WorldWideScience

Sample records for afex-treated corn stover

  1. Effects of compositional changes of AFEX-treated and H-AFEX-treated corn stover on enzymatic digestibility.

    Science.gov (United States)

    Zhao, Chao; Ding, Weimin; Chen, Feng; Cheng, Cheng; Shao, Qianjun

    2014-03-01

    Corn stover is one of the main agricultural residues being considered as a cellulosic ethanol feedstock. This work evaluated the effectiveness of AFEX™(1) pretreatment for converting corn stover to fermentable sugars, both with and without pre-soaking in hydrogen peroxide. The compositional changes and enzymatic digestibility of AFEX-treated and H-AFEX-treated biomass were investigated. Results showed that most of the polysaccharides remained intact following each of these two methods. Compared with AFEX pretreatment, the H-AFEX process enhanced delignification and enzymatic hydrolysis yields of both glucose and xylose. The maximum glucan and xylan digestibility of H-AFEX process were 87.78% and 90.64%, respectively, and were obtained using 0.7 (w/w) water loading, 1.0 (w/w) ammonia loading, 0.5 (w/w) 30wt.% hydrogen peroxide loading, and 130°C for 10min. The results of the present work show that H-AFEX is a feasible pretreatment to improve the enzymatic saccharification of corn stover for bioethanol production.

  2. Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant

    Directory of Open Access Journals (Sweden)

    Thelen Kurt D

    2010-06-01

    Full Text Available Abstract Background Corn grain is an important renewable source for bioethanol production in the USA. Corn ethanol is currently produced by steam liquefaction of starch-rich grains followed by enzymatic saccharification and fermentation. Corn stover (the non-grain parts of the plant is a potential feedstock to produce cellulosic ethanol in second-generation biorefineries. At present, corn grain is harvested by removing the grain from the living plant while leaving the stover behind on the field. Alternatively, whole corn plants can be harvested to cohydrolyze both starch and cellulose after a suitable thermochemical pretreatment to produce fermentable monomeric sugars. In this study, we used physiologically immature corn silage (CS and matured whole corn plants (WCP as feedstocks to produce ethanol using ammonia fiber expansion (AFEX pretreatment followed by enzymatic hydrolysis (at low enzyme loadings and cofermentation (for both glucose and xylose using a cellulase-amylase-based cocktail and a recombinant Saccharomyces cerevisiae 424A (LNH-ST strain, respectively. The effect on hydrolysis yields of AFEX pretreatment conditions and a starch/cellulose-degrading enzyme addition sequence for both substrates was also studied. Results AFEX-pretreated starch-rich substrates (for example, corn grain, soluble starch had a 1.5-3-fold higher enzymatic hydrolysis yield compared with the untreated substrates. Sequential addition of cellulases after hydrolysis of starch within WCP resulted in 15-20% higher hydrolysis yield compared with simultaneous addition of hydrolytic enzymes. AFEX-pretreated CS gave 70% glucan conversion after 72 h of hydrolysis for 6% glucan loading (at 8 mg total enzyme loading per gram glucan. Microbial inoculation of CS before ensilation yielded a 10-15% lower glucose hydrolysis yield for the pretreated substrate, due to loss in starch content. Ethanol fermentation of AFEX-treated (at 6% w/w glucan loading CS hydrolyzate (resulting

  3. Enzymatic digestibility and ethanol fermentability of AFEX-treated starch-rich lignocellulosics such as corn silage and whole corn plant

    Science.gov (United States)

    2010-01-01

    Background Corn grain is an important renewable source for bioethanol production in the USA. Corn ethanol is currently produced by steam liquefaction of starch-rich grains followed by enzymatic saccharification and fermentation. Corn stover (the non-grain parts of the plant) is a potential feedstock to produce cellulosic ethanol in second-generation biorefineries. At present, corn grain is harvested by removing the grain from the living plant while leaving the stover behind on the field. Alternatively, whole corn plants can be harvested to cohydrolyze both starch and cellulose after a suitable thermochemical pretreatment to produce fermentable monomeric sugars. In this study, we used physiologically immature corn silage (CS) and matured whole corn plants (WCP) as feedstocks to produce ethanol using ammonia fiber expansion (AFEX) pretreatment followed by enzymatic hydrolysis (at low enzyme loadings) and cofermentation (for both glucose and xylose) using a cellulase-amylase-based cocktail and a recombinant Saccharomyces cerevisiae 424A (LNH-ST) strain, respectively. The effect on hydrolysis yields of AFEX pretreatment conditions and a starch/cellulose-degrading enzyme addition sequence for both substrates was also studied. Results AFEX-pretreated starch-rich substrates (for example, corn grain, soluble starch) had a 1.5-3-fold higher enzymatic hydrolysis yield compared with the untreated substrates. Sequential addition of cellulases after hydrolysis of starch within WCP resulted in 15-20% higher hydrolysis yield compared with simultaneous addition of hydrolytic enzymes. AFEX-pretreated CS gave 70% glucan conversion after 72 h of hydrolysis for 6% glucan loading (at 8 mg total enzyme loading per gram glucan). Microbial inoculation of CS before ensilation yielded a 10-15% lower glucose hydrolysis yield for the pretreated substrate, due to loss in starch content. Ethanol fermentation of AFEX-treated (at 6% w/w glucan loading) CS hydrolyzate (resulting in 28 g/L ethanol

  4. Effect of pelleting process variables on physical properties and sugar yields of ammonia fiber expansion pretreated corn stover.

    Science.gov (United States)

    Hoover, Amber N; Tumuluru, Jaya Shankar; Teymouri, Farzaneh; Moore, Janette; Gresham, Garold

    2014-07-01

    Pelletization process variables, including grind size (4, 6mm), die speed (40, 50, 60 Hz), and preheating (none, 70°C), were evaluated to understand their effect on pellet quality attributes and sugar yields of ammonia fiber expansion (AFEX) pretreated biomass. The bulk density of the pelletized AFEX corn stover was three to six times greater compared to untreated and AFEX-treated corn stover. Also, the durability of the pelletized AFEX corn stover was>97.5% for all pelletization conditions studied except for preheated pellets. Die speed had no effect on enzymatic hydrolysis sugar yields of pellets. Pellets produced with preheating or a larger grind size (6mm) had similar or lower sugar yields. Pellets generated with 4mm AFEX-treated corn stover, a 60Hz die speed, and no preheating resulted in pellets with similar or greater density, durability, and sugar yields compared to other pelletization conditions.

  5. Effect of pelleting process variables on physical properties and sugar yields of ammonia fiber expansion pretreated corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Amber N. Hoover; Jaya Shankar Tumuluru; Farzaneh Teymouri; Garold L. Gresham; Janette Moore

    2014-07-01

    Pelletization process variables including grind size (4, 6 mm), die speed (40, 50, 60 Hz), and preheating (none, 70 degrees C) were evaluated to understand their effect on pellet quality attributes and sugar yields of ammonia fiber expansion (AFEX) pretreated biomass. The bulk density of the pelletized AFEX corn stover was three to six times greater compared to untreated and AFEX-treated corn stover. Also the durability of the pelletized AFEX corn stover was >97.5% for all pelletization conditions studied except for preheated pellets. Die speed had no effect on enzymatic hydrolysis sugar yields of pellets. Pellets produced with preheating or a larger grind size (6 mm) had similar or lower sugar yields. Pellets generated with 4 mm AFEX-treated corn stover, a 60 Hz die speed, and no preheating resulted in pellets with similar or greater density, durability, and sugar yields compared to other pelletization conditions.

  6. BIOFUEL FROM CORN STOVER

    Directory of Open Access Journals (Sweden)

    Ljiljanka Tomerlin

    2003-12-01

    Full Text Available This paper deals with production of ethyl alcohol (biofuel from corn stover acid hydrolysate by yeasts, respectively at Pichia stipitis y-7124 and Pachysolen tannophilus y-2460 and Candida shehatae y-12856. Since moist corn stover (Hybryds 619 is proving to decomposition by phyllospheric microflora. It was (conserved spattered individually by microbicids: Busan-90, Izosan-G and formalin. In form of prismatic bales, it was left in the open air during 6 months (Octobar - March. At the beginning and after 6 months the microbiological control was carried out. The only one unspattered (control and three stover corn bals being individually spattered by microbicids were fragmented and cooked with sulfur acid. The obtained four acid hydrolysates are complex substratums, containing, apart from the sugars (about 11 g dm-3 pentosa and about 5.4 g dm-3 hexose, decomposite components as lignin, caramel sugars and uronic acids. By controlling the activity of the mentioned yeasts it was confirmed that yeasts Pichia stipitis y-7124 obtained best capability of ethyl alcohol production from corn stover acid hydrolysate at 0.23 vol. % to 0.49 vol. %.

  7. Enzymatic hydrolysis of pelletized AFEX™-treated corn stover at high solid loadings.

    Science.gov (United States)

    Bals, Bryan D; Gunawan, Christa; Moore, Janette; Teymouri, Farzaneh; Dale, Bruce E

    2014-02-01

    Ammonia fiber expansion (AFEX™) pretreatment can be performed at small depots, and the pretreated biomass can then be pelletized and shipped to a centralized refinery. To determine the feasibility of this approach, pelletized AFEX-treated corn stover was hydrolyzed at high (18-36%) solid loadings. Water absorption and retention by the pellets was low compared to unpelletized stover, which allowed enzymatic hydrolysis slurries to remain well mixed without the need for fed-batch addition. Glucose yields of 68% and xylose yields of 65% were obtained with 20 mg enzyme/g glucan and 18% solid loading after 72 h, compared to 61% and 59% for unpelletized corn stover. Pelletization also slightly increased the initial rate of hydrolysis compared to unpelletized biomass. The ease of mixing and high yields obtained suggests that pelletization after AFEX pretreatment could have additional advantages beyond improved logistical handling of biomass.

  8. Spring harvest of corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Lizotte, P.L. [Laval Univ., Quebec City, PQ (Canada). Dept. des sols et de genie agroalimentaire; Savoie, P. [Agriculture and Agri-Food Canada, Quebec City, PQ (Canada)

    2010-07-01

    Corn stover is typically left behind in the field after grain harvest. Although part of the stover should remain in the field for soil organic matter renewal and erosion protection, half of the stover could be removed sustainably. This represents about one million t dry matter (DM) of stover per year in the province of Quebec. Stover harvested in the fall is very wet. While there are applications for wet stover, the available markets currently require a dry product. Preliminary measurements have shown that stover left in the field throughout the winter becomes very dry, and a considerable amount would still be harvestable in the spring. In the spring of 2009, corn stover was harvested at 2 sites, each subdivided into 2 parcels. The first parcel was cut and raked in the fall of 2008 (fall parcel), while the second parcel was cut and raked in spring 2009. Fibre from both parcels was baled in the spring 2009. At the first site, a large square baler was used in late April to produce bales measuring 0.8 m x 0.9 m x 1.8 m. On the second site a round baler was used in late May to produce bales of 1.2 m in width by 1.45 m in diameter. On the second site, a small square baler was also used to produce bales of 0.35 m x 0.45 m x 0.60 m (spring cutting only). With the large square baler, an average of 3.9 t DM/ha was harvested equally on the fall parcel and the spring parcel, representing a 48 per cent recovery of biomass based on stover yields.

  9. Multipass rotary shear comminution process to produce corn stover particles

    Energy Technology Data Exchange (ETDEWEB)

    Dooley, James H; Lanning, David N

    2015-04-14

    A process of comminution of corn stover having a grain direction to produce a mixture of corn stover, by feeding the corn stover in a direction of travel substantially randomly to the grain direction one or more times through a counter rotating pair of intermeshing arrays of cutting discs (D) arrayed axially perpendicular to the direction of corn stover travel.

  10. Production of ethanol and furfural from corn stover

    Science.gov (United States)

    Corn stover has potential for economical production of biofuels and value-added chemicals. The conversion of corn stover to sugars involves pretreatment and enzymatic hydrolysis. We have optimized hydrothermal, dilute H2SO4 and dilute H3PO4 pretreatments of corn stover for enzymatic saccharificati...

  11. Metabolism of Multiple Aromatic Compounds in Corn Stover Hydrolysate by Rhodopseudomonas palustris.

    Science.gov (United States)

    Austin, Samantha; Kontur, Wayne S; Ulbrich, Arne; Oshlag, J Zachary; Zhang, Weiping; Higbee, Alan; Zhang, Yaoping; Coon, Joshua J; Hodge, David B; Donohue, Timothy J; Noguera, Daniel R

    2015-07-21

    Lignocellulosic biomass hydrolysates hold great potential as a feedstock for microbial biofuel production, due to their high concentration of fermentable sugars. Present at lower concentrations are a suite of aromatic compounds that can inhibit fermentation by biofuel-producing microbes. We have developed a microbial-mediated strategy for removing these aromatic compounds, using the purple nonsulfur bacterium Rhodopseudomonas palustris. When grown photoheterotrophically in an anaerobic environment, R. palustris removes most of the aromatics from ammonia fiber expansion (AFEX) treated corn stover hydrolysate (ACSH), while leaving the sugars mostly intact. We show that R. palustris can metabolize a host of aromatic substrates in ACSH that have either been previously described as unable to support growth, such as methoxylated aromatics, and those that have not yet been tested, such as aromatic amides. Removing the aromatics from ACSH with R. palustris, allowed growth of a second microbe that could not grow in the untreated ACSH. By using defined mutants, we show that most of these aromatic compounds are metabolized by the benzoyl-CoA pathway. We also show that loss of enzymes in the benzoyl-CoA pathway prevents total degradation of the aromatics in the hydrolysate, and instead allows for biological transformation of this suite of aromatics into selected aromatic compounds potentially recoverable as an additional bioproduct.

  12. Corn stover harvest changes soil hydrology and soil aggregation

    Science.gov (United States)

    In the United States, commercial-scale cellulosic-ethanol production using corn (Zea Mays L.) stover has become a reality. As the industry matures and demand for stover increases, a clear understanding of how reducing the rate of stover remaining in the field impacts soil properties is critical. Sto...

  13. Moisture Sorption Characteristics of Corn Stover and Big Bluestem

    OpenAIRE

    C. Karunanithy; Muthukumarappan, K.; A. Donepudi

    2013-01-01

    Moisture content is an important feedstock quality in converting it into energy through biochemical or thermochemical platforms. Knowledge of moisture sorption relationship is useful in drying and storage to preserve the quality of feedstocks. Moisture sorption isotherms for potential feedstocks such as corn stover and big bluestem are missing. EMC values of corn stover and big bluestem were determined using static gravimetric technique with saturated salt solutions (ERH 0.12–0.89) at differe...

  14. Hydrolyzabilities of different corn stover fractions after aqueous ammonia pretreatment.

    Science.gov (United States)

    Sun, Zongping; Ge, Xiaoyan; Xin, Donglin; Zhang, Junhua

    2014-02-01

    The effect of aqueous ammonia pretreatment on the hydrolysis of different corn stover fractions (rind, husk, leaf, and pith) by xylanase (XYL) with cellulases (CELs) was evaluated. The aqueous ammonia pretreatment had excellent delignification ability (above 66%) for different corn stover fractions. The corn rind exhibited the lowest susceptibility to aqueous ammonia pretreatment. The pretreated rind showed the lowest hydrolyzability by CEL and XYL, which was supported by a high content of crystalline cellulose in the hydrolyzed residues of rind, as confirmed by X-ray diffraction (XRD). With the addition of 1 mg XYL/g dry matter, a high glucose yield (above 90%) could be obtained from the pretreated rind by CEL. The results revealed that a high hydrolyzate yield of corn rind after aqueous ammonia pretreatment could be obtained with 1 mg xylanase/g dry matter, showing that aqueous ammonia pretreatment and xylanase addition to cellulases have great potential for the efficient hydrolysis of corn stover without previous fractionation.

  15. Corn Stover Impacts on Near-Surface Soil Properties of No-Till Corn In Ohio

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Canqui, H; Lal, Rattan; Post, W M.; Izaurralde, R Cesar C.; Owens, L B.

    2006-01-06

    Corn stover is a primary biofuel feedstock and its expanded use could help reduce reliance on fossil fuels and net CO2 emissions. Excessive stover removal may, however, negatively impact near-surface soil properties within a short period after removal. We assessed changes in soil crust strength, bulk density, and water content over a 1-yr period following a systematic removal or addition of stover from three no-till soils under corn in Ohio.

  16. Soil carbon and nitrogen dynamic after corn stover harvest

    Science.gov (United States)

    Biofuel production from plant biomass seems to be a suitable solution to mitigate fossil fuel use and reduce greenhouse gas emissions. Corn (Zea mays) is a highly promising crop for biomass production. However, stover harvest could negatively impact soil properties. Changes in the quantity of corn r...

  17. Thermophysical properties of conjugated soybean oil/corn stover biocomposites.

    Science.gov (United States)

    Pfister, Daniel P; Larock, Richard C

    2010-08-01

    Novel "green composites" have been prepared using a conjugated soybean oil-based resin and corn stover as a natural fiber. Corn stover is the residue remaining after grain harvest and it is estimated that approximately 75 million tons are available annually in the United States. The effect of the amount of filler, the length of the fiber, and the amount of the crosslinker on the structure and thermal and mechanical properties of the composites has been determined using Soxhlet extraction analysis, thermogravimetric analysis, dynamic mechanical analysis, and tensile testing. Increasing the amount of corn stover and decreasing the length of the fiber results in significant improvements in the mechanical properties of the composites. The Young's moduli and tensile strengths of the composites prepared range from 291 to 1398 MPa and 2.7 to 7.4 MPa, respectively. Water uptake data indicate that increasing the amount and fiber length of the corn stover results in significant increases in the absorption of water by the composites. The composites, containing 20 to 80 wt.% corn stover and a resin composed of 50 wt.% natural oil, contain 60 to 90 wt.% renewable materials and should find applications in the construction, automotive, and furniture industries.

  18. Low-liquid pretreatment of corn stover with aqueous ammonia.

    Science.gov (United States)

    Li, Xuan; Kim, Tae Hyun

    2011-04-01

    A low-liquid pretreatment method of corn stover using aqueous ammonia was studied to reduce the severity and liquid throughput associated with the pretreatment step for ethanol production. Corn stover was treated at 0.5-50.0 wt.% of ammonia loading, 1:0.2-5.0 (w/w) of solid-to-liquid ratio, 30 °C for 4-12 weeks. The effects of these conditions on the composition and enzyme digestibility of pretreated corn stover were investigated. Pretreatment of corn stover at 30°C for four weeks using 50 wt.% of ammonia loading and 1:5 solid-to-liquid ratio resulted in 55% delignification and 86.5% glucan digestibility with 15 FPU cellulase+30 CBU β-glucosidase/g-glucan. Simultaneous saccharification and fermentation of corn stover treated at 30 °C for four weeks using 50 wt.% ammonia loading and 1:2 solid-to-liquid ratio gave an ethanol yield of 73% of the theoretical maximum based on total carbohydrates (glucan+xylan) present in the untreated material.

  19. Thermophysical properties of conjugated soybean oil/corn stover biocomposites.

    Science.gov (United States)

    Pfister, Daniel P; Larock, Richard C

    2010-08-01

    Novel "green composites" have been prepared using a conjugated soybean oil-based resin and corn stover as a natural fiber. Corn stover is the residue remaining after grain harvest and it is estimated that approximately 75 million tons are available annually in the United States. The effect of the amount of filler, the length of the fiber, and the amount of the crosslinker on the structure and thermal and mechanical properties of the composites has been determined using Soxhlet extraction analysis, thermogravimetric analysis, dynamic mechanical analysis, and tensile testing. Increasing the amount of corn stover and decreasing the length of the fiber results in significant improvements in the mechanical properties of the composites. The Young's moduli and tensile strengths of the composites prepared range from 291 to 1398 MPa and 2.7 to 7.4 MPa, respectively. Water uptake data indicate that increasing the amount and fiber length of the corn stover results in significant increases in the absorption of water by the composites. The composites, containing 20 to 80 wt.% corn stover and a resin composed of 50 wt.% natural oil, contain 60 to 90 wt.% renewable materials and should find applications in the construction, automotive, and furniture industries. PMID:20227274

  20. Maleic acid treatment of biologically detoxified corn stover liquor.

    Science.gov (United States)

    Kim, Daehwan; Ximenes, Eduardo A; Nichols, Nancy N; Cao, Guangli; Frazer, Sarah E; Ladisch, Michael R

    2016-09-01

    Elimination of microbial and enzyme inhibitors from pretreated lignocellulose is critical for effective cellulose conversion and yeast fermentation of liquid hot water (LHW) pretreated corn stover. In this study, xylan oligomers were hydrolyzed using either maleic acid or hemicellulases, and other soluble inhibitors were eliminated by biological detoxification. Corn stover at 20% (w/v) solids was LHW pretreated LHW (severity factor: 4.3). The 20% solids (w/v) pretreated corn stover derived liquor was recovered and biologically detoxified using the fungus Coniochaeta ligniaria NRRL30616. After maleic acid treatment, and using 5 filter paper units of cellulase/g glucan (8.3mg protein/g glucan), 73% higher cellulose conversion from corn stover was obtained for biodetoxified samples compared to undetoxified samples. This corresponded to 87% cellulose to glucose conversion. Ethanol production by yeast of pretreated corn stover solids hydrolysate was 1.4 times higher than undetoxified samples, with a reduction of 3h in the fermentation lag phase. PMID:27262718

  1. Fungal cellulase/xylanase production and corresponding hydrolysis using pretreated corn stover as substrates.

    Science.gov (United States)

    Zhang, Liang; Wang, Xiaoqing; Ruan, Zhenhua; Liu, Ying; Niu, Xiaorui; Yue, Zhengbo; Li, Zhimin; Liao, Wei; Liu, Yan

    2014-01-01

    Three pretreated corn stover (ammonia fiber expansion, dilute acid, and dilute alkali) were used as carbon source to culture Trichoderma reesei Rut C-30 for cellulase and xylanase production. The results indicated that the cultures on ammonia fiber expansion and alkali pretreated corn stover had better enzyme production than the acid pretreated ones. The consequent enzymatic hydrolysis was performed applying fungal enzymes on pretreated corn stover samples. Tukey's statistical comparisons exhibited that there were significant differences on enzymatic hydrolysis among different combination of fungal enzymes and pretreated corn stover. The higher sugar yields were achieved by the enzymatic hydrolysis of dilute alkali pretreated corn stover.

  2. Vertical Distribution of Structural Components in Corn Stover

    Directory of Open Access Journals (Sweden)

    Jane M. F. Johnson

    2014-11-01

    Full Text Available In the United States, corn (Zea mays L. stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the ear averaged 16.3 ± 0.40 MJ kg−1, but with an alkalinity measure of 0.83 g MJ−1, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha−1, but it would be only 1000 L ha−1 if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.

  3. Vertical distribution of structural components in corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Jane M. F. Johnson; Douglas L. Karlen; Garold L. Gresham; Keri B. Cantrell; David W. Archer; Brian J. Wienhold; Gary E. Varvel; David A. Laird; John Baker; Tyson E. Ochsner; Jeff M. Novak; Ardell D. Halvorson; Francisco Arriaga; David T. Lightle; Amber Hoover; Rachel Emerson; Nancy W. Barbour

    2014-11-01

    In the United States, corn (Zea mays L.) stover has been targeted for second generation fuel production and other bio-products. Our objective was to characterize sugar and structural composition as a function of vertical distribution of corn stover (leaves and stalk) that was sampled at physiological maturity and about three weeks later from multiple USA locations. A small subset of samples was assessed for thermochemical composition. Concentrations of lignin, glucan, and xylan were about 10% greater at grain harvest than at physiological maturity, but harvestable biomass was about 25% less due to stalk breakage. Gross heating density above the ear averaged 16.3 ± 0.40 MJ kg?¹, but with an alkalinity measure of 0.83 g MJ?¹, slagging is likely to occur during gasification. Assuming a stover harvest height of 10 cm, the estimated ethanol yield would be >2500 L ha?¹, but it would be only 1000 L ha?¹ if stover harvest was restricted to the material from above the primary ear. Vertical composition of corn stover is relatively uniform; thus, decision on cutting height may be driven by agronomic, economic and environmental considerations.

  4. Pretreatment on Corn Stover with Low Concentration of Formic Acid

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2009-01-01

    pretreatment without formic acid. Toxicity tests of liquor parts showed that there were no inhibitions found for both pretreatment conditions. After simultaneous saccharification and fermentation (SSF) of the pretreated corn stover with Baker's yeast, the highest ethanol yield of 76.5% of the theoretical...

  5. Characterization of substituents in xylans from corn cobs and stover

    NARCIS (Netherlands)

    Dongen, van F.E.M.; Eylen, van D.; Kabel, M.A.

    2011-01-01

    Structural knowledge on hemicellulose from corn cobs and stover is helpful to better understand their position within the plant cell wall architecture as well as their enzymatic saccharification. In this research different extracts were prepared with water, 1 M and 4 M alkali. Most of the xylans wer

  6. Structural changes of corn stover lignin during acid pretreatment.

    Science.gov (United States)

    Moxley, Geoffrey; Gaspar, Armindo Ribeiro; Higgins, Don; Xu, Hui

    2012-09-01

    In this study, raw corn stover was subjected to dilute acid pretreatments over a range of severities under conditions similar to those identified by the National Renewable Energy Laboratory (NREL) in their techno-economic analysis of biochemical conversion of corn stover to ethanol. The pretreated corn stover then underwent enzymatic hydrolysis with yields above 70 % at moderate enzyme loading conditions. The enzyme exhausted lignin residues were characterized by ³¹P NMR spectroscopy and functional moieties quantified and correlated to enzymatic hydrolysis yields. Results from this study indicated that both xylan solubilization and lignin degradation are important for improving the enzyme accessibility and digestibility of dilute acid pretreated corn stover. At lower pretreatment temperatures, there is a good correlation between xylan solubilization and cellulose accessibility. At higher pretreatment temperatures, lignin degradation correlated better with cellulose accessibility, represented by the increase in phenolic groups. During acid pretreatment, the ratio of syringyl/guaiacyl functional groups also gradually changed from less than 1 to greater than 1 with the increase in pretreatment temperature. This implies that more syringyl units are released from lignin depolymerization of aryl ether linkages than guaiacyl units. The condensed phenolic units are also correlated with the increase in pretreatment temperature up to 180 °C, beyond which point condensation reactions may overtake the hydrolysis of aryl ether linkages as the dominant reactions of lignin, thus leading to decreased cellulose accessibility.

  7. Maleic acid treatment of biologically detoxified corn stover liquor

    Science.gov (United States)

    Elimination of microbial and/or enzyme inhibitors from pretreated lignocellulose is critical for effective cellulose conversion and yeast fermentation of liquid hot-water (LHW) pretreated corn stover. In this study, xylan oligomers were hydrolyzed using either maleic acid or hemicellulases. Other so...

  8. Moisture Sorption Characteristics of Corn Stover and Big Bluestem

    Directory of Open Access Journals (Sweden)

    C. Karunanithy

    2013-01-01

    Full Text Available Moisture content is an important feedstock quality in converting it into energy through biochemical or thermochemical platforms. Knowledge of moisture sorption relationship is useful in drying and storage to preserve the quality of feedstocks. Moisture sorption isotherms for potential feedstocks such as corn stover and big bluestem are missing. EMC values of corn stover and big bluestem were determined using static gravimetric technique with saturated salt solutions (ERH 0.12–0.89 at different temperatures (20, 30, and 40°C. Depending upon the ERH values, EMC values were ranged from 8.0 to 19.6 and 8.8 to 19.2% db for corn stover and big bluestem, respectively, and they followed typical type II isotherm found in food materials. Nonlinear regression was used to fit five commonly used three-parameter isotherm models (i.e., modified Oswin model, modified Halsey model, modified Chung-Pfost model, modified Henderson model, and the modified Guggenheim-Anderson-de Boer (GAB model to the experimental data. Modified Halsey emerged as the best model with high F-statistic and R2 values with low Em and Es and fairly random scattered residual plot for corn stover and big bluestem. These models can be used to predict the equilibrium moisture content of these feedstocks starting from harvesting, drying, preprocessing, transportation, storage, and conversion.

  9. Fuel ethanol production from alkaline peroxide pretreated corn stover

    Science.gov (United States)

    Corn stover (CS) has the potential to serve as an abundant low-cost feedstock for production of fuel ethanol. Due to heterogeneous complexity and recalcitrance of lignocellulosic feedstocks, pretreatment is required to break the lignin seal and/or disrupt the structure of crystalline cellulose to in...

  10. Benefits from Tween during enzymic hydrolysis of corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Kaar, W.E.; Holtzapple, M.T. [Texas A and M Univ., College Station, TX (United States). Dept. of Chemical Engineering

    1998-08-20

    Corn stover is a potential substrate for fermentation processes. Previous work with corn stover demonstrated that lime pretreatment rendered it digestible by cellulase; however, high sugar yields required very high enzyme loadings. Because cellulase is a significant cost in biomass conversion processes, the present study focused on improving the enzyme efficiency using Tween 20 and Tween 80; Tween 20 is slightly more effective than Tween 80. The recommended pretreatment conditions for the biomass remained unchanged regardless of whether Tween was added during the hydrolysis. The recommended Tween loading was 0.15 g Tween/g dry biomass. The critical relationship was the Tween loading on the biomass, not the Tween concentration in solution. The 72-h enzymic conversion of pretreated corn stover using 5 FPU cellulase/g dry biomass at 50 C with Tween 20 as part of the medium was 0.85 g/g for cellulose, 0.66 g/g for xylan, and 0.75 for total polysaccharide; addition of Tween improved the cellulose, xylan, and total polysaccharide conversions by 42, 40, and 42%, respectively. Kinetic analyses showed that Tween improved the enzymic absorption constants, which increased the effective hydrolysis rate compared to hydrolysis without Tween. Furthermore, Tween prevented thermal deactivation of the enzymes, which allows for the kinetic advantage of higher temperature hydrolysis. Ultimate digestion studies showed higher conversions for samples containing Tween, indicating a substrate effect. It appears that Tween improves corn stover hydrolysis through three effects: enzyme stabilizer, lignocellulose disrupter, and enzyme effector.

  11. Corn Stover Nutrient Removal Estimates for Central Iowa, USA

    Directory of Open Access Journals (Sweden)

    Douglas L. Karlen

    2015-07-01

    Full Text Available One of the most frequent producer-asked questions to those persons striving to secure sustainable corn (Zea mays L. stover feedstock supplies for Iowa’s new bioenergy conversion or other bio-product facilities is “what quantity of nutrients will be removed if I harvest my stover?” Our objective is to summarize six years of field research from central Iowa, U.S.A. where more than 600, 1.5 m2 samples were collected by hand and divided into four plant fractions: vegetative material from the ear shank upward (top, vegetative material from approximately 10 cm above the soil surface to just below the ear (bottom, cobs, and grain. Another 400 stover samples, representing the vegetative material collected directly from a single-pass combine harvesting system or from stover bales were also collected and analyzed. All samples were dried, ground, and analyzed to determine C, N, P, K, Ca, Mg, S, Al, B, Cu, Fe, Mn, and Zn concentrations. Mean concentration and dry matter estimates for each sample were used to calculate nutrient removal and estimate fertilizer replacement costs which averaged $25.06, $20.04, $16.62, $19.40, and $27.41 Mg−1 for top, bottom, cob, stover, and grain fractions, respectively. We then used the plant fraction estimates to compare various stover harvest scenarios and provide an answer to the producer question posed above.

  12. Environmental Impacts of Stover Removal in the Corn Belt

    Energy Technology Data Exchange (ETDEWEB)

    Alicia English; Wallace E. Tyner; Juan Sesmero; Phillip Owens; David Muth

    2012-08-01

    When considering the market for biomass from corn stover resources erosion and soil quality issues are important to consider. Removal of stover can be beneficial in some areas, especially when coordinated with other conservation practices, such as vegetative barrier strips and cover crops. However, benefits are highly dependent on several factors, namely if farmers see costs and benefits associated with erosion and the tradeoffs with the removal of biomass. This paper uses results from an integrated RUSLE2/WEPS model to incorporate six different regime choices, covering management, harvest and conservation, into simple profit maximization model to show these tradeoffs.

  13. Solid-state co-digestion of expired dog food and corn stover for methane production.

    Science.gov (United States)

    Xu, Fuqing; Li, Yebo

    2012-08-01

    Expired dog food was co-digested with corn stover for biogas production via solid-state anaerobic digestion (SS-AD) at feedstock-to-effluent (F/E) ratios of 2, 4, and 6 using effluent from a sewage sludge digester as inoculum. Degradation of the main components in dog food and corn stover was measured. Higher methane yields were obtained at lower F/E ratios and at higher percentages of dog food in the substrate. The highest methane yield of 304.4 L/kg VS(feed) was obtained for the substrate containing 50% corn stover and 50% dog food, which was an increase of 229% and 109% compared to digesting corn stover and dog food alone, respectively. Co-digestion of corn stover with dog food reduced the start-up time and volatile fatty acid (VFA) accumulation, but decreased the cellulose and xylan degradation of corn stover.

  14. Research on Hydrolysis and Sacchariifcation of Corn Stover

    Institute of Scientific and Technical Information of China (English)

    Gao Lan; Liu Ying; Guo Yong; Liu Jinsheng; Lin Jianmin

    2014-01-01

    In this paper three methods (dilute acid pretreatment, aqueous ammonia/dilute acid pretreatment and alkaline pre-treatment) were used to study the hydrolysis of corn stover and characteristics of each method were compared. The results showed that the lignin removal rate was 71.8%when the corn stover was treated with a caustic soda solution containing 1.5%of NaOH, at a temperature of 75℃for 90 min with an initial solid-liquid ratio of 1:8 (w/v). Hydrolysis yield of the NaOH pretreated sample reached 78.5%, which was much higher than other control groups. These results are useful for evaluation of pretreatment technologies, and identiifcation of key factors that limit cellulose hydrolysis, and can also serve as a basis for designing and screening appropriate pretreatment technologies.

  15. Impact of corn stover removal on soil microbial communities in no-till and conventional till continuous corn

    Science.gov (United States)

    Corn (Zea mays L.) residue, or stover, can be used as a dry forage replacement in beef cattle diets and is being considered as a feedstock for cellulosic biofuel production. The soil quality and crop productivity ramifications of removing stover, however, likely will depend on stover removal rate an...

  16. Pretreatment of corn stover using wet oxidation to enhance enzymatic digestibility

    DEFF Research Database (Denmark)

    Varga, E.; Schmidt, A.S.; Reczey, K.;

    2003-01-01

    Corn stover is an abundant, promising raw material for fuel ethanol production. Although it has a high cellulose content, without pretreatment it resists enzymatic hydrolysis, like most lignocellulosic materials. Wet oxidation (water, oxygen, mild alkali or acid, elevated temperature and pressure......) was investigated to enhance the enzymatic digestibility of corn stover. Six different combinations of reaction temperature, time, and pH were applied. The best conditions (60 g/L of corn stover, 195degreesC, 15 min, 12 bar O-2, 2 g/L of Na2CO) increased the enzymatic conversion of corn stover four times, compared...

  17. Microbial lipid production from corn stover via Mortierella isabellina.

    Science.gov (United States)

    Zhang, Jianguo; Hu, Bo

    2014-09-01

    Microbial lipid is a promising source of oil to produce biofuel if it can be generated from lignocellulosic materials. Mortierella isabellina is a filamentous fungal species featuring high content of oil in its cell biomass. In this work, M. isabellina was studied for lipid production from corn stover. The experimental results showed that M. isabellina could grow on different kinds of carbon sources including xylose and acetate, and the lipid content reached to 35 % at C/N ratio of 20. With dilution, M. isabellina could endure inhibition effects by dilute acid pretreatment of corn stover (0.3 g/L furfural, 1.2 g/L HMF, and 1 g/L 4-hydroxybenozic acid) and the strain formed pellets in the cell cultivations. An integrated process was developed combining the dilute acid pretreatment, cellulase hydrolysis, and cell cultivation for M. isabellina to convert corn stover to oil containing fungal biomass. With 7.5 % pretreated biomass solid loading ratio, the final lipid yield from sugar in pretreated biomass was 40 % and the final lipid concentration of the culture reached to 6.46 g/L.

  18. PALATABILITY AND DRY MATTER INTAKE BY SHEEP FED CORN STOVER TREATED WITH DIFFERENT NITROGEN SOURCES

    Directory of Open Access Journals (Sweden)

    I. ALI, J. P. FONTENOT1 AND V. G. ALLEN2

    2009-10-01

    Full Text Available A trial was conducted to measure the dry matter intake by sheep fed basal and basal + corn stover treated with different nitrogen sources. The diets were: 1 basal, 2 basal + untreated corn stover, 3 basal + 3% NH3-treated stover, 4 basal + 50% poultry litter treated stover, 5 basal + 5.8% urea-treated stover, and 6 basal + 5.8% urea + 10% cattle waste-treated stover. Thirty-six crossbred (1/2 Dorset x ¼ Finn x ¼ Rambouillet wethers were assigned according to the initial body weight into six equal blocks and the sheep within blocks were randomly allotted to the experimental diets. The animals were kept in individual pens with free access to feed and water. Dry matter intake was higher (P<0.01 for sheep fed the basal diet compared to other diets. Intake was higher (P<0.05 for sheep fed NH3- and urea treated corn stover diets, compared to untreated stover. Similarly, the intake was higher (P<0.01 for sheep fed 3% NH3 treated corn stover than urea treated stovers. In conclusion, ammonia treatment of corn stover was more effective in enhancing the dry matter intake by sheep than those fed urea or poultry litter-treated diets. Addition of cattle waste in urea treated stover tended to improve the palatability of corn stover over urea treatment alone, but the difference was non significant. Similarly, the treatment of corn stover with poultry litter did not improve dry matter intake or palatability compared to untreated control.

  19. Enhancing the enzymatic hydrolysis of corn stover by an integrated wet-milling and alkali pretreatment.

    Science.gov (United States)

    He, Xun; Miao, Yelian; Jiang, Xuejian; Xu, Zidong; Ouyang, Pingkai

    2010-04-01

    An integrated wet-milling and alkali pretreatment was applied to corn stover prior to enzymatic hydrolysis. The effects of NaOH concentration in the pretreatment on crystalline structure, chemical composition, and reducing-sugar yield of corn stover were investigated, and the mechanism of increasing reducing-sugar yield by the pretreatment was discussed. The experimental results showed that the crystalline structure of corn stover was disrupted, and lignin was removed, while cellulose and hemicellulose were retained in corn stover by the pretreatment with 1% NaOH in 1 h. The reducing-sugar yield from the pretreated corn stovers increased from 20.2% to 46.7% when the NaOH concentration increased from 0% to 1%. The 1% NaOH pretreated corn stover had a holocellulose conversion of 55.1%. The increase in reducing-sugar yield was related to the crystalline structure disruption and delignification of corn stover. It was clarified that the pretreatment significantly enhanced the conversion of cellulose and hemicellulose in the corn stover to sugars.

  20. Bioaugmentation for electricity generation from corn stover biomass using microbial fuel cells.

    Science.gov (United States)

    Wang, Xin; Feng, Yujie; Wang, Heming; Qu, Youpeng; Yu, Yanling; Ren, Nanqi; Li, Nan; Wang, Elle; Lee, He; Logan, Bruce E

    2009-08-01

    Corn stover is usually treated by an energy-intensive or expensive process to extract sugars for bioenergy production. However, it is possible to directly generate electricity from corn stover in microbial fuel cells (MFCs) through the addition of microbial consortia specifically acclimated for biomass breakdown. A mixed culture that was developed to have a high saccharification rate with corn stover was added to single-chamber, air-cathode MFCs acclimated for power production using glucose. The MFC produced a maximum power of 331 mW/m2 with the bioaugmented mixed culture and corn stover, compared to 510 mW/m2 using glucose. Denaturing gradient gel electrophoresis (DGGE) showed the communities continued to evolve on both the anode and corn stover biomass over 60 days, with several bacteria identified including Rhodopseudomonas palustris. The use of residual solids from the steam exploded corn stover produced 8% more power (406 mW/m2) than the raw corn stover. These results show that it is possible to directly generate electricity from waste corn stover in MFCs through bioaugmentation using naturally occurring bacteria.

  1. Maleic acid treatment of bioabated corn stover liquors improves cellulose conversion to ethanol

    Science.gov (United States)

    Elimination of inhibitory compounds released during pretreatment of lignocellulose is critical for efficient cellulose conversion and ethanol fermentation. This study examined the effect of bioabated liquor from pretreated corn stover on enzyme hydrolysis of Solka Floc or pretreated corn stover soli...

  2. Bioaugmentation for Electricity Generation from Corn Stover Biomass Using Microbial Fuel Cells

    KAUST Repository

    Wang, Xin

    2009-08-01

    Corn stover is usually treated by an energy-intensive or expensive process to extract sugars for bioenergy production. However, it is possible to directly generate electricity from corn stover in microbial fuel cells (MFCs) through the addition of microbial consortia specifically acclimated for biomass breakdown. A mixed culture that was developed to have a high saccharification rate with corn stover was added to singlechamber, air-cathode MFCs acclimated for power production using glucose. The MFC produced a maximum power of 331 mW/ m 2 with the bioaugmented mixed culture and corn stover, compared to 510 mW/m2 using glucose. Denaturing gradient gel electrophoresis (DGGE) showed the communities continued to evolve on both the anode and corn stover biomass over 60 days, with several bacteria identified including Rhodopseudomonas palustris. The use of residual solids from the steam exploded corn stover produced 8% more power (406 mW/m2) than the raw corn stover. These results show that it is possible to directly generate electricity from waste corn stover in MFCs through bioaugmentation using naturally occurring bacteria. © 2009 American Chemical Society.

  3. Investigation of Process Variables in the Densification of Corn Stover Briquettes

    Directory of Open Access Journals (Sweden)

    Curtis P. Thoreson

    2014-06-01

    Full Text Available The bulk density of raw corn stover is a major limitation to its large-scale viability as a biomass feedstock. Raw corn stover has a bulk density of 50 kg/m3, which creates significant transportation costs and limits the optimization of transport logistics. Producing a densified corn stover product during harvest would reduce harvest and transportation costs, resulting in viable pathways for the use of corn stover as a biomass feedstock. This research investigated the effect of different process variables (compression pressure, moisture content, particle size, and material composition on a densification method that produces briquettes from raw corn stover. A customized bench-scale densification system was designed to evaluate different corn stover inputs. Quality briquette production was possible using non-reduced particle sizes and low compression pressures achievable in a continuous in-field production system. At optimized bench settings, corn stover was densified to a dry bulk density of 190 kg/m3. Corn stover with a moisture content above 25%wb was not suitable for this method of bulk densification, and greater cob content had a positive effect on product quality.

  4. Alkaline peroxide pretreatment of corn stover for enzymatic saccharification and ethanol production

    Science.gov (United States)

    Alkaline hydrogen peroxide (AHP) pretreatment and enzymatic saccharification were evaluated for conversion of corn stover cellulose and hemicellulose to fermentable sugars. Corn stover used in this study contained 37.0±0.2% cellulose, 26.8±0.2% hemicellulose and 18.0±0.1% lignin on dry basis. Unde...

  5. Soil Hydraulic Properties Influenced by Corn Stover Removal from No-Till Corn in Ohio.

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Canqui, H.; Lal, Rattan; Post, W. M.; Izaurralde, R Cesar C.; Shipitalo, M. J.

    2007-01-01

    Corn (Zea mays L.) stover removal for biofuel production and other uses may alter soil hydraulic properties, but site-specific information needed to determine the threshold levels of removal for the U.S. Corn Belt region is limited. We quantified impacts of systematic removal of corn stover on soil hydraulic parameters after one year of stover management under no-till (NT) systems in three soils in Ohio including Rayne silt loam (fine-loamy, mixed, mesic Typic Hapludult) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston. Interrelationships among soil properties and saturated hydraulic conductivity (Ksat) predictions were also studied. Earthworm middens, Ksat, bulk density (ρb), soil-water retention (SWR), pore-size distribution, and air permeability (ka) were determined for six stover treatments including 0 (T0), 25 (T25), 50 (T50), 75 (T75), 100 (T100), and 200 (T200) % of corn stover corresponding to 0, 1.25, 2.50, 3.75, 5.00, and 10.00 Mg ha-1 of stover, respectively. Stover removal reduced the number of middens, Ksat, SWR, and ka at all sites (P<0.01). Complete stover removal reduced earthworm middens by 20-fold across sites, decreased geometric mean Ksat from 6.3 to 0.1 mm h-1 at Coshocton, 3.2 to 0.3 mm h-1 at Hoytville, and 5.8 to 0.6 mm h-1 at Charleston, and increased ρb in the 0- to 10-cm depth by about 15% relative to double stover plots. The SWR for T100 was 1.3 times higher than that for T0 at 0 to -6 kPa. The log ka for T200, T100, and T75 significantly exceeded that under T50, T25, and T0 at Coshocton and Charleston. Measured parameters were strongly correlated, and ka was a potential Ksat predictor. Stover harvesting at rates above 1.25 Mg ha-1 affects soil hydraulic properties and earthworm activity, but further monitoring is needed to ascertain the threshold levels of stover removal.Corn (Zea mays L.) stover removal for

  6. Anaerobic digestion of corn stovers for methane production in a novel bionic reactor.

    Science.gov (United States)

    Zhang, Meixia; Zhang, Guangming; Zhang, Panyue; Fan, Shiyang; Jin, Shuguang; Wu, Dan; Fang, Wei

    2014-08-01

    To improve the biogas production from corn stovers, a new bionic reactor was designed and constructed. The bionic reactor simulated the rumen digestion of ruminants. The liquid was separated from corn stovers and refluxed into corn stovers again, which simulated the undigested particles separated from completely digested materials and fed back again for further degradation in ruminant stomach. Results showed that the bionic reactor was effective for anaerobic digestion of corn stovers. The liquid amount and its reflux showed an obvious positive correlation with biogas production. The highest biogas production rate was 21.6 ml/gVS-addedd, and the total cumulative biogas production was 256.5 ml/gVS-added. The methane content in biogas ranged from 52.2% to 63.3%. The degradation of corn stovers were greatly enhanced through simulating the animal digestion mechanisms in this bionic reactor. PMID:24923659

  7. Succinic acid production from corn stover by simultaneous saccharification and fermentation using Actinobacillus succinogenes.

    Science.gov (United States)

    Zheng, Pu; Fang, Lin; Xu, Yan; Dong, Jin-Jun; Ni, Ye; Sun, Zhi-Hao

    2010-10-01

    Simultaneous saccharification and fermentation (SSF) technique was applied for succinic acid production by Actinobacillus succinogenes in a 5-l stirred bioreactor with corn stover as the raw material. The process parameters of SSF, including corn stover pretreatment condition, substrate concentration, enzyme loading and fermentation temperature were investigated. Results indicated that pretreating corn stover with diluted alkaline was beneficial for the succinic acid production, and succinic acid yield could be significantly increased when adding the cellulase supplemented with cellobiase. The maximal succinic acid concentration and yield could reach 47.4 g/l and 0.72 g/g-substrate, respectively. The corresponding operation conditions were summarized as follows: SSF operation at 38 °C for 48 h, diluted alkaline pretreated corn stover as substrate with concentration of 70 g/l, enzyme loading of 20FPU cellulase and 10 U cellobiase per gram substrate. This result suggested an industrial potential of succinic acid production by using SSF and corn stover.

  8. Biological pretreatment of corn stover with ligninolytic enzyme for high efficient enzymatic hydrolysis.

    Science.gov (United States)

    Wang, Feng-Qin; Xie, Hui; Chen, Wei; Wang, En-Tao; Du, Feng-Guang; Song, An-Dong

    2013-09-01

    Aiming at increasing the efficiency of transferring corn stover into sugars, a biological pretreatment was developed and investigated in this study. The protocol was characterized by the pretreatment with crude ligninolytic enzymes from Phanerochete chrysosporium and Coridus versicolor to break the lignin structure in corn stover, followed by a washing procedure to eliminate the inhibition of ligninolytic enzyme on cellulase. By a 2 d-pretreatment, sugar yield from corn stover hydrolysis could be increased by 50.2% (up to 323 mg/g) compared with that of the control. X-ray diffractometry and FT-IR analysis revealed that biological pretreatment could partially remove the lignin of corn stover, and consequently enhance the enzymatic hydrolysis efficiency of cellulose and hemeicellulose. In addition, the amount of microbial inhibitors, such as acetic acid and furfural, were much lower in biological pretreatment than that in acid pretreatment. This study provided a promising pretreatment method for biotransformation of corn stovers.

  9. Anaerobic digestion of corn stovers for methane production in a novel bionic reactor.

    Science.gov (United States)

    Zhang, Meixia; Zhang, Guangming; Zhang, Panyue; Fan, Shiyang; Jin, Shuguang; Wu, Dan; Fang, Wei

    2014-08-01

    To improve the biogas production from corn stovers, a new bionic reactor was designed and constructed. The bionic reactor simulated the rumen digestion of ruminants. The liquid was separated from corn stovers and refluxed into corn stovers again, which simulated the undigested particles separated from completely digested materials and fed back again for further degradation in ruminant stomach. Results showed that the bionic reactor was effective for anaerobic digestion of corn stovers. The liquid amount and its reflux showed an obvious positive correlation with biogas production. The highest biogas production rate was 21.6 ml/gVS-addedd, and the total cumulative biogas production was 256.5 ml/gVS-added. The methane content in biogas ranged from 52.2% to 63.3%. The degradation of corn stovers were greatly enhanced through simulating the animal digestion mechanisms in this bionic reactor.

  10. The Effects of Particle Size, Different Corn Stover Components, and Gas Residence Time on Torrefaction of Corn Stover

    Directory of Open Access Journals (Sweden)

    Sarah Rahn

    2012-04-01

    Full Text Available Large scale biofuel production will be possible only if significant quantities of biomass feedstock can be stored, transported, and processed in an economic and sustainable manner. Torrefaction has the potential to significantly reduce the cost of transportation, storage, and downstream processing through the improvement of physical and chemical characteristics of biomass. The main objective of this study was to investigate the effects of particle size, plant components, and gas residence time on the production of torrefied corn (Zea mays stover. Different particle sizes included 0.85 mm and 20 mm. Different stover components included ground corn stover, whole corn stalk, stalk shell and pith, and corn cob shell. Three different purge gas residence times were employed to assess the effects of interaction of volatiles and torrefied biomass. Elemental analyses were performed on all of the samples, and the data obtained was used to estimate the energy contents and energy yields of different torrefied biomass samples. Particle density, elemental composition, and fiber composition of raw biomass fractions were also determined. Stalk pith torrefied at 280 °C and stalk shell torrefied at 250 °C had highest and lowest dry matter loss, of about 44% and 13%, respectively. Stalk pith torrefied at 250 °C had lowest energy density of about 18–18.5 MJ/kg, while cob shell torrefied at 280 °C had the highest energy density of about 21.5 MJ/kg. The lowest energy yield, at 59%, was recorded for stalk pith torrefied at 280 °C, whereas cob and stalk shell torrefied at 250 °C had highest energy yield at 85%. These differences were a consequence of the differences in particle densities, hemicellulose quantities, and chemical properties of the original biomass samples. Gas residence time did not have a significant effect on the aforementioned parameters.

  11. A GIS methodology to identify potential corn stover collection locations

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Monica A. [Department of Community and Regional Planning, 583 College of Design, Iowa State University, Ames, IA 50011-3095 (United States); Anderson, Paul F. [Department of Landscape Architecture, 481 College of Design, Iowa State University, Ames, IA 50011 (United States); Department of Agronomy, 481 College of Design, Iowa State University, Ames, IA 50011 (United States)

    2008-12-15

    In this study, we use geographic information systems technology to identify potential locations in a Midwestern region for collection and storage of corn stover for use as biomass feedstock. Spatial location models are developed to identify potential collection sites along an existing railroad. Site suitability analysis is developed based on two main models: agronomic productivity potential and environmental costs. The analysis includes the following steps: (1) elaboration of site selection criteria; (2) identification of the study region and service area based on transportation network analysis; (3) reclassification of input spatial layers based on common scales; (4) overlaying the reclassified spatial layers with equal weights to generate the two main models; and (5) overlaying the main models using different weights. A pluralistic approach is adopted, presenting three different scenarios as alternatives for the potential locations. Our results suggest that there is a significant subset of potential sites that meet site selection criteria. Additional studies are needed to evaluate potential sites through field visits, assess economic and social costs, and estimate the proportion of corn producers willing to sell and transport corn stover to collection facilities. (author)

  12. Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification

    Directory of Open Access Journals (Sweden)

    Chen Ye

    2013-01-01

    Full Text Available Abstract Background Previous research on alkaline pretreatment has mainly focused on optimization of the process parameters to improve substrate digestibility. To achieve satisfactory sugar yield, extremely high chemical loading and enzyme dosages were typically used. Relatively little attention has been paid to reduction of chemical consumption and process waste management, which has proven to be an indispensable component of the bio-refineries. To indicate alkali strength, both alkali concentration in pretreatment solution (g alkali/g pretreatment liquor or g alkali/L pretreatment liquor and alkali loading based on biomass solids (g alkali/g dry biomass have been widely used. The dual approaches make it difficult to compare the chemical consumption in different process scenarios while evaluating the cost effectiveness of this pretreatment technology. The current work addresses these issues through pretreatment of corn stover at various combinations of pretreatment conditions. Enzymatic hydrolysis with different enzyme blends was subsequently performed to identify the effects of pretreatment parameters on substrate digestibility as well as process operational and capital costs. Results The results showed that sodium hydroxide loading is the most dominant variable for enzymatic digestibility. To reach 70% glucan conversion while avoiding extensive degradation of hemicellulose, approximately 0.08 g NaOH/g corn stover was required. It was also concluded that alkali loading based on total solids (g NaOH/g dry biomass governs the pretreatment efficiency. Supplementing cellulase with accessory enzymes such as α-arabinofuranosidase and β-xylosidase significantly improved the conversion of the hemicellulose by 6–17%. Conclusions The current work presents the impact of alkaline pretreatment parameters on the enzymatic hydrolysis of corn stover as well as the process operational and capital investment costs. The high chemical consumption for alkaline

  13. Effects of Corn Stover Incorporated in Dry Farmland on Soil Fertility

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-bin; Cai Dian-xiong; ZHANG Jing-qing; GAO Xu-ke

    2001-01-01

    Seven years' field experiments on application of corn stover and/or cattle manure combined with chemical fertilizers were carried out in Shouyang Dryland Farming Experimental Station. Results showed that the increased available N in the plough layer was mainly influenced by the application of cattle manure; the available P was mainly influenced by the application of chemical fertilizer; the available K was mainly influenced by the incorporation of corn stover. The organic matter contents in the soils treated with corn stover or cattle manure were kept in balance under the experimental conditions. Corn yield and water use efficiency were influenced significantly not only by fertilizer N but also by incorporated corn stover. The results suggested that the highest N uptake, yield and water use efficiency could be obtained at rates of 105 kg fertilizer N, 6000 kg corn stover, and 1500 kg cattle manure per hectare. The experiments supplied information on nutrient recycling and use of corn stover as sources of fodder and organic fertilizer for balancing application of organic and inorganic fertilizer, improving soil fertility and increasing crop yield with incorporation of corn stover in soil.

  14. Ash Reduction of Corn Stover by Mild Hydrothermal Preprocessing

    Energy Technology Data Exchange (ETDEWEB)

    M. Toufiq Reza; Rachel Emerson; M. Helal Uddin; Garold Gresham; Charles J. Coronella

    2014-04-22

    Lignocellulosic biomass such as corn stover can contain high ash content, which may act as an inhibitor in downstream conversion processes. Most of the structural ash in biomass is located in the cross-linked structure of lignin, which is mildly reactive in basic solutions. Four organic acids (formic, oxalic, tartaric, and citric) were evaluated for effectiveness in ash reduction, with limited success. Because of sodium citrate’s chelating and basic characteristics, it is effective in ash removal. More than 75 % of structural and 85 % of whole ash was removed from the biomass by treatment with 0.1 g of sodium citrate per gram of biomass at 130 °C and 2.7 bar. FTIR, fiber analysis, and chemical analyses show that cellulose and hemicellulose were unaffected by the treatment. ICP–AES showed that all inorganics measured were reduced within the biomass feedstock, except sodium due to the addition of Na through the treatment. Sodium citrate addition to the preconversion process of corn stover is an effective way to reduced physiological ash content of the feedstock without negatively impacting carbohydrate and lignin content.

  15. Feasibility of anaerobic digested corn stover as biosorbent for heavy metal.

    Science.gov (United States)

    Wang, Jin; Peng, Shu-chuan; Wan, Zheng-qiang; Yue, Zheng-bo; Wu, Jian; Chen, Tian-hu

    2013-03-01

    Anaerobic digested (AD) corn stover collected from a lab-scale reactor was used as bioadsorbent to remove the heavy metal in aqueous solution. Effects of contact time and initial heavy metal concentrations on the removal process of Cu(2+) and Cd(2+) were investigated. The maximum adsorption capacities of AD corn stover obtained from Langmuir isotherm models were 83.3 and 50.0mg/g for Cu(2+) and Cd(2+), respectively. Fourier transform infrared spectroscopy (FTIR) was also used to investigate the surface characteristic of raw and heavy metal loaded AD corn stover.

  16. Environmental and economic trade-offs in a watershed when using corn stover for bioenergy.

    Science.gov (United States)

    Gramig, Benjamin M; Reeling, Carson J; Cibin, Raj; Chaubey, Indrajeet

    2013-02-19

    There is an abundant supply of corn stover in the United States that remains after grain is harvested which could be used to produce cellulosic biofuels mandated by the current Renewable Fuel Standard (RFS). This research integrates the Soil Water Assessment Tool (SWAT) watershed model and the DayCent biogeochemical model to investigate water quality and soil greenhouse gas flux that results when corn stover is collected at two different rates from corn-soybean and continuous corn crop rotations with and without tillage. Multiobjective watershed-scale optimizations are performed for individual pollutant-cost minimization criteria based on the economic cost of each cropping practice and (individually) the effect on nitrate, total phosphorus, sediment, or global warming potential. We compare these results with a purely economic optimization that maximizes stover production at the lowest cost without taking environmental impacts into account. We illustrate trade-offs between cost and different environmental performance criteria, assuming that nutrients contained in any stover collected must be replaced. The key finding is that stover collection using the practices modeled results in increased contributions to atmospheric greenhouse gases while reducing nitrate and total phosphorus loading to the watershed relative to the status quo without stover collection. Stover collection increases sediment loading to waterways relative to when no stover is removed for each crop rotation-tillage practice combination considered; no-till in combination with stover collection reduced sediment loading below baseline conditions without stover collection. Our results suggest that additional information is needed about (i) the level of nutrient replacement required to maintain grain yields and (ii) cost-effective management practices capable of reducing soil erosion when crop residues are removed in order to avoid contributions to climate change and water quality impairments as a result

  17. Environmental and economic trade-offs in a watershed when using corn stover for bioenergy.

    Science.gov (United States)

    Gramig, Benjamin M; Reeling, Carson J; Cibin, Raj; Chaubey, Indrajeet

    2013-02-19

    There is an abundant supply of corn stover in the United States that remains after grain is harvested which could be used to produce cellulosic biofuels mandated by the current Renewable Fuel Standard (RFS). This research integrates the Soil Water Assessment Tool (SWAT) watershed model and the DayCent biogeochemical model to investigate water quality and soil greenhouse gas flux that results when corn stover is collected at two different rates from corn-soybean and continuous corn crop rotations with and without tillage. Multiobjective watershed-scale optimizations are performed for individual pollutant-cost minimization criteria based on the economic cost of each cropping practice and (individually) the effect on nitrate, total phosphorus, sediment, or global warming potential. We compare these results with a purely economic optimization that maximizes stover production at the lowest cost without taking environmental impacts into account. We illustrate trade-offs between cost and different environmental performance criteria, assuming that nutrients contained in any stover collected must be replaced. The key finding is that stover collection using the practices modeled results in increased contributions to atmospheric greenhouse gases while reducing nitrate and total phosphorus loading to the watershed relative to the status quo without stover collection. Stover collection increases sediment loading to waterways relative to when no stover is removed for each crop rotation-tillage practice combination considered; no-till in combination with stover collection reduced sediment loading below baseline conditions without stover collection. Our results suggest that additional information is needed about (i) the level of nutrient replacement required to maintain grain yields and (ii) cost-effective management practices capable of reducing soil erosion when crop residues are removed in order to avoid contributions to climate change and water quality impairments as a result

  18. Corn stover nutrient removal estimates for Central Iowa, U.S.A.

    Science.gov (United States)

    One of the most frequently asked questions to those striving to secure sustainable corn (Zea mays L.) stover feedstock supplies for Iowa’s new bioenergy conversion facilities is “what quantity of nutrients will be removed if I harvest my stover?”. Our objective is to summarize six years of field res...

  19. Carbohydrate and nutrient composition of corn stover from three Southeastern USA locations

    Science.gov (United States)

    Corn (Zea mays L.) stover has been identified as an important feedstock for bioenergy and bio-product production. Our objective was to quantify nutrient removal, carbohydrate composition, theoretical ethanol yield (TEY) for various stover fractions. In 2009, 2010, and 2011, whole-plant samples were ...

  20. Impact of recycling stillage on conversion of dilute sulfuric acid pretreated corn stover to ethanol.

    Science.gov (United States)

    Mohagheghi, Ali; Schell, Daniel J

    2010-04-01

    Both the current corn starch to ethanol industry and the emerging lignocellulosic biofuels industry view recycling of spent fermentation broth or stillage as a method to reduce fresh water use. The objective of this study was to understand the impact of recycling stillage on conversion of corn stover to ethanol. Sugars in a dilute-acid pretreated corn stover hydrolysate were fermented to ethanol by the glucose-xylose fermenting bacteria Zymomonas mobilis 8b. Three serial fermentations were performed at two different initial sugar concentrations using either 10% or 25% of the stillage as makeup water for the next fermentation in the series. Serial fermentations were performed to achieve near steady state concentration of inhibitors and other compounds in the corn stover hydrolysate. Little impact on ethanol yields was seen at sugar concentrations equivalent to pretreated corn stover slurry at 15% (w/w) with 10% recycle of the stillage. However, ethanol yields became progressively poorer as the sugar concentration increased and fraction of the stillage recycled increased. At an equivalent corn stover slurry concentration of 20% with 25% recycled stillage the ethanol yield was only 5%. For this microorganism with dilute-acid pretreated corn stover, recycling a large fraction of the stillage had a significant negative impact on fermentation performance. Although this finding is of concern for biochemical-based lignocellulose conversion processes, other microorganism/pretreatment technology combinations will likely perform differently.

  1. PRETREATMENT AND FRACTIONATION OF CORN STOVER BY AMMONIA RECYCLE PERCOLATION PROCESS. (R831645)

    Science.gov (United States)

    Corn stover was pretreated with aqueous ammonia in a flow-through column reactor,a process termed as Ammonia Recycle Percolation (ARP). The aqueous ammonia causesswelling and efficient delignification of biomass at high temperatures. The ARPprocess solubilizes abou...

  2. Screw extrude steam explosion: a promising pretreatment of corn stover to enhance enzymatic hydrolysis.

    Science.gov (United States)

    Chen, Jingwen; Zhang, Wengui; Zhang, Hongman; Zhang, Qiuxiang; Huang, He

    2014-06-01

    A screw extrude steam explosion (SESE) apparatus was designed and introduced to pretreat corn stover continuously for its following enzymatic hydrolysis. SESE parameters temperature (100, 120, 150°C) and residence time (1, 2, 3min) were investigated. The enzymatic hydrolysis of corn stover pretreated by SESE and steam explosion (SE) process was carried out and analyzed systematically. A serial of analysis methods were established, and the corn stover before/after the pretreatment were characterized by scanning electron microscope (SEM), X-ray Diffraction (XRD) and Thermal Gravity/Derivative Thermal Gravity Analysis (TG/DTG). After treated by SESE pretreatment at the optimum condition (150°C, 2min), the pretreated corn stover exhibited highest enzymatic hydrolysis yield (89%), and rare fermentation inhibitors formed. Characterization results indicated that the highest yield could be attributed to the effective removal of lignin/hemicellulose and destruction of cellulose structure by SESE pretreatment.

  3. Biomechanics of Wheat/Barley Straw and Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Christopher T. Wright; Peter A. Pryfogle; Nathan A. Stevens; Eric D. Steffler; J. Richard Hess; Thomas H. Ulrich

    2005-03-01

    The lack of understanding of the mechanical characteristics of cellulosic feedstocks is a limiting factor in economically collecting and processing crop residues, primarily wheat and barley stems and corn stover. Several testing methods, including compression, tension, and bend have been investigated to increase our understanding of the biomechanical behavior of cellulosic feedstocks. Biomechanical data from these tests can provide required input to numerical models and help advance harvesting, handling, and processing techniques. In addition, integrating the models with the complete data set from this study can identify potential tools for manipulating the biomechanical properties of plant varieties in such a manner as to optimize their physical characteristics to produce higher value biomass and more energy efficient harvesting practices.

  4. Pretreatment of corn stover by combining ionic liquid dissolution with alkali extraction.

    Science.gov (United States)

    Geng, Xinglian; Henderson, Wesley A

    2012-01-01

    Pretreatment plays an important role in the efficient enzymatic hydrolysis of biomass into fermentable sugars for biofuels. A highly effective pretreatment method is reported for corn stover which combines mild alkali-extraction followed by ionic liquid (IL) dissolution of the polysaccharides and regeneration (recovery of the polysaccharides as solids). Air-dried, knife-milled corn stover was soaked in 1% NaOH at a moderate condition (90°C, 1 h) and then thoroughly washed with hot deionized (DI) water. The alkali extraction solublized 75% of the lignin and 37% of the hemicellulose. The corn stover fibers became softer and smoother after the alkali extraction. Unextracted and extracted corn stover samples were separately dissolved in an IL, 1-butyl-3-methylimidazolium chloride (C(4) mimCl), at 130°C for 2 h and then regenerated with DI water. The IL dissolution process did not significantly change the chemical composition of the materials, but did alter their structural features. Untreated and treated corn stover samples were hydrolyzed with commercial enzyme preparations including cellulases and hemicellulases at 50°C. The glucose yield from the corn stover sample that was both alkali-extracted and IL-dissolved was 96% in 5 h of hydrolysis. This is a highly effective methodology for minimizing the enzymatic loading for biomass hydrolysis and/or maximizing the conversion of biomass polysaccharides into sugars.

  5. Recovery of arabinan in acetic acid-catalyzed hydrothermal pretreatment on corn stover

    DEFF Research Database (Denmark)

    Xu, Jian; Hedegaard, Mette Christina; Thomsen, Anne Belinda

    2009-01-01

    Acetic acid-catalyzed hydrothermal pretreatment was done on corn stover under 195 °C, 15 min with the acetic acid ranging from 5 × 10−3 to 0.2 g g−1 corn stover. After pretreatment, the water-insoluble solids (WISs) and liquors were collected respectively. Arabinan recoveries from both WIS...... and liquors were investigated. The results indicate that there was no detectable arabinan left in the WIS when the acetic acid of 0.1 and 0.2 g g−1 corn stover were used in the pretreatment. The arabinan contents in the other WISs were not more than 10%. However, the arabinan found in the liquors...... was not covering the amount of arabinan released from the raw corn stover. For the arabinan recovery from liquor fractions, the highest of 43.57% was obtained by the pretreatment of acetic acid of 0.01 g g−1 of corn stover and the lowest was only 26.77% when the acetic acid of 0.2 g g−1 corn stover was used...

  6. Ethanol production via simultaneous saccharification and fermentation of sodium hydroxide treated corn stover using Phanerochaete chrysosporium and Gloeophyllum trabeum.

    Science.gov (United States)

    Vincent, Micky; Pometto, Anthony L; van Leeuwen, J Hans

    2014-04-01

    Ethanol was produced via the simultaneous saccharification and fermentation (SSF) of dilute sodium hydroxide treated corn stover. Saccharification was achieved by cultivating either Phanerochaete chrysosporium or Gloeophyllum trabeum on the treated stover, and fermentation was then performed by using either Saccharomyces cerevisiae or Escherichia coli K011. Ethanol production was highest on day 3 for the combination of G. trabeum and E. coli K011 at 6.68 g/100g stover, followed by the combination of P. chrysosporium and E. coli K011 at 5.00 g/100g stover. SSF with S. cerevisiae had lower ethanol yields, ranging between 2.88 g/100g stover at day 3 (P. chrysosporium treated stover) and 3.09 g/100g stover at day 4 (G. trabeum treated stover). The results indicated that mild alkaline pretreatment coupled with fungal saccharification offers a promising bioprocess for ethanol production from corn stover without the addition of commercial enzymes.

  7. Effect of steam explosion and microbial fermentation on cellulose and lignin degradation of corn stover.

    Science.gov (United States)

    Chang, Juan; Cheng, Wei; Yin, Qingqiang; Zuo, Ruiyu; Song, Andong; Zheng, Qiuhong; Wang, Ping; Wang, Xiao; Liu, Junxi

    2012-01-01

    In order to increase nutrient values of corn stover, effects of steam explosion (2.5 MPa, 200 s) and Aspergillus oryzae (A. oryzae) fermentation on cellulose and lignin degradation were studied. The results showed the contents of cellulose, hemicellulose and lignin in the exploded corn stover were 8.47%, 50.45% and 36.65% lower than that in the untreated one, respectively (Pcorn stover (EFCS) were decreased by 24.36% and 69.90%, compared with the untreated one (Pcorn stover. The activities of enzymes in EFCS were increased. The metabolic experiment showed that about 8% EFCS could be used to replace corn meal in broiler diets, which made EFCS become animal feedstuff possible.

  8. HYGROSCOPIC MOISTURE SORPTION KINETICS MODELING OF CORN STOVER AND ITS FRACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Igathinathane, C. [Mississippi State University (MSU); Pordesimo, L. O. [Mississippi State University (MSU); Womac, A.R. [University of Tennessee; Sokhansanj, Shahabaddine [ORNL

    2009-01-01

    Corn stover, a major crop-based lignocellulosic biomass feedstock, is required to be at an optimum moisture content for efficient bioconversion processes. Environmental conditions surrounding corn stover, as in storage facilities, affect its moisture due to hygroscopic sorption or desorption. The measurement and modeling of sorption characteristics of corn stover and its leaf, husk, and stalk fractions are useful from utilization and storage standpoints, hence investigated in this article. A benchtop low-temperature humidity chamber provided the test environments of 20 C, 30 C, and 40 C at a constant 95% relative humidity. Measured sorption characteristics with three replications for each fraction were obtained from instantaneous sample masses and initial moisture contents. Observed sorption characteristics were fitted using exponential, Page, and Peleg models. Corn stover fractions displayed a rapid initial moisture uptake followed by a slower sorption rates and eventually becoming almost asymptotic after 25 h. Sorption characteristics of all corn stover fractions were significantly different (P < 0.0001) but not the effect of temperature (P > 0.05) on these fractions. The initial 30 min of sorption was found to be critical due to peak rates of sorption from storage, handling, and processing standpoints. The Page and Peleg models had comparable performance fitting the sorption curves (R2 = 0.995), however the exponential model (R2 = 0.91) was not found suitable because of patterned residuals. The Arrhenius type relationship (P < 0.05; R2 = 0.80) explained the temperature variation of the fitted sorption model parameters. The Peleg model fitted constants, among the sorption models studied, had the best fit (R2 = 0.93) with the Arrhenius relationship. A developed method of mass proportion, involving individual corn stover fraction dry matter ratios, predicted the whole corn stover sorption characteristics from that of its individual fractions. Sorption

  9. Crop and Soil Responses to Using Corn Stover as a Bioenergy Feedstock: Observations from the Northern US Corn Belt

    Directory of Open Access Journals (Sweden)

    Jane M. F. Johnson

    2013-02-01

    Full Text Available Corn (Zea mays L. stover is a potential bioenergy feedstock, but little is known about the impacts of reducing stover return on yield and soil quality in the Northern US Corn Belt. Our study objectives were to measure the impact of three stover return rates (Full (~7.8 Mg ha−1 yr−1, Moderate (~3.8 Mg ha−1 yr−1 or Low (~1.5 Mg ha yr−1 Return on corn and soybean (Glycine max. L [Merr.] yields and on soil dynamic properties on a chisel-tilled (Chisel field, and well- (NT1995 or newly- (NT2005 established no-till managed fields. Stover return rate did not affect corn and soybean yields except under NT1995 where Low Return (2.88 Mg ha−1 reduced yields compared with Full and Moderate Return (3.13 Mg ha−1. In NT1995 at 0–5 cm depth, particulate organic matter in Full Return and Moderate Return (14.3 g kg−1 exceeded Low Return (11.3 g kg−1. In NT2005, acid phosphatase activity was reduced about 20% in Low Return compared to Full Return. Also the Low Return had an increase in erodible-sized dry aggregates at the soil surface compared to Full Return. Three or fewer cycles of stover treatments revealed little evidence for short-term impacts on crop yield, but detected subtle soil changes that indicate repeated harvests may have negative consequences if stover removed.

  10. The pretreatment of corn stover with Gloeophyllum trabeum KU-41 for enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Gao Ziqing

    2012-05-01

    Full Text Available Abstract Background Pretreatment is an essential step in the enzymatic hydrolysis of biomass for bio-ethanol production. The dominant concern in this step is how to decrease the high cost of pretreatment while achieving a high sugar yield. Fungal pretreatment of biomass was previously reported to be effective, with the advantage of having a low energy requirement and requiring no application of additional chemicals. In this work, Gloeophyllum trabeum KU-41 was chosen for corn stover pretreatment through screening with 40 strains of wood-rot fungi. The objective of the current work is to find out which characteristics of corn stover pretreated with G. trabeum KU-41 determine the pretreatment method to be successful and worthwhile to apply. This will be done by determining the lignin content, structural carbohydrate, cellulose crystallinity, initial adsorption capacity of cellulase and specific surface area of pretreated corn stover. Results The content of xylan in pretreated corn stover was decreased by 43% in comparison to the untreated corn stover. The initial cellulase adsorption capacity and the specific surface area of corn stover pretreated with G. trabeum were increased by 7.0- and 2.5-fold, respectively. Also there was little increase in the cellulose crystallinity of pretreated corn stover. Conclusion G. trabeum has an efficient degradation system, and the results indicated that the conversion of cellulose to glucose increases as the accessibility of cellulose increases due to the partial removal of xylan and the structure breakage of the cell wall. This pretreatment method can be further explored as an alternative to the thermochemical pretreatment method.

  11. Corn stover fractions as a function of hybrid, maturity, site and year

    Energy Technology Data Exchange (ETDEWEB)

    Lizotte, P.L. [Laval Univ., Quebec City, PQ (Canada). Dept. des sols et de genie agroalimentaire; Savoie, P. [Agriculture and Agri-Food Canada, Quebec City, PQ (Canada); Lefsrud, M. [McGill Univ., Macdonald College, Ste-Anne-de-Bellevue, PQ (Canada). Dept. of Biosystems Engineering

    2010-07-01

    Corn stover is usually left on the ground following corn harvest so that it can be incorporated into the soil as organic matter and to protect against erosion. Part of the corn stover is oxidized in the atmosphere. Corn stover represents between 40 and 50 per cent of the dry matter (DM) contained in the aerial biomass of corn plants. Recent studies have shown that half of the corn stover could be harvested sustainably on low-sloping land under no-till practice. In Quebec, where 400,000 ha of corn are planted each year, corn stover could provide one million t DM of currently neglected biomass. Various hybrids of corn were monitored from early September to late November at 4 different sites during 2007, 2008 and 2009. Whole plants cut at 100 mm above the ground were collected weekly and separated into 7 fractions, notably the grain, the cob, the husk, the stalk below the ear, the stalk above the ear, the leaves below the ear and the leaves above the ear. In 2007, corn ears on average, were at 0.96 m above the ground at a site with low crop heat units (CHU). Hybrids grown in a warmer site were taller and their ears were 1.21 m above the ground. The DM partitioned in 7 components was 54 per cent grain, 14 per cent bottom stalk, 6 per cent top stalk, 5 per cent bottom leaves, 7 per cent top leaves, 5 per cent husk and 9 per cent cob. The total mass of fibre during harvest decreased from 8.9 to 6.6 t DM/ha for a low CHU hybrid and from 9.3 to 8.3 t DM/ha for a high CHU hybrid. Grain yield increased in 2008 from 3.8 to 7.6 t DM/ha over a 12-week period.

  12. Enhancing biogas production of corn stover by fast pyrolysis pretreatment.

    Science.gov (United States)

    Wang, Fang; Zhang, Deli; Wu, Houkai; Yi, Weiming; Fu, Peng; Li, Yongjun; Li, Zhihe

    2016-10-01

    A new thermo-chemical pretreatment by a lower temperature fast pyrolysis (LTFP) was applied to promote anaerobic digestion (AD) efficiency of corn stover (CS). The pretreatment experiment was performed by a fluidized bed pyrolysis reactor at 180, 200 and 220°C with a carrier gas flow rate of 4 and 3m(3)/h. The components characteristics, Scanning Electron Microscope (SEM) images and Crystal Intensity (CrI) of the pretreated CS were tested to explore effectiveness of the pretreatment. The results showed that the cumulative methane production at 180°C for 4 and 3m(3)/h were 199.8 and 200.3mL/g TS, respectively. As compared to the untreated CS, the LTFP pretreatment significantly (amethane production by 18.07% and 18.33%, respectively. Methane production was well fitted by the Gompertz models, and the maximum methane potential and AD efficiency was obtained at 180°C for 3m(3)/h. PMID:27420161

  13. Blending Influence on the Conversion Efficiency of the Cogasification Process of Corn Stover and Coal

    Directory of Open Access Journals (Sweden)

    Anthony Ike Anukam

    2016-01-01

    Full Text Available Characterizations of biomass and coal were undertaken in order to compare their properties and determine the combustion characteristics of both feedstocks. The study was also intended to establish whether the biomass (corn stover used for this study is a suitable feedstock for blending with coal for the purpose of cogasification based on composition and properties. Proximate and ultimate analyses as well as energy value of both samples including their blends were undertaken and results showed that corn stover is a biomass material well suited for blending with coal for the purpose of cogasification, given its high volatile matter content which was measured and found to be 75.3% and its low ash content of 3.3% including its moderate calorific value of 16.1%. The results of the compositional analyses of both pure and blended samples of corn stover and coal were used to conduct computer simulation of the cogasification processes in order to establish the best blend that would result in optimum cogasification efficiency under standard gasifier operating conditions. The final result of the cogasification simulation process indicated that 90% corn stover/10% coal resulted in a maximum efficiency of about 58% because conversion was efficiently achieved at a temperature that is intermediate to that of coal and corn stover independently.

  14. Enhanced solid-state anaerobic digestion of corn stover by alkaline pretreatment.

    Science.gov (United States)

    Zhu, Jiying; Wan, Caixia; Li, Yebo

    2010-10-01

    Alkaline pretreatment was applied to enhance biogas production from corn stover through solid-state anaerobic digestion. Different NaOH loadings (1%, 2.5%, 5.0% and 7.5% (w/w)) were tested for solid-state pretreatment of corn stover. Lignin degradation during pretreatment increased from 9.1% to 46.2% when NaOH concentration increased from 1.0% to 7.5%. The NaOH-pretreated corn stover was digested using effluent of liquid anaerobic digestion as inoculum and nitrogen source. NaOH loading of 1% did not cause significant improvement on biogas yield. The highest biogas yield of 372.4 L/kg VS was obtained with 5% NaOH-pretreated corn stover, which was 37.0% higher than that of the untreated corn stover. However, a higher NaOH loading of 7.5% caused faster production of volatile fatty acids during the hydrolysis and acidogenesis stages, which inhibited the methanogenesis. Simultaneous NaOH treatment and anaerobic digestion did not significantly improve the biogas production (P>0.05).

  15. Analyzing and Comparing Biomass Feedstock Supply Systems in China: Corn Stover and Sweet Sorghum Case Studies

    Energy Technology Data Exchange (ETDEWEB)

    Mohammad S. Roni; Kara G. Cafferty; Christopher T Wright; Lantian Ren

    2015-06-01

    China has abundant biomass resources, which can be used as a potential source of bioenergy. However, China faces challenges implementing biomass as an energy source, because China has not developed the highly networked, high-volume biomass logistics systems and infrastructure. This paper analyzes the rural Chinese biomass supply system and models supply chain operations according to the U.S. concepts of logistical unit operations: harvest and collection, storage, transportation, preprocessing, and handling and queuing. In this paper, we quantify the logistics cost of corn stover and sweet sorghum under different scenarios in China. We analyze three scenarios of corn stover logistics from northeast China and three scenarios of sweet sorghum stalks logistics from Inner Mongolia in China. The case study shows that the logistics cost of corn stover and sweet sorghum stalk will be $52.95/dry metric ton and $52.64/ dry metric ton, respectively, for the current labor-based biomass logistics system. However, if the feedstock logistics operation is mechanized, the cost of corn stover and sweet sorghum stalk will be down to $36.01/ dry metric ton and $35.76/dry metric ton, respectively. The study also performed a sensitivity analysis to find the cost factors that cause logistics cost variation. A sensitivity analysis shows that labor price has the most influence on the logistics cost of corn stover and sweet sorghum stalk, causing a variation of $6 to $12/metric ton.

  16. Bio-oil and biochar production from corn cobs and stover by fast pyrolysis

    Science.gov (United States)

    Bio-oil and bio-char were produced from corn cobs and corn stover (stalks, leaves and husks) by fast pyrolysis using a pilot scale fluidized bed reactor. Yields of 60% (mass/mass) bio-oil (high heating values are ~20,000 kJ/kg, and densities > 1.0 g/mL) were realized from both corn cobs and from co...

  17. Production, carbon and nitrogen in stover fractions of corn (Zea mays L.) in response to cultivar development

    Science.gov (United States)

    The contribution of genetic selection of corn to quantity and quality of stover is still poor-known. The aim of the study was to evaluate production, C and N in fractions of corn stover in response to the cultivar development. Two field experiments were conducted in the city of Rolândia (Paraná - Br...

  18. Mechanical property of different corn stover morphological fractions and its correlations with high solids enzymatic hydrolysis by periodic peristalsis.

    Science.gov (United States)

    Liu, Zhi-Hua; Chen, Hong-Zhang

    2016-08-01

    Selective structure fractionation combined with periodic peristalsis was exploited to improve the conversion performance of corn stover. The increase of glucan and lignin content and the decrease of xylan content in stem pith were highest after SE, whereas they were lowest in stem node. Glucan conversion increased in this order: steam nodeenzymatic hydrolysis efficiency of different corn stover morphological fractions. PMID:27140819

  19. Combustion of Corn Stover Bales in a Small 146-kW Boiler

    Directory of Open Access Journals (Sweden)

    Joey Villeneuve

    2011-07-01

    Full Text Available Spring harvested corn stover was used for direct combustion in a 146 kW dual chamber boiler designed for wood logs. Stover had a very low moisture content (6.83 ± 0.17%, a gross calorific value (GCV of 18.57 MJ/kg of dry matter (±0.32 MJ/kg DM and an ash content of 5.88% (±1.15%. Small stover bales (8.83 ± 0.90 kg were placed manually in the upper combustion chamber at a rate of 10.5 to 12.8 kg/h over a 24-h period, with three replications, and compared to a control wood combustion trial (12.1 kg/h during 24 h. The overall heat transfer efficiency for stover was lower than for wood (57% vs. 77%. Stover bales produced on average 7.5% ash which included about 2% of unburned residues while wood produced 1.7% ash. CO gas emissions averaged 1324 mg/m³ for stover (118 mg/m³ for wood. The corn stover showed a good calorific potential, but it would have to be densified and the boiler should be modified to improve airflow, completeness of combustion and handling of the large amount of ash formed.

  20. An agent-based modeling approach for determining corn stover removal rate and transboundary effects.

    Science.gov (United States)

    Gan, Jianbang; Langeveld, J W A; Smith, C T

    2014-02-01

    Bioenergy production involves different agents with potentially different objectives, and an agent's decision often has transboundary impacts on other agents along the bioenergy value chain. Understanding and estimating the transboundary impacts is essential to portraying the interactions among the different agents and in the search for the optimal configuration of the bioenergy value chain. We develop an agent-based model to mimic the decision making by feedstock producers and feedstock-to-biofuel conversion plant operators and propose multipliers (i.e., ratios of economic values accruing to different segments and associated agents in the value chain) for assessing the transboundary impacts. Our approach is generic and thus applicable to a variety of bioenergy production systems at different sites and geographic scales. We apply it to the case of producing ethanol using corn stover in Iowa, USA. The results from the case study indicate that stover removal rate is site specific and varies considerably with soil type, as well as other factors, such as stover price and harvesting cost. In addition, ethanol production using corn stover in the study region would have strong positive ripple effects, with the values of multipliers varying with greenhouse gas price and national energy security premium. The relatively high multiplier values suggest that a large portion of the value associated with corn stover ethanol production would accrue to the downstream end of the value chain instead of stover producers.

  1. Pretreatment of Corn Stover Using Supercritical CO2 with Water-Ethanol as Co-solvent

    Institute of Scientific and Technical Information of China (English)

    L(U) Huisheng; REN Miaomiao; ZHANG Minhua; CHEN Ying

    2013-01-01

    Supercritical carbon dioxide,with water-ethanol as co-solvent,was applied to pretreat corn stover to enhance its enzymatic hydrolysis.The efficiency of pretreatment was evaluated by the final reducing sugar yield obtained from the enzymatic hydrolysis of cellulose.Under the operation conditions of pretreatment pressure 15 MPa,temperature 180 ℃ and time 1 h,the optimal sugar yield of 77.8% was obtained.Scanning electron microscopy (SEM) and chemical composition analysis were applied to the pretreated corn stover.The results showed that the surface morphology and microscopic structure of pretreated corn stover were greatly changed.After the pretreatment,the contents of hemicellulose and lignin were reduced obviously.Thus more cellulose was exposed,increasing the sugar yield.

  2. Analysis of particle size reduction on overall surface area and enzymatic hydrolysis yield of corn stover.

    Science.gov (United States)

    Li, Hanjie; Ye, Chenlin; Liu, Ke; Gu, Hanqi; Du, Weitao; Bao, Jie

    2015-01-01

    Particle size of lignocellulose materials is an important factor for enzymatic hydrolysis efficiency. In this study, corn stover was milled and sieved into different size fractions from 1.42, 0.69, 0.34, to 0.21 mm, and the corresponding enzymatic hydrolysis yields were 24.69, 23.96, 25.34, and 26.97 %, respectively. The results indicate that the hydrolysis yield is approximately constant with changing corn stover particle sizes in the experimental range. The overall surface area and the inner pore size measurement show that the overall specific surface area was less than 2 % with the half reduction of particle size due to the greater inner pore surface area. The scanning electron microscope photographs gave direct evidence of the much greater inner pore surface area of corn stover particles. This result provided a reference when a proper size reduction of lignocellulose materials is considered in biorefining operations.

  3. Economic Impact of Harvesting Corn Stover under Time Constraint: The Case of North Dakota

    Directory of Open Access Journals (Sweden)

    Thein A. Maung

    2013-01-01

    Full Text Available This study examines the impact of stochastic harvest field time on profit maximizing potential of corn cob/stover collection in North Dakota. Three harvest options are analyzed using mathematical programming models. Our findings show that under the first corn grain only harvest option, farmers are able to complete harvesting corn grain and achieve maximum net income in a fairly short amount of time with existing combine technology. However, under the second simultaneous corn grain and cob (one-pass harvest option, farmers generate lower net income compared to the net income of the first option. This is due to the slowdown in combine harvest capacity as a consequence of harvesting corn cobs. Under the third option of separate corn grain and stover (two-pass harvest option, time allocation is the main challenge and our evidence shows that with limited harvest field time available, farmers find it optimal to allocate most of their time harvesting grain and then proceed to harvest and bale stover if time permits at the end of harvest season. The overall findings suggest is that it would be more economically efficient to allow a firm that is specialized in collecting biomass feedstock to participate in cob/stover harvest business.

  4. Physical and chemical characterizations of corn stover and poplar solids resulting from leading pretreatment technologies.

    Science.gov (United States)

    Kumar, Rajeev; Mago, Gaurav; Balan, Venkatesh; Wyman, Charles E

    2009-09-01

    In order to investigate changes in substrate chemical and physical features after pretreatment, several characterizations were performed on untreated (UT) corn stover and poplar and their solids resulting pretreatments by ammonia fiber expansion (AFEX), ammonia recycled percolation (ARP), controlled pH, dilute acid, flowthrough, lime, and SO(2) technologies. In addition to measuring the chemical compositions including acetyl content, physical attributes determined were biomass crystallinity, cellulose degree of polymerization, cellulase adsorption capacity of pretreated solids and enzymatically extracted lignin, copper number, FT-IR responses, scanning electron microscopy (SEM) visualizations, and surface atomic composition by electron spectroscopy of chemical analysis (ESCA). Lime pretreatment removed the most acetyl groups from both corn stover and poplar, while AFEX removed the least. Low pH pretreatments depolymerized cellulose and enhanced biomass crystallinity much more than higher pH approaches. Lime pretreated corn stover solids and flowthrough pretreated poplar solids had the highest cellulase adsorption capacity, while dilute acid pretreated corn stover solids and controlled pH pretreated poplar solids had the least. Furthermore, enzymatically extracted AFEX lignin preparations for both corn stover and poplar had the lowest cellulase adsorption capacity. ESCA results showed that SO(2) pretreated solids had the highest surface O/C ratio for poplar, but for corn stover, the highest value was observed for dilute acid pretreatment with a Parr reactor. Although dependent on pretreatment and substrate, FT-IR data showed that along with changes in cross linking and chemical changes, pretreatments may also decrystallize cellulose and change the ratio of crystalline cellulose polymorphs (Ialpha/Ibeta).

  5. Bulk density and compaction behavior of knife mill chopped switchgrass, wheat straw, and corn stover.

    Science.gov (United States)

    Chevanan, Nehru; Womac, Alvin R; Bitra, Venkata S P; Igathinathane, C; Yang, Yuechuan T; Miu, Petre I; Sokhansanj, Shahab

    2010-01-01

    Bulk density of comminuted biomass significantly increased by vibration during handling and transportation, and by normal pressure during storage. Compaction characteristics affecting the bulk density of switchgrass, wheat straw, and corn stover chopped in a knife mill at different operating conditions and using four different classifying screens were studied. Mean loose-filled bulk densities were 67.5+/-18.4 kg/m(3) for switchgrass, 36.1+/-8.6 kg/m(3) for wheat straw, and 52.1+/-10.8 kg/m(3) for corn stover. Mean tapped bulk densities were 81.8+/-26.2 kg/m(3) for switchgrass, 42.8+/-11.7 kg/m(3) for wheat straw, and 58.9+/-13.4 kg/m(3) for corn stover. Percentage changes in compressibility due to variation in particle size obtained from a knife mill ranged from 64.3 to 173.6 for chopped switchgrass, 22.2-51.5 for chopped wheat straw and 42.1-117.7 for chopped corn stover within the tested consolidation pressure range of 5-120 kPa. Pressure and volume relationship of chopped biomass during compression with application of normal pressure can be characterized by the Walker model and Kawakita and Ludde model. Parameter of Walker model was correlated to the compressibility with Pearson correlation coefficient greater than 0.9. Relationship between volume reduction in chopped biomass with respect to number of tappings studied using Sone's model indicated that infinite compressibility was highest for chopped switchgrass followed by chopped wheat straw and corn stover. Degree of difficulty in packing measured using the parameters of Sone's model indicated that the chopped wheat straw particles compacted very rapidly by tapping compared to chopped switchgrass and corn stover. These results are very useful for solving obstacles in handling bulk biomass supply logistics issues for a biorefinery.

  6. Ash Content and Calorific Energy of Corn Stover Components in Eastern Canada

    Directory of Open Access Journals (Sweden)

    Pierre-Luc Lizotte

    2015-05-01

    Full Text Available Corn stover is an abundant agricultural residue that could be used on the farm for heating and crop drying. Ash content and calorific energy of corn grain and six stover components were measured from standing plants during the grain maturing period, between mid-September and mid-November. Ash of stover in standing corn averaged 4.8% in a cool crop heat unit zone (2300–2500 crop heat units (CHU and 7.3% in a warmer zone (2900–3100 CHU. The corn cob had the lowest ash content (average of 2.2% while leaves had the highest content (from 7.7% to 12.6%. In the fall, ash content of mowed and raked stover varied between 5.5% and 11.7%. In the following spring, ash content of stover mowed, raked and baled in May averaged 3.6%. The cob and stalk located below the first ear contained the highest calorific energy with 17.72 MJ·kg−1. Leaves and grain had the lowest energy with an average of 16.99 MJ·kg−1. The stover heat of combustion was estimated at 17.47 MJ·kg−1 in the cool zone and 17.26 MJ·kg−1 in the warm zone. Based on presented results, a partial “cob and husk” harvest system would collect less energy per unit area than total stover harvest (44 vs. 156 GJ·ha−1 and less biomass (2.51 vs. 9.13 t·dry matter (DM·ha−1 but the fuel quality would be considerably higher with a low ash-to-energy ratio (1.45 vs. 4.27 g·MJ−1.

  7. Response surface methodology (RSM) to evaluate moisture effects on corn stover in recovering xylose by DEO hydrolysis.

    Science.gov (United States)

    Rodrigues, Rita C L B; Kenealy, William R; Dietrich, Diane; Jeffries, Thomas W

    2012-03-01

    Response surface methodology (RSM), based on a 2(2) full factorial design, evaluated the moisture effects in recovering xylose by diethyloxalate (DEO) hydrolysis. Experiments were carried out in laboratory reactors (10 mL glass ampoules) containing corn stover (0.5 g) properly ground. The ampoules were kept at 160 °C for 90 min. Both DEO concentration and corn stover moisture content were statistically significant at 99% confidence level. The maximum xylose recovery by the response surface methodology was achieved employing both DEO concentration and corn stover moisture at near their highest levels area. We amplified this area by using an overlay plot as a graphical optimization using a response of xylose recovery more than 80%. The mathematical statistical model was validated by testing a specific condition in the satisfied overlay plot area. Experimentally, a maximum xylose recovery (81.2%) was achieved by using initial corn stover moisture of 60% and a DEO concentration of 4% w/w. The mathematical statistical model showed that xylose recovery increases during DEO corn stover acid hydrolysis as the corn stover moisture level increases. This observation could be important during the harvesting of corn before it is fully dried in the field. The corn stover moisture was an important variable to improve xylose recovery by DEO acid hydrolysis.

  8. Handling of corn stover bales for combustion in small and large furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Morissette, R.; Savoie, P.; Villeneuve, J. [Agriculture and Agri-Food Canada, Quebec City, PQ (Canada)

    2010-07-01

    This paper reported on a study in which dry corn stover was baled and burned in 2 furnaces in the province of Quebec. Small and large rectangular bale formats were considered for direct combustion. The first combustion unit was a small 500,000 BTU/h dual chamber log wood furnace located at a hay growing farm in Neuville, Quebec. The heat was initially transferred to a hot water pipe system and then transferred to a hot air exchanger to dry hay bales. The small stover bales were placed directly into the combustion furnace. The low density of the bales compared to log wood, required filling up to 8 times more frequently. Stover bales produced an average of 6.4 per cent ash on a DM basis and required an automated system for ash removal. Combustion gas contained levels of particulate matter greater than 1417 mg/m{sup 3}, which is more than the local acceptable maximum of 600 mg/m{sup 3} for combustion furnaces. The second combustion unit was a high capacity 12.5 million BTU/h single chamber furnace located in Saint-Philippe-de-neri, Quebec. It was used to generate steam for a feed pellet mill. Large corn stover bales were broken up and fed on a conveyor and through a screw auger to the furnace. The stover was light compared to the wood chips used in this furnace. For mechanical reasons, the stover could not be fed continuously to the furnace.

  9. Optimizing harvest of corn stover fractions based on overall sugar yields following ammonia fiber expansion pretreatment and enzymatic hydrolysis

    Directory of Open Access Journals (Sweden)

    Dale Bruce E

    2009-11-01

    Full Text Available Abstract Background Corn stover composition changes considerably throughout the growing season and also varies between the various fractions of the plant. These differences can impact optimal pretreatment conditions, enzymatic digestibility and maximum achievable sugar yields in the process of converting lignocellulosics to ethanol. The goal of this project was to determine which combination of corn stover fractions provides the most benefit to the biorefinery in terms of sugar yields and to determine the preferential order in which fractions should be harvested. Ammonia fiber expansion (AFEX pretreatment, followed by enzymatic hydrolysis, was performed on early and late harvest corn stover fractions (stem, leaf, husk and cob. Sugar yields were used to optimize scenarios for the selective harvest of corn stover assuming 70% or 30% collection of the total available stover. Results The optimal AFEX conditions for all stover fractions, regardless of harvest period, were: 1.5 (g NH3 g-1 biomass; 60% moisture content (dry-weight basis; dwb, 90°C and 5 min residence time. Enzymatic hydrolysis was conducted using cellulase, β-glucosidase, and xylanase at 31.3, 41.3, and 3.1 mg g-1 glucan, respectively. The optimal harvest order for selectively harvested corn stover (SHCS was husk > leaf > stem > cob. This harvest scenario, combined with optimal AFEX pretreatment conditions, gave a theoretical ethanol yield of 2051 L ha-1 and 912 L ha-1 for 70% and 30% corn stover collection, respectively. Conclusion Changing the proportion of stover fractions collected had a smaller impact on theoretical ethanol yields (29 - 141 L ha-1 compared to the effect of altering pretreatment and enzymatic hydrolysis conditions (150 - 462 L ha-1 or harvesting less stover (852 - 1139 L ha-1. Resources may be more effectively spent on improving sustainable harvesting, thereby increasing potential ethanol yields per hectare harvested, and optimizing biomass processing rather than

  10. Process development of short-chain polyols synthesis from corn stover by combination of enzymatic hydrolysis and catalytic hydrogenolysis

    Directory of Open Access Journals (Sweden)

    Zhen-Hong Fang

    2014-09-01

    Full Text Available Currently short-chain polyols such as ethanediol, propanediol, and butanediol are produced either from the petroleum feedstock or from the starch-based food crop feedstock. In this study, a combinational process of enzymatic hydrolysis with catalytic hydrogenolysis for short-chain polyols production using corn stover as feedstock was developed. The enzymatic hydrolysis of the pretreated corn stover was optimized to produce stover sugars at the minimum cost. Then the stover sugars were purified and hydrogenolyzed into polyols products catalyzed by Raney nickel catalyst. The results show that the yield of short-chain polyols from the stover sugars was comparable to that of the corn-based glucose. The present study provided an important prototype for polyols production from lignocellulose to replace the petroleum- or corn-based polyols for future industrial applications.

  11. Assessment of Options for the Collection, Handling, and Transport of Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Perlack, R.D.

    2002-11-18

    In this report, we discuss the logistics and estimate the delivered costs for collecting, handling, and hauling corn stover to an ethanol conversion facility. We compare costs for two conventional baling systems (large round bales and large rectangular bales), a silage-harvest system, and an unprocessed-pickup system. Our results generally indicate that stover can be collected, stored, and hauled for about $43.60 to $48.80/dry ton ($48.10-$53.80/dry Mg) using conventional baling equipment for conversion facilities ranging in size from 500 to 2000 dry tons/day (450-1810 dry Mg/day). These estimates are inclusive of all costs including farmer payments for the stover. Our results also suggest that costs might be significantly reduced with an unprocessed stover pickup system provided more efficient equipment is developed.

  12. A Five-Year Assessment of Corn Stover Harvest in Central Iowa, USA

    Energy Technology Data Exchange (ETDEWEB)

    Douglas L. Karlen; Stuart J. Birell; J. Richard Hess

    2011-11-01

    Sustainable feedstock harvest strategies are needed to ensure bioenergy production does not irreversibly degrade soil resources. The objective for this study was to document corn (Zea mays L.) grain and stover fraction yields, plant nutrient removal and replacement costs, feedstock quality, soil-test changes, and soil quality indicator response to four stover harvest strategies for continuous corn and a corn-soybean [Glycine max. (L.) Merr.] rotation. The treatments included collecting (1) all standing plant material above a stubble height of 10 cm (whole plant), (2) the upper-half by height (ear shank upward), (3) the lower-half by height (from the 10 cm stubble height to just below the earshank), or (4) no removal. Collectable biomass from Treatment 2 averaged 3.9 ({+-}0.8) Mg ha{sup -1} for continuous corn (2005 through 2009), and 4.8 ({+-}0.4) Mg ha{sup -1} for the rotated corn (2005, 2007, and 2009). Compared to harvesting only the grain, collecting stover increased the average N-P-K removal by 29, 3 and 34 kg ha{sup -1} for continuous corn and 42, 3, and 34 kg ha{sup -1} for rotated corn, respectively. Harvesting the lower-half of the corn plant (Treatment 3) required two passes, resulted in frequent plugging of the combine, and provided a feedstock with low quality for conversion to biofuel. Therefore, Treatment 3 was replaced by a 'cobs-only' harvest starting in 2009. Structural sugars glucan and xylan accounted for up to 60% of the chemical composition, while galactan, arabinan, and mannose constituted less than 5% of the harvest fractions collected from 2005 through 2008. Soil-test data from samples collected after the first harvest (2005) revealed low to very low plant-available P and K levels which reduced soybean yield in 2006 after harvesting the whole-plant in 2005. Average continuous corn yields were 21% lower than rotated yields with no significant differences due to stover harvest. Rotated corn yields in 2009 showed some significant

  13. Biological hydrogen production from corn stover by moderately thermophile Thermoanaerobacterium thermosaccharolyticum W16

    Energy Technology Data Exchange (ETDEWEB)

    Ren, Nan-Qi; Cao, Guang-Li; Guo, Wan-Qian; Wang, Ai-Jie; Zhu, Yu-Hong; Liu, Bing-feng; Xu, Ji-Fei [State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, No. 202 Haihe Road, 2nd Campus of HIT box 2614, Harbin, Hei Longjiang 150090 (China)

    2010-04-15

    This study addressed the utilization of an agro-waste, corn stover, as a renewable lignocellulosic feedstock for the fermentative H{sub 2} production by the moderate thermophile Thermoanaerobacterium thermosaccharolyticum W16. The corn stover was first hydrolyzed by cellulase with supplementation of xylanase after delignification with 2% NaOH. It produced reducing sugar at a yield of 11.2 g L{sup -1} glucose, 3.4 g L{sup -1} xylose and 0.5 g L{sup -1} arabinose under the optimum condition of cellulase dosage 25 U g{sup -1} substrate with supplement xylanase 30 U g{sup -1} substrate. The hydrolyzed corn stover was sequentially introduced to fermentation by strain W16, where, the cell density and the maximum H{sub 2} production rate was comparable to that on simulated medium, which has the same concentration of reducing sugars with hydrolysate. The present results suggest a promising combined hydrogen production process from corn stover with enzymatic hydrolysis stage and fermentation stage using W16. (author)

  14. Cellulosic ethanol fermentation using Saccharomyces cerevisiae seeds cultured by pretreated corn stover material.

    Science.gov (United States)

    Qureshi, Abdul Sattar; Zhang, Jian; Bao, Jie

    2015-03-01

    Utilization of lignocellulose materials to replace the pure glucose for preparation of the fermenting yeast seeds could reduce the cost of ethanol fermentation, because a large quantity of glucose is saved in the large-scale seed fermentor series. In this study, Saccharomyces cerevisiae DQ1 was cultured using the freshly pretreated corn stover material as the carbon source, and then the culture broth was used as the inoculation seeds after a series of seed transfer and inoculated into the ethanol production fermentor. The results show that the yeast cell growth and ethanol fermentation performance have essentially no difference when the yeast seeds were cultured by glucose, the corn stover hydrolysate liquid, and the pretreated corn stover solids as carbon sources, respectively. Approximately 22% of the yeast cell culture cost was saved, and the process flow sheet in industrial scale plants was simplified by using the pretreated corn stover for seed culture. The results provided a practical method for materials and operational cost reduction for cellulosic ethanol production.

  15. Influence of different SSF conditions on ethanol production from corn stover at high solids loadings

    DEFF Research Database (Denmark)

    Gladis, Arne; Bondesson, Pia-Maria; Galbe, Mats;

    2015-01-01

    In this study, three different kinds of simultaneous saccharification and fermentation (SSF) of washed pretreated corn stover with water-insoluble solids (WIS) content of 20% were investigated to find which one resulted in highest ethanol yield at high-solids loadings. The different methods were...

  16. Microbial pretreatment of corn stover with Ceriporiopsis subvermispora for enzymatic hydrolysis and ethanol production.

    Science.gov (United States)

    Wan, Caixia; Li, Yebo

    2010-08-01

    The feasibility of concurrent wet storage and microbial pretreatment of corn stover with Ceriporiopsis subvermispora for ethanol production was investigated in this study. The effects of particle size (5-15 mm), moisture content (45-85%), pretreatment time (18-35 d), and temperature (4-37 degrees C) on lignin degradation and enzymatic hydrolysis yield were studied. The results showed that C. subvermispora selectively degraded lignin up to 31.59% with a limited cellulose loss of less than 6% during an 18-d pretreatment. When 5mm corn stover was pretreated at 28 degrees C with 75% moisture content, overall glucose yields of 57.67%, 62.21%, and 66.61% were obtained with 18-, 28-, and 35-d microbial pretreated corn stover, respectively. For the above conditions, the highest overall ethanol yield of 57.80% was obtained with 35-d-pretreated corn stover. Enzymatic hydrolysis yield was highly related to the lignin removal during microbial pretreatment.

  17. Ethanol production from hydrothermal pretreated corn stover with a loop reactor

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2010-01-01

    Hydrothermal pretreatment on raw corn stover (RCS) with a loop reactor was investigated at 195 °C for different times varying between 10 min and 30 min. After pretreatment, the slurry was separated into water-insoluble solid (WIS) and liquid phase. Glucan and xylan were found in the both phases...

  18. Enhancement of xylose utilization from corn stover by a recombinant bacterium for ethanol production

    Science.gov (United States)

    Effects of substrate-selective inoculum prepared by growing on glucose, xylose, arabinose, GXA (glucose, xylose, arabinose, 1:1:1) and corn stover hydrolyzate (dilute acid pretreated and enzymatically hydrolyzed, CSH) on ethanol production from CSH by a mixed sugar utilizing recombinant Escherichia ...

  19. Ammonia, total reduced sulfides, and greenhouse gases of pine chip and corn stover bedding packs

    Science.gov (United States)

    Bedding materials may affect air quality in livestock facilities. The objective of this study was to compare headspace concentrations of ammonia (NH3), total reduced sulfides (TRS), carbon dioxide (CO2),methane (CH4), and nitrous oxide (N2O) when pine wood chips and corn stover were mixed in various...

  20. Improving enzymatic hydrolysis of corn stover pretreated by ethylene glycol-perchloric acid-water mixture.

    Science.gov (United States)

    He, Yu-Cai; Liu, Feng; Gong, Lei; Lu, Ting; Ding, Yun; Zhang, Dan-Ping; Qing, Qing; Zhang, Yue

    2015-02-01

    To improve the enzymatic saccharification of lignocellulosic biomass, a mixture of ethylene glycol-HClO4-water (88.8:1.2:10, w/w/w) was used for pretreating corn stover in this study. After the optimization in oil-bath system, the optimum pretreatment temperature and time were 130 °C and 30 min, respectively. After the saccharification of 10 g/L pretreated corn stover for 48 h, the saccharification rate was obtained in the yield of 77.4 %. To decrease pretreatment temperature and shorten pretreatment time, ethylene glycol-HClO4-water (88.8:1.2:10, w/w/w) media under microwave irradiation was employed to pretreat corn stover effectively at 100 °C and 200 W for 5 min. Finally, the recovered hydrolyzates containing glucose obtained from the enzymatic hydrolysis of pretreated corn stovers could be fermented into ethanol efficiently. These results would be helpful for developing a cost-effective pretreatment combined with enzymatic saccharification of cellulosic materials for the production of lignocellulosic ethanol.

  1. Visual soil structure effects of tillage and corn stover harvest in Iowa, U.S.A.

    Science.gov (United States)

    Excessive harvest of corn (Zea mays L.) stover for ethanol production has raised concerns regarding negative consequences on soil structure and physical quality. Visual soil structure assessment methods have the potential to help address these concerns through simple, straightforward on-farm evaluat...

  2. High temperature dilute phosphoric acid pretreatment of corn stover for furfural and ethanol production

    Science.gov (United States)

    Furfural was produced from corn stover by one stage pretreatment process using dilute H3PO4 and solid residues following furfural production were used for ethanol production by Saccharomyces cerevisiae NRRL- Y2034. A series of experiments were conducted at varied temperatures (140-200 oC) and acid ...

  3. Comparative performance of precommercial cellulases hydrolyzing pretreated corn stover

    Directory of Open Access Journals (Sweden)

    Mohagheghi Ali

    2011-09-01

    Full Text Available Abstract Background Cellulases and related hydrolytic enzymes represent a key cost factor for biochemical conversion of cellulosic biomass feedstocks to sugars for biofuels and chemicals production. The US Department of Energy (DOE is cost sharing projects to decrease the cost of enzymes for biomass saccharification. The performance of benchmark cellulase preparations produced by Danisco, DSM, Novozymes and Verenium to convert pretreated corn stover (PCS cellulose to glucose was evaluated under common experimental conditions and is reported here in a non-attributed manner. Results Two hydrolysis modes were examined, enzymatic hydrolysis (EH of PCS whole slurry or washed PCS solids at pH 5 and 50°C, and simultaneous saccharification and fermentation (SSF of washed PCS solids at pH 5 and 38°C. Enzymes were dosed on a total protein mass basis, with protein quantified using both the bicinchoninic acid (BCA assay and the Bradford assay. Substantial differences were observed in absolute cellulose to glucose conversion performance levels under the conditions tested. Higher cellulose conversion yields were obtained using washed solids compared to whole slurry, and estimated enzyme protein dosages required to achieve a particular cellulose conversion to glucose yield were extremely dependent on the protein assay used. All four enzyme systems achieved glucose yields of 90% of theoretical or higher in SSF mode. Glucose yields were reduced in EH mode, with all enzymes achieving glucose yields of at least 85% of theoretical on washed PCS solids and 75% in PCS whole slurry. One of the enzyme systems ('enzyme B' exhibited the best overall performance. However in attaining high conversion yields at lower total enzyme protein loadings, the relative and rank ordered performance of the enzyme systems varied significantly depending upon which hydrolysis mode and protein assay were used as the basis for comparison. Conclusions This study provides extensive

  4. Effect of pelleting on the recalcitrance and bioconversion of dilute-acid pretreated corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Allison E Ray; Amber Hoover; Gary Gresham

    2012-07-01

    Background: Knowledge regarding the performance of densified biomass in biochemical processes is limited. The effects of densification on biochemical conversion are explored here. Methods: Pelleted corn stover samples were generated from bales that were milled to 6.35 mm. Low-solids acid pretreatment and simultaneous saccharification and fermentation were performed to evaluate pretreatment efficacy and ethanol yields achieved for pelleted and ground stover (6.35 mm and 2 mm) samples. Both pelleted and 6.35-mm ground stover were evaluated using a ZipperClave® reactor under high-solids, process-relevant conditions for multiple pretreatment severities (Ro), followed by enzymatic hydrolysis of the washed, pretreated solids. Results: Monomeric xylose yields were significantly higher for pellets (approximately 60%) than for ground formats (approximately 38%). Pellets achieved approximately 84% of theoretical ethanol yield (TEY); ground stover formats had similar profiles, reaching approximately 68% TEY. Pelleting corn stover was not detrimental to pretreatment efficacy for both low- and high-solids conditions, and even enhanced ethanol yields.

  5. High titer gluconic acid fermentation by Aspergillus niger from dry dilute acid pretreated corn stover without detoxification.

    Science.gov (United States)

    Zhang, Hongsen; Zhang, Jian; Bao, Jie

    2016-03-01

    This study reported a high titer gluconic acid fermentation using dry dilute acid pretreated corn stover (DDAP) hydrolysate without detoxification. The selected fermenting strain Aspergillus niger SIIM M276 was capable of inhibitor degradation thus no detoxification on pretreated corn stover was required. Parameters of gluconic acid fermentation in corn stover hydrolysate were optimized in flasks and in fermentors to achieve 76.67 g/L gluconic acid with overall yield of 94.91%. The sodium gluconate obtained from corn stover was used as additive for extending setting time of cement mortar and similar function was obtained with starch based sodium gluconate. This study provided the first high titer gluconic acid production from lignocellulosic feedstock with potential of industrial applications. PMID:26724553

  6. Corn fiber, cobs and stover: Enzyme-aided saccharification and co-fermentation after dilute acid pretreatment

    NARCIS (Netherlands)

    Eylen, van D.; Dongen, van F.E.M.; Kabel, M.A.; Bont, de J.A.M.

    2011-01-01

    Three corn feedstocks (fibers, cobs and stover) available for sustainable second generation bioethanol production were subjected to pretreatments with the aim of preventing formation of yeast-inhibiting sugar-degradation products. After pretreatment, monosaccharides, soluble oligosaccharides and res

  7. Evaluation of storage methods for the conversion of corn stover biomass to sugars based on steam explosion pretreatment.

    Science.gov (United States)

    Liu, Zhi-Hua; Qin, Lei; Jin, Ming-Jie; Pang, Feng; Li, Bing-Zhi; Kang, Yong; Dale, Bruce E; Yuan, Ying-Jin

    2013-03-01

    Effects of dry and wet storage methods without or with shredding on the conversion of corn stover biomass were investigated using steam explosion pretreatment and enzymatic hydrolysis. Sugar conversions and yields for wet stored biomass were obviously higher than those for dry stored biomass. Shredding reduced sugar conversions compared with non-shredding, but increased sugar yields. Glucan conversion and glucose yield for non-shredded wet stored biomass reached 91.5% and 87.6% after 3-month storage, respectively. Data of micro-structure and crystallinity of biomass indicated that corn stover biomass maintained the flexible and porous structure after wet storage, and hence led to the high permeability of corn stover biomass and the high efficiency of pretreatment and hydrolysis. Therefore, the wet storage methods would be desirable for the conversion of corn stover biomass to fermentable sugars based on steam explosion pretreatment and enzymatic hydrolysis.

  8. Comparative studies on thermochemical characterization of corn stover pretreated by white-rot and brown-rot fungi.

    Science.gov (United States)

    Zeng, Yelin; Yang, Xuewei; Yu, Hongbo; Zhang, Xiaoyu; Ma, Fuying

    2011-09-28

    The effects of white-rot and brown-rot fungal pretreatment on the chemical composition and thermochemical conversion of corn stover were investigated. Fungus-pretreated corn stover was analyzed by Fourier transform infrared spectroscopy and X-ray diffraction analysis to characterize the changes in chemical composition. Differences in thermochemical conversion of corn stover after fungal pretreatment were investigated using thermogravimetric and pyrolysis analysis. The results indicated that the white-rot fungus Irpex lacteus CD2 has great lignin-degrading ability, whereas the brown-rot fungus Fomitopsis sp. IMER2 preferentially degrades the amorphous regions of the cellulose. The biopretreatment favors thermal decomposition of corn stover. The weight loss of IMER2-treated acid detergent fiber became greater, and the oil yield increased from 32.7 to 50.8%. After CD2 biopretreatment, 58% weight loss of acid detergent lignin was achieved and the oil yield increased from 16.8 to 26.8%.

  9. Effects of dairy manure and corn stover co-digestion on anaerobic microbes and corresponding digestion performance.

    Science.gov (United States)

    Yue, Zhengbo; Chen, Rui; Yang, Fan; MacLellan, James; Marsh, Terence; Liu, Yan; Liao, Wei

    2013-01-01

    This study investigated the effects of corn stover as a supplemental feed on anaerobic digestion of dairy manure under different hydraulic retention times (HRT). The results elucidated that both HRT and corn stover supplement significantly influenced microbial community and corresponding anaerobic digestion performance. The highest biogas production of 497 mL per gram total solid loading per day was observed at a HRT of 40 days from digestion of manure supplemented with corn stover. Biogas production was closely correlated with the populations of Bacteroidetes, Clostridia and methanogens. Composition of the solid digestate (AD fiber) from the co-digestion of corn stover and dairy manure was similar to the digestion of dairy manure. However, the hydrolysis of AD fiber was significantly (P < 0.05) different among the different digestions. Both HRT and feed composition influenced the hydrolyzability of AD fiber via shifting the composition of microbial community.

  10. High titer gluconic acid fermentation by Aspergillus niger from dry dilute acid pretreated corn stover without detoxification.

    Science.gov (United States)

    Zhang, Hongsen; Zhang, Jian; Bao, Jie

    2016-03-01

    This study reported a high titer gluconic acid fermentation using dry dilute acid pretreated corn stover (DDAP) hydrolysate without detoxification. The selected fermenting strain Aspergillus niger SIIM M276 was capable of inhibitor degradation thus no detoxification on pretreated corn stover was required. Parameters of gluconic acid fermentation in corn stover hydrolysate were optimized in flasks and in fermentors to achieve 76.67 g/L gluconic acid with overall yield of 94.91%. The sodium gluconate obtained from corn stover was used as additive for extending setting time of cement mortar and similar function was obtained with starch based sodium gluconate. This study provided the first high titer gluconic acid production from lignocellulosic feedstock with potential of industrial applications.

  11. Quantifying cradle-to-farm gate life-cycle impacts associated with fertilizer used for corn, soybean, and stover production

    Energy Technology Data Exchange (ETDEWEB)

    Powers, Susan E. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2005-05-01

    Fertilizer use can cause environmental problems, particularly eutrophication of water bodies from excess nitrogen or phosphorus. Increased fertilizer runoff is a concern for harvesting corn stover for ethanol production.

  12. Comparison of chemical composition and energy properties of torrefied switchgrass and corn stover

    Directory of Open Access Journals (Sweden)

    Jaya Shankar eTumuluru

    2015-11-01

    Full Text Available In the present study, 6-mm ground corn stover and switchgrass were torrefied in temperatures ranging from 180 to 270°C for 15 to 120-min residence time. Thermogravimetric analyzer was used to do the torrefaction studies. At a temperature of >270°C and a 30-min residence time the mass loss increased to >45%. At 180°C and 120 min there was about 56 and 73% of moisture loss in the corn stover and switchgrass further increasing the temperature to 270°C and 120 min resulted in about 78.8% to 88.18% moisture loss in both the feedstock. Additionally, at these temperatures there was significant decrease in ash and volatile content and increase in the fixed carbon content for both the biomasses tested. The ultimate composition like carbon content increased and hydrogen content decreased with increase in the torrefaction temperature and time. At 270°C and 15 min residence time, the carbon content observed was 54.92 and 53.94% and hydrogen content observed was 2.74 and 3.14%. Nitrogen and sulfur content measured at 270°C and 120 min were 0.98, 0.8, 0.076 and 0.07% for both the corn stover and switchgrass. The H/C and O/C ratio calculated decreased to the lowest values of 0.59 and 0.64, and 0.71 and 0.76 for both biomasses. The van Krevelen diagram drawn for corn stover and switchgrass torrefied at 270°C is closer to coals like Illinois Basis and Powder River Basin. In the present study the maximum higher heating that was observed by corn stover and switchgrass was 21.51 and 21.53 MJ/kg at 270°C and a 120-min residence time. From these results it can be concluded that corn stover and switchgrass, after torrefaction, shows consistent proximate, ultimate, and energy properties.

  13. Soil nutrient budgets following projected corn stover harvest for biofuel production in the conterminous United States

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shuguang

    2015-01-01

    Increasing demand for food and biofuel feedstocks may substantially affect soil nutrient budgets, especially in the United States where there is great potential for corn (Zea mays L) stover as a biofuel feedstock. This study was designed to evaluate impacts of projected stover harvest scenarios on budgets of soil nitrogen (N), phosphorus (P), and potassium (K) currently and in the future across the conterminous United States. The required and removed N, P, and K amounts under each scenario were estimated on the basis of both their average contents in grain and stover and from an empirical model. Our analyses indicate a small depletion of soil N (−4 ± 35 kg ha−1) and K (−6 ± 36 kg ha−1) and a moderate surplus of P (37 ± 21 kg ha−1) currently on the national average, but with a noticeable variation from state to state. After harvesting both grain and projected stover, the deficits of soil N, P, and K were estimated at 114–127, 26–27, and 36–53 kg ha−1 yr−1, respectively, in 2006–2010; 131–173, 29–32, and 41–96 kg ha−1 yr−1, respectively, in 2020; and 161–207, 35–39, and 51–111 kg ha−1 yr−1, respectively, in 2050. This study indicates that the harvestable stover amount derived from the minimum stover requirement for maintaining soil organic carbon level scenarios under current fertilization rates can be sustainable for soil nutrient supply and corn production at present, but the deficit of P and K at the national scale would become larger in the future.

  14. Modeled Impacts of Cover Crops and Vegetative Barriers on Corn Stover Availability and Soil Quality

    Energy Technology Data Exchange (ETDEWEB)

    Ian J. Bonner; David J. Muth Jr.; Joshua B. Koch; Douglas L. Karlen

    2014-06-01

    Environmentally benign, economically viable, and socially acceptable agronomic strategies are needed to launch a sustainable lignocellulosic biofuel industry. Our objective was to demonstrate a landscape planning process that can ensure adequate supplies of corn (Zea mays L.) stover feedstock while protecting and improving soil quality. The Landscape Environmental Assessment Framework (LEAF) was used to develop land use strategies that were then scaled up for five U.S. Corn Belt states (Nebraska, Iowa, Illinois, Indiana, and Minnesota) to illustrate the impact that could be achieved. Our results show an annual sustainable stover supply of 194 million Mg without exceeding soil erosion T values or depleting soil organic carbon [i.e., soil conditioning index (SCI)?>?0] when no-till, winter cover crop, and vegetative barriers were incorporated into the landscape. A second, more rigorous conservation target was set to enhance soil quality while sustainably harvesting stover. By requiring erosion to be <1/2 T and the SCI-organic matter (OM) subfactor to be >?0, the annual sustainable quantity of harvestable stover dropped to148 million Mg. Examining removal rates by state and soil resource showed that soil capability class and slope generally determined the effectiveness of the three conservation practices and the resulting sustainable harvest rate. This emphasizes that sustainable biomass harvest must be based on subfield management decisions to ensure soil resources are conserved or enhanced, while providing sufficient biomass feedstock to support the economic growth of bioenergy enterprises.

  15. Promoting anaerobic biogasification of corn stover through biological pretreatment by liquid fraction of digestate (LFD).

    Science.gov (United States)

    Hu, Yun; Pang, Yunzhi; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Chufo, Wachemo Akiber; Jaffar, Muhammad; Li, Xiujin

    2015-01-01

    A new biological pretreatment method by using liquid fraction of digestate (LFD) was advanced for promoting anaerobic biogasification efficiency of corn stover. 17.6% TS content and ambient temperature was appropriate for pretreatment. The results showed that C/N ratio decreased to about 30, while total lignin, cellulose, and hemicellulose (LCH) contents were reduced by 8.1-19.4% after pretreatment. 3-days pretreatment was considered to be optimal, resulting in 70.4% more biogas production, 66.3% more biomethane yield and 41.7% shorter technical digestion time compared with the untreated stover. The reductions on VS, cellulose, and hemicellulose were increased by 22.1-35.9%, 22.3-35.4%, and 19.8-27.2% for LFD-treated stovers. The promoted anaerobic biogasification efficiency was mainly attributed to the improved biodegradability due to the pre-decomposition role of the bacteria in LFD. The method proved to be an efficient and low cost approach for producing bioenergy from corn stover, meanwhile, reducing LFD discharge and minimizing its potential pollution. PMID:25459818

  16. Rapid Changes in Soil Carbon and Structural Properties Due to Stover Removal from No-Till Corn Plots

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Canqui, H; Lal, Rattan; Post, W M.; Izaurralde, R Cesar C.; Owens, L B.

    2006-06-01

    Harvesting corn (Zea mays L.) stover for producing ethanol may be beneficial to palliate the dependence on fossil fuels and reduce CO2 emissions to the atmosphere, but stover harvesting may deplete soil organic carbon (SOC) and degrade soil structure. We investigated the impacts of variable rates of stover removal from no-till (NT) continuous corn systems on SOC and soil structural properties after 1 year of stover removal in three soils in Ohio: Rayne silt loam (fine-loamy, mixed, active, mesic Typic Hapludults) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston. This study also assessed relationships between SOC and soil structural properties as affected by stover management. Six stover treatments that consisted of removing 100, 75, 50, 25, and 0, and adding 100% of corn stover corresponding to 0 (T0), 1.25 (T1.25), 2.50 (T2.5), 3.75 (T3.75), 5.00 (T5), and 10.00 (T10) Mg haj1 of stover, respectively, were studied for their total SOC concentration, bulk density (>b), aggregate stability, and tensile strength (TS) of aggregates. Effects of stover removal on soil properties were rapid and significant in the 0- to 5-cm depth, although the magnitude of changes differed among soils after only 1 year of stover removal. The SOC concentration declined with increase in removal rates in silt loams but not in clay loam soils. It decreased by 39% at Coshocton and 30% at Charleston within 1 year of complete stover removal. At the same sites, macroaggregates contained 10% to 45% more SOC than microaggregates. Stover removal reduced 94.75-mm macroaggregates and increased microaggregates (P G 0.01). Mean weight diameter (MWD) and TS of aggregates in soils without stover (T0) were 1.7 and 3.3 times lower than those in soils with normal stover treatments (T5) across sites. The SOC concentration was negatively correlated with >b and positively with MWD and

  17. Fractal kinetic analysis of the enzymatic saccharification of CO2 laser pretreated corn stover.

    Science.gov (United States)

    Tian, Shuang-Qi; Ma, Sen; Wang, Xin-Wei; Zhang, Zheng-Nan

    2013-10-15

    The enzymatic hydrolyses of laser pretreated corn stover as a novel pretreatment method were examined to establish a simplified kinetic model for the complicated hydrolysis process. The time dependence of the total reducing sugars amount was closely related to the amounts of cellulosic materials and amounts of cellulase. The evaluated model fitted very well with the experimental data of enzymatic hydrolysis of laser pretreated corn stover under different conditions, including cellulase loading, nature of substrate, substrate loading in the reaction medium. The results indicated that the complex kinetics of cellulase enzymatic saccharification could be assessed with the fractal kinetic model. The cellulase enzymatic reaction process was effectively predicted and controlled with the kinetic model. The result showed that the model could effectively reflect dynamic process of enzyme hydrolysis.

  18. Comparison of Ultrasonic and CO2 Laser Pretreatment Methods on Enzyme Digestibility of Corn Stover

    Directory of Open Access Journals (Sweden)

    Li-Li Zuo

    2012-03-01

    Full Text Available To decrease the cost of bioethanol production, biomass recalcitrance needs to be overcome so that the conversion of biomass to bioethanol becomes more efficient. CO2 laser irradiation can disrupt the lignocellulosic physical structure and reduce the average size of fiber. Analyses with Fourier transform infrared spectroscopy, specific surface area, and the microstructure of corn stover were used to elucidate the enhancement mechanism of the pretreatment process by CO2 laser irradiation. The present work demonstrated that the CO2 laser had potential to enhance the bioconversion efficiency of lignocellulosic waste to renewable bioethanol. The saccharification rate of the CO2 laser pretreatment was significantly higher than ultrasonic pretreatment, and reached 27.75% which was 1.34-fold of that of ultrasonic pretreatment. The results showed the impact of CO2 laser pretreatment on corn stover to be more effective than ultrasonic pretreatment.

  19. Sequential dilute acid and alkali pretreatment of corn stover: sugar recovery efficiency and structural characterization.

    Science.gov (United States)

    Lee, Jae Won; Kim, Ji Young; Jang, Hyun Min; Lee, Min Woo; Park, Jong Moon

    2015-04-01

    The objectives of this study were to explore the feasibility of applying sequential dilute acid and alkali pretreatment into the hydrolysis of corn stover and to elucidate the effects of structural changes in the biomass on its enzymatic digestibility. H2SO4 used in the first step selectively hydrolyzed 74.6-77.3% of xylan and NaOH used in the second step removed 85.9-89.4% of lignin, from the raw corn stover. Compared to single dilute acid pretreatment, the proposed combined pretreatment minimized the generation of byproducts such as acetic acid, furfural and hydroxymethylfurfural in the hydrolysates, and enhanced the enzymatic hydrolysis of the solid residue. The changes in the structural features (porosity, morphology, and crystallinity) of the solid residue were strongly correlated with the enhancement of enzymatic digestibility. The overall glucose and xylose yields finally obtained after enzymatic hydrolysis reached 89.1-97.9% and 71.0-75.9%, respectively.

  20. Impact of enzymatic pretreatment on corn stover degradation and biogas production.

    Science.gov (United States)

    Schroyen, Michel; Vervaeren, Han; Van Hulle, Stijn W H; Raes, Katleen

    2014-12-01

    Corn stover is an agricultural residue consisting of lignocellulose, cellulose and hemicellulose polymers, sheeted in a lignin barrier. Corn stover can be used as feedstock for biogas production. Previous studies have shown biological pretreatment of lignocellulose materials can increase digestibility of the substrate improving hydrolysis, the rate-limiting step in biogas production. The impact of pretreating with different enzymes (laccase, manganese peroxidase and versatile peroxidase) and different incubation times, (0, 6 and 24 h) was studied. The effect on the matrix and biomethane production was determined. Pretreatments did not yield high concentrations of phenolic compounds, inhibitors of biogas production. The laccase enzyme showed an increase in biomethane production of 25% after 24 h of incubation. Pretreatment with peroxidase enzymes increased biomethane production with 17% after 6 h of incubation. As such it can be concluded that by introducing the different enzymes at different stages during pretreatment an increased biomethane production can be obtained.

  1. Effects of total ammonia nitrogen concentration on solid-state anaerobic digestion of corn stover.

    Science.gov (United States)

    Wang, Zhongjiang; Xu, Fuqing; Li, Yebo

    2013-09-01

    The inhibitive effect of total ammonia nitrogen (TAN) (including NH3 and NH4(+)) on solid-state anaerobic digestion of corn stover was investigated in batch reactors at 37°C. The highest methane yield of 107.0 L/kg VS(feed) was obtained at a TAN concentration of 2.5 g/kg (based on total weight). TAN concentrations greater than 2.5 g/kg resulted in decreased methane yields, with a 50% reduction observed at a concentration of 6.0 g/kg. Reduced reaction rates and microbial activities for hydrolysis of cellulose and methanogenesis from acetate were observed at TAN concentrations higher than 4.3 g/kg. Strong ammonia stress was indicated at butyrate concentrations higher than 300 mg/kg. Result showed that the effluent of liquid anaerobic digestion can provide enough nitrogen for solid-state anaerobic digestion of corn stover.

  2. Impact of enzymatic pretreatment on corn stover degradation and biogas production.

    Science.gov (United States)

    Schroyen, Michel; Vervaeren, Han; Van Hulle, Stijn W H; Raes, Katleen

    2014-12-01

    Corn stover is an agricultural residue consisting of lignocellulose, cellulose and hemicellulose polymers, sheeted in a lignin barrier. Corn stover can be used as feedstock for biogas production. Previous studies have shown biological pretreatment of lignocellulose materials can increase digestibility of the substrate improving hydrolysis, the rate-limiting step in biogas production. The impact of pretreating with different enzymes (laccase, manganese peroxidase and versatile peroxidase) and different incubation times, (0, 6 and 24 h) was studied. The effect on the matrix and biomethane production was determined. Pretreatments did not yield high concentrations of phenolic compounds, inhibitors of biogas production. The laccase enzyme showed an increase in biomethane production of 25% after 24 h of incubation. Pretreatment with peroxidase enzymes increased biomethane production with 17% after 6 h of incubation. As such it can be concluded that by introducing the different enzymes at different stages during pretreatment an increased biomethane production can be obtained. PMID:25285760

  3. Simultaneous saccharification and fermentation of ground corn stover for the production of fuel ethanol using Phanerochaete chrysosporium, Gloeophyllum trabeum, Saccharomyces cerevisiae, and Escherichia coli K011.

    Science.gov (United States)

    Vincent, Micky; Pometto, Anthony L; van Leeuwen, J Hans

    2011-07-01

    Enzymatic saccharification of corn stover using Phanerochaete chrysosporium and Gloeophyllum trabeum and subsequent fermentation of the saccharification products to ethanol by Saccharomyces cerevisiae and Escherichia coli K011 were achieved. Prior to simultaneous saccharification and fermentation (SSF) for ethanol production, solid-state fermentation was performed for four days on ground corn stover using either P. chrysosporium or G. trabeum to induce in situ cellulase production. During SSF with S. cerevisiae or E. coli, ethanol production was the highest on day 4 for all samples. For corn stover treated with P. chrysosporium, the conversion to ethanol was 2.29 g/100 g corn stover with S. cerevisiae as the fermenting organism, whereas for the sample inoculated with E. coli K011, the ethanol production was 4.14 g/100 g corn stover. Corn stover treated with G. trabeum showed a conversion 1.90 and 4.79 g/100 g corn stover with S. cerevisiae and E. coli K011 as the fermenting organisms, respectively. Other fermentation co-products, such as acetic acid and lactic acid, were also monitored. Acetic acid production ranged between 0.45 and 0.78 g/100 g corn stover, while no lactic acid production was detected throughout the 5 days of SSF. The results of our experiment suggest that it is possible to perform SSF of corn stover using P. chrysosporium, G. trabeum, S. cerevisiae and E. coli K011 for the production of fuel ethanol.

  4. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain

    OpenAIRE

    Ting Jiang; Hui Qiao; Zhaojuan Zheng; Qiulu Chu; Xin Li; Qiang Yong; Jia Ouyang

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-...

  5. ALKALI EXTRACTION OF HEMICELLULOSE FROM DEPITHED CORN STOVER AND EFFECTS ON SODA-AQ PULPING

    OpenAIRE

    Heli Cheng; Huaiyu Zhan; Shiyu Fu; Lucian A. Lucia

    2011-01-01

    A biorefinery using the process of hemicellulose pre-extraction and subsequent pulping provides a promising way for the utilization of straw biomass and resolution of problems related to silicon. In this work, hemicellulose was extracted from depithed corn stover with sodium hydroxide solution before soda-AQ pulping. Components of the extracts were quantified by ion chromatography. The parameters (alkali concentration and temperature) affecting hemicellulose pre-extraction were optimized. The...

  6. Integrated Production of Xylonic Acid and Bioethanol from Acid-Catalyzed Steam-Exploded Corn Stover.

    Science.gov (United States)

    Zhu, Junjun; Rong, Yayun; Yang, Jinlong; Zhou, Xin; Xu, Yong; Zhang, Lingling; Chen, Jiahui; Yong, Qiang; Yu, Shiyuan

    2015-07-01

    High-efficiency xylose utilization is one of the restrictive factors of bioethanol industrialization. However, xylonic acid (XA) as a new bio-based platform chemical can be produced by oxidation of xylose with microbial. So, an applicable technology of XA bioconversion was integrated into the process of bioethanol production. After corn stover was pretreated with acid-catalyzed steam-explosion, solid and liquid fractions were obtained. The liquid fraction, also named as acid-catalyzed steam-exploded corn stover (ASC) prehydrolyzate (mainly containing xylose), was catalyzed with Gluconobacter oxydans NL71 to prepare XA. After 72 h of bioconversion of concentrated ASC prehydrolyzate (containing 55.0 g/L of xylose), the XA concentration reached a peak value of 54.97 g/L, the sugar utilization ratio and XA yield were 94.08 and 95.45 %, respectively. The solid fraction was hydrolyzed to produce glucose with cellulase and then fermented with Saccharomyces cerevisiae NL22 to produce ethanol. After 18 h of fermentation of concentrated enzymatic hydrolyzate (containing 86.22 g/L of glucose), the ethanol concentration reached its highest value of 41.48 g/L, the sugar utilization ratio and ethanol yield were 98.72 and 95.25 %, respectively. The mass balance showed that 1 t ethanol and 1.3 t XA were produced from 7.8 t oven dry corn stover.

  7. Enhanced glucose yield and structural characterization of corn stover by sodium carbonate pretreatment.

    Science.gov (United States)

    Kim, Ilgook; Rehman, Muhammad Saif Ur; Han, Jong-In

    2014-01-01

    Na2CO3 was employed as an efficient yet cheap alkaline catalyst for the pretreatment of corn stover. To systematically obtain an optimal condition, the effects of critical pretreatment parameters including Na2CO3 concentration (2-6%), temperature (120-160 °C), and reaction time (10-30 min) on glucose yield were evaluated in lab-scale using response surface methodology. The best conditions were found to be Na2CO3 of 4.1%, temperature of 142.6 °C, and reaction time of 18.0 min, under which glucose yield reached to 267.5 g/kg biomass. Physical properties, based on scanning electron microscopy (SEM) imagery, surface area, pore volume and size, and crystallinity of pretreated corn stover, were examined. The Na2CO3 pretreatment apparently damaged the surface and altered structural features of corn stover, which resulted in the enhancement of enzymatic of hydrolysis. These results evidently support that Na2CO3 is indeed a robust and feasible catalyst for pretreating lignocellulosic biomass.

  8. Probing the nature of AFEX-pretreated corn stover derived decomposition products that inhibit cellulase activity.

    Science.gov (United States)

    Humpula, James F; Uppugundla, Nirmal; Vismeh, Ramin; Sousa, Leonardo; Chundawat, Shishir P S; Jones, A Daniel; Balan, Venkatesh; Dale, Bruce E; Cheh, Albert M

    2014-01-01

    Sequential fractionation of AFEX-pretreated corn stover extracts was carried out using ultra-centrifugation, ultra-filtration, and solid phase extraction to isolate various classes of pretreatment products to evaluate their inhibitory effect on cellulases. Ultra-centrifugation removed dark brown precipitates that caused no appreciable enzyme inhibition. Ultra-filtration of ultra-centrifuged AFEX-pretreated corn stover extractives using a 10 kDa molecular weight cutoff (MWCO) membrane removed additional high molecular weight components that accounted for 24-28% of the total observed enzyme inhibition while a 3 kDa MWCO membrane removed 60-65%, suggesting significant inhibition is caused by oligomeric materials. Solid phase extraction (SPE) of AFEX-pretreated corn stover extractives after ultra-centrifugation removed 34-43% of the inhibition; ultra-filtration with a 5 kDa membrane removed 44-56% of the inhibition and when this ultra-filtrate was subjected to SPE a total of 69-70% of the inhibition were removed. Mass spectrometry found several phenolic compounds among the hydrophobic inhibition removed by SPE adsorption.

  9. Speciation of sulfur in biochar produced from pyrolysis and gasification of oak and corn stover.

    Science.gov (United States)

    Cheah, Singfoong; Malone, Shealyn C; Feik, Calvin J

    2014-01-01

    The effects of feedstock type and biomass conversion conditions on the speciation of sulfur in biochars are not well-known. In this study, the sulfur content and speciation in biochars generated from pyrolysis and gasification of oak and corn stover were determined. We found the primary determinant of the total sulfur content of biomass to be the feedstock from which the biochar is generated, with oak and corn stover biochars containing 160 and 600-800 ppm sulfur, respectively. In contrast, for sulfur speciation, we found the primary determinant to be the temperature combined with the thermochemical conversion method. The speciation of sulfur in biochars was determined using X-ray absorption near-edge structure (XANES), ASTM method D2492, and scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS). Biochars produced under pyrolysis conditions at 500-600 °C contain sulfate, organosulfur, and sulfide. In some cases, the sulfate contents are up to 77-100%. Biochars produced in gasification conditions at 850 °C contain 73-100% organosulfur. The increase of the organosulfur content as the temperature of biochar production increases suggests a similar sulfur transformation mechanism as that in coal, where inorganic sulfur reacts with hydrocarbon and/or H2 to form organosulfur when the coal is heated. EDS mapping of a biochar produced from corn stover pyrolysis shows individual sulfur-containing mineral particles in addition to the sulfur that is distributed throughout the organic matrix.

  10. Pretreatment of corn stover with diluted acetic acid for enhancement of acidogenic fermentation.

    Science.gov (United States)

    Zhao, Xu; Wang, Lijuan; Lu, Xuebin; Zhang, Shuting

    2014-04-01

    A Box-Behnken design of response surface method was used to optimize acetic acid-catalyzed hydrothermal pretreatment of corn stover, in respect to acid concentration (0.05-0.25%), treatment time (5-15 min) and reaction temperature (180-210°C). Acidogenic fermentations with different initial pH and hydrolyzates were also measured to evaluate the optimal pretreatment conditions for maximizing acid production. The results showed that pretreatment with 0.25% acetic acid at 191°C for 7.74 min was found to be the most optimal condition for pretreatment of corn stover under which the production of acids can reach the highest level. Acidogenic fermentation with the hydrolyzate of pretreatment at the optimal condition at the initial pH=5 was shown to be butyric acid type fermentation, producing 21.84 g acetic acid, 7.246 g propionic acid, 9.170 butyric acid and 1.035 g isovaleric acid from 100g of corn stover in 900 g of water containing 2.25 g acetic acid.

  11. Deletion of alcohol dehydrogenase 2 gene in Pachysolen tannophilus improves ethanol production from corn stover hydrolysates

    Directory of Open Access Journals (Sweden)

    Sen Yang

    2015-12-01

    Full Text Available Although ethanol derived from lignocellulosic biomass is a promising alternative biofuel, the conversion rate of xylose to ethanol by fermentation is not ideal due to the low efficiency of many common yeasts in utilizing xylose. Pachysolen tannophilus can convert hexose and pentose such as L-arabinose, xylose and glucose in lignocellulosic hydrolysates to ethanol simultaneously. To increase the conversion of corn stover hydrolysates to bioethanol, the effect of alcohol dehydrogenase 2 gene (adh2 deletion in P. tannophilus on bioethanol production from corn stover hydrolysates was investigated. Two adh2 deletants (heterozygote ND and homozygote MC were constructed by using the short flanking homology PCR (SFH-PCR. The ND and MC strains showed lower alcohol dehydrogenase 2 (ADH2 activity than the initial strain P-01. In the fermented pentose and hexose sugars of MC and ND, the ethanol concentrations (g/L reached 15.8 and 18.9 versus14.6 of the initial P-01, while in the corn stover hydrolysate medium, the ethanol concentrations (g/L were 9.1 for MC and 9.8 for ND versus 7.5 for the initial strain P-01. This research provides useful information for improving the conversion efficiency of hexose and pentose to bioethanol by Pachysolen tannophilus.

  12. Mesophilic anaerobic co-digestion of cattle manure and corn stover with biological and chemical pretreatment.

    Science.gov (United States)

    Wei, Yufang; Li, Xiujin; Yu, Liang; Zou, Dexun; Yuan, Hairong

    2015-12-01

    Biological and chemical pretreatment methods using liquid fraction of digestate (LFD), ammonia solution (AS), and NaOH were compared in the process of mesophilic anaerobic co-digestion of cattle manure and corn stover. The results showed that LFD pretreatment could achieve the same effect as the chemical pretreatment (AS, NaOH) at the performance of anaerobic digestion (AD). Compared with the untreated corn stover, the cumulative biomethane production (CBP) and the volatile solid (VS) removal rate of three pretreatment methods were increased by 25.40-30.12% and 14.48-16.84%, respectively, in the co-digestion of cattle manure and corn stover. T80 was 20-37.14% shorter than that of the control test (35 ± 1 days). LFD pretreatment not only achieved the same effect as chemical pretreatment, but also reduced T80 and improved buffer capacity of anaerobic digestion system. Therefore, this study provides meaningful insight for exploring efficient pretreatment strategy to stabilize and enhance AD performance for practical application. PMID:26409855

  13. Mathematical model parameters for describing the particle size spectra of knife-milled corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Bitra, V.S.P [University of Tennessee; Womac, A.R. [University of Tennessee; Yang, Y.T. [University of Tennessee; Miu, P.I. [University of Tennessee; Igathanathane, C. [Mississippi State University (MSU)

    2009-09-01

    Particle size distributions of Corn stover (Zea mays L.) created by a knife mill were determined using integral classifying screens with sizes from 12.7 to 50.8 mm, operating at speeds from 250 to 500 rpm, and mass input rates ranging from 1 to 9 kg min_1. Particle distributions were classified using American Society of Agricultural and Biological Engineers (ASABE) standardised sieves for forage analysis that incorporated a horizontal sieving motion. The sieves were made from machined-aluminium with their thickness proportional to the sieve opening dimensions. A wide range of analytical descriptors that could be used to mathematically represent the range of particle sizes in the distributions were examined. The correlation coefficients between geometric mean length and screen size, feed rate, and speed were 0.980, 0.612, and _0.027, respectively. Screen size and feed rate directly influenced particle size, whereas operating speed had a weak indirect relation with particle size. The Rosin Rammler equation fitted the chopped corn stover size distribution data with coefficient of determination (R2) > 0.978. This indicated that particle size distribution of corn stover was well-fit by the Rosin Rammler function. This can be attributed to the fact that Rosin Rammler expression was well suited to the skewed distribution of particle sizes. Skewed distributions occurred when significant quantities of particles, either finer or coarser, existed or were removed from region of the predominant size. The mass relative span was slightly greater than 1, which indicated that it was a borderline narrow to wide distribution of particle sizes. The uniformity coefficient was <4.0 for 19.0 50.8 mm screens, which indicated particles of relatively uniform size. Knife mill chopping of corn stover produced fine-skewed mesokurtic particles with 12.7 50.8 mm screens. Size-related parameters, namely, geometric mean length, Rosin Rammler size parameter, median length, effective length, and

  14. Corn Belt soil carbon and macronutrient budgets with projected sustainable stover harvest

    Science.gov (United States)

    Tan, Zhengxi; Liu, Shu-Guang

    2015-01-01

    Corn (Zea mays L.) stover has been identified as a prime feedstock for biofuel production in the U.S. Corn Belt because of its perceived abundance and availability, but long-term stover harvest effects on regional nutrient budgets have not been evaluated. We defined the minimum stover requirement (MSR) to maintain current soil organic carbon levels and then estimated current and future soil carbon (C), nitrogen (N), phosphorus (P), and potassium (K) budgets for various stover harvest scenarios. Analyses for 2006 through 2010 across the entire Corn Belt indicated that currently, 28 Tg or 1.6 Mg ha−1 of stover could be sustainably harvested from 17.95 million hectares (Mha) with N, P, and K removal of 113, 26, and 47 kg ha−1, respectively, and C removal for that period was estimated to be 4.55 Mg C ha−1. Assuming continued yield increases and a planted area of 26.74 Mha in 2050, 77.4 Tg stover (or 2.4 Mg ha−1) could be sustainably harvested with N, P, and K removal of 177, 37, and 72 kg ha−1, respectively, along with C removal of ∼6.57 Mg C ha−1. Although there would be significant variation across the region, harvesting only the excess over the MSR under current fertilization rates would result in a small depletion of soil N (−5 ± 27 kg ha−1) and K (−20 ± 31 kg ha−1) and a moderate surplus of P (36 ± 18 kg ha−1). Our 2050 projections based on continuing to keep the MSR, but having higher yields indicate that soil N and K deficits would become larger, thus emphasize the importance of balancing soil nutrient supply with crop residue removal.

  15. ALKALI EXTRACTION OF HEMICELLULOSE FROM DEPITHED CORN STOVER AND EFFECTS ON SODA-AQ PULPING

    Directory of Open Access Journals (Sweden)

    Heli Cheng

    2011-02-01

    Full Text Available A biorefinery using the process of hemicellulose pre-extraction and subsequent pulping provides a promising way for the utilization of straw biomass and resolution of problems related to silicon. In this work, hemicellulose was extracted from depithed corn stover with sodium hydroxide solution before soda-AQ pulping. Components of the extracts were quantified by ion chromatography. The parameters (alkali concentration and temperature affecting hemicellulose pre-extraction were optimized. The main constituent of hemicellulose in corn stover was xylan, which accounted for 18.1% of the depithed raw material. More than 90% of the xylan can be extracted under the optimal conditions: NaOH concentration of 10%, temperature of 75ºC, and time of 2h. Solid fractions after extraction were subjected to soda-AQ pulping. In comparison with control pulp obtained without extraction, it was found that alkali pre-extraction could improve the brightness and decrease kappa number of the subsequent pulp, causing a slight loss of yield, viscosity, density, and burst strength, but an obvious improvement of tear strength. Moreover, the silicon content was decreased by 79.8% when the extraction conditions were set at 75 ºC with alkali concentration of 8%, suggesting that pre-extraction of hemicellulose is a potential way to solve silicon problems associated with alkaline pulping of stover.

  16. Bioethanol production from corn stover using aqueous ammonia pretreatment and two-phase simultaneous saccharification and fermentation (TPSSF).

    Science.gov (United States)

    Li, Xuan; Kim, Tae Hyun; Nghiem, Nhuan P

    2010-08-01

    An integrated bioconversion process was developed to convert corn stover derived pentose and hexose to ethanol effectively. In this study, corn stover was pretreated by soaking in aqueous ammonia (SAA), which retained glucan ( approximately 100%) and xylan (>80%) in the solids. The pretreated carbohydrates-rich corn stover was converted to ethanol via two-phase simultaneous saccharification and fermentation (TPSSF). This single-reactor process employed sequential simultaneous saccharification and fermentation (SSF), i.e. pentose conversion using recombinant Escherichia coli KO11 in the first phase, followed by hexose conversion with Saccharomyces cerevisiae D5A in the second phase. In the first phase, 88% of xylan digestibility was achieved through the synergistic action of xylanase and endo-glucanase with minimal glucan hydrolysis (10.5%). Overall, the TPSSF using 12-h SAA-treated corn stover resulted in the highest ethanol concentration (22.3g/L), which was equivalent to 84% of the theoretical ethanol yield based on the total carbohydrates (glucan+xylan) in the untreated corn stover.

  17. Minimizing asynchronism to improve the performances of anaerobic co-digestion of food waste and corn stover.

    Science.gov (United States)

    Zhou, Qi; Shen, Fei; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Jaffu, Muhanmad; Chufo, Akiber; Li, Xiujin

    2014-08-01

    To investigate the existence of the asynchronism during the anaerobic co-digestion of different substrates, two typical substrates of food waste and corn stover were anaerobically digested with altering organic loadings (OL). The results indicated that the biodegradability of food waste and corn stover was calculated to be 81.5% and 55.1%, respectively, which was main reason causing the asynchronism in the co-digestion. The asynchronism was minimized by NaOH-pretreatment for corn stover, which could improve the biodegradability by 36.6%. The co-digestion with pretreatment could increase the biomethane yield by 12.2%, 3.2% and 0.6% comparing with the co-digestion without pretreatment at C/N ratios of 20, 25 and 30 at OL of 35 g-VS/L, respectively. The results indicated that the digestibility synchronism of food waste and corn stover was improved through enhancing the accessibility and digestibility of corn stover. The biomethane production could be increased by minimizing the asynchronism of two substrates in co-digestion.

  18. Bioflocculant production from untreated corn stover using Cellulosimicrobium cellulans L804 isolate and its application to harvesting microalgae

    OpenAIRE

    Liu, Weijie; Zhao, Chenchu; Jiang, Jihong; Lu, Qian; Hao, Yan; Wang, Liang; Liu, Cong

    2015-01-01

    Background Microalgae are widely studied for biofuel production. Nevertheless, harvesting step of biomass is still a critical challenge. Bioflocculants have been applied in numerous applications including the low-cost harvest of microalgae. A major bottleneck for commercial application of bioflocculant is its high production cost. Lignocellulosic substrates are abundantly available. Hence, the hydrolyzates of rice stover and corn stover have been used as carbon source to produce the biofloccu...

  19. Xylitol production from DEO hydrolysate of corn stover by Pichia stipitis YS-30.

    Science.gov (United States)

    Rodrigues, Rita C L B; Kenealy, William R; Jeffries, Thomas W

    2011-10-01

    Corn stover that had been treated with vapor-phase diethyl oxalate released a mixture of mono- and oligosaccharides consisting mainly of xylose and glucose. Following overliming and neutralization, a D-xylulokinase mutant of Pichia stipitis, FPL-YS30 (xyl3-∆1), converted the stover hydrolysate into xylitol. This research examined the effects of phosphoric or gluconic acids used for neutralization and urea or ammonium sulfate used as nitrogen sources. Phosphoric acid improved color and removal of phenolic compounds. D-Gluconic acid enhanced cell growth. Ammonium sulfate increased cell yield and maximum specific cell growth rate independently of the acid used for neutralization. The highest xylitol yield (0.61 g(xylitol)/g(xylose)) and volumetric productivity (0.18 g(xylitol)/g(xylose )l) were obtained in hydrolysate neutralized with phosphoric acid. However, when urea was the nitrogen source the cell yield was less than half of that obtained with ammonium sulfate.

  20. Changes in long-term no-till corn growth and yield under different rates of stover mulch

    Energy Technology Data Exchange (ETDEWEB)

    Blanco-Canqui, Dr. Humberto [Ohio State University, The, Columbus; Lal, Dr. Rattan [Ohio State University, The, Columbus; Post, Wilfred M [ORNL; Owens, Lloyd [U.S. Department of Agriculture, Agricultural Research Service

    2006-09-01

    Received for publication January 4, 2006. Removal of corn (Zea mays L.) stover for biofuel production may affect crop yields by altering soil properties. A partial stover removal may be feasible, but information on appropriate rates of removal is unavailable. We assessed the short-term impacts of stover management on long-term no-till (NT) continuous corn grown on a Rayne silt loam (fine loamy, mixed, active, mesic Typic Hapludults) at Coshocton, Hoytville clay loam (fine, illitic, mesic Mollic Epiaqualfs) at Hoytville, and Celina silt loam (fine, mixed, active, mesic Aquic Hapludalfs) at South Charleston in Ohio, and predicted corn yield from soil properties using principal component analysis (PCA). The study was conducted in 2005 on the ongoing experiments started in May 2004 under 0 (T0), 25 (T25), 50 (T50), 75 (T75), 100 (T100), and 200 (T200)% of stover corresponding to 0, 1.25, 2.50, 3.75, 5.00, and 10.00 Mg ha-1 of stover, respectively. Stover removal promoted early emergence and rapid seedling growth (P < 0.01). Early-emerging plants grew taller than late-emerging plants up to about 50 d, and then the heights reversed at Coshocton and were comparable at other two sites. Stover management affected corn yield only at the Coshocton site where average grain and stover yields in the T200, T100, T75, and T50 (10.8 and 10.3 Mg ha-1) were higher than those in the T0 and T25 treatments (8.5 and 6.5 Mg ha-1) (P < 0.01), showing that stover removal at rates as low as 50% (2.5 Mg ha-1) decreased crop yields. Soil properties explained 71% of the variability in grain yield and 33% of the variability in stover yield for the Coshocton site. Seventeen months after the start of the experiment, effects of stover management on corn yield and soil properties were site-specific.

  1. De-ashing treatment of corn stover improves the efficiencies of enzymatic hydrolysis and consequent ethanol fermentation.

    Science.gov (United States)

    He, Yanqing; Fang, Zhenhong; Zhang, Jian; Li, Xinliang; Bao, Jie

    2014-10-01

    In this study, corn stover with different ash content was pretreated using dry dilute acid pretreatment method at high solids loading of 67% (w/w). The results indicate that the hydrolysis yield of corn stover is increased from 43.30% to 70.99%, and ethanol yield is increased from 51.74% to 73.52% when ash is removed from 9.60% to 4.98%. The pH measurement of corn stover slurry indicates that the decrease of pretreatment efficiency is due to the neutralization of sulfuric acid by alkaline compounds in the ash. The elemental analysis reveals that the ash has the similar composition with the farmland soil. This study demonstrates the importance of ash removal from lignocellulose feedstock under high solids content pretreatment.

  2. Quantitative characterization of the impact of pulp refining on enzymatic saccharification of the alkaline pretreated corn stover.

    Science.gov (United States)

    Xu, Huanfei; Li, Bin; Mu, Xindong; Yu, Guang; Liu, Chao; Zhang, Yuedong; Wang, Haisong

    2014-10-01

    In this work, corn stover was refined by a pulp refining instrument (PFI refiner) after NaOH pretreatment under varied conditions. The quantitative characterization of the influence of PFI refining on enzymatic hydrolysis was studied, and it was proved that the enhancement of enzymatic saccharification by PFI refining of the pretreated corn stover was largely due to the significant increment of porosity of substrates and the reduction of cellulose crystallinity. Furthermore, a linear relationship between beating degree and final total sugar yields was found, and a simple way to predict the final total sugar yields by easily testing the beating degree of PFI refined corn stover was established. Therefore, this paper provided the possibility and feasibility for easily monitoring the fermentable sugar production by the simple test of beating degree, and this will be of significant importance for the monitoring and controlling of industrial production in the future.

  3. Changes in plant cell-wall structure of corn stover due to hot compressed water pretreatment and enhanced enzymatic hydrolysis.

    Science.gov (United States)

    Zhou, Wei; Yang, Maohua; Wang, Caixia; Liu, Jianfei; Xing, Jianmin

    2014-08-01

    Corn stover is a potential feedstock for biofuel production. This work investigated physical and chemical changes in plant cell-wall structure of corn stover due to hot compressed water (HCW) pretreatment at 170-190 °C in a tube reactor. Chemical composition analysis showed the soluble hemicellulose content increased with pretreatment temperature, whereas the hemicellulose content decreased from 29 to 7 % in pretreated solids. Scanning electron microscopy revealed the parenchyma-type second cell-wall structure of the plant was almost completely removed at 185 °C, and the sclerenchyma-type second cell wall was greatly damaged upon addition of 5 mmol/L ammonium sulfate during HCW pretreatment. These changes favored accessibility for enzymatic action. Enzyme saccharification of solids by optimized pretreatment with HCW at 185 °C resulted in an enzymatic hydrolysis yield of 87 %, an enhancement of 77 % compared to the yield from untreated corn stover.

  4. Dry dilute acid pretreatment by co-currently feeding of corn stover feedstock and dilute acid solution without impregnation.

    Science.gov (United States)

    He, Yanqing; Zhang, Jian; Bao, Jie

    2014-04-01

    Impregnation of lignocellulose materials with dilute acid solution is a routine operation in conventional dilute acid pretreatment. The dry dilute acid pretreatment (DDAP) at high solids content up to 70% is naturally considered to require longer impregnation time. In this study, a co-currently feeding operation of corn stover and dilute sulfuric acid solution without any impregnation was tested for DDAP. The DDAP pretreated corn stover without impregnation is found to be essentially no difference in pretreatment efficiency compared to those with impregnation in the helically agitated reactor. The yield from cellulose to ethanol in SSF again shows no obvious difference between the DDAP pretreated corn stover with and without impregnation. This study suggests that impregnation in DDAP was not necessary under the helical agitation mixing. The results provided a useful way of cost reduction and process simplification in pretreatment.

  5. Solid state anaerobic co-digestion of tomato residues with dairy manure and corn stover for biogas production.

    Science.gov (United States)

    Li, Yangyang; Li, Yu; Zhang, Difang; Li, Guoxue; Lu, Jiaxin; Li, Shuyan

    2016-10-01

    Solid-state anaerobic co-digestion of tomato residues with dairy manure and corn stover was conducted at 20% total solids under 35°C for 45days. Results showed digestion of mixed tomato residues with dairy manure and corn stover improved methane yields. The highest VS reduction (46.2%) and methane yield (415.4L/kg VSfeed) were achieved with the ternary mixtures of 33% corn stover, 54% dairy manure, and 13% tomato residues, lead to a 0.5-10.2-fold higher than that of individual feedstocks. Inhibition of volatile fatty acids (VFAs) to biogas production occurred when more than 40% tomato residues were added. The results indicated that ternary mixtures diluted the inhibitors that would otherwise cause inhibition in the digestion of tomato residues as a mono-feedstock. PMID:26922003

  6. Dry dilute acid pretreatment by co-currently feeding of corn stover feedstock and dilute acid solution without impregnation.

    Science.gov (United States)

    He, Yanqing; Zhang, Jian; Bao, Jie

    2014-04-01

    Impregnation of lignocellulose materials with dilute acid solution is a routine operation in conventional dilute acid pretreatment. The dry dilute acid pretreatment (DDAP) at high solids content up to 70% is naturally considered to require longer impregnation time. In this study, a co-currently feeding operation of corn stover and dilute sulfuric acid solution without any impregnation was tested for DDAP. The DDAP pretreated corn stover without impregnation is found to be essentially no difference in pretreatment efficiency compared to those with impregnation in the helically agitated reactor. The yield from cellulose to ethanol in SSF again shows no obvious difference between the DDAP pretreated corn stover with and without impregnation. This study suggests that impregnation in DDAP was not necessary under the helical agitation mixing. The results provided a useful way of cost reduction and process simplification in pretreatment. PMID:24630497

  7. High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol

    DEFF Research Database (Denmark)

    Varga, E.; Klinke, H.B.; Reczey, K.;

    2004-01-01

    degreesC, the optimal temperature of enzymes, in order to obtain better mixing condition due to some liquefaction. In the second step more cellulases were added in combination with dried baker's yeast (Saccharomyces cerevisiae) at 30 degreesC. The phenols (0.4-0.5 g/L) and carboxylic acids (4.6-5.9 g...... ethanol concentration of 52 g/L (6 vol.%) was achieved, which exceeds the technical and economical limit of the industrial-scale alcohol distillation. The SSF results showed that the cellulose in pretreated corn stover can be efficiently fermented to ethanol with up to 15% DM concentration. A further...

  8. A high-performance carbon derived from corn stover via microwave and slow pyrolysis for supercapacitors

    DEFF Research Database (Denmark)

    Jin, Hong; wang, Xiaomin; Shen, Yanbin;

    2014-01-01

    Microwave and slow pyrolysis were conducted for converting corn stover to biochar. Chemical agents of sodium hydroxide and potassium hydroxide were used to progressively produce activated carbon. The pore structures and surface area of the samples were characterized by nitrogen adsorption....../desorption at 77 K. The results demonstrated that higher specific surface areas of activated carbons were obtained by microwave pyrolysis combined with potassium hydroxide activation. However, electrochemical measurements showed that the slow pyrolysis biochar treated with 0.05 mol g−1 (potassium hydroxide...

  9. RECYCLING OF CHEMICAL PULP FROM WHEAT STRAW AND CORN STOVER

    Directory of Open Access Journals (Sweden)

    James Barsness

    2007-11-01

    Full Text Available Handsheets produced from corn stalks and wheat straw soda AQ pulps were recycled in the lab. Pulping of corn stalks resulted in a low pulp yield, low bonding strength, and low recyclability. Conversely, wheat straw fiber had a better yield, very good tensile properties, and showed a considerably better response to recycling. The tensile index of wheat straw fibers retained 67% of its original value after four cycles. It could be shown that recycling caused only small changes in chemical compo-sition, but that the crystallinity index increased considerably. To be able to understand the behavior of wheat straw fiber as part of a commercial papermaking furnish, a paper containing 20% wheat straw fiber was produced on a 24 inch pilot paper machine and was recycled using a handsheet mold with white water return. Chemical analysis of the control (no wheat fiber and the wheat-containing paper demonstrated slightly higher xylan content for the wheat-containing material. Recyclability increased slightly with addition of wheat fibers to a commercial furnish.

  10. Outdoor Storage Characteristics of Single-Pass Large Square Corn Stover Bales in Iowa

    Directory of Open Access Journals (Sweden)

    Ajay Shah

    2011-10-01

    Full Text Available Year-round operation of biorefineries can be possible only if the continuous flow of cellulosic biomass is guaranteed. If corn (Zea mays stover is the primary cellulosic biomass, it is essential to recognize that this feedstock has a short annual harvest window (≤1–2 months and therefore cost effective storage techniques that preserve feedstock quality must be identified. This study evaluated two outdoor and one indoor storage strategies for corn stover bales in Iowa. High- and low-moisture stover bales were prepared in the fall of 2009, and stored either outdoors with two different types of cover (tarp and breathable film or within a building for 3 or 9 months. Dry matter loss (DML, changes in moisture and biomass compositions (fiber and ultimate analyses were determined. DML for bales stored outdoor with tarp and breathable film covers were in the ranges of 5–11 and 14–17%, respectively. More than half of the total DML occurred early during the storage. There were measurable differences in carbon, hydrogen, nitrogen, sulfur, oxygen, cellulose, hemi-cellulose and acid detergent lignin for the different storage treatments, but the changes were small and within a narrow range. For the bale storage treatments investigated, cellulose content increased by as much as 4%s from an initial level of ~41%, hemicellulose content changed by −2 to 1% from ~34%, and acid detergent lignin contents increased by as much as 3% from an initial value of ~5%. Tarp covered bales stored the best in this study, but other methods, such as tube-wrapping, and economics need further investigation.

  11. Characterization of Lignins Isolated from Alkali Treated Prehydrolysate of Corn Stover

    Institute of Scientific and Technical Information of China (English)

    LEI Mingliu; ZHANG Hongman; ZHENG Hongbo; LI Yuanyuan; HUANG He; XU Rong

    2013-01-01

    Lignins were isolated and purified from alkali treated prehydrolysate of corn stover.The paper presents the structural features of lignins in a series purification processes.Fourier transform infrared spectroscopy,ultraviolet-vis spectroscopy and proton nuclear magnetic resonance spectroscopy were used to analyze the chemical structure.Thermogravimetric analysis was applied to follow the thermal degradation,and wet chemical method was used to determine the sugar content.The results showed that the crude lignin from the prehydrolysate of corn stover was a heterogeneous material of syringyl,guaiacyl and p-hydroxyphenyl units,containing associated polysaccharides,lipids,and melted salts.Some of the crude lignin was chemically linked to hemicelluloses (mainly xylan).The lipids in crude lignin were probably composed of saturated and/or unsaturated long carbon chains,fatty acids,triterpenols,waxes,and derivatives of aromatic.The sugar content of purified lignin was less than 2.11%,mainly composed of guaiacyl units.DTGmax of purified lignin was 359 ℃.The majority of the hydroxyl groups were phenolic hydroxyl groups.The main type of linkages in purified lignin was β-O-4.Other types of linkages includedβ-5,β-β and α-O-4.

  12. Reducing agitation energy-consumption by improving rheological properties of corn stover substrate in anaerobic digestion.

    Science.gov (United States)

    Tian, Libin; Shen, Fei; Yuan, Hairong; Zou, Dexun; Liu, Yanping; Zhu, Baoning; Li, Xiujin

    2014-09-01

    Rheological properties of corn stover substrate were investigated to explore agitation energy reduction potential for different total solid (TS) in anaerobic digestion. The effects of particle size and temperature on rheological properties and corresponding energy reduction were studied. The results indicated that corn stover slurry exhibited pseudo-plastic flow behavior at TS of 4.23-7.32%, and was well described by Power-law model. At TS of 4.23%, rheological properties were not obviously affected by particle size and temperature. However, when TS was increased to 7.32%, there was 10.37% shear stress reduction by size-reduction from 20 to 80-mesh, and 11.73% shear stress reduction by temperature-increase from 25 to 55 °C. PTS was advanced as variations of power consumption by TS-increase from 4.23% to 7.32%. There was 9.2% PTS-reduction by size-reduction from 20 to 80-mesh at 35 °C. Moreover, PTS-reduction of 10.3%/10 °C was achieved at 20-mesh compared with 9.0%/10 °C at 80-mesh.

  13. Acetone-butanol-ethanol fermentation of corn stover by Clostridium species: present status and future perspectives.

    Science.gov (United States)

    Li, Jianzheng; Baral, Nawa Raj; Jha, Ajay Kumar

    2014-04-01

    Sustainable vehicle fuel is indispensable in future due to worldwide depletion of fossil fuel reserve, oil price fluctuation and environmental degradation. Microbial production of butanol from renewable biomass could be one of the possible options. Renewable biomass such as corn stover has no food deficiency issues and is also cheaper in most of the agricultural based countries. Thus it can effectively solve the existing issue of substrate cost. In the last 30 years, a few of Clostridium strains have been successfully implemented for biobutanol fermentation. However, the commercial production is hindered due to their poor tolerance to butanol and inhibitors. Metabolic engineering of Clostridia strains is essential to solve above problems and ultimately enhance the solvent production. An effective and efficient pretreatment of raw material as well as optimization of fermentation condition could be another option. Furthermore, biological approaches may be useful to optimize both the host and pathways to maximize butanol production. In this context, this paper reviews the existing Clostridium strains and their ability to produce butanol particularly from corn stover. This study also highlights possible fermentation pathways and biological approaches that may be useful to optimize fermentation pathways. Moreover, challenges and future perspectives are also discussed.

  14. Optimization of enzyme complexes for efficient hydrolysis of corn stover to produce glucose.

    Science.gov (United States)

    Yu, Xiaoxiao; Liu, Yan; Meng, Jiatong; Cheng, Qiyue; Zhang, Zaixiao; Cui, Yuxiao; Liu, Jiajing; Teng, Lirong; Lu, Jiahui; Meng, Qingfan; Ren, Xiaodong

    2015-05-01

    Hydrolysis of cellulose to glucose is the critical step for transferring the lignocellulose to the industrial chemicals. For improving the conversion rate of cellulose of corn stover to glucose, the cocktail of celllulase with other auxiliary enzymes and chemicals was studied in this work. Single factor tests and Response Surface Methodology (RSM) were applied to optimize the enzyme mixture, targeting maximum glucose release from corn stover. The increasing rate of glucan-to-glucose conversion got the higher levels while the cellulase was added 1.7μl tween-80/g cellulose, 300μg β-glucosidase/g cellulose, 400μg pectinase/g cellulose and 0.75mg/ml sodium thiosulphate separately in single factor tests. To improve the glucan conversion, the β-glucosidase, pectinase and sodium thiosulphate were selected for next step optimization with RSM. It is showed that the maximum increasing yield was 45.8% at 377μg/g cellulose Novozyme 188, 171μg/g cellulose pectinase and 1mg/ml sodium thiosulphate.

  15. Fungal pretreatment by Phanerochaete chrysosporium for enhancement of biogas production from corn stover silage.

    Science.gov (United States)

    Liu, Shan; Li, Xin; Wu, Shubiao; He, Jing; Pang, Changle; Deng, Yu; Dong, Renjie

    2014-11-01

    Corn stover silage (CSS) was pretreated by Phanerochaete chrysosporium in solid-state fermentation (SSF), to enhance methane production via subsequent anaerobic digestion (AD). Effects of washing of corn stover silage (WCSS) on the lignocellulosic biodegradability in the fungal pretreatment step and on methane production in the AD step were investigated with comparison to the CSS. It was found that P. chrysosporium had the degradation of cellulose, hemicellulose, and lignin of CSS up to 19.9, 32.4, and 22.6 %, respectively. Consequently, CSS pretreated by 25 days achieved the highest methane yield of 265.1 mL/g volatile solid (VS), which was 23.0 % higher than the untreated CSS. However, the degradation of cellulose, hemicellulose, and lignin in WCSS after 30 days of SSF increased to 45.9, 48.4, and 39.0 %, respectively. Surface morphology and Fourier-transform infrared spectroscopy analyses also demonstrated that the WCSS improved degradation of cell wall components during SSF. Correspondingly, the pretreatment of WCSS improved methane production by 19.6 to 32.6 %, as compared with untreated CSS. Hence, washing and reducing organic acids (such as lactic acid, acetic acid, propionic acid, and butyric acid) present in CSS has been proven to further improve biodegradability in SSF and methane production in the AD step.

  16. Lipid accumulation by pelletized culture of Mucor circinelloides on corn stover hydrolysate.

    Science.gov (United States)

    Reis, Cristiano E R; Zhang, Jianguo; Hu, Bo

    2014-09-01

    Microbial oil accumulated by fungal cells is a potential feedstock for biodiesel production, and lignocellulosic materials can serve as the carbon source to support the fungal growth. The dilute acid pretreatment of corn stover can effectively break down its lignin structure, and this process generates a hydrolysate containing mostly xylose at very dilute concentration and numerous by-products that may significantly inhibit the cell growth. This study utilized corn stover hydrolysate as the culture media for the growth of Mucor circinelloides. The results showed that Mucor cells formed pellets during the cell growth, which facilitates the cell harvest from dilute solution. The results also showed that the inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), and acetic acid could be avoided if their concentration was low. In fact, all these by-products may be assimilated as carbon sources for the fungal growth. The results proved the feasibility to reuse the cultural broth water for acid pretreatment and then use for subsequent cell cultivation. The results will have a direct impact on the overall water usage of the process.

  17. Acid hydrolysis of corn stover using hydrochloric acid: Kinetic modeling and statistical optimization

    Directory of Open Access Journals (Sweden)

    Sun Yong

    2014-01-01

    Full Text Available The hydrolysis of corn stover using hydrochloric acid was studied. The kinetic parameters of the mathematical models for predicting the yields of xylose, glucose, furfural and acetic acid were obtained, and the corresponding xylose generation activation energy of 100 kJ/mol was determined. The characterization of corn stover using with different techniques during hydrolysis indicated an effective removal of xylan and the slightly alteration on the structures of cellulose and lignin. A 23five levels Central Composite Design (CCD was used to develop a statistical model for the optimization of process variables including acid concentration, pretreatment temperature and time. The optimum conditions determined by this model were found to be 108ºC for 80 minutes with acid concentration of 5.8%. Under these conditions, the maximised results are the following: xylose 19.93 g/L, glucose 1.2 g/L, furfural 1.5 g/L, acetic acid 1.3 g/L. The validation of the model indicates a good agreement between the experimental results and the predicted values.

  18. Enhancing cellulose accessibility of corn stover by deep eutectic solvent pretreatment for butanol fermentation.

    Science.gov (United States)

    Xu, Guo-Chao; Ding, Ji-Cai; Han, Rui-Zhi; Dong, Jin-Jun; Ni, Ye

    2016-03-01

    In this study, an effective corn stover (CS) pretreatment method was developed for biobutanol fermentation. Deep eutectic solvents (DESs), consisted of quaternary ammonium salts and hydrogen donors, display similar properties to room temperature ionic liquid. Seven DESs with different hydrogen donors were facilely synthesized. Choline chloride:formic acid (ChCl:formic acid), an acidic DES, displayed excellent performance in the pretreatment of corn stover by removal of hemicellulose and lignin as confirmed by SEM, FTIR and XRD analysis. After optimization, glucose released from pretreated CS reached 17.0 g L(-1) and yield of 99%. The CS hydrolysate was successfully utilized in butanol fermentation by Clostridium saccharobutylicum DSM 13864, achieving butanol titer of 5.63 g L(-1) with a yield of 0.17 g g(-1) total sugar and productivity of 0.12 g L(-1)h(-1). This study demonstrates DES could be used as a promising and biocompatible pretreatment method for the conversion of lignocellulosic biomass into biofuel. PMID:26597485

  19. Corn stover harvest increases herbicide movement to subsurface drains: RZWQM simulations

    Science.gov (United States)

    Shipitalo, Martin J.; Malone, Robert W.; Ma, Liwang; Nolan, Bernard T.; Kanwar, Rameshwar S.; Shaner, Dale L.; Pederson, Carl H.

    2016-01-01

    BACKGROUND Crop residue removal for bioenergy production can alter soil hydrologic properties and the movement of agrochemicals to subsurface drains. The Root Zone Water Quality Model (RZWQM), previously calibrated using measured flow and atrazine concentrations in drainage from a 0.4 ha chisel-tilled plot, was used to investigate effects of 50 and 100% corn (Zea mays L.) stover harvest and the accompanying reductions in soil crust hydraulic conductivity and total macroporosity on transport of atrazine, metolachlor, and metolachlor oxanilic acid (OXA). RESULTS The model accurately simulated field-measured metolachlor transport in drainage. A 3-yr simulation indicated that 50% residue removal decreased subsurface drainage by 31% and increased atrazine and metolachlor transport in drainage 4 to 5-fold when surface crust conductivity and macroporosity were reduced by 25%. Based on its measured sorption coefficient, ~ 2-fold reductions in OXA losses were simulated with residue removal. CONCLUSION RZWQM indicated that if corn stover harvest reduces crust conductivity and soil macroporosity, losses of atrazine and metolachlor in subsurface drainage will increase due to reduced sorption related to more water moving through fewer macropores. Losses of the metolachlor degradation product OXA will decrease due to the more rapid movement of the parent compound into the soil.

  20. Effect of hemicellulose and lignin removal on enzymatic hydrolysis of steam pretreated corn stover.

    Science.gov (United States)

    Ohgren, Karin; Bura, Renata; Saddler, Jack; Zacchi, Guido

    2007-09-01

    Ethanol can be produced from lignocellulosic biomass using steam pretreatment followed by enzymatic hydrolysis and fermentation. The sugar yields, from both hemicellulose and cellulose are critical parameters for an economically-feasible ethanol production process. This study shows that a near-theoretical glucose yield (96-104%) from acid-catalysed steam pretreated corn stover can be obtained if xylanases are used to supplement cellulases during hydrolysis. Xylanases hydrolyse residual hemicellulose, thereby improving the access of enzymes to cellulose. Under these conditions, xylose yields reached 70-74%. When pre-treatment severity was reduced by using autocatalysis instead of acid-catalysed steam pretreatment, xylose yields were increased to 80-86%. Partial delignification of pretreated material was also evaluated as a way to increase the overall sugar yield. The overall glucose yield increased slightly due to delignification but the overall xylose yield decreased due to hemicellulose loss in the delignification step. The data also demonstrate that steam pretreatment is a robust process: corn stover from Europe and North America showed only minor differences in behaviour. PMID:17113771

  1. Biological conversion of biomass to methane corn stover studies. Project report, December 1, 1977-August 1, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Pfeffer, J T; Quindry, G E

    1979-06-01

    A series of experiments was conducted to determine the performance characteristics of the methane fermentation process using corn stover obtained from the University of Illinois farms and processed through four parallel fermenters each having a capacity of 775 liters. A continuous feed system was employed to determine the conversion efficiency. The dewatering characteristics of the effluents and the quality of the liquid and solid residues were determined. The biodegradability of corn stover is low. Data obtained at a fermentation temperature of 59 +-1/sup 0/C show that only 36 percent of the volatile solids are biodegradable. The first order rate constant for this conversion was found to be 0.25 day/sup -1/. Pretreatment with caustic (NaOH) concentration of 0.30 molar (5 g/100 g dry stover) and a temperature of 115/sup 0/C for one hour increased the biodegradable fraction to 71 percent of the volatile solids. The reactor slurries were easily dewatered by both vacuum filtration and centrifugation. Corn stover does not appear to be attractive economically at the present energy prices. At a chemical cost of $154/tonne ($140/ton), the NaOH pretreatment adds approximately $5.2/tonne to the cost of processing the stover. At a methane yield of 0.25 m/sup 3//kg of solids fed, this adds a total cost of $2/100 m/sup 3/ ($0.57/MCF) for this process alone. Addition of stover acquisition costs ($20/dry tonne of stover), total processing costs without gas cleanup ($21/tonne) and residue disposal ($3/tonne of wet cake), the cost of fuel gas would be in the neighborhood of $9.76/GJ ($10.30/10/sup 6/ Btu).This cost excludes all profit, taxes, etc. associated with private financing. Depending upon financing methods, tax incentives, etc., it may be necessary to add up to an additional $2.00/GJ to the cost of this fuel gas.

  2. Influence of extruder temperature and screw speed on pretreatment of corn stover while varying enzymes and their ratios.

    Science.gov (United States)

    Karunanithy, Chinnadurai; Muthukumarappan, Kasiviswanathan

    2010-09-01

    Pretreatment is being the first and most expensive step, it has pervasive impacts on all other steps in overall conversion process. There are several pretreatment methods using physical, chemical, and biological principles which are under various stages of investigation. Extrusion can be used as one of the physical pretreatment methods towards biofuel production. The objective of this study was to evaluate the effect of barrel temperature and screw speed on sugar recovery from corn stover, to select a suitable enzyme combination and its ratio. Corn stover was pretreated in a single screw extruder with five screw speeds (25, 50, 75, 100, and 125 rpm) and five barrel temperatures (25, 50, 75, 100, and 125 degrees C). In order to select a suitable enzyme combination and ratio, different levels of cellulase and beta-glucosidase, multienzyme complex and beta-glucosidase were used during saccharification of pretreated corn stover. From the statistical analysis, it was found that screw speed and temperature had a significant effect on sugar recovery from corn stover. Higher glucose, xylose, and combined sugar recovery of 75, 49, and 61%, respectively, were recorded at 75 rpm and 125 degrees C. This pretreatment condition resulted in 2.0, 1.7, and 2.0 times higher than the control sample using 1:4 cellulase and beta-glucosidase combination.

  3. Response surface optimization of corn stover pretreatment using dilute phosphoric acid for enzymatic hydrolysis and ethanol production.

    Science.gov (United States)

    Avci, Ayse; Saha, Badal C; Dien, Bruce S; Kennedy, Gregory J; Cotta, Michael A

    2013-02-01

    Dilute H(3)PO(4) (0.0-2.0%, v/v) was used to pretreat corn stover (10%, w/w) for conversion to ethanol. Pretreatment conditions were optimized for temperature, acid loading, and time using central composite design. Optimal pretreatment conditions were chosen to promote sugar yields following enzymatic digestion while minimizing formation of furans, which are potent inhibitors of fermentation. The maximum glucose yield (85%) was obtained after enzymatic hydrolysis of corn stover pretreated with 0.5% (v/v) acid at 180°C for 15min while highest yield for xylose (91.4%) was observed from corn stover pretreated with 1% (v/v) acid at 160°C for 10min. About 26.4±0.1g ethanol was produced per L by recombinant Escherichia coli strain FBR5 from 55.1±1.0g sugars generated from enzymatically hydrolyzed corn stover (10%, w/w) pretreated under a balanced optimized condition (161.81°C, 0.78% acid, 9.78min) where only 0.4±0.0g furfural and 0.1±0.0 hydroxylmethyl furfural were produced.

  4. Assessment of Potential Capacity Increases at Combined Heat and Power Facilities Based on Available Corn Stover and Forest Logging Residues

    Directory of Open Access Journals (Sweden)

    Donald L. Grebner

    2013-08-01

    Full Text Available Combined Heat and Power (CHP production using renewable energy sources is gaining importance because of its flexibility and high-energy efficiency. Biomass materials, such as corn stover and forestry residues, are potential sources for renewable energy for CHP production. In Mississippi, approximately 4.0 MT dry tons of woody biomass is available annually for energy production. In this study, we collected and analyzed 10 years of corn stover data (2001–2010 and three years of forest logging residue data (1995, 1999, and 2002 in each county in Mississippi to determine the potential of these feed stocks for sustainable CHP energy production. We identified six counties, namely Amite, Copiah, Clarke, Wayne, Wilkinson and Rankin, that have forest logging residue feedstocks to sustain a CHP facility with a range of capacity between 8.0 and 9.8 MW. Using corn stover alone, Yazoo and Washington counties can produce 13.4 MW and 13.5 MW of energy, respectively. Considering both feedstocks and based on a conservative amount of 30% available forest logging residue and 33% corn stover, we found that 20 counties have adequate supply for a CHP facility with a capacity of 8.3 MW to 19.6 MW.

  5. Chemical properties and antioxidant activity of exopolysaccharides fractions from mycelial culture of Inonotus obliquus in a ground corn stover medium.

    Science.gov (United States)

    Xiang, Yuling; Xu, Xiangqun; Li, Juan

    2012-10-15

    The medicinal mushroom Inonotus obliquus has been a folk remedy for a long time in East-European and Asian countries. We first reported the enhancement in production and antioxidant activity of exopolysaccharides by I. obliquus culture under lignocellulose decomposition. In this study, the two different sources of exopolysaccharides from the control medium and the lignocellulose (corn stover) containing medium by I. obliquus in submerged fermentation were fractionated and purified by chromatography. The exopolysaccharides from the corn stover-containing medium presented significantly stronger hydroxyl and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity than the control. Three fractions from the control medium and the corn stover-containing medium were isolated respectively. The fraction of DEPL3 from the corn stover-containing medium with the highest protein content (38.3%), mannose content (49.6%), and the lowest molecular weight (29 kDa) had the highest antioxidant activity with the lowest IC50 values. In conclusion, lignocellulose decomposition changed the chemical characterisation and significantly enhanced the antioxidant activity of exopolysaccharide fractions.

  6. Chemical properties and antioxidant activity of exopolysaccharides fractions from mycelial culture of Inonotus obliquus in a ground corn stover medium.

    Science.gov (United States)

    Xiang, Yuling; Xu, Xiangqun; Li, Juan

    2012-10-15

    The medicinal mushroom Inonotus obliquus has been a folk remedy for a long time in East-European and Asian countries. We first reported the enhancement in production and antioxidant activity of exopolysaccharides by I. obliquus culture under lignocellulose decomposition. In this study, the two different sources of exopolysaccharides from the control medium and the lignocellulose (corn stover) containing medium by I. obliquus in submerged fermentation were fractionated and purified by chromatography. The exopolysaccharides from the corn stover-containing medium presented significantly stronger hydroxyl and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical-scavenging activity than the control. Three fractions from the control medium and the corn stover-containing medium were isolated respectively. The fraction of DEPL3 from the corn stover-containing medium with the highest protein content (38.3%), mannose content (49.6%), and the lowest molecular weight (29 kDa) had the highest antioxidant activity with the lowest IC50 values. In conclusion, lignocellulose decomposition changed the chemical characterisation and significantly enhanced the antioxidant activity of exopolysaccharide fractions. PMID:23442636

  7. Bioconversion of barley straw and corn stover to butanol (a biofuel) in integrated fermentation and simultaneous product recovery bioreactors

    Science.gov (United States)

    In these studies concentrated sugar solutions of barley straw and corn stover hydrolysates were fermented with simultaneous product recovery and compared with the performance of a control glucose batch fermentation process. The control glucose batch fermentation resulted in the production of 23.25 g...

  8. Methane enhancement through oxidative cleavage and alkali solubilization pre-treatments for corn stover with anaerobic activated sludge.

    Science.gov (United States)

    Hassan, Muhammad; Ding, Weimin; Bi, Jinhua; Mehryar, Esmaeil; Talha, Zahir Ahmed Ali; Huang, Hongying

    2016-01-01

    In the present study, thermo-chemical pre-treatment was adopted to evaluate methane production potential from corn stover by co-digesting it with anaerobic activated sludge. Three chemicals H2O2, Ca(OH)2 and NaOH were selected with two levels of concentration. All thermo-chemical pre-treatments were found significant (Pyield by H2O2-1, H2O2-2, and NaOH-2 treated corn stover were 293.52, 310.50 and 279.42ml/g.VS which were 57.18%, 66.27% and 49.63% higher than the untreated corn stover respectively. In the previous studies pre-treatment time was reported in days but our method had reduced it to about one hour. H2O2-2 and NaOH-2 treatments remained prominent to increase lignocellulosic degradation vigorously up to 45% and 42% respectively. Process biochemistry during the anaerobic digestion process was taken into consideration to optimize the most feasible thermo-chemical pre-treatment for corn stover. PMID:26512865

  9. ON-FARM PRETREATMENT TECHNOLOGIES FOR IMPROVING ENZYMATIC DIGESTIBILITY OF CELLULOSE AND HEMICELLULOSE PRESENT IN PERENNIAL GRASS AND CORN STOVER

    Science.gov (United States)

    Recently, wet storage methods have been proposed for feedstock preservation and on-farm storage of perennial grass and corn stover biomass. The advantages over a dry storage system include lower risk of fire, reduced harvest costs, and improved feedstock susceptibility to enzymatic hydrolysis. We ...

  10. Direct measures of mechanical energy for knife mill size reduction of switchgrass, wheat straw, and corn stover.

    Science.gov (United States)

    Bitra, Venkata S P; Womac, Alvin R; Igathinathane, C; Miu, Petre I; Yang, Yuechuan T; Smith, David R; Chevanan, Nehru; Sokhansanj, Shahab

    2009-12-01

    Lengthy straw/stalk of biomass may not be directly fed into grinders such as hammer mills and disc refiners. Hence, biomass needs to be preprocessed using coarse grinders like a knife mill to allow for efficient feeding in refiner mills without bridging and choking. Size reduction mechanical energy was directly measured for switchgrass (Panicum virgatum L.), wheat straw (Triticum aestivum L.), and corn stover (Zea mays L.) in an instrumented knife mill. Direct power inputs were determined for different knife mill screen openings from 12.7 to 50.8 mm, rotor speeds between 250 and 500 rpm, and mass feed rates from 1 to 11 kg/min. Overall accuracy of power measurement was calculated to be +/-0.003 kW. Total specific energy (kWh/Mg) was defined as size reduction energy to operate mill with biomass. Effective specific energy was defined as the energy that can be assumed to reach the biomass. The difference is parasitic or no-load energy of mill. Total specific energy for switchgrass, wheat straw, and corn stover chopping increased with knife mill speed, whereas, effective specific energy decreased marginally for switchgrass and increased for wheat straw and corn stover. Total and effective specific energy decreased with an increase in screen size for all the crops studied. Total specific energy decreased with increase in mass feed rate, but effective specific energy increased for switchgrass and wheat straw, and decreased for corn stover at increased feed rate. For knife mill screen size of 25.4 mm and optimum speed of 250 rpm, optimum feed rates were 7.6, 5.8, and 4.5 kg/min for switchgrass, wheat straw, and corn stover, respectively, and the corresponding total specific energies were 7.57, 10.53, and 8.87 kWh/Mg and effective specific energies were 1.27, 1.50, and 0.24 kWh/Mg for switchgrass, wheat straw, and corn stover, respectively. Energy utilization ratios were calculated as 16.8%, 14.3%, and 2.8% for switchgrass, wheat straw, and corn stover, respectively. These

  11. MBI Biorefinery: Corn to Biomass, Ethanol to Biochemicals and Biomaterials

    Energy Technology Data Exchange (ETDEWEB)

    None

    2006-02-17

    The project is a continuation of DOE-funded work (FY02 and FY03) that has focused on the development of the ammonia fiber explosion (AFEX) pretreatment technology, fermentation production of succinic acid and new processes and products to enhance dry mill profitability. The primary objective for work beginning in April 2004 and ending in November 2005 is focus on the key issues related to the: (1) design, costing and construction plan for a pilot AFEX pretreatment system, formation of a stakeholder development team to assist in the planning and design of a biorefinery pilot plant, continued evaluation of corn fractionation technologies, corn oil extraction, AFEX treatment of corn fiber/DDGs; (2) development of a process to fractionate AFEX-treated corn fiber and corn stover--cellulose and hemicellulose fractionation and sugar recovery; and (3) development of a scalable batch succinic acid production process at 500 L at or below $.42/lb, a laboratory scale fed-batch process for succinic acid production at or below $.40/lb, a recovery process for succinic acid that reduces the cost of succinic acid by $.02/lb and the development of an acid tolerant succinic acid production strain at lab scale (last objective not to be completed during this project time period).

  12. Evaluation of continuous ethanol fermentation of dilute-acid corn stover hydrolysate using thermophilic anaerobic bacterium Thermoanaerobacter BG1L1

    DEFF Research Database (Denmark)

    Georgieva, Tania I.; Ahring, Birgitte Kiær

    2007-01-01

    Dilute sulfuric acid pretreated corn stover is potential feedstock of industrial interest for second generation fuel ethanol production. However, the toxicity of corn stover hydrolysate (PCS) has been a challenge for fermentation by recombinant xylose fermenting organisms. In this work, the therm......Dilute sulfuric acid pretreated corn stover is potential feedstock of industrial interest for second generation fuel ethanol production. However, the toxicity of corn stover hydrolysate (PCS) has been a challenge for fermentation by recombinant xylose fermenting organisms. In this work...... fermented yielding ethanol of 0.39–0.42 g/g-sugars consumed. Xylose was nearly completely utilized (89–98%) for PCS up to 10% TS, whereas at 15% TS, xylose conversion was lowered to 67%. The reactor was operated continuously for 135 days, and no contamination was seen without the use of any agent...

  13. Assessment and regression analysis on instant catapult steam explosion pretreatment of corn stover.

    Science.gov (United States)

    Liu, Chen-Guang; Liu, Li-Yang; Zi, Li-Han; Zhao, Xin-Qing; Xu, You-Hai; Bai, Feng-Wu

    2014-08-01

    Instant catapult steam explosion (ICSE) offers enormous physical force on lignocellulosic biomass due to its extremely short depressure duration. In this article, the response surface methodology was applied to optimize the effect of working parameters including pressure, maintaining time and mass loading on the crystallinity index and glucose yield of the pretreated corn stover. It was found that the pressure was of essential importance, which determined the physical force that led to the morphological changes without significant chemical reactions, and on the other hand the maintaining time mainly contributed to the thermo-chemical reactions. Furthermore, the pretreated biomass was assessed by scanning electron microscope, X-ray diffraction and Fourier transform infrared spectra to understand mechanisms underlying the ICSE pretreatment.

  14. Pretreatment of corn stover for sugar production using dilute hydrochloric acid followed by lime.

    Science.gov (United States)

    Zu, Shuai; Li, Wen-zhi; Zhang, Mingjian; Li, Zihong; Wang, Ziyu; Jameel, Hasan; Chang, Hou-min

    2014-01-01

    In this study, a two stage process was evaluated to increase the sugar recovery. Firstly, corn stover was treated with diluted hydrochloric acid to maximize the xylose yield, and then the residue was treated with lime to alter the lignin structure and swell the cellulose surface. The optimal condition was 120 °C and 40 min for diluted hydrochloric acid pretreatment followed by lime pretreatment at 60 °C for 12h with lime loading at 0.1 g/g of substrate. The glucose and xylose yield was 78.0% and 97.0%, respectively, with cellulase dosage at 5 FPU/g of substrate. The total glucose yield increased to 85.9% when the cellulase loading was increased to 10 FPU/g of substrate. This two stage process was effective due to the swelling of the internal surface, an increase in the porosity and a decrease in the degree of polymerization.

  15. Pretreatment combining ultrasound and sodium percarbonate under mild conditions for efficient degradation of corn stover.

    Science.gov (United States)

    Nakashima, Kazunori; Ebi, Yuuki; Kubo, Masaki; Shibasaki-Kitakawa, Naomi; Yonemoto, Toshikuni

    2016-03-01

    Ultrasound (US) can be used to disrupt microcrystalline cellulose to give nanofibers via ultrasonic cavitation. Sodium percarbonate (SP), consisting of sodium carbonate and hydrogen peroxide, generates highly reactive radicals, which cause oxidative delignification. Here, we describe a novel pretreatment technique using a combination of US and SP (US-SP) for the efficient saccharification of cellulose and hemicellulose in lignocellulosic corn stover. Although US-SP pretreatment was conducted under mild condition (i.e., at room temperature and atmospheric pressure), the pretreatment greatly increased lignin removal and cellulose digestibility. We also determined the optimum US-SP treatment conditions, such as ultrasonic power output, pretreatment time, pretreatment temperature, and SP concentration for an efficient cellulose saccharification. Moreover, xylose could be effectively recovered from US-SP pretreated biomass without the formation of microbial inhibitor furfural.

  16. Enhancement of xylose utilization from corn stover by a recombinant Escherichia coli strain for ethanol production.

    Science.gov (United States)

    Saha, Badal C; Qureshi, Nasib; Kennedy, Gregory J; Cotta, Michael A

    2015-08-01

    Effects of substrate-selective inoculum prepared by growing on glucose, xylose, arabinose, GXA (glucose, xylose, arabinose, 1:1:1) and corn stover hydrolyzate (dilute acid pretreated and enzymatically hydrolyzed, CSH) on ethanol production from CSH by a mixed sugar utilizing recombinant Escherichia coli (strain FBR5) were investigated. The initial ethanol productivity was faster for the seed grown on xylose followed by GXA, CSH, glucose and arabinose. Arabinose grown seed took the longest time to complete the fermentation. Delayed saccharifying enzyme addition in simultaneous saccharification and fermentation of dilute acid pretreated CS by the recombinant E. coli strain FBR5 allowed the fermentation to finish in a shorter time than adding the enzyme simultaneously with xylose grown inoculum. Use of substrate selective inoculum and fermenting pentose sugars first under glucose limited condition helped to alleviate the catabolite repression of the recombinant bacterium on ethanol production from lignocellulosic hydrolyzate.

  17. Modelling and Statistical Optimization of Dilute Acid Hydrolysis of Corn Stover Using Response Surface Methodology

    Directory of Open Access Journals (Sweden)

    Andrew Nosakhare Amenaghawon

    2014-07-01

    Full Text Available Response surface methodology (RSM was employed for the analysis of the simultaneous effect of acid concentration, pretreatment time and temperature on the total reducing sugar concentration obtained during acid hydrolysis of corn stover. A three-variable, three-level Box-Behnken design (BBD was used to develop a statistical model for the optimization of the process variables. The optimal hydrolysis conditions that resulted in the maximum total reducing sugar concentration were acid concentration; 1.72 % (w/w, temperature; 169.260C and pretreatment time; 48.73 minutes. Under these conditions, the total reducing sugar concentration was obtained to be 23.41g/L. Validation of the model indicated no difference between predicted and observed values.

  18. MODELLING AND OPTIMISATION OF DILUTE ACID HYDROLYSIS OF CORN STOVER USING BOX-BEHNKEN DESIGN

    Directory of Open Access Journals (Sweden)

    AMENAGHAWON NOSAKHARE ANDREW

    2014-08-01

    Full Text Available Response surface methodology (RSM was employed for the analysis of the simultaneous effect of acid concentration, hydrolysis time and temperature on the total reducing sugar concentration obtained during acid hydrolysis of corn stover. A three-variable, three-level Box-Behnken design (BBD was used to develop a statistical model for the optimisation of the process variables. The optimal hydrolysis conditions that resulted in the maximum total reducing sugar concentration were acid concentration; 1.72% (w/w, temperature; 169.260C and pretreatment time; 48.73 minutes. Under these conditions, the total reducing sugar concentration was obtained to be 23.41g/L. Validation of the model indicated no difference between predicted and observed values.

  19. Spatial structure characteristic analysis of corn stover during alkali and biological co-pretreatment using XRD.

    Science.gov (United States)

    Tianxue, Yang; Li, Yun; Haobo, Hou; Beidou, Xi; Liansheng, He; Xiaowei, Wang; Caihong, Huang; Kun, Wu; Ying, Zhao; Bin, Chen

    2014-07-01

    Dynamic variation in the spatial structure of corn stover during alkali and biological co-pretreatment was investigated by X-ray diffraction. The result for crystallinity and microcrystalline size of cellulose showed periodic changes during the pretreatment process. The dominant destruction periods of crystalline areas were mainly located at 3-5d and 7-17d, and prevailing destroyed amorphous areas mainly occurred at 0-2d and 5-7d. On day 7, the relative crystallinity and microcrystalline size reached 52.81% and 8.56 nm, respectively, which were the maximum and minimum values during the whole co-pretreatment. The results indicated that spatial structure change was not uniform with pretreatment time, and this was contributed to explore the vital time point of destruction during the alkali-biological pretreatment.

  20. Enzymatic hydrolysis and fermentability of corn stover pretreated by lactic acid and/or acetic acid

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2009-01-01

    Four different pretreatments with and without addition of low concentration organic acids were carried out on corn stover at 195 °C for 15 min. The highest xylan recovery of 81.08% was obtained after pretreatment without acid catalyst and the lowest of 58.78% after pretreatment with both acetic...... and lactic acid. Glucan recovery was less sensitive to the pretreatment conditions than xylan recovery. The pretreatment with acetic and lactic acid yielded the highest glucan recovery of 95.66%. The glucan recoveries of the other three pretreatments varied between 83.92% and 94.28%. Fermentability tests...... material was obtained following pretreatment at 195 °C for 15 min with acetic acid employed. The estimated total ethanol production was 241.1 kg/ton raw material by assuming fermentation of both C-6 and C-5, and 0.51 g ethanol/g sugar....

  1. Ruminal Methanogen Community in Dairy Cows Fed Agricultural Residues of Corn Stover, Rapeseed, and Cottonseed Meals.

    Science.gov (United States)

    Wang, Pengpeng; Zhao, Shengguo; Wang, Xingwen; Zhang, Yangdong; Zheng, Nan; Wang, Jiaqi

    2016-07-13

    The purpose was to reveal changes in the methanogen community in the rumen of dairy cows fed agricultural residues of corn stover, rapeseed, and cottonseed meals, compared with alfalfa hay or soybean meal. Analysis was based on cloning and sequencing the methyl coenzyme M reductase α-subunit gene of ruminal methanogens. Results revealed that predicted methane production was increased while population of ruminal methanogens was not significantly affected when cows were fed diets containing various amounts of agricultural residues. Richness and diversity of methanogen community were markedly increased by addition of agricultural residues. The dominant ruminal methanogens shared by all experimental groups belonged to rumen cluster C, accounting for 71% of total, followed by the order Methanobacteriales (29%). Alterations of ruminal methanogen community and prevalence of particular species occurred in response to fed agricultural residue rations, suggesting the possibility of regulating target methanogens to control methane production by dairy cows fed agricultural residues. PMID:27322573

  2. Catalytic production of biofuels (butene oligomers) and biochemicals (tetrahydrofurfuryl alcohol) from corn stover.

    Science.gov (United States)

    Byun, Jaewon; Han, Jeehoon

    2016-07-01

    A strategy is presented that produces liquid hydrocarbon fuels (butene oligomers (BO)) from cellulose (C6) fraction and commodity chemicals (tetrahydrofurfuryl alcohol (THFA)) from hemicellulose (C5) of corn stover based on catalytic conversion technologies using 2-sec-butylphenol (SBP) solvents. This strategy integrates the conversion subsystems based on experimental studies and separation subsystems for recovery of biomass derivatives and SBP solvents. Moreover, a heat exchanger network is designed to reduce total heating requirements to the lowest level, which is satisfied from combustion of biomass residues (lignin and humins). Based on the strategy, this work offers two possible process designs (design A: generating electricity internally vs. design B: purchasing electricity externally), and performs an economic feasibility study for both the designs based on a comparison of the minimum selling price (MSP) of THFA. This strategy with the design B leads to a better MSP of $1.93 per kg THFA. PMID:27030955

  3. Enzymatic saccharification of acid pretreated corn stover: Empirical and fractal kinetic modelling.

    Science.gov (United States)

    Wojtusik, Mateusz; Zurita, Mauricio; Villar, Juan C; Ladero, Miguel; Garcia-Ochoa, Felix

    2016-11-01

    Enzymatic hydrolysis of corn stover was studied at agitation speeds from 50 to 500rpm in a stirred tank bioreactor, at high solid concentrations (20% w/w dry solid/suspension), 50°C and 15.5mgprotein·gglucane(-1). Two empirical kinetic models have been fitted to empirical data, namely: a potential model and a fractal one. For the former case, the global order dramatically decreases from 13 to 2 as agitation speed increases, suggesting an increment in the access of enzymes to cellulose in terms of chemisorption followed by hydrolysis. For its part, the fractal kinetic model fits better to data, showing its kinetic constant a constant augmentation with increasing agitation speed up to a constant value at 250rpm and above, when mass transfer limitations are overcome. In contrast, the fractal exponent decreases with rising agitation speed till circa 0.19, suggesting higher accessibility of enzymes to the substrate. PMID:27566519

  4. Correlating Detergent Fiber Analysis and Dietary Fiber Analysis Data for Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Wolfrum, E. J.; Lorenz, A. J.; deLeon, N.

    2009-01-01

    There exist large amounts of detergent fiber analysis data [neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL)] for many different potential cellulosic ethanol feedstocks, since these techniques are widely used for the analysis of forages. Researchers working in the area of cellulosic ethanol are interested in the structural carbohydrates in a feedstock (principally glucan and xylan), which are typically determined by acid hydrolysis of the structural fraction after multiple extractions of the biomass. These so-called dietary fiber analysis methods are significantly more involved than detergent fiber analysis methods. The purpose of this study was to determine whether it is feasible to correlate detergent fiber analysis values to glucan and xylan content determined by dietary fiber analysis methods for corn stover. In the detergent fiber analysis literature cellulose is often estimated as the difference between ADF and ADL, while hemicellulose is often estimated as the difference between NDF and ADF. Examination of a corn stover dataset containing both detergent fiber analysis data and dietary fiber analysis data predicted using near infrared spectroscopy shows that correlations between structural glucan measured using dietary fiber techniques and cellulose estimated using detergent techniques, and between structural xylan measured using dietary fiber techniques and hemicellulose estimated using detergent techniques are high, but are driven largely by the underlying correlation between total extractives measured by fiber analysis and NDF/ADF. That is, detergent analysis data is correlated to dietary fiber analysis data for structural carbohydrates, but only indirectly; the main correlation is between detergent analysis data and solvent extraction data produced during the dietary fiber analysis procedure.

  5. A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates.

    Science.gov (United States)

    Ryu, Seunghyun; Karim, Muhammad Nazmul

    2011-08-01

    In this research, a recombinant whole cell biocatalyst was developed by expressing three cellulases from Clostridium cellulolyticum--endoglucanase (Cel5A), exoglucanase (Cel9E), and β-glucosidase--on the surface of the Escherichia coli LY01. The modified strain is identified as LY01/pRE1H-AEB. The cellulases were displayed on the surface of the cell by fusing with an anchor protein, PgsA. The developed whole cell biocatalyst was used for single-step ethanol fermentation using the phosphoric acid-swollen cellulose (PASC) and the dilute acid-pretreated corn stover. Ethanol production was 3.59 ± 0.15 g/L using 10 g/L of PASC, which corresponds to a theoretical yield of 95.4 ± 0.15%. Ethanol production was 0.30 ± 0.02 g/L when 1 g/L equivalent of glucose in the cellulosic fraction of the dilute sulfuric acid-pretreated corn stover (PCS) was fermented for 84 h. A total of 0.71 ± 0.12 g/L ethanol was produced in 48 h when the PCS was fermented in the simultaneous saccharification and co-fermentation mode using the hemicellulosic (1 g/L of total soluble sugar) and as well as the cellulosic (1 g/L of glucose equivalent) parts of PCS. In a control experiment, 0.48 g/L ethanol was obtained from 1 g/L of hemicellulosic PCS. It was concluded that the whole cell biocatalyst could convert both cellulosic and hemicellulosic substrates into ethanol in a single reactor. The developed C. cellulolyticum-E. coli whole cell biocatalyst also overcame the incompatible temperature problem of the frequently reported fungal-yeast systems. PMID:21519935

  6. A whole cell biocatalyst for cellulosic ethanol production from dilute acid-pretreated corn stover hydrolyzates

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Seunghyun; Karim, Muhammad Nazmul [Texas Tech Univ., Lubbock, TX (United States). Dept. of Chemical Engineering

    2011-08-15

    In this research, a recombinant whole cell biocatalyst was developed by expressing three cellulases from Clostridium cellulolyticum - endoglucanase (Cel5A), exoglucanase (Cel9E), and {beta}-glucosidase - on the surface of the Escherichia coli LY01. The modified strain is identified as LY01/pRE1H-AEB. The cellulases were displayed on the surface of the cell by fusing with an anchor protein, PgsA. The developed whole cell biocatalyst was used for single-step ethanol fermentation using the phosphoric acid-swollen cellulose (PASC) and the dilute acid-pretreated corn stover. Ethanol production was 3.59 {+-} 0.15 g/L using 10 g/L of PASC, which corresponds to a theoretical yield of 95.4 {+-} 0.15%. Ethanol production was 0.30 {+-} 0.02 g/L when 1 g/L equivalent of glucose in the cellulosic fraction of the dilute sulfuric acid-pretreated corn stover (PCS) was fermented for 84 h. A total of 0.71 {+-} 0.12 g/L ethanol was produced in 48 h when the PCS was fermented in the simultaneous saccharification and co-fermentation mode using the hemicellulosic (1 g/L of total soluble sugar) and as well as the cellulosic (1 g/L of glucose equivalent) parts of PCS. In a control experiment, 0.48 g/L ethanol was obtained from 1 g/L of hemicellulosic PCS. It was concluded that the whole cell biocatalyst could convert both cellulosic and hemicellulosic substrates into ethanol in a single reactor. The developed C. cellulolyticum-E. coli whole cell biocatalyst also overcame the incompatible temperature problem of the frequently reported fungal-yeast systems. (orig.)

  7. Comparison of the Effects of Thermal Pretreatment, Steam Explosion and Ultrasonic Disintegration on Digestibility of Corn Stover

    Directory of Open Access Journals (Sweden)

    Andras Dallos

    2016-06-01

    Full Text Available The energy demand of the corn-based bioethanol production could be reduced using the agricultural byproducts as bioenergy feedstock for biogas digesters. The release of lignocellulosic material and therefore the acceleration of degradation processes can be achieved using thermal and mechanical pretreatments, which assist to hydrolyze the cell walls and speed the solubilization of biopolymers in biogas feedstock. This study is focused on liquid hot water, steam explosion and ultrasonic pretreatments of corn stover. The scientific contribution of this paper is a comprehensive comparison of the performance of the pretreatments by fast analytical, biochemical, anaerobic digestibility and biomethane potential tests, extended by energy consumptions and energy balance calculations.The effectiveness of pretreatments was evaluated by means of soluble chemical oxygen demand, biochemical oxygen demand and by the biogas and methane productivities. The results have shown that the thermal pretreatment, steam explosion and ultrasonic irradiation of biogas feedstock disintegrated the lignocellulosic structure, increased and accelerated the methane production and increased the cumulative biogas and methane productivity of corn stover in reference to the control during mesophilic anaerobic digestion.The energy balance demonstrated that there is an economical basis of the application of the liquid hot-compressed water pretreatments in a biogas plant. However, the steam explosion and ultrasonication are energetically not profitable for corn stover pretreatment.

  8. A novel diffusion-biphasic hydrolysis coupled kinetic model for dilute sulfuric acid pretreatment of corn stover.

    Science.gov (United States)

    Chen, Longjian; Zhang, Haiyan; Li, Junbao; Lu, Minsheng; Guo, Xiaomiao; Han, Lujia

    2015-02-01

    Kinetic experiments on the dilute sulfuric acid pretreatment of corn stover were performed. A high xylan removal and a low inhibitor concentration were achieved by acid pretreatment. A novel diffusion-hydrolysis coupled kinetic model was proposed. The contribution to the xylose yield was analyzed by the kinetic model. Compared with the inhibitor furfural negatively affecting xylose yield, the fast and slow-hydrolyzing xylan significantly contributed to the xylose yield, however, their dominant roles were dependent on reaction temperature and time. The impact of particle size and acid concentration on the xylose yield were also investigated. The diffusion process may significantly influence the hydrolysis of large particles. Increasing the acid concentration from 0.15 M to 0.30 M significantly improved the xylose yield, whereas the extent of improvement decreased to near-quantitative when further increasing acid loading. These findings shed some light on the mechanism for dilute sulfuric acid hydrolysis of corn stover. PMID:25479388

  9. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain.

    Science.gov (United States)

    Li, Lixiang; Li, Kun; Wang, Kai; Chen, Chao; Gao, Chao; Ma, Cuiqing; Xu, Ping

    2014-10-01

    In this study, a thermophilic Bacillus licheniformis strain X10 was newly isolated for 2,3-butanediol (2,3-BD) production from lignocellulosic hydrolysate. Strain X10 could utilize glucose and xylose simultaneously without carbon catabolite repression. In addition, strain X10 possesses high tolerance to fermentation inhibitors including furfural, vanillin, formic acid, and acetic acid. In a fed-batch fermentation, 74.0g/L of 2,3-BD was obtained from corn stover hydrolysate, with a productivity of 2.1g/Lh and a yield of 94.6%. Thus, this thermophilic B. licheniformis strain is a candidate for the development of efficient industrial production of 2,3-BD from corn stover hydrolysate.

  10. The promoting effects of manganese on biological pretreatment with Irpex lacteus and enzymatic hydrolysis of corn stover.

    Science.gov (United States)

    Song, Lili; Ma, Fuying; Zeng, Yelin; Zhang, Xiaoyu; Yu, Hongbo

    2013-05-01

    The effect of metal ions on biological pretreatment was evaluated for improving subsequent enzymatic hydrolysis. Results showed that the efficiency of fungal pretreatment was greatly improved with manganese supplement in biomass. After enzymatic hydrolysis of 28-d pretreated corn stover, maximum glucose yield was 308.98 mg/g corn stover with manganese supplement, which increased by 61.39% as compared to the conventional fungal pretreatment. Furthermore, manganese also enhanced the production of ethanol, corresponding to a high ethanol conversion (83.39%). Manganese greatly improved the delignification of Irpex lacteus specially. Correspondingly, the efficiency of saccharification and fermentation was closely related to the removal of lignin. This study showed a promising effect of manganese on fungal pretreatment and the production of biofuels.

  11. A novel diffusion-biphasic hydrolysis coupled kinetic model for dilute sulfuric acid pretreatment of corn stover.

    Science.gov (United States)

    Chen, Longjian; Zhang, Haiyan; Li, Junbao; Lu, Minsheng; Guo, Xiaomiao; Han, Lujia

    2015-02-01

    Kinetic experiments on the dilute sulfuric acid pretreatment of corn stover were performed. A high xylan removal and a low inhibitor concentration were achieved by acid pretreatment. A novel diffusion-hydrolysis coupled kinetic model was proposed. The contribution to the xylose yield was analyzed by the kinetic model. Compared with the inhibitor furfural negatively affecting xylose yield, the fast and slow-hydrolyzing xylan significantly contributed to the xylose yield, however, their dominant roles were dependent on reaction temperature and time. The impact of particle size and acid concentration on the xylose yield were also investigated. The diffusion process may significantly influence the hydrolysis of large particles. Increasing the acid concentration from 0.15 M to 0.30 M significantly improved the xylose yield, whereas the extent of improvement decreased to near-quantitative when further increasing acid loading. These findings shed some light on the mechanism for dilute sulfuric acid hydrolysis of corn stover.

  12. High ethanol fermentation performance of the dry dilute acid pretreated corn stover by an evolutionarily adapted Saccharomyces cerevisiae strain.

    Science.gov (United States)

    Qureshi, Abdul Sattar; Zhang, Jian; Bao, Jie

    2015-01-01

    Ethanol fermentation was investigated at the high solids content of the dry dilute sulfuric acid pretreated corn stover feedstock using an evolutionary adapted Saccharomyces cerevisiae DQ1 strain. The evolutionary adaptation was conducted by successively transferring the S. cerevisiae DQ1 cells into the inhibitors containing corn stover hydrolysate every 12h and finally a stable yeast strain was obtained after 65 days' continuous adaptation. The ethanol fermentation performance using the adapted strain was significantly improved with the high ethanol titer of 71.40 g/L and the high yield of 80.34% in the simultaneous saccharification and fermentation (SSF) at 30% solids content. No wastewater was generated from pretreatment to fermentation steps. The results were compared with the published cellulosic ethanol fermentation cases, and the obvious advantages of the present work were demonstrated not only at the high ethanol titer and yield, but also the significant reduction of wastewater generation and potential cost reduction.

  13. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain.

    Science.gov (United States)

    Li, Lixiang; Li, Kun; Wang, Kai; Chen, Chao; Gao, Chao; Ma, Cuiqing; Xu, Ping

    2014-10-01

    In this study, a thermophilic Bacillus licheniformis strain X10 was newly isolated for 2,3-butanediol (2,3-BD) production from lignocellulosic hydrolysate. Strain X10 could utilize glucose and xylose simultaneously without carbon catabolite repression. In addition, strain X10 possesses high tolerance to fermentation inhibitors including furfural, vanillin, formic acid, and acetic acid. In a fed-batch fermentation, 74.0g/L of 2,3-BD was obtained from corn stover hydrolysate, with a productivity of 2.1g/Lh and a yield of 94.6%. Thus, this thermophilic B. licheniformis strain is a candidate for the development of efficient industrial production of 2,3-BD from corn stover hydrolysate. PMID:25151068

  14. INFLUENCE OF BIOPRETREATMENT ON THE CHARACTER OF CORN STOVER LIGNIN AS SHOWN BY THERMOGRAVIMETRIC AND CHEMICAL STRUCTURAL ANALYSES

    OpenAIRE

    Xuewei Yang; Yelin Zeng; Xiaoyu Zhang

    2010-01-01

    The effect of corn stover lignin structure alteration caused by white-rot fungi pretreatment on the pyrolysis kinetics was studied by FTIR and TG/DTA. Results showed that biopretreatment had a remarkable effect on lignin pyrolysis. Biopretreatment can decrease the activation energy and increase the pre-exponential factor in the initial stage of pyrolysis, which makes it possible to start the lignin pyrolysis at a relatively gentle condition and improve the availability of biomass pyrolysis as...

  15. Process integration for simultaneous saccharification, fermentation, and recovery (SSFR): production of butanol from corn stover using Clostridium beijerinckii P260.

    Science.gov (United States)

    Qureshi, N; Singh, V; Liu, S; Ezeji, T C; Saha, B C; Cotta, M A

    2014-02-01

    A simultaneous saccharification, fermentation, and recovery (SSFR) process was developed for the production of acetone-butanol-ethanol (AB or ABE), of which butanol is the main product, from corn stover employing Clostridium beijerinckii P260. Of the 86 g L(-1) corn stover provided, over 97% of the sugars were released during hydrolysis and these were fermented completely with an ABE productivity of 0.34 g L(-1)h(-1) and yield of 0.39. This productivity is higher than 0.31 g L(-1)h(-1) when using glucose as a substrate demonstrating that AB could be produced efficiently from lignocellulosic biomass. Acetic acid that was released from the biomass during pretreatment and hydrolysis was also used by the culture to produce AB. An average rate of generation of sugars during corn stover hydrolysis was 0.98 g L(-1)h(-1). In this system AB was recovered using vacuum, and as a result of this (simultaneous product recovery), 100% sugars were used by the culture.

  16. Improving Biomethane Production and Mass Bioconversion of Corn Stover Anaerobic Digestion by Adding NaOH Pretreatment and Trace Elements

    Directory of Open Access Journals (Sweden)

    ChunMei Liu

    2015-01-01

    Full Text Available This research applied sodium hydroxide (NaOH pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg·L−1·d−1 of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioconversion rate was 55.7%, which was 41.8%–62.2% higher than with NaOH-pretreatment alone and 22.2%–56.3% higher than with untreated corn stover. The best combination was obtained 5–9 days shorter than T90 and maintained good system operation stability. Only a fraction of the trace elements in the best combination was present in the resulting solution; more than 85% of the total amounts added were transferred into the solid fraction. Adding 0.897 g of Fe, 0.389 g of Co, and 0.349 g of Ni satisfied anaerobic digestion needs and enhanced biological activity at the beginning of the operation. The results showed that NaOH pretreatment and adding trace elements improve corn stover biodegradability and enhance biomethane production.

  17. Improving Biomethane Production and Mass Bioconversion of Corn Stover Anaerobic Digestion by Adding NaOH Pretreatment and Trace Elements.

    Science.gov (United States)

    Liu, ChunMei; Yuan, HaiRong; Zou, DeXun; Liu, YanPing; Zhu, BaoNing; Li, XiuJin

    2015-01-01

    This research applied sodium hydroxide (NaOH) pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg·L(-1)·d(-1) of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioconversion rate was 55.7%, which was 41.8%-62.2% higher than with NaOH-pretreatment alone and 22.2%-56.3% higher than with untreated corn stover. The best combination was obtained 5-9 days shorter than T90 and maintained good system operation stability. Only a fraction of the trace elements in the best combination was present in the resulting solution; more than 85% of the total amounts added were transferred into the solid fraction. Adding 0.897 g of Fe, 0.389 g of Co, and 0.349 g of Ni satisfied anaerobic digestion needs and enhanced biological activity at the beginning of the operation. The results showed that NaOH pretreatment and adding trace elements improve corn stover biodegradability and enhance biomethane production.

  18. Optimization of alkaline sulfite pretreatment and comparative study with sodium hydroxide pretreatment for improving enzymatic digestibility of corn stover.

    Science.gov (United States)

    Liu, Huan; Pang, Bo; Wang, Haisong; Li, Haiming; Lu, Jie; Niu, Meihong

    2015-04-01

    In this study, alkaline sulfite pretreatment of corn stover was optimized. The influences of pretreatments on solid yield, delignification, and carbohydrate recovery under different pretreatment conditions and subsequent enzymatic hydrolysis were investigated. The effect of pretreatment was evaluated by enzymatic hydrolysis efficiency and the total sugar yield. The optimum pretreatment conditions were obtained, as follows: the total titratable alkali (TTA) of 12%, liquid/solid ratio of 6:1, temperature of 140 °C, and holding time of 20 min. Under those conditions, the solid yield was 55.24%, and the removal of lignin was 82.68%. Enzymatic hydrolysis rates of glucan and xylan for pretreated corn stover were 85.38% and 70.36%, and the total sugar yield was 74.73% at cellulase loading of 20 FPU/g and β-glucosidase loading of 10 IU/g for 48 h. Compared with sodium hydroxide pretreatment with the same amount of total titratable alkali, the total sugar yield was raised by about 10.43%. Additionally, the corn stover pretreated under the optimum pretreatment conditions was beaten by PFI at 1500 revolutions. After beating, enzymatic hydrolysis rates of glucan and xylan were 89.74% and 74.06%, and the total sugar yield was 78.58% at the same enzymatic hydrolysis conditions. Compared with 1500 rpm of PFI beating after sodium pretreatment with the same amount of total titratable alkali, the total sugar yield was raised by about 14.05%.

  19. Effect of poultry litter biochar on Saccharomyces cerevisiae growth and ethanol production from steam-exploded poplar and corn stover

    Science.gov (United States)

    Diallo, Oumou

    The use of ethanol produced from lignocellulosic biomass for transportation fuel offers solutions in reducing environmental emission and the use of non-renewable fuels. However, lignocellulosic ethanol production is still hampered by economic and technical obstacles. For instance, the inhibitory effect of toxic compounds produced during biomass pretreatment was reported to inhibit the fermenting microorganisms, hence there was a decrease in ethanol yield and productivity. Thus, there is a need to improve the bioconversion of lignocellulosic biomass to ethanol in order to promote its commercialization. The research reported here investigated the use of poultry litter biochar to improve the ethanol production from steam-exploded poplar and corn stover. The effect of poultry litter biochar was first studied on Saccharomyces cerevisiae ATCC 204508/S288C growth, and second on the enzyme hydrolysis and fermentation of two steam-exploded biomasses: (poplar and corn stover). The third part of the study investigated optimal process parameters (biochar loading, biomass loading, and enzyme loading) on the reducing sugars production, and ethanol yield from steam-exploded corn stover. In this study, it has been shown that poultry litter biochar improved the S. cerevisiae growth and ethanol productivity; therefore poultry litter biochar could potentially be used to improve the ethanol production from steam-exploded lignocellulosic biomass.

  20. Effect of acid, steam explosion, and size reduction pretreatments on bio-oil production from sweetgum, switchgrass, and corn stover.

    Science.gov (United States)

    Wang, Hui; Srinivasan, Radhakrishnan; Yu, Fei; Steele, Philip; Li, Qi; Mitchell, Brian; Samala, Aditya

    2012-05-01

    Bio-oil produced from biomass by fast pyrolysis has the potential to be a valuable substitute for fossil fuels. In a recent work on pinewood, we found that pretreatment alters the structure and chemical composition of biomass, which influence fast pyrolysis. In this study, we evaluated dilute acid, steam explosion, and size reduction pretreatments on sweetgum, switchgrass, and corn stover feedstocks. Bio-oils were produced from untreated and pretreated feedstocks in an auger reactor at 450 °C. The bio-oil's physical properties of pH, water content, acid value, density, and viscosity were measured. The chemical characteristics of the bio-oils were determined by gas chromatography-mass spectrometry. The results showed that bio-oil yield and composition were influenced by the pretreatment method and feedstock type. Bio-oil yields of 52, 33, and 35 wt% were obtained from medium-sized (0.68-1.532 mm) untreated sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from other sizes. Bio-oil yields of 56, 46, and 51 wt% were obtained from 1% H(2)SO(4)-treated medium-sized sweetgum, switchgrass, and corn stover, respectively, which were higher than the yields from untreated and steam explosion treatments.

  1. Improving Biomethane Production and Mass Bioconversion of Corn Stover Anaerobic Digestion by Adding NaOH Pretreatment and Trace Elements.

    Science.gov (United States)

    Liu, ChunMei; Yuan, HaiRong; Zou, DeXun; Liu, YanPing; Zhu, BaoNing; Li, XiuJin

    2015-01-01

    This research applied sodium hydroxide (NaOH) pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg·L(-1)·d(-1) of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioconversion rate was 55.7%, which was 41.8%-62.2% higher than with NaOH-pretreatment alone and 22.2%-56.3% higher than with untreated corn stover. The best combination was obtained 5-9 days shorter than T90 and maintained good system operation stability. Only a fraction of the trace elements in the best combination was present in the resulting solution; more than 85% of the total amounts added were transferred into the solid fraction. Adding 0.897 g of Fe, 0.389 g of Co, and 0.349 g of Ni satisfied anaerobic digestion needs and enhanced biological activity at the beginning of the operation. The results showed that NaOH pretreatment and adding trace elements improve corn stover biodegradability and enhance biomethane production. PMID:26137469

  2. Bioethanol production from steam-pretreated corn stover through an isomerase mediated process.

    Science.gov (United States)

    De Bari, Isabella; Cuna, Daniela; Di Matteo, Vincenzo; Liuzzi, Federico

    2014-03-25

    Agricultural by-products such as corn stover are considered strategic raw materials for the production of second-generation bioethanol from renewable and non-food sources. This paper describes the conversion of steam-pretreated corn stover to ethanol utilising a multi-step process including enzymatic hydrolysis, isomerisation, and fermentation of mixed hydrolysates with native Saccharomyces cerevisiae. An immobilised isomerase enzyme was used for the xylose isomerisation along with high concentrations of S. cerevisiae. The objective was to assess the extent of simultaneity of the various conversion steps, through a detailed analysis of process time courses, and to test this process scheme for the conversion of lignocellulosic hydrolysates containing several inhibitors of the isomerase enzyme (e.g. metal ions, xylitol and glycerol). The process was tested on two types of hydrolysate after acid-catalysed steam pretreatment: (a) the water soluble fraction (WSF) in which xylose was the largest carbon source and (b) the entire slurry, containing both cellulose and hemicellulose carbohydrates, in which glucose predominated. The results indicated that the ethanol concentration rose when the inoculum concentration was increased in the range 10-75 g/L. However, when xylose was the largest carbon source, the metabolic yields were higher than 0.51g(ethanol)/g(consumed) sugars probably due to the use of yeast internal cellular resources. This phenomenon was not observed in the fermentation of mixed hydrolysates obtained from the entire pretreated product and in which glucose was the largest carbon source. The ethanol yield from biomass suspensions with dry matter (DM) concentrations of 11-12% (w/v) was 70% based on total sugars (glucose, xylose, galactose). The results suggest that xylulose uptake was more effective in mixed hydrolysates containing glucose levels similar to, or higher than, xylose. Analysis of the factors that limit isomerase activity in lignocellulosic

  3. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain.

    Directory of Open Access Journals (Sweden)

    Ting Jiang

    Full Text Available An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH, condensed acid-catalyzed liquid hot water hydrolysate (CALH and condensed acid-catalyzed sulfite hydrolysate (CASH as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF, vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates.

  4. Blending municipal solid waste with corn stover for sugar production using ionic liquid process

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Ning [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Xu, Feng [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Sathitsuksanoh, Noppadon [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Thompson, Vicki S. [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Cafferty, Kara [Idaho National Laboratory (INL), Idaho Falls, ID (United States); Li, Chenlin [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Tanjore, Deepti [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Narani, Akash [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Pray, Todd R. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Simmons, Blake A. [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Sandia National Laboratories (SNL-CA), Livermore, CA (United States); Singh, Seema [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Sandia National Laboratories (SNL-CA), Livermore, CA (United States)

    2015-06-01

    Municipal solid waste (MSW) represents an attractive cellulosic resource for sustainable fuel production because of its abundance and its low or perhaps negative cost. However, the significant heterogeneity and toxic contaminants are barriers to efficient conversion to ethanol and other products. In this study, we generated MSW paper mix, blended with corn stover (CS), and have shown that both MSW paper mix alone and MSW/CS blends can be efficiently pretreated in certain ionic liquids (ILs) with high yields of fermentable sugars. After pretreatment in 1-ethyl-3-methylimidazolium acetate ([C2C1Im][OAc]), over 80% glucose has been released with enzymatic saccharification. We have also applied an enzyme free process by adding mineral acid and water directly into the IL/biomass slurry to induce hydrolysis. With the acidolysis process in the IL 1-ethyl-3-methylimidazolium chloride ([C2C1Im]Cl), up to 80% glucose and 90% xylose are released for MSW. The results indicate the feasibility of incorporating MSW as a robust blending agent for biorefineries.

  5. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain.

    Science.gov (United States)

    Jiang, Ting; Qiao, Hui; Zheng, Zhaojuan; Chu, Qiulu; Li, Xin; Yong, Qiang; Ouyang, Jia

    2016-01-01

    An inhibitor-tolerance strain, Bacillus coagulans GKN316, was developed through atmospheric and room temperature plasma (ARTP) mutation and evolution experiment in condensed dilute-acid hydrolysate (CDH) of corn stover. The fermentabilities of other hydrolysates with B. coagulans GKN316 and the parental strain B. coagulans NL01 were assessed. When using condensed acid-catalyzed steam-exploded hydrolysate (CASEH), condensed acid-catalyzed liquid hot water hydrolysate (CALH) and condensed acid-catalyzed sulfite hydrolysate (CASH) as substrates, the concentration of lactic acid reached 45.39, 16.83, and 18.71 g/L by B. coagulans GKN316, respectively. But for B. coagulans NL01, only CASEH could be directly fermented to produce 15.47 g/L lactic acid. The individual inhibitory effect of furfural, 5-hydroxymethylfurfural (HMF), vanillin, syringaldehyde and p-hydroxybenzaldehyde (pHBal) on xylose utilization by B. coagulans GKN316 was also studied. The strain B. coagulans GKN316 could effectively convert these toxic inhibitors to the less toxic corresponding alcohols in situ. These results suggested that B. coagulans GKN316 was well suited to production of lactic acid from undetoxified lignocellulosic hydrolysates. PMID:26863012

  6. Biobutanol production from corn stover hydrolysate pretreated with recycled ionic liquid by Clostridium saccharobutylicum DSM 13864.

    Science.gov (United States)

    Ding, Ji-Cai; Xu, Guo-Chao; Han, Rui-Zhi; Ni, Ye

    2016-01-01

    In this study, corn stover (CS) hydrolysates, pretreated by fresh and recycled ionic liquid (IL) [Bmim][Cl], were utilized in butanol fermentation by Clostridium saccharobutylicum DSM 13864. An efficient CS pretreatment procedure using [Bmim][Cl] was developed, giving a glucose concentration of 18.7 g L(-1) using ten times recycled [Bmim][Cl], representing about 77% of that produced with fresh IL (24.2 g L(-1)). Fermentation of hydrolysate I (pretreated by fresh IL) resulted in 7.4 g L(-1) butanol with a yield of 0.21 g g total-sugar(-1) and a productivity of 0.11 g L(-1)h(-1), while 7.9 g L(-1) butanol was achieved in fermentation using hydrolysate II (pretreated by ten times reused IL) with similar levels of acetone and ethanol, as well as yield and productivity. This study provides evidence for the efficient utilization of IL in CS pretreatment for biobutanol fermentation. PMID:26318847

  7. Comparison of different pretreatments for the production of bioethanol and biomethane from corn stover and switchgrass.

    Science.gov (United States)

    Papa, G; Rodriguez, S; George, A; Schievano, A; Orzi, V; Sale, K L; Singh, S; Adani, F; Simmons, B A

    2015-05-01

    In this study the efficiency of mild ionic liquid (IL) pretreatment and pressurized hot water (PHW) is evaluated and compared in terms of bioethanol and biomethane yields, with corn stover (CS) and switchgrass (SG) as model bioenergy crops. Both feedstocks pretreated with the IL 1-ethyl-3-methylimidazolium acetate [C2C1Im][OAc] at 100°C for 3h exhibited lower glucose yield that those treated with harsher pretreatment conditions previously used. Compared to PHW, IL pretreatment demonstrated higher bioethanol yields; moreover IL pretreatment enhanced biomethane production. Taking into consideration both bioethanol and biomethane productions, results indicated that when using IL pretreatment, the total energy produced per kg of total solids was higher compared to untreated biomasses. Specifically energy produced from CS and SG was +18.6% and +34.5% respectively, as compared to those obtained by hot water treatment, i.e. +2.3% and +23.4% for CS and SG, respectively. PMID:25725408

  8. Conservation characteristics of corn ears and stover ensiled with the addition of Lactobacillus plantarum MTD-1, Lactobacillus plantarum 30114, or Lactobacillus buchneri 11A44.

    Science.gov (United States)

    Lynch, J P; O'Kiely, P; Waters, S M; Doyle, E M

    2012-04-01

    The aim of this study was to investigate the effects of inoculating 3 contrasting lactic acid bacteria on the fermentation profile, estimated nutritive value, and aerobic stability of corn ears and stover produced under marginal growing conditions. Ears and stover were separated from whole-crop corn plants obtained from 3 replicate field blocks. Representative subsamples were precision chopped and allocated to 1 of the following treatments: an uninoculated control, Lactobacillus plantarum MTD-1 (LP1), L. plantarum 30114 (LP2), or Lactobacillus buchneri 11A44 (LB). Each bacterial additive was applied at a rate of 1 × 10(6) cfu/g of fresh herbage. Triplicate samples of each treatment were ensiled in laboratory silos at 15°C for 3, 10, 35, or 130 d. No difference was observed between the dry matter recoveries of uninoculated ear or stover silages and silages made with LP1, and the aerobic stability of uninoculated ear and stover silages did not differ from silages made with LB. Stover silages made with LP2 and ensiled for 35 d had a lower proportion of lactic acid in total fermentation products compared with LP1. The aerobic stability and dry matter recovery of ear and stover silages in this study were not improved when made with LB, LP1, or LP2, due to the indigenous highly heterolactic fermentation that prevailed in the uninoculated ear and stover during 130-d ensilage.

  9. Ethanol and biogas production after steam pretreatment of corn stover with or without the addition of sulphuric acid

    Directory of Open Access Journals (Sweden)

    Bondesson Pia-Maria

    2013-01-01

    Full Text Available Abstract Background Lignocellulosic biomass, such as corn stover, is a potential raw material for ethanol production. One step in the process of producing ethanol from lignocellulose is enzymatic hydrolysis, which produces fermentable sugars from carbohydrates present in the corn stover in the form of cellulose and hemicellulose. A pretreatment step is crucial to achieve efficient conversion of lignocellulosic biomass to soluble sugars, and later ethanol. This study has investigated steam pretreatment of corn stover, with and without sulphuric acid as catalyst, and examined the effect of residence time (5–10 min and temperature (190–210°C on glucose and xylose recovery. The pretreatment conditions with and without dilute acid that gave the highest glucose yield were then used in subsequent experiments. Materials pretreated at the optimal conditions were subjected to simultaneous saccharification and fermentation (SSF to produce ethanol, and remaining organic compounds were used to produce biogas by anaerobic digestion (AD. Results The highest glucose yield achieved was 86%, obtained after pretreatment at 210°C for 10 minutes in the absence of catalyst, followed by enzymatic hydrolysis. The highest yield using sulphuric acid, 78%, was achieved using pretreatment at 200°C for 10 minutes. These two pretreatment conditions were investigated using two different process configurations. The highest ethanol and methane yields were obtained from the material pretreated in the presence of sulphuric acid. The slurry in this case was split into a solid fraction and a liquid fraction, where the solid fraction was used to produce ethanol and the liquid fraction to produce biogas. The total energy recovery in this case was 86% of the enthalpy of combustion energy in corn stover. Conclusions The highest yield, comprising ethanol, methane and solids, was achieved using pretreatment in the presence of sulphuric acid followed by a process configuration in

  10. Gasification of oak sawdust, mesquite, corn stover, and cotton gin trash in a countercurrent fluidized bed pilot reactor

    Energy Technology Data Exchange (ETDEWEB)

    Beck, S.R.; Wang, M.J.; Hightower, J.A.

    1981-01-01

    The Synthesis Gas From Manure (SGFM) process was designed to convert cattle feedlot manure to ammonia synthesis gas. Current work is aimed at using any biomass feedstock to produce either medium-Btu gas or chemical feedstocks. This paper presents a comparison of the experimental results compiled on gasification of oak sawdust, corn stover, mesquite, and cotton gin trash in the SGFM pilot plant. A weighted comparison of the product gas, hydrocarbon, and hydrogen yields, gas quality, calorific value of product gas, percentage conversion of raw feed heating value to gas heating value, and operability of each feed indicated the oak sawdust was the best feedstock.

  11. Improving Biomethane Production and Mass Bioconversion of Corn Stover Anaerobic Digestion by Adding NaOH Pretreatment and Trace Elements

    OpenAIRE

    ChunMei Liu; HaiRong Yuan; DeXun Zou; YanPing Liu; BaoNing Zhu; XiuJin Li

    2015-01-01

    This research applied sodium hydroxide (NaOH) pretreatment and trace elements to improve biomethane production when using corn stover for anaerobic digestion. Full-factor experimental tests identified the best combination of trace elements with the NaOH pretreatment, indicating that the best combination was with 1.0, 0.4, and 0.4 mg·L−1·d−1 of elements Fe, Co, and Ni, respectively. The cumulative biomethane production adding NaOH pretreatment and trace elements was 11,367 mL; total solid bioc...

  12. Efficient and comprehensive utilization of hemicellulose in the corn stover%玉米秸秆中半纤维素的高效综合利用

    Institute of Scientific and Technical Information of China (English)

    高鹏飞; 范代娣; 骆艳娥; 马晓轩; 马沛; 惠俊峰; 朱晨辉

    2009-01-01

    Pretreatment of the corn stover powder by dilute sulphuric acid (solid-liquid ratio 1 : 20) at 130℃ for 30 min was carried out with 89.09% of the hemicellulose removed. After filtration, the xylose-rich corn stover pre-treatment liquid, whose fermentable sugar was from hemiccllulose hydrolysis only, consisting of 81.16% xylose and 15.27% glucose, was used to cultivate genetic recombinant Escherichia coli BL21 with human-like collagen (HLC) expression enhanced by 50.00% and 63.71% xylose consumption.

  13. Identification and Antimicrobial Activity Detection of Lactic Acid Bacteria Isolated from Corn Stover Silage

    Science.gov (United States)

    Li, Dongxia; Ni, Kuikui; Pang, Huili; Wang, Yanping; Cai, Yimin; Jin, Qingsheng

    2015-01-01

    A total of 59 lactic acid bacteria (LAB) strains were isolated from corn stover silage. According to phenotypic and chemotaxonomic characteristics, 16S ribosomal DNA (rDNA) sequences and recA gene polymerase chain reaction amplification, these LAB isolates were identified as five species: Lactobacillus (L.) plantarum subsp. plantarum, Pediococcus pentosaceus, Enterococcus mundtii, Weissella cibaria and Leuconostoc pseudomesenteroides, respectively. Those strains were also screened for antimicrobial activity using a dual-culture agar plate assay. Based on excluding the effects of organic acids and hydrogen peroxide, two L. plantarum subsp. plantarum strains ZZU 203 and 204, which strongly inhibited Salmonella enterica ATCC 43971T, Micrococcus luteus ATCC 4698T and Escherichia coli ATCC 11775T were selected for further research on sensitivity of the antimicrobial substance to heat, pH and protease. Cell-free culture supernatants of the two strains exhibited strong heat stability (60 min at 100°C), but the antimicrobial activity was eliminated after treatment at 121°C for 15 min. The antimicrobial substance remained active under acidic condition (pH 2.0 to 6.0), but became inactive under neutral and alkaline condition (pH 7.0 to 9.0). In addition, the antimicrobial activities of these two strains decreased remarkably after digestion by protease K. These results preliminarily suggest that the desirable antimicrobial activity of strains ZZU 203 and 204 is the result of the production of a bacteriocin-like substance, and these two strains with antimicrobial activity could be used as silage additives to inhibit proliferation of unwanted microorganism during ensiling and preserve nutrients of silage. The nature of the antimicrobial substances is being investigated in our laboratory. PMID:25924957

  14. Identification and antimicrobial activity detection of lactic Acid bacteria isolated from corn stover silage.

    Science.gov (United States)

    Li, Dongxia; Ni, Kuikui; Pang, Huili; Wang, Yanping; Cai, Yimin; Jin, Qingsheng

    2015-05-01

    A total of 59 lactic acid bacteria (LAB) strains were isolated from corn stover silage. According to phenotypic and chemotaxonomic characteristics, 16S ribosomal DNA (rDNA) sequences and recA gene polymerase chain reaction amplification, these LAB isolates were identified as five species: Lactobacillus (L.) plantarum subsp. plantarum, Pediococcus pentosaceus, Enterococcus mundtii, Weissella cibaria and Leuconostoc pseudomesenteroides, respectively. Those strains were also screened for antimicrobial activity using a dual-culture agar plate assay. Based on excluding the effects of organic acids and hydrogen peroxide, two L. plantarum subsp. plantarum strains ZZU 203 and 204, which strongly inhibited Salmonella enterica ATCC 43971(T), Micrococcus luteus ATCC 4698(T) and Escherichia coli ATCC 11775(T) were selected for further research on sensitivity of the antimicrobial substance to heat, pH and protease. Cell-free culture supernatants of the two strains exhibited strong heat stability (60 min at 100°C), but the antimicrobial activity was eliminated after treatment at 121°C for 15 min. The antimicrobial substance remained active under acidic condition (pH 2.0 to 6.0), but became inactive under neutral and alkaline condition (pH 7.0 to 9.0). In addition, the antimicrobial activities of these two strains decreased remarkably after digestion by protease K. These results preliminarily suggest that the desirable antimicrobial activity of strains ZZU 203 and 204 is the result of the production of a bacteriocin-like substance, and these two strains with antimicrobial activity could be used as silage additives to inhibit proliferation of unwanted microorganism during ensiling and preserve nutrients of silage. The nature of the antimicrobial substances is being investigated in our laboratory.

  15. Ammonia, Total Reduced Sulfides, and Greenhouse Gases of Pine Chip and Corn Stover Bedding Packs.

    Science.gov (United States)

    Spiehs, Mindy J; Brown-Brandl, Tami M; Parker, David B; Miller, Daniel N; Berry, Elaine D; Wells, James E

    2016-03-01

    Bedding materials may affect air quality in livestock facilities. Our objective in this study was to compare headspace concentrations of ammonia (NH), total reduced sulfides (TRS), carbon dioxide (CO), methane (CH), and nitrous oxide (NO) when pine wood chips ( spp.) and corn stover ( L.) were mixed in various ratios (0, 10, 20, 30, 40, 60, 80, and 100% pine chips) and used as bedding with manure. Air samples were collected from the headspace of laboratory-scaled bedded manure packs weekly for 42 d. Ammonia concentrations were highest for bedded packs containing 0, 10, and 20% pine chips (equivalent to 501.7, 502.3, and 502.3 mg m, respectively) in the bedding mixture and were lowest when at least 80% pine chips were used as bedding (447.3 and 431.0 mg m, respectively for 80 and 100% pine chip bedding). The highest NH concentrations were observed at Day 28. The highest concentration of TRS was observed when 100% pine chips were used as bedding (11.4 µg m), with high concentrations occurring between Days 7 and 14, and again at Day 35. Greenhouse gases were largely unaffected by bedding material but CH and CO concentrations increased as the bedded packs aged and NO concentrations were highly variable throughout the incubation. We conclude that a mixture of bedding material that contains 30 to 40% pine chips may be the ideal combination to reduce both NH and TRS emissions. All gas concentrations increased as the bedded packs aged, suggesting that frequent cleaning of facilities would improve air quality in the barn, regardless of bedding materials used. PMID:27065410

  16. Ammonia, Total Reduced Sulfides, and Greenhouse Gases of Pine Chip and Corn Stover Bedding Packs.

    Science.gov (United States)

    Spiehs, Mindy J; Brown-Brandl, Tami M; Parker, David B; Miller, Daniel N; Berry, Elaine D; Wells, James E

    2016-03-01

    Bedding materials may affect air quality in livestock facilities. Our objective in this study was to compare headspace concentrations of ammonia (NH), total reduced sulfides (TRS), carbon dioxide (CO), methane (CH), and nitrous oxide (NO) when pine wood chips ( spp.) and corn stover ( L.) were mixed in various ratios (0, 10, 20, 30, 40, 60, 80, and 100% pine chips) and used as bedding with manure. Air samples were collected from the headspace of laboratory-scaled bedded manure packs weekly for 42 d. Ammonia concentrations were highest for bedded packs containing 0, 10, and 20% pine chips (equivalent to 501.7, 502.3, and 502.3 mg m, respectively) in the bedding mixture and were lowest when at least 80% pine chips were used as bedding (447.3 and 431.0 mg m, respectively for 80 and 100% pine chip bedding). The highest NH concentrations were observed at Day 28. The highest concentration of TRS was observed when 100% pine chips were used as bedding (11.4 µg m), with high concentrations occurring between Days 7 and 14, and again at Day 35. Greenhouse gases were largely unaffected by bedding material but CH and CO concentrations increased as the bedded packs aged and NO concentrations were highly variable throughout the incubation. We conclude that a mixture of bedding material that contains 30 to 40% pine chips may be the ideal combination to reduce both NH and TRS emissions. All gas concentrations increased as the bedded packs aged, suggesting that frequent cleaning of facilities would improve air quality in the barn, regardless of bedding materials used.

  17. Bioethanol production from corn stover residues. Process design and Life Cycle Assessment

    International Nuclear Information System (INIS)

    In this report, the mass and energy balance along with a land-to-wheel Life Cycle Assessment (LCA) is described for a corn stover-to-ethanol industrial process assumed to consist of the main technologies being researched at ENEA TRISAIA: pretreatment by steam explosion and enzymatic hydrolysis. The modelled plant has a processing capacity of 60kt/y (dimensioned on realistic supplying basins of residues in Italy); biomass is pre-treated by acid catalyzed-steam explosion; cellulose and hemicelluloses are hydrolyzed and separately fermented; enzymes are on-site produced. The main target was to minimize the consumption of fresh water, enzymes and energy. The results indicate that the production of 1kg bio ethanol (95.4 wt%) requires 3.5 kg biomass dry matter and produces an energy surplus up to 740 Wh. The main purpose of the LCA analysis was to assess the environmental impact of the entire life cycle from the bio ethanol production up to its end-use as E10 blended gasoline. Boustead Model was used as tool to compile the life cycle inventory. The results obtained and discussed in this reports suffer of some limitations deriving from the following main points: some process yields have been extrapolated according to optimistic development scenarios; the energy and steam recovery could be lower than that projected because of lacks in the real systems; water recycle could be limited by the yeast tolerance toward the potential accumulation of toxic compounds. Nevertheless, the detailed process analysis here provided has its usefulness in: showing the challenging targets (even if they are ambitious) to bet on to make the integrated process feasible; driving the choice of the most suitable technologies to bypass some process bottlenecks

  18. Effects of various pretreatment methods on mixed microflora to enhance biohydrogen production from corn stover hydrolysate

    Institute of Scientific and Technical Information of China (English)

    Kun Zhang; Nanqi Ren; Changhong Guo; Aijie Wang; Guangli Cao

    2011-01-01

    Five individual pretreatment methods,including three widely-used protocols (heat,acid and base) and two novel attempts (ultrasonic and ultraviolet),were conducted in batch tests to compare their effects on mixed microflora to enhance hydrogen (H2) production from corn stover hydrolysate.Experimental results indicated that heat and base pretreatments significantly increased H2 yield with the values of 5.03 and 4.45 mmol H2/g sugar utifized,respectively,followed by acid pretreatment of 3.21 mmol H2/g sugar utilized.However,compared with the control (2.70 mmol H2/g sugar utilized),ultrasonic and ultraviolet pretreatments caused indistinctive effects on H2 production with the values of 2.92 and 2.87 mmol H2/g sugar utilized,respectively.The changes of soluble metabolites composition caused by pretreatment were in accordance with H2-producing behavior.Concretely,more acetate accumulation and less ethanol production were found in pretreated processes,meaning that more reduced nicotinamide adenine dinucleotide (NADH) might be saved and flowed into H2-producing pathways.PCR-DGGE analysis indicated that the pretreatment led to the enrichment of some species,which appeared in large amounts and even dominated the microbial community.Most of the dominated species were affiliated to Enterobacter spp.and Escherichia spp.As another efficient H2 producer,Clostridium bifermentan was only found in a large quantity after heat pretreatment.This strain might be mainly responsible for better performance of H2 production in this case.

  19. Analyzing the Effect of Variations in Soil and Management Practices on the Sustainability of Corn Stover-Based Bioethanol Production in Mississippi

    Energy Technology Data Exchange (ETDEWEB)

    Woli, Prem [Mississippi State Univ., Mississippi State, MS (United States); Paz, Joel [Mississippi State Univ., Mississippi State, MS (United States)

    2011-08-07

    The inherent variability in corn stover productivity due to variations in soils and crop management practices might contribute to a variation in corn stover-based bioethanol sustainability. This study was carried out to examine how changes in soil types and crop management options would affect corn stover yield (CSY) and the sustainability of the stover-based ethanol production in the Delta region of Mississippi. Based on potential acreage and geographical representation, three locations were selected. Using CERES-Maize model, stover yields were simulated for several scenarios of soils and crop management options. Based on 'net energy value (NEV)' computed from CSYs, a sustainability indicator for stover-based bioethanol production was established. The effects of soils and crop management options on CSY and NEV were determined using ANOVA tests and regression analyses. Both CSY and NEV were significantly different across sandy loam, silt loam, and silty clay loam soils and also across high-, mid-, and low-yielding cultivars. With an increase in irrigation level, both CSY and NEV increased initially and decreased after reaching a peak. A third-degree polynomial relationship was found between planting date and CSY and NEV each. By moving from the lowest to the highest production scenario, values of CSY and NEV could be increased by 86 to 553%, depending on location and weather condition. The effects of variations in soils and crop management options on NEV were the same as on CSY. The NEV was positive for all scenarios, indicating that corn stover-based ethanol production system in the Delta region is sustainable.

  20. Incorporating Agricultural Management Practices into the Assessment of Soil Carbon Change and Life-Cycle Greenhouse Gas Emissions of Corn Stover Ethanol Production

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Zhangcai [Argonne National Lab. (ANL), Argonne, IL (United States); Canter, Christina E. [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer B. [Argonne National Lab. (ANL), Argonne, IL (United States); Mueller, Steffen [Univ. of Illinois, Chicago, IL (United States); Kwon, Ho-young [International Food Policy Research Inst., Washington, DC (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Wander, Michelle M. [Univ. of Illinois, Champaign, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    Land management practices such as cover crop adoption or manure application that can increase soil organic carbon (SOC) may provide a way to counter SOC loss upon removal of stover from corn fields for use as a biofuel feedstock. This report documents the data, methodology, and assumptions behind the incorporation of land management practices into corn-soybean systems that dominate U.S. grain production using varying levels of stover removal in the GREETTM (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model and its CCLUB (Carbon Calculator for Land Use change from Biofuels production) module. Tillage (i.e., conventional, reduced and no tillage), corn stover removal (i.e., at 0, 30% and 60% removal rate), and organic matter input techniques (i.e., cover crop and manure application) are included in the analysis as major land management practices. Soil carbon changes associated with land management changes were modeled with a surrogate CENTURY model. The resulting SOC changes were incorporated into CCLUB while GREET was expanded to include energy and material consumption associated with cover crop adoption and manure application. Life-cycle greenhouse gas (GHG) emissions of stover ethanol were estimated using a marginal approach (all burdens and benefits assigned to corn stover ethanol) and an energy allocation approach (burdens and benefits divided between grain and stover ethanol). In the latter case, we considered corn grain and corn stover ethanol to be produced at an integrated facility. Life-cycle GHG emissions of corn stover ethanol are dependent upon the analysis approach selected (marginal versus allocation) and the land management techniques applied. The expansion of CCLUB and GREET to accommodate land management techniques can produce a wide range of results because users can select from multiple scenario options such as choosing tillage levels, stover removal rates, and whether crop yields increase annually or remain constant

  1. Simultaneous saccharification and fermentation of dilute alkaline-pretreated corn stover for enhanced butanol production by Clostridium saccharobutylicum DSM 13864.

    Science.gov (United States)

    Dong, Jin-Jun; Ding, Ji-Cai; Zhang, Yun; Ma, Li; Xu, Guo-Chao; Han, Rui-Zhi; Ni, Ye

    2016-02-01

    Simultaneous saccharification and fermentation (SSF) process was applied for biobutanol production by Clostridium saccharobutylicum DSM 13864 from corn stover (CS). The key influential factors in SSF process, including corn steep liquor concentration, dry biomass and enzyme loading, SSF temperature, inoculation size and pre-hydrolysis time were optimized. In 5-L bioreactor with SSF process, butanol titer and productivity of 12.3 g/L and 0.257 g/L/h were achieved at 48 h, which were 20.6% and 21.2% higher than those in separate hydrolysis and fermentation (SHF), respectively. The butanol yield reached 0.175 g/g pretreated CS in SSF, representing 50.9% increase than that in SHF (0.116 g/g pretreated CS). This study proves the feasibility of efficient and economic production of biobutanol from CS by SSF. PMID:26764423

  2. High-titer lactic acid production by Lactobacillus pentosus FL0421 from corn stover using fed-batch simultaneous saccharification and fermentation.

    Science.gov (United States)

    Hu, Jinlong; Lin, Yanxu; Zhang, Zhenting; Xiang, Ting; Mei, Yuxia; Zhao, Shumiao; Liang, Yunxiang; Peng, Nan

    2016-08-01

    Because the cost of refined sugar substrate and limit of worldwide food availability, lignocellulosic materials are attractive for use in lactic acid (LA) production. In this study, we found Lactobacillus pentosus strain FL0421 produced LA with high yields (0.52-0.82g/g stover) from five NaOH-pretreated and washed agro stovers through simultaneous saccharification and fermentation (SSF). We developed a fed-batch SSF process at 37°C and pH 6.0 using the cellulase of 30FPU/g stover and 10g/L yeast extract in a 5-L bioreactor to produce LA from 14% (w/w) NaOH-pretreated and washed corn stover under non-sterile condition. The LA-titer, yield and productivity reached 92.30g/L, 0.66g/g stover and 1.92g/L/h, respectively; and acetic acid titer and yield reached 34.27g/L and 0.24g/g stover. This study presented a feasible process for LA production from agro stovers and provided a candidate strain for genetic engineering for high-titer and -yield lignocellulosic LA production. PMID:27128191

  3. Identifying proper agitation interval to prevent floating layers formation of corn stover and improve biogas production in anaerobic digestion.

    Science.gov (United States)

    Tian, Libin; Zou, Dexun; Yuan, Hairong; Wang, Linfeng; Zhang, Xin; Li, Xiujin

    2015-06-01

    Floating tests were conducted in anaerobic digestion with different OLR of corn stover to investigate formation of floating layers and to find proper agitation interval for preventing floating layer formation. Floating layers were formed in the early stage of no-agitation period. The daily biogas production was decreased by 81.87-87.90% in digesters with no agitation and feeding compared with digesters having agitation. Reduction of biogas production was mainly attributed to poor contact of substrate-microorganisms. Agitation intervals of 10 h, 6 h, and 2 h were found to be proper for eliminating floating layer at OLR of 1.44, 1.78 and 2.11 g(TS) L(-1) d(-1), respectively. The proper agitation interval was further validated by anaerobic experiments. It showed that proper agitation interval could not only prevent floating layer formation and achieve high biogas production but also increase energy efficiency of anaerobic digestion. The finding is useful for operating anaerobic digester with corn stover in a cost-effective way.

  4. Acetic acid-catalyzed hydrothermal pretreatment of corn stover for the production of bioethanol at high-solids content.

    Science.gov (United States)

    Katsimpouras, Constantinos; Christakopoulos, Paul; Topakas, Evangelos

    2016-09-01

    Corn stover (CS) was hydrothermally pretreated using CH3COOH (0.3 %, v/v), and subsequently its ability to be utilized for conversion to ethanol at high-solids content was investigated. Pretreatment conditions were optimized employing a response surface methodology (RSM) with temperature and duration as independent variables. Pretreated CS underwent a liquefaction/saccharification step at a custom designed free-fall mixer at 50 °C for either 12 or 24 h using an enzyme loading of 9 mg/g dry matter (DM) at 24 % (w/w) DM. Simultaneous enzymatic saccharification and fermentation (SSF) of liquefacted corn stover resulted in high ethanol concentration (up to 36.8 g/L), with liquefaction duration having a negligible effect. The threshold of ethanol concentration of 4 % (w/w), which is required to reduce the cost of ethanol distillation, was surpassed by the addition of extra enzymes at the start up of SSF achieving this way ethanol titer of 41.5 g/L. PMID:27145780

  5. Influence of Pyrolysis Temperature on Physico-Chemical Properties of Corn Stover (Zea mays L.) Biochar and Feasibility for Carbon Capture and Energy Balance

    OpenAIRE

    Rafiq, Muhammad Khalid; Bachmann, Robert Thomas; Rafiq, Muhammad Tariq; Shang, Zhanhuan; Joseph, Stephen; Long, Ruijun

    2016-01-01

    This study examined the influence of pyrolysis temperature on biochar characteristics and evaluated its suitability for carbon capture and energy production. Biochar was produced from corn stover using slow pyrolysis at 300, 400 and 500°C and 2 hrs holding time. The experimental biochars were characterized by elemental analysis, BET, FTIR, TGA/DTA, NMR (C-13). Higher heating value (HHV) of feedstock and biochars was measured using bomb calorimeter. Results show that carbon content of corn sto...

  6. Dilute sulfuric acid pretreatment of corn stover for enzymatic hydrolysis and efficient ethanol production by recombinant Escherichia coli FBR5 without detoxification.

    Science.gov (United States)

    Avci, Ayse; Saha, Badal C; Kennedy, Gregory J; Cotta, Michael A

    2013-08-01

    A pretreatment strategy for dilute H2SO4 pretreatment of corn stover was developed for the purpose of reducing the generation of inhibitory substances during pretreatment so that a detoxification step is not required prior to fermentation while maximizing sugar yield. The optimal conditions for pretreatment of corn stover (10%, w/v) were: 0.75% H2SO4, 160°C, and 0-5 min holding time. The conditions were chosen based on maximum glucose release after enzymatic hydrolysis, minimum loss of pentose sugars and minimum formation of sugar degradation products such as furfural and hydroxymethyl furfural. The pretreated corn stover after enzymatic saccharification generated 63.2 ± 2.2 and 63.7 ± 2.3 g total sugars per L at 0 and 5 min holding time, respectively. Furfural production was 0.45 ± 0.1 and 0.87 ± 0.4 g/L, respectively. The recombinant Escherichia coli strain FBR5 efficiently fermented non-detoxified corn stover hydrolyzate if the furfural content is <0.5 g/L.

  7. Significantly improving enzymatic saccharification of high crystallinity index's corn stover by combining ionic liquid [Bmim]Cl-HCl-water media with dilute NaOH pretreatment.

    Science.gov (United States)

    He, Yu-Cai; Liu, Feng; Gong, Lei; Zhu, Zheng-Zhong; Ding, Yun; Wang, Cheng; Xue, Yu-Feng; Rui, Huan; Tao, Zhi-Cheng; Zhang, Dan-Ping; Ma, Cui-Luan

    2015-01-01

    In this study, a pretreatment by combining acidified aqueous ionic liquid 1-butyl-3-methylimidazolium chloride (IL [Bmim]Cl) solution with dilute NaOH extraction was employed to pretreat high crystallinity index (CrI) of corn stover before its enzymatic saccharification. After NaOH extraction, [Bmim]Cl-HCl-water (78.8:1.2:20, w/w/w) media was used for further pretreatment at 130 °C for 30 min. After being enzymatically hydrolyzed for 48 h, corn stover pretreated could be biotransformed into reducing sugars in the yield of 95.1%. Furthermore, SEM, XRD and FTIR analyses of untreated and pretreated corn stovers were examined. It was found that the intact structure was disrupted by combination pretreatment and resulted in a porous and amorphous regenerated cellulosic material that greatly improved enzymatic hydrolysis. Finally, the recovered hydrolyzates obtained from the enzymatic hydrolysis of pretreated corn stovers could be fermented into ethanol efficiently. In conclusion, the combination pretreatment shows high potential application in future.

  8. Pretreatment of corn stover by low moisture anhydrous ammonia (LMMA) in a pilot-scale reactor and bioconversion to fuel ethanol and industrial chemicals

    Science.gov (United States)

    Corn stover (CS) adjusted to 50%, 66% and 70% moisture was pretreated by the low moisture anhydrous ammonia (LMAA) process in a pilot-scale ammoniation reactor. After ammoniation, the 70% moisture CS was treated at 90 degree C and 100 degree C whereas the others were treated at 90 degree C only. The...

  9. The effects on digestibility and ruminal measures of chemically treated corn stover as a partial replacement for grain in dairy diets

    Science.gov (United States)

    Alkaline treatment of gramineous crop residues can convert an abundant, minimally utilized, but poorly digestible straw into a moderately digestible feedstuff. The objective of this study was to evaluate the changes in digestibility and ruminal effects when calcium oxide-treated corn stover was subs...

  10. Characteristics of corn stover pretreated with liquid hot water and fed-batch semi-simultaneous saccharification and fermentation for bioethanol production.

    Directory of Open Access Journals (Sweden)

    Xuezhi Li

    Full Text Available Corn stover is a promising feedstock for bioethanol production because of its abundant availability in China. To obtain higher ethanol concentration and higher ethanol yield, liquid hot water (LHW pretreatment and fed-batch semi-simultaneous saccharification and fermentation (S-SSF were used to enhance the enzymatic digestibility of corn stover and improve bioconversion of cellulose to ethanol. The results show that solid residues from LHW pretreatment of corn stover can be effectively converted into ethanol at severity factors ranging from 3.95 to 4.54, and the highest amount of xylan removed was approximately 89%. The ethanol concentrations of 38.4 g/L and 39.4 g/L as well as ethanol yields of 78.6% and 79.7% at severity factors of 3.95 and 4.54, respectively, were obtained by fed-batch S-SSF in an optimum conditions (initial substrate consistency of 10%, and 6.1% solid residues added into system at the prehydrolysis time of 6 h. The changes in surface morphological structure, specific surface area, pore volume and diameter of corn stover subjected to LHW process were also analyzed for interpreting the possible improvement mechanism.

  11. Characteristics of corn stover pretreated with liquid hot water and fed-batch semi-simultaneous saccharification and fermentation for bioethanol production.

    Science.gov (United States)

    Li, Xuezhi; Lu, Jie; Zhao, Jian; Qu, Yinbo

    2014-01-01

    Corn stover is a promising feedstock for bioethanol production because of its abundant availability in China. To obtain higher ethanol concentration and higher ethanol yield, liquid hot water (LHW) pretreatment and fed-batch semi-simultaneous saccharification and fermentation (S-SSF) were used to enhance the enzymatic digestibility of corn stover and improve bioconversion of cellulose to ethanol. The results show that solid residues from LHW pretreatment of corn stover can be effectively converted into ethanol at severity factors ranging from 3.95 to 4.54, and the highest amount of xylan removed was approximately 89%. The ethanol concentrations of 38.4 g/L and 39.4 g/L as well as ethanol yields of 78.6% and 79.7% at severity factors of 3.95 and 4.54, respectively, were obtained by fed-batch S-SSF in an optimum conditions (initial substrate consistency of 10%, and 6.1% solid residues added into system at the prehydrolysis time of 6 h). The changes in surface morphological structure, specific surface area, pore volume and diameter of corn stover subjected to LHW process were also analyzed for interpreting the possible improvement mechanism.

  12. The Role of Product Inhibition as a Yield-Determining Factor in Enzymatic High-Solid Hydrolysis of Pretreated Corn Stover

    DEFF Research Database (Denmark)

    Nymand Olsen, Søren; Borch, Kim; Cruys-Bagger, Nicolaj;

    2014-01-01

    . The results suggest that the solid effect is mainly controlled by product inhibition under the given experimental conditions (washed pretreated corn stover as substrate). Cellobiose was found to be approximately 15 times more inhibitory than glucose on a molar scale. However, considering that glucose...

  13. High titer L-lactic acid production from corn stover with minimum wastewater generation and techno-economic evaluation based on Aspen plus modeling.

    Science.gov (United States)

    Liu, Gang; Sun, Jiaoe; Zhang, Jian; Tu, Yi; Bao, Jie

    2015-12-01

    Technological potentials of l-lactic acid production from corn stover feedstock were investigated by experimental and techno-economic studies. An optimal performance with 104.5 g/L in l-lactic acid titer and 71.5% in overall yield from cellulose in corn stover to l-lactic acid using an engineered Pediococcus acidilactici strain were obtained by overcoming several technical barriers. A rigorous Aspen plus model for l-lactic acid production starting from dry dilute acid pretreated and biodetoxified corn stover was developed. The techno-economic analysis shows that the minimum l-lactic acid selling price (MLSP) was $0.523 per kg, which was close to that of the commercial l-lactic acid produced from starch feedstock, and 24% less expensive than that of ethanol from corn stover, even though the xylose utilization was not considered. The study provided a prototype of industrial application and an evaluation model for high titer l-lactic acid production from lignocellulose feedstock.

  14. Dilute sulfuric acid pretreatment of corn stover for enzymatic hydrolysis and efficient ethanol production by recombinant Escherichia coli FBR5 without detoxification

    Science.gov (United States)

    A pretreatment strategy for dilute H2SO4 pretreatment of corn stover was developed for the purpose of reducing the generation of inhibitory substances during pretreatment so that a detoxification step is not required prior to fermentation while maximizing the sugar yield. We have optimized dilute su...

  15. Effects of feeding processed corn stover and distillers grains on growth performance and metabolism of beef cattle.

    Science.gov (United States)

    Chapple, W P; Cecava, M J; Faulkner, D B; Felix, T L

    2015-08-01

    Objectives were to evaluate the effects of replacing corn in feedlot finishing diets with processed corn stover (CS), processed by various combinations of chemical and physical methods, and modified wet distillers grain with solubles (MWDGS) on growth performance, carcass characteristics, digestibility, and ruminal metabolism of cattle. Corn stover was physically processed (ground or extruded) and chemically processed with alkaline agents (CaO and NaOH) to reduce the crystallinity of the lignocellulosic structure. In Exp. 1 steers ( = 18, initial BW = 385 ± 32 kg) and heifers ( = 41, initial BW = 381 ± 27 kg) were allotted to 1 of 5 dietary treatments: 1) 55% dry, cracked corn, 35% MWDGS, 5% vitamin-mineral supplement, and 5% untreated ground CS (), 2) CS treated with 5% CaO (DM basis) and stored in an Ag-Bag (BGCS), 3) CS treated with 5% CaO (DM basis) and extruded (5 EXCS), 4) CS treated with 4% CaO and 1% NaOH (DM basis) and extruded (4,1 EXCS), or 5) CS treated with 3% CaO and 2% NaOH (DM basis) and extruded (3,2 EXCS). Extruded CS was hydrated to 34% moisture, then an additional 16% water was added, as a solution carrying CaO or NaOH or both, via a calibrated pump during processing through a dual-shafted encased extruder (Readco Kurimoto Continuous Processor, York, PA) with the desired exiting temperature of 76.7°C ± 2.8°C. All treated CS diets contained 20% CS and 40% MWDGS (DM basis) to replace 20% corn when compared to CON. There were no effects ( ≥ 0.20) of dietary treatment on ADG, G:F, 12th-rib back fat, marbling score, LM area, or yield grade. However, cattle fed CON had increased ( = 0.02) DMI compared to cattle fed the treated CS diets. In Exp. 2, using the same diets as fed in Exp. 1, ruminally cannulated steers ( = 5; initial BW = 417 ± 21 kg) were fed for 90% of ad libitum intake in a 5 × 5 Latin square design. Apparent digestibility of NDF and ADF increased ( corn with treated CS in feedlot diets containing MWDGS increased fiber

  16. Milk fatty acid profiles in Holstein dairy cows fed diets based on corn stover or mixed forage.

    Science.gov (United States)

    Han, Rongwei; Zheng, Nan; Zhang, Yangdong; Zhao, Xiaowei; Bu, Dengpan; An, Pengpeng; Xu, Xiaoyan; Liu, Shimin; Wang, Jiaqi

    2014-01-01

    In this study the influence of modulated concentrate-to-roughage ratio on the fatty acid profile of milk fat was investigated in dairy cows. Therefore, corn stover was compared with better-quality roughages. Two groups of in total 24 Holstein dairy cows (136 ± 37 days in milk) received either a high-forage diet (Diet MF, forage-to-concentrate ratio [F:C] = 60:40) with alfalfa hay, corn silage and Chinese wild rye as forage sources, or a low-forage diet with corn stover as forage source (Diet CS, F: C = 40:60) for an experimental period of nine weeks. During the study, milk yield as well content and fatty acid profiles of milk fat were examined. Dietary treatments had no effect on milk yield and milk fat content, whereas dry matter intake (p < 0.01) and milk fat yield (p < 0.05) were higher for Diet MF than for Diet CS. Compared with Diet CS, feeding Diet MF increased the daily intake of total unsaturated fatty acids and the C18:0 and C18:3 contents (p < 0.01) in milk fat, whereas the total content of fatty acids <16C was decreased (p < 0.05). No influence on total saturated, monounsaturated and polyunsaturated fatty acids in milk was observed. The ratio of total unsaturated fatty acids in milk fat to its daily intake was substantially lower for Diet MF compared with Diet CS, suggesting that the high proportion of roughage resulted in a high rate of biohydrogenation in the rumen.

  17. Analysis of supply chain, scale factor, and optimum plant capacity for the production of ethanol from corn stover

    International Nuclear Information System (INIS)

    A detailed model is used to perform a thorough analysis on ethanol production from corn stover via the dilute acid process. The biomass supply chain cost model accounts for all steps needed to source corn stover including collection, transportation, and storage. The manufacturing cost model is based on work done at NREL; attainable conversions of key process parameters are used to calculate production cost. The choice of capital investment scaling function and scaling parameter has a significant impact on the optimum plant capacity. For the widely used exponential function, the scaling factors are functions of plant capacity. The pre-exponential factor decreases with increasing plant capacity while the exponential factor increases as the plant capacity increases. The use of scaling parameters calculated for small plant capacities leads to falsely large optimum plants; data from a wide range of plant capacities is required to produce accurate results. A mathematical expression to scale capital investment for fermentation-based biorefineries is proposed which accounts for the linear scaling behavior of bio-reactors (such as saccharification vessels and fermentors) as well as the exponential nature of all other plant equipment. Ignoring the linear scaling behavior of bio-reactors leads to artificially large optimum plant capacities. The minimum production cost is found to be in the range of 789–830 $ m−3 which is significantly higher than previously reported. Optimum plant capacities are in the range of 5750–9850 Mg d−1. The optimum plant capacity and production cost are highly sensitive to farmer participation in biomass harvest for low participation rates. -- Highlights: •A detailed model is used to perform a technoeconomic analysis for the production of ethanol from corn stover. •The capital investment scaling factors were found to be a function of plant capacity. •Bio-reactors (such as saccharification vessels and fermentors) in large size

  18. Effects of feeding processed corn stover and distillers grains on growth performance and metabolism of beef cattle.

    Science.gov (United States)

    Chapple, W P; Cecava, M J; Faulkner, D B; Felix, T L

    2015-08-01

    Objectives were to evaluate the effects of replacing corn in feedlot finishing diets with processed corn stover (CS), processed by various combinations of chemical and physical methods, and modified wet distillers grain with solubles (MWDGS) on growth performance, carcass characteristics, digestibility, and ruminal metabolism of cattle. Corn stover was physically processed (ground or extruded) and chemically processed with alkaline agents (CaO and NaOH) to reduce the crystallinity of the lignocellulosic structure. In Exp. 1 steers ( = 18, initial BW = 385 ± 32 kg) and heifers ( = 41, initial BW = 381 ± 27 kg) were allotted to 1 of 5 dietary treatments: 1) 55% dry, cracked corn, 35% MWDGS, 5% vitamin-mineral supplement, and 5% untreated ground CS (), 2) CS treated with 5% CaO (DM basis) and stored in an Ag-Bag (BGCS), 3) CS treated with 5% CaO (DM basis) and extruded (5 EXCS), 4) CS treated with 4% CaO and 1% NaOH (DM basis) and extruded (4,1 EXCS), or 5) CS treated with 3% CaO and 2% NaOH (DM basis) and extruded (3,2 EXCS). Extruded CS was hydrated to 34% moisture, then an additional 16% water was added, as a solution carrying CaO or NaOH or both, via a calibrated pump during processing through a dual-shafted encased extruder (Readco Kurimoto Continuous Processor, York, PA) with the desired exiting temperature of 76.7°C ± 2.8°C. All treated CS diets contained 20% CS and 40% MWDGS (DM basis) to replace 20% corn when compared to CON. There were no effects ( ≥ 0.20) of dietary treatment on ADG, G:F, 12th-rib back fat, marbling score, LM area, or yield grade. However, cattle fed CON had increased ( = 0.02) DMI compared to cattle fed the treated CS diets. In Exp. 2, using the same diets as fed in Exp. 1, ruminally cannulated steers ( = 5; initial BW = 417 ± 21 kg) were fed for 90% of ad libitum intake in a 5 × 5 Latin square design. Apparent digestibility of NDF and ADF increased ( diets compared with CON, regardless of the treatment applied. Ruminal pH was

  19. Co-utilization of corn stover hydrolysates and biodiesel-derived glycerol by Cryptococcus curvatus for lipid production.

    Science.gov (United States)

    Gong, Zhiwei; Zhou, Wenting; Shen, Hongwei; Zhao, Zongbao K; Yang, Zhonghua; Yan, Jiabao; Zhao, Mi

    2016-11-01

    In the present study, synergistic effects were observed when glycerol was co-fermented with glucose and xylose for lipid production by the oleaginous yeast Cryptococcus curvatus. Glycerol was assimilated simultaneously with sugars at the beginning of the culture without adaption time. Furthermore, better lipid production results, i.e., lipid yield and lipid productivity of 18.0g/100g and 0.13g/L/h, respectively, were achieved when cells were cultured in blends of corn stover hydrolysates and biodiesel-derived glycerol than those in the hydrolysates alone. The lipid samples had fatty acid compositional profiles similar to those of vegetable oils, suggesting their potential for biodiesel production. This co-utilization strategy provides an extremely simple solution to advance lipid production from both lignocelluloses and biodiesel-derived glycerol in one step. PMID:27529520

  20. Enhancing methane production of corn stover through a novel way: sequent pretreatment of potassium hydroxide and steam explosion.

    Science.gov (United States)

    Li, Jianghao; Zhang, Ruihong; Siddhu, Muhammad Abdul Hanan; He, Yanfeng; Wang, Wen; Li, Yeqing; Chen, Chang; Liu, Guangqing

    2015-04-01

    Getting over recalcitrance of lignocellulose is effective way to fuel production from lignocellulosic biomass. In current work, different pretreatments were applied to enhance the digestibility of corn stover (CS). Results showed that steam explosion (SE)-treated CS produced maximal methane yield (223.2 mL/gvs) at 1.2 MPa for 10 min, which was 55.2% more than untreated (143.8 mL/gvs). Whereas 1.5% KOH-treated CS produced maximum methane yield of 208.6 mL/gvs, and significantly (αMethane production could be well explained by the first-order and modified Gompertz models. Besides, SEM, FTIR, and XRD analyses validated structural changes of CS after SPPE. SPPE might be a promising method to pretreat CS in the future AD industry.

  1. Gasification of oak sawdust, mesquite, corn stover and cotton gin trash in a countercurrent fluidized bed pilot reactor

    Energy Technology Data Exchange (ETDEWEB)

    Beck, S.R.; Wang, M.J.; Hightower, J.A.

    1981-01-01

    The Synthesis Gas From Manure (SGFM) process was designed to convert cattle feedlot manure to ammonia synthesis gas. Current work is aimed at using any biomass feedstock to produce either medium-Btu gas or chemical feedstocks. This paper presents a comparison of the experimental results compiled on gasification of oak sawdust, corn stover, mesquite, and cotton gin treash in the SGFM pilot plant. The SGFM process is based on a countercurrent, fluidized bed reactor. In this system, biomass is fed to the top of the reactor resulting in the fresh feed being partially dried by direct contact with hot product gas prior to entering the reaction zone. A weighted comparison of the product gas, hydrocarbon, and hydrogen yields, gas quality, calorific value of product gas, percentage conversion of raw feed heating value to gas heating value, and operability of each feed indicated that oak sawdust was the best feedstock. (Refs. 7).

  2. Two stage hydrolysis of corn stover at high solids content for mixing power saving and scale-up applications.

    Science.gov (United States)

    Liu, Ke; Zhang, Jian; Bao, Jie

    2015-11-01

    A two stage hydrolysis of corn stover was designed to solve the difficulties between sufficient mixing at high solids content and high power input encountered in large scale bioreactors. The process starts with the quick liquefaction to convert solid cellulose to liquid slurry with strong mixing in small reactors, then followed the comprehensive hydrolysis to complete saccharification into fermentable sugars in large reactors without agitation apparatus. 60% of the mixing energy consumption was saved by removing the mixing apparatus in large scale vessels. Scale-up ratio was small for the first step hydrolysis reactors because of the reduced reactor volume. For large saccharification reactors in the second step, the scale-up was easy because of no mixing mechanism was involved. This two stage hydrolysis is applicable for either simple hydrolysis or combined fermentation processes. The method provided a practical process option for industrial scale biorefinery processing of lignocellulose biomass. PMID:26253418

  3. Corn fiber, cobs and stover: enzyme-aided saccharification and co-fermentation after dilute acid pretreatment.

    Science.gov (United States)

    Van Eylen, David; van Dongen, Femke; Kabel, Mirjam; de Bont, Jan

    2011-05-01

    Three corn feedstocks (fibers, cobs and stover) available for sustainable second generation bioethanol production were subjected to pretreatments with the aim of preventing formation of yeast-inhibiting sugar-degradation products. After pretreatment, monosaccharides, soluble oligosaccharides and residual sugars were quantified. The size of the soluble xylans was estimated by size exclusion chromatography. The pretreatments resulted in relatively low monosaccharide release, but conditions were reached to obtain most of the xylan-structures in the soluble part. A state of the art commercial enzyme preparation, Cellic CTec2, was tested in hydrolyzing these dilute acid-pretreated feedstocks. The xylose and glucose liberated were fermented by a recombinant Saccharomyces cerevisiae strain. In the simultaneous enzymatic saccharification and fermentation system employed, a concentration of more than 5% (v/v) (0.2g per g of dry matter) of ethanol was reached. PMID:21392979

  4. Recalcitrance and structural analysis by water-only flowthrough pretreatment of (13)C enriched corn stover stem.

    Science.gov (United States)

    Foston, Marcus; Trajano, Heather L; Samuel, Reichel; Wyman, Charles E; He, Jian; Ragauskas, Arthur J

    2015-12-01

    This study presents high temperature water-only continuous flowthrough pretreatment coupled with nuclear magnetic resonance (NMR) as a promising analytical tool to examine the plant cell wall, to understand its recalcitrance (i.e., cell wall resistance to deconstruction), and to probe the chemistry occurring during batch pretreatment of biomass. (13)C-enriched corn stover stems were pretreated at 170°C for 60min with a hot-water flow rate of 20mL/min to control fractionation of the cell wall. This approach helped elucidate the nature of plant cell wall chemical recalcitrance and biomass pretreatment chemistry by tracking cell wall fragmentation as a function of time. Fractions of the reactor effluent were collected in a time-resolved fashion and characterized by various NMR techniques to determine the degree and sequence of fragments released, as well as, the chemical composition, molecular structure, and relative molecular weight of those released fragments.

  5. Detoxification of corn stover prehydrolyzate by trialkylamine extraction to improve the ethanol production with Pichia stipitis CBS 5776.

    Science.gov (United States)

    Zhu, Junjun; Yong, Qiang; Xu, Yong; Yu, Shiyuan

    2011-01-01

    In order to realize the separated ethanol fermentation of glucose and xylose, prehydrolysis of corn stover with sulfuric acid at moderate temperature was applied, while inhibitors were produced inevitably. A complex extraction was adopted to detoxify the prehydrolyzate before fermentation to ethanol with Pichia stipitis CBS 5776. The best proportion of mixed extractant was 30% trialkylamine-50% n-octanol -20% kerosene. Detoxification results indicated that 73.3% of acetic acid, 45.7% of 5-hydroxymethylfurfural and 100% of furfural could be removed. Compared with the undetoxified prehydrolyzate, the fermentability of the detoxified prehydrolyzate was significantly improved. After 48 h fermentation of the detoxified prehydrolyzate containing 7.80 g/l of glucose and 52.8 g/l of xylose, the sugar utilization ratio was 93.2%; the ethanol concentration reached its peak value of 21.8 g/l, which was corresponding to 82.3% of the theoretical value. PMID:20952191

  6. Impact of Sequential Ammonia Fiber Expansion (AFEX) Pretreatment and Pelletization on the Moisture Sorption Properties of Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Bonner, Ian J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Thompson, David N. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Teymouri, Farzaneh [Michigan Biotechnology Inst., Lansing, MI (United States); Campbell, Timothy [Michigan Biotechnology Inst., Lansing, MI (United States); Bals, Bryan [Michigan Biotechnology Inst., Lansing, MI (United States); Tumuluru, Jaya Shankar [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-05-01

    Combining ammonia fiber expansion (AFEX™) pretreatment with a depot processing facility is a promising option for delivering high-value densified biomass to the emerging bioenergy industry. However, because the pretreatment process results in a high moisture material unsuitable for pelleting or storage (40% wet basis), the biomass must be immediately dried. If AFEX pretreatment results in a material that is difficult to dry, the economics of this already costly operation would be at risk. This work tests the nature of moisture sorption isotherms and thin-layer drying behavior of corn (Zea mays L.) stover at 20°C to 60°C before and after sequential AFEX pretreatment and pelletization to determine whether any negative impacts to material drying or storage may result from the AFEX process. The equilibrium moisture content to equilibrium relative humidity relationship for each of the materials was determined using dynamic vapor sorption isotherms and modeled with modified Chung-Pfost, modified Halsey, and modified Henderson temperature-dependent models as well as the Double Log Polynomial (DLP), Peleg, and Guggenheim Anderson de Boer (GAB) temperature-independent models. Drying kinetics were quantified under thin-layer laboratory testing and modeled using the Modified Page's equation. Water activity isotherms for non-pelleted biomass were best modeled with the Peleg temperature-independent equation while isotherms for the pelleted biomass were best modeled with the Double Log Polynomial equation. Thin-layer drying results were accurately modeled with the Modified Page's equation. The results of this work indicate that AFEX pretreatment results in drying properties more favorable than or equal to that of raw corn stover, and pellets of superior physical stability in storage.

  7. Heterologous Acidothermus cellulolyticus 1,4-β-Endoglucanase E1 Produced Within the Corn Biomass Converts Corn Stover Into Glucose

    Science.gov (United States)

    Ransom, Callista; Balan, Venkatesh; Biswas, Gadab; Dale, Bruce; Crockett, Elaine; Sticklen, Mariam

    Commercial conversion of lignocellulosic biomass to fermentable sugars requires inexpensive bulk production of biologically active cellulase enzymes, which might be achieved through direct production of these enzymes within the biomass crops. Transgenic corn plants containing the catalytic domain of Acidothermus cellulolyticus E1 endo-1,4-β glucanase and the bar bialaphos resistance coding sequences were generated after Biolistic® (BioRad Hercules, CA) bombardment of immature embryo-derived cells. E1 sequences were regulated under the control of the cauliflower mosaic virus 35S promoter and tobacco mosaic virus translational enhancer, and E1 protein was targeted to the apoplast using the signal peptide of tobacco pathogenesis-related protein to achieve accumulation of this enzyme. The integration, expression, and segregation of E1 and bar transgenes were demonstrated, respectively, through Southern and Western blotting, and progeny analyses. Accumulation of up to 1.13% of transgenic plant total soluble proteins was detected as biologically active E1 by enzymatic activity assay. The corn-produced, heterologous E1 could successfully convert ammonia fiber explosion-pretreated corn stover polysaccharides into glucose as a fermentable sugar for ethanol production, confirming that the E1 enzyme is produced in its active from.

  8. Projection of corn production and stover-harvesting impacts on soil organic carbon dynamics in the U.S. Temperate Prairies.

    Science.gov (United States)

    Wu, Yiping; Liu, Shuguang; Young, Claudia J; Dahal, Devendra; Sohl, Terry L; Davis, Brian

    2015-06-01

    Terrestrial carbon sequestration potential is widely considered as a realistic option for mitigating greenhouse gas emissions. However, this potential may be threatened by global changes including climate, land use, and management changes such as increased corn stover harvesting for rising production of cellulosic biofuel. Therefore, it is critical to investigate the dynamics of soil organic carbon (SOC) at regional or global scale. This study simulated the corn production and spatiotemporal changes of SOC in the U.S. Temperate Prairies, which covers over one-third of the U.S. corn acreage, using a biogeochemical model with multiple climate and land-use change projections. The corn production (either grain yield or stover biomass) could reach 88.7-104.7 TgC as of 2050, 70-101% increase when compared to the base year of 2010. A removal of 50% stover at the regional scale could be a reasonable cap in view of maintaining SOC content and soil fertility especially in the beginning years. The projected SOC dynamics indicated that the average carbon sequestration potential across the entire region may vary from 12.7 to 19.6 g C/m(2)/yr (i.e., 6.6-10.2 g TgC/yr). This study not only helps understand SOC dynamics but also provides decision support for sustainable biofuel development.

  9. Comparative study of corn stover pretreated by dilute acid and cellulose solvent-based lignocellulose fractionation: Enzymatic hydrolysis, supramolecular structure, and substrate accessibility.

    Science.gov (United States)

    Zhu, Zhiguang; Sathitsuksanoh, Noppadon; Vinzant, Todd; Schell, Daniel J; McMillan, James D; Zhang, Y-H Percival

    2009-07-01

    Liberation of fermentable sugars from recalcitrant biomass is among the most costly steps for emerging cellulosic ethanol production. Here we compared two pretreatment methods (dilute acid, DA, and cellulose solvent and organic solvent lignocellulose fractionation, COSLIF) for corn stover. At a high cellulase loading [15 filter paper units (FPUs) or 12.3 mg cellulase per gram of glucan], glucan digestibilities of the corn stover pretreated by DA and COSLIF were 84% at hour 72 and 97% at hour 24, respectively. At a low cellulase loading (5 FPUs per gram of glucan), digestibility remained as high as 93% at hour 24 for the COSLIF-pretreated corn stover but reached only approximately 60% for the DA-pretreated biomass. Quantitative determinations of total substrate accessibility to cellulase (TSAC), cellulose accessibility to cellulase (CAC), and non-cellulose accessibility to cellulase (NCAC) based on adsorption of a non-hydrolytic recombinant protein TGC were measured for the first time. The COSLIF-pretreated corn stover had a CAC of 11.57 m(2)/g, nearly twice that of the DA-pretreated biomass (5.89 m(2)/g). These results, along with scanning electron microscopy images showing dramatic structural differences between the DA- and COSLIF-pretreated samples, suggest that COSLIF treatment disrupts microfibrillar structures within biomass while DA treatment mainly removes hemicellulose. Under the tested conditions COSLIF treatment breaks down lignocellulose structure more extensively than DA treatment, producing a more enzymatically reactive material with a higher CAC accompanied by faster hydrolysis rates and higher enzymatic digestibility.

  10. Influence of Pyrolysis Temperature on Physico-Chemical Properties of Corn Stover (Zea mays L. Biochar and Feasibility for Carbon Capture and Energy Balance.

    Directory of Open Access Journals (Sweden)

    Muhammad Khalid Rafiq

    Full Text Available This study examined the influence of pyrolysis temperature on biochar characteristics and evaluated its suitability for carbon capture and energy production. Biochar was produced from corn stover using slow pyrolysis at 300, 400 and 500°C and 2 hrs holding time. The experimental biochars were characterized by elemental analysis, BET, FTIR, TGA/DTA, NMR (C-13. Higher heating value (HHV of feedstock and biochars was measured using bomb calorimeter. Results show that carbon content of corn stover biochar increased from 45.5% to 64.5%, with increasing pyrolysis temperatures. A decrease in H:C and O:C ratios as well as volatile matter, coupled with increase in the concentration of aromatic carbon in the biochar as determined by FTIR and NMR (C-13 demonstrates a higher biochar carbon stability at 500°C. It was estimated that corn stover pyrolysed at 500°C could provide of 10.12 MJ/kg thermal energy. Pyrolysis is therefore a potential technology with its carbon-negative, energy positive and soil amendment benefits thus creating win- win scenario.

  11. Simultaneous saccharification and high titer lactic acid fermentation of corn stover using a newly isolated lactic acid bacterium Pediococcus acidilactici DQ2.

    Science.gov (United States)

    Zhao, Kai; Qiao, Qingan; Chu, Deqiang; Gu, Hanqi; Dao, Thai Ha; Zhang, Jian; Bao, Jie

    2013-05-01

    A lactic acid bacterium with high tolerance of temperature and lignocellulose derived inhibitor was isolated and characterized as Pediococcus acidilactici DQ2. The strain used in the simultaneous saccharification and fermentation (SSF) for high titer lactic acid production at the high solids loading of corn stover. Corn stover was pretreated using the dry sulphuric acid pretreatment, followed by a biological detoxification to remove the inhibitors produced in the pretreatment. The bioreactor with a novel helical impeller was used to the SSF operation of the pretreated and biodetoxified corn stover. The results show that a typical SSF operation at 48 °C, pH 5.5, and near 30% (w/w) solids loading in both 5 and 50 L bioreactors was demonstrated. The lactic acid titer, yield, and productivity reached 101.9 g/L, 77.2%, and 1.06 g/L/h, respectively. The result provided a practical process option for cellulosic lactic acid production using virgin agriculture lignocellulose residues.

  12. Influence of Pyrolysis Temperature on Physico-Chemical Properties of Corn Stover (Zea mays L.) Biochar and Feasibility for Carbon Capture and Energy Balance.

    Science.gov (United States)

    Rafiq, Muhammad Khalid; Bachmann, Robert Thomas; Rafiq, Muhammad Tariq; Shang, Zhanhuan; Joseph, Stephen; Long, Ruijun

    2016-01-01

    This study examined the influence of pyrolysis temperature on biochar characteristics and evaluated its suitability for carbon capture and energy production. Biochar was produced from corn stover using slow pyrolysis at 300, 400 and 500°C and 2 hrs holding time. The experimental biochars were characterized by elemental analysis, BET, FTIR, TGA/DTA, NMR (C-13). Higher heating value (HHV) of feedstock and biochars was measured using bomb calorimeter. Results show that carbon content of corn stover biochar increased from 45.5% to 64.5%, with increasing pyrolysis temperatures. A decrease in H:C and O:C ratios as well as volatile matter, coupled with increase in the concentration of aromatic carbon in the biochar as determined by FTIR and NMR (C-13) demonstrates a higher biochar carbon stability at 500°C. It was estimated that corn stover pyrolysed at 500°C could provide of 10.12 MJ/kg thermal energy. Pyrolysis is therefore a potential technology with its carbon-negative, energy positive and soil amendment benefits thus creating win- win scenario.

  13. Pretreatment of corn stover with N-methylmorpholine-N-oxide%氧化甲基吗啉预处理玉米秸秆的工艺研究

    Institute of Scientific and Technical Information of China (English)

    徐友海; 张立弟; 高玉玲; 岳军; 王继艳; 金刚; 胡世洋; 惠继星

    2015-01-01

    对氧化甲基吗啉(NMMO)预处理玉米秸秆的工艺条件进行了实验研究,考察了温度和处理时间对后续纤维素酶水解效果的影响。结果表明:在130℃条件下预处理1 h,秸秆回收为71.5%,还原糖收率为0.51 g/g。该条件既能保证较高的秸秆回收率,又能得到较好的水解糖化效果。%In this article,the effects of two conditions of different pretreatment temperature and time of corn stover on enzymatic hydrolysis efficiency were investigated.The results showed that the yield of corn stover recovery and reducing sugar recovery were 71.5% and 0.51 g/g respectively under the NMMO pretreatment condition of temperature at 130 ℃ and time for 1 h.It was proved that in this study higher corn stover recovery and enzymatic hydrolysis efficiency were obtained at the same time.

  14. Influence of Pyrolysis Temperature on Physico-Chemical Properties of Corn Stover (Zea mays L.) Biochar and Feasibility for Carbon Capture and Energy Balance.

    Science.gov (United States)

    Rafiq, Muhammad Khalid; Bachmann, Robert Thomas; Rafiq, Muhammad Tariq; Shang, Zhanhuan; Joseph, Stephen; Long, Ruijun

    2016-01-01

    This study examined the influence of pyrolysis temperature on biochar characteristics and evaluated its suitability for carbon capture and energy production. Biochar was produced from corn stover using slow pyrolysis at 300, 400 and 500°C and 2 hrs holding time. The experimental biochars were characterized by elemental analysis, BET, FTIR, TGA/DTA, NMR (C-13). Higher heating value (HHV) of feedstock and biochars was measured using bomb calorimeter. Results show that carbon content of corn stover biochar increased from 45.5% to 64.5%, with increasing pyrolysis temperatures. A decrease in H:C and O:C ratios as well as volatile matter, coupled with increase in the concentration of aromatic carbon in the biochar as determined by FTIR and NMR (C-13) demonstrates a higher biochar carbon stability at 500°C. It was estimated that corn stover pyrolysed at 500°C could provide of 10.12 MJ/kg thermal energy. Pyrolysis is therefore a potential technology with its carbon-negative, energy positive and soil amendment benefits thus creating win- win scenario. PMID:27327870

  15. Influence of Pyrolysis Temperature on Physico-Chemical Properties of Corn Stover (Zea mays L.) Biochar and Feasibility for Carbon Capture and Energy Balance

    Science.gov (United States)

    Rafiq, Muhammad Khalid; Bachmann, Robert Thomas; Rafiq, Muhammad Tariq; Shang, Zhanhuan; Joseph, Stephen; Long, Ruijun

    2016-01-01

    This study examined the influence of pyrolysis temperature on biochar characteristics and evaluated its suitability for carbon capture and energy production. Biochar was produced from corn stover using slow pyrolysis at 300, 400 and 500°C and 2 hrs holding time. The experimental biochars were characterized by elemental analysis, BET, FTIR, TGA/DTA, NMR (C-13). Higher heating value (HHV) of feedstock and biochars was measured using bomb calorimeter. Results show that carbon content of corn stover biochar increased from 45.5% to 64.5%, with increasing pyrolysis temperatures. A decrease in H:C and O:C ratios as well as volatile matter, coupled with increase in the concentration of aromatic carbon in the biochar as determined by FTIR and NMR (C-13) demonstrates a higher biochar carbon stability at 500°C. It was estimated that corn stover pyrolysed at 500°C could provide of 10.12 MJ/kg thermal energy. Pyrolysis is therefore a potential technology with its carbon-negative, energy positive and soil amendment benefits thus creating win- win scenario. PMID:27327870

  16. The effects on digestibility and ruminal measures of chemically treated corn stover as a partial replacement for grain in dairy diets.

    Science.gov (United States)

    Cook, D E; Combs, D K; Doane, P H; Cecava, M J; Hall, M B

    2016-08-01

    Alkaline treatment of gramineous crop residues can convert an abundant, minimally utilized, poorly digestible straw into a moderately digestible feedstuff. Given the volatile nature of grain prices, substitution of treated stover for grain was investigated with dairy cows to provide insights on ruminal and digestibility effects of a feed option that makes use of alternative, available resources. The objective of this study was to evaluate changes in diet digestibility and ruminal effects when increasing levels of calcium oxide-treated corn stover (CaOSt) were substituted for corn grain in diets of lactating cows. Mature corn stover was treated with calcium oxide at a level of 50g∙kg(-1) dry matter (DM), brought up to a moisture content of 50% following bale grinding, and stored anaerobically at ambient temperatures for greater than 60d before the feeding experiment. Eight ruminally cannulated Holstein cows averaging 686kg of body weight and 35kg of milk∙d(-1) were enrolled in a replicated 4×4 Latin square, where CaOSt replaced corn grain on a DM basis in the ration at rates of 0, 40, 80, and 120g∙kg(-1) DM. All reported significant responses were linear. The DM intake declined by approximately 1kg per 4% increase in CaOSt inclusion. With increasing replacement of corn grain, dietary neutral detergent fiber (NDF) concentration increased. However, rumen NDF turnover, NDF digestibility, NDF passage rate, and digestion rate of potentially digestible NDF were unaffected by increasing CaOSt inclusion. Total-tract organic matter digestibility declined by 5 percentage units over the range of treatments, approximately 1.5 units per 4-percentage-unit substitution of CaOSt for grain. With increasing CaOSt, the molar proportions of butyrate and valerate declined, whereas the lowest detected ruminal pH increased from 5.83 to 5.94. Milk, fat, and protein yields declined as CaOSt increased and DM intake declined with the result that net energy in milk declined by

  17. Physicochemical properties of bio-oil and biochar produced by fast pyrolysis of stored single-pass corn stover and cobs.

    Science.gov (United States)

    Shah, Ajay; Darr, Matthew J; Dalluge, Dustin; Medic, Dorde; Webster, Keith; Brown, Robert C

    2012-12-01

    Short harvest window of corn (Zea mays) stover necessitates its storage before utilization; however, there is not enough work towards exploring the fast pyrolysis behavior of stored biomass. This study investigated the yields and the physicochemical properties (proximate and ultimate analyses, higher heating values and acidity) of the fast pyrolysis products obtained from single-pass stover and cobs stored either inside a metal building or anaerobically within plastic wraps. Biomass samples were pyrolyzed in a 183 cm long and 2.1cm inner diameter free-fall fast pyrolysis reactor. Yields of bio-oil, biochar and non-condensable gases from different biomass samples were in the ranges of 45-55, 25-37 and 11-17 wt.%, respectively, with the highest bio-oil yield from the ensiled single-pass stover. Bio-oils generated from ensiled single-pass cobs and ensiled single-pass stover were, respectively, the most and the least acidic with the modified acid numbers of 95.0 and 65.2 mg g(-1), respectively.

  18. Enhancement of enzymatic saccharification of corn stover with sequential Fenton pretreatment and dilute NaOH extraction.

    Science.gov (United States)

    He, Yu-Cai; Ding, Yun; Xue, Yu-Feng; Yang, Bin; Liu, Feng; Wang, Cheng; Zhu, Zheng-Zhong; Qing, Qing; Wu, Hao; Zhu, Cheng; Tao, Zhi-Cheng; Zhang, Dan-Ping

    2015-10-01

    In this study, an effective method by the sequential Fenton pretreatment and dilute NaOH extraction (FT-AE) was chosen for pretreating corn stover. Before dilute NaOH (0.75 wt%) extraction at 90 °C for 1h, Fenton reagent (0.95 g/L of FeSO4 and 29.8 g/L of H2O2) was employed to pretreat CS at a solid/liquid ratio of 1/20 (w/w) at 35 °C for 30 min. The changes in the cellulose structural characteristics (porosity, morphology, and crystallinity) of the pretreated solid residue were correlated with the enhancement of enzymatic saccharification. After being enzymatically hydrolyzed for 72 h, the reducing sugars and glucose from the hydrolysis of 60 g/L FT-AE-CS pretreated could be obtained at 40.96 and 23.61 g/L, respectively. Finally, the recovered hydrolyzates containing glucose had no inhibitory effects on the ethanol fermenting microorganism. In conclusion, the sequential Fenton pretreatment and dilute NaOH extraction has high potential application in future.

  19. Corn Stover and Wheat Straw Combustion in a 176-kW Boiler Adapted for Round Bales

    Directory of Open Access Journals (Sweden)

    Joey Villeneuve

    2013-11-01

    Full Text Available Combustion trials were conducted with corn stover (CS and wheat straw (WS round bales in a 176-kW boiler (model Farm 2000. Hot water (80 °C stored in a 30,000-L water tank was transferred to a turkey barn through a plate exchanger. Gross calorific value measured in the laboratory was 17.0 and 18.9 MJ/kg DM (dry matter for CS and WS, respectively. Twelve bales of CS (1974 kg DM total, moisture content of 13.6% were burned over a 52-h period and produced 9.2% ash. Average emissions of CO, NOx and SO2 were 2725, 9.8 and 2.1 mg/m3, respectively. Thermal efficiency was 40.8%. For WS, six bales (940 kg DM total, MC of 15% were burned over a 28-h period and produced 2.6% ash. Average emissions of CO, NOx and SO2 were 2210, 40.4 and 3.7 mg/m3, respectively. Thermal efficiency was 68.0%. A validation combustion trial performed a year later with 90 CS bales confirmed good heating performance and the potential to lower ash content (6.2% average.

  20. Anaerobic co-digestion of chicken manure and corn stover in batch and continuously stirred tank reactor (CSTR).

    Science.gov (United States)

    Li, Yeqing; Zhang, Ruihong; He, Yanfeng; Zhang, Chenyu; Liu, Xiaoying; Chen, Chang; Liu, Guangqing

    2014-03-01

    Anaerobic co-digestion of chicken manure and corn stover in batch and CSTR were investigated. The batch co-digestion tests were performed at an initial volatile solid (VS) concentration of 3gVS/L, carbon-to-nitrogen (C/N) ratio of 20, and retention time of 30d. The methane yield was determined to be 281±12mL/gVSadded. Continuous reactor was carried out with feeding concentration of 12% total solids and C/N ratio of 20 at organic loading rates (OLRs) of 1-4gVS/L/d. Results showed that at OLR of 4gVS/L/d, stable and preferable methane yield of 223±7mL/gVSadded was found, which was equal to energy yield (EY) of 8.0±0.3MJ/kgVSadded. Post-digestion of digestate gave extra EY of 1.5-2.6MJ/kgVSadded. Pyrolysis of digestate provided additional EY of 6.1MJ/kgVSadded. Pyrolysis can be a promising technique to reduce biogas residues and to produce valuable gas products simultaneously.

  1. Clean production of corn stover pulp using KOH+NH4OH solution and its kinetic during delignification

    Directory of Open Access Journals (Sweden)

    Sun Yong

    2012-01-01

    Full Text Available The self-made KOH together with NH4OH pulping of corn stover was investigated. The combined alkaline system could effectively remove lignin during pulping. There are three stages of lignin removal during delginification. Approximately 90% of lignin could be removed after temperature reached 150ºC for over 30 minutes. The p-hydroxyl phenol groups in lignin could be completely removed during the delignification reaction. The tendency of the increase of the crystalline degree of cellulose is observed with increase of reaction temperature. The kinetics of delignification is found to be the first order with respect to the remained lignin and the 0.4 order with respect to the remained hydroxide concentration. The activation energy of delignification is 23 kJ/mol. The solution obtained from precipitation of lignin is rich in nitrogen, phosphorous, potassium elements and organic matters. Various techniques including FT-IR, GPC, DSC, were applied to characterize the acid precipitated lignin. The result shows that the lignin with the polydispersity of 1.4 still maintains the p-coumaryl, coniferyl, and sinapyl units in its matrix.

  2. Molybdenum mixed with glyphosate and alone via foliar spray in no-tillage common bean grown on corn stover

    Directory of Open Access Journals (Sweden)

    Gessimar Nunes Camelo

    2014-02-01

    Full Text Available The effect of molybdenum (Mo on common bean grown in desiccated corn stover in a no-tillage system was evaluated under two application modes: Mo mixed with the desiccant glyphosate and Mo direct spray to the bean leaves. The treatments (four replicates were assigned to a completely randomized block design in a split-plot arrangement with the application of Mo (0, 100, 200, 400 and 800 g ha-1 mixed with glyphosate in the main plots and Mo foliar spray (0 and 100 g ha-1 in the sub-plots. The field experiments were carried out in 2009 and 2010 in the municipality of Coimbra, Minas Gerais State, with the common bean cultivar Ouro Vermelho. Mo mixed with glyphosate had neither an effect on common bean yield nor on the Mo and N contents in leaves, however it increased the Mo and N contents in seeds. Application of Mo via foliar spray increased Mo content in leaves and Mo and N contents in seeds. The reapplication of molybdenum with glyphosate for desiccation in subsequent crops caused a cumulative effect of Mo content in bean seeds.

  3. Life cycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis

    International Nuclear Information System (INIS)

    This life cycle assessment evaluates and quantifies the environmental impacts of the production of hydrogen and transportation fuels from the fast pyrolysis and upgrading of corn stover. Input data for this analysis come from Aspen Plus modeling, a GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model database and a US Life Cycle Inventory Database. SimaPro 7.3 software is employed to estimate the environmental impacts. The results indicate that the net fossil energy input is 0.25 MJ and 0.23 MJ per km traveled for a light-duty vehicle fueled by gasoline and diesel fuel, respectively. Bio-oil production requires the largest fossil energy input. The net global warming potential (GWP) is 0.037 kg CO2eq and 0.015 kg CO2eq per km traveled for a vehicle fueled by gasoline and diesel fuel, respectively. Vehicle operations contribute up to 33% of the total positive GWP, which is the largest greenhouse gas footprint of all the unit processes. The net GWPs in this study are 88% and 94% lower than for petroleum-based gasoline and diesel fuel (2005 baseline), respectively. Biomass transportation has the largest impact on ozone depletion among all of the unit processes. Sensitivity analysis shows that fuel economy, transportation fuel yield, bio-oil yield, and electricity consumption are the key factors that influence greenhouse gas emissions. (letter)

  4. Life cycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis

    Science.gov (United States)

    Zhang, Yanan; Hu, Guiping; Brown, Robert C.

    2013-06-01

    This life cycle assessment evaluates and quantifies the environmental impacts of the production of hydrogen and transportation fuels from the fast pyrolysis and upgrading of corn stover. Input data for this analysis come from Aspen Plus modeling, a GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model database and a US Life Cycle Inventory Database. SimaPro 7.3 software is employed to estimate the environmental impacts. The results indicate that the net fossil energy input is 0.25 MJ and 0.23 MJ per km traveled for a light-duty vehicle fueled by gasoline and diesel fuel, respectively. Bio-oil production requires the largest fossil energy input. The net global warming potential (GWP) is 0.037 kg CO2eq and 0.015 kg CO2eq per km traveled for a vehicle fueled by gasoline and diesel fuel, respectively. Vehicle operations contribute up to 33% of the total positive GWP, which is the largest greenhouse gas footprint of all the unit processes. The net GWPs in this study are 88% and 94% lower than for petroleum-based gasoline and diesel fuel (2005 baseline), respectively. Biomass transportation has the largest impact on ozone depletion among all of the unit processes. Sensitivity analysis shows that fuel economy, transportation fuel yield, bio-oil yield, and electricity consumption are the key factors that influence greenhouse gas emissions.

  5. Method to Produce Durable Pellets at Lower Energy Consumption Using High Moisture Corn Stover and a Corn Starch Binder in a Flat Die Pellet Mill

    Science.gov (United States)

    Tumuluru, Jaya Shankar; Conner, Craig C.; Hoover, Amber N.

    2016-01-01

    A major challenge in the production of pellets is the high cost associated with drying biomass from 30 to 10% (w.b.) moisture content. At Idaho National Laboratory, a high-moisture pelleting process was developed to reduce the drying cost. In this process the biomass pellets are produced at higher feedstock moisture contents than conventional methods, and the high moisture pellets produced are further dried in energy efficient dryers. This process helps to reduce the feedstock moisture content by about 5-10% during pelleting, which is mainly due to frictional heat developed in the die. The objective of this research was to explore how binder addition influences the pellet quality and energy consumption of the high-moisture pelleting process in a flat die pellet mill. In the present study, raw corn stover was pelleted at moistures of 33, 36, and 39% (w.b.) by addition of 0, 2, and 4% pure corn starch. The partially dried pellets produced were further dried in a laboratory oven at 70 °C for 3-4 hr to lower the pellet moisture to less than 9% (w.b.). The high moisture and dried pellets were evaluated for their physical properties, such as bulk density and durability. The results indicated that increasing the binder percentage to 4% improved pellet durability and reduced the specific energy consumption by 20-40% compared to pellets with no binder. At higher binder addition (4%), the reduction in feedstock moisture during pelleting was 510 kg/m3 and >98%, respectively, and the percent fine particles generated was reduced to <3%. PMID:27340875

  6. Method to Produce Durable Pellets at Lower Energy Consumption Using High Moisture Corn Stover and a Corn Starch Binder in a Flat Die Pellet Mill.

    Science.gov (United States)

    Tumuluru, Jaya Shankar; Conner, Craig C; Hoover, Amber N

    2016-01-01

    A major challenge in the production of pellets is the high cost associated with drying biomass from 30 to 10% (w.b.) moisture content. At Idaho National Laboratory, a high-moisture pelleting process was developed to reduce the drying cost. In this process the biomass pellets are produced at higher feedstock moisture contents than conventional methods, and the high moisture pellets produced are further dried in energy efficient dryers. This process helps to reduce the feedstock moisture content by about 5-10% during pelleting, which is mainly due to frictional heat developed in the die. The objective of this research was to explore how binder addition influences the pellet quality and energy consumption of the high-moisture pelleting process in a flat die pellet mill. In the present study, raw corn stover was pelleted at moistures of 33, 36, and 39% (w.b.) by addition of 0, 2, and 4% pure corn starch. The partially dried pellets produced were further dried in a laboratory oven at 70 °C for 3-4 hr to lower the pellet moisture to less than 9% (w.b.). The high moisture and dried pellets were evaluated for their physical properties, such as bulk density and durability. The results indicated that increasing the binder percentage to 4% improved pellet durability and reduced the specific energy consumption by 20-40% compared to pellets with no binder. At higher binder addition (4%), the reduction in feedstock moisture during pelleting was 510 kg/m(3) and >98%, respectively, and the percent fine particles generated was reduced to <3%.

  7. Cellulose of Corn Stover Pretreated with Zinc Chloride%氯化锌预处理玉米秸秆纤维素

    Institute of Scientific and Technical Information of China (English)

    曾国明; 王远亮; 宁欣强; 张茂兰; 林福春

    2011-01-01

    The production of biological and chemical combination products and the generation of biomass energy with stovers as raw materials have become a global strategy for sustainable development. The choice of proper pretreatment methods is the key to improving the overall utilization level of stovers. In this study, corn stovers were pretreated by adopting the newly-developed technique of steam explosion to separate the components first. Then, zinc chloride solution was used to destruct the crystallinity of cellulose. Based on the single factor experiments, the effects of zinc chloride mass fraction, pretreatment time and temperature on the pretreatment were investigated by response surface methodology. A mathematical model was established and analyzed to describe the relationships between the studied factors and the response of the cellulose solubility of corn stover. The structures of untreated/treated corn stalk were detected by means of scanning electron microscope(SEM) and X-ray diffraction( XRD). The optimum pretreatment parameters were as follows;zinc chloride mass fraction of 87% , pretreatment time of 49 min and pretreatment temperature of 139℃. Under the optimum conditions, the cellulose solubility of com stover of 1 g was up to 0. 762 g.%采用新近发展的蒸汽爆破技术对玉米秸秆进行组分结合相分离,再用氯化锌溶液对汽爆后的物料进行纤维素结晶相破坏的预处理方法,运用单因素实验和响应面法获取处理过程中的多因素组合的优化,包括氯化锌质量分数、预处理时间、预处理温度对玉米秸秆纤维素预处理效果的影响,建立并分析了各因素与处理后玉米秸秆纤维素溶解度的数学模型,处理后的物料经X射线衍射(XRD)和扫描电镜(SEM)分析表明,纤维素致密结构被破坏.最佳预处理工艺条件为:氯化锌质量分数87%、预处理温度139℃、预处理时间49 min,在该条件预处理后1g玉米秸秆纤维素溶解度最高达0.762 g.

  8. Direct mechanical energy measures of hammer mill comminution of switchgrass, wheat straw, and corn stover and analysis of their particle size distributions

    Energy Technology Data Exchange (ETDEWEB)

    Bitra, V.S.P [University of Tennessee; Womac, A.R. [University of Tennessee; Chevanan, Nehru [University of Tennessee; Miu, P.I. [University of Tennessee; Smith, D.R. [University of Tennessee; Igathinathane, C. [Mississippi State University (MSU); Sokhansanj, Shahabaddine [ORNL

    2009-07-01

    Biomass particle size impacts handling, storage, conversion, and dust control systems. Size reduction mechanical energy was directly measured for switchgrass (Panicum virgatum L.), wheat straw (Triticum aestivum L.), and corn stover (Zea mays L.) in an instrumented hammer mill. Direct energy inputs were determined for hammer mill operating speeds from 2000 to 3600 rpm for 3.2 mm integral classifying screen and mass input rate of 2.5 kg/min with 90 - and 30 -hammers. Overall accuracy of specific energy measurement was calculated as 0.072 MJ/Mg. Particle size distributions created by hammer mill were determined for mill operating factors using ISO sieve sizes from 4.75 to 0.02 mm in conjunction with Ro-Tap sieve analyzer. A wide range of analytical descriptors were examined to mathematically represent the range of particle sizes in the distributions. Total specific energy (MJ/Mg) was defined as size reduction energy to operate the hammer mill plus that imparted to biomass. Effective specific energy was defined as energy imparted to biomass. Total specific energy for switchgrass, wheat straw, and corn stover grinding increased by 37, 30, and 45% from 114.4, 125.1, and 103.7 MJ/Mg, respectively, with an increase in hammer mill speed from 2000 to 3600 rpm for 90 -hammers. Corresponding total specific energy per unit size reduction was 14.9, 19.7, and 13.5 MJ/Mg mm, respectively. Effective specific energy of 90 -hammers decreased marginally for switchgrass and considerably for wheat straw and it increased for corn stover with an increase in speed from 2000 to 3600 rpm. However, effective specific energy increased with speed to a certain extent and then decreased for 30 -hammers. Rosin Rammler equation fitted the size distribution data with R2 > 0.995. Mass relative span was greater than 1, which indicated a wide distribution of particle sizes. Hammer milling of switchgrass, wheat straw, and corn stover with 3.2 mm screen resulted in well-graded fine-skewed mesokurtic

  9. 考虑维护土壤功能的玉米秸秆能源开发潜力模拟%Soil function-included simulation on energy development potential of corn stover

    Institute of Scientific and Technical Information of China (English)

    刘贞; David Fridley

    2014-01-01

    soil, loam soil, sandy soil) and the soil area used for corn in every province. ② Other factors such as the harvesting of corn stover and the scale of corn stover used for burning and feedstuff were also considered when the corn stover potential used for biomass energy is being calculated. ③ Considering the alternative of corn stover used for burning by coal or natural gas in the future and the calorific value of corn stover, the biomass energy potential was calculated in a different alternative scale. Research results are given in the paper by using the above method. Assuming that the corn stover used for burning is not replaced by coal or gas in the future, the research results in three scenarios are given. In the lower reservation scenario, the corn stover potential in 2020, 2030, and 2050 will be 0.213, 0.216, and 0.303 billion tons. In the moderate reservation scenario, the corn stover Potential in 2020, 2030, and 2050 will be 0.139, 0.142, and 0.229 billion tons. In the higher reservation scenario, the corn stover potential in 2020, 2030, and 2050 will be 0.042, 0.045, and 0.129 billion tons. Assuming that the corn stover used for burning is completely replaced by coal or gas in the future, the research results will increase. In the lower reservation scenario, the corn stover potential in 2020, 2030, and 2050 will be 0.279, 0.282, and 0.396 billion tons. In the moderate reservation scenario, the corn stover Potential in 2020, 2030, and 2050 will be 0.182, 0.185, and 0.299 billion tons. In the higher reservation scenario, the corn stover potential in 2020, 2030, and 2050 will be 0.056, 0.058, and 0.169 billion tons. In China, the biomass energy potential of corn stover in 2020, 2030, and 2050 will be 4.33×1015, 4.37×1015, and 6.15×1015 kJ, respectively in the lower reservation scenario when the corn stover used for burning is replaced by gas or coal. In the higher reservation scenario and no corn stover used for burning is replaced by gas or coal, the

  10. Bed Agglomeration During the Steam Gasification of a High Lignin Corn Stover Simultaneous Saccharification and Fermentation (SSF) Digester Residue

    Energy Technology Data Exchange (ETDEWEB)

    Howe, Daniel T.; Taasevigen, Danny J.; Gerber, Mark A.; Gray, Michel J.; Fernandez, Carlos A.; Saraf, Laxmikant; Garcia-Perez, Manuel; Wolcott, Michael P.

    2015-11-13

    This research investigates the bed agglomeration phenomena during the steam gasification of a high lignin residue produced from the simultaneous saccharification and fermentation (SSF) of corn stover in a bubbling fluidized bed. The studies were conducted at 895°C using alumina as bed material. Biomass was fed at 1.5 kg/hr, while steam was fed to give a velocity equal to 2.5 times the minimum fluidization velocity, with a steam/carbon ratio of 0.9. The pelletized feedstock was co-fed with a cooling nitrogen stream to mitigate feed line plugging issues. Tar production was high at 50.3 g/Nm3, and the fraction of C10+ compounds was greater than that seen in the gasification of traditional lignocellulosic feedstocks. Carbon closures over 94 % were achieved for all experiments. Bed agglomeration was found to be problematic, indicated by pressure drop increases observed below the bed and upstream of the feed line. Two size categories of solids were recovered from the reactor, +60 mesh and -60 mesh. After a 2.75-hour experiment, 61.7 wt % was recovered as -60 mesh particles and 38.2 wt% of the recovered reactor solids were +60 mesh. A sizeable percentage, 31.8 wt%, was +20 mesh. The -60 mesh particles were mainly formed by the initial bed material (Al2O3). Almost 50 wt. % of the + 20 mesh particles was found to be formed by organics. The unreacted carbon remaining in the reactor resulted in a low conversion rate to product gas. ICP-AES, SEM, SEM-EDS, and XRD confirmed that the large agglomerates (+ 20 mesh) were not encapsulated bed material but rather un-gasified feedstock pellets with sand particles attached to it.

  11. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    Science.gov (United States)

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-01

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016.

  12. Acetic acid removal from corn stover hydrolysate using ethyl acetate and the impact on Saccharomyces cerevisiae bioethanol fermentation.

    Science.gov (United States)

    Aghazadeh, Mahdieh; Ladisch, Michael R; Engelberth, Abigail S

    2016-07-01

    Acetic acid is introduced into cellulose conversion processes as a consequence of composition of lignocellulose feedstocks, causing significant inhibition of adapted, genetically modified and wild-type S. cerevisiae in bioethanol fermentation. While adaptation or modification of yeast may reduce inhibition, the most effective approach is to remove the acetic acid prior to fermentation. This work addresses liquid-liquid extraction of acetic acid from biomass hydrolysate through a pathway that mitigates acetic acid inhibition while avoiding the negative effects of the extractant, which itself may exhibit inhibition. Candidate solvents were selected using simulation results from Aspen Plus™, based on their ability to extract acetic acid which was confirmed by experimentation. All solvents showed varying degrees of toxicity toward yeast, but the relative volatility of ethyl acetate enabled its use as simple vacuum evaporation could reduce small concentrations of aqueous ethyl acetate to minimally inhibitory levels. The toxicity threshold of ethyl acetate, in the presence of acetic acid, was found to be 10 g L(-1) . The fermentation was enhanced by extracting 90% of the acetic acid using ethyl acetate, followed by vacuum evaporation to remove 88% removal of residual ethyl acetate along with 10% of the broth. NRRL Y-1546 yeast was used to demonstrate a 13% increase in concentration, 14% in ethanol specific production rate, and 11% ethanol yield. This study demonstrated that extraction of acetic acid with ethyl acetate followed by evaporative removal of ethyl acetate from the raffinate phase has potential to significantly enhance ethanol fermentation in a corn stover bioethanol facility. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:929-937, 2016. PMID:27090191

  13. Effects of twenty percent alkaline-treated corn stover without or with yucca extract on performance and nutrient mass balance of finishing steers fed modified distillers grains-based diets.

    Science.gov (United States)

    Johnson, J M; Shreck, A L; Nuttelman, B L; Burken, D B; Erickson, G E; Rincker, M J; Cecava, M J; Klopfenstein, T J

    2015-06-01

    Two experiments were conducted with 192 steers each (during the winter [November to May] or summer [June to October]) to evaluate 3 diets with or without Yucca schidigera extract in a 3 × 2 factorial on steer growth performance and N mass balance. One factor was diet (DM basis): 1) 5% untreated corn stover, 51% corn, and 40% modified distillers grains plus solubles (MDGS; CON); 2) 20% calcium oxide-treated corn stover (CaO added at 5% of stover DM), 40% MDGS, and 36% corn (TRT); or 3) 20% untreated corn stover, 40% MDGS, and 36% corn (NONTRT). The other factor was dietary extract at 0 (NOYE) or 1.0 g/d per steer (YE). No interaction between diet and YE was detected (P > 0.51) for growth performance and carcass traits in winter and only for DMI in summer. Final BW, ADG, DMI, or G:F were not different (P ≥ 0.28) between cattle fed CON and TRT, whereas cattle fed NONTRT had lesser ADG, HCW, and G:F compared to CON and TRT in the winter experiment. During the summer, final BW and ADG tended to be greater (P ≥ 0.07) for CON compared to TRT. Cattle fed TRT had reduced (P 0.18) on amount (kg/steer) or percentage of N volatized in the winter or summer. All diets had similar amounts (P > 0.13) of DM and OM removed from the pen surface in both summer and winter. Feeding CaO-treated corn stover as a partial grain replacement had no impact on performance in winter but decreased G:F in summer. Although high-fiber diets increased the amount of OM on pen surfaces, they did not impact N volatilized. Feeding a Y. schidigera extract did not affect N balance or manure characteristics.

  14. Effects of twenty percent alkaline-treated corn stover without or with yucca extract on performance and nutrient mass balance of finishing steers fed modified distillers grains-based diets.

    Science.gov (United States)

    Johnson, J M; Shreck, A L; Nuttelman, B L; Burken, D B; Erickson, G E; Rincker, M J; Cecava, M J; Klopfenstein, T J

    2015-06-01

    Two experiments were conducted with 192 steers each (during the winter [November to May] or summer [June to October]) to evaluate 3 diets with or without Yucca schidigera extract in a 3 × 2 factorial on steer growth performance and N mass balance. One factor was diet (DM basis): 1) 5% untreated corn stover, 51% corn, and 40% modified distillers grains plus solubles (MDGS; CON); 2) 20% calcium oxide-treated corn stover (CaO added at 5% of stover DM), 40% MDGS, and 36% corn (TRT); or 3) 20% untreated corn stover, 40% MDGS, and 36% corn (NONTRT). The other factor was dietary extract at 0 (NOYE) or 1.0 g/d per steer (YE). No interaction between diet and YE was detected (P > 0.51) for growth performance and carcass traits in winter and only for DMI in summer. Final BW, ADG, DMI, or G:F were not different (P ≥ 0.28) between cattle fed CON and TRT, whereas cattle fed NONTRT had lesser ADG, HCW, and G:F compared to CON and TRT in the winter experiment. During the summer, final BW and ADG tended to be greater (P ≥ 0.07) for CON compared to TRT. Cattle fed TRT had reduced (P Diet had no effect (P > 0.18) on amount (kg/steer) or percentage of N volatized in the winter or summer. All diets had similar amounts (P > 0.13) of DM and OM removed from the pen surface in both summer and winter. Feeding CaO-treated corn stover as a partial grain replacement had no impact on performance in winter but decreased G:F in summer. Although high-fiber diets increased the amount of OM on pen surfaces, they did not impact N volatilized. Feeding a Y. schidigera extract did not affect N balance or manure characteristics. PMID:26115289

  15. Kinetics of the pyrolysis of arundo, sawdust, corn stover and switch grass biomass by thermogravimetric analysis using a multi-stage model.

    Science.gov (United States)

    Biney, Paul O; Gyamerah, Michael; Shen, Jiacheng; Menezes, Bruna

    2015-03-01

    A new multi-stage kinetic model has been developed for TGA pyrolysis of arundo, corn stover, sawdust and switch grass that accounts for the initial biomass weight (W0). The biomass were decomposed in a nitrogen atmosphere from 23°C to 900°C in a TGA at a single 20°C/min ramp rate in contrast with the isoconversion technique. The decomposition was divided into multiple stages based on the absolute local minimum values of conversion derivative, (dx/dT), obtained from DTG curves. This resulted in three decomposition stages for arundo, corn stover and sawdust and four stages for switch grass. A linearized multi-stage model was applied to the TGA data for each stage to determine the pre-exponential factor, activation energy, and reaction order. The activation energies ranged from 54.7 to 60.9 kJ/mol, 62.9 to 108.7 kJ/mol, and 18.4 to 257.9 kJ/mol for the first, second and the third decomposition stages respectively.

  16. Application of a slurry feeder to 1 and 3 stage continuous simultaneous saccharification and fermentation of dilute acid pretreated corn stover.

    Science.gov (United States)

    Brethauer, Simone; Studer, Michael H; Wyman, Charles E

    2014-10-01

    Continuous operation is often chosen for conceptual designs of biological processing of cellulosic biomass to ethanol to achieve higher volumetric productivities. Furthermore, continuous stirred tank reactors (CSTR) can handle higher solids concentrations than possible in batch mode due to broth thinning at partial conversion in a continuous fermentor. However, experience and literature data are very limited for continuous simultaneous saccharification and fermentation (cSSF) processes. In this work, a slurry feed system was developed and applied to a 3-stage bench-scale cSSF train to convert pretreated corn stover to ethanol and determine the effects of dilution rate and number of fermentation vessels on overall volumetric productivity. The highest productivity of 0.4gL(-1)h(-1) was achieved in a single cSSF vessel with an 8h residence time. Furthermore, productivity at identical total residence times was 12% higher for operation with 3 cSSF stages than for a single CSTR stage for pretreated corn stover.

  17. Effect of additives on adsorption and desorption behavior of xylanase on acid-insoluble lignin from corn stover and wheat straw.

    Science.gov (United States)

    Li, Yanfei; Ge, Xiaoyan; Sun, Zongping; Zhang, Junhua

    2015-06-01

    The competitive adsorption between cellulases and additives on lignin in the hydrolysis of lignocelluloses has been confirmed, whereas the effect of additives on the interaction between xylanase and lignin is not clear. In this work, the effects of additives, poly(ethylene glycol) 2000, poly(ethylene glycol) 6000, Tween 20, and Tween 80, on the xylanase adsorption/desorption onto/from acid-insoluble lignin from corn stover (CS-lignin) and wheat straw (WS-lignin) were investigated. The results indicated that the additives could adsorb onto isolated lignin and reduce the xylanase adsorption onto lignin. Compared to CS-lignin, more additives could adsorb onto WS-lignin, making less xylanase adsorbed onto WS-lignin. In addition, the additives could enhance desorption of xylanase from lignin, which might be due to the competitive adsorption between xylanase and additives on lignin. The released xylanase from lignin still exhibited hydrolytic capacity in the hydrolysis of isolated xylan and xylan in corn stover.

  18. On-site enzymes produced from Trichoderma reesei RUT-C30 and Aspergillus saccharolyticus for hydrolysis of wet exploded corn stover and loblolly pine.

    Science.gov (United States)

    Rana, Vandana; Eckard, Anahita D; Teller, Philip; Ahring, Birgitte K

    2014-02-01

    Cellulase production by two filamentous fungi Trichoderma reesei RUT-C30 and novel fungal strain, Aspergillus saccharolyticus on pretreated corn stover was investigated. Cellulase production was followed by the hydrolysis of two feedstocks, wet-exploded corn stover (WECS) and wet-exploded loblolly pine (WELP) by on-site produced enzyme cocktails containing cellulase from T. reesei RUT-C30 and β-glucosidase from A. saccharolyticus. The sugar yields using the on-site enzyme cocktails were compared with commercial enzymes preparations, Celluclast 1.5L and Novozym 188 at two substrate concentrations, 5% and 10% (w/w) and enzyme loading at 5 and 15 FPU/g glucan for WECS and WELP. The highest sugar yields were obtained at 5% (w/w) substrate concentration and 15 FPU/g glucan for both feedstocks. Glucose yields of 81% and 88% were obtained from on-site and commercial enzymes, respectively using WECS as feed stock. The sugar yields were 55% and 58% for WELP samples hydrolyzed with on-site and commercial enzymes, respectively.

  19. The effect of metal ions as co-catalysts on acidic ionic liquid catalyzed single-step saccharification of corn stover in water.

    Science.gov (United States)

    Wiredu, Bernard; Amarasekara, Ananda S

    2015-01-01

    The effects of adding Cr(3+), Mn(2+), Fe(3+), Co(2+) Ni(2+), Cu(2+), Zn(2+) and La(3+) chlorides as co-catalysts to 1-(1-propylsulfonic)-3-methylimidazolium chloride acidic ionic liquid catalyzed saccharification of corn stover in aqueous medium was studied at 140-170 °C, by measuring the total reducing sugar (TRS) and glucose yields. The samples with Mn(2+), Fe(3+), Co(2+) as co-catalysts produced higher TRS yields compared to the sample without the metal ions. The Mn(2+) produced the highest catalytic effect enhancements and produced TRS yields of 68.0%, 72.9%, 90.2% and 87.9% at 140, 150, 160 and 170 °C respectively; whereas the corn stover samples without the Mn(2+) produced TRS yields of 42.9%, 52.3%, 54.4% and 53.5% at the same four temperatures. At higher temperatures of 160 and 170 °C, all metal ions studied produced significant enhancements in glucose yields, except Cr(3+). The addition of La(3+) as a co-catalyst produced the highest glucose yield improvement.

  20. Novel DDR Processing of Corn Stover Achieves High Monomeric Sugar Concentrations from Enzymatic Hydrolysis (230 g/L) and High Ethanol Concentration (10% v/v) During Fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiaowen; Jennings, Ed; Shekiro, Joe; Kuhn, Erik M.; O' Brien, Marykate; Wang, Wei; Schell, Daniel J.; Himmel, Mike; Elander, Richard T.; Tucker, Melvin P.

    2015-04-03

    Distilling and purifying ethanol, butanol, and other products from second and later generation lignocellulosic biorefineries adds significant capital and operating cost for biofuels production. The energy costs associated with distillation affects plant gate and life cycle analysis costs. Lower titers in fermentation due to lower sugar concentrations from pretreatment increase both energy and production costs. In addition, higher titers decrease the volumes required for enzymatic hydrolysis and fermentation vessels. Therefore, increasing biofuels titers has been a research focus in renewable biofuels production for several decades. In this work, we achieved over 200 g/L of monomeric sugars after high solids enzymatic hydrolysis using the novel deacetylation and disc refining (DDR) process on corn stover. The high sugar concentrations and low chemical inhibitor concentrations from the DDR process allowed ethanol titers as high as 82 g/L in 22 hours, which translates into approximately 10 vol% ethanol. To our knowledge, this is the first time that 10 vol% ethanol in fermentation derived from corn stover without any sugar concentration or purification steps has been reported. Techno-economic analysis shows the higher titer ethanol achieved from the DDR process could significantly reduce the minimum ethanol selling price from cellulosic biomass.

  1. Production of a lignocellulolytic enzyme system for simultaneous bio-delignification and saccharification of corn stover employing co-culture of fungi.

    Science.gov (United States)

    Ma, Kedong; Ruan, Zhiyong

    2015-01-01

    Aiming at improving the efficiency of transferring corn stover into sugars, an efficient lignocellulolytic enzyme system was developed and investigated by co-cultivation of the Coprinus comatus with Trichoderma reesei in a single bioreactor. The results showed that the lignocellulolytic enzyme activities of the co-culture exceeded that of the monoculture, suggesting synergistic interaction between two fungi. The highest laccase activity from the co-culture was 2.6-fold increase over that of the C. comatus monoculture and reached a peak 3days earlier. The maximum delignification obtained was 66.5% and about 82% of the original polysaccharides were converted into fermentable sugars by simultaneous bio-delignification and saccharification process. Correlation analysis showed that sugar yields were directly proportional to the lignin degradation. Our results suggested that co-fungi cultivation was a valuable technique for corn stover bioconversion, which could produce high efficiency of lignocellulolytic enzyme system as a cheaper alternative to commercial enzymes for industrial utilization. PMID:25459871

  2. Simultaneous saccharification and co-fermentation of dry diluted acid pretreated corn stover at high dry matter loading: Overcoming the inhibitors by non-tolerant yeast.

    Science.gov (United States)

    Zhu, Jia-Qing; Qin, Lei; Li, Wen-Chao; Zhang, Jian; Bao, Jie; Huang, Yao-Dong; Li, Bing-Zhi; Yuan, Ying-Jin

    2015-12-01

    Dry dilute acid pretreatment (DDAP) is a promising method for lignocellulose bioconversion, although inhibitors generated during the pretreatment impede the fermentation severely. We developed the simultaneous saccharification and co-fermentation (SScF) of DDAP pretreated biomass at high solid loading using xylose fermenting Saccharomyces cerevisiae, SyBE005. Effect of temperature on SScF showed that ethanol yield at 34°C was 10.2% higher than that at 38°C. Ethanol concentration reached 29.5 g/L at 15% (w/w) dry matter loading, while SScF almost ceased at the beginning at 25% (w/w) dry matter loading of DDAP pretreated corn stover. According to the effect of the diluted hydrolysate on the fermentation of strain SyBE005, a fed-batch mode was developed for the SScF of DDAP pretreated corn stover with 25% dry matter loading without detoxification, and 40.0 g/L ethanol was achieved. In addition, high yeast inoculation improved xylose utilization and the final ethanol concentration reached 47.2 g/L. PMID:26363500

  3. Effects of replacing wild rye, corn silage, or corn grain with CaO-treated corn stover and dried distillers grains with solubles in lactating cow diets on performance, digestibility, and profitability.

    Science.gov (United States)

    Shi, H T; Li, S L; Cao, Z J; Wang, Y J; Alugongo, G M; Doane, P H

    2015-10-01

    The objective of this study was to measure the effects of partially replacing wild rye (Leymus chinensis; WR), corn silage (CS), or corn grain (CG) in dairy cow diets with CaO-treated corn stover (T-CS) and corn dried distillers grains with soluble (DDGS) on performance, digestibility, blood metabolites, and income over feed cost. Thirty tonnes of air-dried corn stover was collected, ground, and mixed with 5% CaO. Sixty-four Holstein dairy cows were blocked based on days in milk, milk yield, and parity and were randomly assigned to 1 of 4 treatments. The treatments were (1) a diet containing 50% concentrate, 15% WR, 25% CS, and 10% alfalfa hay (CON); (2) 15% WR, 5% CG, and 6% soybean meal were replaced by 15% T-CS and 12% DDGS (RWR); (3) 12.5% CS, 6% CG, and 5% soybean meal were replaced by 12.5% T-CS and 12%DDGS (RCS); (4) 13% CG and 6% soybean meal were replaced by 7% T-CS and 13% DDGS (RCG). Compared with CON treatment, cows fed RCS and RCG diets had similar dry matter intake (CON: 18.2 ± 0.31 kg, RCS: 18.6 ± 0.31 kg, and RCG: 18.4 ± 0.40 kg). The RWR treatment tended to have lower dry matter intake than other treatments. The inclusion of T-CS and DDGS in treatment diets as a substitute for WR, CS, or CG had no effects on lactose percentage (CON: 4.96 ± 0.02%, RWR: 4.97 ± 0.02%, RCS: 4.96 ± 0.02%, and RCG: 4.94 ± 0.02%), 4% fat-corrected milk yield (CON: 22.7 ± 0.60 kg, RWR: 22.1 ± 0.60 kg, RCS: 22.7 ± 0.60 kg, and RCG: 22.7 ± 0.60 kg), milk fat yield (CON: 0.90 ± 0.03 kg, RWR: 0.86 ± 0.03 kg, RCS: 0.87 ± 0.03 kg, and RCG: 0.89 ± 0.03 kg), and milk protein yield (CON: 0.74 ± 0.02 kg, RWR: 0.72 ± 0.02 kg, RCS: 0.73 ± 0.02 kg, and RCG: 0.71 ± 0.02 kg). Cows fed the RWR diet had higher apparent dry matter digestibility (73.7 ± 1.30 vs. 70.2 ± 1.15, 69.9 ± 1.15, and 69.9 ± 1.15% for RWR vs. CON, RCS, and RCG, respectively) and lower serum urea N (3.55 ± 0.11 vs. 4.03 ± 0.11, 3.95 ± 0.11, and 3.99 ± 0.11 mmol/L for RWR vs. CON, RCS, and RCG

  4. 玉米秸秆半同步与同步糖化发酵的研究%Semi-simultaneous/Simultaneous Saccharification and Fermentation of Corn Stover

    Institute of Scientific and Technical Information of China (English)

    杨德良; 储秋露; 赖晨欢; 谢益晖; 李鑫; 余世袁; 勇强

    2015-01-01

    于初始底物质量浓度100 g/L,酶解6 h、12 h分别补料50 g/L条件下,以总底物质量浓度200 g/L的绿液预处理玉米秸秆,先预酶解24 h后同步糖化发酵48 h,体系中乙醇质量浓度47.58 g/L,乙醇得率为0.42 g/g(以纤维素计,下同)。而不经预酶解直接同步糖化发酵72 h,体系中乙醇质量浓度48.57 g/L,乙醇得率为0.43 g/g。与基于补料预酶解的半同步糖化发酵相比,补料同步糖化发酵技术工艺简单,适合于高浓度底物绿液预处理玉米秸秆的生物转化。%Corn stover pretreated by green liquor was hydrolyzed for 24 h at an initial substrate concentration of 100 g/L and a fed-batch of 50 g/L substrate for 6 h and 12 h,respectively,and then simultaneously saccharified and fermented for 48 h. Ethanol with a mass concentration of 47. 58 g/L and a yield with 0. 42 g/g cellulose was obtained. As the corn stover was pretreated under the same condition for 72 h,and the mass concentration and the yield of ethanol were 48. 57 g/L ethanol and 0. 43 g/g cellulose, respectively. Compared to semi-simultaneous saccharification and fermentation based on pre-hydrolysis, the simultaneous saccharification and fermentation were suitable for the bioconversion of pretreated corn stover at high substrate loading.

  5. Assessing the potential for increased capacity of combined heat and power facilities based on available corn stover and forest logging residue in Mississippi

    Science.gov (United States)

    Radhakrishnan, Selvarani

    The amount of available biomass feedstock and associated cost components were analyzed to determine the potential increase in energy capacity of two existing combined heat and power plants in Mississippi. The amount of corn stover and forest logging residue within a 10-mile radius can satisfy the existing requirements of CHP plants in Scott (1 MW) and Washington counties (5 MW). Transporting feedstock within a smaller source area had lower transportation costs, but higher total unit cost than the two other source buffer scenarios. However, capital costs associated with higher plant capacities were significantly higher and plant expansion may not be economically advantageous. Increasing the CHP capacity from 1 MW to 2 MW in Scott county and 5 MW to 10 MW in Washington county might be a sustainable approach by drawing feedstock from a smaller area and at lower utilization rates, while keeping transportation costs low.

  6. Single cell oil production by Mortierella isabellina from steam exploded corn stover degraded by three-stage enzymatic hydrolysis in the context of on-site enzyme production.

    Science.gov (United States)

    Fang, Hao; Zhao, Chen; Chen, Shaolin

    2016-09-01

    Single cell oil (SCO), promising as alternative oil source, was produced from steam exploded corn stover (SECS) by Mortierella isabellina. Different bioprocesses from SECS to SCO were compared and the bioprocess C using the three-stage enzymatic hydrolysis was found to be the most efficient one. The bioprocess C used the lowest enzyme input 20FPIU cellulase/g glucan and the shortest time 222h, but produced 44.94g dry cell biomass and 25.77g lipid from 327.63g dry SECS. It had the highest lipid content 57.34%, and its productivities and yields were much higher than those of the bioprocess B and comparable to the bioprocess A, indicating that the three-stage enzymatic hydrolysis could greatly improve the efficiency of the bioprocess from high solid loading SECS to SCO by Mortierella isabellina. This work testified the application value of three-stage enzymatic hydrolysis in lignocellulose-based bioprocesses. PMID:27343451

  7. Pretreatment of corn stover for sugar production using a two-stage dilute acid followed by wet-milling pretreatment process.

    Science.gov (United States)

    Liu, Qiyu; Li, Wenzhi; Ma, Qiaozhi; An, Shengxin; Li, Minghao; Jameel, Hasan; Chang, Hou-Min

    2016-07-01

    A two-stage process was evaluated to increase sugar recovery. Firstly, corn stover was treated with dilute hydrochloric acid to recover the xylose, and then the residue was subjected to a wet-milling pretreatment. Dilute hydrochloric acid showed a high xylose recovery during the first stage. The optimal condition was 120°C and 40min for 0.7wt% dilute hydrochloric acid pretreatment followed by wet-milling pretreatment for 15min. The xylose and glucose yield were 81.0% and 64.0%, respectively, with a cellulase dosage at 3FPU/g of substrate. This two-stage process was effective on account of the removal of hemicelluloses in the first stage and the delamination of cell wall in the second stage, increasing the possibility of adsorption of cellulose to enzymes, and resulting in a high sugar recovery with a very low enzyme loading. PMID:27035475

  8. Effects of microwave power and microwave irradiation time on pretreatment efficiency and characteristics of corn stover using combination of steam explosion and microwave irradiation (SE-MI) pretreatment.

    Science.gov (United States)

    Pang, Feng; Xue, Shulin; Yu, Shengshuan; Zhang, Chao; Li, Bing; Kang, Yong

    2012-08-01

    The effects of microwave power and microwave irradiation time on pretreatment efficiency and characteristics of corn stover were investigated based on a new process named combination of steam explosion and microwave irradiation (SE-MI) pretreatment. Results showed that with microwave power and microwave irradiation time increasing, glucose and xylose that released into hydrolyzate, as well as enzymatic hydrolysis yields and sugar yields of glucose and xylose were all slightly increased after SE-MI pretreatment. The maximum sugar yield was 72.1 g per 100 g glucose and xylose in feedstock, achieved at 540 W microwave power and 5 min microwave irradiation time. XRD analysis showed that the crystallinity of biomass was 15.6-19.9% lower for SE-MI pretreatment with microwave effect than that without microwave effect. However, low microwave power and short microwave irradiation time were favorable for SE-MI pretreatment considering energy consumption.

  9. Simultaneous saccharification and co-fermentation of aqueous ammonia pretreated corn stover with an engineered Saccharomyces cerevisiae SyBE005.

    Science.gov (United States)

    Zhu, Jia-Qing; Qin, Lei; Li, Bing-Zhi; Yuan, Ying-Jin

    2014-10-01

    Co-fermentation of glucose and xylose from lignocelluloses is an efficient approach to increasing ethanol production. Simultaneous saccharification and co-fermentation (SSCF) of corn stover pretreated with aqueous ammonia was performed using engineered yeast with xylose utilization pathway. Thus far, the effect of the several key factors on SSCF was investigated, including temperature, inoculation size, pre-hydrolysis and pH. Ethanol concentration was achieved to 36.5 g/L during SSCF process with 6% glucan loading. The addition of Tween 20 reduced enzyme loading, i.e., from 15 to 7.5 FPU/gglucan with the same final ethanol concentration. The ethanol concentration was achieved to 70.1g/L at 12% glucan loading. Yeast feeding, combined with substrate and enzyme feeding, was proved to be an efficient approach for SSCF with high solid loading. PMID:25016219

  10. Enhanced alkaline cellulases production by the thermohalophilic Aspergillus terreus AUMC 10138 mutated by physical and chemical mutagens using corn stover as substrate.

    Science.gov (United States)

    Isaac, George Saad; Abu-Tahon, Medhat Ahmed

    2015-01-01

    A thermohalophilic fungus, Aspergillus terreus AUMC 10138, isolated from the Wadi El-Natrun soda lakes in northern Egypt was exposed successively to gamma and UV-radiation (physical mutagens) and ethyl methan-sulfonate (EMS; chemical mutagen) to enhance alkaline cellulase production under solid state fermentation (SSF) conditions. The effects of different carbon sources, initial moisture, incubation temperature, initial pH, incubation period, inoculum levels and different concentrations of NaCl on production of alkaline filter paper activity (FPase), carboxymethyl cellulase (CMCase) and β-glucosidase by the wild-type and mutant strains of A. terreus were evaluated under SSF. The optimum conditions for maximum production of FPase, CMCase and β-glucosidase were found to be the corn stover: moisture ratio of 1:3(w/v), temperature 45 °C, pH range, 9.0-11.0, and fermentation for 4, 4 and 7 day, respectively. Inoculum levels of 30% for β-glucosidase and 40% for FPase, CMCase gave the higher cellulase production by the wild-type and mutant strains, respectively. Higher production of all three enzymes was obtained at a 5% NaCl. Under the optimized conditions, the mutant strain A. terreus M-17 produced FPase (729 U/g), CMCase (1,783 U/g), and β-glucosidase (342 U/g), which is, 1.85, 1.97 and 2.31-fold higher than the wild-type strain. Our results confirmed that mutant strain M-17 could be a promising alkaline cellulase enzyme producer employing lignocellulosics especially corn stover.

  11. Short communication. Effects of adding different protein and carbohydrates sources on chemical composition and in vitro gas production of corn stover silage

    Directory of Open Access Journals (Sweden)

    L. A. Mejía-Uribe

    2013-05-01

    Full Text Available The use of protein-rich by-products based in swine manure (SM, poultry waste (PW or chemicals compounds as urea (U, as well as energy products like molasses (M and bakery by-product (BB, is a viable method to produce good quality silage. In addition, the use of a bacterial additive can improve the fermentation characteristics of silage. The objective of this study was to determine chemical composition, in vitro gas production (GP and dry matter disappearance (DMd, using different sources of protein and energy in silage. The silages were made using SM, PW or U as protein sources and M or BB as energy source, with corn stover and with or without a bacterial additive. The organic matter (OM content was higher (p < 0.001 in silages with UBB, UM and SMBB compared with the rest of the treatments; meanwhile crude protein content was higher (p < 0.001 in silages with U. The addition of a bacterial additive increased (p < 0.05 OM content and decreased (p < 0.05 fiber content. Total GP was higher (p < 0.05 in silages containing BB, but DMd was higher (p < 0.05 in silages with U and SMBB. The inclusion of a bacterial additive decreased (p < 0.05 GP and DMd. The use of alternative sources of protein such as poultry and swine manure or urea, and of by-products of sugar industry and bakery is an alternative for silages based on corn stover. The results show that when properly formulated, the silages can provide more than 16% of crude protein and have DMd values above 60%.

  12. Modeling the CO2 and N2O Emissions From Stover Removal for Biofuel Production From Continuous Corn Production in Iowa

    Science.gov (United States)

    Paustian, K.; Killian, K.; Brenner, J.

    2003-12-01

    Corn stover, an agricultural residue, can be used as feedstock for near term bioethanol production and is available today at levels that can significantly impact energy supply. We evaluated the environmental impact of such a large-scale change in agricultural practices on green house gas production, soil erosion and soil carbon using the Century model. Estimates of soil C changes and GHG emissions were performed for the 99 counties in Iowa where previous environmental, management and erosion data was available. We employed climate, soil and historical management databases from a separate USDA-funded project as input to Century. RUSLE estimates of the residue requirements for acceptable soil loss rates under continuous corn agriculture were available from a previous study done Dr. Richard Nelson (Enersol Resources). Two mulch tillage and a no-till systems, where erosion estimates were available, were used as the basis for the simulations. Century simulations of these systems were run under a variety of stover removal rates. For each soil type within each county the model was run for 15 years (1980-1995) under continuous corn with convention tillage, and full residue return. Model simulation of crop yields and residue production were then calibrated to match those used by the Polysys model team at Oak Ridge and the simulation was repeated with the addition of the three corn tillage regimes, and several residue removal rates. County-average soil C changes (and net CO2 emissions) were calculated as area-weighted averages of the individual soil types in each county. For this study, we have utilized the IPCC approach to estimate annual N2O emissions. At low or zero residue removal rates, county-averaged soil C stocks were predicted to increase (i.e. net CO2 emissions are negative). Where the allowable residue removal rates (based on erosion tolerance) for mulch-tillage are on the order of 40-50% or more, the reduced input of C is such that the soils no longer sequester C

  13. Optimization of Exploded Corn Stover Substrate by Microbial Fermentation for Animal Feed Production%微生物发酵爆破秸秆生产动物饲料培养基的优化

    Institute of Scientific and Technical Information of China (English)

    常娟; 尹清强; 郑秋红; 姜义宝; 郭红伟; 左瑞雨; 刘俊熙

    2012-01-01

    The solid fermentation substrate of exploded corn stover fermented by Aspergillus oryzae for producing animal feed was optimized. The four-factor and three-level orthogonal experiment of exploded corn stover (81% — 100%), corn meal (0% , 2. 5% and 5. 0%) , wheat bran (0%,2. 5% and 5. 0%) .soybean meal (0%,2. 5% and 5.0%) and nutrient solution (0%,2. 0% and 4. 0%) was used in this experiment, and the culture medium was optimized by determining the cellulose degradation,the filter paper cellulose enzyme activity (FPA)and CMCase activity of the fermented product. The result showed that the optimal medium for biodegradation and FPA production of exploded corn stover was 5% corn meal,2. 5% wheat bran,5. 0% soybean meal and 4. 0% nutrient solution. The levels of nutrient solution,corn meal,and soybean meal had significant effects on stover degradation (P<0. 05). The optimal medium for QVICase production of exploded corn stover was 2. 5% corn meal, 2. 5% wheat bran, 5. 0% soybean meal and 4. 0% nutrient solution. This work obtained the best culture medium for producing biological corn stover feed was 83. 5% exploded corn stover, 5. 0% corn meal, 2. 5% wheat bran, 5. 0% soybean meal and 4. 0% nutrient solution.%为了促进秸秆饲料资源开发及其在动物饲养中的应用,对爆破玉米秸秆米曲霉固体发酵生产动物饲料的固体发酵培养基进行优化.以爆破玉米秸秆为主要原料(81%~100%),以玉米(0、2.5%、5.0%)、麸皮(0、2.5%、5.0%)、豆粕(0、2.5%、5.0%)和营养液(0、2.0%、4.0%)设计四因素三水平正交试验,固体发酵6d后,测定发酵产物纤维素降解率、滤纸酶活性和羧甲基纤维素(CMC)酶活性,选择最佳发酵培养基.结果表明,纤维素降解率和滤纸酶活性最高的培养基组合为:83.5%爆破玉米秸秆、5.0%玉米、2.5%麸皮、5.0%豆粕和4.0%营养液,其中营养液、豆粕和玉米的不同水平对纤维素的降解率有

  14. High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition.

    Science.gov (United States)

    Hu, Jinlong; Zhang, Zhenting; Lin, Yanxu; Zhao, Shumiao; Mei, Yuxia; Liang, Yunxiang; Peng, Nan

    2015-04-01

    Lactic acid (LA) is an important chemical with various industrial applications. Non-food feedstock is commercially attractive for use in LA production; however, efficient LA fermentation from lignocellulosic biomass resulting in both high yield and titer faces technical obstacles. In this study, the thermophilic bacterium Bacillus coagulans LA204 demonstrated considerable ability to ferment glucose, xylose, and cellobiose to LA. Importantly, LA204 produces LA from several NaOH-pretreated agro stovers, with remarkably high yields through simultaneous saccharification and fermentation (SSF). A fed-batch SSF process conducted at 50°C and pH 6.0, using a cellulase concentration of 30 FPU (filter paper unit)/g stover and 10 g/L yeast extract in a 5-L bioreactor, was developed to produce LA from 14.4% (w/w) NaOH-pretreated non-sterile corn stover. LA titer, yield, and average productivity reached 97.59 g/L, 0.68 g/g stover, and 1.63 g/L/h, respectively. This study presents a feasible process for lignocellulosic LA production from abundant agro stovers.

  15. Biobased polymer composites derived from corn stover and feather meals as double-coating materials for controlled-release and water-retention urea fertilizers.

    Science.gov (United States)

    Yang, Yuechao; Tong, Zhaohui; Geng, Yuqing; Li, Yuncong; Zhang, Min

    2013-08-28

    In this paper, we synthesized a biobased polyurethane using liquefied corn stover, isocyanate, and diethylenetriamine. The synthesized polyurethane was used as a coating material to control nitrogen (N) release from polymer-coated urea. A novel superabsorbent composite was also formulated from chicken feather protein (CFP), acrylic acid, and N,N'-methylenebisacrylamide and used as an outer coating material for water retention. We studied the N release characteristics and water-retention capability of the double-layer polymer-coated urea (DPCU) applied in both water and soils. The ear yields, dry matter accumulation, total N use efficiency and N leaching from a sweet corn soil-plant system under two different irrigation regimes were also investigated. Comparison of DPCU treatments with conventional urea fertilizer revealed that DPCU treatments reduced the N release rate and improved water retention capability. Evaluation of soil and plant characteristics within the soil-plant system revealed that DPCU application effectively reduced N leaching loss, improved total N use efficiency, and increased soil water retention capability.

  16. Fermentative production of high titer gluconic and xylonic acids from corn stover feedstock by Gluconobacter oxydans and techno-economic analysis.

    Science.gov (United States)

    Zhang, Hongsen; Liu, Gang; Zhang, Jian; Bao, Jie

    2016-11-01

    High titer gluconic acid and xylonic acid were simultaneously fermented by Gluconobacter oxydans DSM 2003 using corn stover feedstock after dry dilute sulfuric acid pretreatment, biodetoxification and high solids content hydrolysis. Maximum sodium gluconate and xylonate were produced at the titer of 132.46g/L and 38.86g/L with the overall yield of 97.12% from glucose and 90.02% from xylose, respectively. The drawbacks of filamentous fungus Aspergillus niger including weak inhibitor tolerance, large pellet formation and no xylose utilization were solved by using the bacterium strain G. oxydans. The obtained sodium gluconate/xylonate product was highly competitive as cement retarder additive to the commercial product from corn feedstock. The techno-economic analysis (TEA) based on the Aspen Plus modeling was performed and the minimum sodium gluconate/xylonate product selling price (MGSP) was calculated as $0.404/kg. This study provided a practical and economic competitive process of lignocellulose utilization for production of value-added biobased chemicals.

  17. Cellulosic Biomass Sugars to Advantage Jet Fuel: Catalytic Conversion of Corn Stover to Energy Dense, Low Freeze Point Paraffins and Naphthenes: Cooperative Research and Development Final Report, CRADA Number CRD-12-462

    Energy Technology Data Exchange (ETDEWEB)

    Elander, Rick [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-08-04

    NREL will provide scientific and engineering support to Virent Energy Systems in three technical areas: Process Development/Biomass Deconstruction; Catalyst Fundamentals; and Technoeconomic Analysis. The overarching objective of this project is to develop the first fully integrated process that can convert a lignocellulosic feedstock (e.g., corn stover) efficiently and cost effectively to a mix of hydrocarbons ideally suited for blending into jet fuel. The proposed project will investigate the integration of Virent Energy System’s novel aqueous phase reforming (APR) catalytic conversion technology (BioForming®) with deconstruction technologies being investigated by NREL at the 1-500L scale. Corn stover was chosen as a representative large volume, sustainable feedstock.

  18. Isolation and Characterization of Corn Stover Hemicellulose%玉米秆半纤维素的碱法提取与表征

    Institute of Scientific and Technical Information of China (English)

    程合丽; 詹怀宇; 李兵云; 付时雨

    2011-01-01

    Hemicellulose was extracted from com stover with potassium hydroxide, and the main composition and structure of the hemicellu-lose were studied,and thermogravimetric analysis was carried out to investigate its thermal stability. Results showed that KOH solution is an effective solvent for the dissolution of corn stover hemicellulose, almost 95% of the total hemicellulose was extracted when using 80 g/L KOH at 75℃ for 2h,among which 75.6% was xylan, the main component of corn stover hemicellulose. Besides, arabinan, glucan and galactan were also detectable. Molecular weight of the hemicellulose determined by gel permeation chromatography was 53431, with the polydispersity of 1.07. NMR and FT-IR analysis suggested the structure of the hemicelluloses from com stover was assumed to be an arabinoxylan mainly consisting of (1→4)-β-D-xylan backbone substituted in hydroxy groups at C2 and/or C3 by single a-L-arabinose residue, single a-D-glucu-ronic acid residue. In addition, the (1→4)-linked β-D-xylopyranosyl residues in the backbone may contain substituted phenolic acids. Thermal analysis suggested that the decomposition temperature of hemicellulose was 190 ~ 350℃ and the maximum weight loss rate was 0. 89%/℃, happened at 267℃.%利用KOH溶液从玉米秆原料中提取了半纤维素,对半纤维素的主要成分和结构进行了研究,并对半纤维素进行了热重分析.离子色谱分析结果表明,75C下利用80 g/L KOH溶液作用2h,半纤维素溶出率接近95%,其中聚木糖占75.6%,是玉米秆半纤维素的主要成分,另外提取液中还含有聚阿拉伯糖、聚葡萄糖、聚半乳糖.凝胶渗透色谱结果显示,经提纯后的半纤维素的质均相对分子质量可达53431,多分散系数为1.07.核磁共振光谱与傅里叶红外光谱结果表明,玉米秆半纤维素可能是由(1→4)-β-D吡喃木糖为主链的聚阿拉伯糖木糖,在主链的C2、C3上的羟基分别连有α-L阿拉伯糖基和

  19. 黄绿玉米秸杆青贮酶菌制剂的性质及扩繁培养%Properties and Propagation of Enzyme Preparation for Green Corn Stover Silage

    Institute of Scientific and Technical Information of China (English)

    周德宝

    2014-01-01

    该试验主要是根据青黄玉米秸秆原料乳酸菌附着数量少,发酵效果差,青贮品质等级低等进行乳酸菌添加剂的研究。试验主要完成酶、菌制剂的筛选,扩繁。筛选出的乳酸菌种为:Enterococcue, Leuconostoc, Labtococcus,Streptococcus等乳酸球菌和 Lacto illus属的乳酸杆菌。添加该种乳酸菌不仅改善青贮发酵品质,而且也减少了发酵损失。%Based on the facts that the adhered lactic acid bacteria on raw corn stovers are rare and the fermentation and silage quality of corn stovers are poor, we carried out this research to study the utilization prospects of additives containing lactic acid bacteria and enzymes in preparation of green corn stover silage. The lactic acid bacteria and enzymes were screened out and propagated. The isolated Lactobacil us species included Lactococcus lactis (Enterococcus, Leuconostoc, Labto-coccus, Streptococcus, etc.) and Lactobacil us. The additives would not only improve the silage quality, but also reduce the fermentation losses.

  20. Ethanol Production from Detoxified Corn Stover Hydrolysate%玉米秸秆水解液脱毒处理发酵生产酒精研究

    Institute of Scientific and Technical Information of China (English)

    张强; 庄莉; Anne Belinda Thomsen

    2012-01-01

    为了找到适宜的玉米秸秆生产酒精工艺,采用水热处理后的玉米秸秆固体与水解液进行酒精同步糖化发酵,研究了预水解后不同pH值以及饱和生石灰法脱毒相结合对酒精发酵的影响.结果表明:当pH值在4.8时,加入100%水解液,由于抑制作用,醪液中酒精质量浓度仅为0.31g/L(酒精得率9.48%).预水解后将pH值从4.8分别调整到5.5、6.0和6.5后,酒精得率都有明显提高,最高为pH值5.5时,酒精质量浓度为10.67g/L.将水解液经过饱和生石灰法脱毒处理,预水解后重新将pH值调整为5.5,酒精质量浓度达到了10.96g/L(酒精得率57.9%).与初始pH值4.8时相比,酒精得率提高了近6倍.%After hydrothermal pretreatment of corn stover, solid fraction and hydrolysate were collected separately. To find out the appropriate process for ethanol production from corn stover, ethanol production was evaluated from dried solid fraction and the hydrolysate employed as liquid fraction by baker' yeast. The effects of different pH value and detoxification on ethanol production were investigated. Firstly, prehydrolysis was performed at 50℃ for 24 h. When 100% hydrolysate was added, ethanol content of 0.31 g/L (9.48% of theoretical ethanol yield) was obtained based on the cellulose available in the pretreated corn stover due to the existence of acetic acid and furans which are important inhibitors of the fermentation to microorganisms. After prehydrolysis, the initial pH value was adjusted to 5. 5, 6. 0 and 6.5, respectively. The best value obtained was ethanol content of 10.67 g/L with addition of 100% hydrolysate at pH value of 5. 5. The hydrolysate was overlimed, then prehydrolysized for 24 h at 50℃ . After prehydrolysis, the initial pH value was adjusted again to 5.5. Ethanol content of 10.96 g/L (57. 9% of theoretical ethanol yield) was obtained. Ethanol yield increased almost 6 times compared to that at pH value of 4. 8.

  1. Preparation of biopolymers from liquefied corn stover%玉米秸秆液化制备生物高聚物材料的研究

    Institute of Scientific and Technical Information of China (English)

    刘玉环; 阮榕生; 林向阳; 虞飞; 陈灵; 邓少波; 李宇红; Vance Morey; Tom Yang

    2005-01-01

    该研究旨在探讨低温生物质液化技术及液化产物应用的可能性.以玉米秸秆为原料在酸性、常压条件下快速液化成多羟基化合物,再以多羟基化合物为原料合成一系列的聚合材料.采用不同的有机溶剂,在稀硫酸的催化作用下,对不同的温度下生物质的液化效果进行研究.同时探讨了液化有机溶剂同生物质物料的混合比率对液化过程的影响.试验表明,碳酸乙烯酯比乙烯醇具有较高的液化率.优化试验结果表明,在较佳的液化效果下,有机溶剂同玉米秆的混合比率为3:1,反应温度160℃,稀硫酸浓度3%,反应时间2.5 h.液化产物经稀释、调节pH值、过滤、臭氧氧化一系列过程的处理后得到具有高活性多羟基聚合物.阐述了以多羟基聚合物制备各种生物聚合物材料如聚酯薄膜、聚胺酯泡沫和颗粒板的方法.聚酯薄膜是多羟基化合物上的羟基和多元酸上的羧基通过酯化反应形成的;聚胺酯泡沫通过多羟基化合物上的羟基和二异氰酸酯反应形成.研究表明以多羟基化合物和多元酸(酐)形成的聚酯型胶粘剂适合于制造颗粒板.%The objective of the present study was to develop processes for liquefaction of solid biomass and explore the potential of making biopolymers from the liquefied biomass. In this study, corn stover was liquefied under acidic conditions, and several polymer materials were subsequently prepared from the liquefied biomass. Liquefaction was conducted using different organic solvents with sulfuric acid as catalyst at different temperatures. The effect of the ratio of solvent to solid biomass on liquefaction rate was also evaluated. Of the two organic solvents used in the liquefaction process, ethylene carbonate was found to be more effective than ethylene glycol in terms of liquefaction rate. The adequate processing conditions for the feedstock used were found to be organic solvent / corn stover ratio of 3

  2. 玉米秸秆常压快速液化最佳工艺参数研究%Optimization of Processing Parameters for Rapid Liquefaction of Corn Stover under Atmospheric Pressure

    Institute of Scientific and Technical Information of China (English)

    刘玉环; 王应宽; 阮榕生; 李资玲; 林向阳; 刘成梅

    2012-01-01

    研究了影响玉米秸秆常压快速液化的4个关键性工艺参数:液化时间、液化温度、玉米秸秆质量和催化剂质量之间的交互作用.借助于SAS软件,采用二次回归正交旋转组合设计及响应面法开展系统试验.建立了回归方程,定量描述了各参数对玉米秸秆液化效率的影响及不同参数之间存在的交互作用,并推算出当液化剂质量为100 9、液化温度为158℃、液化时间为63 min、玉米秸秆质量17g和催化剂质量为2.7g时,玉米秸秆常压快速液化的残渣率可以达到最小值0.2%,实现玉米秸秆基本完全液化.%The four key parameters, including reaction time, reaction temperature, the amount of corn stover charged to definite liquefying reagent, and the dosage of catalyst affect the efficiency of corn stover liquefaction were investigated. With the help of SAS software, rotational quadratic regression design and response surface analysis, the relationships among unliquefied corn stover residue and reaction time, reaction temperature, the amount of corn stover charged to definite'liquefying reagent, and the dosage of catalyst were studied. The mutual interaction of the four parameters was quantificationally described. The experimental results showed that with liquefying reagent of 100 g, the reaction temperature of 158℃ , the reaction time of 63 min, the amount of corn stover meal charged of 17 g and the catalyst dosage of 2. 7 g, the liquefied products could be optimized with only 0. 2% unliquefied.

  3. 碱处理对玉米秸秆纤维素结构的影响%Effect of Alkali Pretreatment on Cellulosic Structural Changes of Corn Stover

    Institute of Scientific and Technical Information of China (English)

    郑明霞; 李来庆; 郑明月; 王旭; 马海玲; 王凯军

    2012-01-01

    An alkali pretreatment was used for chemical pretreatment of corn stover and the effects on the cellulosic structural changes were studied. The celluloses extracted from untreated and 2.5%, 5% and 7.5%(p) NaOH and Ca(OH)2 pretreated com stover were characterized by Fourier transform infrared spectra(FTIR) and X-ray diffraction(XRD). Results showed that significant changes such as a partial disruption of hydrogen and ester bonds have occurred in the morphology of the alkali pretreated cellulose fibers. The structural changes got severely with the increasing doses of NaOH. The crystalline type of cellulose and microcrystalline place at 002 lattice plane didn't change a lot during the alkali treatment, but crystallinity and microcrystalline size at 002 lattice plane increased. Such changes are beneficial for increase of anaerobic digestion efficiency of com stover. Moreover, NaOH is a better fibre swelling reagent for com stover than Ca(OH)2.%介绍了在高固含率条件下氢氧化钠(NaOH)和氢氧化钙(Ca(OH)2)堆沤处理对玉米秸纤维素结构的影响.分别用2.5%、5%和7.5%(ρ)的NaOH和Ca(OH)2将玉米秸在常温下堆沤处理3d后,提取其纤维素,采用傅立叶变换红外光谱(FTIR)和X射线衍射光谱(XRD)对比研究了处理前后纤维素的结构和结晶度的变化.结果表明碱堆沤处理使玉米秸秆中纤维素的形态结构发生了变化,部分分子间氢键断裂,部分酯键消失,随着碱用量的增加,纤维素结构被破坏的程度越大;纤维素的晶体类型与002面微晶位置虽然没有改变,但是纤维素的结晶度与002,面微晶尺寸增大.这些变化表明碱处理能提高玉米秸秆纤维素的可及度和反应性,从而改善厌氧消化性能.其中NaOH较Ca(OH)2表现出更好的纤维素润胀能力和反应性,在处理秸秆提高其厌氧消化产甲烷性能上具有更大的潜力.

  4. Defined enzyme cocktail from the anaerobic fungus Orpinomyces sp. strain C1A effectively releases sugars from pretreated corn stover and switchgrass

    Science.gov (United States)

    Morrison, Jessica M.; Elshahed, Mostafa S.; Youssef, Noha H.

    2016-01-01

    The anaerobic fungus Orpinomyces strain C1A is capable of growth on various types of lignocellulosic substrates, and harbors an impressive reservoir of carbohydrate active enzymes (CAZymes). Using a minimum enzyme cocktail strategy, we constituted a four-component lignocellulolytic cocktail derived from highly transcribed C1A, and evaluated its efficacy against pretreated corn stover and switchgrass. Hydrolysis yields ranged between 65–77.4%, depending on the lignocellulosic substrate and pretreatment applied. Addition of a highly expressed anaerobic fungal swollenin improved hydrolysis yields by up to 7%. Compared to the commercial cocktail CTec2, these anaerobic fungal cocktails provided comparable or slightly lower hydrolysis yields. Further, the differences in efficacy between commercial and anaerobic cocktails were often only realized after extended (168 hr) incubations. Under certain conditions, the hydrolysis yields of the anaerobic fungal cocktail was slightly superior to that realized by CTec2. We attribute the observed high hydrolysis yields to the high specific activity and affinity of the individual enzymes of the cocktail, as well as the high level of synergy and multi-functionality observed in multiple components. Collectively, this effort provides a novel platform for constructing highly effective enzymes for biofuel production and represents the first lignocellulolytic enzyme cocktail created from anaerobic fungal enzymes. PMID:27381262

  5. Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover.

    Directory of Open Access Journals (Sweden)

    Lucas S Parreiras

    Full Text Available The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in defined lab medium, few strains are able to ferment xylose from lignocellulosic hydrolysates in the absence of oxygen. This limited xylose conversion is believed to result from small molecules generated during biomass pretreatment and hydrolysis, which induce cellular stress and impair metabolism. Here, we describe the development of a xylose-fermenting S. cerevisiae strain with tolerance to a range of pretreated and hydrolyzed lignocellulose, including Ammonia Fiber Expansion (AFEX-pretreated corn stover hydrolysate (ACSH. We genetically engineered a hydrolysate-resistant yeast strain with bacterial xylose isomerase and then applied two separate stages of aerobic and anaerobic directed evolution. The emergent S. cerevisiae strain rapidly converted xylose from lab medium and ACSH to ethanol under strict anaerobic conditions. Metabolomic, genetic and biochemical analyses suggested that a missense mutation in GRE3, which was acquired during the anaerobic evolution, contributed toward improved xylose conversion by reducing intracellular production of xylitol, an inhibitor of xylose isomerase. These results validate our combinatorial approach, which utilized phenotypic strain selection, rational engineering and directed evolution for the generation of a robust S. cerevisiae strain with the ability to ferment xylose anaerobically from ACSH.

  6. Biogas production from co-digestion of corn stover and chicken manure under anaerobic wet, hemi-solid, and solid state conditions.

    Science.gov (United States)

    Li, Yeqing; Zhang, Ruihong; Chen, Chang; Liu, Guangqing; He, Yanfeng; Liu, Xiaoying

    2013-12-01

    Corn stover (CS) and chicken manure (CM) are ubiquitous agricultural wastes at low cost and have the potential to achieve a nutrient-balance when mixed together to produce biomethane via anaerobic digestion (AD). The main objective of this work was to investigate methane production at different CS to CM ratios and to evaluate the process stability under wet (W-AD), hemi-solid state (HSS-AD) and solid state (SS-AD) conditions. Results showed that synergistic effects were found when mixing two substrates at CS:CM ratios of 3:1 and 1:1 (on volatile solid basis). The highest methane yield of 218.8 mL/g VS added was achieved in W-AD at CS:CM ratio of 3:1. In SS-AD, the highest volumetric methane productivity of 14.2L methane/L reactor volume was found at CS:CM of 1:1. The results of this work provide useful information to improve the efficiency and stability of co-digestion of CS and CM under different AD conditions.

  7. Supplementation with xylanase and β-xylosidase to reduce xylo-oligomer and xylan inhibition of enzymatic hydrolysis of cellulose and pretreated corn stover

    Directory of Open Access Journals (Sweden)

    Qing Qing

    2011-06-01

    Full Text Available Abstract Background Hemicellulose is often credited with being one of the important physical barriers to enzymatic hydrolysis of cellulose, and acts by blocking enzyme access to the cellulose surface. In addition, our recent research has suggested that hemicelluloses, particularly in the form of xylan and its oligomers, can more strongly inhibit cellulase activity than do glucose and cellobiose. Removal of hemicelluloses or elimination of their negative effects can therefore become especially pivotal to achieving higher cellulose conversion with lower enzyme doses. Results In this study, cellulase was supplemented with xylanase and β-xylosidase to boost conversion of both cellulose and hemicellulose in pretreated biomass through conversion of xylan and xylo-oligomers to the less inhibitory xylose. Although addition of xylanase and β-xylosidase did not necessarily enhance Avicel hydrolysis, glucan conversions increased by 27% and 8% for corn stover pretreated with ammonia fiber expansion (AFEX and dilute acid, respectively. In addition, adding hemicellulase several hours before adding cellulase was more beneficial than later addition, possibly as a result of a higher adsorption affinity of cellulase and xylanase to xylan than glucan. Conclusions This key finding elucidates a possible mechanism for cellulase inhibition by xylan and xylo-oligomers and emphasizes the need to optimize the enzyme formulation for each pretreated substrate. More research is needed to identify advanced enzyme systems designed to hydrolyze different substrates with maximum overall enzyme efficacy.

  8. Engineering wild-type robust Pediococcus acidilactici strain for high titer L- and D-lactic acid production from corn stover feedstock.

    Science.gov (United States)

    Yi, Xia; Zhang, Peng; Sun, Jiaoe; Tu, Yi; Gao, Qiuqiang; Zhang, Jian; Bao, Jie

    2016-01-10

    Pediococcus acidilactici TY112 producing L-lactic acid and P. acidilactici ZP26 producing D-lactic acid, were engineered from the wild-type P. acidilactici DQ2 by ldhD or ldh gene disruption, and the robustness of the wild-type strain to the inhibitors derived from lignocellulose pretreatment was maintained well. In simultaneous saccharification and fermentation (SSF), 77.66 g L(-1) of L-lactic acid and 76.76 g L(-1) of D-lactic acid were obtained at 25% (w/w) solids content of dry dilute acid pretreated and biodetoxified corn stover feedstock. L- and D-Lactic acid yield and productivity were highly dependent on the inhibitor removal extent due to the significant down-regulation on the expressions of ldh and ldhD encoding lactate dehydrogenase by inhibitor, especially syringaldehyde and vanillin at the low concentrations. This study provided a prototype of industrial process for high titer L- and D-lactic acid production from lignocellulose feedstock. PMID:26616423

  9. Process Design and Economics for Biochemical Conversion of Lignocellulosic Biomass to Ethanol: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Humbird, D.; Davis, R.; Tao, L.; Kinchin, C.; Hsu, D.; Aden, A.; Schoen, P.; Lukas, J.; Olthof, B.; Worley, M.; Sexton, D.; Dudgeon, D.

    2011-03-01

    This report describes one potential biochemical ethanol conversion process, conceptually based upon core conversion and process integration research at NREL. The overarching process design converts corn stover to ethanol by dilute-acid pretreatment, enzymatic saccharification, and co-fermentation. Building on design reports published in 2002 and 1999, NREL, together with the subcontractor Harris Group Inc., performed a complete review of the process design and economic model for the biomass-to-ethanol process. This update reflects NREL's current vision of the biochemical ethanol process and includes the latest research in the conversion areas (pretreatment, conditioning, saccharification, and fermentation), optimizations in product recovery, and our latest understanding of the ethanol plant's back end (wastewater and utilities). The conceptual design presented here reports ethanol production economics as determined by 2012 conversion targets and 'nth-plant' project costs and financing. For the biorefinery described here, processing 2,205 dry ton/day at 76% theoretical ethanol yield (79 gal/dry ton), the ethanol selling price is $2.15/gal in 2007$.

  10. Phytotoxicity assessment on corn stover biochar, derived from fast pyrolysis, based on seed germination, early growth, and potential plant cell damage.

    Science.gov (United States)

    Li, Yang; Shen, Fei; Guo, Haiyan; Wang, Zhanghong; Yang, Gang; Wang, Lilin; Zhang, Yanzong; Zeng, Yongmei; Deng, Shihuai

    2015-06-01

    The potential phytotoxicity of water extractable toxicants in a typical corn stover biochar, the product of fast pyrolysis, was investigated using an aqueous biochar extract on a soil-less bioassay with tomato plants. The biochar dosage of 0.0-16.0 g beaker(-1) resulted in an inverted U-shaped dose-response relationship between biochar doasage and seed germination/seedling growth. This indicated that tomato growth was slightly stimulated by low dosages of biochar and inhibited with higher dosages of biochar. Additionally, antioxidant enzyme activities in the roots and leaves were enhanced at lower dosages, but rapidly decreased with higher dosages of biochar. With the increased dosages of biochar, the malondialdehyde content in the roots and leaves increased, in addition with the observed morphology of necrotic root cells, suggesting that serious damage to tomato seedlings occurred. EC50 of root length inhibition occurred with biochar dosages of 9.2 g beaker(-1) (3.5th day) and 16.7 g beaker(-1) (11th day) (equivalent to 82.8 and 150.3 t ha(-1), respectively), which implied that toxicity to the early growth of tomato can potentially be alleviated as the plant grows. PMID:25628114

  11. NREL 2012 Achievement of Ethanol Cost Targets: Biochemical Ethanol Fermentation via Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Tao, L.; Schell, D.; Davis, R.; Tan, E.; Elander, R.; Bratis, A.

    2014-04-01

    For the DOE Bioenergy Technologies Office, the annual State of Technology (SOT) assessment is an essential activity for quantifying the benefits of biochemical platform research. This assessment has historically allowed the impact of research progress achieved through targeted Bioenergy Technologies Office funding to be quantified in terms of economic improvements within the context of a fully integrated cellulosic ethanol production process. As such, progress toward the ultimate 2012 goal of demonstrating cost-competitive cellulosic ethanol technology can be tracked. With an assumed feedstock cost for corn stover of $58.50/ton this target has historically been set at $1.41/gal ethanol for conversion costs only (exclusive of feedstock) and $2.15/gal total production cost (inclusive of feedstock) or minimum ethanol selling price (MESP). This year, fully integrated cellulosic ethanol production data generated by National Renewable Energy Laboratory (NREL) researchers in their Integrated Biorefinery Research Facility (IBRF) successfully demonstrated performance commensurate with both the FY 2012 SOT MESP target of $2.15/gal (2007$, $58.50/ton feedstock cost) and the conversion target of $1.41/gal through core research and process improvements in pretreatment, enzymatic hydrolysis, and fermentation.

  12. Engineering and two-stage evolution of a lignocellulosic hydrolysate-tolerant Saccharomyces cerevisiae strain for anaerobic fermentation of xylose from AFEX pretreated corn stover.

    Science.gov (United States)

    Parreiras, Lucas S; Breuer, Rebecca J; Avanasi Narasimhan, Ragothaman; Higbee, Alan J; La Reau, Alex; Tremaine, Mary; Qin, Li; Willis, Laura B; Bice, Benjamin D; Bonfert, Brandi L; Pinhancos, Rebeca C; Balloon, Allison J; Uppugundla, Nirmal; Liu, Tongjun; Li, Chenlin; Tanjore, Deepti; Ong, Irene M; Li, Haibo; Pohlmann, Edward L; Serate, Jose; Withers, Sydnor T; Simmons, Blake A; Hodge, David B; Westphall, Michael S; Coon, Joshua J; Dale, Bruce E; Balan, Venkatesh; Keating, David H; Zhang, Yaoping; Landick, Robert; Gasch, Audrey P; Sato, Trey K

    2014-01-01

    The inability of the yeast Saccharomyces cerevisiae to ferment xylose effectively under anaerobic conditions is a major barrier to economical production of lignocellulosic biofuels. Although genetic approaches have enabled engineering of S. cerevisiae to convert xylose efficiently into ethanol in defined lab medium, few strains are able to ferment xylose from lignocellulosic hydrolysates in the absence of oxygen. This limited xylose conversion is believed to result from small molecules generated during biomass pretreatment and hydrolysis, which induce cellular stress and impair metabolism. Here, we describe the development of a xylose-fermenting S. cerevisiae strain with tolerance to a range of pretreated and hydrolyzed lignocellulose, including Ammonia Fiber Expansion (AFEX)-pretreated corn stover hydrolysate (ACSH). We genetically engineered a hydrolysate-resistant yeast strain with bacterial xylose isomerase and then applied two separate stages of aerobic and anaerobic directed evolution. The emergent S. cerevisiae strain rapidly converted xylose from lab medium and ACSH to ethanol under strict anaerobic conditions. Metabolomic, genetic and biochemical analyses suggested that a missense mutation in GRE3, which was acquired during the anaerobic evolution, contributed toward improved xylose conversion by reducing intracellular production of xylitol, an inhibitor of xylose isomerase. These results validate our combinatorial approach, which utilized phenotypic strain selection, rational engineering and directed evolution for the generation of a robust S. cerevisiae strain with the ability to ferment xylose anaerobically from ACSH. PMID:25222864

  13. [Corn.

    Science.gov (United States)

    Iowa History for Young People, 1993

    1993-01-01

    This theme issue focuses on corn. Iowa is the number one corn producing state in the United States. The featured articles in the issue concern, among other topics, Iowa children who live on farms, facts and statistics about corn, the Mesquakie Indians and corn shelling, corn hybrids, a short story, and the corn palaces of Sioux City. Activities,…

  14. Anaerobic and sequential aerobic production of high-titer ethanol and single cell protein from NaOH-pretreated corn stover by a genome shuffling-modified Saccharomyces cerevisiae strain.

    Science.gov (United States)

    Ren, Xueliang; Wang, Juncong; Yu, Hui; Peng, Chunlan; Hu, Jinlong; Ruan, Zhiyong; Zhao, Shumiao; Liang, Yunxiang; Peng, Nan

    2016-10-01

    In this study, a Saccharomyces cerevisiae recombinant strain 14 was constructed through genome shuffling method by transferring the whole genomic DNA of Candida intermedia strain 23 into a thermo-tolerant S. cerevisiae strain. The recombinant strain 14 combined the good natures of both parent strains that efficiently produced ethanol from glucose and single cell protein from xylose with 54.6% crude protein and all essential amino acids except cysteine at 35°C. Importantly, the recombinant strain 14 produced 64.07g/L ethanol from 25%(w/v) NaOH-pretreated and washed corn stover with the ethanol yield of 0.26g/g total stover by fed-batch simultaneous saccharification and fermentation and produced 66.50g/L dry cell mass subsequently from the residual hydrolysate and ethanol. Therefore, this study represents a feasible method to comprehensively utilize hexose and pentose in lignocellulosic materials. PMID:27416512

  15. In situ degradability of corn stover and elephant-grass harvested at four stages of maturity Degradabilidade in situ de híbridos de milho e de capim-elefante colhidos em quatro estádios de maturidade

    Directory of Open Access Journals (Sweden)

    Luis Felipe Prada e Silva

    2008-12-01

    Full Text Available Among tropical forages, corn silage is largely used by farmers trying to explore the maximum genetic potential from the animals. However, other tropical forages, such as elephant-grass (Pennisetum purpureum, are more productive and therefore cheaper to use than corn silage. Our objective was to compare the in situ degradability of elephant-grass with that from corn hybrids, all harvested at four stages of maturity. The experimental design followed a randomized block design with nested subplots. Two corn hybrids: AG5011, ZN8392 were harvested with 25, 30, 35, and 40% dry matter (DM in the whole plant, and separated in stem + leaf sheath + leaf blade (stover, and cobs. Elephant-grass was harvested with 30, 40, 50 and 60 days after a leveling cut. Dried and ground samples were incubated in nylon bags inside the rumen for 0, 6, 12, 24, 48 and 72 h to estimate the kinetics of ruminal DM and neutral detergent fiber (NDF degradation. The advance of maturity increased the NDF and acid detergent fiber (ADF content in elephant-grass, and reduced its DM degradability. However, maturity had little or no effect on fiber content and DM degradability of corn stover. Elephant-grass had a higher NDF degradability than corn stover, and there was no effect of maturity on NDF degradability of either elephant-grass or corn stover. Fiber degradability of elephant-grass was not worse than that of corn stover, and therefore the choice of forage should be made on economical analysis rather than assuming an intrinsic low production potential for elephant-grass based diets.Dentre as forragens, a silagem de milho é amplamente utilizada pelos fazendeiros que visam explorar o máximo do potencial genético dos animais. No entanto, outros volumosos tropicais como o capim-elefante (Pennisetum purpureum são mais produtivos e, portanto, mais baratos do que a silagem de milho. Nosso objetivo foi comparar a degradabilidade in situ do capim-elefante com a degradabilidade de h

  16. 丙酮丁醇梭菌发酵玉米秸秆生产丁醇%Butanol Production from Corn Stover by Fermentation with Clostridium acetobutylicum

    Institute of Scientific and Technical Information of China (English)

    马晓建; 张霞; 常春

    2014-01-01

    以丙酮丁醇梭菌为发酵用菌株发酵水蒸气爆破玉米秸秆酶解上清液生产丁醇,研究了酶解上清液浓度、初始pH值以及菌液接种量对丁醇产量的影响,并通过正交试验来确定营养元素的最佳添加量.结果表明:在丙酮丁醇梭菌发酵水蒸气爆破玉米秸秆酶解上清液生产丁醇的最佳条件下(上清液糖浓度57.5 g/L、初始pH值6.3,菌液接种量6%,发酵温度37℃,营养元素酵母膏、乙酸铵、磷酸二氢钾、烟酰胺添加量分别为0.8、6.0、0.5、0.25 g/L),丁醇产量达9.726 g/L;水蒸气爆破玉米秸秆酶解液中有抑制产生溶剂的物质,少量烟酰胺能有效促进丁醇生产.%In this paper,butanol was prepared from the enzymatic hydrolysate supermatant of steam-exploded corn stover,with Clostridium acetobutylicum as the experimental bacterium.Then,the effects of supermatant concentra-tion,initial pH value and microbial inoculation quantity on butanol yield were investigated,and the optimal dosages of nutrient elements were determined by orthogonal test.The results show that,under optimal conditions,that is,a supermatant sugar content of 57.5 g/L,an initial pH value of 6.3,an inoculation quantity of 6%,a fermentation temperature of 37 ℃,and a nutrient elements addition of yeast extract 0.8 g/L+CH3 COONH4 6.0 g/L+KH2 PO4 0.5 g/L+nicotinamide 0.25 g/L,the butanol yield is up to 9.726 g/L.Moreover,it is also found that there exist some inhibitors for the solvent production from steam-exploded corn stover enzymatic hydrolysate,and that a small amount of nicotinamide may effectively promote butanol production.

  17. 热化学预处理玉米秸秆制备沼气发酵原料%Corn stover pretreated by thermo-chemical pretreatment for anaerobic digestion

    Institute of Scientific and Technical Information of China (English)

    王芳; 吴厚凯; 易维明

    2016-01-01

    The special structrue of lignocellulose results in slowly starting ,easily causing shell and low utilization of material in biogas fermentation .A fluidized bed pyrolysis reactor was used for thermo-chemical pretreatment with corn stover at 200℃ .After pretreatment ,the structure of corn stover particles were analyzed by VELP FIWE raw fiber determination and scanning electron microscope (SEM) .The results showed that after thermo-chemical pretreatment ,the content of lignin was lower than that of the untreated ,and reduction of lignin was 32 .57% .The structure of corn stover had changed looser and appeared some holes ,w hich contributed to biogas produc‐tion .The biogas fermentation experiment proved that the thermo-chemical pretreatment could make corn stover degrade effectively and enhance biogas production .%由于木质纤维素原料的特殊结构,导致其在发酵过程中存在发酵启动慢、易结壳、原料利用率低等问题.以玉米秸秆为发酵原料,利用流化床热解反应器在200℃下对其进行了热化学预处理,并对预处理前后玉米秸秆的木质纤维素含量进行了测定.采用扫描式电子显微镜对处理后的玉米秸秆进行了微观结构表征.结果表明:处理后的玉米秸秆其木质素含量远低于未处理玉米秸秆,去除率达到32.57%;经过热化学预处理的玉米秸秆表面结构变得松散且有孔洞产生.实验证明热化学预处理利于发酵,能够提高产气速率,增加产气量.

  18. Effects of two-step alkaline pretreatment on components and structure of corn stover%两步碱法预处理对玉米秸秆组分及结构的影响

    Institute of Scientific and Technical Information of China (English)

    朱圆圆; 顾夕梅; 朱均均; 徐勇; 勇强; 余世袁

    2015-01-01

    Aimed at the effects of acetic acid on ethanol fermentation and its generation mechanism during the pretreatment process,sodium hydroxide combined with calcium hydroxide on the compositions and enzymatic hydrolysis of corn stover were in-vestigated.Corn stover after the first-step NaOH pretreatment could realize the removal of acetyl groups and separate acetic acid from the sugars from the source.The deacetylated corn stover further pretreated by Ca(OH)2 could improve the enzymatic hy-drolysis yield.And the fiber structure characteristics of corn stover were analyzed by Fourier transform infrared spectrometry (FT-IR),X-rays diffraction (XRD)and scanning electron microscope (SEM).The results showed that the removal of acetyl groups and the retention ratio of xylan were 95.2% and 87.8%,respectively and cellulose was not degraded after corn stover was pretreated by the first-step pretreatment.The optimal conditions of the second-step pretreatment of deacetylated corn stover by using orthogonal experiment were that calcium hydroxide dosage 0.100 g/g(based on dry corn stover),reaction temperature 90℃ and time 36 h.The corresponding enzymatic hydrolysis yield of 36 h was 85.1%.The obtained recovery yields of cellulose and hemicellulose in the solid residue were 92.1% and 65.5%,respectively and the lignin remove ratio was 63.0%.The fiber surface was rough and appeared a large number of cracks and slivers,separation occur between fiber bundles of corn stover after two-step alkaline pretreatment.The relative crystallization degree of corn stover increased from 55.1% to 60.6%,and the stretching vi-bration peak of C=O group at 1 245 cm-1 decreased significantly due to the removal of acetyl group.Combined with the increase of enzymatic yield,it also indicated that this two-step pretreatment could improve access of cellulose to cellulase.%针对乙酸对乙醇发酵的影响及其在预处理过程中的产生机制,采用氢氧化钠-氢氧化钙2

  19. 臭氧预处理对玉米秸秆酶解性能的影响%Effects of Ozone Pretreatment on the Enzymatic Hydrolysis Efficiency of Corn Stover

    Institute of Scientific and Technical Information of China (English)

    李诚; 王莉; 李永富; 王韧; 陈正行

    2015-01-01

    以玉米秸秆为原料,经臭氧预处理后进行酶解制可发酵单糖. 研究了不同粒径和含水量对秸秆臭氧处理的影响,确定了最佳的工艺条件,结果表明:秸秆在较小的粒径( <48 μm)和含水率60%条件下臭氧处理效果最好,原料中木质素由15. 04%降至2. 96%,酶解糖化率从9. 17%提高到39. 80%. 同时探究了最佳条件下臭氧处理时间对处理效果的影响,结果表明:随着处理的进行,木质素降解速率逐渐降低,糖化率在处理75 min时达到40. 29%. 臭氧消耗量与木质素降解率之间存在较强的线性关系(R2 =0. 967 9)表明臭氧主要与木质素反应,使木质素降解. 臭氧预处理有效提高了秸秆的酶解效率.%The corn stover was ozonolyzed and enzymatically hydrolyzed into fermentable sugar. The effects of ozone treatment on corn stovers with different particle sizes and moistures were studied. The optimum particle size and moisture content were determined. The results showed the corn stover with small particle size ( < 48 μm ) and moisture 60% was preferred for ozonolysis. The lignin content was decreased to 2. 96% from 15. 04% (raw) and saccharification rate was increased to 39. 80%from 9. 17% (raw). The effects of reaction time on ozonolysis under the optimum conditions were also investigated. The lignin was gradually degraded with the rising of ozonolysis time, and the saccharification rate was about 40. 29% after 75 min. The strong linearity between ozone consumption and lignin degradation rate revealed that ozone mainly reacted with lignin,and resulted in the degradation of the lignin. Ozonolysis treatment could improve the hydrolysis of corn stover effectively.

  20. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    Energy Technology Data Exchange (ETDEWEB)

    Xu Fuqing; Shi Jian [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States); Lv Wen; Yu Zhongtang [Department of Animal Sciences, Ohio State University, Columbus, OH 43210 (United States); Li Yebo, E-mail: li.851@osu.edu [Department of Food, Agricultural and Biological Engineering, Ohio State University, Ohio Agricultural Research and Development Center, 1680 Madison Ave., Wooster, OH 44691 (United States)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Compared methane production of solid AD inoculated with different effluents. Black-Right-Pointing-Pointer Food waste effluent (FWE) had the largest population of acetoclastic methanogens. Black-Right-Pointing-Pointer Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. Black-Right-Pointing-Pointer Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. Black-Right-Pointing-Pointer Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVS{sub feed}, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVS{sub feed}. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO{sub 3}/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

  1. Simultaneous separation and quantitative determination of monosaccharides, uronic acids, and aldonic acids by high performance anion-exchange chromatography coupled with pulsed amperometric detection in corn stover prehydrolysates

    Directory of Open Access Journals (Sweden)

    Xing Wang

    2012-11-01

    Full Text Available A method for simultaneous separation and quantitative determination of arabinose, galactose, glucose, xylose, xylonic acid, gluconic acid, galacturonic acid, and glucuronic acid was developed by using high performance anion-exchange chromatography coupled with pulsed amperometric detection (HPAEC-PAD. The separation was performed on a CarboPacTM PA-10 column (250 mm × 2 mm with a various gradient elution of NaOH-NaOAc solution as the mobile phase. The calibration curves showed good linearity (R2 ≥ 0.9993 for the monosaccharides, uronic acids, and aldonic acids in the range of 0.1 to 12.5 mg/L. The detection limits (LODs and the quantification limits (LOQs were 4.91 to 18.75 μg/L and 16.36 to 62.50 μg/L, respectively. Relative standard deviations (RSDs of the retention times and peak areas for the seven consecutive determinations of an unknown amount of mixture were 0.15% to 0.44% and 0.22% to 2.31%, respectively. The established method was used to separate and determine four monosaccharides, two uronic acids, and two aldonic acids in the prehydrolysate from dilute acid steam-exploded corn stover within 21 min. The spiked recoveries of monosaccharides, uronic acids, and aldonic acids ranged from 91.25% to 108.81%, with RSDs (n=3 of 0.04% ~ 6.07%. This method was applied to evaluate the quantitative variation of sugar and sugar acid content in biomass prehydrolysates.

  2. Comparison of different liquid anaerobic digestion effluents as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover

    International Nuclear Information System (INIS)

    Highlights: ► Compared methane production of solid AD inoculated with different effluents. ► Food waste effluent (FWE) had the largest population of acetoclastic methanogens. ► Solid AD inoculated with FWE produced the highest methane yield at F/E ratio of 4. ► Dairy waste effluent (DWE) was rich of cellulolytic and xylanolytic bacteria. ► Solid AD inoculated with DWE produced the highest methane yield at F/E ratio of 2. - Abstract: Effluents from three liquid anaerobic digesters, fed with municipal sewage sludge, food waste, or dairy waste, were evaluated as inocula and nitrogen sources for solid-state batch anaerobic digestion of corn stover in mesophilic reactors. Three feedstock-to-effluent (F/E) ratios (i.e., 2, 4, and 6) were tested for each effluent. At an F/E ratio of 2, the reactor inoculated by dairy waste effluent achieved the highest methane yield of 238.5 L/kgVSfeed, while at an F/E ratio of 4, the reactor inoculated by food waste effluent achieved the highest methane yield of 199.6 L/kgVSfeed. The microbial population and chemical composition of the three effluents were substantially different. Food waste effluent had the largest population of acetoclastic methanogens, while dairy waste effluent had the largest populations of cellulolytic and xylanolytic bacteria. Dairy waste also had the highest C/N ratio of 8.5 and the highest alkalinity of 19.3 g CaCO3/kg. The performance of solid-state batch anaerobic digestion reactors was closely related to the microbial status in the liquid anaerobic digestion effluents.

  3. 玉米秸秆水抽提物对乙醇发酵的影响%Effect of water extractives from corn stover on ethanol fermentation

    Institute of Scientific and Technical Information of China (English)

    荣亚运; 朱圆圆; 朱均均; 陈旭; 徐勇; 勇强; 余世袁

    2016-01-01

    Water extractives were obtained by water extraction of corn stover .The effects of water extractives or its diluted acid hydro-lyzate from corn stover on xylose fermentation to ethanol by Pichia stipitis and glucose fermentation to ethanol by Saccharomyces cerevisi-ae were investigated .The results showed that , compared to the control , there were some negative effect on xylose fermentation to etha-nol by P.stipitis when the water extractives were added to the medium .The degree of inhibition increased with the increase of water ex-tractives, but not obvious.The sugar utilization ratio increased when the fermentation time increased to 48 h, however, the ethanol yield decreased ( less than 80%) .There was little negative effect on glucose fermentation to ethanol by S.cerevisiae when the water ex-tractives were added to the medium .When the diluted acid hydrolyzate of water extractives was added to the medium , the fermentation time of xylose to ethanol by P.stipitis extended from 24 h to 48 h, and the ethanol yield decreased while the sugar utilization ratio was the same.However, the diluted acid hydrolyzate of water extractives still had little negative effect on glucose fermentation to ethanol by S.cerevisiae.Therefore, P.stipitis was more sensitive than S.cerevisiae to the inhibitors existed in the water extractives and its diluted acid hydrolyzate .Water extraction before corn stover pretreatment could reduce the inhibitors produce ; thereby improved the ethanol fermentability by yeasts .Finally, it provides reference for real commercial production of fuel ethanol .%采用水抽提法提取玉米秸秆中的水抽提物,研究水抽提液、水抽提液稀酸水解液对树干毕赤酵母木糖乙醇发酵和酿酒酵母葡萄糖乙醇发酵性能的影响。结果表明,与空白对照相比,添加水抽提液对树干毕赤酵母木糖乙醇发酵性能有一定的抑制作用,随着水抽提液添加体积的增加,抑制程度有所增加,但

  4. 绿液预处理玉米秸秆产纤维素酶的研究%The Research on Cellulase Production of Green Liquor Pretreated Corn Stover

    Institute of Scientific and Technical Information of China (English)

    赵士明; 陆青山; 谷峰; 余世袁

    2012-01-01

    Abstract:The effect of green liquid pretreated corn stover on cellulase production of Trichoderma reesei was investigated. Inspecting the influence of pretreatment conditions on cellulase production of corn stover at different cooking temperature, total alkali charge and sulfidity by orthogonal experiment, we could conclude from range and variance analysis that the extent of impact to cellucase production of green liquor pretreated corn stover was in turn total alkali charge, cooking temperature and sultidity. The optimum filter paper activity (FPA) reached 2.6 IU/mL. FPA productions from corn stover oretreated bv cooking temperature140℃ and 170 ℃, total alkali charge 4 %, sulfidity 0, 20 %, 30 % and 40 %, were comprehensively compared and evaluated. It was found that the optimum conditions, i. e. , cooking temperature 140℃, total alkali charge 4 %, sulfidity 0, might ensure the value of FPA on and avoid the loss of materials. The results showed that green liquid pretreatment for corn stoverwas feasible for cellulase production of Trichoderma reesei. Taking corn stover pretreated by cooking temperature 140 ℃, total alkali charge 4% and sulfidity 0 as carbon sources whose concentration was 12 g/L, FPA and β-glucosidase activity(β-GA) were up to 2.5 IU/mL and 1.3 IU/mL respectively. The enzyme production period was 5 days.%研究了绿液预处理玉米秸秆对里氏木霉产纤维素酶的影响。通过正交试验考察3个预处理条件对玉米秸秆产纤维素酶的影响,从极差和方差分析可知,对绿液预处理玉米秸秆产纤维素酶的影响程度由大到小依次是总碱量、蒸煮温度、硫化度,最大滤纸酶活(FPA)达到2.6 IU/mL。比较在蒸煮温度140℃和170℃,总碱量4%,硫化度0、20%、30%与40%下所产的FPA,经综合评定,在最优条件下蒸煮温度140℃,总碱量4%和硫化度0时可以尽量避免原料损失的前提下,保证FPA的大小,结果表明,里氏木霉利用绿液预处

  5. 高温(70℃)玉米秸秆水解液产氢行为及群落结构%Study on Biological Hydrogen Generation and Microbial Community Structure Using Corn Stover Hydrolysate under High Temperature (70℃)

    Institute of Scientific and Technical Information of China (English)

    张坤; 任南琪; 曹广丽; 王爱杰

    2011-01-01

    This study investigated the extreme thermophilic (70 ℃) hydrogen generation by using com stover hydrolysate with four inoculums (cow dung compost, soil, anaerobic sludge, and rotten corn stover). The experimental results indicated that the tests inoculated with cow dung compost presented the optimum biogas (1 355.7 mL/L) and hydrogen yields (608.4 mL/L), and followed by rotten corn stover, anaerobic sludge, and soil. Modified Gompertz equation could well describe the time-course profile of hydrogen accumulation (R2>0.99). The inoculation with cow dung compost reached the highest hydrogen generation potentiality (676.0 mL/L), and the lag time was the lowest (9.8 h) under the inoculation with soil. DCCE profile showed that different inoculums corresponded to different microbial community structure. Bacillus thermozeamaize, Enterobacter sp. JDM-19, and Thernwanaerobacterium polysaccharolyticum strain KMTHCJT might be the key hydrogen generation microbes for cow dung compost, anaerobic sludge, and rotten corn stover respectively.%考察了高温条件下( 70℃)牛粪堆肥、土壤、厌氧污泥、腐烂秸秆4种接种物利用玉米秸秆水解液的产氢行为.结果表明:牛粪堆肥接种时达到最大的产气量(1 355.7 mL/L)和氢气产量(608.4 mL/L),随后依次为腐烂秸秆、厌氧污泥和土壤.修改的Gompertz方程可以较好描述产氢量随时间变化趋势(R2>0.99).牛粪堆肥接种时达到最大的产氢潜力( 676.0 mL/L),而土壤接种时的迟滞时间最小(9.8 h).DGGE图谱显示:不同接种物对应不同的微生物群落结构.Bacillus thermozeamaize,Enterobacter sp.JDM-19和Thermoanaerobacterium polysaccharolyticum strain KMTHCJT可能分别是牛粪堆肥,厌氧污泥和腐烂秸秆接种条件下的关键产氢微生物.

  6. Saccharification of the Pretreated Corn Stover by Microwave Assisted DMSO/AmimCl Co-solvents%微波辅助DMSO/AmimCl复合溶剂预处理玉米秸秆的酶解影响

    Institute of Scientific and Technical Information of China (English)

    刘建飞; 曹妍; 杨茂华; 李会泉; 邢建民

    2012-01-01

    为了实现玉米秸秆纤维素的高效糖化,设计利用微波加热辅助的离子液体1-烯丙基-3-甲基咪唑氯盐(AmimCl)/二甲基亚砜(DMSO)复合溶剂生物质预处理体系,破坏玉米秸秆天然结构,提高纤维素酶解效率.研究发现,15%(w)DMSO,110℃,60 min及4 g秸秆/100 g复合溶剂为最适预处理条件.在此条件下,秸秆溶解率、提取率可分别达46.6%和22.9%;提取物纤维素酶解率14 h可达71.4%,相较于天然玉米秸秆的20 h酶解率12.5%有极大提高.通过XRD,SEM及1H NMR分析发现:秸秆预处理后,提取物纤维素晶型由I型变为II型,残渣纤维素相对结晶度明显降低,有利于纤维素酶解的进行,达到了生物质预处理的目的;预处理过程中使用的AmimCl离子液体经简单回收再生,结构及秸秆溶解性能未发生变化,可循环使用.为玉米秸秆生物质预处理提供了一个新的方案.%In order to enhance the enzymatic saccharification efficiency of corn stover,microwave assisted treatment with dimethyl sulfoxide(DMSO) and 1-ally-3-methylimidazolium(AmimCl) co-solvents was designed to break up the complicated chemical structure of corn stover.The pretreatment conditions were studied to increase the dissolution ratio,extraction ratio and cellulose I crystallinity index(CrI) variation.With the increase of AmimCl concentration,time and temperature of the pretreatment,the dissolution ratio,extraction ratio increased and CrI decreased.Considering the costs of high AmimCl concentration,degradation of biomass at high temperature and long time,the optimum conditions were DMSO/AmimCl co-solvents with a DMSO concentration of 15%(w) and 4 g corn stover per 100 g co-solvents.The optimum temperature and time were 110 ℃ and 60 min,respectively.Under the optimal conditions,the ratios of corn stover dissolution and extraction were as high as 46.6% and 22.9%,respectively.The cellulose saccharification ratio had a great increase

  7. Alkaline peroxide pretreatment of corn stover: effects of biomass, peroxide, and enzyme loading and composition on yields of glucose and xylose

    Directory of Open Access Journals (Sweden)

    Hodge David B

    2011-06-01

    /g glucan gave monomeric Glc yields of 83% or 95%, respectively. Yields of Glc and Xyl after pretreatment at a low hydrogen peroxide loading (0.125 g H2O2/g biomass could be improved by extending the pretreatment residence time to 48 h and readjusting the pH to 11.5 every 6 h during the pretreatment. A Glc yield of 77% was obtained using a pretreatment of 15% biomass loading, 0.125 g H2O2/g biomass, and 48 h with pH adjustment, followed by digestion with an optimized commercial enzyme mixture at an enzyme loading of 15 mg protein/g glucan. Conclusions Alkaline peroxide is an effective pretreatment for corn stover. Particular advantages are the use of reagents with low environmental impact and avoidance of special reaction chambers. Reasonable yields of monomeric Glc can be obtained at an H2O2 concentration one-quarter of that used in previous AHP research. Additional improvements in the AHP process, such as peroxide stabilization, peroxide recycling, and improved pH control, could lead to further improvements in AHP pretreatment.

  8. 稀硫酸-氢氧化钙联合预处理玉米秸秆制乙醇%Ethanol Production from Dilute Sulfuric Acid-calcium Hydroxide Co-pretreated Corn Stover

    Institute of Scientific and Technical Information of China (English)

    朱圆圆; 杨金龙; 朱均均; 张璐; 徐勇; 勇强; 余世袁

    2015-01-01

    以玉米秸秆为原料,研究稀硫酸-氢氧化钙联合预处理秸秆制备燃料乙醇的方法. 玉米秸秆经稀硫酸预处理、固液分离后得到的预水解液(主要含有木糖)进行戊糖发酵;而残渣采用氢氧化钙进一步预处理后,经酶水解得到的葡萄糖进行己糖发酵,从而实现戊糖和己糖分开发酵产乙醇. 研究结果表明,玉米秸秆稀硫酸预处理最佳条件为:硫酸用量1. 00%(以绝干玉米秸秆计),反应温度130℃,反应时间70 min,此时木聚糖水解得率为80. 45%;采用树干毕赤酵母对玉米秸秆稀硫酸预水解液原液、浓缩液Ⅰ(浓度为原液的2 倍)和浓缩液Ⅱ(浓度为原液的3. 5 倍)进行戊糖发酵,乙醇得率分别为82. 52%、85. 13%和73. 64%. 氢氧化钙进一步预处理玉米秸秆稀硫酸预处理渣的最佳条件为:氢氧化钙用量0. 125 g/g(以绝干玉米秸秆计),反应温度90 ℃,时间24 h,此时纤维素酶水解得率为84. 92%;采用酿酒酵母对两步预处理残渣的酶水解液原液、浓缩液Ⅲ和浓缩液Ⅳ(浓度为原液的2倍和3倍)进行己糖发酵,乙醇得率分别为92. 22%、91. 89%和85. 54%.%Corn stover pretreated by dilute sulfuric acid and calcium hydroxide was used to produce fuel ethanol. The pre-hydrolyzate obtained from dilute sulfuric acid pretreated corn stover was mainly composed by xylose,which could be fermented to produce ethanol. The solid residue were further pretreated by calcium hydroxide and then hydrolyzated to glucose with cellulase for hexose fermentation. Based on this process, the glucose and xylose could be converted to ethanol,respectively. The optimal dilute sulfuric acid pretreatment could be obtained as the corn stover was pretreated by 1. 00% sulfuric acid ( based on dry corn stover),rat 130 ℃ for 70 min and the xylan hydrolysis yield was 80. 45%. The ethanol yields of pentose fermentation of the unconcentrated,1-fold concentrated and 2. 5-folds concentrated pre-hydrolyzates by

  9. Corn

    Science.gov (United States)

    ... composed of a dense core that presses on sensory nerves, causing extreme pain. Soft corns occur between ... a benign condition and may not require medical evaluation. However, if corns become very painful, evaluation should ...

  10. Effect Analysis of Corn Stover Feeding Heifers and Obesity Nonlactation Cows%玉米秸秆饲喂肥胖干奶牛和后备牛效果分析

    Institute of Scientific and Technical Information of China (English)

    王坤龙; 李兆林; 王千雨; 陈利娜; 王石莹; 张国全

    2015-01-01

    呼和浩特市土默特左旗秸秆资源极其丰富,但利用率非常低,大部分被粉碎还田或者焚烧,造成严重的资源浪费和环境污染.近年来,随着牛奶价格不断下跌,奶牛场着眼于降低饲养成本,玉米秸秆逐渐被人们重视,但大规模的玉米秸秆加工问题没能得到妥善解决.为此,在总结前人研究基础上结合当地生产现状,奶联社引进切碎圆捆机对玉米秸秆进行切碎打捆,使其成为后备牛及肥胖干奶牛良好的粗饲料来源,在降低饲喂成本的同时明显改善了奶牛体况.%Resources of maize stover have extremely rich in Hohhot Tumotezuoqi, but the utilization is very low, the most were crushed or burned to ifeld and causing serious environmental pollution and waste of resources. In recent years, with the milk prices falling, majority of dairy farms reduce the feed costs, and gradually pay attention to the corn stalks, but corn stover production and post-natal problems could not be properly resolved. To this end, on the basis of previous studies combined with the status of local production, milk association has introduced the chopped round baler for baling corn stalks, not only an effective solution to the problem of production and post-natal, but also making it be the source of roughage for heifers and obesity nonlactation cows. Reducing the feeding costs signiifcantly could simultaneously improve the body condition of cows.

  11. 复合酶和乳酸菌制剂对玉米秸秆青贮发酵品质的影响%Effects of compound enzyme and lactobacillus preparation on the quality of corn stover silages

    Institute of Scientific and Technical Information of China (English)

    谭树义; 王峰; 郑心力; 黄丽丽; 魏立民; 晁哲; 孙瑞萍; 刘海隆; 刘圈炜

    2016-01-01

    ABSTRACT:The influences of composite enzyme and lactobacillus preparation on the quality of corn stover silages were studied . Chopped corn stover was ensiled either untreated (control group) or treated with 1 kg/t composite enzyme and 20 g/t lactoba‐cillus preparation (experimental group) ,respectively .The results showed :dry matter and crude protein contents of experimen‐tal group were significantly higher than those of the control group (P<0 .05) ,but neutral detergent fiber and acid detergent fi‐ber contents were markedly lower than those of the control group (P<0 .05) .Lactic acid ,acetic acid and propionic acid levels of experimental group were significantly higher than those of the control group (P<0 .05) ,while pH ,butyric acid and NH3‐N concentrations of experimental group were markedly lower than those of the control group (P<0 .05) .In conclusion ,composite enzyme and lactobacillus preparation could improve the quality of corn stover silage .%为研究复合酶和乳酸菌制剂对玉米秸秆青贮发酵品质的影响,共设2个处理组,试验组:玉米秸秆+1 kg/t复合酶制剂+20 g/t乳酸菌制剂;对照组:玉米秸秆。结果表明:试验组干物质和粗蛋白质含量都显著高于对照组(P<0.05),而中性洗涤纤维和酸性洗涤纤维含量均显著低于对照组(P<0.05)。试验组乳酸、乙酸和丙酸水平均显著高于对照组(P<0.05),而pH值、丁酸和氨态氮浓度都显著低于对照组(P<0.05)。综合分析得出,添加复合酶和乳酸菌制剂可使玉米秸秆青贮发酵品质得以明显改善。

  12. Effects of different pretreatment methods on chemical composition of corn stover hydrolysate%不同预处理方式对玉米秸秆酶解液成分的影响

    Institute of Scientific and Technical Information of China (English)

    田双起; 王振宇; 左丽丽; 樊梓鸾

    2012-01-01

    玉米秸秆中的单糖或者寡糖的释放由于芳香族聚合物木质素阻遏纤维素酶进行糖解聚作用而效率地下.然而预处理作用可以有效地移除木质素或者打破木质素的结构,从而可以增强还原糖的释放.其过程主要包括2个生物转化程序:玉米秸秆中纤维素的水解产生还原糖,然后进行生物乙醇发酵生产过程.在该研究中,通过HPLC方法监测不同预处理方法处理玉米秸秆酶水解液中的成分,从而得到最佳的预处理方法.结果表明,磁力搅拌辅助CO2激光协同通气预处理方法的糖化效果高于其他预处理方法.%Release of monosaccharide or oligosaccharide from corn stover biomass is inefficient because lignin, an aromatic polymer, blocks the access of cellulase to sugar polymers. However, pretreatments can remove lignia and disrupt its structure, thereby enhancing reducing sugar release. It is a two-stage byconversion process: hydrolysis of cellulose in corn stover to produce reducing sugars, and fermentation of the reducing sugars to bioethanol. In this study, the chemical compositions of the cellulase hydrolysate of corn stover pretreated by different methods were detected by HPLC in order to find out the desirable pretreatment method. The results showed that the saccharification rate of CO2-laser treatment combined with aeration and magnetic stir (LAM) was higher than those of other pretreatment methods.

  13. Mechanism of Diluted Acid Pretreatment to Improve Enzymatic Hydrolysis of Corn Stover%稀酸预处理改善玉米秸秆酶水解性能的机制探讨

    Institute of Scientific and Technical Information of China (English)

    姚兰; 赵建; 谢益民; 杨海涛; 杨五峰; 曲音波

    2012-01-01

    为了探讨在稀酸预处理提高玉米秸秆在纤维素酶酶解阶段提高纤维素转化率的机制,利用一系列的检测方法:FT-IR、XRD、SEM和比表面积分析仪分析了预处理前后玉米秸秆在形态学和物理化学性质方面的变化.在经过稀酸预处理后的玉米秸秆在纤维素酶酶解阶段其纤维素转化率有较大的提高,经过170℃,60 min,固液比1∶15(g∶mL),1.00 g/mL酸质量浓度的条件预处理后,从31.88%提高到95.74%.XRD结果显示预处理后玉米秸秆的结晶度有所增加,从原料的37.8%增加到58.7%,但是当预处理强度增加到一定程度后,结晶度没有较大的变化,基本维持在58%.玉米秸秆的表面结构在稀酸预处理后,原来的光滑表面变得粗糙、多孔,这样的表面有利于纤维素酶与玉米秸秆的接触,预处理后玉米秸秆的比表面积有很大程度的增加,经过170℃,60 min,固液比1∶15,1.00g/mL酸质量浓度的条件预处理后,玉米秸秆的比表面积从0.329 m2/g增加到2.878 m2/g,这都有利于改善纤维素酶对纤维素的作用,增加纤维素转化率.%In order to study the mechanism of diluted acid pretreatment on enhancing cellulose conversion during cellulase hydrolysis process, microscopic structure and physical/chemical characteristics of corn stover before and after diluted acid pretreatment were investigated. The cellulose conversion ratio increased from 31. 88 % to 95.74 % when the corn stover was pretreated by 1. 875 % acid solution as a 1: 15 liquid ratio at 170 ℃ for 60 min. The XRD analysis showed that the crystallinity of cellulose increased from 31.88 % to 58.7 % after acid pretreatment. But only slight change of cellulose crystalline was observed when the com stover was treated to some level. The rough fiber surface with more holes was detected after dilute acid pretreatment. This was beneficial for the connection between cellulose and corn stover. The specific surface area

  14. 玉米秸与鸡粪混合厌氧消化产气性能与协同作用%Performance and synergistic effect of anaerobic co-digestion of corn stover and chicken manure

    Institute of Scientific and Technical Information of China (English)

    冯亚君; 袁海荣; 张良; 李超; 高健; 李秀金

    2013-01-01

    Performance and synergistic effect of anaerobic co-digestion of corn stover and chicken manure were investigated. Nine ratios of corn stover to chicken manure ( CS/CM) (1:0,1: 1,1:2,1:3,1:4,2: 1,3: 1, 4:l,and 0: 1)) and three loading rates of total solids (TS) (50, 65 and 80 g/L) were used. The results showed that compared to co-digestion of untreated corn stover and chicken manure, 5. 5% ~ 62% more biogas productions were obtained for co-digestion of NaOH pretreated ones. The co-digestion with CS/CM of 1: 2 and loading rate of 50 g TS/L obtained the highest total methane production of 19 488 mL, which was 32. 6% and 11.4% higher than that of the CS/CM ratios of 1:0 and 0: 1 at the same loading rate. The synergistic effect of co-digestion of chicken manure with NaOH pretreated corn stover contributed to methane yield increase of 7. 1% ~ 17. 7% . The synergistic effect of the co-digestion with CS/CM of 1: 2 was 25% ~ 150% higher than other radios. This study would provide the parameters for effective operation and optimal design of anaerobic co-digestion facility of straw and manure.%研究了玉米秸与鸡粪在不同混合比例条件下的厌氧消化产气性能和协同作用效果.设计了9种玉米秸与鸡粪的混合比例(1∶0、1∶1、1∶2、1∶3、1∶4、2∶1、3∶1、4∶1、0:1),每种比例分别在3个不同负荷(50、65和80 g/L)下进行混合厌氧消化.结果表明,与未预处理玉米秸与鸡粪混合厌氧消化相比,NaOH预处理玉米秸与鸡粪混合厌氧消化的单位TS产气量提高了5.5% ~ 62%.当预处理玉米秸与鸡粪的混合比例为1∶2、上料负荷为50 g/L时消化产气性能最好,此时的累积甲烷产量达到19 488 mL,比相同负荷下单一玉米秸厌氧消化的累积甲烷产量高出32.6%,比单一鸡粪厌氧消化的累积甲烷产量高出11.4%.混合厌氧消化协同作用的贡献率达到7.1% ~17.7%,其中玉米秸与鸡粪的比例为1∶2时,其贡献率

  15. Cost Effective Bioethanol via Acid Pretreatment of Corn Stover, Saccharification, and Conversion via a Novel Fermentation Organism: Cooperative Research and Development Final Report, CRADA Number: CRD-12-485

    Energy Technology Data Exchange (ETDEWEB)

    Dowe, N.

    2014-05-01

    This research program will convert acid pretreated corn stover to sugars at the National Renewable Energy Laboratory (NREL) and then transfer these sugars to Honda R&D and its partner the Green Earth Institute (GEI) for conversion to ethanol via a novel fermentation organism. In phase one, NREL will adapt its pretreatment and saccharification process to the unique attributes of this organism, and Honda R&D/GEI will increase the sugar conversion rate as well as the yield and titer of the resulting ethanol. In later phases, NREL, Honda R&D, and GEI will work together at NREL to optimize and scale-up to pilot-scale the Honda R&D/GEI bioethanol production process. The final stage will be to undertake a pilot-scale test at NREL of the optimized bioethanol conversion process.

  16. 以玉米秸秆为底物的纤维素降解菌与产电菌联合产电的可行性%Electricity generation from corn stover by cellulose degradation bacteria and exoelectrogenic bacteria

    Institute of Scientific and Technical Information of China (English)

    冯玉杰; 王鑫; 王赫名; 于艳玲; 李冬梅

    2009-01-01

    The possibility of direct electricity production from steam exploded com stover residue was studied in single chamber air-cathode microbial fuel cells ( MFCs) using two cellulose degrading bacteria ( Chaetomium sp. , Bacillus sp. ) and two cellulose degrading communities (PCS-S and H-C; stored in our laboratory) as biocatalysts. Both pure strains and mixed communities can decompose corn stover in MFCs, but little electricity ( < 90 mV , 1000Ω) was generated during this process. Increasing the temperature from 30 to 38. 5℃ did not increase voltage outputs. Using domestic wastewater solely as inoculum, electricity cannot be generated from degradation of com stover. Maximum voltage was observed in the MFC using H-C co-operated with the exoelectrogenic bacteria. The maximum power density from steam exploded com stover residue was 406 mW · m~(-2) , which was only 20% lower than the 510 mW·m~(-2) obtained using glucose as a substrate.%利用单室空气阴极微生物燃料电池(MFC)反应器,以玉米秸秆为底物.以本实验室筛选和保存的纤维素降解菌Chaetomium sp.和Bacillus sp.,以及纤维素降解混合菌PCS-S和H-C为秸秆降解的生物催化剂,探讨了以汽爆秸秆固体为底物进行微生物产电的可行性.结果表明,在MFC系统内,纤维索降解纯菌和混合菌均能使纤维素降解,但产生的电压很低(<90mV,1000Ω),升高温度(30-38.5℃)对电压输出无明显影响.单独以生活污水作为菌源不能直接降解秸秆产电.只有将H-C和生活污水(产电菌源)混合作为接种体,MFC才能获得较高的电压输出.此时得到的以汽爆秸秆固体作为底物时的最大功率密度为406mW·m-2,仅比葡萄糖作为底物时所得到的最大功率密度510 mW·m-2低20%.

  17. Corn

    OpenAIRE

    Sherwood, Brianne; Hawks, Amanda

    2011-01-01

    We have so much corn right now it's coming out of our ears (great pun, right?). And it's SO incredibly cheap! This is probably because the US produces 42% of the world's corn! Most of it is used for animal feed, but other uses include exporting to other countries, human food, seed, and industrial uses such as ethanol production. Because there is so much corn available here in the U.S. You can find it in a lot more foods than you think. It's in peanut butter, snack foods, soft drinks, multivit...

  18. 添加外源物对蒸汽爆破玉米秸秆酶水解性能的影响%Effect of exogenous additives on enzymatic hydrolysis of steam exploded corn stover

    Institute of Scientific and Technical Information of China (English)

    陈牧; 连之娜; 徐勇; 欧阳嘉; 勇强; 余世袁

    2011-01-01

    The hydrolysis effects and disciplination of steam exploded corn stover catalyzed by cellulose and/or β - glu-cosidase assisted with exogenous additives were investigated in this paper. Test results showed that Tween - 80 was the best exogenous additive for its excellent improvement on the enzymatic hydrolysis yield and enzymes stability. At the Tween - 80 loading of 4.0 g/L, the glucose yield and total reduced sugar yield reached 86. 85 % and 93.45 % with improved by 7. 34 % and 9. 59 % compared with the control respectively as steam exploded corn stover was hydrolyzed for 48 h with 15.0 μmol/(min·g) cellualse and 30.0 μmol/(min·g) β - glucosidase, and in this hydrolysate the fermentable glucose accounted to 92.94 % of the total reduced sugar. Under this reaction conditions, 56. 83 % of the soluble enzymatic protein, 16. 87 % of the β - glucosidase activity and 40. 04 % of the cellulase activity could be recovered from the enzymatic hydrolysate of steam exploded corn stover as Tween - 80 additives was used.%研究了8种添加物辅助单、双酶水解蒸汽爆破玉米秸秆的效果和规律.结果表明,在8种外源物中,添加Tween-80对β-葡萄糖苷酶和纤维素酶水解的促进作用最佳,可显著提高酶水解得率和酶活的稳定性.在底物纤维素质量浓度为50 g/L、纤维素酶用量为15.0 μmol/(min·g)、β-葡萄糖苷酶用量为30.0 μmol/(min·g)的条件下,添加4.0 g/L Tween-80反应48 h,纤维素水解生成葡萄糖和总还原糖的酶解得率分别达到86.85%和93.45%,较空白对照分别提高了7.34%和9.59%,其中可发酵性葡萄糖占总还原糖的92.94%.进一步考察该酶解条件下的蛋白质和酶活回收率,结果表明:添加Tween-80后可溶性总蛋白质的回收率提高了56.83%,β-葡萄糖苷酶和纤维素酶酶活回收率分别提高了16.87%和40.04%.

  19. 响应曲面法优化稀硫酸预处理玉米秸秆%Corn stover pretreated by dilute sulfuric acid using response surface optimization

    Institute of Scientific and Technical Information of China (English)

    朱艳; 王奇; 原帅

    2015-01-01

    为了提高玉米秸秆稀硫酸预处理效果,对影响稀硫酸预处理玉米秸秆的因素如温度、时间、稀硫酸质量浓度、固液比进行了单因素实验,确定了影响参数.对实验参数采用响应曲面法对稀硫酸预处理的工艺参数进行了优化处理,使用Design Expert 8.05b软件对实验进行拟合,得到二元多次回归方程:Y =31.17+4.25 X1+1.23 X2+0.61 X3-0.96 X1 X2-0.22 X1 X3-0.16 X2 X3-6.29 X21-2.86 X22-4.57 X23,由此得到最佳制备工艺条件为温度121.59℃,处理时间60.84min、稀硫酸的质量分数1.07%.在此条件下还原糖的得率为31.98%.在计算的最佳工艺条件下经过电子扫描显微镜(SEM )观察发现,秸秆表面出现很多形如蜂窝状的空隙.通过红外光谱发现,木质素和半纤维素的吸收峰强度降低;通过X‐射线衍射(X RD )表征发现稀硫酸处理60min时结晶度变化不大,说明秸秆在硫酸作用下发生了降解反应,实验获得还原糖得率为32.6%,理论和实验处理结果吻合.%In order to improve the effect of pretreating corn stover with dilute sulfuric acid each factor , including temperature ,time ,sulfuric acid concentration ,the ratio between solid and liquid ,was deter‐mined .These experimental factors were optimizated using response surface .The three factors calcula‐tion was made by Design Expert 8.05b software .The equation was obtained as follows Y=31.17+4. 25 X1 +1. 23 X2 +0. 61 X3 -0. 96 X1 X2 -0. 22 X1 X3 -0. 16 X2 X3 -6. 29 X21 -2. 86 X22 -4. 57 X23 .T he optimal condition is obtained as follow s:temperature of 121. 59℃ ,time of 60. 84min and dilute sulfuric acid concentration of 1.07% .Under the optimal condition ,the SEM results indicated that on corn stover surfaces appear many holes and some look like honeycomb voids .Infrared spectroscopy showed that the absorption peak intensity of lignin and hemicellulose reduced .XRD indicated

  20. 水热-乙醇提取处理玉米秸秆促进酶解效率%Enhancement of Enzymatic Hydrolysis of Corn Stover by Liquid Hot Water Pretreatment and Ethanol Extraction

    Institute of Scientific and Technical Information of China (English)

    李梓木; 于艳玲; 赵桂红; 孙嘉星; 李冬梅; 黄玉东; 冯玉杰

    2015-01-01

    Lignin could not be significantly removed from lignocellulose by liquid hot water(LHW)pretreatment, but lignin would mi-grate from cell wall and redeposit on the surface of cell wall at high temperature during pretreatment. To take advantage of this characteris-tic, we examined the changes of main components and enzymatic hydrolysis of corn stover pretreated by LHW pretreatment before and after ethanol extraction.Ethanol extraction process was also optimized. Compared to LHW pretreatment, ethanol extraction removed some lignins from, increased cellulose content in and improved cellulose digestibility of corn stover. Lignin removal increased with increasing temperature of LHW pretreatment. The optimal ethanol extraction was as follows:25 of liquid-solid ratio, room temperature, 120 r·min-1, and 10 h. For corn stover pretreated at 210℃for 20 min, ethanol extraction decreased lignin from 30.5%to 18.2%, while increased cellulose content from 62.2%to 73.6%. After ethanol extraction, the enzymatic hydrolysis time was shortened from 48h to 24h. The cellulose digestibility reached 93.2%(15 FPU·g-1 cellulose).%针对水热预处理不能明显移除木质素、木质素在较高温条件下从细胞壁中分解游离并重新聚合的特点,采用水热-乙醇提取处理玉米秸秆,与水热预处理的效果进行了对比,并对乙醇过程进行了优化。结果表明:水热-乙醇提取能够移除部分木质素,提高预处理后固体中纤维素含量以及纤维素的酶解效率,水热-乙醇提取后秸秆的木质素移除率随水热预处理温度的增加而增大。乙醇提取的较优工艺条件是液固比25、室温、120 r·min-1,提取10 h。经210℃、20 min预处理的秸秆再经乙醇提取后,酸不溶木质素含量由30.5%下降为18.2%,纤维素含量由62.2%提高到73.6%,酶解率为93.2%(15 FPU·g-1纤维素),酶解时间由48 h缩短至24 h。

  1. 玉米秸微波液化合成可生物降解聚氨酯泡沫研究%Biodegradable Polyurethane Foam with Liquefied Product from Corn Stover

    Institute of Scientific and Technical Information of China (English)

    肖卫华; 李振宁; 牛文娟; 韩鲁佳

    2013-01-01

    以玉米秸秆为原料,采用微波液化产物合成可生物降解聚氨酯泡沫,替代传统石化产品多元醇制备聚氨酯泡沫.通过异氰酸根指数及发泡剂水用量对聚氨酯泡沫材料密度、机械性能的影响分析,得到优化的聚氨酯合成工艺条件:水添加量0.30g、异氰酸根指数为1.0;采用土埋法生物降解试验发现,液化产物制备的聚氨酯泡沫在埋置6个月后质量损失约18.71%,热重分析表明合成的聚氨酯泡沫热分解分为4个典型的阶段.试验结果表明玉米秸秆微波液化产物可合成环境友好可生物降解聚氨酯泡沫,但其材料性能有待进一步表征.%With the aim to explore the efficient application of microwave liquefied product, experiment on the synthesis of polyurethane ( PU ) with microwave liquefied product from corn stover instead of petrochemical polyol was carried out. The optimized synthetic process of PU was 0. 30 g foam blowing agent and isocyanate index 1. 0. The biodegradable property of the composites was investigated by means of bury test which showed 18.71% degradation rate in six months. The thermal gravimetric analysis indicated four phases in the thermal pyrolysis of PU. All the results indicated microwave liquefied product from corn stover could be used for the production of PU foam while the material property was to be characterized and improved.

  2. Effects of Dilute Acid Pretreatment on Fibre Components and Structure of Corn Stover%稀酸预处理对玉米秸秆纤维组分及结构的影响

    Institute of Scientific and Technical Information of China (English)

    陈尚钘; 勇强; 徐勇; 朱均均; 余世袁

    2011-01-01

    The effects of dilute sulfuric acid pretreatment on the composition and enzymatic hydrolysis rate of solid residues for corn stover were investigated, and the fiber structure property of the pretreated residues were studied with scanning electron microscope, infrared, X- rays diffraction and thermal gravity. Results: With the increase of sulfuric concentration, temperature and retention time, the contents of cellulose and lignin increase slightly, the hemicellulose content largely declines, and the yield of enzymatic hydrolysis increases gradually. The degradation rate of hemicellulose is 98.02% and the yield of enzymatic hydrolysis is 66.95% when the pretreatment conditions are sulfuric acid concentration 0.75%, cellulase dosage 20 FPUI/g cellulose, temperature 150 ℃ and time 80 min. The fiber surface and cellular wall of corn stover are broken after the dilute acid pretreatment, thus increasing specific surface area and pore volume, decreasing the crystallization degree of cellulose, so favorable for the enzymatic hydrolysis.%研究了稀硫酸预处理对玉米秸秆化学组成变化及纤维素酶水解得率的影响,并采用扫描电镜(SEM)、X射线衍射仪(XRD)、红外光谱(IR)和热重分析(TG)对玉米秸秆纤维结构特性进行了分析.结果表明随着硫酸浓度的增大、温度的升高和时间的延长,纤维素和木质素含量有所增加,而半纤维素含量大幅度降低,且预处理后纤维素酶水解得率也逐渐增大.当处理条件为硫酸质量分数0.75%、温度150℃、时间80 min时,半纤维素降解率为98.02%,所得固体渣纤维素酶水解得率为66.95%(纤维素酶用量20FPUI/g纤维素).稀酸预处理后玉米秸秆纤维表面和细胞壁受到不同程度的破坏,表面积增大,孔洞增加,纤维素的结晶度降低,有利于纤维素酶水解作用的进行.

  3. 玉米秸秆稀酸预处理条件对糠醛类抑制物产生的影响%Research on the factors brought by furfural inhibitor during acid -pretreatment of corn stover

    Institute of Scientific and Technical Information of China (English)

    张莎莎; 张坤; 陈晓晓; 王晓俊; 左小明; 薛冬桦

    2015-01-01

    To explore the factors that affect the generation of furfural inhibitor during the process,corn stover was pretreated using diluted sulfuric acid.The correlation between pretreatment conditions and re-ducing sugar and furfural was analysed by partial correlation.The analysis showed that the main factor af-fecting furfural generation was the concentration of the sulfuric acid.There was a positive correlation be-tween the concentration of furfural and sulfuric acid.Pretreatment temperature and time were associated with the furfural concentration significantly;however the solid liquid ratio was not associated with the generation of furfural.The results showed that the optimal results were achieved by using 1% sulfuric acid to pretreat the corn stover at 120 ℃ for 90 minutes and ratio of solid to liquid 1∶10,as results,the furfural concentration was measured as 0.99 mg/mL with reducing sugar at 27.6 mg/mL.%以玉米秸秆为原料,探讨稀硫酸预处理玉米秸秆过程中影响糠醛类抑制物产生的因素,运用偏相关性分析法分析不同预处理条件与还原糖、糠醛的相关性。分析得知,影响预处理液中糠醛类抑制物产生的主要因素是硫酸浓度,二者呈正相关。预处理温度和时间与糠醛浓度显著相关,而固液比对糠醛类抑制物的产生没有显著影响。实验结果表明,当硫酸浓度为1%、预处理温度120℃、时间90 min,固液比1∶10时预处理液中糠醛浓度为0.99 mg/mL,还原糖浓度为27.6 mg/mL。

  4. 复合酶制剂处理玉米秸秆对海南和牛生产性能的影响%Influence of corn stover silage with compound enzyme on production performance of Hainan-Japanese cattles

    Institute of Scientific and Technical Information of China (English)

    王峰; 米开东; 李义书; 刘圈炜; 魏立民; 刘海龙; 黄丽丽; 郑心力

    2011-01-01

    选取6月龄、初始体重(94.82±9.06)kg、遗传背景一致的海南和牛(日本和牛×海南黄牛)12只,随机分为4个处理组,分别饲喂添加不同剂量复合酶制剂青贮的鲜食玉米秸秆,即对照组(0 kg/t)、试验Ⅰ组(0.6 kg/t)、试验Ⅱ组(1.0 kg/t)和试验Ⅲ组(1.4 kg/t),研究复合酶制剂处理玉米秸秆对海南和牛生产性能的影响.试验持续30 d.结果显示:试验Ⅱ组日增重显著高于对照组(P0.05).综合表明,1.0 kg/t复合酶制剂添加水平为最佳,建议在生产中应用.%This experiment was undertaken to investigate the effects of corn stover silage with compound enzyme on production performance of Hainan-Japanese cattles.Twelve 6-month-old Hainan-Japanese Cattles with average initial weight of (94.82±9.06) kg with the same genetic backgrounds were randomly divided into four treatments. Cattles were fed on corn stover silage with 0 kg/t (control group), 0.6 kg/t (group Ⅰ), 1.0 kg/t (group Ⅱ), and 1.4 kg/t (group Ⅲ) of compound enzyme during the period of 30 days. The results showed that: Average daily gain of group Ⅱ was significantly higher than that of control one (P<0.05) while feed/gain ratio of group Ⅱ was markedly lower than that of control one (P<0.05). Weight gain cost of group Ⅱ was the lowest, decreased by 15.31%; Gross profit was the highest, increased by 50.95%,although there were no significant differences (P>0.05). In conclusion, supplementation of 1.0 kg/t of compound enzyme is the best and strongly suggested to be applied to Hainan-Japanese cattles feeding.

  5. 汽爆玉米秸秆发酵丁醇的酶解工艺优化%Optimization of Enzymatic Hydrolysis Conditions of Steam-Exploded Corn Stover

    Institute of Scientific and Technical Information of China (English)

    张霞; 李红伟; 马晓建

    2014-01-01

    Influence of different factors such as temperature, original substrate concentration, enzyme loading, hydrolysis time, and stirring rate on steam-exploded corn stover enzymolysis were studied to further improve reducing sugar concentration and butanol yield after reaction. It is found that the optimal hydrolysis reaction condition is:temperature 50℃, 100 r⋅min-1, enzyme loadings 60 IU/(g corn stover), solid:liquid ratio 3:10 and reaction time 48 h. Reducing Sugar concentrations were tested with DNS(3,5-Dinitrosalicylic acid) and butanol yield was tested with gas chromatographic methods. Moreover, the highest apparent viscosity and apparent viscosity of a 3-step loading are lower than those of 2-step loading. However, the sugar concentration is slightly higher than that of the later one. When the substrate with original concentration of 15%(w/w) was added with to final concentration of 25% (w/w) by 3 steps, the reducing sugar concentration and butanol yield reach to 89.23 mg⋅mL-1, 9.82 mg⋅mL-1, respectively, which show an increase of 58.63%, 44.20%, respectively.%为了提高秸秆酶解后的还原糖浓度和酶解液发酵后的丁醇产量,研究了不同因素对汽爆玉米秸秆酶解的影响,优化汽爆玉米秸秆秸秆发酵丁醇的酶解工艺。结果表明汽爆玉米秸秆的最佳酶解工艺为:反应温度50℃、原始底物浓度15%(wt)、酶用量60 IU⋅(g底物)-1、酶解时间48 h、搅拌器转速100 r⋅min-1。通过考察分步加料方式,三次加料方式最高表观黏度和反应后期表观黏度都低于两次加料的方式,而其糖浓度则略高于两次加料方式。当底物从原始浓度15%( wt)分三次加入到25%( wt)时,还原糖浓度、丁醇产量分别为89.23、9.82 mg⋅mL-1,分别增加了58.63%、44.20%。

  6. Effect of different detoxification methods on ethanol production from corn stover hydrolysate%不同脱毒方法对玉米秸秆水解液酒精发酵的影响

    Institute of Scientific and Technical Information of China (English)

    张强; Anders Thygesen; Anne Belinda Thomsen

    2011-01-01

    利用湿热预处理(195℃,15 min)后的玉米秸秆水解液,考察了3种不同脱毒方法(中和法、饱和生石灰法和Na2SO3法)对水解液中的抑制剂的去除效果,研究了树干毕赤酵母(Pichia stipitis 58376)对脱毒后的水解液酒精发酵情况.结果表明:玉米秸秆水解液经过3种方法脱毒处理后,醛类抑制荆(糠醛和5-羟甲基糠醛)平均减少41%,总酚类最高去除28.4%,酒精得率都得到明显提高.最佳的脱毒方法是饱和生石灰法,理论酒精得率达到69.31%,对应的酒精浓度和生产效率分别为12.2 g/L和0.056 g/(L·h).饱和生石灰法是一种有效实用的脱毒方法.%The influence of three different detoxification methods (neutralization, overliming and Na2SO3 addition ) on inhibitors were evaluated by using corn stover hydrolysate prepared with hydrothermal pretreatment ( 195 ℃, 15 min ) . Ethanol fermentability of detoxified corn stover hydrolysate was investigated by Pichia stipitis 58376. The results showed that all the employed detoxification methods resulted in a 41% reduction in average total furans and highest 28.4% reduction in total phenols. Fermentation performance was greatly enhanced by employed detoxification methods.Ethanol yield of 69.31% of the theoretical value based on reducing sugar was obtained by overliming.The corresponding ethanol concentration and volumetric productivity were 12.2 g/L and 0.056 g/( L·h ).Overliming was the most efficient detoxification method.

  7. Kinetic model of microbial oils produced by fermenting corn stover hydrolysate%玉米秸秆水解液发酵产微生物油脂的动力学模型研究

    Institute of Scientific and Technical Information of China (English)

    徐洪章; 叶小金; 薛冬桦

    2014-01-01

    The dynamics of microbial oils fermented from corn stover hydrolysate was studied.The math-ematic model of thalli growth and microbial oils synthesis during the fermentation of microbial oils changed along with the time was built based on Logistic equation and Luedeking -Piret equation.The test value was validated with the model.The compositions of unsaturated fatty acid in microbial oils were analyzed by the gas chromatography.The results indicated that the corn stover was used as a raw materi-al,mortierella isabellina as a strain,after aerobic intermittent fermentation,the biomass and content of microbial oils reached 10.63 g/L and 49.53% respectively.A good coincidence between models calcula-tion values and experimental data was observed,therefore,the model equations can really reflect the process of the microbial oils fermentation.%对玉米秸秆水解液发酵产微生物油脂动力学进行研究,基于 Logistic 方程和 Luedeking -Piret 方程分别建立了微生物油脂发酵过程菌体生长和油脂合成随时间变化的数学模型,同时对试验值与模型进行了验证比较,应用气相色谱技术对微生物油脂中的不饱和脂肪酸成分进行分析。结果表明,以玉米秸秆为原料、深黄被孢霉为菌株,好氧间歇发酵,得到生物量为10.63 g/L,油脂含量为49.53%。模型模拟计算结果与试验值能较好地吻合,该模型能较好地反映玉米秸秆水解液发酵产微生物油脂发酵的过程。

  8. 玉米秸秆木质素降解过程的CP/MAS13CNMR和SEM表征%CP/MAS13CNMR and SEM Characterization of Corn Stover Lignin Degradation

    Institute of Scientific and Technical Information of China (English)

    陈琳; 张全; 孟雪松; 凌凤香

    2013-01-01

    利用黄孢原毛平革茵对玉米秸秆木质素进行降解处理,通过CP/MAS 13CNMR和SEM研究降解过程中木质素的结构变化.CP/MAS 13CNMR结果表明:玉米秸秆木质素降解过程中,作为木质素结构单元主要连接方式的β-O-4键基本上没有被降解;木质素单位苯环的甲氧基含量稍有增加;S/G值降低,推断反应过程中紫丁香基优先参与反应.SEM结果表明:降解后的木质素空穴增多且增大、颗粒物质减少,主要是由于酶解木质素中大量碳水化合物的降解(所)致;比木质素更容易降解的纤维素和半纤维素也存在于样品中.CP/MAS13CNMR为木质纤维原料结构的定性和初步定量提供了可能,是传统定量表征手段的有力补充,具有一定的研究意义.%The structure changes of corn stover lignin treated by Phanerochaete chrysosporium were studied by CP/MAS 13CNMR and SEM.CP/MAS 13CNMR Results showed that bond β-O-4 didn't be degraded,the content of-OCH3 increased after degradation,S/G value decreased,and syringyl structure was priority to take part in the reaction.SEM Results showed that the surface holes of corn stover lignin increased both in number and in volume,and the particle matters reduced,mainly due to the degradation caused by carbohydrate,there were cellulose and hemicellulose more easily degraded than lignin in the sample.CP/MAS 13CNMR Provides the possibility of qualitative and quantitative characterization for wood materials structure,which is a strong supplement to the traditional quantitative characterization methods,and has some research significance.

  9. 高效协同酶解中性汽爆玉米秸秆的工艺优化%Optimization of enzymatic saccharification process for neutral steam exploded corn stover

    Institute of Scientific and Technical Information of China (English)

    钟健; 杨敬; 钞亚鹏; 武改红; 贾文娣; 张国青; 石家骥; 孙艳; 钱世钧

    2011-01-01

    Abstract: Corn stover is one of the major agricultural residues in China and could be potential source for ethanol production by saccharification process. But the problem in current process is higher cost for pretreatment and enzymatic saccharification of corn stover. In this paper, four kinds of cellulase candidates ( volume ratio 6 : 4) were optimized based on the best synergistic effect for the degradation of neutral steam exploded corn stover, and Trichoderma L8 and Aspergillus niger were filtered. Then, the effect of enzymes (xylanase, /?-glucosidase, /?-glucanase, laccase, manganese peroxidase) and non-enzyme factors (polyethyleneglycol (PEG) -4000, Tween-80, bovine serum albumin) on saccharification efficiency was evaluated to get a mixed enzyme system which could make steam exploded corn stove high efficient synergistic degradation, and to obtain suitable conditions of saccharification process. The results showed that only xylanase in selected enzymes had positive effects on the saccharification, while for non-enzyme factors polyethyleneglycol (PEG) -4000 and Tween-80 could enhance the saccharification rates. The optimized enzyme was a mixture of Trichoderma L8 cellulase, β-glucosidase from Aspergillus niger andxylase, and the optimized conditions of enzymatic degradation condition for one gram neutral steam exploded corn stover (10%, W/V) as follows: 10FPU cellulase, plus 1000IU xylanase and 0. 05 g PEG-4000. After incubation at 50℃ and 150 r ? Min-1 for 144 h, the final concentration of cellobiose, glucose, and xylose were 8. 4 g ? L-1, 25.1 g ? L-1, and 15. 5 g ? L-1, and the final conversion of total biomass, cellulose and hemicellulose were 71.1%, 81.5% and 55.3%, respectively. Observation of scanning electron microscope indicated that most the free fiber disappeared within 24 h. Some of the partially destroyed structures in the pretreatment process were also degested slowly with time prolonged.%玉米秸秆是我国主要的农业废弃物之一,

  10. 玉米秸秆分批补料获得高还原糖浓度酶解液的条件优化%Optimization of corn stover hydrolysis by fed-batch process

    Institute of Scientific and Technical Information of China (English)

    宋安东; 任天宝; 张玲玲; 王风芹; 谢慧

    2011-01-01

    High-concentration sugars production from stover is an important perspective technology for the cellulosic ethanol industrialization.Fed-batch process is an effective way to achieve this goal in the fermentation industry.In this study, based on fed-batch process, high-concentration sugars were produced from pretreated corn stover by enzymatic hydrolysis.After being pretreated by the dilute sulphuric acid, the impacts of the ratio of solid raw material to liquid culture, the content of supplementary materials and the refilling time on the saccharification rate were investigated.Results showed that the initial ratio of solid raw material to liquid culture was 20% (W/V) and the initial concentrations of enzymes for xylanase, cellulose and pectinase were 220 U,6 FPU, and 50 U per gram of substrates, respectively.After 24 hours and 48 hours, 8% pretreated corn stovers were added respectively together with the additions of xylanase (20 U) and cellulose (2 FPU) per gram of substrates.After 72 hours, the final concentration of reducing sugar was increased to 138.5 g/L from 48.5 g/L of the non fed-batch process.The rate of enzyme hydrolysis of the raw material was 62.5% of the thoretieal value in the fed-batch process.This study demonstrated that the fed-batch process could significantly improve the concentration of reducing sugar.%木质纤维素高浓度还原糖水解液的获得是纤维乙醇产业化发展的方向.在发酵工业领域,分批补料法是实现这一目标的重要研究途径.本研究采用分批补料法对获得高浓度玉米秸秆酶解还原糖的条件进行了优化.以稀硫酸预处理的玉米秸秆为原料,考察了液固比、补加量与补加时间对分批补料糖化的影响.结果表明,秸秆高浓度酶解液条件的初始物料为20%(重量/体积),木聚糖酶220 U/g(底物),纤维素酶6 FPU/g(底物),果胶酶50 U/g(底物),在24 h、48 h后分批补加8%预处理后的物料,同时添加与

  11. 秸秆深还对土壤团聚体中胡敏素结构特征的影响%Effect of Corn Stover Deep Incorporation on Composition of Humin in Soil Aggregates

    Institute of Scientific and Technical Information of China (English)

    朱姝; 窦森; 关松; 郭聘

    2016-01-01

    秸秆还田主要是覆盖和表层浅施,存在着影响种子发芽生长、土壤升温慢和病虫害增加等问题.秸秆深还(corn stover deep incorporation,CSDI)是指将玉米秸秆施入土壤亚表层(20~40 cm),不仅能解决秸秆焚烧的问题,还能达到保碳、蓄水、培肥、稳产的目的,使秸秆还田得到改善.虽对秸秆深还后胡敏素(Hu)的结构性质有一些研究,但是对秸秆深还后土壤团聚体中Hu的变化还未见报道.探究秸秆深还对土壤腐殖质的影响,可以为如何提高土地肥力、如何利用秸秆深还创建合理耕层提供理论依据.本试验采集于吉林农业大学试验站玉米连作耕地试验田,采用湿筛法将其分为>2 mm、2~0.25 mm、0.25~0.053 mm和<0.053 mm 4个粒级并提取Hu,通过元素组成、红外光谱和差热分析研究秸秆深还对团聚体中Hu结构特征的影响.结果表明:用此方法制备的黑土Hu的平均含碳量为721 g kg-1;H/C的平均值为0.776;Hu的缩合度高于相应的HA;秸秆深还促使土壤表层和亚表层团聚体中Hu的氧化度降低,脂族链烃减少,活性结构增多,稳定性降低,Hu的结构趋于简单化、年轻化.%How to handle surplus crop straw has become an important topic that calls for urgent solution in the agricultural regions of China. Straw incorporation into the field is one of the main methods of straw utilization. The method of straw incorporation used to either overcast the straw on the surface of the field like mulching or incorporate the straw into the shallow topsoil layer,which would obviously bring about some problems,like hindering seed germination and seedling growth,impeding rise of soil temperature,and favoring incidence of plant diseases and insect pests,while its effect on accumulation of soil organic matter is so limited that it would not help solve the problems,like thinning of the plough layer and depleting of organic matter in the subsoil layer. Corn stover deep incorporation

  12. Optimization of fermentation conditions for low-temperature and high-efficiency composite microbial system for corn stover degradation and preliminary development of microbial inocula%低温高效降解玉米秸秆复合菌系发酵条件优化及腐解菌剂的研究

    Institute of Scientific and Technical Information of China (English)

    胡海红; 孙继颖; 高聚林; 王振; 包闹干朝鲁; 胡树平; 青格尔

    2016-01-01

    Straw-returning to fields is an effective way to increase soil organic matter content and soil fertility, stimulate soil microbial activ-ity, enhance crop yields and quality, and improve the soil physical and chemical properties. It, therefore, plays a crucial role in promoting a-gricultural sustainable development. In the spring corn region of northern China, however, maize stover degradation is often slow and is even not fully complete in the fall and winter seasons because of low temperature, which causes wasting of resources. Thus, it is necessary to de-velop efficient stover-decomposing bacterium agent for low-temperature conditions. A low-temperature and high-efficiency composite mi-crobial system, GF-S72, screened from sawdust and degraded corn stover, was developed for degrading corn stover. Result indicated that the best fermentation was urea of 0.1%, C/N ratio of 20﹕1, inoculating content of 2%, initial pH of culture medium at 8.0 and liquid medium vol-ume of 18 mL/150 mL at 10℃for 6 d. The experiment showed that diatomite was the best carrier, and high-efficient composite bacterium a-gent for degrading corn stover was prepared at low-temperature. The experiment also showed that the highest efficient microbial inoculants of corn stover degradation was at 3﹕1 of bacterial liquid/carrier, 0.05 g/2 g of microbial inoculants/corn stover ratio, 1.42%of moisture con-tent, 10%of preservation humidity, 15℃of preservation temperature, and pH 8.2.%为解决北方低温条件下玉米秸秆降解难的问题,利用筛选于锯末的一组玉米秸秆降解复合菌系GF-S72,通过单因素、正交试验及载体生物相容性试验,研究了复合菌系的发酵条件、菌剂载体类型、用量及保存条件。结果表明,复合菌系GF-S72最佳发酵条件为:尿素0.1%、碳氮比20﹕1、培养温度10益、初始pH为8.0、装液量18 mL/150 mL、培养时间6 d、接种量2%。基于试验选取硅藻作为最

  13. Effect of alkali concentration and temperature on extraction yield and quality of xylan from corn stover%碱浓度和温度对玉米秸秆木聚糖提取率和品质的影响

    Institute of Scientific and Technical Information of China (English)

    刘凯旋; 张傑; 李宏强; 徐建

    2016-01-01

    由于提取率和产品品质等方面的原因,作为玉米秸秆主要成分之一的木聚糖还未能得到充分有效的利用。为改善玉米秸秆木聚糖的提取率和品质,对影响木聚糖提取的碱浓度和温度2个关键因素进行了研究。使用组分分析和凝胶渗透色谱等手段对木聚糖得率、纯度和结构进行了研究,同时分离得到纤维素和醇溶木质素。结果表明,NaOH 浓度对木聚糖得率和结构的影响比温度显著,较优提取条件为:NaOH浓度为10%(w/v),提取温度90℃,此条件下木聚糖的溶出率和回收率分别为86.37%和76.92%,木聚糖纯度为63.90%。凝胶渗透色谱结果显示,碱浓度的增加使木聚糖的分子量降低,而随温度的升高则呈先升后降的趋势。此外,提取剩余物中纤维素的含量随碱浓度和温度强度的增加而增加。研究证明组合适当的碱浓度和提取温度可以在保证品质的前提下得到较高的木聚糖提取率。%Xylo-oligosaccharides derived from xylan have a high application potential in food and pharmaceutical industries. As an agricultural by-product, corn stover with high hemicellulose content is an important raw material for biorefinery. In order to broaden the raw material source of xylo-oligosaccharides, the work was carried out to investigate the effect of alkali extraction conditions on the quality of xylan. NaOH mass concentration and extraction temperature were selected to study their influence on yield, purity and structural characteristics of xylan. The de-waxed corn stover was treated with NaOH solution of 4, 6, 8, 10, 12, 16, 20 and 24wt% at 121℃ for 2 h with a constant solid-liquid ratio of 1:10 (g/mL). The extracts were neutralized to the pH value of 5.0 with the concentrated HCl, and then concentrated under vacuum. Xylan was precipitated from the filtrate by adding the ethanol with the volume of 3 times and then freeze-dried. The remained extracts were

  14. 酒精清液发酵玉米秸秆替代全株玉米青贮对奶牛生产性能的影响%Effects of Substitution of Fermented Corn Stover with Alcohol Wastewater for Whole Corn Silage on Performance of Dairy Cows

    Institute of Scientific and Technical Information of China (English)

    姚庆; 辛杭书; 王明君; 李仲玉; 刘凯玉; 张宁; 李敏; 李欣新; 张永根

    2012-01-01

    本试验旨在研究酒精清液发酵玉米秸秆替代全株玉米青贮对奶牛生产性能的影响.选取体重、年龄、胎次、产奶量和泌乳期相近的中国荷斯坦泌乳牛40头,随机分为2组,每组20头牛.试验分3期,各期的对照组均饲喂全株玉米青贮饲粮,各期的试验组分别饲喂用酒精清液发酵玉米秸秆替代30%(30%替代组)、60%(60%替代组)或100%(100%替代组)全株玉米青贮的试验饲粮.试验期27 d.结果表明:1)酒精清液发酵玉米秸秆的粗蛋白质(CP)、中性洗涤纤维(NDF)、中性洗涤不溶蛋白质(NDIP)和酸性洗涤不溶蛋白质(ADIP)含量都显著高于全株玉米青贮(P<0.05).2)与对照组相比,60%替代组奶牛的干物质采食量(DMI)增加了9.45% (P <0.05),产奶量无显著变化(P>0.05);100%替代组奶牛的DMI差异不显著(P>0.05),但产奶量降低了12.05% (P <0.05).3)各试验组中,乳成分的百分比与对照组相比均差异不显著(P>0.05).与对照组相比,100%替代组乳蛋白的净含量提高了4.65%(P<0.05),而其他乳成分净含量显著降低(P<0.05).由此可知,用酒精清液发酵玉米秸秆适量替代(30%或60%)全株玉米青贮不会影响奶牛的生产性能.%This experiment was conducted to determine the effects of substitution of fermented corn stover with alcohol wastewater for whole corn silage on performance of dairy cows. Forty Chinese Holstein dairy cows with the same body weight, age, fetal times and milk yield were randomly divided into 2 groups and 20 cows in each group. The experiment included three periods, cows in the control group were fed a basal diet in each period, and those in the experimental group were fed the experimental diet which replaced 30% (30% replacement group) , 60% (60% replacement group) or 100% (100% replacement group) fermented corn stover with alcohol wastewater with whole corn silage in each period. The experiment lasted for 27 days. The

  15. 玉米秸秆生物炼制燃料乙醇的研究%Biorefinery of Corn Stover for Fuel Ethanol

    Institute of Scientific and Technical Information of China (English)

    朱均均; 陈尚钘; 勇强; 徐勇; 陈牧; 余世袁

    2011-01-01

    Com stover was pretreated by moderate acid and then washed by water. The solid residue after filtration was hydrolyzat-ed to monosaccharide with cellulase for further fermentation to ethanol, white the liquid fraction after filtration was detoxified with trialkylamine extraction to ferment to ethanol. The material balance was carried out in the whole process. The results showed that the optimal pretreatment conditions were temperature 100 t, sulfuric acid mass fraction 3 % and time 12 h. After 24 h fermentation of the condensed enzymatic hydrolyzate containing 138. 72 g/L of glucose, the sugar utilization rate was 99.02 % and the ethanol mass concentration reached its peak value of 62.98 g/L, which corresponded to 89.90 % of the theoretical value. Pre-hydrolyzate was detoxified by trialkylamine extraction, 72.73 % of acetic acid, 42. 86 % of 5-hydroxymethylfurfural and 100 % furfural could be removed. The fermentability of the detoxified prehydrolyzate was significantly improved. After 48 h fermentation of the detoxificated prehydrolyzate containing 7. 80 g/L of glucose and 52. 80 g/L of xylose, the sugar utilization rate was 93.17 % , and the ethanol concentration reached its peak value of 21.76 g/L, which corresponded to 82.34 % of the theoretical value. After materials balance, it required 6.8 t absolutely dry com stover to produce one ton ethanol. The process of this study provided the reference to realize the industrialization of hexose and pentose fermentation separately.%以玉米秸秆为原料,研究了中酸预处理条件下水洗得到的残渣经酶水解后进行己糖发酵、水洗液经三烷基胺萃取脱毒后进行戊糖发酵的乙醇得率,并对整个工艺进行了物料衡算.结果表明:中酸预处理的最佳条件为温度100℃,硫酸质量分数3%,时间12h.残渣的酶水解液浓缩至葡萄糖质量浓度为138.72g/L进行乙醇发酵,在24 h时糖利用率为99.02%,此时乙醇质量浓度达到最高为62.98 g

  16. Effect of Chemical and Biological Treatments on Nutritional Value of Corn Stover%化学和生物学处理对玉米秸秆营养价值的影响

    Institute of Scientific and Technical Information of China (English)

    杨连玉; 中岛芳也

    2001-01-01

    分别使用尿素、氨和纤维素酶等处理干玉米秸,测定了处理前后化学成分变化,并用尼龙袋法测定了秸秆干物质的瘤胃分解特性。结果表明:与未处理比较,尿素处理组粗蛋白质含量显著提高,尿素添加量对其无影响,但贮存15?d粗蛋白含量较低;氨处理组(添加3.0%氨)的粗蛋白质含量最高,处理时间无显著差异。酸性洗涤木质素含量氨处理组添加1.5%和3.0%比未处理有下降的趋势(P<0.05)。干物质的瘤胃内的最大分解率(a+b)随添加量提高有增大趋势,但尿素处理组贮存15?d有下降趋势;氨处理组贮存期间不见显著差别,但3.0%氨添加量有升高趋势。纤维素酶在添加量和贮存期间都无显著变化。作为玉米秸秆的营养价值的改善方法,尿素处理(2.65%)30?d常温贮存,氨处理(3.0%) 1 5?d贮存较为合适。%Corn stover was treated with urea, ammonia and cellulase . Chemical co mposition of corn stover before and after treatments was analyzed. Degradability of dry matter in the rumen was determined using nylon bag technique. The maize stalk was stored for 15?day s, 30 days, 60 days. The results indicated that crude protein (CP) content of sta lk treated with urea was significantly increased. However, no difference was found among the different amount of urea used. The CP content of stalk treated with 3.0% ammonia was highest. No difference was found among different treating times. The contents of acid detergent lignin (ADL) of ammonia treatment with 1.5% a nd 3.0% urea had decreased extent comparing with control group (P<0.05). Acid detergent fiber (ADF) contents did not differ among treatments. The maximum degradable rate (a+b) of DM was slightly increased with increased amount of chemicals used. There was no effect of cellulase on nutritional value of stalk.In order to improve nutritional value, maize stalk is treated with 2.65% urea and stored for 30 days or with 3.0% of ammonia and stored for

  17. Technologic study on preparation of corn stover powder by classify-impact mill%分级式冲击磨制备玉米秸秆粉体工艺参数

    Institute of Scientific and Technical Information of China (English)

    王晓天; 刘传慧; 陈海焱; 孙权; 赖小林; 宋金仓

    2014-01-01

    分级式冲击磨是应用十分广泛的超细粉碎设备,但目前对分级式冲击磨的一些工艺参数的研究还不够充分。为了得到科学、合理的分级式冲击磨的工艺参数,本实验选用切断的玉米秸秆作为实验原料,用锤片式破碎机对其进行破碎并过筛(筛网孔径4mm),通过分级式冲击磨对粗破过筛后的玉米秸秆进行粉碎。实验考察了二次风风门开闭情况、锤头数量、锤头周向速度对玉米秸秆粉体产量及设备单位能耗的影响。实验结果表明,二次风风门全开时,粉体产量比二次风风门关闭时提高43.6%;锤头数量为8个时,粉体产量比锤头数量为4个和16个时高,单位能耗比锤头数量为4个和16个时低,但差距并不明显;锤头周向速度为130m/s时,粉体的产量比锤头周向速度为120m/s、110m/s、100m/s时高。%Classify-impact mill is widely used in ultrafine grinding industry. However,current research on the process of classify-impact mill is insufficient. In order to get suitable process parameters for classify-impact mill,the cutted corn stover was used as raw material in this study. The corn stover was firstly crushed by hammer crusher with screen mesh at 4mm,then crushed by classify-impact mill. The effects of secondary air,the number of beaters,circumferential speed of beaters for yield and energy consumption per unit were discussed. The results showed that yield was improved by 43.6 percent in the present of the secondary air. The energy consumption per unit was lower than 4 beaters or 16 beaters when 8 beaters were used in the classify-impact mill,but the improvement was not significant. The yield higher was at circumferential speed of 130m/s.

  18. Pretreatment of corn stover prior to fermentation by means of ultrasound and dilute alkali%超声波结合稀碱预处理玉米秸秆发酵的研究

    Institute of Scientific and Technical Information of China (English)

    辛联庆; 陈娟

    2013-01-01

    A combination of ultrasonic extraction with the traditional dilute alkali process has been used to pretreat corn stover. The experimental results showed that a sample which had been pretreated with 2% NaOH solution for one day with dual-frequency ultrasound (28 kHz, 60 W; 20 kHz, 900 W) for 1 h was superior to that without pre-treatment, in that gas production increased by 18. 13%. In addition, compared to a sample pretreated with 2% NaOH solution alone for 3 days, gas production increased by 8. 58% . The new method also can save 12% in time costs. A series of experiments showed that the most effective ultrasonic pretreatment conditions were 1: 12 solid to liquid ratio, with single-frequency ultrasound, for 30min.%将超声波萃取工艺结合传统的稀碱法对玉米秸秆进行发酵预处理研究.结果表明:2% NaOH溶液预处理1 d,再采用双频(28 kHz,60 W;20 kHz,900 W)超声60 min预处理的样品,比未做任何处理的样品产气量提高18.13%,比2% NaOH预处理3d、但未作超声处理的样品产气量提高8.58%,并且还可以节约12%的时间成本.发酵条件优化得最佳预处理方案为∶固液比1∶12,单频(20 kHz,900W),超声30 min.

  19. 玉米秸秆戊聚糖硫酸酯的制备工艺%Preparation of corn stover pentosan suIfate

    Institute of Scientific and Technical Information of China (English)

    米浩宇; 黄昌; 孙超; 刘琪微; 孟鹏飞; 李君如; 王雅; 张龙

    2014-01-01

    以玉米秸秆为原料碱法提取戊聚糖,选择合适的酯化体系(氯磺酸/吡啶法、三氧化硫吡啶复合物/吡啶法、三氧化硫吡啶复合物/N ,N‐二甲基甲酰胺法、浓硫酸法),磺化修饰制备戊聚糖硫酸酯。实验最终确定了采用氯磺酸/吡啶法合成戊聚糖硫酸酯,产物结构特征经U V ,IR确证。%With corn straw to extract pentosan , we choose the suitable Esterification system (Chlorosulfonic acid/pyridine method , sulfur trioxide pyridine complex/pyridine method , sulfur trioxide pyridine complex/N ,N‐dimethylformamide method and concentrated sulfuric acid method ) and modified Sulfonated to prepare pentosan polysulfate . Chlorosulfonic acid/pyridine method is experimentally applied to make the pentosan polysulfate ,and it sturcture is verified with UV and IR .

  20. 纤维素分解酶处理玉米秸秆对肉牛生产性能和经济效益的影响%Effects of corn stover fermented by cellulolytic enzyme on production performance and economic benefit in beef cattle

    Institute of Scientific and Technical Information of China (English)

    高月平; 张贵花; 王聪; 刘强; 白元生; 师周戈; 刘晓妮

    2013-01-01

    研究玉米秸秆经纤维素分解酶(纤维素酶和木聚糖酶)处理后的化学成分变化以及对肉牛生产性能和经济效益的影响.选用12月龄左右的西门塔尔牛36头,对照组饲喂基础日粮(混合精料十玉米秸秆,精粗比45∶55),试验组分别以0.5%、1.0%和1.5%的纤维素分解酶处理玉米秸秆替代基础饲粮中的玉米秸秆进行为期70 d的试验.结果表明:采用纤维素分解酶处理玉米秸秆后化学成分发生变化,粗蛋白质含量增加显著,中性洗涤纤维和酸性洗涤纤维降低显著,1.5%的纤维素分解酶处理组中性洗涤纤维和酸性洗涤纤维显著低于1.0%的纤维素分解酶处理组.1.0%、1.5%的纤维素分解酶处理组西门塔尔牛干物质采食量、平均日增重和经济效益提高显著(P<0.05).适宜的纤维素分解酶添加水平为1.0%.%The objective was to evaluate the effects of corn stover fermented by cellulolytic enzyme on nutrition of corn stover,production performance of beef cattles and economic benefit.Thirty-six Simmenta beef cattles (12-month-old) were randomly divided into 4 groups.The control group was fed the basal diet (mixed concentrate and corn stover,concentrate to roughage as 45 to 55).Treatments lasted for 70 days were fed corn stover fermented by cellulolytic enzyme at 0.5%,1.0% and 1.5 %,respectively.The results showed that chemical composition of corn stover changed with the addition of cellulolytic enzymes.The crude protein content increased significantly,neutral detergent fiber and acid detergent fiber decreased significantly.neutral detergent fiber and acid detergent fiber of 1.5 % cellulolytic enzyme treatment were significantly lower than that of 1% cellulolytic enzyme treatment.The dry matter intake,average daily gain and economic benefit of 1.0%,1.5% cellulolytic enzyme treatment increased significantly (P<0.05).The cellulolytic enzyme addition level as 1% was good.

  1. 水热预处理工艺参数对玉米秸秆组分与酶解效率的影响%Effects of liquid hot water pretreatment process parameters on components and cellulose digestibility of corn stover

    Institute of Scientific and Technical Information of China (English)

    李梓木; 于艳玲; 孙嘉星; 李冬梅; 冯玉杰

    2015-01-01

    Corn stover was pretreated with liquid hot water (LHW) method using a batch rector in order to enhance cellulose digestibility. The effects of pretreatment process parameters (pretreatment temperature 180—220℃, reaction time 10—25 min) on the main components (hemicellulose, lignin, and cellulose) and cellulose digestibility were investigated. Multiple linear regression models or quadratic equation models (only for lignin removal) were established by analyzing hemicellulose removal, lignin removal, and cellulose loss as dependent variables and pretreatment temperature and reaction time as independent variables. Hemicellulose removal and cellulose loss increased with increasing pretreatment temperature and reaction time over the range of experimental conditions. Compared to lignin in raw corn stover, mass of lignin in pretreated corn stover increased (lignin removal was negative), also as a function of increasing pretreatment temperature and reaction time, probably because of the formation of pseudo-lignin. Sensitivity analyses showed that the significance level of pretreatment temperature was much higher than that of the reaction time on these three dependent variables. The maximum enzymatic digestibility (76.2%) of cellulose in raw corn stover was achieved after the pretreatment (210℃, 20 min). Higher severity conditions caused more hemicellulose removal, as well as more cellulose loss, thus lowering the enzymatic digestibility of cellulose in raw corn stover.%采用间歇式水热预处理方法,考察了不同水热预处理温度和处理时间对玉米秸秆主要成分变化的影响以及水热预处理后的纤维素酶解效率。在180~220℃,10~25 min范围内,随温度升高和时间延长预处理后半纤维素移除率和纤维素损失率也随之增大,但木质素质量并未减少反而有所增加。在210℃,25 min时得到最大半纤维素移除率为86.0%。以半纤维素移除率、木质素移除率和纤维素损

  2. Detoxification of dilute acid pretreated corn stover prehydrolyzate by two methods%玉米秸秆稀酸预水解液两种脱毒方法的研究

    Institute of Scientific and Technical Information of China (English)

    朱均均; 勇强; 徐勇; 陈牧; 龚泽颖; 余世袁

    2011-01-01

    Two kinds of detoxification methods, vacuum evaporation and complex extraction were applied to remove inhibitors presented in the dilute acid pretreated corn stover prehydrolyzate. The results showed that furfural was completely removed, while 5-hydroxymethylfurfural was not removed at all by only vacuum evaporation. When the prehydrolyzate was condensed to 5. 80 times, the concentration of acetic acid in the condensed prehydrolyzate and its removal ratio were 4.06 g/L and 60.45 % , respectively. The optimal conditions of complex extraction detoxification were that 30 % trial-kylamine +50 % n-octanol +20 % kerosene was at the ratio of organic to aqueous phase of 2: 1, and 25℃ for 60 min. At this time, the concentration of acetic acid was 1.43 g/L, and the removal ratio of acetic acid, furfural and 5-hydroxymethylfurfural were 52. 33 % , 100 % and 27. 78 % , respectively.%以玉米秸秆稀酸预水解液为原料,研究了减压蒸发和络合萃取两种脱毒方法对乙酸等抑制物的去除隋况.结果表明:玉米秸秆稀酸预水解液减压蒸发脱毒,糠醛完全被去除,而5-羟甲基糠醛则基本不能被去除;当水解液浓缩5.80倍时,其浓缩液中乙酸质量浓度和去除率分别为4.06 g/L和60.45%.络合萃取脱毒的最佳条件:络合萃取剂的组成为30%三烷基胺+50%正辛醇+20%煤油,油水相比2:1,温度25℃,时间60 min,此时脱毒液中乙酸质量浓度和去除率分别为1.43 g/L和52.33%,糠醛完全被去除,5-羟甲基糠醛的去除率为27.78%.

  3. Clostridium saccharobutylicum利用玉米秸秆水解液发酵生产燃料丁醇%Production of Biobutanol from Corn Stover Hydrolyzate by Clostridium saccharobutylicum

    Institute of Scientific and Technical Information of China (English)

    王云; 倪晔; 孙志浩; 宋刚; 夏子义

    2012-01-01

    In this study,butanol production from corn stover hydrolyzate by Clostridium saccharobutylicum DSM 13864 was investigated. The medium composition was optimized by orthogonal method as follows: CaCO3 2.0 g/L,(NH4)2SO4 1.0 g/L,K2HPO4 0.5 g/L,corn steep powder 15 g/L,and MnSO4·H2O 0.01 g/L. In a 3 L bioreactor,total solvent of 16.1 g/L (butanol 10.59 g/L) was reached after 40 h of fermentation,and the productivity and yield were 0.40 g/(L· h) and 0.33 g/g,respectively. Batch fermentation process using temperature-shifting demonstrates that lower temperature is beneficial to the solvent accumulation. Compared with temperature -constant process(37 ℃),total solvent was increased from 17.01 g/L to 19.98 g/L. The temperature-shifting continuous fermentation process was operated for 269 h at dilution rate of 0.1 h-1,and the solvent production entered a stable phase at around 80 h. The average solvent during the stable solvent-production stage is 12.28 g/L (including 8.50 g/L butanol),and the average solvent productivity is 1.23 g/(L·h),representing 4.92 times of temperature-shifting batch fermentation (D).%以Clostridium saccharobutylicum DSM 13864为丁醇生产菌株,采用正交优化法确定了以玉米秸秆水解液为底物的最优培养基配方:CaCO3 2.0 g/L,(NH4)2SO4 1.0 g/L,K2HPO4 0.5 g/L,玉米浆干粉15 g/L,MnSO4·H2O 0.01 g/L.采用该最优培养基配方,在3L发酵罐中发酵培养40 h后,总溶剂为16.1 g/L,其中丁醇10.59 g/L,发酵强度为0.40 g/(L·h),生产率为0.33 g/g.通过对发酵过程进行变温调控证实低温有利于溶剂积累,总溶剂由17.01 g/L提高至19.98 g/L.在稀释率为0.1 h-1的变温连续发酵过程中,从80 h开始进入稳定产溶剂状态并持续至269 h,该阶段平均总溶剂为12.28 g/L(其中丁醇8.50 g/L),发酵强度为1.23 g/(L·h),是变温分批发酵(D方式)的4.92倍.

  4. Effect of steam explosion pretreatment on ensiling performance of dry corn stover%不同汽爆预处理对干玉米秸秆青贮效果的影响

    Institute of Scientific and Technical Information of China (English)

    贾晶霞; 梁宝忠; 王艳红; 赵永亮; 李建东

    2013-01-01

    Ensiling is an important crop straw feed processing method. It can not only effectively improve the nutritional value of crop straws, but also increase the storage time. Currently the corn and silage corn cultivated areas are 3.35×107 and 2.083×106 hm2 in China. The corn stover (CS) annual production is about 260 million tons. However, due to the requirements of the moisture content and freshness, only the un-harvested or newly harvested CS can be used as ensiling. This limits the operation time of ensiling and the scope of CS. In order to expand the available range of CS and reduce the unnecessary use of additives, the advantages of three straw feed processing methods of silage, microbial silage and steam explosion were studied. On these bases, the feasibility of improving dry CS ensiling performance by steam-explosion pretreatment was tested in this work. First, the dry CS was cut into 3-5 cm, adjusted the moisture content to 50% (w/w) and pretreated under different intensities (0.8-1.4 MPa, 5 min) in a 5 L steam explosion reactor. The steam-exploded CS was water-washed to remove the soluble fraction. Then the structural components of cellulose, hemicellulose and Klason lignin in the solid residual and the soluble sugar, acetic acid and furfural in the water-washed liquor were determined according to the two-step quantitative hydrolysis method recommended by National Renewable Energy Laboratory (NREL). Based on these data, the material recovery ratio was calculated to evaluate the efficiency of steam explosion pretreatment. Then, the pretreated and un-pretreated CS samples were used in ensiling experiments. In addition to water, any microbial inoculants and enzyme was not used. The samples including control samples were added tap water according to the real moisture content and adjusted the final moisture content to 70%(w/w). Each 5 kg sample was loaded in a sealed plastic bag and ensilaged in 15-25℃. Throughout the experiment, silage feed pH value, organic

  5. 添加肠球菌对收获籽实后玉米秸秆青贮品质及体外发酵特性的影响%Effect of adding enterococci on fermentation quality and in vitro fermentation of corn stover silages

    Institute of Scientific and Technical Information of China (English)

    郭刚; 霍文婕; 张拴林; 原现军; 王永新; 陈红梅; 刘强

    2016-01-01

    [目的]探究两种肠球菌对玉米秸秆青贮饲料发酵品质及体外发酵特性的影响。[方法]试验以收获玉米果穗后的玉米秸秆为青贮原料,设对照、蒙氏肠球菌(Enterococcus mundtii )和粪肠球菌(E .faecalis)添加3个处理,乳酸菌添加量为5 log cfu·g-1 FW,青贮45 d 后取样分析青贮饲料发酵品质,并利用体外产气法测定青贮饲料鲜贮发酵特性。[结果]添加两种肠球菌显著降低了青贮饲料氨态氮和乙酸含量(P <0.05),显著提高了乳酸/乙酸比率(P <0.05),并提高了青贮饲料体外发酵潜在产气量、发酵液挥发性脂肪酸产量(P <0.05)及乙酸比例(P <0.05)。[结论]添加两种肠球菌对玉米秸秆青贮饲料发酵品质和体外发酵均具有一定的改善作用。%Objective]This study was to investigate the effect of adding enterococci on fermentation quality and in vitro fermentation of corn stover silages.[Methods]The treatments were as follows:control,E .mundtii and E .faecalis , the levels of each lactic acid bacteria inoculation were determined at 5 log cfu·g-1 FW (fresh weight).Corn stover was the residue remaining after grain was harvested.Five reduplicate silos per treatment were opened on 45 days after ensi-ling and the fermentation quality was analyzed.The rumen fermentation characteristics of fresh silage were determined by in vitro gas production method.[Results]Compared to control silage,corn stover inoculated with E .mundtii or E . faecalis had significantly lower ammonia nitrogen and acetate acid contents (P <0.05),higher ratio of lactic acid to acetic acid (P <0.05),and higher potential gas production,total VFA concentration (P <0.05)and acetate acid pro-portion (P <0.05)of ruminal fermentation liquid.[Conclusion]In conclusion,it was suggested that addition of En-terococcus species improved the fermentation quality and in vitro fermentation of corn stover silages.

  6. Biogas production of unhydrolyzed solid from corn stover hydrolysate by anaerobic digestion%玉米秸秆水解残渣厌氧消化的产气性能

    Institute of Scientific and Technical Information of China (English)

    陈世平; 汤晓玉; 肖泽仪; 王文国; 尹小波; VENKATESHBalan; 吴波; 胡启春

    2016-01-01

    为了考察玉米秸秆水解残渣(Unhydrolyzed solid,UHS)的厌氧消化产甲烷潜力,研究了接种物类型、接种比例以及发酵温度对UHS产气性能的影响。结果表明,餐厨垃圾厌氧消化液作为接种物时,UHS具有较高的产气能力,累积甲烷产量达到208.06 mL· g-1 VS;UHS的累积甲烷产量与接种物对底物的比值(Inoculum to substrate ratios, RI/S)有关,其值随着接种比例的减小而逐渐降低,当接种比例RI/S为0.1:1~3:1时,累积甲烷产量为111.20~224.48 mL·g-1 VS,UHS的生物降解率为27.89%~56.29%,其降解能力随着底物浓度的升高而降低;在高温发酵(55℃)和中温发酵(35℃)条件下,相同接种比例的对照组中,UHS累积甲烷产量较为接近,但高温发酵的产气速率明显高于中温发酵。%Biochemical conversion in lignocellulosic biorefineries generates large amount of solid residues(Unhydrolyzed solids, UHS). The UHS mainly contains carbohydrates and lignin. Anaerobic digestion could be applied to convert those carbohydrates into CH4 and to natural-ly enrich lignin for further utilization, thus improving the economics of the whole biorefinery process. Here the methane production potential of UHS derived from corn stover biorefinery was investigated under different types of inoculum, diverse inoculum to substrate ratios(RI/S) and various fermentation temperatures. Results indicated that the biogas productivity of UHS was higher when using kitchen waste AD slur-ry as inoculum, and the cumulative methane production was up to 208.06 mL·g-1 VS. The cumulative methane production decreased with decrease in RI/S. When RI/S was in range of 0.1:1 to 3:1, the cumulative methane production was between 111.20 to 224.48 mL·g-1 VS and the UHS biodegradability ranged from 27.89% to 56.29%. The biodegradability of UHS decreased as substrate concentration increased. The cumulative methane production was similar at both 55

  7. 金属离子及表面活性剂对纤维素酶水解预处理玉米秸秆的影响%Influence of Metal Ions and Surfactants on the Hydrolysis of Pretreated Corn Stover by Cellulase

    Institute of Scientific and Technical Information of China (English)

    王娜娜; 姚秀清; 张全; 关浩

    2011-01-01

    Influences of metal ions and surfactants on the hydrolysis of pretreated corn stover by cellulase were researched. It was showed that some metal ions and surfactants loading in hydrolysis system, such as Cu2+ and Tween80, could enhance the activity of cellulase. In a 50 g hydrolysis system at pH 5.0, temperature 50 degrees centigrade , pretreated corn stover ( PCS) 10 wt% , enzyme loading 1 g ( 1300 from Zensun Sci & Tech Co. , Ltd) ,hydrolysis time 3 hours, the reducing sugar concentration with Tween80 (20 mg/L) loading is 21.3 percent of no Tween80 loading, and reducing sugar concentration with Cu2+ (0.13 mmol/L) loading is 138. 2 percent of no Cu2+loading.%研究了不同的金属离子及表面活性剂对纤维素酶水解的影响,试验表明添加某些金属离子及表面活性剂能够促进纤维素酶的水解,其中Cu2+和Tween80促进效果最佳.50g反应体系在pH 5.0、温度50℃、预处理玉米秸秆(PCS)10 wt%、1300纤维素酶(泽生科技)加入量1g条件水解3 h,添加20 mg/L Tween80的水解液中还原糖浓度比不加Tween80时提高21.3%;添加0.13 mmoL/LCu2+的水解液中还原糖浓度比不加金属离子时提高38.2%.

  8. Discussion of the Development and Utilization of the Nutrition Value of Corn Stover -Rich and Low-cost Resources but haven't been Fully Exploited%玉米秸秆营养价值的开发利用——未充分开发利用的廉价资源

    Institute of Scientific and Technical Information of China (English)

    史海涛; 杨军香; 田雨佳; 黄文明; 毕研亮; 曹志军; 李胜利

    2012-01-01

    我国有着极其丰富的秸秆资源,每年仅玉米秸秆产量就达2.65亿t左右,但利用率非常低,大部分被直接还田或者焚烧,在造成巨大的资源浪费的同时还引起了特别严重的空气污染问题,直接威胁到人们的健康。长期以来,我国规模化奶牛场在粗饲料种类的选择上存在严重的误区,认为只有采用像苜蓿这样的进口优质粗饲料才能获得理想的生产性能和最佳的经济效益,忽视了对玉米秸秆资源的开发利用。实际上只要妥善解决玉米秸秆机械化收割等一系列产中及产后问题,并通过化学、物理或微生物方法对玉米秸秆进行加工处理,这部分廉价资源就可以成为后备牛、干奶牛及泌乳中后期奶牛良好的粗饲料来源。本文在总结大量相关研究成果的基础上,阐述了合理利用玉米秸秆资源的重要意义,综述了影响玉米秸秆饲用价值的因素及提高其饲用价值的处理方法,并针对各种处理方法的利弊展开分析。%China is rich in straw resources. The annual production of corn stover IS more than 200 mlllon tons, out the utilization ratio of them is very low. There has been an obvious misunderstanding of the large-scale dairy farms in the selecting of roughage for a long time. Many operators and experts think that dairy farms can achieve the best productivity and economic benefits only when the dairy cows are fed with the high-quality roughage such as alfalfa imported from abroad, but neglecting the exploiting of the vast corn stover resources. In fact, these low-cost resources can be qualified roughage of the heifers, dry dairy cows, mid-late lactation cows when they were treated by some chemical, physical or biological methods. Based on referring to abundant internal and external documents, the importance of rationally utilizing cron stover resources is discussed, factors affecting the feeding value of corn stover and the ways to

  9. 稀酸预处理玉米秸秆共发酵产乙醇抑制物的来源探究%Inhibitors Origination during Dilute Sulfuric Acid Pretreatment of Corn Stover for Ethanol Production by Co-fermentation

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    针对己糖(葡萄糖)、戊糖(木糖)共发酵产纤维素乙醇抑制物控制的关键性瓶颈,分别以玉米秸秆及玉米秸秆中非木质素的4类组分纤维素、半纤维素、热水提取物和乙醇提取物为原料,并以0.75%稀硫酸和180℃预处理40 min得到5种稀酸预处理液。以60 g/L葡萄糖和30 g/L木糖为碳源,分别添加上述稀酸预处理液,比较了5种预处理液对休哈塔假丝酵母( Candida shehatae)共发酵产乙醇的影响,并探究主要抑制物来源。结果表明:133 g/L全玉米秸秆稀酸预处理的降解物会完全抑制C. shehatae糖代谢和共发酵。在玉米秸秆稀酸预处理过程中,4类非木质素组分降解物均会导致乙醇得率下降,其中100 g/L纤维素降解物完全抑制木糖的发酵,半纤维素降解物同时抑制葡萄糖和木糖的发酵,甚至对酵母产生致死毒性,热水提取物和乙醇提取物降解物延滞糖利用和酵母生长。玉米秸秆共发酵产乙醇抑制物主要来自于纤维素和半纤维素在稀酸预处理中的降解反应,主要为甲酸、乙酸、乙酰丙酸、5-羟甲基糠醛和糠醛,同时还存在着其他降解产物的毒性或协同毒性。%In order to solve the key technical bottleneck for fuel ethanol production regarding the removal of inhibitors during co-fermentation of hexose and pentose, four main non-lignin constituents of corn stover, including cellulose, hemicellulose, hot water extractives and ethanol extractives, were prepared and then treated with 0. 75% dilute sulfuric acid at 180℃ for 40 min, respectively. 60 g/L glucose and 30 g/L xylose were added to these prehydrolyzates. 5 various ethanolic fermentation medium were fermented to produce ethanol by Candida shehatae, respectively. Thus, the influences on ethanolic co-fermentation and the origination of the key inhibitors were comparatively studied. The results showed that the degradation products formed from 133 g/L corn stover inhibited

  10. Life cycle assessment of energy consumption and greenhouse gas emissions of cellulosic ethanol from corn stover%玉米秸秆基纤维素乙醇生命周期能耗与温室气体排放分析

    Institute of Scientific and Technical Information of China (English)

    田望; 廖翠萍; 李莉; 赵黛青

    2011-01-01

    生命周期评价是目前分析产品或工艺的环境负荷唯一标准化工具,利用其生命周期分析方法可以有效地研究纤维素乙醇生命周期能耗与温室气体排放问题.为了定量解释以玉米秸秆为原料的纤维素乙醇的节能和温室气体减排潜力,利用生命周期分析方法对以稀酸预处理、酶水解法生产的玉米秸秆基乙醇进行了生命周期能耗与温室气体排放分析,以汽车行驶1 km为功能单位.结果表明:与汽油相比,纤维素乙醇E100(100%乙醇)和E10(乙醇和汽油体积比=1:9)生命周期化石能耗分别减少79.63%和6.25%,温室气体排放分别减少53.98%和6.69%;生物质阶段化石能耗占到总化石能耗68.3%,其中氮肥和柴油的生命周期能耗贡献最大,分别占到生物质阶段的45.78%和33.26%:工厂电力生产过程的生命周期温室气体排放最多,占净温室气体排放量的42.06%,提升技术减少排放是降低净排放的有效措施.%Life Cycle Assessment (LCA) is the only standardized tool currently used to assess environmental loads of products and processes.The life cycle analysis, as a part of LCA, is a useful and powerful methodology for studying life cycle energy efficiency and life cycle GHG emission.To quantitatively explain the potential of energy saving and greenhouse gas (GHG) emissions reduction of corn stover-based ethanol, we analyzed life cycle energy consumption and GHG emissions of corn stover-based ethanol by the method of life cycle analysis.The processes are dilute acid prehydrolysis and enzymatic hydrolysis.The functional unit was defined as 1 km distance driven by the vehicle.Results indicated: compared with gasoline, the corn stover-based E100 (100% ethanol) and E10 (a blend of 10% ethanol and 90% gasoline by volume) could reduce life cycle fossil energy consumption by 79.63% and 6.25% respectively, as well as GHG emissions by 53.98% and 6.69%; the fossil energy consumed by biomass stage

  11. Comparison of corn and switchgrass on marginal soils for bioenergy

    Energy Technology Data Exchange (ETDEWEB)

    Varvel, G.E.; Vogel, K.P.; Mitchell, R.B. [USDA-ARS, 344 Keim Hall, University of Nebraska-Lincoln, P.O. Box 830937, Lincoln, NE 68583-0937 (United States); Follett, R.F. [USDA-ARS, Room S-100, 2150 Centre Avenue Building D, Ft. Collins, CO 80526-8119 (United States); Kimble, J.M. [USDA-NRCS, National Soil Survey Center, 100 Centennial Mall North, Lincoln, NE 68508-3866 (United States)

    2008-01-15

    Crop residues such as corn (Zea mays L.) stover are viewed as an abundant and inexpensive source of biomass that can be removed from fields to produce bioenergy. Assumptions include that with minimum or no-tillage farming methods, there will be no deleterious production or environmental effects. A long-term field study was established in eastern Nebraska, USA, to compare the switchgrass managed as a biomass energy crop versus no-till corn on a non-irrigated site, marginal for row-crop production, in the western Corn Belt. Our objective in this paper is to report on corn stover removal effects on corn grain yields and potential ethanol production in both cropping systems. Corn, under no-till management, and switchgrass were grown at three N fertilizer levels. In the first 5 years (2001-2005), removal of half the available stover significantly reduced corn yields. During that same time period, the potential ethanol yield for switchgrass was equal to or greater than the potential total ethanol yield of corn grain and harvested stover fertilized at the same optimum N rate. The effect of crop residue removal on crop productivity needs to be investigated in other agro-ecosystems and the potential use of dedicated perennial biomass energy crops should remain a viable renewable energy option on non-irrigated marginal croplands. (author)

  12. Enhancement Effect of Exogenous Additives on Enzymatic Conversion of Moderate Temperature Alkali-treated Corn Stover Residue%外源添加物强化中温碱抽提玉米秸秆渣酶解过程的研究

    Institute of Scientific and Technical Information of China (English)

    欧阳嘉; 李鑫; 陈牧; 连之娜

    2012-01-01

    Moderate temperature alkali-extracted com stover was used as a substrate for enzymatic hydrolysis. The effects of different additives on enzyme hydrolysis were investigated and their possible mechanisms were studied. The results indicated that polyethylene glycol 6000 (PEG6000) was the most effective additive. The moderate temperature alkali pretreatment resulted in decreased lignin (50.02 % removal). When 40 g/L cellulose was treated by 15 FPIU/g Celluclast 1.5 L and 30 BU/g Novozyme 188 for 48 h, the sample with 73.51% glucose yield and 84. 51% hydrolysis yield was obtained as 4. 0 g/L PEG6000 was added, which increased 26.2% and 27. 1% in contrast to the sample without PEG6000, respectively. Addition of PEG6000 reduced the adsorption of enzyme protein on alkali-extracted corn stover. On the other hand, the enzyme distribution in liquid phase, enzyme activity and stability were promoted. The cellulase activity of celluclast 1. 5 L increased by 34. 1 % and its stability increased by 57. 3% in presence of PEG.%以中温碱抽提玉米秸秆渣为研究对象,考察了不同外源添加物对酶解工艺的辅助作用和影响机制.研究结果表明,采用中温碱抽提玉米秸秆可以脱除50.02%木质素,添加PEG6000辅助水解作用明显.当纤维素底物质量浓度40 g/L,酶用量在纤维素酶(Celluclast 1.5 L) 15 FPIU/g和纤维二糖酶( Novozyme 188)30 BU/g水解48 h,添加PEG6000 4.0 g/L葡萄糖得率73.51%,酶解率84.51%,较未添加样品上升幅度分别达到26.2%和27.1%.添加PEG不仅可以减轻酶蛋白和碱抽提玉米秸秆渣的吸附,提高酶在液相中的分配,对纤维素酶活力和稳定性也具有显著的促进作用.PEG存在下纤维素酶1.5L的滤纸酶活提高34.1%,稳定性提高57.3%.

  13. Effects of neutralizing agents on enzymatic hydrolysis of corn stover pretreated by dilute acid-mediated steam explosion%中和剂对稀酸蒸爆玉米秸秆酶解效果的影响

    Institute of Scientific and Technical Information of China (English)

    张红漫; 赵晶; 林增祥; 黄和

    2011-01-01

    Com stovers pretreated by dilute sulphuric acid-mediated steam explosion were neutralized to pH 5 with Ca(OH) 2, NaOH and NH40H, or alternatively washed with water to the same pH. The cellulose conversion rates by enzymatic hydrolysis under the conditions of solide liquid ratio of 1: 10 and cellulases loading of 14 U/g cellulose were investigated. The results showed that after enzymatic hydrolysis for 72 h, the cellulose conversion rates of the cooresponding samples were up to 91.7%, 80. 7%, 83. 1%and 81.7%, respectively. Meanwhile, the effects of various factors on the efficency of cellulase hysrolysis were also discussed. Considering the cost and following fermentation process, the neutralizing agent NH4OH was the choice for the industrialization production.%以稀酸蒸爆的玉米秸秆为研究对象,考察直接水洗、Ca(OH)2 、NaOH、氨水中和物料至pH 5,在固液比1:10、酶添加量为每克纤维素14 U(滤纸酶活)的酶解条件下对纤维素转化率的影响.结果表明:水洗、Ca(OH)2、NaOH、氨水中和物料酶解72 h后,纤维素转化率分别为91.7%、80.7%、83.1%及81.7%.同时对影响纤维素酶解效率的各种因素进行了探讨.从综合成本及后续发酵过程考虑,用氨水中和稀酸蒸爆物料更适合于工业化生产.

  14. Study on Semi-Gasification Combustion Technology of Stover

    Directory of Open Access Journals (Sweden)

    Zhao Qing-Ling

    2013-04-01

    Full Text Available In order to develop a mechanism of clean and efficient combustion, this study studied the combustion mechanism of stover semi-gasification by a clean stove designed. The experimental material was corn Stover briquettes. Process of semi-gasification combustion can be divided into two parts: gasification stage and combustion stage. First, under the low primary air amount, stover gives off partly combustible gas (Volatile matter. Then, the combustible gas rises and burns in the upper Furnace when it meets higher secondary air amount. At the same time, the residue remained in bottom Furnace keeps on gasifying and burning under high temperature until the fuel is exhausted. In the process, two phases (solid and gas combustion becomes into one phase (gas combustion. Due to inadequate primary air and low temperature of semi-gasification chamber (550-750℃, all the ash was loose and no slag was found. Moreover, combustible gas produced was directly completely burned off and no tar appeared in the emissions. According to the result, the combustion thermal efficiency of clean stove (75% is up to 75% and higher than primary stove (below 12%.

  15. Environmental Tradeoffs of Stover Removal and Erosion in Indiana

    Energy Technology Data Exchange (ETDEWEB)

    Alicia English; Wallace E. Tyner; Juan Sesmero; Phillip Owens; David J. Muth, Jr.

    2013-01-01

    When considering the market for biomass from corn stover resources erosion and soil quality issues are important to consider. Removal of stover can be beneficial in some areas, especially when coordinated with other conservation practices, such as vegetative barrier strips and cover crops. However, benefits are highly dependent on several factors, namely if farmers see costs and benefits associated with erosion and the tradeoffs with the removal of biomass. Although typically considered an internal cost, the implication is important to policy and contracting for biomass. This paper uses results from an integrated RUSLE2/WEPS model to incorporate six different regime choices, covering management, harvest and conservation, into a simple profit maximization model to show these tradeoffs explicitly. The results of this work show how different costs for erosion, biomass and conservation managements will affect behavior. If erosion prices are low and no conservation requirement exists, biomass removal will significantly increase erosion, but only in some areas. Alternatively, when erosion prices are high, farmers will parallel socially optimal levels of erosion and conservation management practices can be incentivized through access to a market for stover.

  16. Changes of apparent enzymatic activities and physical and chemical properties of steam-exploded corn stover during enzymatic hydrolysis%汽爆玉米秸秆酶解时表观酶活及物料理化性质的变化

    Institute of Scientific and Technical Information of China (English)

    张霞; 李红伟; 马晓建

    2013-01-01

    Based on engineering practice, the sugar concentration, power and apparent enzymatic activities change of enzymolysis suspension in enzymolysis process of steam-exploded corn stover (SECS) were studied to promote the industrialization process of corn stover producing butanol. At the same time, the changes of SECS physical and chemical properties during enzymatic hydrolysis were studied by biological microscope, laser scattering particle size distribution analysis (LSPSDA), X-ray diffraction (XRD), and scanning electron microscopy (SEM). Enzymatic hydrolysis was performed in a reactor with standard commercial cellulase as the enzyme. Enzymatic hydrolysis took place at 50℃, 100 r/min (four oblique leaves T agitator), enzyme loading of 60 IU/g corn stover, a solid:liquid ratio 3:10, and 48 h duration. Before the enzyme was added, the pH of the residues was adjusted to 4.8 with sodium hydroxide. After enzymatic hydrolysis the samples were taken from the reactor and centrifuged, and the supernatant phase was collected and analyzed for sugar concentrations, cellulase apparent enzymatic activities, and the physical and chemical properties of SECS. Sugar concentrations were tested by 3,5-Dinitrosalicylicacid(DNS). Cellulase apparent enzymatic activities were determined by the filter-paper method. Scanning electron microscopy and X-ray diffraction analysis were conducted. The results show: In the first reaction, the sugar concentration in the enzymatic hydrolysis liquid increased very quickly, especially in the first hour. The change in sugar concentration was not very clear later in the hydrolysis reaction due to such factors as substrate loss, changes in substrate properties, cellulose inactivation, decreasing cellulose synergy, and so on. The sugar concentration after enzymatic hydrolysis 48 h was 56.25 g/L. The stirring power decreased during enzymatic hydrolysis and declined most quickly after one hour of enzymatic hydrolysis, then began to decline more slowly. The

  17. Nitrogen Uptake by Corn and N Recovery in Grain in Dry Farmland

    Institute of Scientific and Technical Information of China (English)

    Wang Xiao-bin; Cai Dian-xiong; Zhang Jing-qing; Gao Xu-ke

    2003-01-01

    There have been considerable concerns with the reduced beneficial yield response to fertilizer and the less efficient use of fertilizers with the fast growth in fertilizer consumption in China, as well as problems with low and unstable fertilizer use effectiveness in dry farmland. The paper discusses the effect of precipitation, corn stover incorporation and fertilizer management on N uptake by corn and fertilizer N use efficiency in dry farmland. The results showed that in the areas with 520 mm rainfall under the cropping system of one crop of spring corn per year, N uptake and N recovery by corn, and yields were higher at rates of 105 kg fertilizer N, 1 500 kg cattle manure and 6 000 kg corn stover incorporated per hectare. N uptake was significantly affected by precipitation during growing periods and soil moisture at sowing, fertilizer N apparent recovery varied from 58% in a rainy year to 7% in the year with a very dry soil, and the average of 7 years (1993-1999) was about 30%. The 15N tracer experiment showed that around 40% of N uptake was derived form fertilizer N and 60% from soil N. The results from 3-year 15N tracer study (1997-1999) indicated that the 1st years N recovery in grain with and without stover incorporated was about 24% and 17%, respectively, the accumulative 3-year total about 36% and 25%,the percentage of N recovery with stover incorporated increased about 11. The accumulative 3-year N loss with and without stover incorporated was about 26% and 45%, respectively, the percentage of N loss with stover decreased about 19. The studies supply information on land applications of fertilizer N and corn stover in dry farmland.

  18. 稀酸预处理对玉米秸秆中4类非木质素组分的降解规律研究%Degradation of Four Non-lignin Components in Corn Stover by Pretreatment of Dilute Sulfuric Acid

    Institute of Scientific and Technical Information of China (English)

    蒋发现; 徐勇; 朱均均; 勇强; 余世袁

    2015-01-01

    Four main non-lignin constituents in corn stover, including cellulose, hemicellulose, hot water extractives, and ethanol extractives, were prepared and pretreated with dilute sulfuric acid, respectively. Their water soluble degradation products profiles were analyzed by high performance liquid chromatography detection. During dilute sulfuric acid pretreatment, glucose, formic acid ( FA ) , levulinic acid ( LA ) , and 5-hydroxymethylfurfural ( HMF ) were released from cellulose degradation. Xylose, arabinose, glucuronic acid, galacturonic acid, acetic acid ( AA) , and furfural were released from hemicellulose degradation. The hot water extractives degradation produced glucose, xylose, arabinose, FA, AA, LA, HMF, and furfural, and only trace of glucose, xylose, AA, LA, and HMF were found in the hydrolyzates of ethanol extractives. Totally, FA, LA, and HMF mainly originated from cellulose degradation at the yields of 1. 4%, 2. 7%, and 2. 2%, while AA and furfural came from hemicellulose degradation at the yields of 3. 1% and 7. 8% on the basis of corn stove weight, respectively. Orthogonal tests showed that the AA production was significantly affected by the concentration of sulfuric acid, while the FA, LA, HMF, and furfural formations were seriously affected by the pretreatment temperature.%分离制取玉米秸秆中非木质素类的4类组分纤维素、半纤维素、热水提取物和乙醇提取物,采用高效液相色谱研究其在稀硫酸预处理过程中主要水溶性降解产物的生成规律。其中,纤维素降解生成葡萄糖、甲酸、乙酰丙酸和5-羟甲基糠醛;半纤维素降解生成木糖、阿拉伯糖、葡萄糖醛酸、半乳糖醛酸、乙酸和糠醛;热水提取物降解生成葡萄糖、木糖、阿拉伯糖、甲酸、乙酸、乙酰丙酸、5-羟甲基糠醛和糠醛;乙醇提取物降解生成少量的葡萄糖、木糖、乙酸、乙酰丙酸和5-羟甲基糠醛。抑制物甲酸、乙酰丙酸和5-羟甲基糠

  19. Nutrient and carbohydrate partitioning in sorghum stover

    International Nuclear Information System (INIS)

    Sorghum [Sorghum bicolor (L.) Moench] stover has been demonstrated to be a potential biomass energy source. Complete aboveground crop removal, however, can result in soil degradation. Differential dry matter, nutrient, and carbohydrate partitioning by sorghum cultivars may allow management strategies that return certain parts to the field while removing other portions for alternative uses, such as energy production. A field study was conducted to determine N,P,K, nonstructural carbohydrate, cellulose hemicellulose, and lignin distributions in stover of three diverse sorghum cultivars of differing harvest indices. Determinations were based on total vegetative biomass; total blades; total stalks; and upper middle, and lower blades and stalks. Concentrations of N and P were higher in blades than stalks and generally declines from upper to lower stover parts. Large carbohydrate and lignin concentration differences were observed on the basis of cultivar and stover part. Greater nutrient partitioning to the upper third of the intermediate and forage-type sorghum stovers was observed as compared to the conventional grain cultivar. Stover carbohydrates for all cultivars were mainly contained in the lower two-thirds of the stalk fraction. A system was proposed for returning upper stover portion to soil, while removing remaining portions for alternative uses

  20. Selective Detoxification of Steam Explosion Pretreated Stream from Corn Stover with Anion Exchange Resin%阴离子交换树脂对玉米秸秆蒸汽爆破预处理液的选择性脱毒

    Institute of Scientific and Technical Information of China (English)

    徐勇; 江寅申; 左志凤; 张行星; 勇强; 余世袁

    2012-01-01

    The selective adsorption detoxification capacity (SADC) were experimentally compared among 4 anion exchange resin products respectively in the simulated solution (SS) by mixed sugars,organic acids,furan aldehydes and the steam explosion pretreated stream from corn stover (SES). A macroporous styrene series,i. e. weakly alkaline anion exchange resin D301 ,was then selected due to its better adsorbing priority to inhibitors of acids and furan aldehydes than sugars in SS and SES. Resin D301 could adsorb most inhibitors but little sugars in SS. For resin D301 ,acids adsorption was in agreement to Freundlish multilayer isothermal adsorption feature but sugars and furan aldehydes adsorption were in agreement with Langmuir monolayer isothermal adsorption feature. Resin D301 still showed its SADC in SES. It was different from SS in SES that the total inhibitors adsorption ratio decreased markedly by 36.6 % from 70.2 % to 44. 5 % ,but on the contrary,the monosaccharide adsorption ratio raised sharply by 20-31 times from 1.2% to 25. 5 % -37. 9 % . The adsorption ratio of xylo-oligosaccharide and gluco-oligosaccharide reached 13.7 % and 10.6 % respectively because of unknown components interference. 69. 1 % of acids,94.4 % of furan aldehydes,75.4 % of colored substances and 33.9 % of degraded lignin were removed together with 16.3 % of sugars in SES by the combined method of vacuum evaporation and resin D301 adsorption. Although the combined method for detoxification of SES showed a promising future in effectively improving the fermentability of SES,we still have to face the big gap from industrial production. It was noticed that the wider and deeper study is needed to develop the detoxification technology of pretreated lignocellulosic biomass.%分别以糖-酸-醛模拟液和玉米秸秆蒸汽爆破预处理液为实验材料,比较了4种典型的阴离子交换树脂的选择性交换吸附脱毒性能,从中筛选出大孔型苯乙烯系阴离子交换树脂D301.D301

  1. Legumes and forage species sole or intercropped with corn in soybean-corn succession in midwestern Brazil

    Directory of Open Access Journals (Sweden)

    Gessí Ceccon

    2013-02-01

    Full Text Available The feasibility of no-tillage in the Cerrado (Savanna-like vegetation of Brazil depends on the production of sufficient above-ground crop residue, which can be increased by corn-forage intercropping. This study evaluated how above-ground crop residue production and yields of soybean and late-season corn in a soybean-corn rotation were influenced by the following crops in the year before soybean: corn (Zea mays L. intercropped with Brachiaria (Urochloa brizantha cv. Marandu, B. decumbens cv. Basilisk, B. ruziziensis, cv. comum., Panicummaximum cv. Tanzânia, sunn hemp (Crotalaria juncea L., pigeon pea [Cajanus cajan (L. Millsp]; sole corn, forage sorghum [Sorghum bicolor (L. Moench (cv. Santa Elisa], and ruzi grass. In March 2005, corn and forage species were planted in alternate rows spaced 0.90 m apart, and sole forage species were planted in rows spaced 0.45 m apart. In October 2005, the forages were killed with glyphosate and soybean was planted. After the soybean harvest in March 2006, sole late-season corn was planted in the entire experimental area. Corn grain and stover yields were unaffected by intercropping. Above-ground crop residue was greater when corn was intercropped with Tanzania grass (10.7 Mg ha-1, Marandu (10.1 Mg ha-1, and Ruzi Grass (9.8 Mg ha-1 than when corn was not intercropped (4.0 Mg ha-1. The intercropped treatments increased the percentage of soil surface covered with crop residue. Soybean and corn grain yields were higher after sole ruzi grass and intercropped ruzi grass than after other crops. The intercropping corn with Brachiaria spp. and corn with Panicum spp. increases above-ground crop residue production and maintains nutrients in the soil without reducing late-season corn yield and the viability of no-till in the midwestern region of Brazil.

  2. Effects of grind size when alkaline treating corn residue and impact of ratio of alkaline-treated residue and distillers grains on performance of finishing cattle.

    Science.gov (United States)

    Shreck, A L; Nuttelman, B L; Schneider, C J; Burken, D B; Harding, J L; Erickson, G E; Klopfenstein, T J; Cecava, M J

    2015-07-01

    Two studies were conducted to optimize use of alkaline-treated corn stover and wheat straw and distillers grains as partial corn replacements. In Exp. 1, a finishing experiment used 30 pens (12 steers/pen) of calf-fed steers (initial BW = 374 ± 23.9 kg) with a 2 × 2 + 1 factorial arrangement of treatments with 6 replications per treatment. Factors were grind size, where corn stover was processed through a 2.54- or 7.62-cm screen, and chemical treatment (corn stover either fed in native, non-treated form [NT; 93.4% DM] or alkaline treated [AT; 5% CaO hydrated to 50% DM]). No interactions (P ≥ 0.38) were noted between grind size and chemical treatment. Feeding AT compared with NT improved (P ≤ 0.02) final BW, ADG, and G:F. Reducing grind size improved (P ≤ 0.01) ADG and G:F, and no interaction with chemical treatment was observed. Steers fed AT had similar DMI, ADG, G:F, and carcass characteristics compared with a 5% roughage control that contained 15 percentage units (DM basis) more corn. In Exp. 2, 60 individually fed steers (initial BW = 402 ± 61.4 kg) were randomly assigned to 10 diets. Six treatments evaluated 10, 25, or 40% dry-rolled corn (DRC), which was replaced with either a 2:1 or 3:1 ratio (DM basis) of modified distillers grains plus solubles (MDGS) and treated corn stover analyzed as a 2 × 3 factorial. An additional 3 treatments were added where a 3:1 ratio of MDGS:straw were compared with a 3:1 ratio of MDGS:stover. As DRC increased, G:F (P = 0.06) quadratically increased for 3:1 MDGS:stover diets. Increasing DRC increased (P = 0.07) G:F in treated stover diets, regardless of ratio. Increasing DRC increased (P = 0.10) ADG for 3:1 ratios for both straw and stover. Reducing grind size, feeding a maximum of 20% treated crop residue, and maintaining at least 25% corn in the diet are strategies for optimizing cattle performance when replacing dry-rolled and high-moisture corn with treated crop residues and distillers grains. PMID:26440029

  3. 玉米秸秆及纤维素高值化应用的研究进展%Research progress on the high-valuable applications of corn stalks and corn stalks cellulose

    Institute of Scientific and Technical Information of China (English)

    王犇; 潘高峰; 黄科林

    2014-01-01

    文章从玉米产业废弃物玉米秸秆的应用出发,对玉米秸秆从传统方面进行总结,对玉米秸秆纤维素从降解、再生和制备吸附材料三个角度进行高值化应用的综述。%Starting From the applications of corn industry waste corn stalks, This paper summarizes from corn stover traditionally, then the high-value applications of corn stalk cellulose was reviewed from degradation, regeneration and the preparation of the adsorbent material.

  4. Integrating livestock manure with a corn-soybean bioenergy cropping system improves short-term carbon sequestration rates and net global warming potential

    International Nuclear Information System (INIS)

    Carbon cycling and the global warming potential (GWP) of bioenergy cropping systems with complete biomass removal are of agronomic and environmental concern. Corn growers who plan to remove corn stover as a feedstock for the emerging cellulosic ethanol industry will benefit from carbon amendments such as manure and compost, to replace carbon removed with the corn stover. The objective of this research was to determine the effect of beef cattle feedlot manure and composted dairy manure on short-term carbon sequestration rates and net global warming potential (GWP) in a corn-soybean rotation with complete corn-stover removal. Field experiments consisting of a corn-soybean rotation with whole-plant corn harvest, were conducted near East Lansing, MI over a three-year period beginning in 2002. Compost and manure amendments raised soil carbon (C) at a level sufficient to overcome the C debt associated with manure production, manure collection and storage, land application, and post-application field emissions. The net GWP in carbon dioxide equivalents for the manure and compost amended cropping systems was -934 and -784 g m-2 y-1, respectively, compared to 52 g m-2 y-1 for the non-manure amended synthetic fertilizer check. This work further substantiates the environmental benefits associated with renewable fuels and demonstrates that with proper management, the integration of livestock manures in biofuel cropping systems can enhance greenhouse gas (GHG) remediation.

  5. Integrating livestock manure with a corn-soybean bioenergy cropping system improves short-term carbon sequestration rates and net global warming potential

    International Nuclear Information System (INIS)

    Carbon cycling and the global warming potential (GWP) of bioenergy cropping systems with complete biomass removal are of agronomic and environmental concern. Corn growers who plan to remove corn stover as a feedstock for the emerging cellulosic ethanol industry will benefit from carbon amendments such as manure and compost, to replace carbon removed with the corn stover. The objective of this research was to determine the effect of beef cattle feedlot manure and composted dairy manure on short-term carbon sequestration rates and net global warming potential (GWP) in a corn-soybean rotation with complete corn-stover removal. Field experiments consisting of a corn-soybean rotation with whole-plant corn harvest, were conducted near East Lansing, MI over a three-year period beginning in 2002. Compost and manure amendments raised soil carbon (C) at a level sufficient to overcome the C debt associated with manure production, manure collection and storage, land application, and post-application field emissions. The net GWP in carbon dioxide equivalents for the manure and compost amended cropping systems was -934 and -784 g m-2 y-1, respectively, compared to 52 g m-2 y-1 for the non-manure amended synthetic fertilizer check. This work further substantiates the environmental benefits associated with renewable fuels and demonstrates that with proper management, the integration of livestock manures in biofuel cropping systems can enhance greenhouse gas (GHG) remediation. (author)

  6. Integrating livestock manure with a corn-soybean bioenergy cropping system improves short-term carbon sequestration rates and net global warming potential

    Energy Technology Data Exchange (ETDEWEB)

    Thelen, K.D.; Fronning, B.E.; Kravchenko, A.; Min, D.H.; Robertson, G.P. [Michigan State University, East Lansing, MI 48824 (United States)

    2010-07-15

    Carbon cycling and the global warming potential (GWP) of bioenergy cropping systems with complete biomass removal are of agronomic and environmental concern. Corn growers who plan to remove corn stover as a feedstock for the emerging cellulosic ethanol industry will benefit from carbon amendments such as manure and compost, to replace carbon removed with the corn stover. The objective of this research was to determine the effect of beef cattle feedlot manure and composted dairy manure on short-term carbon sequestration rates and net global warming potential (GWP) in a corn-soybean rotation with complete corn-stover removal. Field experiments consisting of a corn-soybean rotation with whole-plant corn harvest, were conducted near East Lansing, MI over a three-year period beginning in 2002. Compost and manure amendments raised soil carbon (C) at a level sufficient to overcome the C debt associated with manure production, manure collection and storage, land application, and post-application field emissions. The net GWP in carbon dioxide equivalents for the manure and compost amended cropping systems was -934 and -784 g m{sup -2} y{sup -1}, respectively, compared to 52 g m{sup -2} y{sup -1} for the non-manure amended synthetic fertilizer check. This work further substantiates the environmental benefits associated with renewable fuels and demonstrates that with proper management, the integration of livestock manures in biofuel cropping systems can enhance greenhouse gas (GHG) remediation. (author)

  7. Corn-based feedstock for biofuels: Implications for agricultural sustainability

    Science.gov (United States)

    Tan, Z.

    2010-12-01

    Crop residue as a source of feedstock for biofuels production must retain ecosystem services and be sustainable. The challenge is to develop cropping system management strategies that balance the demand for increasing biofuel needs with ecosystem sustainability. This study was designed to evaluate impacts of changes in land use and management caused by corn-based biofuel production (grain, cob, stover) on soil fertility and ecosystem sustainability. Our specific goal was to investigate how the levels of corn residue removal influence current soil carbon and nutrient budgets and how these budgets are maintained under proposed production scenarios. Soil organic carbon (SOC), an important carbon component in the life cycle of biofuel production, is a sensitive indicator of cropping system sustainability. We used a soil carbon and nutrient balance approach developed from published field observations and a validated mechanistic model to analyze historical corn grain yields and fertilizer usage associated with various management practices at the county scale across the United States. Our analyses show that ecosystem carbon flux demonstrates significant spatial variability, relying heavily on the total biomass production level and residue harvest intensity; SOC budgets depend mainly on the proportion of residue removal, tillage type, and previous SOC stock level. Our results also indicate that corn cob removal for biofuel has little effect on soil carbon and nutrient balances under conventional management practices, while necessary irrigation can contribute greatly to corn-based biofuel production and ecosystem sustainability in the western side of the Great Plains and the eastern foothills of the Rocky Mountains.

  8. Our Mother Corn.

    Science.gov (United States)

    Mathers, Sherry; And Others

    Developed to provide an understanding of the magnitude of the role of corn, referred to as Mother Corn in the cultures of the Seneca, Pawnee, and Hopi tribes, the student text provides information on the tribes' basic lifestyles and the way they grew and used corn in three different parts of the United States. The section on the origin of corn…

  9. Fuel ethanol production from wet oxidised corn stover by S. cerevisiae

    DEFF Research Database (Denmark)

    Qiang, zhang; Thomsen, Anne Belinda

    2012-01-01

    as liquid fraction. After 142 h of SSF with substrate concentration of 8% (W/V), ethanol yield of 73.1 % of the theoretical based on glucose in the raw material was obtained by S. cerevisiae(ordinary baker' yeast). The corresponding ethanol concentration and volumetric productivity were 17.2g/L and 0.121g...

  10. Investigation of acetic acid-catalyzed hydrothermal pretreatment on corn stover

    DEFF Research Database (Denmark)

    Xu, Jian; Thomsen, Mette Hedegaard; Thomsen, Anne Belinda

    2010-01-01

    xylan recovery of 81.82% was observed by the pretreatment with 10 g AA/kg RCS. The toxic test on liquors showed that the inhibition effect happened to Baker's yeast when the acetic acid used in the pretreatment was higher than 100 g/kg RCS. The WIS obtained from the pretreatment with 15 g and 30 g....../kg RCS were subjected to enzymatic hydrolysis and more easily converted to ethanol by Baker's yeast, which gave the ethanol concentration of 33.72 g/L and 32.06 g/L, respectively, higher than 22.04 g/L which was from the non-catalyzed LHW pretreatment (195 °C, 15 min). The ethanol concentration from...

  11. Corn stover harvest increases herbicide movement to subsurface drains – Root Zone Water Quality Model simulations

    Science.gov (United States)

    BACKGROUND: Removal of crop residues for bioenergy production can alter soil hydrologic properties, but there is little information on its impact on transport of herbicides and their degradation products to subsurface drains. The Root Zone Water Quality Model, previously calibrated using measured fl...

  12. Biological pretreatment of corn stover with white-rot fungus for enzymatic hydrolysis and bioethanol production

    Science.gov (United States)

    Pretreatment, as the first step towards conversion of lignocellulosic feedstocks to biofuels and/or chemicals remains one of the main barriers to commercial success. Typically, harsh methods are used to pretreat lignocellulosic biomass prior to its breakdown to sugars by enzymes, which also result ...

  13. PRETREATMENT OF CORN STOVER BY SOAKING IN AQUEOUS AMMONIA PERCOLATION PROCESS. (R831645)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  14. Biological pretreatment of corn stover with white-rot fungus for improved enzymatic hydrolysis

    Science.gov (United States)

    Biological pretreatment of lignocellulosic biomass by white-rot fungus can represent a low-cost and eco-friendly alternative to harsh physical, chemical or physico-chemical pretreatment methods to facilitate enzymatic hydrolysis. However, fungal pretreatment can cause carbohydrate loss and it is, th...

  15. Proximate and Ultimate Compositional Changes in Corn Stover during Torrefaction using Thermogravimetric Analyzer and Microwaves

    Energy Technology Data Exchange (ETDEWEB)

    Jaya Shankar Tumuluru

    2012-07-01

    Abstract The world is currently aiming to reduce the dependence on fossil fuels and to achieve a sustainable renewable supply. Renewable energies represent a diversity of energy sources that can help to maintain the equilibrium of different ecosystems. Among the various sources of renewable energy, biomass is considered carbon neutral because the carbon dioxide released during its use is already part of the carbon cycle. Increasing the use of biomass for energy can help to reduce the negative CO2 impact on the environment and help meet the targets established in the Kyoto Protocol. Energy from biomass can be produced from different processes, including thermochemical (direct combustion, gasification, and pyrolysis), biological (anaerobic digestion, fermentation), or chemical (esterification) technologies. There are lot challenges in using biomass for energy applications. To name few low bulk density, high moisture content, irregular size and shape, hydrophilic nature and low calorific value. In commercial scale operation large quantities of biomass are needed and this will create problems associated with storage and transportation. Furthermore, grinding raw biomass with high moisture content is very challenging as there are no specific equipments and can increase the costs and in some cases it becomes highly impossible. All of these drawbacks led to development of some pretreatment techniques to make biomass more suitable for fuel applications. One of the promising techniques is torrefaction. Torrefaction is heating the biomass in an inert environment or reduced environment. During torrefaction biomass losses moisture, becomes more brittle and with increased energy density values. There are different techniques used for torrefaction of biomass. Fixed bed, bubbling sand bed and moving bed are the most common ones used. The use of microwaves for torrefaction purposes has not been explored. In the present study we looked into the torrefaction of biomass using the regular and microwaves and their effect on proximate and ultimate composition. Studies indicated that microwave torrefaction is a good way to torrefy the biomass in short periods of time. A maximum calorific value of 21 MJ/kg is achievable at 6 min residence time compared to 15 min using the dry torrefaction technique. Increasing the residence time increased the carbon content where a maximum carbon content of 52.20 % was achievable at lower residence time. The loss of volatiles is comparatively lower compared to dry torrefaction technique. Moisture content of microwave torrefied samples was in between 2-2.5 % (w.b).

  16. Monitoring Process Streams Towards Understanding Ionic Liquid Pretreatment of Switchgrass and Corn Stover

    Science.gov (United States)

    Pretreatment of Biomass is essential for breaking apart highly ordered and crystalline plant cell walls and loosening the lignin and hemicellulose conjugation to cellulose microfibrils, thereby facilitating enzyme accessibility and adsorption and reducing cotsts of downstream saccharification proces...

  17. Optimizing ethanol and methane production from steam-pretreated, phosphoric acid-impregnated corn stover.

    Science.gov (United States)

    Bondesson, Pia-Maria; Dupuy, Aurélie; Galbe, Mats; Zacchi, Guido

    2015-02-01

    Pretreatment is of vital importance in the production of ethanol and methane from agricultural residues. In this study, the effects of steam pretreatment with phosphoric acid on enzymatic hydrolysis (EH), simultaneous saccharification and fermentation (SSF), anaerobic digestion (AD) and the total energy output at three different temperatures were investigated. The effect of separating the solids for SSF and the liquid for AD was also studied and compared with using the whole slurry first in SSF and then in AD. Furthermore, the phosphoric acid was compared to previous studies using sulphuric acid or no catalyst. Using phosphoric acid resulted in higher yields than when no catalyst was used. However, compared with sulphuric acid, an improved yield was only seen with phosphoric acid in the case of EH. The higher pretreatment temperatures (200 and 210 °C) resulted in the highest yields after EH and SSF, while the highest methane yield was obtained with the lower pretreatment temperature (190 °C). The highest yield in terms of total energy recovery (78 %) was obtained after pretreatment at 190 °C, but a pretreatment temperature of 200 °C is, however, the best alternative since fewer steps are required (whole slurry in SSF and then in AD) and high product yields were obtained (76 %).

  18. Techno-economic analysis of corn stover fungal fermentation to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Pimphan A.; Tews, Iva J.; Magnuson, Jon K.; Karagiosis, Sue A.; Jones, Susanne B.

    2013-11-01

    This techno-economic analysis assesses the process economics of ethanol production from lignocellulosic feedstock by fungi to identify promising opportunities, and the research needed to achieve them. Based on literature derived data, four different ethanologen strains are considered in this study: native and recombinant Saccharomyces cerevisiae, the natural pentose-fermenting yeast, Pichia stipitis and the filamentous fungus Fusarium oxysporum. In addition, filamentous fungi are applied in multi-organism and consolidated process configurations. Organism performance and technology readiness are categorized as near-term (<5 years), mid-term (5-10 years), and long-term (>10 years) process deployment. The results of the analysis suggest that the opportunity for fungal fermentation exists for lignocellulosic ethanol production.

  19. Techno-economic analysis of corn stover fungal fermentation to ethanol

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Pimphan; Tews, Iva J.; Magnuson, Jon K.; Karagiosis, Sue A.; Jones, Susanne B.

    2013-11-01

    This techno-economic analysis assesses the process economics of ethanol production from lignocellulosic feedstock by fungi in order to identify promising opportunities and the research needed to achieve them. Based on literature derived data, four different ethanologen strains are considered in this study: native and recombinant Saccharomyces cerevisiae, the natural pentose-fermenting yeast, Pichia stipitis and the filamentous fungus Fusarium oxysporum. Organism performance and technology readiness are split into three groups: near-term (<5 years), mid-term (5-10 years) and long-term (>10 years) process deployment. Processes classified as near-term could reasonably be developed in this shorter time frame, as suggested by recent literature. Mid-term technology process models are based on lab-scale experimental data, and yields near the theoretical limit are used to estimate long-term technology goals. Further research and economic evaluation on the integrated production of chemicals and fuels in biorefineries are recommended.

  20. Biochemical Production of Ethanol from Corn Stover: 2007 State of Technology Model

    Energy Technology Data Exchange (ETDEWEB)

    Aden, Andy [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2008-05-01

    Since 2001, NREL has kept track of technical research progress in the biochemical process through what are known as “State of Technology” (SOT) assessments. The purpose of this report is to update the FY 2005 SOT model with the latest research results from the past two years.

  1. Furfural and ethanol production from corn stover by dilute phosphoric acid pretreatment

    Science.gov (United States)

    Lignocellulosic biomass is the most abundant carbohydrate source in the world and has potential for economical production of biofuels, especially ethanol. However, its composition is an obstacle for the production of ethanol by the conventional ethanol producing yeast Saccharomyces cerevisiae as it...

  2. GROWTH AND PRODUCTIVITY OF SPECIALITY CORN AS INFLUENCED BY DIFFERENT LEVELS OF NITROGEN UNDER PONGAMIA PLANTATIONS

    Directory of Open Access Journals (Sweden)

    C. Prathyusha

    2013-12-01

    Full Text Available A field experiment was conducted during kharif 2011 at the Student’s Farm, College of Agriculture, Rajendranagar, Hyderabad on red sandy loam soils to study the effect of nitrogen management in speciality corn under Pongamia + maize agri-silvi system. All the growth and yield attributes such as plant height, dry matter production, leaf area index, cob length, cob girth, number of cobs plant-1, number of rows cob-1, number of kernals cob-1 and 100 kernel weight were found maximum at 120 kg N ha-1 than at the remaining nitrogen levels. Whereas, cob weight (with husk was found maximum at 120 kg ha-1 but was on par with 90 kg N ha-1. Similarly cob yield (with husk, green fodder/stover yield, harvest index, kernel yield of popcorn and shelling percentage of popcorn were found significantly higher at 120 kg N ha-1 than the other two lower doses of nitrogen. The different types of corn were found significantly different from each other regarding growth parameters such as plant height, days to 50 per cent silking and days to maturity. Regarding the effect on yield attributes and yield, all the three types of corn were found significantly different from each other in cob length, cob girth, cob weight (with husk, green cob yield as well as green fodder/stover yield

  3. Quantitative Trait Loci and Trait Correlations for Maize Stover Cell Wall Composition and Glucose Release for Cellulosic Ethanol

    Science.gov (United States)

    In cellulosic ethanol production, the efficiency of converting maize (Zea mays L.) stover into fermentable sugars partly depends on the stover cell wall structure. Breeding for improved stover quality for cellulosic ethanol may benefit from the use of molecular markers. However, limited quantitative...

  4. 78 FR 33744 - Sedaxane; Pesticide Tolerances

    Science.gov (United States)

    2013-06-05

    ... corn (grain, forage, stover), popcorn (grain, stover), and corn ears at 0.01 parts per million (ppm... corn, sweet, stover; therefore, EPA is establishing tolerances of 0.01 ppm for those commodities. EPA...; corn, field, grain; corn, field, stover; corn, pop, grain; corn, pop, stover; corn, sweet,......

  5. 75 FR 68214 - Flubendiamide; Pesticide Tolerances; Technical Correction

    Science.gov (United States)

    2010-11-05

    ... incorrect tolerance values for the established tolerances for corn, field, grain; corn, field, stover; corn....02 ppm); corn, field, stover (0.15 ppm); corn, sweet, stover (0.25 ppm); and cotton gin byproducts (0... for corn, field, grain; corn, field, stover; corn, sweet, stover; and cotton gin......

  6. 76 FR 16308 - Dichlormid; Pesticide Tolerances

    Science.gov (United States)

    2011-03-23

    ..., field, forage; corn, field, grain; corn, field, stover; corn, pop, grain; corn, pop, stover; corn, sweet, forage; corn, sweet, kernel plus cob with husks removed; and corn, sweet, stover at 0.05 parts per... forage, grain and stover; and pop corn grain and stover at 0.05 ppm. In the Federal Register of......

  7. EFFECT OF UREA-MOLASSES BLOCK SUPPLEMENTATION ON NUTRIENT DIGESTIBILITY AND INTAKE OF AMMONIATED MAIZE STOVERS IN COW -CALVES

    Directory of Open Access Journals (Sweden)

    M. Usman Faizi, M.M. Siddiqui and G. Habib

    2004-01-01

    Full Text Available An experiment was conducted in a 4x4 Latin square design with four cow-calves {Holstein Friesian, aged' 6-8 months to investigate the effect of supplementing molasses-urea block {MUB to untreated or ammoniated maize stovers on feed intake and in viva digestibility of nutrients. Each period consisted of 10 days adaptation, followed by five days data collection. The four diets were untreated maize stovers {Diet A, untreated maize stovers with MUB {Diet B, ammoniated maize stovers {Diet 'C and ammoniated maize stovers with MUB {Diet D. Daily consumption of maize stovers and total feed by the calves were higher {P< 0.01 on the diets containing ammoniated maize stovers than those containing untreated maize stovers. Ammoniation increased the intake of maize stovers by 61 %. Supplementary feeding of MUB did not change the daily intake of both untreated and ammoniated maize stovers. Calves receiving untreated maize stovers consumed more MUB {P< 0.01 than those given ammoniated maize stovers {496.40 vs 180.20g DM/d. Daily water consumption was affected {P< 0.01 by diets and was lowest on Diet A. Calves receiving ammoniated maize stovers consumed more water than those given untreated maize stovers. MUB increased {P<0.01 the water consumption only on untreated maize stovers. Mean water consumption was 13.93, 15.91, 15.07 and 15.60 lit/d on diet A, B, C and D, respectively. In vivo digestibility of dry matter, organic matter and crude protein were Influenced {P<0.01 by diet composition. I Among the four diets, dry matter digestibility was minimum (P< 0.01 on Diet A and remained the same on diets B, C and D {55.82, 58.02 and 58.14%, respectively. Organic matter and crude protein digestibility were higher in the claves receiving ammoniated maize stovers. Supplementation of MUB increased (P< 0.01 the digestibility of all the three nutrients in untreated maize stovers but did not affect the digestibility of ammoniated maize stovers. The results demonstrated

  8. TQM at Corning.

    Science.gov (United States)

    Houghton, J

    1992-01-01

    Houghton has been with Corning for 30 years, up through the ranks. Now, as chairman and CEO, his individual leadership stamp is TQM. It's a major turn-around story with Total Quality at its center. PMID:10117839

  9. 76 FR 53641 - Tetraconazole; Pesticide Tolerances

    Science.gov (United States)

    2011-08-29

    ..., field, stover; corn pop, grain; and corn, pop, stover at 1.0, 0.01, 1.5, 0.01 and 1.5 ppm, respectively... commodities name. 2. Revised proposed tolerance levels for corn, field, forage; corn, field, stover; and corn...'' ``Corn, field, grain'' ``Corn, field, stover'' ``Corn, pop, grain'' ``Corn, pop......

  10. Well-to-wheels energy use and greenhouse gas emissions of ethanol from corn, sugarcane and cellulosic biomass for US use

    Science.gov (United States)

    Wang, Michael; Han, Jeongwoo; Dunn, Jennifer B.; Cai, Hao; Elgowainy, Amgad

    2012-12-01

    Globally, bioethanol is the largest volume biofuel used in the transportation sector, with corn-based ethanol production occurring mostly in the US and sugarcane-based ethanol production occurring mostly in Brazil. Advances in technology and the resulting improved productivity in corn and sugarcane farming and ethanol conversion, together with biofuel policies, have contributed to the significant expansion of ethanol production in the past 20 years. These improvements have increased the energy and greenhouse gas (GHG) benefits of using bioethanol as opposed to using petroleum gasoline. This article presents results from our most recently updated simulations of energy use and GHG emissions that result from using bioethanol made from several feedstocks. The results were generated with the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model. In particular, based on a consistent and systematic model platform, we estimate life-cycle energy consumption and GHG emissions from using ethanol produced from five feedstocks: corn, sugarcane, corn stover, switchgrass and miscanthus. We quantitatively address the impacts of a few critical factors that affect life-cycle GHG emissions from bioethanol. Even when the highly debated land use change GHG emissions are included, changing from corn to sugarcane and then to cellulosic biomass helps to significantly increase the reductions in energy use and GHG emissions from using bioethanol. Relative to petroleum gasoline, ethanol from corn, sugarcane, corn stover, switchgrass and miscanthus can reduce life-cycle GHG emissions by 19-48%, 40-62%, 90-103%, 77-97% and 101-115%, respectively. Similar trends have been found with regard to fossil energy benefits for the five bioethanol pathways.

  11. Process Design Report for Stover Feedstock: Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Aden, A. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ruth, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ibsen, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Jechura, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Neeves, K. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sheehan, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Wallace, B. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Montague, L. [Harris Group, Seattle, WA (United States); Slayton, A. [Harris Group, Seattle, WA (United States); Lukas, J. [Harris Group, Seattle, WA (United States)

    2002-06-01

    The U.S. Department of Energy (DOE) is promoting the development of ethanol from lignocellulosic feedstocks as an alternative to conventional petroleum-based transportation fuels. DOE funds both fundamental and applied research in this area and needs a method for predicting cost benefits of many research proposals. To that end, the National Renewable Energy Laboratory (NREL) has modeled many potential process designs and estimated the economics of each process during the last 20 years. This report is an update of the ongoing process design and economic analyses at NREL.

  12. Optimization of the enzymatic conversion of maize stover to bioethanol / by Nombongo Mabentsela

    OpenAIRE

    Mabentsela, Nombongo

    2010-01-01

    The severe effects associated with global warming and the rapid increase in oil prices are the driving forces behind the demand for clean carbon–neutral and biofuels such as bioethanol. Research studies are now focusing on using lignocellulosic biomass for bioethanol production due to concerns about food security and inflation. The chosen feedstock for this study was maize stover, given that it is the most abundant agricultural residue in South Africa. Maize stover consists of ...

  13. Effect of feeding sweet sorghum stover based complete ration on nutrient utilization in Nellore lambs

    Directory of Open Access Journals (Sweden)

    Jagannatham Babu

    2014-11-01

    Full Text Available Aim: The present study was carried out to evaluate the nutrient digestibility of sweet sorghum stover, an unconventional roughage source in ram lambs in comparison to conventional sorghum and maize stovers. Materials and Methods: 18 Nellore ram lambs aged about 3 months (average body weight 15.65±0.10 kg were randomly allotted to three complete rations formulated with roughage to concentrate ratio of 60:40 using sorghum stover (D1, maize stover (D2 and sweet sorghum stover (D3 as roughage source for a period of 120 days. At the end of the growth trial, a metabolism trial was conducted to evaluate the nutrient utilization of the complete diets. Results: There was no significant difference in nutrient digestibility of dry matter, organic matter, crude protein (CP, crude fibre, ether extract and nitrogen free extract in ram lambs fed D1, D2 and D3 diets, respectively. The digestibilities of acid detergent fibre and neutral detergent fibre did not differ significantly among the ram lambs fed various experimental diets. All the lambs were on positive nitrogen balance. Nitrogen balance was comparable among the various groups. The digestible CP and total digestible nutrients, digestible energy and metabolisable energy content of D1, D2 and D3 diets did not show any significant difference. Conclusion: It can be concluded that, sweet sorghum stover can be incorporated in the complete diets of sheep at 60% level by replacing conventional roughages such as sorghum stover and maize stover, processed as mash form without affecting the voluntary intake and digestibility of nutrients.

  14. Crop Management Effects on the Energy and Carbon Balances of Maize Stover-Based Ethanol Production

    Directory of Open Access Journals (Sweden)

    Prem Woli

    2014-12-01

    Full Text Available This study was conducted to identify the crop management options—the combinations of various cultivars, irrigation amounts, planting dates, and soils—that would maximize the energy sustainability and eco-friendliness of maize (Zea mays L. stover-based ethanol production systems in the Mississippi Delta. Stover yields simulated with CERES-Maize were used to compute net energy value (NEV and carbon credit balance (CCB, the indicators of sustainability and eco-friendliness of ethanol production, respectively, for various scenarios. As the results showed, deeper soils with higher water holding capacities had larger NEV and CCB values. Both NEV and CCB had sigmoid relationships with irrigation amount and planting date and could be maximized by planting the crop during the optimum planting window. Stover yield had positive effects on NEV and CCB, whereas travel distance had negative. The influence of stover yield was larger than that of travel distance, indicating that increasing feedstock yields should be emphasized over reducing travel distance. The NEV and CCB values indicated that stover-based ethanol production in the Mississippi Delta is sustainable and environmentally friendly. The study demonstrated that the energy sustainability and eco-friendliness of maize stover-based ethanol production could be increased with alternative crop management options.

  15. Digestibility and performance of steers fed low-quality crop residues treated with calcium oxide to partially replace corn in distillers grains finishing diets.

    Science.gov (United States)

    Shreck, A L; Nuttelman, B L; Harding, J L; Griffin, W A; Erickson, G E; Klopfenstein, T J; Cecava, M J

    2015-02-01

    Two studies were conducted to identify methods for treating crop residues to improve digestibility and value in finishing diets based on corn grain and corn wet distillers grain with solubles (WDGS). In Exp. 1, 336 yearling steers (initial BW 356 ± 11.5 kg) were used in a 2 × 3 + 1 factorial arrangement of treatments with 6 pens per treatment. Factors were 3 crop residues (corn cobs, wheat straw, and corn stover) and 2 treatments where crop residues were either fed (20% diet DM) in their native form (NT) or alkaline treated with 5% CaO (DM basis) and hydrated to 50% DM before anaerobic storage (AT). Intakes were not affected by diet (F test; P = 0.30). An interaction between chemical treatment and residue (P digestibilities were noted for AT than for NT. However, no difference (P > 0.10) was observed between control (46% corn; DM basis) and AT (31% corn; DM basis) for DM digestibility (70.7% vs. 73.7%) or OM digestibility (72.1% vs. 77.0%). Dry matter intakes were not different between treated and untreated diets (P = 0.38), but lower (P digestibility that occurred when treated forages were fed may have been related to increased digestibility of recoverable NDF and not to increased ruminal pH. Feeding chemically treated crop residues and WDGS is an effective strategy for replacing a portion of corn grain and roughage in feedlot diets. PMID:25548206

  16. Enzymatic conversion of pretreated biomass into fermentable sugars for biorefinery operation

    Science.gov (United States)

    Gao, Dahai

    2011-12-01

    Depleting petroleum reserves and potential climate change caused by fossil fuel consumption have attracted significant attention towards the use of alternative renewable resources for production of fuels and chemicals. Lignocellulosic biomass provides a plentiful resource for the sustainable production of biofuels and biochemicals and could serve as an important contributor to the world energy portfolio in the near future. Successful biological conversion of lignocellulosic biomass requires an efficient and economical pretreatment method, high glucose/xylose yields during enzymatic hydrolysis and fermentation of both hexose and pentose to ethanol. High enzyme loading is a major economic bottleneck for the commercial processing of pretreated lignocellulosic biomass to produce fermentable sugars. Optimizing the enzyme cocktail for specific types of pretreated biomass allows for a significant reduction in enzyme loading without sacrificing hydrolysis yield. Core glycosyl hydrolases were isolated and purified from various sources to help rationally optimize an enzyme cocktail to digest ammonia fiber expansion (AFEX) treated corn stover. The four core cellulases were endoglucanase I (EG I), cellobiohydrolase I (CBH I), cellobiohydrolase II (CBH II) and beta-Glucosidase (betaG). The two core hemicellulases were an endoxylanase (EX) and a beta-xylosidase (betaX). A diverse set of accessory hemicellulases from bacterial sources was found necessary to enhance the synergistic action of cellulases hydrolysing AFEX pretreated corn stover. High glucose (around 80%) and xylose (around 70%) yields were achieved with a moderate enzyme loading (˜20 mg protein/g glucan) using an in-house developed enzyme cocktail and this cocktail was compared to commercial enzyme. Studying the binding properties of cellulases to lignocellulosic substrates is critical to achieving a fundamental understanding of plant cell wall saccharification. Lignin auto-fluorescence and degradation products

  17. Polymorphisms in O-methyltransferase genes are associated with stover cell wall digestibility in European maize (Zea mays L.)

    DEFF Research Database (Denmark)

    Brenner, Everton A; Zein, Imad; Chen, Yongsheng;

    2010-01-01

    Background OMT (O-methyltransferase) genes are involved in lignin biosynthesis, which relates to stover cell wall digestibility. Reduced lignin content is an important determinant of both forage quality and ethanol conversion efficiency of maize stover. Results Variation in genomic sequences codi...

  18. 78 FR 57280 - Chlorantraniliprole; Pesticide Tolerances

    Science.gov (United States)

    2013-09-18

    .../groups: Mayhaw at 0.6 ppm; field corn forage, field corn stover, pop corn forage, pop corn stover, sweet corn forage, sweet corn stover at 14 ppm; field corn grain, pop corn grain at 0.04 ppm; sweet corn...: ``Cattle, liver''; ``Cattle, meat byproducts, except liver''; ``Corn, field forage'';......

  19. 40 CFR 180.628 - Chlorantraniliprole; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ..., green bean 0.4 Coffee, instant 2.0 Corn, field, forage 14 Corn, field, grain 0.04 Corn, field, milled byproducts 0.1 Corn, field, stover 14 Corn, pop, forage 14 Corn, pop, grain 0.04 Corn, pop, stover 14 Corn, sweet, forage 14 Corn, sweet, kernel plus cobs with husk removed 0.02 Corn, sweet, stover 14......

  20. 21 CFR 184.1321 - Corn gluten.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Corn gluten. 184.1321 Section 184.1321 Food and... Substances Affirmed as GRAS § 184.1321 Corn gluten. (a) Corn gluten (CAS Reg. No. 66071-96-3), also known as corn gluten meal, is the principal protein component of corn endosperm. It consists mainly of zein...

  1. Novel thermostable endo-xylanase cloned and expressed from bacterium Geobacillus sp. WSUCF1.

    Science.gov (United States)

    Bhalla, Aditya; Bischoff, Kenneth M; Uppugundla, Nirmal; Balan, Venkatesh; Sani, Rajesh K

    2014-08-01

    A gene encoding a GH10 endo-xylanase from Geobacillus sp. WSUCF1 was cloned and expressed in Escherichia coli. Recombinant endo-xylanase (37kDa) exhibited high specific activity of 461.0U/mg of protein. Endo-xylanase was optimally active on birchwood xylan at 70°C and pH 6.5. The endo-xylanase was found to be highly thermostable at 50 and 60°C, retaining 82% and 50% of its original activity, respectively, after 60h. High xylan conversions (92%) were obtained with oat-spelt xylan hydrolysis. Higher glucan and xylan conversions were obtained on AFEX-treated corn stover with an enzyme cocktail containing WSUCF1 endo-xylanase (71% and 47%) as compared to enzyme cocktail containing commercial fungal endo-xylanase (64% and 41%). High specific activity, active at high pH's, wide substrate specificity, and higher hydrolytic activity on recalcitrant lignocellulose, make this endo-xylanase a suitable candidate for biofuel and bioprocess industries.

  2. Lignocellulosic biomass pretreatment using AFEX.

    Science.gov (United States)

    Balan, Venkatesh; Bals, Bryan; Chundawat, Shishir P S; Marshall, Derek; Dale, Bruce E

    2009-01-01

    Although cellulose is the most abundant organic molecule, its susceptibility to hydrolysis is restricted due to the rigid lignin and hemicellulose protection surrounding the cellulose micro fibrils. Therefore, an effective pretreatment is necessary to liberate the cellulose from the lignin-hemicellulose seal and also reduce cellulosic crystallinity. Some of the available pretreatment techniques include acid hydrolysis, steam explosion, ammonia fiber expansion (AFEX), alkaline wet oxidation, and hot water pretreatment. Besides reducing lignocellulosic recalcitrance, an ideal pretreatment must also minimize formation of degradation products that inhibit subsequent hydrolysis and fermentation. AFEX is an important pretreatment technology that utilizes both physical (high temperature and pressure) and chemical (ammonia) processes to achieve effective pretreatment. Besides increasing the surface accessibility for hydrolysis, AFEX promotes cellulose decrystallization and partial hemicellulose depolymerization and reduces the lignin recalcitrance in the treated biomass. Theoretical glucose yield upon optimal enzymatic hydrolysis on AFEX-treated corn stover is approximately 98%. Furthermore, AFEX offers several unique advantages over other pretreatments, which include near complete recovery of the pretreatment chemical (ammonia), nutrient addition for microbial growth through the remaining ammonia on pretreated biomass, and not requiring a washing step during the process which facilitates high solid loading hydrolysis. This chapter provides a detailed practical procedure to perform AFEX, design the reactor, determine the mass balances, and conduct the process safely.

  3. Densification characteristics of corn cobs

    Energy Technology Data Exchange (ETDEWEB)

    Kaliyan, Nalladurai; Morey, R. Vance [Department of Bioproducts and Biosystems Engineering, University of Minnesota, 1390 Eckles Avenue, St. Paul, MN 55108 (United States)

    2010-05-15

    Corn cobs are potential feedstocks for producing heat, power, fuels, and chemicals. Densification of corn cobs into briquettes/pellets would improve their bulk handling, transportation, and storage properties. In this study, densification characteristics of corn cobs were studied using a uniaxial piston-cylinder densification apparatus. With a maximum compression pressure of 150 MPa, effects of particle size (0.85 and 2.81 mm), moisture content (10 and 20% w.b.), and preheating temperature (25 and 85 C) on the density and durability of the corn cob briquettes (with diameter of about 19.0 mm) were studied. It was found that the durability (measured using ASABE tumbling can method) of corn cob briquettes made at 25 C was 0%. At both particle sizes, preheating of corn cob grinds with about 10% (w.b.) moisture content to 85 C produced briquettes with a unit density of > 1100 kg m{sup -3} and durability of about 90%. (author)

  4. Yield and quality of maize stover:Variation among cultivars and effects of N fertilization

    Institute of Scientific and Technical Information of China (English)

    LIANG Ming-yuan; WANG Gui-yan; LIANG Wei-li; SHI Peng-fei; DANG Jing; SUI Peng; HU Chun-sheng

    2015-01-01

    Biomass yields and concentrations of crude protein (CP), ether extract (EE), neutral detergent ifber (NDF), acid detergent ifber (ADF), and crude ifber (CF) were analyzed for ifve cultivars of summer-sown maize (Zea mays L.) stover grown in ifeld trials at three rates of N fertilization, and sampled immediately after grain harvest. The results revealed differences in yields and concentrations of nutrients according to stalk height and hence harvest portion among the cultivars. N application greatly increased biomass yield and CP, especial y in upper stalks and to a lesser extent, EE. Concentrations of NDF and ADF decreased as N rate increased. The results show that stovers from al local popular maize cultivars are suitable as animal fodder and that moderate N application improves feed quality of stover.

  5. Size reduction of high- and low-moisture corn stalks by linear knife grid system

    Energy Technology Data Exchange (ETDEWEB)

    Igathinathane, C. [Agricultural and Biological Engineering Department, 130 Creelman Street, Mississippi State University, Mississippi State, Mississippi 39762 (United States); Womac, A.R. [Department of Biosystems Engineering and Soil Science, 2506 E. J. Chapman Drive, The University of Tennessee, Knoxville, Tennessee 37996 (United States); Sokhansanj, S. [Oak Ridge National Laboratory, Environmental Sciences Division, Oak Ridge, P. O. Box 2008, Tennessee 37831 (United States); Narayan, S. [First American Scientific Company, 100 Park Royal South West Vancouver, British Columbia, V7T 1A2 (Canada)

    2009-04-15

    High- and low-moisture corn stalks were tested using a linear knife grid size reduction device developed for first-stage size reduction. The device was used in conjunction with a universal test machine that quantified shearing stress and energy characteristics for forcing a bed of corn stalks through a grid of sharp knives. No published engineering performance data for corn stover with similar devices are available to optimize performance; however, commercial knife grid systems exist for forage size reduction. From the force-displacement data, mean and maximum ultimate shear stresses, cumulative and peak mass-based cutting energies for corn stalks, and mean new surface area-based cutting energies were determined from 4-5 refill runs at two moisture contents (78.8% and 11.3% wet basis), three knife grid spacings (25.4, 50.8, and 101.6 mm), and three bed depths (50.8, 101.6, and 152.4 mm). In general, the results indicated that peak failure load, ultimate shear stress, and cutting energy values varied directly with bed depth and inversely with knife grid spacing. Mean separation analysis established that high- and low-moisture conditions and bed depths {>=} 101.6 mm did not differ significantly (P < 0.05) for ultimate stress and cutting energy values, but knife grid spacing were significantly different. Linear knife grid cutting energy requirements for both moisture conditions of corn stalks were much smaller than reported cutting energy requirements. Ultimate shear stress and cutting energy results of this research should aid the engineering design of commercial scale linear knife gird size reduction equipment for various biomass feedstocks. (author)

  6. Size reduction of high- and low-moisture corn stalks by linear knife grid system

    Energy Technology Data Exchange (ETDEWEB)

    Womac, A.R. [University of Tennessee; Igathinathane, C. [Mississippi State University (MSU); Sokhansanj, Shahabaddine [ORNL; Narayan, S. [First American Scientific Co.

    2009-04-01

    High- and low-moisture corn stalks were tested using a linear knife grid size reduction device developed for first-stage size reduction. The device was used in conjunction with a universal test machine that quantified shearing stress and energy characteristics for forcing a bed of corn stalks through a grid of sharp knives. No published engineering performance data for corn stover with similar devices are available to optimize performance; however, commercial knife grid systems exist for forage size reduction. From the force displacement data, mean and maximum ultimate shear stresses, cumulative and peak mass-based cutting energies for corn stalks, and mean new surface area-based cutting energies were determined from 4 5 refill runs at two moisture contents (78.8% and 11.3% wet basis), three knife grid spacings (25.4, 50.8, and 101.6 mm), and three bed depths (50.8, 101.6, and 152.4 mm). In general, the results indicated that peak failure load, ultimate shear stress, and cutting energy values varied directly with bed depth and inversely with knife grid spacing. Mean separation analysis established that high- and low-moisture conditions and bed depths 101.6 mm did not differ significantly (P < 0.05) for ultimate stress and cutting energy values, but knife grid spacing were significantly different. Linear knife grid cutting energy requirements for both moisture conditions of corn stalks were much smaller than reported cutting energy requirements. Ultimate shear stress and cutting energy results of this research should aid the engineering design of commercial scale linear knife gird size reduction equipment for various biomass feedstocks.

  7. 40 CFR 180.1219 - Foramsulfuron; exemption from the requirement of a tolerance.

    Science.gov (United States)

    2010-07-01

    ... pesticide foramsulfuron is exempted from the requirement of a tolerance in corn, field, grain/corn, field, forage/ corn, field, stover/corn, pop, grain/corn, pop, forage/corn, pop, stover; corn, sweet, forage; corn, sweet, kernel plus cob with husks removed; corn, sweet, stover when applied as a herbicide...

  8. Establishing alfalfa in silage corn

    Science.gov (United States)

    According to recent agricultural statistics, alfalfa was planted on 0.44 million acres and harvested from 2.2 million acres and silage corn was planted and harvested from 1.0 million acres per year in Wisconsin. Because both crops are often grown in rotation, alfalfa could be interseeded at corn pla...

  9. Adsorption and mechanism of cellulase enzymes onto lignin isolated from corn stover pretreated with liquid hot water

    OpenAIRE

    Lu, Xianqin; Zheng, Xiaoju; Li, Xuezhi; Zhao, Jian

    2016-01-01

    Background In the bioconversion of lignocellulosic substrates, the adsorption behavior of cellulase onto lignin has a negative effect on enzymatic hydrolysis of cellulose, decreasing glucose production during enzymatic hydrolysis, thus decreasing the yield of fermentation and the production of useful products. Understanding the interaction between lignin and cellulase is necessary to optimize the components of cellulase mixture, genetically engineer high-efficiency cellulase, and reduce cost ...

  10. Lower-cost cellulosic ethanol production from corn stover using ß-glucosidase producing yeast Clavispora NRRL Y-50464

    Science.gov (United States)

    For cellulosic ethanol production, decomposition of cellulosic polymers and enzymatic hydrolysis and saccharification are necessary for microbes to efficiently utilize the biomass harbored sugars. The need of additional enzymes and processing steps increase cost of biofuels. To reduce the cost of ce...

  11. An economic comparison of different fermentation configurations to convert corn stover to ethanol using Z. mobilis and Saccharomyces.

    Science.gov (United States)

    Dutta, Abhijit; Dowe, Nancy; Ibsen, Kelly N; Schell, Daniel J; Aden, Andy

    2010-01-01

    Numerous routes are being explored to lower the cost of cellulosic ethanol production and enable large-scale production. One critical area is the development of robust cofermentative organisms to convert the multiple, mixed sugars found in biomass feedstocks to ethanol at high yields and titers without the need for processing to remove inhibitors. Until such microorganisms are commercialized, the challenge is to design processes that exploit the current microorganisms' strengths. This study explored various process configurations tailored to take advantage of the specific capabilities of three microorganisms, Z. mobilis 8b, S. cerevisiae, and S. pastorianus. A technoeconomic study, based on bench-scale experimental data generated by integrated process testing, was completed to understand the resulting costs of the different process configurations. The configurations included whole slurry fermentation with a coculture, and separate cellulose simultaneous saccharification and fermentation (SSF) and xylose fermentations with none, some or all of the water to the SSF replaced with the fermented liquor from the xylose fermentation. The difference between the highest and lowest ethanol cost for the different experimental process configurations studied was $0.27 per gallon ethanol. Separate fermentation of solid and liquor streams with recycle of fermented liquor to dilute the solids gave the lowest ethanol cost, primarily because this option achieved the highest concentrations of ethanol after fermentation. Further studies, using methods similar to ones employed here, can help understand and improve the performance and hence the economics of integrated processes involving enzymes and fermentative microorganisms. PMID:19785041

  12. Short-term mesofauna responses to soil additions of corn stover biochar and the role of microbial biomass

    OpenAIRE

    Domene, X. (Xavier); Hanley, Kelly; Enders, Akio; Lehmann, Johannes

    2015-01-01

    Biochar additions have been suggested to influence soil microbial communities that, through a cascade effect, may also impact soil fauna. In turn, any direct biochar effects on fauna can influence microbial communities through grazing, physical fragmentation of organic debris (and biochar) and modifying soil structure. If biochar creates a favorable environment for soil microorganisms, it is also plausible for fauna to be attracted to such microbially enriched habitats. However, how soil faun...

  13. Comparison of TLUD and atmospherically-controlled retort methods of preparing biochar using corn stover and wheat straw feedstocks

    Science.gov (United States)

    Biochar is a very versatile and useful material in many applications beyond carbon sequestration in soils. Rubber composite filler, sorptive media for toxic or other undesirable species in water, and peat moss replacement are just three examples of biochar applications we have studied at our laborat...

  14. Corn in consortium with forages

    Directory of Open Access Journals (Sweden)

    Cássia Maria de Paula Garcia

    2013-12-01

    Full Text Available The basic premises for sustainable agricultural development with focus on rural producers are reducing the costs of production and aggregation of values through the use crop-livestock system (CLS throughout the year. The CLS is based on the consortium of grain crops, especially corn with tropical forages, mainly of the genus Panicum and Urochloa. The study aimed to evaluate the grain yield of irrigated corn crop intercropped with forage of the genus Panicum and Urochloa. The experiment was conducted at the Fazenda de Ensino, Pesquisa e Extensão – FEPE  of the Faculdade de Engenharia - UNESP, Ilha Solteira in an Oxisol in savannah conditions and in the autumn winter of 2009. The experimental area was irrigated by a center pivot and had a history of no-tillage system for 8 years. The corn hybrid used was simple DKB 390 YG at distances of 0.90 m. The seeds of grasses were sown in 0.34 m spacing in the amount of 5 kg ha-1, they were mixed with fertilizer minutes before sowing  and placed in a compartment fertilizer seeder and fertilizers were mechanically deposited in the soil at a depth of 0.03 m. The experimental design used was a randomized block with four replications and five treatments: Panicum maximum cv. Tanzania sown during the nitrogen fertilization (CTD of the corn; Panicum maximum cv. Mombaça sown during the nitrogen fertilization (CMD of the corn; Urochloa brizantha cv. Xaraés sown during the occasion of nitrogen fertilization (CBD of the corn; Urochloa ruziziensis cv. Comumsown during the nitrogen fertilization (CRD of the corn and single corn (control. The production components of corn: plant population per hectare (PlPo, number of ears per hectare (NE ha-1, number of rows per ear (NRE, number of kernels per row on the cob (NKR, number of grain in the ear (NGE and mass of 100 grains (M100G were not influenced by consortium with forage. Comparing grain yield (GY single corn and maize intercropped with forage of the genus Panicum

  15. Recurrent selection for corn earworm resistance in three corn synthetics.

    OpenAIRE

    Butrón Gómez, Ana María; Widstrom, N. W.; Snook, M E; Wiseman, B. R.

    2000-01-01

    Corn (Zea mays L.) grown in the Southeastern U. S. is often severely damaged by corn earworm (Helicoverpa zea Boddie), which feed on developing kernels on the ear. Natural resistance to this insect due to husk cover and chemicals in the silks has been identified. we studied the improvement in the resistance to ear injury by the corn earworm in the population 10LDDSR after 10 cycles of S1 recurrent selection and in the population cross DDSA x DDSB after seven cycles of reciprocal recurrent sel...

  16. Screening for corn rootworm (Coleoptera: Chrysomelidae) resistance to transgenic Bt corn in North Dakota

    Science.gov (United States)

    Western (WCR), Diabrotica virgifera virgifera LeConte, and northern corn rootworms (NCR), D. barberi Smith & Lawrence, are major economic pests of corn in much of the U.S. Corn Belt. Western corn rootworm resistance to transgenic corn expressing Bt (Bacillus thuringiensis) endotoxins has been confi...

  17. Corn Culture: A Story of Intelligent Design

    Science.gov (United States)

    Todd, Jude

    2008-01-01

    Scientists are not sure of how corn was created. There were two competing genetic theories about how corn came to be. One theory maintains that corn had been teased out of a wheatlike grass called teosinte (genus Zea), and the other contends that one now-extinct ancestor of corn had crossed with another grass, "Tripsacum," several millennia ago.…

  18. Effects of Pyramided Bt Corn and Blended Refuges on Western Corn Rootworm and Northern Corn Rootworm (Coleoptera: Chrysomelidae).

    Science.gov (United States)

    Keweshan, Ryan S; Head, Graham P; Gassmann, Aaron J

    2015-04-01

    The western corn rootworm, Diabrotica virgifera virgifera LeConte, and the northern corn rootworm, Diabrotica barberi Smith & Lawrence (Coleoptera: Chrysomelidae), are major pests of corn (Zea mays L). Several transgenic corn events producing insecticidal toxins derived from the bacterium Bacillus thuringiensis (Bt) kill corn rootworm larvae and reduce injury to corn roots. However, planting of Bt corn imposes selection on rootworm populations to evolve Bt resistance. The refuge strategy and pyramiding of multiple Bt toxins can delay resistance to Bt crops. In this study, we assessed the impact of four treatments--1) non-Bt corn, 2) Cry3Bb1 corn, 3) corn pyramided with Cry3Bb1 and Cry34/35Ab1, and 4) pyramided corn with a blended refuge--on survival, time of adult emergence, and size of western and northern corn rootworm. All treatments with Bt corn led to significant reductions in the number of adults that emerged per plot. However, at one location, we identified Cry3Bb1-resistant western corn rootworm. In some cases Bt treatments reduced size of adults and delayed time of adult emergence, with effects most pronounced for pyramided corn. For both species, the number of adults that emerged from pyramided corn with a blended refuge was significantly lower than expected, based solely on emergence from pure stands of pyramided corn and non-Bt corn. The results of this study indicate that pyramided corn with a blended refuge substantially reduces survival of both western and northern corn rootworm, and as such, should be a useful tool within the context of a broader integrated pest management strategy.

  19. Ethanol extraction of phytosterols from corn fiber

    Science.gov (United States)

    Abbas, Charles; Beery, Kyle E.; Binder, Thomas P.; Rammelsberg, Anne M.

    2010-11-16

    The present invention provides a process for extracting sterols from a high solids, thermochemically hydrolyzed corn fiber using ethanol as the extractant. The process includes obtaining a corn fiber slurry having a moisture content from about 20 weight percent to about 50 weight percent solids (high solids content), thermochemically processing the corn fiber slurry having high solids content of 20 to 50% to produce a hydrolyzed corn fiber slurry, dewatering the hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, washing the residual corn fiber, dewatering the washed, hydrolyzed corn fiber slurry to achieve a residual corn fiber having a moisture content from about 30 to 80 weight percent solids, and extracting the residual corn fiber with ethanol and separating at least one sterol.

  20. Diagravitropism in corn roots

    Science.gov (United States)

    Leopold, A. C.; Wettlaufer, S. H.

    1988-01-01

    The diagravitropic behavior of Merit corn (Zea mays L.) roots grown in darkness provides an opportunity for comparison of two qualitatively different gravitropic systems. As with positive gravitropism, diagravitropism is shown to require the presence of the root cap, have a similar time course for the onset of curvature, and a similar presentation time. In contrast with positive gravitropism, diagravitropism appears to have a more limited requirement for calcium, for it is insensitive to the elution of calcium by EGTA and insensitive to the subsequent addition of a calcium/EGTA complex. These results are interpreted as indicating that whereas the same sensing system is shared by the two types of gravitropism, separate transductive systems are involved, one for diagravitropism, which is relatively independent of calcium, and one for positive gravitropism, which is markedly dependent on calcium.

  1. Corn tassel detection based on image processing

    Science.gov (United States)

    Tang, Wenbing; Zhang, Yane; Zhang, Dongxing; Yang, Wei; Li, Minzan

    2012-01-01

    Machine vision has been widely applied in facility agriculture, and played an important role in obtaining environment information. In this paper, it is studied that application of image processing to recognize and locate corn tassel for corn detasseling machine. The corn tassel identification and location method was studied based on image processing and automated technology guidance information was provided for the actual production of corn emasculation operation. The system is the application of image processing to recognize and locate corn tassel for corn detasseling machine. According to the color characteristic of corn tassel, image processing techniques was applied to identify corn tassel of the images under HSI color space and Image segmentation was applied to extract the part of corn tassel, the feature of corn tassel was analyzed and extracted. Firstly, a series of preprocessing procedures were done. Then, an image segmentation algorithm based on HSI color space was develop to extract corn tassel from background and region growing method was proposed to recognize the corn tassel. The results show that this method could be effective for extracting corn tassel parts from the collected picture and can be used for corn tassel location information; this result could provide theoretical basis guidance for corn intelligent detasseling machine.

  2. The Comparison of Sugar Components in the Developing Grains of Sweet Corn and Normal Corn

    Institute of Scientific and Technical Information of China (English)

    LIU Peng; HU Chang-hao; DONG Shu-ting; WANG Kong-jun; ZHANG Ji-wang

    2003-01-01

    The sugar components and their dynamic variation in the developing grains of sweet corn(Zeamays L. seccharata Sturt)and normal corn (Zea mays L. indentata Sturt) were compared. There are WSP(water-soluble polysaccharides), sucrose, fructose, glucose, mannitol and sorbitol in both sweet corn and nor-mal corn, but no maltose. Two components with different degrees of polymerization (D. P. N) were detected inthe sweet corn; only one of them was detected in the normal corn 20 days after pollination. With the develop-ment of grains, the total soluble sugar content(TSS)in sweet corn increased, but in normal corn it decreased.The dynamic variation of WSP, sucrose, glucose, fructose, mannitol and sorbitol in sweet and normal corngrains are different. The contents of sugar components in the sweet corn grains are higher than that in the nor-mal corn. Sweet corn accumulates less starch than normal corn.

  3. 75 FR 80489 - Notice of Receipt of Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or...

    Science.gov (United States)

    2010-12-22

    ...- (CAS Reg. No. 37764-25-3) in or on corn, field, forage; corn, field, grain; corn, field, stover; corn, pop, grain; corn, pop, stover; corn, sweet, forage; corn, sweet, kernel plus cob with husks removed; and corn, sweet, stover at 0.05 parts per million (ppm). Dichlormid (R-25788) is an herbicide...

  4. 40 CFR 180.486 - Phosphorothioic acid, 0,0-diethyl 0-(1,2,2,2-tetrachloroethyl) ester; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... the following raw agricultural commodities: Commodity Parts per million Corn, field, forage 0.01 Corn, field, grain 0.01 Corn, field, stover 0.01 Corn, pop, grain 0.01 Corn, pop, stover 0.01 Corn, sweet, forage 0.01 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 0.01...

  5. 40 CFR 180.440 - Tefluthrin; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... commodities: Commodity Parts per million Corn, field, forage 0.06 Corn, field, grain 0.06 Corn, field, stover 0.06 Corn, pop, grain 0.06 Corn, pop, stover 0.06 Corn, sweet, forage 0.06 Corn, sweet, kernel plus cob with husks removed 0.06 Corn, sweet, stover 0.06 (b) Section 18 emergency exemptions....

  6. 40 CFR 180.644 - Cyprosulfamide; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... following raw agricultural commodities: Commodity Parts per million Corn, field, forage 0.20 Corn, field, grain 0.01 Corn, field, stover 0.20 Corn, pop, grain 0.01 Corn, pop, stover 0.20 Corn, sweet, forage 0.40 Corn, sweet, kernel plus cob with husks removed 0.01 Corn, sweet, stover 0.35 (2) Tolerances...

  7. Corn in consortium with forages

    OpenAIRE

    Cássia Maria de Paula Garcia; Marcelo Andreotti; Marcelo Carvalho Minhoto Teixeira Filho; Keny Samejima Mascarenha Lopes; Ciniro Costa; Erikelly Aline Ribeiro de Santana

    2013-01-01

    The basic premises for sustainable agricultural development with focus on rural producers are reducing the costs of production and aggregation of values through the use crop-livestock system (CLS) throughout the year. The CLS is based on the consortium of grain crops, especially corn with tropical forages, mainly of the genus Panicum and Urochloa. The study aimed to evaluate the grain yield of irrigated corn crop intercropped with forage of the genus Panicum and Urochloa. The experiment was c...

  8. Effects of Straw Application on Soil Organic Carbon and Active Organic Carbon in Wheat-corn Rotation System%秸秆还田对小麦-玉米轮作田土壤有机碳质量的影响

    Institute of Scientific and Technical Information of China (English)

    高翔; 沈阿林; 寇长林; 马政华; 王文亮; 郭战玲

    2012-01-01

    利用小麦-玉米轮条件下不同秸秆还田方式进行定位试验,对不同秸秆还田方式下土壤有机碳和活性有机碳含量进行了6a11季的连续监测,结果表明:单施化肥和秸秆还田配施化肥均能提高土壤有机碳含量;3种还田方式均能显著提高活性有机碳和碳库管理指数,表现为玉米秸秆还田>两季秸秆还田>小麦秸秆还田;3种秸秆还田处理的土壤有机碳增长速率为玉米秸秆还田>两季秸秆还田>小麦秸秆还田.小麦季玉米秸秆还田对有机碳活性提升效果优于两季秸秆还田和玉米季小麦秸秆还田.%A 6-year field experiment was carried out to study the effects of corn stover or/and wheat straw incorporated with chemical fertilizers on organic carbon and active organic carbon in soil in a wheat and corn rotation system. The results showed that the treatments of chemical fertilizer applied only and chemical fertilizer applied with straw returning increased the active organic carbon proportion in soil. All three methods of straw returning significantly improved the quantity of labile organic carbon(LOC) and (carbon management index) (CMI) , which was in the follow order: corn straw application>corn and wheat straw application> wheat straw application. And for the total organic carbon(TOC) increase speed was corn straw applied>corn stover and wheat straw applied>wheat straw applied. There was higher organic carbon activity in the treatment of returning corn straw in wheat season than the treatment of both corn stover and wheat straw applied in two seasons or the treatment of wheat straw applied in corn season.

  9. Water and Land Use Efficiency in Current and Potential Future US Corn and Brazilian Sugarcane Ethanol Systems

    Science.gov (United States)

    Warner, E. S.; Zhang, Y.; Newmark, R. L.

    2012-12-01

    average sugarcane ethanol system producing ethanol and electricity can save about 13 Mg CO2eq/ha of land compared to 12 in the early 2000s, while a recent average corn ethanol system saves about 6.2 Mg CO2eq/ha compared to near zero GHG savings in the early 2000s. The net energy balance (i.e., energy produced minus energy consumed) per ha for a recent average sugarcane ethanol system producing both ethanol and electricity is about 160 GJ/ha compared to 140 GJ/ha in early 2000s, while the recent average corn ethanol system achieves a net energy production of about 90 GJ/ha compares to only 30 GJ/ha in the early 2000s. The land use efficiency of corn and sugarcane ethanol systems, especially future systems, can vary depending on factors such as the assumed technologies, the suite of co-products produced, field practices, and technological learning. For example, projected future (2020) advanced sugarcane ethanol systems could save 22 Mg CO2eq/ha while an advanced corn ethanol system using integrated gasification of corn stover for electricity production could save 9.3Mg CO2eq/ha. Future advanced sugarcane ethanol systems could produce 210 GJ of net energy/ha while an advanced corn ethanol system using integrated gasification of corn stover for electricity production could achieve 110 GJ/ha.

  10. Earthworms modify microbial community structure and accelerate maize stover decomposition during vermicomposting.

    Science.gov (United States)

    Chen, Yuxiang; Zhang, Yufen; Zhang, Quanguo; Xu, Lixin; Li, Ran; Luo, Xiaopei; Zhang, Xin; Tong, Jin

    2015-11-01

    In the present study, maize stover was vermicomposted with the epigeic earthworm Eisenia fetida. The results showed that, during vermicomposting process, the earthworms promoted decomposition of maize stover. Analysis of microbial communities of the vermicompost by high-throughput pyrosequencing showed more complex bacterial community structure in the substrate treated by the earthworms than that in the control group. The dominant microbial genera in the treatment with the earthworms were Pseudoxanthomonas, Pseudomonas, Arthrobacter, Streptomyces, Cryptococcus, Guehomyces, and Mucor. Compared to the control group, the relative abundance of lignocellulose degradation microorganisms increased. The results indicated that the earthworms modified the structure of microbial communities during vermicomposting process, activated the growth of lignocellulose degradation microorganisms, and triggered the lignocellulose decomposition. PMID:26139410

  11. Economic Assessment of Supercritical CO2 Extraction of Waxes as Part of a Maize Stover Biorefinery

    Directory of Open Access Journals (Sweden)

    Thomas M. Attard

    2015-07-01

    Full Text Available To date limited work has focused on assessing the economic viability of scCO2 extraction to obtain waxes as part of a biorefinery. This work estimates the economic costs for wax extraction from maize stover. The cost of manufacture (COM for maize stover wax extraction was found to be €88.89 per kg of wax, with the fixed capital investment (FCI and utility costs (CUT contributing significantly to the COM. However, this value is based solely on scCO2 extraction of waxes and does not take into account the downstream processing of the biomass following extraction. The cost of extracting wax from maize stover can be reduced by utilizing pelletized leaves and combusting the residual biomass to generate electricity. This would lead to an overall cost of €10.87 per kg of wax (based on 27% combustion efficiency for electricity generation and €4.56 per kg of wax (based on 43% combustion efficiency for electricity generation. A sensitivity analysis study showed that utility costs (cost of electricity had the greatest effect on the COM.

  12. Multicolored sweet-waxy corn variety-Caitiannuo 1

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    @@ Corn, as the third largest grain crop in China, isgrown on approximately 200 million ha per year. With theimprovement of people's living standard, variousrequirements for corn breeding have presented. Nowadays,the aim of corn breeding is not only for increasing yield,but also for higher quality and other special demands, suchas sweet corn, waxy corn, colored corn, oil-rich corn,lysine-rich corn, etc.

  13. Corn-in-chip: Mesofluidic Device for Corn Root

    Science.gov (United States)

    Kreis, Kevin; Ryu, Sangjin

    2015-03-01

    Plants have a collection of beneficial microorganisms in a region surrounding their roots called the rhizosphere. Although rhizosphere management could increase crop yield, little is known about the interaction between plant roots and their associated microorganisms. Thus we aim to simulate the rhizosphere and monitor root-microbe interactions in the lab environment, and have chosen corn as a model plant because of its economic significance. Here we present our preliminary study to develop a transparent mesofluidic device accommodating the root of corn seedlings into its channel and allowing further growth of the root.

  14. Corn earworm (Lepidoptera: Noctuidae) in northeastern field corn: infestation levels and the value of transgenic hybrids.

    Science.gov (United States)

    Bohnenblust, Eric; Breining, Jim; Fleischer, Shelby; Roth, Gregory; Tooker, John

    2013-06-01

    Corn earworm, Helicoverpa zea (Boddie), is a polyphagous noctuid pest of agricultural crops across the United States that is gaining attention as a pest of field corn. Before the introduction of transgenic insect-resistant hybrids, this pest was largely ignored in field corn, but now many Bacillus thuringiensis (Bt) corn hybrids have activity against corn earworm. However, the value of control in the northeastern United States is unclear because the risk posed by corn earworm to field corn has not been well characterized. To understand the threat from corn earworm and the value of Bt hybrids in field corn, we assessed corn earworm injury in Bt and non-Bt hybrids at 16 sites across four maturity zones throughout Pennsylvania in 2010, and 10 sites in 2011. We also used corn earworm captures from the PestWatch pheromone trapping network to relate moth activity to larval damage in field corn. Corn earworm damage was less than one kernel per ear at 21 of 26 sites over both years, and the percentage of ears damaged was generally corn earworm damage relative to non-Bt hybrids, but we found no differences among Bt traits. Cumulative moth captures through July effectively predicted damage at the end of the season. Currently, the additional benefit of corn earworm control provided by Bt hybrids is typically less than US$4.00/ha in northeastern field corn.

  15. Transgenic corn for control of the European corn borer and corn rootworms: a survey of Midwestern farmers' practices and perceptions.

    Science.gov (United States)

    Wilson, Ted A; Rice, Marlin E; Tollefson, Jon J; Pilcher, Clinton D

    2005-04-01

    In 2001, a self-administered questionnaire was sent to 1000 corn, Zea mays L., farmers in each of five states (Illinois, Indiana, Iowa, Minnesota, and Nebraska) to evaluate their perceptions of transgenic corn designed to control the European corn borer, Ostrinia nubilalis (Hübner), and corn rootworms, Diabrotica spp. Respondents returned 1,313 surveys (26.2%). Farmers with small acreages planted a greater portion of their corn (54.5%) with transgenic corn for control of European corn borer than farmers with large farms (39.2%). The majority (75.2%) of farmers use crop rotation to control the corn rootworm. Nine insecticides comprised 92.2% of the commercial soil insecticides used for control of corn rootworm larvae. More than one-third of the farmers in Illinois (33.5%) and Indiana (39.4%) treated first-year corn for corn rootworm, primarily due to western corn rootworm egg laying in soybean, Glycine max (L.). When asked whether they would plant transgenic corn protected against the corn rootworm, 35.0% of farmers responded they would, whereas 40.5% said they were unsure. The two greatest farmer concerns about transgenic corn were the ability to sell harvested grain (59.3%) and additional technology fees (54.8%). Respondents indicated that less farmer exposure to insecticide (69.9%) and less insecticide in the environment (68.5%) were the primary benefits of transgenic corn. Farmers who had no concerns about transgenic corn for rootworm control were more likely to purchase the product (46.8%). The most common refuge-planting options farmers favored were adjacent fields (30.9%) and split fields (29.9%). Farmers (21.1%) observed a yield increase (23.7 bu/ha [9.6 bu/acre]) when using transgenic corn for European corn borer control compared with non-transgenic corn. These data can help in understanding farmers' knowledge and concerns regarding transgenic corn. This information may be of value to guide researchers, extension specialists, and policy makers in designing

  16. 77 FR 59120 - Butylate, Clethodim, Dichlorvos, Dicofol, Isopropyl Carbanilate, et al.; Tolerance Actions

    Science.gov (United States)

    2012-09-26

    ....1 3/23/13 Corn, field, stover 0.1 3/23/13 Corn, pop, grain 0.1 3/23/13 Corn, pop, stover 0.1 3/23/13..., field, forage 10 None Corn, field, grain 0.1 None Corn, field, stover 10 None Corn, pop, grain 0.1 None Corn, pop, stover 10 None Corn, sweet, forage 10 None Corn, sweet, kernel plus cob with husks......

  17. 40 CFR 180.452 - Primisulfuron-methyl; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... byproducts 0.10 Corn, field, forage 0.10 Corn, field, grain 0.02 Corn, field, stover 0.10 Corn, pop, grain 0.02 Corn, pop, stover 0.10 Corn, sweet, forage 0.10 Corn, sweet, stover 0.10 Egg 0.10 Goat, fat...

  18. 75 FR 17579 - Aminopyralid; Pesticide Tolerances

    Science.gov (United States)

    2010-04-07

    ... or on corn, forage at 0.30 parts per million (ppm); corn, grain at 0.20 ppm; and corn, stover at 0.20... at 0.20 ppm; and corn, field, stover at 0.20 ppm. EPA's assessment of exposures and risks associated... has revised the commodity terms ``corn, forage,'' ``corn, grain,'' and ``corn, stover,'' to...

  19. The Effect Inoculating Microbes on Composting of Maize Stover%微生物菌剂对玉米秸秆堆肥的作用效果研究

    Institute of Scientific and Technical Information of China (English)

    王瑶; 王宏燕; 赵伟

    2013-01-01

    In order to study the microbial inocula effect on degradation of corn strover and maturity of compos-ting ,different functional microorganisms were inoculated in the composting process with outdoor exposure .The indicators of matured composting ,the temperature ,moisture ,pH ,carbon and nitrogen ratio (C/N) ,water-solu-ble carbon and seed germination index (germination index ,GI)were determined during the composting process . The results showed that the retention time of pile temperature above 50℃ remained more than 7 d .Inoculation with complex microbes in composting would improved the degradation of maize stover ,and the degradation rate of maize stover was the highest(77 .46% )in the pile which was innoluclated with the inoculum (L) ,while that of the control pile was only 14 .28% .The biodegradation rate of the maize stover was the best and the time of degradation was 33 d when the optimum temperature and humidity was 50~52℃ ,70% ~80% ,respectively .%  为了研究复合微生物菌剂对玉米秸秆堆肥的作用效果,以废弃的农田玉米秸秆为堆肥原料,接种不同功能的复合微生物菌剂对玉米秸秆进行室外露天堆肥,分析了温度、含水率、p H、碳氮比(C/N )、水溶性碳和种子发芽指数(germination index ,GI)等指标的动态变化。结果表明:各堆体温度保持在50℃以上的时间均超过7 d ,其中L组分纤维素降解菌的堆肥处理降解效果最佳,降解率达77.46%,而对照组仅有14.28%;当最佳温度为50~52℃,湿度在70%~80%时,秸秆的降解效果最佳,降解周期为33 d。

  20. Geographic information systems in corn rootworm management

    Science.gov (United States)

    Corn rootworms (Diabrotica spp. Coleoptera: Chrysomelidae) are serious pests of corn (Zea mays) in the United States and Europe. Control measures for corn rootworms (CRW) were historically based upon chemical pesticides and crop rotation. Pesticide use created environmental and economic concerns. In...

  1. "King Corn": Teaching the Food Crisis

    Science.gov (United States)

    Swinehart, Tim

    2012-01-01

    "King Corn" is in so many ways the story of how government food policy has entirely remade the food landscape in the United States over the last 40 years. From the massive expansion of the number of acres of corn grown across the country, to the ever-increasing ways that corn is incorporated into the food production process, to the industrial…

  2. 77 FR 66781 - Notice of Filing of Several Pesticide Petitions Filed for Residues of Pesticide Chemicals in or...

    Science.gov (United States)

    2012-11-07

    ...- phenyl]-1-(3-chloro-2-pyridinyl)-1H-pyrazole-5- carboxamide, in or on mayhaw; corn, field, forage; corn, field, grain; corn, field, milled byproducts; corn, field, stover; corn, pop, forage; corn, pop, grain; corn, pop, stover; corn, sweet, forage; corn, sweet, kernel plus cobs with husk removed; corn,......

  3. YIELD BENEFIT OF CORN EVENT MON 863

    OpenAIRE

    Mitchell, Paul D.

    2002-01-01

    Data from field experiments are used to estimate the yield benefit of corn hybrids containing event MON 863 relative to nontransgenic corn hybrids without corn rootworm control and with a soil insecticide for corn rootworm control. Over typical ranges for corn rootworm population pressure, event MON 863 provides a yield benefit of 9-28% relative to no control and of 1.5-4.5% relative to control with a soil insecticide. For a reasonable range of prices and yields, the value of the event MON 86...

  4. 75 FR 60231 - Acephate, Cacodylic Acid, Dicamba, Dicloran, et al.; Tolerance Actions

    Science.gov (United States)

    2010-09-29

    ..., thiodicarb, and thiophanate-methyl, or MRL in or on corn, pop, grain; corn, pop, stover; or pineapple for..., grain 0.08 Corn, field, stover 0.08 Corn, pop, grain 0.08 Corn, pop, stover 0.08 Corn, sweet, forage 0.08 Corn, sweet, kernel plus cob with husks removed 0.08 Corn, sweet, stover 0.08 Cotton,...

  5. 77 FR 3617 - Etoxazole; Pesticide Tolerances

    Science.gov (United States)

    2012-01-25

    ... corn, field, grain at 0.01 parts per million (ppm); corn, field, forage at 0.6 ppm; corn, field, stover at 2.5 ppm; corn, field, refined oil at 0.03 ppm; corn, pop, grain at 0.01 ppm; corn, pop, stover at... from 0.6 ppm to 0.80 ppm; corn, field, stover from 2.5 ppm, to 4.0 ppm and corn, pop, stover from...

  6. PHYSICAL PROPERTIES OF CORN RESIDUES

    Directory of Open Access Journals (Sweden)

    Yaning Zhang

    2012-01-01

    Full Text Available Corn residues (cobs, leaves and stalks are abundantly available renewable materials that can be used as an energy source in gasification and combustion systems. Proper understanding of the physical properties of these materials is necessary for their use in thermochemical conversion processes. The physical properties (moisture content, particle size, bulk density and porosity of corn cobs, leaves and stalks were determined in this study. The moisture contents were 6.38, 7.92 and 6.40% of the cobs, leaves and stalks, respectively. The cobs had the highest weight percentage (18.23% of the small particles (0.850 mm. Most of the stalk particles (84.82% were in the range of 0.212-0.850 mm. The cob particle size had a normal concave (inward distribution between particle sizes 0.106 mm (18.23 weight % and 0.925 mm (25.26 weight % with the lowest weight percentage (5.30 weight % at 0.390 mm particle size while the stalk particle size had a normal convex (outward distribution between particle sizes 0.106 mm (8.49 weight % and 0.925 mm (6.69 weight % with the highest weight percentage (23.47 weight % at the 0.605 mm particle size. The leaves had an increasing trend of particle size distribution between the particle sizes 0.106 and 0.925 mm. The average particle sizes for the cobs, leaves and stalks were 0.56, 0.70 and 0.49 mm, respectively. The average bulk density was 282.38, 81.61 and 127.32 kg m-3 for the corn cobs, leaves and stalks, respectively. The average porosity was 67.93, 86.06 and 58.51% for the corn cobs, leaves and stalks, respectively. A positive relationship between the average particle size and the porosity was observed for the corn residues. The differences in the physical properties among the corn residues (cobs, leaves and stalks observed in this study are due to variations in the compositions and structures of these materials.

  7. 21 CFR 137.265 - Degerminated white corn meal.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Degerminated white corn meal. 137.265 Section 137... Cereal Flours and Related Products § 137.265 Degerminated white corn meal. (a) Degerminated white corn meal, degermed white corn meal, is the food prepared by grinding cleaned white corn and removing...

  8. 21 CFR 137.275 - Yellow corn meal.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Yellow corn meal. 137.275 Section 137.275 Food and... Related Products § 137.275 Yellow corn meal. Yellow corn meal conforms to the definition and standard of identity prescribed by § 137.250 for white corn meal except that cleaned yellow corn is used instead...

  9. Pest Control in Corn and Soybeans: Weeds - Insects - Diseases.

    Science.gov (United States)

    Doersch, R. E.; And Others

    This document gives the characteristics and application rates for herbicides used to control annual weeds in corn, annual and perennial broadleaf weeds in corn, quackgrass and yellow nutsedge in corn, and annual weeds in soybeans. It also gives insecticide use information for corn and soybeans. A brief discussion of disease control in corn and…

  10. 75 FR 48321 - Corning Natural Gas Corporation; Notice of Application

    Science.gov (United States)

    2010-08-10

    ... Energy Regulatory Commission Corning Natural Gas Corporation; Notice of Application August 4, 2010. Take notice that on July 26, 2010, Corning Natural Gas Corporation (Corning), 330 W. William Street, Corning... Natural Gas Act (NGA) requesting the determination of a service area with which Corning may,...

  11. IMPROVING PHOSPHORUS NUTRITION OF CORN

    Directory of Open Access Journals (Sweden)

    Walter B. Gordon

    2014-01-01

    Full Text Available Phosphorus (P generally occurs in soils as the anions H2PO4- or HPO4-2 depending on soil pH. These anions readily react with soil cations such as calcium, magnesium, iron and aluminum to produce various phosphate compounds of very limited water solubility. Crop recovery of applied phosphate fertilizer can be quite low during the season of application. In addition, the large amounts of crop residue present in no-tillage production systems can lower soil temperature thus reducing root growth and nutrient uptake of plants even on soils not low in available Phosphorus (P. Specialty Fertilizer Products, Leawood, KS has developed and patented a product registered as AVAIL® that is reported to attract and sequester antagonistic cations out of the soil solution leaving more of the applied P in available form for plant uptake. The objective of this experiment was to evaluate the effectiveness of AVAIL treated P-fertilizer on growth, P-uptake and yield of irrigated corn (Zea mays L. grown in a no-tillage production system. A 3-year experiment was conducted from 2001-2003 at the North Central Kansas Experiment Field, located near Scandia, KS, on a Crete silt loam soil (fine, montmorillonitic, mesic Pachic Arquistoll. Treatments consisted of three rates of P with or without AVAIL. A no P check plot was also included. When averaged over the years and P rates, the use of AVAIL increased yield of corn by 1.1 Mg ha-1. AVAIL also increased corn dry weight at the six-leaf stage, whole plant P uptake at the six-leaf stage and P concentration at mid-silk. The use of AVAIL proved beneficial in overcoming many of the problems associated with P nutrition in corn. AVAIL consistently increased P uptake and yield in this experiment.

  12. Effect of transgenic corn hybrids and a soil insecticide on corn rootworm (Coleoptera: Chrysomelidae) beetle emergence in North Dakota

    Science.gov (United States)

    Northern, Diabrotica barberi Smith & Lawrence, and western corn rootworms, D. virgifera virgifera LeConte, are economic pests of corn, Zea mays L. (Poaceae) in North Dakota. Many area corn growers rely on transgenic Bt (Bacillus thuringiensis) corn hybrids to manage corn rootworms. Our objective was...

  13. Bio-Oil Production from Fast Pyrolysis of Corn Wastes and Eucalyptus Wood in a Fluidized Bed Reactor

    Directory of Open Access Journals (Sweden)

    M.A Ebrahimi-Nik

    2014-09-01

    Full Text Available Fast pyrolysis is an attractive technology for biomass conversion, from which bio-oil is the preferred product with a great potential for use in industry and transport. Corn wastes (cob and stover and eucalyptus wood are widely being produced throughout the world. In this study, fast pyrolysis of these two materials were examined under the temperature of 500 °C; career gas flow rate of 660 l h-1; particle size of 1-2 mm; 80 and 110 g h-1 of feed rate. The experiments were carried out in a continuous fluidized bed reactor. Pyrolysis vapor was condensed in 3 cooling traps (15, 0 and -40 °C plus an electrostatic one. Eucalyptus wood was pyrolyised to 12.4, 61.4, and 26.2 percent of bio-char, bio-oil and gas, respectively while these figures were as 20.15, 49.9, and 29.95 for corn wastes. In all experiments, the bio-oil obtained from electrostatic trap was a dark brown and highly viscose liquid.

  14. Production of ethyl alcohol from corn silage

    Energy Technology Data Exchange (ETDEWEB)

    Pieper, H.J.; Ponitz, H.

    1973-01-01

    Corn silage may be employed as a raw material for the production of ethyl alcohol when starch is first cracked by pressure cooking and subsequently saccharified by microbial amalyses. Cracking conditions are: pressure increase 1.6 atmosphere within 60 minutes; maximum maintained for 35 minutes. The fermentation is complete after 72 hours. Extract decreases of fermented mashes made from corn silage are less than when dried corn is used. In the most advantageous case the degree of fermentation was -0.2 weight % of the extract. The maximum yields of alcohol were 26.0.1. pure alcohol/100 kg corn silage and 61.2.1. pure alcohol/100 kg starch. The latter is 3.9.1. pure alcohol lower than when dried corn was used. Despite the high bacterial infection of corn silage practically infection-free processing is assured.

  15. Forage quality and composition measurements as predictors of ethanol yield from maize (Zea mays L. stover

    Directory of Open Access Journals (Sweden)

    de Leon Natalia

    2009-03-01

    Full Text Available Abstract Background Improvement of biofeedstock quality for cellulosic ethanol production will be facilitated by inexpensive and rapid methods of evaluation, such as those already employed in the field of ruminant nutrition. Our objective was to evaluate whether forage quality and compositional measurements could be used to estimate ethanol yield of maize stover as measured by a simplified pretreatment and simultaneous saccharification and fermentation assay. Twelve maize varieties selected to be diverse for stover digestibility and composition were evaluated. Results Variation in ethanol yield was driven by glucan convertibility rather than by glucan content. Convertibility was highly correlated with ruminal digestibility and lignin content. There was no relationship between structural carbohydrate content (glucan and neutral detergent fiber and ethanol yield. However, when these variables were included in multiple regression equations including convertibility or neutral detergent fiber digestibility, their partial regression coefficients were significant and positive. A regression model including both neutral detergent fiber and its ruminal digestibility explained 95% of the variation in ethanol yield. Conclusion Forage quality and composition measurements may be used to predict cellulosic ethanol yield to guide biofeedstock improvement through agronomic research and plant breeding.

  16. 40 CFR 180.350 - Nitrapyrin; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... following raw agricultural commodities: Commodity Parts per million Corn, field, forage 1.0 Corn, field, grain 0.1 Corn, field, milled byproducts 0.2 Corn, field, stover 1.0 Corn, pop, grain 0.1 Corn, pop, stover 1.0 Corn, sweet, forage 1.0 Corn, sweet, kernel plus cob with husks removed 0.1 Corn,...

  17. A Hedonic Model of Corn Seed Prices

    OpenAIRE

    Fernandez-Cornejo, Jorge; Valle, Karen

    2014-01-01

    A notable feature of the adoption of genetically engineered (GE) corn is the rapid growth in seed prices accompanied by rapid increases in GE corn with multiple (stacked) traits, which have often seen to offer several advantages to farmers, particularly increased yields. This paper presents preliminary empirical results on the estimation of the pricing of seed traits for corn using 2010 data. The hedonic approach used entails expressing the price of seed as a function of their “quality charac...

  18. 三价铁离子促进玉米秸秆厌氧发酵%Fe3+enhanced anaerobic digestion process of corn straw

    Institute of Scientific and Technical Information of China (English)

    时昌波; 王进; 彭书传; 侯成虎; 陈天虎; 岳正波※

    2013-01-01

      Anaerobic digestion is one of the effective utilization processes for the resourcization of agricultural wastes. Trace elements are one of the key biological factors that influence the biogas production capacity of organic wastes, especially for the element of iron that has a significant influence on the stability and methane yield of the anaerobic digestion process. However, the iron content in the corn stover normally is low. Therefore, in this experiment FeCl3 was used as the iron source to enhance the anaerobic digestion of corn stover. The experiment was performed in batch modes using the serum bottles as reactors with a working volume of 150 mL. The mass concentration based on the volatile solids (VS ) of corn stover was 50 g/L and FeCl3 dosages were 0%, 0.1%, 0.2%, 0.5%, 1.5%, 3%, 6%of the corn stover VS. The characteristics of the gas and methane generation process, digester solution, and solid digester residues in the five reactors were studied. A modified Gompertz equation was used to describe the gas and methane generation process. Results showed that the methane production of the reactor with 3%FeCl3 was 7.29 L·L-1 which was about 14%higher than that of the control reactor (6.47 L·L-1). Simulation results also showed that the lag time, product yield, and formation rate were different in the reactors. Such a difference could be attributed to the nutrient iron requirements for different anaerobic microorganisms, including hydrolytic and fermentative bacteria, acetogenic bacteria, and methane-producing archaea were different. Cellulose and hemicellulose were the main ingredients of corn stalks, and were also the main biodegradable ingredients of corn stover for the anaerobic digestion process. The lignocelluloses content in the dolif digester residues were analyzed. The mass fractions of neutral detergent fiber, hemicellulose, and cellulose in the digester residue obtained from the reactor with 3%FeCl3 were the lowest, which were 56%, and 6%and 18

  19. Understanding successful resistance management: The European corn borer and Bt corn in the United States

    Science.gov (United States)

    European corn borer, Ostrinia nubilalis Hubner (Lepidoptera: Crambidae) has been a major pest of corn and other crops in North America since its accidental introduction nearly a hundred years ago. Wide adoption of transgenic corn that expresses toxins from Bacillus thuringiensis, referred to as Bt c...

  20. FARMER DEMAND FOR CORN ROOTWORM BT CORN: DO INSECT RESISTANCE MANAGEMENT GUIDELINES MATTER?

    OpenAIRE

    Langrock, Ines; Terrance M. Hurley; Ostlie, Kenneth

    2003-01-01

    Farmer adoption of Bt corn and compliance with insect resistance management (IRM) regulations will influence the success of these regulations. The purpose of this paper is to use farmer survey data to estimate the demand for new corn rootworm Bt corn and the cost of complying with proposed IRM regulations.

  1. Potential Harvestable Corn Cob Biomass in Several Production Systems in the Western Corn Belt

    Science.gov (United States)

    The proposed use of corn residues for biofuel production has increased interest in how much and what components of residue should/can be removed. One component of corn residue that is already being handled (corn cobs) might be an easily harvestable product that could be used for biofuel production. ...

  2. 77 FR 12207 - Pyroxasulfone; Pesticide Tolerances

    Science.gov (United States)

    2012-02-29

    ...; field corn stover at 0.15 ppm; field corn meal at 0.01 ppm; field corn grits at 0.01 ppm; field corn... corn ears at 0.02 ppm; sweet corn forage at 0.15 ppm; sweet corn stover at 0.15 ppm; wheat grain at 0..., and M-25 on ``field corn grain,'' ``field corn forage,'' ``field corn stover,'' ``sweet......

  3. Nutrition Characters of Sweet Corns in Kernel Milky Maturity

    Institute of Scientific and Technical Information of China (English)

    WuMoucheng; ChenXiaoyi

    2000-01-01

    Three corn varieties,supper-sweet corn(S),standard-sweet corn(M),corn-non corn(C) were used for nutritional composition measurement during kernel milky maturity.The variations of protein,vitamin,total sugar showed as parabola.Mineral elements and fiber increase and reducing sugar decreased gradually.Total sugar,protein and fat in the sweet corn were much richer than those in common corn.VE and VC were very plentiful,and lysine was high.Proper harvest time of sweet corn M and S were DAP (days after pollination)19-21,and DAP 18-21 respectively.

  4. Introduction Experiment of Extremely Early Maturing Corn in High-latitude and High-altitude Awusiqi%高纬度高海拔阿吾斯奇地区极早熟玉米引种试验

    Institute of Scientific and Technical Information of China (English)

    刘彦; 付强; 刘军; 刘雪芹

    2016-01-01

    此试验是在特殊的高纬度高海拔,≥10℃年积温只有2088℃的阿吾斯奇地区进行的极早熟玉米引种试验,试验品种九个,分别引自内蒙古、新疆本地和黑龙江。试验表明,阿吾斯奇地区不能种植收籽玉米,可种植青贮玉米,但只能是收无穗的青玉米秆。最适宜的品种是丰早304。%The experiment related to introduction of extremely early maturing corn is carried out in particular high-latitude and high-altitude Awusqi, where ≥10℃accumulated temperature is 2 088℃every year. Nine varieties are respectively introduced from Inner Mongolia, Xinjiang and Heilongjiang. It indicates that Awusqi region can not be suitable for seeding corn but silage corn, and only the green corn stover without spikes can be collected. The most suitable variety is fengzao-304.

  5. The Research on the Stover-Harvesting Technology of Combine Harvester for Corn and Stover%穗茎兼收玉米联合收获机秸秆收获技术研究

    Institute of Scientific and Technical Information of China (English)

    骆琳; 马继春; 焦伟; 刘继元; 王小瑜

    2012-01-01

    玉米秸秆量大面广,用途广泛,但收获困难,而且不同用途对收获的要求亦不同.既能收获玉米果穗又能同时收获秸秆的穗茎兼收玉米联合收获机能促进秸秆综合利用,在我国已有较长时间的发展.其秸秆处理流程有“六步法”、“五步法”和“三步法”三种.今后,应加强功能部件和系统配套性研究,适时开展配套籽粒收获割台的穗茎兼收技术与装备研究,开展秸秆湿式贮存研究,并进行综合利用体系规划与建设.

  6. 甜玉米%Growing Good Corn

    Institute of Scientific and Technical Information of China (English)

    李同良

    2007-01-01

    @@ James Bender, in his book How to Talk Well (New York: McGraw-Hill Book Company, Inc., 1994)relates the story of a farmer who grew awardwinning corn. Each year he entered his corn in the state fair where it won a blue ribbon. One year a newspaper reporter interviewed him and learned something interesting about how he grew it.

  7. Characterization and flocculation mechanism of a bioflocculant from hydrolyzate of rice stover.

    Science.gov (United States)

    Guo, Junyuan; Yu, Jing; Xin, Xin; Zou, Changwu; Cheng, Qingfeng; Yang, Huaijin; Nengzi, Lichao

    2015-02-01

    This study investigated the characterization and flocculation mechanism of a bioflocculant from hydrolyzate of rice stover. Production of the bioflocculant was positively associated with cell growth and a highest value of 2.4 g L(-1) was obtained. During the kaolin suspension flocculation, charge neutralization and inter-particle bridging were proposed as the reasons for enhanced performance. Apart from this, the bioflocculant showed good performances in sludge dewatering and swine wastewater pretreatment. After conditioning by the bioflocculant, dry solids (DS) and specific resistance to filtration (SRF) of the sludge reached 18.4% and 4.8×10(12) m kg(-1), respectively, which were much better than that by conventional chemical flocculants. In the swine wastewater pretreatment, the removal efficiencies of COD, ammonium, and turbidity reached 48.3%, 43.6% and 75.8% at pH 8.0 when the bioflocculant dose was adjusted to 20 mg L(-1).

  8. Stover Composition in Maize and Sorghum Reveals Remarkable Genetic Variation and Plasticity for Carbohydrate Accumulation

    Science.gov (United States)

    Sekhon, Rajandeep S.; Breitzman, Matthew W.; Silva, Renato R.; Santoro, Nicholas; Rooney, William L.; de Leon, Natalia; Kaeppler, Shawn M.

    2016-01-01

    Carbohydrates stored in vegetative organs, particularly stems, of grasses are a very important source of energy. We examined carbohydrate accumulation in adult sorghum and maize hybrids with distinct phenology and different end uses (grain, silage, sucrose or sweetness in stalk juice, and biomass). Remarkable variation was observed for non-structural carbohydrates and structural polysaccharides during three key developmental stages both between and within hybrids developed for distinct end use in both species. At the onset of the reproductive phase (average 65 days after planting, DAP), a wide range for accumulation of non-structural carbohydrates (free glucose and sucrose combined), was observed in internodes of maize (11–24%) and sorghum (7–36%) indicating substantial variation for transient storage of excess photosynthate during periods of low grain or vegetative sink strength. Remobilization of these reserves for supporting grain fill or vegetative growth was evident from lower amounts in maize (8–19%) and sorghum (9–27%) near the end of the reproductive period (average 95 DAP). At physiological maturity of grain hybrids (average 120 DAP), amounts of these carbohydrates were generally unchanged in maize (9–21%) and sorghum (16–27%) suggesting a loss of photosynthetic assimilation due to weakening sink demand. Nonetheless, high amounts of non-structural carbohydrates at maturity even in grain maize and sorghum (15–18%) highlight the potential for developing dual-purpose (grain/stover) crops. For both species, the amounts of structural polysaccharides in the cell wall, measured as monomeric components (glucose and pentose), decreased during grain fill but remained unchanged thereafter with maize biomass possessing slightly higher amounts than sorghum. Availability of carbohydrates in maize and sorghum highlights the potential for developing energy-rich dedicated biofuel or dual-purpose (grain/stover) crops. PMID:27375668

  9. Production of thermotolerant entomopathogenic Isaria fumosorosea SFP-198 conidia in corn-corn oil mixture.

    Science.gov (United States)

    Kim, Jae Su; Je, Yeon Ho; Roh, Jong Yul

    2010-04-01

    Low thermotolerance of entomopathogenic fungi is a major impediment to long-term storage and effective application of these biopesticides under seasonal high temperatures. The effects of high temperatures on the viability of an entomopathogenic fungus, Isaria fumosorosea SFP-198 (KCTC 0499BP), produced on different substrates amended with various additives were explored. Ground corn was found to be superior in producing the most thermotolerant conidia compared to yellow soybean, red kidney bean, and rice in a polyethylene bag production system. Using ground corn mixed with corn oil as a substrate resulted in only 7% reduction in germination compared to ground corn alone (67% reduction) after exposure of conidia to 50 degrees C for 2 h. Corn oil as an additive for ground corn was followed by inorganic salts (KCl and NaCl), carbohydrates (sucrose and dextrin), a sugar alcohol (sorbitol), and plant oils (soybean oil and cotton seed oil) in ability to improve conidial thermotolerance. Unsaturated fatty acids, such as linoleic acid and oleic acid, the main components of corn oil, served as effective additives for conidial thermotolerance in a dosage-dependent manner, possibly explaining the improvement by corn oil. This finding suggests that the corn-corn oil mixture can be used to produce highly thermotolerant SFP-198 conidia and provides the relation of unsaturated fatty acids as substrates with conidial thermotolerance.

  10. Evaluation of the compositional and nutritional values of phytase transgenic corn to conventional corn in roosters.

    Science.gov (United States)

    Gao, C Q; Ma, Q G; Ji, C; Luo, X G; Tang, H F; Wei, Y M

    2012-05-01

    Three experiments were conducted to evaluate the compositional and nutritional values of corn grains [phytase transgenic corn (PTC) and isogenic conventional corn (CC)] and compare the efficacy of corn-based phytase and extraneous microbial phytase for enhancing the utilization of phytate phosphorus (P) in single corn or corn-soybean mixed meals (corn:soybean = 2.5:1, wt:wt) fed to roosters. Following a 48-h fasting period, 16 roosters were given 50 g of each sample via crop intubation and excreta were collected for 48 h. Nitrogen-free and phosphorus-free diets were used to evaluate endogenous amino acid and endogenous P losses, respectively. Chemical composition was not different between PTC and CC, whereas the phytase content for PTC was greater than CC (8,047 vs. 37 FTU/kg of corn, DM basis; P 0.05) between roosters fed PTC and extraneous microbial phytase in equivalent FTU/kg of diets. The results of this study indicated that the chemical composition, TME, and true amino acid availability in PTC are essentially equivalent to that in CC, and the true P utilization for roosters is higher in PTC than in CC. Corn expressing phytase is as efficacious as equivalent microbial phytase when supplemented in corn-soybean diets for chickens.

  11. 75 FR 33190 - Trifloxystrobin; Pesticide Tolerances

    Science.gov (United States)

    2010-06-11

    ... trifloxystrobin in or on corn, field, forage; corn, sweet, forage; and corn, sweet, stover. Bayer CropScience... million (ppm); corn, sweet, forage at 7.0 ppm; and corn, sweet, stover at 4.0 ppm. That notice referenced... ester, in or on corn, field, forage at 6.0 ppm; corn, sweet, forage at 7.0 ppm; and corn, sweet,......

  12. 40 CFR 180.470 - Acetochlor; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ... stoichiometric equivalents of acetochlor, in or on the following commodities: Commodity Parts per million Corn, field, forage 4.5 Corn, field, grain 0.05 Corn, field, stover 2.5 Corn, pop, grain 0.05 Corn, pop, stover 2.5 Corn, sweet, forage 1.5 Corn, sweet, kernels plus cob with husks removed 0.05 Corn,...

  13. EM发酵玉米秸秆和青贮玉米秸秆对奶牛生产性能的对比试验%Contrast Test of EM Fermentation Corn Straw and Corn Straw Silage on Production Performance of Dairy Cows

    Institute of Scientific and Technical Information of China (English)

    段军红

    2012-01-01

    本试验应用EM发酵玉米秸秆和青贮玉米秸秆饲喂奶牛,以观察两种方法处理的玉米秸秆对奶牛生产性能及经济效益的影响效果。结果表明,用EM发酵的玉米秸秆饲喂奶牛较青贮玉米秸秆饲喂奶牛,每天每头奶牛采食量提高1.03%,平均产奶量提高2.02%,经济效益提高0.13元;EM原液发酵的玉米秸秆和青贮玉米秸秆1:1混合饲喂奶牛,每天每头奶牛采食量、平均产奶量、经济效益分别比饲喂青贮玉米秸秆的奶牛提高2.85%、2.99%和1.15元。%EM fermentation corn straw and corn straw silage feeding dairy cows were used in the test to observe the effect of two different methods of corn stover treatment on production performance of dairy cows and milk yield. Results showed that: Comparing EM fermentation corn straw feeding dairy cattle with corn straw silage feeding dairy cows, every cow feed intake was increased by 1.03%, average milk production increased by 2.02%, economic benefits rised only 0.13 yuan, but the EM with the 50% liquid fermentation of corn straw and corn straw silage mixed feeding dairy cows, every cow feed intake, average milk yield, economic benefits respectively fed corn straw silage on dairy increased 2.85%, 2.99% and I. 15 yuan respectively.

  14. 21 CFR 137.280 - Bolted yellow corn meal.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Bolted yellow corn meal. 137.280 Section 137.280... Flours and Related Products § 137.280 Bolted yellow corn meal. Bolted yellow corn meal conforms to the definition and standard of identity prescribed by § 137.255 for bolted white corn meal except that...

  15. 21 CFR 137.285 - Degerminated yellow corn meal.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Degerminated yellow corn meal. 137.285 Section 137... Cereal Flours and Related Products § 137.285 Degerminated yellow corn meal. Degerminated yellow corn meal, degermed yellow corn meal, conforms to the definition and standard of identity prescribed by § 137.265...

  16. Native Resistance of Maize to Western Corn Rootworm Larval Feeding

    Science.gov (United States)

    The western corn rootworm (WCR) is a major insect pest in continuous corn production. By feeding on corn roots, WCR causes economic losses due to plant lodging and decreased nutrient uptake. Currently, insecticides and transgenic corn are only available options for its control under continuous cor...

  17. 40 CFR 180.185 - DCPA; tolerances for residues.

    Science.gov (United States)

    2010-07-01

    ..., leaves 5.0 Corn, field, forage 0.4 Corn, field, grain 0.05 Corn, field, stover 0.4 Corn, pop, forage 0.4 Corn, pop, grain 0.05 Corn, pop, stover 0.4 Corn, sweet, forage 0.4 Corn, sweet, kernel plus cob with husks removed 0.05 Corn, sweet, stover 0.4 Cotton, undelinted seed 0.2 Cucumber 1.0 Dill 5.0 Eggplant......

  18. Nutrition Characters of Sweet Corns in Kernel Milky Maturity

    Institute of Scientific and Technical Information of China (English)

    Wu Moucheng; Chen Xiaoyi

    2000-01-01

    Three corn varieties, supper-sweet corn (S), standard-sweet corn (M), common corn(C) were used for nutritional composition measurement during kernel milky maturity.The variations of protein, vitamin, total sugar showed as parabola. Mineral elements and fiber increase and reducing sugar decreased gradually. Total sugar, protein and fat in the sweet corn were much richer than those in common corn. VE and Vc were very plentiful, and lysine was high. Proper harvest time of sweet corn M and S were DAP (days after pollination)19-21 ,and DAP 18-21 respectively.

  19. Multifaceted metabolomics approaches for characterization of lignocellulosic biomass degradation products formed during ammonia fiber expansion pretreatment

    Science.gov (United States)

    Vismeh, Ramin

    Lignocellulosic biomass represents a rather unused resource for production of biofuels, and it offers an alternative to food sources including corn starch. However, structural and compositional impediments limit the digestibility of sugar polymers in biomass cell walls. Thermochemical pretreatments improve accessibility of cellulose and hemicellulose to hydrolytic enzymes. However, most pretreatment methods generate compounds that either inhibit enzymatic hydrolysis or exhibit toxicity to fermentive microorganisms. Characterization and quantification of these products are essential for understanding chemistry of the pretreatment and optimizing the process efficiency to achieve higher ethanol yields. Identification of oligosaccharides released during pretreatment is also critical for choosing hydrolases necessary for cost-effective hydrolysis of cellulose and hemicellulose to fermentable monomeric sugars. Two chapters in this dissertation describe new mass spectrometry-based strategies for characterization and quantification of products that are formed during ammonia fiber expansion (AFEX) pretreatment of corn stover. Comparison of Liquid Chromatography Mass Spectrometry (LC/MS) profiles of AFEX-treated corn stover (AFEXTCS) and untreated corn stover (UTCS) extract shows that ammonolysis of lignin carbohydrate ester linkages generates a suite of nitrogenous compounds that are present only in the AFEXTCS extract and represent a loss of ammonia during processing. Several of these products including acetamide, feruloyl, coumaroyl and diferuloyl amides were characterized and quantified in the AFEXTCS extracts. The total amount of characterized and uncharacterized phenolic amides measured 17.4 mg/g AFEXTCS. Maillard reaction products including pyrazines and imidazoles were also identified and measured in the AFEXTCS extract totaling almost 1 mg/g AFEXTCS. The total of quantified nitrogenous products that are formed during AFEX was 43.4 mg/g AFEXTCS which was equivalent

  20. SHADING EFFECTS ON SOYBEAN AND CORN

    OpenAIRE

    Ephrath, J. E.; Wang, R. F.; Terashima, K.; Hesketh, J. D.; Huck, M. G.; Hummel, J. W.

    1993-01-01

    Shades for reducing available irradiance were placed over field-grown plants to measure light effects on root and shoot morphology and phenology. As reported in the past the ratios of leaf and shoot biomass to leaf area decreased with shade intensity. The 20%-of-ambient treatment greatly reduced corn root growth, but the trend from 70 to 27% ambient was weak. Kernel row numbers on the corn cob were sensitive to shade level. In general soybean was more shade tolerant than corn. The treatments ...