice production (RN300) accounted for 8.8 and 4.9 % of farmers' incomes, respectively. Cutting N application rate from 300 (traditional N rate) to 240 kg N ha-1 could improve rice yield and nitrogen use efficiency by 2.14 and 10.30 %, respectively, while simultaneously reducing GHGI by 13 %, NrI by 23 %, and total environmental costs by 16 %. Moreover, the reduction of 60 kg N ha-1 improved farmers' income by CNY 639 ha-1, which would provide them with an incentive to change the current N application rate. Our study suggests that GHG

  10. Comparison of two Cellulomonas strains and their interaction with Azospirillum brasilense in degradation of wheat straw and associated nitrogen fixation

    Energy Technology Data Exchange (ETDEWEB)

    Halsall, D.M.; Gibson, A.H.

    1986-04-01

    A mutant strain of Cellulomonas sp. CS1-17 was compared with Cellulomonas gelida 2480 as the cellulolytic component of a mixed culture which was responsible for the breakdown of wheat straw to support asymbiotic nitrogen fixation by Azospirillum brasilense Sp7 (ATCC 29145). Cellulomonas sp. strain CS1-17 was more efficient than was C. gelida in cellulose breakdown at lower oxygen concentrations and, in mixed culture with A. brasilense, it supported higher nitrogenase activity(C/sub 2/H/sub 2/ reduction) and nitrogen fixation with straw as the carbon source. Based on gravimetric determinations of straw breakdown and total N determinations, the efficiency of nitrogen fixation was 72 and 63 mg of N per g of straw utilized for the mixtures containing Cellulomonas sp. and C. gelida, respectively. Both Cellulomonas spp. and Azospirillum spp. exhibited a wide range of pH tolerance. When introduced into sterilized soil, the Cellulomonas sp.-Azospirillum brasilense association was more effective in nitrogen fixation at a pH of 7.0 than at the native soil pH (5.6). This was also true of the indigenous diazotrophic microflora of this soil. The potential implications of this work to the field situation are discussed. 16 references.

  11. Scytalidium thermophilum-colonized grain, corncobs and chopped wheat straw substrates for the production of Agaricus bisporus.

    Science.gov (United States)

    Sanchez, Jose E; Royse, Daniel J

    2009-02-01

    We examined the possibility of cultivating Agaricus bisporus (Ab) on various grains and agricultural by-products, with the objective of improving yield capacity of substrate pre-colonized by Scytalidium thermophilum (St). Radial growth rate (RGR) of St at 45 degrees C ranged from no growth on sterile wheat grain to 14.9 mm/d on whole oats. The linear extension rate (LER) of Ab, grown on St-colonized substrate (4 days at 45 degrees C), ranged from a low of 2.7 mm/d on 100% corncobs to 4.7 mm/d on a 50/50 mixture of ground corncobs/millet grain. Several other substrates containing wheat straw+ground corncobs+boiled millet and pre-colonized by St (4 days at 42+/-3 degrees C), were evaluated for production of Ab. The biological efficiency (BE) of production increased linearly with the addition of millet to the formula. However, substrates with millet levels 84% often were contaminated before mushroom harvest. Maximum BE (99%) and yield (21.6 kg/m(2)) were obtained on St-colonized wheat straw+2% hydrated lime supplemented with 9% commercial supplement added both at spawning and at casing. PMID:18954978

  12. Effect of Incorporation of Wheat Straw and Urea into Soil on Biomass Nitrogen and Nitrogen—Supplying Characteristics of Paddy Soil

    Institute of Scientific and Technical Information of China (English)

    SHENQI-RONG; XUSHOU-MING; 等

    1993-01-01

    Pot experiments were carried out to study the effect of incorporation of wheat straw and/ or urea into soil on biomass nitrogen and mineral nitrogen and its relation to the growth and yield of rice.The combined appliation of wheat straw and urea increased much more biomass nitrogen in soil than the application of wheat straw or urea alone and consequently increased the immobilization of urea nitrogen added and reduced the loss of urea nitrogen.An adequate nitrogen-supplying process to rice plant could be obtained if C/ N ratio of the material added was about 20.The three yield components of rice were affected significantly by the status of nitrogen supplying.More than 30mg N/ kg soil of mineral nitrogen at effective tillering stage,panicle initiation stage and filling stage should be maintained in order to get high rice yield,though the criteria varied with the different experimental conditions.

  13. Enhanced bioethanol production from wheat straw hemicellulose by mutant strains of pentose fermenting organisms Pichia stipitis and Candida shehatae.

    Science.gov (United States)

    Koti, Sravanthi; Govumoni, Sai Prashanthi; Gentela, Jahnavi; Venkateswar Rao, L

    2016-01-01

    The main aim of the present study was to mutate yeast strains, Pichia stipitis NCIM 3498 and Candida shehatae NCIM 3501 and assess the mutant's ability to utilize, ferment wheat straw hemicellulose with enhanced ethanol yield. The organisms were subjected to random mutagenesis using physical (ultraviolet radiation) and chemical (ethidium bromide) mutagens. The mutant and wild strains were used to ferment the hemicellulosic hydrolysates of wheat straw obtained by 2 % dilute sulphuric acid and enzymatic hydrolysis by crude xylanase separately. Among all the mutant strains, PSUV9 and CSEB7 showed enhanced ethanol production (12.15 ± 0.57, 9.55 ± 0.47 g/L and yield 0.450 ± 0.009, 0.440 ± 0.001 g/g) as compared to the wild strains (8.28 ± 0.54, 7.92 ± 0.89 g/L and yield 0.380 ± 0.006 and 0.370 ± 0.002 g/g) in both the hydrolysates. The mutant strains were also checked for their consistency in ethanol production and found stable for 19 cycles in hemicellulosic hydrolysates of wheat straw. A novel element in the present study was introduction of chemical mutagenesis in wild type as well as UV induced mutants. This combination of treatments i.e., UV followed by chemical mutagenesis was practically successful. PMID:27652118

  14. Effect of biostimulation using sewage sludge, soybean meal and wheat straw on oil degradation and bacterial community composition in a contaminated desert soil

    Directory of Open Access Journals (Sweden)

    Sumaiya eAl-Kindi

    2016-03-01

    Full Text Available Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography-mass spectrometry (GC-MS, shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities more than the addition of soybean meal. GC-MS analysis revealed that the addition of addition of sewage sludge and wheat straw resulted in 1.7 to 1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥ 90% of the C14 to C30 alkanes were measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5-86.4% of total sequences of acquired sequences from the original soil belonged to Alphaproteobacteria, Gammaproteobacteria and Firmicutes. Multivariate analysis of operational taxonomic units (OTUs placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R=0.66, P=0.0001. The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95-98% of the total sequences belonging to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils.

  15. Effect of Biostimulation Using Sewage Sludge, Soybean Meal, and Wheat Straw on Oil Degradation and Bacterial Community Composition in a Contaminated Desert Soil.

    Science.gov (United States)

    Al-Kindi, Sumaiya; Abed, Raeid M M

    2016-01-01

    Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal, and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography-mass spectrometry (GC-MS), shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities to reach 3.2-3.4 times higher than in the untreated soil, whereas the addition of soybean meal resulted in an insignificant change in the produced CO2, given the high respiration activities of the soybean meal alone. GC-MS analysis revealed that the addition of sewage sludge and wheat straw resulted in 1.7-1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥90% of the C14 to C30 alkanes was measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5-86.4% of total sequences) of acquired sequences from the untreated soil belonged to Alphaproteobacteria, Gammaproteobacteria, and Firmicutes. Multivariate analysis of operational taxonomic units placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R = 0.66, P = 0.0001). The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95-98% of the total sequences were affiliated to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils.

  16. Effect of Biostimulation Using Sewage Sludge, Soybean Meal, and Wheat Straw on Oil Degradation and Bacterial Community Composition in a Contaminated Desert Soil

    Science.gov (United States)

    Al-Kindi, Sumaiya; Abed, Raeid M. M.

    2016-01-01

    Waste materials have a strong potential in the bioremediation of oil-contaminated sites, because of their richness in nutrients and their economical feasibility. We used sewage sludge, soybean meal, and wheat straw to biostimulate oil degradation in a heavily contaminated desert soil. While oil degradation was assessed by following the produced CO2 and by using gas chromatography–mass spectrometry (GC–MS), shifts in bacterial community composition were monitored using illumina MiSeq. The addition of sewage sludge and wheat straw to the desert soil stimulated the respiration activities to reach 3.2–3.4 times higher than in the untreated soil, whereas the addition of soybean meal resulted in an insignificant change in the produced CO2, given the high respiration activities of the soybean meal alone. GC–MS analysis revealed that the addition of sewage sludge and wheat straw resulted in 1.7–1.8 fold increase in the degraded C14 to C30 alkanes, compared to only 1.3 fold increase in the case of soybean meal addition. The degradation of ≥90% of the C14 to C30 alkanes was measured in the soils treated with sewage sludge and wheat straw. MiSeq sequencing revealed that the majority (76.5–86.4% of total sequences) of acquired sequences from the untreated soil belonged to Alphaproteobacteria, Gammaproteobacteria, and Firmicutes. Multivariate analysis of operational taxonomic units placed the bacterial communities of the soils after the treatments in separate clusters (ANOSIM R = 0.66, P = 0.0001). The most remarkable shift in bacterial communities was in the wheat straw treatment, where 95–98% of the total sequences were affiliated to Bacilli. We conclude that sewage sludge and wheat straw are useful biostimulating agents for the cleanup of oil-contaminated desert soils. PMID:26973618

  17. Cellulase stability, adsorption/desorption profiles and recycling during successive cycles of hydrolysis and fermentation of wheat straw

    DEFF Research Database (Denmark)

    Rodrigues, Ana Cristina; Felby, Claus; Gama, Miguel

    2014-01-01

    The potential of enzymes recycling after hydrolysis and fermentation of wheat straw under a variety of conditions was investigated, monitoring the activity of the enzymes in the solid and liquid fractions, using low molecular weight substrates. A significant amount of active enzymes could be......) significantly undergo thermal deactivation. The hydrolysis yield and enzyme recycling efficiency in consecutive recycling rounds can be increased by using high enzyme loadings and moderate temperatures. Indeed, the amount of enzymes in the liquid phase increased with its thermostability and hydrolytic...... efficiency. This study contributes towards developing effective enzymes recycling strategies and helping to reduce the enzyme costs on bioethanol production....

  18. An efficient process for lactic acid production from wheat straw by a newly isolated Bacillus coagulans strain IPE22

    DEFF Research Database (Denmark)

    Zhang, Yuming; Chen, Xiangrong; Luo, Jianquan;

    2014-01-01

    features, an efficient process was developed to produce LA from wheat straw. The process consisted of biomass pretreatment by dilute sulfuric acid and subsequent SSCF (simultaneous saccharification and co-fermentation), while the operations of solid–liquid separation and detoxification were avoided. Using......A thermophilic lactic acid (LA) producer was isolated and identified as Bacillus coagulans strain IPE22. The strain showed remarkable capability to ferment pentose, hexose and cellobiose, and was also resistant to inhibitors from lignocellulosic hydrolysates. Based on the strain’s promising...

  19. Preliminary results on optimization of pilot scale pretreatment of wheat straw used in coproduction of bioethanol and electricity

    DEFF Research Database (Denmark)

    Thomsen, M.H.; Thygesen, A.; Christensen, B.H.;

    2006-01-01

    The overall objective in this European Union-project is to develop cost and energy effective production systems for coproduction of bioethanol and electricity based on integrated biomass utilization. A pilot plan reactor for hydrothermal pretreatment (including weak acid hydrolysis, wet oxidation......, and steam pretreatment) with a capacity of 100 kg/h was constructed and tested for pretreatment of wheat straw for ethanol production. Highest hemicellulose (C5 sugar) recovery and extraction of hemicellulose sugars was obtained at 190 degrees C whereas highest C6 sugar yield was obtained at 200 degrees C...

  20. STORAGE OF CHEMICALLY PRETREATED WHEAT STRAW – A MEANS TO ENSURE QUALITY RAW MATERIAL FOR PULP PREPARATION

    Directory of Open Access Journals (Sweden)

    Terttu Heikkilä

    2010-07-01

    Full Text Available The aim of this study was to evaluate effects of chemical pretreatment and storage on non-wood pulping and on pulp quality. The processes studied were hot water treatment followed by alkaline peroxide bleaching or soda cooking. The results showed that it is possible to store wheat straw outside for at least one year without significant changes in the raw material chemical composition and without adverse effects on the resulting pulp quality. The results are significant to the industry using non-woods to ensure the availability and the quality of the raw-material throughout the year in spite of the short harvesting time.

  1. Effects of Molasses on the Fermentation Quality of Wheat Straw and Poultry Litter Ensiled with Citrus Pulp

    International Nuclear Information System (INIS)

    Studies were conducted to find out whether inclusion of molasses had any effect on the fermentation quality and potential nutritive value of silage when wheat straw and poultry litter were ensiled with citrus pulp. A 4 x 2 factorial experiment in a randomized complete block design with four treatments (T) containing wheat straw, poultry litter and citrus pulp respectively on DM basis with 0 and 5% molasses, were prepared as follows-: T1 (75:25:0); T2 (60:25:15); T3 (45:25:30) and T4 (30:25:45). For each treatment in triplicate between 5-10 kg of thoroughly mixed material were ensiled for for a period of 60 days in 20-l hard plastic container laboratory silos, lined with a double layer of polythene bags. Inclusion of 5% molasses when ensiling wheat straw and poultry litter with 0, 15, 30 and 45% citrus pulp had no significant effect on pH, neutral detergent fibre (NDF), acid detergent fibre (ADF), acid detergent lignin (ADL) and in vitro OM digestibility. However, molasses resulted in a significant decrease in volatile fatty acids including N-butyric acid. There was a complete elimination of coliforms in all treatments, except in the silage that had neither molasses nor citrus pulp. There was a significant difference in titratable acidity levels between silage with 0 and 5% molasses, but this was only in silage with 30% citrus pulp. As the proportion of citrus pulp in silage increased from 0 to 45%, there was significant increase in silage acidity and also an increase in pH. However, there was no significant difference in pH between silage with 30 and 45% citrus pulp. There was a significant (P < 0.001) increase in in vitro OM digestibility from 0.33 to about 0.56 for silage with 0 and 45% citrus pulp respectively. It is concluded that when wheat straw and poultry litter are ensiled with citrus pulp, use of molasses offers no significant benefit inspite of the cost associated with its use. However, when no citrus pulp is included in the pre-mix, addition of some

  2. Preparation1 and utilization of wheat straw anionic sorbent for the removal of nitrate from aqueous solution

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In order to reduce the impact of eutrophication caused by agricultural residues (i.e. excess nitrate) in aqueous solution, economic and effective anionic sorbents are required. In this article, we prepared anionic sorbent using wheat straw. Its structural characteristics and adsorption properties for nitrate removal from aqueous solution were investigated. The results indicate that the yield of the prepared anionic sorbent, the total exchange capacity, and the maximum adsorption capacity were 350%, 2.57 mEq/g, and 2.08 mmol/g, respectively. The Freundlich isotherm mode is more suitable than the Langmuir mode and the adsorption process accords with the first order reaction kinetic rate equation. When multiple anions (SO42-, H2PO4-, NO3-, and NO2-) were present, the isotherm mode of prepared anionic sorbent for nitrate was consistent with Freundlich mode; however, the capacity of nitrate adsorption was reduced by 50%. In alkaline solutions, about 90% of adsorbed nitrate ions could be desorbed from prepared anionic sorbent. The results of this study confirmed that the wheat straw anionic sorbent can be used as an excellent nitrate sorbent that removes nitrate from aqueous solutions.

  3. Preparation of wheat straw based superabsorbent resins and their applications as adsorbents for ammonium and phosphate removal.

    Science.gov (United States)

    Liu, Jia; Su, Yuan; Li, Qian; Yue, Qinyan; Gao, Baoyu

    2013-09-01

    A novel wheat straw cellulose-g-poly (potassium acrylate)/polyvinyl alcohol (WSC-g-PKA/PVA) semi-interpenetrating polymer networks (semi-IPNs) superabsorbent resin (SAR) was prepared by graft copolymerization. The structure and performance of the WSC-g-PKA/PVA semi-IPNs SAR was studied and compared with those of wheat straw cellulose-g-poly (potassium acrylate) (WSC-g-PKA) SAR. The effects of various experimental parameters such as solution pH, concentration, contact time and ion strength on NH4(+) and PO4(3-) removal from solutions were investigated. Equilibrium isotherm data of adsorption of both NH4(+) and PO4(3-) were well fitted to the Freundlich model. Kinetic analysis showed that the pseudo-second-order kinetic model was more suitable for describing the whole adsorption process of NH4(+) and PO4(3-) on SARs. Overall, WSC-g-PKA/PVA semi-IPNs SAR showed better properties in comparison with WSC-g-PKA SAR and it could be considered as one efficient material for the removal and recovery of nitrogen and phosphorus with the agronomic reuse as a fertilizer. PMID:23786713

  4. Synthesis of wheat straw cellulose-g-poly (potassium acrylate)/PVA semi-IPNs superabsorbent resin.

    Science.gov (United States)

    Liu, Jia; Li, Qian; Su, Yuan; Yue, Qinyan; Gao, Baoyu; Wang, Rui

    2013-04-15

    To better use wheat straw and minimize its negative impact on environment, a novel semi-interpenetrating polymer networks (semi-IPNs) superabsorbent resin (SAR) composed of wheat straw cellulose-g-poly (potassium acrylate) (WSC-g-PKA) network and linear polyvinyl alcohol (PVA) was prepared by polymerization in the presence of a redox initiating system. The structure and morphology of semi-IPNs SAR were characterized by means of FTIR, SEM and TGA, which confirmed that WSC and PVA participated in the graft polymerization reaction with acrylic acid (AA). The factors that can influence the water absorption of the semi-IPNs SAR were investigated and optimized, including the weight ratios of AA to WSC and PVA to WSC, the content of initiator and crosslinker, neutralization degree (ND) of AA, reaction temperature and time. The semi-IPNs SAR prepared under optimized synthesis condition gave the best water absorption of 266.82 g/g in distilled water and 34.32 g/g in 0.9 wt% NaCl solution. PMID:23544572

  5. Influence of Substrate Particle Size and Wet Oxidation on Physical Surface Structures and Enzymatic Hydrolysis of Wheat Straw

    DEFF Research Database (Denmark)

    Pedersen, Mads; Meyer, Anne S.

    2009-01-01

    In the worldwide quest for producing biofuels from lignocellulosic biomass, the importance of the substrate pretreatment is becoming increasingly apparent. This work examined the effects of reducing the substrate particle sizes of wheat straw by grinding prior to wet oxidation and enzymatic hydro...... a significant amount of solid, apparently porous structures within all particles size groups of both the not wet oxidized and wet oxidized particles. © 2009 American Institute of Chemical Engineers Biotechnol. Prog., 2009.......In the worldwide quest for producing biofuels from lignocellulosic biomass, the importance of the substrate pretreatment is becoming increasingly apparent. This work examined the effects of reducing the substrate particle sizes of wheat straw by grinding prior to wet oxidation and enzymatic...... with reduced particle size. After wet oxidation, the glucose release from the smallest particles (53-149 m) reached 90% of the theoretical maximum after 24 h of enzyme treatment. The corresponding glucose release from the wet oxidized reference samples (2-4 cm) was 65% of the theoretical maximum. The xylose...

  6. Land Use History Shifts In Situ Fungal and Bacterial Successions following Wheat Straw Input into the Soil.

    Directory of Open Access Journals (Sweden)

    Vincent Tardy

    Full Text Available Soil microbial communities undergo rapid shifts following modifications in environmental conditions. Although microbial diversity changes may alter soil functioning, the in situ temporal dynamics of microbial diversity is poorly documented. Here, we investigated the response of fungal and bacterial diversity to wheat straw input in a 12-months field experiment and explored whether this response depended on the soil management history (grassland vs. cropland. Seasonal climatic fluctuations had no effect on the diversity of soil communities. Contrastingly fungi and bacteria responded strongly to wheat regardless of the soil history. After straw incorporation, diversity decreased due to the temporary dominance of a subset of copiotrophic populations. While fungi responded as quickly as bacteria, the resilience of fungal diversity lasted much longer, indicating that the relative involvement of each community might change as decomposition progressed. Soil history did not affect the response patterns, but determined the identity of some of the populations stimulated. Most strikingly, the bacteria Burkholderia, Lysobacter and fungi Rhizopus, Fusarium were selectively stimulated. Given the ecological importance of these microbial groups as decomposers and/or plant pathogens, such regulation of the composition of microbial successions by soil history may have important consequences in terms of soil carbon turnover and crop health.

  7. [High titer ethanol production from an atmospheric glycerol autocatalytic organosolv pretreated wheat straw].

    Science.gov (United States)

    Wang, Liang; Liu, Jianquan; Zhang, Zhe; Zhang, Feiyang; Ren, Junli; Sun, Fubao; Zhang, Zhenyu; Ding, Cancan; Lin, Qiaowen

    2015-10-01

    The expensive production of bioethanol is because it has not yet reached the 'THREE-HIGH' (High-titer, high-conversion and high-productivity) technical levels of starchy ethanol production. To cope with it, it is necessary to implement a high-gravity mash bioethanol production (HMBP), in which sugar hydrolysates are thick and fermentation-inhibitive compounds are negligible. In this work, HMBP from an atmospheric glycerol autocatalytic organosolv pretreated wheat straw was carried out with different fermentation strategies. Under an optimized condition (15% substrate concentration, 10 g/L (NH4)2SO4, 30 FPU/g dry matter, 10% (V/V) inoculum ratio), HMBP was at 31.2 g/L with a shaking simultaneous saccharification and fermentation (SSF) at 37 degrees C for 72 h, and achieved with a conversion of 73% and a productivity of 0.43 g/(L x h). Further by a semi-SFF with pre-hydrolysis time of 24 h, HMBP reached 33.7 g/L, the conversion and productivity of which was 79% and 0.47 g/(L x h), respectively. During the SSF and semi-SSF, more than 90% of the cellulose in both substrates were hydrolyzed into fermentable sugars. Finally, a fed-batch semi-SFF was developed with an initial substrate concentration of 15%, in which dried substrate (= the weight of the initial substrate) was divided into three portions and added into the conical flask once each 8 h during the first 24 h. HMBP achieved at 51.2 g/L for 72 h with a high productivity of 0.71 g/(L x h) while a low cellulose conversion of 62%. Interestingly, the fermentation inhibitive compound was mainly acetic acid, less than 3.0 g/L, and there were no other inhibitors detected, commonly furfural and hydroxymethyl furfural existing in the slurry. The data indicate that the lignocellulosic substrate subjected to the atmospheric glycerol autocatalytic organosolv pretreatment is very applicable for HMBP. The fed-batch semi-SFF is effective and desirable to realize an HMBP. PMID:26964336

  8. Potential inhibitors from wet oxidation of wheat straw and their effect on growth and ethanol production by ¤Thermoanaerobacter mathranii¤

    DEFF Research Database (Denmark)

    Klinke, H.B.; Thomsen, A.B.; Ahring, B.K.

    2001-01-01

    Alkaline wet oxidation (WO) (using water, 6.5 g/l sodium carbonate, and 12 bar oxygen at 195 degreesC) was used for pre-treating wheat straw (60 g/l), resulting in a hemicellulose-rich hydrolysate and a cellulose-rich solid fraction. The hydrolysate consisted of soluble hemicellulose (9 g/l), ali...

  9. The effect of adding urea, manganese and linoleic acid to wheat straw and wood chips on lignin degradation by fungi and subsequent

    NARCIS (Netherlands)

    Kuijk, van S.J.A.; Sonnenberg, A.S.M.; Baars, J.J.P.; Hendriks, W.H.; Cone, J.W.

    2016-01-01

    The aim of this study was optimizing Ceriporiopsis subvermispora and Lentinula edodes pre-treatment of wheat straw and wood chips by adding urea, manganese and linoleic acid. Optimization was defined as more lignin degradation and an increase in in vitro gas produ

  10. Enzymatic hydrolyses of pretreated eucalyptus residues, wheat straw or olive tree pruning, and their mixtures towards flexible sugar-based biorefineries

    DEFF Research Database (Denmark)

    Silva-Fernandes, Talita; Marques, Susana; Rodrigues, Rita C. L. B.;

    2016-01-01

    Eucalyptus residues, wheat straw, and olive tree pruning are lignocellulosic materials largely available in Southern Europe and have high potential to be used solely or in mixtures in sugar-based biorefineries for the production of biofuels and other bio-based products. Enzymatic hydrolysis of ce...

  11. The effect of cellulose crystallinity on the in vitro digestibility and fermentation, kinetics of meadow hay and barley, wheat and rice straws

    NARCIS (Netherlands)

    Cone, J.W.; Gelder, van A.H.; Fonseca, A.; Ferreira, L.M.M.; Sequeria, C.A.

    2003-01-01

    The effect of cellulose crystallinity on in vitro digestibility (IVD) and fermentation kinetics was investigated in samples of meadow hay and barley, wheat and rice straws. A saturated solution of potassium permanganate was used to isolate the celluloses, and their crystallinity was evaluated in a F

  12. Effect of the incorporation of date pits and orange pulp in rations composed of wheat straw and concentrate on the blood biochemical parameters of Ouled Djellal breeding

    Directory of Open Access Journals (Sweden)

    N. Lakhdara

    2014-12-01

    Full Text Available Twenty four lambs of Ouled Djellal breeding from the region of Constantine, Algeria, were assigned randomly into 4 groups, the mean initial weights within the groups, ranged between 37.6±4.27 and 39.8±5.41 kg, to investigate the effect of the incorporation of two by-products of food industry, fresh orange pulp, ground date pits in rations composed of wheat straw as roughage, and concentrate as supplement. Four feeding groups were formed, the first group (T1 was fed with wheat straw and concentrate (60%/40%, the second group (T2 with wheat straw and orange pulp (60%/40%, for group 3 and 4 (T3-T4, the diet consisted on a mixture of 60% wheat straw and date pits at a ratio of (80 to 20% as a roughage in addition to 40% orange pulp for T3 and 40% concentrate for T4. Blood samples were collected from the jugular vein before morning feeding. Values of animal's plasma levels of Ca, glucose, proteins and urea were measured using a UV spectrophotometer. There was no significant difference in all the diets for Ca value, Ca values varied between 8.37 and 10.74 mg/Dl. T4 showed the highest value. Glucose blood content was similar for all the animals with no significant differences. While a very significant difference <0.001 was observed in blood proteins level in T3 and T4 comparing to the other groups. When date pits were incorporated in the diet containing wheat straw and concentrate, a very significant difference on urea blood content of lambs was observed (P<0.001.

  13. 秸秆/聚氯乙烯复合材料的初步研究%Studies on Wheat Straw/Poly (vinyl chloride) Composite

    Institute of Scientific and Technical Information of China (English)

    杨鸣波; 李忠明; 冯建民; 张雁

    2000-01-01

    A novel disposal technique for wheat straw was developed by compounding the straw with poly(vinyl chloride) for the purpose of developing a new material which has the potential to substitute for natural wood. Effects of straw content and interfacial treatment agent on the mechanical properties, processability and the morphology of the composite were extensively studied. Results showed that tensile strength, flexural strength and notched impact strength decreased a little, increasing the straw content from 0 to 60wt`, and that the interfacial active agent caused effective compatibility between the straw and the plastic matrix. Through scanning electron microscope (SEM) observation, the straw in the composite with an appropriate concentration of interfacial treatment agent was well-distributed, while for the composite without interfacial treatment agent, a straw coalescence phenomenon appeared.%本文介绍了一种新型的秸秆处理方法,即将秸秆与聚氯乙烯复合制备替代木材使用的秸秆/塑料复合材料。主要从秸秆含量、处理剂含量对复合材料的力学性能和成型加工性能的影响,以及复合材料的形态等方面进行了研究。

  14. Straw export in continuous winter wheat and the ability of oil radish catch crops and early sowing of wheat to offset soil C and N losses: A simulation study

    DEFF Research Database (Denmark)

    Peltre, Clément; Nielsen, M; Christensen, Bent Tolstrup;

    2016-01-01

    the autumn. The effects of straw export, oil radish catch crop and early sowing of wheat on soil C storage, N leaching losses and N2O emissions were simulated by applying the Daisy model to winter wheat grown continuously for a period of 100 years on a sandy loam soil in a Danish climate. The simulations...... included five levels of initial soil C content (1–3% C), three levels of straw incorporation (0, 50 and 100%), +/− catch crop (oil radish) and two sowing dates (1 and 22 September). Exporting the entire straw production reduced soil C stocks by 1.2 to 14% after 100 years, depending on the initial C content....... Inclusion of the oil radish catch crop could offset this loss by 2–3 percentage points. Earlier sowing of wheat increased straw production by 18% and reduced loss of soil C by 3–5 percentage points compared to normal sowing time with full straw export. Catch crops and early sowing also reduced N...

  15. Stand establishment, root development and yield of winter wheat as affected by tillage and straw mulch in the water deifcit hilly region of southwestern China

    Institute of Scientific and Technical Information of China (English)

    LI Chao-su; LI Jin-gang; TANG Yong-lu; WU Xiao-li; WU Chun; HUANG Gang; ZENG Hui

    2016-01-01

    Good crop stand establishment and root system development are essential for optimum grain yield of dryland wheat (Triti-cum aestivumL.). At present, little is known about the effect of tilage and straw mulch on the root system of wheat under dryland areas in southwestern China. The aim of this study was to evaluate the effect of three tilage treatments (no-til, NT; rotary til, RT; conventional til, CT) and two crop residue management practices (straw mulch, ML; non-straw mulch, NML) on stand establishment, root growth and grain yield of wheat. NT resulted in lower soil cover thickness for the wheat seed, higher number of uncovered seeds, lower percentage of seedling-less ridges and lower tiler density compared to RT and CT; ML resulted in higher tiler density compared to NML. Straw mulching resulted in more soil water content and root length density (RLD) at most of the growth stages and soil depths. The maximum RLD, root surface area density and root dry matter density were obtained under NT. In the topmost 10 cm soil layer, higher RLD values were found under NT than those under RT and CT. There were no signiifcant differences in the yield or yield components of wheat among the tilage treatments in 2011–2012, but NT resulted in a signiifcant higher yield compared to RT and CT in 2012–2013. Grain yield was signiifcantly higher in ML compared to in NML. A strong relationship was observed between the water-use efifciency and the grain yield. Both NT and ML proved beneifcial for wheat in term of maintaining higher tiler density, better soil water status and root growth, leading to a higher grain yield and enhanced water-use efifciency, especialy in a low rainfal year.

  16. Development of Geothermally Assisted Process for Production of Liquid Fuels and Chemicals from Wheat Straw

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, V.G.; Linden, J.C.; Moreira, A.R.; Lenz, T.G.

    1981-06-01

    fuel; and on the other hand, it provides a means for ''exporting'' geothermal energy from the well site. The primary goal of the work discussed in this report was to investigate the effects of variations in autohydrolysis conditions on the production of fermentable sugars from wheat straw. In assessing the relative merits of various sets of conditions, we considered both the direct production of sugar from the autohydrolysis of hemicellulose and the subsequent yield from the enzymatic hydrolysis of cellulose. The principal parameters studied were time, temperature, and water/fiber weight ratio; however, we also investigated the effects of adding minor amounts of phenol and aluminum sulfate to the autohydrolysis charge. Phenol was selected for study because it was reported (8) to be effective in suppressing repolymerization of reactive lignin fragments. Aluminum sulfate, on the other hand, was chosen as a representative of the Lewis acids which, we hoped, would catalyze the delignification reactions.

  17. Genetic variation in degradability of wheat straw and potential for improvement through plant breeding

    DEFF Research Database (Denmark)

    Jensen, Jacob Wagner; Magid, Jakob; Hansen-Møller, Jens;

    2011-01-01

    contemporary gene pool. The cultivars were grown at two different locations to assess the potential for breeding for improved degradability. The straws exhibited much variation in degradability ranging from 258 g kg1 to 407 g kg1 of dry matter. The heritability for degradability was estimated to 29% indicating...... a reasonable potential for response to selection. Inclusion of height as a regression-term, indicated that only a minor part of genetic differences are directly related to plant height and that improvements in degradability may be achieved without unacceptable changes in straw length. Finally, a...... lack of correlation between degradability and grain yield indicated that straw degradability may be improved through breeding without serious negative effect on grain yield....

  18. Potential of European wild strains of Agaricus subrufescens for productivity and quality on wheat straw based compost.

    Science.gov (United States)

    Llarena-Hernández, Régulo Carlos; Largeteau, Michèle L; Farnet, Anne-Marie; Foulongne-Oriol, Marie; Ferrer, Nathalie; Regnault-Roger, Catherine; Savoie, Jean-Michel

    2013-07-01

    The Brazilian almond mushroom is currently cultivated for its medicinal properties but cultivars are suspected all to have a common origin. The objective of this work was to assess the potential of wild isolates of Agaricus subrufescens Peck (Agaricus blazei, Agaricus brasiliensis) as a source of new traits to improve the mushroom yield and quality for developing new cultures under European growing conditions. The wild European strains analysed showed a good ability to be commercially cultivated on wheat straw and horse manure based compost: shorter time to fruiting, higher yield, similar antioxidant activities when compared to cultivars. They have a valuable potential of genetic and phenotypic diversity and proved to be interfertile with the original culture of the Brazilian almond mushroom. Intercontinental hybrids could be obtained and combine properties from both Brazilian and European germplasm for increasing the choice of strains cultivated by the mushroom growers.

  19. Wet oxidation treatment of organic household waste enriched with wheat straw for simultaneous saccharification and fermentation into ethanol

    DEFF Research Database (Denmark)

    Lissens, G.; Klinke, H.B.; Verstraete, W.;

    2004-01-01

    Organic municipal solid waste enriched with wheat straw was subjected to wet-oxidation as a pre-treatment for subsequent enzymatic conversion and fermentation into bio-ethanol. The effect of tempera (185-195degrees C), oxygen pressure (3-12) and sodium carbonate (0-2 g l(-1)) addition on enzymatic...... conversion efficiency during SSF was 50, 62 65 and 70% for a total enzyme loading of 5, 10, 15 and 25 FPU g(-1) DS, respectively. Hence, this study shows that wet oxidation is a suitable pre-treatment for the conversion of organic waste carbohydrates into ethanol and that compatible conversion yields (60...... cellulose and hemicellulose convertibility was studied at a constant wet oxidation retention time of 10 minutes. An enzyme convertibility assay at high enzyme loading (25 filter paper unit (FPU) g(-1) dry solids (DS) added) showed that up to 78% of the cellulose and up to 68% of the hemicellulose...

  20. ECONOMIC EFFICIENCY OF DIFFERENT FERTILIZER LEVELS FOR GRAIN AND STRAW YIELD IN LATE SOWN WHEAT (TRITICUM AESTIVUM

    Directory of Open Access Journals (Sweden)

    SUVARNA T. KALE1 * AND ANANT R. MALI2

    2014-10-01

    Response of different fertilizer levels and varieties on grain and straw yield of wheat was studied under late sown condition. The experimental design consists of split plot design with three replications comprising four levels of fertilizer and three varieties, thereby involving twelve treatment combinations. The fertilizer level 120:60:60 kg NPK/ha was found beneficial in improving growth characters, yield attributes and yield as compared to 80:40:40kg NPK/ha, 100:50:50 kg NPK/ha and 150:75:75 kg NPK/ha under late sown condition. The net monetary returns considering prevailing market prices were maximum with application of 120:60:60 kg NPK/ ha.

  1. Fate of Carbohydrates and Lignin during Composting and Mycelium Growth of Agaricus bisporus on Wheat Straw Based Compost.

    Science.gov (United States)

    Jurak, Edita; Punt, Arjen M; Arts, Wim; Kabel, Mirjam A; Gruppen, Harry

    2015-01-01

    In wheat straw based composting, enabling growth of Agaricus bisporus mushrooms, it is unknown to which extent the carbohydrate-lignin matrix changes and how much is metabolized. In this paper we report yields and remaining structures of the major components. During the Phase II of composting 50% of both xylan and cellulose were metabolized by microbial activity, while lignin structures were unaltered. During A. bisporus' mycelium growth (Phase III) carbohydrates were only slightly consumed and xylan was found to be partially degraded. At the same time, lignin was metabolized for 45% based on pyrolysis GC/MS. Remaining lignin was found to be modified by an increase in the ratio of syringyl (S) to guaiacyl (G) units from 0.5 to 0.7 during mycelium growth, while fewer decorations on the phenolic skeleton of both S and G units remained. PMID:26436656

  2. Fate of Carbohydrates and Lignin during Composting and Mycelium Growth of Agaricus bisporus on Wheat Straw Based Compost.

    Directory of Open Access Journals (Sweden)

    Edita Jurak

    Full Text Available In wheat straw based composting, enabling growth of Agaricus bisporus mushrooms, it is unknown to which extent the carbohydrate-lignin matrix changes and how much is metabolized. In this paper we report yields and remaining structures of the major components. During the Phase II of composting 50% of both xylan and cellulose were metabolized by microbial activity, while lignin structures were unaltered. During A. bisporus' mycelium growth (Phase III carbohydrates were only slightly consumed and xylan was found to be partially degraded. At the same time, lignin was metabolized for 45% based on pyrolysis GC/MS. Remaining lignin was found to be modified by an increase in the ratio of syringyl (S to guaiacyl (G units from 0.5 to 0.7 during mycelium growth, while fewer decorations on the phenolic skeleton of both S and G units remained.

  3. Effect of endoxylanase and α-L-arabinofuranosidase supplementation on the enzymatic hydrolysis of steam exploded wheat straw.

    Science.gov (United States)

    Alvira, P; Negro, M J; Ballesteros, M

    2011-03-01

    The cost and hydrolytic efficiency of enzymes are major factors that restrict the commercialization of the bioethanol production process from lignocellulosic biomass. Hemicellulases and other accessory enzymes are becoming crucial to increase enzymatic hydrolysis (EH) yields at low cellulase dosages. The aim of this work was to evaluate the effect of two recombinant hemicellulolytic enzymes on the EH of steam pretreated wheat straw. Pretreatments at two severity conditions were performed and the whole slurry obtained after steam explosion pretreatment was employed as substrate. An endoxylanase (Xln C) from Aspergillus nidulans and an α-L-arabinofuranosidase (AF) from Aspergillus niger, have been applied in combination with cellulase enzymes. A degree of synergism of 29.5% and increases up to 10% in the EH yields were obtained, showing the potential of accessory activities to improve the EH step and make the whole process more effective.

  4. Adsorption studies of the removal of anions from aqueous solutions onto an adsorbent prepared from wheat straw

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Modified wheat straw (MWS) was prepared by the grafting of epichlorohydrin,triethylamine and ethylenediamine onto WS.The characteristics of MWS and its adsorption capacity for NO-3,PO34and Cr2O72were investigated.The results indicate that amine groups with positive charge have been introduced into the structure of MWS,and significantly increased its anion adsorption property.The functions of MWS dosage,the solution pH,the contact time and temperature have significant influence on the adsorption process,and the adsorption is well fitted with the Langmuir equation and pseudo second-order model.The maximum adsorption capacity of MWS for NO-3,PO34(P) and Cr2O27(Cr) is 53.5,62.4 and 386.2 mg g-1,respectively.

  5. Genome-wide screening of Saccharomyces cerevisiae genes required to foster tolerance towards industrial wheat straw hydrolysates.

    Science.gov (United States)

    Pereira, Francisco B; Teixeira, Miguel C; Mira, Nuno P; Sá-Correia, Isabel; Domingues, Lucília

    2014-12-01

    The presence of toxic compounds derived from biomass pre-treatment in fermentation media represents an important drawback in second-generation bio-ethanol production technology and overcoming this inhibitory effect is one of the fundamental challenges to its industrial production. The aim of this study was to systematically identify, in industrial medium and at a genomic scale, the Saccharomyces cerevisiae genes required for simultaneous and maximal tolerance to key inhibitors of lignocellulosic fermentations. Based on the screening of EUROSCARF haploid mutant collection, 242 and 216 determinants of tolerance to inhibitory compounds present in industrial wheat straw hydrolysate (WSH) and in inhibitor-supplemented synthetic hydrolysate were identified, respectively. Genes associated to vitamin metabolism, mitochondrial and peroxisomal functions, ribosome biogenesis and microtubule biogenesis and dynamics are among the newly found determinants of WSH resistance. Moreover, PRS3, VMA8, ERG2, RAV1 and RPB4 were confirmed as key genes on yeast tolerance and fermentation of industrial WSH. PMID:25287021

  6. Optimization of a synthetic mixture composed of major Trichoderma reesei enzymes for the hydrolysis of steam-exploded wheat straw

    Directory of Open Access Journals (Sweden)

    Billard Hélène

    2012-02-01

    Full Text Available Abstract Background An efficient hydrolysis of lignocellulosic substrates to soluble sugars for biofuel production necessitates the interplay and synergistic interaction of multiple enzymes. An optimized enzyme mixture is crucial for reduced cost of the enzymatic hydrolysis step in a bioethanol production process and its composition will depend on the substrate and type of pretreatment used. In the present study, an experimental design was used to determine the optimal composition of a Trichoderma reesei enzyme mixture, comprising the main cellulase and hemicellulase activities, for the hydrolysis of steam-exploded wheat straw. Methods Six enzymes, CBH1 (Cel7a, CBH2 (Cel6a, EG1 (Cel7b, EG2 (Cel5a, as well as the xyloglucanase Cel74a and the xylanase XYN1 (Xyl11a were purified from a T. reesei culture under lactose/xylose-induced conditions. Sugar release was followed in milliliter-scale hydrolysis assays for 48 hours and the influence of the mixture on initial conversion rates and final yields is assessed. Results The developed model could show that both responses were strongly correlated. Model predictions suggest that optimal hydrolysis yields can be obtained over a wide range of CBH1 to CBH2 ratios, but necessitates a high proportion of EG1 (13% to 25% which cannot be replaced by EG2. Whereas 5% to 10% of the latter enzyme and a xylanase content above 6% are required for highest yields, these enzymes are predicted to be less important in the initial stage of hydrolysis. Conclusions The developed model could reliably predict hydrolysis yields of enzyme mixtures in the studied domain and highlighted the importance of the respective enzyme components in both the initial and the final hydrolysis phase of steam-exploded wheat straw.

  7. Effect of alkaline hydrogen peroxide treatment on cell wall composition and digestion kinetics of sugarcane residues and wheat straw.

    Science.gov (United States)

    Amjed, M; Jung, H G; Donker, J D

    1992-09-01

    Our objective was to characterize changes in cell wall composition and digestibility of sugarcane bagasse, pith from bagasse, and wheat straw after treatment with alkaline hydrogen peroxide (AHP). The AHP treatment solution contained 1% H2O2 (wt/vol) maintained at pH 11.5 with NaOH. The H2O2 in solution amounted to 25% of the quantity of substrate treated. After treatment, residues were washed and dried. Detergent fiber composition, total fiber components (neutral sugars, uronic acids, Klason lignin, and noncore lignin phenolic acids), IVDMD, in vitro digestion kinetics of NDF, and monosaccharide digestibilities (24 and 120 h) were determined. Total fiber (TF) and NDF concentrations of all treatment residues were increased (P less than .05) over control substrates by AHP because of greater losses of cell solubles than of cell wall constituents. Hemicellulose:cellulose ratio in NDF of treatment residues was decreased (P less than .05) by AHP for all substrates, but the neutral sugar composition of TF did not agree with this preferential loss of hemicellulose components. Klason lignin, ADL, and esterified noncore lignin, especially ferulic acid, were reduced (P less than .05) by AHP, whereas etherified noncore lignin composition was unchanged. Treatment increased (P less than .05) IVDMD, extent of NDF digestion, and monosaccharide digestibilities of all crop residues. The rate of NDF digestion was increased (P less than .05) for the sugarcane residues but not for wheat straw. Alkaline hydrogen peroxide improved crop residue digestibility, probably as a result of the removal of core and noncore lignin fractions. PMID:1328129

  8. Growth performance, behaviour, forestomach development and meat quality of veal calves provided with barley grain or ground wheat straw for welfare purpose

    Directory of Open Access Journals (Sweden)

    Igino Andrighetto

    2010-01-01

    Full Text Available Two different feeding plans for veal calves were compared in the study: a traditional liquid diet supplemented with 250  g/calf/d of barley grain or with 250 g/calf/d of ground wheat straw. The two solid feeds had different chemical composi-  tion but a similar particle size obtained by grinding the straw in a mill with an 8-mm mesh screen. Twenty-four Polish  Friesian male calves were used in the study and they were housed in individual wooden stalls (0.83 x 1.80 m. The health  status of all the calves was satisfactory for the entire fattening period and no specific medical treatment was required  during the trial. Calves fed wheat straw showed a greater intake of solid feed (196 vs. 139 g/d; P  average daily gain (1288 vs. 1203 g/d; P  not affected by the type of solid feed and no milk refusal episodes were detected. The haemoglobin concentration was  similar in calves receiving the two feeding treatments despite the higher iron intake provided by the wheat straw through-  out the fattening period (2.12 vs. 1.15 g; P  calves’ metabolism. Feeding behaviour was affected by the provision of solid feeds. Eating and chewing were prolonged  in calves receiving ground wheat straw and the same solid feed reduced the frequency of oral stereotypies at the end of  the fattening period. At the slaughterhouse, no differences were observed between the feeding treatments as regards  carcass weight and dressing percentage. The calves fed ground wheat straw had a heavier weight of the empty omasum  (518 vs. 341 g; P  fed barley grain. The incidence of abomasal erosions, ulcers and scars was similar in both treatments; however the index  of abomasal damage, which considers the number and the seriousness of different type of lesions, was higher in calves  receiving barley grain. Therefore, the grinding of straw particles, as opposed to barley grain, can reduce the abrasive-  ness of roughage at the abomasum level. Visual evaluation of the

  9. Characterization of degradation products from alkaline wet oxidation of wheat straw

    DEFF Research Database (Denmark)

    Klinke, H.B.; Ahring, B.K.; Schmidt, A.S.;

    2002-01-01

    constituted the majority of degradation products (8.5 g). The main phenol monomers were 4-hydroxybenzaldehyde, vanillin, syringaldehyde, acetosyringone (4-hydroxy-3,5-dimethoxy-acetophenone), vanillic acid and syringic acid, occurring in 0.04-0.12 g per 100 g straw concentrations. High lignin removal from...

  10. Two-dimensional NMR evidence for cleavage of lignin and xylan substituents in wheat straw through hydrothermal pretreatment and enzymatic hydrolysis

    DEFF Research Database (Denmark)

    Yelle, Daniel J.; Kaparaju, Laxmi-Narasimha Prasad; Hunt, Christopher G.;

    2013-01-01

    correlation spectroscopy, via an heteronuclear single quantum coherence experiment, revealed substantial lignin β-aryl ether cleavage, deacetylation via cleavage of the natural acetates at the 2-O- and 3-O-positions of xylan, and uronic acid depletion via cleavage of the (1 → 2)-linked 4-O......-methyl-α-d-glucuronic acid of xylan. In the polysaccharide anomeric region, decreases in the minor β-d-mannopyranosyl, and α-l-arabinofuranosyl units were observed in the NMR spectra from hydrothermally pretreated wheat straw. The aromatic region indicated only minor changes to the aromatic structures during the process (e...... hydrolysis incurred further deacetylation of the xylan, leaving approximately 10 % of acetate intact based on the weight of original wheat straw. © 2012 Springer Science+Business Media, LLC (outside the USA)....

  11. Celluclast and Cellic® CTec2: Saccharification / fermentation of wheat straw, solid-liquid partition and potential of enzyme recycling by alkaline washing

    OpenAIRE

    Rodrigues, Ana Cristina Costa; Haven, Mai Østergaard; Lindedam, Jane; Felby, Claus; Gama, F. M.

    2015-01-01

    The hydrolysis/fermentation of wheat straw and the adsorption/desorption/deactivation of cellulases were studied using Cellic® CTec2 (Cellic) and Celluclast mixed with Novozyme 188. The distribution of enzymes cellobiohydrolase I (Cel7A), endoglucanase I (Cel7B) and -glucosidase of the two formulations between the residual substrate and supernatant during the course of enzymatic hydrolysis and fermentation was investigated. The potential of recyclability using alkaline wash was also studied...

  12. Rapid analysis of formic acid, acetic acid, and furfural in pretreated wheat straw hydrolysates and ethanol in a bioethanol fermentation using atmospheric pressure chemical ionisation mass spectrometry

    Directory of Open Access Journals (Sweden)

    Smart Katherine A

    2011-09-01

    Full Text Available Abstract Atmospheric pressure chemical ionisation mass spectrometry (APCI-MS offers advantages as a rapid analytical technique for the quantification of three biomass degradation products (acetic acid, formic acid and furfural within pretreated wheat straw hydrolysates and the analysis of ethanol during fermentation. The data we obtained using APCI-MS correlated significantly with high-performance liquid chromatography analysis whilst offering the analyst minimal sample preparation and faster sample throughput.

  13. Pretreatment and enzymatic hydrolysis of wheat straw (Triticum aestivum L.) – The impact of lignin relocation and plant tissues on enzymatic accessibility

    DEFF Research Database (Denmark)

    Hansen, Mads Anders Tengstedt; Kristensen, Jan Bach; Felby, Claus;

    2011-01-01

    Wheat straw is a potential feedstock for bioethanol production. This paper investigates tissues from whole internode sections subjected to hydrothermal pretreatment at 185 °C and subsequent enzymatic hydrolysis up to 144 h. Analyses revealed an increase in surface lignin as hydrolysis progressed...... with more indentations on the surfaces was also observed, possibly caused by a proposed synergistic effect of cellobiohydrolases and endoglucanases. Keywords: Lignocellulose; Plant tissues; Lignin accumulation; Atomic Force Microscopy; Scanning Electron Microscopy...

  14. Investigating the Mechanical Properties and Degradability of Bioplastics Made from Wheat Straw Cellulose and Date Palm Fiber

    Directory of Open Access Journals (Sweden)

    H Omrani Fard

    2016-04-01

    Full Text Available During the past two decades, the use of bioplastics as an alternative to regular plastics has received much attention in many different industries. The mechanical and degradable properties of bioplastic are important for their utilization. In this research cellulose of wheat straw and glycerol were mixed by different weight ratios and then reinforced by using date palm fibers. To prepare the bioplastic plates, the materials were poured in molds and pressed by means of a hydraulic press and simultaneously heating of the molds. The experiments were performed based on a 3×3 factorial design with three levels: 50%, 60% and 70% of wheat cellulose and three types of reinforcement methods, namely: no-reinforcement, network reinforcement and parallel string reinforcement. The effect of the two factors on tensile strength, tensile strain, bending strength, modulus of elasticity and modulus of bending were investigated. The results indicated that the two factors and their interactions had significant effects on the mentioned properties of bioplastics (at α=0.05 level . The comparison of the means of the tests showed that the network reinforcement type with 50% cellulose had the highest tensile and bending strengths with 1992.02 and 28.71 MPa, respectively. The maximum modulus of elasticity and modulus bending were 40.4 and 2.3 MPa, respectively for parallel string arrangement and 70% of cellulose. The degradability tests of bioplastic using a fistulated sheep indicated that with increasing the percentage of cellulose, the degradability rate deceased. The maximum degradability rate, after 48 h holding in the sheep rumen, was 74% that belonged to bioplastics with 50% cellulose. The degradability data were well fitted to a mathematical model (R2=0.97.

  15. 堆肥预处理温度控制促进麦秸厌氧发酵产沼气%Promotion of biogas production of wheat straw by controling composting pretreatment temperature

    Institute of Scientific and Technical Information of China (English)

    陈广银; 马慧娟; 常志州; 叶小梅; 杜静; 徐越定; 张建英

    2013-01-01

    wheat straw. In the first experiment, the wheat straw was directly used for composting and then composted straw was used in the biomethane potential (BMP) test. For the second one, wheat straw was sterilized by gamma ray radiation pretreatment and treated under different temperature with different time. Then the treated straw was used for the BMP test. The results of experiments indicated that large percentage of organic matter in wheat straw was degraded during composting process. The total solid (TS) loss rate of wheat straw was only 4.06%when composting pile temperature was less than 55℃. When composting pile temperature was set up at 55℃, the TS loss rate of wheat straw increased 22.45%after 10 days’ composting treatment. Gas data showed that biogas production rate of wheat straw was not improved obviously. The TS biogas yield of wheat straw increased with composting pile temperature and then decreased. The highest TS biogas yield of wheat straw of 349.92 mL/g was observed at 55℃of composting pile temperature, which is 7.56% higher than that of uncomposted wheat straw. There was no significantly improvement in biogas production between composted and uncomposted wheat straw during composting process for organic matter loss of wheat straw. However, longer composting time led to lower biogas yield of wheat straw. When composting pile temperature was kept at 55℃for 9 days, The TS biogas yield of composted wheat straw was only 66.58%. When the content of organic matter and material composition of wheat straw were changed, content of hemicellulose of wheat straw was decreased by 28.10%. Results of gas data of simulated composting experiment showed the same trend as the first experiment. The highest TS biogas yield of wheat straw of 342.36 mL/g was obtained at 55℃ with 8.35%, which is higher than that of control. Therefore the high temperature from composting process is an important factor of destruction of lignocellulose structure and improving

  16. LCA of 1,4-Butanediol Produced via Direct Fermentation of Sugars from Wheat Straw Feedstock within a Territorial Biorefinery

    Directory of Open Access Journals (Sweden)

    Annachiara Forte

    2016-07-01

    Full Text Available The bio-based industrial sector has been recognized by the European Union as a priority area toward sustainability, however, the environmental profile of bio-based products needs to be further addressed. This study investigated, through the Life Cycle Assessment (LCA approach, the environmental performance of bio-based 1,4-butanediol (BDO produced via direct fermentation of sugars from wheat straw, within a hypothetical regional biorefinery (Campania Region, Southern Italy. The aim was: (i to identify the hotspots along the production chain; and (ii to assess the potential environmental benefits of this bio-based polymer versus the reference conventional product (fossil-based BDO. Results identified the prevailing contribution to the total environmental load of bio-based BDO in the feedstock production and in the heat requirement at the biorefinery plant. The modeled industrial bio-based BDO supply chain, showed a general reduction of the environmental impacts compared to the fossil-based BDO. The lowest benefits were gained in terms of acidification and eutrophication, due to the environmental load of the crop phase for feedstock cultivation.

  17. Corn Stover and Wheat Straw Combustion in a 176-kW Boiler Adapted for Round Bales

    Directory of Open Access Journals (Sweden)

    Joey Villeneuve

    2013-11-01

    Full Text Available Combustion trials were conducted with corn stover (CS and wheat straw (WS round bales in a 176-kW boiler (model Farm 2000. Hot water (80 °C stored in a 30,000-L water tank was transferred to a turkey barn through a plate exchanger. Gross calorific value measured in the laboratory was 17.0 and 18.9 MJ/kg DM (dry matter for CS and WS, respectively. Twelve bales of CS (1974 kg DM total, moisture content of 13.6% were burned over a 52-h period and produced 9.2% ash. Average emissions of CO, NOx and SO2 were 2725, 9.8 and 2.1 mg/m3, respectively. Thermal efficiency was 40.8%. For WS, six bales (940 kg DM total, MC of 15% were burned over a 28-h period and produced 2.6% ash. Average emissions of CO, NOx and SO2 were 2210, 40.4 and 3.7 mg/m3, respectively. Thermal efficiency was 68.0%. A validation combustion trial performed a year later with 90 CS bales confirmed good heating performance and the potential to lower ash content (6.2% average.

  18. Utilization of wheat straw for the preparation of coated controlled-release fertilizer with the function of water retention.

    Science.gov (United States)

    Xie, Lihua; Liu, Mingzhu; Ni, Boli; Wang, Yanfang

    2012-07-18

    With the aim of improving fertilizer use efficiency and minimizing the negative impact on the environment, a new coated controlled-release fertilizer with the function of water retention was prepared. A novel low water solubility macromolecular fertilizer, poly(dimethylourea phosphate) (PDUP), was "designed" and formulated from N,N'-dimethylolurea (DMU) and potassium dihydrogen phosphate. Simultaneously, an eco-friendly superabsorbent composite based on wheat straw (WS), acrylic acid (AA), 2-acryloylamino-2-methyl-1-propanesulfonic acid (AMPS), and N-hydroxymethyl acrylamide (NHMAAm) was synthesized and used as the coating to control the release of nutrient. The nitrogen release profile and water retention capacity of the product were also investigated. The degradation of the coating material in soil solution was studied. Meanwhile, the impact of the content of N-hydroxymethyl acrylamide on the degradation extent was examined. The experimental data showed that the product with good water retention and controlled-release capacities, being economical and eco-friendly, could be promising for applications in agriculture and horticulture.

  19. Utilization of wheat straw for the preparation of coated controlled-release fertilizer with the function of water retention.

    Science.gov (United States)

    Xie, Lihua; Liu, Mingzhu; Ni, Boli; Wang, Yanfang

    2012-07-18

    With the aim of improving fertilizer use efficiency and minimizing the negative impact on the environment, a new coated controlled-release fertilizer with the function of water retention was prepared. A novel low water solubility macromolecular fertilizer, poly(dimethylourea phosphate) (PDUP), was "designed" and formulated from N,N'-dimethylolurea (DMU) and potassium dihydrogen phosphate. Simultaneously, an eco-friendly superabsorbent composite based on wheat straw (WS), acrylic acid (AA), 2-acryloylamino-2-methyl-1-propanesulfonic acid (AMPS), and N-hydroxymethyl acrylamide (NHMAAm) was synthesized and used as the coating to control the release of nutrient. The nitrogen release profile and water retention capacity of the product were also investigated. The degradation of the coating material in soil solution was studied. Meanwhile, the impact of the content of N-hydroxymethyl acrylamide on the degradation extent was examined. The experimental data showed that the product with good water retention and controlled-release capacities, being economical and eco-friendly, could be promising for applications in agriculture and horticulture. PMID:22730900

  20. Fe3O4–wheat straw: preparation, characterization and its application for methylene blue adsorption

    Directory of Open Access Journals (Sweden)

    A. Ebrahimian Pirbazari

    2014-09-01

    Full Text Available The removal of methylene blue (MB from aqueous solution by NaOH-treated wheat straw from agriculture biomass impregnated with Fe3O4 magnetic nanoparticles (MNP-NWS was investigated. Magnetic nanoparticles (Fe3O4 were prepared by chemical precipitation of a mixture of Fe2+ and Fe3+ salts from solution aqueous by ammonia. These magnetic nanoparticles of the adsorbent Fe3O4 were characterized by Field Emission Scanning Electron Microscopy (FESEM, X-ray Diffraction (XRD, nitrogen physisorption and Fourier Transform Infrared Spectroscopy (FTIR. FTIR results showed complexation and ion exchange appears to be the principal mechanism for MB adsorption. The adsorption isotherm data were fitted to Langmuir, Sips, Redlich–Peterson and Freundlich equations. Langmuir adsorption capacity, Qmax, was found to be 1374.6 mgg−1. The Freundlich equation yielded the best fit to the experimental data in comparison to the other isotherm models. The removal of MB by MNP-NWS followed pseudo-first-order reaction kinetics based on Lagergren equations.

  1. EFFECT OF TARTARIC ACID ADDITION ON RUMEN FERMENTATION, METHANE PRODUCTION AND DIGESTIBILITY IN DIFFERENT DIETS CONTAINING WHEAT STRAW IN VITRO

    Directory of Open Access Journals (Sweden)

    S.K. SIROHI

    2012-05-01

    Full Text Available The aim of the current study was to evaluate the effect of tartaric acid addition in diets on in vitro methanogenesis and rumen fermentation. Different levels of tartaric acid (5, 10, and 15 ppm were tested for their effect on methanogenesis, rumen fermentation and digestibility in three wheat straw containing diets i.e. Low fiber diet (LFD, 40R:60C, medium fiber diet (MFD, 50R:50C and high fiber diet (HFD, 60R:40C. Evaluation of tartaric acid was carried out using in vitro gas production technique. Methane production and individual fatty acids were estimated by Gas Chromatography. Results of different levels of tartaric acid on in vitro methanogenesis indicated that the maximum methane reduction (22.60% in term of mM/gDM was observed in LFD at the supplementation dosage of 15 mM and a similar trend was seen, when methane was expressed in ml/gDM. Non-significant (P≤0.05 effect of tartaric acid addition on in vitro dry matter digestibility (IVDMD was observed in almost cases. Protozoal population decreased with increasing concentration of tartaric acid and maximum reduction (54.64% was in the MFD. Acetate to propionate ratio was decreased in tartaric acid supplemented diets which reflects increase in propionic acid production in comparison to control diet. Microbial biomass yield also increased due to the addition of tartaric acid in most of the diets.

  2. High-throughput microarray profiling of cell wall polymers during hydrothermal pre-treatment of wheat straw.

    Science.gov (United States)

    Alonso-Simón, Ana; Kristensen, Jan Bach; Obro, Jens; Felby, Claus; Willats, William G T; Jørgensen, Henning

    2010-02-15

    Lignocellulosic plant material is potentially a sustainable source of fermentable sugars for bioethanol production. However, a barrier to this is the high resistance or recalcitrance of plant cell walls to be hydrolyzed. Therefore, a detailed knowledge of the structural features of plant cell walls that contribute to recalcitrance is important for improving the efficiency of bioethanol production. In this work we have used a technique known as Comprehensive Microarray Polymer Profiling (CoMPP) to analyze wheat straw before and after being subjected to hydrothermal pre-treatments at four different temperatures. The CoMPP technique combines the specificity of monoclonal antibodies with the high-throughput capacity of microarrays. Changes in the relative abundance of cell wall polysaccharides could be tracked during processing, and a reduction in xylan, arabinoxylans, xyloglucan, and mixed-linked glucan epitopes was detected at the two highest temperatures of pre-treatment used. This work demonstrates the potential of CoMPP as a complementally technique to conventional methods for analyzing biomass composition. PMID:19777595

  3. Combination of ensiling and fungal delignification as effective wheat straw pretreatment

    DEFF Research Database (Denmark)

    Thomsen, Sune T.; Londono, Jorge E. G.; Ambye-Jensen, Morten;

    2016-01-01

    straw (WS). This study was undertaken to assess whether a combination of forced ensiling with Lactobacillus buchneri and WRF treatment using a low cellulase fungus, Ceriporiopsis subvermispora, could produce a relevant pretreatment effect on WS for bioethanol and biogas production. Results......: A combination of the ensiling and WRF treatment induced efficient pretreatment of WS by reducing lignin content and increasing enzymatic sugar release, thereby enabling an ethanol yield of 66 % of the theoretical max on the WS glucan, i.e. a yield comparable to yields obtained with high-tech, large.......Conclusion: The combination of the L. buchneri ensiling and C. subvermispora WRF treatment provided a significant improvement in the pretreatment effect on WS. This combined biopretreatment produced particularly promising results for ethanol production....

  4. 堆肥预处理温度控制促进麦秸厌氧发酵产沼气%Promotion of biogas production of wheat straw by controling composting pretreatment temperature

    Institute of Scientific and Technical Information of China (English)

    陈广银; 马慧娟; 常志州; 叶小梅; 杜静; 徐越定; 张建英

    2013-01-01

    wheat straw. In the first experiment, the wheat straw was directly used for composting and then composted straw was used in the biomethane potential (BMP) test. For the second one, wheat straw was sterilized by gamma ray radiation pretreatment and treated under different temperature with different time. Then the treated straw was used for the BMP test. The results of experiments indicated that large percentage of organic matter in wheat straw was degraded during composting process. The total solid (TS) loss rate of wheat straw was only 4.06%when composting pile temperature was less than 55℃. When composting pile temperature was set up at 55℃, the TS loss rate of wheat straw increased 22.45%after 10 days’ composting treatment. Gas data showed that biogas production rate of wheat straw was not improved obviously. The TS biogas yield of wheat straw increased with composting pile temperature and then decreased. The highest TS biogas yield of wheat straw of 349.92 mL/g was observed at 55℃of composting pile temperature, which is 7.56% higher than that of uncomposted wheat straw. There was no significantly improvement in biogas production between composted and uncomposted wheat straw during composting process for organic matter loss of wheat straw. However, longer composting time led to lower biogas yield of wheat straw. When composting pile temperature was kept at 55℃for 9 days, The TS biogas yield of composted wheat straw was only 66.58%. When the content of organic matter and material composition of wheat straw were changed, content of hemicellulose of wheat straw was decreased by 28.10%. Results of gas data of simulated composting experiment showed the same trend as the first experiment. The highest TS biogas yield of wheat straw of 342.36 mL/g was obtained at 55℃ with 8.35%, which is higher than that of control. Therefore the high temperature from composting process is an important factor of destruction of lignocellulose structure and improving

  5. Global warming and energy yield evaluation of Spanish wheat straw electricity generation – A LCA that takes into account parameter uncertainty and variability

    International Nuclear Information System (INIS)

    Highlights: • We assess the sustainability of electricity generation from Spanish wheat straw. • Parameter uncertainty and variability are included in the life cycle assessment. • 58% of the simulations accomplish EU sustainability criteria of 60% GHG savings. • Loss of soil organic carbon is the most relevant phase for global warming potential. • A reduction of isohumic coefficient uncertainty is needed due to its importance. - Abstract: This paper aims to provide more accurate results in the life cycle assessment (LCA) of electricity generation from wheat straw grown in Spain through the inclusion of parameter uncertainty and variability in the inventories. We fitted statistical distributions for the all the parameter that were relevant for the assessment to take into account their inherent uncertainty and variability. When we found enough data, goodness of fit tests were performed to choose the best distribution for each parameter and, when this was not possible, we adjusted triangular or uniform distributions according to data available and expert judge. To obtain a more complete and realistic LCA, we considered the consequences of straw exportation for the agricultural system, specially the loss of soil organic carbon and the decrease of future fertility. We also took into account all the inputs, transformations and transports needed to generate electricity in a 25 MWe power plant by straw burning. The inventory data for the agricultural, the transport and the transformation phases were collected considering their most common values and ranges of variability for the Spanish case. We used Monte Carlo simulation and sensitivity analysis to obtain global warming potential (GWP) and fossil energy (FOSE) consumption of the system. These results were compared with those of the electricity generated from natural gas in Spanish power plants, as fossil reference energy system. Our results showed that for the majority of the simulations electricity from wheat

  6. Pretreatment and Fractionation of Wheat Straw for Production of Fuel Ethanol and Value-added Co-products in a Biorefinery

    Directory of Open Access Journals (Sweden)

    Xiu Zhang

    2014-08-01

    Full Text Available An integrated process has been developed for a wheat straw biorefinery. In this process, wheat straw was pretreated by soaking in aqueous ammonia (SAA, which extensively removed lignin but preserved high percentages of the carbohydrate fractions for subsequent bioconversion. The pretreatment conditions included 15 wt% NH4OH, 1:10 solid:liquid ratio, 65 oC and 15 hours. Under these conditions, 48% of the original lignin was removed, whereas 98%, 83% and 78% of the original glucan, xylan, and arabinan, respectively, were preserved. The pretreated material was subsequently hydrolyzed with a commercial hemicellulase to produce a solution rich in xylose and low in glucose plus a cellulose-enriched solid residue. The xylose-rich solution then was used for production of value-added products. Xylitol and astaxanthin were selected to demonstrate the fermentability of the xylose-rich hydrolysate. Candida mogii and Phaffia rhodozyma were used for xylitol and astaxanthin fermentation, respectively. The cellulose-enriched residue obtained after the enzymatic hydrolysis of the pretreated straw was used for ethanol production in a fed-batch simultaneous saccharification and fermentation (SSF process. In this process, a commercial cellulase was used for hydrolysis of the glucan in the residue and Saccharomyces cerevisiae, which is the most efficient commercial ethanol-producing organism, was used for ethanol production. Final ethanol concentration of 57 g/l was obtained at 27 wt% total solid loading.

  7. Potential production from poultry litter, chicken manure and wheat straw; Potencial de producao de biogas da cama de aviario, esterco de galinhas e palha de trigo

    Energy Technology Data Exchange (ETDEWEB)

    Zanatta, Fabio L.; Silva, Jadir Nogueira da [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Engenharia Agricola], email: fabio.zanatta@ufv.br; Scholz, Volkhard; Schonberg, Mandy [Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), Potsdam (Germany). Post Harvest Technology Dept.; Martin, Samuel [Universidade de Brasilia (UNB), DF (Brazil). Dept. de Engenharia Rural

    2011-07-01

    Poultry litter is a sub product of growth chicken, rich in nitrogen and used like fertilizer in grains and forage production. Normally is applied in the fields without treatment. It's a very good material to be used for biogas generation because his compounds are chicken manure, straw and others organics compounds like coffee and rice husks. The biogas produced by poultry litter can be used for electric generation or for the heating systems of chicken production. The aimed of this work was evaluated the biogas and methane production of poultry litter, chicken manure and wheat straw. The experiment was made in the Biogastechnikum Laboratory of Leibniz-Institut fuer Agrartechnik Potsdam-Bornim e.V. (ATB), in Potsdam-Germany, from May to December 2010, according the rule VDI 4630 (Verein Deutscher Ingenieure). According to set conditions of the experiment, the results for biogas production are 393.25, 398.37 e 518.44 Nl biogas/kg{sub TSadded} and methane 223.72, 229.68, e 272.73 Nlmethane/kg{sub TSadded}; for poultry litter, poultry manure and wheat straw, respectively. (author)

  8. Direct mechanical energy measures of hammer mill comminution of switchgrass, wheat straw, and corn stover and analysis of their particle size distributions

    Energy Technology Data Exchange (ETDEWEB)

    Bitra, V.S.P [University of Tennessee; Womac, A.R. [University of Tennessee; Chevanan, Nehru [University of Tennessee; Miu, P.I. [University of Tennessee; Smith, D.R. [University of Tennessee; Igathinathane, C. [Mississippi State University (MSU); Sokhansanj, Shahabaddine [ORNL

    2009-07-01

    Biomass particle size impacts handling, storage, conversion, and dust control systems. Size reduction mechanical energy was directly measured for switchgrass (Panicum virgatum L.), wheat straw (Triticum aestivum L.), and corn stover (Zea mays L.) in an instrumented hammer mill. Direct energy inputs were determined for hammer mill operating speeds from 2000 to 3600 rpm for 3.2 mm integral classifying screen and mass input rate of 2.5 kg/min with 90 - and 30 -hammers. Overall accuracy of specific energy measurement was calculated as 0.072 MJ/Mg. Particle size distributions created by hammer mill were determined for mill operating factors using ISO sieve sizes from 4.75 to 0.02 mm in conjunction with Ro-Tap sieve analyzer. A wide range of analytical descriptors were examined to mathematically represent the range of particle sizes in the distributions. Total specific energy (MJ/Mg) was defined as size reduction energy to operate the hammer mill plus that imparted to biomass. Effective specific energy was defined as energy imparted to biomass. Total specific energy for switchgrass, wheat straw, and corn stover grinding increased by 37, 30, and 45% from 114.4, 125.1, and 103.7 MJ/Mg, respectively, with an increase in hammer mill speed from 2000 to 3600 rpm for 90 -hammers. Corresponding total specific energy per unit size reduction was 14.9, 19.7, and 13.5 MJ/Mg mm, respectively. Effective specific energy of 90 -hammers decreased marginally for switchgrass and considerably for wheat straw and it increased for corn stover with an increase in speed from 2000 to 3600 rpm. However, effective specific energy increased with speed to a certain extent and then decreased for 30 -hammers. Rosin Rammler equation fitted the size distribution data with R2 > 0.995. Mass relative span was greater than 1, which indicated a wide distribution of particle sizes. Hammer milling of switchgrass, wheat straw, and corn stover with 3.2 mm screen resulted in well-graded fine-skewed mesokurtic

  9. Microbial community structures in an integrated two-phase anaerobic bioreactor fed by fruit vegetable wastes and wheat straw

    Institute of Scientific and Technical Information of China (English)

    Chong Wang; Jiane Zuo; Xiaojie Chen; Wei Xing; Linan Xing; Peng Li; Xiangyang Lu

    2014-01-01

    The microbial community structures in an integrated two-phase anaerobic reactor (ITPAR) were investigated by 16S rDNA clone library technology.The 75 L reactor was designed with a 25 L rotating acidogenic unit at the top and a 50 L conventional upflow methanogenic unit at the bottom,with a recirculation connected to the two units.The reactor had been operated for 21 stages to co-digest fruit/vegetable wastes and wheat straw,which showed a very good biogas production and decomposition of cellulosic materials.The results showed that many kinds of cellulose and glycan decomposition bacteria related with Bacteroidales,Clostridiales and Syntrophobacterales were dominated in the reactor,with more bacteria community diversities in the acidogenic unit.The methanogens were mostly related with Methanosaeta,Methanosarcina,Methanoculleus,Methanospirillum and Methanobacterium; the predominating genus Methanosaeta,accounting for 40.5%,54.2%,73.6% and 78.7% in four samples from top to bottom,indicated a major methanogenesis pathway by acetoclastic methanogenesis in the methanogenic unit.The beta diversity indexes illustrated a more similar distribution of bacterial communities than that of methanogens between acidogenic unit and methanogenic unit.The differentiation of methanogenic community composition in two phases,as well as pH values and volatile fatty acid (VFA) concentrations confirmed the phase separation of the ITPAR.Overall,the results of this study demonstrated that the special designing of ITPAR maintained a sufficient number of methanogens,more diverse communities and stronger syntrophic assodations among microorganisms,which made two phase anaerobic digestion of cellulosic materials more efficient.

  10. Improving simultaneous saccharification and co-fermentation of pretreated wheat straw using both enzyme and substrate feeding

    Directory of Open Access Journals (Sweden)

    Palmqvist Benny

    2010-08-01

    Full Text Available Abstract Background Simultaneous saccharification and co-fermentation (SSCF has been recognized as a feasible option for ethanol production from xylose-rich lignocellulosic materials. To reach high ethanol concentration in the broth, a high content of water-insoluble solids (WIS is needed, which creates mixing problems and, furthermore, may decrease xylose uptake. Feeding of substrate has already been proven to give a higher xylose conversion than a batch SSCF. In the current work, enzyme feeding, in addition to substrate feeding, was investigated as a means of enabling a higher WIS content with a high xylose conversion in SSCF of a xylose-rich material. A recombinant xylose-fermenting strain of Saccharomyces cerevisiae (TMB3400 was used for this purpose in fed-batch SSCF experiments of steam-pretreated wheat straw. Results By using both enzyme and substrate feeding, the xylose conversion in SSCF could be increased from 40% to 50% in comparison to substrate feeding only. In addition, by this design of the feeding strategy, it was possible to process a WIS content corresponding to 11% in SSCF and obtain an ethanol yield on fermentable sugars of 0.35 g g-1. Conclusion A combination of enzyme and substrate feeding was shown to enhance xylose uptake by yeast and increase overall ethanol yield in SSCF. This is conceptually important for the design of novel SSCF processes aiming at high-ethanol titers. Substrate feeding prevents viscosity from becoming too high and thereby allows a higher total amount of WIS to be added in the process. The enzyme feeding, furthermore, enables keeping the glucose concentration low, which kinetically favors xylose uptake and results in a higher xylose conversion.

  11. [Characterization of soil humus by FTIR spectroscopic analyses after being inoculated with different microorganisms plus wheat straw].

    Science.gov (United States)

    Wang, Shuail; Dou, Sen; Liu, Yan-Li; Li, Hui-Min; Cui, Jun-Tao; Zhang, Wei; Wang, Cheng-Yu

    2012-09-01

    The effects of different microbial communities on the structural characteristics of humus from the black soil amended with wheat straw were studied by FTIR Spectroscopy. The results indicated that (1) The structure and amount of functional groups in the water soluble substances (WSS) was tremendously influenced by the tested microorganisms, of which the amino and aryl ether was degraded rapidly in the inoculation process, and in the meantime, the content of hydroxyl groups was significantly reduced. The bacteria was helpful to increasing the amount of aliphatic hydrocarbons, while the other inoculated treatments were contrary. At the end of culture, the phenols and polysaccharides were gradually consumed, but the content of carboxyl groups had an increasing trend. (2) In the aspect of reducing hydroxyl groups of fulvic acid (FA), the role of actinomycetes was the biggest. The fungi had the biggest effect in improving the net generation of FA content. In addition, the fungi was conducive to improve the contents of carboxyl groups and carbohydrates of FA fraction. Except the mixed strains, the other treatments were all beneficial to the degradation of polysaccharide in the FA fraction, whose rate was greater than the decomposition of lipids. (3) The bacteria, actinomycetes and fungi were all helpful to reducing the amount of aliphatic hydrocarbons of HA fraction except the mixed strains. The content of carboxyl was effectively increased by fungi, but the effect of bacteria was contrary. The tested microorganisms could consume and utilize the polysaccharides of HA fraction, which could transform the humic-like fractions from plant residues into the real humus of soil.

  12. [Effects of Warming and Straw Application on Soil Respiration and Enzyme Activity in a Winter Wheat Cropland].

    Science.gov (United States)

    Chen, Shu-tao; Sang, Lin; Zhang, Xu; Hu, Zheng-hua

    2016-02-15

    In order to investigate the effects of warming and straw application on soil respiration and enzyme activity, a field experiment was performed from November 2014 to May 2015. Four treatments, which were control (CK), warming, straw application, and warming and straw application, were arranged in field. Seasonal variability in soil respiration, soil temperature and soil moisture for different treatments were measured. Urease, invertase, and catalase activities for different treatments were measured at the elongation, booting, and anthesis stages. The results showed that soil respiration in different treatments had similar seasonal variation patterns. Seasonal mean soil respiration rates for the CK, warming, straw application, and warming and straw application treatments were 1.46, 1.96, 1.92, and 2.45 micromol x (m2 x s)(-1), respectively. ANOVA indicated that both warming and straw applications significantly (P soil respiration compared to the control treatment. The relationship between soil respiration and soil temperature in different treatments fitted with the exponential regression function. The exponential regression functions explained 34.3%, 28.1%, 24.6%, and 32.0% variations of soil respiration for CK, warming, straw application, and warming and straw application treatments, respectively. Warming and straw applications significantly (P soil respiration and urease activity fitted with a linear regression function, with the P value of 0.061. The relationship between soil respiration and invertase (P = 0.013), and between soil respiration and catalase activity (P = 0.002) fitted well with linear regression functions.

  13. Biorefining of wheat straw: accounting for the distribution of mineral elements in pretreated biomass by an extended pretreatment – severity equation

    DEFF Research Database (Denmark)

    Le, Duy Michael; Sørensen, Hanne Risbjerg; Knudsen, Niels Ole;

    2014-01-01

    factors is therefore important in relation to development of new biorefinery processes. The objective of the present study was to examine the levels of mineral elements in pretreated wheat straw in response to systematic variations in the hydrothermal pretreatment parameters (pH, temperature......) Silicon, iron, copper, aluminum correlated with lignin and cellulose levels, but the levels of these constituents showed no severity-dependent trends. For the first group, an expanded pretreatment-severity equation, containing a specific factor for each constituent, accounting for variability due...

  14. Kinetic Studies on Wheat Straw Hydrolysis to Levulinic Acid%小麦秸秆制备乙酰丙酸的动力学研究

    Institute of Scientific and Technical Information of China (English)

    常春; 马晓建; 岑沛霖

    2009-01-01

    Levulinic acid is considered as a promising green platform chemical derived from biomass. The kinetics of levulinic acid accumulation in the hydrolysis process of wheat straw was investigated in the study. Using dilute sulfuric acid as a catalyst, the kinetic experiments were performed in a temperature range of 190-230℃ and an acid concentration range of 1%-5% (by mass). A simple model of first-order series reactions was developed, which provided a satisfactory interpretation of the experimental results. The kinetics of main intermediates including sugar and 5-hydroxymethylfurfural (5-HMF) were also established. The kinetic parameters provided useful information for understanding the hydrolysis process.

  15. Studying the ability of Fusarium oxysporum and recombinant Saccharomyces cerevisiae to efficiently cooperate in decomposition and ethanolic fermentation of wheat straw

    DEFF Research Database (Denmark)

    Panagiotou, Gianni; Topakas, Evangelos; Moukouli, Maria;

    2011-01-01

    Fusarium oxysporum F3 alone or in mixed culture with Saccharomyces cerevisiae F12 were used to ferment carbohydrates of wet exploded pre-treated wheat straw (PWS) directly to ethanol. Both microorganisms were first grown aerobically to produce cell mass and thereafter fermented PWS to ethanol under...... anaerobic conditions. During fermentation, soluble and insoluble carbohydrates were hydrolysed by the lignocellulolytic system of F. oxysporum. Mixed substrate fermentation using PWS and corn cobs (CC) in the ratio 1:2 was used to obtain an enzyme mixture with high cellulolytic and hemicellulolytic...

  16. Effect of Straw Fiber Modification on Properties for Wheat Straw Fiber/PBS Composite%纤维改性对小麦秸秆纤维/PBS复合材料性能的影响

    Institute of Scientific and Technical Information of China (English)

    强琪; 张敏; 徐丹; 何文清; 宋吉青

    2013-01-01

    利用NaOH对小麦秸秆纤维进行处理,同时采用了不同的蒸煮助剂和改性剂,以改变纤维自身物理性能及其表面化学性质.将改性纤维与聚丁二酸丁二醇酯(PBS)共混,制备了秸秆纤维/PBS复合材料,并通过X射线能谱仪(EDS)、X射线衍射仪(XRD)和扫描电子显微镜(SEM)对改性前后的纤维进行了分析和观测,研究分析了助剂和改性剂对复合材料性能的影响.结果表明:秸秆纤维经NaOH/4%Na2SO3处理,以及碱处理纤维经钛酸酯偶联剂NDZ201、环氧树脂E44改性,所得纤维增强复合材料的性能较为优异.%Wheat straw fiber was treated with NaOH, meanwhile different additives and modifiers were used to alter the physical properties and surface chemical properties of wheat straw fiber, and the composites were prepared through the blending between the fibers and poly (butylene succinate) (PBS). Through analysis and observation of modified fibers by energy disperse spectroscopy (EDS), X-ray diffraction (XRD) and scanning electron microscopy (SEM), the effects of type and addition for additives and modifies on the properties of straw fiber and the straw fiber/PBS composites were studied. The results show that the property of the composite is better when the raw fiber is treated by NaOH/4%Na2SO3, and the NaOH treated fiber is modified by NOZ201 or E44.

  17. Biogas Production of Wheat and Corn Straw with Different Pre-treatment%小麦、玉米秸秆不同预处理产沼气试验研究

    Institute of Scientific and Technical Information of China (English)

    刘德江; 邱桃玉; 饶晓娟; 刘歆

    2012-01-01

    In order to explore the changing rules of gas production and methane content of different pretreated straw, com and wheat straw were pretreated respectively with biogas slurry, green stalk ling. Six treatments were set up. The results showed that, under ambient temperature, keeping the same TS concentration and C / N ratio, the TS gas production rate and the methane content from high to low in turn were; com straw treated with green stalks ling, com straw treated with biogas slurry, wheat straw treated with green stalks ling, wheat straw treated with biogas slurry, com ck, and wheat ck. The differences among the treatments reached significant level. The gas production effect of green stalks ling pretreatment for straw is better than that with biogas slurry. For the same pretreatment, the TS gas production rate and methane production rate for com were higher than those of wheat. It showed that com straw is more suitable for biogas fermentation than wheat straw.%为探讨秸秆不同预处理产气量及甲烷含量的变化规律,本试验在实验室分别用沼液、绿秸灵预处理玉米及小麦秸秆,共设置六个处理进行秸秆沼气发酵试验.结果表明:在常温并保持相同浓度和C/N比的发酵条件下,单位质量干物质产气率(TS产气率)及甲烷含量的大小顺序均为:玉米秸秆+绿秸灵>玉米秸秆+沼液>小麦秸秆+绿秸灵>小麦秸秆+沼液>玉米秸秆CK>小麦秸秆CK,各处理间的差异达到显著水平,其中采用绿秸灵预处理秸秆的产气效果优于用沼液预处理的效果.在采用相同的预处理前提下,玉米秸秆的干物质产气率(TS产气率)及甲烷产气率(TSCH4产气率)均大于小麦秸秆的干物质产气率(TS产气率),表明玉米秸秆比小麦秸秆更适宜于沼气发酵.

  18. 小麦秸秆含水率测量仪的设计与试验%Design and experiment on wheat straw moisture content meter

    Institute of Scientific and Technical Information of China (English)

    郭文川; 刘驰; 杨军

    2013-01-01

    Faced with the worldwide shortage of forest resources, industry is showing increasing interest in using straw. Moisture content is listed as a main criterion in wheat straw consuming market. Not only since the unit price is based on weight, but also because moisture content is an important factor which affect straw products’ quality. Wheat straw is a main kind of straws all over the world. In order to detect moisture content of wheat straw conveniently, rapidly and precisely, a moisture content meter was designed with AT89S52 single-chip microcomputer as controller, parallel plate, DS18B20 and FSR402 as capacitance sensor, digital temperature sensor and pressure sensor to detect capacitance, temperature and bulk density of wheat straw, respectively. Liquid crystal display was adopted to show the obtained data. The meter’s accuracy on measuring capacitance, temperature and bulk density was tested. “Xinong 979”winter wheat straw was used as sample to study the influence of moisture content on output capacitance. The tests were set at five levels (10.6%, 13.6%, 15.6%, 17.3% and 19.6% in wet basis), temperature range from 5℃ to 35℃ with 5℃ interval, and three bulk density levels (generally from 77.2 kg/m3 to 103.6 kg/m3). The model describing capacitance and main factors was regressed. Newton iteration method was applied to program for predicting moisture content from obtained data. The model’s feasibility in predicting moisture content from 10%-20% at 5-35℃ was verified. The results indicated that the output voltages of designed circuits for sensing capacitance and pressure had good linear relationship with real capacitance and pressure values, with coefficients of determination higher than 0.996. The absolute temperature error was ±0.2℃. Over the investigated ranges of moisture content, temperature and bulk density, the obtained capacitance value increased with increasing moisture content, temperature and bulk density. The relationship between

  19. Research on BM Straw Decomposition Inoculant Applied in Wheat Production%BM秸秆腐熟剂在小麦上的应用效果

    Institute of Scientific and Technical Information of China (English)

    刘元东; 刘香坤; 姜玉琴; 朱玉成; 董旭勇; 王风英; 刘尚伟

    2011-01-01

    In order to research the effect of BM straw decomposition inoculant on fermentation of smashed corn stalk and wheat production,an experiment with 5 treatments was conducted. The results showed that application of BM straw decomposition inoculant to smashed corn stalk shortened the decomposition term by 30 days. Additionally, wheat plants grew strongly,with more tillers and increasing grain weights. The best treatment was applying BM straw decomposition inoculant of 30 kg/ha to smashed corn stalk on the base of formula fertilizer(525 kg/ha) , which could shorten the decomposition term by 55 days, and increase wheat production by 1 667. 5 kg/ha at an increase rate of 19. 7%, compared to no application of BM straw decomposition inoculant based on 375 kg/ha of DAP.%在大田条件下,研究了BM秸秆腐熟剂对还田玉米秸秆腐熟程度和小麦生长发育及产量的影响,结果表明:施用BM秸秆腐熟剂与不施用BM秸秆腐熟剂相比,还田秸秆提早30d腐熟,且小麦植株生长健壮,分蘖多,千粒重提高.最佳处理方法是在施用配方肥的基础上(525 kg/hm2)进行秸秆还田并加施BM秸秆腐熟剂30 kg/hm2,与在习惯性施肥基础上(底施磷酸二铵375 kg/hm2)不施用BM秸秆腐熟剂相比,可使农田秸秆提早55d腐熟,小麦生长健壮,分蘖多增产1667.5 kg/hm2,增幅19.7%.

  20. Characterization and Comparison of Fast Pyrolysis Bio-oils from Pinewood, Rapeseed Cake, and Wheat Straw Using 13C NMR and Comprehensive GC × GC

    Science.gov (United States)

    2016-01-01

    Fast pyrolysis bio-oils are feasible energy carriers and a potential source of chemicals. Detailed characterization of bio-oils is essential to further develop its potential use. In this study, quantitative 13C nuclear magnetic resonance (13C NMR) combined with comprehensive two-dimensional gas chromatography (GC × GC) was used to characterize fast pyrolysis bio-oils originated from pinewood, wheat straw, and rapeseed cake. The combination of both techniques provided new information on the chemical composition of bio-oils for further upgrading. 13C NMR analysis indicated that pinewood-based bio-oil contained mostly methoxy/hydroxyl (≈30%) and carbohydrate (≈27%) carbons; wheat straw bio-oil showed to have high amount of alkyl (≈35%) and aromatic (≈30%) carbons, while rapeseed cake-based bio-oil had great portions of alkyl carbons (≈82%). More than 200 compounds were identified and quantified using GC × GC coupled to a flame ionization detector (FID) and a time of flight mass spectrometer (TOF-MS). Nonaromatics were the most abundant and comprised about 50% of the total mass of compounds identified and quantified via GC × GC. In addition, this analytical approach allowed the quantification of high value-added phenolic compounds, as well as of low molecular weight carboxylic acids and aldehydes, which exacerbate the unstable and corrosive character of the bio-oil.

  1. Characterization and Comparison of Fast Pyrolysis Bio-oils from Pinewood, Rapeseed Cake, and Wheat Straw Using 13C NMR and Comprehensive GC × GC

    Science.gov (United States)

    2016-01-01

    Fast pyrolysis bio-oils are feasible energy carriers and a potential source of chemicals. Detailed characterization of bio-oils is essential to further develop its potential use. In this study, quantitative 13C nuclear magnetic resonance (13C NMR) combined with comprehensive two-dimensional gas chromatography (GC × GC) was used to characterize fast pyrolysis bio-oils originated from pinewood, wheat straw, and rapeseed cake. The combination of both techniques provided new information on the chemical composition of bio-oils for further upgrading. 13C NMR analysis indicated that pinewood-based bio-oil contained mostly methoxy/hydroxyl (≈30%) and carbohydrate (≈27%) carbons; wheat straw bio-oil showed to have high amount of alkyl (≈35%) and aromatic (≈30%) carbons, while rapeseed cake-based bio-oil had great portions of alkyl carbons (≈82%). More than 200 compounds were identified and quantified using GC × GC coupled to a flame ionization detector (FID) and a time of flight mass spectrometer (TOF-MS). Nonaromatics were the most abundant and comprised about 50% of the total mass of compounds identified and quantified via GC × GC. In addition, this analytical approach allowed the quantification of high value-added phenolic compounds, as well as of low molecular weight carboxylic acids and aldehydes, which exacerbate the unstable and corrosive character of the bio-oil. PMID:27668136

  2. Novel xylanase from a holstein cattle rumen metagenomic library and its application in xylooligosaccharide and ferulic Acid production from wheat straw.

    Science.gov (United States)

    Cheng, Fansheng; Sheng, Jiping; Dong, Rubo; Men, Yejun; Gan, Lin; Shen, Lin

    2012-12-26

    A novel gene fragment containing a xylanase was identified from a Holstein cattle rumen metagenomic library. The novel xylanase (Xyln-SH1) belonged to the glycoside hydrolase family 10 (GH10) and exhibited a maximum of 44% identity to the glycoside hydrolase from Clostridium thermocellum ATCC 27405. Xyln-SH1 was heterologously expressed, purified, and characterized. A high level of activity was obtained under the optimum conditions of pH 6.5 and 40 °C. A substrate utilization study indicated that Xyln-SH1 was cellulase-free and strictly specific to xylan from softwood. The synergistic effects of Xyln-SH1 and feruloyl esterase (FAE-SH1) were observed for the release of xylooligosaccharides (XOS) and ferulic acid (FA) from wheat straw. In addition, a high dose of Xyln-SH1 alone was observed to improve the release of FA from wheat straw. These features suggest that this enzyme has substantial potential to improve biomass degradation and industrial applications.

  3. Tillage practices and straw-returning methods affect topsoil bacterial community and organic C under a rice-wheat cropping system in central China

    Science.gov (United States)

    Guo, Lijin; Zheng, Shixue; Cao, Cougui; Li, Chengfang

    2016-09-01

    The objective of this study was to investigate how the relationships between bacterial communities and organic C (SOC) in topsoil (0-5 cm) are affected by tillage practices [conventional intensive tillage (CT) or no-tillage (NT)] and straw-returning methods [crop straw returning (S) or removal (NS)] under a rice-wheat rotation in central China. Soil bacterial communities were determined by high-throughput sequencing technology. After two cycles of annual rice-wheat rotation, compared with CT treatments, NT treatments generally had significantly more bacterial genera and monounsaturated fatty acids/saturated fatty acids (MUFA/STFA), but a decreased gram-positive bacteria/gram-negative bacteria ratio (G+/G-). S treatments had significantly more bacterial genera and MUFA/STFA, but had decreased G+/G- compared with NS treatments. Multivariate analysis revealed that Gemmatimonas, Rudaea, Spingomonas, Pseudomonas, Dyella, Burkholderia, Clostridium, Pseudolabrys, Arcicella and Bacillus were correlated with SOC, and cellulolytic bacteria (Burkholderia, Pseudomonas, Clostridium, Rudaea and Bacillus) and Gemmationas explained 55.3% and 12.4% of the variance in SOC, respectively. Structural equation modeling further indicated that tillage and residue managements affected SOC directly and indirectly through these cellulolytic bacteria and Gemmationas. Our results suggest that Burkholderia, Pseudomonas, Clostridium, Rudaea, Bacillus and Gemmationas help to regulate SOC sequestration in topsoil under tillage and residue systems.

  4. Kinetics of batch anaerobic co-digestion of poultry litter and wheat straw including a novel strategy of estimation of endogenous decay and yield coefficients using numerical integration.

    Science.gov (United States)

    Shen, Jiacheng; Zhu, Jun

    2016-10-01

    The kinetics of anaerobic co-digestion of poultry litter and wheat straw has not been widely reported in the literature. Since endogenous decay and yield coefficients are two basic parameters for the design of anaerobic digesters, they are currently estimated only by continues experiments. In this study, numerical integration was employed to develop a novel strategy to estimate endogenous decay and yield coefficients using initial and final liquid data combined with methane volumes produced over time in batch experiments. To verify this method, the kinetics of batch anaerobic co-digestion of poultry litter and wheat straw at different TS and VS levels was investigated, with the corresponding endogenous decay and (non-observed) yield coefficients in the exponential periods determined to be between 0.74 × 10(-3) and 6.1 × 10(-3) d(-1), and between 0.0259 and 0.108 g VSS (g VS)(-1), respectively. A general Gompertz model developed early for bio-product could be used to simulate the methane volume profile in the co-digestion. The same model parameters obtained from the methane model combined with the corresponding yield coefficients could also be used to describe the VSS generation and VS destruction. PMID:27234662

  5. Effects of Epigeic Earthworms on Decomposition of Wheat Straw and Nutrient Cycling in Agricultural Soils in a Reclaimed Salinity Area: A Microcosm Study

    Institute of Scientific and Technical Information of China (English)

    PANG Jun-Zhu; QIAO Yu-Hui; SUN Zhen-Jun; ZHANG Shuo-Xin; LI Yun-Le; ZHANG Rui-Qing

    2012-01-01

    Earthworms,one of the most important macroinvertebrates in terrestrial ecosystems of temperate zones,exert important influences on soil functions.A laboratory microcosm study was conducted to evaluate the influence of the earthworm Eisenia fetida on wheat straw decomposition and nutrient cycling in an agricultural soil in a reclaimed salinity area of the North China Plain.Each microcosm was simulated by thoroughly mixing wheat straw into the soil and incubated for 120 d with earthworms added at 3 different densities as treatments control with no earthworms,regular density (RD) with two earthworms,and increased density (ID) with six earthworms.The results showed that there was no depletion of carbon and nitrogen pools in the presence of the earthworms Basal soil respiration rates and metabolic quotient increased with the increase in earthworm density during the initial and middle part of the incubation period.In contrast,concentrations of microbial biomass carbon and microbial biomass quotient decreased in the presence of earthworms.Earthworm activity stimulated the transfer of microbial biomass carbon to dissolved organic carbon and could lead to a smaller,but more metabolically active microbial biomass.Concentrations of inorganic nitrogen and NO3--N increased significantly with the increase in earthworm density at the end of the incubation (P < 0.05),resulting in a large pool of inorganic nitrogen available for plant uptake.Cumulative net nitrogen mineralization rates were three times higher in the ID treatment than the RD treatment.

  6. Tillage practices and straw-returning methods affect topsoil bacterial community and organic C under a rice-wheat cropping system in central China.

    Science.gov (United States)

    Guo, Lijin; Zheng, Shixue; Cao, Cougui; Li, Chengfang

    2016-01-01

    The objective of this study was to investigate how the relationships between bacterial communities and organic C (SOC) in topsoil (0-5 cm) are affected by tillage practices [conventional intensive tillage (CT) or no-tillage (NT)] and straw-returning methods [crop straw returning (S) or removal (NS)] under a rice-wheat rotation in central China. Soil bacterial communities were determined by high-throughput sequencing technology. After two cycles of annual rice-wheat rotation, compared with CT treatments, NT treatments generally had significantly more bacterial genera and monounsaturated fatty acids/saturated fatty acids (MUFA/STFA), but a decreased gram-positive bacteria/gram-negative bacteria ratio (G(+)/G(-)). S treatments had significantly more bacterial genera and MUFA/STFA, but had decreased G(+)/G(-) compared with NS treatments. Multivariate analysis revealed that Gemmatimonas, Rudaea, Spingomonas, Pseudomonas, Dyella, Burkholderia, Clostridium, Pseudolabrys, Arcicella and Bacillus were correlated with SOC, and cellulolytic bacteria (Burkholderia, Pseudomonas, Clostridium, Rudaea and Bacillus) and Gemmationas explained 55.3% and 12.4% of the variance in SOC, respectively. Structural equation modeling further indicated that tillage and residue managements affected SOC directly and indirectly through these cellulolytic bacteria and Gemmationas. Our results suggest that Burkholderia, Pseudomonas, Clostridium, Rudaea, Bacillus and Gemmationas help to regulate SOC sequestration in topsoil under tillage and residue systems. PMID:27611023

  7. Tillage practices and straw-returning methods affect topsoil bacterial community and organic C under a rice-wheat cropping system in central China

    Science.gov (United States)

    Guo, Lijin; Zheng, Shixue; Cao, Cougui; Li, Chengfang

    2016-01-01

    The objective of this study was to investigate how the relationships between bacterial communities and organic C (SOC) in topsoil (0–5 cm) are affected by tillage practices [conventional intensive tillage (CT) or no-tillage (NT)] and straw-returning methods [crop straw returning (S) or removal (NS)] under a rice-wheat rotation in central China. Soil bacterial communities were determined by high-throughput sequencing technology. After two cycles of annual rice-wheat rotation, compared with CT treatments, NT treatments generally had significantly more bacterial genera and monounsaturated fatty acids/saturated fatty acids (MUFA/STFA), but a decreased gram-positive bacteria/gram-negative bacteria ratio (G+/G−). S treatments had significantly more bacterial genera and MUFA/STFA, but had decreased G+/G− compared with NS treatments. Multivariate analysis revealed that Gemmatimonas, Rudaea, Spingomonas, Pseudomonas, Dyella, Burkholderia, Clostridium, Pseudolabrys, Arcicella and Bacillus were correlated with SOC, and cellulolytic bacteria (Burkholderia, Pseudomonas, Clostridium, Rudaea and Bacillus) and Gemmationas explained 55.3% and 12.4% of the variance in SOC, respectively. Structural equation modeling further indicated that tillage and residue managements affected SOC directly and indirectly through these cellulolytic bacteria and Gemmationas. Our results suggest that Burkholderia, Pseudomonas, Clostridium, Rudaea, Bacillus and Gemmationas help to regulate SOC sequestration in topsoil under tillage and residue systems. PMID:27611023

  8. Evaluating Lignin-Rich Residues from Biochemical Ethanol Production of Wheat Straw and Olive Tree Pruning by FTIR and 2D-NMR

    Directory of Open Access Journals (Sweden)

    José I. Santos

    2015-01-01

    Full Text Available Lignin-rich residues from the cellulose-based industry are traditionally incinerated for internal energy use. The future biorefineries that convert cellulosic biomass into biofuels will generate more lignin than necessary for internal energy use, and therefore value-added products from lignin could be produced. In this context, a good understanding of lignin is necessary prior to its valorization. The present study focused on the characterization of lignin-rich residues from biochemical ethanol production, including steam explosion, saccharification, and fermentation, of wheat straw and olive tree pruning. In addition to the composition and purity, the lignin structures (S/G ratio, interunit linkages were investigated by spectroscopy techniques such as FTIR and 2D-NMR. Together with the high lignin content, both residues contained significant amounts of carbohydrates, mainly glucose and protein. Wheat straw lignin showed a very low S/G ratio associated with p-hydroxycinnamates (p-coumarate and ferulate, whereas a strong predominance of S over G units was observed for olive tree pruning lignin. The main interunit linkages present in both lignins were β-O-4′ ethers followed by resinols and phenylcoumarans. These structural characteristics determine the use of these lignins in respect to their valorization.

  9. COMPARED ANALYSIS OF CATALASE AND PEROXIDASE ACTIVITY IN CELLULOLYTIC FUNGUS TRICHODERMA REESEI GROWN ON MEDIUM WITH DIFFERENT CONCENTRATIONS OF GRINDED WHEAT AND BARLEY STRAWS

    Directory of Open Access Journals (Sweden)

    Mihaela Cristica

    2010-09-01

    Full Text Available The purpose of this study was to assess the evolution of catalase and peroxidase activity in Trichoderma reesei grown on medium containing grinded wheat and barley straws. Carbon source of cultivation medium - glucose was replaced by various concentrations of grinded wheat and barley straws, finally resulting three experimental variants as follows: V1 = 20 g/l, V2 = 30 g/l, V3 = 40 g/l. ĂŽn addition to these variants a control sample was added in which composition remainded unchanged. The catalase activity was determined by spectrophotometric Sinha method (Artenie et al., 2008 while peroxidase activity was assesed using the o-dianisidine method (Cojocaru, 2009. Enzymatic determinations were carried out at 7 and 14 days from inoculation, in both fungus mycelium and culture liquid. The enzymatic assay showed significant differences between determinations intervals and work variants. Enzyme activity is influenced by the age of fungus and by the different nature of the substrate used.

  10. Effect of microbial spraying on wheat and rice straw returning to ditch%微生物菌喷施对集沟还田稻麦秸秆的影响

    Institute of Scientific and Technical Information of China (English)

    方志超; 刘玉涛; 丁为民; 陈玉仑; 秦宽

    2015-01-01

    在稻麦轮作、秸秆集沟还田模式下,针对沟内秸秆因腐解过慢而妨碍下茬作物正常生长的问题,利用微生物复合菌对秸秆的催腐特性,采用已研制的稻麦联合收获开沟埋草多功能一体机的喷施功能,对沟内秸秆进行喷菌使其快速腐解还田。为考察菌剂对秸秆的腐解效果,设计了裂区对比试验。试验结果表明:观察期内,夏季麦秸秆在液体菌剂+覆土处理下腐解率达74.60%,远高于对照组(不施菌剂+覆土)的12.80%,也高于未覆土+液体菌剂处理的44.11%,表明适宜的菌剂对麦秸秆有较好的促腐效果;冬季稻秸秆在各菌剂处理下秸秆的腐解率均不超过30%,且与对照组无显著差异(P>0.05)。粉末状菌剂的各处理腐解率均在25%以下,促腐效果不明显,表明粉剂在该模式下适用性有限。该研究为集沟还田的秸秆进一步处理提供了参考。%China is an important agricultural country with an annual crop straw production of nearly 700 million tons, which represents a substantially large number of straw resources that can be utilized. The wheat-rice rotation cropping system in the Yangtze River delta area is always accompanied by high yield;however, the existing conventional method of straw returning would not completely solve the problems caused by the produced straw with large quantity and short processing time. Alternatively, the new method of returning straw into a ditch is also widely used under the practice of conservation farming with no tillage and direct seeding cultivation. This method not only achieves a fully returning of straw, but also is helpful to the multi-purpose ditch use and enhances soil carbon sequestration. However, long-term practice has shown that under the natural state, straws in the ditch will not decay rapidly, and therefore will not be able to be transferred into organic fertilizer in a timely manner for adsorption by the crops

  11. Study of structural characterization of sulfomethylated wheat straw lignin%麦草碱木质素磺甲基化反应及性能的研究

    Institute of Scientific and Technical Information of China (English)

    梁文学; 邱学青; 欧阳新平; 杨东杰

    2007-01-01

    针对麦草碱木质素水溶性差、分子质量低、难以工业利用的问题,采用Fenton试剂为氧化剂,以亚硫酸钠为磺化剂对麦草浆碱木质素进行氧化再进行磺甲基化反应,得到质量分数为33%(Wt)的氧化磺甲基化碱木质素的溶液.红外光谱(FTIR)测试表明产物中具有磺酸基的特征吸收峰.利用凝胶渗透色谱(GPC)测得其重均分子质量达到6653 g·mol-1.通过紫外吸收光谱(UV)测得其最大吸收波长在276 nm处.通过碱木质素磺化反应前后的核磁共振(13CNMR)测得磺甲基接入碱木质素中芳环的C-5位.当溶液质量浓度为30 g·L-1时,溶液表面张力为45.3 mN·m-1.%It is hard to utilize the wheat straw grass lignin as resource due to its in solubility in neutral aqueous and low molecular weight. In order to promote the utilization of it, sulfomethylation of wheat straw grass lignin is studied using Fenton reagent as oxidation reagent, sodium sulfite anhydrous and formaldehyde as sulfomethylation agent. The characterization of oxided and sulfometylated wheat straw grass lignin (OSWSL) is determined using FTIR, GPC,13C-NMR and UV. The results show that the average molecular weight of OSWSL (-Mw) is 6653 g·mol-1 which is greater than that of wheat strew lignin of 2828g·mol-1. 13C-NMR spectrum exhibits that the position of sulfomethylation reaction is C-5 in Guaiacyl suit, and the maximum absorption peak of UV is at 276 nm. When the solution concentration of OSWSL is 30 g·L-1, the surface tension is 45.3 mN·m-1.

  12. The influence of silane coupling agent and poplar particles on the wet-tability, surface roughness, and hardness of UF-bonded wheat straw (Triticum aestivum L.)/poplar wood particleboard

    Institute of Scientific and Technical Information of China (English)

    Seyedeh Masoumeh Hafezi; Kazem Doosthoseini

    2014-01-01

    We used silane coupling agents to improve the bonding ability between wheat straw particles and UF resin, and investigated surface properties (wettability and surface roughness) and hardness of parti-cleboard made from UF-bonded wheat straw (Triticum aestivum L.) combined with poplar wood as affected by silane coupling agent content and straw/poplar wood particle ratios. We manufactured one-layered particleboard panels at four different ratios of straw to poplar wood par-ticles (0%, 15%, 30% and 45% wheat straw) and silane coupling agent content at three levels of 0, 5% and 10%. Roughness measurements, average roughness (Ra), mean peak-to-valley height (Rz), and root mean square roughness (Rq) were measured on unsanded samples by using a fine stylus tracing technique. We obtained contact angle measurements by using a goniometer connected to a digital camera and computer sys-tem. Boards containing greater amounts of poplar particles had superior hardness compared to control samples and had lower wettability. Panels made with higher amounts of silane had lower Rq values.

  13. 麦秸和奶牛场废弃物联合堆肥试验%Co-composting of wheat straw and dairy waste

    Institute of Scientific and Technical Information of China (English)

    李瑞鹏; 于建光; 常志州; 顾元; 周立祥

    2012-01-01

    An experiment was conducted to investigate the feasibility of co-composting of wheat straw and dairy waste. Wheat straw was co-composting with biogas residues, biogas slurry, dairy manure, and dairy slurry, respectively, and pure wheat straw composting was regarded as control, in which C/N ratio was regulated to 35 : 1 using urea. The results indicated that the high temperature durations above 50 ℃ for five composts were 30 d, 17d,41 d, 12d and 24 d, respectively, which reached the sanitary standard of aerobic composting. The organic carbon contents of five composts decreased by 14. 00% , 5. 50% , 15. 80% , 4.45% and 10.70% at the end of experiment, respectively. The contents of nitrogen, phosphorus and potassium increased gradually during composting. At the end of composting, the organic matter content was 590. 28-701. 86 g/kg. The total nutrient content (N+P2O5+K2O) was 46.54-89.45 g/kg. Among five treatments, total nutrients in the co-compost of straw and dairy manure was the highest(89.45 g/kg) , followed by co-compost of wheat straw and biogas residues (69.61 g/kg). Given long high-temperature duration and high total content of nitrogen, phosphorus and potassium, co-com-posting oi wheat straw and dairy manure or biogas residues is suitable in practical application. But it is economical for the co-composting of wheat straw and biogas slurry or dairy slurry, because of high ratio of 1. 8 t biogas slurry or dairy slurry to 1. 0 t wheat straw.%设置小麦秸秆和奶牛场废弃物联合堆肥试验,以评估其消纳养殖废水与制作商品有机肥的可行性.试验用麦秸分别与沼渣、沼液、牛粪、粪水混合堆肥,以小麦秸秆并用尿素调节碳氮比为35∶1的处理为对照.结果表明,各处理堆体温度50℃以上持续时间分别为30 d、17 d、41 d、12 d和24d,均已符合堆肥卫生标准要求的高温天数;堆肥过程中麦秸分别与沼渣、沼液、牛粪、粪水混合堆肥及对照的

  14. 不同表面处理麦秸秆对木塑复合材料性能的影响%Effects of different surface treatment for wheat straw on performances of wood-plastic composites

    Institute of Scientific and Technical Information of China (English)

    于旻; 何春霞; 刘军军; 侯人鸾; 薛娇

    2012-01-01

    In order to improve the interfacial bonding strength of wheat straw fibers and polypropylene (PP), the wheat straw fibers were treated by combined treatment. The surfaces of fibers were pretreated by 5 methods, such as NaOH, acetic acid, hot water, steam explosion and microwave, and then compounded by coupling agent treatment. The wheat straw/PP wood-plastic composites were prepared by blending with PP and wheat straw through melt blending and molding. The mechanical properties, water absorption and moisture absorption performance of the PP wood-plastic composites filled with different surface treated wheat straw fibers were investigated. The tensile sections of the composites were observed by the stereo microscope. The results showed that the mechanical properties, water absorption and moisture absorption performance of PP composites filled with combined treated fibers were excellent that the composites filled with coupling agent treated fibers. It was found that the composites with wheat straw treated by NaOH and acetic acid had good mechanical properties and anti-water absorption and anti-moisture absorption performance, followed by the composites with wheat straw fibers treated by hydrothermal and steam explosion. After combined treatment, the surface of wheat straw became rough, so that the interfacial adhesion of straw fibers and PP matrix was improved. The results of this paper had great practical significance on improving the properties of wheat straw/waste PP wood-plastic composite by straw fiber surface treatment.%为提高麦秸秆纤维与聚丙烯(polypropylene,PP)基体的界面结合力,采用复合处理法对麦秸秆纤维进行表面处理:先分别用NaOH、乙酸溶液浸泡、水热处理、蒸汽爆破和微波等方法对麦秸秆纤维进行预处理,再复合偶联剂法处理麦秸秆纤维;用熔融共混、模压成型方法制备麦秸秆/废弃PP木塑复合材料,探讨了麦秸秆不同表面处理方法制备PP木塑复合材料

  15. [Effects of Warming and Straw Application on Soil Respiration and Enzyme Activity in a Winter Wheat Cropland].

    Science.gov (United States)

    Chen, Shu-tao; Sang, Lin; Zhang, Xu; Hu, Zheng-hua

    2016-02-15

    In order to investigate the effects of warming and straw application on soil respiration and enzyme activity, a field experiment was performed from November 2014 to May 2015. Four treatments, which were control (CK), warming, straw application, and warming and straw application, were arranged in field. Seasonal variability in soil respiration, soil temperature and soil moisture for different treatments were measured. Urease, invertase, and catalase activities for different treatments were measured at the elongation, booting, and anthesis stages. The results showed that soil respiration in different treatments had similar seasonal variation patterns. Seasonal mean soil respiration rates for the CK, warming, straw application, and warming and straw application treatments were 1.46, 1.96, 1.92, and 2.45 micromol x (m2 x s)(-1), respectively. ANOVA indicated that both warming and straw applications significantly (P invertase, and catalase activities compared to CK. The relationship between soil respiration and urease activity fitted with a linear regression function, with the P value of 0.061. The relationship between soil respiration and invertase (P = 0.013), and between soil respiration and catalase activity (P = 0.002) fitted well with linear regression functions. PMID:27363163

  16. Enzymatic hydrolysis of wheat straw under pretreatment by combining ionic liquid dissolution with alkali extraction%碱-离子液体预处理对麦草秸秆酶水解糖化的影响

    Institute of Scientific and Technical Information of China (English)

    耿秀娟; 夏新兴; 巩海永

    2015-01-01

    将离子液体[BMIM]Cl应用于麦草秸秆预处理,并结合碱(NaOH)处理工艺,探讨不同预处理方法对麦草酶水解糖化的影响。研究发现,130℃时,离子液体溶解3g未经碱处理的麦草秸秆所用时间为15h;而溶解4g碱处理后的麦草秸秆所需时间仅为10h,溶解时间大大缩短。麦草在不经过碱处理情况下,在离子液体中15h,其溶解度为4.50%;麦草在经过碱处理情况下,在离子液体中10h,其溶解度为6.01%。由酶水解实验可知,不同预处理方法对酶水解率影响很大,单独碱处理的麦草秸秆的酶水解率为70.7%,而经碱和离子液体联合处理的试样的酶水解率达到95.3%,后者的酶水解率远大于前者,而直接经离子液体处理的麦草后续的酶水解率最低,仅为26.9%。这说明碱处理过程具有脱除部分木质素、降低结晶度和提高纤维比表面积的作用,从而使麦草后续酶水解率提高。%Combining with ionic liquid 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) and alkali on pretreatment of wheat straw, the effect of different pretreatment process on the enzymatic hydrolysis of wheat straw was studied. The results show that when 3 gram of primary wheat straw without alkali treatment is dissolved at 130℃ in [BMIM]Cl, the processing time is 15h; when 4 gram of wheat straw pretreated with alkali is dissolved in [BMIM]Cl, the processing time is 10h only, with the dissolution time greatly reduced. Solubility of primary wheat straw without alkali treatment is 4.50% in ionic liquid [BMIM]Cl after 15 hours; solubility of wheat straw pretreated with alkali is 6.01% after 10h. The experiment for enzymatic hydrolysis shows that different pretreatment process has a great effect on enzymatic hydrolysis rate, the enzymatic hydrolysis rate of wheat straw pretreated with alkali alone being 70.7%, while the enzymatic hydrolysis rate of wheat straw pretreated by alkali extraction and ionic

  17. 理化预处理麦秸改善其聚丙烯复合材料抗霉菌腐蚀力学性能%Physicochemical pretreatments of wheat straw improving fungus corrossion resistance and mechanical properties of wheat straw/polypropylene composites

    Institute of Scientific and Technical Information of China (English)

    刘丁宁; 何春霞; 薛娇; 付菁菁; 常萧楠

    2016-01-01

    Wood-plastic composite (WPC), whose main raw materials are plant fiber and plastic, is a kind of green low carbon material, prepared by molding, extrusion or injection molding. It has advantages of plant fiber and plastic, widely used in landscape architecture, furniture, logistics and packaging, automotive interiors and other industries. Wheat straw fibers are underutilized agricultural residues with potential for use in reinforced polymer composites that would save existing wood and petroleum resources. The antibacterial property of polymer material is excellent, so WPC is more resistant to corrosion than wood. However, during the pratical application, people found WPC was still affected by fungus corrosion at a certain temperature and humidity, plaque was formed on the surface of the composite and mechanical properties declined. These led the service life of WPC to be shortened greatly. So study on the corrosion resistance of WPC is very necessary. In order to study the effect of different pretreatments of wheat straw on the fungus corrosion resistance of wheat straw / polypropylene (PP) composites, 4 treatments, i.e. sodium hydroxide (NaOH), acetic acid (HAc), hydrotherm and microwave were used to modify the surface of wheat straw, and the accelerated corrosion tests on the treated and untreated composites were carried out. The mechanical properties, color variation and water absorption of the composites after the corrosion were investigated. And the change of functional groups was analyzed by Fourier transform infrared spectroscopy (FTIR), and the fungus growth and the microstructure of the surface of the composites were observed by stereomicroscope. The results showed that the fungus could corrode the cellulose, hemicellulose and lignin in the wheat straw, which led to the cracks and holes generating on the surface of composites. The pretreatments could improve the interface bonding between wheat straw fiber and PP matrix, and the cellulose, hemicellulose and

  18. Capacity for colonization and degradation of horse manure and wheat-straw-based compost by different strains of Agaricus subrufescens during the first two weeks of cultivation.

    Science.gov (United States)

    Farnet, Anne-Marie; Qasemian, Leila; Peter-Valence, Frédérique; Ruaudel, Florence; Savoie, Jean Michel; Ferré, Elisée

    2013-03-01

    The potential of Agaricus subrufescens strains to colonize and transform horse manure and wheat-straw-based mushroom compost under the physico-chemical conditions typically used for Agaricus bisporus was assessed. Lignocellulolytic activities, H2O2 production and substrate transformation (assessed via CP/MAS NMR of (13)C) for certain A. subrufescens strains were similar or even greater than those obtained for an A. bisporus strain used as control. Moreover, the functional diversity of the microbial communities of the substrate was not altered by the growth of A. subrufescens after 2weeks. These findings obtained with mesocosms simulating the incubation phase of the mushroom production process hold promise for the improvement of cultivation of this tropical Agaricus species on European standard mushroom compost.

  19. Comparison of SHF and SSF processes from steam-exploded wheat straw for ethanol production by xylose-fermenting and robust glucose-fermenting Saccharomyces cerevisiae strains

    DEFF Research Database (Denmark)

    Tomas Pejo, Elia; Oliva, Jose M.; Ballesteros, Mercedes;

    2008-01-01

    amounts of pentoses. Red Star is a robust hexose-fermenting strain used for industrial fuel ethanol fermentations and it was used for comparative purposes. The highest ethanol concentration, 23.7 g/L, was reached using the whole slurry (10%, w/v) and the recombinant strain (F12) in an SSF process......, it showed an ethanol yield on consumed sugars of 0.43 g/g and a volumetric ethanol productivity of 0.7 g/Lh for the first 3 h. Ethanol concentrations obtained in SSF processes were in all cases higher than those from SHF at the same conditions. Furthermore, using the whole slurry, final ethanol...... concentration was improved in all tests due to the increase of potential fermentable sugars in the fermentation broth. Inhibitory compounds present in the pretreated wheat straw caused a significantly negative effect on the fermentation rate. However, it was found that the inhibitors furfural and HMF were...

  20. Anaerobic co-digestion of animal manure and wheat straw for optimized biogas production by the addition of magnetite and zeolite

    International Nuclear Information System (INIS)

    Highlights: • The additives of magnetite and zeolite in anaerobic digestion were studied. • Mineral additives increased methane production significantly. • Mineral additives provided a good environment for methanogens. • The optimum conditions for anaerobic digestion process were optimized. - Abstract: To enhance biogas production and identify new additive materials for the co-digestion of wheat straw, sheep manure, and chicken manure, batch experiments were investigated in this study. Experiments were conducted on the influence of additive materials on a range of manure/straw ratios (3:7, 5:5, and 7:3) and biogas production under a mesophilic temperature (35 °C). Results showed that the maximum increments of methane production (L/kg · VSadd) with the addition of 3 g magnetite and 1 g natural zeolite were 52.01% and 51.01%, respectively. The addition of magnetite and zeolite in the anaerobic digestion process produced a good fermentation environment. By using the response optimizer when the manure proportion was 52%, the best methane yield was obtained with the addition of 2.7 g magnetite. For zeolite, the best addition dose was 1 g and the optimum manure proportion is 63%. Magnetite had a more extensive increase in methane yield than zeolite

  1. Pilot-scale conversion of lime-treated wheat straw into bioethanol: quality assessment of bioethanol and valorization of side streams by anaerobic digestion and combustion

    Directory of Open Access Journals (Sweden)

    de Jong Ed

    2008-08-01

    Full Text Available Abstract Introduction The limited availability of fossil fuel sources, worldwide rising energy demands and anticipated climate changes attributed to an increase of greenhouse gasses are important driving forces for finding alternative energy sources. One approach to meeting the increasing energy demands and reduction of greenhouse gas emissions is by large-scale substitution of petrochemically derived transport fuels by the use of carbon dioxide-neutral biofuels, such as ethanol derived from lignocellulosic material. Results This paper describes an integrated pilot-scale process where lime-treated wheat straw with a high dry-matter content (around 35% by weight is converted to ethanol via simultaneous saccharification and fermentation by commercial hydrolytic enzymes and bakers' yeast (Saccharomyces cerevisiae. After 53 hours of incubation, an ethanol concentration of 21.4 g/liter was detected, corresponding to a 48% glucan-to-ethanol conversion of the theoretical maximum. The xylan fraction remained mostly in the soluble oligomeric form (52% in the fermentation broth, probably due to the inability of this yeast to convert pentoses. A preliminary assessment of the distilled ethanol quality showed that it meets transportation ethanol fuel specifications. The distillation residue, which contained non-hydrolysable and non-fermentable (inorganic compounds, was divided into a liquid and solid fraction. The liquid fraction served as substrate for the production of biogas (methane, whereas the solid fraction functioned as fuel for thermal conversion (combustion, yielding thermal energy, which can be used for heat and power generation. Conclusion Based on the achieved experimental values, 16.7 kg of pretreated wheat straw could be converted to 1.7 kg of ethanol, 1.1 kg of methane, 4.1 kg of carbon dioxide, around 3.4 kg of compost and 6.6 kg of lignin-rich residue. The higher heating value of the lignin-rich residue was 13.4 MJ thermal energy per

  2. 氨化秸秆还田改善土壤结构增加冬小麦产量%Ammoniated straw improving soil structure and winter wheat yield

    Institute of Scientific and Technical Information of China (English)

    余坤; 冯浩; 王增丽; 丁奠元

    2014-01-01

    As an important organic resource, straw returning into soil is a most economic and feasible method to improve soil structure and crop yield. Many problems occur in the utilization of straw resources, such as the slow decomposition of straw and the competition of nitrogen between straw and crop when the straw is applied into soil, thereby negatively affecting the crop yield. These problems can be affected by straw-incorporation methods, and an appropriate method may result in few problems. Therefore, this study aimed to select an efficient straw incorporation method to improve soil structure and increase crop yield in semi-arid region of Shaanxi China. To achieve this goal, a 2-year field experiment was carried out in the year of 2011-2013. Summer maize straw was used. Two control treatments included long straw returning by covering soil (CK1), long straw plowed into soil (CK2). Four straw treatments were long-ammoniated straw plowed into soil (CN), powdered-ammoniated straw plowed into soil (FN), long-ammoniated straw mixed with inorganic soil amendment (calcium sulfate) plowed into soil (CNT) and powdered-ammoniated straw mixed with inorganic soil amendment (calcium sulfate) plowed into soil (FNT). The soil bulk density, total porosity, water stable aggregates, mean weight diameter (MWD), geometric mean diameter (GMD), and fractional dimension of soil aggregates were determined before experiment in 2010. Winter wheat was planted after straw returning. After harvesting winter wheat and measuring its yield, we collected soil samples at the depth of 0-30 cm and determined the soil structure-related indicators as above. The results showed that compared with CK1 and CK2, the treatment FN in the plough layer (0-15 cm) significantly (P15-30 cm. In 0-15 cm soil layer, the application of powdered-ammoniated straw (P0.25 mm), significantly (P0.05), 0.76 (P15~30 cm)土壤体积质量及孔隙度改善效果不明显;氨化秸秆施入土壤后较

  3. Research on Preparation and Properties of PP/Wheat Straw/Kaolin Composites%聚丙烯/小麦秸秆/高岭土复合材料的制备及力学性能研究

    Institute of Scientific and Technical Information of China (English)

    郑晓慧; 侯桂香; 周立朋; 孙立婧; 林雅平; 曹阳

    2012-01-01

    采用熔融共混法,制备了聚丙烯/小麦秸秆/高岭十三元复合材料.并对复合材料的结构和力学性能进行了表征.结果表明:小麦秸秆和高岭土的加入使得复合材料的冲击性能提高,小麦秸秆质量分数为4%,高岭土质量分数为5%的复合材料的冲击强度,比聚丙烯/高岭土体系提高16.3%,比聚丙烯/麦秆体系提高28.5%;但复合材料的拉伸强度下降.微观分析表明:小麦秸秆和高岭土在复合材料中分散良好,增加了聚丙烯基体的界面效应;复合材料断面有微裂纹产生,高岭土的加入增加了小麦秸秆和聚丙烯的相容性.%In this paper, polypropylene/wheat straw/kaolin ternary composites were prepared through the melt blending method. The properties and the structure of the composites were studied. The results indicated that the impact performance of composites was improved. Compared with the PP/kaolin, the impact strength was improved by 16. 3% , and compared with the PP/wheat straw, improved by 28. 6% , when the weight percentage content of the wheat straw was 4% and kaolin was 5%. But tensile strength was decreased with the addition of the wheat straw and kaolin. Micro-analysis showed that wheat straw and kaolin dispersed homogeneously in the composites, and increased the interface effect of the composite materials system, the cross section displayed the distribution of microcrack structure. Compatibility between polypropylene and wheat straw was enhanced with the added of kaolin.

  4. Effects of Straw Application on Soil Organic Carbon and Active Organic Carbon in Wheat-corn Rotation System%秸秆还田对小麦-玉米轮作田土壤有机碳质量的影响

    Institute of Scientific and Technical Information of China (English)

    高翔; 沈阿林; 寇长林; 马政华; 王文亮; 郭战玲

    2012-01-01

    利用小麦-玉米轮条件下不同秸秆还田方式进行定位试验,对不同秸秆还田方式下土壤有机碳和活性有机碳含量进行了6a11季的连续监测,结果表明:单施化肥和秸秆还田配施化肥均能提高土壤有机碳含量;3种还田方式均能显著提高活性有机碳和碳库管理指数,表现为玉米秸秆还田>两季秸秆还田>小麦秸秆还田;3种秸秆还田处理的土壤有机碳增长速率为玉米秸秆还田>两季秸秆还田>小麦秸秆还田.小麦季玉米秸秆还田对有机碳活性提升效果优于两季秸秆还田和玉米季小麦秸秆还田.%A 6-year field experiment was carried out to study the effects of corn stover or/and wheat straw incorporated with chemical fertilizers on organic carbon and active organic carbon in soil in a wheat and corn rotation system. The results showed that the treatments of chemical fertilizer applied only and chemical fertilizer applied with straw returning increased the active organic carbon proportion in soil. All three methods of straw returning significantly improved the quantity of labile organic carbon(LOC) and (carbon management index) (CMI) , which was in the follow order: corn straw application>corn and wheat straw application> wheat straw application. And for the total organic carbon(TOC) increase speed was corn straw applied>corn stover and wheat straw applied>wheat straw applied. There was higher organic carbon activity in the treatment of returning corn straw in wheat season than the treatment of both corn stover and wheat straw applied in two seasons or the treatment of wheat straw applied in corn season.

  5. 碳酸钠预处理对麦草酶水解糖化的影响%Effect of Sodium Carbonate Cooking on the Enzymatic Hydrolysis of Wheat Straw

    Institute of Scientific and Technical Information of China (English)

    黄婷; 张帅; 金永灿; 张厚民; Hasan Jameel; Richard Phillips; 李忠正

    2012-01-01

    Wheat straw is an important renewable lignocellulosic biomass,which is of great potential for bioethanol production.In this paper,sodium carbonate(SC) was used as pretreatment to improve the enzymatic hydrolysis of wheat straw.The effects of impregnation time,time at temperature,and Na2CO3 charge on the enzymatic hydrolysis of pretreated wheat straw were investigated.Extension of time at temperature has little effect on delignification,but lowers the pulp yield and total sugar recovery in enzymatic hydrolysis.An impregnation time of 30 min results relatively high sugar retention and enzymatic hydrolysis efficiency.Sodium carbonate charge plays an important role on improving lignin removal of wheat straw,and most carbohydrate retains.After wheat straw pretreated by sodium carbonate with 8% Na2CO3(as Na2O) at 130℃,the sugar recovery is 60% at a cellulase loading of 20 FPU/g cellulose.The results show that sodium carbonate pretreatment is a promising way to improve the enzymatic saccharification of straw materials.%麦草是一种具有很大潜力的制取生物乙醇的可再生木质纤维素原料。文章探讨了碳酸钠预处理预浸时间、保温时间、碳酸钠用量对麦草化学成分及酶水解效率的影响。结果表明,延长碳酸钠预处理保温时间对木质素脱除无明显影响,但浆料得率和酶水解总糖转化率有所下降;合理的预浸时间为30 min,继续延长预浸时间对预处理浆料酶水解总糖转化率无促进作用;增加预处理Na2CO3用量有助于促进木质素的脱除,大部分碳水化合物保留在浆料中。在8% Na2CO3(Na2O计)用量下,麦草于80℃预浸30 min后升温至130℃,不保温所得到的浆料在纤维素酶用量为20 FPU/g(对纤维素)时,其总糖转化率为60%。

  6. Reactivity and Kinetics of Bitumite and Wheat Straw Blends During Co-Gasification%烟煤与生物质秸秆共气化反应动力学研究

    Institute of Scientific and Technical Information of China (English)

    张媛; 张海亮; 蒋雪冬; 杨伯伦

    2011-01-01

    To study the kinetics of coal and straw during co-gasification, Shenfu bitumite and wheat straw were blended in different ratios and then pyrolyzed to get blends char. The synergistic effect in the pyrolysis process of blends and the comparison of reactivity in the blends char-CO2 gasification process were investigated by TGA, and the kinetics of both processes was analyzed with Coats-Redfern method. The results show that the pyrolysis temperature of bitumite and wheat straw is different; Co-pyrolysis demonstrates two different stages coinciding with the individual pyrolysis characteristics of bitumite and wheat straw; the activation energies of pyrolysis of blends and bitumite are similar, which implies that there is no obvious synergistic effect in co-pyrolysis process; the comparison of reactivity of char-CO2 gasification is listed in reducing order: wheat straw char, blends char, bitumite char; the activity energies of co-gasification are lower than bitumite char, which means the addition of wheat straw promotes the char-CO2 gasification.%为研究煤与秸秆共气化过程的反应动力学规律,将不同比例的神府烟煤和小麦秸秆掺混并制焦,用热分析法对混合试样的热解协同作用及混合焦C02气化的反应特性进行了考察,并采用Coats-Redfern方法对该过程进行了动力学解析.研究结果表明:烟煤与秸秆的热解温度相差较大;混合试样呈分段热解,其热解活化能与烟煤热解的活化能相近,秸秆的加入对烟煤的热解没有明显的促进或阻碍作用;焦样的C02气化反应活性从高到低依次为秸秆焦、混合焦、烟煤焦;秸秆的加入使混合焦的活化能相比烟煤焦有较大降低,促进了混合焦的C02气化反应的进行.

  7. Impact of Covering Wheat Straw and Shading on Vegetative Growth of Zhangqiu Green Onion%覆麦草和遮光对夏季章丘大葱营养生长的影响

    Institute of Scientific and Technical Information of China (English)

    袁园园; 张荣亭; 高莉敏; 郭守鹏; 徐佳宁; 黄翊鹏

    2012-01-01

    以章丘大葱大梧桐品种为试材,研究了夏季栽培中覆麦草和遮光对大葱株高和单株鲜重的影响.结果表明:7~9月各处理的株高和单株鲜重差异显著,覆麦草不利于大葱的长高和增重,而遮光可明显促进大葱生长,不覆麦草、遮光50%的处理株高平均值与对照差异不显著,但平均单株鲜重比对照高63.82%,增产潜力较大.多因素方差分析表明:覆麦草、遮光及两者交互效应对大葱株高和单株鲜重有极显著影响(P<0.01).%The experiment was conducted to study the impact of covering wheat straw and shading on the plant height and the individual fresh weight of Zhangqiu green onion "Dawutong" in summer cultivation. The results showed that the plant height and the individual fresh weight of different treatments had significant differences from July to September. The survey data displayed that covering wheat straw was bad while shading was advantageous for the growth of onion. Especially, the treatment with no wheat straw covering but 50% shading had the plant height similar to CK, but its individual fresh weight was 63.82% more than that of CK, which indicated the enormous potential in increasing yield. The multi - way ANOVA showed that covering wheat straw, shading and their interaction significantly affected the plant height and individual fresh weight of Zhangqiu green onion(P<0.01).

  8. 玉米秸秆不同还田方式下麦田温室气体排放特征%Characteristics of Greenhouse Gas Emissions from the Wheat Fields with Different Returning Methods of Maize Straws

    Institute of Scientific and Technical Information of China (English)

    李新华; 朱振林; 董红云; 杨丽萍; 郭洪海

    2016-01-01

    为了探讨玉米秸秆不同还田方式对麦田温室气体排放的影响,通过田间试验,设玉米秸秆不还田(CK)、玉米秸秆直接还田(CS)、玉米秸秆过腹还田(CGS)和玉米秸秆转化为食用菌基质,出菇后菌渣还田(CMS)4个处理,利用静态箱-气相色谱法测定了玉米秸秆不同还田方式下,麦田温室气体(CO2、N2O和CH4)的排放特征。结果表明:玉米秸秆不同还田方式下,麦田温室气体通量均具有明显的季节变化,且排放量不同。在小麦生长季,CO2和N2O均表现为排放,其排放量为CK>CGS>CS>CMS;甲烷表现为吸收,其吸收量为CS>CGS>CK>CMS,且不同处理间差异显著(PCGS>CK>CMS,也就是说秸秆直接还田,显著增加麦田温室气体的全球增温潜势,其次是玉米秸秆过腹还田方式,而秸秆-菌渣还田则降低了麦田温室气体的全球增温潜势。从减少温室气体排放角度,推荐秸秆-菌渣还田方式。该研究结果可为秸秆合理利用和温室气体减排提供基础数据。%In order to investigate the effect of different returning methods of maize straw on the greenhouse gas emissions from the wheat fields, we explored the greenhouse gas CO2, N2O and CH4 emissions from the wheat fields using static chamber-gas chromatograph technique from December 2013 to May 2014 . The experiments set four treatments including no maize straw returning(CK), direct maize straw returning directly(CS), maize straw-rumen-cattle dung returning(CGS)and maize straw-mushroom residue returning(CMS), and the four treatments were investigated under the same watering and fertilizing conditions. The results showed that the greenhouse gas emissions from the wheat fields all had distinct seasonal variations and the cumulative emissions of greenhouse gas emissions were different. During the maize growing season, the cumulative emissions of both CO2 and N2O were emitted and in the order of CK

  9. Characteristics of Greenhouse Gas Emissions from the Wheat Fields with Different Returning Methods of Maize Straws%玉米秸秆不同还田方式下麦田温室气体排放特征

    Institute of Scientific and Technical Information of China (English)

    李新华; 朱振林; 董红云; 杨丽萍; 郭洪海

    2016-01-01

    In order to investigate the effect of different returning methods of maize straw on the greenhouse gas emissions from the wheat fields, we explored the greenhouse gas CO2, N2O and CH4 emissions from the wheat fields using static chamber-gas chromatograph technique from December 2013 to May 2014 . The experiments set four treatments including no maize straw returning(CK), direct maize straw returning directly(CS), maize straw-rumen-cattle dung returning(CGS)and maize straw-mushroom residue returning(CMS), and the four treatments were investigated under the same watering and fertilizing conditions. The results showed that the greenhouse gas emissions from the wheat fields all had distinct seasonal variations and the cumulative emissions of greenhouse gas emissions were different. During the maize growing season, the cumulative emissions of both CO2 and N2O were emitted and in the order of CK>CGS>CS>CMS while the cumulative absorptions of CH4 were in the order of CS>CGS>CK>CMS with the significant difference between different treatments(PCGS>CK>CMS under the different returning methods of maize straw, which indicated that direct straw returning could significantly increase the global warming potential of greenhouse gases from the wheat field, followed by CGS while the straw-mushroom residue returning (CMS)could decrease the global warming potential of greenhouse gases from the wheat field. The method of straw-mushroom residue returning should be recommended from the viewpoint of reducing GWP of the greenhouse gas. In all, our study could provide the scientific foundation for the efficiency straw recycle and reducing greenhouse gas emission.%为了探讨玉米秸秆不同还田方式对麦田温室气体排放的影响,通过田间试验,设玉米秸秆不还田(CK)、玉米秸秆直接还田(CS)、玉米秸秆过腹还田(CGS)和玉米秸秆转化为食用菌基质,出菇后菌渣还田(CMS)4个处理,利用静态箱-气相色谱法测定了

  10. Biogasification of steam-exploded wheat straw by a two-phased digestion system%汽爆麦草的两相法生物气化

    Institute of Scientific and Technical Information of China (English)

    陈洪章; 王麾; 张爱军; 李佐虎

    2005-01-01

    蒸汽爆破作为一种新型的预处理方法被初次运用于麦草的两相气化系统,以碳酸氢铵作为补充氮源调节碳氮比,并在相同条件下以未汽爆麦草作对照试验.以汽爆麦草为原料时,水解反应器的pH值低于加入未汽爆麦草的pH值,并且在25 d后慢慢升至7;以两种麦草为原料时,甲烷反应器的pH都稳定在7左右,此时最适合甲烷生成.汽爆麦草的总固形物和挥发性固形物含量分别降低了57.5%和62.1%,下降率差不多是未汽爆麦草的2倍;纤维素和半纤维素的降解率也有了显著的提高,分别为63.0%和67.4%;木质素的降解率变化不大,都在5%左右.汽爆麦草的总产气量高于非汽爆麦草,并且一直保持较高的增长率,而非汽爆麦草的增长率一直较低;两种麦草产生的生物气中的甲烷含量大致相同,在水解反应器中后期为50%左右,在甲烷反应器中为70%左右.以上结果表明,汽爆可以促进麦草的降解,提高生物气的产量,是一种行之有效的预处理技术.%In the study, steam-explosion, a novel pretreatment method of substrate, was firstly introduced in the twophased digestion system. Ammonium bicarbonate was used as added nitrogen source to adjust C/N in the system. Under the same conditions, experiments using NPWS (non-pretreated wheat straw) were processed as the control. Results showed that pH value in the hydrolysis reactor using SEWS (Steam-exploded wheat straw) was lower and increased slowly to 7 in 25 days. In methanogenesis reactors using SEWS and NPWS, pH value was all around 7, which is most suitable to produce methane. In the digestion system using SEWS, the content of TS (Total solid) and VS (Volatile solid) decreased by 57.5% and by 62.1%, respectively, about twice as high as NWPS. The degradation rate of cellulose and semi-cellulose of SEWS were 63.0% and 67.4%, respectively, much higher than NPWS. The degradation rate of the lignin is similar and about 5 %. The total

  11. Enzymatic Hydrolysis of Wheat Straw Pretreated by Green Liquor%绿液预处理麦秆纤维素酶水解的研究

    Institute of Scientific and Technical Information of China (English)

    赵士明; 陆青山; 储秋露; 余世袁

    2012-01-01

    研究了绿液预处理对麦秆酶水解的影响.比较了不同绿液预处理条件下麦秆的浆得率、成分组成与纤维素酶解率,结果表明,预处理条件越剧烈,原料损失越大,而木质素脱除率越高,且在相同酶水解条件下,纤维素酶解率却越高,其中适宜的条件是预处理温度150℃,总碱量8%(Na2O计,对绝干原料)和硫化度40%,浆得率62.0%,葡聚糖、木聚糖和木质素质量分数50.0%、18.9%和16.2%,葡萄糖和木糖得率分别为74.2%和73.5%.考察了质量浓度和酶用量对绿液预处理麦秆酶水解的影响,优化了商品纤维素酶酶系结构和Tween-80的添加量,表明绿液预处理麦秆纤维素酶水解的适宜条件为质量浓度100 g/L,纤维素酶用量15 FPU/g(以纤维素计,下同),β-葡萄糖苷酶9 IU/g,木聚糖酶30 IU/g,Tween-800.05 g/g.在以上条件下,酶水解72 h,葡萄糖得率和木糖得率分别达到了82.5%和77.8%,是优化前的2.6和1.6倍.%The wheat straw pretreated by green liquor was hydrolyzed under the exist of enzymes. The pulp yield,chemical com-position and enzymatic hydrolysis yield under different green liquor pretreatment conditions were studied. The results indicated that the pulp with higher weight loss and delignification were obtained as more severe condition was applied in pretreatment,and the enzymatic hydrolysis yield was higher in the same enzymatic hydrolysis conditions. The proper pretreatment was conducted at 150℃; as the total alkali charge and sulfidity were 8 % and 40 % while pulp yield was 62.0 % ,the content of glucan,xylan and lignin was 50.0 % ,18.9 % and 16.2%,glucose yield and xylose yield was 74.2 % and 73.5% ,repectively. The effects of mass concentration and enzyme dosage on wheat straw pretratment by green liquor were investigated. The enzyme system and addition amount of Tween-80 were optimized. The optimum enzymatic hydrolysis conditions of wheat straw by green liquor were 100 g/L mass

  12. Optimization of hydrothermal pretreatment of wheat straw for production of bioethanol at low water consumption without addition of chemicals

    DEFF Research Database (Denmark)

    Østergaard Petersen, Mai; Larsen, Jan; Thomsen, Mette Hedegaard

    2009-01-01

    In the IBUS process (Integrated Biomass Utilization System) lignocellulosic biomass is converted into ethanol at high dry matter content without addition of chemicals and with a strong focus on energy efficiency. This study describes optimization of continuous hydrothermal pretreatment of wheat s...... cellulase mixtures - increasing to 92% when adding a commercial xylanase. (C) 2009 Elsevier Ltd. All rights reserved....

  13. 模压压力和温度对PE/麦秸秆发泡复合材料的影响%Effects of Molding Pressure and Temperature of PE/Wheat Straw Foam Composite

    Institute of Scientific and Technical Information of China (English)

    常萧楠; 何春霞; 付菁菁; 熊静; 刘丁宁

    2015-01-01

    为探讨模压压力和温度对聚乙烯(PE)/麦秸秆发泡复合材料微观结构和性能的影响,以偶氮二甲酰胺(AC)为发泡剂模压制备PE/麦秸秆发泡复合材料,对比研究模压压力和温度对PE/麦秸秆发泡复合材料热导率、表观密度和吸水性能的影响,用体视显微镜观察材料的断面微观形貌,用傅立叶变换红外光谱分析探讨复合材料的化学结构.结果表明,当模压压力为10 MPa,模压温度为150℃时,PE/麦秸秆发泡复合材料内部泡孔结构均匀,热导率、表观密度和吸水率较小,麦秸秆和PE的界面结合较好,材料较致密.%Azodicarbonamide(AC) was adopted as a foaming agent to prepare polyethylene(PE)/wheat straw foam composite by compression molding process to investigate the effects of molding pressure and temperature on the microstructure and properties of PE/wheat straw foam composite. In order to compare the effects of molding pressure and temperature on the thermal conductivity,apparent density and water absorption capabilityof the foam composites,stereomicroscope was used to observe the section microstructure of material,FTIR was used to characterize the chemical structure of materials. The results indicate that when the molding pressure and temperature are 10 MPa and 150℃respectively, the foam structure inside the PE/wheat straw foam com-posite is uniform, the thermal conductivity, apparent density and water absorption of PE/wheat straw foam composite are lower, wheat straw and PE have better interfacial adhesion so that the material has dense structure.

  14. Effect of additives on adsorption and desorption behavior of xylanase on acid-insoluble lignin from corn stover and wheat straw.

    Science.gov (United States)

    Li, Yanfei; Ge, Xiaoyan; Sun, Zongping; Zhang, Junhua

    2015-06-01

    The competitive adsorption between cellulases and additives on lignin in the hydrolysis of lignocelluloses has been confirmed, whereas the effect of additives on the interaction between xylanase and lignin is not clear. In this work, the effects of additives, poly(ethylene glycol) 2000, poly(ethylene glycol) 6000, Tween 20, and Tween 80, on the xylanase adsorption/desorption onto/from acid-insoluble lignin from corn stover (CS-lignin) and wheat straw (WS-lignin) were investigated. The results indicated that the additives could adsorb onto isolated lignin and reduce the xylanase adsorption onto lignin. Compared to CS-lignin, more additives could adsorb onto WS-lignin, making less xylanase adsorbed onto WS-lignin. In addition, the additives could enhance desorption of xylanase from lignin, which might be due to the competitive adsorption between xylanase and additives on lignin. The released xylanase from lignin still exhibited hydrolytic capacity in the hydrolysis of isolated xylan and xylan in corn stover.

  15. Fertilization of Watermelon Grown with Wheat Straw Substrate in Passive Plastic Greenhouse%大棚西瓜秸秆基质栽培施肥量研究

    Institute of Scientific and Technical Information of China (English)

    袁培祥

    2013-01-01

    Fertilization was studied using watermelon "Xiuli' grown in wheat straw substrate in passive plastic greenhouse. The tests included 5 levels of chicken manure + ammonium phosphate. The measurements included plant growth, yield and fruit quality. With the levels tested in this experiment yield was increased with the increase of fertilizer amount, the best treatment was 30 kg chicken manure + 1.5 kg ammonium phosphate per plot(19.87 m2).%以西瓜品种秀丽为试材,在大棚中采用秸秆基质栽培,腐熟鸡粪+磷酸二铵作为施肥配方,分析比较了5种施肥量对西瓜生长发育、产量及品质的影响,结果表明,在一定施肥量的范围内,产量随施肥量的增加而增加,综合所有因素,最佳施肥配方为每小区腐熟鸡粪30 kg+磷酸二铵1.5 kg.

  16. Digestibility and nitrogen utilization in sheep fed enset (Ensete ventricosum) pseudostem or corm and graded levels of Desmodium intortum hay to wheat straw-based diets.

    Science.gov (United States)

    Nurfeta, A

    2010-12-01

    The aim of this study was to investigate the effects of different levels of Desmodium intortum (Desmodium) hay supplementation in sheep fed fixed amounts of enset pseudostem or corm and a basal diet of wheat straw on intake, digestibility and nitrogen utilization. Eighteen male sheep with a mean (± SD) live weight of 20.5 ± 1.45 kg were assigned to six treatments in a completely randomized design and fed either 108 g dry matter (DM) enset pseudostem or 165 g DM enset corm each with three levels (100, 200 and 300 g) of hay supplementation. For the pseudostem diets, there was no significant difference in total DM intake. Total crude protein (CP) intake and N retention increased with increasing levels of hay in both pseudostem and corm diets. The apparent digestibility of DM, OM, CP, acid detergent fibre and neutral detergent fibre (NDF) and microbial nitrogen supply (MN) at 100 g was lower that other levels of supplementation. For the corm diets, total DM and OM intake and MN supply increased with increasing levels of hay. The digestibility decreased (p Desmodium hay is required in pseudostem diets, whereas 200 g (337 g/kg dietary DM) may be sufficient in corm diets for efficient nutrient utilization. PMID:20050945

  17. A start-up of psychrophilic anaerobic sequence batch reactor digesting a 35 % total solids feed of dairy manure and wheat straw.

    Science.gov (United States)

    Saady, Noori M Cata; Massé, Daniel I

    2015-12-01

    Zero liquid discharge is currently an objective in livestock manure management to minimize water pollution. This paper reports the start-up phase of a novel psychrophilic (20 °C) dry anaerobic digestion of dairy manure with bedding fed at 35 % total solids and an organic loading rate of 3.0 g total chemical oxygen demand kg(-1) inoculum day(-1) in anaerobic sequence batch reactors. The specific methane (CH4) yield ranged from 165.4 ± 9.8 to 213.9 ± 13.6 NL CH4 kg(-1) volatile solids (VS) with an overall average of 188 ± 17 NL CH4 kg(-1) VS during 11 successive start-up cycles (231 days) and a maximum CH4 production rate of 10.2 ± 0.6 NL CH4 kg(-1) VS day(-1). The inoculum-to-substrate (VS-based) ratio ranged from 4.06 to 4.47. Although methanogenesis proceeded fairly well the hydrolysis seemed to be the rate limiting step. It is possible start up psychrophilic dry anaerobic digestion of cow feces and wheat straw at feed TS of 35 % within 7-10 successive cycles (147-210 days). PMID:26289773

  18. Feasibility of using olive mill effluent (OME) as a wetting agent during the cultivation of oyster mushroom, Pleurotus ostreatus, on wheat straw.

    Science.gov (United States)

    Kalmis, Erbil; Azbar, Nuri; Yildiz, Hasan; Kalyoncu, Fatih

    2008-01-01

    In this study, cultivation of oyster mushroom, Pleurotus ostreatus, on wheat straw substrate containing tap water and olive mill effluent (OME) mixture containing varying volume of OME was studied in order to investigate the feasibility of using OME as an alternative wetting agent and OME's impact on some fundamental food quality characteristics of mushrooms. Time period for mycelial colonization, primordium initiation and first harvest were comparatively evaluated with the control group. It was shown that the use of OME and tap water mixture consisting of OME up to 25% volumetrically was possible for the purpose of commercial mushroom production. Experimental results obtained from substrate containing 25% OME mixture showed no statistically significant difference compared to control group. The negative effects of increasing volume of OME in the mixture were also indicated by bioefficiency, which was found to be 13.8% for substrates wetted with 100% OME, whereas bioefficiency was 53.6% for control group. Increasing volume of OME in the mixture resulted in deformation of fruit body shape, whereas no significant difference in food quality was observed due to the higher amount of OME. This work suggested that the use of OME up to 25% as moisturizer could be considered, especially for the locations having significant number of olive mills and mushroom producers, both as an environmentally friendly solution for the safe and ecological disposal of OME and a practical way for recovering OME's economic value thereby.

  19. In vitro evaluation of salinomycin addition in wheat straw based total mixed diets on rumen fermentation, methanogenesis and dry matter degradability in buffalo

    Directory of Open Access Journals (Sweden)

    Sunil K. Sirohi

    Full Text Available Aim: The aim of the current study was to evaluate the effect of salinomycin in vitro on methanogenesis and rumen fermentation. Materials and Methods: Different levels of (0,10, 15 and 20 ppm salinomycin were checked for their effect on in vitro methanogenesis and rumen fermentation on three wheat straw based diets i.e. low fiber diet (LFD, 40R:60C, medium fiber diet (MFD, 50R:50C and high fiber diet (HFD, 60R:40C. Evaluation of salinomycin was carried out using in vitro gas production technique. Methane production and individual fatty acids were estimated by Gas Chromatography. Results: Results of different levels of salinomycin on in vitro methanogenesis indicated that the maximum methane reduction (38.14% in term of mM/gDM was noticed in HFD at 20 ppm level. IVDMD showing increasing trend with an increasing concentration of salinomycin with HFD and LFD, while shown decreasing trend with MFD respectively. Protozoal population significantly decreased by addition of salinomycin in all diets. Conclusion: The results of salinomycin evaluation in the current study can be implicated to mitigate the methane production, thus saving the feed energy loss and the accumulation of green house gases in environment. [Vet World 2012; 5(10.000: 609-613

  20. Enhancing Nutritional Contents of Lentinus sajor-caju Using Residual Biogas Slurry Waste of Detoxified Mahua Cake Mixed with Wheat Straw

    Science.gov (United States)

    Gupta, Aditi; Sharma, Satyawati; Kumar, Ashwani; Alam, Pravej; Ahmad, Parvaiz

    2016-01-01

    Residual biogas slurries (BGS) of detoxified mahua cake and cow dung were used as supplements to enhance the yield and nutritional quality of Lentinus sajor-caju on wheat straw (WS). Supplementation with 20% BGS gave a maximum yield of 1155 gkg-1 fruit bodies, furnishing an increase of 95.1% over WS control. Significant increase (p ≤ 0.05) in protein content (29.6-38.9%), sugars (29.1-32.3%) and minerals (N, P, K, Fe, Zn) was observed in the fruit bodies. Principle component analysis (PCA) was performed to see the pattern of correlation within a set of observed variables and how these different variables varied in different treatments. PC1 and PC2 represented 90% of total variation in the observed variables. Moisture (%), lignin (%), celluloses (%), and C/N ratio were closely correlated in comparison to Fe, N, and saponins. PCA of amino acids revealed that, PC1 and PC2 represented 74% of total variation in the data set. HPLC confirmed the absence of any saponin residues (characteristic toxins of mahua cake) in fruit bodies and mushroom spent. FTIR studies showed significant degradation of celluloses (22.2-32.4%), hemicelluloses (14.1-23.1%) and lignin (27.4-39.23%) in the spent, along with an increase in nutrition content. The study provided a simple, cost effective approach to improve the yield and nutritional quality of L. sajor-caju by resourceful utilization of BGS.

  1. Allelopathy of decomposed maize straw products on three soil-born diseases of wheat and the analysis by GC-MS

    Institute of Scientific and Technical Information of China (English)

    QI Yong-zhi; ZHEN Wen-chao; LI Hai-yan

    2015-01-01

    In northern China, the soil-born diseases of wheat have been getting more and more serious under a new farming system that returns maize straw to the ifeld. In order to investigate the alelopathy of the decomposed maize straw products on three soil-born diseases of wheat, culture dish and pot experiments were conducted and the compounds in the products were identiifed by gas chromatography-mass spectrometry (GC-MS). Culture dish experiments showed that the mycelial growth, sclerotia formation amount and total weight ofRhizoctonia cerealiswere promoted at concentrations of 0.03, 0.06 and 0.12 g mL–1 and inhibited at concentration of 0.48 g mL–1 of the decomposed products. No signiifcant effects were found of the product concentrations on average weight of the sclerotia. Mycelial growth ofGaeumannomyces graminis was promoted at almost al concentrations except the highest one. Mycelial growth and spore germination ofBipolaris sorokiniana were signiifcantly inhibited by al concentrations of the decomposed products, with enhanced inhibition effects along with the increased concentrations. The length, number and dry weight of roots together with the root superoxide dismutase activity were promoted by the lowest concentration (0.03 g mL–1), with a synthetic effect index of 0.012, and inhibited by other concentrations. The ion leakage of roots was increased and the root peroxidase activity of roots was lowered by al the treatments. Pot experiments revealed that occurrence of the sharp eyespot was reduced by 0.03 and 0.06 g mL–1 of decomposed products after irrigation. However, the incidence rates and disease indexes were signiifcantly increased by 0.12, 0.24 and 0.48 g mL–1 of decomposed products. The results indicated that incidence rates and disease indexes of the take-al were signiifcantly promoted after being irrigated with the decomposed products, while occurrences of the common rot didn’t change, signiifcantly. GC-MS results showed that the compounds of

  2. [Effect of long-term shallow tillage and straw returning on soil potassium content and stratification ratio in winter wheat/summer maize rotation system in Guanzhong Plain, Northwest China].

    Science.gov (United States)

    Shi, Jiang-lan; Li, Xiu-shuang; Wang, Shu-juan; Li, Shuo; Li, You-bing; Tian, Xiao-hong

    2015-11-01

    Soil stratified sampling method and potassium chemical fractionation analysis were used to investigate effects of long-term shallow tillage and straw returning on soil K contents and stratification ratios in winter wheat/summer maize rotation system in Guanzhong Plain of Northwest China. The results showed that after 13-year continuous shallow tillage and straw returning, surface accumulation and stratification effect obviously occurred for soil available K (SAK) and non-exchangeable K (NEK), which was particularly remarkable for SAK and its fractions. Serious depletion of SAK occurred in 15-30 cm soil layer, and the SAK value was lower than the critical value of soil potassium deficiency. Meanwhile, significant differences were found between SR1 and SR2 values of SAK and its fractions, SR was obtained by values of topsoil layer (0-5 cm) divided by corresponding values of lower soil layers (5-15 cm layer, SR1, or 15-30 cm layer, SR2). However, no significant difference was observed between SR values of NEK and mineral K. In conclusion, returning of all straw over 10 years in the winter wheat/summer maize rotation system contributed greatly to maintaining soil K pool balance, while special attention should be paid to the negative effects of surface accumulation and stratification of SAK on soil K fertility.

  3. Effect of Straw Returned on Wheat-corn Yield and Fluctuation of Water Use Efficiency%秸秆还田对小麦-玉米产量及上下茬水分利用效率的影响

    Institute of Scientific and Technical Information of China (English)

    侯大山; 孙明清; 林献策; 李月华; 张建; 田红卫; 李娟茹; 冯立辉; 何建兴; 李建波; 丁月芬

    2015-01-01

    This study through three years of experiments, such as field yield, water balance method to study the effect of straw returned on the yield and water use efficiency of winter wheat and summer corn. The results showed that straw returned could reduce the number of spikes per unit area and the number of grains per spike of wheat and the number of spikes per unit area of corn,increase 1 000 grain weight of wheat and grain number per spike and 1 000 grain weight of corn. Wheat corn annual yield of straw returned increased by 1.1%,the field of wheat lost 3.3% and that of corn raised 4.8%. Soil water storage in 0-200 cm soil layer of straw returned at different periods was higher,the increasing of soil water stor-age from wheat harvest to maize seeding was obvious,the increasing rate was up to 4.6%.Straw returning treatment is beneficial to reduce crop water consumption in wheat and maize season, improve the annual water use efficiency,but is not conducive to the improvement of water use efficiency in wheat season.%通过3a定位试验,采用实地测产、水分平衡等方法,研究了秸秆还田对冬小麦和夏玉米产量与产量性状,以及土壤储水量、作物耗水量和水分利用效率的影响。结果表明:秸秆还田可降低小麦单位面积穗数、穗粒数以及玉米单位面积穗数,增加小麦千粒重以及玉米穗粒数和千粒重;秸秆还田处理的小麦-玉米周年产量较秸秆不还田处理增加1.1%,其中,小麦季减产3.3%,玉米季增产4.8%;秸秆还田处理的小麦季和玉米季各时期0~200 cm土体储水量均跃秸秆不还田处理,其中,小麦收获期至玉米播种期土壤储水量增加明显,增幅为4.6%;秸秆还田处理有利于减少小麦季和玉米季的作物耗水量,提高周年水分利用效率,但不利于小麦季作物水分利用率的提高。

  4. Study of properties and the preparation of composite of wheat straw and HDPE/PP%麦秸粉与HDPE/PP基复合材料的制备及性能研究

    Institute of Scientific and Technical Information of China (English)

    杨兆哲; 许民

    2014-01-01

    本文采用麦秸粉为增强体,分别与高密度聚乙烯(HDPE)、聚丙烯(PP)热塑性塑料基体采用挤出方式混合制备木塑复合材料,研究麦秸粉与HDPE、PP的配比对复合材料性能的影响。利用高速混合机在一定条件下对麦秸粉、热塑性塑料和其他助剂进行混合,利用双螺杆挤出机熔融造粒,单螺杆挤出机挤出成型,对制备的麦秸粉/塑料复合材料进行物理力学性能测试。结果表明:加入少量麦秸粉使木塑复合材料力学性能降低,随着麦秸粉含量的增加,复合材料的力学性能呈提高的趋势;当麦秸粉含量超过一定比例时,木塑复合材料力学性能降低,且冲击性能降低明显;本次试验HDPE基木塑复合材料力学强度略高于PP基木塑复合材料。%The paper is mixing the raw materials of wheat straw as enhanceosome and high-density polyethylene/pohyprpylene (HDPE/PP) of thermoplastic to produced wood-plastic com-posite by adopting extrusion way and researching effect about the content of HDPE and PP on the properties of composite. Under a certain conditions,the high-speed mixer mixed the com-pound of wheat straw powder and thermoplastics and other auxiliaries,and then the compound were melting prilling by twin-screw extruder followed and molding by the single screw extrud-er. The mechanical properties of composite of wheat straw and thermoplastic were measured . The results indicated that adding a small amount of wheat straw powder caused the reduction of mechanical properties of wood plastic composite,the mechanical properties of wood plastic composite increased with increasing wheat straw powder content,mechanical properties de-creased when the content of wheat straw was more than a certain percentage,especially,the impact property decreased obviously;the test indicated that the mechanical properties of HDPE were higher than PP.

  5. 以强度增长率评价麦秸秆加筋盐渍土的加筋效果%Examination of reinforcement effect on basis of strength increment of reinforced saline soil with wheat straw and lime

    Institute of Scientific and Technical Information of China (English)

    李敏; 柴寿喜; 王晓燕; 魏丽

    2011-01-01

    Inferior strength, which is caused by salt expansion, dissolution and water absarption of inshore saline soil, will be prevented with the help of reinforcement with wheat straw and lime.First.some samples are prepared.which including saline soil,reinforced saline soil with wheat straw, lime-saline soil.and reinforced saline soil with lime and wheat straw as the way of reinforcement in whole, upper and lower position respectively.Then.unconfined compressive strength tests of 50 mm 152 mm (heavy compaaion specimen) and 102 mm (lightly compaction specimen), as well as triaxial shear test of 61.8 mm in diameter are carried out.Finally.strength increment ratio of deviator stress, and cohesion increment are defined to evaluate the reinforcement effect.The results show that: 1, Reinforcement raise the strength and the anti-deformation of soil.2.Reinforced action increase largely the cohesion of soil and the reinforcement in lower position can contribute a more effective role.3.Strength of reinforced soil is contributed mostly by wheat straw and lime; the strength in water depends on chemical reaction of lime.4.Lateral deformation of reinforced soil is restricted by means of wheat straw within a lower confining pressure, and that is supported jointly by reinforcement and confining pressure within a higher confining pressure.Reinforcement with wheat straw is one of the suitable means for improving strength and anti-deformation of inshore saline soil.%采用麦秸秆与石灰共同加筋固化滨海盐渍土,可解决由于盐胀、溶陷和吸湿软化引起的土体强度下降问题.首先,制备盐渍土、石灰土、麦秸秆加筋盐渍土和麦秸秆加筋石灰土试样(整体均匀加筋、上部均匀加筋和下部均匀加筋);进而,进行φ50 mm试样、φ152 mm重型击实试样和φ102 mm轻型击实试样的无侧限抗压强度试验,以及φ61.8 mm试样三轴压缩试验;最后,分析抗压强度增长率、主应力差比值和黏聚力增长率的变

  6. 麦秸秆加筋石灰土抗剪强度影响因素灰色关联度分析%Grey Correlation Analysis of the Influencing Factors of Shear Strength of Wheat Straw Reinforced Limestone Soil

    Institute of Scientific and Technical Information of China (English)

    李敏; 柴寿喜; 杜红普

    2011-01-01

    为增强石灰固化滨海盐渍土的强度、塑性和抗变形能力,进行了麦秸秆加筋辅助处理的试验。试验分析结果表明:①麦秸秆加筋作用主要提高土的粘聚力,对内摩擦角的影响很小。②适宜的麦秸秆加筋长度为20 mm,约为试样直径的1/3;适宜的加筋率为0.25%。③养护初期麦秸秆加筋作用较强,养护后期,土的强度提高主要依赖石灰的固化作用。④灰色关联度理论分析认为,对加筋土的粘聚力影响程度依次为固化作用、加筋率、加筋长度;对内摩擦角影响程度依次为固化作用、加筋长度、加筋率。固化作用是影响加筋土强度的主要指标。麦秸秆与石灰共同加筋%In order to increase the strength,plasticity and deformation resistance of lime-solidified costal saline soil,reinforcement test with wheat straw is carried out.The test results show that: ①wheat straw reinforcement is mainly to increase the cohesion of soil,with little influence on inner frictional angle.② The appropriate reinforcement length is 20 mm,about 1/3 of sample diameter and the appropriate reinforcement rate is 0.25%.③ In early stage of curing,wheat straw has stronger reinforcing effect;in the later period of curing,soil strength is mainly increased by solidification of lime.④ It is considered through grey correlation analysis that the effect degree on the cohesion of reinforced soil is as follows: solidification reinforcement rate reinforcement length,and that on the inner frictional angle is: solidification reinforcement length reinforcement rate.Solidification is the major influencing factor of reinforced soil strength.Wheat straw reinforcement and lime solidification broadened the treatment method of saline soil and enriched the categories of reinforcing material.

  7. ENZYMATIC PRETREATMENT WITH XYLANASE FOR IMPROVING BLEACHABILITY AND BRIGHTNESS OF WHEAT STRAW CHEMOMECHANICAL PULP%木聚糖酶预处理对麦草化学机械浆可漂性及白度的改善

    Institute of Scientific and Technical Information of China (English)

    洪枫; 刘明山; 房桂干; 沈兆邦

    2001-01-01

    Xylanase from Trichoderma ressei Rut C-30 with corncob meal ascarbon source was prepared and improvement of bleachability and brightness of wheat straw CMP by xylanase pretreatment were investigated. The results indicated that the activity of xylanase was up to 38.34IU/mL with 18g/L(oven dry weight)corncob as the substrate. The xylanase treatment was beneficial to improving the bleachability of wheat straw CMP, enhancing hydrogen peroxide bleaching, increasing the brightness effectively and decreasing the consumption of bleaching agent. The research showed that 50% hydrogen peroxide was saved after enzymic pretreatment when wheat straw CMP was bleached to the same brightness with one-stage H2O2. Furthermore if wheat straw CMP was bleached with two-stage high consistence hydrogen peroxide after enzymatic pretreatment, namely XP3P3(total H2O2 6%)bleaching sequence, the brightness could be over 60%(ISO).%探讨了以玉米芯为碳源制备木聚糖酶及麦草化学机械浆经该木聚糖酶预处理后可漂性和白度的改善效果。结果表明,直接以玉米芯为底物、里氏木霉为菌种产酶效果较好,当底物浓度为18g/L时,木聚糖酶活力可达38.34IU/mL。木聚糖酶预处理有利于改善麦草化机浆的可漂性,促进其过氧化氢漂白,有效提高漂白浆白度,降低漂剂消耗。研究表明,当经单段H2O2漂至相同白度时,木聚糖酶预处理后可节约50%的H2O2用量。若麦草CMP酶处理后采用高浓两段过氧化氢漂白,即XP3P3漂序(H2O2总量为6%)时,白度可达60%(ISO)以上。

  8. 新型微波技术再生载甲苯活化秸秆炭%Regeneration of toluene using microwave heating method on wheat straw activated biochar

    Institute of Scientific and Technical Information of China (English)

    冒海燕; 周定国; Zaher Hashisho; 汪孙国; 陈恒; 王海燕

    2012-01-01

    Wheat straw activated biochar prepared by the microwave heating was used as the ad- sorbent in this study, with generation rate above 99% a comparison of microwave and conductive heating methods on heating time, generation rate and energy consumption for the regeneration of toluene from wheat straw activated biochar was conducted. Experimental results show that the adsorption capacity is unchanged (33 %) compared with original wheat straw activated biochar for both microwave and conductive heating over 5 cycles. Microwave heating with constant power consumes the shortest heating time of 1 rain for toluene, while the time for microware heating with constant temperature and conductive heating is 10 min and 120 min respectively. The energy consumption of microwave heating with constant power of 600 W and constant temperature of 150 ℃ is only 4.5 kJ/g and 9.0 kJ/g respectively but 36 kJ/g for conductive heating method. The microwave heating method could be an energy-efficient, resourceful and efficient regeneration technique for wheat straw activated biochar. 4 tabs, 3 figs, 11 refs.%采用微波加热制备的活化秸秆炭作为吸附剂,通过微波法和电加热法对载甲苯活化秸秆炭进行再生。在确保再生率99%以上的前提下,测定了这两种方法的加热时间、再生效率和能耗等参数。结果表明:经过5次吸附-微波辐射再生之后,吸附量基本保持原有新鲜活化秸秆炭吸附量的为33%;恒功率微波加热法、恒温微波加热法和电加热法所需要的时间分别为1、10和120min;从能耗角度看,微波再生法恒功率(600W)和恒温(150℃)的能耗分别为4.5和9.0kJ/g,而电加热法的能耗则为36kJ/g。因此,微波再生法是一种节能、环保和高效的再生方法,为工业化应用奠定了基础数据。

  9. Nutritive Value and Chemical Treatment of Peanut Shell and Wheat Straw for Feeding Beef Cattle%花生壳和麦秸用于饲养肉牛的营养价值和化学处理

    Institute of Scientific and Technical Information of China (English)

    高腾云; 王艳玲; 惠参军; 郭金玲; 唐桂芬

    2001-01-01

    For the purpose of evaluating the nutritive value of peanut s hell, wheat straw and the typical ration, analysis was conducted on the nutrient s of the roughage and ration, and determination was conducted on the digestion c oefficient of ration with 5 male beef cattles, evaluation was conducted on the r umen degradation rate of dry matter(DM), crude protein(CP) of the roughage and r ation with 3 cannulated goats an d nylon bag technique. The peanut shell and wheat straw were treated with ammoni ation method or complex chemical method. Compared with the untreated roughage, t he ammoniated or complex chemical treated roughage was used to feed the beef cat tle in different groups for 60 days. The result shows that the crude fiber conte nt of peanut shell is higher than that of wheat straw. Both peanut shell and whe at straw have low levels of crude protein, higher degradation rate of DM and low er degradation rate of CP. For the typical ration mainly composed of peanut shel l and wheat straw, the degradation rates are higher and stable for DM and CP, th e digestion coefficients of DM, CP and crude fiber(CF) are 44.60%, 61.88% and 30 .41% respecti vely. Ammoniation of peanut shell and wheat straw with 3.5% urea has a good effe ct on the beef cattle fattening. The effect of complex treatment with 3.5% and 4 % Ca(OH)2 is better than the simple ammoniation for peanut shell.%为了评定花生壳、麦秸和花生壳-麦秸型典型肉牛日粮的营养价值, 分析了粗饲料和日粮的营养成分,以3只瘤胃瘘管山羊和尼龙袋技术评价了粗饲料和日粮中 干物质和粗蛋白质的瘤胃降解率,以5头肉牛进行了日粮消化率测定;对花生壳和麦秸分别 进行氨化处理和综合化学处理,以不同组的肉牛进行60 d的饲养试验,比较氨化处理以及综合化学处理对粗饲料饲养效果的影响。结果表明,花生壳中粗纤维含量高于麦秸,花生壳和 麦秸中粗蛋白质含量低、干物质

  10. Effects of maize straw with Bt gene return to field on growth of wheat seedlings%Bt玉米秸秆还田对小麦幼苗生长发育的影响

    Institute of Scientific and Technical Information of China (English)

    陈小文; 祁鑫; 王海永; 郭玉海; 董学会

    2012-01-01

    Fast popularization and widespread application of transgenic Bt corn have raised the issue of environmental safety. Despite considerable work in this field recently, no consensus on the effects of Bt corn on environmental safety has emerged, indicative of the complexity of this issue. Traditional study on environmental safety of transgenic crops often focused on the risks of weediness of genetic modified crop itself, gene flow, negative impact on useful insects or microbe in soil, while ignored the effect of transgenic crops on succeeding crops. Therefore, the major objective of this study is to investigate the effect of Bt corn straw incorporated into soil on growth of winter wheat ( Triticum aestivum) seedlings. The chopped straw of transgenic Bt corn inbred (Bt-38) and non-Bt corn ( Zheng 58, the receptor of Bt-38) was mixed with nutrient soil and vermiculite (1:3:3) to be as the growth media for winter wheat ( cv. Duokang 1) , with the media without corn straw as the control. The results showed that the emergence rate, shoot height and root length of seedlings were decreased by com straw incorporated into media compared with the control. Similarly, com straw reduced biomass of wheat seedlings. For example, the fresh and dry weight of wheat seedlings grown in media added with com straw were only equal to 51%-65% and 62%-72% of those of control, respectively. The lower level of indole-3-acetic acid (IAA) and higher level of abscisic acid ( ABA) in seedlings grown in media containing com straw compared with the control partly explained the differences related to morphology and biomass. The com straw added to media did not influence soluble protein and antioxidant enzymes such as peroxidase (POD) and catalase (CAT) , as well as malondialdehyde( MDA) , indicative of membrane damage, in wheat seedlings, however, increased the activity of superoxide dismutase (SOD ), which was probably associated with more reactive oxygen species (ROS) in seedlings grown in media

  11. Ammoniated straw incorporation promoting straw decomposition and improving winter wheat yield and water use efficiency%氨化秸秆还田加快秸秆分解提高冬小麦产量和水分利用效率

    Institute of Scientific and Technical Information of China (English)

    余坤; 冯浩; 赵英; 董勤各

    2015-01-01

    pests and diseases when crop straw is applied into soil, thereby negatively affecting the crop yield. An appropriate method may solve the problems above. The objectives of this study were to select an efficient straw incorporation method that could accelerate the decomposition rate of crop straw and promote the growth of winter wheat in semi-arid region of Shaanxi, China. To achieve these goals, a 3-year field experiment was carried out in the year of 2011-2014at the Key Laboratory of Agricultural Soil and Water Engineering in Area sponsored by Ministry of Education (34°18′N, 108°04′E), at Northwest A & F University. Using summer maize straw harvested last season, two control treatments were designed including long straw returning by covering soil (CK1), and long straw plowed into soil (CK2). In comparison, another two straw treatments were long-ammoniated straw plowed into soil (AS) and powdered-ammoniated straw plowed into soil (PAS). The straw decomposition rate, soil respiration, leaf area index (LAI) and aboveground biomass of winter wheat were measured during different growth stage in the growing seasons of 2013-2014. Soil water of 0-100 cm depth during different growth stages and winter wheat yield under different treatments in the growing season of 2011-2014 were measured. Results showed that compared with the CK1 and CK2, the straw left in soils with the treatment AS was significantly (P0.05). The three-year mean water use efficiency (WUE) with AS and PAS was significantly(P<0.05) increased by 5.03% and 8.73%, respectively, compared with CK1, and by 5.13% and 8.83%, respectively, compared with CK2. And the three-year mean WUE of the treatment PAS was higher than that of the treatment AS. Comparably, the treatment of PAS was the best among the four treatments in accelerating the straw decomposition, promoting the growth of winter wheat, and increasing winter wheat yield and water use efficiency, which could be an effective straw incorporation measure for

  12. Effect of C/N Ratio Adjusted by Wheat Straw on Biogas Production from Pig Manure%小麦秸秆调节猪粪碳氮比对产沼气的影响

    Institute of Scientific and Technical Information of China (English)

    李娟; 马忠明; 王文丽; 卢秉林; 赵旭

    2012-01-01

    通过模拟沼气发酵试验,笔者研究利用小麦秸秆调节猪粪碳氮比对沼气产气量的影响.结果表明:低温条件下,碳氮比为22(CK)的纯猪粪处理,产气速率最快,产气量最大,说明碳氮比为22的猪粪直接作为沼气的发酵原料最好;高温条件下,利用秸秆调节猪粪碳氮比为25的处理总产气量大,产气速率适中,有利于沼气稳定产气,避免高温条件下产气过量污染环境.%Through the simulation fermentation test, the author studied the biogas production of pig manure with adjusting of C/N ratio by adding of wheat straw. The result showed that, at low temperature (20℃ ) , the sole pig manure with C/N ratio of 22 produced the fastest biogas production speed and highest biogas production. At the higher temperature ( 30℃ ) , the C/N ratio of 25 adjusted by wheat straw had the highest total biogas production with the moderate gas production speed, which was in favour of the stability of biogas production.

  13. Bed agglomeration risk related to combustion of cultivated fuels (wheat straw, red canary grass, industrial hemp) in commercial bed materials; Baeddagglomereringsrisk vid foerbraenning av odlade braenslen (hampa, roerflen, halm) i kommersiella baeddmaterial

    Energy Technology Data Exchange (ETDEWEB)

    Erhardsson, Thomas; Oehman, Marcus; Geyter, Sigrid de; Oehrstroem, Anna

    2006-12-15

    The market of forest products is expanding and thus resulting in more expensive biomass fuels. Therefore research within the combustion industry for alternative fuels is needed, for example cultivated fuels. Combustion and gasification research on these cultivated fuels are limited. The objectives of this work was to increase the general knowledge of silicon rich cultivated fuels by study the agglomeration characteristics for wheat straw, reed canary grass and industrial hemp in combination with commercial bed materials. Controlled fluidized bed agglomeration tests was conducted in a 5 kW, bench-scale, bubbling fluidized bed reactor. The tendencies of agglomeration were determined with the three cultivated fuels in combination with various minerals present in natural sand (quarts, plagioclase and potassium feldspar) and an alternative bed material (olivine). During the experiments bed samples and formed agglomerates were collected for further analyses with a scanning electron microscope (SEM) and with X-ray microanalysis (EDS). Wheat straw had the highest agglomeration tendency of the studied fuels followed by reed canary grass and industrial hemp. No significant layer formation was found around the different bed particles. Instead, the ash forming matter were found as individual ash sticky (partial melted) particles in the bed. The bed material mineralogical composition had no influence of the agglomeration process because of the non layer formation propensities of the used silicon rich fuels.

  14. Effect of Adding Acid-Base Buffer During Wheat Straw Pulp DEP Bleaching on the Pulp Properties%麦草浆DEP漂白中添加酸碱缓冲剂对纸浆性能的影响

    Institute of Scientific and Technical Information of China (English)

    李清林; 韩卿; 王伦; 侯广强

    2011-01-01

    采用DEP短序工艺漂白麦草浆,分别研究了在D段和P段加入酸碱缓冲剂控制浆料体系的pH值,使漂液充分发挥作用,在不影响漂白效果的前提下,达到减少漂液用量的目的。SEM观察表明,纸浆在D段/P段漂白时添加酸碱缓冲剂,纤维受损程度减弱。%DEP short sequence was used to bleach wheat straw pulp, the acid-base buffers were added in chorine dioxide and peroxide bleaching stages respectively in order to control the pH in the slurry system. Through this, the bleaching results improved and the chemical dosage reduced. SEM observation of the sheet made with wheat straw pulp revealed that the level of fiber damage was reduced in the process of ClO2E bleaching and H2O2 bleaching by adding the acid-base buffer.

  15. Power from triticale straw

    Energy Technology Data Exchange (ETDEWEB)

    Dassanayake, M.; Kumar, A. [Alberta Univ., Edmonton, AB (Canada). Dept. of Mechanical Engineering

    2010-07-01

    This study examined the feasibility of using triticale straw for production of electricity in Canada. Triticale is a manmade hybrid of wheat and rye and it has a high potential of growth in Canada. The cost ($/MWh) of producing electricity from triticale straw was estimated using a data intensive techno-economic model. The study also determined the optimum size of a biomass power plant (MW) which is a trade-off between capital cost of the plant and transportation cost of biomass. Cost curves were also developed in order to evaluate the impact of scale on power production costs. The location of the power plant and the future expansion of triticale were among the factors considered in the techno-economic mode. The scope of the work included all the processes beginning with the collection of straw to the conversion to electricity through direct combustion at the power plant. According to the preliminary results, the cost of producing power from triticale straw is higher than coal-based electricity production in western Canada.

  16. Nitrogen fixation associated with development and localization of mixed populations of Cellulomonas species and Azospirillium brasilense grown on cellulose or wheat straw

    Energy Technology Data Exchange (ETDEWEB)

    Halsall, D.M.; Goodchild, D.J.

    1986-04-01

    Mixed cultures of Cellulomonas sp. and Azospirillum brasilense were grown with straw or cellulose as the carbon source under conditions favoring the fixation of atmospheric nitrogen. Rapid increases in cell numbers, up to 10/sup 9/ cells per g of substrate, were evident after 4 and 5 days of incubation at 30 degrees C for cellulose and straw, respectively. Nitrogen fixation (detected by acetylene reduction measured on parallel cultures) commenced after 2 and 4 days of incubation for straw and cellulose, respectively, and continued for the duration of the experiment. Pure cultures of Cellulomonas sp. showed an increase in cell numbers, but CO/sub 2/ production was low, and acetylene reduction was not detected on either cellulose or straw. Pure cultures of A. brasilense on cellulose showed an inital increase in cell numbers (10/sup 7/ cells per g of substrate) over 4 days, followed by a decline presumably caused by the exhaustion of available carbon substrate. On straw, A. brasilense increased to 10/sup 9/ cells per g of substrate over 5 days and then declined slowly; this growth was accompanied by acetylene reduction. Scanning electron micrographs of straw incubated with a mixture under the above conditions for 8 days showed cells of both species in close proximity to each other. Evidence was furnished that the close spatial relatioship of cells from the two species facilitated the mutally beneficial association between them and thus increased the efficiency with which the products of straw breakdown were used for nitrogen fixation. 17 references.

  17. Evaluation on the Nutritive Value of Wheat Straw Silage Using Gas Production Technique in vitro%利用体外产气法评价微贮小麦秸秆营养价值的研究

    Institute of Scientific and Technical Information of China (English)

    冯宇哲; 吴克选; 张晓卫; 张艳

    2012-01-01

    [Objective] The research aimed to increase the utilization ratio of wheat straw in Qinghai Province. [ Method] Wheat straw was used as materials for silage. pH, the contents of crude protein (CP), crude fiber (CF) , ether extract (EE) and water in wheat straw at different silage time were determined. The effects of silage time on the quality of wheat straw were studied and its was evaluated by using gas production technique in vitro. [Result] pH in each test group gradually decreased with the silage time,which was all significantly lower than that in control group(P 0.05). Water content in test groups decreased with the silage time. With the silage time,net gas production gradually increased,dry matter degradability, organic matter degradability,digestible energy and metabolizable energy gradually increased. [Conclusion] Comprehensively considered,silaging wheat straw for 22 d could meet the production demands.%[目的]提高青海省小麦秸秆的利用率.[方法]采用小麦秸秆为原料进行微贮,测定不同微贮时间小麦秸秆的pH、粗蛋白(CP)、粗纤维(CF)、粗脂肪(EE)、水分(H2O)含量,研究微贮时间对小麦秸秆品质的影响,并利用体外产气技术对其进行评价.[结果]各试验组pH随微贮时间的增加逐渐减小,均极显著低于对照组(P<0.01).试验组CP随微贮时间的增加而升高,均高于对照组.试验组CF含量随微贮时间增加而降低,均极显著低于对照组(P<0.01).试验组EE含量随微贮时间呈逐渐递增的趋势,均高于对照组,但与对照组差异不显著(P>0.05).试验组水分含量随微贮时间增加而降低.随微贮时间的增加,净产气量逐渐上升、干物质降解率(DM)和有机物质降解率(OMD)、消化能(DE)和代谢能(ME)逐渐升高.[结论]综合考虑,小麦秸秆微贮22 d即可满足生产需求.

  18. Greenhouse gas emission under the treatments of fertilization and wheat straw returning during the maize growing seasons%施肥及秸秆还田处理下玉米季温室气体的排放

    Institute of Scientific and Technical Information of China (English)

    裴淑玮; 张圆圆; 刘俊锋; 牟玉静; 伦小秀

    2012-01-01

    以华北地区冬小麦-夏玉米轮作农田为研究对象,在玉米整个生长季,运用静态箱法针对正常施肥及正常施肥结合秸秆还田处理进行了为期3年N2O排放通量的连续观测,并开展了1季CO2和CH4交换通量的研究.在玉米整个生长过程中施肥阶段N2O的排放量占到了总排放量的83%—96%,表明现有化肥的使用明显导致了农田N2O排放增加.与控制地相比,施肥和耕种可导致玉米田CO2排放明显增加,且正常施肥及秸秆还田样地CO2排放主要集中在苗期至吐丝期.控制地、正常施肥样地及施肥结合秸秆还田样地CH4的累积排放量均为负值,说明旱地土壤是CH4的一个汇.秸秆还田在一定程度上增加了玉米季N2O和CO2的排放量,但对CH4的吸收有所抑制.正常施肥样地和秸秆还田样地全球净增温潜势分别为-1392.8 kg C.hm-2和-179.2 kg C.hm-2,表明华北农田在现有耕作方式下是大气温室气体的一种重要汇.%The exchange fluxes of greenhouse gases from a winter wheat-summer maize crop rotation farmland during maize growing seasons in the North China Plain were investigated by static chamber method in this study.N2O fluxes were measured from normal fertilization and wheat straw returning treatments during three consecutive maize growing seasons,and the fluxes of CO2 and CH4 were investigated during one maize growing season.The cumulative N2O emission during the fertilization period accounted for 83%—96% of the total emission from the normal fertilization and wheat straw returning plots during the three maize growing seasons,indicating that the current fertilization management greatly promoted N2O emission.Compared with the control plot,fertilizer application and cultivation evidently simulated CO2 emission,especially during the period from seeding stage to silking stage.The cumulative CH4 emission from the control,normal fertilization and wheat straw returning plots were all negative values

  19. Study on Optimal Conditions of Degradation of Wheat Straw by Cellulase and Analysis of Kinetics%纤维素酶降解小麦秸秆最适条件的研究及其动力学分析

    Institute of Scientific and Technical Information of China (English)

    田萍; 王浩菊; 马齐; 陈坤奇; 周婷

    2012-01-01

    以小麦秸秆为原料,通过正交实验对纤维素酶降解秸秆纤维的影响因素进行了研究.结果表明,影响小麦秸秆降解的因素依次为:酶量>酶解时间>料液比>反应温度,其最适条件是:加酶量为40 u/g,酶解时间为10h,反应温度为40℃,料液比为1∶3,总糖含量达到43.24%.以米氏方程为基础,建立起最适酶解条件下总纤维素降解的动力学模型.%The influence factors of degradation of straw fiber by cellulase were studied using wheat straw as the raw material through the orthogonal experiments. The results showed that the factors of influence on enzymatic hydrolysis of wheat straw were successively: the amount of enzyme>the time of hydrolysis>the ratio of material and liquid> reaction temperature. The optimal conditions of enzymatic hydrolysis were that the amount of cellulase was 40 u/g, the time of hydrolysis was 10 h, the reaction temperature was 40 C and the ratio of material to liquid was 1:3. The total sugar contents could reach 43. 24%. Under the optimal conditions, the kinetics model of degradation of the total cellulose was established based on Michaelis-Menten equation.

  20. 麦草浆黑液燃烧法除硅研究%Remove silicon through black liquor combustion for wheat straw pulping

    Institute of Scientific and Technical Information of China (English)

    徐永建; 孙浩; 张鼎军; 田勇

    2015-01-01

    研究了硫酸铝对麦草浆浓黑液理化性能及除硅效果的影响.实验结果表明,铝盐有利于提高浓黑液膨胀率,在添加量为3%时达到了最大值64.19%;流变仪检测表明,在高温下铝盐添加量对浓黑液的黏度几乎没有影响,可在110℃输送浓黑液;黑液燃烧法结果表明,铝盐具有一定的除硅作用,硫酸铝的除硅效果最高可达53.02%;SEM‐EDAX检测结果表明,铝离子能和硅形成不溶于水的沉淀物.上述结果表明:硫酸铝具有一定的除硅效果,当其添加量为3%时除硅效果最好.%Effect of physical and chemical properties and desilication rate of aluminium sul‐phate were studied on thick black liquor of grows wheat straw .Results showed that expan‐sion rate was enhanced with an increase in aluminum salt which reached the maximum desili‐cation rate of 64 .19% in addition amount of 3% .Rheometer showed aluminum salt would have little impact on the viscosity of thick black liquor at a high temperature ,so it was a bet‐ter selection that thick black liquor could be conveyed at 110 ℃ .It was studied the effect of adding aluminium salt on silicon removal rate during black liquor combusting .The experi‐mental results showed that aluminium sulphate had the function of desilication ,while the de‐silication rate of aluminum sulphate could reach 53 .02% .SEM‐EDX illustrated the alumi‐num and silicon ions was formed into insoluble precipitate .It was a optimum way to choose 3% of aluminium sulphate as the desilication agent under comprehensive consideration .

  1. Effects of Amendment of Biochar and Pyroligneous Solution from wheat straw pyrolysis on Yield and soil and crop salinity in a Salt stressed cropland from Central China Great Plain

    Science.gov (United States)

    Li, L.; Liu, Y.; Pan, W.; Pan, G.; Zheng, J.; Zheng, J.; Zhang, X.

    2012-04-01

    Crop production has been subject to salt stress in large areas of world croplands. Organic and/or bio-fertilizers have been applied as soil amendments for alleviating salt stress and enhancing crop productivity in these salt-stressed croplands. While biochar production systems using pyrolysis of crop straw materials have been well developed in the world, there would be a potential measure to use materials from crop straw pyrolysis as organic amendments in depressing salt stress in agriculture. In this paper, a field experiment was conducted on the effect of biochar and pyroligneous solution from cropstraw pyrolysis on soil and crop salinity, and wheat yield in a moderately salt stressed Entisol from the Central Great Plain of North China. Results indicated that: biochar and pyroligneous solution increased soil SOC, total nitrogen, available potassium and phosphorous by 43.77%, 6.50%, 45.54% and 108.01%, respectively. While Soil bulk density was decreased from 1.30 to 1.21g cm-3; soil pH (H2O) was decreased from 8.23 to 7.94 with a decrease in soluble salt content by 38.87%. Wheat yield was doubled over the control without amendment. In addition, sodium content was sharply declined by 78.80% in grains, and by 70.20% and 67.00% in shoot and root, respectively. Meanwhile, contents of potassium and phosphorus in plant tissue were seen also increased despite of no change in N content. Therefore, the combined amendment of biochar with pyroligneous solution would offer an effective measure to alleviate the salt stress and improving crop productivity in world croplands. Keywords: biochar, salt affected soils, wheat, crop productivity, salinity

  2. Kinetics of wheat straw solid-state fermentation with Trametes versicolor and Pleurotus ostreatus - lignin and polysaccharide alteration and production of related enzymatic activities

    Energy Technology Data Exchange (ETDEWEB)

    Valmaseda, M.; Martinez, M.J.; Martinez, A.T. (Consejo Superior de Investigaciones Cientificas, Madrid (Spain). Centro des Investigaciones Biologicas)

    1991-09-01

    The kinetics of straw solid-state fermentation (SSF) with Trametes versicolor and Pleurotus ostreatus was investigated to characterize the delignification processes by these white-rot fungi. Two sucessive phases could be defined during straw transformation, characterized by changes in respiratory activity, changes in lignin and polysaccharide content and composition, increase in in-vitro digestibility, and enzymatic activities produced by the fungi. Lignin composition was analysed after CuO alkaline degradation, and decreases in syringyl/guaiacyl and syringyl/p-hydroxyphenyl ratios and cinnamic acid content were observed during the fungal treatment. An increase in the phenolic acid yield, revealing fungal degradation of sidechains in lignin, was produced by P. ostreatus. The highest xylanase level was produced by P. ostreatus, and exocellulase activity was nearly absent from straw treated with this fungus. Laccase activity was found in straw treated with both fungi, but lignin peroxidase was only detected during the initial phase of straw transformation with T. versicolor. High levels of H{sub 2}O{sub 2}-producing acryl-alcohol oxidase occurred throughout the straw SSF with P. ostreatus. (orig.).

  3. 麦草有机酸生物炼制的研究(I)--常压下复合有机酸与麦草的反应特性%Wheat Straw Biorefinery by Organic Acids (I)--Reaction Characteristics of Complex Organic Acids and Wheat Straw at Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    傅瑜; 袁梅婷; 翟华敏

    2014-01-01

    Biorefinery process by organic acids is a potential way to utilize wheat straw effectively. The influences of reaction temperature and time on the dissolutions of the wheat straw chemical components in formic acid-acetic acid-water organic acids ( FAWOA) at atmospheric pressure were investigated in present study. The results indicated that the delignification process can be divided into three phases, namely a bulk phase, a complementary one and a residual one, with lignin removal by 37. 1%, 27.2% and 2. 50% respectively. The dissolution of pentosan also demonstrated as three stages, i. e. , a bulk one, a complementary one and a residual one, with the dissolution ratios of 50. 0%, 24. 9% and 3. 20% respectively. The removal of holocellulose, benzene-ethanol and ash can be divided into similar three phases as the removal of lignin and pentosan. The increasing trend of organic matter content in black liquor was similar to that of lignin and pentosan. However, only a slight variation of inorganic matter content was observed and represented a constant level at 2. 0 g/L in the biorefinery process.%研究了麦草在甲酸-乙酸-水复合有机酸( FAWOA)体系中于常压反应条件下,反应温度和时间对麦草各组分溶出规律的影响。结果表明:麦草在与复合有机酸反应过程中,脱木质素历程可以分为3个阶段:大量脱木质素阶段,补充脱木质素阶段和残余脱木质素阶段,各阶段木质素溶出分别为37.1%、27.2%和2.50%;戊聚糖的反应历程也分为3个阶段:戊聚糖大量反应阶段、补充反应阶段和少量反应阶段,各阶段戊聚糖溶出分别为50.0%、24.9%和3.20%;综纤维素、苯-乙醇抽出物和灰分的溶出呈现与脱木质素、戊聚糖溶出相似的趋势;黑液中有机物含量的增加趋势与木质素和戊聚糖溶出趋势相似,而无机物含量变化很小,基本维持在2.0 g/L左右。

  4. Absorptive capability of Cr(Ⅵ) by using heat-treated biological carbon of wheat straw as adsorbent%小麦秸秆热处理生物碳质对Cr(Ⅵ)的吸附性能

    Institute of Scientific and Technical Information of China (English)

    张继义; 梁丽萍; 蒲丽君; 王利平

    2011-01-01

    选用小麦秸秆为生物质代表,在200、400、500℃不同温度下,限氧碳化制备生物碳质吸附剂M200、M400、M500.分别考察其对Cr(Ⅵ)的吸附性能,通过观察等温吸附模型和吸附动力学方程,分析其可能的吸附机理.研究结果表明,三种生物碳质对Cr(Ⅵ)的吸附量随着初始浓度的增加而增加,6 h达到吸附平衡;吸附反应符合准二级动力学方程;吸附等温线结果表明,生物碳质对Cr(Ⅵ)的吸附可以用Langmuir模型很好描述;小麦秸秆生物碳质对Cr(Ⅵ)的最大吸附量随着碳化温度的升高而降低,分别为35.778、19.79、19.227 mg/g.小麦秸秆生物碳质是去除含铬废水中Cr(Ⅵ)的廉价与良好的吸附剂.%Selecting wheat straw for the biological substance, the biological carbon adsorbents M200,M400, and M500 were prepared with limited oxygen carbonization at different temperature 200, 400, and 500 ℃, respectively. Their Cr(Ⅵ) adsorptive capability was investigated respectively. By using isothermal adsorption model and adsorption dynamic equation, their possible adsorption mechanism was analyzed. The investigation result showed that the adsorptive amount of these three biological carbon substances increased with the initial concentration until the adsorption equilibrium was reached after 6 hours.The adsorptive reaction agreed with the quasi-second-order dynamic equation. It was shown by the adsorptive isotherm that the Cr(Ⅵ) adsorption with the biological carbon substance could well be characterized with Langmuir mode. The maximum Cr(Ⅵ) adsorptive amount with biological carbon substance of wheat straw was decreased with the carbonization temperature, being 35. 778, 19. 79, and 19. 227 mg/g respectively. The biological carbon substance of wheat straw would be a cheap and good adsorbent for removal of Cr(Ⅵ) from chrome-laden wastewater.

  5. 自由空域对猪粪麦秸好氧堆肥的影响实验分析%Effects Analysis of Free Airspace to Pig Slurry Wheat Straw Aerobic Composting in Laboratory Reactor

    Institute of Scientific and Technical Information of China (English)

    王永江; 黄光群; 韩鲁佳

    2011-01-01

    为研究不同水平自由空域(Fas)对堆肥效果的影响,利用实验室小型反应器进行了好氧堆肥试验,使用等量猪粪分别与等量不同粒径(0~1 cm、2~5 cm和7 cm)麦秸按照质量比1∶0.086混合获得不同Fas水平(56.70%、62.67%和68.36%),利用温度传感器、氧浓度传感器动态监测堆肥过程中温度和氧气体积分数的变化,研究分析了堆肥始末含水率和挥发性固体(VS)含量的变化,并基于Matlab平台建立了基于温度、氧气体积分数等多因素Monod形式的VS降解动力学模型.试验结果表明:等量猪粪与等量麦秸混合堆肥,麦秸粒径产生的Fas差异对堆肥过程影响显著;所建立的基于温度、氧气体积分数等多因素Monod形式VS降解动力学模型模拟结果与实际测量结果一致.%To study the effects of different initial free airspaces (Fas) on pig slurry-wheat straw reactor scale composting, three levels of Fas (56. 70% ,62. 67% ,68. 36% ) were obtained by mixing pig slurry and wheat straw with the same mass ratio (1:0. 086) but in different wheat straw sizes (0 ~1 cm, 2 -5 cm, 7 cm). Oxygen concentration and temperature were monitored by sensors during the whole composting period, while moisture and volatile solid (VS) content were checked by chemical analysis method at the end of composting. In addition, a Monod form model was employed to simulate VS content during composting period. According to the results of composting test, changes of oxygen concentration, temperature, moisture and VS based on different initial Fas levels were respectively clearly different; effects of bulking agent sizes on mixture structure were apparent.

  6. 小麦秸秆同步糖化发酵制取燃料乙醇%Optimization of Processing Conditions for Bioethanol Production from Wheat Straw Through Simultaneously Saccharification and Fermentation

    Institute of Scientific and Technical Information of China (English)

    张伟; 李文; 赵继东; 林燕; 彭兆城; 王欣泽

    2012-01-01

    利用酿酒酵母Saccharomyces cerevisiae BY4742对小麦秸秆同步糖化发酵(simultaneously saccharification and fermentation,SSF)生产燃料乙醇的条件进行了研究,系统考察和研究了温度、固体含量、纤维素酶投加量、酵母菌浓度对SSF过程中乙醇浓度和产率的影响,并对以上参数做了初步优化,以提高最终乙醇浓度和产率.结果表明,小麦秸秆同步糖化发酵乙醇的最优条件为:温度38℃,固体含量16.0%(m/V),纤维素酶投加量35FPU/g底物,酵母菌浓度8 g/L.在此条件下,NaOH预处理后的小麦经过120 h同步糖化发酵,乙醇浓度达到最大值,为38.32 g/L,产率达理论产率的71.71%,木糖浓度为12.94 g/L.%Experiments were carried out on the conditions of bioethanol production from wheat straw through simultaneously saccharification and fermentation using Saccharomyces cerevisiae BY4742. The effects of temperature, solid content, enzymeloading and yeast concentration on concentration and yield of ethanol in the SSF processes were systematically investigated. These parameters were further optimized to increase the final concentration and yield of ethanol. The results showed that the optimum conditions for SSF of wheat straw were as follows: temperature 38℃ , solid content 16. 0% (w/v) , enzyme loading 35 FPU/g and substrate and yeast concentration 8 g/L. The maximum ethanol concentration reached 38. 32 g/L, which was equivalent to 71. 71% of the theoretical ethanol yield, with xylose concentration of 12. 94 g/L obtained after 120 h SSF of NaOH pretreated wheat straw under the optimized conditions.

  7. Shear strength and failure form of lime-soil reinforced with wheat straw%麦秸秆加筋石灰土的抗剪强度及剪切破坏形式

    Institute of Scientific and Technical Information of China (English)

    李敏; 柴寿喜; 杜红普; 魏丽; 石茜

    2011-01-01

    选取整体均匀布筋、上部均匀布筋和下部均匀布筋3种布筋位置,借助三轴压缩实验,研究布筋位置对麦秸秆加筋石灰土抗剪强度的影响及3种布筋位置加筋土的破坏形式.结果表明,布筋位置主要影响土的黏聚力,对内摩擦角的影响较小,适宜的麦秸秆布筋方式可有效提高土的黏聚力;石灰土呈脆性破坏,3种布筋位置的麦秸秆加筋石灰土的破坏均在未加筋区域产生,加筋部位土的变形较小;石灰土和麦秸秆加筋石灰土的破坏面倾角均符合Mohr-Coulomb破坏准则和SMP(spatial mobilization plane)破坏准则.借助麦秸秆的高抗拉性能、空间交织作用和筋土摩擦作用,可有效约束土的变形,提高土的强度.%The reinforcement effect and strength of reinforced soil depending on a suitable reinforced position and triaxial shear test for reinforced lime-soil with wheat straw in three positions was carried out in this paper. First,reinforced position mainly affects the cohesion of reinforced soil, but has little influence on the internal friction angle; reasonable reinforced position plays an important role in improving strength of reinforced soil. Second, limesoil displays failure in brittle manner; failure of reinforced lime-soil is located in un-reinforced region; the deformation in reinforced region decreases. Third, shear angle of lime-soil and reinforced lime-soil with wheat straw conform to the Mohr-Coulomb failure criterion and SMP (spatial mobilization plane) failure criterion. By the function of high tensile strength, space interweaving and load-sharing of wheat straw, the strength and anti-deformation of reinforced soil is improved.

  8. 聚乳酸与麦草纤维共混物的研究%Blends of Poly(L-lactic Acid) and Wheat Straw Fiber

    Institute of Scientific and Technical Information of China (English)

    高勤卫; 徐晨; 徐哲; 赵丽芳

    2012-01-01

    以N-甲基吗啉-N-氧化物为溶剂,制备聚L-乳酸(PLLA)与麦草纤维(WSF)的共混溶液,并制备PLLA与WSF的共混物.采用傅里叶变换红外光谱、差示扫描量热法和X射线衍射等方法对PLLA/WSF共混物进行表征,探讨PLLA/WSF共混物中两组分的相容性和结晶性.结果表明,聚乳酸和麦草纤维的N-甲基吗啉-N-氧化物溶液可以均匀混合形成共混溶液.在PLLA/WSF共混物中,PLLA与WSF两组分之间的相互作用较强,具有较好的相容性.PLLA/WSF共混物的组成对其形态与性能具有显著影响.随着PLLA用量的增加,共混物的玻璃化温度逐步降低.当PLLA与WSF的质量比小于6:4时,共混物为非晶态物质,而当PLLA与WSF的质量比大于6∶4时,共混物则具有结晶结构,且结晶熔点随着PLLA质量分数的增加而增加.因此,通过改变PLLA和WSF组分的配比,可以制备不同性能的可生物降解高分子材料.%The blend solutions of poly (L-lactic acid) (PLLA) and wheat straw fiber (WSF) were prepared in the solvent of N-methyl morpholine-N-oxide. Then the blends of PLLA and WSF were also prepared. Fourier transform infrared spectroscopy, differential scanning calorimetry and X-ray diffraction were performed to determine PLLA/WSF blends. The compatibility and crystalline of PLLA and WSF in blends were investigated. The results show that PLLA and WSF can form a homogeneous mixture solution in N-methyl morpholine-N-oxide. Strong interaction between PLLA and WSF can be detected, which suggests good compatibility between the two components in PLLA/WSF blends. The morphology and properties of PLLA/WSF blends vary with the ratios of PLLA to WSF. With increasing PLLA contents, the glass transition temperatures of PLLA/WSF blends gradually reduce to that of PLLA. Both PLLA and WSF are crystalline, while PLLA/WSF blends are amorphous when the ratio of PLLA to WSF is less than 6:4. When the ratio of PLLA/WSF is more than 6:4, the blend is crystalline and

  9. 小麦秸秆水浸提液对五种植物化感作用的研究%Allelopathy of wheat straw aqueous extract on five kinds of plants

    Institute of Scientific and Technical Information of China (English)

    郑曦; 杨茜茜; 李小花

    2016-01-01

    该文研究了不同浓度的小麦秸秆水浸提液对徐州地区2种玉米(郑单958和农大108)和3种常见玉米田间杂草(马唐、稗草和反枝苋)种子萌发和幼苗生长的影响。结果表明:当小麦秸秆浸提液浓度分别大于75、50和25 g•L-1时,马唐、稗草和反枝苋种子的萌发受到显著的抑制;当小麦秸秆浸提液浓度分别大于50和37.5 g•L-1时,玉米郑单958和农大108种子的萌发受到显著的抑制;但当小麦秸秆浸提液浓度大于37.5 g•L-1时,马唐、稗草和反枝苋幼苗根和芽的生长均受到明显的抑制;当小麦秸秆浸提液浓度小于75 g•L-1时,玉米郑单958和农大108幼苗根与芽的生长受到明显的促进,且郑单958幼苗叶片中叶绿素的含量以及郑单958的POD酶活性均得到提高。该研究结果表明较高浓度的小麦秸秆浸提液(50 g•L-1)会抑制杂草的生长,有利于玉米郑单958的生长,为小麦秸秆还田和玉米田杂草的生态防治提供了理论基础。%An experiment was carried out to explore effects of wheat straw aqueous extract on the seed germination and seedling growth of two kinds of maize ( Zhengdan 958 and Nongda 108) , large crabgrass ( Digitaria sanguinalis) , barn-yard grass (Echinochloa crusgalli) and redroot amaranth (Amaranthus retroflexus). The results showed that when the concentration of wheat straw aqueous extract was respective over 75, 50 and 37.5 g•L-1 , the seed germination rates of large crabgrass, barnyard grass and redroot amaranth were inhabited, while the concentration was over 50 and 37.5 g•L-1 , the seed germination rates of Zhengdan 958 and Nongda 108 were inhabited;but the root and shoot length of large crabgrass, barnyard grass and redroot amaranth decreased obviously when the extract concentration was over 37. 5 g•L-1;while the concentration of wheat straw aqueous extract was under 75 g•L-1 , the root and shoot length of these two kinds of maize

  10. Study on the absorption of ammonia nitrogen by using carbonized wheat straw%炭化小麦秸秆对水中氨氮吸附性能的研究

    Institute of Scientific and Technical Information of China (English)

    张继义; 韩雪; 武英香; 徐春梅; 李金涛

    2012-01-01

    用直接炭化法制备了小麦秸秆吸附剂,并通过静态吸附试验研究了炭化小麦秸秆对氨氮的吸附性能和影响因素.结果表明:直接炭化法制备小麦秸秆吸附剂的最佳炭化温度为300℃;在试验的pH值范围内,pH=9时炭化小麦秸秆对氨氮的吸附去除最好;300℃时炭化小麦秸秆吸附不同质量浓度(ρ=30 mg/L、50 mg/L、100 mg/L)氨氮的动力学曲线符合准二级动力学模型,吸附常数k2分别为0.681 8g/(mg· min)、0.747 4 g/(mg· min)、1.025 0 g/(mg·min);直接炭化小麦秸秆吸附剂对氨氮吸附去除的最佳温度是30℃;不同温度下的吸附等温线可用Freundlich吸附等温方程进行拟合;由吸附热力学方程计算得到的等量吸附焓变△H>0,吸附自由能变△G<0,吸附熵变△S>0,表明炭化小麦秸秆对氨氮的吸附为吸热的和熵增加的自发过程,且属于物理吸附.%The present article is aimed at the study of the sewage treatment efficiency by using carbonized wheat straw. For this purpose , first of all, the article tested three important factors that may affect the absorption process, including the choice of the carbonization temperature, adsorption temperature, and the pH value. Secondly, we have worked out all the kinetic data respectively by means of pseudo-first-order equation, pseudo-second-order equation, Elovich equation and the intra-particle diffusion model. Thirdly, we have analyzed the equilibrium isotherms by using the Langmuir and the Fre-undlich. And, finally, calculation was done to race the free energy changes AC, the enthalpy changes AH and enthalpy changes AS via the thermodynamics equation. The experimental results indicate that the optimal temperature for direct carbonization proves to be 300 t . Within the scope of the pH value, the optimal pH value for the ammonia nitrogen adsorption tends to be 9, whereas the carbonized wheat straw can adsorb different mass concentration (p = 30 mg/L, SO mg

  11. Effects of feeding alfalfa stemlage or wheat straw for dietary energy dilution on growth performance and sorting behaviors of holstein dairy heifers

    Science.gov (United States)

    Feeding high-quality forage diets may lead to excessive weight gains and over-conditioning for pregnant Holstein heifers. Restriction of energy density and dry matter intake (DMI) by heifers by using low-energy forages, such as straw, is a good approach for controlling this problem. Alfalfa stems co...

  12. Effect of Different Proportion of Wheat Bran and Corn Straw on the Growth Performance in Yellow Powder Larva%不同比例麦麸和玉米秸秆对黄粉幼虫生长性能的影响

    Institute of Scientific and Technical Information of China (English)

    王春清; 马铭龙; 丁秀文; 吕树臣

    2013-01-01

    In order to study the effect of different proportion of wheat bran and corn straw on the Yellow powder larva growth performance trait, 1000 5 to 6-age Yellow powder larva were selected and randomly divided into five groups,the control group was fed wheat bran, test Ⅰ,Ⅱ,Ⅲand Ⅳ groups were fed 20% wheat bran and 80% corn straw,40% wheat bran and 60% corn straw,60% wheat bran and 40% corn straw and corn straw, respectively. The results indicated that body weight, body length,protein content of the test Ⅰ and Ⅳ groups were significant differences compared with the control group (P0. 05) ,and economic benefits of test Ⅱ group increased by 15. 15% per kilogram. Therefore,wheat bran and corn straw ratio in test Ⅱ group was the most suitable for breeding of Yellow powder larva.%为研究不同比例麦麸和玉米秸秆对黄粉幼虫生长性能的影响,试验选择1000只5~6龄黄粉虫,随机分成5组,对照组饲喂小麦麸,试验Ⅰ、Ⅱ、Ⅲ、Ⅳ组分别饲喂20%麦麸和80%玉米秸秆、40%麦麸和60%玉米秸秆、60%麦麸和40%玉米秸秆、全玉米秸秆.结果表明,与对照组相比,试验Ⅰ、Ⅳ组的体重、体长和粗蛋白质含量显著降低(P<0.05),试验Ⅱ、Ⅲ组黄粉幼虫体重、体长和粗蛋白质含量差异不显著(P>0.05),且试验Ⅱ组的经济效益每千克提高了15.15%.因此,试验Ⅱ组麦麸和玉米秸秆的比例最适合养殖黄粉幼虫.

  13. Study on Impact of Modified Wheat Straw Fibers on PBS Composites Properties%改性小麦秸秆纤维对PBS复合材料性能的影响研究

    Institute of Scientific and Technical Information of China (English)

    强琪; 张敏; 徐丹; 邱建辉

    2012-01-01

    Wheat straw fiber was treated by NaOH,on this basis,the Na 2 S 2 O 4 and coupling agents (KH550,KH560) were used to modify the fiber,then the wheat straw fiber/PBS composites were prepared through the blending with poly(butylene succinate) (PBS).The effects of addition of Na2S2O4,and modification of KH550 and KH560 after NaOH treatment on the properties of the straw fiber/PBS composites were studied.Energy disperse spectroscopy (EDS) ,X-ray diffraction and SEM were used to characterize and observe the modified fibers and composites before and after modification.The results indicated that the properties of the composite would be the best when the fiber was treated by NaOH-3% Na2S2O4,compared with KH550,the mechanical properties of composite modified by KH560 could been improved more effectively,and the properties would be the best when the addition of KH560 was 2%.%采用NaOH对小麦秸秆纤维进行处理,在此基础上使用蒸煮助剂Na2S2O4和偶联剂(KH550、KH560)改性秸秆纤维,并将其分别与聚丁二酸丁二醇酯(PBS)共混,制备了秸秆纤维/PBS复合材料.研究了NaOH处理中Na2S2O4的添加以及NaOH处理后KH550、KH560的改性对复合材料性能的影响.采用EDS、WXRD和SEM对改性前后的纤维及复合材料分别进行了分析和观测.研究结果表明:NaOH同3% Na2S2O4混合处理得到的复合材料的性能最好,KH560较KH550更能有效地改善复合材料的力学性能,当KH560质量分数为2%时,复合材料的力学性能最好.

  14. 麦秸与奶牛场废水高固体混合厌氧发酵产甲烷研究%Study on methane production of high-solid anaerobic co-digestion of wheat straw and cattle wastewater

    Institute of Scientific and Technical Information of China (English)

    鲍习峰; 叶小梅; 陈广银; 常志州; 李玉春; 周立祥

    2012-01-01

    Effects of cattle wastewater on anaerobic digestion process of wheat straw and characteristics of digestion with different ratios of cattle wastewater and wheat straw were studied to promote biogas production.Four treatments with the ratio of wheat straw to cattle wastewater of 1 ∶4(T1),1 ∶3(T2),1 ∶2(T3) and control(the ratio of wheat straw to distilled water is 1 ∶4,T4) were designed.The results showed that,co-digested wheat straw with cattle wastewater was viable and gas phase was extended to two weeks,and there was no significant difference among the treatments.The biogas yield of wheat straw was influenced significantly by the initial total solid loading(TSL) of wheat straw and decreased with increasing initial TSL.The highest biogas yield of 0.41 L · g-1 TS of wheat straw was obtained with T1,which was 17.14% higher than that of T4.Hemi-cellulose content of wheat straw decreased significantly and cellulose content decreased slightly after anaerobic digestion.Content of lignin increased slightly,and there was no significant difference between different treatments.The results of FTIR and XRD indicated that the crystalline of cellulous of wheat straw increased after anaerobic digestion,and co-digestion promoted the destruction of crystalline of cellulous of wheat straw.These results suggested that co-digestion of wheat straw and cattle wastewater with 1 ∶4 ratio(based on fresh weight) was beneficial to biotransformation in organic matter in wheat straw and biogas production.%在实验室条件下,以麦秸和奶牛场废水为原料,设计麦秸与奶牛场废水质量比1∶4(T1)、1∶3(T2)和1∶2(T3)以及对照(麦秸与水质量比1∶4(T4))4个处理,研究发酵过程中日产气量、甲烷含量、发酵前后麦秸理化特性和结构的变化.结果表明,奶牛场废水与麦秸在中温、高固体条件下,厌氧发酵可以正常进行,且产气期延长2周以上,对甲烷含量的影响不大;厌

  15. Influence of Wheat Straws and Corn Stalks on Composting of Cow and Sheep Manure%小麦、玉米秸秆与不同比例牛、羊粪堆置腐熟研究

    Institute of Scientific and Technical Information of China (English)

    田曦; 王晓巍; 刘明军; 张玉鑫

    2012-01-01

    An experiment was carried out to study the effects of different ratios of wheat straws (corn stalks) and cow (sheep) manure on the temperature,the pH in the composts and seed germination index. The results indicated that the effect of composts mixed with corn stalks was better than composts mixed with wheat stalks. The time of maintaining high temperature of composts mixed with corn stalk was 15 - 24 days longer than the composts mixed with wheat straw, and the time of maturity was shortened by about 3 d. The effect of fermentation from composts mixed with sheep manure was better than composts mixed cow manure. The treatment with the same ratios of the corn stalk and sheep manure by weight rose to above 50 ℃ on the third day, high temperature remained 22 days, the pH value was 8. 35 at the end of reaction, and the seed germination index exceeded 80% on the 30th day of fermetation.%采用小麦、玉米秸秆分别与牛、羊粪按不同比例进行高温堆肥,通过测定堆体温度、pH值、发芽指数等理化指标,研究不同物料配比对高温堆肥的影响.结果表明,添加玉米秸秆进行堆肥发酵的效果好于添加小麦秸秆,其高温持续时间较小麦秸秆处理长15~24 d,腐熟时间短3d左右.添加羊粪处理腐熟效果优于牛粪处理.综合分析可知,以玉米秸秆和羊粪质量1∶1配比效果最佳,堆肥升温快,第3天即达50℃以上,高温持续时间为22 d,反应结束时pH值为8.35,发酵第30天种子发芽指数即可达80%以上,达到了快速腐熟的目的.

  16. Effects of All Straw Returned to the Field on Grain Number and Grain Weight at Different Spikelets and Grain Positions in Winter Wheat%秸秆全量还田对冬小麦不同小穗位和粒位结实粒数和粒重的影响

    Institute of Scientific and Technical Information of China (English)

    屈会娟; 李金才; 沈学善; 魏凤珍; 吴进东; 马蓓

    2011-01-01

    [目的]研究小麦玉米秸秆连续全量还田对小麦穗部不同小稳位和粒位结实粒数及粒重变化的影响.[方法]通过设置3年定位试验研究小麦玉米秸秆全量还田对小麦不同小穗位结实粒数,粒重的小穗位和粒位的影响效应.[结果]小麦玉米秸秆连续全量还田提高了小麦的公顷穗数,穗粒数、千粒重和产量.各处理小麦不同小穗位结实粒数、小穗重,小穗平均单粒重均呈现二次曲线变化趋势,不同粒位的粒重也随小穗位的变化呈二次曲线形式.结实小穗越多、各小穗结实粒数或单粒重差异越小,空间分布模拟曲线的弧度越平缓.秸秆还田提高了小麦主茎穗和分蘖穗的结实小穗数与小穗结实粒数,降低了不孕小穗数,且下部小穗的结实粒数增加幅度较大;秸秆还田还提高了小麦不同粒位的单粒重,以第3、4粒位提高幅度较大.[结论]小麦玉米秸秆连续全量还田提高了小麦不同小穗位的结实粒数和粒重,进而提高了籽粒产量.%[ Objective ] The objectives of this study were to research the change of gain number and grain weight of wheat with spikelet and grain position in main stem and tiller spike under the condition of straw returned to the field. [Method] A location field experiment was conducted from 2008 to 2010, single maize straw returned to the field, single wheat straw returned to the field,wheat and maize straw returned to the field were conducted to study the effects of straw returned to the field on grain number and grain weight at different spikelets and grain positions in winter wheat. [Result] Results showed that, the spike per hectare, grain number per spike, 1 000-grain weight and yield were increased in treatment of straw returned to the field. The distribution of grain number, spikelet weight, and grain weight with the spikelets positions showed parabolic changes, so as the grain weight at 1st; 2nd,3rd in each treatment and 4th in

  17. 麦秸直接还田对作物产量及培肥土壤效应分析%Study on the Effects of Returning Wheat Straws to Fields Directly on Raising the Yield of Crops and Fertilizing Soil

    Institute of Scientific and Technical Information of China (English)

    常介田; 张翠翠; 孟祥远; 刘伟

    2012-01-01

    为了进一步研究麦秸直接还田对作物产量的影响及培肥土壤效应,寻求适合本区特点的培肥增产模式,进行单施化肥、麦秸还田不施化肥和麦秸还田加施一定量化肥与对照(无麦秸还田、不施肥)进行对比试验.结果表明:麦秸直接还田对后茬作物产量增产效果显著(P<0.05),麦秸还田加施化肥比单一进行麦秸还田对后茬作物产量增产效果极显著(P<0.01),施化肥配施麦秸还田比单施化肥对后茬作物产量增产效果也显著(P<0.05);麦秸直接还田对土壤有机质、全氮、全磷及土壤碱解氮、速效磷和速效钾有不同程度地增加.同时,麦秸直接还田有利于降低土壤容重,增加土壤孔隙度和透水速率,提高土壤微生物和土壤酶活性.麦秸还田加施一定量化肥应大力推广.%To further study the effects of returning wheat straws to fields directly on raising the yield of crops and fertilizing soil, and to find out farming methods which are suitable to this area and that can raise the yield of crops and improve soil fertility, a comparative test was conducted by fertilizing only, returning wheat straws to fields without fertilizing, and returning wheat straws to fields plus applying a certain quantity of fertilizer. The results showed that returning wheat straws to fields directly could raise the yields of succession crops significantly; returning wheat straws to fields directly plus fertilizing could raise the yields of succession crops more significantly than just returning wheat straws to fields and than just fertilizing; moreover, returning wheat straws to fields directly could increase organic matter, total nitrogen, total phosphorus, soil nitrogen, and rapidly available phosphorus and potassium of soil in various degrees; meanwhile, it could help reduced soil bulk density, increased soil porosity and permeability rates, and improved soil microbial and soil enzyme activity. Returning wheat straw

  18. Effects of no-tillage plus inter-planting and remaining straw on the field on cropland eco-environment and wheat growth%免耕套种与秸秆还田对农田生态环境及小麦生长的影响

    Institute of Scientific and Technical Information of China (English)

    刘世平; 张洪程; 戴其根; 霍中洋; 许轲; 阮慧芳

    2005-01-01

    The studies showed that under no-tillage plus inter-planting rice and wheat, the height nf rice stubble remained on the field significantly affected light transmission rate, with an optimal height of 20 - 30 cm. No-tillage and straw-remaining decreased soil temperature at noon in sunny days, but slightly increased it in the morning and evening, led to a less diurnal difference of soil temperature. The average diurnal .soil temperature under no-tillage was higher in cloudy but lower in sunny days. Under no-tillage and straw-remaining, both the bulk density and the penetration resistance of topsoil increased, but no apparent adverse effect of them was observed on wheat growth. Under no-tillage, soil water content was higher under drought condition, and soil permeability after irrigation was better, which was propitious to the wheat growth. Straw-remaining significantly inhibited weeds, but led to the decrease of basic seedlings and enhanced the damage of freezing. Under no tillage plus inter-planting,the individuals of effective ears decreased, while the kilo-grain weight increased. The grain yield was slightly but not significantly low under no-tillage plus inter-planting.

  19. 秸秆还田与施氮对冬小麦生长发育及水肥利用率的影响%Effect of corn straw returned to soil and N application on growth, water and nitrogen use efficiency of winter wheat

    Institute of Scientific and Technical Information of China (English)

    闫翠萍; 裴雪霞; 王姣爱; 杨峰; 曹勇; 张晶; 党建友

    2011-01-01

    田间试验研究了小麦-玉米一年两熟耕作区玉米秸秆还田与氮肥配施和化肥单施对冬小麦生长发育、籽粒产量及氮肥表观利用率和水分利用效率的影响.结果表明,施氮量相同时,秸秆与氮肥配施越冬前和拔节期冬小麦总茎数和单株分蘖数低于化肥单施,施氮量在75~225kg·hm-2时,植株干重高于化肥单施;孕穗期到成熟期植株干重、成穗率和产量构成因素秸秆与氮肥配施处理高于化肥单施处理,籽粒产量增加58.9~339.6kg·hm-2,水分生产率提高0.026~0.083 kg·m-3.施氮量在75 kg·hm-2时,秸秆与氮肥配施的氮肥表观利用率低于化肥单施;在150~300kg·hm-2时高于化肥单施.因此,针对目前黄淮海麦区小麦-玉米一年两熟种植制度下,秸秆还田前期生物争氮、后期供肥能力增强的特点,秸秆连续还田后配施纯氮225 kg·hm-2,可有效提高灌水和氮肥利用率,实现冬小麦高产高效栽培.%Through field experiments, the effects of combined N and corn straw application on the growth, grain yield, nitrogen use efficiency (NFUE) and water use efficiency (WUE) of winter wheat in wheat-maize cropping systems were analyzed. At pre-winter and jointing stages, total stems and tillers per plant of wheat under combined N and com straw application were lower than under application of the same rate of N only. At N application rate of 75~225 kg · hm-2, the plant dry weight was higher under combined application of N and corn straw. At booting and maturity stages, dry matter, ears and yield components of wheat under combined corn straw and N application were higher than under N only. Grain yield and WUE under combined corn straw and N application were respectively 58.9~339.6 kg · hm-2 and 0.026~0.083 kg · m-3 higher than under N only. With 75 kg · hm-2 N application, NFUE under combined N and com straw application was lower than under N only, but it became higher with 150~300 kg · hm-2

  20. Monosaccharide yields and lignin removal from wheat straw in response to catalyst type and pH during mild thermal pretreatment

    DEFF Research Database (Denmark)

    Pedersen, Mads; Viksø-Nielsen, Anders; Meyer, Anne S.

    2010-01-01

    pretreatment at pH 1 gave the highest yield of saccharides in the liquid fraction, the solid fraction was more susceptible to enzymatic attack when pretreated at pH 13. The highest yields were obtained after pretreatment with hydrochloric acid at pH 1, and with sodium hydroxide at pH 13 when enzymatic...... hydrolysis was employed. A two-step pretreatment strategy at pH 1 (hydrochloric acid) and subsequently at pH 13 (sodium hydroxide) released 69 and 95% of the theoretical maximal amounts of glucose and xylose, respectively. Furthermore, this two-step pretreatment removed 68% of the lignin from the straw...

  1. 利用小麦秸秆栽培双孢蘑菇高产配方筛选研究%Screening of High Yield Cultivation Formula for Agaricus bisporus by Using Wheat Straw

    Institute of Scientific and Technical Information of China (English)

    彭学文; 吴志会; 解文强; 周廷斌

    2011-01-01

    以小麦秸秆为主料栽培双孢蘑菇,可使小麦秸秆变废为宝,拓宽双孢蘑菇生产原材料的来源渠道。以双孢蘑菇菌株AS2796为试材,选用稻草为主的培养料为对照,以小麦秸秆不同添加量设置了3个配方处理,研究了不同麦秸比例对菌丝生长情况、满袋时间以及鲜菇产量的影响。结果表明:处理Ⅱ菌丝生长速度快,满袋时间仅为22.7 d,鲜菇产量高达10.5 kg/m2,为最佳培养料配方,即麦秸47.6%、牛粪35.7%、鸡粪11.9%、饼肥1.2%、尿素0.2%、石膏1.2%、过磷酸钙1.2%和石灰1.0%。%To cultivate Agaricus bisporus,wheat straw was used as the main substrate.The effects of different cultivation formula on the growth of mycelium,the time of full of cultivating bag and the fresh mushroom yield of AS2796 were studied.The results showed that with the treatment Ⅱ,the mycelium grew rapidly,it took 22.7 days to fill the cultivating bag,and the yield of fresh mushroom could reach 10.5 kg/m2.The formula of treatment Ⅱ was the best,which included 47.6% wheat straw,37.7% cow dung,11.9% chicken manure,1.2% cake fertolizer,0.2% urea,1.2% gypsum,1.2% calcium super phosphate,and 1.0% lime.

  2. Dissolution-regeneration of Ethylenediamine Pretreated Wheat Straw Pulp in LiCl/DMSO%乙二胺预处理麦草浆在 LiCl/DMSO 体系中的溶解-再生性能

    Institute of Scientific and Technical Information of China (English)

    夏剑雨; 刘祝兰; 曹云峰; 王志国

    2016-01-01

    Oxygen-delignified wheat straw soda pulp were pretreated by ethylenediamine ( EDA ) and then dissolved in 8%LiCl/DMSO solution system .The effects of ethylenediamine on the pulp properties and its dissolution-regeneration performance in LiCl/DMSO were studied .The results showed that the crystal structure of EDA pretreated pulp was altered but still had a high crystallinity .The EDA-pretreated wheat straw pulps could be completely dissolved in 8%LiCl/DMSO.With the increase of the lignin content , more time was required to form the homogeneous solution .The dissolved samples could be regenerated by being poured into water.The yields of the regenerated fractions were ranged from 59.19% to 61.88%.The lignin, polysaccharide, ash, and silicon were preserved well after the dissolution-regeneration.%利用8%LiCl/DMSO木质纤维全溶体系,溶解经乙二胺溶液预处理后氧脱木质素碱法麦草浆,探讨乙二胺预处理对浆料性能的影响,及预处理后浆料在8%LiCl/DMSO全溶体系中的溶解-再生性能。研究发现:乙二胺预处理在保留较高结晶度时可改变浆料结晶结构,氧脱木质素碱法麦草浆经乙二胺预处理后可完全溶解于8%LiCl/DMSO溶液,随着木质素含量的增加,溶解所需时间延长;溶解后样品经水可再生,产物得率为59.19%~61.88%,溶解-再生过程中木质素、多糖、灰分和硅都得到较好保留。

  3. Studies on Feeding Animals with Straw of Grain-Straw-Dual-Use-Rice 201

    Institute of Scientific and Technical Information of China (English)

    ZHENG Jin-gui; CHEN Jun-chen; HUANG Qin-lou; ZHENG Kai-bin; YE Xin-fu; TU Jie-feng; CHEN Bing-huan

    2002-01-01

    The straw of Grain-Straw-Dual-Use-Rice (GSDUR) variety 201 of which the grain quality and yield were equivalent to that of common rice variety (the grain yield approximately 7.5 t ha-1 ), but straw protein content was 9.31% (common rice straw i.e. CK was approximately 4.0%), and other eight fodder indexes were better than CK to some extent, was employed to feed animals. 15 N tracing result suggested that the protein in 201 straw could be effectively transformed into fish body protein and white mouse body protein. The digestibility of fodder, the 15N recovery rate of animal body and the absorption of fodder protein were 13.8,9.6, 24. 49 % and 16.5, 6.0, 47.2 % higher than those of common rice straw respectively when feeding grass carp and white mice with 201 rice straw, whereas the 1s N recovery rates of animal manure were 3.25, 6.5 %lower than those of common rice straw, respectively. The results of feeding animals with 201 straw were as carp, fish weight gain per kg fresh rice straw were increased by 60.0, 16.8 and 37.0% respectively when 201fresh straw was used to feed grass carp compared to feeding CK, and fish yield could be increased by 297.5 kg creased by 33.9 and 26.8% respectively when 201 rice straw was used as the main raw material of the compound fodder to feed white geese compared to feeding CK, and geese weight could be increased by 2 358.0 kg powder substituting for wheat bran which made up of 5 % compound fodder to feed cross bred pigs compared to CK, but 0. 11 kg fine fodder could be saved when 1 kg cross bred pig weight was increased.

  4. 秸秆与缓释肥配施对水稻产量及氮素吸收利用率的影响%Effects of Application of Controlled-release Fertilizer Combined with Wheat Straw on Rice Yield and Nitrogen Use Efficiency

    Institute of Scientific and Technical Information of China (English)

    孙会峰; 周胜; 付子轼; 陈桂发; 邹国燕; 宋祥甫

    2015-01-01

    The effects of application of controlled-release fertilizer combined with wheat straw on rice yield and nitrogen use efficiency were studied in this paper ,with Huayou 14(Oryza sativa L.) as material. The results showed that application of controlled-release fer-tilizer combined with wheat straw clearly increased rice yield by 13.4%~17.8%, mainly due to the increases of effective panicles and 1000-grain weight compared to common chemical fertilizer application. Application of controlled-release fertilizer combined with wheat straw could also enhance rice straw biomass, nitrogen content in grain and straw, which led to a significantly higher nitrogen use efficiency(71.6%~77.6%) compared to common chemical fertilizer application(28.7%~40.2%). Controlled-release fertilizer was ap-plied only once, and as base fertilizer, would effectively save labor costs. Application of controlled-release fertilizer combined with wheat straw increased rice yield, enhanced nitrogen use efficiency, saved labor costs, may have a promising future.%以花优14为材料,研究了秸秆与缓释尿素配施对水稻产量及氮素吸收利用率的影响。结果表明,秸秆与缓释肥配施处理较常规施肥处理有效穗数和千粒重明显增加,从而显著提高水稻产量,增幅达到13.4%~17.8%。秸秆与缓释肥配施能明显提高秸秆生物量、籽粒及秸秆含氮量,将氮素吸收利用率从28.7%~40.2%(常规施肥处理)提高到71.6%~77.6%。缓释肥作基肥一次性施入,可有效节省人力成本。秸秆与缓释肥配施能增加水稻产量,提高氮素吸收利用率,减少人力成本,具有很大的应用前景。

  5. Effects of Application of Controlled-release Fertilizer Combined with Wheat Straw on Rice Yield and Nitrogen Use Efficiency%秸秆与缓释肥配施对水稻产量及氮素吸收利用率的影响

    Institute of Scientific and Technical Information of China (English)

    孙会峰; 周胜; 付子轼; 陈桂发; 邹国燕; 宋祥甫

    2015-01-01

    The effects of application of controlled-release fertilizer combined with wheat straw on rice yield and nitrogen use efficiency were studied in this paper ,with Huayou 14(Oryza sativa L.) as material. The results showed that application of controlled-release fer-tilizer combined with wheat straw clearly increased rice yield by 13.4%~17.8%, mainly due to the increases of effective panicles and 1000-grain weight compared to common chemical fertilizer application. Application of controlled-release fertilizer combined with wheat straw could also enhance rice straw biomass, nitrogen content in grain and straw, which led to a significantly higher nitrogen use efficiency(71.6%~77.6%) compared to common chemical fertilizer application(28.7%~40.2%). Controlled-release fertilizer was ap-plied only once, and as base fertilizer, would effectively save labor costs. Application of controlled-release fertilizer combined with wheat straw increased rice yield, enhanced nitrogen use efficiency, saved labor costs, may have a promising future.%以花优14为材料,研究了秸秆与缓释尿素配施对水稻产量及氮素吸收利用率的影响。结果表明,秸秆与缓释肥配施处理较常规施肥处理有效穗数和千粒重明显增加,从而显著提高水稻产量,增幅达到13.4%~17.8%。秸秆与缓释肥配施能明显提高秸秆生物量、籽粒及秸秆含氮量,将氮素吸收利用率从28.7%~40.2%(常规施肥处理)提高到71.6%~77.6%。缓释肥作基肥一次性施入,可有效节省人力成本。秸秆与缓释肥配施能增加水稻产量,提高氮素吸收利用率,减少人力成本,具有很大的应用前景。

  6. 鸡粪与NaOH预处理麦秸联合厌氧发酵产气性能与协同效果研究%Performance and synergistic effect of anaerobic co-digestion of chicken manure and pretreated wheat straw with NaOH

    Institute of Scientific and Technical Information of China (English)

    高健; 袁海荣; 邹德勋; 朱保宁; 张良; 李兵; 冯亚君; 李秀金

    2012-01-01

    Biogas production and gynergistic effect on anaerobic co-digestion of chicken manure and pretreated wheat straw with 2% NaOH was studied.Three loadings were tested, which were made by mixing chicken manure with pretreated wheat straw at different ratios.Biogas yield of the chicken manure and wheat straw ratios of 1:2 was the optimal in the three loading rates, and their cumulative gas yield achieved 32 000 mL,43 030 mL,and 50 370 mL when corresponding loading was 50,65,80 g/L,and the gas yield achieved 328.2,356.9,352.8 mL/g and increased by 27%, 29%, 23% compared to pure chiken manure.The loading of the best biogas performance was 65 g/L in the chicken manure and wheat straw ratios of 1:2,and cumulative biogas yield increased by 7%~17.7% due to the synergistic effect of chicken manure and pretreated wheat straw.%试验研究了不同负荷下不同混合比例的鸡粪与NaOH预处理麦秸的厌氧发酵产气性能和协同作用效果.以鸡粪和2%NaOH预处理后的麦秸作为发酵原料,研究了混合物料在3种负荷和9种混合比例条件下的厌氧发酵产气情况.结果表明:在3种负荷(50,65,80 g/L)中,均是鸡粪和麦秸比例为1∶2时产气效果最佳,其累计产气量分别达到32000,43 030 mL和50 370mL;其TS产气率分别达到328.2,356.9,352.8 mL/g,比纯鸡粪相应负荷分别提高了 27%,29%,23%.不同比例下,3种负荷中,均是65 g/L时产气效果最好,鸡粪与麦秸的协同作用使累计产气量提高了7%~17.7%.

  7. 氮肥与精量秸秆还田对冬小麦花后光合特性及产量的影响%Effects of Coupling of Precise Straw-return and Nitrogen Fertilizer on Photosynthetic Characteristics after Anthesis and Yield of Winter Wheat

    Institute of Scientific and Technical Information of China (English)

    王宁; 刘义国; 张洪生; 李玲燕; 林琪

    2012-01-01

    In order to determine the wheat straw residue amount and the nitrogen fertilizer amount in the dry land, different amounts of straws returned to field and nitrogen treatments were set up in Qingdao agriculture university Jiaozhou experiment stations. We researched the effects of precise straw returned quantity and nitrogen fertilizer treatments on winter wheat photosynthetic characteristics and yield. The results showed that compared with only nitrogen fertilizer treatment,right amounts of straws returned to field can improve winter wheat chlorophyll SPAD value obviously, delay senescence of flag leaf, improve the photosynthetic performance of flag leaf and increase the 1000-seed weight. In the same level of the straw returned to N2 level of the flag leaf senescence winter wheat slowly, and photosynthesis prolonged, the yield was increased significantly. Straw returned 9 000 kg/ha ( J3 ) under 225 kg/ha ( N2) nitrogen can delay senescence of flag leaf .improve the photosynthetic performance of flag leaf, reduce stoma-tal conductance and increase the 1000-seed weight obviously compared with other process, however, wheat straw reduced the wheat effective panicles. The experimental results showed that straw returned 9 000 kg/ha under 225 kg/ha nitrogen dosage had the most obvious effect on improving photosynthesis of flag leaves. So the N2J3 treatment is the optimal choice in the locality.%为了确定旱地小麦秸秆还田量与氮肥的施用量,在青岛农业大学胶州试验站设不同的秸秆还田量与氮肥处理.研究了精量秸秆还田与施氮量对冬小麦光合特性以及产量的影响.结果表明,与单施N肥处理相比较,适量的秸秆还田能明显提高冬小麦叶绿素SPAD值,延缓旗叶衰老,改善旗叶光合性能,提高小麦千粒质量,但明显降低有效穗数.在同一秸秆还田下高水平氮比低水平氮处理的冬小麦旗叶衰老速度要慢、光合时间更长、产量也明显增多.在施氮225 kg/hm2(N2)

  8. Effects of Wheat Straw with Flooding on Soil Properties and Phytophthora Blight Control in Continuous Chili Pepper Cropping Field%麦秸淹水处理对连作土壤性状和辣椒疫病田间防控效果的影响

    Institute of Scientific and Technical Information of China (English)

    顾志光; 马艳; 安霞; 王光飞; 孙迪; 王秋君

    2014-01-01

    采用室内模拟土壤淹水的方法,研究不同麦秸用量、不同淹水时间对辣椒连作土壤理化性状和辣椒疫霉病菌数量的影响以及田间麦秸淹水处理对辣椒生长和辣椒疫病防控效果的影响。通过常规分析和定量PCR分别测定了不同淹水处理期间多种土壤理化指标和辣椒疫霉病菌的数量,调查了麦秸淹水处理后大棚辣椒的长势、产量和辣椒疫病发生率。研究结果表明:与土壤保湿处理相比,不同麦秸用量和不同淹水时间处理均能降低土壤氧化还原电位,提高土壤有机质、速效磷、速效钾、有机酸和总酚酸的含量。常规淹水和麦秸淹水处理均能降低土壤中辣椒疫霉病菌数量,在10 d和14 d两个淹水时间下,秸秆用量为0.25%时抑制效果最强,继续增加秸秆用量对辣椒疫霉病菌的抑制作用降低。辣椒生产大棚的田间淹水试验表明,添加麦秸淹水处理20 d可提高土壤中铵态氮、速效磷和速效钾的含量,降低硝态氮的含量,并可以有效防控辣椒疫病,促进辣椒植株的生长并使产量增加12%。%Crop residues may be used to control soil borne plant diseases. In a laboratory experiment, the effects of different rates of wheat straw on soil physical properties and Phytophthora capsici population were studied under different flooding time. The impact of wheat straw with flooding on the growth and yield of chili pepper was carried out in high tunnel fields. Compared to moist soil, applying wheat straw and flooding significantly decreased soil EC but increased organic matter, available phosphorus, available potassium, organic acids and phenolic acid contents. The number of P. capsici was reduced significantly in both flooding only and flooding plus wheat straw in comparison with the moist soil. Application of 0.25%wheat straw with flooding for 10 days or 14 days strongly inhibited the growth of P. capsici. However, such

  9. 麦秸秆纤维素接枝丙烯酸制备高吸水性树脂的研究%Preparation of Super Absorbent Res in by Graft Copolymerization of Wheat Straw Cellulose and Acrylic Acid

    Institute of Scientific and Technical Information of China (English)

    贺龙强; 刘中阳

    2011-01-01

    With acrylic acid as modifier monomer, N,N'-methylene-bis-acrylamide as crosslinker,and Potassium persulfate as initiator,super absorbent resin was synthesized by grafting copolymerization of the acrylic acid and cellulose from wheat straw after pretreatment. The effects of initiator does, cross linker dosage, monomer dose, and neutralization of acrylic acid on water absorption of resin were studied. The water absorben-cy of resin obtained under the optimal synthetic conditions was both large and rapid.%以小麦秸秆为原料,经预处理得纤维素后,以N,N’-亚甲基双丙烯酰胺为交联剂,过硫酸钾为引发剂,采用水溶液聚合法制备了纤维素接枝丙烯酸的高吸水性树脂,探讨了引发剂用量、交联剂用量、单体丙烯酸用量、丙烯酸中和度等因素对吸水率的影响.最佳条件下制得的树脂不仅吸水量大,而且还具有吸水速率快的特性.

  10. Production of cellulolytic enzymes by Aspergillus fumigatus ABK9 in wheat bran-rice straw mixed substrate and use of cocktail enzymes for deinking of waste office paper pulp.

    Science.gov (United States)

    Das, Arpan; Paul, Tanmay; Halder, Suman K; Jana, Arijit; Maity, Chiranjit; Das Mohapatra, Pradeep K; Pati, Bikas R; Mondal, Keshab C

    2013-01-01

    Response surface methodology was employed to optimize mixed substrate solid state fermentation for the production of cellulases and xylanase by Aspergillus fumigatus ABK9. Among 11 different parameters, fermentation time (86-88 h), medium pH (6.1-6.2), substrate amount (10.0-10.5 g) and substrate ratio (wheat bran:rice straw) (1.1) had significantly influences on enzyme production. Under these conditions endoglucanase, β-glucosidase, FPase (filter paper degrading activity) and xylanase activities of 826.2, 255.16, 102.5 and 1130.4 U/g, respectively were obtained. The enzyme cocktail extracted (solid to water ratio of 1:10) from the ferments increased brightness of waste office paper pulp by 82.8% ISO, Ink(D) value by 82.1%, removed chromophores (2.53 OD; A(237)nm) and hydrophobic compounds (1.15 OD; A(465)nm) and also decreased the kappa number to 13.5 from 16.8. PMID:23196251

  11. 高锰酸钾活化麦草浆过氧化氢漂白的研究%A study on hydrogen peroxide bleaching of wheat straw pulp activated by potassium permanganate

    Institute of Scientific and Technical Information of China (English)

    郭星; 张安龙; 罗清; 赵登

    2014-01-01

    探讨了高锰酸钾对Soda-AQ法麦草浆过氧化氢漂白的活化作用。结果表明,高锰酸钾是一种强氧化剂,在酸性条件下可与纸浆中的木素反应,经高锰酸钾预处理后的纸浆具有很好的可漂性。通过分析比较MQDP和MDQP两种漂白流程,得出在高锰酸钾用量为1.0%时,采用MDQP漂白流程,纸浆得率损失较小,白度最高。%The activation of potassium permanganate was investigated in Soda-AQ hydrogenperoxide bleaching of wheat straw pulp. The results show that potassium permanganate serves very well as a strong oxidant. Under acidic conditions, potassium permanganate reacts with lignin in pulp and having a good bleachability after potassium permanganate pretreatment. By comparing bleaching sequence of MQDP and MDQP, when the dosage of potassium permanganate is 1.0%, using bleaching sequence of MDQP, pulp yield loss is smaller and getting the highest whiteness.

  12. Liquefaction of wheat straw catalyzed by acidic ionic liquid and analysis of liquefied products%酸性离子液体催化麦秸液化及其产物分析

    Institute of Scientific and Technical Information of China (English)

    关倩; 蒋剑春; 徐俊明; 王奎; 冯君锋

    2016-01-01

    changed into 5-hydroxymethylfurfural (HMF). The report about producing levulinate from agriculture waste catalyzed by ionic liquids is rare. Therefore, we choose wheat straw as raw material and ionic liquids as catalyst in the liquefaction process. In this study, 1-methyl-3-(4-Sulfobutyl)-imidazolium hydrosulfate is synthesized and used as catalyst for the liquefaction of wheat straw in ethanol. Fourier transform infrared spectrometer (FT-IR), nuclear magnetic resonance carbon-13 spectrum (13C NMR), thermo gravimetric analyzer (TG) and gas chromatography-mass spectrometry (GC-MS) characterized the structure of ionic liquid and liquid products. The synthesized ionic liquid is confirmed to be 1-methyl-3-(4-Sulfobutyl)-imidazolium hydrosulfate. Results of the experiments show that the ionic liquid has the optimum catalytic properties for the liquefaction of wheat straw. Under the conditions that wheat the straw mass is 5 g, the mass fraction of catalyst is 26%, the reaction temperature is 200℃, and the reaction time is 60 min, a high conversion rate of 85.5% is obtained; under the conditions, the yield of ethyl levulinate is 9.97%, and the relative percentage content of ethyl levulinate is 29.9% in liquid products. The liquid products include aldehydes, ketones, esters, carboxylic acids, phenols and other oxygenated chemicals; among them, phenols are from the degradation of lignin mainly, and the other compounds are from the degradation of hemicellulose and cellulose principally. The results can provide theoretical basis for the development and utilization of low corrosive and environment-friendly catalysts, which will be used on liquefaction to prepare high grade chemicals.%为降低有机酸催化剂对设备的腐蚀,提高秸秆类生物质原料的利用率,该文以合成的1-甲基-3-(4-磺酸基丁基)咪唑硫酸氢盐离子液体为催化剂,乙醇为溶剂,考察小麦秸秆的液化过程,并对离子液体的结构进行傅里叶红外光谱和核磁共振表

  13. Effects of Maize Straw Mulching on Soil Physical Properties in Spring Wheat Fields%玉米秸秆覆盖对春小麦田土壤物理性状的影响

    Institute of Scientific and Technical Information of China (English)

    张志贤; 文卿琳

    2012-01-01

    The field experiments were made to study the changes of soil temperature, bulk density and soil moisture content under the different mulching. The results showed that mulching and straw standing treatment dicrease soil bulk density compared with the check treatment. In sowing and tillering of spring wheat, the soil layer which the depth of 5 cm, mulching soil temperature is lowest, compared with conventional tillage low than 2.13℃ and 1.79℃; soil temperature of 15 cm was 2.36℃ and 1.90℃ lower on straw mulching than conventional tillage. Between the soil layers, the highest and lowest points of soil temperature delayed 3 hours with the deepening of soil layer. Water content of soil in the layers of 0~10 cm, the cover and pole treatment higher than conventional tillage,but in the layers of 10~20 cm, soil moisture of the cover and pole treatment lower than conventional tillage.%为了明确生物覆盖对塔里木盆地绿洲区土壤性能的影响,采用田间试验研究了玉米秸秆不同覆盖处理方式对土壤容重、温度及含水量的影响。结果表明,覆盖处理、立秆处理都较常规处理降低了土壤容重。在春小麦播种期和分蘖期,覆盖处理的5cm土层温度最低,较常规处理的分别低2.13℃和1.79℃;15 cm土层温度较常规处理的分别低2.36℃和1.90℃;土层加深10 cm土壤温度的最高点和最低点都延迟3 h出现。土壤含水量表现为0~10 cm土层立秆、覆盖处理的土壤含水量均较常规处理的高,而10~20 cm土层则表现为立秆、覆盖处理的土壤含水量均较常规处理的低。

  14. Wheat straw returned combined with nitrogen as base fertilizers and topdressing at tiller stage improving the tiller emergency, earbearing traits and yield for machine-transplanted superjaponica rice%麦秸还田配施基蘖氮肥提高机插超级粳稻分蘖成穗及产量

    Institute of Scientific and Technical Information of China (English)

    熊瑞恒; 杭玉浩; 王强盛; 许国春; 刘欣; 武皞

    2015-01-01

    The tiller emergency and ear bearing traits of super rice have important influence on actual yield. With the transfer of rural labor and the integration of farming machine and agronomy, rice planting mechanization has become a dominated developing direction and key technology for modern agriculture in China. Rice-wheat rotation is the main mode in farming system of China, every year large amount of straw is produced by wheat planting, and the returning of straw has become the most direct and sustainable technical method to the comprehensive utilization of straw. The application of nitrogen is an important measure in improving rice yield, however, the unreasonable application is unfavorable for the growth of rice and the utilization efficiency of nitrogen. At present, the research about the tiller emergency and ear bearing traits of machine-transplanted super rice under the growing condition of straw returning and nitrogen management is still scare. In order to analyze the effects of different amount of returned wheat straw treatments and different ratio of basic and tiller nitrogen on tiller emergency, ear bearing and yield composition of machine-transplanted super rice, the experiment took the super rice Nanjing 9108 as experimental materials, and designed 5 treatments with different ratios of basic and tiller nitrogen and 3 treatments with different wheat straw returned amounts. Under the condition that the total nitrogen application amount was 300 kg/hm2 and the panicle nitrogen was 120 kg/hm2, the ratios of basic and tiller nitrogen were 0:180, 45:135, 90:90, 135:45 and 180 :0 respectively (unit: kg/hm2), and the amounts of the returned straw were 0, 3 000 and 6 000 kg/hm2. The study was done in a field plot experiment to survey the tiller traits and the yield composition at mature stage of machine-planted super rice in 2013 and 2014. The result showed that the tiller starting position of the primary tiller emergency for main stems of non-straw returned machine

  15. Straw-to-soil or straw-to-energy? An optimal trade off in a long term sustainability perspective

    International Nuclear Information System (INIS)

    Highlights: • Energy balance and GHG savings of a straw-to-electricity value chain were determined. • An “expanded” LCA was performed, from farm field to electricity delivery. • Both direct and indirect factors of land use change have been considered in the analysis. • No-tillage and crop rotation significantly improved the system performance. • A win–win, sustainable solution for the energy use of straw has been identified. - Abstract: This study examined some management strategies of wheat cultivation system and its sustainability in using straw as an energy feedstock. According to the EU regulatory framework on biofuels, no GHG emissions should be assigned to straws when they are used for energy. Given this relevance in the current energy policy, it is advisable to include all possible marginal effects related to land use, resource utilization and management changes in the comparison of different biomass options. Coherently, an expanded life cycle assessment (LCA) was applied to include the upstream cultivation phase and to make a comparison between “straw to soil” and “straw to energy”. Different crop management conditions in Southern Italy were simulated, by using the CropSyst model, to estimate the long-term soil organic carbon and annual N2O soil emissions. Three wheat cropping systems were considered: the conventional single wheat system without straw removal (W0) and with partial straw removal (W1), together with a no-tillage “wheat-wheat-herbage” rotation system with partial straw removal (W2). The results of the simulations were integrated in the LCA to compare fossil energy consumption and greenhouse gas (GHG) emissions of straw-to-electricity with respect to the fossil-based electricity system. The “improved” rotational wheat cropping system (W2) gave the best performance in terms both of GHG savings and fossil displacement, thus stressing that straw use for energy generation in parallel with the optimization of the

  16. 不同秸秆还田年限对稻麦轮作系统温室气体排放的影响%Effects of years of straw return to soil on greenhouse gas emission in rice/wheat rotation systems

    Institute of Scientific and Technical Information of China (English)

    张翰林; 吕卫光; 郑宪清; 李双喜; 王金庆; 张娟琴; 何七勇; 袁大伟; 顾晓君

    2015-01-01

    为揭示稻麦轮作系统不同秸秆还田年限下温室气体排放特征及减排调控机制,本研究采用大田小区试验,考察了稻麦轮作不同秸秆还田年限[空白对照(CK)、常规处理秸秆不还田(NT)、1年秸秆还田(SR1)和5年秸秆还田(SR5)]对CH4、CO2和N2O 3种温室气体排放规律的影响,同时测定了土壤固碳量,估算了秸秆焚烧产生的温室气体排放量,综合计算了4种处理对全球变暖的贡献。试验结果表明, SR1和SR5均显著提升CH4和CO2的排放通量,分别高出NT、CK处理73.52%、309.49%和13.29%、13.06%;同时显著降低N2O排放通量,较NT降低29.68%和42.55%;但SR1和SR5之间温室气体排放通量差异不显著;与NT相比, SR1和SR5可以显著提高土壤固碳量517.9%和709.03%, SR5土壤固碳量高出SR1达30.93%; NT秸秆焚烧产生的全球气温变暖贡献为9698.49 kg(CO2-eqv)·hm−2,比CK高126.98%。综合分析温室气体排放、土壤固碳以及秸秆焚烧3个因素, SR1全球升温贡献最低,显著低于NT 4.72%。短期全量秸秆还田有助于降低总体温室气体排放,长期进行秸秆还田后降低幅度会逐步减小。%AbstractCrop straw is the largest renewable resource on earth but it is often burned after crop harvest, resulting in loss of nutrients and environmental pollution. With current advocate for ecological agriculture, straw return to soil is the most important mode of reutilization of agricultural by-products. This mode is vigorously applied and promoted in rice/wheat rotation system. Research has shown that straw return to soil as a key mode of ecological agriculture affects many aspects of agricultural systems, including soil physical and chemical properties, carbon sequestration in soils, greenhouse gas emissions, etc. Despite this, less research has focused on the effects of different years of straw return to soil on the contributions of agricultural systems to global warming. In this study, field

  17. Effects of years of straw return to soil on greenhouse gas emission in rice/wheat rotation systems%不同秸秆还田年限对稻麦轮作系统温室气体排放的影响

    Institute of Scientific and Technical Information of China (English)

    张翰林; 吕卫光; 郑宪清; 李双喜; 王金庆; 张娟琴; 何七勇; 袁大伟; 顾晓君

    2015-01-01

    为揭示稻麦轮作系统不同秸秆还田年限下温室气体排放特征及减排调控机制,本研究采用大田小区试验,考察了稻麦轮作不同秸秆还田年限[空白对照(CK)、常规处理秸秆不还田(NT)、1年秸秆还田(SR1)和5年秸秆还田(SR5)]对CH4、CO2和N2O 3种温室气体排放规律的影响,同时测定了土壤固碳量,估算了秸秆焚烧产生的温室气体排放量,综合计算了4种处理对全球变暖的贡献。试验结果表明, SR1和SR5均显著提升CH4和CO2的排放通量,分别高出NT、CK处理73.52%、309.49%和13.29%、13.06%;同时显著降低N2O排放通量,较NT降低29.68%和42.55%;但SR1和SR5之间温室气体排放通量差异不显著;与NT相比, SR1和SR5可以显著提高土壤固碳量517.9%和709.03%, SR5土壤固碳量高出SR1达30.93%; NT秸秆焚烧产生的全球气温变暖贡献为9698.49 kg(CO2-eqv)·hm−2,比CK高126.98%。综合分析温室气体排放、土壤固碳以及秸秆焚烧3个因素, SR1全球升温贡献最低,显著低于NT 4.72%。短期全量秸秆还田有助于降低总体温室气体排放,长期进行秸秆还田后降低幅度会逐步减小。%AbstractCrop straw is the largest renewable resource on earth but it is often burned after crop harvest, resulting in loss of nutrients and environmental pollution. With current advocate for ecological agriculture, straw return to soil is the most important mode of reutilization of agricultural by-products. This mode is vigorously applied and promoted in rice/wheat rotation system. Research has shown that straw return to soil as a key mode of ecological agriculture affects many aspects of agricultural systems, including soil physical and chemical properties, carbon sequestration in soils, greenhouse gas emissions, etc. Despite this, less research has focused on the effects of different years of straw return to soil on the contributions of agricultural systems to global warming. In this study, field

  18. Prototype ATLAS straw tracker

    CERN Multimedia

    Laurent Guiraud

    1998-01-01

    This is an early prototype of the straw tracking device for the ATLAS detector at CERN. This detector will be part of the LHC project, scheduled to start operation in 2008. The straw tracker will consist of thousands of gas-filled straws, each containing a wire, allowing the tracks of particles to be followed.

  19. Mapping straw yield using on-combine light detection and ranging (LiDAR)

    Science.gov (United States)

    Wheat (Triticum aestivum L.) straw is not only important for long-term soil productivity, but also as a raw material for biofuel, livestock feed, building, packing, and bedding. Inventory figures in the United States for potential straw availability are largely based on whole states and counties. ...

  20. Neutralization and Fermentation of Spent Liquor from Preparation Process of Wheat Straw MCC%利用麦草MCC制备过程中产生的废液中和发酵制备乙醇

    Institute of Scientific and Technical Information of China (English)

    李金宝; 张美云; 孟远行; 刘书钗

    2012-01-01

    麦草原料制备微晶纤维素过程中产生的酸水解和碱处理废液中含有大量葡萄糖。本文研究了两种废液相互中和,并利用酿酒酵母发酵的方法转化其中的葡萄糖为生物质乙醇,既减少了环境污染,又大大提高了纤维素资源的利用率。研究结果表明:酸性废液和碱性废液混合至酵母菌适宜pH5.0时,所需酸、碱废液的体积比为2.83:1,此时,混合废液中还原糖含量约为20.60g·L^-1还原糖初始浓度越高,乙醇产量越高;混合废液发酵制备乙醇的最佳工艺条件为:酿酒酵母接种量10%,发酵温度34℃,发酵时间72h,pH为5.0。%A plenty of glucose existed in two types of spent liquor produced from acid hydrolysis and alkaline treatment which were major processes in preparation procedure of wheat straw microcrystaUine cellulose. It was investigated that mutual neutralization of two types of spent liquor, and converting glucose to bioethanol by way of saccharomyces cerevisiae fermentation. This helps not only reduce the environmental pollution but also greatly improve the utilization of cellulose resource. The result showed that volume ratio of 2.83:1 is required for pH 5.0 when mixing acid spent liquor and alkaline spent liquor, which is the most suitable pH for yeast reproduction. Meantime, the reducing sugar content in mixed liquor is about 20.60 g·L^-1. 3he higher reducing sugar concentration, the higher bioethanol yield. It is the optimum fermentation conditions for mixed liquor that saccharomyces cerevisiae inoculum 10%, fermentation temperature 34℃, duration time 72 h and pH 5.0.

  1. Effects of combined application of inorganic fertilizer with straw and pig slurry and their compost on wheat growth and nitrogen uptake%不同有机物及其堆肥与化肥配施对小麦生长及氮素吸收的影响

    Institute of Scientific and Technical Information of China (English)

    郁洁; 蒋益; 徐春淼; 沈其荣; 徐阳春

    2012-01-01

    Effects of combined application of inorganic fertilizer with straw, pig slurry, straw compost and pig slurry compost on wheat growth and nitrogen uptake were studied in paddy soils and gray alluvial soils. A pot experiment was carried out in paddy soils and gray alluvial soils in Yixing based on 15N isotope tracer. The results show that compared to the inorganic N fertilization treatments, the combined applications of organic and inorganic fertilizers increase wheat yields by 4.46%-24. 82% and 1.01%-20.53% in paddy soils and gray alluvial soils, respectively. Wheat yields under the combined applications of the straw compost and the pig slurry compost are higher than those of the combined applications of straw and pig slurry, respectively. The combined applications of the straw compost and the pig slurry compost stimulate N uptake and improve N accumulation of wheat. The treatments of the straw compost and the pig slurry compost have the highest ^15N recovery rates, while the ^15N recovery rates of the inorganic N fertilization the treatments are the lowest. Soil microbial biomass nitrogen under the combined application of straw and pig slurry is always higher than that under the combined application of the straw compost and the pig slurry compost during wheat growth season. At the tillering stage, soil mineral nitrogen under the inorganic N fertilization treatment is higher, and it is lower in the later growing stages. During the whole growing period, soil mineral nitrogen amounts under the combined applications of the straw compost and the pigslurry compost are higher than those under the combined applications of straw and slurry. In summary, the combined application of the composts and inorganic fertilizer is more conducive to improving crop yields and plant N uptake.%采用^15N示踪技术,选用水稻土和灰潮土在宜兴进行小麦盆栽试验,研究了稻草、猪粪及其堆肥与化肥配施对作物生长及氮素吸收的影响。结果表明,

  2. 激发式秸秆深还对土壤养分和冬小麦产量的影响%Effect of Straw Returning via Deep Burial Coupled with Application of Fertilizer as Primer on Soil Nutrients and Winter Wheat Yield

    Institute of Scientific and Technical Information of China (English)

    赵金花; 张丛志; 张佳宝

    2016-01-01

    针对目前黄淮海平原潮土区普遍实施的覆盖式秸秆还田所存在的主要问题,本研究提出了基于氮肥激发的秸秆深埋还田技术,并通过连续4年(2011—2014)的大田定位试验进行检验。系统比较了秸秆移除、秸秆覆盖还田、激发式秸秆深还(秸秆与无机氮肥或有机氮肥配施进行深埋,并于行间种植作物)的3种秸秆还田方式对土壤养分和冬小麦产量的影响。结果表明:激发式秸秆深还在各项土壤养分指标和冬小麦产量方面均有显著优势,该处理能够显著增加土壤有机质、微生物生物量碳、微生物生物量氮、土壤全氮和土壤硝态氮含量,并显著提升冬小麦产量。其中无机氮肥激发秸秆深还处理能显著增加土壤硝态氮含量和冬小麦有效穗数,从而显著提升冬小麦产量。而有机氮肥激发的秸秆深还处理主要通过提升土壤有机质,增加冬小麦千粒重来增加产量。所有处理中16%无机氮肥激发的秸秆深还冬小麦产量最高。%Currently,crop straw return via mulching is a practice extensively applied in the fluvo-aquic soil zone of the North China Plain,however,the straw returned via mulching is not readily decomposed and hence unable to raise soil fertility and crop yield instantly.Moreover,straw decomposition needs to consume soil N in competition with crop growth,thus making it hard for the two to share the limited N supply harmoniously. A technique of deep burial of straw coupled with application of inorganic or organic nitrogen as primer was presented in this paper,and a continuous four-year(2011—2014)field experiment was conducted to study effects of the technique on soil fertility and wheat yield. The experiment was designed to have 3 treatments in straw returning method,i.e.,Treatment NS(No straw returned),Treatment S(Straw returned via mulching,and Treatment IS(straw buried in deep furrows and then covered with crop

  3. 西北旱区碎麦秸垫式膜上灌对玉米出苗及产量的影响%Effects of irrigation on film by crushed wheat straw padding to the corn seedling and yield in Northwest Arid Region,China

    Institute of Scientific and Technical Information of China (English)

    张金霞; 贾生海; 成自勇

    2015-01-01

    针对西北旱区秸秆覆盖的生态适应性和地膜覆盖的残膜难回收问题,设置了覆盖方式和灌水定额两个主导因素,研究了碎麦秸垫式膜上灌对玉米出苗和产量的影响。覆盖方式设有四个水平:无覆盖(N),秸秆覆盖(S),地膜覆盖(F),碎麦秸垫膜覆盖(SF);灌水定额设有高(H,900 m3·hm -2)、中(M,750 m3·hm -2)、低(L,600 m3·hm -2)三个水平;结果表明:SF 明显提高了出苗率和产量,与 S 相比,出苗率提高了49.50%,子粒产量提高了4415.79 kg·hm -2,所以 SF 使解决秸秆覆盖在西北旱区的出苗低和产量低等问题有了可能。从产量方面来看,最佳组合为 FL、SFM,分别可将灌水定额降至 L(600 m3·hm -2)和 M(750 m3·hm -2)水平,这凸显了 SF 和 F 的节水增产效果。SF 中的碎麦秸有利于土膜剥离回收,解决了地膜覆盖中残膜难回收的环境问题。%Pointed at the practical problems about ecological adaptability by straw mulch and residual film difficult recovery by film mulch,set up two dominant factors as mulch mode and irrigation quota,researched the effects of irriga-tion on film by crushed wheat straw padding to corn seedling and yield.The mulch mode designed as four levels:Without mulch (N),straw mulch (S),plastic film mulch (F)and plastic film mulch by crushed wheat straw padding (SF).The irrigation quota designed as three levels:High (H,900 m3·hm -2),Middle (M,750 m3·hm -2),and Lower (L,600 m3·hm -2).The results showed that:The SF significantly increased the seedling emergence rate and yield,compared with S,the seedling emergence rate was increased 49.50% and the grain yield was increased 4 415 .79 kg·hm -2 .So the SF can be possible to solve the problem “Lower emergence rate and low yield”by straw mulch in Northwest Arid Re-gions,China.From the yield point of view,the best combinations were FL and SFM,which the

  4. Deposition and high temperature corrosion in a 10 MW straw

    DEFF Research Database (Denmark)

    Michelsen, Hanne Philbert; Frandsen, Flemming; Dam-Johansen, Kim;

    1998-01-01

    Deposition and corrosion measurements were conducted at a 10 MW wheat straw fired stoker boiler used for combined power and heat production. The plant experiences major problems with deposits on the heat transfer surfaces, and test probes have shown enhanced corrosion due to selective corrosion...... formation and selective corrosion are discussed based on the results of the practical measurements....

  5. Effects of Wheat Straw Bio -Charcoal Supplement to Fodder on Growth,Slaughter Performance and Lipid Metabolism of Broilers%饲料添加小麦秸秆生物质炭对肉鸡生长、屠宰性能和脂质代谢的影响

    Institute of Scientific and Technical Information of China (English)

    付潘潘; 王家芳; 俞欣妍; 董娟; 李恋卿; 张源淑; 潘根兴; 张旭辉; 郑聚锋; 郑金伟; 刘晓雨

    2015-01-01

    The effects of wheat straw bio -charcoal supplement to ration on growth,slaughter performance and lipid metabolism of broilers for the potential of bio -charcoal used as animal ration supplement were studied.Four random groups of 100 broilers each of Rose 308 (22 -day -old,body weight about 670 g each,in good health) were risen for 33 days respectively under treatments with 1%,5% and 10% wheat straw bio -charcoal supplement to their basal ration.Compared to the control group without bio -charcoal supplement,a 5% wheat straw bio -charcoal supplement significantly (P <0.05)increased the daily weight gain by 10.12% and the breast muscle rate by 23. 42%(P <0.05).However,broiler abdominal fat was reduced by 31.44% and 23.02%(P <0.05)under treatment of 5% and 10% wheat straw bio -charcoal supplement respectively.Furthermore,the treatment of 5% wheat straw bio -charcoal supplement significantly decreased the contents of serum total cholesterol (P <0.05)compared to the control group.Moreover,the contents of serum triacylglycerol of the tested broilers was all significantly (P <0.05) decreased,and the contents of serum glucose,high -density lipoprotein -cholesterol and low -density lipoprotein -cholesterol did not chang under the supplement treatments,over the control.Finally,the overall cost of feed per kilo-gram of broilers was significantly (P <0.05)decreased by 8% and 6% over the control,respectively under treat-ments of 1% and 5% wheat straw bio -charcoal supplement,which slightly increased ration cost.Therefore,a sup-plement of 5% wheat straw bio -charcoal to basal ration could be a potential to improve health breeding,slaughter performance and growth performance of broiler.%旨在研究小麦秸秆生物质炭对肉鸡生产性能、屠宰性能和脂质代谢的影响。试验选用100只22日龄、健康状况良好、体重670 g 左右的罗斯308肉鸡,随机分成4组。对照组饲喂基础日粮,试验组分别饲喂添加1%、5%和10%小麦秸秆

  6. Effects of Wheat Straw Bio -Charcoal Supplement to Fodder on Growth,Slaughter Performance and Lipid Metabolism of Broilers%饲料添加小麦秸秆生物质炭对肉鸡生长、屠宰性能和脂质代谢的影响

    Institute of Scientific and Technical Information of China (English)

    付潘潘; 王家芳; 俞欣妍; 董娟; 李恋卿; 张源淑; 潘根兴; 张旭辉; 郑聚锋; 郑金伟; 刘晓雨

    2015-01-01

    旨在研究小麦秸秆生物质炭对肉鸡生产性能、屠宰性能和脂质代谢的影响。试验选用100只22日龄、健康状况良好、体重670 g 左右的罗斯308肉鸡,随机分成4组。对照组饲喂基础日粮,试验组分别饲喂添加1%、5%和10%小麦秸秆生物质炭的基础日粮,试验期33 d。结果表明:1)与对照组相比,添加5%的小麦秸秆生物质炭肉鸡的平均日增重增加10.12%(P <0.05);胸肌率提高23.42%(P <0.05);添加5%和10%的小麦秸秆生物质炭肉鸡的腹脂率分别降低31.44%和23.02%(P <0.05);试验组肉鸡的料重比均在一定程度上低于对照组,但无显著差异(P >0.05);2)与对照组相比,添加5%的小麦秸秆生物质炭显著降低肉鸡血清总胆固醇含量(P <0.05);试验组显著降低肉鸡血清Í酰甘油含量(P <0.05),但对肉鸡血清葡萄糖、低密度脂蛋白胆固醇和高密度脂蛋白胆固醇含量没有显著影响(P >0.05);3)虽然添加小麦秸秆生物质炭增加了单位饲料成本,但添加1%和5%小麦秸秆生物质炭试验组每千克肉鸡增重饲料成本分别比对照组降低8%和6%。因此,饲料添加一定量的小麦秸秆生物质炭可以减少肉鸡腹脂沉积,降低血清总胆固醇和Í酰甘油含量,在一定程度上有助于改善肉鸡的屠宰性能和生产性能。%The effects of wheat straw bio -charcoal supplement to ration on growth,slaughter performance and lipid metabolism of broilers for the potential of bio -charcoal used as animal ration supplement were studied.Four random groups of 100 broilers each of Rose 308 (22 -day -old,body weight about 670 g each,in good health) were risen for 33 days respectively under treatments with 1%,5% and 10% wheat straw bio -charcoal supplement to their basal ration.Compared to the control group without bio -charcoal supplement,a 5% wheat straw bio -charcoal

  7. Effects of rice or wheat residue retention on the quality of milled japonica rice in a rice–wheat rotation system in China

    Institute of Scientific and Technical Information of China (English)

    Pengfu; Hou; Yanfeng; Ding; Guofa; Zhang; Quan; Li; Shaohua; Wang; She; Tang; Zhenghui; Liu; Chengqiang; Ding; Ganghua; Li

    2015-01-01

    In rice–wheat rotation systems, crop straw is usually retained in the field at land preparation in every, or every other, season. We conducted a 3-year-6-season experiment in the middle–lower Yangtze River Valley to compare the grain qualities of rice under straw retained after single or double seasons per year. Four treatments were designed as: both wheat and rice straw retained(WR), only rice straw retained(R), only wheat straw retained(W), and no straw retained(CK). The varieties were Yangmai 16 wheat and Wuyunjing 23 japonica rice. The results showed contrasting effects of W and R on rice quality. Amylopectin content, peak viscosity, cool viscosity, and breakdown viscosity of rice grain were significantly increased in W compared to the CK, whereas gelatinization temperature,setback viscosity, and protein content significantly decreased. In addition, the effect of WR on rice grain quality was similar to that of W, although soil fertility was enhanced in WR due to straw being retained in two cycles. The differences in protein and starch contents among the treatments might result from soil nitrogen supply. These results indicate that wheat straw retained in the field is more important for high rice quality than rice straw return, and straw from both seasons is recommended for positive effects on soil fertility.

  8. Barriers and incentives to the production of bioethanol from cereal straw: A farm business perspective

    International Nuclear Information System (INIS)

    The EU renewable energy directive stipulates a requirement for 10% of transport fuels to be derived from renewable sources by 2020. Second generation biofuels offer potential to contribute towards this target with cereal straw representing a potentially large feedstock source. From an on-farm survey of 240 arable farmers, timeliness of crop establishment and benefits of nutrient retention from straw incorporation were cited as reasons for straw incorporation. However, two-thirds (one-third) of farmers would supply wheat (barley) straw for bioenergy. The most popular contract length and continuous length of straw supply was either 1 or 3 years. Contracts stipulating a fixed area of straw supply for a fixed price were the most frequently cited preferences, with £50 t−1 the most frequently cited minimum contract price that farmers would find acceptable. Arable farmers in England would be willing to sell 2.52 Mt of cereal straw for bioenergy purposes nationally and 1.65 Mt in the main cereal growing areas of Eastern England. Cereal straw would be diverted from current markets or on-farm uses and from straw currently incorporated into soil. Policy interventions may be required to incentivise farmers to engage in this market, but food and fuel policies must increasingly be integrated to meet societal goals. - Highlights: • English arable farmer survey to determine potential supply for straw based biofuel. • Two-thirds of farmers would supply wheat straw for bioenergy. • Farmers willing to sell 1.65 Mt of cereal straw from the main cereal producing regions. • Farmer preference for a fixed area of straw supply for a contracted fixed price. • £50 t−1 the most frequently cited minimum contract price farmers find acceptable

  9. Optimization of Enzymatic Hydrolysis of Wheat Straw by Using Response Surface Methodology%响应曲面法优化小麦秸秆纤维素酶水解条件

    Institute of Scientific and Technical Information of China (English)

    张伟; 张琦; 阮馨怡; 王欣泽; 孔海南; 林燕

    2015-01-01

    With an aim to optimize the conditions of enzymatic hydrolysis of wheat straw,the parameters including solid content, enzyme loading,temperature,pH,and hydrolysis time were investigated by means of response surface methodology( RSM) with the reducing sugar(RS) yield as response value. The results showed that all the parameters had significant effects(p<0. 05) on the reducing sugar yield. A well fitted regression equation with R2 value of 0. 946 9,p<0. 05,coefficient variability(Cv) value of 4. 37%,and adequate precision value of 26. 396 indicated that the developed model was significant and could be used to navigate the designed space and predict the response. The predicted optimum conditions for enzymatic hydrolysis were solid content of 8. 0%,enzyme loading of 35 FPU/g, temperature of 50 ℃, pH of 5. 4, and hydrolysis time of 96 h. The experimental results showed that under the optimum conditions the corresponding RS yield was 60. 73% with glucose and xylose concentrations of 31. 84 and 16. 74 g/L,respectively. Further,the results obtained in this research showed a high RS yield with high initial solid content,which would significantly improve the ethanol concentration,reduce the subsequently distillation costs,and improve the commercial potential of the lignocellulosic bioethanol production.%利用响应曲面试验设计方法( RSM),选择底物质量分数、酶投加量、温度、pH值及水解时间为试验因子,还原糖( RS)产率为响应值,考察小麦秸秆纤维素酶水解过程中各影响因子对还原糖产率的影响,对小麦秸秆纤维素酶水解条件进行优化。结果表明,所考察的5个影响因子对还原糖产率均具有显著影响(p <0.05)。所得回归方程 R2值为0.9469,p<0.05,变异系数(CV)值为4.37%,足够精度值为26.396,说明模型高度显著,可以在设计范围内对响应值进行预测。模型预测最佳水解条件为底物质量分数8.0%,酶投加量为35 FPU/g(以秸杆质量计),温度50

  10. Effects of compound chemical treatment on dry matter and fiber degradation rate of wheat straw in rumen%复合化学处理对麦秸干物质和纤维瘤胃降解率的影响

    Institute of Scientific and Technical Information of China (English)

    孙国强; 吕永艳; 崔海净; 蔡李逢

    2012-01-01

    To investigate effects of compound chemical treatment on dry matter( DM) and fiber degradation rate of wheat straw in rumen, urea and calcium hydroxide were added on the basis of straw air-dried matter with 2% , 3% and 4% respectively, a total of nine experimental groups, urea and calcium hydroxide added in groupl to group9 in turn were: 2% + 2% , 2% + 3% , 2% +4% , 3% +2% , 3% +3% , 3% +4% , 4% +2% , 4% +3% and4% + 4% ,the control(CK) group was the original wheat straw, DM and fiber degradation rate after 72 hours of different treatments for straw were measured by short-term artificial rumen technique. The results showed that: group 7, 8 and 9 were significantly higher than CK group and other experimental groups (P 0. 05) among group 7,8 and 9. Group 7 and 8 were significantly higher than CK group and other six experimental groups (P <0. 01) in neutral detergent fiber ( NDF) degradation rate after 72 hours, which was increased by 92. 06% , 82. 51 % respectively, and significantly higher than that of group 9 (P < 0. 05 ). Under this experimental condition, the treatment added with 4% urea and 2% calcium hydroxide of wheat straw air-dried matter was the most suitable compound chemical treatment.%为了研究复合化学处理对麦秸干物质和纤维瘤胃降解率的影响,本试验将尿素和氢氧化钙均按麦秸风干重2%,3%和4%的量分别添加,共9个试验组,各试验组尿素和氢氧化钙的添加量依次为1组2%+2%,2组2%+3%,3组2%+4%,4组3%+2%,5组3%+3%,6组3%+4%,7组4%+2%,8组4%+3%和9组4%+4%,对照组为原麦秸,通过短期人工瘤胃技术测定不同复合处理麦秸干物质和纤维的瘤胃72 h降解率.结果表明:7组,8组和9组三个组的干物质和酸性洗涤纤维瘤胃72 h降解率极显著高于对照组和其他试验组(P<0.01);干物质和酸性洗涤纤维瘤胃72 h降解率分别比对照组提高90.96%,85.24%,75.03%和139.38%,132.06%,130.94%;7组和8组

  11. Xylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation Produção de xilitol em hidrolisado hemicelulósico de palha de trigo: destoxificação do hidrolisado e fonte de carbono utilizada para o preparo do inóculo

    Directory of Open Access Journals (Sweden)

    Larissa Canilha

    2008-06-01

    Full Text Available Wheat straw hemicellulosic hydrolysate was used for xylitol bioproduction. The use of a xylose-containing medium to grow the inoculum did not favor the production of xylitol in the hydrolysate, which was submitted to a previous detoxification treatment with 2.5% activated charcoal for optimized removal of inhibitory compounds.Hidrolisado hemicelulósico de palha de trigo foi utilizado para a bioprodução de xilitol. O uso de meio contendo xilose para crescer o inóculo não favoreceu a produção de xilitol no hidrolisado, que foi submetido a um tratamento prévio de destoxificação com 2.5% de carvão ativo para remoção otimizada de compostos inibitórios.

  12. Comprehensive evaluation of effects of straw-based electricity generation: A Chinese case

    International Nuclear Information System (INIS)

    Greater use of renewable energy is being aggressively promoted to combat climate change by the Chinese government and by other governments. Agricultural straw is the kind of renewable energy source that would become a pollution source if it is not well utilized. We select the Shiliquan straw-based electricity generation project in Shandong Province, China as a case and assess environmental externalities of straw utilization in power plants by using life-cycle analysis. Results show that straw-based electricity generation has far fewer greenhouse gas (GHG) emissions than that of coal-based electricity generation. Improvement in the energy efficiency of equipment used for straw's pretreatment would lead to a decrease of GHG emissions and energy consumption in the life-cycle of straw-based electricity generation. In case 400 million tonnes of wasted straw in China could be used as a substitute for 200 million tonnes of coal, annually the straw 291 Terrawatt hours (TWh) of electricity could be generated, resulting in an annual total CO2 emissions savings of 193 million tonnes. Straw-based electricity generation could be a high-potential alternative for electricity generation as well as an incentive for utilizing wheat straw instead of burning it in the field.

  13. Vertical distribution of dry mass in cereals straw and its loss during harvesting

    Science.gov (United States)

    Zajaç, T.; Oleksy, A.; Stokłosa, A.; Klimek-Kopyra, A.; Macuda, J.

    2013-01-01

    The study aimed at evaluating the distribution of mass in the straw of cereal species and also at assessing the straw yield and its losses resulting from the amount of the stubble left in the field. It was found empirically that the wheat culms are composed of five internodes, and in barley, triticale and oats of six. The highest straw mass per 1 cm was found in the second internode in both forms of wheat and winter triticale, whereas barley and oats gathered the highest weight in the first internode. In the southern part of Silesia species and forms of cereals differed in the straw yield, which can be arranged as follows, from the highest: winter wheat > spring wheat, winter triticale, winter barley, and oats > spring barley. Due to the specific distribution of dry matter in each of internodes of both wheat forms - winter and spring, they loose less stubble mass (22 and 24%, respectively), comparing to other cereals, especially spring barley, which loose 31% yield of straw in the stubble of 15 cm height.

  14. 秋季玉米秸秆覆盖对丘陵旱地小麦生理特性及水分利用效率的影响%Effects of Autumn Straw Mulching on Physiological Characteristics and Water Use Efficiency in Winter Wheat Grown in Hilly Drought Region

    Institute of Scientific and Technical Information of China (English)

    吴晓丽; 汤永禄; 李朝苏; 吴春; 黄钢

    2015-01-01

    Seasonal drought during winter and spring often occurs in southwest hilly area of China, which severely influences seedling standing and yield in winter wheat. In this study, we conducted a two-year field experiment in Jianyang, Sichuan prov-ince in the 2012–2013 (dry) and 2013–2014 (wet) growing seasons to explore the effects of straw mulching on physiological characteristics, water use efficiency (WUE), and grain yield of winter wheat. Four treatments were designed, namely non-mulching (CK), non-mulching plus two irrigations after sowing and at jointing stage (T1), straw mulching before sowing (T2), and straw mulching before sowing and during wheat growth (T3). In the dry year (2012–2013), the yields of T1, T2, and T3 were 4151, 3926, and 3603 kg ha–1, which were 42.0%, 34.3%, and 23.2% higher than those of CK, respectively, and the WUEs of T1, T2, and T3 increased by 27.2%, 29.6%, and 18.8%, respectively. However, in the wet year (2013–2014), the yield variation among treatments was slight. In the dry year, irrigation or straw mulching showed the effects on enhancing dry matter accumula-tion from sowing to anthesis and inhibiting SPAD attenuation of flag leaf and penultimate leaf after anthesis and straw mulching increased soil moisture content in pre-sowing and whole growing period. Compared with CK, T2 significantly increased root dry matter, root-to-shoot ratio, root length density, root dry matter density, and root surface area density in some critical growth stages, and highly enhanced root system in deep soil. According to correlation analysis, grain yield was positively correlated with dry matter accumulations in the periods of sowing–tillering, tillering–jointing, jointing–anthesis, and anthesis–maturity, SPAD values of flag and penultimate leaf after anthesis, and WUE. These results indicate that straw mulch before wheat sowing can maintain soil moisture, delay leaf senescence and increase grain yield in winter wheat.%西南丘陵冬

  15. Comparing the Ammonia Volatilization Characteristic of Two Typical Paddy Soil with Total Wheat Straw Returning in Taihu Lake Region%麦秸全量还田下太湖地区两种典型水稻土稻季氨挥发特性比较

    Institute of Scientific and Technical Information of China (English)

    汪军; 王德建; 张刚; 王远

    2013-01-01

    An experiment using monolith lysimeter was conducted to compare the characteristic of N loss by ammonia ( NH3 ) volatilization between the gleyed paddy soil (G soil) and hydromorphie paddy soil (H soil) the Changshu National Agro-ecological Experimental Station of the Chinese Academy of Sciences(31°33' N, 123°38' E). Three treatments were designed for each soil type, i. e. control (no urea and straw applied) , nitrogen solely and nitrogen plus wheat straw. Ammonia volatilization, flood water NH4+ -N concentration, pH and top soil Eh were measured during the rice-growing season. Results showed that the NH3 volatilization flux and cumulative N losses by NH3 volatilization from G soil were significantly higher than those from H soil, the average cumulative N losses being about 41. 8 kg·hm-2and 11.2 kg·hm-2, or 15.2% and 3.8% of the fertilizer N, respectively. The average N loss by NH3 volatilization during the tillering stage was the highest among the three fertilization stages, accounting for 29. 4% and 8. 3% of the fertilizer N for G soil and H soil, respectively. Wheat straw returning significantly increased paddy filed NH3 volatilization losses. Comparing with the sole application of fertilizer-N, the cumulative N loss by NH3 volatilization of fertilizer-N in combination with wheat straw was increased by 19. 8% and 20.6% for G soil and H soil, respectively. In addition, ammonia volatilization fluxes showed a positive relationship with the flood water NH4+ -N concentration and pH for both soils, but the relationship with top soil Eh still needs further study.%利用原状土柱在田间试验条件下,比较了麦秸还田下乌栅土和黄泥土稻季氮素氨挥发损失规律,每种试验土壤均设对照、氮肥、氮肥加麦秆这3个处理,同步测定施肥后氨挥发、田面水铵态氮浓度与pH、以及表层土壤Eh.结果表明,乌栅土氨挥发速率及其累积氨挥发量显著高于黄泥土,两种土壤的稻季平均氨挥发

  16. The Last Straw

    CERN Multimedia

    McFarlane, K.W.

    2002-01-01

    On 4 December 2002 at Hampton University, we completed processing the 'straws' for the Barrel TRT. The straws are plastic tubes 4 mm in diameter and 1.44 m long. More than 52 thousand straws will be used to build the drift tube detectors in the Barrel TRT. The picture shows some members of the Hampton production team ceremonially cutting the last straw to its final precise length. The production team, responsible for processing 64 thousand straws, included Jacquelyn Hodges, Carolyn Griffin, Princess Wilkins, Aida Kelly, Alan Fry, and (not pictured) Chuck Long, Nedra Peeples, and Hilda Williams. The straws have a cosmopolitan history. First, plastic film from a U.S. company was shipped to Russia to be coated with conductive materials and adhesive. The coated film was slit into long ribbons and sent to the UK to be wound into tubes. The tubes were then sent to two ATLAS collaborators in Russia, PNPI (Gatchina) and JINR (Dubna), where they were reinforced with carbon fibres to make them stiff and accuratel...

  17. Response of Wheat to Tillage Plus Rice Residue and Nitrogen Management in Rice-Wheat System

    Institute of Scientific and Technical Information of China (English)

    Khalid Usman; Ejaz Ahmad Khan; Niamatullah Khan; Abdur Rashid; Fazal Yazdan; Saleem Ud Din

    2014-01-01

    Zero tillage with residues retention and optimizing nitrogen fertilization are important strategies to improve soil quality and wheat (Triticum aestivum L.) yield in rice (Oryza sativa L.)-wheat system. Field experiments were conducted on silty clay soil (Hyperthermic, and Typic Torrilfuvents) in D. I. Khan, Pakistan, to explore the impact of six tillage methods (zero tillage straw retained (ZTsr), ZT straw burnt (ZTsb), reduced tillage straw incorporated (RTsi, including tiller and rotavator), RT straw burnt (RTsb), conventional tillage straw incorporated (CTsi, including disc plow, tiller, rotavator, and leveling operations), CT straw burnt (CTsb)) and ifve nitrogen rates, i.e., 0, 100, 150, 200, and 250 kg ha-1 on wheat yield. Mean values for N revealed that spikes m-2, grains/spike, 1 000-grain weight (g), and grain yield (kg ha-1) were signiifcantly higher at 200 kg N ha-1 in both the years as well as mean over years than all other treatments. Mean values for tillage revealed that ZTsr produced highest number of spikes m-2 among tillage methods. However, grains/spike, 1 000-grain weight, and grain yield were higher in tillage methods with either straw retained/incorporated than tillage methods with straw burnt. Interaction effects were signiifcant in year 1 and in mean over years regarding spikes m-2, 1 000-grain weight, total soil organic matter (SOM), and total soil N (TSN). ZTsr produced the most spikes m-2 and 1 000-grain weight at 200 kg N ha-1. ZTsr also produced higher SOM and TSN at 200-250 kg N ha-1 at the end of 2 yr cropping. Thus ZTsr with 200 kg N ha-1 may be an optimum and sustainable approach to enhance wheat yield and soil quality in rice-wheat system.

  18. Effect of elevated atmospheric CO2 and vegetation type on microbiota associated with decomposing straw

    DEFF Research Database (Denmark)

    Frederiksen, Helle B.; Ronn, R.; Christensen, S.

    2001-01-01

    concentration in the recovered straw samples. After five months of decomposition, hyphal biomass was significantly lower in straw from plants grown at elevated CO2 (-30% and -13% in the fallow and wheat field, respectively). Bacterial biomass was not significantly affected by the CO2 induced changes...... in the litter quality, but the lower decomposition rate and fewer bacterial grazers in the straw from plants grown at elevated CO2 together indicate reduced microbial activity and turnover. Notwithstanding this, these data show that growth at elevated atmospheric CO2 concentration results in slower...... decomposition of wheat straw, but the effect is probably of minor importance compared to the effect of varying crops, agricultural practise or changing land use....

  19. Effects of Wheat Straw Mulching Amount on the Quantity of Microorganisms in Different Tobacco Planting Soil%小麦秸秆覆盖量对不同植烟土壤微生物数量的影响

    Institute of Scientific and Technical Information of China (English)

    林云红; 查永丽; 毛昆明; 刘彦中

    2012-01-01

    Field experiment was conducted to study the effects of different mulching amount of wheat (the mulching a-mount being 0,250,500,750 kilogram per 667 squarer meter as 4 treatments) on the quantity of microorganisms in different tobacco planting soil. Result showed that the quantity of bacteria, actinomycetes and cellulose - decomposing bacteria in rhizosphere soil of the upland and paddy increased with the amount of mulching. And the quantities of them reached biggest in treatment with mulching amount of 750 kilogram per 667 squarer meter after harvest, and were respectively 53. 03% , 47. 08% , 75. 72% and 63. 79% , 30. 27% , 69. 08% higher than contrast. The quantity of bacteria in rhizosphere soil of the upland in treatments with different mulching amount were 1.81 ~ 2. 13 times higher than that without mulching, actinomycetes and cellulose - decomposing bacteria were respectivelyl. 08 ~ 1. 89 and 1. 49 ~4. 1 times higher. The quantity of azotobacter were most in treatments with mulching amount of 500 kilogram per 667 squarer meter , and were significantly higher than contrast. There were no effects on the quantity of fungi with straw mulching. The quantity of bacteria in rhizosphere soil of the paddy in treatments with different mulching amount werel. 87 ~2. 76 times higher than that without mulching, actinomycetes and cellulose -decomposing bacteria were respectively 1. 12 ~ 1. 43 and 1.3 ~3. 39 times higher . The quantity of fungi and azotobacter were most in treatments with mulching amount of 500 kilogram per 667 squarer meter,, and were 2. 24 and 1. 60 times higher than contrast.%采用田间小区试验,研究了小麦秸秆覆盖量(覆盖量为0、250、500、750 kg/(667 m2)等4个处理)对不同植烟土壤微生物数量的影响.结果表明:覆盖量越大,地烟和田烟根际土壤细菌、放线菌和纤维分解菌的数量越大,覆盖量为750 kg/(667m2)时,采收后,地烟和田烟土壤中细菌、放线菌和纤维分解菌的数

  20. STRAW BASED PARTICLEBOARD BONDED WITH COMPOSITE ADHESIVES

    Directory of Open Access Journals (Sweden)

    Mingwei Di

    2011-02-01

    Full Text Available Environmentally friendly particleboard was prepared with wheat straw, an inexpensive material. The particleboard was produced by a mixing process, using a composite adhesive comprised of urea-formaldehyde (UF adhesives and EPU. The performance of the board was evaluated by measuring internal bonding strength (IB, thickness swelling, modulus of rupture (MOR, modulus of elasticity (MOE, and formaldehyde emission. The experimental results showed that maximum of dry and wet internal bonding strength, modulus of rupture, modulus of elasticity were 0.45MPa, 0.18MPa, 31.80MPa, and 5043MPa, respectively. The thickness swelling (TS2h and thickness swelling (TS24h were 3.9% and 10.7%, respectively. The composite adhesives and particleboards were measured by differential scanning calorimentry (DSC, dynamic mechanical analyzer (DMA, X-ray photoelectron spectroscopy (XPS and scanning electron microscope (SEM measurements. The results indicated that the composite adhesive of UF/EPU could contribute to excellent mechanical, thermal, and water-resistant properties of the wheat straw particleboards.

  1. ESTIMATION OF RESOURCE-HEALING ROLE LUPINE AND STRAW IN THE GRAIN-ROW CROP ROTATION

    Directory of Open Access Journals (Sweden)

    Tatyana ANISIMOVA

    2014-03-01

    Full Text Available In field experiences on soddy-podzolic sandy soil of Meshchersky lowland high agroeconomic efficiency of an adaptive link of a crop rotation with, grown up on grain, a potato and barley is established, at entering winter wheat straw under lupine . Straw in a combination with lupine has proved to be a perspective reserve of reproduction of fertility of soils without participation of nitrogen of mineral fertilizers.

  2. The effect of urea pretreatment on the formaldehyde emission and properties of straw particleboard

    Institute of Scientific and Technical Information of China (English)

    Hojat Hematabadi; Rabi Behrooz

    2012-01-01

    For manufacturing low-formaldehyde emission particleboard from wheat straw and urea-formaldehyde (UF) resins using urea treatment for indoor environments,we investigated the influence of urea treatment on the formaldehyde emission,physical and mechanical properties of the manufactured particleboard.Wheat straws were treated at three levels of urea concentration (5%,10%,15%) and 95℃ as holding temperature.Wheat straw particleboards were manufactured using hot press at 180℃ and 3 MPa with two types of UF adhesive (UF-45,UF-91).Then the formaldehyde emission values,physical properties and mechanical properties were considered.The results show that the formaldehyde emission value was decreased by increasing urea concentration.Furthermore,the results indicate that the specimens under urea treatment have better mechanical and physical properties compared with control specimens.Also specimens under urea treatment at 10% concentration and UF-91 type adhesive have the most optimum physical and mechanical strength.

  3. 秸秆覆盖对旱作冬小麦农田土壤呼吸、作物产量及经济-环境效益的影响%Effect of straw mulching on soil respiration, crop yield, economy-environment benefit in rainfed winter wheat fields

    Institute of Scientific and Technical Information of China (English)

    涂纯; 王俊; 官情; 刘文兆

    2013-01-01

    基于2009-2011年田间试验,研究了黄土旱塬区不同秸秆覆盖措施下冬小麦农田土壤呼吸和小麦产量变化,计算了生产每千克籽粒产量下土壤CO2的释放量,并以此比较了处理间的经济-环境效益值.试验包括4个处理:无覆盖对照(CK)、全年9000kg·hm-2秸秆覆盖(M9000)、全年4500 kg·hm-2秸秆覆盖(M4500)和夏闲期秸秆覆盖(SF).结果表明:冬小麦生育期内土壤CO2累积释放量在处理间无显著差异,但第1年生育期为14.92~17.43 t(CO2)·hm-2,显著高于第2年[12.95~13.69 t(CO2)·hm-2](P<0.05),处理和年份的交互作用不显著.与CK(产量5.03 t·hm-2)相比,秸秆覆盖降低了作物产量,其中M9000 (4.71 t·hm-2)与CK差异显著.经济-环境效益值计算结果显示,冬小麦生育期内生产每千克籽粒释放2.96~3.16 kg CO2,处理间无显著差异.从各处理平均值看,小麦产量以及经济-环境效益值均存在显著的年际差异,降水偏少的第1年度作物产量(4.60~4.98t·hm-2)显著低于降水相对丰富的第2年度(4.50~5.47 t·hm-2),但经济-环境效益值(3.03~3.69 kg·kg-1、2.45~2.88kg·kg-1)结果相反.处理和年份对作物产量和经济-环境效益值具有显著的交互影响,在缺水年份秸秆覆盖能够提高作物产量,M9000处理具有最优的经济-环境效益;而在丰水年份,秸秆覆盖导致产量显著下降,CK具有更好的经济-环境效益.%As a common cultivation pattern in the Loess Plateau,straw mulching has played a significant role in increasing grain yield,improving water use efficiency and regulating soil CO2 emission.A field experiment was conducted to measure the response of soil respiration and crop yield to different straw mulching treatments under winter wheat monoculture system in 2009-2011.Economy-environment benefit,calculated by soil CO2 emission per unit wheat yield,was also evaluated for each mulching treatment.The four treatments included the control (CK

  4. Deoxynivalenol, zearalenone, and Fusarium graminearum contamination of cereal straw; field distribution; and sampling of big bales.

    Science.gov (United States)

    Häggblom, P; Nordkvist, E

    2015-05-01

    Sampling of straw bales from wheat, barley, and oats was carried out after harvest showing large variations in deoxynivalenol (DON) and zearalenone (ZEN) levels. In the wheat field, DON was detected in all straw samples with an average DON concentration of 976 μg/kg and a median of 525 μg/kg, while in four bales, the concentrations were above 3000 μg/kg. For ZEN, the concentrations were more uniform with an average concentration of 11 μg/kg. The barley straw bales were all positive for DON with an average concentration of 449 μg/kg and three bales above 800 μg/kg. In oat straw, the average DON concentration was 6719 μg/kg with the lowest concentration at 2614 μg/kg and eight samples above 8000 μg/kg. ZEN contamination was detected in all bales with an average concentration of 53 μg/kg with the highest concentration at 219 μg/kg. Oat bales from another field showed an average concentration of 16,382 μg/kg. ZEN concentrations in the oat bales were on average 153 μg/kg with a maximum at 284 μg/kg. Levels of Fusarium graminearum DNA were higher in oat straw (max 6444 pg DNA/mg straw) compared to straw from wheat or barley. The significance of mycotoxin exposure from straw should not be neglected particularly in years when high levels of DON and ZEN are also detected in the feed grain. With a limited number of samples preferably using a sampling probe, it is possible to distinguish lots of straw that should not be used as bedding material for pigs.

  5. Barriers and incentives to the production of bioethanol from cereal straw: A farm business perspective.

    Science.gov (United States)

    Glithero, N J; Ramsden, S J; Wilson, P

    2013-08-01

    The EU renewable energy directive stipulates a requirement for 10% of transport fuels to be derived from renewable sources by 2020. Second generation biofuels offer potential to contribute towards this target with cereal straw representing a potentially large feedstock source. From an on-farm survey of 240 arable farmers, timeliness of crop establishment and benefits of nutrient retention from straw incorporation were cited as reasons for straw incorporation. However, two-thirds (one-third) of farmers would supply wheat (barley) straw for bioenergy. The most popular contract length and continuous length of straw supply was either 1 or 3 years. Contracts stipulating a fixed area of straw supply for a fixed price were the most frequently cited preferences, with £50 t(-1) the most frequently cited minimum contract price that farmers would find acceptable. Arable farmers in England would be willing to sell 2.52 Mt of cereal straw for bioenergy purposes nationally and 1.65 Mt in the main cereal growing areas of Eastern England. Cereal straw would be diverted from current markets or on-farm uses and from straw currently incorporated into soil. Policy interventions may be required to incentivise farmers to engage in this market, but food and fuel policies must increasingly be integrated to meet societal goals. PMID:24926116

  6. Effect of adding wheat straw carbon source to root knot nematode diseased soil on soil microorganism community%根结线虫病土引入秸秆碳源对土壤微生物群落结构的影响

    Institute of Scientific and Technical Information of China (English)

    张四海; 王意锟; 朱强根; 黄键; 金爱武; 张国

    2014-01-01

    菌和真菌生物量和F/B比值均有升高的趋势,特别是有利于F/B比值增加,说明秸秆碳源的施入改变F/B比值,从而改善病土食物网结构和土壤生态系统食物网营养结构。秸秆添加量以4.16和8.32 g/kg更为有效。%Objectives Microbial biomass and the microbial structure are very sensitive to the agricultural practices. The population of microbial biomass and its diversity in structure are important index for soil fertility, the straw returned to field affects species and quantity of soil microorganisms. Severe root-knot nematode disease often arises due to unreasonable agricultural practices, especially in the continuous cropping fields of tomato. The effect of adding straws into soil on the microbial structure and diversity and the ratio of fungus to bacteria ( F/B) of mutual relations and change rule were studied to provide a way of biological remediation for the soils suffered with root knot nematode disease. [Methods]A pot experiment using soils from successive planting of tomato and suffering from serious root knot nematode disease was conducted with a root knot nematode sensitive tomato cultivar as a tested crop. Four gradient amounts of wheat straw were designed:0 ( S0 ) , 2. 08 g/kg ( S1 ) , 4. 16 g/kg ( S2 ) and 8. 32 g/kg ( S3 ) in the experiment. The fungal biomass, bacterial biomass and microbial biomass were detected with the method of phospholipid fatty acid ( PLFA ) . [Results]Compared with control, adding wheat straw significantly increases the amounts of total soil microbial biomass ( MTB) , bacterial biomass ( MB) and fungal biomass ( FB);increases the ratios of fungal biomass to total soil microbial biomass ( FB/MTB ) , the ratio of fungus to bacteria (F/B). The MTB, MB, FB of S3, S2 and S1 are 30. 17, 28. 42 and 22. 72 nmol/g, 24. 27, 23. 12 and 22. 97 nmol/g, 5. 90, 5. 30 and 4. 93 nmol/g, respectively. There is no significant difference in MTB and MB among the three adding treatments, but the FB of

  7. Study on Wheat Straw Alkaline Sulfite Pulping Biorefinery(Ⅰ)——Characteristics of Extended Delignification and Lignin Sulfonation%麦草碱性亚硫酸盐制浆生物炼制的研究(Ⅰ)——深度脱木质素及木质素磺化特性

    Institute of Scientific and Technical Information of China (English)

    张琳; 翟华敏

    2012-01-01

    提出了非木材木质纤维生物质碱性亚硫酸盐制浆(ASP)生物炼制的理念,研究了总用碱量、亚硫酸化度、温度和时间对麦草碱性亚硫酸盐法蒸煮深度脱木质素特性和木质素磺化的影响.结果表明:麦草ASP法具有高的深度脱木质素选择性;深度脱本质素延伸与木质素磺化度提高具有一致性;总用碱量、亚硫酸化度、最高温度和保温时间对深度脱木质素选择性和木质素磺化度都有重要的影响;在总碱用量18.0%,亚硫酸化度85.0%,液比值3.5,最高温度168℃,保温150 min的条件下,可制得卡伯值8.8,得率56.8%,黏度为33.3 mPa·s的优良纸浆,此时黑液中磺化本质素磺酸基含量达2.16 mmol/g(以固形物计).从深度脱木质素选择性、木质素磺化和纸浆基本特性考虑,麦草ASP法具有制浆生物炼制的前景.%The biorefineiy concept of non-wood lignoceltulosic fiber biomass alkaline sulfite pulping (ASF) was proposed in this study. The influences of total alkali charge, sulfurous acid degree, cooking temperature and time on the characteristics of wheat straw extended delignification and lignin sulfonation were investigated. The results indicated that ASP has a high selectivity on extended delignification for wheat straw, and the degree of lignin sulfonation increased with the extending of delignification. The total alkaline charge, sulfurous acid degree, maximum cooking temperature and time at maximum temperature have significant impacts on both extended delignification selectivity and lignin sulfonation degree. A good extended delignification pulp with yield 56.8% , Kappa number S. 8, and viscosity 33. 3 mPa . S was obtained under the cooking conditions of the total alkali charge 18.0% , the sulfurous acid degree 85.0% , liquor ratio 3.5, maximum cooking temperature 168 %℃ and 150 minutes at 168 ℃. Meanwhile the lignin sulfonation group content in the black liquor was up to 2.16 mmol/g. Based on the

  8. The effect of straw or straw-derived gasification biochar on soil quality and crop production: a farm case study

    DEFF Research Database (Denmark)

    Hansen, Veronika; Müller-Stöver, Dorette Sophie; Imparato, Valentina;

    2016-01-01

    Thermal gasification of straw is a highly efficient technology that produces bioenergy and gasification biochar that can be used as a soil amendment, thereby returning non-renewable nutrients and stable carbon, and securing soil quality and crop productivity. A Danish on-farm field study...... with winter wheat (Triticum aestivum L.), winter oilseed rape (Brassica napus L.) and winter wheat, respectively, to assess the potential effects on the soil carbon pool, soil microorganisms, earthworms, soil chemical properties and crop yields. The application of GB did not increase the soil organic carbon...

  9. The effect of biochar and crop straws on heavy metal bioavailability and plant accumulation in a Cd and Pb polluted soil.

    Science.gov (United States)

    Xu, Ping; Sun, Cai-Xia; Ye, Xue-Zhu; Xiao, Wen-Dan; Zhang, Qi; Wang, Qiang

    2016-10-01

    Biochar derived from various materials has been investigated with regard to its ability to decrease the bioavailability of heavy metals in contaminated soils, and thus reduce their potential to enter the food chain. However, little attention has been given to the adsorption capacity of untreated crop straws, which are commonly used as a biochar feedstock, especially in soils. Hence, this study was conducted to investigate the effect of crop straws on heavy metal immobilization and subsequent heavy metal uptake by maize and ryegrass in a soil artificially polluted by Cd and Pb. Bamboo biochar, rice straw, and wheat straw were mixed into soil four weeks before the experiment, enabling them to reach equilibrium at 2% (w/w), 1% (w/w), and 1% (w/w), respectively. The results showed that soil pH for both species was significantly increased by all treatments, except when wheat straw was used for ryegrass cultivation. Soil organic carbon was only improved in the rice straw treatment and the soil alkali-hydrolyzable N content was significantly decreased with all of the amendments, which may have contributed to the lack of an effect on plant biomass. Soil available Cd was significantly lower in the rice straw treatment than in the control soil, while Pb levels clearly decreased in wheat straw treatment. The Cd concentration in shoots of maize was reduced by 50.9%, 69.5%, and 66.9% with biochar, rice straw, and wheat straw, respectively. In addition, shoot Cd accumulation was decreased by 47.3%, 67.1%, and 66.4%, respectively. Shoot Pb concentration and accumulation were only reduced with the rice straw treatment for both species. However, metal uptake in plant roots was more complex, with increased metal concentrations also detected. Overall, the direct application of crop straw could be considered a feasible way to immobilize selected metals in soil, once the long-term effects are confirmed. PMID:27285283

  10. Effects of Nitrogen Application Rate on Yield and Nitrogen Utilization of Winter Wheat under Straw Returning Condition in Guanzhong Irrigation Area%关中灌区秸秆还田条件下施氮量对冬小麦产量及氮素利用的影响

    Institute of Scientific and Technical Information of China (English)

    沈海军; 祝飞华; 顾炽明; 郑险峰; 张向茹; 李有兵; 刘淼

    2012-01-01

    A field experiment with five treatments was conducted to study the nitrogen fertilization application rate of winter wheat in Guanzhong area under the straw returning condition, and winter wheat variety Xinong 979 served as material. The yield and the component factors of winter wheat, the nitrogen utilization rate, the contents of the nitrate nitrogen in the soil and the content of wheat protein under the different treatments were determined. With the amount of nitrogen fertilizer increasing, the grain yield of the wheat, biomass, 1 OOOgrain mass and the spike number per hectare climbed up and then declined. Grain yield, biomass and spike number per hectare reached its maximum under the treatment of N262.5, however, the maximum of 1 000-grain mass reached its maximum under the treatment of N175. Nitrogen recovery efficiency and nitrogen fertilizer use efficiency decreased along with the increase of the nitrogen application rate, while the nitrogen harvest index showed the tendency by increasing then declining and reached the largest under the treatment of N175. Compared to the N0 treatment, the accumulation of nitrate nitrogen in soil in the treatments N262.5 and N350 improved significantly after wheat harvest. The content of wheat protein increased significantly with the increasing of N applied in the range of 0 - 262. 5 kg/hm2. The optimum application rates of N fertilizer should be in the range of 175 - 262. 5 kg/hm2 considering the local technology level and the climate.%以西农979为供试材料,在秸秆还田条件下设置5个不同的冬小麦施氮水平进行田间试验,分析不同处理下冬小麦产量及产量构成因素、收获后土壤硝态氮以及冬小麦籽粒蛋白质含量.在秸秆还田条件下随施氮量的增加,冬小麦籽粒产量、生物学产量、有效穗数和千粒质量均呈先增后降趋势,籽粒产量、生物产量和公顷穗数在N262.5达到最大,千粒质量在N175达到最大.氮

  11. Straightness measurements of ATLAS TRT long straws

    CERN Document Server

    Mitsou, V A; Perez-Gomez, F; Schillinger, C

    1999-01-01

    A new method for the long straw straightness measurements is described. The results of the straightness measurements for the new long straws are presented. Shorter straws for TRT end-cap wheels A, B and C made from these long straws were also tested using the straw straightness machine with CCD camera. A first analysis of the straw parameters (carbon fibres thichness and shape of the straw section) is presented.

  12. Ash from cereal and rape straw used for heat production: liming effect and contents of plant nutrients and heavy metals

    Energy Technology Data Exchange (ETDEWEB)

    Sander, M.-L.; Andren, O. [Swedish University of Agricultural Sciences, Uppsala (Sweden). Dept. of Ecology and Environmental Research

    1997-01-01

    The composition of 79 samples of straw ash from seven heating plants in Sweden was analysed with the aim of evaluating straw ash as a fertilizer and liming agent. The variation in ash composition was explained mainly by ash fraction (bottom ash vs. fly ash) and straw type (wheat, barley, rye, rape) but also by heating plant. Compared with concentrations of Zn, Pb and Cd in bottom ash; levels in fly ash were 10-90 times higher. Fly ash also contained more Cu and K compared with bottom ash. The Cd/P ratio was 0.03 in bottom ash and 0.6 g Cd/kg P in fly ash. Ash from rape straw had a higher Ca content and liming effect compared with ash from cereal straw; e.g. the liming effect of rape ash was more than three times higher than that of wheat ash. The liming effect varied between 3.5 and 44% CaO and depended mainly on the Ca content. The average P content was 1.7% (0.2-4.4%) with slightly higher concentration in rape ash than in wheat ash. The potential for using straw ash as a fertilizer and liming agent is discussed. Compared with commercial fertilizers the use of bottom ash as a P fertilizer results in a lower addition of Cd. However, the total heavy metal content of straw ash poses a potential problem. 24 refs., 2 figs., 5 tabs.

  13. Biochars derived from various crop straws: characterization and Cd(II) removal potential.

    Science.gov (United States)

    Sun, Jingkuan; Lian, Fei; Liu, Zhongqi; Zhu, Lingyan; Song, Zhengguo

    2014-08-01

    Five types of biochars prepared from four crop straws and one wood shaving at 600 °C were characterized, and their sorption to Cd(II) were determined to investigate the differences in capacity to function as sorbents to heavy metals. Surface areas and pore volumes of the biochars were inversely correlated to the lignin content of raw biomass. The biochars derived from crop straws displayed more developed pore structure than wood char due to the higher lignin content of wood. Sorption capacity of the biochars to Cd(II) followed the order of corn straw>cotton straw>wheat straw>rice straw>poplar shaving, which was not strictly consistent with the surface area of the chars. The surface characteristics of chars before and after Cd(II) sorption were investigated with scanning electron microscopy equipped with an energy dispersive X-ray spectroscopy and Fourier transform infrared spectroscopy, which suggested that the higher sorption of Cd(II) on corn straw chars was mainly attributed to cation exchange, surface precipitation of carbonate, and surface complexation with oxygen-containing groups. This study indicated that crop straw biochars exhibit distinct sorption capacities to heavy metals due to various surface characteristics, and thus the sorption efficiency should be carefully evaluated specific to target contaminant. PMID:24859708

  14. Potential alternatives of heat and power technology application using rice straw in Thailand

    International Nuclear Information System (INIS)

    Rice straw could be used for heat and power with the current technologies available in Thailand. The cost of rice straw for power generation at 0.38-0.61 Baht/MJe (at rice straw price 930-1500 Baht/t) is not competitive with coal at 0.30 Baht/MJe but comparable with other biomass at 0.35-0.53 Baht/MJe. However, utilization of rice straw in industrial boilers is a more competitive and flexible option with two alternatives; (1) installing rice straw fired boilers instead of heavy oil fired or natural gas ones when selecting new boilers; and (2) fuel switching from coal to rice straw for existing boilers with cost saving of feedstock supply by 0.01 Baht/MJh. Based on its properties (Slagging index, Rs = 0.04; fouling index, Rf 0.24), rice straw is not expected to have significant operating problems or different emissions compared with wheat straw and rice husk under similar operating conditions. (author)

  15. 不同温度下NaOH-绿氧联合预处理对麦秆厌氧发酵的影响%Effect of Pretreatments with NaOH-Green Oxygen at Different Temperatures on Anaerobic Digestion of Wheat Straw

    Institute of Scientific and Technical Information of China (English)

    黎雪; 张彤; 邹书珍; 杨改河; 王晓娇; 韩新辉; 任广鑫

    2015-01-01

    Increasing gas production during straw digestion and reducing the environmental pollution are interesting to both agricultural waste utilization and environmental protection. Here we examined anaerobic digestion performance of wheat straw pretreated by combined 0.05%of Green Oxygen(GO)and different concentrations of NaOH at 3 temperatures, e.g. low temperature(15℃), medium temperature (35℃)and high temperature(55℃). The best pretreatment combinations were found to be 0.05%GO+3%NaOH(A3), 0.05%GO+2%NaOH(B2), and 0.05%GO+2%NaOH(C2)at 15℃, 35℃and 55℃, respectively. Compared with the control(no pretreatment), cumula-tive methane gas production increased by 86%, 93% and 87% for 0.05% GO+3% NaOH at 15 ℃, 0.05% GO+2% NaOH at 35 ℃, and 0.05%GO+2%NaOH at 55℃, respectively. A significant regression relationship was found between cumulative methane production and NaOH concentration at 35℃and 55℃. The scanning electron microscopy showed different degrees of destroy in the structure of cellulose after pretreatments. The structure of cellulose showed separation in thermophilic treatment. Therefore, pretreatments with NaOH-Green Oxygen have significantly stimulated the gas production of wheat straw during anaerobic digestion.%为减少秸秆预处理过程中NaOH的使用量,降低其环境影响,提高秸秆厌氧发酵产气量。采用NaOH和绿氧(GO)对小麦秸秆进行联合预处理,研究低温(15℃)、中温(35℃)、高温(55℃)三个温度下0.05%的绿氧(GO)和不同浓度NaOH组合预处理对秸秆成分、厌氧消化性能的影响。试验结果表明,15℃、35℃、55℃下,最佳的预处理组合分别为0.05%GO+3%NaOH、0.05%GO+2%NaOH、0.05%GO+2%NaOH,与对应温度下未经预处理组的效果相比,累积甲烷产气量分别提高了86%、93%、87%。并得到35℃、55℃下NaOH浓度和累积甲烷产量的显著性回归方程。NaOH和GO联合试剂

  16. Multiresidue Analysis of Pesticides in Straw Roughage by Liquid Chromatography-Tandem Mass Spectrometry.

    Science.gov (United States)

    Zhang, Zihao; Feng, Mengyuan; Zhu, Kechen; Han, Lijun; Sapozhnikova, Yelena; Lehotay, Steven J

    2016-08-10

    A multiresidue analytical method using a modification of the "quick, easy, cheap, effective, rugged, and safe" (QuEChERS) sample preparation approach combined with liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis was established and validated for the rapid determination of 69 pesticides at different levels (1-100 ng/g) in wheat and rice straws. In the quantitative analysis, the recoveries ranged from 70 to 120%, and consistent RSDs ≤ 20% were achieved for most of the target analytes (53 pesticides in wheat straw and 58 in rice straw). Almost all of the analytes achieved good linearity with R(2) > 0.98, and the limit of validation levels (LVLs) for diverse pesticides ranged from 1 to 10 ng/g. Different extraction and cleanup conditions were evaluated in both types of straw, leading to different options. The use of 0.1% formic acid or not in extraction with acetonitrile yielded similar final outcomes, but led to the use of a different sorbent in dispersive solid-phase extraction. Both options are efficient and useful for the multiresidue analysis of targeted pesticides in wheat and rice straw samples. PMID:26881844

  17. Influence of different tillage, straw and nitrogen management on weeds biomass in winter wheat - summer maize rotation systems%不同耕作、秸秆及氮素管理措施对冬小麦-夏玉米轮作田杂草生物量影响的研究

    Institute of Scientific and Technical Information of China (English)

    牛新胜; 刘美菊; 张宏彦; 李晓林

    2011-01-01

    农田杂草的发生受多种生产措施的影响,是造成作物减产的重要原因之一.本研究目的在于探索我国华北平原冬小麦-夏玉米轮作体系下农田杂草对不同耕作、秸秆和氮管理的响应.研究结果发现:(1)夏玉米拔节期杂草种类和平均总生物量分别是冬小麦拔节期的1.25倍和6.66倍,因此,玉米季是轮作中农田杂草防治最主要季节,而马唐、打碗花、稗草等是杂草防治的主要对象.(2)不同管理措施对冬小麦季农田杂草生物量无显著影响.(3)夏玉米季,全免耕处理杂草平均生物量比半免耕处理高77.5%~99.4%.玉米拔节期,无小麦秸秆覆盖还田时,会促进翻耕杂草的发生.(4)夏玉米收获时,高氮水平(当季施氮量240 kg·hm-2)杂草平均生物量比低氮水平(当季施氮量120 kg·hm-2)显著低55.9%,耕作和氮效应的交互作用达显著水平,全免耕、低氮投入杂草生物量是半免耕、高氮投入的4.05倍,在翻耕条件下,高氮水平抑制杂草效果不显著.因此,华北平原区冬小麦-夏玉米轮作体系应加强夏玉米季杂草的综合防治,利用秸秆覆盖还田抑制杂草的发生,也可通过优化氮素管理改善作物生长发育从而抑制杂草发生,其中在全免耕条件下,可通过适当增加氮素供应水平而减轻杂草的危害.%Weeds was one of the most important factors causing crop yield reduction, which were affected by multi-management in agricultural production. This research was conducted to explore the effects of the different tillage, crop straw and nitrogen (N) managements on weeds in winter wheat-summer maize rotation system in North China Plain. The results suggested that; (1) The weeds grew critically in summer maize growing season with average weeds species and average total weeds biomass being 1. 25 and 6. 66 times separately at jointing stage of summer maize as many or much as that at the jointing stage of winter wheat. It would be a

  18. Wheat Allergy

    Science.gov (United States)

    ... and Luncheons Create Your Own Events Educational Events Wheat Allergy Wheat allergy is most common in children, ... texture you are trying to achieve. Differences between Wheat Allergy and Celiac Disease or Gluten Intolerance A ...

  19. Fertilizer-N uptake by Chickpea and Wheat Crops under Intercropping System using 15N Tracer Technique

    International Nuclear Information System (INIS)

    A field experiment was carried out at the Plant Nutrition and Fertilization Unit, Soils and Water Research Department, Nuclear Research Center, Atomic Energy Authority, Inshas, Egypt on wheat and chickpea inter cropping. The Objective of this current work is to study Organic matter decomposition under clean agriculture system in sandy soil using nuclear technique. The lowest portion of nitrogen derived from fertilizer was resulted from application of compost and chickpea straw treatments. It is worthy to mention that full recommend dos of fertilizer (20 kg N fed-1) was efficiently used by shoots of chickpea plants. Portion of nitrogen derived from fertilizer by seeds of chickpea was lower than those recorded with shoots. Generally, there was no big significant difference between nitrogen gained by shoots and seeds from the organic materials. This holds true with all treatments. More declines in nitrogen derived from soil percentages were resulted from application of cow manure and compost treatments under different rate of mineral fertilizer, the application 100% MF treatment induced higher nitrogen derived from soil pool as compared to the other treatments. The best value of nitrogen derived from air was detected followed by compost, while the lowest value was recorded with wheat straw. In general, nitrogen derived from air by shoots lower than those up taken by seeds of chickpea plant. Application of wheat straw and compost treatments were enhanced the nitrogen derived from fertilizer by straw of wheat plant as compared to caw manure, maize stalk, chickpea straw, but Ndff% in grains of wheat , cow manure and maize stalk increased as compared to the other treatment. Application of organic materials, chickpea straw and cow manure achieved the highest value of Ndfo% by straw of wheat plant as compared to maize stalk, compost and wheat straw. But values of nitrogen derived from organic in grains of wheat plants, the application of chickpea straw and wheat straw

  20. 间作与施氮对秸秆覆盖作物生产力和水分利用效率的影响%Effect of nitrogen application on productivity and water use efficiency of wheat/maize intercropping system under straw mulching

    Institute of Scientific and Technical Information of China (English)

    王林; 王琦; 张恩和; 刘青林; 俞华林

    2014-01-01

    2012年3-10月在甘肃省河西走廊石羊河绿洲灌区进行大田试验,研究了不同施氮水平[0、140 kg(N)⋅hm-2、221 kg(N)⋅hm-2和300 kg(N)⋅hm-2]对小麦//玉米间作系统生产力、间作优势和水分吸收利用的影响。研究结果表明:当施氮量达221 kg(N)⋅hm-2时,小麦单作籽粒产量(5036 kg⋅hm-2)和水分利用效率(25.13 kg⋅hm-2⋅mm-1)达最大值;当施氮量达300 kg(N)⋅hm-2时,小麦间作籽粒产量(3078 kg⋅hm-2)和水分利用效率(39.76 kg⋅hm-2⋅mm-1)、玉米单作籽粒产量(9921 kg⋅hm-2)和水分利用效率(38.96 kg⋅hm-2⋅mm-1)、玉米间作籽粒产量(6895 kg⋅hm-2)和水分利用效率(46.31 kg⋅hm-2⋅mm-1)达最大值;当施氮量为0 kg(N)⋅hm-2时,小麦相对于玉米的竞争力(0.049)达最大值;当施氮量为300 kg(N)⋅hm-2时,小麦//玉米间作的土地当量比(1.33)达最大值;当施氮量为140 kg(N)⋅hm-2时,小麦相对于玉米的水分竞争比率(0.98)达最大值。与单作相比,小麦//玉米间作具有显著的间作产量优势和水分利用优势。间作方式中小麦的竞争能力大于玉米;小麦、玉米两作物对水分生理需求时间有效性差异是小麦//玉米间作高效利用水分资源的基础,合理施氮能促进间作种植产量优势和水分利用优势的发挥。%In order to obtain higher grain yields and water use efficiency (WUE), the effects of different nitrogen levels [0 kg(N)·hm-2, 140 kg(N)·hm-2, 221 kg(N)·hm-2 and 300 kg(N)·hm-2] on the productivity and WUE of wheat/maize intercropping system under straw mulching were studied. A field experiment was conducted in the oasis region of Shiyang River Basin in Gansu Province during the period from March to October 2012. The results showed that grain yield (5 036 kg·hm-2) and WUE (25.13 kg·hm-2·mm-1) reached the maximum at nitrogen application rate of 221 kg(N)·hm-2 in monoculture wheat. Grain yield (3 078 kg·hm-2 and WUE(39.76 kg

  1. Effects of Chemical Fertilizer Combined with Crushed Straw Application on Soil Evaporation of Winter Wheat%秸秆粉碎还田与化肥配施对冬小麦棵间蒸发的影响

    Institute of Scientific and Technical Information of China (English)

    董勤各; 冯浩; 杜健

    2012-01-01

    The Micro-lysimeters were employed to determine the process of soil evaporation of winter wheat at its growth stages under chemical fertilizer combined with crushed straw(S) and current chemical fertilizer(R).The effects of S on soil evaporation were investigated in the wheat field,and the differences of soil evaporation were studied among seven varieties of winter wheat.The results showed that the effects of S on soil evaporation varied to a certain degree at different growing stages.The daily soil evaporation existed the same law under S and R and the accumulative soil evaporation under S was lower than the R's.The soil evaporation of different winter wheat varieties was inhibited significantly by S,and the ratios of restraining soil evaporation ranged from 8.02% to 11.60%;the amount of evaporation about 12 mm was translated into transpiration owing to the use of S.The soil evaporation of different varieties had no obvious difference and variation.%采用微型蒸渗仪测定了冬小麦农田的棵间蒸发量,分析了秸秆粉碎还田与化肥配施和常规施肥两种措施下不同品种冬小麦生育期棵间蒸发量的差异。结果表明:秸秆粉碎还田与化肥配施对棵间蒸发有一定的影响,在各个生育期差异程度有所不同;两种肥料措施的逐日棵间蒸发量规律基本一致;秸秆粉碎还田与化肥配施对棵间蒸发的抑制效果明显,抑制蒸发率在8.02%~11.60%之间,可以使12 mm左右的土壤水分由无效耗水转化为作物蒸腾水;不同品种间的棵间蒸发量差异很小。

  2. Upgrading of straw hydrolysate for production of hydrogen and phenols in a microbial electrolysis cell (MEC)

    DEFF Research Database (Denmark)

    Thygesen, Anders; Marzorati, Massimo; Boon, Nico;

    2011-01-01

    simultaneous production of hydrogen from consumption of 95% for the hemicellulose and 100% of the fatty acids. Final calculations showed that hydrolysate produced from 1 kg wheat straw was upgraded by means of the MEC to 22 g hydrogen (266 L), 8 g xylan, and 9 g polyphenolics for potential utilization...

  3. Effects of Wheat Straw Returning Patterns on Characteristics of Dry Matter Accumulation, Distribution and Yield of Rotation Maize%小麦秸秆还田方式对轮作玉米干物质累积分配及产量的影响

    Institute of Scientific and Technical Information of China (English)

    殷文; 冯福学; 赵财; 于爱忠; 柴强; 胡发龙; 郭瑶

    2016-01-01

    Research on the response of dry matter accumulation, distribution and yield of crops to previous straw returning usually plays an important role for optimizing cropping systems. In this investigation, a field experiment was carried out in typical oasis irrigation region, to determine the characteristics of dry matter distribution and yield of rotated maize with four previous wheat straw treatments, including 25 cm no tillage with straw standing (NTSS); 25 cm no tillage with straw covering (NTS); 25 cm till-age with straw incorporation (TIS); and conventional tillage (CT). The results showed that, compraed with CT, NTSS, NTS, TIS significantly increased dry matter accumulation by an average of 4.8% to 12.7% after maize heading stage in two years; and im-proved contribution rate to grain yield (i.e. GCR) of maize by an average of 12.8% to 25.0% from leaf, 6.3% to 11.3% from stem, and 18.3% to 78.4% from sheath, respectively. Especially, NTS had more improvement than NTSS, TIS. The grain yield of maize was 11.3% to 17.5% higher in the three straw returning treatments than in CT check. NTS exhibited the most significant effect of improving yield, reaching 13470 and 13274 kg ha-1 in two study years, which was 5.6% to 9.0% higher than that of TIS due to the increase of kernel number per spike. Meanwhile, NTS had the best effect on increasing harvest index, which was increased by 6.4% to 8.4% during the two study years, and resulted in a high grain yield. Our results showed that NTS treatment is recom-mended as the best feasible cultural method to optimize dry matter accumulation, distribution and obtain high yield for rotated maize in the oasis irrigation region.%研究茬口对轮作作物的产量贡献及干物质积累与分配规律的影响,对于优化作物高产高效栽培理论和技术具有重要意义.本研究在甘肃河西绿洲灌区,通过田间试验,研究了前茬小麦不同秸秆还田方式(25 cm高茬收割免耕,NTSS;25 cm高

  4. Comparison of Decomposition Rates of Maize Straw between Two Kinds of Straw Incorporation%两种还田模式下玉米秸秆分解速率的比较

    Institute of Scientific and Technical Information of China (English)

    马永良; 宇振荣; 江永红; 罗维

    2002-01-01

    Tests of the whole maize straw incorporation and the smashed ones were conducted on tideland of semi-arid area of Quzhou, Hebei Province. The tests are composed of seven different treatments. By one year's period of test, it indicates that the process of decomposition of straw in the field is divided into three stages. In the early stage, the decomposition rate of the smashed straw is faster than that of the whole in the field. But the gap between the two rates is diminished after wheat turns green. The coefficient of huminification is not affected by the measures of adding use of nitrogenous fertilizer,spraying EM and so on.

  5. Neutron activation analysis of wheat samples

    Energy Technology Data Exchange (ETDEWEB)

    Galinha, C. [CERENA-IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Anawar, H.M. [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Freitas, M.C., E-mail: cfreitas@itn.pt [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Pacheco, A.M.G. [CERENA-IST, Technical University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa (Portugal); Almeida-Silva, M. [Instituto Tecnoclogico e Nuclear, URSN, E.N. 10, 2686-953 Sacavem (Portugal); Coutinho, J.; Macas, B.; Almeida, A.S. [INRB/INIA-Elvas, National Institute of Biological Resources, Est. Gil Vaz, 7350-228 Elvas (Portugal)

    2011-11-15

    The deficiency of essential micronutrients and excess of toxic metals in cereals, an important food items for human nutrition, can cause public health risk. Therefore, before their consumption and adoption of soil supplementation, concentrations of essential micronutrients and metals in cereals should be monitored. This study collected soil and two varieties of wheat samples-Triticum aestivum L. (Jordao/bread wheat), and Triticum durum L. (Marialva/durum wheat) from Elvas area, Portugal and analyzed concentrations of As, Cr, Co, Fe, K, Na, Rb and Zn using Instrumental Neutron Activation Analysis (INAA) to focus on the risk of adverse public health issues. The low variability and moderate concentrations of metals in soils indicated a lower significant effect of environmental input on metal concentrations in agricultural soils. The Cr and Fe concentrations in soils that ranged from 93-117 and 26,400-31,300 mg/kg, respectively, were relatively high, but Zn concentration was very low (below detection limit <22 mg/kg) indicating that soils should be supplemented with Zn during cultivation. The concentrations of metals in roots and straw of both varieties of wheat decreased in the order of K>Fe>Na>Zn>Cr>Rb>As>Co. Concentrations of As, Co and Cr in root, straw and spike of both varieties were higher than the permissible limits with exception of a few samples. The concentrations of Zn in root, straw and spike were relatively low (4-30 mg/kg) indicating the deficiency of an essential micronutrient Zn in wheat cultivated in Portugal. The elemental transfer from soil to plant decreases with increasing growth of the plant. The concentrations of various metals in different parts of wheat followed the order: Root>Straw>Spike. A few root, straw and spike samples showed enrichment of metals, but the majority of the samples showed no enrichment. Potassium is enriched in all samples of root, straw and spike for both varieties of wheat. Relatively to the seed used for cultivation

  6. Physical Characterization of Natural Straw Fibers as Aggregates for Construction Materials Applications

    Directory of Open Access Journals (Sweden)

    Marwen Bouasker

    2014-04-01

    Full Text Available The aim of this paper is to find out new alternative materials that respond to sustainable development criteria. For this purpose, an original utilization of straw for the design of lightweight aggregate concretes is proposed. Four types of straw were used: three wheat straws and a barley straw. In the present study, the morphology and the porosity of the different straw aggregates was studied by SEM in order to understand their effects on the capillary structure and the hygroscopic behavior. The physical properties such as sorption-desorption isotherms, water absorption coefficient, pH, electrical conductivity and thermo-gravimetric analysis were also studied. As a result, it has been found that this new vegetable material has a very low bulk density, a high water absorption capacity and an excellent hydric regulator. The introduction of the straw in the water tends to make the environment more basic; this observation can slow carbonation of the binder matrix in the presence of the straw.

  7. 基于秸秆全量还田的不同耕作方法下稻麦生产的碳效率及收益评估%An Evaluation of Carbon Efficiency and Economic Income for Rcie and Wheat Production under Different Farming Methods with Full Straw Returning

    Institute of Scientific and Technical Information of China (English)

    薛亚光; 刘建; 魏亚凤; 李波; 汪波

    2015-01-01

    In order to investigate carbon sequestration potential of rice-wheat rotation system in Jiangsu Province, the rice-wheat cropping fields along Yangtze River in Jiangsu province were chosen to estimate the carbon input, carbon output, carbon efficiency and economic income in rice and wheat production. The research was based on data of grain yield, material and labor inputs under different farming methods which were wheat-rice wide-row alternative protective farming mode and annual mechanized farming for rice and wheat with full straw returning. The results showed that the amount of annual carbon input under protective farming (PF) and mechanized farming (MF) were 1836.3 kg/hm2 and 2290.5 kg/hm2, respectively. Compared with MF, carbon inputs of seeds, chemical fertilizer and machinery under PF were lower, but carbon input of labor was higher. The annual carbon output under PF and MF were 18.23 t/hm2 and 16.15 t/hm2, respectively, and PF had 12.9%more annual carbon output than MF. There was also significant difference between PF and MF in annual carbon efficiency. Compared with MF, PF increased production efficiency, ecological efficiency and economic efficiency of carbon by 40.4%, 40.8%and 40.3%, respectively. Besides, the annual net income of PF reached 20.25 × 103 yuan/hm2 and was 22.8% more than that of MF. The results indicated that the protective farming method with full straw returning could increase carbon efficiency and economic income and achieve a win-win situation of environment benefit and economic benefit.%为探明江苏稻麦轮作农业的固碳减排效应,以江苏沿江地区稻麦两熟田块为研究对象,利用基于秸秆全量还田的不同耕作方法下(麦稻宽行交互保护性耕作技术模式和稻麦周年机械化耕作方式)作物产量、系统物质投入以及人工投入等资料,估算稻麦生产的碳投入、碳产出、碳效率以及经济收益。结果表明:保护性耕作方式和机械化耕作方式

  8. Climate effect of an integrated wheat production and bioenergy system with Low Temperature Circulating Fluidized Bed gasifier

    DEFF Research Database (Denmark)

    Sigurjonsson, Hafthor Ægir; Elmegaard, Brian; Clausen, Lasse Røngaard;

    2015-01-01

    integration between the agricultural system and the energy system through the Low Temperature Circulating Fluidized Bed (LT-CFB) gasifier from the perspective of wheat grain production and electricity generation using wheat straw, where the effects of removing the straw from the agricultural system...... based on carbon conversion to two references, no straw removal and straw combustion. The results show that the climate effect of removing the straws are mitigated by the carbon soil sequestration with biochar, and electricity and district heat substitution. Maximum biochar production outperforms maximum...... heat and power generation for most substituted electricity and district heating scenarios. Irrespective of the substituted technologies, the carbon conversion needs to be 80-86% to fully mitigate the effects of removing the straws from the agricultural system. This concludes that compromising on energy...

  9. Straw detector: 1 - Vacuum: 0

    CERN Document Server

    Katarina Anthony

    2012-01-01

    The NA62 straw tracker is using pioneering CERN technology to measure charged particles from very rare kaon decays. For the first time, a large straw tracker with a 4.4 m2 coverage will be placed directly into an experiment’s vacuum tank, allowing physicists to measure the direction and momentum of charged particles with extreme precision. NA62 measurements using this technique will help physicists take a clear look at the kaon decay rate, which might be influenced by particles and processes that are not included in the Standard Model.   Straw ends are glued to an aluminium frame, a crucial step in the assembly of a module. The ends are then visually inspected before a leak test is performed.  “Although straw detectors have been around since the 1980s, what makes the NA62 straw trackers different is that they can work under vacuum,” explains Hans Danielsson from the PH-DT group leading the NA62 straw project. Straw detectors are basically small drift cha...

  10. Impact of Fungicides Used for Wheat Treatment on Button Mushroom Cultivation

    Directory of Open Access Journals (Sweden)

    Ivana Potočnik

    2012-01-01

    Full Text Available Little information is currently available on the potential environmental risks that fungicides applied during wheat cultivation and remaining in straw may have for mushroom production. The substrate for many cultivated mushrooms is mostly based on cereal straw. This review aimed to answer the question whether residues of the fungicides commonly used in wheat production and remaining in straw could be directly or indirectly responsible for changes in yields of Agaricus bisporus. Potential chemical risks of eight fungicides (for wheat treatments for A. bisporus: mancozeb, carbendazim, thiophanate-methyl,carbendazim+cyproconazole, carbedazim+flusilasole, captan, chlorothalonil and trifloxystrobinare disscused. Only the value of maximum residue level of flusilasole and its formulation was evaluated as higher than medium effective concentration of the fungicide for A.bisporus. As a conclusion, flusilazole treatment could be a limiting factor for using straw for composting and mushroom cultivation.

  11. Pilot plant straw biomass power plant; Demonstrationsanlage Strohkraftwerk Gronau

    Energy Technology Data Exchange (ETDEWEB)

    Vodegel, Stefan [Claustahler Umwelttechnik-Institut GmbH (CUTEC), Clausthal-Zellerfeld (Germany); Lach, Friedrich-Wilhelm [Ueberlandwerk Leinetal GmbH, Gronau (Leine) (Germany)

    2008-07-01

    Drastically increasing prices for oil and gas promote the change to renewable energies. Biomass has the advantage of the storability. However, it has the disadvantage of a small stocking density. This suggests decentralized power plants. Also the proven technology of water vapour cycles with use of turbine is questioned. In the rural district Hildesheim there are efforts of thermal utilisation straw from wheat cropping. For this, a feasibility study of the Claustahler Umwelttechnik-Technik GmbH (Clausthal Zellerfeld, Federal Republic of Germany) presents technical and economic possibilities exemplary for the industrial area West in Gronau (Federal Republic of Germany). Technical and economic chances and risks are pointed out.

  12. The transportation and accumulation of arsenic, cadmium, and phosphorus in 12 wheat cultivars and their relationships with each other.

    Science.gov (United States)

    Shi, Gao Ling; Zhu, Shun; Bai, Sheng Nan; Xia, Yan; Lou, Lai Qing; Cai, Qing Sheng

    2015-12-15

    Pot experiments were conducted to investigate the difference in arsenic (As), cadmium (Cd), and phosphorus (P) uptake, accumulation, and translocation among 12 wheat cultivars and their relationships with each other in soil "naturally" contaminated with both As and Cd. As, Cd, and P concentrations in wheat grain, straw, and root differed significantly (pwheat cultivars. The grain As concentration was not correlated with straw and root As, or the total As content in plants, but was significantly (pRoot) and TFs(Grain/Straw). The grain Cd concentration was positively correlated with the total Cd content and TFs(Grain/Straw). The grain P concentration was positively correlated with straw and root P. Both As and Cd concentrations in wheat grains were correlated with P in wheat straw and grain. Compared with As, Cd was more easily transported to the wheat grain, and the rachis played a key role in ensuring this difference. A significant positive correlation was observed between root As and Cd, but no significant relationship was detected between grain As and Cd concentrations. The lack of a relationship between grain As and Cd suggests the possibility of selecting cultivars in which little As and Cd accumulation occurs in the wheat grain.

  13. A scanning electron microscopy study of ash, char, deposits and fuels from straw combustion and co-combustion of coal and straw

    Energy Technology Data Exchange (ETDEWEB)

    Sund Soerensen, H.

    1998-07-01

    The SEM-study of samples from straw combustion and co-combustion of straw and coal have yielded a reference selection of representative images that will be useful for future comparison. The sample material encompassed potential fuels (wheat straw and grain), bottom ash, fly ash and deposits from straw combustion as well as fuels (coal and wheat straw), chars, bottom ash, fly ash and deposits from straw + coal co-combustion. Additionally, a variety of laboratory ashes were studied. SEM and CCSEM analysis of the samples have given a broad view of the inorganic components of straw and of the distribution of elements between individual ash particles and deposits. The CCSEM technique does, however, not detect dispersed inorganic elements in biomass, so to get a more complete visualization of the distribution of inorganic elements additional analyses must be performed, for example progressive leaching. In contrast, the CCSEM technique is efficient in characterizing the distribution of elements in ash particles and between ash fractions and deposits. The data for bottom ashes and fly ashes have indicated that binding of potassium to silicates occurs to a significant extent. The silicates can either be in the form of alumino-silicates or quartz (in co-combustion) or be present as straw-derived amorphous silica (in straw combustion). This process is important for two reasons. One is that potasium lowers the melting point of silica in the fly ash, potentially leading to troublesome deposits by particle impaction and sticking to heat transfer surfaces. The other is that the reaction between potassium and silica in the bottom ash binds part of the potassium meaning that it is not available for reaction with chlorine or sulphur to form KCl or K{sub 2}SO{sub 4}. Both phases are potentially troublesome because they can condense of surfaces to form a sticky layer onto which fly ash particles can adhere and by inducing corrosion beneath the deposit. It appears that in the studied

  14. Wheat Woes

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Soaringwheat prices are unlikely to endanger globalgrain security chicago wheat futures began to skyrocket in early June, jumping 62 percent and reaching their highest level since September 2008. In Russia,wheat prices increased 70 percent recently.And Europe’s wheat prices also rose 8 percent within a short time.

  15. Wheat Woes

    Institute of Scientific and Technical Information of China (English)

    DING SHENGJUN

    2010-01-01

    @@ Chicago wheat futures began to skyrocket in early June,jumping 62 percent and reaching their highest level since September 2008. In Russia, wheat prices increased 70 percent recently. And Europe's wheat prices also rose 8 percent within a short time.

  16. Assessment of some straw-derived materials for reducing the leaching potential of Metribuzin residues in the soil

    Science.gov (United States)

    Cara, Irina Gabriela; Trincă, Lucia Carmen; Trofin, Alina Elena; Cazacu, Ana; Ţopa, Denis; Peptu, Cătălina Anişoara; Jităreanu, Gerard

    2015-12-01

    Biomass (straw waste) can be used as raw to obtain materials for herbicide removal from wastewater. These by-products have some important advantages, being environmentally friendly, easily available, presenting low costs, and requiring little processing to increase their adsorptive capacity. In the present study, some materials derived from agricultural waste (wheat, corn and soybean straw) were investigated as potential adsorbents for metribuzin removal from aqueous solutions. The straw wastes were processed by grinding, mineralisation (850 °C) and KOH activation in order to improve their functional surface activity. The materials surface characteristics were investigated by scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic force microscopy. The adsorbents capacity was evaluated using batch sorption tests and liquid chromatography coupled with mass spectrometry for herbicide determination. For adsorption isotherms, the equilibrium time considered was 3 h. The experimental adsorption data were modelled by Freundlich and Langmuir models. The activated straw and ash-derived materials from wheat, corn and soybean increased the adsorption capacity of metribuzin with an asymmetrical behaviour. Overall, our results sustain that activated ash-derived from straw and activated straw materials can be a valuable solution for reducing the leaching potential of metribuzin through soil.

  17. EFFECTS OF APPLICATION OF NITROGEN FERTILIZER AND IN CORPORATION OF STRAW ON NITRATE LEACHING IN FARMLAND UNDER WHEAT-MAIZE ROTATION SYSTEM%施氮和秸秆还田对小麦-玉米轮作农田硝态氮淋溶的影响

    Institute of Scientific and Technical Information of China (English)

    杨宪龙; 路永莉; 同延安; 林文; 梁婷

    2013-01-01

    A four-year stationary field experiment,using the lysimeter method,was conducted to investigate effects of application of nitrogen fertilizer and incorporation of straws on nitrate leaching in the soil layer,90 cm in depth,in a field under wheat and maize rotation in Guanzhong Plain of Shaanxi Province.Results show that nitrate leaching varied sharply in a year and occurred mainly in July,August and September,the rainy season of the year,and could be observed after flood irrigation,too.The nitrate concentration in the leachate and nitrate leaching loss in the whole monitored period was 0 ~ 103.5 mg L-1 and 0 ~ 21.8 kg hm-2,respectively,and both displayed an increasing trend along with nitrogen application rate.The crops gained relatively high yields (14.4 t hm-2 on average) in all the 4 years,when 330 kg hm-2 N (150 kg hm-2 N for wheat and 180 kg hm-2 N for corn) was applied for the wheat/maize rotation system.Any further increase in nitrogen application rate did not bring about increase in crop yield,but enhanced accordingly nitrate accumulation in the soil profile and nitrate leaching loss monitored at the depth of 90 cm of the profile.Straw incorporation showed some yield increasing effect only two years later.Compared with Treatment N330,Treatment N330 + S increased yield of the crops by 15.1% and 14.2% in 2010 and 2011,respectively.However,no significant effects were observed on nitrate accumulation and leaching.Regression analysis of the data exposed an positive exponential relationship of nitrate accumulation in the 0 ~ 100 cm soil layer and nitrate leaching loss with annual nitrogen application rate,which means that the higher the nitrogen application rate,the higher the nitrate accumulation,the higher the nitrate leaching loss,and the higher the proportions of the two to the total nitrate applied.%连续4 a采用渗漏计测定法研究了陕西关中小麦-玉米轮作区施氮和秸秆还田对土壤剖面90 em处NO3--N

  18. Testing the effect of different enzyme blends on increasing the biogas yield of straw and digested manure fibers

    DEFF Research Database (Denmark)

    Njoku, Stephen Ikechukwu; Jurado, Esperanza; Malmgren-Hansen, Bjørn;

    In this study, enzymatic treatment was tested to increase the biogas yield of wheat straw (WS) and digested manure fibers (DMF) in the Re-Injection Loop Concept, which combines anaerobic digestion with solid separation to enhance the biogas yield per ton of manure by: 1. Digestion of the easily d...

  19. 小麦秸秆覆盖量对烤烟生长及烟叶产质量的影响%Effects of Wheat Straw Mulching Amount on Growth of Flue-cured Tobacco and Yield and Quality of Tobacco

    Institute of Scientific and Technical Information of China (English)

    熊茜; 查永丽; 毛昆明; 刘彦中

    2012-01-01

    Field experiment was conducted to study the effects of different mulching amount of wheat on agronomic characters of tobacco plant and the yield and quality of tobacco leaves. Result showed that mulching with wheat straw had little effect on early growth of tobacco plant, while the agronomic characters in treatment with 500 kilogram mulching per 667 squarer meter were significantly higher than other treatments. The chemical constituents and economic traits of tobacco leaves in treatments with 500 kilogram mulching per 667 squarer meter reached the best, the content of total sugar and reducing sugar in the upper leaves increased, the content of chlorine and improved potassium lorine in the upper and middle leaves decreased, the ratios of sugar and nicotine nearly reached 10 in upper and middle leaves, the ratio of nitrogen and nicotine reached 1 in lower leaves, the yield .output value, mean price, the first grade, the middle and first grade of tobacco leaves in the upland and paddy were 16. 39% , 31. 81% , 13. 29, 37. 72% , 12. 69% and 15. 75% , 34. 11% , 15. 88% ,12. 18% ,8. 80% higher than those of the contrast respectively. The treatments with with750 kilogram mulching per 667 squarer meter promoted the quality of tobacco leaves in lower position, and the ratio of sugar and nicotine relatively reached 10 in lower leaves. Overall, the treatments with with 500 kilogram mulching per 667 squarer meter promoted the growth of tobacco leaves and raised significantly the yield and quality of tobacco leaves.%采用田间小区试验,研究了不同小麦秸秆覆盖量对地烟和田烟农艺性状及烟叶产质量的影响.结果表明:秸秆覆盖对前期烟株生长作用不大,到后期覆盖量为500 kg/(667 m2)处理的烟株农艺性状显著优于其他处理,烟叶化学成分协调性较好、经济性状较佳,可提高上部烟叶总糖、还原糖的含量,降低中、上部烟叶氯的含量,提高中、上部烟叶的钾/氯比值,使中、上部烟

  20. Kinetics of SO2-ethanol-water (AVAP®) fractionation of sugarcane straw.

    Science.gov (United States)

    You, Xiang; van Heiningen, Adriaan; Sixta, Herbert; Iakovlev, Mikhail

    2016-07-01

    Kinetics of SO2-ethanol-water (AVAP®) fractionation was determined for sugarcane (SC) straw in terms of pulp composition (non-carbohydrate components, cellulose, hemicelluloses) and properties (kappa number, pulp intrinsic viscosity in CED and cellulose degree of polymerization). Effect of temperature (135-165°C) and time (18-118min) was studied at fixed liquor composition (SO2/ethanol/water=12:22.5:65.5, w/w) and a liquor-to-solid ratio (4Lkg(-1)). Interpretation is given in terms of major fractionation reactions, removal of non-carbohydrate components and xylan, as well as acid hydrolysis of cellulose, and is compared to other lignocellulosic substrates (beech, spruce and wheat straw). Overall, SO2-ethanol-water process efficiently fractionates SC straw by separating cellulose from both non-carbohydrate components and xylan while reducing cellulose DP. PMID:27089426

  1. Bioethanol production from rice straw residues

    OpenAIRE

    Elsayed B. Belal

    2013-01-01

    A rice straw - cellulose utilizing mold was isolated from rotted rice straw residues. The efficient rice straw degrading microorganism was identified as Trichoderma reesei. The results showed that different carbon sources in liquid culture such as rice straw, carboxymethyl cellulose, filter paper, sugar cane bagasse, cotton stalk and banana stalk induced T. reesei cellulase production whereas glucose or Potato Dextrose repressed the synthesis of cellulase. T. reesei cellulase was produced by ...

  2. A trial burn of rape straw and whole crops harvested for energy use to assess efficiency implications

    Energy Technology Data Exchange (ETDEWEB)

    Newman, R.

    2003-11-01

    Increased biomass utilisation and alternatives to cereal straw such as oil seed rape (OSR) straw will be necessary to achieve the Government's renewable energy targets. This report describes the results of a study to investigate the technical and economic feasibility of burning OSR straw and whole crops in an existing biomass power plant operated by EPR Ely Ltd in comparison with conventional cereal straw. Suitable quantities of bales of each fuel were provided for the combustion trials by Anglian Straw Ltd. Three trials were conducted: one using wheat-based cereal straw; one using 92% OSR; and one using 65% whole crop fuel. The availability of OSR straw and whole crop in Eastern England for use as fuel was also determined. Plant performance and stack emissions were evaluated and samples of delivered crop samples, bottom ash and fly ash from each trial were analysed. The parameters against which performance was assessed included: ease of handling and conveying; ease of chopping; ease of entry into the combustion chamber; furnace temperature profile; steam and electricity production rate; plant chimney emissions; ash collection and removal; operating stability; sustainability; and fuel availability.

  3. Structural features of reconstituted wheat wax films.

    Science.gov (United States)

    Pambou, Elias; Li, Zongyi; Campana, Mario; Hughes, Arwel; Clifton, Luke; Gutfreund, Philipp; Foundling, Jill; Bell, Gordon; Lu, Jian R

    2016-07-01

    Cuticular waxes are essential for the well-being of all plants, from controlling the transport of water and nutrients across the plant surface to protecting them against external environmental attacks. Despite their significance, our current understanding regarding the structure and function of the wax film is limited. In this work, we have formed representative reconstituted wax film models of controlled thicknesses that facilitated an ex vivo study of plant cuticular wax film properties by neutron reflection (NR). Triticum aestivum L. (wheat) waxes were extracted from two different wheat straw samples, using two distinct extraction methods. Waxes extracted from harvested field-grown wheat straw using supercritical CO2 are compared with waxes extracted from laboratory-grown wheat straw via wax dissolution by chloroform rinsing. Wax films were produced by spin-coating the two extracts onto silicon substrates. Atomic force microscopy and cryo-scanning electron microscopy imaging revealed that the two reconstituted wax film models are ultrathin and porous with characteristic nanoscale extrusions on the outer surface, mimicking the structure of epicuticular waxes found upon adaxial wheat leaf surfaces. On the basis of solid-liquid and solid-air NR and ellipsometric measurements, these wax films could be modelled into two representative layers, with the diffuse underlying layer fitted with thicknesses ranging from approximately 65 to 70 Å, whereas the surface extrusion region reached heights exceeding 200 Å. Moisture-controlled NR measurements indicated that water penetrated extensively into the wax films measured under saturated humidity and under water, causing them to hydrate and swell significantly. These studies have thus provided a useful structural basis that underlies the function of the epicuticular waxes in controlling the water transport of crops.

  4. Potential for straw utilisation in Ireland

    Energy Technology Data Exchange (ETDEWEB)

    Lyons, G.J.; Burke, J.I.; Martindale, L.P.

    1986-05-01

    Very little statistical information is available on the production and utilisation of straw in Ireland. However, using average cereal production figures, the total straw yield is estimated to be over 1.7 million tonnes annually. Energy markets and the large potential market for direct combustion of biomass fuels, such as cereal straw are discussed.

  5. Anaerobic Slurry Co-Digestion of Poultry Manure and Straw: Effect of Organic Loading and Temperature

    OpenAIRE

    Azadeh Babaee; Jalal Shayegan; Anis Roshani

    2013-01-01

    In order to obtain basic design criteria for anaerobic digestion of a mixture of poultry manure and wheat straw, the effects of different temperatures and organic loading rates on the biogas yield and methane contents were evaluated. Since poultry manure is a poor substrate, in term of the availability of the nutrients, external supplementation of carbon has to be regularly performed, in order to achieve a stable and efficient process. The complete-mix, pilot-scale digester with working volum...

  6. 麦秸秆加筋石灰土的应力应变和Duncan-Chang模型参数研究%Deviator stress-strain characters of reinforced lime-soil with wheat straw and parameters of Duncan-Chang model

    Institute of Scientific and Technical Information of China (English)

    李敏; 柴寿喜; 杜红普; 魏丽

    2011-01-01

    Reinforced soil with wheat straw was put forward for improving anti-deformation of solidified lime-saline soil.Triaxial compacted test of reinforced lime-soil with wheat straw is carried out to study the characters of deviator stressstrain and the parameters of Duncan-Chang hyperbola model as it can well reflect the nonlinear characteristics of soil. The related factors, such as reinforced length, reinforced ratio, curing-day and confining pressure, are chosen. Results indicate that: 1) Reinforced lime-soil and lime-soil both show strain hardening in early curing-day. After the curing-day of 21,lime-soil displays strain softening, but the former still performs strain hardening except for the confining pressure of 100 kPa. 2) The maximum deviator stress and the failure strain of reinforced lime-soil are much larger than that of un-reinforced,reinforcement can improve the strength and anti-deformation of lime-soil effectively. 3) The stress-strain curve distance of reinforced lime-soil in four confining pressure is less than that of lime-soil, the way of reinforcement can play a better role to the soil in lower confining pressure. 4) The strength growth of reinforced soil depends on reinforced condition,and the suitable length and ratio is 20 nun and 0.25% respectively for the sample in diameter of 61.8 mm. 5) By means of Duncan-Chang model, the stress-strain characteristic of lime-soil and reinforced lime-soil can be well indicated. This research can provides some guidance to select reinforced condition in engineering practice and to design and calculate the earth bank of reinforced saline soil.%为增强石灰固化滨海盐渍土的抗变形能力,提出了麦秸秆加筋辅助处理的设想.考虑Duncan-Chang双曲线模型能较好地反映土的非线性特征,将Duncan-Chang模型和三轴压缩试验结果相结合,以加筋长度、质量加筋率、养护时间和围压为影响因素,探讨了不同条件下麦秸秆加筋石灰土的应力应变特性

  7. Increased Yield Surplus of Vetch-Wheat Rotations under Drought in a Mediterranean Environment

    Directory of Open Access Journals (Sweden)

    Panagiotis Dalias

    2012-01-01

    Full Text Available This paper presents results of a plot-scale field experiment aiming at the comparative evaluation of agricultural practices and agricultural systems as far as their performance in very-low-rainfall conditions is concerned. Wheat was seeded after common vetch, treated in three different ways, after fallow or after the incorporation of dried sewage sludge or straw. Grain and straw yields and grain characteristics were always compared with conventional wheat monoculture without any additional organic inputs. Results showed a clear positive effect of vetch on next year's wheat yield and an increase in grain protein. Not only did the exceptionally dry season mask this effect, but also vetch-wheat systems were proved to be more effective in restraining wheat yield reductions, which are unavoidable under drought, marking these systems the most promising for improving sustainability and stability of rainfed agriculture.

  8. Integration of Agricultural Waste in Local Building Materials for their Exploitation: Application with Rice Straw

    Directory of Open Access Journals (Sweden)

    D. Sow

    2014-04-01

    Full Text Available Through experiments, we have determined the mechanical and thermal properties of samples. This allowed us to determine the most optimal formulations. Therefore, we have prepared samples constituted by two basic materials, clay and laterite, mixed with rice straw. Thus, agriculture is among the economic sectors that produce more waste. The latter are mainly the straw of the three most-produced cereals in the world: wheat, corn and rice. Concerning rice straw, its high content of cellulose makes it difficult to digest. So, few animals are able to use it as food. Most of the straws are lost, buried, burned or used as litter. Moreover, clay and laterite formations represent the most abundant materials resources in Africa. So, this study has allowed us to show that the integration of rice straw in lateritic and clay soils for its use as building materials will allow, in addition to its recycling, to greatly reduce the social habitat cost and to improve the thermal comfort.

  9. Eat Wheat!

    Science.gov (United States)

    Idaho Wheat Commission, Boise.

    This pamphlet contains puzzles, games, and a recipe designed to teach elementary school pupils about wheat. It includes word games based on the U.S. Department of Agriculture Food Guide Pyramid and on foods made from wheat. The Food Guide Pyramid can be cut out of the pamphlet and assembled as a three-dimensional information source and food guide.…

  10. Wheat Newsletter

    Science.gov (United States)

    This review was written for readers of the Annual Wheat Newsletter, Volume 53. It summarizes activities on wheat research during 2006 at the U.S. Grain Marketing Research Laboratory (USGMRL). The article includes technical abstracts of research accomplishments from the Grain Quality and Structure ...

  11. Effect of Interplanting with Zero Tillage and Straw Manure on Rice Growth and Rice Quality

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The interplanting with zero-tillage of rice, i.e. directsowing rice 10-20 days before wheat harvesting, and remaining about 30-cm high stubble after cutting wheat or rice with no tillage, is a new cultivation technology in wheat-rice rotation system. To study the effects of interplanting with zero tillage and straw manure on rice growth and quality, an experiment was conducted in a wheat-rotation rotation system. Four treatments, i.e. ZIS (Zero-tillage, straw manure and rice interplanting), ZI (Zero-tillage, no straw manure and rice interplanting), PTS (Plowing tillage, straw manure and rice transplanting), and PT (Plowing tillage, no straw manure and rice transplanting), were used. ZIS reduced plant height, leaf area per plant and the biomass of rice plants, but the biomass accumulation of rice at the late stage was quicker than that under conventional transplanting cultivation. In the first year (2002), there was no significant difference in rice yield among the four treatments. However, rice yield decreased in interplanting with zero-tillage in the second year (2003). Compared with the transplanting treatments, the number of filled grains per panicle decreased but 1000-grain weight increased in interplanting with zero-tillage, which were the main factors resulting in higher yield. Interplanting with zero-tillage improved the milling and appearance qualities of rice. The rates of milled and head rice increased while chalky rice rate and chalkiness decreased in interplanting with zero-tillage. Zero-tillage and interplanting also affected rice nutritional and cooking qualities. In 2002, ZIS showed raised protein content, decreased amylose content, softer gel consistency, resulting in improved rice quality. In 2003, zero-tillage and interplanting decreased protein content and showed similar amylose content as compared with transplanting treatments. Moreover, protein content in PTS was obviously increased in comparison with the other three treatments. The rice in

  12. Pyrolysis of wheat straw-derived organosolv lignin

    NARCIS (Netherlands)

    Wild, P.J. de; Huijgen, W.J.J.; Heeres, H.J.

    2012-01-01

    The cost-effectiveness of a lignocellulose biorefinery may be improved by developing applications for lignin with a higher value than application as fuel. We have developed a pyrolysis based lignin biorefinery approach, called LIBRA, to transform lignin into phenolic bio-oil and biochar using bubbli

  13. Enzymatic hydrolysis of pretreated barley and wheat straw

    DEFF Research Database (Denmark)

    Rosgaard, Lisa

    2007-01-01

    that there was indeed potential to boost the enzyme activities in Celluclast (arising from Trichoderma reesei) by addition of small amounts of fermentation broth from fungal sources other than T. reesei at optimal reaction conditions for Celluclast, pH 5, 50 °C. The activity(ies) related to the boosting effect were...... consistently lower viscosity. The low level of viscosity was thought suggest that mixing of substrate and enzyme would be more efficient. The work showed that the commercial cellulase product Celluclast can be improved with enzyme activities from other fungal sources and suggested that supplementation....... The work involved evaluation of 1) possible ways to increase the glucose release from the commercial cellulase product Celluclast by boosting with other enzyme activities to increase the enzymatic hydrolysis, 2) comparing differently pretreated feedstock substrates and 3) evaluating a fed-batch substrate...

  14. Oilseed rape straw for cultivation of oyster mushroom

    OpenAIRE

    Gholamali Peyvast

    2008-01-01

    Oyster mushroom [Pleurotus ostreatus var. sajor caju (Fr.) Singer] was grown on five substrates: rice straw, rice straw + oilseed rape straw (75:25, 50:50, and 25:75 dw/dw), and oilseed rape straw alone. Rice straw + oilseed rape straw (25:75) and oilseed rape straw were best for fruit body production of P. ostreatus. The time to fruiting for P. ostreatus was also shorter on oilseed rape straw. Protein content of the fruit bodies obtained with oilseed rape straw was highest among all substrat...

  15. Pre-study - Straw ash in a nutrient loop; Foerstudie - Halmaska i ett kretslopp

    Energy Technology Data Exchange (ETDEWEB)

    Ottosson, Peter; Bjurstroem, Henrik; Johansson, Christina; Svensson, Sven-Erik; Mattsson, Jan Erik

    2009-03-15

    A sustainable production of energy crops requires that the loss of mineral nutrients when removing biomass is compensated naturally or by an addition of plant nutrients. Recycling ash is a natural way to satisfy this need arising after combustion of energy crops. In this pre-study, the prerequisites for recycling straw ash have been investigated. The Danish experience with spreading ash to fields and information in literature on the composition of ash have been collected and presented. Analysis of straw samples taken from four different places in Scania yielded information on cadmium and nutrient concentration in straw and in ash. A balance between removal of nutrient and cadmium with wheat straw and restoring them by recycling straw ash has been computed. Straw ash is a potassium fertiliser with some phosphorus and some liming effect. It is technically difficult to spread the small quantities of ash in solid form, ca 250 kg per hectare and year in average, which a pure recycling would require. It is easier to spread larger quantities, e.g. ca 1 ton per hectare every fourth year, which corresponds to spreading once in a four year crop rotation, but then one provides too much potassium if one considers the actual needs of the coming crops at that occasion, which could lead to potassium being leached out on light soils. Alternatively, one could spread only bottom ash, but this would lead to half of the potassium content not being recycled to agricultural soil and lost with the fly ash that is disposed of. If one spreads about 500 kg bottom ash per hectare every other year, which could be a suitable strategy to avoid overloading soils with potassium, the dose brought to 1 ha may be computed as: 4 - 10 kg phosphorus, 50 - 100 kg potassium, 5 - 15 kg sulphur, 4 - 8 kg magnesium, 0.1 - 0.3 kg manganese and 20 - 40 kg CaO. These basis of these calculations is the results from the analyses performed in this study. The cadmium concentration was significantly higher in wheat

  16. Comparison of different pretreatment methods for separation hemicellulose from straw during the lignocellulosic bioethanol production

    Science.gov (United States)

    Eisenhuber, Katharina; Krennhuber, Klaus; Steinmüller, Viktoria; Kahr, Heike; Jäger, Alexander

    2013-04-01

    The combustion of fossil fuels is responsible for 73% of carbon dioxide emissions into the atmosphere and consequently contributes to global warming. This fact has enormously increased the interest in the development of methods to reduce greenhouse gases. Therefore, the focus is on the production of biofuels from lignocellulosic agricultural residues. The feedstocks used for 2nd generation bioethanol production are lignocellulosic raw materials like different straw types or energy crops like miscanthus sinensis or arundo donax. Lignocellulose consists of hemicellulose (xylose and arabinose), which is bonded to cellulose (glucose) and lignin. Prior to an enzymatic hydrolysis of the polysaccharides and fermentation of the resulting sugars, the lignocelluloses must be pretreated to make the sugar polymers accessible to enzymes. A variety of pretreatment methods are described in the literature: thermophysical, acid-based and alkaline methods.In this study, we examined and compared the most important pretreatment methods: Steam explosion versus acid and alkaline pretreatment. Specific attention was paid to the mass balance, the recovery of C 5 sugars and consumption of chemicals needed for pretreatment. In lab scale experiments, wheat straw was either directly pretreated by steam explosion or by two different protocols. The straw was either soaked in sulfuric acid or in sodium hydroxide solution at different concentrations. For both methods, wheat straw was pretreated at 100°C for 30 minutes. Afterwards, the remaining straw was separated by vacuum filtration from the liquid fraction.The pretreated straw was neutralized, dried and enzymatically hydrolyzed. Finally, the sugar concentrations (glucose, xylose and arabinose) from filtrate and from hydrolysate were determined by HPLC. The recovery of xylose from hemicellulose was about 50% using the sulfuric acid pretreatment and less than 2% using the sodium hydroxide pretreatment. Increasing concentrations of sulfuric acid

  17. 微生物对黑土添加麦秸后腐殖质结构特征影响的红外光谱研究%Characterization of Soil Humus by FTIR Spectroscopic Analyses after Being Inoculated with Different Microorganisms Plus Wheat Straw

    Institute of Scientific and Technical Information of China (English)

    王帅; 窦森; 刘艳丽; 李慧敏; 崔俊涛; 张伟; 王呈玉

    2012-01-01

    应用红外光谱研究微生物对黑土添加麦秸后腐殖质结构特征变化的影响.结果表明:(1)土壤水溶性物质(WSS)的结构和官能团数量受微生物影响较大.细菌有利于提高WSS中脂肪族烷烃类物质含量,其他处理结果相反.(2)放线菌在减少土壤富里酸(FA)羟基含量的能力最强,而真菌对FA的“净生成”能力最强,其有利于提高土壤FA中羧基和碳水化合物的含量.除混合菌外,其他处理均有利于土壤FA中多糖的降解,且速率大于脂类分解.(3)除混合菌外,其他处理均有利于降低土壤胡敏酸(HA)中脂肪族烷烃类物质的数量.真菌可有效提高土壤HA的羧基含量,而细菌作用相反.微生物可消耗和利用HA中的多糖类物质,促使植物残体类腐殖质向土壤成熟腐殖质转化.%The effects of different microbial communities on the structural characteristics of humus from the black soil amended with wheat straw were studied by FTIR Spectroscopy. The results indicated that (1) The structure and amount of functional groups in the water soluble substances (WSS) was tremendously influenced by the tested microorganisms, of which the amino and aryl ether was degraded rapidly in the inoculation process, and in the meantime, the content of hydroxyl groups was significantly reduced. The bacteria was helpful to increasing the amount of aliphatic hydrocarbons, while the other inoculated treatments were contrary. At the end of culture, the phenols and polysaccharides were gradually consumed, but the content of car-boxyl groups had an increasing trend. (2) In the aspect of reducing hydroxyl groups of fulvic acid (FA), the role of actinomyce-tes was the biggest. The fungi had the biggest effect in improving the net generation of FA content In addition, the fungi was conducive to improve the contents of carboxyl groups and carbohydrates of FA fraction. Except the mixed strains, the other treatments were all beneficial to the degradation of

  18. Effect of biochar pyrolyzed from wheat straws at different temperatures on biogas production characteristics of pig manure during mesophilic digestion%麦秸生物炭添加对猪粪中温厌氧发酵产气特性的影响

    Institute of Scientific and Technical Information of China (English)

    许彩云; 靳红梅; 常志州; 杜静; 黄红英; 艾玉春; 周立祥

    2016-01-01

    During anaerobic digestion(AD), microbial intermediate metabolites often inhabit biogas production. Biochars may adsorb these metabolites and improve biogas production when co-existing with manure during anaerobic digestion because of their large surface. In this study, the effects of different biochars on biogas production characteristics of pig manure during mesophilic digestion were examined. Biochars were obtained from wheat straws by pyrolysis at 400, 500℃and 600℃(i.e., BC400, BC500 and BC600)and added to the AD re-actor at mesophilic condition(37±1)℃. Biogas and methane productivity were measured in the bench-scale batch AD experiment. Results showed that the biogas and methane production was significantly(PBC500>BC400. During 49 d AD, the biogas and methane production was 260.7~288.7 mL·g-1 VS and 163.7~185.5 mL·g-1 VS, for biochar addi-tions, increments by 77.1%~96.1%and 78.1%~101.8%, respectively, compared with pig manure alone. Biochar additions also significantly enhanced the digestion efficiency(T90)of pig manure and reduced the ignition time of AD system. The biogas production was obviously dif-ferent among different biochar treatments, which was ascribed to the different characteristics of biochars, such as surface area and porosity. These findings indicate that optimal biochar material and digestion condition should be considered during the operation of biogas plants.%为探明不同热解温度生物炭添加对猪粪中温厌氧消化产气的影响,以400、500、600℃热解制成的麦秸生物炭(BC400、BC500、BC600)为研究对象,采用批次发酵试验,探讨了生物炭添加对猪粪中温(37±1)℃厌氧发酵产气特性的影响。研究结果表明:麦秸热解生物炭可显著(PBC500>BC400。厌氧发酵49 d期间,添加生物炭处理的产气量和产甲烷量分别为260.7~288.7 mL·g-1 VS和163.7~185.5 mL·g-1 VS,较纯猪粪处理提高了77.1%~96.1%和78.1%~101.8%。同时,添加生物炭可

  19. 旱地冬小麦缩行覆盖对土壤温、湿度的调控影响%Effect of Regulation on Soil Temperature and Humidity of Dryland Winter Wheat with Row Spacing Reduced and Straw Mulching

    Institute of Scientific and Technical Information of China (English)

    李岩华; 霍成斌; 孙美荣; 张俊灵; 张东旭

    2013-01-01

      为了确定在缩小行距的情况下,不同时间秸秆覆盖和不同覆盖量对土壤温度、湿度以及产量的影响,通过缩小种植行距、利用玉米秸秆整秆覆盖,采用裂区设计,主区为2个处理A1(冬后覆盖)、A2(冬前覆盖),副区为不同覆盖量的4个的处理以及不覆盖对照进行试验。结果表明:在0~15 cm的土壤温度敏感层,冬前覆盖比冬后覆盖的增温明显,在整个生育期中不同覆盖量各层地温的变化曲线基本相同;0~40 cm 的土壤含水量在生育期的变化趋势基本一致,冬前覆盖比冬后覆盖的土壤含水量平均高0.54%;冬后不同覆盖量处理的干物质的积累量在抽穗期—灌浆期明显高于冬前覆盖的各处理,而成熟期干物质的积累量冬前各处理要高于冬后覆盖;在产量表现最大的分别是 A2B3(3669.12 kg/hm2)、A1B2(3654.79 kg/hm2)说明冬前覆盖量为4500 kg/hm2的增产效果明显。因此,利用玉米整秆覆盖,缩行增密,形成不同播幅和覆盖区宽度的种植模式,增温保墒,节水增产,提高水分利用率,是小麦增产稳产的一条有效途径。%In order to determine the impact on soil temperature, humidity and yield of straw mulching on different time and different covering amount in the case of row spacing reduced, by Shrinked row of the planting, covered with corn straw pole. Used split-plot design, two main areas were: A1 (covered after winter) and A2 (covered before winter), the deputy district was four different amount of coverage and not covered. The results showed that, in 0-15 cm soil temperature-sensitive layer, the covered before winter warmed was obviously than after winter, the ground temperature curve of the amount of different levels coverage was the same basically during the entire growth period; the changed trend of the 0-40 cm soil moisture in the reproductive was the same basically, the soil moisture before winter

  20. Chemical characteristics of straw fiber and properties of straw fiberboard with different pretreatments

    Institute of Scientific and Technical Information of China (English)

    PAN Mingzhu; LIAN Hailan; ZHOU Dingguo

    2007-01-01

    Surface chemical characteristics of straw fiber have a great effect on the properties of interfacial conglutination between straw fiber and adhesives.In our study,straw was treated by four different methods-hot water,acetic acid,sodium sulfite and sodium hydrid sulfite.Our results show that the main chemical group of straw fiber,under the four different treatments,has not changed significantly.The acetic acid treatment reduces pH values of straw fibers and has a significant effect on the internal bonding strength of straw fiberboards.The modulus of rupture and modulus of elasticity did not clearly improve with the four different treatments.The thickness swelling of straw fiberboard treated in different ways is higher than that of standard values.It is concluded that acid treatment is optimal for producing good quality straw fiberboard.

  1. The Effect of Three Common Grain Drills on Dryland Wheat Yield

    Directory of Open Access Journals (Sweden)

    A Heidari

    2013-02-01

    Full Text Available A three-year field experiment (2004-2007 was conducted on a silty clay loam soil at Tajarak Research Station of Hamedan to determine proper grain drill for wheat in Hamedan dryland areas. In this study, three grain drills including: Hamedani Barzegar; Sahalan Kesht; and Kesht Gostar with wheat seed broadcasting and disking were used. The experiment was a randomized complete block design with four replications. In laboratory, the precision of metering device and the amount of seed damage by metering mechanism were measured. At the end of growth season (harvesting time, crop yield and the associated parameters (spike per m2, number of grain per spike, wheat kernel were determined. Results showed that planting methods did not affect wheat grain yield significantly. However, wheat grain yield was significantly higher for Kesht Gostar grain drill than the other two machines in two drier years. Mean wheat grain yield was 1224 kg ha–1. Mean wheat grain yield was the greatest (1275 kg ha-1 for Kesht Gostar and the least (1174 Kg ha-1 for Hamedani Barzegar grain drill. Mean straw yield was not affected by planting methods. Mean wheat straw yield was the greatest (2349 kg ha-1 for Hamedani Barzegar grain drill, and the least (2009 Kg ha-1 for the combination of seed broadcasting and disking. The amounts of rainfall during growing season strongly influenced wheat grain and straw yields. Mean wheat grain yield was 1572 Kg ha-1 and 1026 Kg ha-1 in wet year and dry years, respectively. This study showed that a wide range of grain drills is adaptable for dryland wheat cropping system for the semiarid Hamedan areas.

  2. Combustion Properties of Straw Briquettes

    Directory of Open Access Journals (Sweden)

    Zhao Qing-ling

    2013-05-01

    Full Text Available The low bulk density of straw is one of the major barriers, which blocks the collection, handling, transportation and storage. Densification of biomass into briquettes/pellets is a suitable method of increasing the bulk density of biomass. Yet in the process, a tremendous amount of air is ejected from biomass grind, which brings substantial specific variation including combustion property. Among them, combustion property is critical for proper design and operation of burning facilities. Therefore, a series of tests about combustion properties of 75mm diameter corn briquettes were done. First, the combustion process (ignition, full flaming and glowing phases., precipitation of tar were investigated by a heating stove, then, Some ash sample from the muffle burner was subjected to an ash melting characteristic test. The results show the combustion of briquettes takes more time than that of raw straw from ignition to complete combustion; in order to meet complete combustion in a short time, the raw straw needs more supply air volume than briquettes under the same α value; the temperature of furnace chamber should been controlled under 900°C, which help to reduce the dark smoke, tar and slag.

  3. [Effects of different fertilization regimes on weed communities in wheat fields under rice-wheat cropping system].

    Science.gov (United States)

    Yuan, Fang; Li, Yong; Li, Fen-hua; Sun, Guo-jun; Han, Min; Zhang, Hai-yan; Ji, Zhong; Wu, Chen-yu

    2016-01-01

    To reveal the effects of different fertilization regimes on weed communities in wheat fields under a rice-wheat rotation system, a survey was conducted before wheat harvest in 2014 after a 4-year long-term recurrent fertilization scheme. Weed species types, density, height and diversity index under different fertilization and straw-returning schemes in wheat fields were studied and complemented with a canonical correspondence analysis on weed community distribution and soil nutrient factors. Twenty weed species were recorded among 36 wheat fields belonging to 19 genera and 11 families. Beckmannia syzigachne, Hemistepta lyrata, Malachium aquaticum and Cnidium monnieri were widely distributed throughout the sampled area. Long-term fertilization appeared to reduce weed species richness and density, particularly for broadleaf weeds, but increased weed height. Diversity and evenness indices of weed communities were lower and dominance indices were higher in fields where chemical fertilizers were applied alone or combined with organic fertilizers, especially, where organic-inorganic compound fertilizer was used, in which it readily caused the outbreak of a dominant species and severe damage. Conversely, diversity and evenness indices of weed communities were higher and dominance indices were lower when the straw was returned to the field combined with chemical or organic fertilizers, in which weed community structures were complex and stable with lower weed density. Under these conditions weeds only caused slight reduction of wheat growth. PMID:27228601

  4. [Effects of different fertilization regimes on weed communities in wheat fields under rice-wheat cropping system].

    Science.gov (United States)

    Yuan, Fang; Li, Yong; Li, Fen-hua; Sun, Guo-jun; Han, Min; Zhang, Hai-yan; Ji, Zhong; Wu, Chen-yu

    2016-01-01

    To reveal the effects of different fertilization regimes on weed communities in wheat fields under a rice-wheat rotation system, a survey was conducted before wheat harvest in 2014 after a 4-year long-term recurrent fertilization scheme. Weed species types, density, height and diversity index under different fertilization and straw-returning schemes in wheat fields were studied and complemented with a canonical correspondence analysis on weed community distribution and soil nutrient factors. Twenty weed species were recorded among 36 wheat fields belonging to 19 genera and 11 families. Beckmannia syzigachne, Hemistepta lyrata, Malachium aquaticum and Cnidium monnieri were widely distributed throughout the sampled area. Long-term fertilization appeared to reduce weed species richness and density, particularly for broadleaf weeds, but increased weed height. Diversity and evenness indices of weed communities were lower and dominance indices were higher in fields where chemical fertilizers were applied alone or combined with organic fertilizers, especially, where organic-inorganic compound fertilizer was used, in which it readily caused the outbreak of a dominant species and severe damage. Conversely, diversity and evenness indices of weed communities were higher and dominance indices were lower when the straw was returned to the field combined with chemical or organic fertilizers, in which weed community structures were complex and stable with lower weed density. Under these conditions weeds only caused slight reduction of wheat growth.

  5. Straw Combustion in a Grate Furnace

    DEFF Research Database (Denmark)

    Lans, Robert Pieter Van Der

    1998-01-01

    Fixed-bed combustion of straw has been conducted in a 15 cm diameter and 137 cm long cylindrical reactor. Air, which could be preheated, was introduced through the bottom plate. The straw was ignited at the top with a radiation heater. After ignition, when a self-sustaining reaction front...... Temperature and Pressure) were used, air temperatures of 20, 150 and 200°C, and as bed material finely cut straw (dp...

  6. Effect of Leucaena and Sesbania supplementation on body growth and scrotal circumference of Ethiopian highland sheep and goats fed teff straw basal diet

    NARCIS (Netherlands)

    Kaitho, R.J.; Tegegne, A.; Umunna, N.N.; Nsahlai, I.V.; Tamminga, S.; Bruchem, J. van; Arts, J.M.

    1998-01-01

    The long term effect of supplementation of Leucaena pallida and Sesbania sesban on growth and reproduction performance was determined on 30 male Ethiopian highland sheep and 25 East African goats. Unchopped teff straw (Eragrostis tef) was given ad libitum and supplemented with either wheat bran (150

  7. Bioethanol production from rice straw residues.

    Science.gov (United States)

    Belal, Elsayed B

    2013-01-01

    A rice straw - cellulose utilizing mold was isolated from rotted rice straw residues. The efficient rice straw degrading microorganism was identified as Trichoderma reesei. The results showed that different carbon sources in liquid culture such as rice straw, carboxymethyl cellulose, filter paper, sugar cane bagasse, cotton stalk and banana stalk induced T. reesei cellulase production whereas glucose or Potato Dextrose repressed the synthesis of cellulase. T. reesei cellulase was produced by the solid state culture on rice straw medium. The optimal pH and temperature for T. reesei cellulase production were 6 and 25 °C, respectively. Rice straw exhibited different susceptibilities towards cellulase to their conversion to reducing sugars. The present study showed also that, the general trend of rice straw bioconversion with cellulase was more than the general trend by T. reesei. This enzyme effectively led to enzymatic conversion of acid, alkali and ultrasonic pretreated cellulose from rice straw into glucose, followed by fermentation into ethanol. The combined method of acid pretreatment with ultrasound and subsequent enzyme treatment resulted the highest conversion of lignocellulose in rice straw to sugar and consequently, highest ethanol concentration after 7 days fermentation with S. cerevisae yeast. The ethanol yield in this study was about 10 and 11 g.L(-1). PMID:24159309

  8. Bioethanol production from rice straw residues

    Directory of Open Access Journals (Sweden)

    Elsayed B. Belal

    2013-01-01

    Full Text Available A rice straw -cellulose utilizing mold was isolated from rotted rice straw residues. The efficient rice straw degrading microorganism was identified as Trichoderma reesei. The results showed that different carbon sources in liquid culture such as rice straw, carboxymethyl cellulose, filter paper, sugar cane bagasse, cotton stalk and banana stalk induced T. reesei cellulase production whereas glucose or Potato Dextrose repressed the synthesis of cellulase. T. reesei cellulase was produced by the solid state culture on rice straw medium. The optimal pH and temperature for T. reesei cellulase production were 6 and 25 ºC, respectively. Rice straw exhibited different susceptibilities towards cellulase to their conversion to reducing sugars. The present study showed also that, the general trend of rice straw bioconversion with cellulase was more than the general trend by T. reesei. This enzyme effectively led to enzymatic conversion of acid, alkali and ultrasonic pretreated cellulose from rice straw into glucose, followed by fermentation into ethanol. The combined method of acid pretreatment with ultrasound and subsequent enzyme treatment resulted the highest conversion of lignocellulose in rice straw to sugar and consequently, highest ethanol concentration after 7 days fermentation with S. cerevisae yeast. The ethanol yield in this study was about 10 and 11 g.L-1.

  9. Possibilities and evaluation of straw pretreatment

    DEFF Research Database (Denmark)

    Knudsen, Niels Ole; Jensen, Peter Arendt; Sander, Bo;

    1998-01-01

    Biomass utilisation by cofiring of straw in a pulverised coal fire boiler is economically attractive compared to dedicated straw fired plants. However, the high content of potassium and chloride impedes utilisation of the fly ash, deactivates the de NOx catalysts in the flue gas cleaning system and...... invetsigations were performed. The economy of both processes are favourable compared with seperate straw fired boilers, however, the removal efficiency of potassium of the pyrolysi based process is relatively low. At the present level of invetsigations the straw wash process looks promising and commercially...

  10. Wheat: The Whole Story.

    Science.gov (United States)

    Oklahoma State Dept. of Education, Oklahoma City.

    This publication presents information on wheat. Wheat was originally a wild grass and not native to the United States. Wheat was not planted there until 1777 (and then only as a hobby crop). Wheat is grown on more acres than any other grain in this country. Soft wheats are grown east of the Mississippi River, and hard wheats are grown west of the…

  11. Energetic uses of straw, whole cereal plants, silage fodder and other biogenic agricultural products; Energetische Nutzung von Stroh, Ganzpflanzengetreide, Silage sowie weitere biogene Produkte aus der Landwirtschaft

    Energy Technology Data Exchange (ETDEWEB)

    Vetter, H. [Thueringer Zentrum Nachwachsende Rohstoffe der TLL, Dornberg (Germany)

    2003-07-01

    Combustion of straw and plant material is technically feasible. In particular, poplars and willows from short-circulation plantations can be combusted in conventional wood chip furnaces. As concerns straw, there is little experience but the available data show that straw and whole-plant cereals can be utilized within the specified emission limits. Wheat and rye straw and whole triticale plants are particularly suitable. [German] Die energetische Verwertung von Stroh und Energiepflanzen ist technisch moeglich. Insbesondere der Einsatz von Pappeln und Weiden aus Kurzumtriebsplantagen in herkoemmlichen Feuerungen fuer Waldhackgut stellt eine sehr gute Option fuer die Zukunft dar. Auch betriebswirtschaftlich betrachtet ist die thermische Nutzung dieser Brennstoffe sinnvoll. Fuer die energetische Verwertung von Stroh liegen in Deutschland nur wenige Erfahrungen vor. Diese zeigen, dass Stroh und Ganzpflanzengetreide in optimierten Anlagen unter Einhaltung der gesetzlich vorgeschriebenen Emissionsgrenzwerte umweltfreundlich genutzt werden koennen. Besonders geeignet sind Weizen- und Roggenstroh sowie Ganzpflanzentriticale.

  12. 基于滑板压秆旋切式防堵装置的秸秆摩擦特性研究%Straw friction characteristic based on rotary cutting anti-blocking device with slide plate pressing straw

    Institute of Scientific and Technical Information of China (English)

    卢彩云; 赵春江; 孟志军; 王秀; 武广伟; 高娜娜

    2016-01-01

    plate pressing straw for no-till planter smoothly, which related to the coefficient of friction between slide plate and straw and the coefficient of friction between soil and straw. To solve the problem, taking wheat straw and maize straw of annual double cropping areas in Northern China as the research object, this study tested the coefficient of friction between 4 kinds of slide plate (Q235 steel, stainless steel, wood and plastic) and straw and the coefficient of friction between 3 kinds of different moisture of soil (10%, 12.5% and 15%) and straw. Considered the straw status during working of no-till anti-blockage device, straw part and contact angle were also as the factors to affect coefficient of friction, except slide plate material and soil moisture. The result showed that the coefficient of friction between slide plate and maize straw satisfied: Q235 steel>stainless steel= plastic>wood, and the coefficient of friction between slide plate and wheat straw satisfied: stainless steel>Q235 steel>wood >plastic. Single factor analysis indicated that the coefficient of friction between slide plate and maize straw was significantly impacted by slide plate material, straw part and contact angle, and the coefficient of friction between slide plate and wheat straw was significantly impacted by slide plate material and contact angle (P0.05), and straw part and contact angle were significantly affected the coefficient of friction between soil and both wheat and maize straw (P0.05). No interaction was found in three-factor analysis (P>0.05). In addition, the result showed that Q235 steel was suitable for maize straw, and stainless steel was suitable for wheat straw. The study supports reference for the design of no-till anti-blockage device.

  13. The Public Acceptance of Biofuels and Bioethanol from Straw- how does this affect Geoscience

    Science.gov (United States)

    Jäger, Alexander; Ortner, Tina; Kahr, Heike

    2015-04-01

    The Public Acceptance of Biofuels and Bioethanol from Straw- how does this affect Geoscience The successful use of bioethanol as a fuel requires its widespread acceptance by consumers. Due to the planned introduction of a 10 per cent proportion of bioethanol in petrol in Austria, the University of Applied Sciences Upper Austria carried out a representative opinion poll to collect information on the population's acceptance of biofuels. Based on this survey, interviews with important stakeholders were held to discuss the results and collect recommendations on how to increase the information level and acceptance. The results indicate that there is a lack of interest and information about biofuels, especially among young people and women. First generation bioethanol is strongly associated with the waste of food resources, but the acceptance of the second generation, produced from agricultural remnants like straw from wheat or corn, is considerably higher. The interviewees see more transparent, objective and less technical information about biofuels as an essential way to raise the information level and acceptance rate. As the production of bioethanol from straw is now economically feasible, there is one major scientific question to answer: In which way does the withdrawal of straw from the fields affect the formation of humus and, therefore, the quality of the soil? An interdisciplinary approach of researchers in the fields of bioethanol production, geoscience and agriculture in combination with political decision makers are required to make the technologies of renewable bioenergy acceptable to the population.

  14. Dust-Firing of Straw and Additives

    DEFF Research Database (Denmark)

    Wu, Hao; Glarborg, Peter; Frandsen, Flemming;

    2011-01-01

    In the present work, the ash chemistry and deposition behavior during straw dust-firing were studied by performing experiments in an entrained flow reactor. The effect of using spent bleaching earth (SBE) as an additive in straw combustion was also investigated by comparing with kaolinite. During...

  15. Using rice straw to manufacture ceramic bricks

    Directory of Open Access Journals (Sweden)

    Gorbunov German Ivanovich

    2014-12-01

    Full Text Available In the article, the co-authors offer their advanced and efficient methodologies for the recycling of the rice straw, as well as the novel approaches to the ceramic brick quality improvement through the application of the rice straw as the combustible additive and through the formation of amorphous silica in the course of the rice straw combustion. The co-authors provide characteristics of the raw materials, production techniques used to manufacture ceramic bricks, and their basic properties in the article. The co-authors describe the simulated process of formation of amorphous silica. The process in question has two independent steps (or options: 1 rice straw combustion and ash formation outside the oven (in the oxidizing medium, and further application of ash as the additive in the process of burning clay mixtures; 2 adding pre-treated rice straw as the combustible additive into the clay mixture, and its further burning in compliance with the pre-set temperature mode. The findings have proven that the most rational pre-requisite of the rice straw application in the manufacturing of ceramic bricks consists in feeding milled straw into the clay mixture to be followed by molding, drying and burning. Brick samples are highly porous, and they also demonstrate sufficient compressive strength. The co-authors have also identified optimal values of rice straw and ash content in the mixtures under research.

  16. Co-digestion of ley crop silage, straw and manure

    Energy Technology Data Exchange (ETDEWEB)

    Nordberg, Aa.; Edstroem, M. [Swedish Inst. of Agricultural Engineering, Uppsala (Sweden)

    1997-08-01

    Anaerobic co-digestion of ley crop silage, wheat straw and liquid manure with liquid recirculation was investigated in laboratory- and pilot scale. An organic loading rate of 6.0 g Vs L{sup -1} d{sup -1} was obtained when 20% of liquid manure (TS-basis) was added, whereas an organic loading rate of 2.5 g VS L{sup -1} d{sup -1} was obtained when the manure was replaced with a trace element solution. The methane yield varied between 0.28 and 0.32 L g VS{sup -1}, with the value being lowest for a mixture containing 60% silage, 20% straw and 20% manure (TS-basis), and highest for 100% ley crop silage. The concentration of ammonia-N was maintained at ca 2 g L{sup -1} by adjusting the C:N-ratio with straw. To achieve good mixing characteristics with a reasonable energy input at TS-concentrations around 10%, the particle sizes of straw and silage had to be reduced with a meat mincer. The digester effluent was dewatered, resulting in a solid phase that could be composted without having to add amendments or bulking agents, and a liquid phase containing 7-8% TS (mainly soluble and suspended solids). The liquid phase, which should be used as an organic fertilizer, contained up to 90% of the N and 74% of the P present in the residues. Calculations of the costs for a full-scale plant showed that a biogas price of SEK 0.125 MJ{sup -1} (0.45 k Wh{sup -1}) is necessary to balance the costs of a 1-MW plant. An increase in plant size to 4 MW together with an increase in compost price from SEK 100 tonnes{sup -1} to SEK 370 tonnes{sup -1} and a 20% rise in the methane yield through post-digestion (20%) would decrease the price to SEK 0.061 MJ{sup -1} (0.22 kWh{sup -1}). (au) 15 refs.

  17. Short Response of Spring Wheat to Tillage, Residue Management and Split Nitrogen Application in a Rice-Wheat System

    Institute of Scientific and Technical Information of China (English)

    Khalid Usman; Ejaz Ahmad Khan; Fazal Yazdan; Niamatullah Khan; Abdur Rashid; Saleem Ud Din

    2014-01-01

    A ifeld experiment was conducted to study the impact of tillage, crop residue management and nitrogen (N) splitting on spring wheat (Triticum aestivum L.) yield over 2 yr (2010-2012) in a rice (Oryza sativa L.)-wheat system in northwestern Pakistan. The experiment was conducted as split plot arranged in randomized complete blocks design with three replications. Treatments comprised six tillage and residue managements:zero tillage straw retained (ZTsr), zero tillage straw burnt (ZTsb), reduced tillage straw incorporated (RTsi), reduced tillage straw burnt (RTsb), conventional tillage straw incorporated (CTsi), and conventional tillage straw burnt (CTsb) as main plots and N (200 kg ha-1) was applied as split form viz., control (no nitrogen&no splitting, N0S0);2 splits of total N, half at sowing and half at the 1st irrigation (i.e., 20 d after sowing (DAS)) (NS1);3 splits of total N, 1/3 at sowing, 1/3 at the 1st irrigation, and 1/3 at the 2nd irrigation (NS2);4 splits of total N, 1/4 at sowing, 1/4 at the 1st irrigation, 1/4 at the 2nd irrigation (45 DAS), and 1/4 at the 3rd irrigation (70 DAS) (NS3);and 4 splits of total N, 1/4 at the 1st irrigation, 1/4 at the 2nd irrigation, 1/4 at the 3rd irrigation, and 1/4 at the 4th irrigation (95DAS) (NS4) as sub plots. The results showed that the most pikes m-2, grains/spike, 1 000-grain weight, grain yield, and N use efifciency (NUE) were obtained at zero tillage, straw retained and 4 splits application of total N (i.e., at sowing 20, 45 and 70 d after sowing). The results indicated that ZTsr with application of 200 kg N ha-1 in 4 equal splits viz. at sowing 20, 45 and 70 d after sowing is an appropriate strategy that enhanced wheat yield (7 436-7 634 kg ha-1) and N efifciency (28.6-29.5 kg kg-1) in rice-wheat system.

  18. 麦秸预处理方式对黄绵土结构及低吸力段持水性的影响%Effect of Pretreated Wheat Straw on Soil Aggregate and Water-holding Capacity within Low Suctions in Loess Soil

    Institute of Scientific and Technical Information of China (English)

    王增丽; 冯浩; 方圆

    2012-01-01

    通过土柱模拟培养试验,对比研究秸秆经过粉碎、氨化预处理及与无机土壤改良剂(硫酸钙)混合配施对黄绵土结构及低吸力段持水特性的影响.结果表明,秸秆经粉碎、氨化预处理及与土壤改良剂配施后能显著提高土壤结构稳定性,降低土壤结构分形维数.其中粉碎氨化秸秆对提高土壤稳定性具有一定的迟效性.秸秆经过不同预处理后施入土壤使土壤孔隙连通性降低,并随着秸秆的分解得到改善.其中长秸秆对土壤孔隙连通性改善作用较粉碎秸秆差.试验表明,土壤团聚体分形维数与土壤结构评价指标均呈极显著负相关关系(P<0.01),土壤团聚体分形维数FD与低吸力段土壤孔隙分形维数Dp之间呈极显著直线相关关系,相关系数为-0.80.FD与Dp两者结合分析可定量描述不同预处理秸秆对土壤结构、低吸力段持水特性的动态影响过程.%A contrast study on effect of powdered, aminated straw with or without inorganic soil conditioner ( calcium sulfate)on soil structure and water-holding capacity in low suction section was made through soil column incubation test. The results showed that the pretreated straw significantly improved soil structure stability, decreased soil structure fractal dimension. Therein the soil with comminuted and aminated straw had a slow acting to improve soil stability. Different pretreatment of straw mixed with soil could make soil porosity connectivity poor in the early stages, and then better with the straw decomposition later. Therein the soil with long straw always kept worse soil porosity than soils with the powdered straw. Furthermore there was a significantly linear correlation between soil aggregate fractal dimension and soil porosity fractal dimension in low suction section. That quantitively explained the effect of the pretreated straw on soil structure and water-holding capacity in low suction section of soil.

  19. EFFECT OF STRAW AND GREEN MANURE ON BIOLOGICAL CONDITION SODDY-PODZOLIC SOILS

    Directory of Open Access Journals (Sweden)

    Irina RUSAKOVA

    2014-04-01

    Full Text Available Estimation of changes of a biological condition (status soddy-podzolic sandy soil under the influence of use of mineral fertilizers and biological resources (straw of a winter wheat and stubble green manure, separately and in a combination was an objective of this research. Among the investigated kinds of fertilizers the strongest influence on the mortmass and mortmass carbon, number, activity of soil microflora and the content of soil microbial biomass have rendered straw in a combination with , postharverst green manure (intermediate culture, at the expense of increase in an input of the easily accessible for soil microflora organic matter. In this research mineral fertilizers without additives of organic materials essentially have not affected microbiаl activity

  20. Simultaneous harvesting of straw and chaff for energy purposes : influence on bale density, yield, field drying process and combustion characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Lundin, G. [JTI Swedish Inst. of Agricultural and Environmental Engineering, Uppsala (Sweden); Ronnback, M. [SP Technical Research Inst. of Sweden, Boras (Sweden)

    2010-07-01

    The potential to increase the productivity of fuel straw harvest and transportation was examined. When harvesting straw for energy purposes, only the long fraction is currently collected. However, technological improvements have now rendered it possible to harvest chaff, thus increasing the amount of harvest residues and bale density. The purpose of this study was to determine how harvest yield, bale density, field-drying behaviour and combustion characteristics are affected by the simultaneous harvest of straw and chaff. Field experiments were conducted in 2009 for long- and short-stalked winter wheat crops. Combine harvesting was carried out with 2 different types of combine harvesters. A high-density baler was used to bale the crop residues. Mixing chaff in with the straw swath by combine harvesting gave a lower initial moisture content compared with straw only. The density and the weight of each bale were not affected by the treatments. However, the added chaff increased the total yield of crop residues by 14 per cent, indicating that about half of the biologically available chaff was harvested. Although mixing in chaff increased the ash content by 1 percentage unit, there was no considerable change in net calorific value or ash melting behaviour.

  1. Enzymatic hydrolysis of pretreated soybean straw

    International Nuclear Information System (INIS)

    In order to produce lactic acid, from agricultural residues such as soybean straw, which is a raw material for biodegradable plastic production, it is necessary to decompose the soybean straw into soluble sugars. Enzymatic hydrolysis is one of the methods in common use, while pretreatment is the effective way to increase the hydrolysis rate. The optimal conditions of pretreatment using ammonia and enzymatic hydrolysis of soybean straw were determined. Compared with the untreated straw, cellulose in straw pretreated by ammonia liquor (10%) soaking for 24 h at room temperature increased 70.27%, whereas hemicellulose and lignin in pretreated straw decreased to 41.45% and 30.16%, respectively. The results of infrared spectra (IR), scanning electron microscope (SEM) and X-ray diffraction (XRD) analysis also showed that the structure and the surface of the straw were changed through pretreatment that is in favor of the following enzymatic hydrolysis. maximum enzymatic hydrolysis rate of 51.22% was achieved at a substrate concentration of 5% (w/v) at 50 deg. C and pH 4.8 using cellulase (50 fpu/g of substrate) for 36 h

  2. Effects of straw incorporation along with microbial inoculant on methane and nitrous oxide emissions from rice fields.

    Science.gov (United States)

    Liu, Gang; Yu, Haiyang; Ma, Jing; Xu, Hua; Wu, Qinyan; Yang, Jinghui; Zhuang, Yiqing

    2015-06-15

    Incorporation of straw together with microbial inoculant (a microorganism agent, accelerating straw decomposition) is being increasingly adopted in rice cultivation, thus its effect on greenhouse gas (GHG) emissions merits serious attention. A 3-year field experiment was conducted from 2010 to 2012 to investigate combined effect of straw and microbial inoculant on methane (CH4) and nitrous oxide (N2O) emissions, global warming potential (GWP) and greenhouse gas intensity (GHGI) in a rice field in Jurong, Jiangsu Province, China. The experiment was designed to have treatment NPK (N, P and K fertilizers only), treatment NPKS (NPK plus wheat straw), treatment NPKSR (NPKS plus Ruilaite microbial inoculant) and treatment NPKSJ (NPKS plus Jinkuizi microbial inoculant). Results show that compared to NPK, NPKS increased seasonal CH4 emission by 280-1370%, while decreasing N2O emission by 7-13%. When compared with NPKS, NPKSR and NPKSJ increased seasonal CH4 emission by 7-13% and 6-12%, respectively, whereas reduced N2O emission by 10-27% and 9-24%, respectively. The higher CH4 emission could be attributed to the higher soil CH4 production potential triggered by the combined application of straw and microbial inoculant, and the lower N2O emission to the decreased inorganic N content. As a whole, the benefit of lower N2O emission was completely offset by increased CH4 emission, resulting in a higher GWP for NPKSR (5-12%) and NPKSJ (5-11%) relative to NPKS. Due to NPKSR and NPKSJ increased rice grain yield by 3-6% and 2-4% compared to NPKS, the GHGI values for NPKS, NPKSR and NPKSJ were comparable. These findings suggest that incorporating straw together with microbial inoculant would not influence the radiative forcing of rice production in the terms of per unit of rice grain yield relative to the incorporation of straw alone. PMID:25756676

  3. Performance of herbicides in sugarcane straw

    Directory of Open Access Journals (Sweden)

    Rosilaine Araldi

    2015-12-01

    Full Text Available The process of mechanical harvesting of sugarcane generates a large deposition of straw on the soil surface, providing a coverage that several studies have found important for reducing the weed population. Although such coverage reduces weed infestations, additional management, including chemical control, is still needed. Thus, this study aimed to evaluate the leaching of atrazine, pendimethalin, metribuzin, clomazone, diuron and hexazinone in sugarcane straw. The experiment was conducted at the School of Agronomic Engineering at UNESP (Sao Paulo State University - Botucatu/SP. The sugarcane straw was collected in the field, cut and placed in quantities of 10t ha-1 in the capsules used as experimental units. The experimental design was completely randomized, using six herbicide treatments and four replications. Within 24 hours after the herbicides were applied in capsules with straw, five different rainfalls (5, 10, 20, 50 and 100mm were simulated. The leached water was collected for chromatographic analysis. The herbicide percentages that crossed the straw layer were statistically correlated with the rainfall amount by the Mitscherlich model that compares the facility of herbicide removal from sugarcane straw. In summary, pendimethalin did not present quantified transposition of the product by sugarcane straw even with a rain simulation of 100 mm. Furthermore, two different profiles of facility to transpose the herbicides in straw were found: one for metribuzin and hexazinone that crossed quickly through the straw layer and another for atrazine, diuron and clomazone that required more rainfall to be leached from coverage to the soil according to the maximum removable amount of each herbicide.

  4. Cereal straw management: a trade-off between energy and agronomic fate

    Directory of Open Access Journals (Sweden)

    Massimo Monteleone

    2015-06-01

    Full Text Available Climate change mitigation is the most important driving force for bioenergy development. Consequently, the environmental design of bioenergy value chains should address the actual savings of both primary energy demand and greenhouse gases (GHG emissions. According to the EU Renewable Energy Directive (2009/28/EC, no direct impacts and no GHG emissions should be attributed to crop residues (like cereal straws when they are removed from agricultural land for the purpose of bioenergy utilisation. The carbon neutral assumption applied to crop residues is, however, a rough simplification. Crop residues, indeed, should not be viewed simply as a waste to be disposed, because they play a critical role in sustaining soil organic matter and therefo