WorldWideScience

Sample records for aetiological mechanisms underlying

  1. Getting the phenotypes right: an essential ingredient for understanding aetiological mechanisms underlying persistent violence and developing effective treatments

    Directory of Open Access Journals (Sweden)

    Sheilagh Hodgins

    2009-11-01

    Full Text Available In order to reduce societal levels of violence, it is essential to advance understanding of the neurobiological mechanisms involved in initiating and maintaining individual patterns of physical aggression. New technologies such as Magnetic Resonance Imagining and analyses of DNA provide tools for identifying these mechanisms. The reliability and validity of the results of studies using these tools depend not only on aspects of the technology, but also on the methodological rigour with which the studies are conducted, particularly with respect to characterizing the phenotype. The present article discusses five challenges confronting scientists who aim to advance understanding of the neurobiological mechanisms associated with persistent violence. These challenges are: (1 to develop evidence-based hypotheses and to design studies that test alternate hypotheses; (2 to recruit samples that are homogeneous with respect to variables that may be linked to neurobiological mechanisms underpinning violent behaviour; (3 to use reliable and valid measures in order to fully characterize participants so that the external validity of the results is evident; (4 to restrict the range of age of participants so as not to confuse developmental change with group differences; and (5 to take account of sex. Our goal is to contribute to elevating methodological standards in this new field of research and to thereby improve the validity of results and move closer to finding effective ways to reduce violence

  2. MECHANISMS IN ENDOCRINOLOGY: An update in the genetic aetiologies of combined pituitary hormone deficiency.

    Science.gov (United States)

    Castinetti, Frederic; Reynaud, Rachel; Saveanu, Alexandru; Jullien, Nicolas; Quentien, Marie Helene; Rochette, Claire; Barlier, Anne; Enjalbert, Alain; Brue, Thierry

    2016-06-01

    Over the last 5 years, new actors involved in the pathogenesis of combined pituitary hormone deficiency in humans have been reported: they included a member of the immunoglobulin superfamily glycoprotein and ciliary G protein-coupled receptors, as well as new transcription factors and signalling molecules. New modes of inheritance for alterations of genes encoding transcription factors have also been described. Finally, actors known to be involved in a very specific phenotype (hypogonadotroph hypogonadism for instance) have been identified in a wider range of phenotypes. These data thus suggest that new mechanisms could explain the low rate of aetiological identification in this heterogeneous group of diseases. Taking into account the fact that several reviews have been published in recent years on classical aetiologies of CPHD such as mutations of POU1F1 or PROP1, we focused the present overview on the data published in the last 5 years, to provide the reader with an updated review on this rapidly evolving field of knowledge. PMID:26733480

  3. Microbial aetiology of acute diarrhoea in children under five years of age in Khartoum, Sudan.

    Science.gov (United States)

    Saeed, Amir; Abd, Hadi; Sandstrom, Gunnar

    2015-04-01

    Diarrhoea is one of leading causes of morbidity and mortality worldwide. Recent estimations suggested the number of deaths is close to 2.5 million. This study examined the causative agents of diarrhoea in children under 5 years of age in suburban areas of Khartoum, Sudan. A total of 437 stool samples obtained from children with diarrhoea were examined by culture and PCR for bacteria, by microscopy and PCR for parasites and by immunoassay for detection of rotavirus A. Of the 437 samples analysed, 211 (48%) tested positive for diarrhoeagenic Escherichia coli, 96 (22%) for rotavirus A, 36 (8%) for Shigella spp., 17 (4%) for Salmonella spp., 8 (2%) for Campylobacter spp., 47 (11%) for Giardia intestinalis and 22 (5%) for Entamoeba histolytica. All isolates of E. coli (211, 100 %) and Salmonella (17, 100%), and 30 (83%) isolates of Shigella were sensitive to chloramphenicol; 17 (100%) isolates of Salmonella, 200 (94%) isolates of E. coli and (78%) 28 isolates of Shigella spp. were sensitive to gentamicin. In contrast, resistance to ampicillin was demonstrated in 100 (47%) isolates of E. coli and 16 (44%) isolates of Shigella spp. In conclusion, E. coli proved to be the main cause of diarrhoea in young children in this study, followed by rotavirus A and protozoa. Determination of diarrhoea aetiology and antibiotic susceptibility patterns of diarrhoeal pathogens and improved hygiene are important for clinical management and controlled strategic planning to reduce the burden of infection. PMID:25713206

  4. Aetiology and mechanisms of injury in medial tibial stress syndrome: Current and future developments.

    Science.gov (United States)

    Franklyn, Melanie; Oakes, Barry

    2015-09-18

    Medial tibial stress syndrome (MTSS) is a debilitating overuse injury of the tibia sustained by individuals who perform recurrent impact exercise such as athletes and military recruits. Characterised by diffuse tibial anteromedial or posteromedial surface subcutaneous periostitis, in most cases it is also an injury involving underlying cortical bone microtrauma, although it is not clear if the soft tissue or cortical bone reaction occurs first. Nuclear bone scans and magnetic resonance imaging (MRI) can both be used for the diagnosis of MTSS, but the patient's history and clinical symptoms need to be considered in conjunction with the imaging findings for a correct interpretation of the results, as both imaging modalities have demonstrated positive findings in the absence of injury. However, MRI is rapidly becoming the preferred imaging modality for the diagnosis of bone stress injuries. It can also be used for the early diagnosis of MTSS, as the developing periosteal oedema can be identified. Retrospective studies have demonstrated that MTSS patients have lower bone mineral density (BMD) at the injury site than exercising controls, and preliminary data indicates the BMD is lower in MTSS subjects than tibial stress fracture (TSF) subjects. The values of a number of tibial geometric parameters such as cross-sectional area and section modulus are also lower in MTSS subjects than exercising controls, but not as low as the values in TSF subjects. Thus, the balance between BMD and cortical bone geometry may predict an individual's likelihood of developing MTSS. However, prospective longitudinal studies are needed to determine how these factors alter during the development of the injury and to find the detailed structural cause, which is still unknown. Finite element analysis has recently been used to examine the mechanisms involved in tibial stress injuries and offer a promising future tool to understand the mechanisms involved in MTSS. Contemporary accurate diagnosis

  5. Biochemical mechanisms underlying atherogenesis

    Directory of Open Access Journals (Sweden)

    Dr.P.V.L.N. Srinivasa Rao

    2012-02-01

    Full Text Available Atherosclerosis remains one of the major causes of death and premature disability in developed countries. Though atherosclerosis was formerly considered a bland lipid storage disease, substantial advances in basic and experimental sciences have illuminated the role of endothelium, inflammation and immune mechanisms in its pathogenesis. Current concept of atherosclerosis is that of a dynamic and progressive disease arising from in- jury to endothelium, also known as endothelial dysfunction and an inflammatory response to that injury. The lesions of atherosclerosis occur principally in large and medium sized arteries. Atherosclerosis affects various regions of the circulation preferentially and can lead to ischemia of heart, brain or extremities resulting in in- farction.This produces distinct clinical manifestations depending on the vessel involved. Several predisposing factors to cardiovascular diseases such as diabetes mellitus, hypertension, obesity, infections act as triggers to the devel- opment of atherosclerosis by causing endothelial dysfunction and/or promoting inflammatory response. The evolution of pathogenetic mechanisms has passed through various directions such as oxidative stress, inflam- mation and immune responses. It is now known that all these are not acting independently but are interrelated and getting unified in the current concept of atherogenesis. The following discussion aims at providing an in- sight into these developments which can help in a better comprehension of the disease and management of its clinical complications

  6. Aetiology of diarrhoeal disease and evaluation of viral-bacterial coinfection in children under 5 years old in China: a matched case-control study.

    Science.gov (United States)

    Li, L L; Liu, N; Humphries, E M; Yu, J M; Li, S; Lindsay, B R; Stine, O C; Duan, Z J

    2016-04-01

    Globally, diarrhoeal diseases are the second leading cause of death among children under 5 years old. Few case-control studies on the aetiology of diarrhoea have been conducted in China. A case-control study on 922 children under 5 years old who presented with diarrhoea and individually matched controls was conducted in China between May 2011 and January 2013. Quantitative PCR was used to analyze stool samples for 10 diarrhoeal pathogens. Potential enteric pathogens were detected in 377 (81.8%) of 461 children with diarrhoea and 215 controls (46.6%, p Shigella and adenovirus were qualitatively associated with diarrhoea. Using receiver operating characteristic curves, the optimal cutoff threshold for defining a symptomatic individual was 72, 5840, and 10(4) copies per reaction for rotavirus (odds ratio 259), norovirus GII (odds ratio 10.6) and Shigella (odds ratio 5.1). The attributable fractions were 0.18 for rotavirus, 0.08 for norovirus GII, 0.01 for Shigella and 0.04 for adenovirus. Coinfections between pathogens were common. Two pairs, rotavirus and adenovirus, and norovirus GII and Salmonella were positively associated. The co-occurrence of rotavirus and sapovirus, astrovirus, enterotoxigenic Escherichia coli or Campylobacter jejuni only occurred in children with disease. Coinfection was not correlated with clinical symptoms. Quantitative data are critical. Our results indicate that increased pathogen loads increase the OR between diarrhoea and rotavirus, norovirus GII and Shigella. Coinfections with rotavirus and norovirus GII are common and occur in a nonrandom distribution. Despite testing for ten diarrhoeal pathogens, over two-thirds of cases do not have a recognized attributable cause. PMID:26724990

  7. Aetiological role of common respiratory viruses in acute lower respiratory infections in children under five years: A systematic review and meta–analysis

    Directory of Open Access Journals (Sweden)

    Ting Shi

    2015-06-01

    Full Text Available Background: Acute lower respiratory infection (ALRI remains a major cause of childhood hospitalization and mortality in young children and the causal attribution of respiratory viruses in the aetiology of ALRI is unclear. We aimed to quantify the absolute effects of these viral exposures. Methods: We conducted a systematic literature review (across 7 databases of case–control studies published from 1990 to 2014 which investigated the viral profile of 18592 children under 5 years with and without ALRI. We then computed a pooled odds ratio and virus–specific attributable fraction among the exposed of 8 common viruses – respiratory syncytial virus (RSV, influenza (IFV, parainfluenza (PIV, human metapneumovirus (MPV, adenovirus (AdV, rhinovirus (RV, bocavirus (BoV, and coronavirus (CoV. Findings: From the 23 studies included, there was strong evidence for causal attribution of RSV (OR 9.79; AFE 90%, IFV (OR 5.10; AFE 80%, PIV (OR 3.37; AFE 70% and MPV (OR 3.76; AFE 73%, and less strong evidence for RV (OR 1.43; AFE 30% in young children presenting with ALRI compared to those without respiratory symptoms (asymptomatic or healthy children. However, there was no significant difference in the detection of AdV, BoV, or CoV in cases and controls. Conclusions This review supports RSV, IFV, PIV, MPV and RV as important causes of ALRI in young children, and provides quantitative estimates of the absolute proportion of virus–associated ALRI cases to which a viral cause can be attributed.

  8. Kinesin's backsteps under mechanical load

    CERN Document Server

    Hyeon, Changbong; Onuchic, Jose' N

    2009-01-01

    Kinesins move processively toward the plus end of microtubules by hydrolyzing ATP for each step. From an enzymatic perspective, the mechanism of mechanical motion coupled to the nucleotide chemistry is often well explained using a single-loop cyclic reaction. However, several difficulties arise in interpreting kinesin's backstepping within this framework, especially when external forces oppose the motion of kinesin. We review evidence, such as an ATP-independent stall force and a slower cycle time for backsteps, that has emerged to challenge the idea that kinesin backstepping is due to ATP synthesis, i.e., the reverse cycle of kinesin's forward-stepping chemomechanics. Supplementing the conventional single-loop chemomechanics with routes for ATP-hydrolyzing backward steps and nucleotide-free steps, especially under load, gives a better physical interpretation of the experimental data on backsteps.

  9. Molecular Mechanisms Underlying Bacterial Persisters

    DEFF Research Database (Denmark)

    Maisonneuve, Etienne; Gerdes, Kenn

    2014-01-01

    All bacteria form persisters, cells that are multidrug tolerant and therefore able to survive antibiotic treatment. Due to the low frequencies of persisters in growing bacterial cultures and the complex underlying molecular mechanisms, the phenomenon has been challenging to study. However, recent...... technological advances in microfluidics and reporter genes have improved this scenario. Here, we summarize recent progress in the field, revealing the ubiquitous bacterial stress alarmone ppGpp as an emerging central regulator of multidrug tolerance and persistence, both in stochastically and environmentally...

  10. Molecular Mechanisms Underlying Pituitary Pathogenesis.

    Science.gov (United States)

    Sapochnik, Melanie; Nieto, Leandro Eduardo; Fuertes, Mariana; Arzt, Eduardo

    2016-04-01

    During the last years, progress has been made on the identification of mechanisms involved in anterior pituitary cell transformation and tumorigenesis. Oncogene activation, tumor suppressor gene inactivation, epigenetic changes, and microRNAs deregulation contribute to the initiation of pituitary tumors. Despite the high prevalence of pituitary adenomas, they are mostly benign, indicating that intrinsic mechanisms may regulate pituitary cell expansion. Senescence is characterized by an irreversible cell cycle arrest and represents an important protective mechanism against malignancy. Pituitary tumor transforming gene (PTTG) is an oncogene involved in early stages of pituitary tumor development, and also triggers a senescence response by activating DNA-damage signaling pathway. Cytokines, as well as many other factors, play an important role in pituitary physiology, affecting not only cell proliferation but also hormone secretion. Special interest is focused on interleukin-6 (IL-6) because its dual function of stimulating pituitary tumor cell growth but inhibiting normal pituitary cells proliferation. It has been demonstrated that IL-6 has a key role in promoting and maintenance of the senescence program in tumors. Senescence, triggered by PTTG activation and mediated by IL-6, may be a mechanism for explaining the benign nature of pituitary tumors. PMID:26718581

  11. Metacognitive mechanisms underlying lucid dreaming.

    Science.gov (United States)

    Filevich, Elisa; Dresler, Martin; Brick, Timothy R; Kühn, Simone

    2015-01-21

    Lucid dreaming is a state of awareness that one is dreaming, without leaving the sleep state. Dream reports show that self-reflection and volitional control are more pronounced in lucid compared with nonlucid dreams. Mostly on these grounds, lucid dreaming has been associated with metacognition. However, the link to lucid dreaming at the neural level has not yet been explored. We sought for relationships between the neural correlates of lucid dreaming and thought monitoring. Human participants completed a questionnaire assessing lucid dreaming ability, and underwent structural and functional MRI. We split participants based on their reported dream lucidity. Participants in the high-lucidity group showed greater gray matter volume in the frontopolar cortex (BA9/10) compared with those in the low-lucidity group. Further, differences in brain structure were mirrored by differences in brain function. The BA9/10 regions identified through structural analyses showed increases in blood oxygen level-dependent signal during thought monitoring in both groups, and more strongly in the high-lucidity group. Our results reveal shared neural systems between lucid dreaming and metacognitive function, in particular in the domain of thought monitoring. This finding contributes to our understanding of the mechanisms enabling higher-order consciousness in dreams. PMID:25609624

  12. Molecular Mechanisms Underlying Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Christian Trepo

    2009-11-01

    Full Text Available Hepatocarcinogenesis is a complex process that remains still partly understood. That might be explained by the multiplicity of etiologic factors, the genetic/epigenetic heterogeneity of tumors bulks and the ignorance of the liver cell types that give rise to tumorigenic cells that have stem cell-like properties. The DNA stress induced by hepatocyte turnover, inflammation and maybe early oncogenic pathway activation and sometimes viral factors, leads to DNA damage response which activates the key tumor suppressive checkpoints p53/p21Cip1 and p16INK4a/pRb responsible of cell cycle arrest and cellular senescence as reflected by the cirrhosis stage. Still obscure mechanisms, but maybe involving the Wnt signaling and Twist proteins, would allow pre-senescent hepatocytes to bypass senescence, acquire immortality by telomerase reactivation and get the last genetic/epigenetic hits necessary for cancerous transformation. Among some of the oncogenic pathways that might play key driving roles in hepatocarcinogenesis, c-myc and the Wnt/β-catenin signaling seem of particular interest. Finally, antiproliferative and apoptosis deficiencies involving TGF-β, Akt/PTEN, IGF2 pathways for instance are prerequisite for cancerous transformation. Of evidence, not only the transformed liver cell per se but the facilitating microenvironment is of fundamental importance for tumor bulk growth and metastasis.

  13. Peeling mechanism of tomato under infrared heating

    Science.gov (United States)

    Critical behaviors of peeling tomatoes using infrared heat are thermally induced peel loosening and subsequent cracking. However, the mechanism of peel loosening and cracking due to infrared heating remains unclear. This study aimed at investigating the mechanism of peeling tomatoes under infrared h...

  14. [Recurrent seizures of unknown aetiology].

    Science.gov (United States)

    Krauß, Martha; Berkermann, Heiner; Ghadimi, Michael; Gaedcke, Jochen; Bürger, Tobias

    2016-04-01

    History and admission findings | A 41year old woman presented at our internistic clinic after treatment by an emergency doctor because of confusion and amnesia accompanied by a hypoglycaemic episode while driving her car. Only by giving continuous glucose intravenously a stable clinical state could be achieved. In her medical history she took Lamotrigin for 12 years since she had seizures of unknown aetiology. 16 years ago she had similar sudden attacks with confusion and hypoglycaemia. At that time thorough diagnostics at the clinic for internal medicine did not reveal any evidence for hyperinsulinaemia. While taking Lamotrigin the patient had no seizures or similar symptoms for 12 years. Treatment and course | In the present case we detected a tumor in the pancreas and a two-fold increased insulin secretion. Histopathological work-up of the removed tissue confirmed the suspected diagnosis of insulinoma. Postoperatively, Lamotrigin treatment was terminated. Since then the patient remained asymptomatic. PMID:27123728

  15. Mechanical Buckling of Veins under Internal Pressure

    OpenAIRE

    Martinez, Ricky; Fierro, Cesar A.; Shireman, Paula K.; Han, Hai-Chao

    2010-01-01

    Venous tortuosity is associated with multiple disease states and is often thought to be a consequence of venous hypertension and chronic venous disease. However, the underlying mechanisms of vein tortuosity are unclear. We hypothesized that increased pressure causes vein buckling that leads to a tortuous appearance. The specific aim of this study was to determine the critical buckling pressure of veins. We determined the buckling pressure of porcine jugular veins and measured the mechanical p...

  16. Anorexia nervosa--diagnosis, aetiology, and treatment.

    OpenAIRE

    Hartman, D.

    1995-01-01

    The aetiology, assessment and treatment of anorexia nervosa are reviewed in the light of the classical accounts of Morton, Lasègue and Gull. The core symptoms are deliberate weight loss, disturbed body image and amenorrhoea, and complications may include cardiac failure, electrolyte disturbances, hypothermia and osteoporosis. Common clinical findings are described. Disturbed brain serotonin activity is implicated in the aetiology of anorexia nervosa, but there is little support for the use of...

  17. Mechanical characteristics and microcosmic mechanisms of granite under temperature loads

    Institute of Scientific and Technical Information of China (English)

    XU Xiao-li; GAO Feng; SHEN Xiao-ming; XIE He-ping

    2008-01-01

    The relationships between mechanical characteristics of rock and microcosmic mechanism at high temperatures were investigated by MTS815, as well as the stress-strain behavior of granite under the action of temperatures ranging from room tem-perature to 1200 ℃. Based on a micropore structure analyzer and SEM, the changes in rock porosity and micro'structural mor-phology of sample fractures and brittle-plastic characteristics under high temperatures were analyzed. The results are as follows: 1) Mechanical characteristics do not show obvious variations before 800 ℃; strength decreases suddenly after 800 ℃ and bearing capacity is almost lost at 1200 ℃. 2) Rock porosity increases with rising temperatures; the threshold temperature is about 800 ℃;at this temperature its effect is basically uniform with strength decreasing rapidly. 3) The failure type of granite is a brittle tensile fracture at temperatures below 800 ℃ which transforms into plasticity at temperatures higher than 800 ℃ and crystal formation takes place at this time. Chemical reactions take place at 1200 ℃. Failure of granite under high temperature is a common result of thermal stress as indicated by an increase in the thermal expansion coefficient, transformation to crystal formation of minerals and structural chemical reactions.

  18. DNA under Force: Mechanics, Electrostatics, and Hydration

    Directory of Open Access Journals (Sweden)

    Jingqiang Li

    2015-02-01

    Full Text Available Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.

  19. Salivary hypofunction: an update on aetiology, diagnosis and therapeutics.

    Science.gov (United States)

    Saleh, Jamil; Figueiredo, Maria Antonia Zancanaro; Cherubini, Karen; Salum, Fernanda Gonçalves

    2015-02-01

    Saliva is of paramount importance for the maintenance of oral and general homeostasis. Salivary hypofunction predispose patients to disorders such as dysgeusia, pain and burning mouth, caries and other oral infectious diseases, dysphagia and dysphonia. The aim of this study was to provide an update on the aetiology, diagnostic methods and therapeutic strategies for the management of hyposalivation and xerostomia. The present paper describes subjective and objective methods for the diagnosis of salivary dysfunctions; moreover a number of drugs, and systemic disorders associated with decreased salivary flow rate are listed. We also focused on the underlying mechanisms to radiotherapy-induced salivary damage. Therapeutics for hyposalivation and xerostomia were discussed and classified as preventive, symptomatic, topical and systemic stimulants, disease-modifying agents, and regenerative. New therapeutic modalities have been studied and involve stem cells transplantation, with special attention to regeneration of damage caused by ionizing radiation to the salivary glands. More studies in this area are needed to provide new perspectives in the treatment of patients with salivary dysfunctions. PMID:25463902

  20. Epidemiology and aetiology of heart failure.

    Science.gov (United States)

    Ziaeian, Boback; Fonarow, Gregg C

    2016-06-01

    Heart failure (HF) is a rapidly growing public health issue with an estimated prevalence of >37.7 million individuals globally. HF is a shared chronic phase of cardiac functional impairment secondary to many aetiologies, and patients with HF experience numerous symptoms that affect their quality of life, including dyspnoea, fatigue, poor exercise tolerance, and fluid retention. Although the underlying causes of HF vary according to sex, age, ethnicity, comorbidities, and environment, the majority of cases remain preventable. HF is associated with increased morbidity and mortality, and confers a substantial burden to the health-care system. HF is a leading cause of hospitalization among adults and the elderly. In the USA, the total medical costs for patients with HF are expected to rise from US$20.9 billion in 2012 to $53.1 billion by 2030. Improvements in the medical management of risk factors and HF have stabilized the incidence of this disease in many countries. In this Review, we provide an overview of the latest epidemiological data on HF, and propose future directions for reducing the ever-increasing HF burden. PMID:26935038

  1. Cellular and molecular mechanisms underlying radiation carcinogenesis

    International Nuclear Information System (INIS)

    When considering and analyzing experimental material concerning cellular aspects of the problem of radiation carcinogenesis, the following conclusions can be made: neoplastic transformation of cells in a culture is caused already by small radiation doses, under the effect of which the level of DNA injury is quite insignificant; the frequency of cell transformation depends on the type of radiation, it is particularly pronounced under the effect of radiations with a high linear energy transfer; a correlation between the processes of postradiation recovery and radiogenic transformation of cells is detected, nonrepairable injures of DNA playing the most important role in radiation carcinogenesis; tumour promoters and anticarcinogenic agens produce a modifying effect on the transformation of irradiated cells. Molecular mechanisms of oncogene activation are thoroughly studied using the model of virus carcinogenesis, the problem of the nature of chemical and, in particular, radiation cell transformation remains scantily investigated

  2. Deformation Mechanisms of Gum Metals Under Nanoindentation

    Science.gov (United States)

    Sankaran, Rohini Priya

    defect structures to applied loading, we perform ex-situ nanoindentation. Nanoindentation is a convenient method as the plastic deformation is localized and probes a nominally defect free volume of the material. We subsequently characterize the defect structures in these alloys with both conventional TEM and advanced techniques such as HAADF HRSTEM and nanoprobe diffraction. These advanced techniques allow for a more thorough understanding of the observed deformation features. The main findings from this investigation are as follows. As expected we observe that a non-equilibrium phase, o, is present in the leaner beta-stabilized alloy, ST Ref-1. We do not find any direct evidence of secondary phases in STGM, and we find the beta phase in CWGM, along with lath microstructure with subgrain structure consisting of dislocation cell networks. Upon nanoindentation, we find twinning accompanied by beta nucleation on the twin boundary in ST Ref-1 samples. This result is consistent with previous findings and is reasonable considering the alloy is unstable with respect to beta transformation. We find deformation nanotwinning in cold worked gum metals under nanoindentation, which is initially surprising. We argue that when viewed as a nanocrystalline material, such a deformation mechanism is consistent with previous work, and furthermore, a deformation nanotwinned structure does not preclude an ideal shear mechanism from operating in the alloy. Lastly, we observe continuous lattice rotations in STGM under nanoindentation via nanoprobe diffraction. With this technique, for the first time we can demonstrate that the lattice rotations are truly continuous at the nanoscale. We can quantify this lattice rotation, and find that even though the rotation is large, it may be mediated by a reasonable geometrically necessary dislocation density, and note that similar rotations are typically observed in other materials under nanoindentation. HRSTEM and conventional TEM data confirm the

  3. Evolved Mechanisms Versus Underlying Conditional Relations

    Directory of Open Access Journals (Sweden)

    Astorga Miguel López

    2015-03-01

    Full Text Available The social contracts theory claims that, in social exchange circumstances, human reasoning is not necessarily led by logic, but by certain evolved mental mechanisms that are useful for catching offenders. An emblematic experiment carried out with the intention to prove this thesis is the first experiment described by Fiddick, Cosmides, and Tooby in their paper of 2000. Lopez Astorga has questioned that experiment claiming that its results depend on an underlying conditional logical form not taken into account by Fiddick, Cosmides, and Tooby. In this paper, I propose an explanation alternative to that of Lopez Astorga, which does not depend on logical forms and is based on the mental models theory. Thus, I conclude that this other alternative explanation is one more proof that the experiment in question does not demonstrate the fundamental thesis of the social contracts theory.

  4. An Underlying Geometrical Manifold for Hamiltonian Mechanics

    CERN Document Server

    Horwitz, L P; Levitan, J; Lewkowicz, M

    2015-01-01

    We show that there exists an underlying manifold with a conformal metric and compatible connection form, and a metric type Hamiltonian (which we call the geometrical picture) that can be put into correspondence with the usual Hamilton-Lagrange mechanics. The requirement of dynamical equivalence of the two types of Hamiltonians, that the momenta generated by the two pictures be equal for all times, is sufficient to determine an expansion of the conformal factor, defined on the geometrical coordinate representation, in its domain of analyticity with coefficients to all orders determined by functions of the potential of the Hamilton-Lagrange picture, defined on the Hamilton-Lagrange coordinate representation, and its derivatives. Conversely, if the conformal function is known, the potential of a Hamilton-Lagrange picture can be determined in a similar way. We show that arbitrary local variations of the orbits in the Hamilton-Lagrange picture can be generated by variations along geodesics in the geometrical pictu...

  5. Mechanisms underlying UV-induced immune suppression

    International Nuclear Information System (INIS)

    Skin cancer is the most prevalent form of human neoplasia. Estimates suggest that in excess of one million new cases of skin cancer will be diagnosed this year alone in the United States (www.cancer.org/statistics). Fortunately, because of their highly visible location, skin cancers are more rapidly diagnosed and more easily treated than other types of cancer. Be that as it may, approximately 10,000 Americans a year die from skin cancer. The cost of treating non-melanoma skin cancer is estimated to be in excess of US$ 650 million a year [J.G. Chen, A.B. Fleischer, E.D. Smith, C. Kancler, N.D. Goldman, P.M. Williford, S.R. Feldman, Cost of non-melanoma skin cancer treatment in the United States, Dermatol. Surg. 27 (2001) 1035-1038], and when melanoma is included, the estimated cost of treating skin cancer in the United States is estimated to rise to US$ 2.9 billion annually (www.cancer.org/statistics). Because the morbidity and mortality associated with skin cancer is a major public health problem, it is important to understand the mechanisms underlying skin cancer development. The primary cause of skin cancer is the ultraviolet (UV) radiation found in sunlight. In addition to its carcinogenic potential, UV radiation is also immune suppressive. In fact, data from studies with both experimental animals and biopsy proven skin cancer patients suggest that there is an association between the immune suppressive effects of UV radiation and its carcinogenic potential. The focus of this manuscript will be to review the mechanisms underlying the induction of immune suppression following UV exposure. Particular attention will be directed to the role of soluble mediators in activating immune suppression

  6. Mechanisms underlying UV-induced immune suppression

    Energy Technology Data Exchange (ETDEWEB)

    Ullrich, Stephen E. [Department of Immunology, University of Texas, MD Anderson Cancer Center, South Campus Research Building 1, 7455 Fannin St., P.O. Box 301402, Houston, TX 77030-1903 (United States)]. E-mail: sullrich@mdanderson.org

    2005-04-01

    Skin cancer is the most prevalent form of human neoplasia. Estimates suggest that in excess of one million new cases of skin cancer will be diagnosed this year alone in the United States (www.cancer.org/statistics). Fortunately, because of their highly visible location, skin cancers are more rapidly diagnosed and more easily treated than other types of cancer. Be that as it may, approximately 10,000 Americans a year die from skin cancer. The cost of treating non-melanoma skin cancer is estimated to be in excess of US$ 650 million a year [J.G. Chen, A.B. Fleischer, E.D. Smith, C. Kancler, N.D. Goldman, P.M. Williford, S.R. Feldman, Cost of non-melanoma skin cancer treatment in the United States, Dermatol. Surg. 27 (2001) 1035-1038], and when melanoma is included, the estimated cost of treating skin cancer in the United States is estimated to rise to US$ 2.9 billion annually (www.cancer.org/statistics). Because the morbidity and mortality associated with skin cancer is a major public health problem, it is important to understand the mechanisms underlying skin cancer development. The primary cause of skin cancer is the ultraviolet (UV) radiation found in sunlight. In addition to its carcinogenic potential, UV radiation is also immune suppressive. In fact, data from studies with both experimental animals and biopsy proven skin cancer patients suggest that there is an association between the immune suppressive effects of UV radiation and its carcinogenic potential. The focus of this manuscript will be to review the mechanisms underlying the induction of immune suppression following UV exposure. Particular attention will be directed to the role of soluble mediators in activating immune suppression.

  7. Mechanical buckling of veins under internal pressure.

    Science.gov (United States)

    Martinez, Ricky; Fierro, Cesar A; Shireman, Paula K; Han, Hai-Chao

    2010-04-01

    Venous tortuosity is associated with multiple disease states and is often thought to be a consequence of venous hypertension and chronic venous disease. However, the underlying mechanisms of vein tortuosity are unclear. We hypothesized that increased pressure causes vein buckling that leads to a tortuous appearance. The specific aim of this study was to determine the critical buckling pressure of veins. We determined the buckling pressure of porcine jugular veins and measured the mechanical properties of these veins. Our results showed that the veins buckle when the transmural pressure exceeds a critical pressure that is strongly related to the axial stretch ratio in the veins. The critical pressures of the eight veins tested were 14.2 +/- 5.4 and 26.4 +/- 9.0 mmHg at axial stretch ratio 1.5 and 1.7, respectively. In conclusion, veins buckle into a tortuous shape at high lumen pressures or reduced axial stretch ratios. Our results are useful in understanding the development of venous tortuosity associated with varicose veins, venous valvular insufficiency, diabetic retinopathy, and vein grafts. PMID:20094913

  8. Two distinct neural mechanisms underlying indirect reciprocity.

    Science.gov (United States)

    Watanabe, Takamitsu; Takezawa, Masanori; Nakawake, Yo; Kunimatsu, Akira; Yamasue, Hidenori; Nakamura, Mitsuhiro; Miyashita, Yasushi; Masuda, Naoki

    2014-03-18

    Cooperation is a hallmark of human society. Humans often cooperate with strangers even if they will not meet each other again. This so-called indirect reciprocity enables large-scale cooperation among nonkin and can occur based on a reputation mechanism or as a succession of pay-it-forward behavior. Here, we provide the functional and anatomical neural evidence for two distinct mechanisms governing the two types of indirect reciprocity. Cooperation occurring as reputation-based reciprocity specifically recruited the precuneus, a region associated with self-centered cognition. During such cooperative behavior, the precuneus was functionally connected with the caudate, a region linking rewards to behavior. Furthermore, the precuneus of a cooperative subject had a strong resting-state functional connectivity (rsFC) with the caudate and a large gray matter volume. In contrast, pay-it-forward reciprocity recruited the anterior insula (AI), a brain region associated with affective empathy. The AI was functionally connected with the caudate during cooperation occurring as pay-it-forward reciprocity, and its gray matter volume and rsFC with the caudate predicted the tendency of such cooperation. The revealed difference is consistent with the existing results of evolutionary game theory: although reputation-based indirect reciprocity robustly evolves as a self-interested behavior in theory, pay-it-forward indirect reciprocity does not on its own. The present study provides neural mechanisms underlying indirect reciprocity and suggests that pay-it-forward reciprocity may not occur as myopic profit maximization but elicit emotional rewards. PMID:24591599

  9. Pneumomediastinum after cocaine use: an unusual aetiology

    OpenAIRE

    Gourevitch D; Seenath M; Chudasama K

    2010-01-01

    We describe an interesting case of pneumomediastinum secondary to cocaine abuse. The patient presented with severe chest pain following nasal inhalation of a large quantity of cocaine. Investigations revealed no chest injury; however oesophagitis was proven leading to a possible aetiology of oesophageal microperforation. After conservative management there was spontaneous resolution of the pneumomediastinum.

  10. Vascular Adventitia Calcification and Its Underlying Mechanism.

    Directory of Open Access Journals (Sweden)

    Na Li

    Full Text Available Previous research on vascular calcification has mainly focused on the vascular intima and media. However, we show here that vascular calcification may also occur in the adventitia. The purpose of this work is to help elucidate the pathogenic mechanisms underlying vascular calcification. The calcified lesions were examined by Von Kossa staining in ApoE-/- mice which were fed high fat diets (HFD for 48 weeks and human subjects aged 60 years and older that had died of coronary heart disease, heart failure or acute renal failure. Explant cultured fibroblasts and smooth muscle cells (SMCswere obtained from rat adventitia and media, respectively. After calcification induction, cells were collected for Alizarin Red S staining. Calcified lesions were observed in the aorta adventitia and coronary artery adventitia of ApoE-/-mice, as well as in the aorta adventitia of human subjects examined. Explant culture of fibroblasts, the primary cell type comprising the adventitia, was successfully induced for calcification after incubation with TGF-β1 (20 ng/ml + mineralization media for 4 days, and the phenotype conversion vascular adventitia fibroblasts into myofibroblasts was identified. Culture of SMCs, which comprise only a small percentage of all cells in the adventitia, in calcifying medium for 14 days resulted in significant calcification.Vascular calcification can occur in the adventitia. Adventitia calcification may arise from the fibroblasts which were transformed into myofibroblasts or smooth muscle cells.

  11. Molecular Mechanisms Underlying Psychological Stress and Cancer.

    Science.gov (United States)

    Shin, Kyeong Jin; Lee, Yu Jin; Yang, Yong Ryoul; Park, Seorim; Suh, Pann-Ghill; Follo, Matilde Yung; Cocco, Lucio; Ryu, Sung Ho

    2016-01-01

    Psychological stress is an emotion experienced when people are under mental pressure or encounter unexpected problems. Extreme or repetitive stress increases the risk of developing human disease, including cardiovascular disease (CVD), immune diseases, mental disorders, and cancer. Several studies have shown an association between psychological stress and cancer growth and metastasis in animal models and case studies of cancer patients. Stress induces the secretion of stress-related mediators, such as catecholamine, cortisol, and oxytocin, via the activation of the hypothalamic-pituitary-adrenocortical (HPA) axis or the sympathetic nervous system (SNS). These stress-related hormones and neurotransmitters adversely affect stress-induced tumor progression and cancer therapy. Catecholamine is the primary factor that influences tumor progression. It can regulate diverse cellular signaling pathways through adrenergic receptors (ADRs), which are expressed by several types of cancer cells. Activated ADRs enhance the proliferation and invasion abilities of cancer cells, alter cell activity in the tumor microenvironment, and regulate the interaction between cancer and its microenvironment to promote tumor progression. Additionally, other stress mediators, such as glucocorticoids and oxytocin, and their cognate receptors are involved in stress-induced cancer growth and metastasis. Here, we will review how each receptor-mediated signal cascade contributes to tumor initiation and progression and discuss how we can use these molecular mechanisms for cancer therapy. PMID:26916018

  12. An update on the aetiology of orofacial clefts

    OpenAIRE

    Wong, FK; Hägg, U

    2004-01-01

    Objective. To review recent data on the aetiology of cleft lip and palate. Data sources. MEDLINE literature search (1986-2003). Study selection. Literature and data on aetiology of cleft lip and palate using the following key words: 'cleft lip', 'cleft palate', 'aetiology', and 'genetics'. Data extraction. Relevant information and data were reviewed by the authors. Data synthesis. Cleft lip and palate is one of the most common types of congenital malformation. The aetiology seems complex, but...

  13. Car drivers with dementia : different complications due to different aetiologies?

    OpenAIRE

    Piersma, D. Waard, D. de Davidse, R. Tucha, O. & Brouwer,W.

    2015-01-01

    Older drivers with dementia are an at-risk group for unsafe driving. However, dementia refers to various aetiologies and the question is whether dementias of different aetiology have similar effects on driving ability. The literature on the effects of dementia of various aetiologies on driving ability is reviewed. Studies addressing dementia aetiologies and driving were identified through PubMed, PsychINFO and Google Scholar. Early symptoms and prognoses differ between dementias of different ...

  14. Aetiology and Pathogenesis of Trigeminal Neuralgia: a Comprehensive Review

    Directory of Open Access Journals (Sweden)

    Gintautas Sabalys

    2012-12-01

    Full Text Available Objectives: The aim of present paper was to discuss issues related to trigeminal neuralgia with strong emphasis on the aetiology and pathogenesis of this problem. Material and Methods: An electronic search of 5 databases (1965 - Oct 2012 and a hand search of peer-reviewed journals for relevant articles were performed. In addition, experience acquired from treating 3263 patients in the Department of Maxillofacial Surgery, Lithuanian University of Health Sciences, were also summarized. Results: Generally, aetiological factors can be classified into 3 most popular theories that were based on: 1 Related to other disease, 2 Direct injury to the trigeminal nerve, and 3 Propagates the polyetiologic origin of the disease. In addition, two pathogenesis mechanisms of trigeminal neuralgia were proposed. First: the peripheral pathogenetic mechanism that is often induced by progressive dystrophy around the peripheral branches of the trigeminal nerve. Second, central pathogenetic mechanism which often triggered by peripheral pathogen that causes long-lasting afferent impulsation and the formation of a stable pathologic paroxysmal type irritation focus on the central nerve system (CNS. Conclusions: Patients with susceptive trigeminal neuralgia should be examined carefully by specialists who have expertise in assessing and diagnosing of possible pathological processes and be able to eliminate the contributing factors so the trigeminal neuralgia can be properly managed.

  15. The aetiology of diarrhoea in newborn infants.

    Science.gov (United States)

    Bishop, R F; Cameron, D J; Barnes, G L; Holmes, I H; Ruck, B J

    1976-01-01

    Diarrhoea is a common problem in newborn infants in hospital nurseries. In the past, sporadic diarrhoea was often attributed to dietary indiscretion by the mother, and epidemic diarrhoea was though to be caused by an unknown infectious agent. Techniques with which to locate non-cultivable viruses and untypable enteropathogenic strains of Escherichia coli allow reevaluation of the aetiology of diarrhoea in newborn infants. Preliminary results from Melbourne, Australia, suggest that most diarrhoea in newborn infants is induced by a specific infectious agent. During 1975 the agent most often identified from sporadic and epidemic diarrhoea in hospital nurseries was a reovirus-like particle ("duovirus"). Enterotoxin-producing strains of E. coli were rarely isolated. Future attempts to protect newborn infants from developing diarrhoea must be based on an accurate understanding of the aetiology of this disease. PMID:186236

  16. Aetiology of Oral Cancer in the Sudan

    OpenAIRE

    Hussain Gadelkarim Ahmed

    2013-01-01

    ABSTRACT Objectives To review the studied risk factors that linked to aetiology of oral cancer in the Sudan. There have been numerous reports in the increase in the incidence of oral cancer from various parts of the world. A recent trend for a rising incidence of oral cancer, with the absence of the well established risk factors, has raised concern. Although, there are inconsistent data on incidence and demographical factors, studies suggest that the physiologic response to risk factors by me...

  17. Aetiology of Oral Cancer in the Sudan

    Directory of Open Access Journals (Sweden)

    Hussain Gadelkarim Ahmed

    2013-04-01

    Full Text Available Objectives: To review the studied risk factors that linked to aetiology of oral cancer in the Sudan. There have been numerous reports in the increase in the incidence of oral cancer from various parts of the world. A recent trend for a rising incidence of oral cancer, with the absence of the well established risk factors, has raised concern. Although, there are inconsistent data on incidence and demographical factors, studies suggest that the physiologic response to risk factors by men and women vary in different populations.Material and Methods: This review principally examines 33 publications devoted to aetiology of oral cancer in the Sudan, in addition to some risk factors that are commonly practiced in the Sudan.Results: Several studies examining risk factors for oral cancer include tobacco use (Smoked and Smokeless, alcohol consumption, occupational risk, familial risk, immune deficits, virus infection and genetic factors.Conclusions: Toombak use and infection with high risk Human Papilloma Virus (HPV were extensively investigated and linked to the aetiology of oral cancer in Sudan.

  18. Supersymmetric quantum mechanics under point singularities

    International Nuclear Information System (INIS)

    We provide a systematic study on the possibility of supersymmetry (SUSY) for one-dimensional quantum mechanical systems consisting of a pair of lines R or intervals [-l, l] each having a point singularity. We consider the most general singularities and walls (boundaries) at x = ±l admitted quantum mechanically, using a U(2) family of parameters to specify one singularity and similarly a U(1) family of parameters to specify one wall. With these parameter freedoms, we find that for a certain subfamily the line systems acquire an N = 1 SUSY which can be enhanced to N = 4 if the parameters are further tuned, and that these SUSY are generically broken except for a special case. The interval systems, on the other hand, can accommodate N = 2 or N = 4 SUSY, broken or unbroken, and exhibit a rich variety of (degenerate) spectra. Our SUSY systems include the familiar SUSY systems with the Dirac δ(x)-potential, and hence are extensions of the known SUSY quantum mechanics to those with general point singularities and walls. The self-adjointness of the supercharge in relation to the self-adjointness of the Hamiltonian is also discussed

  19. Cellular and molecular mechanisms underlying muscular dystrophy

    OpenAIRE

    Rahimov, Fedik; Kunkel, Louis M

    2013-01-01

    The muscular dystrophies are a group of heterogeneous genetic diseases characterized by progressive degeneration and weakness of skeletal muscle. Since the discovery of the first muscular dystrophy gene encoding dystrophin, a large number of genes have been identified that are involved in various muscle-wasting and neuromuscular disorders. Human genetic studies complemented by animal model systems have substantially contributed to our understanding of the molecular pathomechanisms underlying ...

  20. Mechanisms Underlying Induction of Tolerance to Foods.

    Science.gov (United States)

    Berin, M Cecilia; Shreffler, Wayne G

    2016-02-01

    Oral tolerance refers to a systemic immune nonresponsiveness to antigens first encountered by the oral route, and a failure in development of this homeostatic process can result in food allergy. Clinical tolerance induced by allergen immunotherapy is associated with alterations in immune mechanisms relevant to the allergic response, including reduction of basophil reactivity, induction of IgG4, loss of effector Th2 cells, and induction of Tregs. The relative contribution of these immune changes to clinical tolerance to foods, and the duration of these immune changes after termination of immunotherapy, remains to be identified. PMID:26617229

  1. Believing versus interacting: Behavioural and neural mechanisms underlying interpersonal coordination

    DEFF Research Database (Denmark)

    Konvalinka, Ivana; Bauer, Markus; Kilner, James;

    in joint action has investigated only one of these mechanisms at a time – low-level processes underlying joint coordination, or high-level cognitive mechanisms that give insight into how people think about another. In real interactions, interplay between these two mechanisms modulates how we interact...... into neural mechanisms underlying belief of interacting with another person as well as engaging in interaction with the responsive other....

  2. Habitats under Mechanical and Herbicide Management Regimes

    Directory of Open Access Journals (Sweden)

    Wendy-Ann P. Isaac

    2012-01-01

    Full Text Available Commelina diffusa is a colonising species of banana orchard habitats in St. Vincent in the Windward Islands of the Caribbean. In the present study, the population dynamics of C. diffusa were investigated in response to mechanical weed management with either a rotary string trimmer or glufosinate in ruderal and banana habitats. The study focused on density and size distribution of the weed over time and their response to two weed management strategies. The population dynamics of C. diffusa differed between the two habitats. Seedling establishment appeared to be an important factor influencing the dynamics of C. diffusa in banana orchards as there was little recruitment of seeds with less flower production compared with ruderal habitats where plants produced more flowers. Plants of C. diffusa in the banana orchard habitat had a longer growth cycle. In the banana orchard habitat, the C. diffusa population was greater and the plants were shorter with mechanical management than in areas treated with glufosinate. The results suggest that it is possible to manipulate the dynamics of C. diffusa in banana orchards as there is less chance of seed recruitment. Further research is necessary to refine an IPM approach for the management of C. diffusa.

  3. Synaptic mechanisms underlying persistent cocaine craving.

    Science.gov (United States)

    Wolf, Marina E

    2016-06-01

    Although it is challenging for individuals with cocaine addiction to achieve abstinence, the greatest difficulty is avoiding relapse to drug taking, which is often triggered by cues associated with prior cocaine use. This vulnerability to relapse persists for long periods (months to years) after abstinence is achieved. Here, I discuss rodent studies of cue-induced cocaine craving during abstinence, with a focus on neuronal plasticity in the reward circuitry that maintains high levels of craving. Such work has the potential to identify new therapeutic targets and to further our understanding of experience-dependent plasticity in the adult brain under normal circumstances and in the context of addiction. PMID:27150400

  4. [Salivary stones: aetiology, composition and treatment].

    Science.gov (United States)

    Kraaij, S; Brand, H S; Karagozoglu, K H; Forouzanfar, T; Veerman, E C I

    2014-11-01

    Salivary stones or sialoliths, are calcified concrements which are most frequently located in the submandibular glands and their ducts. Their size and weight show considerable variation. The aetiology is unknown. It has been suggested that salivary stones could be related to an altered saliva composition, the anatomy of the ducts of the salivary gland and/or the fusion of microsialoliths. Salivary stones consist mainly of anorganic material such as hydroxyapatite, whitlockite and calciumphosphate, but they also contain organic components such as proteins and lipids. Treatment can consist of salivary gland massage combined with an acid diet, ultrasonic pulverisation, and surgical or sialendoscopical removal. PMID:26188478

  5. Does dermatoneuro syndrome have a viral aetiology?

    Science.gov (United States)

    Bhoyrul, B; Mughal, A A; Paulus, J; Salamat, A; Howarth, S

    2016-01-01

    Scleromyxoedema is a rare disease characterized by a generalized papular and sclerodermoid cutaneous eruption. It is associated with fibroblast proliferation and mucin deposition in the dermis. Most patients have a monoclonal gammopathy, defined by the presence of IgG. Treatment of scleromyxoedema is challenging, but there is mounting evidence to support the use of intravenous immunoglobulin (IVIg). Individual reports of systemic complications have been described. Dermatoneuro syndrome (DNS) is a rare but sometimes fatal manifestation, which consists of a triad of fever, coma and seizures preceded by a flu-like illness. We describe a patient with scleromyxoedema who developed DNS. Our case highlights interesting findings suggesting that DNS may have a viral aetiology. In addition, this case demonstrates a favourable response of the cutaneous features of scleromyxoedema to IVIg. PMID:26175017

  6. Anorexia nervosa: aetiology, assessment, and treatment.

    Science.gov (United States)

    Zipfel, Stephan; Giel, Katrin E; Bulik, Cynthia M; Hay, Phillipa; Schmidt, Ulrike

    2015-12-01

    Anorexia nervosa is an important cause of physical and psychosocial morbidity. Recent years have brought advances in understanding of the underlying psychobiology that contributes to illness onset and maintenance. Genetic factors influence risk, psychosocial and interpersonal factors can trigger onset, and changes in neural networks can sustain the illness. Substantial advances in treatment, particularly for adolescent patients with anorexia nervosa, point to the benefits of specialised family-based interventions. Adults with anorexia nervosa too have a realistic chance of achieving recovery or at least substantial improvement, but no specific approach has shown clear superiority, suggesting a combination of re-nourishment and anorexia nervosa-specific psychotherapy is most effective. To successfully fight this enigmatic illness, we have to enhance understanding of the underlying biological and psychosocial mechanisms, improve strategies for prevention and early intervention, and better target our treatments through improved understanding of specific disease mechanisms. PMID:26514083

  7. Wound Pruritus: Prevalence, Aetiology and Treatment.

    OpenAIRE

    Upton D, Richardson C, Van Acker K, Andrews A and Springett K

    2013-01-01

    l O bjective: To review the literature into itching or pruritus, in relation to burns or other types of wound, with a focus on the physiological mechanisms underlying itching and the issues associated with itching in people with wounds. l Method: A literature search was conducted using PubMed, MEDLINE and Google Scholar, including English-language papers published up to 2012. The search terms used were: [‘pruritus’ OR ‘itching’] OR [‘chronic’] AND [‘wounds’ OR â...

  8. Importance of cervical length in dysmenorrhoea aetiology.

    Science.gov (United States)

    Zebitay, Ali G; Verit, Fatma F; Sakar, M Nafi; Keskin, Seda; Cetin, Orkun; Ulusoy, A Ibrahim

    2016-05-01

    The objective of this prospective case-control study was to determine whether uterine corpus and cervical length measurements have a role in dysmenorrhoea aetiology in virgins. Patients with severe primary dysmenorrhoea with visual analog scale scores of ≥7 composed the dysmenorrhoea group (n = 51), while the control group (n = 51) was of women with painless menstrual cycles or with mild pain. Longitudinal and transverse axes of the uterine cervix and uterine corpus were measured. Correlation between severity of dysmenorrhoea and uterine cervix and corpus axes was calculated. Longitudinal and transverse axes of uterine cervix as well as uterine cervix volume were significantly higher in the dysmenorrhoea group compared to the controls. There was a significant positive correlation between severity of dysmenorrhoea and the length of cervical longitudinal and transverse axes and uterine cervical volume. Our findings reveal longer cervical length and greater cervical volume in young virgin patients with dysmenorrhoea and severe pain compared to those with no or less pain. PMID:27012227

  9. Mechanisms underlying the impacts of exotic plant invasions.

    OpenAIRE

    Levine, Jonathan M; Vilà, Montserrat; D'Antonio, Carla M; Dukes, Jeffrey S; Grigulis, Karl; Lavorel, Sandra

    2003-01-01

    Although the impacts of exotic plant invasions on community structure and ecosystem processes are well appreciated, the pathways or mechanisms that underlie these impacts are poorly understood. Better exploration of these processes is essential to understanding why exotic plants impact only certain systems, and why only some invaders have large impacts. Here, we review over 150 studies to evaluate the mechanisms underlying the impacts of exotic plant invasions on plant and animal community st...

  10. Cooperative Mechanism of Supply Chain Under Asymmetric Information

    Institute of Scientific and Technical Information of China (English)

    郭敏; 王红卫; 瞿坦

    2003-01-01

    The cooperative mechanism is one main issue in the decentralized supply chain system, especially in an asymmetric information structure. We analyze the non-cooperative game behavior of a 2-echelon distribution supply chain, compare the results with the system optimal solution, and give the supplier dominated cooperative mechanisms. We also analyze the validity of our contract under the asymmetric retailers' holding cost information and give some useful conclusions.

  11. Mechanical annealing under low-amplitude cyclic loading in micropillars

    Science.gov (United States)

    Cui, Yi-nan; Liu, Zhan-li; Wang, Zhang-jie; Zhuang, Zhuo

    2016-04-01

    Mechanical annealing has been demonstrated to be an effective method for decreasing the overall dislocation density in submicron single crystal. However, simultaneously significant shape change always unexpectedly happens under extremely high monotonic loading to drive the pre-existing dislocations out of the free surfaces. In the present work, through in situ TEM experiments it is found that cyclic loading with low stress amplitude can drive most dislocations out of the submicron sample with virtually little change of the shape. The underlying dislocation mechanism is revealed by carrying out discrete dislocation dynamic (DDD) simulations. The simulation results indicate that the dislocation density decreases within cycles, while the accumulated plastic strain is small. By comparing the evolution of dislocation junction under monotonic, cyclic and relaxation deformation, the cumulative irreversible slip is found to be the key factor of promoting junction destruction and dislocation annihilation at free surface under low-amplitude cyclic loading condition. By introducing this mechanics into dislocation density evolution equations, the critical conditions for mechanical annealing under cyclic and monotonic loadings are discussed. Low-amplitude cyclic loading which strengthens the single crystal without seriously disturbing the structure has the potential applications in the manufacture of defect-free nano-devices.

  12. Aetiological and clinical aspects of symptomatic gallstone disease and pancreatic cancer.

    OpenAIRE

    Banim, Paul

    2011-01-01

    Introduction This work investigated in a UK prospective cohort study, firstly, the aetiology of gallstone disease, and secondly, that of pancreatic cancer, with a focus on physical activity and diet. The epidemiological studies benefitted from the accuracy of measurement tools, namely a validated physical activity questionnaire and a sevenday food diary (7-DFD). These novel methods aided the improved definition of risk factors thus highlighting biological mechanisms leading to disease and ...

  13. Games of School Choice under the Boston Mechanism

    OpenAIRE

    Haluk Ergin; Tayfun Sönmez

    2005-01-01

    Many school districts in the U.S. use a student assignment mechanism that we refer to as the Boston mechanism. Under this mechanism a student loses his priority at a school unless his parents rank it as their first choice. Therefore parents are given incentives to rank high on their list the schools where the student has a good chance of getting in. We characterize the Nash equilibria of the induced preference revelation game. An important policy implication of our result is that a transition...

  14. Aetiology of a diagnosis: the key to success in treatment planning.

    Science.gov (United States)

    Kristopher, Krimi

    2014-01-01

    Aetiology is the cause of a diagnosis. The essential key for the determination ofaetiology is a thorough examination: the history of the problems, the crucial elements in function, and habits. Our case report involves progression of a malocclusion and aggravation of the gum recessions which resolved following root planing and fixed orthodontic correction for the underlying cause, malocclusion, without any gum graft procedures. PMID:25109053

  15. Neural Circuitry and Plasticity Mechanisms Underlying Delay Eyeblink Conditioning

    Science.gov (United States)

    Freeman, John H.; Steinmetz, Adam B.

    2011-01-01

    Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of…

  16. Failure mechanisms in thin rubber sheet composites under static solicitation

    Directory of Open Access Journals (Sweden)

    E. Bayraktar

    2007-03-01

    Full Text Available Purpose: Mechanical behaviour and damage mechanisms in thin rubber sheet composites were investigated under static solicitation at room temperature. Two types of rubber are used in this study; Natural rubber, NR vulcanised and reinforced by carbon black and Synthetic rubber (styrene-butadiene-rubber, SBR.Design/methodology/approach: A comprehensive study has been carried out in order to identify a threshold criterion for the damage mechanism to explain a tearing criterion for the concept of tearing energy of the elastomers and also to give a detail for the damage mechanism depending on the loading conditions. A typical type of specimen geometry of thin sheet rubber composite materials was studied under static tensile tests conducted on the smooth and notched specimens with variable depths. In this way, the effects of the plane stress on the damage mechanism are characterized depending on the rubber materials.Findings: Damage mechanisms during tensile test have been described for both of rubber types and the criteria which characterize the tearing resistance, characteristic energy for tearing (T was explained. Damage in the specimens were evaluated just at the beginning of the tearing by means of the observations in the scanning electron microscopy (SEM.Practical implications: A tearing criterion was suggested in the case of simple tension conditions by assuming large strain. In the next step of this study, a finite element analysis (FEA will be applied under the same conditions of this part in order to obtain the agreement between experimental and FEA results.Originality/value: This study propses a threshold criterion for the damage just at the beginning of the tearing for thin sheet rubber composites and gives a detail discussion for explaining the damage mechanisms by SEM results. This type of study gives many facilities for the sake of simplicity in industrial application.

  17. Lamsiekte (botulism: Solving the aetiology riddle

    Directory of Open Access Journals (Sweden)

    Rudolph D. Bigalke

    2012-04-01

    Full Text Available The reason or reasons why it took Sir Arnold Theiler so many years to unravel the riddle of the aetiology of lamsiekte in cattle and whether P.R. Viljoen’s lifelong grudge for receiving insufficient credit from Theiler for his research contribution was justified are analysed in this paper. By 1912, Theiler knew that Duncan Hutcheon had advocated the use of bonemeal as a prophylactic against the disease in the early 1880s. Hutcheon’s colleague, J.D. Borthwick, had shown conclusively in a field experiment in 1895 that lamsiekte did not occur in cattle fed a liberal allowance of bonemeal; and bone-craving had been identified by Hutcheon and several farmers as being associated with the occurrence of the disease (a ‘premonitory’ sign. Hutcheon regarded a phosphate deficiency of the pastures as the direct cause of lamsiekte. However, Theiler did not accept this, was convinced that intoxication was involved and developed a ‘grass toxin’ theory. Viljoen (1918 also latched onto the grass toxin theory. He did not believe that osteophagia existed, stating categorically that he had not observed it on the experimental farm Armoedsvlakte where > 100 cases of lamsiekte had occurred during the > 3 years that he spent there. Moreover, he did not believe in the prophylactic value of bonemeal. However, careful analysis of a subsequent publication, of which he was a co-author, revealed that in late 1918 and early 1919 he reproduced the disease by drenching cattle with blowfly pupae and larvae as well as with crushed bones from decomposing bovine carcasses. For this breakthrough he did not get proper credit from Theiler. Reappointed to study lamsiekte on Armoedsvlakte in the autumn of 1919, Theiler, probably already aware that the toxin he was seeking was in the decomposing bones or carcass material rather than the grass, deliberately ‘walked with the cattle’ on the farm to encounter a classic manifestation of bone-craving (osteophagia. The penny

  18. Mechanical Analysis of Concrete Specimen under Restrained Condition

    Institute of Scientific and Technical Information of China (English)

    MA Xinwei; NIU Changren; R D Hooton

    2005-01-01

    In order to quantify the development of the tensile stresses and obtain a reliable estimation of the cracking risk, the concrete was subjected to restrained conditions. The fully restrained condition was achieved by keeping the length constant of a concrete specimen. Comparing the free shrinkage with the restrained shrinkage,tensile creep could be discriminated from shrinkage. The testing method was introduced in details, and the mechanical behaviors under tensile load were analyzed. Results show that concrete exhibits a pronounced viscoelasticity. Under restrained condition, the self induced tensile stress increases with time. The lower the water to cement ratio, the larger the tensile stress at the same age. The tensile creep of hardening concrete is much larger than that of hardened concrete. The relationships among autogenous shrinkage under free condition, elastic strain and creep under restrained condition are described, and the mathematical model for the calculation of elastic strain and creep is proposed.

  19. A possible realization of Einstein's causal theory underlying quantum mechanics

    International Nuclear Information System (INIS)

    It is shown that a new microscopic mechanics formulated earlier can be looked upon as a possible causal theory underlying quantum mechanics, which removes Einstein's famous objections against quantum theory. This approach is free from objections raised against Bohm's hidden variable theory and leads to a clear physical picture in terms of familiar concepts, if self interactions are held responsible for deviations from classical behaviour. The new level of physics unfolded by this approach may reveal novel frontiers in high-energy physics. (author)

  20. Permeability and mechanical properties of cracked glass under pressure

    International Nuclear Information System (INIS)

    Crack initiation and growth in brittle solids under tension have been extensively studied by various experimental, theoretical and numerical approaches. If has been established that dynamic brittle fracture is related to fundamental physical parameters and processes, such as crack speed, crack branching, surface roughening, and dynamic instabilities. On the other hand, less studies have been done in the area of compressive fracture despite its vital importance in geology, material science and engineering applications (such as the improvement and the insurance of the nuclear wastes storage). The present work aims to investigate thermo-mechanical cracking effects on elastic wave velocities, mechanical strength and permeability und r pressure to evaluate damage evolution, brittle failure and transport properties on a synthetic glass (SON 68), and to highlight the very different behavior of the glass amorphous structure compared to any rock structure. The original glass, produced in ideal conditions of slow cooling that prevent from any crack formation, exhibits a linear and reversible mechanical behavior and isotropic elastic velocities, as expected. It also presents a high strength as it fails at about 700 MPa of deviatoric stress for a confining pressure of 15 MPa. We choose to apply to some original glass samples a reproducible method (thermal treatment with a thermal shock of T=100,200 and 300 C) which creates cracks with a homogeneous distribution. The impact of the thermal treatment is clearly visible through the elastic wave velocity measurements as we observe crack closure under hydrostatic conditions (at about 30 MPa). For T ≥ 200 C, the glass mechanical behavior becomes non linear and records an irreversible damage. The total damage observed with the acoustic emissions in these samples underlines the combination of the thermal and the mechanical cracks which drive to the sample failure. The results obtained with pore fluid pressure show a very small

  1. Emotional responses to music: the need to consider underlying mechanisms.

    Science.gov (United States)

    Juslin, Patrik N; Västfjäll, Daniel

    2008-10-01

    Research indicates that people value music primarily because of the emotions it evokes. Yet, the notion of musical emotions remains controversial, and researchers have so far been unable to offer a satisfactory account of such emotions. We argue that the study of musical emotions has suffered from a neglect of underlying mechanisms. Specifically, researchers have studied musical emotions without regard to how they were evoked, or have assumed that the emotions must be based on the "default" mechanism for emotion induction, a cognitive appraisal. Here, we present a novel theoretical framework featuring six additional mechanisms through which music listening may induce emotions: (1) brain stem reflexes, (2) evaluative conditioning, (3) emotional contagion, (4) visual imagery, (5) episodic memory, and (6) musical expectancy. We propose that these mechanisms differ regarding such characteristics as their information focus, ontogenetic development, key brain regions, cultural impact, induction speed, degree of volitional influence, modularity, and dependence on musical structure. By synthesizing theory and findings from different domains, we are able to provide the first set of hypotheses that can help researchers to distinguish among the mechanisms. We show that failure to control for the underlying mechanism may lead to inconsistent or non-interpretable findings. Thus, we argue that the new framework may guide future research and help to resolve previous disagreements in the field. We conclude that music evokes emotions through mechanisms that are not unique to music, and that the study of musical emotions could benefit the emotion field as a whole by providing novel paradigms for emotion induction. PMID:18826699

  2. Non-traumatic cortical subarachnoid haemorrhage: diagnostic work-up and aetiological background

    International Nuclear Information System (INIS)

    Only 15% of all subarachnoid haemorrhages (SAHs) are not of aneurysmal origin. Among those, circumscribed SAHs along the cortical convexity are rare and have only been described in singular case reports so far. Here, we present a collection of 12 cases of SAH along the convexity, of non-traumatic origin. Over a period of 10 years, 12 cases of circumscribed SAH along the convexity were identified at our clinic. The clinical presentations, neuroradiological SAH characteristics, further diagnostic work-up to identify the underlying aetiologies, the therapy and clinical outcome were analysed. The patients' chief complaints were unspecific cephalgia, focal or generalised seizures and focal neurological deficits. Typical signs of basal SAH, such as nuchal rigidity, thunderclap-headache or alteration of consciousness, were rare. Magnetic resonance imaging (MRI) and digital subtraction angiography (DSA) revealed different aetiologies, namely postpartal posterior encephalopathy (three), cerebral vasculitis (two), dural sinus thrombosis (two), cortical venous thrombosis (one), intracerebral abscesses (one) and cerebral cavernoma (one). Two cases remained unresolved. Treatment of the underlying disease and symptomatic medication led to good clinical outcome in almost all cases. On the basis of these findings, we demonstrate that the clinical presentation, localisation and aetiology of cortical SAH differ clearly from other SAHs. A diagnostic work-up with MRI and eventually DSA is essential. Mostly, the causative disease can be identified, and specific treatment allows a favourable outcome. (orig.)

  3. Shared Genetic Aetiology between Cognitive Ability and Cardiovascular Disease Risk Factors: Generation Scotland's Scottish Family Health Study

    Science.gov (United States)

    Luciano, Michelle; Batty, G. David; McGilchrist, Mark; Linksted, Pamela; Fitzpatrick, Bridie; Jackson, Cathy; Pattie, Alison; Dominiczak, Anna F.; Morris, Andrew D.; Smith, Blair H.; Porteous, David; Deary, Ian J.

    2010-01-01

    People with higher general cognitive ability in early life have more favourable levels of cardiovascular disease (CVD) risk factors in adulthood and CVD itself. The mechanism of these associations is not known. Here we examine whether general cognitive ability and CVD risk factors share genetic and/or environmental aetiology. In this large,…

  4. The mismatch negativity: a review of underlying mechanisms.

    Science.gov (United States)

    Garrido, Marta I; Kilner, James M; Stephan, Klaas E; Friston, Karl J

    2009-03-01

    The mismatch negativity (MMN) is a brain response to violations of a rule, established by a sequence of sensory stimuli (typically in the auditory domain) [Näätänen R. Attention and brain function. Hillsdale, NJ: Lawrence Erlbaum; 1992]. The MMN reflects the brain's ability to perform automatic comparisons between consecutive stimuli and provides an electrophysiological index of sensory learning and perceptual accuracy. Although the MMN has been studied extensively, the neurophysiological mechanisms underlying the MMN are not well understood. Several hypotheses have been put forward to explain the generation of the MMN; amongst these accounts, the "adaptation hypothesis" and the "model adjustment hypothesis" have received the most attention. This paper presents a review of studies that focus on neuronal mechanisms underlying the MMN generation, discusses the two major explanatory hypotheses, and proposes predictive coding as a general framework that attempts to unify both. PMID:19181570

  5. Cellular mechanisms underlying eosinophilic and neutrophilic airway inflammation in asthma.

    Science.gov (United States)

    Pelaia, Girolamo; Vatrella, Alessandro; Busceti, Maria Teresa; Gallelli, Luca; Calabrese, Cecilia; Terracciano, Rosa; Maselli, Rosario

    2015-01-01

    Asthma is a phenotypically heterogeneous chronic disease of the airways, characterized by either predominant eosinophilic or neutrophilic, or even mixed eosinophilic/neutrophilic inflammatory patterns. Eosinophilic inflammation can be associated with the whole spectrum of asthma severity, ranging from mild-to-moderate to severe uncontrolled disease, whereas neutrophilic inflammation occurs mostly in more severe asthma. Eosinophilic asthma includes either allergic or nonallergic phenotypes underlying immune responses mediated by T helper (Th)2 cell-derived cytokines, whilst neutrophilic asthma is mostly dependent on Th17 cell-induced mechanisms. These immune-inflammatory profiles develop as a consequence of a functional impairment of T regulatory (Treg) lymphocytes, which promotes the activation of dendritic cells directing the differentiation of distinct Th cell subsets. The recent advances in the knowledge of the cellular and molecular mechanisms underlying asthmatic inflammation are contributing to the identification of novel therapeutic targets, potentially suitable for the implementation of future improvements in antiasthma pharmacologic treatments. PMID:25878402

  6. Cellular Mechanisms Underlying Eosinophilic and Neutrophilic Airway Inflammation in Asthma

    Directory of Open Access Journals (Sweden)

    Girolamo Pelaia

    2015-01-01

    Full Text Available Asthma is a phenotypically heterogeneous chronic disease of the airways, characterized by either predominant eosinophilic or neutrophilic, or even mixed eosinophilic/neutrophilic inflammatory patterns. Eosinophilic inflammation can be associated with the whole spectrum of asthma severity, ranging from mild-to-moderate to severe uncontrolled disease, whereas neutrophilic inflammation occurs mostly in more severe asthma. Eosinophilic asthma includes either allergic or nonallergic phenotypes underlying immune responses mediated by T helper (Th2 cell-derived cytokines, whilst neutrophilic asthma is mostly dependent on Th17 cell-induced mechanisms. These immune-inflammatory profiles develop as a consequence of a functional impairment of T regulatory (Treg lymphocytes, which promotes the activation of dendritic cells directing the differentiation of distinct Th cell subsets. The recent advances in the knowledge of the cellular and molecular mechanisms underlying asthmatic inflammation are contributing to the identification of novel therapeutic targets, potentially suitable for the implementation of future improvements in antiasthma pharmacologic treatments.

  7. Aetiological factors behind adipose tissue inflammation

    DEFF Research Database (Denmark)

    von Scholten, Bernt J; Andresen, Erik N; Sørensen, Thorkild I A;

    2013-01-01

    Despite extensive research into the biological mechanisms behind obesity-related inflammation, knowledge of environmental and genetic factors triggering such mechanisms is limited. In the present narrative review we present potential determinants of adipose tissue inflammation and suggest ways...

  8. Crack arrest saturation model under combined electrical and mechanical loadings

    OpenAIRE

    R.R. Bhargava; A. Setia

    2009-01-01

    Purpose: The investigation aims at proposing a model for cracked piezoelectric strip which is capable to arrest the crack.Design/methodology/approach: Under the combined effect of electrical and mechanical loadings applied at the edges of the strip, the developed saturation zone is produced at each tip of the crack. To arrest further opening of the crack, the rims of the developed saturation zones are subjected to in-plane cohesive, normal uniform constant saturation point electrical displace...

  9. Underlying mechanisms and the evolving influence of diet

    DEFF Research Database (Denmark)

    Larsen, Lesli Hingstrup

    2012-01-01

    to increased risk of developing obesity. Recently, the intestinal microbiome, the collected genome of the bacteria, also has been associated with obesity and with specific dietary profiles. The underlying mechanisms determining the susceptibility to obesity do not only include the genome but also the...... epigenome and the microbiome that can be modified by diet, and by genotype, adding to the complexity of determining the contributors to obesity....

  10. Brain mechanisms underlying sensation-seeking in humans

    OpenAIRE

    Norbury, A. E.

    2015-01-01

    Sensation-seeking is a personality trait concerned with motivation for intense and unusual sensory experiences, that has been identified as risk factor for a variety of psychopathologies with high social cost; in particular gambling and substance addictions. It has previously proved difficult to tease out neural mechanisms underlying sensation-seeking in humans, due to a lack of cognitive-behavioural paradigms probing sensation-seeking-like behaviour in the lab. The first aim of this thesis w...

  11. Mechanisms underlying reduced responsiveness of neonatal neutrophils to distinct chemoattractants

    OpenAIRE

    Weinberger, Barry; Laskin, Debra L.; Mariano, Thomas M.; Sunil, Vasanthi R.; DeCoste, Christina J.; Heck, Diane E.; Carol R. Gardner; Laskin, Jeffrey D.

    2001-01-01

    Potential mechanisms underlying impaired chemotactic responsiveness of neonatal neutrophils were investigated. Two distinct chemoattractants were compared: bacterially derived N-formyl-methionyl-leucyl-phenylalanine (fMLP) and a unique chemotactic monoclonal antibody, designated DL1.2, which binds to a neutrophil antigen with an apparent molecular mass of 120 kDa. Chemotaxis of neutrophils toward fMLP, as well as DL1.2, was reduced in neonates when compared with adult cells. This did not appe...

  12. Mechanisms underlying the antidepressant response and treatment resistance

    OpenAIRE

    Levinstein, Marjorie R.; Samuels, Benjamin A.

    2014-01-01

    Depression is a complex and heterogeneous disorder affecting millions of Americans. There are several different medications and other treatments that are available and effective for many patients with depression. However, a substantial percentage of patients fail to achieve remission with these currently available interventions, and relapse rates are high. Therefore, it is necessary to determine both the mechanisms underlying the antidepressant response and the differences between responders ...

  13. Mechanisms Underlying the Antidepressant Response and Treatment Resistance

    OpenAIRE

    Marjorie Rose Levinstein; Benjamin Adam Samuels

    2014-01-01

    Depression is a complex and heterogeneous disorder affecting millions of Americans. There are several different medications and other treatments that are available and effective for many patients with depression. However, a substantial percentage of patients fail to achieve remission with these currently available interventions, and relapse rates are high. Therefore, it is necessary to determine both the mechanisms underlying the antidepressant response and the differences between responders ...

  14. Mechanisms Underlying the Link between Cannabis Use and Prospective Memory

    OpenAIRE

    Carrie Cuttler; McLaughlin, Ryan J.; Peter Graf

    2012-01-01

    While the effects of cannabis use on retrospective memory have been extensively examined, only a limited number of studies have focused on the links between cannabis use and prospective memory. We conducted two studies to examine the links between cannabis use and both time-based and event-based prospective memory as well as potential mechanisms underlying these links. For the first study, 805 students completed an online survey designed to assess cannabis consumption, problems with cannabis ...

  15. Analysis of internal crack healing mechanism under rolling deformation.

    Science.gov (United States)

    Gao, Haitao; Ai, Zhengrong; Yu, Hailiang; Wu, Hongyan; Liu, Xianghua

    2014-01-01

    A new experimental method, called the 'hole filling method', is proposed to simulate the healing of internal cracks in rolled workpieces. Based on the experimental results, the evolution in the microstructure, in terms of diffusion, nucleation and recrystallisation were used to analyze the crack healing mechanism. We also validated the phenomenon of segmented healing. Internal crack healing involves plastic deformation, heat transfer and an increase in the free energy introduced by the cracks. It is proposed that internal cracks heal better under high plastic deformation followed by slow cooling after rolling. Crack healing is controlled by diffusion of atoms from the matrix to the crack surface, and also by the nucleation and growth of ferrite grain on the crack surface. The diffusion mechanism is used to explain the source of material needed for crack healing. The recrystallisation mechanism is used to explain grain nucleation and growth, accompanied by atomic migration to the crack surface. PMID:25003518

  16. Closure mechanisms of ventilated supercavities under steady and unsteady flows

    Science.gov (United States)

    Karn, Ashish; De, Rohan; Hong, Jiarong; Arndt, Roger E. A.

    2015-12-01

    The present work reports some interesting experimental results for ventilated supercavitation in steady and unsteady flows. First, a variety of closure modes obtained as a result of systematic variation in Froude number and air entrainment, are reported. The closure mechanisms were found to differ from the standard criterion reported in the literature. Further, the occurrence of a variety of stable and unstable closure mechanisms were discovered that have not been reported in the literature. Next, a hypothesis is presented to explain the cause behind these different closure mechanisms. The proposed hypothesis is then validated by synchronized high-speed imaging and pressure measurements inside and outside of the supercavity. These measurements show that the supercavity closure is a function of instantaneous cavitation number under unsteady flow conditions. (Research sponsored by Office of Naval Research, USA)

  17. An NMDA Receptor-Dependent Mechanism Underlies Inhibitory Synapse Development

    Directory of Open Access Journals (Sweden)

    Xinglong Gu

    2016-01-01

    Full Text Available In the mammalian brain, GABAergic synaptic transmission provides inhibitory balance to glutamatergic excitatory drive and controls neuronal output. The molecular mechanisms underlying the development of GABAergic synapses remain largely unclear. Here, we report that NMDA-type ionotropic glutamate receptors (NMDARs in individual immature neurons are the upstream signaling molecules essential for GABAergic synapse development, which requires signaling via Calmodulin binding motif in the C0 domain of the NMDAR GluN1 subunit. Interestingly, in neurons lacking NMDARs, whereas GABAergic synaptic transmission is strongly reduced, the tonic inhibition mediated by extrasynaptic GABAA receptors is increased, suggesting a compensatory mechanism for the lack of synaptic inhibition. These results demonstrate a crucial role for NMDARs in specifying the development of inhibitory synapses, and suggest an important mechanism for controlling the establishment of the balance between synaptic excitation and inhibition in the developing brain.

  18. Neural mechanisms underlying morphine withdrawal in addicted patients: a review

    Directory of Open Access Journals (Sweden)

    Nima Babhadiashar

    2015-06-01

    Full Text Available Morphine is one of the most potent alkaloid in opium, which has substantial medical uses and needs and it is the first active principle purified from herbal source. Morphine has commonly been used for relief of moderate to severe pain as it acts directly on the central nervous system; nonetheless, its chronic abuse increases tolerance and physical dependence, which is commonly known as opiate addiction. Morphine withdrawal syndrome is physiological and behavioral symptoms that stem from prolonged exposure to morphine. A majority of brain regions are hypofunctional over prolonged abstinence and acute morphine withdrawal. Furthermore, several neural mechanisms are likely to contribute to morphine withdrawal. The present review summarizes the literature pertaining to neural mechanisms underlying morphine withdrawal. Despite the fact that morphine withdrawal is a complex process, it is suggested that neural mechanisms play key roles in morphine withdrawal.

  19. Understanding molecular mechanism of higher plant plasticity under abiotic stress.

    Science.gov (United States)

    Shao, Hong-Bo; Guo, Qing-Jie; Chu, Li-Ye; Zhao, Xi-Ning; Su, Zhong-Liang; Hu, Ya-Chen; Cheng, Jiang-Feng

    2007-01-15

    Higher plants play the most important role in keeping a stable environment on the earth, which regulate global circumstances in many ways in terms of different levels (molecular, individual, community, and so on), but the nature of the mechanism is gene expression and control temporally and spatially at the molecular level. In persistently changing environment, there are many adverse stress conditions such as cold, drought, salinity and UV-B (280-320 mm), which influence plant growth and crop production greatly. Plants differ from animals in many aspects, but the important may be that plants are more easily influenced by environment than animals. Plants have a series of fine mechanisms for responding to environmental changes, which has been established during their long-period evolution and artificial domestication. These mechanisms are involved in many aspects of anatomy, physiology, biochemistry, genetics, development, evolution and molecular biology, in which the adaptive machinery related to molecular biology is the most important. The elucidation of it will extremely and purposefully promote the sustainable utilization of plant resources and make the best use of its current potential under different scales. This molecular mechanism at least include environmental signal recognition (input), signal transduction (many cascade biochemical reactions are involved in this process), signal output, signal responses and phenotype realization, which is a multi-dimensional network system and contain many levels of gene expression and regulation. We will focus on the molecular adaptive machinery of higher plant plasticity under abiotic stresses. PMID:16914294

  20. Aetiology of thrombosed external haemorrhoids: a questionnaire study

    Directory of Open Access Journals (Sweden)

    Rohde Henning

    2009-10-01

    Full Text Available Abstract Background It is important to better understand the aetiology of thrombosed external haemorrhoids (TEH because recurrence rates are high, prophylaxis is unknown, and optimal therapy is highly debated. Findings We conducted a questionnaire study of individuals with and without TEH. Aetiology was studied by comparison of answers to a questionnaire given to individuals with and without TEH concerning demography, history, and published aetiologic hypotheses. Participants were evaluated consecutively at our institution from March 2004 through August 2005. One hundred forty-eight individuals were enrolled, including 72 patients with TEH and 76 individuals without TEH but with alternative diagnoses, such as a screening colonoscopy or colonic polyps. Out of 38 possible aetiologic factors evaluated, 20 showed no significant bivariate correlation to TEH and were no longer traced, and 16 factors showed a significant bivariate relationship to TEH. By multivariate analysis, six independent variables were found to predict TEH correctly in 79.1% of cases: age of 46 years or younger, use of excessive physical effort, and use of dry toilet paper combined with wet cleaning methods after defaecation were associated with a significantly higher risk of developing TEH; use of bathtub, use of the shower, and genital cleaning before sleep at least once a week were associated with a significantly lower risk of developing TEH. Conclusion Six hypotheses on the causes of TEH have a high probability of being correct and should be considered in future studies on aetiology, prophylaxis, and therapy of TEH.

  1. Giant panda׳s tooth enamel: Structure, mechanical behavior and toughening mechanisms under indentation.

    Science.gov (United States)

    Weng, Z Y; Liu, Z Q; Ritchie, R O; Jiao, D; Li, D S; Wu, H L; Deng, L H; Zhang, Z F

    2016-12-01

    The giant panda׳s teeth possess remarkable load-bearing capacity and damage resistance for masticating bamboos. In this study, the hierarchical structure and mechanical behavior of the giant panda׳s tooth enamel were investigated under indentation. The effects of loading orientation and location on mechanical properties of the enamel were clarified and the evolution of damage in the enamel under increasing load evaluated. The nature of the damage, both at and beneath the indentation surfaces, and the underlying toughening mechanisms were explored. Indentation cracks invariably were seen to propagate along the internal interfaces, specifically the sheaths between enamel rods, and multiple extrinsic toughening mechanisms, e.g., crack deflection/twisting and uncracked-ligament bridging, were active to shield the tips of cracks from the applied stress. The giant panda׳s tooth enamel is analogous to human enamel in its mechanical properties, yet it has superior hardness and Young׳s modulus but inferior toughness as compared to the bamboo that pandas primarily feed on, highlighting the critical roles of the integration of underlying tissues in the entire tooth and the highly hydrated state of bamboo foods. Our objective is that this study can aid the understanding of the structure-mechanical property relations in the tooth enamel of mammals and further provide some insight on the food habits of the giant pandas. PMID:27498423

  2. Peripheral Receptor Mechanisms Underlying Orofacial Muscle Pain and Hyperalgesia

    Science.gov (United States)

    Saloman, Jami L.

    Musculoskeletal pain conditions, particularly those associated with temporomandibular joint and muscle disorders (TMD) are severely debilitating and affect approximately 12% of the population. Identifying peripheral nociceptive mechanisms underlying mechanical hyperalgesia, a prominent feature of persistent muscle pain, could contribute to the development of new treatment strategies for the management of TMD and other muscle pain conditions. This study provides evidence of functional interactions between ligand-gated channels, P2X3 and TRPV1/TRPA1, in trigeminal sensory neurons, and proposes that these interactions underlie the development of mechanical hyperalgesia. In the masseter muscle, direct P2X3 activation, via the selective agonist αβmeATP, induced a dose- and time-dependent hyperalgesia. Importantly, the αβmeATP-induced hyperalgesia was prevented by pretreatment of the muscle with a TRPV1 antagonist, AMG9810, or the TRPA1 antagonist, AP18. P2X3 was co-expressed with both TRPV1 and TRPA1 in masseter muscle afferents confirming the possibility for intracellular interactions. Moreover, in a subpopulation of P2X3 /TRPV1 positive neurons, capsaicin-induced Ca2+ transients were significantly potentiated following P2X3 activation. Inhibition of Ca2+-dependent kinases, PKC and CaMKII, prevented P2X3-mechanical hyperalgesia whereas blockade of Ca2+-independent PKA did not. Finally, activation of P2X3 induced phosphorylation of serine, but not threonine, residues in TRPV1 in trigeminal sensory neurons. Significant phosphorylation was observed at 15 minutes, the time point at which behavioral hyperalgesia was prominent. Similar data were obtained regarding another nonselective cation channel, the NMDA receptor (NMDAR). Our data propose P2X3 and NMDARs interact with TRPV1 in a facilitatory manner, which could contribute to the peripheral sensitization underlying masseter hyperalgesia. This study offers novel mechanisms by which individual pro-nociceptive ligand

  3. The role of toothpaste in the aetiology and treatment of dentine hypersensitivity.

    Science.gov (United States)

    Addy, M; West, N X

    2013-01-01

    Dentine hypersensitivity (DH) is a common, painful dental condition with a multi-factorial aetiology. The hydrodynamic mechanism theory to explain dentine sensitivity also appears to fit DH: lesions exhibiting large numbers of open dentinal tubules at the surface and patent to the pulp. By definition, DH can only occur when dentine becomes exposed (lesion localisation) and tubules opened (lesion initiation), thus permitting increased fluid flow in tubules on stimulation. Erosion, particularly from dietary acids appears to play a dominant role in both processes. Toothbrushing with most toothpaste products alone cause clinically insignificant wear of enamel but are additive, even synergistic, to erosive enamel loss. Additionally, toothbrushing with toothpaste is implicated in 'healthy' gingival recession. Toothbrushing with most toothpastes removes the smear layer to expose tubules and again can exacerbate erosive loss of dentine. These findings thereby implicate toothbrushing with toothpaste in the aetiology of DH. Management of the condition should have secondary prevention at the core of treatment and therefore, must consider first and foremost the aetiology. Fluoride toothpaste at present appears to provide little primary or secondary preventive benefits to DH; additional ingredients can provide therapeutic benefits. Potassium-based products to block pulpal nerve response have caused much debate and are considered by many as unproven, which should not translate to ineffective. Several toothpaste technologies formulated to block tubules are from studies in vitro, in situ and controlled clinical trials considered proven for the treatment of DH. PMID:23817061

  4. Mechanical and electronical properties of ZnS under pressure

    Directory of Open Access Journals (Sweden)

    M. Bilge

    2008-11-01

    Full Text Available Purpose: The wide-gap semiconductor materials are very important for application in the fields of optical device technology. ZnS is wide-gap semiconductor that is attractive material due to the polymorphic structural transformation and it is suitable semiconductor for applications in infrared optics, ultraviolet laser devices, electronic image display, high-density optical memory, solar cell etc. The goal is to evaluate mechanical and electrical properties of ZnS dunder pressure.Design/methodology/approach: We report ab-initio calculations of lattice constants, bulk modulus and elastic constants of the B1 (rocksalt, B3 (zincblende and B4 (wurtzite structures of ZnS. Ab-initio calculations are based on the density functional theory (DFT within generalized gradient approximation (GGA for the exchange-correlation potential.Findings: Phase transition pressures from B4 phase to B3 phase, from B3 phase to B1 phase and from B4 phase to B1 are predicted from intersection of the enthalpy-pressure data for the three phases. These results are consistent with the experimental and other theoretical calculations. Mechanical properties of ZnS under high pressure are also calculated. It is seen that the mechanical properties of ZnS under high pressure are quite different from those ambient condition. The band structure, density of states (DOS and energy gaps are also given for B3 structure of ZnS.Research limitations/implications: The results are compared with the previous theoretical and experimental data.Originality/value: Evaluation of mechanic and electronical properties of ZnS under pressure.

  5. Evidence that aetiological risk factors for psychiatric disorders cause distinct patterns of cognitive deficits.

    Science.gov (United States)

    Wallace, J; Marston, H M; McQuade, R; Gartside, S E

    2014-06-01

    Schizophrenia and bipolar disorder are associated with neurocognitive symptoms including deficits in attentional set shifting (changing attentional focus from one perceptual dimension to another) and reversal learning (learning a reversed stimulus/outcome contingency). Maternal infection during gestation and chronically flattened glucocorticoid rhythm are aetiological risk factors for schizophrenia and bipolar disorder. We hypothesised that these factors are causative in the neurocognitive deficits observed in schizophrenia and bipolar disorder. Here we used maternal immune activation (MIA) as a rat model of maternal infection, and sub-chronic low dose corticosterone treatment as a rat model of flattened glucocorticoid rhythm. For comparison we examined the effects of sub-chronic phencyclidine - a widely used rodent model of schizophrenia pathology. The effects of these three treatments on neurocognition were explored using the attentional set shifting task - a multistage test of executive functions. As expected, phencyclidine treatment selectively impaired set shifting ability. In contrast, MIA caused a marked and selective impairment of reversal learning. Corticosterone treatment impaired reversal learning but in addition also impaired rule abstraction and prevented the animals from forming an attentional set. The reversal learning deficits induced by MIA and corticosterone treatment were due to increases in non-perseverative rather than perseverative errors. Our data indicate that the cognitive deficits of schizophrenia and bipolar disorder may be explained by aetiological factors including maternal infection and glucocorticoid abnormalities and moreover suggest that the particular spectrum of cognitive deficits in individual patients may depend on the specific underlying aetiology of the disorder. PMID:24377755

  6. Investigating the mechanism(s) underlying switching between states in bipolar disorder

    OpenAIRE

    Young, Jared W.; Dulcis, Davide

    2015-01-01

    Bipolar Disorder (BD) is a unique disorder that transcends domains of function since the same patient can exhibit depression or mania, states with polar opposite mood symptoms. During depression, people feel helplessness, reduced energy, and risk aversion, while with mania behaviors include grandiosity, increased energy, less sleep, and risk preference. The neural mechanism(s) underlying each state are gaining clarity, with catecholaminergic disruption seen during mania, and cholinergic dysfu...

  7. Adaptive response: some underlying mechanisms and open questions

    Directory of Open Access Journals (Sweden)

    Evgeniya G. Dimova

    2008-01-01

    Full Text Available Organisms are affected by different DNA damaging agents naturally present in the environment or released as a result of human activity. Many defense mechanisms have evolved in organisms to minimize genotoxic damage. One of them is induced radioresistance or adaptive response. The adaptive response could be considered as a nonspecific phenomenon in which exposure to minimal stress could result in increased resistance to higher levels of the same or to other types of stress some hours later. A better understanding of the molecular mechanism underlying the adaptive response may lead to an improvement of cancer treatment, risk assessment and risk management strategies, radiation protection, e.g. of astronauts during long-term space flights. In this mini-review we discuss some open questions and the probable underlying mechanisms involved in adaptive response: the transcription of many genes and the activation of numerous signaling pathways that trigger cell defenses - DNA repair systems, induction of proteins synthesis, enhanced detoxification of free radicals and antioxidant production.

  8. Large Chip Production Mechanism under the Extreme Load Cutting Conditions

    Institute of Scientific and Technical Information of China (English)

    LIU Xianli; HE Genghuang; YAN Fugang; CHENG Yaonan; LIU Li

    2015-01-01

    There has existed a great deal of theory researches in term of chip production and chip breaking characteristics under conventional cutting and high speed cutting conditions, however, there isn’t sufficient research on chip formation mechanism as well as its influence on cutting state regarding large workpieces under extreme load cutting. This paper presents a model of large saw-tooth chip through applying finite element simulation method, which gives a profound analysis about the characteristics of the extreme load cutting as well as morphology and removal of the large chip. In the meantime, a calculation formula that gives a quantitative description of the saw-tooth level regarding the large chip is established on the basis of cutting experiments on high temperature and high strength steel 2.25Cr-1Mo-0.25V. The cutting experiments are carried out by using the scanning electron microscope and super depth of field electron microscope to measure and calculate the large chip produced under different cutting parameters, which can verify the validity of the established model. The calculating results show that the large saw-toothed chip is produced under the squeezing action between workpiece and cutting tools. In the meanwhile, the chip develops a hardened layer where contacts the cutting tool and the saw-tooth of the chip tend to form in transverse direction. This research creates the theoretical model for large chip and performs the cutting experiments under the extreme load cutting condition, as well as analyzes the production mechanism of the large chip in the macro and micro conditions. Therefore, the proposed research could provide theoretical guidance and technical support in improving productivity and cutting technology research.

  9. Mechanisms underlying astringency: introduction to an oral tribology approach

    Science.gov (United States)

    Upadhyay, Rutuja; Brossard, Natalia; Chen, Jianshe

    2016-03-01

    Astringency is one of the predominant factors in the sensory experience of many foods and beverages ranging from wine to nuts. The scientific community is discussing mechanisms that explain this complex phenomenon, since there are no conclusive results which correlate well with sensory astringency. Therefore, the mechanisms and perceptual characteristics of astringency warrant further discussion and investigation. This paper gives a brief introduction of the fundamentals of oral tribology forming a basis of the astringency mechanism. It discusses the current state of the literature on mechanisms underlying astringency describing the existing astringency models. The review discusses the crucial role of saliva and its physiology which contributes significantly in astringency perception in the mouth. It also provides an overview of research concerned with the physiological and psychophysical factors that mediate the perception of this sensation, establishing the ground for future research. Thus, the overall aim of the review is to establish the critical roles of oral friction (thin-film lubrication) in the sensation of astringency and possibly of some other specific sensory features.

  10. Quasi-nano wear mechanism under repeated impact contact loading

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    A new quasi-nano wear mechanism (QNWM) has been proposed in this paper based on the facts of wear curve turning under high energy impact contact loading.Its characteristic is that the wear rate of QNWM is only 1/10-1/3 that of delamination mechanism at the same energy density.The diameters of wear debris and pits on the worn surfaces fall into the quasi-nanometer scale (about 50-120 nm).The necessary and sufficient conditions,which bring about the QNWM,are:(i) the nano-structure (nano-crystalline + amorphous phase) in impact contact surface layer has formed by the intensive impact strain;(ii) the delamination wear cracking in sub-surface layer must be restrained;(iii) the microcracks of QNWM are produced in amorphous phase of surface nano-structure layer rather than in nano-crystalline.

  11. Nanomaterial-modulated autophagy: underlying mechanisms and functional consequences.

    Science.gov (United States)

    Zheng, Wei; Wei, Min; Li, Song; Le, Weidong

    2016-06-01

    Autophagy is an essential lysosome-dependent process that controls the quality of the cytoplasm and maintains cellular homeostasis, and dysfunction of this protein degradation system is correlated with various disorders. A growing body of evidence suggests that nanomaterials (NMs) have autophagy-modulating effects, thus predicting a valuable and promising application potential of NMs in the diagnosis and treatment of autophagy-related diseases. NMs exhibit unique physical, chemical and biofunctional properties, which may endow NMs with capabilities to modulate autophagy via various mechanisms. The present review highlights the impacts of various NMs on autophagy and their functional consequences. The possible underlying mechanisms for NM-modulated autophagy are also discussed. PMID:27193191

  12. Mechanisms underlying KCNQ1channel cell volume sensitivity

    DEFF Research Database (Denmark)

    Hammami, Sofia

    Cells are constantly exposed to changes in cell volume during cell metabolism, nutrient uptake, cell proliferation, cell migration and salt and water transport. In order to cope with these perturbations, potassium channels in line with chloride channels have been shown to be likely contributors to...... the process of cell volume adjustments. A great diversity of potassium channels being members of either the 6TM, 4 TM or 2 TM K+ channel gene family have been shown to be strictly regulated by small, fast changes in cell volume. However, the precise mechanism underlying the K+ channel sensitivity to...... cell volume alterations is not yet fully understood. The KCNQ1 channel belonging to the voltage gated KCNQ family is considered a precise sensor of volume changes. The goal of this thesis was to elucidate the mechanism that induces cell volume sensitivity. Until now, a number of investigators have...

  13. Study of mechanical properties of nanomaterials under high pressure

    Science.gov (United States)

    Sharma, Jyoti; Kaur, Namrat; Srivastava, A. K.

    2015-08-01

    In the present work, the study of physical properties and behaviour of nanomaterials i.e. n-γ- Al2O3and n-Si3C4 under high pressure is done. For this purpose Murnaghan equation of state is used. The applicability of Murnaghan equation of state is fully tested by calculating mechanical properties of nano materials i.e. volume compression (V/Vo), bulk modulus (KT) and relative isothermal compression coefficient (α(P)/α0) at different pressures. The present calculated values of compression curve for the cited nanomaterials come out to be in reasonable good agreement with the available experimental data.

  14. Behavior of duplex stainless steel casting defects under mechanical loadings

    International Nuclear Information System (INIS)

    Several components in the primary circuit of pressurized water reactors are made of cast duplex stainless steels. This material contains small casting defects, mainly shrinkage cavities, due to the manufacturing process. In safety analyses, the structural integrity of the components is studied under the most severe assumptions: presence of a large defect, accidental loadings and end-of-life material properties accounting for its thermal aging embrittlement at the service temperature. The casting defects are idealized as semi-circular surface cracks or notches that have envelope dimensions. In order to assess the real severity of the casting defects under mechanical loadings, an experimental program was carried out. It consisted of testing, under both cyclic and monotonic solicitations, three-point bend specimens containing either a natural defect (in the form of a localized cluster of cavities) or a machined notch having the dimensions of the cluster's envelope. The results show that shrinkage cavities are far less harmful than envelope notches thanks to the metal bridges between cavities. Under fatigue loadings, the generalized initiation of a cluster of cavities (defined when the cluster becomes a crack of the same global size) is reached for a number of cycles that is much higher than the one leading to the initiation of a notch. In the case of monotonic loadings, specimens with casting defects offer a very high resistance to ductile tearing. The tests are analyzed in order to develop a method that takes into account the behavior of casting defects in a more realistic fashion than by an envelope crack. Various approaches are investigated, including the search of equivalent defects or of criteria based on continuum mechanics concepts, and compared with literature data. This study shows the conservatism of current safety analyses in modeling casting defects by envelope semi-elliptical cracks and contributes to the development of alternative approaches. (orig.)

  15. Genomic interrogation of mechanism(s) underlying cellular responses to toxicants

    International Nuclear Information System (INIS)

    Assessment of the impact of xenobiotic exposure on human health and disease progression is complex. Knowledge of mode(s) of action, including mechanism(s) contributing to toxicity and disease progression, is valuable for evaluating compounds. Toxicogenomics, the subdiscipline which merges genomics with toxicology, holds the promise to contributing significantly toward the goal of elucidating mechanism(s) by studying genome-wide effects of xenobiotics. Global gene expression profiling, revolutionized by microarray technology and a crucial aspect of a toxicogenomic study, allows measuring transcriptional modulation of thousands of genes following exposure to a xenobiotic. We use our results from previous studies on compounds representing two different classes of xenobiotics (barbiturate and peroxisome proliferator) to discuss the application of computational approaches for analyzing microarray data to elucidate mechanism(s) underlying cellular responses to toxicants. In particular, our laboratory demonstrated that chemical-specific patterns of gene expression can be revealed using cDNA microarrays. Transcript profiling provides discrimination between classes of toxicants, as well as, genome-wide insight into mechanism(s) of toxicity and disease progression. Ultimately, the expectation is that novel approaches for predicting xenobiotic toxicity in humans will emerge from such information

  16. Mechanisms Underlying the Antidepressant Response and Treatment Resistance

    Directory of Open Access Journals (Sweden)

    Marjorie Rose Levinstein

    2014-06-01

    Full Text Available Depression is a complex and heterogeneous disorder affecting millions of Americans. There are several different medications and other treatments that are available and effective for many patients with depression. However, a substantial percentage of patients fail to achieve remission with these currently available interventions, and relapse rates are high. Therefore, it is necessary to determine both the mechanisms underlying the antidepressant response and the differences between responders and non-responders to treatment. Delineation of these mechanisms largely relies on experiments that utilize animal models. Therefore, this review provides an overview of the various mouse models that are currently used to assess the antidepressant response, such as chronic mild stress, social defeat, and chronic corticosterone. We discuss how these mouse models can be used to advance our understanding of the differences between responders and non-responders to antidepressant treatment. We also provide an overview of experimental treatment modalities that are used for treatment-resistant depression, such as deep brain stimulation and ketamine administration. We will then review the various genetic polymorphisms and transgenic mice that display resistance to antidepressant treatment. Finally, we synthesize the published data to describe a potential neural circuit underlying the antidepressant response and treatment resistance.

  17. Behavior of duplex stainless steel casting defects under mechanical loadings

    International Nuclear Information System (INIS)

    Several components in the primary circuit of pressurized water reactors are made of cast duplex stainless steels. This material contains small casting defects, mainly shrinkage cavities, due to the manufacturing process. In safety analyses, the structural integrity of the components is studied. In order to assess the real severity of the casting defects under mechanical loadings, an experimental program was carried out. It consisted of testing, under both cyclic and monotonic solicitations, three-point bend specimens containing either a natural defect (in the form of a localized cluster of cavities) or a machined notch having the dimensions of the cluster's envelope. The tests are analyzed in order to develop a method that takes into account the behavior of castings defects in a more realistic fashion than by an envelope crack. Various approaches are investigated, including the search of equivalent defects or of criteria based on continuum mechanics concepts, and compared with literature data. This study shows the conservatism of current safety analyses in modelling casting defects by envelope semi-elliptical cracks and contributes to the development of alternative approaches. (author)

  18. Behaviour of bcc technical superconductors under dynamic mechanical stress

    International Nuclear Information System (INIS)

    The behavior of bcc technical superconductors NbTi, NbZr and Nb under dynamic mechanical stress was investigated using two measuring techniques. In shot-sample training experiments the load was measured at which, in wire samples with a transport current applied, normal transitions occured in succesive straining cycles. Complementary, the acoustic emission from superconductors was monitored during strain at 4.2 K. A mechanism based on the formation of a stress induced shear transformation was proposed to account for the training behavior. This partially reversible shearing of the lattice is not sufficient to furnish the required energy for transition in the normal state but it may be detected by means of acoustic emission. On the other hand, a time correlation between acoustic emission and normal transition was found although training behavior and emission responded differently to the same metallurgical treatment. The experiments strongly indicate that the mechanism directly responsible for local energy release is microyielding, induced by the shear transformation. The stress relaxation which accompanies this transformation results in an increased load on the rest of the sample cross-section. Consequently microyielding caused by the transformation could occur in that region of the sample without being detected on the stress-strain curve. This would result in a sufficient release of energy to increase the sample temperature above its critical value. (orig./HP)

  19. Piezoelectric compliant mechanism energy harvesters under large base excitations

    Science.gov (United States)

    Ma, Xiaokun; Trolier-McKinstry, Susan; Rahn, Christopher D.

    2016-09-01

    A piezoelectric compliant mechanism (PCM) energy harvester is designed, modeled, and analyzed that consists of a polyvinylidene diflouoride, PVDF unimorph clamped at its base and attached to a compliant mechanism at its tip. The compliant hinge stiffness is carefully tuned to approach a low frequency first mode with an efficient (nearly quadratic) shape that provides a uniform strain distribution. A nonlinear model of the PCM energy harvester under large base excitation is derived to determine the maximum power that can be generated by the device. Experiments with a fabricated PCM energy harvester prototype show that the compliant mechanism introduces a stiffening effect and a much wider bandwidth than a benchmark proof mass cantilever design. The PCM bridge structure self-limits the displacement and maximum strain at large excitations compared with the proof mass cantilever, improving the device robustness. The PCM outperforms the cantilever in both average power and power-strain sensitivity at high accelerations due to the PCM axial stretching effect and its more uniform strain distribution.

  20. Autophagy as a Possible Underlying Mechanism of Nanomaterial Toxicity

    Directory of Open Access Journals (Sweden)

    Vanessa Cohignac

    2014-07-01

    Full Text Available The rapid development of nanotechnologies is raising safety concerns because of the potential effects of engineered nanomaterials on human health, particularly at the respiratory level. Since the last decades, many in vivo studies have been interested in the pulmonary effects of different classes of nanomaterials. It has been shown that some of them can induce toxic effects, essentially depending on their physico-chemical characteristics, but other studies did not identify such effects. Inflammation and oxidative stress are currently the two main mechanisms described to explain the observed toxicity. However, the exact underlying mechanism(s still remain(s unknown and autophagy could represent an interesting candidate. Autophagy is a physiological process in which cytoplasmic components are digested via a lysosomal pathway. It has been shown that autophagy is involved in the pathogenesis and the progression of human diseases, and is able to modulate the oxidative stress and pro-inflammatory responses. A growing amount of literature suggests that a link between nanomaterial toxicity and autophagy impairment could exist. In this review, we will first summarize what is known about the respiratory effects of nanomaterials and we will then discuss the possible involvement of autophagy in this toxicity. This review should help understand why autophagy impairment could be taken as a promising candidate to fully understand nanomaterials toxicity.

  1. Exploration of mechanisms underlying the strain-rate-dependent mechanical property of single chondrocytes

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Trung Dung; Gu, YuanTong, E-mail: yuantong.gu@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Queensland University of Technology, Brisbane, Queensland (Australia)

    2014-05-05

    Based on the characterization by Atomic Force Microscopy, we report that the mechanical property of single chondrocytes has dependency on the strain-rates. By comparing the mechanical deformation responses and the Young's moduli of living and fixed chondrocytes at four different strain-rates, we explore the deformation mechanisms underlying this dependency property. We found that the strain-rate-dependent mechanical property of living cells is governed by both of the cellular cytoskeleton and the intracellular fluid when the fixed chondrocytes are mainly governed by their intracellular fluid, which is called the consolidation-dependent deformation behavior. Finally, we report that the porohyperelastic constitutive material model which can capture the consolidation-dependent behavior of both living and fixed chondrocytes is a potential candidature to study living cell biomechanics.

  2. Crack arrest saturation model under combined electrical and mechanical loadings

    Directory of Open Access Journals (Sweden)

    R.R. Bhargava

    2009-12-01

    Full Text Available Purpose: The investigation aims at proposing a model for cracked piezoelectric strip which is capable to arrest the crack.Design/methodology/approach: Under the combined effect of electrical and mechanical loadings applied at the edges of the strip, the developed saturation zone is produced at each tip of the crack. To arrest further opening of the crack, the rims of the developed saturation zones are subjected to in-plane cohesive, normal uniform constant saturation point electrical displacement. The problem is solved using Fourier integral transform method which reduces the problem to the solution of Fredholm integral equation of the second kind. This integral equation in turn is solved numerically.Findings: The expressions are derived for different intensity factors and energy release rate. A qualitative analysis of the parameters affecting the arrest of opening of the crack and fatigue crack growth with respect to strip thickness and material constants are presented graphically.Research limitations/implications: The investigations are carried out by considering the material electrical brittle. Consequently, the zones protrude along the straight lines ahead of the crack tips. And further, the small scale electrical yielding conditions are used.Practical implications: Piezoelectric materials are widely getting used nowadays, even in day to day life like piezoelectric cigarette lighter, children toys etc. And, its advance used in technology like transducers, actuators has been already in progress. So, the aspect of cracking of piezoelectric materials are of great practical importance.Originality/value: The piezoelectric material under the combined effect of electrical and mechanical loadings gives the assessment of electrical displacement which is required to arrest the crack. The various useful interpretations are also drawn from the graphs.

  3. POSSIBLE MECHANISMS UNDERLYING THE THERAPEUTIC EFFECTS OF TRANSCRANIAL MAGNETIC STIMULATION

    Directory of Open Access Journals (Sweden)

    Alexander eChervyakov

    2015-06-01

    Full Text Available Transcranial magnetic stimulation (TMS is an effective method used to diagnose and treat many neurological disorders. Although repetitive TMS (rTMS has been used to treat a variety of serious pathological conditions including stroke, depression, Parkinson's disease, epilepsy, pain, and migraines, the pathophysiological mechanisms underlying the effects of long-term TMS remain unclear. In the present review, the effects of rTMS on neurotransmitters and synaptic plasticity are described, including the classic interpretations of TMS effects on synaptic plasticity via long-term potentiation (LTP and long-term depression (LTD. We also discuss the effects of rTMS on the genetic apparatus of neurons, glial cells and the prevention of neuronal death. The neurotrophic effects of rTMS on dendritic growth and sprouting and neurotrophic factors are described, including change in brain-derived neurotrophic factor (BDNF concentration under the influence of rTMS. Also, non-classical effects of TMS related to biophysical effects of magnetic fields are described, including the quantum effects, the magnetic spin effects, genetic magnetoreception, the macromolecular effects of TMS, and the electromagnetic theory of consciousness. Finally, we discuss possible interpretations of TMS effects according to dynamical systems theory. Evidence suggests that a rTMS-induced magnetic field should be considered a separate physical factor that can be impactful at the subatomic level and that rTMS is capable of significantly altering the reactivity of molecules (radicals. It is thought that these factors underlie the therapeutic benefits of therapy with TMS. Future research on these mechanisms will be instrumental to the development of more powerful and reliable TMS treatment protocols.

  4. Electron transport properties of single molecular junctions under mechanical modulations

    International Nuclear Information System (INIS)

    Electron transport behaviors of single molecular junctions are very sensitive to the atomic scale molecule-metal electrode contact interfaces, which have been difficult to control. We used a modified scanning probe microscope-break junction technique (SPM-BJT) to control the dynamics of the contacts and simultaneously monitor both the conductance and force. First, by fitting the measured data into a modified multiple tunneling barrier model, the static contact resistances, corresponding to the different contact conformations of single alkanedithiol and alkanediamine molecular junctions, were identified. Second, the changes of contact decay constant were measured under mechanical extensions of the molecular junctions, which helped to classify the different single molecular conductance sets into specific microscopic conformations of the molecule-electrode contacts. Third, by monitoring the changes of force and contact decay constant with the mechanical extensions, the changes of conductance were found to be caused by the changes of contact bond length and by the atomic reorganizations near the contact bond. This study provides a new insight into the understanding of the influences of contact conformations, especially the effect of changes of dynamic contact conformation on electron transport through single molecular junctions. (paper)

  5. Using Drosophila to discover mechanisms underlying type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Ronald W. Alfa

    2016-04-01

    Full Text Available Mechanisms of glucose homeostasis are remarkably well conserved between the fruit fly Drosophila melanogaster and mammals. From the initial characterization of insulin signaling in the fly came the identification of downstream metabolic pathways for nutrient storage and utilization. Defects in these pathways lead to phenotypes that are analogous to diabetic states in mammals. These discoveries have stimulated interest in leveraging the fly to better understand the genetics of type 2 diabetes mellitus in humans. Type 2 diabetes results from insulin insufficiency in the context of ongoing insulin resistance. Although genetic susceptibility is thought to govern the propensity of individuals to develop type 2 diabetes mellitus under appropriate environmental conditions, many of the human genes associated with the disease in genome-wide association studies have not been functionally studied. Recent advances in the phenotyping of metabolic defects have positioned Drosophila as an excellent model for the functional characterization of large numbers of genes associated with type 2 diabetes mellitus. Here, we examine results from studies modeling metabolic disease in the fruit fly and compare findings to proposed mechanisms for diabetic phenotypes in mammals. We provide a systematic framework for assessing the contribution of gene candidates to insulin-secretion or insulin-resistance pathways relevant to diabetes pathogenesis.

  6. Developmental mechanisms underlying variation in craniofacial disease and evolution.

    Science.gov (United States)

    Fish, Jennifer L

    2016-07-15

    Craniofacial disease phenotypes exhibit significant variation in penetrance and severity. Although many genetic contributions to phenotypic variation have been identified, genotype-phenotype correlations remain imprecise. Recent work in evolutionary developmental biology has exposed intriguing developmental mechanisms that potentially explain incongruities in genotype-phenotype relationships. This review focuses on two observations from work in comparative and experimental animal model systems that highlight how development structures variation. First, multiple genetic inputs converge on relatively few developmental processes. Investigation of when and how variation in developmental processes occurs may therefore help predict potential genetic interactions and phenotypic outcomes. Second, genetic mutation is typically associated with an increase in phenotypic variance. Several models outlining developmental mechanisms underlying mutational increases in phenotypic variance are discussed using Satb2-mediated variation in jaw size as an example. These data highlight development as a critical mediator of genotype-phenotype correlations. Future research in evolutionary developmental biology focusing on tissue-level processes may help elucidate the "black box" between genotype and phenotype, potentially leading to novel treatment, earlier diagnoses, and better clinical consultations for individuals affected by craniofacial anomalies. PMID:26724698

  7. Thermal stability of nafion membranes under mechanical stress

    Energy Technology Data Exchange (ETDEWEB)

    Quintilii, M.; Struis, R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-06-01

    The feasibility of adequately modified fluoro-ionomer membranes (NAFION{sup R}) is demonstrated for the selective separation of methanol synthesis products from the raw reactor gas at temperatures around 200{sup o}C. For an economically relevant application of this concept on a technical scale the Nafion membranes should be thin ({approx_equal}10 {mu}m) and thermally stable over a long period of time (1-2 years). In cooperation with industry (Methanol Casale SA, Lugano (CH)), we test the thermal stability of Nafion hollow fibers and supported Nafion thin sheet membranes at temperatures between 160 and 200{sup o}C under mechanical stress by applying a gas pressure difference over the membrane surface ({Delta}P{<=} 40 bar). Tests with the hollow fibers revealed that Nafion has visco-elastic properties. Tests with 50 {mu}m thin Nafion sheets supported by a porous metal carrier at 200{sup o}C and {Delta}P=39 bar showed no mechanical defects over a period of 92 days. (author) 5 figs., 4 refs.

  8. Different neurophysiological mechanisms underlying word and rule extraction from speech.

    Directory of Open Access Journals (Sweden)

    Ruth De Diego Balaguer

    Full Text Available The initial process of identifying words from spoken language and the detection of more subtle regularities underlying their structure are mandatory processes for language acquisition. Little is known about the cognitive mechanisms that allow us to extract these two types of information and their specific time-course of acquisition following initial contact with a new language. We report time-related electrophysiological changes that occurred while participants learned an artificial language. These changes strongly correlated with the discovery of the structural rules embedded in the words. These changes were clearly different from those related to word learning and occurred during the first minutes of exposition. There is a functional distinction in the nature of the electrophysiological signals during acquisition: an increase in negativity (N400 in the central electrodes is related to word-learning and development of a frontal positivity (P2 is related to rule-learning. In addition, the results of an online implicit and a post-learning test indicate that, once the rules of the language have been acquired, new words following the rule are processed as words of the language. By contrast, new words violating the rule induce syntax-related electrophysiological responses when inserted online in the stream (an early frontal negativity followed by a late posterior positivity and clear lexical effects when presented in isolation (N400 modulation. The present study provides direct evidence suggesting that the mechanisms to extract words and structural dependencies from continuous speech are functionally segregated. When these mechanisms are engaged, the electrophysiological marker associated with rule-learning appears very quickly, during the earliest phases of exposition to a new language.

  9. Investigating the mechanism(s) underlying switching between states in bipolar disorder.

    Science.gov (United States)

    Young, Jared W; Dulcis, Davide

    2015-07-15

    Bipolar disorder (BD) is a unique disorder that transcends domains of function since the same patient can exhibit depression or mania, states with polar opposite mood symptoms. During depression, people feel helplessness, reduced energy, and risk aversion, while with mania behaviors include grandiosity, increased energy, less sleep, and risk preference. The neural mechanism(s) underlying each state are gaining clarity, with catecholaminergic disruption seen during mania, and cholinergic dysfunction during depression. The fact that the same patient cycles/switches between these states is the defining characteristic of BD however. Of greater importance therefore, is the mechanism(s) underlying cycling from one state - and its associated neural changes - to another, considered the 'holy grail' of BD research. Herein, we review studies investigating triggers that induce switching to these states. By identifying such triggers, researchers can study neural mechanisms underlying each state and importantly how such mechanistic changes can occur in the same subject. Current animal models of this switch are also discussed, from submissive- and dominant-behaviors to kindling effects. Focus however, is placed on how seasonal changes can induce manic and depressive states in BD sufferers. Importantly, changing photoperiod lengths can induce local switches in neurotransmitter expression in normal animals, from increased catecholaminergic expression during periods of high activity, to increased somatostatin and corticotrophin releasing factor during periods of low activity. Identifying susceptibilities to this switch would enable the development of targeted animal models. From animal models, targeted treatments could be developed and tested that would minimize the likelihood of switching. PMID:25814263

  10. Microcracking in composite laminates under thermal and mechanical loading. Thesis

    Science.gov (United States)

    Maddocks, Jason R.

    1995-01-01

    Composites used in space structures are exposed to both extremes in temperature and applied mechanical loads. Cracks in the matrix form, changing the laminate thermoelastic properties. The goal of the present investigation is to develop a predictive methodology to quantify microcracking in general composite laminates under both thermal and mechanical loading. This objective is successfully met through a combination of analytical modeling and experimental investigation. In the analysis, the stress and displacement distributions in the vicinity of a crack are determined using a shear lag model. These are incorporated into an energy based cracking criterion to determine the favorability of crack formation. A progressive damage algorithm allows the inclusion of material softening effects and temperature-dependent material properties. The analysis is implemented by a computer code which gives predicted crack density and degraded laminate properties as functions of any thermomechanical load history. Extensive experimentation provides verification of the analysis. AS4/3501-6 graphite/epoxy laminates are manufactured with three different layups to investigate ply thickness and orientation effects. Thermal specimens are cooled to progressively lower temperatures down to -184 C. After conditioning the specimens to each temperature, cracks are counted on their edges using optical microscopy and in their interiors by sanding to incremental depths. Tensile coupons are loaded monotonically to progressively higher loads until failure. Cracks are counted on the coupon edges after each loading. A data fit to all available results provides input parameters for the analysis and shows them to be material properties, independent of geometry and loading. Correlation between experiment and analysis is generally very good under both thermal and mechanical loading, showing the methodology to be a powerful, unified tool. Delayed crack initiation observed in a few cases is attributed to a

  11. Molecular Mechanisms Regulating Muscle Fiber Composition Under Microgravity

    Science.gov (United States)

    Rosenthal, Nadia A.

    1999-01-01

    The overall goal of this project is to reveal the molecular mechanisms underlying the selective and debilitating atrophy of specific skeletal muscle fiber types that accompanies sustained conditions of microgravity. Since little is currently known about the regulation of fiber-specific gene expression programs in mammalian muscle, elucidation of the basic mechanisms of fiber diversification is a necessary prerequisite to the generation of therapeutic strategies for attenuation of muscle atrophy on earth or in space. Vertebrate skeletal muscle development involves the fusion of undifferentiated mononucleated myoblasts to form multinucleated myofibers, with a concomitant activation of muscle-specific genes encoding proteins that form the force-generating contractile apparatus. The regulatory circuitry controlling skeletal muscle gene expression has been well studied in a number of vertebrate animal systems. The goal of this project has been to achieve a similar level of understanding of the mechanisms underlying the further specification of muscles into different fiber types, and the role played by innervation and physical activity in the maintenance and adaptation of different fiber phenotypes into adulthood. Our recent research on the genetic basis of fiber specificity has focused on the emergence of mature fiber types and have implicated a group of transcriptional regulatory proteins, known as E proteins, in the control of fiber specificity. The restriction of E proteins to selected muscle fiber types is an attractive hypothetical mechanism for the generation of muscle fiber-specific patterns of gene expression. To date our results support a model wherein different E proteins are selectively expressed in muscle cells to determine fiber-restricted gene expression. These studies are a first step to define the molecular mechanisms responsible for the shifts in fiber type under conditions of microgravity, and to determine the potential importance of E proteins as

  12. Mechanical Modeling of a WIPP Drum Under Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Jeffrey A. [Sandia National Laboratories, Albuquerque, NM (United States)

    2014-11-25

    Mechanical modeling was undertaken to support the Waste Isolation Pilot Plant (WIPP) technical assessment team (TAT) investigating the February 14th 2014 event where there was a radiological release at the WIPP. The initial goal of the modeling was to examine if a mechanical model could inform the team about the event. The intention was to have a model that could test scenarios with respect to the rate of pressurization. It was expected that the deformation and failure (inability of the drum to contain any pressure) would vary according to the pressurization rate. As the work progressed there was also interest in using the mechanical analysis of the drum to investigate what would happen if a drum pressurized when it was located under a standard waste package. Specifically, would the deformation be detectable from camera views within the room. A finite element model of a WIPP 55-gallon drum was developed that used all hex elements. Analyses were conducted using the explicit transient dynamics module of Sierra/SM to explore potential pressurization scenarios of the drum. Theses analysis show similar deformation patterns to documented pressurization tests of drums in the literature. The calculated failure pressures from previous tests documented in the literature vary from as little as 16 psi to 320 psi. In addition, previous testing documented in the literature shows drums bulging but not failing at pressures ranging from 69 to 138 psi. The analyses performed for this study found the drums failing at pressures ranging from 35 psi to 75 psi. When the drums are pressurized quickly (in 0.01 seconds) there is significant deformation to the lid. At lower pressurization rates the deformation of the lid is considerably less, yet the lids will still open from the pressure. The analyses demonstrate the influence of pressurization rate on deformation and opening pressure of the drums. Analyses conducted with a substantial mass on top of the closed drum demonstrate that the

  13. Molecular mechanisms underlying progesterone-enhanced breast cancer cell migration.

    Science.gov (United States)

    Wang, Hui-Chen; Lee, Wen-Sen

    2016-01-01

    Progesterone (P4) was demonstrated to inhibit migration in vascular smooth muscle cells (VSMCs), but to enhance migration in T47D breast cancer cells. To investigate the mechanism responsible for this switch in P4 action, we examined the signaling pathway responsible for the P4-induced migration enhancement in breast cancer cell lines, T47D and MCF-7. Here, we demonstrated that P4 activated the cSrc/AKT signaling pathway, subsequently inducing RSK1 activation, which in turn increased phosphorylation of p27 at T198 and formation of the p27pT198-RhoA complex in the cytosol, thereby preventing RhoA degradation, and eventually enhanced migration in T47D cells. These findings were confirmed in the P4-treated MCF-7. Comparing the P4-induced molecular events in between breast cancer cells and VSMCs, we found that P4 increased p27 phosphorylation at T198 in breast cancer cells through RSK1 activation, while P4 increased p27 phosphorlation at Ser10 in VSMCs through KIS activation. P27pT198 formed the complex with RhoA and prevented RhoA degradation in T47D cells, whereas p-p27Ser10 formed the complex with RhoA and caused RhoA degradation in VSMCs. The results of this study highlight the molecular mechanism underlying P4-enhanced breast cancer cell migration, and suggest that RSK1 activation is responsible for the P4-induced migration enhancement in breast cancer cells. PMID:27510838

  14. Mechanisms underlying stage-1 TRPL channel translocation in Drosophila photoreceptors.

    Directory of Open Access Journals (Sweden)

    Minh-Ha Lieu

    Full Text Available BACKGROUND: TRP channels function as key mediators of sensory transduction and other cellular signaling pathways. In Drosophila, TRP and TRPL are the light-activated channels in photoreceptors. While TRP is statically localized in the signaling compartment of the cell (the rhabdomere, TRPL localization is regulated by light. TRPL channels translocate out of the rhabdomere in two distinct stages, returning to the rhabdomere with dark-incubation. Translocation of TRPL channels regulates their availability, and thereby the gain of the signal. Little, however, is known about the mechanisms underlying this trafficking of TRPL channels. METHODOLOGY/PRINCIPAL FINDINGS: We first examine the involvement of de novo protein synthesis in TRPL translocation. We feed flies cycloheximide, verify inhibition of protein synthesis, and test for TRPL translocation in photoreceptors. We find that protein synthesis is not involved in either stage of TRPL translocation out of the rhabdomere, but that re-localization to the rhabdomere from stage-1, but not stage-2, depends on protein synthesis. We also characterize an ex vivo eye preparation that is amenable to biochemical and genetic manipulation. We use this preparation to examine mechanisms of stage-1 TRPL translocation. We find that stage-1 translocation is: induced with ATP depletion, unaltered with perturbation of the actin cytoskeleton or inhibition of endocytosis, and slowed with increased membrane sterol content. CONCLUSIONS/SIGNIFICANCE: Our results indicate that translocation of TRPL out of the rhabdomere is likely due to protein transport, and not degradation/re-synthesis. Re-localization from each stage to the rhabdomere likely involves different strategies. Since TRPL channels can translocate to stage-1 in the absence of ATP, with no major requirement of the cytoskeleton, we suggest that stage-1 translocation involves simple diffusion through the apical membrane, which may be regulated by release of a

  15. Mechanisms underlying reduced fertility in anovular dairy cows.

    Science.gov (United States)

    Santos, J E P; Bisinotto, R S; Ribeiro, E S

    2016-07-01

    Resumption of ovulation after parturition is a coordinated process that involves recoupling of the GH/insulin-like growth factor 1 axis in the liver, increase in follicular development and steroidogenesis, and removal of negative feedback from estradiol in the hypothalamus. Infectious diseases and metabolic disorders associated with extensive negative energy balance during early lactation disrupt this pathway and delay first ovulation postpartum. Extended periods of anovulation postpartum exert long-lasting effects on fertility in dairy cows including the lack of spontaneous estrus, reduced pregnancy per artificial insemination (P/AI), and increased risk of pregnancy loss. Concentrations of progesterone in anovular cows subjected to synchronized programs for AI are insufficient to optimize follicular maturation, oocyte competence, and subsequent fertility to AI. Ovulation of first wave follicles, which develop under low concentrations of progesterone, reduces embryo quality in the first week after fertilization and P/AI in dairy cows. Although the specific mechanisms by which anovulation and low concentrations of progesterone impair oocyte quality have not been defined, studies with persistent follicles support the involvement of premature resumption of meiosis and degradation of maternal RNA. Suboptimal concentrations of progesterone before ovulation also increase the synthesis of PGF2α in response to oxytocin during the subsequent estrous cycle, which explains the greater incidence of short luteal phases after the first AI postpartum in anovular cows compared with estrous cyclic herd mates. It is suggested that increased spontaneous luteolysis early in the estrous cycle is one of the mechanisms that contributes to early embryonic losses in anovular cows. Anovulation also leads to major shifts in gene expression in elongated conceptuses during preimplantation stages of pregnancy. Transcripts involved with control of energy metabolism and DNA repair were

  16. The aetiology and modification of food preferences in early childhood

    OpenAIRE

    Fildes, A. M.

    2014-01-01

    Poor diet contributes to the global burden of disease and food preferences play an important role, especially for children. Children generally like sweet, energy-dense foods and often dislike vegetables. However, there are considerable individual differences in liking and explanations for this variation remain elusive. This thesis uses data from a UK cohort of twins to examine the aetiology and development of children’s food preferences with the aim of informing effective dietary intervention...

  17. The role of FKBP5 in cancer aetiology and chemoresistance

    OpenAIRE

    Li, L.; Lou, Z.; Wang, L

    2010-01-01

    FK506 binding protein 51 (FKBP51, also called FKBP5) belongs to a family of immunophilins, FK506 binding proteins (FKBPs). Members of this family are targets for drugs such as rapamycin and cyclosporine. Although FKBP5 shares characteristics with other FKBPs, it also has unique features, especially its role in the regulation of multiple signalling pathways and in tumourigenesis and chemoresistance. In this review, we will focus on the recently discovered role of FKBP5 in cancer aetiology and ...

  18. Prevalence and aetiology of hypothyroidism in the young

    OpenAIRE

    Hunter, I.; Greene, S.; Macdonald, T.; Morris, A

    2000-01-01

    AIMS—To define the prevalence of hypothyroid disease in children and young people, and describe its aetiology.
METHODS—We identified all patients on the Medicines Monitoring Unit (MEMO) database in the Tayside region of Scotland who had received two or more prescriptions for thyroxine during the study period (January 1993 to December 1995). Using this as a surrogate marker of hypothyroidism, we calculated the prevalence of hypothyroidism in those aged less than 22 years. Mai...

  19. Aetiology, imaging and treatment of medial tibial stress syndrome

    OpenAIRE

    Moen, M.H.

    2012-01-01

    The work contained in this thesis discusses aetiology, imaging and treatment of a common leg injury: medial tibial stress syndrome (MTSS). Although a common injury, the number of scientific articles on this topic is relatively low as is explained in chapter 1. This chapter also highlights that the most probable cause of MTSS is bone overload and not traction induced periostitis. In chapter 2 a review of the literature on MTSS is provided until 2009. Chapters 3 and 4 discuss different common a...

  20. Aetiology of childhood viral gastroenteritis in Lucknow, north India

    OpenAIRE

    Shilpi Gupta; Singh, K. P.; Amita Jain; Shilpi Srivastava; Vishwajeet Kumar; Mastan Singh

    2015-01-01

    Background & objectives: Due to limited availability of data on viral aetiology of acute gastroenteritis in north India, the present study was planned to detect rotavirus, norovirus, sapovirus and astrovirus in stool samples of both in hospitalized and non-hospitalized children less than five years of age presenting with acute gastroenteritis. Methods: A total of 278 stool samples from equal number of children were tested for rotavirus antigen using ELISA and for norovirus, sapovirus and...

  1. Vulvovaginitis: clinical features, aetiology, and microbiology of the genital tract

    OpenAIRE

    Jaquiery, A; Stylianopoulos, A; Hogg, G; Grover, S

    1999-01-01

    AIM—To clarify the contribution of clinical and environmental factors and infection to the aetiology of vulvovaginitis in premenarchal girls, and to determine clinical indicators of an infectious cause.
DESIGN—It was necessary first to define normal vaginal flora. Cases were 50 premenarchal girls > 2 years old with symptoms of vulvovaginitis; 50 controls were recruited from girls in the same age group undergoing minor or elective surgery.
RESULTS—Interview questionnaire show...

  2. Molecular mechanism underlying promiscuous polyamine recognition by spermidine acetyltransferase.

    Science.gov (United States)

    Sugiyama, Shigeru; Ishikawa, Sae; Tomitori, Hideyuki; Niiyama, Mayumi; Hirose, Mika; Miyazaki, Yuma; Higashi, Kyohei; Murata, Michio; Adachi, Hiroaki; Takano, Kazufumi; Murakami, Satoshi; Inoue, Tsuyoshi; Mori, Yusuke; Kashiwagi, Keiko; Igarashi, Kazuei; Matsumura, Hiroyoshi

    2016-07-01

    Spermidine acetyltransferase (SAT) from Escherichia coli, which catalyses the transfer of acetyl groups from acetyl-CoA to spermidine, is a key enzyme in controlling polyamine levels in prokaryotic cells. In this study, we determined the crystal structure of SAT in complex with spermidine (SPD) and CoA at 2.5Å resolution. SAT is a dodecamer organized as a hexamer of dimers. The secondary structural element and folding topology of the SAT dimer resemble those of spermidine/spermine N(1)-acetyltransferase (SSAT), suggesting an evolutionary link between SAT and SSAT. However, the polyamine specificity of SAT is distinct from that of SSAT and is promiscuous. The SPD molecule is also located at the inter-dimer interface. The distance between SPD and CoA molecules is 13Å. A deep, highly acidic, water-filled cavity encompasses the SPD and CoA binding sites. Structure-based mutagenesis and in-vitro assays identified SPD-bound residues, and the acidic residues lining the walls of the cavity are mostly essential for enzymatic activities. Based on mutagenesis and structural data, we propose an acetylation mechanism underlying promiscuous polyamine recognition for SAT. PMID:27163532

  3. Cellular mechanisms underlying the interaction between cannabinoid and opioid system.

    Science.gov (United States)

    Parolaro, D; Rubino, T; Viganò, D; Massi, P; Guidali, C; Realini, N

    2010-04-01

    Recently, the presence of functional interaction between the opioid and cannabinoid system has been shown in various pharmacological responses. Although there is an increasing interest for the feasible therapeutic application of a co-administration of cannabinoids and opioids in some disorders (i.e. to manage pain, to modulate immune system and emotions) and the combined use of the two drugs by drug abusers is becoming largely diffuse, only few papers focused on cellular and molecular mechanisms underlying this interaction. This review updates the biochemical and molecular underpinnings of opioid and cannabinoid interaction, both within the central nervous system and periphery. The most convincing theory for the explanation of this reciprocal interaction involves (i) the release of opioid peptides by cannabinoids or endocannabinoids by opioids, (ii) the existence of a direct receptor-receptor interaction when the receptors are co-expressed in the same cells, and (iii) the interaction of their intracellular pathways. Finally, the cannabinoid/opioid interaction might be different in the brain rewarding networks and in those accounting for other pharmacological effects (antinociception, modulation of emotionality and cognitive behavior), as well as between the central nervous system and periphery. Further insights about the cannabinoid/opioid interaction could pave the way for new and promising therapeutic approaches. PMID:20017730

  4. Beyond membrane channelopathies: alternative mechanisms underlying complex human disease

    Institute of Scientific and Technical Information of China (English)

    Konstantinos Dean BOUDOULAS; Peter J MOHLER

    2011-01-01

    Over the past fifteen years, our understanding of the molecular mechanisms underlying human disease has flourished in large part due to the discovery of gene mutations linked with membrane ion channels and transporters. In fact, ion channel defects ("channelopathies" - the focus of this review series) have been associated with a spectrum of serious human disease phenotypes including cystic fibrosis, cardiac arrhythmia, diabetes, skeletal muscle defects, and neurological disorders. However, we now know that human disease, particularly excitable cell disease, may be caused by defects in non-ion channel polypeptides including in cellular components residing well beneath the plasma membrane. For example, over the past few years, a new class of potentially fatal cardiac arrhythmias has been linked with cytoplasmic proteins that include sub-membrane adapters such as ankyrin-B (ANK2),ankyrin-G (ANK3), and alpha-1 syntrophin, membrane coat proteins including caveolin-3 (CAV3), signaling platforms including yotiao (AKAPg), and cardiac enzymes (GPD1L). The focus of this review is to detail the exciting role of lamins, yet another class of gene products that have provided elegant new insight into human disease.

  5. Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants

    Institute of Scientific and Technical Information of China (English)

    Zhaoliang Zhang; Hong Liao; William J. Lucas

    2014-01-01

    As an essential plant macronutrient, the low availability of phosphorus (P) in most soils imposes serious limitation on crop production. Plants have evolved complex responsive and adaptive mechanisms for acquisition, remobiliza-tion and recycling of phosphate (Pi) to maintain P homeostasis. Spatio-temporal molecular, physiological, and biochemical Pi deficiency responses developed by plants are the consequence of local and systemic sensing and signaling pathways. Pi deficiency is sensed local y by the root system where hormones serve as important signaling components in terms of develop-mental reprogramming, leading to changes in root system architecture. Root-to-shoot and shoot-to-root signals, delivered through the xylem and phloem, respectively, involving Pi itself, hormones, miRNAs, mRNAs, and sucrose, serve to coordinate Pi deficiency responses at the whole-plant level. A combination of chromatin remodeling, transcriptional and posttranslational events contribute to global y regulating a wide range of Pi deficiency responses. In this review, recent advances are evaluated in terms of progress toward developing a comprehen-sive understanding of the molecular events underlying control over P homeostasis. Application of this knowledge, in terms of developing crop plants having enhanced attributes for P use efficiency, is discussed from the perspective of agricultural sustainability in the face of diminishing global P supplies.

  6. [Molecular mechanisms underlying the formation of neuromuscular junction].

    Science.gov (United States)

    Higuchi, Osamu; Yamanashi, Yuji

    2011-07-01

    The neuromuscular junction (NMJ) is a synapse between a motor neuron and skeletal muscle. The contraction of skeletal muscle is controlled by the neurotransmitter acetylcholine (ACh), which is released from the motor nerve terminal. To achieve efficient neuromuscular transmission, acetylcholine receptors (AChRs) must be densely clustered on the muscle membrane of the NMJ. Failure of AChR clustering is associated with disorders of neuromuscular transmission such as congenital myasthenic syndromes (CMS) and myasthenia gravis (MG). Motoneuronal agrin and muscle-specific receptor tyrosine kinase (MuSK) are known to play essential roles in the formation and maintenance of NMJs in the central region of each muscle. However, it had been unclear how agrin activates MuSK. Recent studies have elucidated the roles of several key molecules, including the cytoplasmic adaptor protein Dok-7 and LDL receptor-related protein 4 (Lrp4), in agrin-induced MuSK activation. Moreover, new evidence indicates that cyclin-dependent kinase 5 (Cdk5) regulates postsynaptic differentiation. In this review, we summarize the latest developments in molecular mechanisms underlying NMJ formation in vertebrates. PMID:21747134

  7. CFRP Mechanical Anchorage for Externally Strengthened RC Beams under Flexure

    Science.gov (United States)

    Ali, Alnadher; Abdalla, Jamal; Hawileh, Rami; Galal, Khaled

    De-bonding of carbon fiber reinforced polymers (CFRP) sheets and plates from the concrete substrate is one of the major reasons behind premature failures of beams that are externally strengthened with such CFRP materials. To delay or prevent de-bonding and therefore enhancing the load carrying capacity of strengthened beams, several anchorage systems were developed and used. This paper investigates the use of CFRP mechanical anchorage of CFRP sheets and plates used to externally strengthen reinforced concrete beams under flexure. The pin-and-fan shape CFRP anchor, which is custom-made from typical rolled fiber sheets and bundles of loose fiber is used. Several reinforced concrete beams were casted and tested in standard four-point bending scheme to study the effectiveness of this anchorage system. The beams were externally strengthened in flexure with bonded CFRP sheets and plates and then fastened to the soffit of the beams' using various patterns of CFRP anchors. It is observed that the CFRP plates begins to separate from the beams as soon as de-bonding occurs in specimens without CFRP anchors, while in beams with CFRP anchors de-bonding was delayed leading to increase in the load carrying capacity over the un-anchored strengthened beams.

  8. Neural mechanisms underlying the induction and relief of perceptual curiosity

    Directory of Open Access Journals (Sweden)

    Marieke Jepma

    2012-02-01

    Full Text Available Curiosity is one of the most basic biological drives in both animals and humans, and has been identified as a key motive for learning and discovery. Despite the importance of curiosity and related behaviors, the topic has been largely neglected in human neuroscience; hence little is known about the neurobiological mechanisms underlying curiosity. We used functional magnetic resonance imaging (fMRI to investigate what happens in our brain during the induction and subsequent relief of perceptual curiosity. Our core findings were that (i the induction of perceptual curiosity, through the presentation of ambiguous visual input, activated the anterior insula and anterior cingulate cortex, brain regions sensitive to conflict and arousal; (ii the relief of perceptual curiosity, through visual disambiguation, activated regions of the striatum that have been related to reward processing; and (iii the relief of perceptual curiosity was associated with hippocampal activation and enhanced incidental memory. These findings provide the first demonstration of the neural basis of human perceptual curiosity. Our results provide neurobiological support for a classic psychological theory of curiosity, which holds that curiosity is an aversive condition of increased arousal whose termination is rewarding and facilitates memory.

  9. Spinal cord ischemia: aetiology, clinical syndromes and imaging features

    International Nuclear Information System (INIS)

    The purpose of this study was to analyse MR imaging features and lesion patterns as defined by compromised vascular territories, correlating them to different clinical syndromes and aetiological aspects. In a 19.8-year period, clinical records and magnetic resonance imaging (MRI) features of 55 consecutive patients suffering from spinal cord ischemia were evaluated. Aetiologies of infarcts were arteriosclerosis of the aorta and vertebral arteries (23.6 %), aortic surgery or interventional aneurysm repair (11 %) and aortic and vertebral artery dissection (11 %), and in 23.6 %, aetiology remained unclear. Infarcts occurred in 38.2 % at the cervical and thoracic level, respectively, and 49 % of patients suffered from centromedullar syndrome caused by anterior spinal artery ischemia. MRI disclosed hyperintense pencil-like lesion pattern on T2WI in 98.2 %, cord swelling in 40 %, enhancement on post-contrast T1WI in 42.9 % and always hyperintense signal on diffusion-weighted imaging (DWI) when acquired. The most common clinical feature in spinal cord ischemia is a centromedullar syndrome, and in contrast to anterior spinal artery ischemia, infarcts in the posterior spinal artery territory are rare. The exclusively cervical location of the spinal sulcal artery syndrome seems to be a likely consequence of anterior spinal artery duplication which is observed preferentially here. (orig.)

  10. Mechanism of crack initiation and crack growth under thermal and mechanical fatigue loading

    International Nuclear Information System (INIS)

    The present contribution is focused on the experimental investigations and numerical simulations of the deformation behaviour and crack development in the austenitic stainless steel X6CrNiNb18-10 under thermal and mechanical cyclic loading in HCF and LCF regimes. The main objective of this research is the understanding of the basic mechanisms of fatigue damage and the development of simulation methods, which can be applied further in safety evaluations of nuclear power plant components. In this context the modelling of crack initiation and crack growth inside the material structure induced by varying thermal or mechanical loads are of particular interest. The mechanisms of crack initiation depend among other things on the type of loading, microstructure, material properties and temperature. The Nb-stabilized austenitic stainless steel in the solution-annealed condition was chosen for the investigations. Experiments with two kinds of cyclic loading - pure thermal and pure mechanical - were carried out and simulated. The fatigue behaviour of the steel X6CrNiNb18-10 under thermal loading was studied within the framework of the joint research project [4]. Interrupted thermal cyclic tests in the temperature range of 150 C to 300 C combined with non-destructive residual stress measurements (XRD) and various microscopic investigations, e.g. in SEM (Scanning Electron Microscope), were used to study the effects of thermal cyclic loading on the material. This thermal cyclic loading leads to thermal induced stresses and strains. As a result intrusions and extrusions appear inside the grains (at the surface), at which microcracks arise and evolve to a dominant crack. Finally, these microcracks cause a continuous and significant decrease of residual stresses. The fatigue behaviour of the steel X6CrNiNb18-10 under mechanical loading at room temperature was studied within the framework of the research project [5], [8]. With a combination of interrupted LCF tests and EBSD

  11. Bronchopulmonary dysplasia: understanding of the underlying pathological mechanisms

    Directory of Open Access Journals (Sweden)

    Daniela Fanni

    2014-06-01

    better understanding of the underlying pathological mechanisms of BPD might provide insight into development of new therapeutic and preventive strategies.  Proceedings of the International Course on Perinatal Pathology (part of the 10th International Workshop on Neonatology · October 22nd-25th, 2014 · Cagliari (Italy · October 25th, 2014 · The role of the clinical pathological dialogue in problem solving Guest Editors: Gavino Faa, Vassilios Fanos, Peter Van Eyken

  12. Alteration mechanisms of UOX spent fuel under water

    International Nuclear Information System (INIS)

    The mechanisms of spent fuel alteration in aqueous media need to be understood on the assumption of a direct disposal of the assemblies in a geological formation or for long duration storage in pool. This work is a contribution to the study of the effects of the alpha and/or beta/gamma radiolysis of water on the oxidation and the dissolution of the UO2 matrix of UOX spent fuel. The effects of the alpha radiolysis, predominant in geological disposal conditions, were quantified by using samples of UO2 doped with plutonium. The leaching experiments highlighted two types of control for the matrix alteration according to the alpha activity. The first is based on the radiolytic oxidation of the surface and leads to a continuous release of uranium in solution whereas the second is based on a control by the solubility of uranium. An activity threshold, between 18 MBq.g-1 and 33 MBq.g-1, was defined in a carbonated water. The value of this threshold is dependent on the experimental conditions and the presence or not of electro-active species such as hydrogen in the system. The effects of the alpha/beta/gamma radiolysis in relation with the storage conditions were also quantified. The experimental data obtained on spent fuel indicate that the alteration rate of the matrix based on the behaviour of tracer elements (caesium and strontium) reached a maximum value of some mg.m-2.d-1, even under very oxidizing conditions. The solubility of uranium and the nature of the secondary phases depend however on the extent of the oxidizing conditions. (author)

  13. Neural Mechanisms Underlying Compensatory and Noncompensatory Strategies in Risky Choice.

    Science.gov (United States)

    Van Duijvenvoorde, Anna C K; Figner, Bernd; Weeda, Wouter D; Van der Molen, Maurits W; Jansen, Brenda R J; Huizenga, Hilde M

    2016-09-01

    Individuals may differ systematically in their applied decision strategies, which has critical implications for decision neuroscience but is yet scarcely studied. Our study's main focus was therefore to investigate the neural mechanisms underlying compensatory versus noncompensatory strategies in risky choice. Here, we compared people using a compensatory expected value maximization with people using a simplified noncompensatory loss-minimizing choice strategy. To this end, we used a two-choice paradigm including a set of "simple" items (e.g., simple condition), in which one option was superior on all attributes, and a set of "conflict" items, in which one option was superior on one attribute but inferior on other attributes. A binomial mixture analysis of the decisions elicited by these items differentiated between decision-makers using either a compensatory or a noncompensatory strategy. Behavioral differences were particularly pronounced in the conflict condition, and these were paralleled by neural results. That is, we expected compensatory decision-makers to use an integrated value comparison during choice in the conflict condition. Accordingly, the compensatory group tracked the difference in expected value between choice options reflected in neural activation in the parietal cortex. Furthermore, we expected noncompensatory, compared with compensatory, decision-makers to experience increased conflict when attributes provided conflicting information. Accordingly, the noncompensatory group showed greater dorsomedial PFC activation only in the conflict condition. These pronounced behavioral and neural differences indicate the need for decision neuroscience to account for individual differences in risky choice strategies and to broaden its scope to noncompensatory risky choice strategies. PMID:27167399

  14. Cognitive mechanisms underlying instructed choice exploration of small city maps

    Directory of Open Access Journals (Sweden)

    Sofia Sakellaridi

    2015-03-01

    Full Text Available We investigated the cognitive mechanisms underlying the exploration and decision-making in realistic and novel environments. Twelve human subjects were shown small circular U.S. city maps with two locations highlighted on the circumference, as possible choices for a post office (targets. At the beginning of a trial, subjects fixated a spot at the center of the map and ultimately chose one of the two locations. A space syntax analysis of the map paths (from the center to each target revealed that the chosen location was associated with the less convoluted path, as if subjects navigated mentally the paths in an ant’s way, i.e. by staying within street boundaries, and ultimately choosing the target that could be reached from the center in the shortest way, and the fewest turns and intersections. The subjects’ strategy for map exploration and decision making was investigated by monitoring eye position during the task. This revealed a restricted exploration of the map delimited by the location of the two alternative options and the center of the map. Specifically, subjects explored the areas around the two target options by repeatedly looking at them before deciding which one to choose, presumably implementing an evaluation and decision-making process. The ultimate selection of a specific target was significantly associated with the time spent exploring the area around that target. Finally, an analysis of the sequence of eye fixations revealed that subjects tended to look systematically towards the target ultimately chosen even from the beginning of the trial. This finding indicates an early cognitive selection bias for the ensuing decision process.

  15. Mechanisms underlying the link between cannabis use and prospective memory.

    Directory of Open Access Journals (Sweden)

    Carrie Cuttler

    Full Text Available While the effects of cannabis use on retrospective memory have been extensively examined, only a limited number of studies have focused on the links between cannabis use and prospective memory. We conducted two studies to examine the links between cannabis use and both time-based and event-based prospective memory as well as potential mechanisms underlying these links. For the first study, 805 students completed an online survey designed to assess cannabis consumption, problems with cannabis use indicative of a disorder, and frequency of experiencing prospective memory failures. The results showed small to moderate sized correlations between cannabis consumption, problems with cannabis use, and prospective memory. However, a series of mediation analyses revealed that correlations between problems with cannabis use and prospective memory were driven by self-reported problems with retrospective memory. For the second study, 48 non-users (who had never used cannabis, 48 experimenters (who had used cannabis five or fewer times in their lives, and 48 chronic users (who had used cannabis at least three times a week for one year were administered three objective prospective memory tests and three self-report measures of prospective memory. The results revealed no objective deficits in prospective memory associated with chronic cannabis use. In contrast, chronic cannabis users reported experiencing more internally-cued prospective memory failures. Subsequent analyses revealed that this effect was driven by self-reported problems with retrospective memory as well as by use of alcohol and other drugs. Although our samples were not fully characterized with respect to variables such as neurological disorders and family history of substance use disorders, leaving open the possibility that these variables may play a role in the detected relationships, the present findings indicate that cannabis use has a modest effect on self-reported problems with

  16. The utility of the polymerase chain reaction assay for aetiologic definition of unspecified bacterial meningitis cases

    Directory of Open Access Journals (Sweden)

    Mari Tuyama

    2008-03-01

    Full Text Available Most patients with acute suppurative meningitis are otherwise healthy individuals with regard to immune mechanisms against invasive bacterial disease. This medical emergency is among the most dramatic and potentially ravaging diseases that affect humans, particularly young children. The illness often strikes suddenly, and can either result in death or leave the survivors with significant neurological dysfunctions. The demonstration of a bacterial aetiology is necessary for decisions regarding treatment and prophylaxis. Conventional bacteriological methods frequently fail to identify an agent, as a result of administration of antibiotics or delayed lumbar punctures. We investigated the major aetiologic sources of unspecified bacterial meningitis cases (G00.9, ISCD-10 by polymerase chain reaction (PCR-based identification of Neisseria meningitidis (crgA, Streptococcus pneumoniae (ply and Haemophilus influenzae (bexA in cerebrospinal fluid samples. The multiplex PCR detected N. meningitidis in 92%, S. pneumoniae in 4% and H. influenzae in 1% of the 192 clinical samples assayed; 3% were negative for all three DNA targets. Bacterial DNA detection was found to be a valuable adjunct to enhance bacterial meningitis surveillance when the yield of specimens by culture is reduced. The implementation of PCR assays as a diagnostic procedure in Public Health Laboratories is perceived to be a significant advance in the investigation of bacterial meningitis.

  17. Mechanical response of collagen molecule under hydrostatic compression

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Karanvir, E-mail: karans@iitrpr.ac.in; Kumar, Navin

    2015-04-01

    Proteins like collagen are the basic building blocks of various body tissues (soft and hard). Collagen molecules find their presence in the skeletal system of the body where they bear mechanical loads from different directions, either individually or along with hydroxy-apatite crystals. Therefore, it is very important to understand the mechanical behavior of the collagen molecule which is subjected to multi-axial state of loading. The estimation of strains of collagen molecule along different directions resulting from the changes in hydrostatic pressure magnitude, can provide us new insights into its mechanical behavior. In the present work, full atomistic simulations have been used to study global (volumetric) as well as local (along different directions) mechanical properties of the hydrated collagen molecule which is subjected to different hydrostatic pressure magnitudes. To estimate the local mechanical properties, the strains of collagen molecule along its longitudinal and transverse directions have been acquired at different hydrostatic pressure magnitudes. In spite of non-homogeneous distribution of atoms within the collagen molecule, the calculated values of local mechanical properties have been found to carry the same order of magnitude along the longitudinal and transverse directions. It has been demonstrated that the values of global mechanical properties like compressibility, bulk modulus, etc. as well as local mechanical properties like linear compressibility, linear elastic modulus, etc. are functions of magnitudes of applied hydrostatic pressures. The mechanical characteristics of collagen molecule based on the atomistic model have also been compared with that of the continuum model in the present work. The comparison showed up orthotropic material behavior for the collagen molecule. The information on collagen molecule provided in the present study can be very helpful in designing the future bio-materials.

  18. Clinical presentation, aetiology and complications of pancreatitis in children

    International Nuclear Information System (INIS)

    Background: Childhood Pancreatitis is an uncommon but serious condition with incidence on the rise. It manifests as acute or chronic form with epigastric pain, vomiting and elevated serum -amylase and lipase. This study was conducted with the aim to determine the clinical presentation, aetiology, and complications of pancreatitis in children. Method: This descriptive case series was conducted in the Department of Paediatric Gastroenterology, Hepatology and Nutrition, The Children's Hospital and the Institute of Child Health, Lahore from 1st January to 31st December 2014. Seventy-two patients up to the age of 15 years having abdominal pain, Amylase >200 IU/L and/or lipase >165 IU/L, with features of acute or chronic pancreatitis on abdominal imaging; were included in study. Data analysis was done using SPSS-20. Results: Of the total 72 patients, 43 (60 percentage) had acute pancreatitis, males were 25 (58 percentage) and females 18 (42 percentage) and chronic pancreatitis was diagnosed in 29 (40 percentage), males 10 (34 percentage) and females 19 (66 percentage). Common clinical features were abdominal pain (100 percentage), nausea and vomiting (79 percentage). Common aetiologies were idiopathic (40 percentage) while choledochal cyst 8 percentage, hyperlipidaemia 7 percentage, biliary tract stones/sludge 7 percentage and abdominal trauma 6percentage. Complications were more frequently associated with acute pancreatitis (60 percentage) than with chronic pancreatitis (34 percentage). Common complications were pseudo-pancreatic cyst (36 percentage), ascites (17 percentage) and pleural effusion (4 percentage). Conclusion: Abdominal pain, nausea and vomiting were common presenting features of childhood pancreatitis. Common aetiologies were idiopathic hyperlipidemia, biliary tract stones/sludge, choledochal cyst and abdominal trauma. Common complications were Pseudo-pancreatic cyst, ascites and pleural effusion. (author)

  19. Mechanical fatigue performance of PCL-chondroprogenitor constructs after cell culture under bioreactor mechanical stimulus.

    Science.gov (United States)

    Panadero, Juan Alberto; Sencadas, Vitor; Silva, Sonia C M; Ribeiro, Clarisse; Correia, Vitor; Gama, Francisco M; Gomez Ribelles, José Luis; Lanceros-Mendez, Senentxu

    2016-02-01

    In tissue engineering of cartilage, polymeric scaffolds are implanted in the damaged tissue and subjected to repeated compression loading cycles. The possibility of failure due to mechanical fatigue has not been properly addressed in these scaffolds. Nevertheless, the macroporous scaffold is susceptible to failure after repeated loading-unloading cycles. This is related to inherent discontinuities in the material due to the micropore structure of the macro-pore walls that act as stress concentration points. In this work, chondrogenic precursor cells have been seeded in poly-ε-caprolactone (PCL) scaffolds with fibrin and some were submitted to free swelling culture and others to cyclic loading in a bioreactor. After cell culture, all the samples were analyzed for fatigue behavior under repeated loading-unloading cycles. Moreover, some components of the extracellular matrix (ECM) were identified. No differences were observed between samples undergoing free swelling or bioreactor loading conditions, neither respect to matrix components nor to mechanical performance to fatigue. The ECM did not achieve the desired preponderance of collagen type II over collagen type I which is considered the main characteristic of hyaline cartilage ECM. However, prediction in PCL with ECM constructs was possible up to 600 cycles, an enhanced performance when compared to previous works. PCL after cell culture presents an improved fatigue resistance, despite the fact that the measured elastic modulus at the first cycle was similar to PCL with poly(vinyl alcohol) samples. This finding suggests that fatigue analysis in tissue engineering constructs can provide additional information missed with traditional mechanical measurements. PMID:25772257

  20. Poroelastic Mechanical Effects of Hemicelluloses on Cellulosic Hydrogels under Compression

    Science.gov (United States)

    Lopez-Sanchez, Patricia; Cersosimo, Julie; Wang, Dongjie; Flanagan, Bernadine; Stokes, Jason R.; Gidley, Michael J.

    2015-01-01

    Hemicelluloses exhibit a range of interactions with cellulose, the mechanical consequences of which in plant cell walls are incompletely understood. We report the mechanical properties of cell wall analogues based on cellulose hydrogels to elucidate the contribution of xyloglucan or arabinoxylan as examples of two hemicelluloses displaying different interactions with cellulose. We subjected the hydrogels to mechanical pressures to emulate the compressive stresses experienced by cell walls in planta. Our results revealed that the presence of either hemicellulose increased the resistance to compression at fast strain rates. However, at slow strain rates, only xyloglucan increased composite strength. This behaviour could be explained considering the microstructure and the flow of water through the composites confirming their poroelastic nature. In contrast, small deformation oscillatory rheology showed that only xyloglucan decreased the elastic moduli. These results provide evidence for contrasting roles of different hemicelluloses in plant cell wall mechanics and man-made cellulose-based composite materials. PMID:25794048

  1. The Signaling Mechanisms Underlying Cell Polarity and Chemotaxis

    OpenAIRE

    Wang, Fei

    2009-01-01

    Chemotaxis—the directed movement of cells in a gradient of chemoattractant—is essential for neutrophils to crawl to sites of inflammation and infection and for Dictyostelium discoideum (D. discoideum) to aggregate during morphogenesis. Chemoattractant-induced activation of spatially localized cellular signals causes cells to polarize and move toward the highest concentration of the chemoattractant. Extensive studies have been devoted to achieving a better understanding of the mechanism(s) use...

  2. Statistical Structures Underlying Quantum Mechanics and Social Science

    OpenAIRE

    Wright, Ron

    2003-01-01

    Common observations of the unpredictability of human behavior and the influence of one question on the answer to another suggest social science experiments are probabilistic and may be mutually incompatible with one another, characteristics attributed to quantum mechanics (as distinguished from classical mechanics). This paper examines this superficial similarity in depth using the Foulis-Randall Operational Statistics language. In contradistinction to physics, social science deals with compl...

  3. Features wear nodes mechanization wing aircraft operating under dynamic loads

    Directory of Open Access Journals (Sweden)

    А.М. Хімко

    2009-03-01

    Full Text Available  The conducted researches of titanic alloy ВТ-22 at dynamic loading with cycled sliding and dynamic loading in conditions of rolling with slipping. It is established that roller jamming in the carriage increases wear of rod of mechanization of a wing to twenty times. The optimum covering for strengthening wearied sites and restoration of working surfaces of wing’s mechanization rod is defined.

  4. Epidemiology, aetiology, diagnosis and screening of lung cancer

    International Nuclear Information System (INIS)

    Lung cancer is the leading cause of cancer death globally. Smoking causes about 90 % of all lung cancer cases. Passive, i.e. involuntary smoking has been confirmed to enhance the risk of lung cancer in exposed people. Individual susceptibility is one of important factors in lung cancer formation. New knowledge in epidemiology and aetiology of lung cancer gives new possibilities in diagnostic and screening of this disease. Results of large randomised trials aimed at new technologies in lung cancer screening will be available in a few years. (author)

  5. Genetic and environmental factors in the aetiology of hypospadias.

    Science.gov (United States)

    George, Mathew; Schneuer, Francisco J; Jamieson, Sarra E; Holland, Andrew J A

    2015-06-01

    This article reviews the current evidence and knowledge of the aetiology of hypospadias. Hypospadias remains a fascinating anomaly of the male phallus. It may be an isolated occurrence or part of a syndrome or field defect. The increasing use of assisted reproductive techniques and hormonal manipulation during pregnancy may have been associated with an apparent rise in the incidence of hypospadias. Genetic studies and gene analysis have suggested some defects that could result in hypospadias. New light has also been thrown on environmental factors that could modulate candidate genes, causing altered development of the male external genitalia. PMID:25742936

  6. Gemella morbillorum: an underestimated aetiology of central nervous system infection?

    Science.gov (United States)

    Benedetti, Paolo; Rassu, Mario; Branscombe, Michele; Sefton, Armine; Pellizzer, Giampietro

    2009-12-01

    A case is reported of cerebellar abscess and diffuse cerebritis due to Gemella morbillorum. The clinical course was 'biphasic', developing with an acute meningeal infection followed shortly afterwards by suppuration in the cerebellar and cerebral parenchyma; this pattern seemed to suggest a latent survival of the aetiological agent, probably within the central nervous system (CNS), despite systemic antibiotic therapy. Based upon a review of cases so far described, infections of the CNS caused by G. morbillorum appear to be an emerging reality. PMID:19713361

  7. Numerical investigation of pulmonary drug delivery under mechanical ventilation conditions

    Science.gov (United States)

    Banerjee, Arindam; van Rhein, Timothy

    2012-11-01

    The effects of mechanical ventilation waveform on fluid flow and particle deposition were studied in a computer model of the human airways. The frequency with which aerosolized drugs are delivered to mechanically ventilated patients demonstrates the importance of understanding the effects of ventilation parameters. This study focuses specifically on the effects of mechanical ventilation waveforms using a computer model of the airways of patient undergoing mechanical ventilation treatment from the endotracheal tube to generation G7. Waveforms were modeled as those commonly used by commercial mechanical ventilators. Turbulence was modeled with LES. User defined particle force models were used to model the drag force with the Cunningham correction factor, the Saffman lift force, and Brownian motion force. The endotracheal tube (ETT) was found to be an important geometric feature, causing a fluid jet towards the right main bronchus, increased turbulence, and a recirculation zone in the right main bronchus. In addition to the enhanced deposition seen at the carinas of the airway bifurcations, enhanced deposition was also seen in the right main bronchus due to impaction and turbulent dispersion resulting from the fluid structures created by the ETT. Authors acknowledge financial support through University of Missouri Research Board Award.

  8. Coping styles and behavioural flexibility: towards underlying mechanisms

    OpenAIRE

    Coppens, Caroline M.; de Boer, Sietse F.; Koolhaas, Jaap M.

    2010-01-01

    A coping style (also termed behavioural syndrome or personality) is defined as a correlated set of individual behavioural and physiological characteristics that is consistent over time and across situations. This relatively stable trait is a fundamental and adaptively significant phenomenon in the biology of a broad range of species, i.e. it confers differential fitness consequences under divergent environmental conditions. Behavioural flexibility appears to be an important underlying attribu...

  9. Analysis of nanoscale mechanical grasping under ambient conditions

    International Nuclear Information System (INIS)

    In this paper, in order to understand mechanical grasping at the nanoscale, contact mechanics between nanogrippers and nanoobjects is studied. Contact models are introduced to simulate elastic contacts between various profiles of a flat surface, sphere and cylinder for different types of nanoobjects and nanogrippers. Analyses and evaluation instances indicate that friction forces, commonly used in macro-grasping to overcome gravity, at the nanoscale are often insufficient to overcome the relatively strong adhesion forces when picking up the nanoobject deposited on a substrate due to the tiny contact area. For stable nanoscale grasping, nonparallel two-finger grippers with a 'V' configuration are demonstrated to have better grasping capabilities than parallel grippers. To achieve mechanical nanoscale grasping, a nanogripper constructed from two microcantilevers is presented. Experimental results for the pick-and-place manipulation of silicon nanowires validate the theoretical analyses and capabilities of the proposed nanogripper.

  10. Cognitive interventions for addiction medicine: Understanding the underlying neurobiological mechanisms.

    Science.gov (United States)

    Zilverstand, Anna; Parvaz, Muhammad A; Moeller, Scott J; Goldstein, Rita Z

    2016-01-01

    Neuroimaging provides a tool for investigating the neurobiological mechanisms of cognitive interventions in addiction. The aim of this review was to describe the brain circuits that are recruited during cognitive interventions, examining differences between various treatment modalities while highlighting core mechanisms, in drug addicted individuals. Based on a systematic Medline search we reviewed neuroimaging studies on cognitive behavioral therapy, cognitive inhibition of craving, motivational interventions, emotion regulation, mindfulness, and neurofeedback training in addiction. Across intervention modalities, common results included the normalization of aberrant activity in the brain's reward circuitry, and the recruitment and strengthening of the brain's inhibitory control network. Results suggest that different cognitive interventions act, at least partly, through recruitment of a common inhibitory control network as a core mechanism. This implies potential transfer effects between training modalities. Overall, results confirm that chronically hypoactive prefrontal regions implicated in cognitive control in addiction can be normalized through cognitive means. PMID:26822363

  11. Strain-driven criticality underlies nonlinear mechanics of fibrous networks

    CERN Document Server

    Sharma, A; Rens, R; Vahabi, M; Jansen, K A; Koenderink, G H; MacKintosh, F C

    2016-01-01

    Networks with only central force interactions are floppy when their average connectivity is below an isostatic threshold. Although such networks are mechanically unstable, they can become rigid when strained. It was recently shown that the transition from floppy to rigid states as a function of simple shear strain is continuous, with hallmark signatures of criticality (Nat. Phys. 12, 584 (2016)). The nonlinear mechanical response of collagen networks was shown to be quantitatively described within the framework of such mechanical critical phenomenon. Here, we provide a more quantitative characterization of critical behavior in subisostatic networks. Using finite size scaling we demonstrate the divergence of strain fluctuations in the network at well-defined critical strain. We show that the characteristic strain corresponding to the onset of strain stiffening is distinct from but related to this critical strain in a way that depends on critical exponents. We confirm this prediction experimentally for collagen...

  12. Underlying molecular and cellular mechanisms in childhood irritable bowel syndrome.

    Science.gov (United States)

    Chumpitazi, Bruno P; Shulman, Robert J

    2016-12-01

    Irritable bowel syndrome (IBS) affects a large number of children throughout the world. The symptom expression of IBS is heterogeneous, and several factors which may be interrelated within the IBS biopsychosocial model play a role. These factors include visceral hyperalgesia, intestinal permeability, gut microbiota, psychosocial distress, gut inflammation, bile acids, food intolerance, colonic bacterial fermentation, and genetics. The molecular and cellular mechanisms of these factors are being actively investigated. In this mini-review, we present updates of these mechanisms and, where possible, relate the findings to childhood IBS. Mechanistic elucidation may lead to the identification of biomarkers as well as personalized childhood IBS therapies. PMID:26883355

  13. Dynamics of mechanical system for electromechanical integrated toroidal drive under electric disturbance

    Institute of Scientific and Technical Information of China (English)

    许立忠; 郝秀红

    2014-01-01

    Based on electromagnetics and mechanics, electromechanical coupled dynamic equations for the drive were developed. Using method of perturbation, free vibrations of the mechanical system under electric disturbance were investigated. The forced responses of the mechanical system to mechanical excitation under electric disturbance were also presented. It is known that for the system with electric disturbance, as time grows, beat occurs. When electric disturbing frequency is near to the natural frequencies of the mechanical system or their integer multiple, resonance vibrations occur. The forced responses of the mechanical system to mechanical excitation under electric disturbance are compound vibrations decided by mechanical excitation, electric disturbance and parameters of the system. The coupled resonance vibration caused by electric disturbance and mechanical excitation was discussed as well. The conditions under which above coupled resonance occurs were presented. The results show that when the difference of the excitation frequency and the perturbation frequency is equal to some order of natural frequency, coupled resonance vibrations occur.

  14. A possible mechanism of current in medium under electromagnetic wave

    Institute of Scientific and Technical Information of China (English)

    Zhang Tao

    2006-01-01

    In this paper a possible mechanism of current in medium is presented. Comparison between this current and the magnetization current was made. Expression for this current was derived. This work is helpful to understanding the interaction between medium and electromagnetic wave.

  15. Mechanical behavior of carpal tunnel subsynovial connective tissue under compression.

    Science.gov (United States)

    Goetz, Jessica E; Baer, Thomas E

    2011-01-01

    Subsynovial connective tissue (SSCT) is a fluid-permeated loose connective tissue that occupies the majority of the space in the carpal tunnel not occupied by the digital flexor tendons or the median nerve. It is arranged in layers around these more discrete structures, presumably to assist with tendon gliding. As a result of this arrangement, the compressive behavior and the fluid permeability of this tissue may substantially affect the stresses in the median nerve resulting from contact with its neighboring tendons or with the walls of the tunnel itself. These stresses may contribute to damage of the median nerve and the development of carpal tunnel syndrome. In this study, the fluid permeability and the compressive behavior of the SSCT were investigated to better understand the mechanics of this tissue and how it may mediate mechanical insult to the median nerve. A custom experimental apparatus was built to allow simultaneous measurement of tissue compression and fluid flow. Using Darcy's law, the average SSCT fluid permeability was 8.78×10(15) m(4)/Ns. The compressive behavior of the SSCT demonstrated time dependence, with an initial modulus of 395kPa gradually decreasing to a value of 285kPa. These baseline tissue data may serve as a mechanical norm (toward which pathological tissue might be returned, therapeutically) and may serve as essential properties to include in future mechanical models of the carpal tunnel. PMID:22096431

  16. Water hydraulic polymer components under irradiation. Mechanical properties

    International Nuclear Information System (INIS)

    Polymers will be used as different sealing and glide components for the hydraulic remote handling systems for lifting and moving activities in ITER. During operation these materials must maintain their properties during prolonged gamma irradiation and in the presence of water at or near room temperature. Preliminary results showed that the irradiation environment could affect the degradation process of the polymers and their hardness increase was different for irradiations carried out to 10 MGy in dry nitrogen or water. Vickers hardness tests were performed to study in detail the change in the mechanical properties of the candidate materials proposed for seals and wipers. Three different polymer materials have been tested as possible seals and O-rings: PEEK, Polyethylene (UHMW-PE), and Polyurethane. Specimens of each material have been irradiated with 60Co gamma rays up to 10 MGy in water. Following irradiation mechanical testing (tensile and microhardness) and also some microstructural observations of the fracture mode were carried out. The main results will be presented and discussed. Of the three materials, PEEK was outstanding, showing excellent mechanical behaviour for the doses and the irradiation conditions studied. Up to 10 MGy, neither hardness nor tensile strength were modified. In the case of polyethylene and polyurethane, the tensil failure mechanism varied with irradiation and give rise to lower ability for bending. However, up to 10 MGy the measured tensile strength and hardness data are acceptable for the working conditions studied. (author)

  17. Dissection of molecular mechanisms underlying speech and language disorders

    OpenAIRE

    Fisher, S

    2005-01-01

    Developmental disorders affecting speech and language are highly heritable, but very little is currently understood about the neuromolecular mechanisms that underlie these traits. Integration of data from diverse research areas, including linguistics, neuropsychology, neuroimaging, genetics, molecular neuroscience, developmental biology, and evolutionary anthropology, is becoming essential for unraveling the relevant pathways. Recent studies of the FOXP2 gene provide a case in point. Mutation...

  18. A review of mechanisms underlying anticarcinogenicity by brassica vegetables

    NARCIS (Netherlands)

    Verhoeven, D.T.H.; Verhagen, H.; Goldbohm, R.A.; Brandt, P.A. van den; Poppel, G. van

    1997-01-01

    The mechanisms by which brassica vegetables might decrease the risk of cancer are reviewed in this paper. Brassicas, including all types of cabbages, broccoli, cauliflower and Brussels sprouts, may be protective against cancer due to their relatively high glucosinolate content. Glucosinolates are us

  19. Imaging in mediastinitis: a systematic review based on aetiology

    Energy Technology Data Exchange (ETDEWEB)

    Akman, C. E-mail: cakman11@superonline.com; Kantarci, F.; Cetinkaya, S

    2004-07-01

    Mediastinitis refers to inflammation of the tissues located in the middle chest cavity. It can be secondary to infectious or non-infectious causes and depending on the aetiology may be acute or chronic. The majority of cases of acute mediastinitis are secondary to oesophageal perforation and open chest surgery. Less common causes include tracheal, bronchial perforation or direct extension of infection from adjacent tissues. Chronic or slowly developing mediastinitis mostly arise from tuberculosis, histoplasmosis, other fungal infections, cancer, or sarcoidosis. In a minority of cases the aetiology is lymphatic obstruction or an autoimmune disease. Radiological imaging plays an essential role in the diagnosis and therapeutic approach to mediastinitis. Generally, the initial radiological work-up includes radiographic studies either with or without contrast material. However, conventional chest radiography may be misleading in the diagnosis of mediastinitis. Cross-sectional imaging techniques are generally required for diagnosis and evaluation of the site and extent of mediastinal involvement. Computed tomography and magnetic resonance imaging may also guide the choice of the optimal therapeutic approach.

  20. Mechanical Solder Characterisation Under High Strain Rate Conditions

    Science.gov (United States)

    Meier, Karsten; Roellig, Mike; Wiese, Steffen; Wolter, Klaus-Juergen

    2010-11-01

    Using a setup for high strain rate tensile experiments the mechanical behavior of two lead-free tin based solders is investigated. The first alloy is SnAg1.3Cu0.5Ni. The second alloy has a higher silver content but no addition of Ni. Solder joints are the main electrical, thermal and mechanical interconnection technology on the first and second interconnection level. With the recent rise of 3D packaging technologies many novel interconnection ideas are proposed with innovative or visionary nature. Copper pillar, stud bump, intermetallic (SLID) and even spring like joints are presented in a number of projects. However, soldering will remain one of the important interconnect technologies. Knowing the mechanical properties of solder joints is important for any reliability assessment, especially when it comes to vibration and mechanical shock associated with mobile applications. Taking the ongoing miniaturization and linked changes in solder joint microstructure and mechanical behavior into account the need for experimental work on that issue is not satisfied. The tests are accomplished utilizing miniature bulk specimens to match the microstructure of real solder joints as close as possible. The dogbone shaped bulk specimens have a crucial diameter of 1 mm, which is close to BGA solder joints. Experiments were done in the strain rate range from 20 s-1 to 600 s-1. Solder strengthening has been observed with increased strain rate for both SAC solder alloys. The yield stress increases by about 100% in the investigated strain rate range. The yield level differs strongly. A high speed camera system was used to assist the evaluation process of the stress and strain data. Besides the stress and strain data extracted from the experiment the ultimate fracture strain is determined and the fracture surfaces are evaluated using SEM technique considering rate dependency.

  1. Underlying mechanisms of transient luminous events: a review

    Directory of Open Access Journals (Sweden)

    V. V. Surkov

    2012-08-01

    Full Text Available Transient luminous events (TLEs occasionally observed above a strong thunderstorm system have been the subject of a great deal of research during recent years. The main goal of this review is to introduce readers to recent theories of electrodynamics processes associated with TLEs. We examine the simplest versions of these theories in order to make their physics as transparent as possible. The study is begun with the conventional mechanism for air breakdown at stratospheric and mesospheric altitudes. An electron impact ionization and dissociative attachment to neutrals are discussed. A streamer size and mobility of electrons as a function of altitude in the atmosphere are estimated on the basis of similarity law. An alternative mechanism of air breakdown, runaway electron mechanism, is discussed. In this section we focus on a runaway breakdown field, characteristic length to increase avalanche of runaway electrons and on the role played by fast seed electrons in generation of the runaway breakdown. An effect of thunderclouds charge distribution on initiation of blue jets and gigantic jets is examined. A model in which the blue jet is treated as upward-propagating positive leader with a streamer zone/corona on the top is discussed. Sprite models based on streamer-like mechanism of air breakdown in the presence of atmospheric conductivity are reviewed. To analyze conditions for sprite generation, thunderstorm electric field arising just after positive cloud-to-ground stroke is compared with the thresholds for propagation of positively/negatively charged streamers and with runway breakdown. Our own estimate of tendril's length at the bottom of sprite is obtained to demonstrate that the runaway breakdown can trigger the streamer formation. In conclusion we discuss physical mechanisms of VLF (very low frequency and ELF (extremely low frequency phenomena associated with sprites.

  2. Mechanism of NBTI Recovery under Negative Voltage Stress

    International Nuclear Information System (INIS)

    Recovery phenomenon is observed under negative gate voltage stress which is smaller than the previous degradation stress. We focus on the drain current to study the degradation and recovery of negative bias temperature instability (NBTI) with a real-time method. By this method, different recovery phenomena among different size devices are observed. Under negative recovery stress, the drain current gradually recovers for the large size devices and gets into recovery saturation when long recovery time is involved. For small-size devices, a step-like recovery of drain current is observed. The recovery of the drain current is mainly caused by the holes detrapping and tunnelling back to the channel surface which are trapped in oxide. The model of hole detrapping explains the recovery under negative voltage stress reasonably. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  3. Mechanism of NBTI Recovery under Negative Voltage Stress

    Institute of Scientific and Technical Information of China (English)

    CAO Yan-Rong; HU Shi-Gang; MA Xiao-Hua; HAO Yue

    2008-01-01

    Recovery phenomenon is observed under negative gate voltage stress which is smaller than the previous degradation stress. We focus on the drain current to study the degradation and recovery of negative bias temperature instability (NBTI) with a real-time method. By this method, different recovery phenomena among different size devices are observed. Under negative recovery stress, the drain current gradually recovers for the large size devices and gets into recovery saturation when long recovery time is involved. For small-size devices, a step-like recovery of drain current is observed. The recovery of the drain current is mainly caused by the holes detrapping and tunnelling back to the channel surface which are trapped in oxide. The model of hole detrapping explains the recovery under negative voltage stress reasonably.

  4. Molecular Mechanism Underlying Lymphatic Metastasis in Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Zhiwen Xiao

    2014-01-01

    Full Text Available As the most challenging human malignancies, pancreatic cancer is characterized by its insidious symptoms, low rate of surgical resection, high risk of local invasion, metastasis and recurrence, and overall dismal prognosis. Lymphatic metastasis, above all, is recognized as an early adverse event in progression of pancreatic cancer and has been described to be an independent poor prognostic factor. It should be noted that the occurrence of lymphatic metastasis is not a casual or stochastic but an ineluctable and designed event. Increasing evidences suggest that metastasis-initiating cells (MICs and the microenvironments may act as a double-reed style in this crime. However, the exact mechanisms on how they function synergistically for this dismal clinical course remain largely elusive. Therefore, a better understanding of its molecular and cellular mechanisms involved in pancreatic lymphatic metastasis is urgently required. In this review, we will summarize the latest advances on lymphatic metastasis in pancreatic cancer.

  5. Mechanisms Underlying Isovolumic Contraction and Ejection Peaks in Seismocardiogram Morphology

    OpenAIRE

    Gurev, Viatcheslav; Tavakolian, Kouhyar; Constantino, Jason; Kaminska, Bozena; Blaber, Andrew P.; Trayanova, Natalia A.

    2012-01-01

    A three-dimensional (3D) finite element electromechanical model of the heart is employed in simulations of seismocardiograms (SCGs). To simulate SCGs, a previously developed 3D model of ventricular contraction is extended by adding the mechanical interaction of the heart with the chest and internal organs. The proposed model reproduces the major peaks of seismocardiographic signals during the phases of the cardiac cycle. Results indicate that SCGs record the pressure of the heart acting on th...

  6. POLYSTYRENE THERMAL AND CATALYTIC DEGRADATION MECHANISMS UNDER HYDROCRACKING CONDITIONS

    OpenAIRE

    Edwin G. Fuentes; María P. González-Marcos; Rubén López-Fonseca; José I. Gutiérrez-Ortiz; Juan R. González-Velasco

    2012-01-01

    In this study, differences between reaction mechanisms involved in thermal and catalytic processes of polystyrene degradation, 30% wt. in decalin, over Pt/Al2O3 bifunctional catalyst, are presented. Oligomers and aromatic derivates, mainly styrene, are mainly produced through the thermal process, whereas, with Pt/Al2O3, both depolymerisation and hydrogenation reactions have occured. Oligomers, in a lower concentration than in the thermal process, and aromatics, mainly ethyl benzene, are obtai...

  7. "Adaptive response" - some underlying mechanisms and open questions

    OpenAIRE

    Evgeniya G. Dimova; Bryant, Peter E.; Chankova, Stephka G

    2008-01-01

    Organisms are affected by different DNA damaging agents naturally present in the environment or released as a result of human activity. Many defense mechanisms have evolved in organisms to minimize genotoxic damage. One of them is induced radioresistance or adaptive response. The adaptive response could be considered as a nonspecific phenomenon in which exposure to minimal stress could result in increased resistance to higher levels of the same or to other types of stress some hours later. A ...

  8. Chemical and Mechanical Alteration of Fractured Caprock Under Reactive Flow

    Science.gov (United States)

    Elkhoury, J. E.; Ameli, P.; Detwiler, R. L.

    2013-12-01

    Permeability evolution of fractures depends on chemical and mechanical processes. Stress perturbations lead to mechanical deformation and fracture propagation that can increase formation permeability. Chemical disequilibrium between fluids and resident minerals leads to dissolution and precipitation that further alter fracture porosity and permeability. The ability to predict whether these coupled chemical and mechanical processes will enhance or diminish fracture permeability remains elusive. Here, we present results from reactive-transport experiments in fractured anhydrite cores, with significant alteration of the rock matrix, where only the flow rate differed. For high flow rate, the transformation of anhydrite to gypsum occurred uniformly within the fracture leading to compaction and a two-order-of-magnitude decrease in permeability. For low flow rate, rock-fluid reactions proceeded to near equilibrium within the fracture with preferential flow paths persisting over the 6-month duration of the experiment and a negligible change in permeability. Anticipating such permeability evolution is critical for successful geologic CO2 sequestration and waste injection. Additionally, reactive alteration of the porous matrix bounding fractures will influence the strength of earthquake fault zones. Comparison of the aperture field before (a) and after (b) the reactive flow-through experiment at low flow rate. a) Aperture field from optical profilometry measurements of the fracture surfaces. b) Inferred aperture from x-ray computed tomography scans. Color scale I (blue) denotes mainly unaltered regions of the fracture and/or aperture 200 μm) leading to negligible change in permeability after a 6-month run.

  9. Photooxidation of tetrahydrobiopterin under UV irradiation: possible pathways and mechanisms.

    Science.gov (United States)

    Buglak, Andrey A; Telegina, Taisiya A; Lyudnikova, Tamara A; Vechtomova, Yulia L; Kritsky, Mikhail S

    2014-01-01

    Tetrahydrobiopterin (H4 Bip) is a cofactor for several key enzymes, including NO synthases and aromatic amino acid hydroxylases (AAHs). Normal functioning of the H4 Bip regeneration cycle is extremely important for the work of AAHs. Oxidized pterins may accumulate if the H4 Bip regeneration cycle is disrupted or if H4 Bip autoxidation occurs. These oxidized pterins can photosensitize the production of singlet molecular oxygen (1)O2 and thus cause oxidative stress. In this context, we studied the photooxidation of H4 Bip in phosphate buffer at pH 7.2. We found that UV irradiation of H4 Bip affected its oxidation rate (quantum yield Φ300 = (2.7 ± 0.4) × 10(-3)). The effect of UV irradiation at λ = 350 nm on H4 Bip oxidation was stronger, especially in the presence of biopterin (Bip) (Φ350 = (9.7 ± 1.5) × 10(-3)). We showed that the rate of H4 Bip oxidation linearly depends on Bip concentration. Experiments with KI, a selective quencher of triplet pterins at micromolar concentrations, demonstrated that the oxidation is sensitized by the triplet state biopterin (3) Bip. Apparently, electron transfer sensitization (Type-I mechanism) is dominant. Energy transfer (Type-II mechanism) and singlet oxygen generation play only a secondary role. The mechanisms of H4 Bip photooxidation and their biological meaning are discussed. PMID:24773158

  10. Dislocation mechanism of deuterium retention in tungsten under plasma implantation

    International Nuclear Information System (INIS)

    We have developed a new theoretical model for deuterium (D) retention in tungsten-based alloys on the basis of its being trapped at dislocations and transported to the surface via the dislocation network with parameters determined by ab initio calculations. The model is used to explain experimentally observed trends of D retention under sub-threshold implantation, which does not produce stable lattice defects to act as traps for D in conventional models. Saturation of D retention with implantation dose and effects due to alloying of tungsten with, e.g. tantalum, are evaluated, and comparison of the model predictions with experimental observations under high-flux plasma implantation conditions is presented. (paper)

  11. Mechanical behaviour of an austenitic stainless steel under repeated impacts

    International Nuclear Information System (INIS)

    Cyclic indentation tests realised with an energy controlled spherical indenter allow a characterisation of the material behaviour under dynamic solicitations. This solicitation is, for example, able to show erosion and matting phenomenon. This test has been performed on AISI 316 stainless steels samples. Results have shown an increase of the hardness and the depth of the affected area versus the cycles number. With a micrographic optical analysis, we have detected a work hardening effect below the contact area. (authors)

  12. Time Windows of Interneuron Development: Implications to Our Understanding of the Aetiology and Treatment of Schizophrenia

    Directory of Open Access Journals (Sweden)

    Zarina Greenberg

    2015-11-01

    Full Text Available Schizophrenia is a devastating neuropsychiatric disorder widely believed to arise from defects during brain development. Indeed, dysfunction in the formation and function of GABAergic cortical interneurons has been implicated as a central pathogenic mechanism in this, and other, neurodevelopmental disorders. Understanding the coordination and timing of interneuron development including the complex processes of specification, proliferation, migration and their incorporation into finely tuned cortical networks is therefore essential in determining their role in neurodevelopmental disease. Studies using mouse models have highlighted the functional relevance of transcription factor networks and common signalling pathways in interneuron development but have faced challenges in identifying clear time windows where these factors are essential. Here we discuss recent developments highlighting critical time frames in the specification and migration of cortical interneurons and the impact of aberrant development to aetiology and treatments of schizophrenia.

  13. Advanced waterflooding in chalk reservoirs: Understanding of underlying mechanisms

    DEFF Research Database (Denmark)

    Zahid, Adeel; Sandersen, Sara Bülow; Stenby, Erling Halfdan;

    2011-01-01

    pressure. We have also observed formation of a microemulsion phase between brine and oil with the increase in sulfate ion concentration at high temperature and pressure. In addition, sulfate ions can reduce interfacial tension (IFT) between oil and water. We propose that the decrease in viscosity and...... formation of a microemulsion phase could be the possible reasons for the observed increase in oil recovery with sulfate ions at high temperature in chalk reservoirs besides the mechanism of the rock wettability alteration, which has been reported in most previous studies....

  14. Analysis of thermal conductivity of polymeric nanocomposites under mechanical loading

    Science.gov (United States)

    Yu, Suyoung; Yang, Seunghwa; Cho, Maenghyo

    2013-12-01

    When the plastic deformation is applied to neat polymer, the polymer chains are aligned and the thermal conductivity of neat polymer increases linearly along the loading direction. However, the thermal conductivity change of nanocomposites consisting of polymer matrix and nanofillers during plastic deformation is not simple. The volume fraction and size of nanofillers scarcely affect the structural change of polymer chains during the plastic deformation. In this study, the structural change of polymeric materials according to the mechanical loading and its effect on the thermal transport properties are investigated through a molecular dynamics simulation. To investigate the effects of nanofiller, its volume fraction, and size on the thermal transport properties, the unit cells of neat amorphous nylon 6 and nanocomposites consisting of amorphous nylon 6 matrix and spherical silica particles are prepared. The molecular unit cells are uniaxially stretched by applying constant strain along the loading directions. Then, non-equilibrium molecular dynamics (NEMD) simulations are performed to estimate the thermal conductivities during plastic deformation. The alignment of polymer chains is analyzed by tracing the orientation correlation function of each polymer molecule and the free volume change during the mechanical loading is also analyzed.

  15. Molecular mechanisms underlying the effects of acupuncture on neuropathic pain**

    Institute of Scientific and Technical Information of China (English)

    Ziyong Ju; Huashun Cui; Xiaohui Guo; Huayuan Yang; Jinsen He; Ke Wang

    2013-01-01

    Acupuncture has been used to treat neuropathic pain for a long time, but its mechanisms of action remain unknown. In this study, we observed the effects of electroacupuncture and manual acu-puncture on neuropathic pain and on ephrin-B/EphB signaling in rats models of chronic constriction injury-induced neuropathic pain. The results showed that manual acupuncture and elec-puncture significantly reduced mechanical hypersensitivity fol owing chronic constriction injury, es-pecial y electroacupuncture treatment. Real-time PCR results revealed that ephrin-B1/B3 and EphB1/B2 mRNA expression levels were significantly increased in the spinal dorsal horns of chronic constriction injury rats. Electroacupuncture and manual acupuncture suppressed the high sion of ephrin-B1 mRNA, and elevated EphB3/B4 mRNA expression. Electroacupuncture signifi-cantly enhanced the mRNA expression of ephrin-B3 and EphB3/B6 in the dorsal horns of neuro-pathic pain rats. Western blot results revealed that electroacupuncture in particular, and manual acupuncture, significantly up-regulated ephrin-B3 protein levels in rat spinal dorsal horns. The re-sults of this study suggest that acupuncture could activate ephrin-B/EphB signaling in neuropathic pain rats and improve neurological function.

  16. Ethanol Neurotoxicity in the Developing Cerebellum: Underlying Mechanisms and Implications

    Directory of Open Access Journals (Sweden)

    Ambrish Kumar

    2013-06-01

    Full Text Available Ethanol is the main constituent of alcoholic beverages that exerts toxicity to neuronal development. Ethanol affects synaptogenesis and prevents proper brain development. In humans, synaptogenesis takes place during the third trimester of pregnancy, and in rodents this period corresponds to the initial few weeks of postnatal development. In this period neuronal maturation and differentiation begin and neuronal cells start migrating to their ultimate destinations. Although the neuronal development of all areas of the brain is affected, the cerebellum and cerebellar neurons are more susceptible to the damaging effects of ethanol. Ethanol’s harmful effects include neuronal cell death, impaired differentiation, reduction of neuronal numbers, and weakening of neuronal plasticity. Neuronal development requires many hormones and growth factors such as retinoic acid, nerve growth factors, and cytokines. These factors regulate development and differentiation of neurons by acting through various receptors and their signaling pathways. Ethanol exposure during development impairs neuronal signaling mechanisms mediated by the N-methyl-d-aspartate (NMDA receptors, the retinoic acid receptors, and by growth factors such as brain-derived neurotrophic factor (BDNF, insulin-like growth factor 1 (IGF-I, and basic fibroblast growth factor (bFGF. In combination, these ethanol effects disrupt cellular homeostasis, reduce the survival and migration of neurons, and lead to various developmental defects in the brain. Here we review the signaling mechanisms that are required for proper neuronal development, and how these processes are impaired by ethanol resulting in harmful consequences to brain development.

  17. The antimicrobial propeptide hCAP-18 plasma levels in neutropenia of various aetiologies

    DEFF Research Database (Denmark)

    Ye, Ying; Carlsson, Göran; Karlsson-Sjöberg, Jenny M T;

    2015-01-01

    The underlying cause of neutropenia may be difficult to determine due to similar clinical presentation in many neutropenic conditions. The neutrophil protein hCAP-18 (pro-LL-37) is a major component of neutrophil secondary granules and in this prospective study we assessed the use of hCAP-18 levels...... in blood plasma for differential diagnosis of neutropenic patients (n = 133) of various aetiologies. Plasma levels of hCAP-18 were determined using immunoblot and ELISA. Patients with severe congenital neutropenia (n = 23) presented with the lowest levels of plasma hCAP-18 and differential diagnostic...... diagnostic value in differential diagnosis of chronic neutropenia. Neutropenic patients with Shwachman-Diamond syndrome, Barth syndrome, Cohen syndrome, acute myeloid leukaemia and specific granule deficiency presented with reduced plasma hCAP-18 levels as well. The blood plasma level of hCAP-18 was thus low...

  18. Mechanisms Underlying Mammalian Hybrid Sterility in Two Feline Interspecies Models.

    Science.gov (United States)

    Davis, Brian W; Seabury, Christopher M; Brashear, Wesley A; Li, Gang; Roelke-Parker, Melody; Murphy, William J

    2015-10-01

    The phenomenon of male sterility in interspecies hybrids has been observed for over a century, however, few genes influencing this recurrent phenotype have been identified. Genetic investigations have been primarily limited to a small number of model organisms, thus limiting our understanding of the underlying molecular basis of this well-documented "rule of speciation." We utilized two interspecies hybrid cat breeds in a genome-wide association study employing the Illumina 63 K single-nucleotide polymorphism array. Collectively, we identified eight autosomal genes/gene regions underlying associations with hybrid male sterility (HMS) involved in the function of the blood-testis barrier, gamete structural development, and transcriptional regulation. We also identified several candidate hybrid sterility regions on the X chromosome, with most residing in close proximity to complex duplicated regions. Differential gene expression analyses revealed significant chromosome-wide upregulation of X chromosome transcripts in testes of sterile hybrids, which were enriched for genes involved in chromatin regulation of gene expression. Our expression results parallel those reported in Mus hybrids, supporting the "Large X-Effect" in mammalian HMS and the potential epigenetic basis for this phenomenon. These results support the value of the interspecies feline model as a powerful tool for comparison to rodent models of HMS, demonstrating unique aspects and potential commonalities that underpin mammalian reproductive isolation. PMID:26006188

  19. Molecular mechanism for cavitation in water under tension

    CERN Document Server

    Menzl, Georg; Geiger, Philipp; Caupin, Frédéric; Abascal, Jose L F; Valeriani, Chantal; Dellago, Christoph

    2016-01-01

    Despite its relevance in biology and engineering, the molecular mechanism driving cavitation in water remains unknown. Using computer simulations, we investigate the structure and dynamics of vapor bubbles emerging from metastable water at negative pressures. We find that in the early stages of cavitation, bubbles are irregularly shaped and become more spherical as they grow. Nevertheless, the free energy of bubble formation can be perfectly reproduced in the framework of classical nucleation theory (CNT) if the curvature dependence of the surface tension is taken into account. Comparison of the observed bubble dynamics to the predictions of the macroscopic Rayleigh--Plesset (RP) equation, augmented with thermal fluctuations, demonstrates that the growth of nanoscale bubbles is governed by viscous forces. Combining the dynamical prefactor determined from the RP equation with the free energy of CNT yields an analytical expression for the cavitation rate that reproduces the simulation results very well over a w...

  20. Aging and emotional memory: cognitive mechanisms underlying the positivity effect.

    Science.gov (United States)

    Spaniol, Julia; Voss, Andreas; Grady, Cheryl L

    2008-12-01

    Younger adults tend to remember negative information better than positive or neutral information (negativity bias). The negativity bias is reduced in aging, with older adults occasionally exhibiting superior memory for positive, as opposed to negative or neutral, information (positivity bias). Two experiments with younger (N=24 in Experiment 1, N=25 in Experiment 2; age range: 18-35 years) and older adults (N=24 in both experiments; age range: 60-85 years) investigated the cognitive mechanisms responsible for age-related differences in recognition memory for emotional information. Results from diffusion model analyses (R. Ratcliff, 1978) indicated that the effects of valence on response bias were similar in both age groups but that Age x Valence interactions emerged in memory retrieval. Specifically, older adults experienced greater overall familiarity for positive items than younger adults. We interpret this finding in terms of an age-related increase in the accessibility of positive information in long-term memory. PMID:19140656

  1. Mechanisms underlying rapid aldosterone effects in the kidney.

    LENUS (Irish Health Repository)

    Thomas, Warren

    2011-03-17

    The steroid hormone aldosterone is a key regulator of electrolyte transport in the kidney and contributes to both homeostatic whole-body electrolyte balance and the development of renal and cardiovascular pathologies. Aldosterone exerts its action principally through the mineralocorticoid receptor (MR), which acts as a ligand-dependent transcription factor in target tissues. Aldosterone also stimulates the activation of protein kinases and secondary messenger signaling cascades that act independently on specific molecular targets in the cell membrane and also modulate the transcriptional action of aldosterone through MR. This review describes current knowledge regarding the mechanisms and targets of rapid aldosterone action in the nephron and how aldosterone integrates these responses into the regulation of renal physiology.

  2. Mechanisms underlying rapid aldosterone effects in the kidney.

    LENUS (Irish Health Repository)

    Thomas, Warren

    2012-02-01

    The steroid hormone aldosterone is a key regulator of electrolyte transport in the kidney and contributes to both homeostatic whole-body electrolyte balance and the development of renal and cardiovascular pathologies. Aldosterone exerts its action principally through the mineralocorticoid receptor (MR), which acts as a ligand-dependent transcription factor in target tissues. Aldosterone also stimulates the activation of protein kinases and secondary messenger signaling cascades that act independently on specific molecular targets in the cell membrane and also modulate the transcriptional action of aldosterone through MR. This review describes current knowledge regarding the mechanisms and targets of rapid aldosterone action in the nephron and how aldosterone integrates these responses into the regulation of renal physiology.

  3. Mechanisms underlying probucol-induced hERG-channel deficiency

    Directory of Open Access Journals (Sweden)

    Shi YQ

    2015-07-01

    Full Text Available Yuan-Qi Shi,1,* Cai-Chuan Yan,1,* Xiao Zhang,1 Meng Yan,1 Li-Rong Liu,1 Huai-Ze Geng,1 Lin Lv,1 Bao-Xin Li1,21Department of Pharmacology, Harbin Medical University, 2State-Province Key Laboratory of Biopharmaceutical Engineering, Harbin, Heilongjiang, People’s Republic of China*These authors contributed equally to this workAbstract: The hERG gene encodes the pore-forming α-subunit of the rapidly activating delayed rectifier potassium channel (IKr, which is important for cardiac repolarization. Reduction of IhERG due to genetic mutations or drug interferences causes long QT syndrome, leading to life-threatening cardiac arrhythmias (torsades de pointes or sudden death. Probucol is a cholesterol-lowering drug that could reduce hERG current by decreasing plasma membrane hERG protein expression and eventually cause long QT syndrome. Here, we investigated the mechanisms of probucol effects on IhERG and hERG-channel expression. Our data demonstrated that probucol reduces SGK1 expression, known as SGK isoform, in a concentration-dependent manner, resulting in downregulation of phosphorylated E3 ubiquitin ligase Nedd4-2 expression, but not the total level of Nedd4-2. As a result, the hERG protein reduces, due to the enhanced ubiquitination level. On the contrary, carbachol could enhance the phosphorylation level of Nedd4-2 as an alternative to SGK1, and thus rescue the ubiquitin-mediated degradation of hERG channels caused by probucol. These discoveries provide a novel mechanism of probucol-induced hERG-channel deficiency, and imply that carbachol or its analog may serve as potential therapeutic compounds for the handling of probucol cardiotoxicity.Keywords: long QT, hERG potassium channels, probucol, SGK1, Nedd4-2

  4. Mechanical behavior of enamel rods under micro-compression.

    Science.gov (United States)

    Yilmaz, Ezgi D; Schneider, Gerold A

    2016-10-01

    Exploring the structural strategies behind the optimized mechanical performance of hierarchical materials has been a focal point of extensive research over the past decades. Dental enamel is one such natural material, comprising a complicated hierarchical structure with a high level of mineral content. Bundles of hydroxyapatite nanofibers (level-1) Ø: 50nm form enamel rods (level-2) Ø: 5µm, which constitute bands (level-3) Ø: 50µm. While a number of studies in the last decade using advanced fracture mechanical methods have revealed an increasing trend in the fracture toughness of enamel with each additional level of hierarchy, there is still no general agreement on how hierarchical structuring affects the stiffness and strength of enamel. In this study, we identified the stiffness and strength values of the isolated rods (level-2) via micro-compression. The rods were tested in three different orientations with respect to the loading direction: parallel, perpendicular and oblique. The highest stress level withstood before catastrophic fracture was observed to be ~1500MPa in perpendicular orientation. In the oblique loading, the specimens failed by shearing and exhibited a damage-tolerant deformation behavior, which was attributed to the conjugation spots identified between the rods and interrod sheets. The elastic modulus was ~60GPa on average and similar in all orientations. The isotropy in stiffness was attributed to the mineral contacts residing between rods. This was verified by an analytical model derived for level-1 and extended over higher hierarchical levels. The experimental results obtained at level-2 were comparable to the compressive strength and stiffness values reported for level-1 and bulk enamel in the literature. In general, our results suggest that hierarchy has only a minor influence on the compressive properties of enamel. PMID:27415405

  5. Uranium dioxide sintering Kinetics and mechanisms under controlled oxygen potentials

    International Nuclear Information System (INIS)

    The initial, intermediate, and final sintering stages of uranium dioxide were investigated as a function of stoichiometry and temperature by following the kinetics of the sintering reaction. Stoichiometry was controlled by means of the oxygen potential of the sintering atmosphere, which was measured continuously by solid-state oxygen sensors. Included in the kinetic study were microspheres originated from UO2 gels and UO2 pellets produced by isostatic pressing ceramic grade powders. The microspheres sintering behavior was examined using hot-stage microscopy and a specially designed high-temperature, controlled atmosphere furnace. This same furnace was employed as part of an optical dilatometer, which was utilized in the UO2 pellet sintering investigations. For controlling the deviations from stoichiometry during heat treatment, the oxygen partial pressure in the sintering atmosphere was varied by passing the gas through a Cu-Ti-Cu oxygen trap. The trap temperature determined the oxygen partial pressure of the outflowing mixture. Dry hydrogen was also used in some of the UO sub(2+x) sintering experiments. The determination of diametrial shrinkages and sintering indices was made utilizing high-speed microcinematography and ultra-microbalance techniques. It was observed that the oxygen potential has a substantial influence on the kinetics of the three sintering stages. The control of the sintering atmosphere oxygen partial pressure led to very fast densification of UO sub(2+x). Values in the interval 95.0 to 99.5% of theoretical density were reached in less than one minute. Uranium volume diffusion is the dominant mechanism in the initial and intermediate sintering stages. For the final stage, uranium grain boundary diffusion was found to be the main sintering mechanism. (Author)

  6. Mechanisms of microstructural changes of fuel under irradiation

    International Nuclear Information System (INIS)

    Nuclear fuels are subjected to high levels of radiation damage mainly due to the slowing of fission fragments, which results in substantial modifications of the initial fuel microstructure. Microstructure changes alter practically all engineering fuel properties such as atomic transport or thermomechanical properties so understanding these changes is essential to predicting the performance of fuel elements. Also, with increasing burn-up, the fuel drifts away from its initial composition as the fission process produces new chemical elements. Because nuclear fuels operate at high temperature and usually under high-temperature gradients, damage annealing, foreign atom or defect clustering and migration occur on multiple time and length scales, which make long-term predictions difficult. The end result is a fuel microstructure which may show extensive differences on the scale of a single fuel pellet. The main challenge we are faced with is, therefore, to identify the phenomena occurring on the atom scale that are liable to have macroscopic effects that will determine the microstructure changes and ultimately the life-span of a fuel element. One step towards meeting this challenge is to develop and apply experimental or modelling methods capable of connecting events that occur over very short length and timescales to changes in the fuel microstructure over engineering length and timescales. In the first part of this chapter, we provide an overview of some of the more important microstructure modifications observed in nuclear fuels. The emphasis is placed on oxide fuels because of the extensive amount of data available in relation to these materials under neutron or ion irradiation. When possible and relevant, the specifics of other types of fuels such as metallic or carbide fuels are alluded to. Throughout this chapter but more specifically in the latter part, we attempt to give examples of how modelling and experimentation at various scales can provide us with

  7. Villitis of unknown aetiology: correlation of recurrence with clinical outcome.

    LENUS (Irish Health Repository)

    Feeley, L

    2010-01-01

    Villitis of unknown aetiology (VUA) is associated with adverse pregnancy outcome. Consequently, an ability to predict recurrence could be clinically relevant. We examined placentas where villitis was diagnosed in a previous pregnancy to establish the risk of recurrence and outcome. A total of 304 cases of VUA were diagnosed in our laboratory over a 4-year period. Subsequently, 19 of this cohort had a second placenta examined histologically. Recurrence and clinical outcome were recorded. Villitis recurred in 7 of 19 cases (37%). There was a high level of adverse pregnancy outcome in this cohort overall, characterised by small for gestational age infants and stillbirth, particularly in cases with high-grade villitis. We identified recurrent villitis more frequently than previously reported. Our findings confirm an association between high-grade villitis and poor outcome. Adequately powered prospective studies are required to determine if enhanced surveillance of subsequent pregnancies is indicated following a diagnosis of villitis.

  8. Comparative pathology in bivalves: Aetiological agents and disease processes.

    Science.gov (United States)

    Carella, F; Feist, S W; Bignell, J P; De Vico, G

    2015-10-01

    Comparative pathology as a scientific discipline studies animal diseases in relation to their aetiology, pathogenesis and prognosis. Among the main aspects of this discipline, regressive changes, host defense responses with pathological implications and progressive changes, represent the majority of the possible responses of cells and tissues to pathogens and exposure to chemicals. One of the most persistent issues in the field of invertebrate pathology is the variability in terminology and definition, which has led to confusion in scientific communication. The aim of this paper is to provide an overview of the pathological basis of bivalve disease (defensive, regressive and progressive phenomena) and contribute to the standardised terminology for bivalve molluscan disease in the context of comparative pathology. PMID:26215472

  9. Linking Pesticide Exposure with Pediatric Leukemia: Potential Underlying Mechanisms

    Science.gov (United States)

    Hernández, Antonio F.; Menéndez, Pablo

    2016-01-01

    Leukemia is the most common cancer in children, representing 30% of all childhood cancers. The disease arises from recurrent genetic insults that block differentiation of hematopoietic stem and/or progenitor cells (HSPCs) and drives uncontrolled proliferation and survival of the differentiation-blocked clone. Pediatric leukemia is phenotypically and genetically heterogeneous with an obscure etiology. The interaction between genetic factors and environmental agents represents a potential etiological driver. Although information is limited, the principal toxic mechanisms of potential leukemogenic agents (e.g., etoposide, benzene metabolites, bioflavonoids and some pesticides) include topoisomerase II inhibition and/or excessive generation of free radicals, which may induce DNA single- and double-strand breaks (DNA-DSBs) in early HSPCs. Chromosomal rearrangements (duplications, deletions and translocations) may occur if these lesions are not properly repaired. The initiating hit usually occurs in utero and commonly leads to the expression of oncogenic fusion proteins. Subsequent cooperating hits define the disease latency and occur after birth and may be of a genetic, epigenetic or immune nature (i.e., delayed infection-mediated immune deregulation). Here, we review the available experimental and epidemiological evidence linking pesticide exposure to infant and childhood leukemia and provide a mechanistic basis to support the association, focusing on early initiating molecular events. PMID:27043530

  10. Comparative analysis reveals the underlying mechanism of vertebrate seasonal reproduction.

    Science.gov (United States)

    Ikegami, Keisuke; Yoshimura, Takashi

    2016-02-01

    Animals utilize photoperiodic changes as a calendar to regulate seasonal reproduction. Birds have highly sophisticated photoperiodic mechanisms and functional genomics analysis in quail uncovered the signal transduction pathway regulating avian seasonal reproduction. Birds detect light with deep brain photoreceptors. Long day (LD) stimulus induces secretion of thyroid-stimulating hormone (TSH) from the pars tuberalis (PT) of the pituitary gland. PT-derived TSH locally activates thyroid hormone (TH) in the hypothalamus, which induces gonadotropin-releasing hormone (GnRH) and hence gonadotropin secretion. However, during winter, low temperatures increase serum TH for adaptive thermogenesis, which accelerates germ cell apoptosis by activating the genes involved in metamorphosis. Therefore, TH has a dual role in the regulation of seasonal reproduction. Studies using TSH receptor knockout mice confirmed the involvement of PT-derived TSH in mammalian seasonal reproduction. In addition, studies in mice revealed that the tissue-specific glycosylation of TSH diversifies its function in the circulation to avoid crosstalk. In contrast to birds and mammals, one of the molecular machineries necessary for the seasonal reproduction of fish are localized in the saccus vasculosus from the photoreceptor to the neuroendocrine output. Thus, comparative analysis is a powerful tool to uncover the universality and diversity of fundamental properties in various organisms. PMID:26050562

  11. Testing of short superconducting wire samples under mechanical stress

    International Nuclear Information System (INIS)

    It is well known that degradation and training effects are serious problems in large-scale, complex-shaped superconducting magnets. This behavior is attributed to plastic deformation of the superconductor and/or the matrix, which is produced by forces in the coil and concomitant heating. The current-carrying capacity of short superconducting samples immersed in liquid helium in a magnetic field and subjected to a tensile test was investigated. It was found that the critical current of the superconducting wire was reduced by 25 percent as a result of mechanically straining it beyond the breaking point. At approximately 60 percent of the limiting load, voltage jumps corresponding to the short time the sample was in the normal state appeared in the sample after the current was turned on. This transition occurred only once at a given load. No voltage jumps were observed in the sample up to the critical current after the current was turned on again at the same or a reduced load. These results may serve as guidelines in studying the effects of training and degradation and developing methods of eliminating them in superconducting magnets

  12. RISK FACTORS FOR PANCREATIC CANCER: UNDERLYING MECHANISMS AND POTENTIAL TARGETS

    Directory of Open Access Journals (Sweden)

    EdwinCharlesThrower

    2014-01-01

    Full Text Available Purpose of the review:Pancreatic cancer is extremely aggressive, forming highly chemo-resistant tumors, and has one of the worst prognoses. The evolution of this cancer is multi-factorial. Repeated acute pancreatic injury and inflammation are important contributing factors in the development of pancreatic cancer. This article attempts to understand the common pathways linking pancreatitis to pancreatic cancer.Recent Findings:Intracellular activation of both pancreatic enzymes and the transcription factor NF-kB are important mechanisms that induce acute pancreatitis. Recurrent pancreatic injury due to genetic susceptibility, environmental factors such as smoking, alcohol intake, and conditions such as obesity lead to increases in oxidative stress, impaired autophagy and constitutive activation of inflammatory pathways. These processes can stimulate pancreatic stellate cells, thereby increasing fibrosis and encouraging chronic disease development. Activation of oncogneic Kras mutations through inflammation, coupled with altered levels of tumor suppressor proteins (p53 and p16 can ultimately lead to development of pancreatic cancer. Summary:Although our understanding of pancreatitis and pancreatic cancer has tremendously increased over many years, much remains to be elucidated in terms of common pathways linking these conditions.

  13. Neural network mechanisms underlying stimulus driven variability reduction.

    Science.gov (United States)

    Deco, Gustavo; Hugues, Etienne

    2012-01-01

    It is well established that the variability of the neural activity across trials, as measured by the Fano factor, is elevated. This fact poses limits on information encoding by the neural activity. However, a series of recent neurophysiological experiments have changed this traditional view. Single cell recordings across a variety of species, brain areas, brain states and stimulus conditions demonstrate a remarkable reduction of the neural variability when an external stimulation is applied and when attention is allocated towards a stimulus within a neuron's receptive field, suggesting an enhancement of information encoding. Using an heterogeneously connected neural network model whose dynamics exhibits multiple attractors, we demonstrate here how this variability reduction can arise from a network effect. In the spontaneous state, we show that the high degree of neural variability is mainly due to fluctuation-driven excursions from attractor to attractor. This occurs when, in the parameter space, the network working point is around the bifurcation allowing multistable attractors. The application of an external excitatory drive by stimulation or attention stabilizes one specific attractor, eliminating in this way the transitions between the different attractors and resulting in a net decrease in neural variability over trials. Importantly, non-responsive neurons also exhibit a reduction of variability. Finally, this reduced variability is found to arise from an increased regularity of the neural spike trains. In conclusion, these results suggest that the variability reduction under stimulation and attention is a property of neural circuits. PMID:22479168

  14. Neural network mechanisms underlying stimulus driven variability reduction.

    Directory of Open Access Journals (Sweden)

    Gustavo Deco

    Full Text Available It is well established that the variability of the neural activity across trials, as measured by the Fano factor, is elevated. This fact poses limits on information encoding by the neural activity. However, a series of recent neurophysiological experiments have changed this traditional view. Single cell recordings across a variety of species, brain areas, brain states and stimulus conditions demonstrate a remarkable reduction of the neural variability when an external stimulation is applied and when attention is allocated towards a stimulus within a neuron's receptive field, suggesting an enhancement of information encoding. Using an heterogeneously connected neural network model whose dynamics exhibits multiple attractors, we demonstrate here how this variability reduction can arise from a network effect. In the spontaneous state, we show that the high degree of neural variability is mainly due to fluctuation-driven excursions from attractor to attractor. This occurs when, in the parameter space, the network working point is around the bifurcation allowing multistable attractors. The application of an external excitatory drive by stimulation or attention stabilizes one specific attractor, eliminating in this way the transitions between the different attractors and resulting in a net decrease in neural variability over trials. Importantly, non-responsive neurons also exhibit a reduction of variability. Finally, this reduced variability is found to arise from an increased regularity of the neural spike trains. In conclusion, these results suggest that the variability reduction under stimulation and attention is a property of neural circuits.

  15. Neural mechanism underlying autobiographical memory modulated by remoteness and emotion

    Science.gov (United States)

    Ge, Ruiyang; Fu, Yan; Wang, DaHua; Yao, Li; Long, Zhiying

    2012-03-01

    Autobiographical memory is the ability to recollect past events from one's own life. Both emotional tone and memory remoteness can influence autobiographical memory retrieval along the time axis of one's life. Although numerous studies have been performed to investigate brain regions involved in retrieving processes of autobiographical memory, the effect of emotional tone and memory age on autobiographical memory retrieval remains to be clarified. Moreover, whether the involvement of hippocampus in consolidation of autobiographical events is time dependent or independent has been controversial. In this study, we investigated the effect of memory remoteness (factor1: recent and remote) and emotional valence (factor2: positive and negative) on neural correlates underlying autobiographical memory by using functional magnetic resonance imaging (fMRI) technique. Although all four conditions activated some common regions known as "core" regions in autobiographical memory retrieval, there are some other regions showing significantly different activation for recent versus remote and positive versus negative memories. In particular, we found that bilateral hippocampal regions were activated in the four conditions regardless of memory remoteness and emotional valence. Thus, our study confirmed some findings of previous studies and provided further evidence to support the multi-trace theory which believes that the role of hippocampus involved in autobiographical memory retrieval is time-independent and permanent in memory consolidation.

  16. Mechanisms underlying global stereopsis in fovea and periphery.

    Science.gov (United States)

    Witz, Nirel; Hess, Robert F

    2013-07-19

    To better understand the pooling properties underlying global stereopsis we examined the relationship between carrier luminance spatial frequency and modulator disparity spatial frequency. Thresholds for detecting global sinusoidal disparity corrugations of spatially band-pass noise were measured as a function of modulator disparity spatial frequency for both centrally and peripherally located stimuli using a standard 2-IFC task. We found a characteristic relationship that depended on modulator disparity spatial frequency. At high modulator disparity spatial frequencies (>1c/d), there is an optimal ratio of around 2.6, whereas at low modulator disparity spatial frequencies, there is an optimal absolute carrier luminance spatial frequency (i.e., 3c/d). In the periphery, vision is restricted to modulator disparity spatial frequencies below 1c/d and, as a consequence, following the above rule, there is an optimum absolute carrier luminance spatial frequency that reduces in spatial frequency with increasing eccentricity. This finding is consistent with there being more than one channel processing global stereo that is subsequently confirmed using a 2×2 AFC detection/discrimination paradigm. Furthermore, because of the different carrier/modulator relationships in central and peripheral vision, peripheral global stereo cannot be simply related to central global stereo by a scaling factor and thus cannot be simply due to cortical magnification, as originally thought. PMID:23680486

  17. Mechanical Model for Dynamic Behavior of Concrete Under Impact Loading

    Science.gov (United States)

    Sun, Yuanxiang

    Concrete is a geo-material which is used substantively in the civil building and military safeguard. One coupled model of damage and plasticity to describe the complex behavior of concrete subjected to impact loading is proposed in this research work. The concrete is assumed as homogeneous continuum with pre-existing micro-cracks and micro-voids. Damage to concrete is caused due to micro-crack nucleation, growth and coalescence, and defined as the probability of fracture at a given crack density. It induces a decrease of strength and stiffness of concrete. Compaction of concrete is physically a collapse of the material voids. It produces the plastic strain in the concrete and, at the same time, an increase of the bulk modulus. In terms of crack growth model, micro-cracks are activated, and begin to propagate gradually. When crack density reaches a critical value, concrete takes place the smashing destroy. The model parameters for mortar are determined using plate impact experiment with uni-axial strain state. Comparison with the test results shows that the proposed model can give consistent prediction of the impact behavior of concrete. The proposed model may be used to design and analysis of concrete structures under impact and shock loading. This work is supported by State Key Laboratory of Explosion science and Technology, Beijing Institute of Technology (YBKT14-02).

  18. Enhancement of sleep slow waves: underlying mechanisms and practical consequences.

    Directory of Open Access Journals (Sweden)

    Michele Bellesi

    2014-10-01

    Full Text Available Even modest sleep restriction, especially the loss of sleep slow wave activity, is invariably associated with slower EEG activity during wake, the occurrence of local sleep in an otherwise awake brain, and impaired performance due to cognitive and memory deficits. Recent studies not only confirm the beneficial role of sleep in memory consolidation, but also point to a specific role for sleep slow waves. Thus, the implementation of methods to enhance sleep slow waves without unwanted arousals or lightening of sleep could have significant practical implications. Here we first review the evidence that it is possible to enhance sleep slow waves in humans using transcranial direct-current stimulation and transcranial magnetic stimulation. Since these methods are currently impractical and their safety is questionable, especially for chronic long-term exposure, we then discuss novel data suggesting that it is possible to enhance slow waves using sensory stimuli. We consider the physiology of the K-complex, a peripheral evoked slow wave, and show that, among different sensory modalities, acoustic stimulation is the most effective in increasing the magnitude of slow waves, likely through the activation of non-lemniscal ascending pathways to the thalamo-cortical system. In addition, we discuss how intensity and frequency of the acoustic stimuli, as well as exact timing and pattern of stimulation, affect sleep enhancement. Finally, we discuss automated algorithms that read the EEG and, in real-time, adjust the stimulation parameters in a closed-loop manner to obtain an increase in sleep slow waves and avoid undesirable arousals. In conclusion, while discussing the mechanisms that underlie the generation of sleep slow waves, we review the converging evidence showing that acoustic stimulation is safe and represents an ideal tool for slow wave sleep enhancement.

  19. Compression under a mechanical counter pressure space suit glove

    Science.gov (United States)

    Waldie, James M A.; Tanaka, Kunihiko; Tourbier, Dietmar; Webb, Paul; Jarvis, Christine W.; Hargens, Alan R.

    2002-01-01

    Background: Current gas-pressurized space suits are bulky stiff shells severely limiting astronaut function and capability. A mechanical counter pressure (MCP) space suit in the form of a tight elastic garment could dramatically improve extravehicular activity (EVA) dexterity, but also be advantageous in safety, cost, mass and volume. The purpose of this study was to verify that a prototype MCP glove exerts the design compression of 200 mmHg, a pressure similar to the current NASA EVA suit. Methods: Seven male subjects donned a pressure measurement array and MCP glove on the right hand, which was placed into a partial vacuum chamber. Average compression was recorded on the palm, the bottom of the middle finger, the top of the middle finger and the dorsum of the hand at pressures of 760 (ambient), 660 and 580 mmHg. The vacuum chamber was used to simulate the pressure difference between the low breathing pressure of the current NASA space suits (approximately 200 mmHg) and an unprotected hand in space. Results: At ambient conditions, the MCP glove compressed the dorsum of the hand at 203.5 +/- 22.7 mmHg, the bottom of the middle finger at 179.4 +/- 16.0 mmHg, and the top of the middle finger at 183.8 +/- 22.6 mmHg. The palm compression was significantly lower (59.6 +/- 18.8 mmHg, ppressure reductions. Conclusions: The MCP glove compressed the dorsum of the hand and middle finger at the design pressure.

  20. Photodegradation kinetics, products and mechanism of timolol under simulated sunlight

    International Nuclear Information System (INIS)

    Highlights: ► The indirect degradation of timolol is first investigated in fulvic acid solution. ► 3FA* and 1O2 accounted for the degradation of timolol in the aerated FA solutions. ► The presence of halides inhibited the degradation in the order of Cl− − −. ► The role of I− in the degradation was first found to be concentration-dependent. ► The photoproducts of timolol were identified by LC-DAD/ESI-MS/MS analysis. -- Abstract: The photodegradation of β-blocker timolol in fulvic acid (FA) solution was investigated under simulated sunlight. The triplet excited state of FA (3FA*) and singlet oxygen (1O2) were the main reactive species responsible for the degradation of timolol in the aerated FA solutions. Both dissolved oxygen and iodide ions (I−) are the efficient quenchers of 3FA*. The photodegradation was drastically accelerated after removing the dissolved oxygen. The presence of I− inhibited the photosensitized degradation of timolol in the deoxygenated FA solutions, whereas the role of I− in the reaction was concentration-dependent in the aerated solutions. The other halide ions such as chloride (Cl−) and bromide (Br−) exhibited less effect on the photodegradation of timolol in both aerated and deoxygenated solutions. By LC-DAD/ESI-MS/MS analysis, the photoproducts of timolol in both aerated and deoxygenated FA solutions were identified. Electron transfer interaction occurred between 3FA* and amine moiety of timolol, leading to the cleavage of C–O bond in the side chain and oxidation of the hexatomic ring. These findings suggest the photosensitized degradation was a significant pathway for the elimination of timolol in natural waters

  1. Photodegradation kinetics, products and mechanism of timolol under simulated sunlight

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yong, E-mail: ychen@hust.edu.cn [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Liang, Qi; Zhou, Danna [College of Material Science and Chemical Engineering, China University of Geosciences, Wuhan 430074 (China); Wang, Zongping, E-mail: zongpingw@hust.edu.cn [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Tao, Tao [School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China); Zuo, Yuegang [Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, 285 Old Westport Road, North Dartmouth, MA 02747 (United States)

    2013-05-15

    Highlights: ► The indirect degradation of timolol is first investigated in fulvic acid solution. ► {sup 3}FA{sup *} and {sup 1}O{sub 2} accounted for the degradation of timolol in the aerated FA solutions. ► The presence of halides inhibited the degradation in the order of Cl{sup −} < Br{sup −} < I{sup −}. ► The role of I{sup −} in the degradation was first found to be concentration-dependent. ► The photoproducts of timolol were identified by LC-DAD/ESI-MS/MS analysis. -- Abstract: The photodegradation of β-blocker timolol in fulvic acid (FA) solution was investigated under simulated sunlight. The triplet excited state of FA ({sup 3}FA{sup *}) and singlet oxygen ({sup 1}O{sub 2}) were the main reactive species responsible for the degradation of timolol in the aerated FA solutions. Both dissolved oxygen and iodide ions (I{sup −}) are the efficient quenchers of {sup 3}FA{sup *}. The photodegradation was drastically accelerated after removing the dissolved oxygen. The presence of I{sup −} inhibited the photosensitized degradation of timolol in the deoxygenated FA solutions, whereas the role of I{sup −} in the reaction was concentration-dependent in the aerated solutions. The other halide ions such as chloride (Cl{sup −}) and bromide (Br{sup −}) exhibited less effect on the photodegradation of timolol in both aerated and deoxygenated solutions. By LC-DAD/ESI-MS/MS analysis, the photoproducts of timolol in both aerated and deoxygenated FA solutions were identified. Electron transfer interaction occurred between {sup 3}FA{sup *} and amine moiety of timolol, leading to the cleavage of C–O bond in the side chain and oxidation of the hexatomic ring. These findings suggest the photosensitized degradation was a significant pathway for the elimination of timolol in natural waters.

  2. Particle behavior and char burnout mechanisms under pressurized combustion conditions

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, C.M.; Spliethoff, H.; Hein, K.R.G.

    1999-07-01

    Combined cycle systems with coal-fired gas turbines promise highest cycle efficiencies for this fuel. Pressurized pulverized coal combustion, in particular, yields high cycle efficiencies due to the high flue gas temperatures possible. The main problem, however, is to ensure a flue gas clean enough to meet the high gas turbine standards with a dirty fuel like coal. On the one hand, a profound knowledge of the basic chemical and physical processes during fuel conversion under elevated pressures is required whereas on the other hand suitable hot gas cleaning systems need to be developed. The objective of this work was to provide experimental data to enable a detailed description of pressurized coal combustion processes. A series of experiments were performed with two German hvb coals, Ensdorf and Goettelborn, and one German brown coal, Garzweiler, using a semi-technical scale pressurized entrained flow reactor. The parameters varied in the experiments were pressure, gas temperature and bulk gas oxygen concentration. A two-color pyrometer was used for in-situ determination of particle surface temperatures and particle sizes. Flue gas composition was measured and solid residue samples taken and subsequently analyzed. The char burnout reaction rates were determinated varying the parameters pressure, gas temperature and initial oxygen concentration. Variation of residence time was achieved by taking the samples at different points along the reaction zone. The most influential parameters on char burnout reaction rates were found to be oxygen partial pressure and fuel volatile content. With increasing pressure the burn-out reactions are accelerated and are mostly controlled by product desorption and pore diffusion being the limiting processes. The char burnout process is enhanced by a higher fuel volatile content.

  3. Mechanism underlying the development of unilateral spatial neglect

    International Nuclear Information System (INIS)

    To test the hypothesis that functional disturbance of the neural network involving the inferior parietal lobule (IPL), anterior cingulate gyrus (ACG), dorsolateral frontal lobe (DLF), and thalamus (TH) as components of the right hemisphere underlies the development of unilateral spatial neglect (USN), cerebral perfusion was measured by 123I-IMP SPECT in 32 patients with cerebrovascular right brain damage, 20 of whom had USN and 12 of whom did not. In analyzing the SPECT data, RI uptake in the four component regions and cerebellum (serving as a control) were estimated by symmetrically placing 'regions of interest' from both hemispheres on SPECT slices, most suitable for each region. The 'regional to cerebellar ratio' (R/CE ratio) for each component region was calculated and the values were compared. In the USN group, R/CE ratio values for each component region in the right hemisphere were significantly lower than those in the left, whereas in the non-USN group there was no right-left difference. When R/CE ratio values for each component region in the right hemisphere were compared between the USN and non-USN group, those for the IPL, ACG and TH were significantly lower in the USN group; the value for the DLF was also lower in the USN group, although the difference was not significant. Significantly lower values of R/CE for each component region in the right hemisphere were noticed when the regions showed apparent involvement on X-ray CT/MRI. Furthermore, in seven of the USN patients where lesions revealed by CT/MRI did not involve network components, the R/CE ratio values for the components in the right hemisphere were lower than those in the left; the difference was significant for the IPL, ACG and TH, but not for the DLF. It is suggested that functional disturbance of the neural network involving the IPL, ACG, DLF and TH in the right hemisphere might underlie the development of USN. (author)

  4. Corticonic models of brain mechanisms underlying cognition and intelligence

    Science.gov (United States)

    Farhat, Nabil H.

    underlying intelligence and other higher level brain functions.

  5. Project on Transfer Mechanism of Radioactive Source Term Under Severe Accident

    Institute of Scientific and Technical Information of China (English)

    SUN; Xue-ting; JI; Song-tao; CHEN; Lin-lin

    2012-01-01

    <正>The "Transfer mechanism of radioactive source term under severe accident" is a sub-project of the research program of "Mechanism and phenomenology of severe accident". An aerosol transfer mechanism experimental facility is built to simulate the passive containment cooling system (PCCS) of advanced pressurizer reactors to research effects to the transfer process of fission products under severe accident. An advanced CFD method is also utilized to research the effects. The objective of this project is to understand

  6. Coupled mechanical-electrical-thermal modeling for short-circuit prediction in a lithium-ion cell under mechanical abuse

    Science.gov (United States)

    Zhang, Chao; Santhanagopalan, Shriram; Sprague, Michael A.; Pesaran, Ahmad A.

    2015-09-01

    In order to better understand the behavior of lithium-ion batteries under mechanical abuse, a coupled modeling methodology encompassing the mechanical, electrical and thermal response is presented for predicting short-circuit under external crush. The combined mechanical-electrical-thermal response is simulated in a commercial finite element software LS-DYNA® using a representative-sandwich finite-element model, where electrical-thermal modeling is conducted after an instantaneous mechanical crush. The model includes an explicit representation of each individual component such as the active material, current collector, separator, etc., and predicts their mechanical deformation under quasi-static indentation. Model predictions show good agreement with experiments: the fracture of the battery structure under an indentation test is accurately predicted. The electrical-thermal simulation predicts the current density and temperature distribution in a reasonable manner. Whereas previously reported models consider the mechanical response exclusively, we use the electrical contact between active materials following the failure of the separator as a criterion for short-circuit. These results are used to build a lumped representative sandwich model that is computationally efficient and captures behavior at the cell level without resolving the individual layers.

  7. Activation of lipid peroxidation as a mechanism of plant cell rearrangements under microgravity

    Science.gov (United States)

    Baranenko, V. V.

    Activation of the lipid peroxidation (LP) is a universal process perturbating cell membranes under different unfavourable conditions. It is suggested that the LP can be one of the important mechanisms of plant cell rearrangements under altered gravity as well. The purpose of this investigation is to study the LP intensity in pea leaves and chloroplasts under 7- and 14-day clinorotation. The intensification of the LP under both terms of clinorotation particularly under more prolonged, is detected. The adaptive increase in the unsaturated fatty acid content under 7-day clinorotation and their minor decrease under 14-day clinorotation are revealed. The lowering of electron transport rate in both photosystems, particularly in PSI, is established. The results confirm that the LPmay be one of the mechanisms of plant cell rearrangements under microgravity.

  8. Comparison of radiological findings and microbial aetiology of childhood pneumonia

    Energy Technology Data Exchange (ETDEWEB)

    Korppi, M.; Kiekara, O.; Kosma, T.H.; Soimakallio, S. (Kuopio Univ. Hospital (Finland))

    1993-04-01

    61 children were treated in hospital from 1981 to 1982 because of both radiologically and microbiologically verified viral or bacterial pneumonia. The chest radiographs were interpreted by two radiologists, not familiar with the clinical data, on two occasions three years apart, and only those patients with a definite alveolar or interstitial pneumonia at both evaluations were included in the present analysis. In addition, all patients had viral, mixed viral-bacterial or bacterial infections diagnosed by viral or bacterial antibody or antigen assays. Viral infection alone was seen in 7, mixed viral-bacterial infection in 8 and bacterial infection alone in 12 of the 27 patients with alveolar pneumonia. The respective figures were 13, 13 and 8 for the 34 patients with interstitial pneumonia. C-reactive protein concentration was greater than 40 mg/l in 15 of the patients with alveolar and in 11 of the patients with interstitial pneumonia. Thus 74% of the patients with alveolar and 62% with interstitial pneumonia had bacterial infection, either alone or as a mixed viral-bacterial infection. The results suggest that the presence of an alveolar infiltrate in a chest radiograph is a specific but insensitive indicator of bacterial pneumonia. It is concluded that patients with alveolar pneumonia should be treated with antibiotics. In patients with interstitial pneumonia, however, both viral and bacterial aetiology are possible. In those, the decision concerning antibiotic treatment should be based on clinical and laboratory findings. 21 refs., 4 tabs.

  9. Inflammatory aetiology of human myometrial activation tested using directed graphs.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available THERE ARE THREE MAIN HYPOTHESES FOR THE ACTIVATION OF THE HUMAN UTERUS AT LABOUR: functional progesterone withdrawal, inflammatory stimulation, and oxytocin receptor activation. To test these alternatives we have taken information and data from the literature to develop causal pathway models for the activation of human myometrium. The data provided quantitative RT-PCR results on key genes from samples taken before and during labour. Principal component analysis showed that pre-labour samples form a homogenous group compared to those during labour. We therefore modelled the alternative causal pathways in non-labouring samples using directed graphs and statistically compared the likelihood of the different models using structural equations and D-separation approaches. Using the computer program LISREL, inflammatory activation as a primary event was highly consistent with the data (p = 0.925, progesterone withdrawal, as a primary event, is plausible (p = 0.499, yet comparatively unlikely, oxytocin receptor mediated initiation is less compatible with the data (p = 0.091. DGraph, a software program that creates directed graphs, produced similar results (p= 0.684, p= 0.280, and p = 0.04, respectively. This outcome supports an inflammatory aetiology for human labour. Our results demonstrate the value of directed graphs in determining the likelihood of causal relationships in biology in situations where experiments are not possible.

  10. Gastrointestinal Perforation in Neonates: Aetiology and Risk Factors

    Directory of Open Access Journals (Sweden)

    Ekwunife Okechukwu Hyginus

    2013-07-01

    Full Text Available Background: Gastrointestinal perforation (GIP in neonates presents important challenges and mortality can be high. This is a report of recent experience with GIP in neonates in a developing country. Patients and methods: A retrospective review of 16 neonates treated for GIP in a 3 year period. Results: There were 9 males and 7 females, aged 0-28 days (median age =7days. Their weights at presentation ranged from 0.9 - 4.7kg (median =2.6. Five infants were premature. Twelve infants presented more than 72 hours after onset of symptoms. Plain abdominal radiographs showed peumoperitoneum in 9 infants. The cause of perforation was necrotising enterocolitis 6, intestinal obstruction 6, iatrogenic 3 and spontaneous 1. The site of perforation was ileum in 12 infants, stomach in 4 and colon in 4; 4 patients had involvement of more than one site. All the neonates underwent exploratory laparotomy with primary closure ( n=5 , resection and anastomosis( n=6, colostomy (n=3, Ileostomy ( n=2, partial gastrectomy (n=2 ,or gastrojejunostomy ( n=1. Two neonates had multiple procedures. Two very sick preterm babies had an initial peritoneal lavage. Surgical site infection is the commonest postoperative complication occurring in 9 infants. Anaesthesia sepsis and malnutrition is responsible for the seven deaths recorded.Conclusions: Neonatal GIP has multiple aetiologies; NEC is the most common cause. Major mortality risk factors include NEC, multiple perforations, delayed presentation and prematurity.

  11. Gastrointestinal Perforation in Neonates: Aetiology and Risk Factors

    Directory of Open Access Journals (Sweden)

    Hyginus Okechukwu Ekwunife

    2013-06-01

    Full Text Available Background: Gastrointestinal perforation (GIP in neonates presents important challenges and mortality can be high. This is a report of recent experience with GIP in neonates in a developing country.Patients and methods: A retrospective review of 16 neonates treated for GIP in a 3 year period.Results: There were 9 males and 7 females, aged 0-28 days (median age =7days. Their weights at presentation ranged from 0.9 - 4.7kg (median =2.6. Five infants were premature. Twelve infants presented more than 72 hours after onset of symptoms. Plain abdominal radiographs showed peumoperitoneum in 9 infants. The cause of perforation was necrotising enterocolitis 6, intestinal obstruction 6, iatrogenic 3 and spontaneous 1. The site of perforation was ileum in 12 infants, stomach in 4 and colon in 4; 4 patients had involvement of more than one site. All the neonates underwent exploratory laparotomy with primary closure ( n=5 , resection and anastomosis( n=6, colostomy (n=3, Ileostomy ( n=2, partial gastrectomy (n=2 ,or gastrojejunostomy ( n=1. Two neonates had multiple procedures. Two very sick preterm babies had an initial peritoneal lavage. Surgical site infection is the commonest postoperative complication occurring in 9 infants. Anaesthesia sepsis and malnutrition is responsible for the seven deaths recorded.Conclusions: Neonatal GIP has multiple aetiologies; NEC is the most common cause. Major mortality risk factors include NEC, multiple perforations, delayed presentation and prematurity.

  12. INCIDENCE, AETIOLOGY AND PATTERN OF MANDIBULAR FRACTURES IN PONDICHERRY

    Directory of Open Access Journals (Sweden)

    Karthik

    2015-12-01

    Full Text Available BACKGROUND The mandible is the second most commonly fractured part of the maxillofacial region after nasal bones. The incidence, etiology and pattern of mandibular fractures vary considerably among the different study population, there is a need to evaluate aspects of mandibular trauma in Pondicherry. This study was undertaken to evaluate the results of mandibular fractures treated in a population of Pondicherry. PATIENT AND METHOD A total of sixty nine patients treated for mandibular fractures at the Department Of Dentistry, Sri Manakula Vinayagar Medical College and Hospital, Pondicherry from January 2011 to December 2014 were retrospectively evaluated. The variables analyzed in the study were gender, age, aetiology, fracture site, method of treatment and complications. RESULTS This study included 106 fractures in 69 patients. The ratio of male to female was 16:1. The highest prevalence of fracture occurred in 21 to 30 years (37.7% and the minimum in patients over 61 years old. The most common cause of fractures were road traffic accident (RTA, 56.5% followed by fall. In our study most commonly reported fracture site was parasymphysis (37.7%, followed by angle (19.8% and condyle (19.8%. Mandibular fractures were generally treated by Open Reduction and Internal Fixation (ORIF in 76.4% of the patients. CONCLUSION The retrospective study of mandibular fractures has shown, road traffic accidents are main cause of fracture and young men in their 20s are predominantly affected.

  13. Comparison of radiological findings and microbial aetiology of childhood pneumonia

    International Nuclear Information System (INIS)

    61 children were treated in hospital from 1981 to 1982 because of both radiologically and microbiologically verified viral or bacterial pneumonia. The chest radiographs were interpreted by two radiologists, not familiar with the clinical data, on two occasions three years apart, and only those patients with a definite alveolar or interstitial pneumonia at both evaluations were included in the present analysis. In addition, all patients had viral, mixed viral-bacterial or bacterial infections diagnosed by viral or bacterial antibody or antigen assays. Viral infection alone was seen in 7, mixed viral-bacterial infection in 8 and bacterial infection alone in 12 of the 27 patients with alveolar pneumonia. The respective figures were 13, 13 and 8 for the 34 patients with interstitial pneumonia. C-reactive protein concentration was greater than 40 mg/l in 15 of the patients with alveolar and in 11 of the patients with interstitial pneumonia. Thus 74% of the patients with alveolar and 62% with interstitial pneumonia had bacterial infection, either alone or as a mixed viral-bacterial infection. The results suggest that the presence of an alveolar infiltrate in a chest radiograph is a specific but insensitive indicator of bacterial pneumonia. It is concluded that patients with alveolar pneumonia should be treated with antibiotics. In patients with interstitial pneumonia, however, both viral and bacterial aetiology are possible. In those, the decision concerning antibiotic treatment should be based on clinical and laboratory findings. 21 refs., 4 tabs

  14. Fundamental study of failure mechanisms of pressure vessels under thermo-mechanical cycling in multiphase environments

    Science.gov (United States)

    Penso Mula, Jorge Antonio

    Cracking and bulging in welded and internally lined pressure vessels that work in thermal-mechanical cycling services have been well known problems in the petrochemical, power and nuclear industries. Published literature and industry surveys show that similar problems have been occurring during the last 50 years. Understanding the causes of cracking and bulging would lead to improvements in the reliability of these pressure vessels. This study attempts to add information required for improving the knowledge and fundamental understanding of these problems. Cracking and bulging, most often in the weld areas, commonly experienced in delayed coking units (e.g. coke drums) in oil refineries are typical examples. The coke drum was selected for this study because of the existing field experience and past industrial investigation results that were available to serve as the baseline references for the analytical studies performed for this dissertation. Another reason for selecting the delayed coking units for this study was due to their high economical yields. Shutting down these units would cause a high negative economic impact on the refinery operations. Several failure mechanisms were hypothesized. The finite element method was used to analyze these significant variables and to verify the hypotheses. In conclusion, a fundamental explanation of the occurrence of bulging and cracking in pressure vessels in multiphase environments has been developed. Several important factors have been identified, including the high convection coefficient of the boiling layer during filling and quenching, the mismatch in physical, thermal and mechanical properties in the dissimilar weld of the clad plates and process conditions such as heating and quenching rate and warming time. Material selection for coke drums should consider not only fatigue strength but also corrosion resistance at high temperatures and low temperatures. Cracking occurs due to low cycle fatigue and corrosion. The FEA

  15. Interactivity effects in social media marketing on brand engagement: an investigation of underlying mechanisms

    NARCIS (Netherlands)

    M.L. Antheunis; G. van Noort

    2011-01-01

    Although, SNS advertising spending increases, research on SNS campaigning is still underexposed. First, this study aims to investigate the effect of SNS campaign interactivity on the receivers brand engagement, taking four underlying mechanisms into account (brand identification, campaign divergence

  16. News with an attitude: assessing the mechanisms underlying the effects of opinionated news

    NARCIS (Netherlands)

    M. Boukes; H.G. Boomgaarden; M. Moorman; C.H. de Vreese

    2014-01-01

    Opinionated news targets communities of likeminded viewers, relies on dramaturgical storytelling techniques, and shares characteristics with political satire. Accordingly, opinionated news should be understood as a specific form of political entertainment. We have investigated the mechanisms underly

  17. Mechanism of Roof Shock in Longwall Coal Mining under Surface Gully

    OpenAIRE

    Gangwei Fan; Dongsheng Zhang; Xufeng Wang

    2015-01-01

    The paper presents an interpretation on the abnormal roof shock in longwall coal mining under gullies using physical modeling, numerical modeling, and mechanical analysis. The modeling results show that the roof movement causes the shock load onto the stope in longwall coal mining under surface gully. The triggering mechanism of shock load depends on the direction of the face retreat with respect to the bottom of the surface gully. The slope tends to slide along the interface plane with a lon...

  18. Large Deflections Mechanical Analysis of a Suspended Single-Wall Carbon Nanotube under Thermoelectrical Loading

    OpenAIRE

    Assaf Ya'akobovitz; Slava Krylov; Yael Hanein

    2011-01-01

    Following the recent progress in integrating single-wall carbon nanotubes (SWCNTs) into silicon-based micro-electromechanical systems (MEMS), new modeling tools are needed to predict their behavior under different loads, including thermal, electrical and mechanical. In the present study, the mechanical behavior of SWCNTs under thermoelectrical loading is analyzed using a large deflection geometrically nonlinear string model. The effect of the resistive heating was found to have a substantial ...

  19. Mechanical behaviors and phase transition of Ho2O3 nanocrystals under high pressure

    International Nuclear Information System (INIS)

    Mechanical properties and phase transition often show quite large crystal size dependent behavior, especially at nanoscale under high pressure. Here, we have investigated Ho2O3 nanocrystals with in-situ x-ray diffraction and Raman spectroscopy under high pressure up to 33.5 GPa. When compared to the structural transition routine cubic -> monoclinic -> hexagonal phase in bulk Ho2O3 under high pressure, the nano-sized Ho2O3 shows a much higher onset transition pressure from cubic to monoclinic structure and followed by a pressure-induced-amorphization under compression. The detailed analysis on the Q (Q = 2π/d) dependent bulk moduli reveals the nanosized Ho2O3 particles consist of a clear higher compressible shell and a less compressible core. Insight into these phenomena shed lights on micro-mechanism studies of the mechanical behavior and phase evolution for nanomaterials under high pressure, in general.

  20. micro-mechanical experimental investigation and modelling of strain and damage of argillaceous rocks under combined hydric and mechanical loads

    International Nuclear Information System (INIS)

    The hydro-mechanical behavior of argillaceous rocks, which are possible host rocks for underground radioactive nuclear waste storage, is investigated by means of micro-mechanical experimental investigations and modellings. Strain fields at the micrometric scale of the composite structure of this rock, are measured by the combination of environmental scanning electron microscopy, in situ testing and digital image correlation technique. The evolution of argillaceous rocks under pure hydric loading is first investigated. The strain field is strongly heterogeneous and manifests anisotropy. The observed nonlinear deformation at high relative humidity (RH) is related not only to damage, but also to the nonlinear swelling of the clay mineral itself, controlled by different local mechanisms depending on RH. Irreversible deformations are observed during hydric cycles, as well as a network of microcracks located in the bulk of the clay matrix and/or at the inclusion-matrix interface. Second, the local deformation field of the material under combined hydric and mechanical loadings is quantified. Three types of deformation bands are evidenced under mechanical loading, either normal to stress direction (compaction), parallel (microcracking) or inclined (shear). Moreover, they are strongly controlled by the water content of the material: shear bands are in particular prone to appear at high RH states. In view of understanding the mechanical interactions a local scale, the material is modeled as a composite made of non-swelling elastic inclusions embedded in an elastic swelling clay matrix. The internal stress field induced by swelling strain incompatibilities between inclusions and matrix, as well as the overall deformation, is numerically computed at equilibrium but also during the transient stage associated with a moisture gradient. An analytical micro-mechanical model based on Eshelby's solution is proposed. In addition, 2D finite element computations are performed. Results

  1. Mechanisms Underlying Lexical Access in Native and Second Language Processing of Gender and Number Agreement

    Science.gov (United States)

    Romanova, Natalia

    2013-01-01

    Despite considerable evidence suggesting that second language (L2) learners experience difficulties when processing morphosyntactic aspects of L2 in online tasks, the mechanisms underlying these difficulties remain unknown. The aim of this dissertation is to explore possible causes for the difficulties by comparing attentional mechanisms engaged…

  2. Diagnosing and treating chronic musculoskeletal pain based on the underlying mechanism(s).

    Science.gov (United States)

    Clauw, Daniel J

    2015-02-01

    Until recently, most clinicians considered chronic pain to be typically due to ongoing peripheral nociceptive input (i.e., damage or inflammation) in the region of the body where the individual is experiencing pain. Clinicians are generally aware of a few types of pain (e.g., headache and phantom limb pain) where chronic pain is not due to such causes, but most do not realize there is not a single chronic pain state where any radiographic, surgical, or pathological description of peripheral nociceptive damage has been reproducibly shown to be related to the presence or severity of pain. The primary reason for this appears to be that both the peripheral and central nervous systems play a critical role in determining which nociceptive input being detected by sensory nerves in the peripheral tissues will lead to the perception of pain in humans. This manuscript reviews some of the latest findings regarding the neural processing of pain, with a special focus on how clinicians can use information gleaned from the history and physical examination to assess which mechanisms are most likely to be responsible for pain in a given individual, and tailors therapy appropriately. A critical construct is that, within any specific diagnostic category (e.g., fibromyalgia (FM), osteoarthritis (OA), and chronic low back pain (CLBP) are specifically reviewed), individual patients may have markedly different peripheral/nociceptive and neural contributions to their pain. Thus, just as low back pain has long been acknowledged to have multiple potential mechanisms, so also is this true of all chronic pain states, wherein some individuals will have pain primarily due to peripheral nociceptive input, whereas in others peripheral (e.g., peripheral sensitization) or central nervous system factors ("central sensitization" or "centralization" of pain via augmented pain processing in spinal and brain) may be playing an equally or even more prominent role in their pain and other symptoms. PMID

  3. A Review on Damage Mechanisms, Models and Calibration Methods under Various Deformation Conditions

    OpenAIRE

    Lin, Jiali; Liu, Y.; Liu, Yehan; Dean, T. A.

    2005-01-01

    Abstract The development of microdamage under the deformation conditions of high temperature creep, cold metal forming, superplastic forming, and hot metal forming has been reviewed and discussed, and typical constitutive equations developed to model the individual damage mechanisms are summarized. Based on the microstructural analysis of the key damage features for metallic materials under a wide range of ...

  4. AETIOLOGICAL PROFILE OF NEONATAL HYPERBILIRUBINEMIA IN NEONATAL INTENSIVE CARE UNIT OF GAUHATI MEDICAL COLLEGE AND HOSPITAL, GUWAHATI, ASSAM

    Directory of Open Access Journals (Sweden)

    Dulal

    2016-05-01

    Full Text Available BACKGROUND Jaundice is the most common problem in the first week of life. About 25-50% of all term neonates and higher percentage of preterm neonates develop clinical jaundice during neonatal period. Jaundice in newborn is a medical emergency, because unconjugated hyperbilirubinemia may cause bilirubin encephalopathy and needs urgent treatment. The objective of the study was to know the aetiology of hyperbilirubinemia in neonate admitted in neonatal intensive care unit of Gauhati Medical College and Hospital. METHODS This observational study was conducted in Neonatal Intensive Care Unit, Gauhati Medical College and Hospital, over a period of one year (February 2015 to January 2016. A total number of 520 neonates with hyperbilirubinemia were included in the present study. Data collection was done by history taking, clinical examination and essential laboratory tests. RESULTS In this study, out of 520 jaundiced neonates 251 (48.26% were term babies and 269 (51.74% were preterm babies. Physiological jaundice was seen in 224 (43.07% babies and pathological jaundice were 296 (56.93% babies. Among the various aetiologies causing neonatal hyperbilirubinemia, the most common causes were physiological jaundice 224 (43.07%, ABO incompatibility 108 (20.76%, Idiopathic 54 (10.43%, neonatal sepsis 36 (6.92%, G6PD deficiency 35 (6.73% and Rh Incompatibility 31 (5.96%. Other less common causes were cephalhematoma 15 (2.88%, intrauterine infection 7 (1.34%, breast milk jaundice 6 (1.15% and hypothyroidism 4 (0.76%. CONCLUSION We should investigate all newborns with pathological jaundice to find out the aetiology. Moreover, early detection of neonatal jaundice, proper monitoring and timely interventions like phototherapy, exchange blood transfusion and treating the underlying cause will reduce the morbidity and mortality among neonates. Thus, we can prevent mental retardation and cerebral palsy due to neonatal hyperbilirubinemia at the community level.

  5. Comparison of radiological findings and microbial aetiology of childhood pneumonia.

    Science.gov (United States)

    Korppi, M; Kiekara, O; Heiskanen-Kosma, T; Soimakallio, S

    1993-04-01

    Sixty-one children were treated in hospital from 1981 to 1982 because of both radiologically and microbiologically verified viral or bacterial pneumonia. The chest radiographs were interpreted by two radiologists, not familiar with the clinical data, on two occasions three years apart, and only those patients with a definite alveolar (n = 27) or interstitial (n = 34) pneumonia at both evaluations were included in the present analysis. In addition, all patients had viral (n = 20), mixed viral-bacterial (n = 21) or bacterial (n = 20) infections diagnosed by viral or bacterial antibody or antigen assays. Viral infection alone was seen in 7 (26%), mixed viral-bacterial infection in 8 (30%) and bacterial infection alone in 12 (44%) of the 27 patients with alveolar pneumonia. The respective figures were 13 (38%), 13 (38%) and 8 (24%) for the 34 patients with interstitial pneumonia. C-reactive protein concentration was greater than 40 mg/l (a screening limit for viral and bacterial infections) in 15 (56%) of the patients with alveolar and in 11 (32%) of the patients with interstitial pneumonia. Thus 74% of the patients with alveolar and 62% with interstitial pneumonia had bacterial infection, either alone or as a mixed viral-bacterial infection. Our results suggest that the presence of an alveolar infiltrate in a chest radiograph is a specific but insensitive indicator of bacterial pneumonia. We conclude that patients with alveolar pneumonia should be treated with antibiotics. In patients with interstitial pneumonia, however, both viral and bacterial aetiology are possible. In those, the decision concerning antibiotic treatment should be based on clinical and laboratory findings. PMID:8318803

  6. The aetiology of deep tissue injury: a literature review.

    Science.gov (United States)

    Peart, Joanna

    2016-08-11

    Deep tissue injury affects patients of all ages in a variety of healthcare settings. It is therefore essential that nurses are aware of the underlying pathogenesis, in order to accurately assess the pressure ulcer risk of vulnerable patients, and to subsequently reduce patient harm. The majority of pressure ulcers are avoidable, however, a variety of intrinsic and extrinsic factors can contribute towards the development of deep tissue injury. Understanding the body's internal responses to external pressure will enable nurses to recognise that a visual assessment alone may not necessarily identify patients at risk of deep tissue damage. This article reviews the evidence for the internal causative mechanisms of deep tissue injury, while linking to clinical practice and pressure ulcer prevention. PMID:27523755

  7. Electro-oxidation process and mechanism of molybdenite decomposition under ultrasonic effect

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    According to the characteristics and shortcomings of the traditional roasting process and the electro-oxidation process in the molybdenum metallurgical industry,the ultrasound electro-oxidation process was proposed to strengthen the oxidative decomposition or leaching of molybdenum.Laboratory work was carried out in an electrochemical cell with 15 nun electrode spacing at 25℃ under ultrasonic effect.The optimum conditions were found through experiments.The electro-oxidation mechanism of molybdenite decomposition under ultrasonic was investigated.A model of electro-oxidation mechanism of molybdenum under ultrasonic was given.

  8. Chronic kidney disease of uncertain aetiology: prevalence and causative factors in a developing country

    OpenAIRE

    Jayatilake, Nihal; Mendis, Shanthi; Maheepala, Palitha; Mehta, Firdosi R

    2013-01-01

    Background This study describes chronic kidney disease of uncertain aetiology (CKDu), which cannot be attributed to diabetes, hypertension or other known aetiologies, that has emerged in the North Central region of Sri Lanka. Methods A cross-sectional study was conducted, to determine the prevalence of and risk factors for CKDu. Arsenic, cadmium, lead, selenium, pesticides and other elements were analysed in biological samples from individuals with CKDu and compared with age- and sex-matched ...

  9. The aetiology of acute and chronic pancreatitis over time in a hospital in Copenhagen

    DEFF Research Database (Denmark)

    Nøjgaard, Camilla; Bendtsen, Flemming; Matzen, Peter;

    2010-01-01

    The change in aetiology over time of acute and chronic pancreatitis has been sparsely described, as has also the validity of the diagnostic codes. The aim of the study was 1) to clarify whether the aetiology of acute and chronic pancreatitis changed during the period 1983-2005, and 2) to validate...... the diagnostic codes over time for acute and chronic pancreatitis registered in the Danish National Patient Registry (NPR) in the same period....

  10. A Latter-day Saint Approach to Addiction: Aetiology, Consequences and Treatment in a Theological Context

    OpenAIRE

    James D. Holt

    2014-01-01

    This article explores the theological underpinning of the nature, aetiology and treatment of addictions within The Church of Jesus Christ of Latter-day Saints. The first section outlines the “plan of salvation” and how this provides the theological framework for the source and solution to addictions. The final section explores addiction against this background in terms of its aetiology, types, consequences and treatment in a Latter-day Saint context. In so doing it builds on the recognition b...

  11. Aetiology of community-acquired neonatal sepsis in low- and middle-income countries

    Directory of Open Access Journals (Sweden)

    Donald Waters

    2011-12-01

    Full Text Available 99% of the approximate 1 million annual neonatal deaths from life-threatening invasive bacterial infections occur in developing countries, at least 50% of which are from home births or community settings. Data concerning aetiology of sepsis in these settings are necessary to inform targeted therapy and devise management guidelines. This review describes and analyses the bacterial aetiology of community-acquired neonatal sepsis in developing countries.

  12. Numerical investigation of aerosolized drug delivery in the human lungs under mechanical ventilator conditions

    Science.gov (United States)

    Vanrhein, Timothy; Banerjee, Arindam

    2010-11-01

    Particle deposition for aerosolized drug delivery in the human airways is heavily dependent upon flow conditions. Numerical modeling techniques have proven valuable for determining particle deposition characteristics under steady flow conditions. For the case of patients under mechanical ventilation, however, flow conditions change drastically and there is an increased importance to understand particle deposition characteristics. This study focuses on mechanically ventilated conditions in the upper trachea-bronchial (TB) region of the human airways. Solution of the continuous phase flow is done under ventilator waveform conditions with a suitable turbulence model in conjunction with a realistic model of upper TB airways. A discrete phase Euler-Lagrange approach is applied to solve for particle deposition characteristics with a focus on the effect of the ventilator inlet waveform. The purpose of this study is to accurately model flow conditions in the upper TB airways under mechanically ventilated conditions with a focus on real-time patient specific targeted aerosolized drug delivery.

  13. Research of mechanics of the compact bone microvolume and porous ceramics under uniaxial compression

    International Nuclear Information System (INIS)

    The research results of the mechanics are presented and the effective mechanical characteristics under uniaxial compression of the simulative microvolume of the compact bone are defined subject to the direction of the collagen-mineral fibers, porosity and mineral content. The experimental studies of the mechanics are performed and the effective mechanical characteristics of the produced porous zirconium oxide ceramics are defined. The recommendations are developed on the selection of the ceramic samples designed to replace the fragment of the compact bone of a definite structure and mineral content

  14. Research of mechanics of the compact bone microvolume and porous ceramics under uniaxial compression

    Energy Technology Data Exchange (ETDEWEB)

    Kolmakova, T. V., E-mail: kolmakova@ftf.tsu.ru; Buyakova, S. P., E-mail: sbuyakova@ispms.tsc.ru; Kul’kov, S. N., E-mail: kulkov@ms.tsc.ru [Institute of Strength Physics and Materials Science of Siberian Branch of Russian Academy of Sciences (Russian Federation); National Research Tomsk State University (Russian Federation)

    2015-11-17

    The research results of the mechanics are presented and the effective mechanical characteristics under uniaxial compression of the simulative microvolume of the compact bone are defined subject to the direction of the collagen-mineral fibers, porosity and mineral content. The experimental studies of the mechanics are performed and the effective mechanical characteristics of the produced porous zirconium oxide ceramics are defined. The recommendations are developed on the selection of the ceramic samples designed to replace the fragment of the compact bone of a definite structure and mineral content.

  15. Mechanical response under contact loads of AlCrN-coated tool materials

    International Nuclear Information System (INIS)

    The mechanical behavior under contact loading of systems consisting of PVD AlCrN film deposited onto two distinct hard substrates - cemented carbides and tool steel is studied by means of indentation testing techniques, under monotonic and cyclic condition. Experimental work includes assessment of critical applied loads for emergence of circular cracks at the coating surface, as well as evaluation of both surface and subsurface damage evolution. Results indicate that both coated systems are susceptible to mechanical degradation associated with repetitive contact load. Furthermore, significant differences on contact fatigue behavior between the two studied coated systems are evidenced under consideration of cracking evolution at top surface and penetration towards the substrate. In this regard, the intrinsic mechanical properties of the substrate are pointed out as key feature for rationalizing the experimental findings

  16. Chronic kidney disease of unknown aetiology in Sri Lanka: is cadmium a likely cause?

    Directory of Open Access Journals (Sweden)

    Peiris-John Roshini J

    2011-07-01

    Full Text Available Abstract Background The rising prevalence of chronic kidney disease (CKD and subsequent end stage renal failure necessitating renal replacement therapy has profound consequences for affected individuals and health care resources. This community based study was conducted to identify potential predictors of microalbuminuria in a randomly selected sample of adults from the North Central Province (NCP of Sri Lanka, where the burden of CKD is pronounced and the underlying cause still unknown. Methods Exposures to possible risk factors were determined in randomly recruited subjects (425 females and 461 males from selected areas of the NCP of Sri Lanka using an interviewer administered questionnaire. Sulphosalicylic acid and the Light Dependent Resister microalbumin gel filtration method was used for initial screening for microalbuminuria and reconfirmed by the Micral strip test. Results Microalbumnuria was detected in 6.1% of the females and 8.5% of the males. Smoking (p Conclusions Hypertension, diabetes mellitus, UTI, and smoking are known risk factors for microalbuminuria. The association between microalbuminuria and consumption of well water suggests an environmental aetiology to CKD in NCP. The causative agent is yet to be identified. Investigations for cadmium as a potential causative agent needs to be initiated.

  17. Modelling of damage initiation mechanism in rubber sheet composites under the static loading

    OpenAIRE

    Da Silva Botelho, T; N. Isac; E. Bayraktar

    2007-01-01

    Purpose: Modelling – Finite Element Analysis (FEA) of the damage initiation mechanisms in thin rubber sheet composites were carried out under static solicitation at room temperature. Natural rubber vulcanised and reinforced by carbon, NR is used in this study.Design/methodology/approach: Experimental results were compared with that of the Finite Element Analysis (FEA). Damage mechanism has been described with a threshold criterion to identify the tearing resistance, characteristic energy for ...

  18. Insights into Metabolic Mechanisms Underlying Folate-Responsive Neural Tube Defects: A Minireview

    OpenAIRE

    Beaudin, Anna E; Stover, Patrick J.

    2009-01-01

    Neural tube defects (NTDs), including anencephaly and spina bifida, arise from the failure of neurulation during early embryonic development. Neural tube defects are common birth defects with a heterogenous and multifactorial etiology with interacting genetic and environmental risk factors. Although the mechanisms resulting in failure of neural tube closure are unknown, up to 70% of NTDs can be prevented by maternal folic acid supplementation. However, the metabolic mechanisms underlying the ...

  19. Mechanical deformation of WC–Co composite micropillars under uniaxial compression

    OpenAIRE

    Tarragó Cifre, Jose María; Roa Rovira, Joan Josep; Jiménez Piqué, Emilio; Keown, Eugene; Fair, Jonathan; Llanes Pitarch, Luis Miguel

    2015-01-01

    In thiswork,WC–Co micropillars machined by focused ion beamhave been tested under uniaxial compression to investigate the stress–strain behavior and associated deformation mechanisms. The results indicate that yielding phenomena is evidenced by multiple strain bursts. Experimental data is found to fall within the bounds defined by the mechanical responses expected for an unconstrained Co-binder like model alloy and a bulk-like constrained binder region in WC–Co composites; capturing then l...

  20. Adsorption mechanism of different coal ranks under variable temperature and pressure conditions

    Institute of Scientific and Technical Information of China (English)

    ZHANG Qing-ling

    2008-01-01

    Variable temperature and pressure adsorption tests were conducted on four coal samples with different coal ranks, under simulated temperatures and pressures corresponding to coal reservoirs at different depths. The regularity of the variation in the amounts of adsorption by coals under variable temperature and pressure and 30 ~C isothermal conditions are compared and the adsorption characteristics of coal under the composite effect of temperature and pressure were obtained. The adsorption test and data processing method of coal under variable temperature and pressure are presented and the effect of the mechanism of tempera-ture and pressure on the adsorption capacity of coal has been studied. The research results are of significant importance in the in-vestigation of coalbed methane storage mechanism and for the prediction of the amounts of coalbed methane at various depths.

  1. Hungary; Stand-By Arrangement: Interim Review Under the Emergency Financing Mechanism

    OpenAIRE

    International Monetary Fund

    2009-01-01

    This paper focuses on the Stand-By Arrangement for Hungary under the Emergency Financing Mechanism. Economic indicators confirm that the downturn envisaged in the program is already under way. The new bank support law is important, as it provides Hungarian banks with access to capital enhancement and borrowing guarantee facilities. The gradual reductions in the policy interest rate have been appropriate. Looking ahead, continued implementation of policies in line with the program is essential...

  2. Neutrino Mass Matrix from Seesaw Mechanism Subjected to Texture Zero and Invariant Under a Cyclic Permutation

    CERN Document Server

    Damanik, Asan; Muslim,; Anggraita, Pramudita

    2007-01-01

    We evaluate the predictive power of the neutrino mass matrices arising from seesaw mechanism subjected to texture zero and satisfying a cyclic permutation invariant. We found that only two from eight possible patterns of the neutrino mass matrices are invariant under a cyclic permutation. The two resulted neutrino mass matrices which are invariant under a cyclic permutation can be used qualitatively to explain the neutrino mixing phenomena for solar neutrino and to derive the mixing angle that agress with the experimental data.

  3. Molecular mechanisms of tirapazamine (SR 4233, Win 59075)-induced hepatocyte toxicity under low oxygen concentrations.

    OpenAIRE

    Khan, S.; O'Brien, P. J.

    1995-01-01

    Previously we showed that tirapazamine (SR 4233, Win 59075) is cytotoxic towards hepatocytes under conditions of hypoxia but not in 10% or 95% oxygen and that bioreduction by DT-diaphorase or cytochrome P450 is not a major pathway. In the present study, we report that tirapazamine is highly cytotoxic to isolated rat hepatocytes maintained under 1% oxygen and the molecular cytotoxic mechanism has been elucidated. Cytotoxicity was prevented by the cytochrome P450 2E1 inhibitors phenyl imidazole...

  4. Moderators of and Mechanisms underlying Stereotype Threat Effects on Older Adults' Memory Performance

    OpenAIRE

    Hess, Thomas M.; Hinson, Joey T.; Hodges, Elizabeth A.

    2009-01-01

    Recent research has suggested that negative stereotypes about aging may have a detrimental influence on older adults' memory performance. This study sought to determine whether stereotype-based influences were moderated by age, education, and concerns about being stigmatized. Possible mechanisms underlying these influences on memory performance were also explored. The memory performance of adults aged 60 to 70 years and 71 to 82 years was examined under conditions designed to induce or elimin...

  5. Effects of intravenous furosemide on mucociliary transport and rheological properties of patients under mechanical ventilation

    OpenAIRE

    Kondo, Cláudia Seiko; Macchionne, Mariângela; Nakagawa, Naomi Kondo; Carvalho, Carlos Roberto Ribeiro; King, Malcolm; Saldiva, Paulo Hilário Nascimento; Lorenzi-Filho, Geraldo

    2001-01-01

    The use of intravenous (IV) furosemide is common practice in patients under mechanical ventilation (MV), but its effects on respiratory mucus are largely unknown. Furosemide can affect respiratory mucus either directly through inhibition of the NaK(Cl)2 co-transporter on the basolateral surface of airway epithelium or indirectly through increased diuresis and dehydration. We investigated the physical properties and transportability of respiratory mucus obtained from 26 patients under MV distr...

  6. CFD Analysis of Migration Mechanism of Source Term Under Severe Accident

    Institute of Scientific and Technical Information of China (English)

    CHEN; Lin-lin; SUN; Xue-ting; JI; Song-tao

    2013-01-01

    The analysis of the migration of source term under severe accident is one of the important aspects of‘Studies on Migration Mechanism of the Source Term under Severe Accident’,which is a significant task of the National Large Advanced PWR Research Program.This research aims at building up a method for analyzing fission product behavior in the containment with CFD code.The effect of PCCS(Passive

  7. Sildenafil reduces neuroinflammation and restores spatial learning in rats with hepatic encephalopathy: underlying mechanisms

    OpenAIRE

    Hernandez-Rabaza, Vicente; Agusti, Ana; Cabrera-Pastor, Andrea; Fustero, Santos; Oscar DELGADO; Taoro-Gonzalez, Lucas; Montoliu, Carmina; Llansola, Marta; Felipo, Vicente

    2015-01-01

    Background There are no specific treatments for the neurological alterations of cirrhotic patients with minimal hepatic encephalopathy (MHE). Rats with MHE due to portacaval shunt (PCS) show impaired spatial learning. The underlying mechanisms remain unknown. The aims of this work were to assess: (a) whether PCS rats show neuroinflammation in hippocampus, (b) whether treatment with sildenafil reduces neuroinflammation and restores spatial learning in PCS rats, and (c) analyze the underlying m...

  8. Modeling and numerical analysis of granite rock specimen under mechanical loading and fire

    Institute of Scientific and Technical Information of China (English)

    Luc Leroy Ngueyep. Mambou; Joseph Ndop; Jean-Marie Bienvenu Ndjaka

    2015-01-01

    The effect of ISO 834 fire on the mechanical properties of granite rock specimen submitted to uniaxial loading is numerically investigated. Based on Newton’s second law, the rate-equation model of granite rock specimen under mechanical load and fire is established. The effect of heat treatment on the me-chanical performance of granite is analyzed at the center and the ends of specimen. At the free end of granite rock specimen, it is shown that from 20 ?C to 500 ?C, the internal stress and internal strain are weak; whereas above 500 ?C, they start to increase rapidly, announcing the imminent collapse. At the center of specimen, the analysis of the internal stress and internal strain reveals that the fire reduces the mechanical performance of granite significantly. Moreover, it is found that after 3 min of exposure to fire, the mechanical energy necessary to fragment the granite can be reduced up to 80%.

  9. Ultrastructural changes of cell walls under intense mechanical treatment of selective plant raw material

    International Nuclear Information System (INIS)

    Structural changes of cell walls under intense mechanical treatment of corn straw and oil-palm fibers were studied by electron and light microscopy. Differences in the character of destruction of plant biomass were revealed, and the dependence of destruction mechanisms on the structure of cell walls and lignin content was demonstrated. We suggest that the high reactivity of the particles of corn straw (about 18% of lignin) after intense mechanical treatment is related to disordering of cell walls and an increase of the surface area, while in the case of oil palm (10% of lignin) the major contribution into an increase in the reactivity is made by an increase of surface area. -- Highlights: ► Structure of cell walls determines the processes of plant materials' destruction. ► Ultrastructure of highly lignified materials strongly disordering by mechanical action. ► Ultrastructure of low-lignified materials is not disordering by mechanical action.

  10. Structural and Mechanical Properties of Intermediate Filaments under Extreme Conditions and Disease

    Science.gov (United States)

    Qin, Zhao

    Intermediate filaments are one of the three major components of the cytoskeleton in eukaryotic cells. It was discovered during the recent decades that intermediate filament proteins play key roles to reinforce cells subjected to large-deformation as well as participate in signal transduction. However, it is still poorly understood how the nanoscopic structure, as well as the biochemical properties of these protein molecules contribute to their biomechanical functions. In this research we investigate the material function of intermediate filaments under various extreme mechanical conditions as well as disease states. We use a full atomistic model and study its response to mechanical stresses. Learning from the mechanical response obtained from atomistic simulations, we build mesoscopic models following the finer-trains-coarser principles. By using this multiple-scale model, we present a detailed analysis of the mechanical properties and associated deformation mechanisms of intermediate filament network. We reveal the mechanism of a transition from alpha-helices to beta-sheets with subsequent intermolecular sliding under mechanical force, which has been inferred previously from experimental results. This nanoscale mechanism results in a characteristic nonlinear force-extension curve, which leads to a delocalization of mechanical energy and prevents catastrophic fracture. This explains how intermediate filament can withstand extreme mechanical deformation of > 1 00% strain despite the presence of structural defects. We combine computational and experimental techniques to investigate the molecular mechanism of Hutchinson-Gilford progeria syndrome, a premature aging disease. We find that the mutated lamin tail .domain is more compact and stable than the normal one. This altered structure and stability may enhance the association of intermediate filaments with the nuclear membrane, providing a molecular mechanism of the disease. We study the nuclear membrane association

  11. Mechanical relation for porous metal foams under complex loads of triaxial tension and compression

    International Nuclear Information System (INIS)

    The mechanical relation of isotropic three-dimensional reticulated porous metal foams with stochastic pores is investigated under complex loads of triaxial tension and compression. From the simplified structural model, the mathematical relationship between three nominal main stresses and porosity has been derived for this class of porous materials at failure under the above-mentioned complex loads, covering three loading conditions of biaxial tension with monoaxial compression, of biaxial compression with monoaxial tension, and of triaxial compression. Through the relevant expression from the deduction, the criterion of strength design can be further obtained for these porous materials under these multiaxial complex loadings.

  12. Crude extract of maggots: Antibacterial effects against Escherichia coli, underlying mechanisms, separation and purification

    OpenAIRE

    Ge, Quan-Sheng; Zhang, Hui-Min; Liu, Xia; Wang, Shou-Yu; Lv, De-Cheng; LI, Xu-dong

    2015-01-01

    AIM: To investigate the antibacterial effects of a crude extract of maggots against Escherichia coli (E. coli) and the underlying mechanisms, and to separate and purify the crude extract of maggots to assess the antibacterial effects of the active ingredients in the crude extract.

  13. Deformation Microstructures and Creep Mechanisms in Advanced ZR-Based Cladding Under Biazal Loading

    Energy Technology Data Exchange (ETDEWEB)

    K. Linga (KL) Murty

    2008-08-11

    Investigate creep behavior of Zr-based cladding tubes with attention to basic creep mechanisms and transitions in them at low stresses and/or temperatures and study the dislocation microstructures of deformed samples for correlation with the underlying micromechanism of creep

  14. Biological mechanisms underlying the role of physical fitness in health and resilience

    OpenAIRE

    Silverman, Marni N.; Deuster, Patricia A.

    2014-01-01

    Physical fitness, achieved through regular exercise and/or spontaneous physical activity, confers resilience by inducing positive psychological and physiological benefits, blunting stress reactivity, protecting against potentially adverse behavioural and metabolic consequences of stressful events and preventing many chronic diseases. In this review, we discuss the biological mechanisms underlying the beneficial effects of physical fitness on mental and physical health. Physical fitness appear...

  15. On the mechanical behaviour of a butt jointed thermoplastic composite under bending

    NARCIS (Netherlands)

    Baran, I.; Warnet, L.; Akkerman, R.; Thomsen, O.T

    2015-01-01

    In the present work, the mechanical behavior of a recently developed novel butt jointed thermoplastic composite was investigated under bending conditions. The laminated skin and the web were made of carbon fiber (AS4) and polyetherketoneketone (PEKK). The butt joint (filler) was injection molded fro

  16. Design-relevant local mechanical effects under fault conditions of the European LCT coil

    International Nuclear Information System (INIS)

    Simplified descriptions are presented of two types of local mechanical effects: support load diffusion effects under asymmetric loading due to a faulting neighbour coil and containment of quench pressure inside of a faulting superconductor cable within the winding pack. The design-relevance in terms of model simplification as well as safety margins is discussed for the European LCT coil. (author)

  17. DEFINITION OF ELECTROMOTIVE FORCE OF POLARIZED ON THICKNESS ANNULAR PLATES UNDER MECHANICAL PERTURBATION

    Directory of Open Access Journals (Sweden)

    Grigorieva L.O.

    2014-12-01

    Full Text Available A method for determining the electromotive force of the thin ring polarized on the thickness piezoceramic plates with electroded flat surfaces under unsteady mechanical loads is proposed. The numerical implementation of the proposed method enables efficient founding of piezoelement EMF at different ways of fixing and loading. It is determined studying of dynamic electromechanical plate state.

  18. Mechanisms underlying the associations of maternal age with adverse perinatal outcomes

    DEFF Research Database (Denmark)

    Lawlor, Debbie A; Mortensen, Laust; Andersen, Anne-Marie Nybo

    2011-01-01

    The mechanisms underlying the association between maternal age (both young and older maternal age) and adverse perinatal outcomes are unclear. Methods We examined the association of maternal age at first birth with preterm birth (<37 weeks gestation) and small for gestational age (SGA) in a cohor...

  19. Large Deflections Mechanical Analysis of a Suspended Single-Wall Carbon Nanotube under Thermoelectrical Loading

    Directory of Open Access Journals (Sweden)

    Assaf Ya'akobovitz

    2011-01-01

    Full Text Available Following the recent progress in integrating single-wall carbon nanotubes (SWCNTs into silicon-based micro-electromechanical systems (MEMS, new modeling tools are needed to predict their behavior under different loads, including thermal, electrical and mechanical. In the present study, the mechanical behavior of SWCNTs under thermoelectrical loading is analyzed using a large deflection geometrically nonlinear string model. The effect of the resistive heating was found to have a substantial influence on the SWCNTs behavior, including significant enhancement of the strain (up to the millistrains range and buckling due to the thermal expansion. The effect of local buckling sites was also studied and was found to enhance the local strain. The theoretical and numerical results obtained in the present study demonstrate the importance of resistive heating in the analysis of SWCNTs and provide an additional insight into the unique mechanics of suspended SWCNTs.

  20. Electronic and Mechanical Properties of Tetragonal Nb2Al Under High Pressure: First-Principles Calculations

    Science.gov (United States)

    Jiao, Zhen; Liu, Qi-Jun; Liu, Fu-Sheng; Wang, Wen-Peng; Wang, Yi-Gao; Li, Yong; Liu, Zheng-Tang

    2016-04-01

    We have investigated the structure, density of states, mechanical stability, elastic properties, and Debye temperature of tetragonal Nb2Al under high pressure using the generalized gradient approximation WC (GGA-WC) functional within density functional theory (DFT). Our obtained lattice constants were in good agreement with the reported experimental and theoretical data at zero pressure. The volume decreased with the increasing pressure. The effects of pressure on the electronic properties have been discussed. The elastic constants under pressure have been calculated, which all satisfied the stability criterion, meaning that tetragonal Nb2Al was mechanical stability from 0 to 100 GPa. Then, the mechanical properties including bulk modulus B, shear modulus G, Young's modulus E, G/B, and Poisson's ratio ν under pressure were determined using the Voigt-Reuss-Hill method. The G/B value suggested that tetragonal Nb2Al exhibited ductile behavior under pressure. Poisson's ratio indicated that the interatomic forces in tetragonal Nb2Al were mainly central forces. Finally, the transverse, longitudinal, and average sound velocities and Debye temperature of tetragonal Nb2Al under pressure have been estimated.

  1. Prospective study of the aetiology of infusion phlebitis and line failure during peripheral parenteral nutrition.

    Science.gov (United States)

    May, J; Murchan, P; MacFie, J; Sedman, P; Donat, R; Palmer, D; Mitchell, C J

    1996-08-01

    Four techniques of administering peripheral parenteral nutrition (PPN) were examined prospectively to investigate the role of mechanical trauma in the development of infusion phlebitis. Patients in group 1 (n = 15) were fed via a standard 18-G Teflon cannula which was removed on completion of the infusion and was rotated to the contralateral arm every day. Group 2 patients (n = 15) had a similar catheter sited in each forearm simultaneously, with rotation of the side of infusion each day. Patients in group 3 (n = 17) had a 15-cm Silastic rubber catheter inserted into a forearm vein and a standard cannula sited in the contralateral forearm, with alternation of infusion each day. Those in group 4 (n = 13) had a fine-bore 23-G silicone catheter sited in one arm only. Patients in groups 1, 2 and 3 were fed over 12-h cycles and those in group 4 for a 24-h continuous cycle. A total of 408 patient-days of PPN were given. Mean duration of PPN in groups 1-4 was 7.5, 9, 5.5 and 5 days respectively. Infusion phlebitis was not recorded in patients who had a daily change of cannula (group 1), but occurred in four patients in group 2, eight in group 3 and eight in group 4. Phlebitis scores were 0, 9, 15 and 12 for groups 1-4 respectively. Severe phlebitis and line occlusion occurred more frequently in patients with a 15-cm catheter (group 3) and in those fed continuously over 24 h (group 4). These results suggest that mechanical trauma is an important factor in the aetiology of infusion phlebitis. This can be minimized by reducing the time for which the vein wall is exposed to nutrient infusion and by reducing the amount of prosthetic material within the vein. PMID:8869311

  2. Dual mechanisms regulate ecosystem stability under decade-long warming and hay harvest.

    Science.gov (United States)

    Shi, Zheng; Xu, Xia; Souza, Lara; Wilcox, Kevin; Jiang, Lifen; Liang, Junyi; Xia, Jianyang; García-Palacios, Pablo; Luo, Yiqi

    2016-01-01

    Past global change studies have identified changes in species diversity as a major mechanism regulating temporal stability of production, measured as the ratio of the mean to the standard deviation of community biomass. However, the dominant plant functional group can also strongly determine the temporal stability. Here, in a grassland ecosystem subject to 15 years of experimental warming and hay harvest, we reveal that warming increases while hay harvest decreases temporal stability. This corresponds with the biomass of the dominant C4 functional group being higher under warming and lower under hay harvest. As a secondary mechanism, biodiversity also explains part of the variation in temporal stability of production. Structural equation modelling further shows that warming and hay harvest regulate temporal stability through influencing both temporal mean and variation of production. Our findings demonstrate the joint roles that dominant plant functional group and biodiversity play in regulating the temporal stability of an ecosystem under global change. PMID:27302085

  3. The Mechanical Analysis and Experimental Study of Shock Wave Effect of Electrical Discharge under Water In Filth Cleaning

    Institute of Scientific and Technical Information of China (English)

    Deng Qilin; Zhang Lei; Zhou Jinjin

    2004-01-01

    Filth adhering to metal pipes can be cleaned by shock wave generated by electrical discharge under water. The mechanism of shock wave effect of electrical discharge under water on filth cleaning is analyzed by building a mechanical model. A metal pipe coated with cement to simulate real filth is cleaned by using electrical discharge under water. The experimental results confirm the mechanical analysis and also show the technology of electrical discharge under water is an very effective method for filth cleaning.

  4. Significant enhancement of photoreactivity of graphitic carbon nitride catalysts under acidic conditions and the underlying H(+)-mediated mechanism.

    Science.gov (United States)

    Zhang, Xue-Song; Tian, Ke; Hu, Jian-Yang; Jiang, Hong

    2015-12-01

    Graphitic carbon nitride (g-C3N4) is an emerging photocatalyst for organic pollutants degradation owing to its excellent stability and metal-free property. In this study, the photocatalytic activity of acidified g-C3N4 (ag-C3N4) was systematically investigated using rhodamine B (rhB) as a model organic pollutant. The results showed the photoreactivity of ag-C3N4 is significantly enhanced with the decrease of pH values. The apparent rate constant (kapp) of rhB degradation over ag-C3N4 is 11.59×10(-3)min(-1) at pH7.0 and it increases to 103.50×10(-3)min(-1) at pH3.0 under visible light. A series of analyses demonstrate that the photodegradation mechanism is a combination of a H(+)-promoted generation of OH and elevation of the redox potential of conduct band of C3N4. The change of surface properties of C3N4 caused by pH variation also affects the degradation of some zwitterionic compounds by changing the adsorption orientation of pollutants. The revealed mechanism of visible light-C3N4-rhB system is meaningful to broaden the usage of C3N4 to the photodegradation of other organic pollutants. PMID:26172516

  5. A triphasic constrained mixture model of engineered tissue formation under in vitro dynamic mechanical conditioning.

    Science.gov (United States)

    Soares, Joao S; Sacks, Michael S

    2016-04-01

    While it has become axiomatic that mechanical signals promote in vitro engineered tissue formation, the underlying mechanisms remain largely unknown. Moreover, efforts to date to determine parameters for optimal extracellular matrix (ECM) development have been largely empirical. In the present work, we propose a two-pronged approach involving novel theoretical developments coupled with key experimental data to develop better mechanistic understanding of growth and development of dense connective tissue under mechanical stimuli. To describe cellular proliferation and ECM synthesis that occur at rates of days to weeks, we employ mixture theory to model the construct constituents as a nutrient-cell-ECM triphasic system, their transport, and their biochemical reactions. Dynamic conditioning protocols with frequencies around 1 Hz are described with multi-scale methods to couple the dissimilar time scales. Enhancement of nutrient transport due to pore fluid advection is upscaled into the growth model, and the spatially dependent ECM distribution describes the evolving poroelastic characteristics of the scaffold-engineered tissue construct. Simulation results compared favorably to the existing experimental data, and most importantly, distinguish between static and dynamic conditioning regimes. The theoretical framework for mechanically conditioned tissue engineering (TE) permits not only the formulation of novel and better-informed mechanistic hypothesis describing the phenomena underlying TE growth and development, but also the exploration/optimization of conditioning protocols in a rational manner. PMID:26055347

  6. Study of the damaging mechanisms of a carbon - carbon composite bonded to copper under thermomechanical loading

    International Nuclear Information System (INIS)

    The purpose of this work is to understand and to identify the damaging mechanisms of Carbon-Carbon composite bonded to copper under thermomechanical loading. The study of the composite allowed the development of non-linear models. These ones have been introduced in the finite elements analysis code named CASTEM 2000. They have been validated according to a correlation between simulation and mechanical tests on multi-material samples. These tests have also permitted us to better understand the behaviour of the bonding between composite and copper (damaging and fracture modes for different temperatures) under shear and tensile loadings. The damaging mechanisms of the bond under thermomechanical loading have been studied and identified according to microscopic observations on mock-ups which have sustained thermal cycling tests: some cracks appear in the composite, near the bond between the composite and the copper. The correlation between numerical and experimental results have been improved because of the reliability of the composite modelization, the use of residual stresses and the results of the bond mechanical characterisation. (author)

  7. Study of the damaging mechanisms of a copper / carbon - carbon composite under thermomechanical loading

    International Nuclear Information System (INIS)

    The purpose of this work is to understand and to identify the damaging mechanisms of Carbon-Carbon composite bonded to copper under thermomechanical loading. The study of the composite allowed the development of non-linear models. These ones have been introduced in the finite elements analysis code named CASTEM2000. They have been validated according to a correlation between simulation and mechanical tests on multi-material samples. These tests have also permitted us to better understand the behaviour of the bonding between composite and copper (damaging and fracture modes for different temperatures) under shear and tensile loadings. The damaging mechanisms of the bond under thermomechanical loading have been studied and identified according to microscopic observations on mock-ups which have sustained thermal cycling tests: some cracks appear in the composite, near the bond between the composite and the copper. The correlation between numerical and experimental results have been improved because of the reliability of the composite modelization, the use of residual stresses and the results of the bond mechanical characterization. (author)

  8. Carbon Footprint Management of Road Freight Transport under the Carbon Emission Trading Mechanism

    Directory of Open Access Journals (Sweden)

    Jin Li

    2015-01-01

    Full Text Available Growing concern over environmental issues has considerably increased the number of regulations and legislation that aim to curb carbon emissions. Carbon emission trading mechanism, which is one of the most effective means, has been broadly adopted by several countries. This paper presents a road truck routing problem under the carbon emission trading mechanism. By introducing a calculation method of carbon emissions that considers the load and speed of the vehicle among other factors, a road truck routing optimizing model under the cap and trade mechanism based on the Travelling Salesman Problem (TSP is described. Compared with the classical TSP model that only considers the economic cost, this model suggests that the truck routing decision under the cap and trade mechanism is more effective in reducing carbon emissions. A modified tabu search algorithm is also proposed to obtain solutions within a reasonable amount of computation time. We theoretically and numerically examine the impacts of carbon trading, carbon cap, and carbon price on truck routing decision, carbon emissions, and total cost. From the results of numerical experiments, we derive interesting observations about how to control the total cost and reduce carbon emissions.

  9. NUMERICAL SIMULATION STUDY ON ROCK BREAKING MECHANISM AND PROCESS UNDER HIGH PRESSURE WATER JET

    Institute of Scientific and Technical Information of China (English)

    NI Hong-jian; WANG Rui-he; ZHANG Yan-qing

    2005-01-01

    The numerical simulation method to study rock breaking process and mechanism under high pressure water jet was developed with the continuous mechanics and the FEM theory. The rock damage model and the damage-coupling model suited to analyze the whole process of water jet breaking rock were established with continuum damage mechanics and micro damage mechanics. The numerical results show the dynamic response of rock under water jet and the evolvement of hydrodynamic characteristic of jet during rock breaking is close to reality, and indicates that the body of rock damage and breakage under the general continual jet occurs within several milliseconds, the main damage form is tensile damage caused by rock unload and jet impact, and the evolvement of rock damage shows a step-change trend. On the whole,the numerical results can agree with experimental conclusions, which manifest that the analytical method is feasible and can be applied to guide the research and application of jet breaking rock theory.

  10. An analytical model of the mechanical properties of bulk coal under confined stress

    Science.gov (United States)

    Wang, G.X.; Wang, Z.T.; Rudolph, V.; Massarotto, P.; Finley, R.J.

    2007-01-01

    This paper presents the development of an analytical model which can be used to relate the structural parameters of coal to its mechanical properties such as elastic modulus and Poisson's ratio under a confined stress condition. This model is developed primarily to support process modeling of coalbed methane (CBM) or CO2-enhanced CBM (ECBM) recovery from coal seam. It applied an innovative approach by which stresses acting on and strains occurring in coal are successively combined in rectangular coordinates, leading to the aggregated mechanical constants. These mechanical properties represent important information for improving CBM/ECBM simulations and incorporating within these considerations of directional permeability. The model, consisting of constitutive equations which implement a mechanically consistent stress-strains correlation, can be used as a generalized tool to study the mechanical and fluid behaviors of coal composites. An example using the model to predict the stress-strain correlation of coal under triaxial confined stress by accounting for the elastic and brittle (non-elastic) deformations is discussed. The result shows a good agreement between the prediction and the experimental measurement. ?? 2007 Elsevier Ltd. All rights reserved.

  11. Consumption of Red/Processed Meat and Colorectal Carcinoma: Possible Mechanisms Underlying the Significant Association.

    Science.gov (United States)

    Hammerling, Ulf; Bergman Laurila, Jonas; Grafström, Roland; Ilbäck, Nils-Gunnar

    2016-03-11

    Epidemiology and experimental studies provide an overwhelming support of the notion that diets high in red or processed meat accompany an elevated risk of developing pre-neoplastic colorectal adenoma and frank colorectal carcinoma (CRC). The underlying mechanisms are disputed; thus several hypotheses have been proposed. A large body of reports converges, however, on haem and nitrosyl haem as major contributors to the CRC development, presumably acting through various mechanisms. Apart from a potentially higher intestinal mutagenic load among consumers on a diet rich in red/processed meat, other mechanisms involving subtle interference with colorectal stem/progenitor cell survival or maturation are likewise at play. From an overarching perspective, suggested candidate mechanisms for red/processed meat-induced CRC appear as three partly overlapping tenets: (i) increased N-nitrosation/oxidative load leading to DNA adducts and lipid peroxidation in the intestinal epithelium, (ii) proliferative stimulation of the epithelium through haem or food-derived metabolites that either act directly or subsequent to conversion, and (iii) higher inflammatory response, which may trigger a wide cascade of pro-malignant processes. In this review, we summarize and discuss major findings of the area in the context of potentially pertinent mechanisms underlying the above-mentioned association between consumption of red/processed meat and increased risk of developing CRC. PMID:25849747

  12. Flaw tolerance of nuclear intermediate filament lamina under extreme mechanical deformation.

    Science.gov (United States)

    Qin, Zhao; Buehler, Markus J

    2011-04-26

    The nuclear lamina, composed of intermediate filaments, is a structural protein meshwork at the nuclear membrane that protects genetic material and regulates gene expression. Here we uncover the physical basis of the material design of nuclear lamina that enables it to withstand extreme mechanical deformation of >100% strain despite the presence of structural defects. Through a simple in silico model we demonstrate that this is due to nanoscale mechanisms including protein unfolding, alpha-to-beta transition, and sliding, resulting in a characteristic nonlinear force-extension curve. At the larger microscale this leads to an extreme delocalization of mechanical energy dissipation, preventing catastrophic crack propagation. Yet, when catastrophic failure occurs under extreme loading, individual protein filaments are sacrificed rather than the entire meshwork. This mechanism is theoretically explained by a characteristic change of the tangent stress-strain hardening exponent under increasing strain. Our results elucidate the large extensibility of the nuclear lamina within muscle or skin tissue and potentially many other protein materials that are exposed to extreme mechanical conditions, and provide a new paradigm toward the de novo design of protein materials by engineering the nonlinear stress-strain response to facilitate flaw-tolerant behavior. PMID:21384869

  13. Mechanistic modeling of thermal-mechanical deformation of CANDU pressure tube under localized high temperature condition

    International Nuclear Information System (INIS)

    Thermal strain deformation is a pressure tube failure mechanism. The main objective of this paper is to develop mechanistic models to evaluate local thermal-mechanical deformation of a pressure tube in CANDU reactor and to investigate fuel channel integrity under localized contact between fuel elements and pressure tube. The consequence of concern is potential creep strain failure of a pressure tube and calandria tube. The initial focus will be on the case where a fuel rod contacts the pressure tube at full power with highly cooling condition

  14. Uncovering the underlying physical mechanisms of biological systems via quantification of landscape and flux

    Science.gov (United States)

    Li, Xu; Xiakun, Chu; Zhiqiang, Yan; Xiliang, Zheng; Kun, Zhang; Feng, Zhang; Han, Yan; Wei, Wu; Jin, Wang

    2016-01-01

    In this review, we explore the physical mechanisms of biological processes such as protein folding and recognition, ligand binding, and systems biology, including cell cycle, stem cell, cancer, evolution, ecology, and neural networks. Our approach is based on the landscape and flux theory for nonequilibrium dynamical systems. This theory provides a unifying principle and foundation for investigating the underlying mechanisms and physical quantification of biological systems. Project supported by the Natural Science Foundation of China (Grant Nos. 21190040, 11174105, 91225114, 91430217, and 11305176) and Jilin Province Youth Foundation, China (Grant No. 20150520082JH).

  15. Oxidative Stress and Mitochondrial Activation as the Main Mechanisms Underlying Graphene Toxicity against Human Cancer Cells

    Directory of Open Access Journals (Sweden)

    Anna Jarosz

    2016-01-01

    Full Text Available Due to the development of nanotechnology graphene and graphene-based nanomaterials have attracted the most attention owing to their unique physical, chemical, and mechanical properties. Graphene can be applied in many fields among which biomedical applications especially diagnostics, cancer therapy, and drug delivery have been arousing a lot of interest. Therefore it is essential to understand better the graphene-cell interactions, especially toxicity and underlying mechanisms for proper use and development. This review presents the recent knowledge concerning graphene cytotoxicity and influence on different cancer cell lines.

  16. Mechanical failure of zigzag graphene nanoribbons under tensile strain induced by edge reconstruction

    KAUST Repository

    Cheng, Yingchun

    2012-10-01

    The structural and mechanical properties of graphene nanoribbons (GNRs) under uniaxial tensile strain are studied by density functional theory. The ideal strength of a zigzag GNR (120 GPa) is close to that of pristine graphene. However, for a GNR with both edges reconstructed to pentagon–heptagon pairs (from hexagon–hexagon pairs) it decreases to 94 GPa and the maximum tensile strain is reduced to 15%. Our results constitute a comprehensive picture of the edge structure effect on the mechanical properties of GNRs.

  17. The mechanical strength of phosphates under friction-induced cross-linking

    Directory of Open Access Journals (Sweden)

    Z. Pawlak

    2006-04-01

    Full Text Available Purpose: In the present study, we consider mechanical properties of phosphate glasses under high temperature-induced and under friction-induced cross-linking, which enhance the modulus of elasticity.Design/methodology/approach: Two nanomechanical properties are evaluated, the first parameter is the modulus of elasticity (E (or Young’s modulus and the second parameter is the hardness (H. Zinc meta-, pyro - and orthophosphates were recognized as amorphous-colloidal nanoparticles were synthesized under laboratory conditions and showed antiwear properties in engine oil.Findings: Young’s modulus of the phosphate glasses formed under high temperature was in the 60-89 GPa range. For phosphate tribofilm formed under friction hardness and the Young’s modulus were in the range of 2-10 GPa and 40-215 GPa, respectively. The degree of cross-linking during friction is provided by internal pressure of about 600 MPa and temperature close to 1000°C enhancing mechanical properties by factor of 3 (see Fig 1.Research limitations/implications: The addition of iron or aluminum ions to phosphate glasses under high temperature - and friction-induced amorphization of zinc metaphosphate and pyrophosphate tends to provide more cross-linking and mechanically stronger structures. Iron and aluminum (FeO4 or AlO4 units, incorporated into phosphate structure as network formers, contribute to the anion network bonding by converting the P=O bonds into bridging oxygen. Future work should consider on development of new of materials prepared by sol-gel processes, eg., zinc (II-silicic acid.Originality/value: This paper analyses the friction pressure-induced and temperature–induced the two factors lead phosphate tribofilm glasses to chemically advanced glass structures, which may enhance the wear inhibition. Adding the coordinating ions alters the pressure at which cross-linking occurs and increases the antiwear properties of the surface material significantly

  18. Simulation of ionomer membrane fatigue under mechanical and hygrothermal loading conditions

    Science.gov (United States)

    Khorasany, Ramin M. H.; Kjeang, Erik; Wang, G. G.; Rajapakse, R. K. N. D.

    2015-04-01

    Understanding the fatigue lifetime of common perfluorosulfonic acid (PFSA) ionomer membranes under fluctuating hygrothermal conditions is essential for the development of durable fuel cell technologies. For this purpose, a finite element based fatigue lifetime prediction model is developed based on an elastic-plastic constitutive model combined with a Smith-Watson-Topper (SWT) fatigue formulation. The model is validated against previously reported experimental results for a membrane under cyclic mechanical loadings. The validated model is then utilized to investigate the membrane fatigue lifetime in ex-situ applications under cyclic humidity and temperature conditions. The simulations suggest that the membrane fatigue lifetime is shorter under fluctuating humidity loadings than for temperature loadings. Additionally, the membrane fatigue lifetime is found to be more sensitive to the amplitude of the strain oscillations than to the mean strain under hygrothermal cycling. Most notably, the model predicts that simultaneous humidity and temperature cycling can exacerbate the fatigue process and reduce the fatigue lifetime by several orders of magnitude compared to isolated humidity or temperature cycling. The combination of measured mechanical fatigue data and the present numerical model provides a useful toolkit for analysis of membrane fatigue due to hygrothermal variations, which can be costly and time-consuming when addressed experimentally.

  19. Degradation mechanism of rock under impact loadings by integrated investigation on crack and damage development

    Institute of Scientific and Technical Information of China (English)

    周子龙; 江益辉; 邹洋; 翁磊

    2014-01-01

    Failure of rock under impact loadings involves complex micro-fracturing and progressive damage. Strength increase and splitting failure have been observed during dynamic tests of rock materials. However, the failure mechanism still remains unclear. In this work, based on laboratory tests, numerical simulations with the particle flow code (PFC) were carried out to reproduce the micro-fracturing process of granite specimens. Shear and tensile cracks were both recorded to investigate the failure mode of rocks under different loading conditions. At the same time, a dynamic damage model based on the Weibull distribution was established to predict the deformation and degradation behavior of specimens. It is found that micro-cracks play important roles in controlling the dynamic deformation and failure process of rock under impact loadings. The sharp increase in the number of cracks may be the reason for the strength increase of rock under high strain rates. Tensile cracks tend to be the key reason for splitting failure of specimens. Numerical simulation of crack propagation by PFC can give vivid description of the failure process. However, it is not enough for evaluation of material degradation. The dynamic damage model is able to predict the stress−strain relationship of specimens reasonably well, and can be used to explain the degradation of specimens under impact loadings at macro-scale. Crack and damage can describe material degradation at different scales and can be used together to reveal the failure mechanism of rocks.

  20. Mechanical Behavior of Tissue Simulants and Soft Tissues Under Extreme Loading Conditions

    Science.gov (United States)

    Kalcioglu, Zeynep Ilke

    Recent developments in computer-integrated surgery and in tissue-engineered constructs necessitate advances in experimental and analytical techniques in characterizing properties of mechanically compliant materials such as gels and soft tissues, particularly for small sample volumes. One goal of such developments is to quantitatively predict and mimic tissue deformation due to high rate impact events typical of industrial accidents and ballistic insults. This aim requires advances in mechanical characterization to establish tools and design principles for tissue simulant materials that can recapitulate the mechanical responses of hydrated soft tissues under dynamic contact-loading conditions. Given this motivation, this thesis studies the mechanical properties of compliant synthetic materials developed for tissue scaffold applications and of soft tissues, via modifying an established contact based technique for accurate, small scale characterization under fully hydrated conditions, and addresses some of the challenges in the implementation of this method. Two different engineered material systems composed of physically associating block copolymer gels, and chemically crosslinked networks including a solvent are presented as potential tissue simulants for ballistic applications, and compared directly to soft tissues from murine heart and liver. In addition to conventional quasistatic and dynamic bulk mechanical techniques that study macroscale elastic and viscoelastic properties, new methodologies are developed to study the small scale mechanical response of the aforementioned material systems to concentrated impact loading. The resistance to penetration and the energy dissipative constants are quantified in order to compare the deformation of soft tissues and mechanically optimized simulants, and to identify the underlying mechanisms by which the mechanical response of these tissue simulant candidates are modulated. Finally, given that soft tissues are biphasic in

  1. Estimation of mechanical properties of gelatin using a microbubble under acoustic radiation force

    Science.gov (United States)

    Shirota, Eriko; Ando, Keita

    2015-12-01

    This paper is concerned with observations of the translation of a microbubble (80 μm or 137 μm in radius) in a viscoelastic medium (3 w% gelatin), which is induced by acoustic radiation force originating from 1 MHz focused ultrasound. An optical system using a high-speed camera was designed to visualize the bubble translation and deformation. If the bubble remains its spherical shape under the sonication, the bubble translation we observed can be described by theory based on the Voigt model for linear viscoelastic solids; mechanical properties of the gelatin are calculated from measurements of the terminal displacement under the sonication.

  2. CISM course on mechanical behaviour of soils under environmentally induced cyclic loads

    CERN Document Server

    Wood, David; Mechanical Behaviour of Soils Under Environmentally Induced Cyclic Loads

    2012-01-01

    The book gives a comprehensive description of the mechanical response of soils (granular and cohesive materials) under cyclic loading. It provides the geotechnical engineer with the theoretical and analytical tools necessary for the evaluation of settlements developng with time under cyclic, einvironmentally idncued loads (such as wave motion, wind actions, water table level variation) and their consequences for the serviceability and durability of structures such as the shallow or deep foundations used in offshore engineering, caisson beakwaters, ballast and airport pavements and also to interpret monitoring data, obtained from both natural and artificial slopes and earth embankments, for the purposes of risk assessment and mitigation.

  3. Microstructure variation and growth mechanism of hypoeutectic Al-Si alloy solidifi ed under high pressure

    Directory of Open Access Journals (Sweden)

    Zhang Guozhi

    2009-05-01

    Full Text Available The microstructure of hypoeutectic Al-9.21wt.%Si alloy solidified under 5.5 GPa was studied. The results show that the solidifi cation microstructure is refi ned. The primary α phase is the extended solid solution. The solid solubility of Si in α phase is up to 8.26wt.%. The growth mode of the α phase is cellular, and this cellular growth mechanism is interpreted in terms of the decrease of the diffusivity and the extended solid solution under high pressure. By calculation, it can be known that the the diffusivity of solute in the liquid under normal pressure is as high as two hundred times that under high pressure. The microhardness of the hypoeutectic Al-Si alloy solidified under high pressure is higher than that of solidifi ed under normal pressure. After annealing, Si precipitates from the solid solution, the microhardness of the alloy decrease, but, still higher than that of solidifi ed under normal pressure.

  4. Mechanism analysis on pillar instability induced by micro-disturbance under critical condition

    Institute of Scientific and Technical Information of China (English)

    LI Jiang-teng; CAO Ping

    2005-01-01

    A simplified mechanical model of ultra-high pillar was established and its potential energy expression was derived under axial load on the basis of energy theory. Under critical conditions according to the nonlinear theory,the critical behaviors and the forming mechanism of pillar instability were discussed by external disturbance , such as stresses waves by blasting , axial force eccentricity ratherish and imperfections in pillar. The results show that the micro-disturbances attenuate with time and they are independence each other when pillar is in the stability state.Their effects on the stability of system are inessential. The correlation degree of disturbances increases sharply and various micro-disturbances are relative and nested reciprocally when the system is in critical state and they also cooperate with each other, which induces system to reach a new state.

  5. Music and Memory in Alzheimer's Disease and The Potential Underlying Mechanisms.

    Science.gov (United States)

    Peck, Katlyn J; Girard, Todd A; Russo, Frank A; Fiocco, Alexandra J

    2016-01-01

    With population aging and a projected exponential expansion of persons diagnosed with Alzheimer's disease (AD), the development of treatment and prevention programs has become a fervent area of research and discovery. A growing body of evidence suggests that music exposure can enhance memory and emotional function in persons with AD. However, there is a paucity of research that aims to identify specific underlying neural mechanisms associated with music's beneficial effects in this particular population. As such, this paper reviews existing anecdotal and empirical evidence related to the enhancing effects of music exposure on cognitive function and further provides a discussion on the potential underlying mechanisms that may explain music's beneficial effect. Specifically, this paper will outline the potential role of the dopaminergic system, the autonomic nervous system, and the default network in explaining how music may enhance memory function in persons with AD. PMID:26967216

  6. Electroluminescence and cathodoluminescence from polyethylene and polypropylene films: Spectra reconstruction from elementary components and underlying mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Qiao, B. [Université de Toulouse, UPS, INP, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse (France); Teyssedre, G.; Laurent, C. [Université de Toulouse, UPS, INP, LAPLACE (Laboratoire Plasma et Conversion d' Energie), 118 route de Narbonne, F-31062 Toulouse (France); CNRS, LAPLACE, F-31062 Toulouse (France)

    2016-01-14

    The mechanisms of electroluminescence from large band gap polymers used as insulation in electric components are still under debate. It becomes important to unravel the underlying physics of the emission because of increasing thermo-electric stress and a possible relationship between electroluminescence and field withstand. We report herein on the cathodoluminescence spectra of polyethylene and polypropylene films as a way to uncover the nature of its contributions to electroluminescence emission. It is shown that spectra from the two materials are structured around four elementary components, each of them being associated with a specific process contributing to the overall emission with different weights depending on excitation conditions and on materials. The cathodoluminescence and electroluminescence spectra of each material are reconstructed from the four spectral components and their relative contribution are discussed. It is shown that electroluminescence from polyethylene and polypropylene has the same origin pointing towards generic mechanisms in both.

  7. Behavioral Effects of Upper Respiratory Tract Illnesses: A Consideration of Possible Underlying Cognitive Mechanisms

    Directory of Open Access Journals (Sweden)

    Andrew P. Smith

    2012-03-01

    Full Text Available Previous research has shown that both experimentally induced upper respiratory tract illnesses (URTIs and naturally occurring URTIs influence mood and performance. The present study investigated possible cognitive mechanisms underlying the URTI-performance changes. Those who developed a cold (N = 47 had significantly faster, but less accurate, performance than those who remained healthy (N = 54. Illness had no effect on manipulations designed to influence encoding, response organisation (stimulus-response compatilibility or response preparation. Similarly, there was no evidence that different components of working memory were impaired. Overall, the present research confirms that URTIs can have an effect on performance efficiency. Further research is required to identify the physiological and behavioral mechanisms underlying these effects.

  8. Size and Geometry Effects on the Mechanical Properties of Carrara Marble Under Dynamic Loadings

    Science.gov (United States)

    Zou, Chunjiang; Wong, Louis Ngai Yuen

    2016-05-01

    The effects of specimen size and geometry on the dynamic mechanical properties of Carrara marble including compressive strength, failure strain and elastic modulus are investigated in this research. Four different groups of specimens of different sizes and cross-sectional geometries are loaded under a wide range of strain rates by the split Hopkinson pressure bar setup. The experimental results indicate that all these mechanical properties are significantly influenced by the specimen size and geometry to different extent, hence highlighting the importance of taking into account of the specimen size and geometry in dynamic tests on rock materials. In addition, the transmission coefficient and the determination of strain rate under dynamic tests are discussed in detail.

  9. Electroluminescence and cathodoluminescence from polyethylene and polypropylene films: Spectra reconstruction from elementary components and underlying mechanisms

    Science.gov (United States)

    Qiao, B.; Teyssedre, G.; Laurent, C.

    2016-01-01

    The mechanisms of electroluminescence from large band gap polymers used as insulation in electric components are still under debate. It becomes important to unravel the underlying physics of the emission because of increasing thermo-electric stress and a possible relationship between electroluminescence and field withstand. We report herein on the cathodoluminescence spectra of polyethylene and polypropylene films as a way to uncover the nature of its contributions to electroluminescence emission. It is shown that spectra from the two materials are structured around four elementary components, each of them being associated with a specific process contributing to the overall emission with different weights depending on excitation conditions and on materials. The cathodoluminescence and electroluminescence spectra of each material are reconstructed from the four spectral components and their relative contribution are discussed. It is shown that electroluminescence from polyethylene and polypropylene has the same origin pointing towards generic mechanisms in both.

  10. Electroluminescence and cathodoluminescence from polyethylene and polypropylene films: Spectra reconstruction from elementary components and underlying mechanisms

    International Nuclear Information System (INIS)

    The mechanisms of electroluminescence from large band gap polymers used as insulation in electric components are still under debate. It becomes important to unravel the underlying physics of the emission because of increasing thermo-electric stress and a possible relationship between electroluminescence and field withstand. We report herein on the cathodoluminescence spectra of polyethylene and polypropylene films as a way to uncover the nature of its contributions to electroluminescence emission. It is shown that spectra from the two materials are structured around four elementary components, each of them being associated with a specific process contributing to the overall emission with different weights depending on excitation conditions and on materials. The cathodoluminescence and electroluminescence spectra of each material are reconstructed from the four spectral components and their relative contribution are discussed. It is shown that electroluminescence from polyethylene and polypropylene has the same origin pointing towards generic mechanisms in both

  11. A Review on Solidification and Change in Mechanical Properties Under Vibratory Welding Condition

    Directory of Open Access Journals (Sweden)

    Jyoti Prakash

    2010-04-01

    Full Text Available Welding has been applied to various industries in particular, automotive, aerospace and microelectronics. Thermal cycle produced near weld line generates residual stress and inhomogeneous plastic deformation in weldments. However there are many methods for welding the workpieces and one of the method among these is vibratory welding. It has the advantages of less investment, more convenient operation, less pollution and shorter manufacturing period. In vibratory welding, workpiece vibrates in the whole welding process and it mainly effects the welding solidification to improve the quality. Vibration facilitates the release of dissolved gases and the resulting weld beads greatly exhibit reduced porosity. Mechanical properties of the welds prepared under vibratory conditions are dependent on the structural changes of the welds This paper presents the solidification behaviour and changes occurs in mechanical properties under vibratory welding condition.

  12. Dynamic Mechanical Behavior and Numerical Simulation of Frozen Soil under Impact Loading

    Directory of Open Access Journals (Sweden)

    Dan Zhang

    2016-01-01

    Full Text Available Split Hopkinson pressure bars (SHBP were used to perform impact experiments on frozen soil under various impact velocities and temperatures to analyze the effect of these parameters on the mechanical behavior of the soil. Based on the Holmquist-Johnson-Cook constitutive model, the dynamic mechanical properties under impact loading were analyzed. The SHPB experiments of frozen soil were also simulated using the finite element analysis software LS-DYNA, and the simulation results were similar to the experimental results. The temperature effect, strain rate effect, and the destruction process of the frozen soil as well as the propagation process of stress waves in the incident bar, transmission bar, and frozen soil specimen were investigated. This work provides a good theoretical basis and technical support for frozen soil engineering applications.

  13. Diffusion modeling of ATP signaling suggests a partially regenerative mechanism underlies astrocyte intercellular calcium waves

    Directory of Open Access Journals (Sweden)

    2008-07-01

    Full Text Available Network signaling through astrocyte syncytiums putatively contribute to the regulation of a number of both physiological and pathophysiological processes in the mammalian central nervous system. As such, an understanding of the underlying mechanisms is critical to determining any roles played by signaling through astrocyte networks. Astrocyte signaling is primarily mediated by the propagation of intercellular calcium waves in the sense that paracrine signaling results in measurable intracellular calcium transients. Although the molecular mechanisms are relatively well known, there is conflicting data regarding the mechanism by which the signal propagates through the network. Experimentally there is evidence for both a point source signaling model in which adenosine triphosphate (ATP is released by an initially activated astrocyte only, and a regenerative signaling model in which downstream astrocytes release ATP. We modeled both conditions as a simple lumped parameter phenomenological diffusion model and show that the only possible mechanism that can accurately reproduce experimentally measured results is a dual signaling mechanism that incorporates elements of both proposed signaling models. Specifically, we were able to accurately simulate experimentally measured in vitro intercellular calcium wave dynamics by assuming a point source signaling model with a downstream regenerative component. These results suggest that seemingly conflicting data in the literature are actually complimentary, and represents a highly efficient and robustly engineered signaling mechanism.

  14. From Sound to Significance: Exploring the Mechanisms Underlying Emotional Reactions to Music.

    Science.gov (United States)

    Juslin, Patrik N; Barradas, Gonçalo; Eerola, Tuomas

    2015-01-01

    A common approach to studying emotional reactions to music is to attempt to obtain direct links between musical surface features such as tempo and a listener's responses. However, such an analysis ultimately fails to explain why emotions are aroused in the listener. In this article we explore an alternative approach, which aims to account for musical emotions in terms of a set of psychological mechanisms that are activated by different types of information in a musical event. This approach was tested in 4 experiments that manipulated 4 mechanisms (brain stem reflex, contagion, episodic memory, musical expectancy) by selecting existing musical pieces that featured information relevant for each mechanism. The excerpts were played to 60 listeners, who were asked to rate their felt emotions on 15 scales. Skin conductance levels and facial expressions were measured, and listeners reported subjective impressions of relevance to specific mechanisms. Results indicated that the target mechanism conditions evoked emotions largely as predicted by a multimechanism framework and that mostly similar effects occurred across the experiments that included different pieces of music. We conclude that a satisfactory account of musical emotions requires consideration of how musical features and responses are mediated by a range of underlying mechanisms. PMID:26442337

  15. Underlying neural mechanisms of mirror therapy: Implications for motor rehabilitation in stroke

    OpenAIRE

    Kamal Narayan Arya

    2016-01-01

    Mirror therapy (MT) is a valuable method for enhancing motor recovery in poststroke hemiparesis. The technique utilizes the mirror-illusion created by the movement of sound limb that is perceived as the paretic limb. MT is a simple and economical technique than can stimulate the brain noninvasively. The intervention unquestionably has neural foundation. But the underlying neural mechanisms inducing motor recovery are still unclear. In this review, the neural-modulation due to MT has been expl...

  16. Diffusion Modeling of ATP Signaling Suggests a Partially Regenerative Mechanism Underlies Astrocyte Intercellular Calcium Waves

    OpenAIRE

    MacDonald, Christopher L.; Yu, Diana; Buibas, Marius; Silva, Gabriel A.

    2008-01-01

    Network signaling through astrocyte syncytiums putatively contribute to the regulation of a number of both physiological and pathophysiological processes in the mammalian central nervous system. As such, an understanding of the underlying mechanisms is critical to determining any roles played by signaling through astrocyte networks. Astrocyte signaling is primarily mediated by the propagation of intercellular calcium waves (ICW) in the sense that paracrine signaling results in measurable intr...

  17. Adverse Effects from Clenbuterol and Ractopamine on Nematode Caenorhabditis elegans and the Underlying Mechanism

    OpenAIRE

    Zhuang, Ziheng; Zhao, Yunli; Wu, Qiuli; Li, Min; Liu, Haicui; Sun, Lingmei; Gao, Wei; Wang, Dayong

    2014-01-01

    In the present study, we used Caenorhabditis elegans assay system to investigate in vivo toxicity from clentuberol and ractopamine and the possible underlying mechanism. Both acute and prolonged exposures to clentuberol or ractopamine decreased brood size and locomotion behavior, and induced intestinal autofluorescence and reactive oxygen species (ROS) production. Although acute exposure to the examined concentrations of clentuberol or ractopamine did not induce lethality, prolonged exposure ...

  18. Mechanical Properties of Brittle Materials and Their Single Fracture under Dynamic Loading

    OpenAIRE

    YASHIMA, Saburo; Kanda, Yoshiteru; Saito, Fumio; Sasaki, Toru; Iijima, Masayoshi; HASHIMOTO, Hitoshi

    1983-01-01

    The meaning of study on single particle crushing is recognized at which it is regarded the accumulation of single particle crushing as the comminution performed in practical operations stochastic phenomena. Especially, experimental data concerning the mechanical properties of brittle solids measured under dynamic loading are so far very few. Further, the experimental data concerning compressive strength, sphere compressive strength, fracture energy, new surface produced and fracture surface e...

  19. Identifying serotonergic mechanisms underlying the corticolimbic response to threat in humans

    DEFF Research Database (Denmark)

    Fisher, Patrick M; Hariri, Ahmad R

    2013-01-01

    A corticolimbic circuit including the amygdala and medial prefrontal cortex (mPFC) plays an important role in regulating sensitivity to threat, which is heightened in mood and anxiety disorders. Serotonin is a potent neuromodulator of this circuit; however, specific serotonergic mechanisms......-dependent functional magnetic resonance imaging. This multi-modal neuroimaging strategy can be integrated with additional techniques including imaging genetics and pharmacological challenge paradigms to more clearly understand how serotonin signalling modulates neural pathways underlying sensitivity to threat...

  20. Genetic mechanisms underlying apimaysin and maysin synthesis and corn earworm antibiosis in maize (Zea mays L.).

    OpenAIRE

    Lee, E A; Byrne, P.F.; McMullen, M D; Snook, M E; Wiseman, B. R.; Widstrom, N W; Coe, E. H.

    1998-01-01

    C-glycosyl flavones in maize silks confer resistance (i.e., antibiosis) to corn earworm (Helicoverpa zea [Boddie]) larvae and are distinguished by their B-ring substitutions, with maysin and apimaysin being the di- and monohydroxy B-ring forms, respectively. Herein, we examine the genetic mechanisms underlying the synthesis of maysin and apimaysin and the corresponding effects on corn earworm larval growth. Using an F2 population, we found a quantitative trait locus (QTL), rem1, which account...

  1. Mechanical Behavior of BFRP-Steel Composite Plate under Axial Tension

    OpenAIRE

    Yunyu Li; Yanlei Wang; Jinping Ou

    2014-01-01

    Combining the advantages of basalt fiber-reinforced polymer (BFRP) material and steel material, a novel BFRP-steel composite plate (BSP) is proposed, where a steel plate is sandwiched between two outer BFRP laminates. The main purpose of this research is to investigate the mechanical behavior of the proposed BSP under uniaxial tension and cyclic tension. Four groups of BSP specimens with four different BFRP layers and one control group of steel plate specimens were prepared. A uniaxial tensil...

  2. Mechanisms underlying the effects of inulin-type fructans on the intestinal calcium absorption

    OpenAIRE

    Raschka, Ladislav

    2005-01-01

    Inulin-type fructans in a diet are selectively fermented by the large intestinal microflora which causes a multitude of effects that are considered as beneficial for human health and well-being. One of these well documented actions is an increased intestinal calcium absorption, similarly observed in experimental animals and in humans. Since the underlying mechanisms are not yet understood, various in vivo and in vitro experiments with rats were conducted to elucidate the molecular actions of ...

  3. Degradation Of H.V. Generator Insulation Under Mechanical, Electrical And Thermal Stresses

    OpenAIRE

    Ramu, TS

    1990-01-01

    The paper presents the results of ageing experiments under combined electrical, mechanical (vibration) and thermal stresses on epoxy bonded mica insulation. Actual 11 KV machine coils designed for use in 1 MW rotating machines are used as the specimens. Both diagnostic and destructive tests were carried out to assess the amount of ageing. It was observed that the incremental loss tangent and partial discharge energy per cycle increase monotonically with time of ageing and that the dielectric...

  4. The Mechanical Fracture of a Railway Bogie under Cyclic Loading by Ansys

    Directory of Open Access Journals (Sweden)

    Zellagui Redouan

    2015-01-01

    Full Text Available The main objective this study has been to modeling a train bogie in order to highlight some flaws. Indeed, during the operation, premature deterioration of the bogie axles was observed. The purpose of this model is to present a numerical model to predict the mechanical behavior under different cyclic form of stress. The numeric and geometric model will be directed by Ansys software.

  5. The statistical mechanics of a polygenic character under stabilizing selection, mutation and drift

    OpenAIRE

    de Vladar, H. P.; Barton, N. H.

    2011-01-01

    By exploiting an analogy between population genetics and statistical mechanics, we study the evolution of a polygenic trait under stabilizing selection, mutation and genetic drift. This requires us to track only four macroscopic variables, instead of the distribution of all the allele frequencies that influence the trait. These macroscopic variables are the expectations of: the trait mean and its square, the genetic variance, and of a measure of heterozygosity, and are derived from a generati...

  6. THE EQUIVALENT MECHANICAL MODELS OF LIQUID SLOSHING IN A SPHERICAL TANK WITH SPACER UNDER LOW GRAVITY

    Institute of Scientific and Technical Information of China (English)

    CHENG Xu-duo; HU Mei-zhu; WEN Ji-hua

    2005-01-01

    The dynamics of liquid sloshing in a spherical tank with spacer under low gravity was investigated. By extending the characteristic functions, the frequencies of liquid free-sloshing, reaction force and moments on the wall of tank were obtained. By mechanical equivalent principle, the equivalent models of spring-vibrator-damper of liquid sloshing were given. The numerical results obtained show when a spacer is inserted in the tank, the sloshing frequency of liquid and the sloshing mass of liquid will decrease.

  7. COSTS OF GREENHOUSE GAS EMISSIONS ABATEMENT UNDER THE CLEAN DEVELOPMENT MECHANISM

    OpenAIRE

    Rahman, Shaikh M.; Larson, Donald F.; ARIEL DINAR

    2015-01-01

    This paper examines the costs of emissions abatement through various types of projects financed under the Clean Development Mechanism (CDM) of the Kyoto Protocol. Using project data, cost functions are estimated applying alternative functional forms. Results show that the average cost of abatement decreases with the volume of abatement, showing economies of scale and suggesting that reducing emissions through small projects is relatively expensive. Results also show significant variation in t...

  8. Stress State Analysis and Failure Mechanisms of Masonry Columns Reinforced with FRP under Concentric Compressive Load

    OpenAIRE

    Jiří Witzany; Radek Zigler

    2016-01-01

    The strengthening and stabilization of damaged compressed masonry columns with composites based on fabrics of high-strength fibers and epoxy resin, or polymer-modified cement mixtures, belongs to novel, partially non-invasive and reversible progressive methods. The stabilizing and reinforcing effect of these fabrics significantly applies to masonry structures under concentric compressive loading whose failure mechanism is characterized by the appearance and development of vertical tensile cra...

  9. Contribution to the study of the dynamic behavior of mechanical transmissions under non-stationary conditions

    OpenAIRE

    Hammami, Ahmed

    2015-01-01

    ABSTRACT: Research developments devoted todynamic behavior characterization of mechanical transmissions is always an interesting topic since there is a continuous need to decrease vibration and noise while keeping high compactness and efficiency. Most studies were focused on transmissions running under stationary condition where speed and load are assumed constant. However, repetitive run ups, time varying loading and speed conditions are very common in many industrial applications which impl...

  10. Dissecting the Signaling Mechanisms Underlying Recognition and Preference of Food Odors

    OpenAIRE

    Harris, Gareth; Shen, Yu; Ha, Heonick; Donato, Alessandra; Wallis, Samuel; Zhang, Xiaodong; Zhang, Yun

    2014-01-01

    Food is critical for survival. Many animals, including the nematode Caenorhabditis elegans, use sensorimotor systems to detect and locate preferred food sources. However, the signaling mechanisms underlying food-choice behaviors are poorly understood. Here, we characterize the molecular signaling that regulates recognition and preference between different food odors in C. elegans. We show that the major olfactory sensory neurons, AWB and AWC, play essential roles in this behavior. A canonical...

  11. Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms

    OpenAIRE

    Steiner, Sandro; Bisig, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2016-01-01

    Diesel engine emissions are among the most prevalent anthropogenic pollutants worldwide, and with the growing popularity of diesel-fueled engines in the private transportation sector, they are becoming increasingly widespread in densely populated urban regions. However, a large number of toxicological studies clearly show that diesel engine emissions profoundly affect human health. Thus the interest in the molecular and cellular mechanisms underlying these effects is large, especially c...

  12. Mechanisms underlying reductant-induced reactive oxygen species formation by anticancer copper(II) compounds

    OpenAIRE

    Kowol, Christian R.; Heffeter, Petra; Miklos, Walter; Gille, Lars; Trondl, Robert; Cappellacci, Loredana; Berger, Walter; Keppler, Bernhard K.

    2011-01-01

    Intracellular generation of reactive oxygen species (ROS) via thiol-mediated reduction of copper(II) to copper(I) has been assumed as the major mechanism underlying the anticancer activity of copper(II) complexes. The aim of this study was to compare the anticancer potential of copper(II) complexes of Triapine (3-amino-pyridine-2-carboxaldehyde thiosemicarbazone; currently in phase II clinical trials) and its terminally dimethylated derivative with that of 2-formylpyridine thiosemicarbazone a...

  13. The chemical and mechanical behaviors of polymer / reactive metal systems under high strain rates

    Science.gov (United States)

    Shen, Yubin

    As one category of energetic materials, impact-initiated reactive materials are able to release a high amount of stored chemical energy under high strain rate impact loading, and are used extensively in civil and military applications. In general, polymers are introduced as binder materials to trap the reactive metal powders inside, and also act as an oxidizing agent for the metal ingredient. Since critical attention has been paid on the metal / metal reaction, only a few types of polymer / reactive metal interactions have been studied in the literature. With the higher requirement of materials resistant to different thermal and mechanical environments, the understanding and characterization of polymer / reactive metal interactions are in great demand. In this study, PTFE (Polytetrafluoroethylene) 7A / Ti (Titanium) composites were studied under high strain rates by utilizing the Taylor impact and SHPB tests. Taylor impact tests with different impact velocities, sample dimensions and sample configurations were conducted on the composite, equipped with a high-speed camera for tracking transient images during the sudden process. SHPB and Instron tests were carried out to obtain the stress vs. strain curves of the composite under a wide range of strain rates, the result of which were also utilized for fitting the constitutive relations of the composite based on the modified Johnson-Cook strength model. Thermal analyses by DTA tests under different flow rates accompanied with XRD identification were conducted to study the reaction mechanism between PTFE 7A and Ti when only heat was provided. Numerical simulations on Taylor impact tests and microstructural deformations were also performed to validate the constitutive model built for the composite system, and to investigate the possible reaction mechanism between two components. The results obtained from the high strain rate tests, thermal analyses and numerical simulations were combined to provide a systematic study on

  14. A fracture mechanics study of tungsten failure under high heat flux loads

    International Nuclear Information System (INIS)

    The performance of fusion devices is highly dependent on plasma-facing components. Tungsten is the most promising candidate material for armors in plasma-facing components in ITER and DEMO. However, the brittleness of tungsten below the ductile-to-brittle transition temperature is very critical to the reliability of plasma-facing components. In this work, thermo-mechanical and fracture behaviors of tungsten are predicted numerically under fusion relevant thermal loadings.

  15. The Dynamic Evolution of Firms’ Pollution Control Strategy under Graded Reward-Penalty Mechanism

    OpenAIRE

    Li Ming Chen; Wen Ping Wang

    2016-01-01

    The externality of pollution problem makes firms lack enough incentive to reduce pollution emission. Therefore, it is necessary to design a reasonable environmental regulation mechanism so as to effectively urge firms to control pollution. In order to inspire firms to control pollution, we divide firms into different grades according to their pollution level and construct an evolutionary game model to analyze the interaction between government’s regulation and firms’ pollution control under g...

  16. FInal Report: First Principles Modeling of Mechanisms Underlying Scintillator Non-Proportionality

    Energy Technology Data Exchange (ETDEWEB)

    Aberg, Daniel [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Sadigh, Babak [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Zhou, Fei [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-01

    This final report presents work carried out on the project “First Principles Modeling of Mechanisms Underlying Scintillator Non-Proportionality” at Lawrence Livermore National Laboratory during 2013-2015. The scope of the work was to further the physical understanding of the microscopic mechanisms behind scintillator nonproportionality that effectively limits the achievable detector resolution. Thereby, crucial quantitative data for these processes as input to large-scale simulation codes has been provided. In particular, this project was divided into three tasks: (i) Quantum mechanical rates of non-radiative quenching, (ii) The thermodynamics of point defects and dopants, and (iii) Formation and migration of self-trapped polarons. The progress and results of each of these subtasks are detailed.

  17. Experimental Study on the Thermal Damage Characteristics of Limestone and Underlying Mechanism

    Science.gov (United States)

    Zhang, Weiqiang; Sun, Qiang; Hao, Shuqing; Wang, Bo

    2016-08-01

    This work discusses an experimental investigation on the thermal damage characteristics of limestone and underlying mechanism. Cylindrical rock samples were heated to a specific temperature level of 25, 100, 200, 300, 400, 500, 600, 700, 800, and 900 °C. Then the thermal damage evolution equation was established based on the experimental results and the characteristics of thermal damage were analyzed. Last, possible mechanisms for the observed thermo-physical and mechanical response are discussed. The results show that with the increase of temperature in the tested range of temperature, the P-wave velocity, peak compressive strength and elastic modulus decrease, but the peak strain increases; the damage factors increase faster in 200-600 °C; the development of high-temperature-induced cracks conforms to the dislocation theory; the decomposition of magnesium carbonate and dolomite is the main reaction in the tested temperature range.

  18. Compressive damage mechanism of GFRP composites under off-axis loading: Experimental and numerical investigations

    DEFF Research Database (Denmark)

    Zhou, H.W.; Li, H.Y.; Gui, L.L.;

    2013-01-01

    angles between the loading vector and fiber direction were carried out under scanning electron microscopy (SEM) in situ observation. The damage mechanisms as well as stress strain curves were obtained in the experiments. It was shown that the compressive strength of composites drastically reduces when...... the angle between the fiber direction and the loading vector goes from 0° to 45° (by 2.3–2.6 times), and then slightly increases (when the angle approaches 80–90°). At the low angles between the fiber and the loading vector, fiber buckling and kinking are the main mechanisms of fiber failure....... With increasing the angle between the fiber and applied loading, failure of glass fibers is mainly controlled by shear cracking. For the computational analysis of the damage mechanisms, 3D multifiber unit cell models of GFRP composites and X-FEM approach to the fracture modeling were used. The computational...

  19. Investigation of mechanical properties of twin gold crystal nanowires under uniaxial load by molecular dynamics method

    Science.gov (United States)

    Zhang, Guo-Wei; Yang, Zai-Lin; Luo, Gang

    2016-08-01

    Twin gold crystal nanowires, whose loading direction is parallel to the twin boundary orientation, are simulated. We calculate the nanowires under tensile or compressive loads, different length nanowires, and different twin boundary nanowires respectively. The Young modulus of nanowires under compressive load is about twice that under tensile load. The compressive properties of twin gold nanowires are superior to their tensile properties. For different length nanowires, there is a critical value of length with respect to the mechanical properties. When the length of nanowire is greater than the critical value, its mechanical properties are sensitive to length. The twin boundary spacing hardly affects the mechanical properties. Project supported by the National Science and Technology Pillar Program, China (Grant No. 2015BAK17B06), the Earthquake Industry Special Science Research Foundation Project, China (Grant No. 201508026-02), the Natural Science Foundation of Heilongjiang Province, China (Grant No. A201310), and the Scientific Research Starting Foundation for Post Doctorate of Heilongjiang Province, China (Grant No. LBHQ13040).

  20. Scaling laws and deformation mechanisms of nanoporous copper under adiabatic uniaxial strain compression

    International Nuclear Information System (INIS)

    A series of large-scale molecular dynamics simulations were conducted to investigate the scaling laws and the related atomistic deformation mechanisms of Cu monocrystal samples containing randomly placed nanovoids under adiabatic uniaxial strain compression. At onset of yielding, plastic deformation is accommodated by dislocations emitted from void surfaces as shear loops. The collapse of voids are observed by continuous emissions of dislocations from void surfaces and their interactions with further plastic deformation. The simulation results also suggest that the effect modulus, the yield stress and the energy aborption density of samples under uniaxial strain are linearly proportional to the relative density ρ. Moreover, the yield stress, the average flow stress and the energy aborption density of samples with the same relative density show a strong dependence on the void diameter d, expressed by exponential relations with decay coefficients much higher than -1/2. The corresponding atomistic mechanisms for scaling laws of the relative density and the void diameter were also presented. The present results should provide insights for understanding deformation mechanisms of nanoporous metals under extreme conditions

  1. Design options for cooperation mechanisms under the new European renewable energy directive

    International Nuclear Information System (INIS)

    In June 2009, a new EU directive on the promotion of renewable energy sources (RES) entered into effect. The directive 2009/28/EC, provides for three cooperation mechanisms that will allow member states to achieve their national RES target in cooperation with other member states: statistical transfer, joint projects, and joint support schemes. This article analyses the pros and cons of the three mechanisms and explores design options for their implementation through strategic and economic questions: How to counterbalance the major drawbacks of each mechanism? How to reflect a balance of costs and benefits between the involved member states? The analysis identifies a number of design options that respond to these questions, e.g. long term contracts to ensure sufficient flexibility for statistical transfers, a coordinated, standardised joint project approach to increase transparency in the European market, and a stepwise harmonisation of joint support schemes that is based on a cost-effective accounting approach. One conclusion is that the three cooperation mechanisms are closely interlinked. One can consider their relation to be a gradual transition from member state cooperation under fully closed national support systems in case of statistical transfers, to cooperation under fully open national support systems in a joint support scheme.

  2. Non-twinning deformation mechanism of pure copper under high speed electromagnetic forming

    International Nuclear Information System (INIS)

    Highlights: • Non-twinning deformation mechanism of pure Cu under electromagnetic forming was observed. • Twin boundaries in Cu decrease with increasing plastic strain during EMF process. • The mechanism is understood deeply on the basis of the nucleation of partial and perfect dislocations. - Abstract: The conventional high strain rate forming usually induces the occurrence of deformation twins in face-centered-cubic metals such as copper with medium stacking fault energy. In order to investigate the possible mechanical twinning of copper under a new type of high speed processing technique—electromagnetic forming, the pure copper was electromagnetically bulged followed by microstructural characterization through electron backscattered diffraction and transmission electron microscopy. The results revealed a reduction of twin boundaries with increasing plastic strain, indicates a non-twinning deformation mechanism which is different from the deformation twinning observed in other high speed forming process. The physical origin of the present phenomenon is discussed in detail according to the energy barrier and the critical shear stress that are required for the nucleation of perfect and partial dislocations that determine the formation of twins

  3. CCI-Based Link Quality Estimation Mechanism for Wireless Sensor Networks under Perceive Packet Loss

    Directory of Open Access Journals (Sweden)

    Linlan Liu

    2010-04-01

    Full Text Available This paper proposes a CCI-Based (Chip Correlation Indicator link quality estimation mechanism for wireless sensor networks, which is used under the case of perceive packet loss. This mechanism studies on the relationship model between CCI and PRR (Packet Receive Rate under the case of perceive packet loss, which is carried out on the foundation of doing analysis of the sending and receiving process of data frame and the factors which affect link quality. The building of the CCI-PRR relationship model is divided into two parts: the first is the building of CCI-SER (Symbol Error Rate relationship model, and the second is the building of SER-PRR relationship model. During estimation period, nodes continuously track the CCI, and Kalman Filter is used to do denoising of CCI due to the large fluctuating range of the raw CCI. Then the denoised CCI is mapped into a local CCI-PRR mapping model to get the corresponding PRR. Experiment results have validated the correctness of the CCI-PRR mapping model, and the results also show that compared with counting-based PRR estimation mechanism, the mechanism proposed in this paper can use fewer probe packets to get a relatively accurate estimation value, it has the advantage of decreasing extra energy consumption caused by sending large number of probe packets.

  4. Wear mechanism for spray deposited Al-Si/SiCp composites under dry sliding condition

    Institute of Scientific and Technical Information of China (English)

    滕杰; 李华培; 陈刚

    2015-01-01

    Al-Si/15%SiCp (volume fraction) composites with different silicon contents were fabricated by spray deposition technique, and typical microstructures of these composites were studied by optical microscopy (OM). Dry sliding wear tests were carried out using a block-on-ring wear machine to investigate the effect of applied load range of 10−220 N on the wear and friction behavior of these composites sliding against SAE 52100 grade bearing steel. Scanning electron microscopy (SEM) and energy-dispersive X-ray microanalysis (EDAX) were utilized to examine the morphologies of the worn surfaces in order to observe the wear characteristics and investigate the wear mechanism. The results show that the wear behavior of these composites is dependent on the silicon content in the matrix alloy and the applied load. Al-Si/15%SiCp composites with higher silicon content exhibit better wear resistance in the applied load range. Under lower loads, the major wear mechanisms are oxidation wear and abrasive wear for all tested composites. Under higher loads, severe adhesive wear becomes the main wear mechanisms for Al-7Si/15%SiCp and Al-13Si/15%SiCp composites, while Al-20Si/15%SiCp presents a compound wear mechanism, consisting of oxidation, abrasive wear and adhesion wear.

  5. A mathematical model of cortical bone remodeling at cellular level under mechanical stimulus

    Institute of Scientific and Technical Information of China (English)

    Qing-Hua Qin; Ya-Nan Wang

    2012-01-01

    A bone cell population dynamics model for cortical bone remodeling under mechanical stimulus is developed in this paper.The external experiments extracted from the literature which have not been used in the creation of the model are used to test the validity of the model.Not only can the model compare reasonably well with these experimental results such as the increase percentage of final values of bone mineral content (BMC) and bone fracture energy (BFE) among different loading schemes (which proves the validity of the model),but also predict the realtime development pattern of BMC and BFE,as well as the dynamics of osteoblasts (OBA),osteoclasts (OCA),nitric oxide (NO) and prostaglandin E2 (PGE2) for each loading scheme,which can hardly be monitored through experiment.In conclusion,the model is the first of its kind that is able to provide an insight into the quantitative mechanism of bone remodeling at cellular level by which bone cells are activated by mechanical stimulus in order to start resorption/formation of bone mass.More importantly,this model has laid a solid foundation based on which future work such as systemic control theory analysis of bone remodeling under mechanical stimulus can be investigated.The to-be identified control mechanism will help to develop effective drugs and combined nonpharmacological therapies to combat bone loss pathologies.Also this deeper understanding of how mechanical forces quantitatively interact with skeletal tissue is essential for the generation of bone tissue for tissue replacement purposes in tissue engineering.

  6. Individuality of breathing patterns in patients under noninvasive mechanical ventilation evidenced by chaotic global models

    Science.gov (United States)

    Letellier, Christophe; Rodrigues, Giovani G.; Muir, Jean-François; Aguirre, Luis A.

    2013-03-01

    Autonomous global models based on radial basis functions were obtained from data measured from patients under noninvasive mechanical ventilation. Some of these models, which are discussed in the paper, turn out to have chaotic or quasi-periodic solutions, thus providing a first piece of evidence that the underlying dynamics of the data used to estimate the global models are likely to be chaotic or, at least, have a chaotic component. It is explicitly shown that one of such global models produces attractors characterized by a Horseshoe map, two models produce toroidal chaos, and one model produces a quasi-periodic regime. These topologically inequivalent attractors evidence the individuality of breathing profiles observed in patient under noninvasive ventilation.

  7. Aetiology and resistance patterns of community-acquired pneumonia in León, Nicaragua

    NARCIS (Netherlands)

    Matute, A J; Brouwer, W P; Hak, E; Delgado, E; Alonso, E; Hoepelman, I M

    2006-01-01

    We conducted a prevalence study to gain greater insight into the aetiology, bacterial resistance and risk factors for community-acquired pneumonia (CAP) in the region of León, Nicaragua. During the period from July 2002 to January 2005, all consecutive patients with signs and symptoms suggestive of

  8. Perspectives on the Aetiology of ODD and CD: A Grounded Theory Approach

    Science.gov (United States)

    McFarland, Patrick; Sanders, James; Hagen, Bradley

    2016-01-01

    Antisocial disorders, such as oppositional defiant disorder (ODD) and conduct disorder (CD), are common reasons for youth to be seen for clinical intervention. The intent of this constructivist grounded theory study was to evaluate clinicians' perspectives on the aetiology of antisocial disorders. Six professionals from various professional…

  9. Aetiology of maxillofacial fractures: a review of published studies during the last 30 years

    NARCIS (Netherlands)

    P. Boffano; S.C. Kommers; K.H. Karagozoglu; T. Forouzanfar

    2014-01-01

    The epidemiology of facial trauma may vary widely across countries (and even within the same country), and is dependent on several cultural and socioeconomic factors. We know of few reviews of published reports that have considered the sex distribution and aetiology of maxillofacial trauma throughou

  10. Barotrauma as aetiological cascade of fatal intrapulmonary plastic bronchitis in a post-Fontan child

    OpenAIRE

    Elahi, Maqsood; Poh, Chin-Leng; Ravindranathan, Hari; Grant, Peter

    2012-01-01

    The role of barotrauma in the exaggeration of plastic bronchitis after Fontan circulation has yet to be examined. We aim to describe a case of a 4-year old post-Fontan circulation girl where barotrauma suffered during commercial air travel played a role in the aetiological cascade of plastic bronchitis.

  11. Value of rapid aetiological diagnosis in optimization of antimicrobial treatment in bacterial community acquired pneumonia.

    Science.gov (United States)

    Mareković, Ivana; Plecko, Vanda; Boras, Zagorka; Pavlović, Ladislav; Budimir, Ana; Bosnjak, Zrinka; Puretić, Hrvoje; Zele-Starcević, Lidija; Kalenić, Smilja

    2012-06-01

    In 80 adult patients with community acquired pneumonia (CAP) conventional microbiological methods, polymerase chain reaction (PCR) and serum C-reactive protein (CRP) levels were performed and the appropriateness of the empirical antimicrobial treatment was evaluated according to bacterial pathogen detected. The aetiology was determined in 42 (52.5%) patients, with Streptococcus pneumoniae as the most common pathogen. PCR applied to bronchoalveolar lavage (BAL) provided 2 and PCR on sputum samples 1 additional aetiological diagnosis of CAP The mean CRP values in the S. pneumoniae group were not significantly higher than in the group with other aetiological diagnoses (166.89 mg/L vs. 160.11 mg/L, p = 0.457). In 23.8% (10/42) of patients with determined aetiology, the empirical antimicrobial treatment was inappropriate. PCR tests need further investigation, particularly those for the atypical pathogens, as they are predominant in inappropriately treated patients. Our results do not support the use of CRP as a rapid test to guide the antimicrobial treatment in patients with CAP. PMID:22856222

  12. Modeling and numerical analysis of granite rock specimen under mechanical loading and fire

    Directory of Open Access Journals (Sweden)

    Luc Leroy Ngueyep. Mambou

    2015-02-01

    Full Text Available The effect of ISO 834 fire on the mechanical properties of granite rock specimen submitted to uniaxial loading is numerically investigated. Based on Newton's second law, the rate-equation model of granite rock specimen under mechanical load and fire is established. The effect of heat treatment on the mechanical performance of granite is analyzed at the center and the ends of specimen. At the free end of granite rock specimen, it is shown that from 20 °C to 500 °C, the internal stress and internal strain are weak; whereas above 500 °C, they start to increase rapidly, announcing the imminent collapse. At the center of specimen, the analysis of the internal stress and internal strain reveals that the fire reduces the mechanical performance of granite significantly. Moreover, it is found that after 3 min of exposure to fire, the mechanical energy necessary to fragment the granite can be reduced up to 80%.

  13. Main mechanisms of material properties degradation under reactor pressure vessel operating conditions

    International Nuclear Information System (INIS)

    In the process of NPP equipment operation materials are subjected to a prolonged influence of loads, associated with the variation of inner pressure and temperature under various conditions. Each equipment element damage is associated with some material fracture mechanism. For NPP equipment the mechanisms of irreversible damage accumulation are related with: irradiation embrittlement, thermal and strain aging, fatigue damages from mechanical and thermal loading, stress corrosion and fatigue corrosion, creep and thermal relaxation stresses, erosion and weak, thermal shock. The basic tasks of specialists working in the sphere of the provision of reliability and service life of nuclear power equipment are not only the determination of the main mechanisms of damages and reasons of their appearance, but also the study of methods which would permit to control these properties completely. By giving some examples of Russian NPP equipment with VVER-440 and VVER-1000 reactors the paper presents most typical degradation mechanisms of equipment material properties, including weldments, in the process of operation and methods to recover by using various technological means. (author)

  14. Modelling of damage initiation mechanism in rubber sheet composites under the static loading

    Directory of Open Access Journals (Sweden)

    T. Da Silva Botelho

    2007-06-01

    Full Text Available Purpose: Modelling – Finite Element Analysis (FEA of the damage initiation mechanisms in thin rubber sheet composites were carried out under static solicitation at room temperature. Natural rubber vulcanised and reinforced by carbon, NR is used in this study.Design/methodology/approach: Experimental results were compared with that of the Finite Element Analysis (FEA. Damage mechanism has been described with a threshold criterion to identify the tearing resistance, characteristic energy for tearing (T and damage in the specimens was evaluated just at the beginning of the tearing by assuming large strain. Typical specimen geometry of thin sheet rubber composite materials was considered under static tensile tests conducted on the smooth and notched specimens with variable depths.Findings: This stage of this research, a finite element analysis (FEA has been applied under the same conditions of this part in order to obtain the agreement between experimental and FEA results. The numerical modelling is a representation of a previous experimental study. The specimen is stretched more than once its initial size, so that large strains occur. A hyper elastic Mooney-Rivlin law and a Griffith criterion are chosen.Practical implications: A tearing criterion was suggested in the case of simple tension conditions by assuming large strain. In the next step of this study, a finite element analysis (FEA will be applied under the same conditions of this part in order to obtain the agreement between experimental and FEA results.Originality/value: This study proposes a threshold criterion for the damage just at the beginning of the tearing for thin sheet rubber composites and gives a detail discussion for explaining the damage mechanisms. Comparison of FEA results with those of experimental studies gives many facilities for the sake of simplicity in industrial application.

  15. Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions

    Science.gov (United States)

    Zhang, Peng; Yuan, Songhu; Liao, Peng

    2016-01-01

    Hydroxyl radicals (radOH) produced from pyrite oxidation by O2 have been recognized, but mechanisms regarding the production under anoxic and oxic conditions are not well understood. In this study, the mechanisms of radOH production from pyrite oxidation under anoxic and oxic conditions were explored using benzoic acid (BA) as an radOH probe. Batch experiments were conducted at pH 2.6 to explore radOH production under anoxic and oxic conditions. The cumulative radOH concentrations produced under anoxic and oxic conditions increased linearly to 7.5 and 52.2 μM, respectively within 10 h at 10 g/L pyrite. Under anoxic conditions, radOH was produced from the oxidation of H2O on the sulfur-deficient sites on pyrite surface, showing an increased production with the increase of pyrite surface exposure due to oxidation. Under oxic conditions, the formation of radOH proceeds predominantly via the two-electron reduction of O2 on pyrite surface along with a minor contribution from the oxidation of H2O on surface sulfur-defects and the reactions of Fe2+/sulfur intermediates with O2. For both O2 reduction and H2O oxidation on the surface sulfur-defects, H2O2 was the predominant intermediate, which subsequently transformed to radOH through Fenton mechanism. The radOH produced had a significant impact on the transformation of contaminants in the environment. Anoxic pyrite suspensions oxidized 13.9% As(III) (C0 = 6.67 μM) and 17.6% sulfanilamide (C0 = 2.91 μM) within 10 h at pH 2.6 and 10 g/L pyrite, while oxic pyrite suspensions improved the oxidation percentages to 55.4% for As(III) and 51.9% for sulfanilamide. The ratios of anoxic to oxic oxidation are consistent with the relative contribution of surface sulfur-defects to radOH production. However, Fe2+ produced from pyrite oxidation competed with the contaminants for radOH, which is of particular significance with the increase of time in a static environment. We conclude that radOH can be produced from abiotic oxidation of

  16. Psychogenic non-epileptic seizures: so-called psychiatric comorbidity and underlying defense mechanisms

    Directory of Open Access Journals (Sweden)

    Beghi M

    2015-09-01

    Full Text Available Massimiliano Beghi,1,2 Paola Beffa Negrini,1 Cecilia Perin,1,3 Federica Peroni,1,3 Adriana Magaudda,4 Cesare Cerri,1,3 Cesare Maria Cornaggia1,3 1Department of Surgery and Translational Medicine, University of Milano-Bicocca, 2Department of Mental Health, “Guido Salvini” Hospital, Garbagnate Milanese, Milan, Italy; 3Rehabilitation Medicine, Istituti Clinici Zucchi, Carate Brianza, Monza and Brianza, Italy; 4Epilepsy Center, Department of Neuroscience, University of Messina, Messina, Italy Abstract: In Diagnostic and Statistical Manual of Mental Disorders, fifth edition, psychogenic non-epileptic seizures (PNES do not have a unique classification as they can be found within different categories: conversion, dissociative, and somatization disorders. The ICD-10, instead, considers PNES within dissociative disorders, merging the dissociative disorders and conversion disorders, although the underlying defense mechanisms are different. The literature data show that PNES are associated with cluster B (mainly borderline personality disorders and/or to people with depressive or anxiety disorders. Defense mechanisms in patients with PNES with a prevalence of anxious/depressive symptoms are of “neurotic” type; their goal is to lead to a “split”, either vertical (dissociation or horizontal (repression. The majority of patients with this type of PNES have alexithymia traits, meaning that they had difficulties in feeling or perceiving emotions. In subjects where PNES are associated with a borderline personality, in which the symbolic function is lost, the defense mechanisms are of a more archaic nature (denial. PNES with different underlying defense mechanisms have different prognoses (despite similar severity of PNES and need usually a different treatment (pharmacological or psychological. Thus, it appears superfluous to talk about psychiatric comorbidity, since PNES are a different symptomatic expression of specific psychiatric disorders

  17. Microscale experimental investigation of deformation and damage of argillaceous rocks under cyclic hydric and mechanical loads

    International Nuclear Information System (INIS)

    Document available in abstract form only. Argillaceous rocks are possible host rocks for underground nuclear waste repositories. They exhibit complex coupled thermo-hydro-chemo-mechanical behavior, the description of which would strongly benefit from an improved experimental insight on their deformation and damage mechanisms at microscale. We present some recent observations of the evolution of these rocks at the scale of their composite microstructure, essentially made of a clay matrix with embedded carbonates and quartz particles with sizes ranging from a few to several tens of micrometers, when they are subjected to cyclic variations of relative humidity and mechanical loading. They are based on the combination of high definition and high resolution imaging in an environmental scanning electron microscope (ESEM), in situ hydro-mechanical loading of the samples, and digital image correlation techniques. Samples, several millimeters in diameter, are held at a constant temperature of 2 deg. Celsius while the vapor pressure in the ESEM chamber is varied from a few to several hundreds of Pascals, generating a relative humidity ranging from about 10% up to 90%. Results show a strongly heterogeneous deformation field at microscale, which is the result of complex hydro-mechanical interactions. In particular, it can be shown that local swelling incompatibilities can generate irreversible deformations in the clay matrix, even if the overall hydric deformations seem reversible. In addition, local damage can be generated, in the form of a network of microcracks, located in the bulk of the clay matrix and/or at the interface between clay and other mineral particles. The morphology of this network, described in terms of crack length, orientation and preferred location, has been observed to be dependent on the speed of the variation of the relative humidity, and is different in a saturation or desaturation process. Besides studying the deformation and damage under hydric

  18. Interactive evolution concept for analyzing a rock salt cavern under cyclic thermo-mechanical loading

    Science.gov (United States)

    König, Diethard; Mahmoudi, Elham; Khaledi, Kavan; von Blumenthal, Achim; Schanz, Tom

    2016-04-01

    The excess electricity produced by renewable energy sources available during off-peak periods of consumption can be used e.g. to produce and compress hydrogen or to compress air. Afterwards the pressurized gas is stored in the rock salt cavities. During this process, thermo-mechanical cyclic loading is applied to the rock salt surrounding the cavern. Compared to the operation of conventional storage caverns in rock salt the frequencies of filling and discharging cycles and therefore the thermo-mechanical loading cycles are much higher, e.g. daily or weekly compared to seasonally or yearly. The stress strain behavior of rock salt as well as the deformation behavior and the stability of caverns in rock salt under such loading conditions are unknown. To overcome this, existing experimental studies have to be supplemented by exploring the behavior of rock salt under combined thermo-mechanical cyclic loading. Existing constitutive relations have to be extended to cover degradation of rock salt under thermo-mechanical cyclic loading. At least the complex system of a cavern in rock salt under these loading conditions has to be analyzed by numerical modeling taking into account the uncertainties due to limited access in large depth to investigate material composition and properties. An interactive evolution concept is presented to link the different components of such a study - experimental modeling, constitutive modeling and numerical modeling. A triaxial experimental setup is designed to characterize the cyclic thermo-mechanical behavior of rock salt. The imposed boundary conditions in the experimental setup are assumed to be similar to the stress state obtained from a full-scale numerical simulation. The computational model relies primarily on the governing constitutive model for predicting the behavior of rock salt cavity. Hence, a sophisticated elasto-viscoplastic creep constitutive model is developed to take into account the dilatancy and damage progress, as well as

  19. Mechanical characteristics under monotonic and cyclic simple shear of spark plasma sintered ultrafine-grained nickel

    International Nuclear Information System (INIS)

    The present work focuses on understanding the mechanical behavior of bulk ultrafine-grained nickel specimens processed by spark plasma sintering of high purity nickel nanopowder and subsequently deformed under large amplitude monotonic simple shear tests and strain-controlled cyclic simple shear tests at room temperature. During cyclic tests, the samples were deformed up to an accumulated von Mises strain of about εVM = 0.75 (the flow stress was in the 650-700 MPa range), which is extremely high in comparison with the low tensile/compression ductility of this class of materials at quasi-static conditions. The underlying physical mechanisms were investigated by electron microscopy and X-ray diffraction profile analysis. Lattice dislocation-based plasticity leading to cell formation and dislocation interactions with twin boundaries contributed to the work-hardening of these materials. The large amount of plastic strain that has been reached during the shear tests highlights intrinsic mechanical characteristics of the ultrafine-grained nickel studied here.

  20. Ageing and Static Reliability of Concrete Structures under Temperature and Mechanical Loading

    International Nuclear Information System (INIS)

    The contribution presents some aspects of the static reliability of concrete structures under temperature effects and under mechanical loading. The mathematical model of a load-bearing concrete structure was performed using the FEM method. The temperature field and static stress that generated states of stress were taken into account. A brief description of some aspects of evaluation of the reliability within the primary circuit concrete structures is stated. The knowledge of actual physical and mechanical characteristics and chemical composition of concrete were necessary for obtaining correct results of numerical analysis. Studied problems were divided into a number of fields and worked out in details: 1. Verification of contemporary physical and mechanical characteristics of concrete (input parameters of the FEM models). 2. Checking of the concrete microstructure and verification of the grade and kind of possible microstructure changes. 3. Experimental verification of the boundary conditions from point of view of the temperature field and the radiation stress. 4. Setting up a mathematical model of the structure for an examination of the interaction of temperature and static stresses (finite element method, software ANSYS) in two alternatives: a) Macro-model representing the essential part of concrete structures in the proximity of the reactor, b) Model of extremely stressed parts of the concrete structure (a part of the macro-model)

  1. Mechanism Underlying the Spatial Pattern Formation of Dominant Tree Species in a Natural Secondary Forest.

    Directory of Open Access Journals (Sweden)

    Guodong Jia

    Full Text Available Studying the spatial pattern of plant species may provide significant insights into processes and mechanisms that maintain stand stability. To better understand the dynamics of naturally regenerated secondary forests, univariate and bivariate Ripley's L(r functions were employed to evaluate intra-/interspecific relationships of four dominant tree species (Populus davidiana, Betula platyphylla, Larix gmelinii and Acer mono and to distinguish the underlying mechanism of spatial distribution. The results showed that the distribution of soil, water and nutrients was not fragmented but presented clear gradients. An overall aggregated distribution existed at most distances. No correlation was found between the spatial pattern of soil conditions and that of trees. Both positive and negative intra- and interspecific relationships were found between different DBH classes at various distances. Large trees did not show systematic inhibition of the saplings. By contrast, the inhibition intensified as the height differences increased between the compared pairs. Except for Larix, universal inhibition of saplings by upper layer trees occurred among other species, and this reflected the vertical competition for light. Therefore, we believe that competition for light rather than soil nutrients underlies the mechanism driving the formation of stand spatial pattern in the rocky mountainous areas examined.

  2. Mechanical and structural characterization of tibial prosthetic interfaces before and after aging under simulated service conditions.

    Science.gov (United States)

    Cavaco, A; Ramalho, A; Pais, S; Durães, L

    2015-03-01

    Prosthesis interface is one of the most important components to promote individual׳s health and comfort, as it establishes direct contact with the skin and transfers loads generated during gait. The aim of this study was to mechanically characterize, three commercial interfaces (block copolymer, silicone gel and silicone elestomer), under static and dynamic conditions, before and after undergoing a process of chemical aging in synthetic sweat for periods up to 90 days. Static mechanical compression tests were performed on the materials, as well as fatigue tests to assess their static and dynamic mechanical behaviors, respectively. For the second, a sinusoidal load was applied with an appropriate range of deformation for each material. Several analytical techniques were also used to characterize the materials, namely Fourier Transform Infrared Spectroscopy (FTIR), X-ray diffraction (XRD), and morphology characterization by Scanning Electron Microscopy (SEM). All the tested materials have strong viscoelastic behavior, showing a linear response for small deformations, followed by a nonlinear behavior for higher deformation. The block copolymer and the silicone gel are affected by aging in synthetic sweat in a similar way, with a significant increase of their rigidity after 30 days, followed by a progressive reduction. The silicone elastomer displays a continuous increase of rigidity along the 90 days of storage, being the most sensitive to aging affects. It also exhibits the lowest stiffness value, being suitable for uses that require maximum comfort. All materials demonstrate chemical and structural stability under service simulated conditions. PMID:25554916

  3. Cellular and deafness mechanisms underlying connexin mutation induced hearing loss – A common hereditary deafness

    Directory of Open Access Journals (Sweden)

    Hong-Bo Zhao

    2015-05-01

    Full Text Available Hearing loss due to mutations in the connexin gene family which encodes gap junctional proteins is a common form of hereditary deafness. In particular, connexin 26 (Cx26, GJB2 mutations are responsible for ~50% of nonsyndromic hearing loss, which is the highest incidence of genetic disease. In the clinic, Cx26 mutations cause various auditory phenotypes ranging from profound congenital deafness at birth to mild, progressive hearing loss in late childhood. Recent experiments demonstrate that congenital deafness mainly results from cochlear developmental disorders rather than hair cell degeneration and endocochlear potential (EP reduction, while late-onset hearing loss results from reduction of active cochlear amplification, even though cochlear hair cells have no connexin expression. Moreover, new experiments further demonstrate that the hypothesized K+-recycling disruption is not a principal deafness mechanism for connexin deficiency induced hearing loss. Additionally, there is no clear relationship between specific changes in connexin (channel functions and the phenotypes of mutation-induced hearing loss. Cx30, Cx29, Cx31, and Cx43 mutations can also cause hearing loss with distinct pathological changes in the cochlea. These new studies provide invaluable information about deafness mechanisms underlying connexin mutation induced hearing loss and also provide important information for developing new protective and therapeutic strategies for this common deafness. However, the detailed cellular mechanisms underlying these pathological changes and pathogeneses of specific-mutation induced hearing loss remain unclear. Finally, little information is available for humans. Further studies to address these deficiencies are urgently required.

  4. Mechanisms underlying reductions in stroke volume at rest and during exercise at high altitude.

    Science.gov (United States)

    Stembridge, Mike; Ainslie, Philip N; Shave, Rob

    2016-08-01

    High-altitude exposure challenges the cardiovascular system to maintain oxygen delivery to the mitochondria under conditions of hypoxic stress. Following acclimatisation (3-5 days), stroke volume (SV) falls to below sea-level values but heart rate remains elevated, such that cardiac output is maintained compared to sea level. The decrease in SV has been a topic of research for over 40 years, but the underlying mechanisms are incompletely understood. Impaired systolic contractile function secondary to reduced coronary arterial oxygen tension has been investigated as a potential cause for the decrease in SV. However, despite in vitro evidence of impaired cardiac contractile force in severe hypoxia, the majority of studies to date have reported enhanced in vivo ventricular systolic function at rest and during exercise in humans up to and above 5000 m. However, the elevated function observed at rest has recently been suggested to reduce the functional reserve available during exercise. While in vivo systolic function appears enhanced at high altitude, a decrease in left ventricular end-diastolic volume (EDV) and altered filling patterns of both ventricles has been observed. The reduction in ventricular filling will undoubtedly affect SV, and four potential mechanisms have been proposed to explain the reduction in left ventricular filling. In this article, both historical and recent reports of systolic function at high altitude will be reviewed, and evidence supporting and refuting each of the four mechanisms underpinning reduced left ventricular filling will be discussed. PMID:26325452

  5. Music and literature: are there shared empathy and predictive mechanisms underlying their affective impact?

    Science.gov (United States)

    Omigie, Diana

    2015-01-01

    It has been suggested that music and language had a shared evolutionary precursor before becoming mainly responsible for the communication of emotive and referential meaning respectively. However, emphasis on potential differences between music and language may discourage a consideration of the commonalities that music and literature share. Indeed, one possibility is that common mechanisms underlie their affective impact, and the current paper carefully reviews relevant neuroscientific findings to examine such a prospect. First and foremost, it will be demonstrated that considerable evidence of a common role of empathy and predictive processes now exists for the two domains. However, it will also be noted that an important open question remains: namely, whether the mechanisms underlying the subjective experience of uncertainty differ between the two domains with respect to recruitment of phylogenetically ancient emotion areas. It will be concluded that a comparative approach may not only help to reveal general mechanisms underlying our responses to music and literature, but may also help us better understand any idiosyncrasies in their capacity for affective impact. PMID:26379583

  6. Music and literature: are there shared empathy and predictive mechanisms underlying their affective impact?

    Directory of Open Access Journals (Sweden)

    Diana eOmigie

    2015-08-01

    Full Text Available It has been suggested that music and language had a shared evolutionary precursor before becoming mainly responsible for the communication of emotive and referential meaning respectively. However, emphasis on potential differences between music and language may discourage a consideration of the commonalities that music and literature share. Indeed, one possibility is that common mechanisms underlie their affective impact, and the current paper carefully reviews relevant neuroscientific findings to examine such a prospect. First and foremost, it will be demonstrated that considerable evidence of a common role of empathy and predictive processes now exists for the two domains. However, it will also be noted that an important open question remains: namely, whether the mechanisms underlying the subjective experience of uncertainty differ between the two with respect to recruitment of phylogenetically ancient emotion areas. It will be concluded that a comparative approach may not only help to reveal general mechanisms underlying our responses to music and literature, but may also help us better understand any idiosyncrasies in their capacity for affective impact.

  7. Failure mechanism of monolayer graphene under hypervelocity impact of spherical projectile.

    Science.gov (United States)

    Xia, Kang; Zhan, Haifei; Hu, De'an; Gu, Yuantong

    2016-01-01

    The excellent mechanical properties of graphene have enabled it as appealing candidate in the field of impact protection or protective shield. By considering a monolayer graphene membrane, in this work, we assessed its deformation mechanisms under hypervelocity impact (from 2 to 6 km/s), based on a serial of in silico studies. It is found that the cracks are formed preferentially in the zigzag directions which are consistent with that observed from tensile deformation. Specifically, the boundary condition is found to exert an obvious influence on the stress distribution and transmission during the impact process, which eventually influences the penetration energy and crack growth. For similar sample size, the circular shape graphene possesses the best impact resistance, followed by hexagonal graphene membrane. Moreover, it is found the failure shape of graphene membrane has a strong relationship with the initial kinetic energy of the projectile. The higher kinetic energy, the more number the cracks. This study provides a fundamental understanding of the deformation mechanisms of monolayer graphene under impact, which is crucial in order to facilitate their emerging future applications for impact protection, such as protective shield from orbital debris for spacecraft. PMID:27618989

  8. Mechanism Underlying the Spatial Pattern Formation of Dominant Tree Species in a Natural Secondary Forest.

    Science.gov (United States)

    Jia, Guodong; Yu, Xinxiao; Fan, Dengxing; Jia, Jianbo

    2016-01-01

    Studying the spatial pattern of plant species may provide significant insights into processes and mechanisms that maintain stand stability. To better understand the dynamics of naturally regenerated secondary forests, univariate and bivariate Ripley's L(r) functions were employed to evaluate intra-/interspecific relationships of four dominant tree species (Populus davidiana, Betula platyphylla, Larix gmelinii and Acer mono) and to distinguish the underlying mechanism of spatial distribution. The results showed that the distribution of soil, water and nutrients was not fragmented but presented clear gradients. An overall aggregated distribution existed at most distances. No correlation was found between the spatial pattern of soil conditions and that of trees. Both positive and negative intra- and interspecific relationships were found between different DBH classes at various distances. Large trees did not show systematic inhibition of the saplings. By contrast, the inhibition intensified as the height differences increased between the compared pairs. Except for Larix, universal inhibition of saplings by upper layer trees occurred among other species, and this reflected the vertical competition for light. Therefore, we believe that competition for light rather than soil nutrients underlies the mechanism driving the formation of stand spatial pattern in the rocky mountainous areas examined. PMID:27028757

  9. Transdifferentiation of pancreatic α-cells into insulinsecreting cells: From experimental models to underlying mechanisms

    Institute of Scientific and Technical Information of China (English)

    Jieli; Lu; Rami; Jaafer; Rémy; Bonnavion; Philippe; Bertolino; Chang-Xian; Zhang

    2014-01-01

    Pancreatic insulin-secreting β-cells are essential regulators of glucose metabolism. New strategies are cur-rently being investigated to create insulin-producing β cells to replace deficient β cells, including the differentiation of either stem or progenitor cells, and the newly uncovered transdifferentiation of mature non-β islet cell types. However, in order to correctly drive any cell to adopt a new β-cell fate, a better understanding of the in vivo mechanisms involved in the plasticity and biology of islet cells is urgently required. Here, we review the recent studies reporting the phenomenon of transdifferentiation of α cells into β cells by focusing on the major candidates and contexts revealed to be involved in adult β-cell regeneration through this process. The possible underlying mechanisms of transdifferentiation and the interactions between several key factors involved in the process are also addressed. We propose that it is of importance to further study the molecular and cellular mechanisms underlying α- to β-cell transdifferentiation, in order to make β-cell regeneration from α cells a relevant and realizable strategy for developing cell-replacement therapy.

  10. Signaling mechanism underlying the histamine-modulated action of hypoglossal motoneurons.

    Science.gov (United States)

    Liu, Zi-Long; Wu, Xu; Luo, Yan-Jia; Wang, Lu; Qu, Wei-Min; Li, Shan-Qun; Huang, Zhi-Li

    2016-04-01

    Histamine, an important modulator of the arousal states of the central nervous system, has been reported to contribute an excitatory drive at the hypoglossal motor nucleus to the genioglossus (GG) muscle, which is involved in the pathogenesis of obstructive sleep apnea. However, the effect of histamine on hypoglossal motoneurons (HMNs) and the underlying signaling mechanisms have remained elusive. Here, whole-cell patch-clamp recordings were conducted using neonatal rat brain sections, which showed that histamine excited HMNs with an inward current under voltage-clamp and a depolarization membrane potential under current-clamp via histamine H1 receptors (H1 Rs). The phospholipase C inhibitor U-73122 blocked H1 Rs-mediated excitatory effects, but protein kinase A inhibitor and protein kinase C inhibitor did not, indicating that the signal transduction cascades underlying the excitatory action of histamine on HMNs were H1 R/Gq/11 /phospholipase C/inositol-1,4,5-trisphosphate (IP3 ). The effects of histamine were also dependent on extracellular Na(+) and intracellular Ca(2+) , which took place via activation of Na(+) -Ca(2+) exchangers. These results identify the signaling molecules associated with the regulatory effect of histamine on HMNs. The findings of this study may provide new insights into therapeutic approaches in obstructive sleep apnea. We proposed the post-synaptic mechanisms underlying the modulation effect of histamine on hypoglossal motoneuron. Histamine activates the H1 Rs via PLC and IP3 , increases Ca(2+) releases from intracellular stores, promotes Na(+) influx and Ca(2+) efflux via the NCXs, and then produces an inward current and depolarizes the neurons. Histamine modulates the excitability of HMNs with other neuromodulators, such as noradrenaline, serotonin and orexin. We think that these findings should provide an important new direction for drug development for the treatment of obstructive sleep apnea. PMID:26811198

  11. Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing

    Science.gov (United States)

    Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas

    2016-01-01

    While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization. PMID:27250879

  12. Mechanical properties of cellulose electro-active paper under different environmental conditions

    International Nuclear Information System (INIS)

    The mechanical properties of cellulose-based electro-active paper (EAPap) are investigated under various environmental conditions. Cellulose EAPap has been discovered as a smart material that can be used as both sensor and actuator. Its advantages include low voltage operation, light weight, low power consumption, biodegradability and low cost. EAPap is made with cellulose paper coated with thin electrodes. EAPap shows a reversible and reproducible bending movement as well as longitudinal displacement under an electric field. However, EAPap is a complex anisotropic material which has not been fully characterized. This study investigates the mechanical properties of cellulose-based EAPap, including Young's modulus, yield strength, ultimate strength and creep, along with orientation directions, humidity and temperature levels. To test the materials in different humidity and temperature levels, a special material testing system was made that can control the testing environmental conditions. The initial Young's modulus of EAPap is in the range of 4–9 GPa, which was higher than that of other polymer materials. Also, the Young's modulus is orientation dependent, which may be associated with the piezoelectricity of EAPap materials. The elastic strength and stiffness gradually decreased when the humidity and temperature were increased. Creep and relaxation were observed under constant stress and strain, respectively. Through scanning electron microscopy, EAPap is shown to exhibit both layered and oriented cellulose macromolecular structures that impact both the elastic and plastic behavior

  13. Handedness is related to neural mechanisms underlying hemispheric lateralization of face processing

    Science.gov (United States)

    Frässle, Stefan; Krach, Sören; Paulus, Frieder Michel; Jansen, Andreas

    2016-06-01

    While the right-hemispheric lateralization of the face perception network is well established, recent evidence suggests that handedness affects the cerebral lateralization of face processing at the hierarchical level of the fusiform face area (FFA). However, the neural mechanisms underlying differential hemispheric lateralization of face perception in right- and left-handers are largely unknown. Using dynamic causal modeling (DCM) for fMRI, we aimed to unravel the putative processes that mediate handedness-related differences by investigating the effective connectivity in the bilateral core face perception network. Our results reveal an enhanced recruitment of the left FFA in left-handers compared to right-handers, as evidenced by more pronounced face-specific modulatory influences on both intra- and interhemispheric connections. As structural and physiological correlates of handedness-related differences in face processing, right- and left-handers varied with regard to their gray matter volume in the left fusiform gyrus and their pupil responses to face stimuli. Overall, these results describe how handedness is related to the lateralization of the core face perception network, and point to different neural mechanisms underlying face processing in right- and left-handers. In a wider context, this demonstrates the entanglement of structurally and functionally remote brain networks, suggesting a broader underlying process regulating brain lateralization.

  14. Genomic and transcriptomic analysis of NDM-1 Klebsiella pneumoniae in spaceflight reveal mechanisms underlying environmental adaptability.

    Science.gov (United States)

    Li, Jia; Liu, Fei; Wang, Qi; Ge, Pupu; Woo, Patrick C Y; Yan, Jinghua; Zhao, Yanlin; Gao, George F; Liu, Cui Hua; Liu, Changting

    2014-01-01

    The emergence and rapid spread of New Delhi Metallo-beta-lactamase-1 (NDM-1)-producing Klebsiella pneumoniae strains has caused a great concern worldwide. To better understand the mechanisms underlying environmental adaptation of those highly drug-resistant K. pneumoniae strains, we took advantage of the China's Shenzhou 10 spacecraft mission to conduct comparative genomic and transcriptomic analysis of a NDM-1 K. pneumoniae strain (ATCC BAA-2146) being cultivated under different conditions. The samples were recovered from semisolid medium placed on the ground (D strain), in simulated space condition (M strain), or in Shenzhou 10 spacecraft (T strain) for analysis. Our data revealed multiple variations underlying pathogen adaptation into different environments in terms of changes in morphology, H2O2 tolerance and biofilm formation ability, genomic stability and regulation of metabolic pathways. Additionally, we found a few non-coding RNAs to be differentially regulated. The results are helpful for better understanding the adaptive mechanisms of drug-resistant bacterial pathogens. PMID:25163721

  15. Advances in fracture mechanics analyses of primary system performance under operating and accident conditions

    International Nuclear Information System (INIS)

    Safety research sponsored by the Nuclear Regulatory Commission, Division of Reactor Safety Research, has resulted in notable advances in several areas of importance in the safety evaluation of reactor primary systems under normal operations and accident situations. First, the methods of linear elastic fracture mechanics and of elastic plastic fracture mechanics have been validated for prediction of pressure vessel performance by the Intermediate Vessel Test program results at the Oak Ridge National Laboratory. The ability confidently to predict vessel performance under realistic service conditions has permitted development of the computer program OCTAVIA which computes failure curves for a range of flaw sizes in terms of pressure and temperature for specified presure vessel material at specific neutron fluence levels. It then considers the probability of occurrence of flaw sizes and magnitude of pressure during an operational, overpressurization transient and determines the probability of failure, for both individual flaw sizes and for the full spectrum. This advance has been verified by the confirmatory results of testing small thick-walled cylinders under thermal shock conditions in the Heavy Section Steel Technology program, and of warm prestressing tests at the US Navel Research Laboratory. Thirdly, the technology of crack arrest has reached a level wherein standardization of test specimens and testing methods is now possible and, indeed, is underway. (Auth.)

  16. Dynamics and diffusion mechanism in network forming liquid under high pressure: A new approach

    International Nuclear Information System (INIS)

    The static and dynamic properties of liquid silica (SiO2) are investigated by molecular dynamics simulation at temperature of 3200 K and in the 0–25 GPa pressure range. To clarify diffusion mechanism and the anomalous diffusivity under compression, we have traced the time evolution of breakage and formation of the Si–O bond in the basic structural units SiOx (x = 4, 5, 6). The investigation reveals that atomic diffusion is realized through the transition Si[n] ↔ Si[n+1] (Si[n] means that Si atom has n coordinated oxygens) and the instability of units SiO5 is the cause of the anomalous diffusivity. Moreover, the transitions Si[n] ↔ Si[n+1] are not uniformly distributed but strongly localized in the space. The distribution of coordination units SiOx in network structure is not uniform but tends to form clusters of SiO4, SiO5 and SiO6 and this is the origin of localization of transitions resulted in the spatially heterogeneous dynamics in liquid SiO2. - Highlights: ► The microstructure under high pressure. ► The structural dynamics under high pressure. ► Apply a new approach to clarify the diffusion mechanism and anomalous diffusivity. ► The spatially heterogeneous dynamics, the relation between microstructure and spatially heterogeneous dynamics

  17. Mechanisms underlying feed intolerance in the critically ill: Implications for treatment

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Malnutrition is associated with poor outcomes in critically ill patients. Although nutritional support is yet to be proven to improve mortality in non-malnourished critically ill patients, early enteral feeding is considered best practice. However, enteral feeding is often limited by delayed gastric emptying. The best method to clinically identify delayed gastric emptying and feed intolerance is unclear. Gastric residual volume (GRV)measured at the bedside is widely used as a surrogate marker for gastric emptying, but the value of GRV measurement has recently been disputed. While the mechanisms underlying delayed gastric emptying require further investigation, recent research has given a better appreciation of the pathophysiology. A number of pharmacological strategies are available to improve the success of feeding. Recent data suggest a combination of intravenous metoclopramide and erythromycin to be the most successful treatment, but novel drug therapies should be explored. Simpler methods to access the duodenum and more distal small bowel for feed delivery are also under investigation. This review summarises current understanding of the factors responsible for, and mechanisms underlying feed intolerance in critical illness,together with the evidence for current practices. Areas requiring further research are also highlighted.

  18. Kidney branching morphogenesis under the control of a ligand–receptor-based Turing mechanism

    International Nuclear Information System (INIS)

    The main signalling proteins that control early kidney branching have been defined. Yet the underlying mechanism is still elusive. We have previously shown that a Schnakenberg-type Turing mechanism can recapitulate the branching and protein expression patterns in wild-type and mutant lungs, but it is unclear whether this mechanism would extend to other branched organs that are regulated by other proteins. Here, we show that the glial cell line-derived neurotrophic factor–RET regulatory interaction gives rise to a Schnakenberg-type Turing model that reproduces the observed budding of the ureteric bud from the Wolffian duct, its invasion into the mesenchyme and the observed branching pattern. The model also recapitulates all relevant protein expression patterns in wild-type and mutant mice. The lung and kidney models are both based on a particular receptor–ligand interaction and require (1) cooperative binding of ligand and receptor, (2) a lower diffusion coefficient for the receptor than for the ligand and (3) an increase in the receptor concentration in response to receptor–ligand binding (by enhanced transcription, more recycling or similar). These conditions are met also by other receptor–ligand systems. We propose that ligand–receptor-based Turing patterns represent a general mechanism to control branching morphogenesis and other developmental processes. (paper)

  19. Peripheral afferent mechanisms underlying acupuncture inhibition of cocaine behavioral effects in rats.

    Directory of Open Access Journals (Sweden)

    Seol Ah Kim

    Full Text Available Administration of cocaine increases locomotor activity by enhancing dopamine transmission. To explore the peripheral mechanisms underlying acupuncture treatment for drug addiction, we developed a novel mechanical acupuncture instrument (MAI for objective mechanical stimulation. The aim of this study was to evaluate whether acupuncture inhibition of cocaine-induced locomotor activity is mediated through specific peripheral nerves, the afferents from superficial or deep tissues, or specific groups of nerve fibers. Mechanical stimulation of acupuncture point HT7 with MAI suppressed cocaine-induced locomotor activity in a stimulus time-dependent manner, which was blocked by severing the ulnar nerve or by local anesthesia. Suppression of cocaine-induced locomotor activity was elicited after HT7 stimulation at frequencies of either 50 (for Meissner corpuscles or 200 (for Pacinian corpuscles Hz and was not affected by block of C/Aδ-fibers in the ulnar nerve with resiniferatoxin, nor generated by direct stimulation of C/Aδ-fiber afferents with capsaicin. These findings suggest that HT7 inhibition of cocaine-induced locomotor activity is mediated by A-fiber activation of ulnar nerve that originates in superficial and deep tissue.

  20. Investigation of sheet steel St 37.2 under mechanical impact

    International Nuclear Information System (INIS)

    Special waste originating, e.g. from chemical industry and radioactive wastes are emplaced in disposal mines. Slinger stowing is an approved technique to fill up residual voids in emplacement rooms. If it should be applied, possible mechanical loads on the integrity of sheet steel containers have to be considered. By theoretical calculations and by experiments under variation of different parameters using test specimen and backfill material from the Konrad mine using the container type V as an example it has been shown that sheet steel St 37.2 with a wall thickness of 3 mm will withstand mechanical impact imposed by backfill particles having a speed of 24 m/s. (orig.)

  1. Atrial Arrhythmias in Obstructive Sleep Apnea: Underlying Mechanisms and Implications in the Clinical Setting

    Directory of Open Access Journals (Sweden)

    David Filgueiras-Rama

    2013-01-01

    Full Text Available Obstructive sleep apnea (OSA is a common disorder characterized by repetitive interruption of ventilation during sleep caused by recurrent upper airway collapse, which leads to intermittent hypoxia. The disorder is commonly undiagnosed despite its relationship with substantial cardiovascular morbidity and mortality. Moreover, the effects of the disorder appear to be particularly dangerous in young subjects. In the last decade, substantial clinical evidence has identified OSA as independent risk factor for both bradyarrhythmias and tachyarrhythmias. To date the mechanisms leading to such arrhythmias have not been completely understood. However, recent data from animal models and new molecular analyses have increased our knowledge of the field, which might lead to future improvement in current therapeutic strategies mainly based on continuous positive airway pressure. This paper aims at providing readers a brief and specific revision of current knowledge about the mechanisms underlying atrial arrhythmias in OSA and their clinical and therapeutic implications.

  2. Tracking Control of the Flexible SLIDER-CRANK Mechanism System Under Impact

    Science.gov (United States)

    FUNG, R.-F.; SUN, J.-H.; WU, J.-W.

    2002-08-01

    The variable structure control (VSC) and the stabilizer design by using pole placement technique are applied to the tracking control of the flexible slider-crank mechanism under impact. The VSC strategy is employed to track the crank angular position and speed, while the stabilizer design is involved to suppress the flexible vibrations simultaneously. From the theoretical impact consideration, three approaches including the generalized momentum balance (GMB), the continuous force model (CFM), and the CFM associated with the effective mass compensation EMC are adopted, and are derived on the basis of the energy and impulse-momentum conservations. Simulation results are provided to demonstrate the performance of the motor-controller flexible slider-crank mechanism not only accomplishing good tracking trajectory of the crank angle, but also eliminating vibrations of the flexible connecting rod.

  3. The Potential Mechanisms Underlying Aspirin-induced Inhibition of Ovarian Tumor Cell Growth

    Institute of Scientific and Technical Information of China (English)

    Yu LIU; Jin KE; Shi-Quan LIU; Fu-Xiang ZHOU; Cong-Hua XIE; Yun-Feng ZHOU

    2005-01-01

    @@ 1 Introduction Ovarian cancer remains the most lethal disease of the gynecological cancers. Owing to the lack of an effective screening approach combined with inadequate therapeutic approach for advanced disease, fewer than 25% of ovarian cancers are identified at an early curable stage. Thus these make ovarian cancer a strong candidate for chemoprevention. In 2001, Akhmedkhanov et al. demonstrated a 2-3 folds decrease in epithelial ovarian cancer associated with Aspirin use. These epidemiological observations suggest that an improved understanding of the mechanisms by which NSAID may decrease the development of ovarian cancer could lead to improved approaches for chemoprevention of this deadly disease. In this research, we explored the potential mechanism underlying epidemiological observations that ovarian cancer occurs at a lower frequency in women exposed to Aspirin(ASP).

  4. A hypothesis regarding the molecular mechanism underlying dietary soy-induced effects on seizure propensity.

    Directory of Open Access Journals (Sweden)

    Cara Jean Westmark

    2014-09-01

    Full Text Available Numerous neurological disorders including fragile X syndrome, Down syndrome, autism and Alzheimer’s disease are comorbid with epilepsy. We have observed elevated seizure propensity in mouse models of these disorders dependent on diet. Specifically, soy-based diets exacerbate audiogenic-induced seizures in juvenile mice. We have also found potential associations between the consumption of soy-based infant formula and seizure incidence, epilepsy comorbidity and autism diagnostic scores in autistic children by retrospective analyses of medical record data. In total, these data suggest that consumption of high levels of soy protein during postnatal development may affect neuronal excitability. Herein, we present our theory regarding the molecular mechanism underlying soy-induced effects on seizure propensity. We hypothesize that soy phytoestrogens interfere with metabotropic glutamate receptor signaling through an estrogen receptor-dependent mechanism, which results in elevated production of key synaptic proteins and decreased seizure threshold.

  5. Mechanism for amorphization of boron carbide B4C under uniaxial compression

    Science.gov (United States)

    Aryal, Sitaram; Rulis, Paul; Ching, W. Y.

    2011-11-01

    Boron carbide undergoes an amorphization transition under high-velocity impacts, causing it to suffer a catastrophic loss in strength. The failure mechanism is not clear and this limits the ways to improve its resistance to impact. To help uncover the failure mechanism, we used ab initio methods to carry out large-scale uniaxial compression simulations on two polytypes of stoichiometric boron carbide (B4C), B11C-CBC, and B12-CCC, where B11C or B12 is the 12-atom icosahedron and CBC or CCC is the three-atom chain. The simulations were performed on large supercells of 180 atoms. Our results indicate that the B11C-CBC (B12-CCC) polytype becomes amorphous at a uniaxial strain s = 0.23 (0.22) and with a maximum stress of 168 (151) GPa. In both cases, the amorphous state is the consequence of structural collapse associated with the bending of the three-atom chain. Careful analysis of the structures after amorphization shows that the B11C and B12 icosahedra are highly distorted but still identifiable. Calculations of the elastic coefficients (Cij) at different uniaxial strains indicate that both polytypes may collapse under a much smaller shear strain (stress) than the uniaxial strain (stress). On the other hand, separate simulations of both models under hydrostatic compression up to a pressure of 180 GPa show no signs of amorphization, in agreement with experimental observation. The amorphized nature of both models is confirmed by detailed analysis of the evolution of the radial pair distribution function, total density of states, and distribution of effective charges on atoms. The electronic structure and bonding of the boron carbide structures before and after amorphization are calculated to further elucidate the mechanism of amorphization and to help form the proper rationalization of experimental observations.

  6. Structural integrity and failure mechanisms of a smart piezoelectric actuator under a cyclic bending mode

    International Nuclear Information System (INIS)

    Information on the onset and evolution of damage within materials is essential for guaranteeing the integrity of actuator systems. The authors have evaluated the structural integrity and the failure mechanisms of smart composite actuators with a PZT ceramic plate under electric cyclic loading. For this, two kinds of actuators, actuator 1 and actuator 2, were manufactured. Prior to the main testing, performance testing was performed on the actuators to determine their resonant frequencies. Electric cyclic tests were conducted up to twenty million cycles. An acoustic emission technique was used for monitoring the damage evolution in real time. We observed the extent of the damage after testing using scanning electron microscopy and reflected optical microscopy to support characteristics in the acoustic emission behavior that corresponded to specific types of damage mechanisms. It was shown that the initial damage mechanism of the smart composite actuator under electric cyclic loading originated from the transgranular micro-fatigue damage in the PZT ceramic layer. With increasing cycles, a local intergranular crack initiated and developed onto the surface of the PZT ceramic layer or propagated into the internal layer. Finally, short-circuiting led to the electric breakdown of the actuator. These results were different depending on the drive frequencies and the configuration of the actuators. Moreover, we differentiated between the aforementioned damage mechanisms via AE signal pattern analyses based on the primary frequency and the waveform. From our results, we conclude that the drive frequency and the existence of a protecting layer are dominant factors in the structural integrity of the smart composite actuator

  7. Putative molecular mechanism underlying sperm chromatin remodelling is regulated by reproductive hormones

    OpenAIRE

    Gill-Sharma Manjeet Kaur; Choudhuri Jyoti; Ansari Mukhtar Aleem; D’Souza Serena

    2012-01-01

    Abstract Background The putative regulatory role of the male reproductive hormones in the molecular mechanism underlying chromatin condensation remains poorly understood. In the past decade, we developed two adult male rat models wherein functional deficits of testosterone or FSH, produced after treatments with 20 mg/Kg/d of cyproterone acetate (CPA) per os, for a period of 15 days or 3 mg/Kg/d of fluphenazine decanoate (FD) subcutaneously, for a period of 60 days, respectively, affected the ...

  8. Fatigue life of creep resisting steels under conditions of cyclic mechanical and thermal interactions

    Directory of Open Access Journals (Sweden)

    A. Marek

    2009-11-01

    Full Text Available urpose: This study sets out to determine the characteristics of high-temperature creep resisting steels under conditions of thermo-mechanical fatigue with the use of a method proposed in the Code-of-Practice under the EU TMF-Standard project.Design/methodology/approach: The thermo-mechanical fatigue (TMF tests were carried out in the conditions where the value of complete strain and the temperature were under control. Two methods of investigating samples in TMF tests were applied: OP (out-of-phase and IP (in-phase.Findings: Based on the tests, the characteristics of TMF life was determined and it was found that X20CrMoV12.1 steel shows lower life in comparison with new steels: X10CrMoVNb9-1 (T/P91 and X10CrWMoVNb9-2 (T/P92. The results of the OP tests made for X10CrMoVNb9-1 (T/P91 steel are an exception here. Tests of thermo-mechanical fatigue have shown that in a majority of cases in fatigue tests, the X20CrM0V12.1 steel has lower TMF life when compared to X10CrMoVNb9-1 (T/P91 and X10CrWMoVNb9-2 (T/P92 steels, despite its better strength properties, as a measure of which, the range of stress was adopted.Research limitations/implications: At the present stage of the research, two types of tests (IP and PO were performed. Due to a limited number of experiments connected with the application of selected types of tests and their number, the conclusions resulting from the research may, at the present stage, serve as guidelines for its continuation only.Practical implications: The test results may also be used to compare the properties of creep resisting steels used in the power engineering industry and represent a contribution to widening the knowledge of the behaviour of materials under thermo-mechanical fatigue conditions.Originality/value: This study is one of the first attempts to determine the TMF life characteristics of the steels used in the Polish power engineering industry.

  9. A SIMPLE CONSTITUTIVE MODEL FOR FERROELECTRIC CERAMICS UNDER ELECTRICAL/MECHANICAL LOADING

    Institute of Scientific and Technical Information of China (English)

    Yu Li; Yu Shouwen; Feng Xiqiao

    2007-01-01

    A simple phenomenological model is developed for describing the macroscopic constitutive response of ferroelectric materials based on consideration of the fact that domain switching is a progressive evolution process with loading. The volume fraction of domain switching is taken as an internal variable, which is derived from the domain nucleation theory. The proposed theory can simulate the dielectric hysteresis, reversed butterfly hysteresis, nonlinear strain-stress hysteresis, as well as electric displacement-stress relation of ferroelectric materials. Its comparison with experimental results and two other theoretical models reveals that the model presented can well predict the nonlinear hysteresis of ferroelectrics under electrical or mechanical loading.

  10. Morphofunctional changes and mechanisms of their realization in developing lungs under influence of paracetamol and nimesulid

    Directory of Open Access Journals (Sweden)

    Kharchenko S.V.

    2012-01-01

    Full Text Available Actuality of organs and tissues normality development studying is conditioned on continuous growth of conge-nital abnormalies оn the base of greater drugs distribution. The anomalie s of lungs development unde r influence of paraceta-mol and nimesulide are examined and the possible mechanisms of their appearance are analysed. It is determined that lungs develop more slowly under action of paracetamol than in norm and paracetamol lead to development of bronchial asthma during postnatal period of life. Small in numbers researches of nimesulide influen ce demonstrate changes of lungs histogene-sis, which show up in thei r development deceleration.

  11. Neuro-cognitive mechanisms underlying the emotional modulation of word reading

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A novel neural model for emotional modulation of word reading is proposed. This model has four principal hypotheses: the dominant activation region hypothesis, the emotional modulation hypothesis, the attentional level hypothesis, and the interaction hypothesis. Four lines of research were reviewed to provide evidence for these hypotheses: (1) neuro-cognitive studies on the mechanisms of word reading (i.e., neural networks for reading); (2) studies on the influence of words' emotional valence on word reading; (3) studies of the effect of attention on word reading; and (4) studies on emotional modulation of word reading under different attentional levels.

  12. Acoustic and Vibration Control for an Underwater Structure under Mechanical Excitation

    Directory of Open Access Journals (Sweden)

    Shi-Jian Zhu

    2014-01-01

    Full Text Available Acoustic and vibration control for an underwater structure under mechanical excitation has been investigated by using negative feedback control algorithm. The underwater structure is modeled with cylindrical shells, conical shells, and circular bulkheads, of which the motion equations are built with the variational approach, respectively. Acoustic property is analyzed by the Helmholtz integration formulation with boundary element method. Based on negative feedback control algorithm, a control loop with a coupling use of piezoelectric sensor and actuator is built, and accordingly some numerical examples are carried out on active control of structural vibration and acoustic response. Effects of geometrical and material parameters on acoustic and vibration properties are investigated and discussed.

  13. Description and Application of A Model of Seepage under A Weir Including Mechanical Clogging

    OpenAIRE

    Sroka Zbigniew; Walczak Zbigniew; Wosiewicz Bogdan

    2014-01-01

    The paper discusses seepage flow under a damming structure (a weir) in view of mechanical clogging in a thin layer at the upstream site. It was assumed that in this layer flow may be treated as one-dimensional (perpendicular to the layer), while elsewhere flow was modelled as two-dimensional. The solution in both zones was obtained in the discrete form using the finite element method and the Euler method. The effect of the clogging layer on seepage flow was modelled using the third kind bound...

  14. Radiation pneumonitis and fibrosis: Mechanisms underlying its pathogenesis and implications for future research

    International Nuclear Information System (INIS)

    Radiation pneumonitis and subsequent radiation pulmonary fibrosis are the two main dose-limiting factors when irradiating the thorax that can have severe implications for patients' quality of life. In this article, the current concepts about the pathogenetic mechanisms underlying radiation pneumonitis and fibrosis are presented. The clinical course of fibrosis, a postulated acute inflammatory stage, and a late fibrotic and irreversible stage are discussed. The interplay of cells and the wide variety of molecules orchestrating the immunologic response to radiation, their interactions with specific receptors, and the cascade of events they trigger are elucidated. Finally, the implications of this knowledge with respect to the therapeutic interventions are critically presented

  15. Finite element simulation for mechanical response of surface mounted solder joints under different temperature cycling

    Institute of Scientific and Technical Information of China (English)

    马鑫; 钱乙余

    2001-01-01

    Nonlinear finite element simulation for mechanical response of surface mounted solder joint under different temperature cycling was carried out. Seven sets of parameters were used in order to evaluate the influence of temperature cycling profile parameters. The results show that temperature cycling history has significant effect on the stress response of the solder joint. Based on the concept of relative damage stress proposed by the authors, it is found that enough high temperature holding time is necessary for designing the temperature cycling profile in accelerated thermal fatigue test.

  16. Deformation mechanisms of carbon nanotube fibres under tensile loading by in situ Raman spectroscopy analysis

    International Nuclear Information System (INIS)

    Deformation mechanisms of carbon nanotube (CNT) fibres under tensile loading are studied by means of in situ Raman spectroscopy to detect the CNT deformation and stress distributions in the fibres. The G' band in the Raman spectrum responds distinctly to the tensile stress in Raman shift, width and intensity. The G' band changes with the tensile deformation of the fibre at different stages, namely elastic deformation, strengthening and damage-fracture. It is deduced that the individual CNTs only deform elastically without obvious damage or bond breaking. The yield and fracture of fibres can be due to the slippage among the CNTs.

  17. Optimal Contract Design for Cooperative Relay Incentive Mechanism under Moral Hazard

    Directory of Open Access Journals (Sweden)

    Nan Zhao

    2015-01-01

    Full Text Available Cooperative relay can effectively improve spectrum efficiency by exploiting the spatial diversity in the wireless networks. However, wireless nodes may acquire different network information with various users’ location and mobility, channels’ conditions, and other factors, which results in asymmetric information between the source and the relay nodes (RNs. In this paper, the relay incentive mechanism between relay nodes and the source is investigated under the asymmetric information. By modelling multiuser cooperative relay as a labour market, a contract model with moral hazard for relay incentive is proposed. To effectively incentivize the potential RNs to participate in cooperative relay, the optimization problems are formulated to maximize the source’s utility while meeting the feasible conditions under both symmetric and asymmetric information scenarios. Numerical simulation results demonstrate the effectiveness of the proposed contract design scheme for cooperative relay.

  18. Laws and mechanisms of slope movement due to shallowly buried coal seam mining under ground gully

    Institute of Scientific and Technical Information of China (English)

    FAN Gang-wei; ZHANG Dong-sheng; ZHAI De-yuan; WANG Xu-feng; LU Xin

    2009-01-01

    Based on the results of similar material simulation, the laws of slope movement due to mining under a gully were analyzed. Selected a slope rock as objective, the mechanisms of slope movement influence upon underground mining were proposed, and respective structural models were built by means of numerical modeling and physical simulation. It holds the point that the influence of slope movement on underground mining could be controlled to some extent by appropriate measures. The results indicate that, for gully-ward mining, which mines toward a gully, the slope rock slides horizontally and rotates in layers; for gully-away mining, which mines away from the gully, the slope rock rotates in a reversed polygon. The slope movement associated with mining under a gully is attributed to pre-existing free faces in the ground gully and underground mining-induced free faces.

  19. Mechanism Underlying the Onset of Internal Blue Discoloration in Japanese Radish (Raphanus sativus) Roots.

    Science.gov (United States)

    Teranishi, Katsunori; Masayasu, Nagata; Masuda, Daisuke

    2016-09-01

    The internal blue discoloration observed in Japanese radish (Raphanus sativus L.) roots is a physiological phenomenon caused by storage following harvest at approximately 20 °C and poses a serious problem for farmers. Here, we describe the mechanism underlying the onset of internal blue discoloration of three cultivars: Hukuhomare, SC8-260, and Yuto. Each cultivar was maintained under the same conditions. Additionally, Hukuhomare radish roots were maintained at three different cultivation conditions in a related experiment. The blue discoloration in radish roots was caused by the oxidation of 4-hydroxyglucobrassicin as a result of an increase in oxidative stress involving peroxidase. Thus, the extent of blue discoloration was influenced by the chemical balance involving 4-hydroxyglucobrassicin content, antioxidant capacity, and oxidation activity. PMID:27530819

  20. Shrinkage mechanism of nanocavities in amorphous Si under ion irradiation: An in situ study

    Energy Technology Data Exchange (ETDEWEB)

    Ruault, M.-O. E-mail: ruault@csnsm.in2p3.fr; Ridgway, M.C.; Fortuna, F.; Bernas, H.; Williams, J.S

    2003-05-01

    Nanocavities of diameter <25 nm can be readily formed in Si substrates by H or He implantation followed by thermal annealing. These nanocavities readily interact with both fast-diffusing metal impurities and implantation-induced Si interstitials and under prolonged ion irradiation, nanocavities eventually disappear. In this study, we have measured nanocavity evolution under ion irradiation when the nanocavities were surrounded by amorphous Si. The average nanocavity diameter was monitored by in situ transmission electron microscopy (TEM) observations during irradiation with Ne, Si or As ions at temperatures of 300-600 K. The nanocavity diameter decreased linearly with ion fluence. The shrinkage process is shown to be essentially athermal and controlled by atomic displacements generated close to the nanocavity/matrix interface during ion irradiation. Our in situ results shed new light on possible irradiation-induced nanocavity shrinkage mechanisms.

  1. Shrinkage mechanism of nanocavities in amorphous Si under ion irradiation: An in situ study

    International Nuclear Information System (INIS)

    Nanocavities of diameter <25 nm can be readily formed in Si substrates by H or He implantation followed by thermal annealing. These nanocavities readily interact with both fast-diffusing metal impurities and implantation-induced Si interstitials and under prolonged ion irradiation, nanocavities eventually disappear. In this study, we have measured nanocavity evolution under ion irradiation when the nanocavities were surrounded by amorphous Si. The average nanocavity diameter was monitored by in situ transmission electron microscopy (TEM) observations during irradiation with Ne, Si or As ions at temperatures of 300-600 K. The nanocavity diameter decreased linearly with ion fluence. The shrinkage process is shown to be essentially athermal and controlled by atomic displacements generated close to the nanocavity/matrix interface during ion irradiation. Our in situ results shed new light on possible irradiation-induced nanocavity shrinkage mechanisms

  2. A numerical study of crack interactions under thermo-mechanical load using EFGM

    International Nuclear Information System (INIS)

    In this work, element free Galerkin method (EFGM) has been used to obtain the solution of various edge crack problems under thermo-mechanical loads as it provides a versatile technique to model stationary as well as moving crack problems without re-meshing. Standard diffraction criterion has been modified with multiple crack weight technique to characterize the presence of various cracks in the domain of influence of a particular node. The effect of crack inclination has been studied for single as well as two edge cracks, whereas the cracks interaction has been studied for two edge cracks lying on same as well as opposite edges under plane stress conditions. The values of mode-I and mode-II stress intensity factors have been evaluated by the interaction integral approach

  3. Expression and subcellular localization of mechano-growth factor in osteoblasts under mechanical stretch

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Mechano-growth factor (MGF) is a stretch sensitive factor in myocytes, and it might also be produced by other mechanocytes under mechanical stimulation. In this study, both the mRNA and protein expression of MGF were detected in stretched osteoblasts. Quantitative analysis showed that a cyclic stretching stimulation caused a quick and sharp increase of MGF mRNA and protein expression from a low basal level under no stretch; the mRNA and protein levels respectively peaked in 6 and 12 h to 5 and 5.2 fold over the basal level and returned to normal by 24 h. The subcellular distribution of MGF protein was revealed by immunofluorescence analysis to be restricted to the nucleus. We concluded that cyclic stretching stimulation could induce MGF expression in osteoblasts in a pulsing fashion; and the nuclear distribution of MGF suggested that MGF might act in mechanocytes as an autocrine growth factor.

  4. Characterization of debond growth mechanism in adhesively bonded composites under mode II static and fatigue loadings

    Science.gov (United States)

    Mall, S.; Kochhar, N. K.

    1988-01-01

    An experimental investigation of adhesively bonded composite joint was conducted to characterize the debond growth mechanism under mode II static and fatigue loadings. For this purpose, end-notched flexure specimens of graphite/epoxy (T300/5208) adherends bonded with EC 3445 adhesive were tested. In all specimen tested, the fatigue failure occurred in the form of cyclic debonding. The present study confirmed the result of previous studies that total strain-energy-release rate is the driving parameter for cyclic debonding. Further, the debond growth resistance under cyclic loading with full shear reversal (i.e., stress ratio, R = -1) is drastically reduced in comparison to the case when subjected to cyclic shear loading with no shear reversal (i.e., R = 0.1).

  5. Experimental Investigation of Mechanical Properties of PVC Polymer under Different Heating and Cooling Conditions

    Directory of Open Access Journals (Sweden)

    Sarkawt Rostam

    2016-01-01

    Full Text Available Due to a widely increasing usage of polymers in various industrial applications, there should be a continuous need in doing research investigations for better understanding of their properties. These applications require the usage of the polymer in different working environments subjecting the material to various temperature ranges. In this paper, an experimental investigation of mechanical properties of polyvinyl chloride (PVC polymer under heating and cooling conditions is presented. For this purpose standard samples are prepared and tested in laboratory using universal material testing apparatus. The samples are tested under different conditions including the room temperature environment, cooling in a refrigerator, and heating at different heating temperatures. It is observed that the strength of the tested samples decreases with the increasing of heating temperature and accordingly the material becomes softer. Meanwhile the cooling environments give a clear increasing to the strength of the material.

  6. Computational modeling of dynamic mechanical properties of pure polycrystalline magnesium under high loading strain rates

    Directory of Open Access Journals (Sweden)

    Li Qizhen

    2015-01-01

    Full Text Available Computational simulations were performed to investigate the dynamic mechanical behavior of pure polycrystalline magnesium under different high loading strain rates with the values of 800, 1000, 2000, and 3600 s−1. The Johnson-Cook model was utilized in the simulations based on finite element modeling. The results showed that the simulations provided well-matched predictions of the material behavior such as the strain rate-time history, the stress-strain curve, and the temperature increase. Under high loading strain rates, the tested material experienced linear strain hardening at the early stage of plastic deformation, increased strain hardening at the intermediate plastic deformation region, and decreased strain hardening at the region before fracture. The strain hardening rates for the studied high loading strain rate cases do not vary much with the change of strain rates.

  7. Computational modeling of dynamic mechanical properties of pure polycrystalline magnesium under high loading strain rates

    Science.gov (United States)

    Li, Qizhen

    2015-09-01

    Computational simulations were performed to investigate the dynamic mechanical behavior of pure polycrystalline magnesium under different high loading strain rates with the values of 800, 1000, 2000, and 3600 s-1. The Johnson-Cook model was utilized in the simulations based on finite element modeling. The results showed that the simulations provided well-matched predictions of the material behavior such as the strain rate-time history, the stress-strain curve, and the temperature increase. Under high loading strain rates, the tested material experienced linear strain hardening at the early stage of plastic deformation, increased strain hardening at the intermediate plastic deformation region, and decreased strain hardening at the region before fracture. The strain hardening rates for the studied high loading strain rate cases do not vary much with the change of strain rates.

  8. Size-dependent crystalline fluctuation and growth mechanism of bismuth nanoparticles under electron beam irradiation

    Science.gov (United States)

    Wu, Sujuan; Jiang, Yi; Hu, Lijun; Sun, Jianguo; Wan, Piaopiao; Sun, Lidong

    2016-06-01

    Advanced nanofabrication requires accurate tailoring of various nanostructures with the assistance of electron or ion beam irradiation. However, evolution of the nanostructures under the beam irradiation significantly affects the fabrication process. It is thus of paramount importance to study the evolution behaviors and growth mechanism of the nanostructures. In this study, bismuth nanoparticles were selected to investigate crystalline fluctuation under electron beam irradiation via transmission electron microscopy. The results disclose size-dependent crystalline fluctuation of the nanoparticles. The particles exhibit crystalline and non-crystalline features for sizes of above 15 and below 4 nm, respectively, while a mixture of the two states is observed with sizes in between. The crystalline fluctuation facilitates the growth process of the particles when a crystalline particle is in contact with another non-crystalline one. This is promising for applications in nanofabrication where high quality interfaces are desired between two joining parts.Advanced nanofabrication requires accurate tailoring of various nanostructures with the assistance of electron or ion beam irradiation. However, evolution of the nanostructures under the beam irradiation significantly affects the fabrication process. It is thus of paramount importance to study the evolution behaviors and growth mechanism of the nanostructures. In this study, bismuth nanoparticles were selected to investigate crystalline fluctuation under electron beam irradiation via transmission electron microscopy. The results disclose size-dependent crystalline fluctuation of the nanoparticles. The particles exhibit crystalline and non-crystalline features for sizes of above 15 and below 4 nm, respectively, while a mixture of the two states is observed with sizes in between. The crystalline fluctuation facilitates the growth process of the particles when a crystalline particle is in contact with another non

  9. Fracture Mechanisms of Zirconium Diboride Ultra-High Temperature Ceramics under Pulse Loading

    Science.gov (United States)

    Skripnyak, Vladimir V.; Bragov, Anatolii M.; Skripnyak, Vladimir A.; Lomunov, Andrei K.; Skripnyak, Evgeniya G.; Vaganova, Irina K.

    2015-06-01

    Mechanisms of failure in ultra-high temperature ceramics (UHTC) based on zirconium diboride under pulse loading were studied experimentally by the method of SHPB and theoretically using the multiscale simulation method. The obtained experimental and numerical data are evidence of the quasi-brittle fracture character of nanostructured zirconium diboride ceramics under compression and tension at high strain rates and the room temperatures. Damage of nanostructured porous zirconium diboride -based UHTC can be formed under stress pulse amplitude below the Hugoniot elastic limit. Fracture of nanostructured ultra-high temperature ceramics under pulse and shock-wave loadings is provided by fast processes of intercrystalline brittle fracture and relatively slow processes of quasi-brittle failure via growth and coalescence of microcracks. A decrease of the shear strength can be caused by nano-voids clusters in vicinity of triple junctions between ceramic matrix grains and ultrafine-grained ceramics. This research was supported by grants from ``The Tomsk State University Academic D.I. Mendeleev Fund Program'' and also N. I. Lobachevski State University of Nizhny Novgorod (Grant of post graduate mobility).

  10. JC polyomavirus in the aetiology and pathophysiology of glial tumours.

    Science.gov (United States)

    Eftimov, Tihomir; Enchev, Yavor; Tsekov, Iliya; Simeonov, Plamen; Kalvatchev, Zlatko; Encheva, Elitsa

    2016-01-01

    Glial brain tumours with their poor prognosis, limited treatment modalities and unclear detailed pathophysiology represent a significant health concern. The purpose of the current study was to investigate and describe the possible role of the human polyomavirus JC as an underlying cancerogenic or co-cancerogenic factor in the complex processes of glial tumour induction and development. Samples from 101 patients with glial tumours were obtained during neurosurgical tumour resection. Small tissue pieces were taken from several areas of the histologically verified solid tumour core. Biopsies were used for DNA extraction and subsequent amplification reactions of sequences from the JC viral genome. Real-time polymerase chain reaction was used for detection and quantification of its non-coding control region (NCCR) and gene encoding the regulatory protein Large T antigen (LT). An average of 37.6% of all patients was found to be LT positive, whereas only 6.9% tested positive for NCCR. The analysis of the results demonstrated significant variance between the determined LT prevalence and the rate for NCCR, with a low starting copy number in all positive samples and threshold cycles in the range of 36 to 42 representing viral load in the range from 10 to 1000 copies/μl. The results most probably indicate incomplete JC viral replication. Under such conditions, mutations in the host cell genome may be accumulated due to interference of the virus with the host cell machinery, and eventually malignant transformation may occur. PMID:26560882

  11. New onset seizures in the elderly: aetiology and prognosis.

    LENUS (Irish Health Repository)

    Timmons, S

    2012-02-03

    Late onset epilepsy is increasing in incidence. These patients often have significant underlying morbidity. This retrospective study in a tertiary referral centre identified 68 patients aged 65 years or older, with new onset seizures over a four-year period. 81% of patients (n = 55) were followed up at an average of 2.7 years post diagnosis. 38% of patients had evidence of cerebrovascular disease (CT visualised focal infarction, haemorrhage or small vessel ischaemia in 32%, clinical diagnosis with normal CT brain in 6%). No patient was found to have a space-occupying lesion. Of the 55 patients followed up, 45% of these had died at a mean age of 82 years old and 1.9 years post diagnosis (range 12 hours to 5 years). Three patients died as a direct result of seizures (trauma and sepsis). 14 patients died of clearly unrelated causes. Eight patients died from underlying vascular disease or Alzheimer\\'s dementia. Patients who died during follow-up were on average 3.4 years older at the time of diagnosis than survivors (p< 0.05). Patients with atrial fibrillation at the time of diagnosis, had increased mortality (relative risk 2.53; 95% C.I. 1.19 - 5.36), but they were older than those without atrial fibrillation. At the time of follow up, 92% of those taking anti-convulsants were maintained seizure free on anticonvulsant monotherapy.

  12. Facial Erythema of Rosacea - Aetiology, Different Pathophysiologies and Treatment Options.

    Science.gov (United States)

    Steinhoff, Martin; Schmelz, Martin; Schauber, Jürgen

    2016-06-15

    Rosacea is a common chronic skin condition that displays a broad diversity of clinical manifestations. Although the pathophysiological mechanisms of the four subtypes are not completely elucidated, the key elements often present are augmented immune responses of the innate and adaptive immune system, and neurovascular dysregulation. The most common primary feature of all cutaneous subtypes of rosacea is transient or persistent facial erythema. Perilesional erythema of papules or pustules is based on the sustained vasodilation and plasma extravasation induced by the inflammatory infiltrates. In contrast, transient erythema has rapid kinetics induced by trigger factors independent of papules or pustules. Amongst the current treatments for facial erythema of rosacea, only the selective α2-adrenergic receptor agonist brimonidine 0.33% topical gel (Mirvaso®) is approved. This review aims to discuss the potential causes, different pathophysiologies and current treatment options to address the unmet medical needs of patients with facial erythema of rosacea. PMID:26714888

  13. Nescient Aetiology of Splenic Laceration - An Enigma Unveiled.

    Science.gov (United States)

    Sreeram, Saraswathy; Sridevi, Hanaganahalli B; Khadilkar, Urmila N; Adiga, Deepa

    2016-03-01

    Malaria is a common endemic disease prevalent in developing countries like India that presents with wide spectrum of clinical symptoms and complications. Splenic rupture is an uncommon but life-threatening complication which can be either spontaneous or as a result of trauma. We present a case of 50-year-old man with left upper quadrant pain following a polytrauma. Based on the radiological evidence of laceration and rupture of markedly enlarged spleen, emergency splenectomy was performed. Postoperative haematological evaluation established the co-infection of Plasmodium falciparum and vivax with high parasitaemia and marked thrombocytosis. The incidences of splenic rupture due to malaria are under-reported. In endemic areas, the management of splenic rupture in malaria should be focused on splenic preservation, thereby reducing the risk of future attacks of malaria in those patients who are highly susceptible to Plasmodium species and also reducing the incidence of overwhelming sepsis. PMID:27134879

  14. On the micro-deformation mechanisms active in high-manganese austenitic steels under impact loading

    International Nuclear Information System (INIS)

    The composition and temperature dependencies of deformation response of TWIP and XIP steels were investigated under high-velocity impact loading with a focus on micro-scale deformation mechanisms. The promotion of twinning deformation under high-velocity loading over the slip–twin interactions usually observed in low-velocity loading conditions was comprehensively examined with scanning electron microscopy and transmission electron microscopy. In addition, thermal analyses of plastic deformation were carried out by in situ thermal imaging. The current findings demonstrate that the deformation of TWIP steel is dictated by two major twin systems at elevated temperatures, while nano-twin formation within one primary twin system dominates at subzero temperatures. The XIP steel, on the other hand, deforms mainly by slip at elevated temperatures, while competing slip and twin activities, and eventually nano-twin formation within primary twins dominates as the temperature decreases. Overall, the current findings shed light on the complicated work hardening mechanisms prevalent in high-manganese austenitic steels utilizing high-velocity deformation experiments

  15. Mechanical modeling of creep, swelling and damage under irradiation for polycrystalline metals

    International Nuclear Information System (INIS)

    A constitutive equation of creep, swelling and damage under irradiation for polycrystalline metals applicable to structural analyses in multiaxial state of stress is developed. After reviewing microscopic mechanisms of irradiation creep and swelling, the relevant theories proposed so far from the view point of metallurgical physics and their applicability are discussed first. Then a constitutive model is developed by assuming that creep under irradiation can be decomposed into irradiation-affected thermal creep and irradiation-induced creep. By taking account of the Stress-Induced Preferential Absorption (SIPA) mechanism, the irradiation-induced creep is represented by an isotropic tensor function of order one and zero with respect to stress, which is, at the same time, the function of neutron flux and neutron fluence. The volumetric part of the irradiation-induced creep is identified with swelling. The irradiation-affected thermal creep is described by modifying Kachanov-Rabotnov theory for stress-controlled creep and creep damage by incorporating the effect of irradiation. Finally irradiation creep and swelling of 20% cold-worked type 316 stainless steel at elevated temperature are predicted by the proposed constitutive equations, and the numerical results are compared with the corresponding experimental results. (orig.)

  16. On the micro-deformation mechanisms active in high-manganese austenitic steels under impact loading

    Energy Technology Data Exchange (ETDEWEB)

    Bal, B.; Gumus, B. [Koç University, Advanced Materials Group (AMG), Department of Mechanical Engineering, Sarıyer, 34450 İstanbul (Turkey); Gerstein, G. [Leibniz Universität Hannover, Institut für Werkstoffkunde (Materials Science), An der Universität 2, 30823 Garbsen (Germany); Canadinc, D., E-mail: dcanadinc@ku.edu.tr [Koç University, Advanced Materials Group (AMG), Department of Mechanical Engineering, Sarıyer, 34450 İstanbul (Turkey); Maier, H.J. [Leibniz Universität Hannover, Institut für Werkstoffkunde (Materials Science), An der Universität 2, 30823 Garbsen (Germany)

    2015-04-24

    The composition and temperature dependencies of deformation response of TWIP and XIP steels were investigated under high-velocity impact loading with a focus on micro-scale deformation mechanisms. The promotion of twinning deformation under high-velocity loading over the slip–twin interactions usually observed in low-velocity loading conditions was comprehensively examined with scanning electron microscopy and transmission electron microscopy. In addition, thermal analyses of plastic deformation were carried out by in situ thermal imaging. The current findings demonstrate that the deformation of TWIP steel is dictated by two major twin systems at elevated temperatures, while nano-twin formation within one primary twin system dominates at subzero temperatures. The XIP steel, on the other hand, deforms mainly by slip at elevated temperatures, while competing slip and twin activities, and eventually nano-twin formation within primary twins dominates as the temperature decreases. Overall, the current findings shed light on the complicated work hardening mechanisms prevalent in high-manganese austenitic steels utilizing high-velocity deformation experiments.

  17. The mechanical stability of retained austenite in low-alloyed TRIP steel under shear loading

    International Nuclear Information System (INIS)

    The microstructure evolution during shear loading of a low-alloyed TRIP steel with different amounts of the metastable austenite phase and its equivalent DP grade has been studied by in-situ high-energy X-ray diffraction. A detailed powder diffraction analysis has been performed to probe the austenite-to-martensite transformation by characterizing simultaneously the evolution of the austenite phase fraction and its carbon concentration, the load partitioning between the austenite and the ferritic matrix and the texture evolution of the constituent phases. Our results show that for shear deformation the TRIP effect extends over a significantly wider deformation range than for simple uniaxial loading. A clear increase in average carbon content during the mechanically-induced transformation indicates that austenite grains with a low carbon concentration are least stable during shear loading. The observed texture evolution indicates that under shear loading the orientation dependence of the austenite stability is relatively weak, while it has previously been found that under tensile load the {110}〈001〉 component transforms preferentially. The mechanical stability of retained austenite in TRIP steel is found to be a complex interplay between the interstitial carbon concentration in the austenite, the grain orientation and the load partitioning

  18. Phosphoproteomics-based modeling defines the regulatory mechanism underlying aberrant EGFR signaling.

    Directory of Open Access Journals (Sweden)

    Shinya Tasaki

    Full Text Available BACKGROUND: Mutation of the epidermal growth factor receptor (EGFR results in a discordant cell signaling, leading to the development of various diseases. However, the mechanism underlying the alteration of downstream signaling due to such mutation has not yet been completely understood at the system level. Here, we report a phosphoproteomics-based methodology for characterizing the regulatory mechanism underlying aberrant EGFR signaling using computational network modeling. METHODOLOGY/PRINCIPAL FINDINGS: Our phosphoproteomic analysis of the mutation at tyrosine 992 (Y992, one of the multifunctional docking sites of EGFR, revealed network-wide effects of the mutation on EGF signaling in a time-resolved manner. Computational modeling based on the temporal activation profiles enabled us to not only rediscover already-known protein interactions with Y992 and internalization property of mutated EGFR but also further gain model-driven insights into the effect of cellular content and the regulation of EGFR degradation. Our kinetic model also suggested critical reactions facilitating the reconstruction of the diverse effects of the mutation on phosphoproteome dynamics. CONCLUSIONS/SIGNIFICANCE: Our integrative approach provided a mechanistic description of the disorders of mutated EGFR signaling networks, which could facilitate the development of a systematic strategy toward controlling disease-related cell signaling.

  19. Research on energy conversion mechanism of a screw centrifugal pump under the water

    International Nuclear Information System (INIS)

    In order to research screw centrifugal pump impeller power capability and energy conversion mechanism, we used Navier-Stokes equation and standard k-ε equation turbulence model on the basis of the Euler equations to carry out screw centrifugal pump internal flow numerical simulation. This was explored by simulating specific design conditions; the medium is water, variation of speed and pressure of flow filed under the action of the impeller, and the screw centrifugal impeller shroud line and wheel line segment take monitoring sites. The monitoring points are between dynamic head and static head change to analyze the energy conversion capability along the impeller corners of screw centrifugal pump. The results show that the energy of fluid of the screw centrifugal pump is provided by spiral segment, the spiral segment in front of the impeller has played a multi-level role, it has significant reference value to research the energy conversion mechanism of screw centrifugal pump under solid-liquid two phase

  20. Prolonged secretion of cortisol as a possible mechanism underlying stress and depressive behaviour.

    Science.gov (United States)

    Qin, Dong-Dong; Rizak, Joshua; Feng, Xiao-Li; Yang, Shang-Chuan; Lü, Long-Bao; Pan, Lei; Yin, Yong; Hu, Xin-Tian

    2016-01-01

    Stress is associated with the onset of depressive episodes, and cortisol hypersecretion is considered a biological risk factor of depression. However, the possible mechanisms underlying stress, cortisol and depressive behaviours are inconsistent in the literature. This study examined the interrelationships among stress, cortisol and observed depressive behaviours in female rhesus macaques for the first time and explored the possible mechanism underlying stress and depressive behaviour. Female monkeys were video-recorded, and the frequencies of life events and the duration of huddling were analysed to measure stress and depressive behaviour. Hair samples were used to measure chronic cortisol levels, and the interactions between stress and cortisol in the development of depressive behaviour were further evaluated. Significant correlations were found between stress and depressive behaviour measures and between cortisol levels and depressive behaviour. Stress was positively correlated with cortisol levels, and these two factors interacted with each other to predict the monkeys' depressive behaviours. This finding extends the current understanding of stress/cortisol interactions in depression, especially pertaining to females. PMID:27443987

  1. The tunable mechanical property of water-filled carbon nanotubes under an electric field

    International Nuclear Information System (INIS)

    The spring-induced compression of water-filled carbon nanotubes (CNTs) under an electric field is investigated by molecular dynamics simulations. Due to the incompressibility and polarity of water, the mechanical property of CNTs can be tuned through filling with water molecules and applying an electric field. To explore the variation of the mechanical property of water-filled CNTs, the effects of the CNT length, the filling density and the electric field intensity are examined. The simulation results indicate that the water filling and electric field can result in a slight change in the elastic property (the elastic modulus and Poisson's ratio) of water-filled CNTs. However, the yield stress and average post-buckling stress exhibit a significant response to the water density and electric field intensity. As compared to hollow CNTs, the increment in yield stress of the water-filled CNTs under an electric field of 2.0 V Å−1 is up to 35.29%, which is even higher than that resulting from metal filling. The findings from this study provide a valuable theoretical basis for designing and fabricating the controlling units at the nanoscale. (paper)

  2. Motivational and control mechanisms underlying adolescent cannabis use disorders: A prospective study

    Directory of Open Access Journals (Sweden)

    Janna Cousijn

    2015-12-01

    Full Text Available Cannabis use disorders (CUDs are the most prevalent substance use disorders among adolescents in treatment. Yet, little is known about the neuropsychological mechanisms underlying adolescent CUDs. Studies in adult cannabis users suggest a significant role for cognitive control and cannabis-oriented motivational processes, such as attentional bias, approach bias, and craving in CUDs. The current 6-month prospective study investigated the relationships between attentional bias, approach bias, craving, cognitive control, and cannabis use in adolescent patients in treatment for a primary or secondary CUD. Moreover, we investigated if these motivational processes and cognitive control could predict treatment progression after 6 months. Adolescents with a CUD had an attentional but no approach bias towards cannabis. In contrast to adult findings on the role of attentional bias, approach bias and cognitive control, only cannabis craving significantly correlated with current cannabis use and predicted cannabis use-related problems and abstinence from cannabis 6 months later. These findings identify craving as a predictor of treatment outcome, thereby supporting an important role for craving in the course of adolescent cannabis use and dependence. This prospective study is among the first to investigate neuropsychological mechanisms underlying adolescent CUDs, warranting future longitudinal studies.

  3. On the tension necking of copper single crystal specimen under slip deformation mechanism

    Institute of Scientific and Technical Information of China (English)

    ZHANG KeShi; GENG XiaoLiang; LI JinShan; HU Rui

    2007-01-01

    The tension necking of FCC copper single crystal specimen with a square cross section was analyzed under the slip deformation mechanism. The actual clamp manner of the specimen was modeled by setting correlative boundary condition,and the small angle deflection between tension loading axis and crystallography axis [100] was taken into account. The finite deformation numerical analysis of three-dimensional necking deformation for the specimen was performed by applying crystal plasticity theory associated with a numerical algorithm suggested by the first author. According to the comparison with experimental observation, the fact was confirmed that the numerical results could describe the loading elongation curve of the copper single crystal specimen under large strain tension reasonably,and the method could be used to investigate the necking characteristic in neck shape and the effect due to the small angle deflection. Further, the investigation into the influence of specimen cross-section shape on necking was also performed;the results on mechanical response and neck profile evolution obtained through modeling of cylindrical specimen were compared with those obtained with square cross-section specimen.

  4. On the tension necking of copper single crystal specimen under slip deformation mechanism

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The tension necking of FCC copper single crystal specimen with a square cross section was analyzed under the slip deformation mechanism. The actual clamp manner of the specimen was modeled by setting correlative boundary condition,and the small angle deflection between tension loading axis and crystallography axis [100] was taken into account. The finite deformation numerical analysis of three-dimensional necking deformation for the specimen was performed by apply-ing crystal plasticity theory associated with a numerical algorithm suggested by the first author. According to the comparison with experimental observation,the fact was confirmed that the numerical results could describe the loading elongation curve of the copper single crystal specimen under large strain tension reasonably,and the method could be used to investigate the necking characteristic in neck shape and the effect due to the small angle deflection. Further,the investigation into the influence of specimen cross-section shape on necking was also performed;the results on mechanical response and neck profile evolution obtained through modeling of cylindrical specimen were compared with those obtained with square cross-section specimen.

  5. Separation Mechanism of Primary Silicon from Hypereutectic Al-Si Melts Under Alternating Electromagnetic Fields

    Science.gov (United States)

    Xue, Haiyang; Lv, Guoqiang; Ma, Wenhui; Chen, Daotong; Yu, Jie

    2015-07-01

    Solar grade silicon (SOG-Si) and hypereutectic Al-Si alloys with low silicon (silicon composition below 25 pct) can be successfully obtained by separation of hypereutectic Al-Si alloy with high silicon (silicon composition above 30 pct) under an alternating electromagnetic field after post-processing. To explore the separation mechanism in detail, experiments were conducted in this study using a high-frequency induction furnace with different pulling conditions of the crucible which is loaded with Al-45 wt pct Si melt. Results demonstrate that the separation of hypereutectic Al-Si alloy is feasible through either a pull-up or drop-down process. The height of each separation interface between the compact and sparse parts of the primary silicon decrease as the pull-up distance rose. When the pulling rate is very low, resultant morphologies of compact primary silicon are rounded and polygonal, allowing for more effective separation of the primary silicon. A novel physical model is presented here based on the experimental results and simulation. The model can be used to effectively describe the separation mechanism of primary silicon from hypereutectic Al-Si melts under alternating electromagnetic fields.

  6. Aetiology of childhood acute leukaemias: Current status of knowledge

    International Nuclear Information System (INIS)

    Acute leukaemia is a consequence of malignant transformation of a haematopoietic progenitor cell. Molecular studies have revealed a prenatal origin of many childhood leukaemias. According to current models, a pre-leukaemic stem cell clone is generated by a first mutation in utero which, in a minority of children, progresses to leukaemia after receiving further postnatal genetic hits. The nature of pre- and postnatal events involved in leukemogenesis in children is not well understood. Although genetic predisposition and specific environmental exposures may account for individual cases, the bulk of childhood leukaemia cannot be explained by any of these factors. The higher incidence of the most common leukaemia subtype in affluent societies, as well as the age peak between 2-5 y, suggest a contributory role of socioeconomic factors. An abnormal immune response during delayed exposure to common infections provides a plausible mechanism for malignant progression of pre-leukaemic clones in a subgroup of children. As highlighted in this review, a common cause for all types and subtypes of childhood leukaemia is highly unlikely. Deeper insights into the pathogenesis of childhood leukaemia will rely on large-scale and combined epidemiological and bio-molecular studies. (authors)

  7. Neural mechanisms underlying transcranial direct current stimulation in aphasia: A feasibility study.

    Directory of Open Access Journals (Sweden)

    Katie McMahon

    2015-10-01

    Full Text Available Little is known about the neural mechanisms by which transcranial direct current stimulation (tDCS impacts on language processing in post-stroke aphasia. This was addressed in a proof-of-principle study that explored the effects of tDCS application in aphasia during simultaneous functional magnetic resonance imaging (fMRI. We employed a single subject, cross-over, sham-tDCS controlled design and the stimulation was administered to an individualized perilesional stimulation site that was identified by a baseline fMRI scan and a picture naming task. Peak activity during the baseline scan was located in the spared left inferior frontal gyrus (IFG and this area was stimulated during a subsequent cross-over phase. tDCS was successfully administered to the target region and anodal- vs. sham-tDCS resulted in selectively increased activity at the stimulation site. Our results thus demonstrate that it is feasible to precisely target an individualized stimulation site in aphasia patients during simultaneous fMRI which allows assessing the neural mechanisms underlying tDCS application. The functional imaging results of this case report highlight one possible mechanism that may have contributed to beneficial behavioural stimulation effects in previous clinical tDCS trials in aphasia. In the future, this approach will allow identifying distinct patterns of stimulation effects on neural processing in larger cohorts of patients. This may ultimately yield information about the variability of tDCS-effects on brain functions in aphasia.

  8. Axial level-dependent molecular and cellular mechanisms underlying the genesis of the embryonic neural plate.

    Science.gov (United States)

    Kondoh, Hisato; Takada, Shinji; Takemoto, Tatsuya

    2016-06-01

    The transcription factor gene Sox2, centrally involved in neural primordial regulation, is activated by many enhancers. During the early stages of embryonic development, Sox2 is regulated by the enhancers N2 and N1 in the anterior neural plate (ANP) and posterior neural plate (PNP), respectively. This differential use of the enhancers reflects distinct regulatory mechanisms underlying the genesis of ANP and PNP. The ANP develops directly from the epiblast, triggered by nodal signal inhibition, and via the combined action of TFs SOX2, OTX2, POU3F1, and ZIC2, which promotes the the ANP development and inhibits other cell lineages. In contrast, the PNP is derived from neuromesodermal bipotential axial stem cells that develop into the neural plate when Sox2 is activated by the N1 enhancer, whereas they develop into the paraxial mesoderm when the N1 enhancer is repressed by the action of TBX6. The axial stem cells are maintained by the activity of WNT3a and T (Brachyury). However, at axial levels more anterior to the 8th somites (cervical levels), the development of both the neural plate and somite proceeds in the absence of WNT3a, T, or TBX6. These observations indicate that distinct molecular and cellular mechanisms determine neural plate genesis based on the axial level, and contradict the classical concept of the term "neural induction," which assumes a pan-neural plate mechanism. PMID:27279156

  9. Change of plans: an evaluation of the effectiveness and underlying mechanisms of successful talent transfer.

    Science.gov (United States)

    Collins, Rosie; Collins, Dave; MacNamara, Aine; Jones, Martin Ian

    2014-01-01

    Talent transfer (TT) is a recently formalised process used to identify and develop talented athletes by selecting individuals who have already succeeded in one sport and transferring them to another. Despite the increasing popularity of TT amongst national organisations and sport governing body professionals, however, there is little empirical evidence as to its efficacy or how it may be most efficiently employed. Accordingly, this investigation was designed to gain a deeper understanding of the effectiveness and underlying mechanisms of TT, achieved through a two-part study. Stage 1 provided a quantitative analysis of the incidence and distribution or, in this respect, epidemiology of TT, finding the most popular transfer to be sprinting to bobsleigh, with an average transfer age of 19 years. Stage 2 scrutinised the TT process and explored the specific cases revealed in stage 1 by examining the perceptions of four sport science support specialists who had worked in TT settings, finding several emergent themes which, they felt, could explain the TT processes. The most prominent theme was the psychosocial mechanism of TT, an aspect currently missing from TT initiatives, suggesting that current TT systems are poorly structured and should redress their approach to develop a more integrated scheme that encompasses all potential mechanisms of transfer. PMID:24814474

  10. Effects of intelligent control mechanism on multiple-vehicle collision under emergency

    Science.gov (United States)

    Li, Zhipeng; Chen, Lizhu

    2014-06-01

    In this paper, we study the effects of intelligent control mechanism on multiple-vehicle collision induced by a sudden stop. The control motion of following vehicles is extended by introducing their velocity relative to the braking one into the dynamic models. We study the dynamic process of multiple-vehicle collision under the new control mechanism with finding that the new control mechanism can effectively avoid the first following vehicle's collision with the stopped vehicle, and the new consideration behaves better in reducing the number of crumpled vehicles than the existing control method. We obtain the region maps of the multiple-vehicle collision for the new intelligent control. We show the dependence of the number of the crumpled vehicles on the initial headway, the sensitivity, and the intensity of the intelligent control. In addition, the effects of the transfer delay on multiple-vehicle collision are obtained by drawing the phase diagram of the multiple-vehicle collision for the new intelligent control with different transfer delays. It is revealed that the negative effects of the delay on the multiple-vehicle collision can be mitigated by enhancing the strength of the intelligent control.

  11. Genetic algorithm based optimal control of smart composite shell structures under mechanical loading and thermal gradient

    International Nuclear Information System (INIS)

    In the present paper an improved genetic algorithm (GA) based linear quadratic regulator (LQR) control scheme has been proposed for active vibration control of smart fiber reinforced polymer (FRP) composite shell structures under combined mechanical and thermal loading. A layered shell finite element formulation has been done to obtain the electro-thermo-mechanical response of fiber reinforced polymer (FRP) composite shell structures bonded with piezoelectric patches. Based on the responses obtained from finite element analysis, a real coded GA based improved LQR control scheme has been incorporated, which maximizes the closed loop damping while keeping the actuator voltages within limit. It has been observed that the developed FE code can be used for determination of the accurate response of smart FRP shell structures for the simulation of active vibration control of such structures. The proposed GA based LQR control scheme could control both dynamic oscillation due to mechanical load as well as the static displacement due to a thermal gradient, which was not possible with conventional LQR control scheme

  12. Fatigue degradation and failure of rotating composite structures - Materials characterisation and underlying mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Gamstedt, E.K.; Andersen, S.I.

    2001-03-01

    The present review concerns rotating composite structures, in which fatigue degradation is of key concern for in-service failure. Such applications are for instance rotor blades in wind turbines, helicopter rotor blades, flywheels for energy storage, marine and aeronautical propellers, and rolls for paper machines. The purpose is to identify areas where impending efforts should be made to make better use of composite materials in these applications. In order to obtain better design methodologies, which would allow more reliable and slender structures, improved test methods are necessary. Furthermore, the relation between structural, component and specimen test results should be better understood than what is presently the case. Improved predictive methods rely on a better understanding of the underlying damage mechanisms. With mechanism-based models, the component substructure or even the material microstructure could be optimised for best possible fatigue resistance. These issues are addressed in the present report, with special emphasis on test methods, and scaling from damage mechanisms to relevant material properties. (au)

  13. Investigating the time-dependent behaviour of Boom clay under thermo-mechanical loading

    CERN Document Server

    Cui, Yu-Jun; Tang, Anh-Minh; Delage, Pierre; Li, Xiang-Ling; 10.1680/geot.2009.59.4.319

    2009-01-01

    Among the various laboratory studies to investigate the Thermo-Hydro-Mechanical (THM) behaviour of Boom clay, relatively few were devoted to the time dependent behaviour, limiting any relevant analysis of the long-term behaviour of the disposal facility. The present work aims at investigating the time-dependent behaviour of Boom clay under both thermal and mechanical loading. High-pressure triaxial tests at controlled temperatures were carried out for this purpose. The tests started with constant-rate thermal and/or mechanical consolidation and ended with isobar heating and/or isothermal compression at a constant stress rate or by step loading. Significant effects of temperature as well as of compression and heating rates were observed on the volume change behaviour. After being loaded to a stress lower than the pre-consolidation pressure (5 MPa) at a low temperature of 25\\degree C and at a rate lower than 0.2 kPa/min, the sample volume changes seemed to be quite small, suggesting a full dissipation of pore w...

  14. Nuclear power for greenhouse gas mitigation under the Kyoto protocol: The Clean Development Mechanism (CDM)

    International Nuclear Information System (INIS)

    At the 43rd regular session of the IAEA General Conference, Member States requested the IAEA to help countries in assessing nuclear power's role in light of global environmental challenges and energy needs. Such assistance should include support for implementing national case studies, and facilitating access to relevant information about nuclear power's role in achieving sustainable development in developing countries and in mitigating GHG emissions. The dissemination of information on CDM is of particular importance to developing countries, so as to enable Member States interested in the mechanism to take an active and informed role in the debate regarding the Kyoto Protocol and eligible CDM technologies. Therefore, the Secretariat organized a series of information seminars, workshops and training courses for Member States on the Kyoto Protocol, the Clean Development Mechanism, Joint Implementation and Emissions Trading with particular emphasis on the potential role of nuclear power for GHG mitigation. On request, the Secretariat also provided training and assistance to several Member States in the preparation of national case studies that explore the potential role of nuclear power as a CDM technology. These case studies will be presented by the respective national study teams during this side event at the 44th IAEA General Conference. Within the general criteria included in the Kyoto Protocol, the decision on which technologies are eligible for GHG mitigation under the flexibility mechanisms is a sovereign decision of each country

  15. Role of soluble guanylate cyclase in the molecular mechanism underlying the physiological effects of nitric oxide.

    Science.gov (United States)

    Severina, I S

    1998-07-01

    In this review the molecular mechanisms underlying the antihypertensive and antiaggregatory actions of nitric oxide (NO) are discussed. It has been shown that these effects are directly connected with the activation of soluble guanylate cyclase and the accumulation of cyclic 3;,5;-guanosine monophosphate (cGMP). The mechanism of guanylate cyclase activation by NO is analyzed, especially the role and biological significance of the nitrosyl--heme complex formed as a result of interaction of guanylate cyclase heme with NO and the role of sulfhydryl groups of the enzyme in this process. Using new approaches for studying the antihypertensive and antiaggregatory actions of nitric oxide in combination with the newly obtained data on the regulatory role of guanylate cyclase in the platelet aggregation process, the most important results were obtained regarding the molecular bases providing for a directed search for and creation of new effective antihypertensive and antiaggregatory preparations. In studying the molecular mechanism for directed activation of soluble guanylate cyclase by new NO donors, a series of hitherto unknown enzyme activators generating NO and involved in the regulation of hemostasis and vascular tone were revealed. PMID:9721331

  16. Neural Mechanisms for Acoustic Signal Detection under Strong Masking in an Insect.

    Science.gov (United States)

    Kostarakos, Konstantinos; Römer, Heiner

    2015-07-22

    Communication is fundamental for our understanding of behavior. In the acoustic modality, natural scenes for communication in humans and animals are often very noisy, decreasing the chances for signal detection and discrimination. We investigated the mechanisms enabling selective hearing under natural noisy conditions for auditory receptors and interneurons of an insect. In the studied katydid Mecopoda elongata species-specific calling songs (chirps) are strongly masked by signals of another species, both communicating in sympatry. The spectral properties of the two signals are similar and differ only in a small frequency band at 2 kHz present in the chirping species. Receptors sharply tuned to 2 kHz are completely unaffected by the masking signal of the other species, whereas receptors tuned to higher audio and ultrasonic frequencies show complete masking. Intracellular recordings of identified interneurons revealed two mechanisms providing response selectivity to the chirp. (1) Response selectivity is when several identified interneurons exhibit remarkably selective responses to the chirps, even at signal-to-noise ratios of -21 dB, since they are sharply tuned to 2 kHz. Their dendritic arborizations indicate selective connectivity with low-frequency receptors tuned to 2 kHz. (2) Novelty detection is when a second group of interneurons is broadly tuned but, because of strong stimulus-specific adaptation to the masker spectrum and "novelty detection" to the 2 kHz band present only in the conspecific signal, these interneurons start to respond selectively to the chirp shortly after the onset of the continuous masker. Both mechanisms provide the sensory basis for hearing at unfavorable signal-to-noise ratios. Significance statement: Animal and human acoustic communication may suffer from the same "cocktail party problem," when communication happens in noisy social groups. We address solutions for this problem in a model system of two katydids, where one species

  17. Sleep disturbances in menopausal women: Aetiology and practical aspects.

    Science.gov (United States)

    Bruyneel, Marie

    2015-07-01

    Sleep deteriorates with age. The menopause is often a turning point for women's sleep, as complaints of insomnia increase significantly thereafter. Insomnia can occur as a secondary disorder to hot flashes, mood disorders, medical conditions, psychosocial factors, underlying intrinsic sleep disorders, such as obstructive sleep apnoea (OSA) or restless legs syndrome (RLS), or it can be a primary disorder. Since unrecognized OSA can have dramatic health-related consequences, menopausal women complaining of persisting sleep disturbances suggesting primary insomnia or intrinsic sleep disorders should be referred to a sleep specialist for a comprehensive sleep assessment. Patients suffering from primary insomnia will be preferentially treated with non-benzodiazepine hypnotics or melatonin, or with cognitive behavioural therapy. Insomnia related to vasomotor symptoms can be improved with hormone replacement therapy. Gabapentin and isoflavones have also shown efficacy in small series but their precise role has yet to be established. In patients suffering from OSA, non-pharmacological therapy will be applied: continuous positive airway pressure or an oral appliance, according to the severity of the disorder. In the case of RLS, triggering factors must be avoided; dopaminergic agonists are the first-line treatment for moderate to severe disease. In conclusion, persisting sleep complaints should be addressed in menopausal women, in order to correctly diagnose the specific causal disorder and to prescribe treatments that have been shown to improve sleep quality, quality of life and long-term health status. PMID:26002789

  18. INFECTIVE ENDOCARDITIS: AETIOLOGY, CLINICAL FEATURES, PRINCIPLES OF TREATMENT AND PREVENTION

    Directory of Open Access Journals (Sweden)

    Coralia Bleotu

    2012-03-01

    Full Text Available Infective endocarditis (IE is characterized by pathogen colonization and endocardium invasion, causing the formation of vegetations - amorphous aggregates, composed of platelets, fibrin, microorganisms and inflammatory cells. IE microbiological aspects are variable from country to country, reason for which, the purpose of this review was to integrate some original data concerning the etiology and antimicrobial resistance markers in microbial strains isolated from infections occurred in patients with underlying cardiovascular diseases in the general microbiological picture IE (i.e. diagnosis, etiology and treatment. In our hospital, the etiology of positive blood cultures and prosthetic devices associated infections occurred in patients with cardiovascular diseases is dominated by Gram-positive cocci, especially S. aureus and coagulase-negative staphylococci (CNS, followed by Gram-negative fermentative and non-fermentative bacilli. The major concerns regarding the resistance markers of the isolated strains are the methicillin and macrolides lincosamides streptogramines resistance exceeding 50%, both in S. aureus and CNS and the aminoglycosides high level resistance (30% in E. faecium strains.

  19. The aetiology of vaginal symptoms in rural Haiti.

    Science.gov (United States)

    Bristow, Claire C; Desgrottes, Tania; Cutler, Lauren; Cutler, David; Devarajan, Karthika; Ocheretina, Oksana; Pape, Jean William; Klausner, Jeffrey D

    2014-08-01

    Vaginal symptoms are a common chief complaint amongst women visiting outpatient clinics in rural Haiti. A systematic sample of 206 consecutive women over age 18 with gynaecological symptoms underwent gynaecologic examination and laboratory testing for chlamydia, gonorrhoea, syphilis, HIV infection, trichomoniasis, candidiasis, and bacterial vaginosis. Among 206 women, 174 (84%) presented with vaginal discharge, 165 (80%) with vaginal itching, 123 (60%) with vaginal pain or dysuria, and 18 (9%) with non-traumatic vaginal sores or boils. Laboratory results were positive forChlamydia trachomatisin 5.4% (11/203), syphilis in 3.5% (7/202), HIV in 1.0% (2/200), andNeisseria gonorrhoeaein 1.0% (2/203). Among those that had microscopy, hyphae suggestive of candidiasis were visualized in 2.2% (1/45) and no cases of trichomoniasis were diagnosed 0% (0/45). Bacterial vaginosis was diagnosed in 28.3% (13/46). The prevalence of chlamydia was 4.9 (95% CI: 1.3-17.7) times greater among those 25 years of age and under (10.8%) than those older (2.3%). Chlamydia and bacterial vaginosis were the most common sexually transmitted infection and vaginal condition, respectively, in this study of rural Haitian adult women. The higher risk of chlamydia in younger women suggests education and screening programmes in young women should be considered. PMID:24352116

  20. Changes in Mechanical Properties of Rat Bones under Simulated Effects of Microgravity and Radiation†

    Science.gov (United States)

    Walker, Azida H.; Perkins, Otis; Mehta, Rahul; Ali, Nawab; Dobretsov, Maxim; Chowdhury, Parimal

    The aim of this study was to determine the changes in elasticity and lattice structure in leg bone of rats which were: 1) under Hind-Limb Suspension (HLS) by tail for 2 weeks and 2) exposed to a total radiation of 10 Grays in 10 days. The animals were sacrificed at the end of 2 weeks and the leg bones were surgically removed, cleaned and fixed with a buffered solution. The mechanical strength of the bone (elastic modulus) was determined from measurement of bending of a bone when under an applied force. Two methodologies were used: i) a 3-point bending technique and ii) classical bending where bending is accomplished keeping one end fixed. Three point bending method used a captive actuator controlled by a programmable IDEA drive. This allowed incremental steps of 0.047 mm for which the force is measured. The data is used to calculate the stress and the strain. In the second method a mirror attached to the free end of the bone allowed a reflected laser beam spot to be tracked. This provided the displacement measurement as stress levels changed. Analysis of stress vs. strain graph together with solution of Euler-Bernoulli equation for a cantilever beam allowed determination of the elastic modulus of the leg bone for (i) control samples, (ii) HLS samples and (iii) HLS samples with radiation effects. To ascertain changes in the bone lattice structure, the bones were cross-sectioned and imaged with a 20 keV beam of electrons in a Scanning Electron Microscope (SEM). A backscattered detector and a secondary electron detector in the SEM provided the images from well-defined parts of the leg bones. Elemental compositions in combination with mechanical properties (elastic modulus and lattice structure) changes indicated weakening of the bones under space-like conditions of microgravity and radiation.

  1. Mechanisms underlying nutrient-induced segmentation in isolated guinea pig small intestine.

    Science.gov (United States)

    Gwynne, R M; Bornstein, J C

    2007-04-01

    Mechanisms underlying nutrient-induced segmentation within the gut are not well understood. We have shown that decanoic acid and some amino acids induce neurally dependent segmentation in guinea pig small intestine in vitro. This study examined the neural mechanisms underlying segmentation in the circular muscle and whether the timing of segmentation contractions also depends on slow waves. Decanoic acid (1 mM) was infused into the lumen of guinea pig duodenum and jejunum. Video imaging was used to monitor intestinal diameter as a function of both longitudinal position and time. Circular muscle electrical activity was recorded by using suction electrodes. Recordings from sites of segmenting contractions showed they are always associated with excitatory junction potentials leading to action potentials. Recordings from sites oral and anal to segmenting contractions revealed inhibitory junction potentials that were time locked to those contractions. Slow waves were never observed underlying segmenting contractions. In paralyzed preparations, intracellular recording revealed that slow-wave frequency was highly consistent at 19.5 (SD 1.4) cycles per minute (c/min) in duodenum and 16.6 (SD 1.1) c/min in jejunum. By contrast, the frequencies of segmenting contractions varied widely (duodenum: 3.6-28.8 c/min, median 10.8 c/min; jejunum: 3.0-27.0 c/min, median 7.8 c/min) and sometimes exceeded slow-wave frequencies for that region. Thus nutrient-induced segmentation contractions in guinea pig small intestine do not depend on slow-wave activity. Rather they result from a neural circuit producing rhythmic localized activity in excitatory motor neurons, while simultaneously activating surrounding inhibitory motor neurons. PMID:17218474

  2. Mechanical characterisation of porcine rectus sheath under uniaxial and biaxial tension.

    LENUS (Irish Health Repository)

    Lyons, Mathew

    2014-06-03

    Incisional hernia development is a significant complication after laparoscopic abdominal surgery. Intra-abdominal pressure (IAP) is known to initiate the extrusion of intestines through the abdominal wall, but there is limited data on the mechanics of IAP generation and the structural properties of rectus sheath. This paper presents an explanation of the mechanics of IAP development, a study of the uniaxial and biaxial tensile properties of porcine rectus sheath, and a simple computational investigation of the tissue. Analysis using Laplace׳s law showed a circumferential stress in the abdominal wall of approx. 1.1MPa due to an IAP of 11kPa, commonly seen during coughing. Uniaxial and biaxial tensile tests were conducted on samples of porcine rectus sheath to characterise the stress-stretch responses of the tissue. Under uniaxial tension, fibre direction samples failed on average at a stress of 4.5MPa at a stretch of 1.07 while cross-fibre samples failed at a stress of 1.6MPa under a stretch of 1.29. Under equi-biaxial tension, failure occurred at 1.6MPa with the fibre direction stretching to only 1.02 while the cross-fibre direction stretched to 1.13. Uniaxial and biaxial stress-stretch plots are presented allowing detailed modelling of the tissue either in silico or in a surrogate material. An FeBio computational model of the tissue is presented using a combination of an Ogden and an exponential power law model to represent the matrix and fibres respectively. The structural properties of porcine rectus sheath have been characterised and add to the small set of human data in the literature with which it may be possible to develop methods to reduce the incidence of incisional hernia development.

  3. Colloid and radionuclide retention mechanisms in fractured rock under near-natural flow conditions

    International Nuclear Information System (INIS)

    Full text of publication follows: Experiments in fractured host rock (Grimsel Test Site, GTS, Switzerland) revealed that the colloid relevance for actinide migration is high due to the specific geochemical groundwater conditions [1]. However, even under such conditions it is found that retention of colloids and colloid-borne actinides becomes significant under near-natural groundwater flow rates (1-10 m/a) [2]. Underlying mechanisms of colloid and radionuclide retention are not well understood up to now. The present study co-funded by the NoE ACTINET-6 focuses on (i) the kinetics of actinide-colloid interactions and (ii) the relevance of matrix diffusion as a competition process to other retention mechanisms which affect the actinides behavior in fractured rock systems such as the Grimsel granodiorite. Colloid migration is studied with well defined model colloids as e.g. fluorescence dyed carboxylated polystyrene particles, and natural colloids extracted from bentonite (FEBEX) and from fracture filling material (GTS). In order to study the influence of matrix porosity on actinides migration, those experiments are performed in columns of well defined geometry filled with microporous unmodified silica spheres, porous ceramic material and natural fracture filling material from the GTS. The behaviour of actinides (Pu(IV) and Am(III)) sorbed onto bentonite colloids is investigated in column and batch experiments. All experiments are performed under anoxic conditions. Colloid characterization methods used in this study include the combination of photon correlation spectroscopy (PCS), laser-induced breakdown detection (LIBD), fluorimetry and field flow fractionation (FFF). Experimental results and their application to the parametrisation of reactive colloid transport models are discussed. [1] Geckeis H, Schaefer T, Hauser W, Rabung T, Missana T, Degueldre C, Moeri A, Eikenberg J, Fierz T, Alexander WR (2004) Results of the Colloid and Radionuclide Retention experiment

  4. Effects of intravenous furosemide on mucociliary transport and rheological properties of patients under mechanical ventilation

    Science.gov (United States)

    Kondo, Cláudia Seiko; Macchionne, Mariângela; Nakagawa, Naomi Kondo; de Carvalho, Carlos Roberto Ribeiro; King, Malcolm; Saldiva, Paulo Hilário Nascimento; Lorenzi-Filho, Geraldo

    2002-01-01

    The use of intravenous (IV) furosemide is common practice in patients under mechanical ventilation (MV), but its effects on respiratory mucus are largely unknown. Furosemide can affect respiratory mucus either directly through inhibition of the NaK(Cl)2 co-transporter on the basolateral surface of airway epithelium or indirectly through increased diuresis and dehydration. We investigated the physical properties and transportability of respiratory mucus obtained from 26 patients under MV distributed in two groups, furosemide (n = 12) and control (n = 14). Mucus collection was done at 0, 1, 2, 3 and 4 hours. The rheological properties of mucus were studied with a microrheometer, and in vitro mucociliary transport (MCT) (frog palate), contact angle (CA) and cough clearance (CC) (simulated cough machine) were measured. After the administration of furosemide, MCT decreased by 17 ± 19%, 24 ± 11%, 18 ± 16% and 18 ± 13% at 1, 2, 3 and 4 hours respectively, P < 0.001 compared with control. In contrast, no significant changes were observed in the control group. The remaining parameters did not change significantly in either group. Our results support the hypothesis that IV furosemide might acutely impair MCT in patients under MV. PMID:11940271

  5. Effects of light intensity on photosynthesis and photoprotective mechanisms in apple under progressive drought

    Institute of Scientific and Technical Information of China (English)

    MA Ping; BAI Tuan-hui; WANG Xiao-qian; MA Feng-wang

    2015-01-01

    The effects of light intensity on photosynthesis and photoprotective mechanisms under progressive drought were studied on apple trees (Malus domestica Borkh.) Fuji. The potted trees were exposed to drought stress for 12 days and different light conditions (100, 60 and 25% sunlight). During the progressive drought, the relative water content (RWC) in leaf declined and was faster in full light than in 60 and 25% sunlight. However, the decrease in the net photosynthetic rate (Pn), stomatal conductance (Gs) and Rubisco activity were slower under 100% sunlight condition than other light conditions. After the 6 days of drought, the maximum PSII quantum yield (Fv/Fm), the capacity of electrons move beyond QA- (1-Vj) and electron move from intersystem to PSI acceptor side (1-VI)/(1-VJ) decreased, with greater decline extent in brighter light. While RWCs were 〉75%, the variations in different light intensities of Gs and Rubisco activity at identical RWC, suggested the direct effects of light. While the little difference in the state of photosynthetic electron transport chain among tested light intensities indicates the results of faster water loss rate of light. Our results also demonstrated that the enhancement the de-epoxidations of xanthophyll cycle, activities of ascorbate peroxidase (APX) and catalase (CAT) were directly regulated by light intensity. While the higher photorespiration rate (Pr) under stronger light condition was mainly caused by faster water loss rate of light.

  6. Mechanical behavior and electrical property of CFRC-strengthened RC beams under fatigue and monotonic loading

    International Nuclear Information System (INIS)

    This study introduces a new CFRC-strengthened RC beam model which can both strengthen and monitor the large-scale RC element used in concrete infrastructures. An experiment of testing four-point bending beams is proceeded in order to analyze mechanical behavior and electrical property of the designed beam under monotonic loading as well as the relationship between electrical property and fatigue damage under cyclic flexural loading. The analytical results indicate that this innovative CFRC-strengthened beam has better flexural performance due to the improved cracking resistance capacity of the CFRC layer. Besides, the change in electrical resistance of the beam is detected under monotonic loading. It is found that the thicker the CFRC layer, the larger the electrical resistance increases, and while electrical resistance irreversibly increases as load cycling progresses, the greater the stress amplitude, the greater the fatigue damage, and the larger the residual resistance increases. Based on this discovery, a new technique to monitor the damage of the designed CFRC-strengthened RC beam is produced by means of resistance measurement

  7. The aetiology of acute and chronic pancreatitis over time in a hospital in Copenhagen

    DEFF Research Database (Denmark)

    Nøjgaard, Camilla; Bendtsen, Flemming; Matzen, Peter;

    2010-01-01

    INTRODUCTION: The change in aetiology over time of acute and chronic pancreatitis has been sparsely described, as has also the validity of the diagnostic codes. The aim of the study was 1) to clarify whether the aetiology of acute and chronic pancreatitis changed during the period 1983-2005, and 2......) to validate the diagnostic codes over time for acute and chronic pancreatitis registered in the Danish National Patient Registry (NPR) in the same period. MATERIAL AND METHODS: All admissions at Hvidovre Hospital coded in the NPR in 1983, 1994 and 2005 with a diagnosis of either acute or chronic......: Gallstone disease significantly (p = 0.04) increased as the cause of acute pancreatitis over the 22-year period, while alcohol remained the major cause of chronic pancreatitis. The validity of the diagnoses for patients with acute pancreatitis varied between 51% and 73%, and for chronic pancreatitis between...

  8. The aetiology of acute and chronic pancreatitis over time in a hospital in Copenhagen

    DEFF Research Database (Denmark)

    Nøjgaard, Camilla; Bendtsen, Flemming; Matzen, Peter;

    2010-01-01

    : Gallstone disease significantly (p = 0.04) increased as the cause of acute pancreatitis over the 22-year period, while alcohol remained the major cause of chronic pancreatitis. The validity of the diagnoses for patients with acute pancreatitis varied between 51% and 73%, and for chronic pancreatitis between......INTRODUCTION: The change in aetiology over time of acute and chronic pancreatitis has been sparsely described, as has also the validity of the diagnostic codes. The aim of the study was 1) to clarify whether the aetiology of acute and chronic pancreatitis changed during the period 1983-2005, and 2......) to validate the diagnostic codes over time for acute and chronic pancreatitis registered in the Danish National Patient Registry (NPR) in the same period. MATERIAL AND METHODS: All admissions at Hvidovre Hospital coded in the NPR in 1983, 1994 and 2005 with a diagnosis of either acute or chronic...

  9. Epigenetic mechanisms may underlie the aetiology of sex differences in mental health risk and resilience.

    Science.gov (United States)

    Kigar, S L; Auger, A P

    2013-11-01

    In this review, we propose that experiential and hormonal influences on biological sex during development may produce differences in the epigenome, and that these differences play an important role in gating risk or resilience to a number of neurological and psychiatric disorders. One intriguing hypothesis is that the framework belying sex differences in the brain creates differences in methylation and demethylation patterns, and these in turn confer risk and resilience to mental health disorders. Here, we discuss these concepts with regard to social behaviour in rodent models and briefly discuss their possible relevance to human disease. PMID:23841484

  10. Sleep duration and its role in the aetiology of cardio-metabolic health outcomes

    OpenAIRE

    Hense, Sabrina

    2011-01-01

    An adequate amount of sleep is believed to be important for optimal health and functioning throughout life and changes in sleep duration were found to be associated with several especially cardio-metabolic - health outcomes in adults as well as in children. The factors that influence sleep duration are multi-factorial and the interplay between sleep duration and other factors in the aetiology of cardio-metabolic outcomes is complex and not fully understood yet. Internationally comparable data...

  11. Development of Preventive Measures Based on the Aetiology of Dental Caries: A Review

    OpenAIRE

    Hamada, Shigeyuki; Ooshima, Takashi; Fijiwara, Taku; Minami, Takahiro; Kimura, Shigenobu

    2011-01-01

    Mutans streptococci including Streptococcus mutans and Streptococcus sobrinus are aetiologically associated with the development of dental caries in humans and experimental animals. These organisms produce glucosyltransferases (GTases), which catalyse the synthesis of adherent glucan from sucrose, promoting the adherence of the organisms to the tooth surface. In addition, they release large quantities of acids from various dietary sugars. These are the essential virulence factors of mutans st...

  12. New data on aetiology of nodular gill disease in rainbow trout, Oncorhynchus mykiss

    Czech Academy of Sciences Publication Activity Database

    Dyková, Iva; Kostka, Martin; Wortberg, F.; Nardy, E.; Pecková, Hana

    2010-01-01

    Roč. 57, č. 3 (2010), s. 157-163. ISSN 0015-5683 R&D Projects: GA ČR GA524/09/0137; GA MŠk LC522 Institutional research plan: CEZ:AV0Z60220518 Keywords : nodular gill disease * aetiological study * amoeba e * Naegleria sp. * fish diseases * aquaculture * Oncorhynchus mykiss Subject RIV: GJ - Animal Vermins ; Diseases, Veterinary Medicine Impact factor: 1.533, year: 2010

  13. Charting the landscape of priority problems in psychiatry, part 2: pathogenesis and aetiology.

    Science.gov (United States)

    Stephan, Klaas E; Binder, Elisabeth B; Breakspear, Michael; Dayan, Peter; Johnstone, Eve C; Meyer-Lindenberg, Andreas; Schnyder, Ulrich; Wang, Xiao-Jing; Bach, Dominik R; Fletcher, Paul C; Flint, Jonathan; Frank, Michael J; Heinz, Andreas; Huys, Quentin J M; Montague, P Read; Owen, Michael J; Friston, Karl J

    2016-01-01

    This is the second of two companion papers proposing priority problems for research on mental disorders. Whereas the first paper focuses on questions of nosology and diagnosis, this Personal View concerns pathogenesis and aetiology of psychiatric diseases. We hope that this (non-exhaustive and subjective) list of problems, nominated by scientists and clinicians from different fields and institutions, provides guidance and perspectives for choosing future directions in psychiatric science. PMID:26573969

  14. Aetiology of acute gastroenteritis in children in Najran region, Saudi Arabia

    OpenAIRE

    Mohamed Saeed Zayed AlAyed; Ahmed Morad Asaad; Abdulrab Ahmed Mahdi; Mohamed Ansar Qureshi

    2013-01-01

    Objectives: Gastroenteritis is a leading cause of childhood morbidity and mortality in developing countries. Our aim was to determine the prevalence of bacterial, viral and parasitic aetiology of gastroenteritis in children aged < 5 years in the Najran region, south-western Saudi Arabia, to determine the contribution of these enteropathogens in childhood diarrhoeal diseases and to put forward effective preventive measures for controlling the disease in the future. Design and Setting: A d...

  15. Relationship between aetiology and left ventricular systolic dysfunction in hypertrophic cardiomyopathy

    OpenAIRE

    Rosmini, Stefania

    2015-01-01

    Background: Hypertrophic cardiomyopathy (HCM) is a common cardiac disease caused by a range of genetic and acquired disorders. The most common cause is genetic variation in sarcomeric proteins genes. Current ESC guidelines suggest that particular clinical features (‘red flags’) assist in differential diagnosis. Aims: To test the hypothesis that left ventricular (LV) systolic dysfunction in the presence of increased wall thickness is an age-specific ‘red flag’ for aetiological diagnosis an...

  16. Genetic and environmental aetiology of the dimensions of Callous-Unemotional traits

    OpenAIRE

    Henry, J.; Pingault, J.-B.; Boivin, M.; Rijsdijk, F.; Viding, E

    2015-01-01

    Background A Callous-Unemotional trait specifier (termed ‘Limited Prosocial Emotions’) was added to the diagnosis of conduct disorder in DSM-5. The Inventory of Callous-Unemotional Traits (ICU) is a comprehensive measure of these traits assessing three distinct, yet correlated dimensions – Callousness, Uncaring, and Unemotional – all thought to reflect the general Callous-Unemotional construct. The present study was the first to examine the degree to which the aetiology of these dimensions is...

  17. Mood disorders and parity – A clue to the aetiology of the postpartum trigger

    OpenAIRE

    Di Florio, Arianna; Jones, Lisa; Forty, Liz; Gordon-Smith, Katherine; Robertson Blackmore, Emma; Heron, Jess; Craddock, Nick; Jones, Ian

    2014-01-01

    Background Episodes of postpartum psychosis have been associated with first pregnancies in women with bipolar I disorder. It is unclear, however, if the effect extends to episodes at other times in relation to childbirth and to women with other mood disorders such as major depression and bipolar II disorder. This primiparity effect, which is also seen in other pregnancy related conditions such as pre-eclampsia, is a potentially important clue to the aetiology of childbirth related mood episod...

  18. Mechanisms underlying the additive and redundant Qrr phenotypes in Vibrio harveyi and Vibrio cholerae.

    Science.gov (United States)

    Hunter, Geoffrey A M; Keener, James P

    2014-01-01

    Vibrio harveyi and Vibrio cholerae regulate their virulence factors according to the local cell-population density in a regulatory system called quorum sensing. Their quorum sensing systems contain a small RNA (sRNA) circuit to regulate expression of a master transcriptional regulator via multiple quorum regulated RNA (Qrr) and a protein chaperon Hfq. Experiments and genetic analysis show that their respective quorum sensing networks are topologically equivalent and have homologous components, yet they respond differently to the same experimental conditions. In particular, V. harveyi Qrr are additive because all of its Qrr are required to maintain wild-type-like repression of its master transcriptional regulator. Conversely, V. cholerae Qrr are redundant because any of its Qrr is sufficient to repress its master transcriptional regulator. Given the striking similarities between their quorum sensing systems, experimentalists have been unable to identify conclusively the mechanisms behind these phenotypic differences. Nevertheless, the current hypothesis in the literature is that dosage compensation is the mechanism underlying redundancy. In this work, we identify the mechanisms underlying Qrr redundancy using a detailed mathematical model of the V. harveyi and V. cholerae sRNA circuits. We show that there are exactly two different cases underlying Qrr redundancy and that dosage compensation is unnecessary and insufficient to explain Qrr redundancy. Although V. harveyi Qrr are additive when the perturbations in Qrr are large, we predict that V. harveyi and V. cholerae Qrr are redundant when the perturbations in Qrr are small. We argue that the additive and redundant Qrr phenotypes can emerge from parametric differences in the sRNA circuit. In particular, we find that the affinity of Qrr and its expression relative to the master transcriptional regulator determine the level of redundancy in V. harveyi and V. cholerae. Furthermore, the additive and redundant Qrr

  19. Coral bleaching under thermal stress: putative involvement of host/symbiont recognition mechanisms

    Directory of Open Access Journals (Sweden)

    Tambutte Sylvie

    2009-08-01

    Full Text Available Abstract Background Coral bleaching can be defined as the loss of symbiotic zooxanthellae and/or their photosynthetic pigments from their cnidarian host. This major disturbance of reef ecosystems is principally induced by increases in water temperature. Since the beginning of the 1980s and the onset of global climate change, this phenomenon has been occurring at increasing rates and scales, and with increasing severity. Several studies have been undertaken in the last few years to better understand the cellular and molecular mechanisms of coral bleaching but the jigsaw puzzle is far from being complete, especially concerning the early events leading to symbiosis breakdown. The aim of the present study was to find molecular actors involved early in the mechanism leading to symbiosis collapse. Results In our experimental procedure, one set of Pocillopora damicornis nubbins was subjected to a gradual increase of water temperature from 28°C to 32°C over 15 days. A second control set kept at constant temperature (28°C. The differentially expressed mRNA between the stressed states (sampled just before the onset of bleaching and the non stressed states (control were isolated by Suppression Subtractive Hybridization. Transcription rates of the most interesting genes (considering their putative function were quantified by Q-RT-PCR, which revealed a significant decrease in transcription of two candidates six days before bleaching. RACE-PCR experiments showed that one of them (PdC-Lectin contained a C-Type-Lectin domain specific for mannose. Immunolocalisation demonstrated that this host gene mediates molecular interactions between the host and the symbionts suggesting a putative role in zooxanthellae acquisition and/or sequestration. The second gene corresponds to a gene putatively involved in calcification processes (Pdcyst-rich. Its down-regulation could reflect a trade-off mechanism leading to the arrest of the mineralization process under stress

  20. Proteome Analysis of Response Mechanism in Different Growing Stages of Soybean under Flooding

    Institute of Scientific and Technical Information of China (English)

    Amana Khatoon; Shafiq Rehman; Muhammad Jamil; Iftekhar Ahmad; Setsuko Komatsu

    2012-01-01

    Flooding is one of the severe environmental factors which impair growth and yield in soybean plant.To investigate the response mechanism in different growing stages of soybean under flooding stress,changes in protein expression were analyzed using a proteomics approach.Two-day-old soybeans were subjected to flooding for 2 and 5 days.Proteins were extracted from root and cotyledon of soybean with 2 days of flooding stress,and from root,hypocotyl and leaf of soybean with 5 day of flooding stress.Proteins were separated by two-dimensional polyacrylamide gel electrophoresis and were identified using MS.In root and cotyledon,57 and 20 proteins were significantly changed under flooding stress of 2 days.In root,hypocotyl and leaf,51,66 and 51 proteins were significantly changed under flooding stress of 5 days.Heat shock 70 kDa protein was changed commonly in root and cotyledon of soybean with 2 days of flooding stress; while,isoflavone reductase was commonly changed in root,hypocotyl and leaf of soybean with 5 day of flooding stress.Biophoton emission was increased from all the organs of soybean with 2 and 5 days of flooding stress.The changes in Heat shock 70 kDa protein and isoflavone reductase indicated that flooding stress affected the stress responsive proteins which might lead to increased biophoton emission.These results suggest that imbalance in expression of Heat shock 70 kDa protein and isoflavone reductase along with other disease/defense and metabolism related proteins can impair the growth of root,cotyledon,hypocotyl and leaf of soybean seedlings under flooding stress.

  1. Study of the precipitation and of the hardening microscopic mechanisms under irradiation in dilute ferritic alloys

    International Nuclear Information System (INIS)

    The copper precipitation plays a significant role in the embrittlement process of reactor vessel steels under neutron irradiation at 300 deg C. In order to understand the copper precipitation mechanisms, we have studied model ferritic binary FeCu and ternary alloys FeCuX (X=Mn,Ni, Cr, P). These materials have been either Irradiated with 2.5 MeV electrons In the 175-360 deg C temperature range or thermal aged at 500 deg C. The evolution of materials has been followed by resistivity measurements under irradiation, by small angle neutron scattering and by Vickers microhardness measurements. We have shown the similarity of copper precipitation under thermally ageing at 500 deg C and electron Irradiation at 300 deg C, in FeCu1,34%. This result confirms that the main effect of electronic irradiation is to accelerate precipitation. Nevertheless, we have observed that irradiation induces an additional contribution to hardening attributed to point defect clusters. Concerning the ternary alloys, we observed that at 300 deg C the addition of a third element has no significant effect on the copper precipitation kinetic under irradiation but that at lower temperature manganese slows down precipitation kinetic. In order to reproduce the experimental results obtained on FeCu1,34% by using a cluster kinetics model, we have to suppose that the precipitation is heterogeneous and controlled by interface reactions for the small size clusters. In addition, neutron or electron irradiated industrial steels have been studied by small angle neutron scattering. The results revealed the presence of nano-metric solute clusters which contain few copper atoms and which are not linked to the formation of displacement cascades. (author)

  2. Comparative Mechanisms of Photosynthetic Carbon Acquisitionin Hizikiafusiforme Under Submersed and Emersed Conditions

    Institute of Scientific and Technical Information of China (English)

    ZOUDing-Hui; GAOKun-Shan

    2004-01-01

    The economic seaweed Hizikia fusiforme (Harv.) Okamura (Sargassaceae, Phaeophyta) usually experiences periodical exposures to air at low tide. Photosynthetic carbon acquisition mechanisms were comparatively studied under submersed and emersed conditions in order to establish a general understanding of its photosynthetic characteristics associated with tidal cycles. When submersed in seawater, H.fusiforme was capable of acquiring HCO3- as a source of inorganic carbon (Ci) to drive photosynthesis, while emersed and exposed to air, it used atmospheric 002 for photosynthesis. The pH changes surroundingthe H.fusiforme fronds had less influence on the photosynthetic rates under emersed condition than under submersed condition. When the pH was as high as 10.0, emersed H.fusiforme could photosynthesize efficiently, but the submersed alga exhibited very poor photosynthesis. Extracellular carbonic anhydrase (CA) played an important role in the photosynthetic acquisitions of exogenous Ci in water as well as in air. Both the concentrations of dissolved inorganic carbon in general seawater and CO2 in air were demonstrated to limit the photosynthesis of H.fusiforme, which was sensitive to O2. It appeared that the exogenous carbon acquisition system, being dependent of external CA activity, operates in a way not enough to raise intracellular CO2 level to prevent photorespiration. The inability of H.fusiforme to achieve its maximum photosynthetic rate at the current ambient Ci levels under both submersed and emersed conditions suggested that the yield of aquaculture for this economic species would respond profitably to future increases in CO2 concentration in the sea and air.

  3. Microstructure and mechanical properties of an Al–Mg alloy solidified under high pressures

    International Nuclear Information System (INIS)

    Highlights: •Al–42.2Mg alloy was solidified under pressures of 1, 2, and 3 GPa and the microstructure analyzed. •A thermodynamic calculation of the Al–Mg phase diagram at high pressures was performed. •The phase content changes from predominantly γ-Al12Mg17 at 1 GPa to FCC solid solution at 3 GPa. •The β-Al3Mg2 is predicted to remain stable at low temperatures but is not observed. •The alloy solidified at high pressure has remarkably enhanced ultimate tensile strength. -- Abstract: Phase formation, the microstructure and its evolution, and the mechanical properties of an Al–42.2 at.% Mg alloy solidified under high pressures were investigated. After solidification at pressures of 1 GPa and 2 GPa, the main phase is the γ phase, richer in Al than in equilibrium condition. When the pressure is further increased to 3 GPa, the main phase is the supersaturated Al(Mg) solid solution with Mg solubility up to 41.6 at.%. Unlike in similar alloys solidified at ambient pressure, the β phase does not appear. Calculated high-pressure phase diagrams of the Al–Mg system show that although the stability range of the β phase is diminished with pressure, it is still thermodynamically stable at room temperature. Hence, the disappearance of the β phase is interpreted as kinetic suppression, due to the slow diffusion rate at high pressures, which inhibits solid–solid reactions. The Al–42.2 at.% Mg alloy solidified under 3 GPa has remarkably enhanced ultimate tensile strength compared to the alloy solidified under normal atmospheric pressure

  4. An investigation into febrile illnesses of unknown aetiology in Wipim, Papua New Guinea.

    Science.gov (United States)

    Bande, Grace; Hetzel, Manuel W; Iga, Jonah; Barnadas, Celine; Mueller, Ivo; Siba, Peter M; Horwood, Paul F

    2014-01-01

    In Papua New Guinea the aetiology of febrile illnesses remains poorly characterized, mostly due to poor diagnostic facilities and the inaccessibility of much of the rural areas of the country. We investigated the aetiological agents of febrile illnesses for 136 people presenting to Wipim Health Centre in Western Province, Papua New Guinea. Arboviral and rickettsial real-time polymerase chain reaction (PCR) assays, malaria blood smears and a malaria PCR test were used to identify pathogens associated with a history of fever. In 13% (n = 18) of cases an aetiological agent was identified. Dengue virus type 1 was detected in 11% (n = 15) of the samples tested and malaria in 2% (n = 3). None of the other arboviral or rickettsial pathogens tested for were detected in any of the samples. Although dengue viruses have been identified in Papua New Guinea using serological methods, this study represents the first direct detection of dengue in the country. The detection of malaria, on the other hand, was surprisingly low considering the previous notion that this was a hyperendemic region of Papua New Guinea. PMID:26930888

  5. Transthoracic lung aspiration for the aetiological diagnosis of pneumonia: 25 years of experience from The Gambia.

    Science.gov (United States)

    Ideh, R C; Howie, S R C; Ebruke, B; Secka, O; Greenwood, B M; Adegbola, R A; Corrah, T

    2011-06-01

    Pneumonia remains the leading cause of death in young children worldwide. Global pneumonia control depends on a good understanding of the aetiology of pneumonia. Percutaneous transthoracic aspiration culture is much more sensitive than blood culture in identifying the aetiological agents of pneumonia. However, the procedure is not widely practised because of lack of familiarity with it and concerns about potential adverse events. We review the diagnostic usefulness and safety of this procedure over 25 years of its use in research and routine practice at the UK Medical Research Council (MRC), The Gambia, and give a detailed description of the procedure itself. Published materials were identified from the MRC's publication database and systematic searches using the PubMed/Medline and Google search engines. Data from a current pneumonia aetiology study in the unit are included together with clinical experience of staff practising at the unit over the period covered in this review. A minimum of 500 lung aspirates were performed over the period of review. Lung aspiration produces a greater yield of diagnostic bacterial isolates than blood culture. It is especially valuable clinically when pathogens not covered by standard empirical antibiotic treatment, such as Mycobacterium tuberculosis and Staphylococcus aureus, are identified. There have been no deaths following the procedure in our setting and a low rate of other complications, all transient. Lung aspiration is currently the most sensitive method for diagnosing pneumonia in children. With appropriate training and precautions it can be safely used for routine diagnosis in suitable referral hospitals. PMID:21477423

  6. AETIOLOGICAL PROFILE AND OUTCOME IN PATIENTS WITH ACUTE KIDNEY INJURY (AKI ADMITTED TO VIMS, BELLARY

    Directory of Open Access Journals (Sweden)

    Ramamurthy

    2014-10-01

    Full Text Available BACKGROUND AND OBJECTIVES: This was a study about the various causes of ARF, in our hospital (VIMS, Bellary during a specified period, and to find out the incidence of Pre-renal, Renal and Post-renal causes by using renal failure indices and to analyze outcome of ARF pertaining to the aetiology. MATERIALS AND METHODS: 70 cases admitted at VIMS, Bellary during the period January 2012 to june 2013, with clinical evidence of acute renal failure were included in the study. They were evaluated for various etiological, prognostic factors and its outcome. RESULTS: Among the various aetiologies in our study, snake bite (28.6%, ADD (27.1%, RPGN (7.1% were the most common. Most common type of renal failure was prerenal (50%, among them ADD was the predominant cause followed by intrinsic failure (47%, among them snake bite was leading cause. Patients presenting with Anuria, late presentation to hospital, blood pressure 3mg had poor outcome. CONCLUSION: Amongst the etiological factors snake bite and ADD ranked first. Prognosis was determined by age, aetiology of renal failure, initial creatinine value, blood pressure, time of presentation to. Even though both snake bite and ADD are equally common causes, morbidity is more in snake bite and cost of treatment also more in snake bite as many of them require dialysis.

  7. Aetiology and types of neonatal seizures presenting at ayub teaching hospital abbottabad

    International Nuclear Information System (INIS)

    Background: Neonatal seizures (NS) affect approximately 1% of neonates. Clonic, tonic, myoclonic and subtle seizures are the common types. Birth asphyxia, sepsis, metabolic derangements, intracranial bleed, kernicterus, tetanus and 5th day fits are the common aetiologies. This study was planned to evaluate the types and causes of neonatal seizures. Methods: It was a descriptive case series conducted at Ayub Teaching Hospital, Abbottabad from 12th December 2006 to 25th September 2007 on neonates having seizures. Serum chemistry, blood counts, cerebrospinal fluid examination and cranial ultrasound were done in all patients. Blood culture, renal and liver function tests, computerised tomography scan, metabolic and septic screening was done in selected patients. Descriptive statistics were applied for analysis. Results: Tonic clonic seizure was the commonest type (28%) followed by multi-focal clonic, and focal tonic seizures (25% each). Birth asphyxia was found to be the main aetiology (46%). Conclusion: Tonic clonic seizure was the commonest type and birth asphyxia the main aetiology identified in the majority of neonatal seizures. (author)

  8. Aetiology of maxillofacial fractures: a review of published studies during the last 30 years.

    Science.gov (United States)

    Boffano, Paolo; Kommers, Sofie C; Karagozoglu, K Hakki; Forouzanfar, Tymour

    2014-12-01

    The epidemiology of facial trauma may vary widely across countries (and even within the same country), and is dependent on several cultural and socioeconomic factors. We know of few reviews of published reports that have considered the sex distribution and aetiology of maxillofacial trauma throughout the world. The aim of this review was to discuss these aspects as they have been presented in papers published during the last 30 years. We made a systematic review of papers about the epidemiology of maxillofacial trauma that were published between January 1980 and December 2013 and identified 69 studies from Africa (n=9), North America and Brazil (n=6), Asia (n=36), Europe (n=16), and Oceania (n=2). In all the studies men outnumbered women, the ratio usually being more than 2:1. In American, African, and Asian studies road traffic crashes were the predominant cause. In European studies the aetiology varied, with assaults and road traffic crashes being the most important factors. In Oceania assaults were the most important. A comparison of the incidence of maxillofacial trauma of different countries together with a knowledge of different laws (seat belts for drivers, helmets for motocyclists, speed limits, and protection worn during sports and at work) is crucial to allow for improvement in several countries. To our knowledge this paper is the first attempt to study and compare the aetiologies of maxillofacial trauma. PMID:25218316

  9. Microstructure and mechanical properties of precipitation hardened aluminum under high rate deformation

    International Nuclear Information System (INIS)

    This chapter attempts to correlate the shock compression and quasistatic deformation of 6061-T6 aluminium. Examines recovered specimens which have been shock loaded, and compares results with both static and dynamic mechanical property measurements. Discusses experimental procedures (reshock and unloading experiments, shock recovery techniques, metallographic techniques and coldwork experiments); dynamic strength and wave-profile properties (strength and shear-stress states on the Hugoniot, steady-wave risetime and viscosity); quasistatic and shock metallography studies (metallography of quasistatically deformed material; metallography of shock deformed specimens; comparison of static and shock deformation; correlation of hardness and dynamic strength measurements); and thermal trapping calculations in shocked aluminium (heterogeneous deformation and adiabatic heating in shock-wave loading; energy and risetime relations under steadywave shock compression; heterogeneous temperature calculations in aluminium). Concludes that heterogeneous shear deformation appears to play a role in the dynamic deformation process

  10. Dust generation mechanisms under powerful plasma impacts to the tungsten surfaces in ITER ELM simulation experiments

    International Nuclear Information System (INIS)

    In recent tokamak simulation experiments with the QSPA Kh-50 facility several mechanisms of dust generation from tungsten surfaces under ITER ELM-like energy loads have been identified. Here cracking and melting are reported. The brittle destruction dominates after a few transient impacts when a network of major cracks forms on the surface. Bifurcation of major cracks results in ejection of dust particles with sizes up to ∼30 μm. Dust generation occurs also after surface melting and following resolidification when fine crack networks along the grain boundaries develop. In this process the destruction is accompanied by bridge formation due to capillary tension across the fine cracks. Next impacts (even weak melt-free ones) can destroy those bridges, which produces considerable amounts of dust particles of nm-size dust. Surface modification after the repetitive plasma pulses also results in creation of nm-size dust

  11. Examination of Mechanisms Underlying Enhanced Memory Performance in Action Video Game Players: A Pilot Study

    Directory of Open Access Journals (Sweden)

    Xianchun eLi

    2015-06-01

    Full Text Available Previous studies have shown enhanced memory performance resulting from extensive action video game playing. The mechanisms underlying the cognitive benefit were investigated in the current study. We presented two types of retro-cues, with variable intervals to memory array (Task 1 or test array (Task 2, during the retention interval in a change detection task. In Task 1, action video game players (AVGPs demonstrated steady performance while non-action video game players (NVGPs showed decreased performance as cues occurred later, indicating their performance difference increased as the cue-to-memory-array intervals became longer. In Task 2, both participant groups increased their performance at similar rates as cues presented later, implying the performance difference in two groups were irrespective of the test-array-to-cue intervals. These findings suggested that memory benefit from game plays is not attributable to the higher ability of overcoming interference from the following stimuli. Implications for the future studies were discussed.

  12. Mechanism for membrane electroporation irreversibility under high-intensity, ultrashort electrical pulse conditions

    Science.gov (United States)

    Joshi, R. P.; Schoenbach, K. H.

    2002-11-01

    An improved electroporation model is used to address membrane irreversibility under ultrashort electric pulse conditions. It is shown that membranes can survive a strong electric pulse and recover provided the pore distribution has a relatively large spread. If, however, the population consists predominantly of larger radii pores, then irreversibility can result. Physically, such a distribution could arise if pores at adjacent sites coalesce. The requirement of close proximity among the pore sites is more easily satisfied in smaller organelles than in outer cell membranes. Model predictions are in keeping with recent observations of cell damage to intracellular organelles (e.g., mitochondria), without irreversible shock at the outer membranes, by a nanosecond, high-intensity electric pulse. This mechanism also explains the greater damage from multiple electric shocks.

  13. Study on osteogenesis promoted by low sound pressure level infrasound in vivo and some underlying mechanisms.

    Science.gov (United States)

    Long, Hua; Zheng, Liheng; Gomes, Fernando Cardoso; Zhang, Jinhui; Mou, Xiang; Yuan, Hua

    2013-09-01

    To clarify the effects of low sound pressure level (LSPL) infrasound on local bone turnover and explore its underlying mechanisms, femoral defected rats were stabilized with a single-side external fixator. After exposure to LSPL infrasound for 30min twice everyday for 6 weeks, the pertinent features of bone healing were assessed by radiography, peripheral quantitative computerized tomography (pQCT), histology and immunofluorescence assay. Infrasound group showed a more consecutive and smoother process of fracture healing and modeling in radiographs and histomorphology. It also showed significantly higher average bone mineral content (BMC) and bone mineral density (BMD). Immunofluorescence showed increased expression of calcitonin gene related peptide (CGRP) and decreased Neuropeptide Y (NPY) innervation in microenvironment. The results suggested the osteogenesis promotion effects of LSPL infrasound in vivo. Neuro-osteogenic network in local microenvironment was probably one target mediating infrasonic osteogenesis, which might provide new strategy to accelerate bone healing and remodeling. PMID:23770453

  14. Mechanism underlying Kármán vortex street breakdown preceding secondary vortex street formation

    Science.gov (United States)

    Dynnikova, G. Ya.; Dynnikov, Ya. A.; Guvernyuk, S. V.

    2016-05-01

    The Kármán street that develops behind a bluff body transforms in the far wake into a secondary vortex street of lower frequency and stronger vortices. Before this transformation, the primary street decays. This interesting phenomenon was investigated in a number of experimental and theoretical studies. Much of that work is devoted to studying the reasons for the formation of the secondary street and its frequency characteristics. Reasons for the decay of the primary street are not well understood. In this work, the mechanism underlying the breaking of the primary vortex street is studied. A qualitative explanation of this process is presented wherein a region of heightened density of the dipole moment forms. This region moves relative to the Kármán vortices so that its distance from the body remains constant. In this region, the Kármán vortex street collapses.

  15. The Mechanisms of Corporate Meetings under the Companies and Allied Matters Act (CAMA 1990

    Directory of Open Access Journals (Sweden)

    Aderibigbe, O. I.

    2011-04-01

    Full Text Available The purpose of this study was to assess the mechanism of corporate meetings under the Companies and Allied Matters Act (CAMA 1990. This review revealed two major types of meetings, public meetings convened by individuals or bodies to which there is an open invitation extended to any member of the public, and meetings of bodies of which the members are limited and known. However, the study was preoccupied with the second category. Therefore, there is the need for the various Legislatures of countries to work towards enacting effective and efficient company legislation to that effect. It is recommended among others that in Nigeria that the fine of N50 for every day of default to hold a statutory meeting should be reviewed to be punitive.

  16. Influence of plasma on the densification mechanism of SPS under multi-field effect

    Institute of Scientific and Technical Information of China (English)

    Yu-hong Chang; Di Huang; Cheng-chang Jia; Zhao-wen Cui; Cong-cong Wang; Dong Liang

    2014-01-01

    The densification mechanism of an Fe-based alloy powder containing tiny oxide particles under the synergic multi-field effect of spark plasma sintering (SPS) was investigated. Metallographic microscopy and scanning electron microscopy were used to observe the mor-phology of samples sintered at different temperatures, and the temperature distribution in an individual spherical powder particle during sin-tering was calculated in consideration of the influence of plasma, which was qualified and quantified through the analysis of the U-I curve. The plasma was observed to play a substantial role in activating and heating the samples at the very early stage of sintering, whereas the joule-heat effect played a dominant role during sintering. Moreover, the plasma also facilitated the diffusion and migration of materials for neck formation.

  17. The effects of stoichiometry on the mechanical properties of icosahedral boron carbide under loading.

    Science.gov (United States)

    Taylor, DeCarlos E; McCauley, James W; Wright, T W

    2012-12-19

    The effects of stoichiometry on the atomic structure and the related mechanical properties of boron carbide (B(4)C) have been studied using density functional theory and quantum molecular dynamics simulations. Computational cells of boron carbide containing up to 960 atoms and spanning compositions ranging from 6.7% to 26.7% carbon were used to determine the effects of stoichiometry on the atomic structure, elastic properties, and stress-strain response as a function of hydrostatic, uniaxial, and shear loading paths. It was found that different stoichiometries, as well as variable atomic arrangements within a fixed stoichiometry, can have a significant impact on the yield stress of boron carbide when compressed uniaxially (by as much as 70% in some cases); the significantly reduced strength of boron carbide under shear loading is also demonstrated. PMID:23165091

  18. The effects of stoichiometry on the mechanical properties of icosahedral boron carbide under loading

    International Nuclear Information System (INIS)

    The effects of stoichiometry on the atomic structure and the related mechanical properties of boron carbide (B4C) have been studied using density functional theory and quantum molecular dynamics simulations. Computational cells of boron carbide containing up to 960 atoms and spanning compositions ranging from 6.7% to 26.7% carbon were used to determine the effects of stoichiometry on the atomic structure, elastic properties, and stress-strain response as a function of hydrostatic, uniaxial, and shear loading paths. It was found that different stoichiometries, as well as variable atomic arrangements within a fixed stoichiometry, can have a significant impact on the yield stress of boron carbide when compressed uniaxially (by as much as 70% in some cases); the significantly reduced strength of boron carbide under shear loading is also demonstrated.

  19. Mechanical behaviour of the T91 martensitic steel under monotonic and cyclic loadings in liquid metals

    International Nuclear Information System (INIS)

    The paper deals with the mechanical properties in liquid metals of the T91 martensitic steel, a candidate material for the window of an accelerating driven system (ADS). Two main questions are examined, the risk of liquid metal embrittlement and the accelerated fatigue damage by a liquid metal. It is found that the transition from ductile to brittle behaviour induced by a liquid metal is possible as a result of a decrease in surface energy caused by the adsorbed liquid metal. The embrittlement can occur only with a hard microstructure and a nucleation of very sharp defects inside the liquid metal. Under cycling straining, the fatigue resistance of the standard T91 steel is decreased by a factor of about 2 in the liquid metal as compared to air. It is proposed that short crack growth is promoted by the liquid metal which weakens the microstructural grain boundary barriers and skip the microcrack coalescence stage

  20. Fatigue mechanisms in an austenitic steel under cyclic loading: Experiments and atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Soppa, E.A., E-mail: ewa.soppa@mpa.uni-stuttgart.de; Kohler, C., E-mail: christopher.kohler@mpa.uni-stuttgart.de; Roos, E., E-mail: eberhard.roos@mpa.uni-stuttgart.de

    2014-03-01

    Experimental investigations on the austenitic stainless steel X6CrNiNb18-10 (AISI – 347) and concomitant atomistic simulations of a FeNi nanocrystalline model system have been performed in order to understand the basic mechanisms of fatigue damage under cyclic loading. Using electron backscatter diffraction (EBSD) the influence of deformation induced martensitic transformation and NbC size distribution on the fatigue crack formation has been demonstrated. The martensite nucleates prevalently at grain boundaries, triple points and at the specimen free surface and forms small (∼1 µm sized) differently oriented grains. The atomistic simulations show the role of regions of a high density of stacking faults for the martensitic transformation.

  1. Fatigue mechanisms in an austenitic steel under cyclic loading: Experiments and atomistic simulations

    International Nuclear Information System (INIS)

    Experimental investigations on the austenitic stainless steel X6CrNiNb18-10 (AISI – 347) and concomitant atomistic simulations of a FeNi nanocrystalline model system have been performed in order to understand the basic mechanisms of fatigue damage under cyclic loading. Using electron backscatter diffraction (EBSD) the influence of deformation induced martensitic transformation and NbC size distribution on the fatigue crack formation has been demonstrated. The martensite nucleates prevalently at grain boundaries, triple points and at the specimen free surface and forms small (∼1 µm sized) differently oriented grains. The atomistic simulations show the role of regions of a high density of stacking faults for the martensitic transformation

  2. Structure and mechanism of turbulence under dynamical restriction in plane Poiseuille flow

    CERN Document Server

    Farrell, Brian F; Jiménez, Javier; Constantinou, Navid C; Lozano-Duran, Adrián; Nikolaidis, Marios-Andreas

    2015-01-01

    The perspective of statistical state dynamics (SSD) has been applied to the study of mechanisms underlying turbulence in various physical systems. An example application of SSD is that of the second order closure, referred to as stochastic structural stability theory (S3T), which has provided insight into the dynamics of wall turbulence and the emergence and maintenance of the roll/streak structure. This closure eliminates nonlinear interactions among the perturbations restricting nonlinearity to that of the mean equation and interaction between the mean and perturbations. Simulations at modest $Re$ reveal that the essential features of wall-turbulence dynamics are retained with the dynamics restricted in this manner. Here this restriction of the dynamics is used to obtain a closely related dynamical system, referred to as the restricted non-linear (RNL) system, which is used to study the structure and dynamics of turbulence in plane Poiseuille flow at moderately high $Re$. Remarkably, the RNL system spontane...

  3. Numerical modelling of crack initiation and propagation in concrete structure under hydro-mechanical loading

    International Nuclear Information System (INIS)

    Document available in extended abstract form only. This subject is devoted to numerical analysis of crack initiation and propagation in concrete structures due to hydro-mechanical coupling processes. When the structures subjected to the variation in hydraulic conditions, fractures occur as a consequence of coalescence of diffuse damage. Consequently, the mechanical behaviour of concrete is described by an isotropic damage model. Once the damage reaches a critical value, a macroscopic crack is initiated. In the framework of extended Finite Element Method (XFEM), the propagation of localized crack is studied in this paper. Each crack is then considered as a discontinuity surface of displacement. According to the determination of crack propagation orientations, a tensile stress-based criterion is used. Furthermore, spatial variations of mechanical properties of concrete are also taken into account using the Weibull distribution function. Finally, the proposed model is applied to numerical analysis of a concrete liner in the context of feasibility studies for geological storage of radioactive wastes. The numerical results show that the proposed approach is capable to reproduce correctly the initiation and propagation crack process until the complete failure of concrete structures during hydro-mechanical loading. The concrete is most widely used construction material in many engineering applications. It is generally submitted to various environmental loading: such as the mechanical loading, the variation of relative humidity and the exposure to chemical risk, etc. In order to evaluate the safety and durability of concrete structures, it is necessary to get a good knowledge on the influence of loading path on the concrete behaviour. The objective of this paper is to study numerically the crack propagation in concrete structure under hydro-mechanical loading,.i.e. the mechanical behaviour of concrete subjected to drying process. The drying process leads to desiccation

  4. A role for PERK in the mechanism underlying fluoride-induced bone turnover

    International Nuclear Information System (INIS)

    While it has been well-documented that excessive fluoride exposure caused the skeletal disease and osteoblasts played a critical role in the advanced skeletal fluorosis, the underlying mechanism that mediated these effects remain poorly understood. The present study was undertaken to examine the effect of fluoride on bone of rats and MC3T3-E1 cells in vitro. Herein we found pathological features of high bone turnover in fluoride-treated rats, which was supported by an increase of osteogenic and osteoclastogenic genes expression in different stages of fluoride exposure. The skeletal toxicity of fluoride was accompanied by activation of endoplasmic reticulum (ER) stress and subsequent unfolded protein response (UPR). A novel finding of this study was that expression of PKR-like endoplasmic reticulum kinase (PERK) was the same trend with receptor activator for nuclear factor-κ B ligand (RANKL), and NF-E2 p45-related factor 2 (Nrf2) was the same trend with Runt-related transcription factor 2 (Runx2) in bones of rats exposed to varied fluoride condition. Based on these data, we hypothesized that up-regulation of PERK probably played a role in mediating bone turnover induced by fluoride. Action of fluoride on MC3T3-E1 cells differentiation was demonstrated through analysis of alkaline phosphatase (ALP) activity and mineralized nodules formation. Meantime, an increase of binding immunoglobulin protein (BiP) expression indicated the active ER stress in cells exposed to various dose of fluoride. Blocking PERK expression using siRNA showed the obvious decrease of osteogenic and osteoclastogenic factors expression in MC3T3-E1 cells exposed to certain dose of fluoride that could positively stimulate osteoblastic viability. In conclusion these findings underscore the importance of PERK in modulating fluoride induced bone formation and bone resorption. Understanding the link between PERK and bone turnover could probe into the mechanism underlying different bone lesion of

  5. Pollination ecology of two species of Elleanthus (Orchidaceae): novel mechanisms and underlying adaptations to hummingbird pollination.

    Science.gov (United States)

    Nunes, C E P; Amorim, F W; Mayer, J L S; Sazima, M

    2016-01-01

    Relationships among floral biology, floral micromorphology and pollinator behaviour in bird-pollinated orchids are important issues to understand the evolution of the huge flower diversity within Orchidaceae. We aimed to investigate floral mechanisms underlying the interaction with pollinators in two hummingbird-pollinated orchids occurring in the Atlantic forest. We assessed floral biology, nectar traits, nectary and column micromorphologies, breeding systems and pollinators. In both species, nectar is secreted by lip calli through spaces between the medial lamellar surfaces of epidermal cells. Such a form of floral nectar secretion has not been previously described. Both species present functional protandry and are self-compatible yet pollinator-dependent. Fruit set in hand-pollination experiments was more than twice that under natural conditions, evidencing pollen limitation. The absence of fruit set in interspecific crosses suggests the existence of post-pollination barriers between these sympatric co-flowering species. In Elleanthus brasiliensis, fruits resulting from cross-pollination and natural conditions were heavier than those resulting from self-pollination, suggesting advantages to cross-pollination. Hummingbirds pollinated both species, which share at least one pollinator species. Species differences in floral morphologies led to distinct pollination mechanisms. In E. brasiliensis, attachment of pollinarium to the hummingbird bill occurs through a lever apparatus formed by an appendage in the column, another novelty to our knowledge of orchid pollination. In E. crinipes, pollinarium attachment occurs by simple contact with the bill during insertion into the flower tube, which fits tightly around it. The novelties described here illustrate the overlooked richness in ecology and morphophysiology in Orchidaceae. PMID:25678071

  6. LCT-coil design: Mechanical interaction between composite winding and steel casing under various test conditions

    International Nuclear Information System (INIS)

    Finite element computations for the structural design of the large superconducting toroidal field coil contributed by EURATOM to the Large Coil Test Facility (LCTF) at ORNL, USA were performed at KfK, using the ASKA code. The layout of the coil must consider different types of requirements: firstly, an optimal D-shaped contour minimizing circumferential stress gradients under normal operation in the toroidal arrangement must be defined. Secondly, the three-dimensional real design effects due to the actual support conditions, manufacturing tolerances etc. must be mastered for different basic operational and failure load cases. And, thirdly, the design must stand a single coil qualification test in the TOSKA-facility at KfK, Karlsruhe, FRG, before it is plugged into the LCTF. The emphasis of the paper is three-pronged according to these requirements: i) the 3D magnetic body forces as well as the underlying magnetic fields as computed by the HEDO-code are described. ii) The mechanical interaction between casing and winding as given elsewhere in terms of high stress regions, gaps, slide movements and contact forces for various load cases representing the LCTF test conditions is illustrated here by a juxtaposition of the operational deformations and stresses within the LCTF and the TOSKA. iii) Particular effects like the restraint imposed by a corset-type reinforcement of the coil in the TOSKA test facility to limit the breathing deformation are parametrically studied. Moreover, the possibilities to derive scaling laws which make essential results transferable to larger coils by extracting a 1D mechanical response from the 3D finite element model is also demonstrated. (orig./GG)

  7. Deformation and damage modes of deep argillaceous rocks under hydro-mechanical stresses

    International Nuclear Information System (INIS)

    An experimental identification of the hydro-mechanical behaviour of an argillite rock is proposed within a multi-scale approach. In particular, interest is focused on the spatial and temporal localization of strain and damage in a specimen during hydro-mechanical loading. Firstly, we describe the techniques used to follow the rock evolutions under loading, and in particular Digital Images Correlation (DIC), Acoustic Emission, microscopy and mercury intrusion porosimetry. Measurement errors and device limitations are discussed. The studied material is the Callovo-Oxfordian indurated argillaceous rock (or argillite) of the Bure site where ANDRA has built an underground research laboratory to study the radioactive waste storage. Petrophysical characterizations and microstructural observations by optical and scanning electron microscopy provide an identification of the constitutive phase and a characterization of their spatial distribution and typical sizes. Argillite can be described as a composite structure with a continuous clay matrix and embedded mineral particles, essentially quartz and carbonates. The typical size of these particles ranges from a few micrometers to a few hundreds micrometers, with an average close to 50 μ.m. The general experimental procedure combines two steps: in a fist time, imposed suctions bring samples to a given degree of water saturation, and, in a second time, uniaxial mechanical compression tests are performed. To understand the evolutions of the material under hydric and mechanical loading, samples are instrumented with standard measurement techniques, but also with Digital Image Correlation, at both the global scale of the sample and the local scale of the composite microstructure, and with Acoustic Emissions recording. Moisture transfers are imposed by controlled suctions on the range of 150 to 2.8 MPa, corresponding to the relative humidity range of 32 to 98%RH. During pure hydric solicitation, the changes in physical parameters

  8. BNP but Not s-cTnln is associated with cardioembolic aetiology and predicts short and long term prognosis after cerebrovascular events.

    Directory of Open Access Journals (Sweden)

    Nicole Nigro

    Full Text Available We analyzed the prognostic value of b-type natriuretic peptide (BNP and sensitive cardiac Troponin (s-cTnI in patients with ischemic stroke or transient ischemic attack (TIA and their significance in predicting stroke aetiology.In a prospectively enrolled cohort we measured BNP and s-cTnI levels upon admission. Primary endpoints were mortality, unfavorable functional outcome and stroke recurrence after 90 days and after 12 months. Secondary endpoint was cardioembolic aetiology.In 441 patients BNP but not s-cTnI remained an independent predictor for death with an adjusted HR of 1.2 (95% CI 1.1-1.4 after 90 days and 1.2 (95% CI 1.0-1.3 after one year. The comparison of the Area under Receiver Operating Characteristic (AUROC of model A (age, NIHSS and model B (age, NIHSS, BNP showed an improvement in the prediction of mortality (0.85 (95% CI 0.79-0.90 vs. 0.86 (95% CI 0.81-0.92, Log Rank p = 0.004. Furthermore the category free net reclassification improvement (cfNRI when adding BNP to the multivariate model was 57.5%, p<0.0001. For the prediction of functional outcome or stroke recurrence both markers provided no incremental value. Adding BNP to a model including age, atrial fibrillation and heart failure lead to a higher discriminatory accuracy for identification of cardioembolic stroke than the model without BNP (AUC 0.75 (95% CI 0.70-0.80 vs. AUC 0.79, (95% CI 0.75-0.84, p = 0.008.BNP is an independent prognostic maker for overall mortality in patients with ischemic stroke or TIA and may improve the diagnostic accuracy to identify cardioembolic aetiology.ClinicalTrials.gov NCT00390962.

  9. Remodeling of Rural Public Service Supply Mechanism under the Background of New Village Construction

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Under the background of new village construction, the necessity of remodeling the supply mechanism of rural public service is expounded. It is conducive to improving the capability of public service to satisfy farmers’ demand; to constructing a rural diversified public service system and improving the supply efficiency of rural public goods; to realizing the equalization of urban-rural public services to coordinate urban-rural development. Problems in the supply of Chinese rural public services are analyzed:the demand of rural public goods is enormous, governmental fiscal expenditure is insufficient; social organization is imperfect and public service capability is weak; urban-rural gap is large and the supply of pubic service is unequal; the system of rural public service is single and the functions are imperfect; the market degree of rural public service is low and the efficiency needs improving. In view of these problems, the strategies for remodeling the supply mechanism of rural public service are put forward, covering intensifying the input intensity of the government, expanding the coverage of public services; vigorously supporting the development of social organization and improving its capability of public goods; breaking through dual system and realizing the equalization of urban-rural public service; perfecting rural diversified public services and perfecting its public service functions; promoting the market progress of rural public services and improving the efficiency of public service.

  10. Mechanical behavior and interphase structure in a silica-polystyrene nanocomposite under uniaxial deformation

    Science.gov (United States)

    Rahimi, Mohammad; Iriarte-Carretero, Irene; Ghanbari, Azadeh; Böhm, Michael C.; Müller-Plathe, Florian

    2012-08-01

    The mechanical behavior of polystyrene and a silica-polystyrene nanocomposite under uniaxial elongation has been studied using a coarse-grained molecular dynamics technique. The Young’s modulus, the Poisson ratio and the stress-strain curve of polystyrene have been computed for a range of temperatures, below and above the glass transition temperature. The predicted temperature dependence of the Young’s modulus of polystyrene is compared to experimental data and predictions from atomistic simulations. The observed mechanical behavior of the nanocomposite is related to the local structure of the polymer matrix around the nanoparticles. Local segmental orientational and structural parameters of the deforming matrix have been calculated as a function of distance from nanoparticle’s surface. A thorough analysis of these parameters reveals that the segments close to the silica nanoparticle’s surface are stiffer than those in the bulk. The thickness of the nanoparticle-matrix interphase layer is estimated. The Young’s modulus of the nanocomposite has been obtained for several nanoparticle volume fractions. The addition of nanoparticles results in an enhanced Young’s modulus. A linear relation describes adequately the dependence of Young’s modulus on the nanoparticle volume fraction.

  11. Mechanical behavior and interphase structure in a silica–polystyrene nanocomposite under uniaxial deformation

    International Nuclear Information System (INIS)

    The mechanical behavior of polystyrene and a silica–polystyrene nanocomposite under uniaxial elongation has been studied using a coarse-grained molecular dynamics technique. The Young’s modulus, the Poisson ratio and the stress–strain curve of polystyrene have been computed for a range of temperatures, below and above the glass transition temperature. The predicted temperature dependence of the Young’s modulus of polystyrene is compared to experimental data and predictions from atomistic simulations. The observed mechanical behavior of the nanocomposite is related to the local structure of the polymer matrix around the nanoparticles. Local segmental orientational and structural parameters of the deforming matrix have been calculated as a function of distance from nanoparticle’s surface. A thorough analysis of these parameters reveals that the segments close to the silica nanoparticle’s surface are stiffer than those in the bulk. The thickness of the nanoparticle–matrix interphase layer is estimated. The Young’s modulus of the nanocomposite has been obtained for several nanoparticle volume fractions. The addition of nanoparticles results in an enhanced Young’s modulus. A linear relation describes adequately the dependence of Young’s modulus on the nanoparticle volume fraction. (paper)

  12. Damage mechanisms in alloy 800H at high temperatures under conditions of creep-fatigue load

    International Nuclear Information System (INIS)

    This study investigates the behaviour of the alloy 800H under cyclic load and at high temperatures. Special consideration is given to the damaging effect of additional creep load. The study aims at detecting the micromechanisms responsible for damage to the material and analysing the influence of these damage mechanism on the cyclic life. In the alloy 800H pore damages in the form of very small round pores can already be produced by cold-working and stress-free age-hardening at high temperatures, i.e. without any creep load. The thesis is evolved that the same mechanism also occurs in asymmetric high-temperature fatigue tests due to the fast athermal compression phase. This means that not only creep is responsible for creep damage in the asymmetric fatigue cycles but that also the fast compression phases can contribute actively to the pore damage besides obstructing the recovery of pore damages which developed during the creep phases due to the short time. Therefore creep fatigue should basically be described by pore damage rather than by creep damage. Fatigue life predictions as regards creep fatigue should not only consider the tension phase but also appropriately the compression phase for the development of pore damage. (orig./MM)

  13. Stress State Analysis and Failure Mechanisms of Masonry Columns Reinforced with FRP under Concentric Compressive Load

    Directory of Open Access Journals (Sweden)

    Jiří Witzany

    2016-04-01

    Full Text Available The strengthening and stabilization of damaged compressed masonry columns with composites based on fabrics of high-strength fibers and epoxy resin, or polymer-modified cement mixtures, belongs to novel, partially non-invasive and reversible progressive methods. The stabilizing and reinforcing effect of these fabrics significantly applies to masonry structures under concentric compressive loading whose failure mechanism is characterized by the appearance and development of vertical tensile cracks accompanied by an increase in horizontal masonry strain. During the appearance of micro and hairline cracks (10−3 to 10−1 mm, the effect of non-pre-stressed wrapping composite is very small. The favorable effect of passive wrapping is only intensively manifested after the appearance of cracks (10−1 mm and bigger at higher loading levels. In the case of “optimum” reinforcement of a masonry column, the experimental research showed an increase in vertical displacements δy (up to 247%, horizontal displacements δx (up to 742% and ultimate load-bearing capacity (up to 136% compared to the values reached in unreinforced masonry columns. In the case of masonry structures in which no intensive “bed joint filler–masonry unit” interaction occurs, e.g., in regular coursed masonry with little differences in the mechanical characteristics of masonry units and the binder, the reinforcing effect of the fabric applies only partially.

  14. Adverse effects from clenbuterol and ractopamine on nematode Caenorhabditis elegans and the underlying mechanism.

    Directory of Open Access Journals (Sweden)

    Ziheng Zhuang

    Full Text Available In the present study, we used Caenorhabditis elegans assay system to investigate in vivo toxicity from clentuberol and ractopamine and the possible underlying mechanism. Both acute and prolonged exposures to clentuberol or ractopamine decreased brood size and locomotion behavior, and induced intestinal autofluorescence and reactive oxygen species (ROS production. Although acute exposure to the examined concentrations of clentuberol or ractopamine did not induce lethality, prolonged exposure to 10 µg/L of clentuberol and ractopamine reduced lifespan. At relatively high concentrations, ractopamine exhibited more severe toxicity than clentuberol on nematodes. Overexpression of sod-2 gene encoding a Mn-SOD to prevent induction of oxidative stress effectively inhibited toxicity from clentuberol or ractopamine. Besides oxidative stress, we found that clentuberol might reduce lifespan through influencing insulin/IGF signaling pathway; however, ractopamine might reduce lifespan through affecting both insulin/IGF signaling pathway and TOR signaling pathway. Ractopamine more severely decreased expression levels of daf-16, sgk-1, skn-1, and aak-2 genes than clentuberol, and increased expression levels of daf-2 and age-1 genes at the examined concentration. Therefore, the C. elegans assay system may be useful for assessing the possible toxicity from weight loss agents, and clentuberol and ractopamine may induce toxicity through different molecular mechanisms.

  15. Mechanisms of the rapid dissolution of plutonium dioxide in acidic media under oxidizing or reducing conditions

    International Nuclear Information System (INIS)

    Until recently plutonium dioxide was known to be among the metallic oxides most difficult to dissolve. This property is understandable given the free energy of the dissolution reaction (ΔG0) in acidic noncomplexing media (ΔG0 = 32.04 kJ/mol). Thermodynamic calculations predict that PuO2 will dissolve under oxidizing or reducing conditions. The oxidizing dissolution, leading to Pu(VI) ion in solution, is easy to perform with a strong oxidant like Ag(II). The mechanism of the oxidizing dissolution of PuO2 was investigated by using carbon paste electrochemistry (CPE) and 18 O labeling. PuO2 can also be dissolved in acidic solution if the redox potential of the mixture is low (e.g., Cr2+, V2+, or U3+ as reducing agents). The kinetics of the heterogeneous reducing dissolution of PuO2 with Cr2+ were investigated and the reaction mechanism was determined by 18 O labeling. All the results will be presented and discussed in the context of minimizing the amount of plutonium-contaminated solid wastes in the nuclear fuel cycle. 9 figs., 17 refs

  16. Underlying neural mechanisms of mirror therapy: Implications for motor rehabilitation in stroke.

    Science.gov (United States)

    Arya, Kamal Narayan

    2016-01-01

    Mirror therapy (MT) is a valuable method for enhancing motor recovery in poststroke hemiparesis. The technique utilizes the mirror-illusion created by the movement of sound limb that is perceived as the paretic limb. MT is a simple and economical technique than can stimulate the brain noninvasively. The intervention unquestionably has neural foundation. But the underlying neural mechanisms inducing motor recovery are still unclear. In this review, the neural-modulation due to MT has been explored. Multiple areas of the brain such as the occipital lobe, dorsal frontal area and corpus callosum are involved during the simple MT regime. Bilateral premotor cortex, primary motor cortex, primary somatosensory cortex, and cerebellum also get reorganized to enhance the function of the damaged brain. The motor areas of the lesioned hemisphere receive visuo-motor processing information through the parieto-occipital lobe. The damaged motor cortex responds variably to the MT and may augment true motor recovery. Mirror neurons may also play a possible role in the cortico-stimulatory mechanisms occurring due to the MT. PMID:26754990

  17. Underlying neural mechanisms of mirror therapy: Implications for motor rehabilitation in stroke

    Directory of Open Access Journals (Sweden)

    Kamal Narayan Arya

    2016-01-01

    Full Text Available Mirror therapy (MT is a valuable method for enhancing motor recovery in poststroke hemiparesis. The technique utilizes the mirror-illusion created by the movement of sound limb that is perceived as the paretic limb. MT is a simple and economical technique than can stimulate the brain noninvasively. The intervention unquestionably has neural foundation. But the underlying neural mechanisms inducing motor recovery are still unclear. In this review, the neural-modulation due to MT has been explored. Multiple areas of the brain such as the occipital lobe, dorsal frontal area and corpus callosum are involved during the simple MT regime. Bilateral premotor cortex, primary motor cortex, primary somatosensory cortex, and cerebellum also get reorganized to enhance the function of the damaged brain. The motor areas of the lesioned hemisphere receive visuo-motor processing information through the parieto-occipital lobe. The damaged motor cortex responds variably to the MT and may augment true motor recovery. Mirror neurons may also play a possible role in the cortico-stimulatory mechanisms occurring due to the MT.

  18. Investigating mechanisms underlying neurodevelopmental phenotypes of autistic and intellectual disability disorders: a perspective

    Directory of Open Access Journals (Sweden)

    Tim eKroon

    2013-10-01

    Full Text Available Brain function and behaviour undergo significant plasticity and refinement, particularly during specific critical and sensitive periods. In autistic and intellectual disability neurodevelopmental disorders (NDDs and their corresponding genetic mouse models, impairments in many neuronal and behavioural phenotypes are temporally regulated and in some cases, transient. However, the links between neurobiological mechanisms governing typically normal brain and behavioural development (referred to also as ‘neurotypical’ development and timing of NDD impairments are not fully investigated.This perspective highlights temporal patterns of synaptic and neuronal impairment, with a restricted focus on autism and intellectual disability types of NDDs. Given the varying known genetic and environmental causes for NDDs, this perspective proposes two strategies for investigation: (1 a focus on neurobiological mechanisms underlying known critical periods in the (typically normal-developing brain (2 investigation of spatio-temporal expression profiles of genes implicated in monogenic syndromes throughout affected brain regions.This approach may help explain why many NDDs with differing genetic causes can result in overlapping phenotypes at similar developmental stages and better predict vulnerable periods within these disorders, with implications for both therapeutic rescue and ultimately, prevention.

  19. On the Nuclear Mechanisms Underlying the Heat Production by the E-Cat

    CERN Document Server

    Cook, Norman D

    2015-01-01

    We discuss the isotopic abundances found in the E-Cat reactor with regard to the nuclear mechanisms responsible for excess heat. We argue that a major source of energy is a reaction between the first excited-state of 7Li4 and a proton, followed by the breakdown of 8Be4 into two alphas with high kinetic energy, but without gamma radiation. The unusual property of the 7Li4 isotope that allows this reaction is similar to the property that underlies the Mossbauer effect: the presence of unusually low-lying excited states in stable, odd-Z and/or odd-N nuclei. We use the lattice version of the independent-particle model (IPM) of nuclear theory to show how the geometrical structure of isotopes indicate nuclear reactions that are not predicted in the conventional version of the IPM. Finally, we speculate on similar mechanisms that may be involved in other low-energy nuclear reactions (LENR).

  20. Temperature-dependent dynamic mechanical properties of magnetorheological elastomers under magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Benxiang, E-mail: jubenxiang@qq.com [National Instrument Functional Materials Engineering Technology Research Center, Chongqing 400707 (China); Tang, Rui; Zhang, Dengyou; Yang, Bailian [National Instrument Functional Materials Engineering Technology Research Center, Chongqing 400707 (China); Yu, Miao; Liao, Changrong [College of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China)

    2015-01-15

    Both anisotropic and isotropic magnetorheological elastomer (MRE) samples were fabricated by using as-prepared polyurethane (PU) matrix and carbonyl iron particles. Temperature-dependent dynamic mechanical properties of MRE were investigated and analyzed. Due to the unique structural features of as-prepared matrix, temperature has a greater impact on the properties of as-prepared MRE, especially isotropic MRE. With increasing of temperature and magnetic field, MR effect of isotropic MRE can reach up to as high as 4176.5% at temperature of 80 °C, and the mechanism of the temperature-dependent in presence of magnetic field was discussed. These results indicated that MRE is a kind of temperature-dependent material, and can be cycled between MRE and MR plastomer (MRP) by varying temperature. - Highlights: • Both anisotropic and isotropic MRE were fabricated by using as-prepared matrix. • Temperature-dependent properties of MRE under magnetic field were investigated. • As-prepared MRE can transform MRE to MRP by adjusting temperature.

  1. Flexibility in the structure of spiral flowers and its underlying mechanisms.

    Science.gov (United States)

    Wang, Peipei; Liao, Hong; Zhang, Wengen; Yu, Xianxian; Zhang, Rui; Shan, Hongyan; Duan, Xiaoshan; Yao, Xu; Kong, Hongzhi

    2015-01-01

    Spiral flowers usually bear a variable number of organs, suggestive of the flexibility in structure. The mechanisms underlying the flexibility, however, remain unclear. Here we show that in Nigella damascena, a species with spiral flowers, different types of floral organs show different ranges of variation in number. We also show that the total number of organs per flower is largely dependent on the initial size of the floral meristem, whereas the respective numbers of different types of floral organs are determined by the functional domains of corresponding genetic programmes. By conducting extensive expression and functional studies, we further elucidate the genetic programmes that specify the identities of different types of floral organs. Notably, the AGL6-lineage member NdAGL6, rather than the AP1-lineage members NdFL1/2, is an A-function gene, whereas petaloidy of sepals is not controlled by AP3- or PI-lineage members. Moreover, owing to the formation of a regulatory network, some floral organ identity genes also regulate the boundaries between different types of floral organs. On the basis of these results, we propose that the floral organ identity determination programme is highly dynamic and shows considerable flexibility. Transitions from spiral to whorled flowers, therefore, may be explained by evolution of the mechanisms that reduce the flexibility. PMID:27250746

  2. Adverse Effects from Clenbuterol and Ractopamine on Nematode Caenorhabditis elegans and the Underlying Mechanism

    Science.gov (United States)

    Liu, Haicui; Sun, Lingmei; Gao, Wei; Wang, Dayong

    2014-01-01

    In the present study, we used Caenorhabditis elegans assay system to investigate in vivo toxicity from clentuberol and ractopamine and the possible underlying mechanism. Both acute and prolonged exposures to clentuberol or ractopamine decreased brood size and locomotion behavior, and induced intestinal autofluorescence and reactive oxygen species (ROS) production. Although acute exposure to the examined concentrations of clentuberol or ractopamine did not induce lethality, prolonged exposure to 10 µg/L of clentuberol and ractopamine reduced lifespan. At relatively high concentrations, ractopamine exhibited more severe toxicity than clentuberol on nematodes. Overexpression of sod-2 gene encoding a Mn-SOD to prevent induction of oxidative stress effectively inhibited toxicity from clentuberol or ractopamine. Besides oxidative stress, we found that clentuberol might reduce lifespan through influencing insulin/IGF signaling pathway; however, ractopamine might reduce lifespan through affecting both insulin/IGF signaling pathway and TOR signaling pathway. Ractopamine more severely decreased expression levels of daf-16, sgk-1, skn-1, and aak-2 genes than clentuberol, and increased expression levels of daf-2 and age-1 genes at the examined concentration. Therefore, the C. elegans assay system may be useful for assessing the possible toxicity from weight loss agents, and clentuberol and ractopamine may induce toxicity through different molecular mechanisms. PMID:24465573

  3. The neuronal mechanisms underlying improvement of impulsivity in ADHD by theta/beta neurofeedback.

    Science.gov (United States)

    Bluschke, Annet; Broschwitz, Felicia; Kohl, Simon; Roessner, Veit; Beste, Christian

    2016-01-01

    Neurofeedback is increasingly recognized as an intervention to treat core symptoms of attention deficit hyperactivity disorder (ADHD). Despite the large number of studies having been carried out to evaluate its effectiveness, it is widely elusive what neuronal mechanisms related to the core symptoms of ADHD are modulated by neurofeedback. 19 children with ADHD undergoing 8 weeks of theta/beta neurofeedback and 17 waiting list controls performed a Go/Nogo task in a pre-post design. We used neurophysiological measures combining high-density EEG recording with source localization analyses using sLORETA. Compared to the waiting list ADHD control group, impulsive behaviour measured was reduced after neurofeedback treatment. The effects of neurofeedback were very specific for situations requiring inhibitory control over responses. The neurophysiological data shows that processes of perceptual gating, attentional selection and resource allocation processes were not affected by neurofeedback. Rather, neurofeedback effects seem to be based on the modulation of response inhibition processes in medial frontal cortices. The study shows that specific neuronal mechanisms underlying impulsivity are modulated by theta/beta neurofeedback in ADHD. The applied neurofeedback protocol could be particularly suitable to address inhibitory control. The study validates assumed functional neuroanatomical target regions of an established neurofeedback protocol on a neurophysiological level. PMID:27514985

  4. Mechanical behaviors and damage constitutive model of ceramics under shock compression

    Institute of Scientific and Technical Information of China (English)

    Jianguo Ning; Huilan Ren; Ping Li

    2008-01-01

    One-stage light gas gun was utilized to study the dynamic mechanical properties of AD90 alumina subjected to the shock loading. Manganin gauges were adopted to obtain the stress-time histories. The velocity interferometer system for any reflector (VISAR) was used to obtain the free surface velocity profile and determine the Hugoniot elastic limit. The Hugoniot curves were fitted with the experimental data. From Hugoniot curves the compressive behaviors of AD90 alumina were found to change typically from elastic to "plastic". The dynamic mechanical behaviors for alumina under impact loadings were analyzed by using the path line principle of Lagrange analysis, including the nonlinear characteristics, the strain rate dependence, the dispersion and declination of shock wave in the material. A damage model applicable to ceramics subjected to dynamic compressive loading has been developed. The model was based on the damage micromechanics and wing crack nucleation and growth. The effects of parameters of both the micro-cracks nucleation and the initial crack size on the dynamic fracture strength were discussed. The results of the dynamic damage evolution model were compared with the experimental results and a good agreement was found.

  5. Testosterone and attention deficits as possible mechanisms underlying impaired emotion recognition in intimate partner violence perpetrators

    Directory of Open Access Journals (Sweden)

    Ángel Romero-Martínez

    2016-07-01

    Full Text Available Several studies have reported impairments in decoding emotional facial expressions in intimate partner violence (IPV perpetrators. However, the mechanisms that underlie these impaired skills are not well known. Given this gap in the literature, we aimed to establish whether IPV perpetrators (n = 18 differ in their emotion decoding process, attentional skills, and testosterone (T, cortisol (C levels and T/C ratio in comparison with controls (n = 20, and also to examine the moderating role of the group and hormonal parameters in the relationship between attention skills and the emotion decoding process. Our results demonstrated that IPV perpetrators showed poorer emotion recognition and higher attention switching costs than controls. Nonetheless,they did not differ in attention to detail and hormonal parameters. Finally, the slope predicting emotion recognition from deficits in attention switching became steeper as T levels increased, especially in IPV perpetrators, although the basal C and T/C ratios were unrelated to emotion recognition and attention deficits for both groups. These findings contribute to a better understanding of the mechanisms underlying emotion recognition deficits. These factors therefore constitute the target for future interventions.

  6. A connectionist modeling study of the neural mechanisms underlying pain's ability to reorient attention.

    Science.gov (United States)

    Dowman, Robert; Ritz, Benjamin; Fowler, Kathleen

    2016-08-01

    Connectionist modeling was used to investigate the brain mechanisms responsible for pain's ability to shift attention away from another stimulus modality and toward itself. Different connectionist model architectures were used to simulate the different possible brain mechanisms underlying this attentional bias, where nodes in the model simulated the brain areas thought to mediate the attentional bias, and the connections between the nodes simulated the interactions between the brain areas. Mathematical optimization techniques were used to find the model parameters, such as connection strengths, that produced the best quantitative fits of reaction time and event-related potential data obtained in our previous work. Of the several architectures tested, two produced excellent quantitative fits of the experimental data. One involved an unexpected pain stimulus activating somatic threat detectors in the dorsal posterior insula. This threat detector activity was monitored by the medial prefrontal cortex, which in turn evoked a phasic response in the locus coeruleus. The locus coeruleus phasic response resulted in a facilitation of the cortical areas involved in decision and response processes time-locked to the painful stimulus. The second architecture involved the presence of pain causing an increase in general arousal. The increase in arousal was mediated by locus coeruleus tonic activity, which facilitated responses in the cortical areas mediating the sensory, decision, and response processes involved in the task. These two neural network architectures generated competing predictions that can be tested in future studies. PMID:27112345

  7. The impact of electricity market design upon investment under uncertainty: The effectiveness of capacity mechanisms

    International Nuclear Information System (INIS)

    This paper presents an analysis of different market designs under uncertainty about the future growth rate of demand. Markets for electricity generation appear to be prone to an investment cycle due to their capital-intensiveness and the long lead time of new generation facilities. We tested the stability of different capacity mechanisms in the presence of uncertainty regarding the demand growth rate with a stochastic dynamic model. Investment decisions were assumed to maximize profit, based on an assumed growth rate of demand that was equal to the rolling average of the previous five years. All capacity mechanisms proved effective in reducing the tendency towards an investment cycle, but to different degrees. Interestingly, an oligopoly that is able to raise average prices by 10% would also be able to substantially reduce price volatility and decrease the risk of shortages by increasing the reserve margin. Benefits of such a strategy for the generating companies could be that it would deter new market entrants and stave off the political attention that shortages and price spikes would bring about. However, the benefits to consumers are compromised by the lack of economic efficiency and distributional effects of an oligopoly, while the stability of such an oligopolistic strategy can be questioned. The most attractive solution is a system of reliability contracts, which can be used to stabilize both investment and prices, while reducing market power and providing more efficient operational incentives to generating companies. (author)

  8. The impact of electricity market design upon investment under uncertainty: The effectiveness of capacity mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Vries, Laurens de; Heijnen, Petra [Faculty of Technology, Policy and Management, Energy and Industry Section, Delft University of Technology, Jaffalaan 5, 2628 BX Delft (Netherlands)

    2008-09-15

    This paper presents an analysis of different market designs under uncertainty about the future growth rate of demand. Markets for electricity generation appear to be prone to an investment cycle due to their capital-intensiveness and the long lead time of new generation facilities. We tested the stability of different capacity mechanisms in the presence of uncertainty regarding the demand growth rate with a stochastic dynamic model. Investment decisions were assumed to maximize profit, based on an assumed growth rate of demand that was equal to the rolling average of the previous five years. All capacity mechanisms proved effective in reducing the tendency towards an investment cycle, but to different degrees. Interestingly, an oligopoly that is able to raise average prices by 10% would also be able to substantially reduce price volatility and decrease the risk of shortages by increasing the reserve margin. Benefits of such a strategy for the generating companies could be that it would deter new market entrants and stave off the political attention that shortages and price spikes would bring about. However, the benefits to consumers are compromised by the lack of economic efficiency and distributional effects of an oligopoly, while the stability of such an oligopolistic strategy can be questioned. The most attractive solution is a system of reliability contracts, which can be used to stabilize both investment and prices, while reducing market power and providing more efficient operational incentives to generating companies. (author)

  9. The mechanism of dislocation climb in GaAs under electron irradiation

    International Nuclear Information System (INIS)

    The weak-beam technique of transmission electron microscopy has been used to study the climb of dissociated a/2 dislocations in GaAs under high point defect supersaturations introduced by electron irradiation in the high-voltage electron microscope. Irradiations at room temperature show the nucleation of high densities of both Frank and perfect prismatic loops on the individual partials, the loop type tending to minimize the elastic energy of the partial plus loop and to give a large climb force. Irradiations at higher temperatures (400 to 450 deg C) showed different dislocation configurations consistent with the nucleation of new loops and their subsequent interaction with the non-parent partial leading to climb of the total dislocation. Some evidence for the generation of new loops in the matrix by climbing dislocations was obtained. Dislocations of α and β type were observed to climb by similar mechanisms. The mechanisms of dislocation climb in GaAs are analysed and their significance for understanding the degradation of GaAs devices is discussed. (author)

  10. Mechanisms underlying syntactic comprehension deficits in vascular aphasia: new evidence from self-paced listening.

    Science.gov (United States)

    Caplan, David; Michaud, Jennifer; Hufford, Rebecca

    2015-01-01

    Sixty-one people with aphasia (pwa) and 41 matched controls were tested for the ability to understand sentences that required the ability to process particular syntactic elements and assign particular syntactic structures. Participants paced themselves word-by-word through 20 examples of 11 spoken sentence types and indicated which of two pictures corresponded to the meaning of each sentence. Sentences were developed in pairs such that comprehension of the experimental version of a pair required an aspect of syntactic processing not required in the corresponding baseline sentence. The need for the syntactic operations required only in the experimental version was triggered at a "critical word" in the experimental sentence. Listening times for critical words in experimental sentences were compared to those for corresponding words in the corresponding baseline sentences. The results were consistent with several models of syntactic comprehension deficits in pwa: resource reduction, slowed lexical and/or syntactic processing, abnormal susceptibility to interference from thematic roles generated non-syntactically. They suggest that a previously unidentified disturbance limiting the duration of parsing and interpretation may lead to these deficits, and that this mechanism may lead to structure-specific deficits in pwa. The results thus point to more than one mechanism underlying syntactic comprehension disorders both across and within pwa. PMID:26165856

  11. Laboratory and 3-D-distinct element analysis of failure mechanism of slope under external surcharge

    Directory of Open Access Journals (Sweden)

    N. Li

    2014-09-01

    Full Text Available Landslide is a major disaster resulting in considerable loss of human lives and property damages in hilly terrain in Hong Kong, China and many other countries. The factor of safety and the critical slip surface for slope stabilization are the main considerations for slope stability analysis in the past, while the detailed post-failure conditions of the slopes have not been considered in sufficient details. There are however increasing interest on the consequences after the initiation of failure which includes the development and propagation of the failure surfaces, the amount of failed mass and runoff and the affected region. To assess the development of slope failure in more details and to consider the potential danger of slopes after failure has initiated, the slope stability problem under external surcharge is analyzed by the distinct element method (DEM and laboratory model test in the present research. A more refined study about the development of failure, microcosmic failure mechanism and the post-failure mechanism of slope will be carried out. The numerical modeling method and the various findings from the present work can provide an alternate method of analysis of slope failure which can give additional information not available from the classical methods of analysis.

  12. The neuronal mechanisms underlying improvement of impulsivity in ADHD by theta/beta neurofeedback

    Science.gov (United States)

    Bluschke, Annet; Broschwitz, Felicia; Kohl, Simon; Roessner, Veit; Beste, Christian

    2016-01-01

    Neurofeedback is increasingly recognized as an intervention to treat core symptoms of attention deficit hyperactivity disorder (ADHD). Despite the large number of studies having been carried out to evaluate its effectiveness, it is widely elusive what neuronal mechanisms related to the core symptoms of ADHD are modulated by neurofeedback. 19 children with ADHD undergoing 8 weeks of theta/beta neurofeedback and 17 waiting list controls performed a Go/Nogo task in a pre-post design. We used neurophysiological measures combining high-density EEG recording with source localization analyses using sLORETA. Compared to the waiting list ADHD control group, impulsive behaviour measured was reduced after neurofeedback treatment. The effects of neurofeedback were very specific for situations requiring inhibitory control over responses. The neurophysiological data shows that processes of perceptual gating, attentional selection and resource allocation processes were not affected by neurofeedback. Rather, neurofeedback effects seem to be based on the modulation of response inhibition processes in medial frontal cortices. The study shows that specific neuronal mechanisms underlying impulsivity are modulated by theta/beta neurofeedback in ADHD. The applied neurofeedback protocol could be particularly suitable to address inhibitory control. The study validates assumed functional neuroanatomical target regions of an established neurofeedback protocol on a neurophysiological level. PMID:27514985

  13. Mechanisms of the rapid dissolution of plutonium dioxide in acidic media under oxidizing or reducing conditions

    International Nuclear Information System (INIS)

    Until recently plutonium dioxide was known to be among the metallic oxides most difficult to dissolve. This property is understandable given the free energy of the dissolution reaction (ΔG0) in acidic noncomplexing media (ΔG0 = 32.04 kJ/mol). Thermodynamic calculations predict that PuO2 will dissolve under oxidizing or reducing conditions. The oxidizing dissolution, leading to Pu(VI) ion in solution, is easy to perform with a strong oxidant like Ag(II). The mechanism of the oxidizing dissolution of PuO2 was investigated by using carbon paste electrochemistry (CPE) and 18O labeling. PuO2 can also be dissolved in acidic solution if the redox potential of the mixture is low (e.g., Cr2+, V2+, or U3+ as reducing agents). The kinetics of the heterogeneous reducing dissolution of PuO2 with Cr2+ were investigated and the reaction mechanism was determined by 18O labeling. In this paper all the results are presented and discussed in the context of minimizing the amount of plutonium-contaminated solid wastes in the nuclear fuel cycle

  14. Effects of fatigue on microstructure and mechanical properties of bone organic matrix under compression

    International Nuclear Information System (INIS)

    The aim of the study was to investigate whether a fatigue induced weakening of cortical bone was revealed in microstructure and mechanical competence of demineralized bone matrix. Two types of cortical bone samples (plexiform and Haversian) were use. Bone slabs from the midshaft of bovine femora were subjected to cyclical bending. Fatigued and adjacent control samples were cut into cubes and demineralized in ethylenediaminetetraacetic acid. Demineralized samples were either subjected to microscopic quantitative image analysis, or compressed to failure (in longitudinal or transverse direction) with a simultaneous analysis of acoustic emission (AE). In fatigued samples porosity of organic matrix and average area of pores have risen, along with a change in the pores shape. The effect of fatigue depended on the type of the bone, being more pronounced in the plexiform than in Haversian tissue. Demineralized bone matrix was anisotropic under compressive loads in both types of cortical structure. The main result of fatigue pretreatment on mechanical parameters was a significant decrease of ultimate strain in the transverse direction in plexiform samples. The decrease of strain in this group was accompanied by a considerable increase of the fraction of large pores and a significant change in AE energy.

  15. Analysis of Structure and Deformation Mechanisms of Mineral Wool Slabs under Compression

    Directory of Open Access Journals (Sweden)

    Laimutis STEPONAITIS

    2012-06-01

    Full Text Available The products of mineral wool are widely used for thermal insulation of buildings, both at construction of new buildings and at renovation of old ones. The mechanical resistance and stability of them, as well as their energy saving and heat saving requirements are in most cases related to the essential specifications of the building. The mechanical characteristics of these products are subject to structure of material, density, content of binder in the product and to technology of production. Subject to the latter, mineral wool products with different fibrous structure are received, therefore, for the structure of each type, the individual structural models are developed attempting to describe the properties of fibrous systems. The deformability of mineral wool products is conditioned by mobility of fibrous structure, which shows up best under compression by short term loads. This study established the impact of various thicknesses and deformations on changes in structure of rock wool products. It also established that the thickness of mineral wool products conditions and influences considerable changes in their structure.DOI: http://dx.doi.org/10.5755/j01.ms.18.2.1926

  16. Frequency of cerebral infarction secondary to head injury and the underlying mechanisms: CT study

    International Nuclear Information System (INIS)

    To study the frequency of and possible mechanisms producing severe head injury (HI) by serial CT studies. We reviewed brain CT results in 154 HI patients examined over the past 31 months. All of them were hospitalized in the Intensive Care Unit (ICU) presenting coma with Glosgow Coma Scale scores of 9 or under. A first CT scan was performed when the patients arrived in the emergency room and at a least one more was carried out over the following 1 to 6 days. Sixteen of the 154 patients presented ischemic areas of low attenuation in a territory of defined vascular distribution that did not exist in the CT done at admission; the majority of them also had extensive extraaxial or intraaxial hematomas causing a considerable mass effect and cerebral displacement inducing different types of herniation. The vascular territories involved were anterior cerebral artery in five cases, middle cerebral artery in two, posterior cerebral artery in seven lenticulostriate arteries in six, anterior choroidal artery in five, perforating thalamus in six, recurrent artery in one case and superior cerebellar artery in another. In our series, there was a high prevalence (10.4%) of infarcts associated with severe HI; the most common etiopathogenic mechanisms are cerebral displacement accompanied by compression and vessel strain. (Author) 13 refs

  17. Distinct Subthreshold Mechanisms Underlying Rate-Coding Principles in Primate Auditory Cortex.

    Science.gov (United States)

    Gao, Lixia; Kostlan, Kevin; Wang, Yunyan; Wang, Xiaoqin

    2016-08-17

    A key computational principle for encoding time-varying signals in auditory and somatosensory cortices of monkeys is the opponent model of rate coding by two distinct populations of neurons. However, the subthreshold mechanisms that give rise to this computation have not been revealed. Because the rate-coding neurons are only observed in awake conditions, it is especially challenging to probe their underlying cellular mechanisms. Using a novel intracellular recording technique that we developed in awake marmosets, we found that the two types of rate-coding neurons in auditory cortex exhibited distinct subthreshold responses. While the positive-monotonic neurons (monotonically increasing firing rate with increasing stimulus repetition frequency) displayed sustained depolarization at high repetition frequency, the negative-monotonic neurons (opposite trend) instead exhibited hyperpolarization at high repetition frequency but sustained depolarization at low repetition frequency. The combination of excitatory and inhibitory subthreshold events allows the cortex to represent time-varying signals through these two opponent neuronal populations. PMID:27478016

  18. Physical ageing of polyethylene terephthalate under natural sunlight: correlation study between crystallinity and mechanical properties

    Science.gov (United States)

    Aljoumaa, Khaled; Abboudi, Maher

    2016-01-01

    Semi-crystalline polyethylene terephthalate (PET) was aged under the effect of natural UV exposure and outdoor temperature during 670 days. The variation in the mechanical and thermal properties beside to the morphology was tracked by applying different analytical techniques, including scanning electron microscopy, infrared spectroscopy, differential scanning calorimetry and wide angle X-ray diffraction, in addition to tensile strength and hardness measurements. It has been confirmed that the ageing process is the results of physical trend only. The aged PET showed a decrease in both tensile strength and strain with an increase in the degree of crystallinity of aged PET samples during the whole period. These changes in crystallinity were examined by various analysis methods: density, calorimetric and infrared spectroscopy. New peaks in FTIR analysis at 1115 and 1090 cm-1 were characterized and proved that this technique is considered to be an easy tool to track the change in the surface crystallinity of aged PET samples directly. The results of this study showed that an augmentation in the degree of crystallinity of outdoor aged PET samples from 18 to 36 %, accompanied with a decrease in tensile strength from 167.9 to 133.7 MPa. Moreover, a good exponential correlation was found between the degree of crystallinity and the mechanical properties of the aged PET.

  19. Diesel exhaust: current knowledge of adverse effects and underlying cellular mechanisms.

    Science.gov (United States)

    Steiner, Sandro; Bisig, Christoph; Petri-Fink, Alke; Rothen-Rutishauser, Barbara

    2016-07-01

    Diesel engine emissions are among the most prevalent anthropogenic pollutants worldwide, and with the growing popularity of diesel-fueled engines in the private transportation sector, they are becoming increasingly widespread in densely populated urban regions. However, a large number of toxicological studies clearly show that diesel engine emissions profoundly affect human health. Thus the interest in the molecular and cellular mechanisms underlying these effects is large, especially concerning the nature of the components of diesel exhaust responsible for the effects and how they could be eliminated from the exhaust. This review describes the fundamental properties of diesel exhaust as well as the human respiratory tract and concludes that adverse health effects of diesel exhaust not only emerge from its chemical composition, but also from the interplay between its physical properties, the physiological and cellular properties, and function of the human respiratory tract. Furthermore, the primary molecular and cellular mechanisms triggered by diesel exhaust exposure, as well as the fundamentals of the methods for toxicological testing of diesel exhaust toxicity, are described. The key aspects of adverse effects induced by diesel exhaust exposure described herein will be important for regulators to support or ban certain technologies or to legitimate incentives for the development of promising new technologies such as catalytic diesel particle filters. PMID:27165416

  20. Structural changes of radial forging die surface during service under thermo-mechanical fatigue

    International Nuclear Information System (INIS)

    Radial forging is one of the modern open die forging techniques and has a wide application in producing machine parts. During operation at high temperatures, severe temperature change associated with mechanical loads and the resultant wearing of the die surface lead to intense variation in strain on the die surface. Therefore, under this operating condition, thermo-mechanical fatigue (TMF) occurs on the surface of the radial forging die. TMF decreases the life of the die severely. In the present research, different layers were deposited on a 1.2714 steel die by SMAW and GTAW, with a weld wire of UDIMET 520. The microstructure of the radial forging die surface was investigated during welding and service using an optical microscope and scanning electron microscope. The results revealed that, after welding, the structure of the radial forging die surface includes the γ matrix with a homogeneous distribution of fine semi-spherical carbides. The weld structure consisted mostly of columnar dendrites with low grain boundaries. Also, microstructural investigation of the die surface during operation showed that the weld structure of the die surface has remained without any considerable change. Only dendrites were deformed and broken. Moreover, grain boundaries of the dendrites were revealed during service.