WorldWideScience

Sample records for aescula open wedge

  1. Modified retro-tubercle opening-wedge versus conventional high tibial osteotomy.

    Science.gov (United States)

    Keyhani, Sohrab; Abbasian, Mohammad Reza; Kazemi, Seyed Morteza; Esmailiejah, Ali Akbar; Seyed Hosseinzadeh, Hamid Reza; Shahi, Alisina; Shahi, Ali Sina; Firouzi, Farzad

    2011-01-01

    Despite the fact that common surgical techniques for the treatment of genu varum usually correct the malalignment in the affected knee, these methods have significant complications and cause problems in the long term. Retro-tubercle opening-wedge high tibial osteotomy is among the newer techniques for the treatment of genu varum. The goal of this study was to compare the results of retro-tubercle opening-wedge high tibial osteotomy with those of medial opening-wedge osteotomy. In a randomized, controlled trial, 72 patients with varus knees who were scheduled for surgery were assigned into either the retro-tubercle opening-wedge high tibial osteotomy (n=34) or medial opening-wedge osteotomy groups (n=38). Groups were matched for age and sex. The position of the patella was compared with respect to the tuberosity and the upper tibial slope pre- and postoperatively. Patients were followed for an average of 13 months (range, 10-21 months). In the retro-tubercle opening-wedge high tibial osteotomy group, the length of the patellar tendon did not significantly differ pre- and postoperatively (P≥.5); however, in the medial opening-wedge osteotomy group, a statistically significant shortening was noted in patellar tendon postoperatively (P≤.05). Similarly, the tibial plateau inclination showed a statistically significant difference postoperatively in the medial opening-wedge osteotomy group, while the difference in the retro-tubercle opening-wedge high tibial osteotomy group did not reach statistical significance.

  2. Vertebral Osteotomies in Ankylosing Spondylitis-Comparison of Outcomes Following Closing Wedge Osteotomy versus Opening Wedge Osteotomy: A Systematic Review.

    Science.gov (United States)

    Ravinsky, Robert A; Ouellet, Jean-Albert; Brodt, Erika D; Dettori, Joseph R

    2013-04-01

    Study Design Systematic review. Study Rationale To seek out and assess the best quality evidence available comparing opening wedge osteotomy (OWO) and closing wedge osteotomy (CWO) in patients with ankylosing spondylitis to determine whether their results differ with regard to several different subjective and objective outcome measures. Objective The aim of this study is to determine whether there is a difference in subjective and objective outcomes when comparing CWO and OWO in patients with ankylosing spondylitis suffering from clinically significant thoracolumbar kyphosis with respect to quality-of-life assessments, complication risks, and the amount of correction of the spine achieved at follow-up. Methods A systematic review was undertaken of articles published up to July 2012. Electronic databases and reference lists of key articles were searched to identify studies comparing effectiveness and safety outcomes between adult patients with ankylosing spondylitis who received closing wedge versus opening wedge osteotomies. Studies that included pediatric patients, polysegmental osteotomies, or revision procedures were excluded. Two independent reviewers assessed the strength of evidence using the GRADE criteria and disagreements were resolved by consensus. Results From a total of 67 possible citations, 4 retrospective cohorts (class of evidence III) met our inclusion criteria and form the basis for this report. No differences in Oswestry Disability Index, visual analog scale for pain, Scoliosis Research Society (SRS)-24 score, SRS-22 score, and patient satisfaction were reported between the closing and opening wedge groups across two studies. Regarding radiological outcomes following closing versus opening osteotomies, mean change in sagittal vertical axis ranged from 8.9 to 10.8 cm and 8.0 to 10.9 cm, respectively, across three studies; mean change in lumbar lordosis ranged from 36 to 47 degrees and 19 to 41 degrees across four studies; and mean change

  3. Comparison of clinical and radiological outcomes between opening-wedge and closing-wedge high tibial osteotomy: A comprehensive meta-analysis

    Science.gov (United States)

    Wu, Lingfeng; Lin, Jun; Jin, Zhicheng; Cai, Xiaobin; Gao, Weiyang

    2017-01-01

    High tibial osteotomy (HTO) has been widely used for clinical treatment of osteoarthritis of the medial compartment of the knee, and both opening-wedge and closing-wedge HTO are the most commonly used methods. However, it remains unclear which technique has better clinical and radiological outcomes in practice. To systematically evaluate this issue, we conducted a comprehensive meta-analysis by pooling all available data for the opening-wedge HTO and closing-wedge HTO techniques from the electronic databases including PubMed, Embase, Wed of Science and Cochrane Library. A total of 22 studies encompassing 2582 cases were finally enrolled in the meta-analysis. There was no significant difference regarding surgery time, duration of hospitalization, knee pain VAS, Lysholm score and HSS knee score (clinical outcomes) between the opening-wedge and closing-wedge HTO groups (P > 0.05). However, the opening-wedge HTO group showed wider range of motion than the closing-wedge HTO group (P = 0.003). Moreover, as for Hip-Knee-Ankle angle and mean angle of correction, no significant difference was observed between the opening-wedge and closing-wedge HTO groups (P > 0.05), while the opening-wedge HTO group showed greater posterior tibial slope angle (P < 0.001) and lesser patellar height than the closing-wedge HTO group (P < 0.001). On light of the above analysis, we believe that individualized surgical approach should be introduced based on the clinical characteristics of each patient. PMID:28182736

  4. Medial opening wedge distal femoral osteotomy for post-traumatic secondary knee osteoarthritis.

    Science.gov (United States)

    Matsui, Gen; Akiyama, Takenori; Ikemura, Satoshi; Mawatari, Taro

    2014-04-30

    Osteoarthritis of the knee secondary to femoral fracture is difficult to treat. There are some surgical options, such as total knee arthroplasty or correction osteotomy. Opening wedge high tibial osteotomy is an established treatment of gonarthrosis. However, few reports are available on the effectiveness of a medial opening wedge distal femoral osteotomy. We present a case of a medial opening wedge distal femoral osteotomy on gonarthrosis secondary to a malunited femoral fracture with varus deformity and leg length discrepancy. This osteotomy was performed at the deformed femur, with locking plate fixation and autologous bone graft. Six months after the surgery, the osteotomy site was filled with bridging callus. Two years later, the Knee Society Score improved from 45 to 90 points. Medial opening wedge distal femoral osteotomy can be a useful method to treat knee osteoarthritis associated with distal femoral deformity.

  5. Open wedge metatarsal osteotomy versus crescentic osteotomy to correct severe hallux valgus deformity

    DEFF Research Database (Denmark)

    Wester, Jens Ulrik; Hamborg-Petersen, Ellen; Herold, Niels;

    2016-01-01

    operation for severe hallux valgus, comparing the open wedge osteotomy to the crescentic osteotomy which is our traditional treatment. METHODS: Forty-five patients with severe hallux valgus (hallux valgus angle >35̊, and intermetatarsal angle >15̊) were included in this study. The treatment was proximal...

  6. Accuracy and initial stability of open- and closed-wedge high tibial osteotomy: a cadaveric RSA study.

    NARCIS (Netherlands)

    Gaasbeek, R.D.A.; Welsing, R.T.C.; Verdonschot, N.J.J.; Rijnberg, W.J.; Loon, C.J.M. van; Kampen, A. van

    2005-01-01

    We analyzed the difference in angle-correction accuracy and initial stability between open-wedge (OWO) and closed-wedge tibial valgus osteotomy (CWO). Five fresh-frozen pairs of human cadaver lower limbs were used; their bone mineral density (BMD) was measured with DEXA and a planned 7 degrees valgu

  7. Open Wedge High Tibial Osteotomy and Combined Arthroscopic Surgery in Severe Medial Osteoarthritis and Varus Malalignment: Minimum 5-Year Results

    OpenAIRE

    Yoo, Moon-Jib; Shin, Yong-Eun

    2016-01-01

    Purpose To evaluate the radiologic and functional outcomes of medial open wedge high tibial osteotomy (HTO) combined with arthroscopic procedure in patients with medial osteoarthritis. Materials and Methods From June 1996 to March 2010, 26 patients (32 knees) who underwent medial open wedge osteotomy and arthroscopic operation for medial osteoarthritis were retrospectively reviewed. Measurements included hip-knee-ankle (HKA) angle, femorotibial angle, medial proximal tibial angle, posterior t...

  8. Measurement of tibial slope angle after medial opening wedge high tibial osteotomy: case series

    Directory of Open Access Journals (Sweden)

    Ricardo Hideki Yanasse

    Full Text Available CONTEXT AND OBJECTIVE: In the past, changes in tibial slope were not considered when planning or evaluating osteotomies, and success in high tibial osteotomy was related to the alignment and amount of femorotibial angular correction. The aim here was to measure changes in tibial slope after medial opening wedge tibial osteotomy and investigate the effect of tibial slope angle on the clinical results. DESIGN AND SETTING: Retrospective review study on a series of cases, at the Department of Orthopedics and Traumatology, Faculdade de Medicina de Marília (Famema, Marília, Brazil. METHODS: Twenty-eight patients were studied, and a total of thirty-one knees. Lateral roentgenograms of the tibia were used pre and postoperatively to measure the tibial slope based on the proximal tibial anatomical axis. The clinical results were measured using the Lysholm knee score. RESULTS: There was an average increase in tibial slope angle after surgery of 2.38° (95% confidence interval: ± 0.73°. There was no correlation (r = -0.28 between the postoperative Lysholm knee score and the difference in tibial slope angle from before to after surgery (P = 0.13. CONCLUSION: Medial opening wedge tibial osteotomy led to a small increase in tibial slope. No significant correlation was found between increased tibial slope and short-term clinical results after high tibial osteotomy. Other clinical studies are needed in order to establish whether extension or flexion osteotomy could benefit patients with medial compartment gonarthrosis.

  9. Numerical study on flow rate limitation of open capillary channel flow through a wedge

    Directory of Open Access Journals (Sweden)

    Ting-Ting Zhang

    2016-04-01

    Full Text Available The flow characteristics of slender-column flow in wedge-shaped channel under microgravity condition are investigated in this work. The one-dimensional theoretical model is applied to predict the critical flow rate and surface contour of stable flow. However, the one-dimensional model overestimates the critical flow rate for not considering the extra pressure loss. Then, we develop a three-dimensional simulation method with OpenFOAM, a computational fluid dynamics tool, to simulate various phenomena in wedge channels with different lengths. The numerical results are verified with the capillary channel flow experimental data on the International Space Station. We find that the three-dimensional simulation perfectly predicts the critical flow rates and surface contours under various flow conditions. Meanwhile, the general behaviors in subcritical, critical, and supercritical flow are studied in three-dimensional simulation considering variations of flow rate and open channel length. The numerical techniques for three-dimensional simulation is validated for a wide range of configurations and is hopeful to provide valuable guidance for capillary channel flow experiment and efficient liquid management in space.

  10. Personalized implant for high tibial opening wedge: combination of solid freeform fabrication with combustion synthesis process.

    Science.gov (United States)

    Zhim, Fouad; Ayers, Reed A; Moore, John J; Moufarrège, Richard; Yahia, L'Hocine

    2012-09-01

    In this work a new generation of bioceramic personalized implants were developed. This technique combines the processes of solid freeform fabrication (SFF) and combustion synthesis (CS) to create personalized bioceramic implants with tricalcium phosphate (TCP) and hydroxyapatite (HA). These porous bioceramics will be used to fill the tibial bone gap created by the opening wedge high tibial osteotomy (OWHTO). A freeform fabrication with three-dimensional printing (3DP) technique was used to fabricate a metallic mold with the same shape required to fill the gap in the opening wedge osteotomy. The mold was subsequently used in a CS process to fabricate the personalized ceramic implants with TCP and HA compositions. The mold geometry was designed on commercial 3D CAD software. The final personalized bioceramic implant was produced using a CS process. This technique was chosen because it exploits the exothermic reaction between P₂O₅ and CaO. Also, chemical composition and distribution of pores in the implant could be controlled. To determine the chemical composition, the microstructure, and the mechanical properties of the implant, cylindrical shapes were also fabricated using different fabrication parameters. Chemical composition was performed by X-ray diffraction. Pore size and pore interconnectivity was measured and analyzed using an electronic microscope system. Mechanical properties were determined by a mechanical testing system. The porous TCP and HA obtained have an open porous structure with an average 400 µm channel size. The mechanical behavior shows great stiffness and higher load to failure for both ceramics. Finally, this personalized ceramic implant facilitated the regeneration of new bone in the gap created by OWHTO and provides additional strength to allow accelerated rehabilitation.

  11. 用楔子撬开问题%Using a Wedge to Pry Open a Problem

    Institute of Scientific and Technical Information of China (English)

    马提索夫

    2001-01-01

    When I elicited the Pumi word ts6 'wedge' in Kunming (March 1996), I was struck by its resemblance to Lahu jfl 'wedge'. Since the Qiangic languages are not particularly close to Loloish on the TB family tree,this apparent cognate for an item of non-core vocabulary was of interest. The first task in establishing a relationship between the Pumi and the Lahu forms was to reconstruct the PLB ancestor of Lahu jfi. Then possible cognates to the Pumi form in other Qiangic languages had to be examined.Given our present rudimentary knowledge of comparative Qiangic,could parallel examples establish a Proto-Qiangic reconstruction resembling our newly reconstructed PLB form?

  12. Medial opening wedge high tibial osteotomy alters knee moments in multiple planes during walking and stair ascent.

    Science.gov (United States)

    Leitch, Kristyn M; Birmingham, Trevor B; Dunning, Cynthia E; Giffin, J Robert

    2015-07-01

    Medial opening wedge high tibial osteotomy is a surgical procedure intended to redistribute loads on the knee in patients with medial compartment knee osteoarthritis (OA). The surgery may affect moments in multiple planes during ambulation, with potential beneficial or detrimental effects on joint loads. The objective of this study was to investigate three-dimensional external knee moments before and after medial opening wedge high tibial osteotomy during level walking and during stair ascent. Fourteen patients with varus alignment and osteoarthritis primarily affecting the medial compartment of the tibiofemoral joint were assessed. Three-dimensional motion analyses during level walking and stair ascent was evaluated using inverse dynamics before, 6 and 12 months after surgery. Mean changes at 12 months suggested decreases in the peak knee adduction, flexion and internal rotation moments, with standardized response means ranging from 0.15 to 2.54. These decreases were observed despite increases in speed. Changes in alignment were associated with changes in the adduction and internal rotation moments, but not the flexion moment. Both pre- and postoperatively, the peak knee adduction moment was significantly lower (p=0.001) during stair ascent than during level walking, while the flexion and internal rotation moments were significantly higher (pplanes of motion during ambulation, suggesting substantial alterations of the loads on the knee during ambulation.

  13. Stress analysis of the tibial plateau according to the difference of blade path entry in opening wedge high tibial osteotomy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jun Woo; Xin, YuanZhu; Yang, Seok Jo [Chungnam National University, Daejeon (Korea, Republic of); Ji, Jong Hun; Panchal, Karnav; Kwon, Oh Soo [The Catholic University of Korea, Daejeon (Korea, Republic of)

    2015-03-15

    High tibial osteotomy (HTO) has been used to successfully treat patients with genu varus deformities that can improve mechanical function and condition in the knee joint. Clinical studies have reported that bow legs often occur with a concentrated load on the varus of the tibia. This study aimed to analyze and verify the clinical test data result by utilizing the three-dimensional (3D) static finite element method (FEM). The 3D model of lower extremities, which include the femur, tibia, meniscus, and knee articular cartilage, was created using the images from a computer tomography scan and magnetic resonance imaging. In this report, we compared changes in stress distribution and force reaction on the tibial plateau because of critical problems caused by unexpected changes in the tibial posterior-slope angle because of HTO. The results showed that the 5 .deg. wedge-angle virtual opening wedge HTO without and with the posterior-slope angle shows has a load concentration of approximately 60% and 45% in the medial region, respectively.

  14. Rethinking wedges

    Science.gov (United States)

    Davis, Steven J.; Cao, Long; Caldeira, Ken; Hoffert, Martin I.

    2013-03-01

    Abstract Stabilizing CO2 emissions at current levels for fifty years is not consistent with either an atmospheric CO2 concentration below 500 ppm or global temperature increases below 2 °C. Accepting these targets, solving the climate problem requires that emissions peak and decline in the next few decades, and ultimately fall to near zero. Phasing out emissions over 50 years could be achieved by deploying on the order of 19 'wedges', each of which ramps up linearly over a period of 50 years to ultimately avoid 1 GtC y-1 of CO2 emissions. But this level of mitigation will require affordable carbon-free energy systems to be deployed at the scale of tens of terawatts. Any hope for such fundamental and disruptive transformation of the global energy system depends upon coordinated efforts to innovate, plan, and deploy new transportation and energy systems that can provide affordable energy at this scale without emitting CO2 to the atmosphere. 1. Introduction In 2004, Pacala and Socolow published a study in Science arguing that '[h]umanity can solve the carbon and climate problem in the first half of this century simply by scaling up what we already know how to do' [1]. Specifically, they presented 15 options for 'stabilization wedges' that would grow linearly from zero to 1 Gt of carbon emissions avoided per year (GtC y-1 1 Gt = 1012 kg) over 50 years. The solution to the carbon and climate problem, they asserted, was 'to deploy the technologies and/or lifestyle changes necessary to fill all seven wedges of the stabilization triangle'. They claimed this would offset the growth of emissions and put us on a trajectory to stabilize atmospheric CO2 concentration at 500 ppm if emissions decreased sharply in the second half of the 21st century. The wedge concept has proven popular as an analytical tool for considering the potential of different technologies to reduce CO2 emissions. In the years since the paper was published, it has been cited more than 400 times, and

  15. Radial wedge flange clamp

    Science.gov (United States)

    Smith, Karl H.

    2002-01-01

    A radial wedge flange clamp comprising a pair of flanges each comprising a plurality of peripheral flat wedge facets having flat wedge surfaces and opposed and mating flat surfaces attached to or otherwise engaged with two elements to be joined and including a series of generally U-shaped wedge clamps each having flat wedge interior surfaces and engaging one pair of said peripheral flat wedge facets. Each of said generally U-shaped wedge clamps has in its opposing extremities apertures for the tangential insertion of bolts to apply uniform radial force to said wedge clamps when assembled about said wedge segments.

  16. The use of recombinant human bone morphogenetic protein-2 for the treatment of a delayed union following femoral neck open-wedge osteotomy

    Directory of Open Access Journals (Sweden)

    Axel W.A. Baltzer

    2012-03-01

    Full Text Available Although the clinical potential of bone morphogenetic proteins (BMPs has been known for decades, their use in humans has only been approved for a limited number of orthopaedic conditions. Promising results in animals demonstrate the utility of BMP-2 in regional bone repair without using osteoconductors. To our knowledge, no comparable human case has been described. We report the case of a 50- year-old who suffered a femoral neck fracture. After 9 months of extensive treatment, he was still not pain-free. The following open-wedge osteotomy resulted in a therapy-resistant delayed union. We therefore conducted 4 computer tomography-guided injections of recombinant human (rh BMP-2 into the bone gap. No osteoconductor was employed. Six weeks later, there was a 55-60% defect filling. Followup examination showed a complete union of the bone defect. Our case report shows that in a complicated delayed union rhBMP-2 can be successfully used to induce bone formation without any osteoconductor.

  17. Studying wedge factors and beam profiles for physical and enhanced dynamic wedges

    Directory of Open Access Journals (Sweden)

    Ahmad Misbah

    2010-01-01

    Full Text Available This study was designed to investigate variation in Varian′s Physical and Enhanced Dynamic Wedge Factors (WF as a function of depth and field size. The profiles for physical wedges (PWs and enhanced dynamic wedges (EDWs were also measured using LDA-99 array and compared for confirmation of EDW angles at different depths and field sizes. WF measurements were performed in water phantom using cylindrical 0.66 cc ionization chamber. WF was measured by taking the ratio of wedge and open field ionization data. A normalized wedge factor (NWF was introduced to circumvent large differences between wedge factors for different wedge angles. A strong linear dependence of PW Factor (PWF with depth was observed. Maximum variation of 8.9% and 4.1% was observed for 60° PW with depth at 6 and 15 MV beams respectively. The variation in EDW Factor (EDWF with depth was almost negligible and less than two per cent. The highest variation in PWF as a function of field size was 4.1% and 3.4% for thicker wedge (60° at 6 and 15 MV beams respectively and decreases with decreasing wedge angle. EDWF shows strong field size dependence and significant variation was observed for all wedges at both photon energies. Differences in profiles between PW and EDW were observed on toe and heel sides. These differences were dominant for larger fields, shallow depths, thicker wedges and low energy beam. The study indicated that ignoring depth and field size dependence of WF may result in under/over dose to the patient especially doing manual point dose calculation.

  18. Avaliação radiográfica da osteotomia proximal de abertura gradual da tíbia Radiographic assessment of the opening wedge proximal tibial osteotomy

    Directory of Open Access Journals (Sweden)

    Carlos Francisco Bittencourt Silva

    2010-01-01

    Full Text Available OBJETIVO: Avaliar radiograficamente indivíduos submetidos à osteotomia de abertura gradual da tíbia proximal com o objetivo de analisar a inclinação tibial proximal no plano frontal e no plano sagital e a altura patelar. MÉTODO: Foram incluídos no estudo 22 indivíduos operados no Instituto Nacional de Traumatologia e Ortopedia (INTO para correção do desvio angular em varo da tíbia pela técnica de osteotomia de abertura gradual (OAG com fixador externo monolateral da Orthofix. Foram analisados pacientes submetidos à OAG com término de tratamento entre janeiro de 2000 e dezembro de 2006. A técnica utilizada para a mensuração dos valores foi obtida através de radiografias em AP com carga e perfil com flexão a 30º dos joelhos operados. RESULTADOS: Não houve diferenças entre os valores dos índices de altura patelar e inclinação tibial pré-operatórios e pós-operatórios de significância estatística nos pacientes avaliados. CONCLUSÃO: A osteotomia tibial de abertura gradual representa uma técnica que evita os problemas apresentados pela osteotomia tibial proximal alta, pois ela é realizada sem promover alterações do mecanismo extensor, desequilíbrio ligamentar ou distorções na tíbia proximal.OBJETIVO: To radiographically evaluate patients who underwent opening wedge proximal tibial osteotomy in order to analyze the proximal tibial slope in the frontal plane, sagittal plane, and patellar height. METHOD: The study included 22 patients operated on at the Instituto Nacional de Traumatologia e Ortopedia (INTO for the correction of varus angular tibial deviation using the opening wedge osteotomy (OWO technique with the Orthofix monolateral external fixator. We analyzed patients with OWO having completed treatment between January 2000 and December 2006. Values were measured by using X-rays of the anteroposterior profile with load and lateral profile with 30º flexion of the operated knees. RESULTS: No statistically

  19. Osteotomia alta da tíbia com cunha de abertura medial: relevância biomecânica da cortical oposta Open wedge tibial osteotomy: biomechanical relevance of the opposite cortex for the fixation method

    Directory of Open Access Journals (Sweden)

    Rafael Lara de Freitas

    2010-01-01

    Full Text Available OBJETIVO: Avaliar o impacto da integridade da cortical lateral osteo-tomia alta de tíbia (OAT com cunha de abertura. MÉTODOS: Modelos experimentais artificiais em poliuretano foram fixados com placa DCP® 4,5mm. Cunhas de abertura foram confeccionadas para simular a distração da osteotomia alta da tíbia. Realizadas falhas na cortical lateral para simular fraturas e fixadas com diferentes tipos de parafusos. Ensaios de torção e compressão axial foram realizados. 04 diferentes grupos foram constituídos. RESULTADOS: As medidas de torção registradas no grupo com cortical íntegra foram superiores àquelas obtidas no grupo com cortical rompida (p0,05. As medidas de compressão obtidas no grupo com cortical íntegra foram superiores aos demais grupos (p0,05. CONCLUSÃO: A cortical lateral íntegra agrega estabilidade às osteotomias com cunha de abertura medial. Modelo com cortical íntegra evidenciou superioridade biomecânica em rigidez nos ensaios de torção e compressão. Nos ensaios torcionais, os modelos com falha de continuidade cortical com parafusos de estabilização lateral de compressão ou de posição apresentaram equivalência aos modelos com cortical íntegra.OBJECTIVE: To evaluate the role of lateral tibial cortex integrity in open wedge tibial osteotomy (OWTO. METHODS: Experimental models of polyurethane fibers, simulating tibial models and modified with open wedge osteotomies were fixed with DCP® straight 4.5 mm plates. Four groups were constituted: two with cortical integrity and two with a gap in the lateral tibial cortex. Biomechanical analysis of torsion and axial compression were performed. RESULTS: The measures of twist recorded in the group with cortical integrity were higher than those obtained in the group with noncontinuous cortices (p 0.05. CONCLUSION: Integrity of lateral tibial cortex adds stability to open wedge tibial osteotomies. Models with lateral cortical integrity demonstrated superiority in

  20. Long polymers near wedges and cones

    Science.gov (United States)

    Hammer, Yosi; Kantor, Yacov

    2015-12-01

    We perform a Monte Carlo study of N -step self-avoiding walks, attached to the corner of an impenetrable wedge in two dimensions (d =2 ), or the tip of an impenetrable cone in d =3 , of sizes ranging up to N =106 steps. We find that the critical exponent γα, which determines the dependence of the number of available conformations on N for a cone or wedge with opening angle α , is in good agreement with the theory for d =2 . We study the end-point distribution of the walks in the allowed space and find similarities to the known behavior of random walks (ideal polymers) in the same geometry. For example, the ratio between the mean square end-to-end distances of a polymer near the cone or wedge and a polymer in free space depends linearly on γα, as is known for ideal polymers. We show that the end-point distribution of polymers attached to a wedge does not separate into a product of angular and radial functions, as it does for ideal polymers in the same geometry. The angular dependence of the end position of polymers near the wedge differs from theoretical predictions.

  1. Optimal clinical implementation of the Siemens virtual wedge.

    Science.gov (United States)

    Walker, C P; Richmond, N D; Lambert, G D

    2003-01-01

    Installation of a modern high-energy Siemens Primus linear accelerator at the Northern Centre for Cancer Treatment (NCCT) provided the opportunity to investigate the optimal clinical implementation of the Siemens virtual wedge filter. Previously published work has concentrated on the production of virtual wedge angles at 15 degrees, 30 degrees, 45 degrees, and 60 degrees as replacements for the Siemens hard wedges of the same nominal angles. However, treatment plan optimization of the dose distribution can be achieved with the Primus, as its control software permits the selection of any virtual wedge angle from 15 degrees to 60 degrees in increments of 1 degrees. The same result can also be produced from a combination of open and 60 degrees wedged fields. Helax-TMS models both of these modes of virtual wedge delivery by the wedge angle and the wedge fraction methods respectively. This paper describes results of timing studies in the planning of optimized patient dose distributions by both methods and in the subsequent treatment delivery procedures. Employment of the wedge fraction method results in the delivery of small numbers of monitor units to the beam's central axis; therefore, wedge profile stability and delivered dose with low numbers of monitor units were also investigated. The wedge fraction was proven to be the most efficient method when the time taken for both planning and treatment delivery were taken into consideration, and is now used exclusively for virtual wedge treatment delivery in Newcastle. It has also been shown that there are no unfavorable dosimetric consequences from its practical implementation.

  2. Wedges of Anxiety

    DEFF Research Database (Denmark)

    Hellström, Maria; Brandt, Eva

    2005-01-01

    The Heraclitian notion of a reality in constant flux seems to have settled even in the public consciousness. We are, to an ever-increasing extent, on the move; in motion between different places of abode, between domiciles and places of residence, between temporary addresses and provisory settlem...... cones of light, as the cut their way into the unknown, like wedges of anxiety...

  3. Shock detachment from curved wedges

    Science.gov (United States)

    Mölder, S.

    2017-03-01

    Curved shock theory is used to show that the flow behind attached shocks on doubly curved wedges can have either positive or negative post-shock pressure gradients depending on the freestream Mach number, the wedge angle and the two wedge curvatures. Given enough wedge length, the flow near the leading edge can choke to force the shock to detach from the wedge. This local choking can preempt both the maximum deflection and the sonic criteria for shock detachment. Analytical predictions for detachment by local choking are supported by CFD results.

  4. The efficacy of open-wedge high tibial osteotomy for varus knee%开放胫骨高位楔形截骨术治疗膝关节内翻畸形

    Institute of Scientific and Technical Information of China (English)

    张海宁; 冷萍; 王英振; 吕成昱; 王湘达; 王昌耀

    2010-01-01

    sixteen weeks after operation. No complications such as plate broken or injury of nerve or blood vessel had occurred. The mean correct angle was 9. 5°. No degenerative changes had developed in other compartments of the knee. The mechanical axis of the lower extremities was maintained during the follow-up. The overall satisfactory rate was 83.3%.Statistically significant changes exist in the Lysholm score and varus degree. Conclusion The open-wedge high tibial osteotomy is suitable for the symptomatic genu varum in younger patients with good short-term and mid-term results.

  5. Some Historical Treatments should not be Forgotten: A Review of Cast Wedging and A Trick to Normalize Non-Standardized Digital X-rays

    OpenAIRE

    2014-01-01

    Introduction: Cast wedging is a simple and reproducible method of manipulating a sub-optimally reduced fracture producing a correction and a final alignment that is amenable to definitive closed treatment. Multiple successful techniques have been previously described in the literature (opening wedge, closing wedge and combination). Technical Note: We present a simple reproducible method of templating and executing a proper cast wedging technique using digital imaging systems that are not cont...

  6. Portal dosimetry in wedged beams

    NARCIS (Netherlands)

    Spreeuw, H.; Rozendaal, R.; Camargo, P.; Mans, A.; Wendling, M.; Olaciregui-Ruiz, I.; Sonke, J.J.; Herk, M. van; Mijnheer, B.

    2015-01-01

    Portal dosimetry using electronic portal imaging devices (EPIDs) is often applied to verify high-energy photon beam treatments. Due to the change in photon energy spectrum, the resulting dose values are, however, not very accurate in the case of wedged beams if the pixel-to-dose conversion for the s

  7. Comparison of dosimetric characteristics of Siemens virtual and physical wedges for ONCOR linear accelerator

    Directory of Open Access Journals (Sweden)

    Attalla Ehab

    2010-01-01

    Full Text Available Dosimetric properties of virtual wedge (VW and physical wedge (PW in 6- and 10-MV photon beams from a Siemens ONCOR linear accelerator, including wedge factors, depth doses, dose profiles, peripheral doses, are compared. While there is a great difference in absolute values of wedge factors, VW factors (VWFs and PW factors (PWFs have a similar trend as a function of field size. PWFs have stronger depth dependence than VWF due to beam hardening in PW fields. VW dose profiles in the wedge direction, in general, match very well with those of PW, except in the toe area of large wedge angles with large field sizes. Dose profiles in the nonwedge direction show a significant reduction in PW fields due to off-axis beam softening and oblique filtration. PW fields have significantly higher peripheral doses than open and VW fields. VW fields have similar surface doses as the open fields, while PW fields have lower surface doses. Surface doses for both VW and PW increase with field size and slightly with wedge angle. For VW fields with wedge angles 45° and less, the initial gap up to 3 cm is dosimetrically acceptable when compared to dose profiles of PW. VW fields in general use less monitor units than PW fields.

  8. Contact process in a wedge

    CERN Document Server

    Cox, J Theodore; Schinazi, Rinaldo B

    2009-01-01

    We prove that the supercritical one-dimensional contact process survives in certain wedge-like space-time regions, and that when it survives it couples with the unrestricted contact process started from its upper invariant measure. As an application we show that a type of weak coexistence is possible in the nearest-neighbor ``grass-bushes-trees'' successional model introduced in Durrett and Swindle (1991).

  9. Wedge Splitting Test and Fracture Energy on Particulate Reinforced Composites

    Energy Technology Data Exchange (ETDEWEB)

    Na, Seong Hyeon; Kim, Jae Hoon; Choi, Hoon Seok [Chungnam National Univ., Daejeon (Korea, Republic of); Park, Jae Beom; Kim, Shin Hoe; Jung, Gyoo Dong [Agency for Defense Developmen, Daejeon (Korea, Republic of)

    2016-03-15

    The effect of temperature on the fracture energy, crack propagation, and crack tip opening displacement(CTOD) was determined for particulate reinforced composites using the wedge splitting test. The materials that were used consisted of a polymer binder, an oxidizing agent, and aluminum particles. The test rate of the wedge splitting specimen was 50 mm/min, the temperature conditions were 50℃, room temperature, -40℃, and -60℃. The fracture energy, calculated from splitting load-crack mouth opening displacement(CMOD) curves, increased with decreasing temperature from 50℃ to -40℃. In addition, the strength of the particulate reinforced composites increased sharply at -60℃, and the composites evidenced brittle fracture due to the glass transition temperature. The strain fields near the crack tip were analyzed using digital image correlation.

  10. Some Historical Treatments should not be Forgotten: A Review of Cast Wedging and A Trick to Normalize Non-Standardized Digital X-rays

    Science.gov (United States)

    Jacobson, Nathan A.; Lee, Christopher L.

    2014-01-01

    Introduction: Cast wedging is a simple and reproducible method of manipulating a sub-optimally reduced fracture producing a correction and a final alignment that is amenable to definitive closed treatment. Multiple successful techniques have been previously described in the literature (opening wedge, closing wedge and combination). Technical Note: We present a simple reproducible method of templating and executing a proper cast wedging technique using digital imaging systems that are not controlled for magnification with an illustrative case. Conclusion: Renewed interest in cast wedging can provide a cost effective treatment with proven clinical outcomes in an ever changing and uncertain reimbursement climate. PMID:27298956

  11. Geometry and kinematics of extensional structural wedges

    Science.gov (United States)

    Gui, Baoling; He, Dengfa; Zhang, Yongsheng; Sun, Yanpeng; Huang, Jingyi; Zhang, Wenjun

    2017-03-01

    Structural wedges in the compressive environment have been recognized and studied in different locations. However, extension structural wedges are less well-understood. Based on the normal fault-bend folding theory and inclined shear model, this paper quantitatively analyses deformations related to extensional structural wedges and builds a series of geometric models for them. An extensional structural wedge is a fault-block held by two or more normal faults, the action of which would fold its overlying strata. Extensional structural wedges of different shapes will lead to different deformation results for the overlying strata, and this paper illustrates both the triangular and quadrangular wedges and their related deformations. This paper also discusses differences between the extensional structural wedges and the normal fault-bend-folding. By analysing two seismic sections from Langfang-Gu'an Sag, East China, this paper provides two natural examples of the triangular and quadrangular extensional structural wedges, where the models can reasonably explain the overlying distinct highs and lows without obvious faults. The establishment of a geometric model of extensional structural wedges can provide reference and theoretical bases for future quantitative analysis of deformations in the extensional environment.

  12. Ice Particle Impacts on a Moving Wedge

    Science.gov (United States)

    Vargas, Mario; Struk, Peter M.; Kreeger, Richard E.; Palacios, Jose; Iyer, Kaushik A.; Gold, Robert E.

    2014-01-01

    This work presents the results of an experimental study of ice particle impacts on a moving wedge. The experiment was conducted in the Adverse Environment Rotor Test Stand (AERTS) facility located at Penn State University. The wedge was placed at the tip of a rotating blade. Ice particles shot from a pressure gun intercepted the moving wedge and impacted it at a location along its circular path. The upward velocity of the ice particles varied from 7 to 12 meters per second. Wedge velocities were varied from 0 to 120 meters per second. Wedge angles tested were 0 deg, 30 deg, 45 deg, and 60 deg. High speed imaging combined with backlighting captured the impact allowing observation of the effect of velocity and wedge angle on the impact and the post-impact fragment behavior. It was found that the pressure gun and the rotating wedge could be synchronized to consistently obtain ice particle impacts on the target wedge. It was observed that the number of fragments increase with the normal component of the impact velocity. Particle fragments ejected immediately after impact showed velocities higher than the impact velocity. The results followed the major qualitative features observed by other researchers for hailstone impacts, even though the reduced scale size of the particles used in the present experiment as compared to hailstones was 4:1.

  13. Consolidação da osteotomia valgizante proximal da tíbia com cunha de abertura fixada com placa "calço" de Anthony® Proximal tibial valgusing open-wedge osteotomy union fixated with Anthony® "support" plate

    Directory of Open Access Journals (Sweden)

    Cristiano Hossri Ribeiro

    2008-01-01

    Full Text Available OBJETIVO: Este estudo tem por finalidade verificar a consolidação da osteotomia valgizante da tíbia com cunha de abertura fixada com placa tipo calço de Anthony® (OVT, no tratamento da osteoartrose medial do joelho varo, a correção da deformidade e a resposta clínica ao tratamento cirúrgico. MÉTODOS: Vinte pacientes (vinte joelhos com osteoartrose do compartimento medial do joelho, com idade média de 48,4 ± 9,9, foram avaliados por um período mínimo de um ano. Os pacientes foram submetidos a avaliação radiográfica da consolidação e do eixo mecânico no pré e pós operatório, além da avaliação dos critérios de LYSHOLM. RESULTADOS: A consolidação da osteotomia ocorreu após 12 semanas em 100% dos casos sem complicações. A avaliação do LYSHOLM no pós operatório apresentou 80% de excelentes e bons resultados. A correção final média do eixo mecânico foi de 3,4 ± 3,3 graus de valgo. CONCLUSÃO: Concluímos que a consolidação da osteotomia supra-tuberositária da tíbia com cunha de abertura fixada com placa calço de Anthony® e com enxertia óssea tricortical ocorre num intervalo de três meses. A cirurgia é eficaz para a correção da deformidade em varo do joelho, e propicia melhora clínica significante para o paciente.OBJECTIVE: This paper aims to check the proximal tibial valgusing open-wedge osteotomy union with Anthony® plate for the treatment of bowleg with medial osteoarthrosis, final correction of the deformity and clinical improvement. METHODS: Twenty patients (twenty knees with medial osteoarthrosis of the knee, with mean age of 48.4 years, were evaluated for one year. The patients were submitted to the Lysholm's score, and also to X-ray studies before and after surgery. RESULTS: The osteotomy union occurred after 12 weeks in all cases without complications. The Lysholm's score was regarded as excellent or good in 80% of the cases. The postoperative mechanical alignment was 3.4 ± 3.3 valgus

  14. The Electronic Wedge Brake - EWB

    Energy Technology Data Exchange (ETDEWEB)

    Ho, L.M.; Roberts, R.P.; Hartmann, H.; Gombert, B. [Siemens VDO Automotive (Germany)

    2006-07-01

    Future driver assistance systems will not only monitor the current traffic situation, but actively assist the driver in the day to day driving routines and as well in emergency situations. Autonomous intervention in the vehicle behavior will help to keep the vehicle under control, even in hazardous situations. A fast and smart braking system is one of the basics for the next generation of driver assistance systems. Siemens VDO sees its electronic wedge brake (EWB) brake-by-wire technology as the answer to future vehicle chassis safety, weight, reliability and space requirements. Particularly in the automobile sector, there is an increasing trend towards replacing existing hydraulic or pneumatic brake systems with drive 'by-wire' solutions. While mechatronics, i.e. intelligent, controllable electromechanical actuators, are already in use in many automotive and non automotive areas, there are particularly strict requirements for purely electromechanical braking systems which require complex development processes. These are highly safety critical systems, which must provide both excellent control quality and sophisticated fail-safe behavior. The challenge is to achieve a high power density in the wheel brake actuators. (orig.)

  15. Optical dating of relict sand wedges and composite-wedge pseudomorphs in Flanders, Belgium

    DEFF Research Database (Denmark)

    Buylaert, Jan-Pieter; Ghysels, Günther; Murray, Andrew S.;

    2009-01-01

    We report on quartz Optically Stimulated Luminescence (OSL) dating of the infill of 14 relict sand wedges and composite-wedge pseudomorphs at 5 different sites in Flanders, Belgium. A laboratory dose recovery test indicates that the single-aliquot regenerative-dose (SAR) procedure is suitable...... appear to have been commonplace in Flanders during the Late Pleniglacial (Oxygen Isotope Stage 2; OIS2); more specifically, around the Last Glacial Maximum (LGM, similar to 21 kyr ago) and the transition period between the LGM and the start of the Lateglacial (similar to 15 kyr ago). Optical dating...... at one site has revealed two significantly older wedge levels, the younger inset into the older; the younger wedge has an age of 36 +/- 4 kyr (Middle Pleniglacial; OIS3), the older wedge 129 +/- 11 kyr, which points to formation during the Late Saalian (OIS6). Our OSL ages of the wedges and host...

  16. Mantle wedge dynamics from seismic anisotropy (Invited)

    Science.gov (United States)

    Long, M. D.; Wirth, E. A.

    2013-12-01

    The mantle wedge above subducting slabs plays a critical role in many of the physical processes associated with subduction, including water transport into the upper mantle and the generation and transport of melts. Our understanding of mantle wedge dynamics is incomplete; in particular, the mantle flow field above subducting slabs remains poorly understood. Because seismic anisotropy is a consequence of deformation, observations of anisotropy (such as shear wave splitting and P-to-SH converted waves) can constrain the geometry of the wedge flow field. Additionally, because the presence of water (either in nominally anhydrous minerals or as hydrous phases) can have a large effect on anisotropic structure, a detailed understanding of mantle wedge anisotropy can help to constrain processes related to water cycling in subduction systems. We present a global, synoptic view of anisotropy observations in subduction zone mantle wedges, compiled from a large number of individual studies, with the goal of understanding the first-order controls on wedge anisotropy and flow patterns. This compilation allows us to explicitly test the predictions made by many different conceptual models for wedge anisotropy, as well as to explore the relationships between observed anisotropy parameters and other parameters that describe subduction. We find that no simple model can explain all of the trends observed in the global data set. Mantle wedge flow is likely controlled by a combination of downdip motion of the slab, trench migration, ambient mantle flow, small-scale convection, proximity to slab edges, and slab morphology, with the relative contributions of these in any given subduction system controlled by the subduction kinematics and mantle rheology. There is also a likely contribution from B-type olivine and/or serpentinite fabric in many subduction zones, governed by the local thermal structure and volatile distribution.

  17. Long-range hybrid wedge plasmonic waveguide.

    Science.gov (United States)

    Zhang, Zhonglai; Wang, Jian

    2014-11-03

    We design a novel long-range hybrid wedge plasmonic (LRHWP) waveguide composed of two identical dielectric nanowires symmetrically placed on two opposed wedges of a diamond shaped metal wire. With strong coupling between the dielectric nanowire mode and long-range surface plasmon polariton (SPP) mode, both deep subwavelength mode confinement and low propagation loss are achieved. On one hand, when compared to the previous long-range hybrid SPP waveguide, LRHWP waveguide can achieve smaller mode size with similar propagation length; on the other hand, when compared to the previous hybrid wedge SPP waveguide, LRHWP waveguide can provide an order of magnitude longer propagation length with similar level of mode confinement. The designed LRHWP waveguide also features an overall advantage of one-order improvement of Figure of Merit. We further evaluate in detail the impacts of possible practical fabrication imperfections on the mode properties. The obtained results of mode properties show that the proposed LRHWP waveguide with an optimized wedge tip angle of 140 degree is fairly tolerant to practical fabrication errors in geometry parameters such as misalignment in the horizontal direction, asymmetry in the vertical direction, variation of wedge tip angle, tilt or rotation of metal wire, and variation of wedge tip curvature radius.

  18. Wedged tibial components for total knee arthroplasty.

    Science.gov (United States)

    Jeffery, R S; Orton, M A; Denham, R A

    1994-08-01

    Severe coronal deformity of the knee is frequently associated with erosion of one tibial condyle. This can cause problems with fixation and alignment during total knee arthroplasty. If the tibia is cut to the level of the more worn side, valuable bone is sacrificed; if the less worn side is chosen, the deficiency must be filled with bone--graft, cement, or a prosthesis. Tibial components with an integral polyethylene wedge on the undersurface were introduced in 1980 for use in patients with a bony deficit on one tibial condyle. The authors believe that the Denham prosthesis (Biomet, Wales, U.K.) was the first knee arthroplasty to offer such spacers. Twenty-six patients with preoperative varus deformity in whom a wedged component was used were compared with 29 historic control subjects. None of the wedged components loosened after a median follow-up period of 8 years compared with loosening in five of the control subjects (P = .01). In three of the control subjects a fractured triangle of cement was present on the radiographs. Use of the wedges was not accompanied by an improvement in postoperative alignment. The authors conclude that the wedges resulted in improved fixation that was independent of postoperative alignment.

  19. Structure of turbulent wedges created by isolated surface roughness

    Science.gov (United States)

    Kuester, Matthew S.; White, Edward B.

    2016-04-01

    Isolated surface roughness in a laminar boundary layer can create a wedge of turbulence that spreads laterally into the surrounding laminar flow. Some recent studies have identified high- and low-speed streaks along the exterior of turbulent wedges. In this experiment, developing turbulent wedges are measured to observe the creation of these streaks. Naphthalene shear stress surface visualization and hotwire measurements are utilized to investigate the details of turbulent wedges created by cylinders in a laminar flat-plate boundary layer. Both the surface visualization and the hotwire measurements show high- and low-speed streaks in the wake of the cylinder that devolve into a turbulent wedge. The turbulent wedge spreading is associated with the emergence of these high- and low-speed streaks along the outside of the wedge. As the wedge evolves in the streamwise direction, these streaks persist inside of the core of the wedge, while new, lower amplitude streaks form along the outside of the wedge. Adding asymmetry to the cylinder moved the virtual origin closer to the roughness and increased the vortex shedding frequency, while adding small-scale roughness features did not strongly affect turbulent wedge development. Intermittency calculations additionally show the origin of the turbulent core inside of the wedge. The structure and spacing of the high-speed streaks along the extremities of the turbulent wedge give insight into the spreading angle of the turbulent wedge.

  20. Explicit reconstruction of the entanglement wedge

    CERN Document Server

    Kim, Jung-Wook

    2016-01-01

    The problem of bulk locality, or how the boundary encodes the bulk in AdS/CFT, is still a subject of study today. One of the major issues that needs more elucidation is the problem of subregion duality; what information of the bulk a given boundary subregion encodes. Although proofs given by two teams of researchers, Dong, Harlow, and Wall and Bao, and Kim, state that the entanglement wedge of the bulk should be reconstructible from boudnary subregions, no explicit procedure for reconstructing the entanglement wedge was as of yet given. In this paper, mode sum approach to obtaining smearing functions is generalised to include bulk reconstruction in the entanglement wedge of boundary subregions. It is generally expectated that solutions to the wave equation on a complicated coordinate patch are needed, but this hard problem has been transferred to a less hard but tractable problem of matrix inversion.

  1. Rainfall induced groundwater mound in wedge-shaped promontories: The Strack-Chernyshov model revisited

    Science.gov (United States)

    Kacimov, A. R.; Kayumov, I. R.; Al-Maktoumi, A.

    2016-11-01

    An analytical solution to the Poisson equation governing Strack's discharge potential (squared thickness of a saturated zone in an unconfined aquifer) is obtained in a wedge-shaped domain with given head boundary conditions on the wedge sides (specified water level in an open water body around a porous promontory). The discharge vector components, maximum elevation of the water table in promontory vertical cross-sections, quantity of groundwater seeping through segments of the wedge sides, the volume of fresh groundwater in the mound are found. For acute angles, the solution to the problem is non-unique and specification of the behaviour at infinity is needed. A "basic" solution is distinguished, which minimizes the water table height above a horizontal bedrock. MODFLOW simulations are carried out in a finite triangular island and compare solutions with a constant-head, no-flow and "basic" boundary condition on one side of the triangle. Far from the tip of an infinite-size promontory one has to be cautious with truncation of the simulated flow domains and imposing corresponding boundary conditions. For a right and obtuse wedge angles, there are no positive solutions for the case of constant accretion on the water table. In a particular case of a confined rigid wedge-shaped aquifer and incompressible fluid, from an explicit solution to the Laplace equation for the hydraulic head with arbitrary time-space varying boundary conditions along the promontory rays, essentially 2-D transient Darcian flows within the wedge are computed. They illustrate that surface water waves on the promontory boundaries can generate strong Darcian waves inside the porous wedge. Evaporation from the water table and sea-water intruded interface (rather than a horizontal bed) are straightforward generalizations for the Poissonian Strack potential.

  2. A review of dynamics modelling of friction wedge suspensions

    Science.gov (United States)

    Wu, Qing; Cole, Colin; Spiryagin, Maksym; Sun, Yan Quan

    2014-11-01

    Three-piece bogies with friction wedge suspensions are the most widely used bogies in heavy haul trains. Fiction wedge suspensions play a key role in these wagon systems. This article reviews current techniques in dynamic modelling of friction wedge suspension with various motivations: to improve dynamic models of friction wedge suspensions so as to improve general wagon dynamics simulations; to seek better friction wedge suspension models for wagon stability assessments in complex train systems; to improve the modelling of other friction devices, such as friction draft gear. Relevant theories and friction wedge suspension models developed by using commercial simulation packages and in-house simulation packages are reviewed.

  3. Non-Newtonian viscosity wedge in film formation of EHL

    Institute of Scientific and Technical Information of China (English)

    GUOF.; WONGP.L.

    2001-01-01

    This paper aims to evaluate the action of viscosity wedge in the oil film formation ofEHL at opposite sliding and zero entrainment. Using solvers developed for Newtonian and Eyringfluids, the film formation behavior originating from viscosity wedge is investigated. The numericalsimulation displays that lubricant film formation induced by viscosity wedge is different from that bythe well-known geometrical wedge with entrainment in classic EHL. The numerical analyses showthat at high opposite sliding speed the viscosity wedge acts as a leading role in film formation, thenon-Newtonian effects can have a pronounced influence on action of the viscosity wedge.

  4. Graphene Plasmons in Triangular Wedges and Grooves

    DEFF Research Database (Denmark)

    Gonçalves, P. A. D.; Dias, E. J. C.; Xiao, Sanshui

    2016-01-01

    and tunability of graphene plasmons guided along the apex of a graphene-covered dielectric wedge or groove. In particular, we present a quasi-analytic model to describe the plasmonic eigenmodes in such a system, including the complete determination of their spectrum and corresponding induced potential...... and electric-field distributions. We have found that the dispersion of wedge/groove graphene plasmons follows the same functional dependence as their flat-graphene plasmon counterparts, but now scaled by a (purely) geometric factor in which all the information about the system’s geometry is contained. We...

  5. Wedge Shock and Nozzle Exhaust Plume Interaction in a Supersonic Jet Flow

    Science.gov (United States)

    Castner, Raymond; Zaman, Khairul; Fagan, Amy; Heath, Christopher

    2014-01-01

    Fundamental research for sonic boom reduction is needed to quantify the interaction of shock waves generated from the aircraft wing or tail surfaces with the nozzle exhaust plume. Aft body shock waves that interact with the exhaust plume contribute to the near-field pressure signature of a vehicle. The plume and shock interaction was studied using computational fluid dynamics and compared with experimental data from a coaxial convergent-divergent nozzle flow in an open jet facility. A simple diamond-shaped wedge was used to generate the shock in the outer flow to study its impact on the inner jet flow. Results show that the compression from the wedge deflects the nozzle plume and shocks form on the opposite plume boundary. The sonic boom pressure signature of the nozzle exhaust plume was modified by the presence of the wedge. Both the experimental results and computational predictions show changes in plume deflection.

  6. Measurement of photoneutron dose produced by wedge filters of a high energy linac using polycarbonate films.

    Science.gov (United States)

    Hashemi, Seyed Mehdi; Hashemi-Malayeri, Bijan; Raisali, Gholamreza; Shokrani, Parvaneh; Sharafi, Ali Akbar; Torkzadeh, Falamarz

    2008-05-01

    Radiotherapy represents the most widely spread technique to control and treat cancer. To increase the treatment efficiency, high energy linacs are used. However, applying high energy photon beams leads to a non-negligible dose of neutrons contaminating therapeutic beams. In addition, using conventional linacs necessitates applying wedge filters in some clinical conditions. However, there is not enough information on the effect of these filters on the photoneutrons produced. The aim of this study was to investigate the change of photoneutron dose equivalent due to the use of linac wedge filters. A high energy (18 MV) linear accelerator (Elekta SL 75/25) was studied. Polycarbonate films were used to measure the dose equivalent of photoneutrons. After electrochemical etching of the films, the neutron dose equivalent was calculated using Hp(10) factor, and its variation on the patient plane at 0, 5, 10, 50 and 100 cm from the center of the X-ray beam was determined. By increasing the distance from the center of the X-ray beam towards the periphery, the photoneutron dose equivalent decreased rapidly for the open and wedged fields. Increasing of the field size increased the photoneutron dose equivalent. The use of wedge filter increased the proportion of the neutron dose equivalent. The increase can be accounted for by the selective absorption of the high energy photons by the wedge filter.

  7. PARADOX SOLUTION ON ELASTIC WEDGE DISSIMILAR MATERIALS

    Institute of Scientific and Technical Information of China (English)

    姚伟岸; 张兵茹

    2003-01-01

    According to the Hellinger-Reissner variational principle and introducing proper transformation of variables, the problem on elastic wedge dissimilar materials can be led to Hamiltonian system, so the solution of the problem can be got by employing the separation of variables method and symplectic eigenfunction expansion under symplectic space, which consists of original variables and their dual variables. The eigenvalue - 1 is a special one of all symplectic eigenvalue for Hamiltonian system in polar coordinate. In general, the eigenvalue - is a single eigenvalue, and the classical solution of an elastic wedge dissimilar materials subjected to a unit concentrated couple at the vertex is got directly by solving the eigenfunction vector for eigenvalue - 1 . But the eigenvalue - 1 becomes a double eigenvalue when the vertex angles and modulus of the materials satisfy certain definite relationships and the classical solution for the stress distribution becomes infinite at this moment, that is, the paradox should occur. Here the Jordan form eigenfunction vector for eigenvalue - 1 exists, and solution of the paradox on elastic wedge dissimilar materials subjected to a unit concentrated couple at the vertex is obtained directly by solving this special Jordan form eigenfunction. The result shows again that the solutions of the special paradox on elastic wedge in the classical theory of elasticity are just Jordan form solutions in symplectic space under Hamiltonian system.

  8. Benchmarking numerical models of brittle thrust wedges

    NARCIS (Netherlands)

    Buiter, Susanne J H; Schreurs, Guido; Albertz, Markus; Gerya, Taras V.; Kaus, Boris; Landry, Walter; le Pourhiet, Laetitia; Mishin, Yury; Egholm, David L.; Cooke, Michele; Maillot, Bertrand; Thieulot, Cedric; Crook, Tony; May, Dave; Souloumiac, Pauline; Beaumont, Christopher

    2016-01-01

    We report quantitative results from three brittle thrust wedge experiments, comparing numerical results directly with each other and with corresponding analogue results. We first test whether the participating codes reproduce predictions from analytical critical taper theory. Eleven codes pass the s

  9. Planejamento pré-operatório e técnica cirúrgica da osteotomia supracondiliana varizante de adição do fêmur para correção do geno valgo e fixação com implante de ângulo fixo Pre-operative planning and surgical technique of the open wedge supracondylar osteotomy for correction of valgus knee and fixation with a fixed-angle implant

    Directory of Open Access Journals (Sweden)

    Cleber Antonio Jansen Paccola

    2010-01-01

    Full Text Available É apresentado o planejamento pré-operatório passo a passo da osteotomia de abertura supracondiliana do fêmur para a correção precisa do eixo de carga do membro inferior usando um implante de ângulo fixo (placa lâmina AO 95º. Também é apresentada a técnica cirúrgica e a utilização de enxerto ósseo do próprio local para o preenchimento da falha.The pre-operative planning is presented in a step by step fashion and the surgical technique of the lateral open wedge supracondylar femoral osteotomy for correction of the valgus knee using a fixed angle implant (95º AO angled blade plate. A surgical method for filling in the defect using an autologous bone graft is also presented.

  10. A comparison of exact TM plane wave diffraction by coated wedges and impedance wedges

    DEFF Research Database (Denmark)

    Andersen, Lars S.; Breinbjerg, Olav; Moore, John T.

    1996-01-01

    without interference from direct fields or reflected fields. Results have been obtained in the case of illumination by a transverse magnetic (TM) uniform plane wave. The analysis of the coated wedge is based on an integral equation formulation combined with a hybrid technique, while the analysis......The purpose of this work is to numerically investigate the accuracy of the standard impedance boundary condition (SIBC) approximation for edge diffraction. To this end, we compare the scattering by coated wedges and SIBC wedges for which the diffracted field from a single edge can be observed...... of the SIBC wedge is based on Maliuzhinets' solution. Comparisons have been carried out for a series of configurations including lossy coatings as well as lossless coatings permitting unattenuated propagation of surface waves. The results show that the presence of an edge in a coated structure does...

  11. Benchmarking numerical models of brittle thrust wedges

    Science.gov (United States)

    Buiter, Susanne J. H.; Schreurs, Guido; Albertz, Markus; Gerya, Taras V.; Kaus, Boris; Landry, Walter; le Pourhiet, Laetitia; Mishin, Yury; Egholm, David L.; Cooke, Michele; Maillot, Bertrand; Thieulot, Cedric; Crook, Tony; May, Dave; Souloumiac, Pauline; Beaumont, Christopher

    2016-11-01

    We report quantitative results from three brittle thrust wedge experiments, comparing numerical results directly with each other and with corresponding analogue results. We first test whether the participating codes reproduce predictions from analytical critical taper theory. Eleven codes pass the stable wedge test, showing negligible internal deformation and maintaining the initial surface slope upon horizontal translation over a frictional interface. Eight codes participated in the unstable wedge test that examines the evolution of a wedge by thrust formation from a subcritical state to the critical taper geometry. The critical taper is recovered, but the models show two deformation modes characterised by either mainly forward dipping thrusts or a series of thrust pop-ups. We speculate that the two modes are caused by differences in effective basal boundary friction related to different algorithms for modelling boundary friction. The third experiment examines stacking of forward thrusts that are translated upward along a backward thrust. The results of the seven codes that run this experiment show variability in deformation style, number of thrusts, thrust dip angles and surface slope. Overall, our experiments show that numerical models run with different numerical techniques can successfully simulate laboratory brittle thrust wedge models at the cm-scale. In more detail, however, we find that it is challenging to reproduce sandbox-type setups numerically, because of frictional boundary conditions and velocity discontinuities. We recommend that future numerical-analogue comparisons use simple boundary conditions and that the numerical Earth Science community defines a plasticity test to resolve the variability in model shear zones.

  12. Life at the wedge: the activity and diversity of arctic ice wedge microbial communities.

    Science.gov (United States)

    Wilhelm, Roland C; Radtke, Kristin J; Mykytczuk, Nadia C S; Greer, Charles W; Whyte, Lyle G

    2012-04-01

    The discovery of polygonal terrain on Mars underlain by ice heightens interest in the possibility that this water-bearing habitat may be, or may have been, a suitable habitat for extant life. The possibility is supported by the recurring detection of terrestrial microorganisms in subsurface ice environments, such as ice wedges found beneath tundra polygon features. A characterization of the microbial community of ice wedges from the high Arctic was performed to determine whether this ice environment can sustain actively respiring microorganisms and to assess the ecology of this extreme niche. We found that ice wedge samples contained a relatively abundant number of culturable cells compared to other ice habitats (∼10(5) CFU·mL(-1)). Respiration assays in which radio-labeled acetate and in situ measurement of CO(2) flux were used suggested low levels of microbial activity, though more sensitive techniques are required to confirm these findings. Based on 16S rRNA gene pyrosequencing, bacterial and archaeal ice wedge communities appeared to reflect surrounding soil communities. Two Pseudomonas sp. were the most abundant taxa in the ice wedge bacterial library (∼50%), while taxa related to ammonia-oxidizing Thaumarchaeota occupied 90% of the archaeal library. The tolerance of a variety of isolates to salinity and temperature revealed characteristics of a psychrotolerant, halotolerant community. Our findings support the hypothesis that ice wedges are capable of sustaining a diverse, plausibly active microbial community. As such, ice wedges, compared to other forms of less habitable ground ice, could serve as a reservoir for life on permanently cold, water-scarce, ice-rich extraterrestrial bodies and are therefore of interest to astrobiologists and ecologists alike. .

  13. Graphene Plasmons in Triangular Wedges and Grooves

    CERN Document Server

    Gonçalves, P A D; Xiao, Sanshui; Vasilevskiy, M I; Mortensen, N Asger; Peres, N M R

    2016-01-01

    The ability to effectively guide electromagnetic radiation below the diffraction limit is of the utmost importance in the prospect of all-optical plasmonic circuitry. Here, we propose an alternative solution to conventional metal-based plasmonics by exploiting the deep subwavelength confinement and tunability of graphene plasmons guided along the apex of a graphene-covered dielectric wedge or groove. In particular, we present a quasi-analytic model to describe the plasmonic eigenmodes in such a system, including the complete determination of their spectrum and corresponding induced potential and electric field distributions. We have found that the dispersion of wedge/groove graphene plasmons follows the same functional dependence as their flat-graphene plasmons counterparts, but now scaled by a (purely) geometric factor in which all the information about the system's geometry is contained. We believe our results pave the way for the development of novel custom-tailored photonic devices for subwavelength waveg...

  14. Radiation pressure on a dielectric wedge

    CERN Document Server

    Mansuripur, Masud; Moloney, Jerome V

    2014-01-01

    The force of electromagnetic radiation on a dielectric medium may be derived by a direct application of the Lorentz law of classical electrodynamics. While the light's electric field acts upon the (induced) bound charges in the medium, its magnetic field exerts a force on the bound currents. We use the example of a wedge-shaped solid dielectric, immersed in a transparent liquid and illuminated at Brewster's angle, to demonstrate that the linear momentum of the electromagnetic field within dielectrics has neither the Minkowski nor the Abraham form; rather, the correct expression for momentum density has equal contributions from both. The time rate of change of the incident momentum thus expressed is equal to the force exerted on the wedge plus that experienced by the surrounding liquid.

  15. Checking the virtual treatment modality Wedge from Siemens; Verificacion de la modalidad de tratamiento virtual WEDGE de SIEMENS

    Energy Technology Data Exchange (ETDEWEB)

    Suero Rodrigo, M. A.; Marques Fraguela, E.

    2011-07-01

    The treatment modality Virtual Wedge (VW) or implemented by Siemens virtual wedge in electron linear accelerators achieved dose distributions are similar but not identical, to those obtained with physical wedges. Among the advantages against the latter is the greater ease of use, wedge factor close to one, and lower peripheral dose. However, these benefits are to be effective requires a through quality control dependence because a larger number of parameters that control the generation of the beam, the dose monitor system and the movement of the jaws of the collimator. We performed a study of the wedge taking into account different configurations that can affect their behavior from the dosimetric point of view.

  16. Mantle flow in subduction systems: The mantle wedge flow field and implications for wedge processes

    Science.gov (United States)

    Long, Maureen D.; Wirth, Erin A.

    2013-02-01

    The mantle wedge above subducting slabs is associated with many important processes, including the transport of melt and volatiles. Our understanding of mantle wedge dynamics is incomplete, as the mantle flow field above subducting slabs remains poorly understood. Because seismic anisotropy is a consequence of deformation, measurements of shear wave splitting can constrain the geometry of mantle flow. In order to identify processes that make first-order contributions to the pattern of wedge flow, we have compiled a data set of local S splitting measurements from mantle wedges worldwide. There is a large amount of variability in splitting parameters, with average delay times ranging from ~0.1 to 0.3 s up to ~1.0-1.5 s and large variations in fast directions. We tested for relationships between splitting parameters and a variety of parameters related to subduction processes. We also explicitly tested the predictions made by 10 different models that have been proposed to explain splitting patterns in the mantle wedge. We find that no simple model can explain all of the trends observed in the global data set. Mantle wedge flow is likely controlled by a combination of downdip motion of the slab, trench migration, ambient mantle flow, small-scale convection, proximity to slab edges, and slab morphology, with the relative contributions of these in any given subduction system controlled by the subduction kinematics and mantle rheology. There is also a likely contribution from B-type olivine and/or serpentinite fabric in many subduction zones, governed by the local thermal structure and volatile distribution.

  17. Hydrodynamics of slip wedge and optimization of surface slip property

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The hydrodynamic load support generated by a slip wedge of a slider bearing was studied. The surface slip property was optimized so that a maximum hydrodynamic load support could be obtained. A multi-linearity method was given for the slip control equation of two-dimensional (2-D) wall slip. We investigated 2-D wall slip and the hydrodynamics of a finite length bearing with any values of the surface limiting shear stress. It was found that the hydrodynamic effect of the slip wedge is greater than the traditional geometrical convergent-wedge. Even though the geo- metrical gap is a parallel or divergent sliding gap, the slip wedge still gives rise to a very big hydrodynamic pressure. The optimized slip wedge can give rise to a hy- drodynamic load support as high as 2.5 times of what the geometrical conver- gent-wedge can produce. Wall slip usually gives a small surface friction.

  18. Hydrodynamics of slip wedge and optimization of surface slip property

    Institute of Scientific and Technical Information of China (English)

    MA GuoJun; WU ChengWei; ZHOU Ping

    2007-01-01

    The hydrodynamic load support generated by a slip wedge of a slider bearing was studied. The surface slip property was optimized so that a maximum hydrodynamic load support could be obtained. A multi-linearity method was given for the slip control equation of two-dimensional (2-D) wall slip. We investigated 2-D wall slip and the hydrodynamics of a finite length bearing with any values of the surface limiting shear stress. It was found that the hydrodynamic effect of the slip wedge is greater than the traditional geometrical convergent-wedge. Even though the geometrical gap is a parallel or divergent sliding gap, the slip wedge still gives rise to a very big hydrodynamic pressure. The optimized slip wedge can give rise to a hydrodynamic load support as high as 2.5 times of what the geometrical convergent-wedge can produce. Wall slip usually gives a small surface friction.

  19. Knee abduction angular impulses during prolonged running with wedged insoles.

    Science.gov (United States)

    Lewinson, Ryan T; Worobets, Jay T; Stefanyshyn, Darren J

    2013-07-01

    Wedged insoles may produce immediate effects on knee abduction angular impulses during running; however, it is currently not known whether these knee abduction angular impulse magnitudes are maintained throughout a run when fatigue sets in. If changes occur, this could affect the clinical utility of wedged insoles in treating conditions such as patellofemoral pain. Thus, the purpose of this study was to determine whether knee abduction angular impulses are altered during a prolonged run with wedged insoles. It was hypothesized that knee abduction angular impulses would be reduced following a prolonged run with wedged insoles. Nine healthy runners participated. Runners were randomly assigned to either a 6-mm medial wedge condition or a 6-mm lateral wedge condition and then ran continuously overground for 30 min. Knee abduction angular impulses were quantified at 0 and 30 min using a gait analysis procedure. After 2 days, participants returned to perform the same test but with the other wedge type. Two-way repeated-measures analysis of variance was used to evaluate main effects of wedge condition and time and interactions between wedge condition and time (α = 0.05). Paired t-tests were used for post hoc analysis (α = 0.01). No interaction effects (p = 0.958) were found, and knee abduction angular impulses were not significantly different over time (p = 0.384). Lateral wedge conditions produced lesser knee abduction angular impulses than medial conditions at 0 min (difference of 2.79 N m s, p = 0.006) and at 30 min (difference of 2.76 N m s, p < 0.001). It is concluded that significant knee abduction angular impulse changes within wedge conditions do not occur during a 30-min run. Additionally, knee abduction angular impulse differences between wedge conditions are maintained during a 30-min run.

  20. Plastic deformation of a wedge by a sliding punch

    Science.gov (United States)

    Nepershin, R. I.

    2016-11-01

    We present a self-similar solution of the problem of deformation of an ideally plastic wedge by a sliding punch with regard to contact friction; such a solution generalizes the well-known solutions of the problem of wedge penetration into a plastic half-space and of compression of an ideally plastic wedge by a plane punch. The problem is of interest for modeling the processes of plastic deformation of rough surfaces of metal pieces by a rigid tool.

  1. Impingement of water droplets on wedges and double-wedge airfoils at supersonic speeds

    Science.gov (United States)

    Serafini, John S

    1954-01-01

    An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees r, free stream Mach numbers from 1.1 to 2.0, semiapex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.

  2. Ice-Creams and Wedge Graphs

    CERN Document Server

    Ackerman, Eyal; Pinchasi, Rom

    2011-01-01

    We show that for every compact convex set $S$ in the plane and every $0 < \\alpha < \\pi$, there exist a point $O$ and two supporting lines to $S$ passing through $O$ and touching $S$ at two \\emph{single points} $X$ and $Y$, respectively, such that $|OX|=|OY|$ and the angle between the two lines has measure $\\alpha$. As a consequence, we provide a simplified proof to the following result by Carmi, Katz, Lotker, and Ros\\'en \\cite{CKLR10}. Given a set of $\\frac{\\pi}{3}$-directional antennas (that is, antennas each of which can communicate along a wedge of angle $\\frac{\\pi}{3}$), one can always assign a direction to each antenna such that the resulting communication graph is connected, where two antennas can communicate if and only if each lies in the wedge assigned to the other. In fact we obtain a much stronger and optimal result (see Theorem \\ref{theorem:main}) saying in particular that one can chose the directions of the antennas so that the communication graph has diameter $\\le 4$.

  3. Global Existence of a Shock for the Supersonic Flow Past a Curved Wedge

    Institute of Scientific and Technical Information of China (English)

    Hui Cheng YIN

    2006-01-01

    This note is devoted to the study of the global existence of a shock wave for the supersonic flow past a curved wedge. When the curved wedge is a small perturbation of a straight wedge and the angle of the wedge is less than some critical value, we show that a shock attached at the wedge will exist globally.

  4. Surgeons’ Volume-Outcome Relationship for Lobectomies and Wedge Resections for Cancer Using Video-Assisted Thoracoscopic Techniques

    Directory of Open Access Journals (Sweden)

    Guy David

    2012-01-01

    Full Text Available This study examined the effect of surgeons’ volume on outcomes in lung surgery: lobectomies and wedge resections. Additionally, the effect of video-assisted thoracoscopic surgery (VATS on cost, utilization, and adverse events was analyzed. The Premier Hospital Database was the data source for this analysis. Eligible patients were those of any age undergoing lobectomy or wedge resection using VATS for cancer treatment. Volume was represented by the aggregate experience level of the surgeon in a six-month window before each surgery. A positive volume-outcome relationship was found with some notable features. The relationship is stronger for cost and utilization outcomes than for adverse events; for thoracic surgeons as opposed to other surgeons; for VATS lobectomies rather than VATS wedge resections. While there was a reduction in cost and resource utilization with greater experience in VATS, these outcomes were not associated with greater experience in open procedures.

  5. 49 CFR 215.113 - Defective plain bearing wedge.

    Science.gov (United States)

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION RAILROAD FREIGHT CAR SAFETY STANDARDS Freight Car Components Suspension System § 215.113 Defective plain bearing wedge. A railroad may not place or continue in service a car, if a plain bearing wedge on that car is— (a) Missing; (b) Cracked; (c) Broken; or (d) Not...

  6. Comparison of wedge resection (Winograd procedure) and wedge resection plus complete nail plate avulsion in the treatment of ingrown toenails.

    Science.gov (United States)

    Huang, Jia-Zhang; Zhang, Yi-Jun; Ma, Xin; Wang, Xu; Zhang, Chao; Chen, Li

    2015-01-01

    The present retrospective study compared the efficacy of wedge resection (Winograd procedure) and wedge resection plus complete nail plate avulsion for the treatment of ingrown toenails (onychocryptosis). Two surgical methods were performed in 95 patients with a stage 2 or 3 ingrown toenail. Each patient was examined weekly until healing and then at 1, 6, and 12 months of follow-up. The outcomes measured were surgical duration, healing time, recurrence rate, the incidence of postoperative infection, and cosmetic appearance after surgery. Of the 95 patients (115 ingrown toenails) included in the present study, 39 (41.1%) underwent wedge resection (Winograd procedure) and 56 (59%), wedge resection plus complete nail plate avulsion. The mean surgical duration for wedge resection (Winograd procedure) and wedge resection plus complete nail plate avulsion was 14.9 ± 2.4 minutes and 15.1 ± 3.2 minutes, respectively (p = .73). The corresponding healing times were 2.8 ± 1.2 weeks and 2.7 ± 1.3 weeks (p = .70). Recurrence developed in 3 (3.2%) patients after wedge resection (Winograd procedure) and in 4 (4.2%) after wedge resection plus complete nail plate avulsion. In addition, postoperative infection occurred in 3 (3.2%) patients after wedge resection (Winograd procedure) and 2 (2.1%) after wedge resection plus complete nail plate avulsion. Both of the surgical procedures were practical and appropriate for the treatment of ingrown toenails, being simple and associated with low morbidity and a high success rate. However, cosmetically, wedge resection (Winograd procedure) would be the better choice because the nail plate remains intact.

  7. Characterization of CNRS Fizeau wedge laser tuner

    Science.gov (United States)

    A fringe detection and measurement system was constructed for use with the CNRS Fizeau wedge laser tuner, consisting of three circuit boards. The first board is a standard Reticon RC-100 B motherboard which is used to provide the timing, video processing, and housekeeping functions required by the Reticon RL-512 G photodiode array used in the system. The sampled and held video signal from the motherboard is processed by a second, custom fabricated circuit board which contains a high speed fringe detection and locating circuit. This board includes a dc level discriminator type fringe detector, a counter circuit to determine fringe center, a pulsed laser triggering circuit, and a control circuit to operate the shutter for the He-Ne reference laser beam. The fringe center information is supplied to the third board, a commercial single board computer, which governs the data collection process and interprets the results.

  8. Effect of wedge filter and field size on photoneutron dose equivalent for an 18 MV photon beam of a medical linear accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Mesbahi, Asghar [Medical Physics Department, Medical School, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Radiation Therapy Department, Imam Hospital, Tabriz (Iran, Islamic Republic of)], E-mail: asgharmesbahi@yahoo.com; Keshtkar, Ahmad [Medical Physics Department, Medical School, Tabriz University of Medical Sciences, Tabriz (Iran, Islamic Republic of); Mohammadi, Ehsan [Radiation Therapy Department, Imam Khomeini Hospital, Tehran (Iran, Islamic Republic of); Mohammadzadeh, Mohammad [Radiation Therapy Department, Imam Hospital, Tabriz (Iran, Islamic Republic of)

    2010-01-15

    Photoneutrons produced during radiation therapy with high energy photons is the main source of unwanted out-of-field received doses of patients. To analyze the neutron dose equivalent (NDE) for wedged beams and its variation with field size, Monte Carlo (MC) modeling of an 18 MV photon beam was performed using MCNPX MC code. The results revealed that the NDE is on average 6.5 times higher for wedged beams. For open beams, the NDE decreased with increasing field size especially for field sizes >20x20 cm{sup 2}. While, for wedged beams, the NDE increased with field size. It was suggested that the increase of NDE for wedged beams should be taken into account in radiation-induced secondary cancer risk estimations and radiation protection calculations.

  9. Stable and Critical Noncohesive Coulomb Wedges: Exact Elastic Solutions

    Science.gov (United States)

    Wang, K.; Hu, Y.

    2004-12-01

    The theory of critically tapered Coulomb wedge has been successfully applied to model active fold-and-thrust belts or submarine accretionary prisms. Brittle mountain building is episodic in nature, controlled by changes in basal friction, erosion and sedimentation, and hydrogeology. Sediment accretion may be modulated by great subduction earthquakes. Between deformation episodes and/or during transition between compressional and extensional tectonics, the Coulomb wedges are stable (i.e., supercritical), to which the critical taper theory does not apply. In this work, we provide an exact elastic solution for stable wedges based on Airy stress functions. The stress equilibrium equation and definition of basal friction and basal and internal pore fluid pressure ratios are exactly the same as those used for Dahlen's [1984] exact solution for critical noncohesive Coulomb wedges, but internal friction μ becomes irrelevant. Given elastic - perfectly Coulomb-plastic rheology, for stresses in a wedge on the verge of Coulomb failure there must co-exist a critical taper solution involving μ and a unique equivalent elastic solution not involving μ . Our elastic solution precisely reduces to Dahlen's critical taper solution for critical conditions. For stable conditions, normal stress perpendicular to the surface slope σ z and shear stress τ xz are identical with those in a critical taper, but the slope-parallel normal stress is different. The elastic solution is also generally applicable to purely elastic wedges and useful for modeling geodetic observations. A stable noncohesive Coulomb wedge differs from a general elastic wedge in that its upper and lower surfaces stay at zero curvature during loading. Dahlen, F.A. (1984), Noncohesive critical Coulomb wedges: An exact solution, JGR, 89, 10,125-10,133.

  10. Flow braking and the substorm current wedge

    Science.gov (United States)

    Birn, J.; Hesse, M.; Haerendel, G.; Baumjohann, W.; Shiokawa, K.

    1999-09-01

    Recent models of magnetotail activity have associated the braking of earthward flow with dipolarization and the reduction and diversion of cross-tail current, that is, the signatures of the substorm current wedge. Estimates of the magnitude of the diverted current by Haerendel [1992] and Shiokawa et al. [1997, 1998] tend to be lower than results from computer simulations of magnetotail reconnection and tail collapse [Birn and Hesse, 1996], despite similar underlying models. An analysis of the differences between these estimates on the basis of the simulations gives a more refined picture of the diversion of perpendicular into parallel currents. The inertial currents considered by Haerendel [1992] and Shiokawa et al. [1997] contribute to the initial current reduction and diversion, but the dominant and more permanent contribution stems from the pressure gradient terms, which change in connection with the field collapse and distortion. The major effect results from pressure gradients in the z direction, rather than from the azimuthal gradients [Shiokawa et al., 1998], combined with changes in By and Bx. The reduction of the current density near the equatorial plane is associated with a reduction of the curvature drift which overcompensates changes of the magnetization current and of the gradient B drift current. In contrast to the inertial current effects, the pressure gradient effects persist even after the burst of earthward flow ends.

  11. Reactive Atom Plasma Processing of Slumped Glass Wedges Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Reactive Atom Plasma (RAPTM) process will be evaluated as a rapid and practical method for fabricating precision wedges in glass sheets. The glass sheets are to...

  12. ELASTIC INTERACTION BETWEEN WEDGE DISCLINATION DIPOLE AND INTERNAL CRACK

    Institute of Scientific and Technical Information of China (English)

    FANG Qi-hong; LIU You-wen

    2006-01-01

    The system of a wedge disclination dipole interacting with an internal crack was investigated. By using the complex variable method, the closed form solutions of complex potentials to this problem were presented. The analytic formulae of the physics variables, such as stress intensity factors at the tips of the crack produced by the wedge disclination dipole and the image force acting on disclination dipole center were obtained.The influence of the orientation, the dipole arm and the location of the disclination dipole on the stress intensity factors was discussed in detail. Furthermore, the equilibrium position of the wedge disclination dipole was also examined. It is shown that the shielding or antishielding effect of the wedge disclination to the stress intensity factors is significant when the disclination dipole moves to the crack tips.

  13. Structure and Kinematics of the Indo-Burmese Wedge

    Science.gov (United States)

    Maurin, T.; Rangin, C.

    2007-12-01

    The Burma subduction trench and the associated Indo Burmese wedge mark the present eastern boundary of the Indian plate in the northern Bengal area. The initiation, duration and history of the Bengal crust subduction beneath Burma is still debated. The aim of this paper is to provide a structural and kinematic analysis of the Indo- Burmese wedge in order to better constraints the Bengal crust subduction history beneath Burma. On the basis of field observations, seismic reflection data interpretation and well logs data we present a structural analysis of the Outer Indo-Burmese Wedge. We also constrain the onset of this Outer Wedge to be younger than 2Ma, implying a recent and fast westward growth (~10cm/yr) since Late Pliocene in close relationship with the onset of the Shillong plateau. Restoration process of a synthetic cross section through the Outer Wedge allowed us to estimate the amount of EW shortening accommodated in the Outer Wedge to be 5.1mm/yr since 2Ma. These results combined with previous available GPS data from central Myanmar suggest strain partitioning at wedge scale. The core of the wedge is affected by shear deformation and acts as a buttress for a frontal wedge that accommodates a more compressive strain component. Finally we propose that the main characteristic of the Indo-Burmese wedge growth mechanism is the progressive incorporation of the most internal part of the wedge, formerly affected by transpressive thin-skinned tectonics, to the buttress where they are subsequently affected by shear deformation. The crustal structure boarding the newly formed buttress seems to be guided by the subducting crust fabrics. We are in favour of a very recent (Late Miocene) onset of the present Indian crust subduction beneath Burma coeval with the global plate kinematics reorganisation related to the Indian/Australian plate spliting. This subduction postdates the Indo Burmese range onset that must have started in early Miocene. This range first began to

  14. Scattering of wedges and cones with impedance boundary conditions

    CERN Document Server

    Lyalinov, Mikhail

    2012-01-01

    This book is a systematic and detailed exposition of different analytical techniques used in studying two of the canonical problems, the wave scattering by wedges or cones with impedance boundary conditions. It is the first reference on novel, highly efficient analytical-numerical approaches for wave diffraction by impedance wedges or cones. The applicability of the reported solution procedures and formulae to existing software packages designed for real-world high-frequency problems encountered in antenna, wave propagation, and radar cross section.

  15. Stem thrust prediction model for W-K-M double wedge parallel expanding gate valves

    Energy Technology Data Exchange (ETDEWEB)

    Eldiwany, B.; Alvarez, P.D. [Kalsi Engineering Inc., Sugar Land, TX (United States); Wolfe, K. [Electric Power Research Institute, Palo Alto, CA (United States)

    1996-12-01

    An analytical model for determining the required valve stem thrust during opening and closing strokes of W-K-M parallel expanding gate valves was developed as part of the EPRI Motor-Operated Valve Performance Prediction Methodology (EPRI MOV PPM) Program. The model was validated against measured stem thrust data obtained from in-situ testing of three W-K-M valves. Model predictions show favorable, bounding agreement with the measured data for valves with Stellite 6 hardfacing on the disks and seat rings for water flow in the preferred flow direction (gate downstream). The maximum required thrust to open and to close the valve (excluding wedging and unwedging forces) occurs at a slightly open position and not at the fully closed position. In the nonpreferred flow direction, the model shows that premature wedging can occur during {Delta}P closure strokes even when the coefficients of friction at different sliding surfaces are within the typical range. This paper summarizes the model description and comparison against test data.

  16. Optical refractometry based on Fresnel diffraction from a phase wedge.

    Science.gov (United States)

    Tavassoly, M Taghi; Saber, Ahad

    2010-11-01

    A method that utilizes the Fresnel diffraction of light from the phase step formed by a transparent wedge is introduced for measuring the refractive indices of transparent solids, liquids, and solutions. It is shown that, as a transparent wedge of small apex angle is illuminated perpendicular to its surface by a monochromatic parallel beam of light, the Fresnel fringes, caused by abrupt change in refractive index at the wedge lateral boundary, are formed on a screen held perpendicular to the beam propagation direction. The visibility of the fringes varies periodically between zero and 1 in the direction normal to the wedge apex. For a known or measured apex angle, the wedge refractive index is obtained by measuring the period length by a CCD. To measure the refractive index of a transparent liquid or solution, the wedge is installed in a transparent rectangle cell containing the sample. Then, the cell is illuminated perpendicularly and the visibility period is measured. By using modest optics, one can measure the refractive index at a relative uncertainty level of 10(-5). There is no limitation on the refractive index range. The method can be applied easily with no mechanical manipulation. The measuring apparatus can be very compact with low mechanical and optical noises.

  17. Benchmarking analogue models of brittle thrust wedges

    Science.gov (United States)

    Schreurs, Guido; Buiter, Susanne J. H.; Boutelier, Jennifer; Burberry, Caroline; Callot, Jean-Paul; Cavozzi, Cristian; Cerca, Mariano; Chen, Jian-Hong; Cristallini, Ernesto; Cruden, Alexander R.; Cruz, Leonardo; Daniel, Jean-Marc; Da Poian, Gabriela; Garcia, Victor H.; Gomes, Caroline J. S.; Grall, Céline; Guillot, Yannick; Guzmán, Cecilia; Hidayah, Triyani Nur; Hilley, George; Klinkmüller, Matthias; Koyi, Hemin A.; Lu, Chia-Yu; Maillot, Bertrand; Meriaux, Catherine; Nilfouroushan, Faramarz; Pan, Chang-Chih; Pillot, Daniel; Portillo, Rodrigo; Rosenau, Matthias; Schellart, Wouter P.; Schlische, Roy W.; Take, Andy; Vendeville, Bruno; Vergnaud, Marine; Vettori, Matteo; Wang, Shih-Hsien; Withjack, Martha O.; Yagupsky, Daniel; Yamada, Yasuhiro

    2016-11-01

    We performed a quantitative comparison of brittle thrust wedge experiments to evaluate the variability among analogue models and to appraise the reproducibility and limits of model interpretation. Fifteen analogue modeling laboratories participated in this benchmark initiative. Each laboratory received a shipment of the same type of quartz and corundum sand and all laboratories adhered to a stringent model building protocol and used the same type of foil to cover base and sidewalls of the sandbox. Sieve structure, sifting height, filling rate, and details on off-scraping of excess sand followed prescribed procedures. Our analogue benchmark shows that even for simple plane-strain experiments with prescribed stringent model construction techniques, quantitative model results show variability, most notably for surface slope, thrust spacing and number of forward and backthrusts. One of the sources of the variability in model results is related to slight variations in how sand is deposited in the sandbox. Small changes in sifting height, sifting rate, and scraping will result in slightly heterogeneous material bulk densities, which will affect the mechanical properties of the sand, and will result in lateral and vertical differences in peak and boundary friction angles, as well as cohesion values once the model is constructed. Initial variations in basal friction are inferred to play the most important role in causing model variability. Our comparison shows that the human factor plays a decisive role, and even when one modeler repeats the same experiment, quantitative model results still show variability. Our observations highlight the limits of up-scaling quantitative analogue model results to nature or for making comparisons with numerical models. The frictional behavior of sand is highly sensitive to small variations in material state or experimental set-up, and hence, it will remain difficult to scale quantitative results such as number of thrusts, thrust spacing

  18. Ice wedges as climate archives - opportunities and limitations

    Science.gov (United States)

    Opel, Thomas; Meyer, Hanno; Dereviagin, Alexander; Wetterich, Sebastian; Schirrmeister, Lutz

    2014-05-01

    Permafrost regions are assumed to play a major role for Global Climate Change as they are susceptible to recent warming in particular with regard to the potential release of stored fossil carbon. Permafrost serves as archive of past environmental and climate conditions (such as sedimentation processes, temperature and precipitation regimes as well as landscape and ecosystem development) over tens of thousands of years that can be traced by the study of the frozen deposits, paleontological content and ground ice. Ground ice comprises all types of ice contained in frozen ground, including pore ice, segregation ice and ice wedges. Here, we focus on ice wedges as the most promising climate archive that can be studied by stable water isotope methods analogously to glacier ice. They may be identified by their vertically oriented foliations. Ice wedges form by the repeated filling of wintertime thermal contraction cracks by snow melt water in spring. As the melt water quickly refreezes at negative ground temperature no isotopic fractionation takes place. Hence, the isotopic composition (δ18O, δD, d excess) of wedge ice is assumed to be representative of annual cold period climate conditions, i.e. winter and spring. Ice wedges are widely distributed in non-glaciated high northern latitudes, are diagnostic of permafrost and, in general, indicative of cold and stable climate conditions. They are found in continuous and discontinuous permafrost zones and may also have formed during and survived interglacials. They may provide unique paleo information that is not captured by other climate archives. Usually, ice wedges are dated by radiocarbon dating of organic material incorporated in the ice, but also 36Cl/Cl ratios have been successfully used to date ice wedges. Nevertheless reliable age determination is challenging when studying ice wedges. Here we tackle the potential of ice wedges from the Siberian and American Arctic to trace past climate changes from stable isotope

  19. Effects of slot closure by soft magnetic powder wedge material in axial-field permanent magnet brushless machines

    Science.gov (United States)

    Gair, S.; Eastham, J. F.; Canova, A.

    1996-04-01

    The article reports on a study of the effects of slot closure in axial-field permanent magnet brushless machines by a two-dimensional finite element method (2D FEM) of analysis. The closure of the slots is made by using soft magnetic powder wedge material. Parameter values and machine performance for the open and closed slot configuration are computed. In order to test the 2D FEM model, calculated results are compared with measurements and favorable agreement is shown.

  20. Aligning Optical Fibers by Means of Actuated MEMS Wedges

    Science.gov (United States)

    Morgan, Brian; Ghodssi, Reza

    2007-01-01

    Microelectromechanical systems (MEMS) of a proposed type would be designed and fabricated to effect lateral and vertical alignment of optical fibers with respect to optical, electro-optical, optoelectronic, and/or photonic devices on integrated circuit chips and similar monolithic device structures. A MEMS device of this type would consist of a pair of oppositely sloped alignment wedges attached to linear actuators that would translate the wedges in the plane of a substrate, causing an optical fiber in contact with the sloping wedge surfaces to undergo various displacements parallel and perpendicular to the plane. In making it possible to accurately align optical fibers individually during the packaging stages of fabrication of the affected devices, this MEMS device would also make it possible to relax tolerances in other stages of fabrication, thereby potentially reducing costs and increasing yields. In a typical system according to the proposal (see Figure 1), one or more pair(s) of alignment wedges would be positioned to create a V groove in which an optical fiber would rest. The fiber would be clamped at a suitable distance from the wedges to create a cantilever with a slight bend to push the free end of the fiber gently to the bottom of the V groove. The wedges would be translated in the substrate plane by amounts Dx1 and Dx2, respectively, which would be chosen to move the fiber parallel to the plane by a desired amount Dx and perpendicular to the plane by a desired amount Dy. The actuators used to translate the wedges could be variants of electrostatic or thermal actuators that are common in MEMS.

  1. SU-E-T-562: Scanned Percent Depth Dose Curve Discrepancy for Photon Beams with Physical Wedge in Place (Varian IX) Using Different Sensitive Volume Ion Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, H; Sarkar, V; Rassiah-Szegedi, P; Huang, Y; Szegedi, M; Huang, L; Salter, B [University Utah, Salt Lake City, UT (United States)

    2014-06-01

    Purpose: To investigate and report the discrepancy of scanned percent depth dose (PDD) for photon beams with physical wedge in place when using ion chambers with different sensitive volumes. Methods/Materials: PDD curves of open fields and physical wedged fields (15, 30, 45, and 60 degree wedge) were scanned for photon beams (6MV and 10MV, Varian iX) with field size of 5x5 and 10x10 cm using three common scanning chambers with different sensitive volumes - PTW30013 (0.6cm3), PTW23323 (0.1cm3) and Exradin A16 (0.007cm3). The scanning system software used was OmniPro version 6.2, and the scanning water tank was the Scanditronix Wellhoffer RFA 300.The PDD curves from the three chambers were compared. Results: Scanned PDD curves of the same energy beams for open fields were almost identical between three chambers, but the wedged fields showed non-trivial differences. The largest differences were observed between chamber PTW30013 and Exradin A16. The differences increased as physical wedge angle increased. The differences also increased with depth, and were more pronounced for 6MV beam. Similar patterns were shown for both 5x5 and 10x10 cm field sizes. For open fields, all PDD values agreed with each other within 1% at 10cm depth and within 1.62% at 20 cm depth. For wedged fields, the difference of PDD values between PTW30013 and A16 reached 4.09% at 10cm depth, and 5.97% at 20 cm depth for 6MV with 60 degree physical wedge. Conclusion: We observed a significant difference in scanned PDD curves of photon beams with physical wedge in place obtained when using different sensitive volume ion chambers. The PDD curves scanned with the smallest sensitive volume ion chamber showed significant difference from larger chamber results, beyond 10cm depth. We believe this to be caused by varying response to beam hardening by the wedges.

  2. Indentation tectonics in the accretionary wedge of middle Manila Trench

    Institute of Scientific and Technical Information of China (English)

    LI Jiabiao; JIN Xianglong; RUAN Aiguo; WU Shimin; WU Ziyin; LIU Jianhua

    2004-01-01

    Based on the multibeam morpho-tectonic analysis of the Manila Trench accretionary wedge and its indentation tectonics and the contrasting researches with other geological and geophysical data, three tectonic zones of the wedge are established, faulting features, tectonic distribution and stress mechanism for the indentation tectonicsareanalyzed,oblique subduction along Manila Trench with convergent stress of NW55. Is presented, and the relationship of the ceasing of Eastern Subbasin spreading of South China Sea Basin to the formation of subduction zone of Manila Trench is discussed. By the model analysis and regional research, it is found that the seamount subduction along Manila Trenchoes not lead to the erosion of the accretionary wedge and the oblique subduction actually is a NWWtrending obducfion of Luzon micro-plate that results from the NWW-trending displacement of the Philippine Sea plate.

  3. Dislocation Nucleation and Pileup under a Wedge Contact at Nanoscale

    Directory of Open Access Journals (Sweden)

    Y. F. Gao

    2008-01-01

    Full Text Available Indentation responses of crystalline materials have been found to be radically different at micrometer and nanometer scales. The latter is usually thought to be controlled by the nucleation of dislocations. To explore this physical process, a dislocation mechanics study is performed to determine the conditions for the nucleation of a finite number of dislocations under a two-dimensional wedge indenter, using the Rice-Thomson nucleation criterion. The configurational force on the dislocation consists of the applied force, the image force, and the interaction force between dislocations. Dislocations reach equilibrium positions when the total driving force equals the effective Peierls stress, giving a set of nonlinear equations that can be solved using the Newton-Raphson method. When the apex angle of the wedge indenter increases, the critical contact size for dislocation nucleation increases rapidly, indicating that dislocation multiplication near a blunt wedge tip is extremely difficult. This geometric dependence agrees well with experimental findings.

  4. Tricritical wedge filling transitions with short-ranged forces

    Energy Technology Data Exchange (ETDEWEB)

    Romero-Enrique, J M [Departamento de Fisica Atomica, Molecular y Nuclear, Area de Fisica Teorica, Universidad de Sevilla, Apartado de Correos 1065, 41080 Sevilla (Spain); Parry, A O [Department of Mathematics, Imperial College 180 Queen' s Gate, London SW7 2BZ (United Kingdom)

    2005-11-16

    We show that the 3D wedge filling transition in the presence of short-ranged interactions can be first order or second order depending on the strength of the line tension associated with the wedge bottom. This fact implies the existence of a tricritical point characterized by a short-distance expansion which differs from the usual continuous filling transition. Our analysis is based on an effective one-dimensional model for the 3D wedge filling, which arises from the identification of the breather modes as the only relevant interfacial fluctuations. From such analysis we find a correspondence between continuous 3D filling at bulk coexistence and 2D wetting transitions with random-bond disorder.

  5. Modeling and Stability Analysis of Wedge Clutch System

    Directory of Open Access Journals (Sweden)

    Jian Yao

    2014-01-01

    Full Text Available A wedge clutch with unique features of self-reinforcement and small actuation force was designed. Its self-reinforcement feature, associated with different factors such as the wedge angle and friction coefficient, brings different dynamics and unstable problem with improper parameters. To analyze this system, a complete mathematical model of the actuation system is built, which includes the DC motor, the wedge mechanism, and the actuated clutch pack. By considering several nonlinear factors, such as the slip-stick friction and the contact or not of the clutch plates, the system is piecewise linear. Through the stability analysis of the linearized system in clutch slipping phase, the stable condition of the designed parameters is obtained as α>arctan⁡(μc. The mathematical model of the actuation system is validated by prototype testing. And with the validated model, the system dynamics in both stable and unstable conditions is investigated and discussed in engineering side.

  6. Surgical treatment of idiopathic syringomyelia: Silastic wedge syringosubarachnoid shunting technique

    Directory of Open Access Journals (Sweden)

    Teck M Soo

    2014-01-01

    Conclusions: Shunting procedures for the syringomyelia disease spectrum have been criticized due to the inconsistent long-term outcomes. This surgical technique used to treat symptomatic idiopathic syringomyelia has been devised based on our intraoperative experience, surgical outcomes, and evaluation of the literature. The purpose of the wedges is to preserve patency of the communication between the syrinx cavity and the expanded subarachnoid space by preventing healing of the myelotomy edges and by maintaining an artificial conduit between the syrinx cavity and the subarachnoid space. Although short-term results are promising, continued long-term follow up is needed to determine the ultimate success of the silastic wedge shunting procedure.

  7. Three-dimensional wedge filling in ordered and disordered systems

    Energy Technology Data Exchange (ETDEWEB)

    Greenall, M J [Department of Mathematics, Imperial College London, 180 Queen' s Gate, London SW7 2BZ (United Kingdom); Parry, A O [Department of Mathematics, Imperial College London, 180 Queen' s Gate, London SW7 2BZ (United Kingdom); Romero-Enrique, J M [Department of Mathematics, Imperial College London, 180 Queen' s Gate, London SW7 2BZ (United Kingdom)

    2004-04-21

    We investigate interfacial structural and fluctuation effects occurring at continuous filling transitions in 3D wedge geometries. We show that fluctuation-induced wedge covariance relations that have been reported recently for 2D filling and wetting have mean-field or classical analogues that apply to higher-dimensional systems. Classical wedge covariance emerges from analysis of filling in shallow wedges based on a simple interfacial Hamiltonian model and is supported by detailed numerical investigations of filling within a more microscopic Landau-like density functional theory. Evidence is presented that classical wedge covariance is also obeyed for filling in more acute wedges in the asymptotic critical regime. For sufficiently short-ranged forces mean-field predictions for the filling critical exponents and covariance are destroyed by pseudo-one-dimensional interfacial fluctuations. We argue that in this filling fluctuation regime the critical exponents describing the divergence of length scales are related to values of the interfacial wandering exponent {zeta}(d) defined for planar interfaces in (bulk) two-dimensional (d = 2) and three-dimensional (d = 3) systems. For the interfacial height l{sub w} {approx} {theta}-{alpha}){sup -{beta}}{sub w}, with {theta} the contact angle and {alpha} the wedge tilt angle, we find {beta}{sub w} = {zeta}(2)/2(1-{zeta}(3)). For pure systems (thermal disorder) we recover the known result {beta}{sub w} = 1/4 predicted by interfacial Hamiltonian studies whilst for random-bond disorder we predict the universal critical exponent {beta} {approx} even in the presence of dispersion forces. We revisit the transfer matrix theory of three-dimensional filling based on an effective interfacial Hamiltonian model and discuss the interplay between breather, tilt and torsional interfacial fluctuations. We show that the coupling of the modes allows the problem to be mapped onto a quantum mechanical problem as conjectured by previous authors

  8. Non-linear critical taper model and determination of accretionary wedge strength

    Science.gov (United States)

    Yang, Che-Ming; Dong, Jia-Jyun; Hsieh, Yuan-Lung; Liu, Hsueh-Hua; Liu, Cheng-Lung

    2016-12-01

    The critical taper model has been widely used to evaluate the strength contrast between the wedge and the basal detachment of fold-and-thrust belts and accretionary wedges. However, determination of the strength parameters using the traditional critical taper model, which adopts the Mohr-Coulomb failure criterion, is difficult, if not impossible. In this study, we propose a modified critical taper model that incorporates the non-linear Hoek-Brown failure criterion. The parameters in the proposed critical Hoek-Brown wedge CHBW model can be directly evaluated via field investigations and laboratory tests. Meanwhile, the wedge strength is a function of the wedge thickness, which is oriented from stress non-linearity. The fold-and-thrust belt in western central Taiwan was used as an example to validate the proposed model. The determined wedge strength was 0.86 using a representative wedge thickness of 5.3 km; this was close to the inferred value of 0.6 from the critical taper. Interestingly, a concave topographic relief is predicted as a result of the wedge thickness dependency of the wedge strength, even if the wedge is composed of homogeneous materials and if the strength of the detachment is uniform. This study demonstrates that the influence of wedge strength on the critical taper angle can be quantified by the spatial distribution of strength variables and by the consideration of the wedge thickness dependency of wedge strength.

  9. Stark effect in a wedge-shaped quantum box

    CERN Document Server

    Reyes-Esqueda, J A; Castillo-Mussot, M; Vazquez, G J; Reyes-Esqueda, Jorge-Alejandro; Mendoza, Carlos I.; Castillo-Mussot, Marcelo del; Vazquez, Gerardo J.

    2005-01-01

    The effect of an external applied electric field on the electronic ground state energy of a quantum box with a geometry defined by a wedge is studied by carrying out a variational calculation. This geometry could be used as an approximation for a tip of a cantilever of an atomic force microscope. We study theoretically the Stark effect as function of the parameters of the wedge: its diameter, angular aperture and thickness; as well as function of the intensity of the external electric field applied along the axis of the wedge in both directions; pushing the carrier towards the wider or the narrower parts. A confining electronic effect, which is sharper as the wedge dimensions are smaller, is clearly observed for the first case. Besides, the sign of the Stark shift changes when the angular aperture is changed from small angles to angles theta>pi. For the opposite field, the electronic confinement for large diameters is very small and it is also observed that the Stark shift is almost independent with respect t...

  10. Fixed Points of Maps of a Nonaspherical Wedge

    Directory of Open Access Journals (Sweden)

    Merrill Keith

    2009-01-01

    Full Text Available Abstract Let be a finite polyhedron that has the homotopy type of the wedge of the projective plane and the circle. With the aid of techniques from combinatorial group theory, we obtain formulas for the Nielsen numbers of the selfmaps of .

  11. Restraint of fatigue crack growth by wedge effects of fine particles

    CERN Document Server

    Takahashi, I; Kotani, N

    2000-01-01

    Presents some experimental results which demonstrate restraint of fatigue crack growth in an Al-Mg alloy by wedge effects of fine particles. Fatigue test specimens were machined from a JIS A5083P-O Al-Mg alloy plate of 5 mm thickness and an EDM starter notch was introduced to each specimen. Three kinds of fine particles were prepared as the materials to be wedged into the fatigue cracks, i.e. magnetic particles and two kinds of alumina particles having different mean particle sizes of 47.3 mu m and 15.2 mu m. Particles of each kind were suspended in an oil to form a paste, which was applied on the specimen surface covering the notch zone prior to the fatigue tests. In order to make some fracture mechanics approaches, in situ observations of fatigue cracks were performed for the two cases using a CCD microscope, with a magnification of *1000. The crack length and the crack opening displacement (COD) at the notch root, delta , were measured. The crack retardation effect continues almost through the entire lifet...

  12. Effect of Ferrite Magnetic Wedge on Capacitor Motor Characteristics in Triac Control

    Science.gov (United States)

    Kaga, Akio; Anazawa, Yoshihisa; Tajima, Katsubumi

    1991-07-01

    Split-phase capacitor motors are commonly used to drive household electric appliances. The motor has some slots and teeth to embed electric conductors or coils. The presence of the slots and teeth induces the variation of magnetic reluctance through the magnetic circuit to introduce heavy pulsation of the air gap flux. Thus, the voltage, current and torque of the motor become oscillative to increase the electric power loss and finally to reduce the motor efficiency. First, the authors discuss the characteristics of a 3-phase cage-type induction motor in which the ferrite magnetic wedges have been installed into the stator slot openings of the motor to smooth the air gap flux pulsation and to decrease the electric power loss, resulting in improved motor efficiency. If the motor is driven by the voltage source in accordance with the loading condition, more economical operation will be achieved. In this study, a nonsinusoidal voltage controlled by the switching element of a triac has been applied to a capacitor motor with wedges of ferrite magnetic materials. This paper reports on the interesting results obtained.

  13. Composite wedge failure using photogrammetric measurements and DFN-DEM modelling

    Directory of Open Access Journals (Sweden)

    Viviana Bonilla-Sierra

    2017-02-01

    Full Text Available Analysis and prediction of structural instabilities in open pit mines are an important design and operational consideration for ensuring safety and productivity of the operation. Unstable wedges and blocks occurring at the surface of the pit walls may be identified through three-dimensional (3D image analysis combined with the discrete fracture network (DFN approach. Kinematic analysis based on polyhedral modelling can be used for first pass analysis but cannot capture composite failure mechanisms involving both structurally controlled and rock mass progressive failures. A methodology is proposed in this paper to overcome such limitations by coupling DFN models with geomechanical simulations based on the discrete element method (DEM. Further, high resolution photogrammetric data are used to identify valid model scenarios. An identified wedge failure that occurred in an Australian coal mine is used to validate the methodology. In this particular case, the failure surface was induced as a result of the rock mass progressive failure that developed from the toe of the structure inside the intact rock matrix. Analysis has been undertaken to determine in what scenarios the measured and predicted failure surfaces can be used to calibrate strength parameters in the model.

  14. The Influence of Localized Glacial Erosion on Exhumation Paths in Accreting Coulomb Wedges: Insights from Particle Velocimetry Analysis of Sandbox Models

    Science.gov (United States)

    Newman, P. J.; Davis, K.; Haq, S. S. B.; Ridgway, K.

    2015-12-01

    Glacial erosion can have an impact on the location and development of faults in mountain belts. The rapid removal and deposition of rock, in some cases, is thought to affect the initiation of slip on older fault structures, or cause the development of new structures within the older part of the wedge. We present cross-sectional data from both erosional and non-erosional sandbox models of Coulomb wedges in order to quantify the impact of localized erosion on the location of and slip on deformational structures, as well as the general path of material through a wedge. To do this, we employ Lagrangian particle tracking velocimetry (PTV) using the open-source Python PTV toolkit trackpy, among a suite of other data analysis tools. We are able to extract robust and reliable sets of particle trajectories from a series of images without the need for predefined markers or marker-beds, instead identifying and tracking natural variations in sand color as individual particles. By comparing the motion of particles in cross-section to the local surface topography over an entire experiment, we determine a high-resolution record of exhumation rates, in addition to simple uplift rates. These comparisons are further informed by the use of high-definition Eulerian particle image velocimetry (PIV), which provides quantitative data about the distribution of deformation and instantaneous material displacements throughout a cross-sectional view of a Coulomb wedge. This allows us to interpret these pathways in relation to the behavior of active structures and general wedge morphology. In our experiments, we observe that localized glacial erosion has an impact on material pathways, in the form of an increased rate of exhumation locally, more vertical trajectories towards surface below the zone of erosion, and reactivation of older structures to maintain force balance within the entire wedge.

  15. New machining and testing method of large angle infrared wedge mirror parts

    Science.gov (United States)

    Su, Ying; Guo, Rui; Zhang, Fumei; Zhang, Zheng; Liu, Xuanmin; Zengqi, Xu; Li, Wenting; Zhang, Feng

    2016-10-01

    Large angle wedge parts were widely used in the optical system that was used for achieving a wide range of scanning. Due to the parts having the characteristic of large difference in the thickness of both ends and high density, the accuracy of the wedge angle was hard to ensure to reach second level in optical processing. Generally, wedge mirror angle was measured by contact comparison method which was easy to damage the surface. In view of the existence of two practical problems, in this paper, based on theoretical analysis, by taking three key measures that were the accurate positioning for the central position of the large angle wedge part, the accuracy control of angle precision machined of wedge mirror and fast and non destructive laser assisted absolute measurement of large angle wedge, the qualified rate of parts were increased to 100%, a feasible, controllable and efficient process route for large angle infrared wedge parts was found out.

  16. Direct FVM Simulation for Sound Propagation in an Ideal Wedge

    Directory of Open Access Journals (Sweden)

    Hongyu Ji

    2016-01-01

    Full Text Available The sound propagation in a wedge-shaped waveguide with perfectly reflecting boundaries is one of the few range-dependent problems with an analytical solution. This provides a benchmark for the theoretical and computational studies on the simulation of ocean acoustic applications. We present a direct finite volume method (FVM simulation for the ideal wedge problem, and both time and frequency domain results are analyzed. We also study the broadband problem with large-scale parallel simulations. The results presented in this paper validate the accuracy of the numerical techniques and show that the direct FVM simulation could be applied to large-scale complex acoustic applications with a high performance computing platform.

  17. Thoracoscopic pulmonary wedge resection without post-operative chest drain

    DEFF Research Database (Denmark)

    Holbek, Bo Laksáfoss; Hansen, Henrik Jessen; Kehlet, Henrik;

    2016-01-01

    effusion and coagulopathy. Chest X-rays were done twice on the day of surgery. 30-day complications were compiled from patient records. RESULTS: 49 patients underwent 51 unilateral VATS wedge resections without using a post-operative chest drain. No patient required reinsertion of a chest drain. 30 (59...... %) patients had a pneumothorax of mean size 12 ± 12 mm on supine 8-h post-operative X-ray for which the majority resolved spontaneously within 2-week control. There were no complications on 30-day follow-up. Median length of stay was 1 day. CONCLUSIONS: The results support that VATS wedge resection...... for pulmonary nodules without a post-operative chest drain may be safe in a selected group of patients....

  18. Wedge Diffraction as an Instance of Radiative Shielding

    CERN Document Server

    Grzesik, J A

    2016-01-01

    The celebrated Sommerfeld wedge diffraction solution is reexamined from a null interior field perspective. Exact surface currents provided by that solution, when considered as disembodied half-plane laminae radiating into an ambient, uniform space both inside and outside the wedge proper, do succeed in reconstituting both a specular, mirror field above the exposed face, and a shielding plane-wave field of a sign opposite to that of the incoming excitation which, under superposition, creates both the classical, geometric-optics shadow, and a strictly null interior field at the dominant, plane-wave level. Both mirror and shadow radiated fields are controlled by the residue at just one simple pole encountered during a spectral radiative field assembly, fixed in place by incidence direction $\\phi_{0}$ as measured from the exposed face. The radiated fields further provide diffractive contributions drawn from two saddle points that track observation angle $\\phi.$ Even these, more or less asymptotic contributions, a...

  19. MHD Casson nanofluid flow past a wedge with Newtonian heating

    Science.gov (United States)

    Ahmad, Kartini; Hanouf, Zahir; Ishak, Anuar

    2017-02-01

    The problem of steady Casson nanofluid flow past a wedge is studied in this paper. The presence of magnetic field along with Newtonian heating at the surface is considered. The governing partial differential equations are first transformed into a set of nonlinear ordinary differential equations by similarity transformations, before being solved numerically using the Keller-box method. The effects of the wedge angle Ω from 0° (horizontal plate) to 180° (vertical plate) as well as of as the magnetic parameter M on the non-Newtonian fluid flow and heat transfer characteristics are investigated. It is found that the surface temperature is slightly higher for the flow over a horizontal plate compared to that over a vertical plate. It is also found that the magnetic field decreases the surface temperature but increases the skin friction. The flow of a Newtonian fluid is found to give higher skin friction as compared to that of Casson fluid.

  20. Monte Carlo simulation of the Varian Clinac 600C accelerator dynamic and physical wedges

    Energy Technology Data Exchange (ETDEWEB)

    Soares, S [Universidade da Beira Interior, Av. Marques d' Avila e Bolama, Covilha 6201-001 (Portugal); Chaves, A [Instituto Portugues de Oncologia Doutor Francisco Gentil (IPO), Av. Bissaya Barreto, Coimbra 3000-075 (Portugal); Peralta, L [Laboratorio de Instrumentacao e Fisica Experimental de PartIculas (LIP), Av. Elias Garcia no14 1o, Lisbon 1000-149 (Portugal); Lopes, Mc [Faculdade de Ciencias da Universidade de Lisboa, Campo Grande EdifIcio C5, Lisbon 1149-016 (Portugal)

    2007-06-15

    The present paper describes the study done on the dosimetric characteristics of the Varian Clinac 600C dynamic wedges (DW) and their comparison with the physical wedges (PW) in terms of the differences affecting the dose distributions, beam spectra, energy fluence and angular distributions. The geometry of the 4 MV photon beam and the dose distributions in a water phantom were simulated with GEANT3 and DPM Monte Carlo code systems. The DW was modelled through the constant movement of the upper jaws. The depth dose distributions and lateral profiles for the DW, PW and open fields were measured and compared with the Monte Carlo simulations and the global agreement was found to be within 3%. It was also found that the effects of a DW on beam spectral and angular distributions are much less significant than those produced by a PW. For example, in our study we found out that the 45{sup 0}PW, when compared with the corresponding open field, can introduce a 30% increase in the mean photon energy due to the beam hardening effect and that it can also introduce a 4.5% dose reduction in the build-up region because of the reduction of the contaminated electrons by the PW. For the DW neither this mean-energy increase nor such dose reduction was found. The PW, when compared to the DW, significantly alters the photon-beam spectrum and these dosimetric differences are significant and further investigation must be performed to quantify the impact in clinical use of these beams.

  1. DNS of compressible turbulent boundary layer over a blunt wedge

    Institute of Scientific and Technical Information of China (English)

    LI Xinliang; FU Dexun; MA Yanwan

    2005-01-01

    Direct numerical simulation of spatially evolving compressible boundary layer over a blunt wedge is performed in this paper. The free-stream Mach number is 6 and the disturbance source produced by wall blowing and suction is located downstream of the sound-speed point. Statistics are studied and compared with the results in incompressible flat-plate boundary layer. The mean pressure gradient effects on the vortex structure are studied.

  2. Wedge-local quantum fields on a nonconstant noncommutative spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Much, A. [Max-Planck-Institute for Mathematics in the Sciences, 04103 Leipzig (Germany) and Institute for Theoretical Physics, University of Leipzig, 04009 Leipzig (Germany)

    2012-08-15

    Within the framework of warped convolutions we deform the massless free scalar field. The deformation is performed by using the generators of the special conformal transformations. The investigation shows that the deformed field turns out to be wedge-local. Furthermore, it is shown that the spacetime induced by the deformation with the special conformal operators is nonconstant noncommutative. The noncommutativity is obtained by calculating the deformed commutator of the coordinates.

  3. Large scale test of wedge shaped micro strip gas counters

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann, M.; Atz, S.; Aulchenko, V.; Bachmann, S.; Baiboussinov, B.; Barthe, S.; Beaumont, W.; Beckers, T.; Beissel, F.; Benhammou, Y.; Bergdolt, A.M.; Bernier, K.; Bluem, P.; Bondar, A.; Bouhali, O.; Boulogne, I.; Bozzo, M.; Brom, J.M.; Camps, C.; Chorowicz, V.; Coffin, J.; Commichau, V.; Contardo, D.; Croix, J.; Troy, J. de; Drouhin, F.; Eberle, H.; Fluegge, G.; Fontaine, J.-C.; Geist, W.; Goerlach, U.; Gundlfinger, K.; Hangarter, K.; Haroutunian, R.; Helleboid, J.M.; Henkes, Th.; Hoffer, M.; Hoffman, C.; Huss, D.; Ischebeck, R.; Jeanneau, F.; Juillot, P.; Junghans, S.; Kapp, M.R.; Kaercher, K.; Knoblauch, D.; Kraeber, M.; Krauth, M.; Kremp, J.; Lounis, A.; Luebelsmeyer, K.; Maazouzi, C.; Macke, D.; Metri, R.; Mirabito, L.; Mueller, Th.; Nagaslaev, V.; Neuberger, D.; Nowack, A.; Pallares, A.; Pandoulas, D.; Petertill, M.; Pooth, O.; Racca, C.; Ripp, I.; Ruoff, E.; Sauer, A.; Schmitz, P.; Schulte, R.; Schultz von Dratzig, A.; Schunk, J.P.; Schuster, G.; Schwaller, B.; Shektman, L.; Siedling, R.; Sigward, M.H.; Simonis, H.J.; Smadja, G.; Stefanescu, J.; Szczesny, H.; Tatarinov, A.; Thuemmel, W.H.; Tissot, S.; Titov, V.; Todorov, T.; Tonutti, M.; Udo, F.; Velde, C. Vander. E-mail: vandervelde@hep.iihe.ac.be; Doninck, W. van; Dyck, Ch. van; Vanlaer, P.; Lancker, L. van; Verdini, P.G.; Weseler, S.; Wittmer, B.; Wortmann, R.; Zghiche, A.; Zhukov, V

    1999-11-01

    In order to check the system aspects of the forward-backward MSGC tracker designed for the future CMS experiment at LHC, 38 trapezoidal MSGC counters assembled in six multi-substrates detector modules were built and exposed to a muon beam at the CERN SPS. Results on the gain uniformity along the wedge-shaped strip pattern and across the detector modules are shown together with measurements of the detection efficiency and the spatial resolution.

  4. Large scale test of wedge shaped micro strip gas counters

    CERN Document Server

    Ackermann, M; Aulchenko, V M; Bachmann, S; Baibusinov, B O; Barthe, S; Beaumont, W; Beckers, T; Beissel, F; Benhammou, Ya; Bergdolt, A M; Bernier, K; Blüm, H P; Bondar, A E; Bouhali, O; Boulogne, I; Bozzo, M; Brom, J M; Camps, C; Chorowicz, V; Coffin, J P; Commichau, V; Contardo, D; Croix, J; De Troy, J G; Drouhin, F; Eberle, H; Flügge, G; Fontaine, J C; Geist, Walter M; Goerlach, U; Gundlfinger, K; Hangarter, K; Haroutunian, R; Helleboid, J M; Henkes, T; Hoffer, M; Hoffmann, C; Huss, D; Ischebeck, R; Jeanneau, F; Juillot, P; Junghans, S; Kapp, M R; Kärcher, K; Knoblauch, D; Kräber, M H; Krauth, M; Kremp, J; Lounis, A; Lübelsmeyer, K; Maazouzi, C; Macke, D; Metri, R; Mirabito, L; Müller, T; Nagaslaev, V; Neuberger, D; Nowak, A; Pallarès, A; Pandoulas, D; Petertill, M; Pooth, O; Racca, C; Ripp, I; Ruoff, E; Sauer, A; Schmitz, P; Schulte, R; Schultz von Dratzig, A; Schunk, J P; Schuster, G; Schwaller, B; Shekhtman, L I; Siedling, R; Sigward, M H; Simonis, H J; Smadja, G; Stefanescu, J; Szczesny, H; Tatarinov, A A; Thümmel, W H; Tissot, S; Titov, V; Todorov, T; Tonutti, M; Udo, Fred; Van der Velde, C; Van Doninck, W K; Van Dyck, C; Vanlaer, P; Van Lancker, L; Verdini, P G; Weseler, S; Wittmer, B; Wortmann, R; Zghiche, A; Zhukov, V

    1999-01-01

    In order to check the system aspects of the forward-backward MSGC tracker designed for the future CMS experiment at LHC, 38 trapezoidal MSGC counters assembled in six multi-substrates detector modules were built and exposed to a muon beam at the CERN SPS. Results on the gain uniformity along the wedge-shaped strip pattern and across the detector modules are shown together with measurements of the detection efficiency and the spatial resolution. (8 refs).

  5. Modal Analysis in Lined Wedge-Shaped Ducts

    Science.gov (United States)

    Mechel, F. P.

    1998-10-01

    It has been suggested to describe the sound field in a wedge-shaped duct in a cylindrical co-ordinate system in which the boundaries of the wedge lie in a co-ordinate surface. This suggestion was developed in a companion paper [1]. The wave equation can be separated only if the boundaries are ideally reflecting (rigid or soft). Two solutions were proposed in reference [1] for absorbing boundaries. In the first solution the sound field is composed of “ideal modes” (modes in a wedge with ideally reflecting boundaries); the boundary condition at the absorbing boundary then leads to a system of equations for the mode amplitudes. The problem with this method lies in the fact that there is no radial orthogonality of the ideal modes so that the precision of the field synthesis by ideal modes is doubtful. In the second method in reference [1] one defines “fictitious modes” which satisfy the boundary conditions at the flanks exactly and which are based on hypergeometric functions as radial functions, but which produce a “rest” in the wave equation. It was described how this rest can be minimized; this procedure leads to slow numerical integrations. In the present paper, the wedge is subdivided into duct sections with parallel walls (the boundary is stepped); the fields in the sections are composed of duct modes (modes in a straight lined duct); the mode amplitudes are determined from the boundary conditions at the section limits. The advantages of the present method are (analytically) the duct modes are orthogonal across the sections, so the mode amplitudes can be determined with the usual precision of a modal analysis, and (numerically) no numerical integrations are needed.

  6. Water-saturated physical modeling of accretionary wedges

    Science.gov (United States)

    Yamada, Y.; Zhang, M.; Nakajima, H.; Driss, E.

    2005-12-01

    Accretionary wedges have been an important research target from view points of earthquake mechanism at the subduction zone, sediment deformation that is closely coupled with hydrology, and resource exploration such as methane hydrates. The knowledge obtained from the study may also be useful for site selection of geological disposal of hazardous materials including radioactive nuclear wastes, in coastal areas of tectonically unstable island arc systems like Japan. The wedges have been well-investigated with analogue models in particular sandbox experiments that typically use dry granular materials, thus the inter-granular pore space of the sandbox experiments is filled with air. In natural sediments, however, the pore space is filled with formation water and its pressure has special effects on structural development. In order to accurately simulate the in-situ conditions and to examine the effects of water on the deformation process of accretionary wedge, a new apparatus was recently constructed in AIST, Japan, to perform physical analog experiments of accretionary wedges under water-saturated condition. For comparisons, equivalent experiments with dry materials were also conducted. The physical properties of the materials were also measured with tri-axial compression tests to interpret the experimental observations. Preliminary results obtained from this study showed that the fundamental parameters on structural geometry, such as taper angle and fault spacing, can be correlated well in wet and dry experiments. These are also in good agreement with physical properties obtained by the tri-axial compression tests, suggesting that the internal friction coefficient decreases as the overburden pressure increases. In the under water models, buoyancy decreases apparent grain density and overburden pressure thus the internal friction coefficient also decreases. This also agrees with the structural geometry of the experimental results. These results suggest that under

  7. On the acoustic wedge design and simulation of anechoic chamber

    Science.gov (United States)

    Jiang, Changyong; Zhang, Shangyu; Huang, Lixi

    2016-10-01

    This study proposes an alternative to the classic wedge design for anechoic chambers, which is the uniform-then-gradient, flat-wall (UGFW) structure. The working mechanisms of the proposed structure and the traditional wedge are analyzed. It is found that their absorption patterns are different. The parameters of both structures are optimized for achieving minimum absorber depth, under the condition of absorbing 99% of normal incident sound energy. It is found that, the UGFW structure achieves a smaller total depth for the cut-off frequencies ranging from 100 Hz to 250 Hz. This paper also proposes a modification for the complex source image (CSI) model for the empirical simulation of anechoic chambers, originally proposed by Bonfiglio et al. [J. Acoust. Soc. Am. 134 (1), 285-291 (2013)]. The modified CSI model considers the non-locally reactive effect of absorbers at oblique incidence, and the improvement is verified by a full, finite-element simulation of a small chamber. With the modified CSI model, the performance of both decorations with the optimized parameters in a large chamber is simulated. The simulation results are analyzed and checked against the tolerance of 1.5 dB deviation from the inverse square law, stipulated in the ISO standard 3745(2003). In terms of the total decoration depth and anechoic chamber performance, the UGFW structure is better than the classic wedge design.

  8. Wave dynamic processes in cellular detonation reflection from wedges

    Institute of Scientific and Technical Information of China (English)

    Zongmin Hu; Zonglin Jiang

    2007-01-01

    When the cell width of the incident deto-nation wave (IDW) is comparable to or larger than theMach stem height,self-similarity will fail during IDWreflection from a wedge surface.In this paper,the det-onation reflection from wedges is investigated for thewave dynamic processes occurring in the wave front,including transverse shock motion and detonation cellvariations behind the Mach stem.A detailed reactionmodel is implemented to simulate two-dimensional cel-lular detonations in stoichiometric mixtures of H2/O2diluted by Argon.The numerical results show that thetransverse waves,which cross the triple point trajec-tory of Mach reflection,travel along the Mach stem andreflect back from the wedge surface,control the size ofthe cells in the region swept by the Mach stem.It is theenergy carried by these transverse waves that sustainsthe triple-wave-collision with a higher frequency withinthe over-driven Mach stem.In some cases,local wavedynamic processes and wave structures play a dominantrole in determining the pattern of cellular record,lead-ing to the fact that the cellular patterns after the Machstem exhibit some peculiar modes.

  9. Robustness of oscillatory α2 dynamos in spherical wedges

    Science.gov (United States)

    Cole, E.; Brandenburg, A.; Käpylä, P. J.; Käpylä, M. J.

    2016-10-01

    Context. Large-scale dynamo simulations are sometimes confined to spherical wedge geometries by imposing artificial boundary conditions at high latitudes. This may lead to spatio-temporal behaviours that are not representative of those in full spherical shells. Aims: We study the connection between spherical wedge and full spherical shell geometries using simple mean-field dynamos. Methods: We solve the equations for one-dimensional time-dependent α2 and α2Ω mean-field dynamos with only latitudinal extent to examine the effects of varying the polar angle θ0 between the latitudinal boundaries and the poles in spherical coordinates. Results: In the case of constant α and ηt profiles, we find oscillatory solutions only with the commonly used perfect conductor boundary condition in a wedge geometry, while for full spheres all boundary conditions produce stationary solutions, indicating that perfect conductor conditions lead to unphysical solutions in such a wedge setup. To search for configurations in which this problem can be alleviated we choose a profile of the turbulent magnetic diffusivity that decreases toward the poles, corresponding to high conductivity there. Oscillatory solutions are now achieved with models extending to the poles, but the magnetic field is strongly concentrated near the poles and the oscillation period is very long. By changing both the turbulent magnetic diffusivity and α profiles so that both effects are more concentrated toward the equator, we see oscillatory dynamos with equatorward drift, shorter cycles, and magnetic fields distributed over a wider range of latitudes. Those profiles thus remove the sensitive and unphysical dependence on θ0. When introducing radial shear, we again see oscillatory dynamos, and the direction of drift follows the Parker-Yoshimura rule. Conclusions: A reduced α effect near the poles with a turbulent diffusivity concentrated toward the equator yields oscillatory dynamos with equatorward migration and

  10. Linear array measurements of enhanced dynamic wedge and treatment planning system (TPS) calculation for 15 MV photon beam and comparison with electronic portal imaging device (EPID) measurements

    Science.gov (United States)

    Petrovic, Borislava; Grzadziel, Aleksandra; Rutonjski, Laza; Slosarek, Krzysztof

    2010-01-01

    Introduction. Enhanced dynamic wedges (EDW) are known to increase drastically the radiation therapy treatment efficiency. This paper has the aim to compare linear array measurements of EDW with the calculations of treatment planning system (TPS) and the electronic portal imaging device (EPID) for 15 MV photon energy. Materials and methods. The range of different field sizes and wedge angles (for 15 MV photon beam) were measured by the linear chamber array CA 24 in Blue water phantom. The measurement conditions were applied to the calculations of the commercial treatment planning system XIO CMS v.4.2.0 using convolution algorithm. EPID measurements were done on EPID-focus distance of 100 cm, and beam parameters being the same as for CA24 measurements. Results Both depth doses and profiles were measured. EDW linear array measurements of profiles to XIO CMS TPS calculation differ around 0.5%. Profiles in non-wedged direction and open field profiles practically do not differ. Percentage depth doses (PDDs) for all EDW measurements show the difference of not more than 0.2%, while the open field PDD is almost the same as EDW PDD. Wedge factors for 60 deg wedge angle were also examined, and the difference is up to 4%. EPID to linear array differs up to 5%. Conclusions The implementation of EDW in radiation therapy treatments provides clinicians with an effective tool for the conformal radiotherapy treatment planning. If modelling of EDW beam in TPS is done correctly, a very good agreement between measurements and calculation is obtained, but EPID cannot be used for reference measurements. PMID:22933916

  11. Chronology and palaeoenvironmental implications of the ice-wedge pseudomorphs and composite-wedge casts on the Magdalen Islands (eastern Canada)

    DEFF Research Database (Denmark)

    Remillard, A.M.; Hetu, B.; Bernatchez, P.

    2015-01-01

    The Magdalen Islands are a valuable terrestrial record, evidencing the complex glacial and periglacial history of the Gulf of St. Lawrence. Thirteen structures interpreted as ice-wedge pseudomorphs or composite-wedge casts were observed at four sites on the southern Magdalen Islands and testify t...

  12. Assessment of computerized treatment planning system accuracy in calculating wedge factors of physical wedged fields for 6 MV photon beams.

    Science.gov (United States)

    Muhammad, Wazir; Maqbool, Muhammad; Shahid, Muhammad; Hussain, Amjad; Tahir, Sajjad; Matiullah; Rooh, Gul; Ahmad, Tanveer; Lee, Sang Hoon

    2011-07-01

    Wedge filters are commonly used in external beam radiotherapy to achieve a uniform dose distribution within the target volume. The main objective of this study was to investigate the accuracy of the beam modifier algorithm of Theraplan plus (TPP version 3.8) treatment planning system and to confirm that either the beam hardening, beam softening and attenuation coefficients along with wedge geometry and measured wedge factor at single depth and multiple fields sizes can be the replacement of wedged profile and wedged cross-sectional data or not. In this regard the effect of beam hardening and beam softening was studied with physical wedges for 6 MV photons. The Normalized Wedge Factors (NWFs) were measured experimentally as well as calculated with the Theraplan plus, as a function of depth and field size in a water phantom for 15°, 30°, 45°, and 60° wedge filters. The beam hardening and softening was determined experimentally by deriving the required coefficients for all wedge angles. The TPP version 3.8 requires wedge transmission factor at single depth and multiple field sizes. Without incorporating the hardening and softening coefficients the percent difference between measured and calculated NFWs was as high as 7%. After the introduction of these parameters into the algorithm, the agreement between measured and TPP (V 3.8) calculated NWFs were improved to within 2 percent for various depths. Similar improvement was observed in TPP version 3.8 while calculating NWFs for various field sizes when the required coefficients were adjusted. In conclusion, the dose calculation algorithm of TPP version 3.8 showed good accuracy for a 6 MV photon beam provided beam hardening and softening parameters are taken into account. From the results, it is also concluded that, the beam hardening, beam softening and attenuation coefficients along with wedge geometry and measured wedge factor at single depth and multiple fields sizes can be the replacement of wedged profile and

  13. Observation of wedge waves and their mode transformation by laser ultrasonic technique

    Institute of Scientific and Technical Information of China (English)

    Jing Jia; Zhonghua Shen; Lijuan Wang; Ling Yuan

    2011-01-01

    Wedge waves (WWs) in wedges, including their dispersion characteristics and mode transformation, are investigated using the laser ultrasound technique. Pulsed laser excitation and optical deflection beam method for detection are used to record WWs. Numerous WWs are detected by scanning the excitation laser along the wedge tip. Dispersions of WWs are obtained by using the two-dimensional (2D) Fourier transformation method, and different WW orders are revealed on the wedges. Mode transformation is determined by fixing the distance between the excitation and detection position, as well as by scanning the samples along the normal direction of the wedge tip.%@@ Wedge waves (WWs) in wedges, including their dispersion characteristics and mode transformation, are investigated using the laser ultrasound technique. Pulsed laser excitation and optical deflection beam method for detection are used to record WWs. Numerous WWs are detected by scanning the excitation laser along the wedge tip. Dispersions of WWs are obtained by using the two-dimensional (2D) Fourier transformation method, and different WW orders are revealed on the wedges. Mode transformation is determined by fixing the distance between the excitation and detection position, as well as by scanning the samples along the normal direction of the wedge tip.

  14. Crystallization of soft matter under confinement at interfaces and in wedges

    Science.gov (United States)

    Archer, Andrew J.; Malijevský, Alexandr

    2016-06-01

    opening angle of the wedge is commensurate with the crystal lattice.

  15. Modes of continental extension in a crustal wedge

    Science.gov (United States)

    Wu, Guangliang; Lavier, Luc L.; Choi, Eunseo

    2015-07-01

    We ran numerical experiments of the extension of a crustal wedge as an approximation to extension in an orogenic belt or a continental margin. We study the effects of the strength of the lower crust and of a weak mid-crustal shear zone on the resulting extension styles. A weak mid-crustal shear zone effectively decouples upper crustal extension from lower crustal flow. Without the mid-crustal shear zone, the degree of coupling between the upper and the lower crust increases and extension of the whole crust tends to focus on the thickest part of the wedge. We identify three distinct modes of extension determined by the strength of the lower crust, which are characterized by 1) localized, asymmetric crustal exhumation in a single massif when the lower crust is weak, 2) the formation of rolling-hinge normal faults and the exhumation of lower crust in multiple core complexes with an intermediate strength lower crust, and 3) distributed domino faulting over the weak mid-crustal shear zone when the lower crust is strong. A frictionally stronger mid-crustal shear zone does not change the overall model behaviors but extension occurred over multiple rolling-hinges. The 3 modes of extension share characteristics similar to geological models proposed to explain the formation of metamorphic core complexes: 1) the crustal flow model for the weak lower crust, 2) the rolling-hinge and crustal flow models when the lower crust is intermediate and 3) the flexural uplift model when the lower crust is strong. Finally we show that the intensity of decoupling between the far field extension and lower crustal flow driven by the regional pressure gradient in the wedge control the overall style of extension in the models.

  16. Modes of continental extension in a crustal wedge

    KAUST Repository

    Wu, Guangliang

    2015-07-01

    © 2015 Elsevier B.V. We ran numerical experiments of the extension of a crustal wedge as an approximation to extension in an orogenic belt or a continental margin. We study the effects of the strength of the lower crust and of a weak mid-crustal shear zone on the resulting extension styles. A weak mid-crustal shear zone effectively decouples upper crustal extension from lower crustal flow. Without the mid-crustal shear zone, the degree of coupling between the upper and the lower crust increases and extension of the whole crust tends to focus on the thickest part of the wedge. We identify three distinct modes of extension determined by the strength of the lower crust, which are characterized by 1) localized, asymmetric crustal exhumation in a single massif when the lower crust is weak, 2) the formation of rolling-hinge normal faults and the exhumation of lower crust in multiple core complexes with an intermediate strength lower crust, and 3) distributed domino faulting over the weak mid-crustal shear zone when the lower crust is strong. A frictionally stronger mid-crustal shear zone does not change the overall model behaviors but extension occurred over multiple rolling-hinges. The 3 modes of extension share characteristics similar to geological models proposed to explain the formation of metamorphic core complexes: 1) the crustal flow model for the weak lower crust, 2) the rolling-hinge and crustal flow models when the lower crust is intermediate and 3) the flexural uplift model when the lower crust is strong. Finally we show that the intensity of decoupling between the far field extension and lower crustal flow driven by the regional pressure gradient in the wedge control the overall style of extension in the models.

  17. Inverse analysis of the wedge-splitting test

    DEFF Research Database (Denmark)

    Skocek, Jan; Stang, Henrik

    2008-01-01

    The amount of information which it is possible to retrieve from the wedge-splitting test is investigated. Inverse analysis is undertaken based on the analytical hinge model for various multi-linear softening curves. This showed that the commonly used bi-linear softening curve can be replaced...... by an tip to quad-linear curve, which is reflected by increased accuracy of the test simulation. Furthermore it was demonstrated that the next refinement of the softening curve leads to convergence problems due to problems with local minima. Finally, the semi-analytically obtained results are verified using...

  18. Electric monopoles in generalised B\\wedge F theories

    CERN Document Server

    Temple-Raston, M

    1996-01-01

    A tensor product generalisation of B\\wedge F theories is proposed to give a Bogomol'nyi structure. Non-singular, stable, finite-energy particle-like solutions to the Bogomol'nyi equations are studied. Unlike Yang-Mills(-Higgs) theory, the Bogomol'nyi structure does not appear as a perfect square in the Lagrangian. Consequently, the Bogomol'nyi energy can be obtained in more than one way. The added flexibility permits electric monopole solutions to the field equations.

  19. Heat conduction problem of an evaporating liquid wedge

    Directory of Open Access Journals (Sweden)

    Tomas Barta

    2015-02-01

    Full Text Available We consider the stationary heat transfer near the contact line of an evaporating liquid wedge surrounded by the atmosphere of its pure vapor. In a simplified setting, the problem reduces to the Laplace equation in a half circle, subject to a non-homogeneous and singular boundary condition. By classical tools (conformal mapping, Green's function, we reformulate the problem as an integral equation for the unknown Neumann boundary condition in the setting of appropriate fractional Sobolev and weighted space. The unique solvability is then obtained by means of the Fredholm theorem.

  20. The effect of shoe design and lateral wedging on knee loading

    DEFF Research Database (Denmark)

    Mølgaard, Carsten; Kersting, Uwe G.

    -dimensional gait analysis. Barefoot walking, walking in a running shoe, an Oxford-type leather shoe, and a rocker shoe were analyzed. The shoes were tested both with and without a 10-degree full length laterally wedged insole. Results: Similar, significant reductions in the peak knee adduction moment with lateral...... wedges were observed in all three types of shoes. However, differences between shoe design were of similar magnitude as the effect of laterally wedged insoles. Only marginal changes in muscle activity for lateral hamstrings during barefoot toe-out walking and gastrocnemius when using the Oxford wedged...

  1. Natural orifice transluminal endoscopic wedge hepatic resection with a water-jet hybrid knife in a non-survival porcine model

    Institute of Scientific and Technical Information of China (English)

    Hong Shi; Sheng-Jun Jiang; Bin Li; Deng-Ke Fu; Pei Xin; Yong-Guang Wang

    2011-01-01

    AIM:To explore the feasibility of a water-jet hybrid knife to facilitate wedge hepatic resection using a natural orifice transluminal endoscopic surgery (NOTES) approach in a non-survival porcine model.METHODS:The Erbe Jet2 water-jet system allows a needleless,tissue-selective hydro-dissection with a preselected pressure.Using this system,wedge hepatic resection was performed through three natural routes (trans-anal,trans-vaginal and trans-umbilical) in three female pigs weighing 35 kg under general anesthesia.Entry into the peritoneal cavity was via a 15-mm incision using a hook knife.The targeted liver segment was marked by an APC probe,followed by wedge hepatic resection performed using a water-jet hybrid knife with the aid of a 4-mm transparent distance soft cap mounted onto the tip of the endoscope for holding up the desired plane.The exposed vascular and ductal structures were clipped with Endoclips.Hemostasis was applied to the bleeding cut edges of the liver parenchyma by electrocautery.After the procedure,the incision site was left open,and the animal was euthanized followed by necropsy.RESULTS:Using the Erbe Jet2 water-jet system,transanal and trans-vaginal wedge hepatic resection was successfully performed in two pigs without laparoscopic assistance.Trans-umbilical attempt failed due to an unstable operating platform.The incision for peritoneal entry took 1 min,and about 2 h was spent on excision of the liver tissue.The intra-operative blood loss ranged from 100 to 250 mL.Microscopically,the hydro-dissections were relatively precise and gentle,preserving most vessels.CONCLUSION:The Erbe Jet2 water-jet system can safely accomplish non-anatomic wedge hepatic resection in NOTES,which deserves further studies to shorten the dissection time.

  2. Relation of the auroral substorm to the substorm current wedge

    Science.gov (United States)

    McPherron, Robert L.; Chu, Xiangning

    2016-12-01

    The auroral substorm is an organized sequence of events seen in the aurora near midnight. It is a manifestation of the magnetospheric substorm which is a disturbance of the magnetosphere brought about by the solar wind transfer of magnetic flux from the dayside to the tail lobes and its return through the plasma sheet to the dayside. The most dramatic feature of the auroral substorm is the sudden brightening and poleward expansion of the aurora. Intimately associated with this expansion is a westward electrical current flowing across the bulge of expanding aurora. This current is fed by a downward field-aligned current (FAC) at its eastern edge and an upward current at its western edge. This current system is called the substorm current wedge (SCW). The SCW forms within a minute of auroral expansion. FAC are created by pressure gradients and field line bending from shears in plasma flow. Both of these are the result of pileup and diversion of plasma flows in the near-earth plasma sheet. The origins of these flows are reconnection sites further back in the tail. The auroral expansion can be explained by a combination of a change in field line mapping caused by the substorm current wedge and a tailward growth of the outer edge of the pileup region. We illustrate this scenario with a complex substorm and discuss some of the problems associated with this interpretation.

  3. Growth and mixing dynamics of mantle wedge plumes

    Science.gov (United States)

    Gorczyk, Weronika; Gerya, Taras V.; Connolly, James A. D.; Yuen, David A.

    2007-07-01

    Recent work suggests that hydrated partially molten thermal-chemical plumes that originate from subducted slab as a consequence of Rayleigh-Taylor instability are responsible for the heterogeneous composition of the mantle wedge. We use a two-dimensional ultrahigh-resolution numerical simulation involving 10 × 109 active markers to anticipate the detailed evolution of the internal structure of natural plumes beneath volcanic arcs in intraoceanic subduction settings. The plumes consist of partially molten hydrated peridotite, dry solid mantle, and subducted oceanic crust, which may compose as much as 12% of the plume. As plumes grow and mature these materials mix chaotically, resulting in attenuation and duplication of the original layering on scales of 1-1000 m. Comparison of numerical results with geological observations from the Horoman ultramafic complex in Japan suggests that mixing and differentiation processes related to development of partially molten plumes above slabs may be responsible for the strongly layered lithologically mixed (marble cake) structure of asthenospheric mantle wedges.

  4. Dying Flow Bursts as Generators of the Substorm Current Wedge

    Science.gov (United States)

    Haerendel, Gerhard

    2016-07-01

    Many theories or conjectures exist on the driver of the substorm current wedge, e.g. rerouting of the tail current, current disruption, flow braking, vortex formation, and current sheet collapse. Magnitude, spatial scale, and temporal development of the related magnetic perturbations suggest that the generator is related to the interaction of the flow bursts with the dipolar magnetosphere after onset of reconnection in the near-Earth tail. The question remains whether it is the flow energy that feeds the wedge current or the internal energy of the arriving plasma. In this presentation I argue for the latter. The current generation is attributed to the force exerted by the dipolarized magnetic field of the flow bursts on the preceding layer of high-beta plasma after flow braking. The generator current is the grad-B current at the outer boundary of the compressed high-beta plasma layers. It needs the sequential arrival of several flow bursts to account for duration and magnitude of the ionospheric closure current.

  5. An automated optical wedge calibrator for Dobson ozone spectrophotometers

    Science.gov (United States)

    Evans, R. D.; Komhyr, W. D.; Grass, R. D.

    1994-01-01

    The Dobson ozone spectrophotometer measures the difference of intensity between selected wavelengths in the ultraviolet. The method uses an optical attenuator (the 'Wedge') in this measurement. The knowledge of the relationship of the wedge position to the attenuation is critical to the correct calculation of ozone from the measurement. The procedure to determine this relationship is time-consuming, and requires a highly skilled person to perform it correctly. The relationship has been found to change with time. For reliable ozone values, the procedure should be done on a Dobson instrument at regular intervals. Due to the skill and time necessary to perform this procedure, many instruments have gone as long as 15 years between procedures. This article describes an apparatus that performs the procedure under computer control, and is adaptable to the majority of existing Dobson instruments. Part of the apparatus is usable for normal operation of the Dobson instrument, and would allow computer collection of the data and real-time ozone measurements.

  6. Commissioning Varian enhanced dynamic wedge in the PINNACLE treatment planning system using Gafchromic EBT film.

    Science.gov (United States)

    Fontanarosa, Davide; Orlandini, Lucia Clara; Andriani, Italo; Bernardi, Luca

    2009-10-01

    In external photon beam therapies, the technique of dynamic wedge is a well established method for dose inhomogeneity compensation. The introduction of the enhanced dynamic wedge (EDW) on Varian LINACs considerably improved the pre-existing techniques. In the process of commissioning a Varian LINAC into a PINNACLE3 treatment planning system (TPS), the user is required to import quite a few measurements of EDW profiles and percentage depth doses (PDDs). Standard measurement devices like ionization chambers in a water phantom are not the most indicated ones for this situation where each measurement point is obtained by integrating during the entire exposure: Measurements would result to be a very laborious and time consuming operation, most of the times not practically possible. The goal of the present work is to introduce an alternative and hands-on procedure to perform the measurements using a combination of GafchromicTM EBT films, irradiated sideways in one single shot for both profiles and PDDs, and a single standard ionization chamber. The scanned profiles obtained at different depths have easily been imported in the TPS; for the PDD measurements, a correction was proven necessary to account for a "self-shielding" effect introduced by the presence of the films themselves, when irradiated sideways, resulting in an underestimation of the dose at deeper depths. A correction curve was derived comparing TPS open field validated measurements with the curves extracted from GafchromicTM EBT films. Finally, the curve was applied to all the wedged fields PDD measurements and could minimize the errors. The comparison for the 15 MV photon beam between the measured and the calculated 48 profiles and 12 PDDs (field sizes from 5 x 5 to 20 x 20 cm2, wedge angles ranging from 15 degrees to 60 degrees) was acceptable. The confidence limit (CL) was used as fit indicator, as suggested by the ESTRO Booklet No. 7: For the investigated PDDs the maximum value was 6.40 in the build up

  7. Duality in nonlinear B$\\wedge$F models equivalence between self-dual and topologically massive Born-Infeld B$\\wedge$F models

    CERN Document Server

    Menezes, R; Ribeiro, R F; Wotzasek, C

    2002-01-01

    We study the dual equivalence between the nonlinear generalization of the self-dual ($NSD_{B\\wedge F}$) and the topologically massive $B\\wedge F$ models with particular emphasis on the nonlinear electrodynamics proposed by Born and Infeld. This is done through a dynamical gauge embedding of the nonlinear self-dual model yielding to a gauge invariant and dynamically equivalent theory. We clearly show that nonpolinomial $NSD_{B\\wedge F}$ models can be mapped, through a properly defined duality transformation, into $TM_{B\\wedge F}$ actions. The general result obtained is then particularized for a number of examples, including the Born-Infeld-BF (BIBF) model that has experienced a revival in the recent literature.

  8. Spatial and temporal distribution of deformation at the front of the Andean orogenic wedge in Bolivia and implications for incremental wedge evolution

    Science.gov (United States)

    Weiss, J. R.; Brooks, B. A.; Vergani, G.; Arrowsmith, R.

    2012-12-01

    There is no consensus regarding how orogenic wedges accommodate deformation over seismo-tectonic timescales. Results from the Himalaya and Taiwan suggest differing mechanisms including localized deformation along a single wedge-front structure and distributed shortening across multiple structures respectively. Here we provide the first detailed constraints on the distribution and timing of deformation at the front of the Andean orogenic wedge using industry acquired seismic reflection data from the ~500-km-long thin-skinned fold-and-thrust belt of the Bolivian Subandes (BSA). Almost no information exists on the recent history of BSA wedge-front deformation despite the presence of multiple ~10-m-high topographic scarps on Holocene surfaces and a recent analysis of the GPS-derived velocity field, which suggests the frontal Mandeyapecua thrust fault system (MTFS) is capable of >Mw 8 earthquakes. We use stratigraphic relationships across fault-related folds to depict the onset of deformation for the complete suite of structures comprising the MTFS. For each structure we determine the uncertainty in timing using an envelope of seismic velocity models from ~70 well-logs and published Quaternary sedimentation rates for the region. We further explore fault geometry and fault slip parameters associated with the displacement field of seismic reflection horizons using elastic dislocation theory. Our analyses reveal the presence of at least eight distinct fault segments comprising the MTFS, including previously unrecognized subsurface thrust faults that have been active since ~1 Ma. Shortening rates are generally higher across the younger, northern portion of the fault system but across-strike, in a ~50-km-wide zone from west to east, no distinct pattern of deformation migration exists. We estimate the percentage of whole-wedge deformation accommodated by wedge-front structures using our new fault slip rates combined with the wedge-loading rate of ~10 mm/yr and place our

  9. Investigation of a Wedge Adhesion Test for Edge Seals

    Energy Technology Data Exchange (ETDEWEB)

    Kempe, Michael; Wohlgemuth, John; Miller, David; Postak, Lori; Booth, Dennis; Phillips, Nancy

    2016-09-26

    Many photovoltaic (PV) technologies have been found to be sensitive to moisture that diffuses into a PV package. Even with the use of impermeable frontsheets and backsheets, moisture can penetrate from the edges of a module. To limit this moisture ingress pathway from occurring, manufacturers often use a low permeability polyisobutylene (PIB) based edge seal filled with desiccant to further restrict moisture ingress. Moisture ingress studies have shown that these materials are capable of blocking moisture for the 25-year life of a module; but to do so, they must remain well-adhered and free of cracks. This work focuses on adapting the Boeing Wedge test for use with edge seals laminated using glass substrates as part of a strategy to assess the long-term durability of edge seals. The advantage of this method is that it duplicates the residual stresses and strains that a glass/glass module may have when the lamination process results in some residual glass bending that puts the perimeter in tension. Additionally, this method allows one to simultaneously expose the material to thermal stress, humidity, mechanical stress, and ultraviolet radiation. The disadvantage of this method generally is that we are limited by the fracture toughness of the glass substrates that the edge seal is adhered to. However, the low toughness of typical uncrosslinked or sparsely crosslinked PIB makes them suitable for this technique. We present data obtained during the development of the wedge test for use with PV edge seal materials. This includes development of the measuring techniques and evaluation of the test method with relevant materials. We find consistent data within a given experiment, along with the theoretical independence of fracture toughness measurements with wedge thickness. This indicates that the test methodology is reproducible. However, even though individual experimental sets are consistent, the reproducibility between experimental sets is poor. We believe this may be

  10. Investigation of a wedge adhesion test for edge seals

    Science.gov (United States)

    Kempe, Michael; Wohlgemuth, John; Miller, David; Postak, Lori; Booth, Dennis; Phillips, Nancy

    2016-09-01

    Many photovoltaic (PV) technologies have been found to be sensitive to moisture that diffuses into a PV package. Even with the use of impermeable frontsheets and backsheets, moisture can penetrate from the edges of a module. To limit this moisture ingress pathway from occurring, manufacturers often use a low permeability polyisobutylene (PIB) based edge seal filled with desiccant to further restrict moisture ingress. Moisture ingress studies have shown that these materials are capable of blocking moisture for the 25-year life of a module; but to do so, they must remain well-adhered and free of cracks. This work focuses on adapting the Boeing Wedge test for use with edge seals laminated using glass substrates as part of a strategy to assess the long-term durability of edge seals. The advantage of this method is that it duplicates the residual stresses and strains that a glass/glass module may have when the lamination process results in some residual glass bending that puts the perimeter in tension. Additionally, this method allows one to simultaneously expose the material to thermal stress, humidity, mechanical stress, and ultraviolet radiation. The disadvantage of this method generally is that we are limited by the fracture toughness of the glass substrates that the edge seal is adhered to. However, the low toughness of typical uncrosslinked or sparsely crosslinked PIB makes them suitable for this technique. We present data obtained during the development of the wedge test for use with PV edge seal materials. This includes development of the measuring techniques and evaluation of the test method with relevant materials. We find consistent data within a given experiment, along with the theoretical independence of fracture toughness measurements with wedge thickness. This indicates that the test methodology is reproducible. However, even though individual experimental sets are consistent, the reproducibility between experimental sets is poor. We believe this may be

  11. Revisit the classical Newmark displacement method for earthquake-induced wedge slide

    Science.gov (United States)

    Yang, Che-Ming; Cheng, Hui-Yun; Wu, Wen-Jie; Hsu, Chang-Hsuan; Dong, Jia-Jyun; Lee, Chyi-Tyi

    2016-04-01

    Newmark displacement method has been widely used to study the earthquake-induced landslides and adopted to explore the initiation and kinematics of catastrophic planar failure in recent years. However, surprisingly few researchers utilize the Newmark displacement method to study the earthquake-induced wedge slide. The classical Newmark displacement method for earthquake-induced wedge sliding assumed the wedge is rigid and the vertical acceleration, as well as the horizontal acceleration perpendicular to the sliding direction, is neglected. Moreover, the friction coefficients on the weak planes are assumed as unchanged during sliding. The purpose of this study is to test the reasonableness of the aforementioned assumptions. This study uses Newmark displacement method incorporating the rigid wedge method (RWM) and maximum shear stress method (MSSM) to evaluate the influence of wedge deformation. We design the geometry of the wedge and input the synthetic seismicity to trigger the wedge slide. The influence for neglecting the vertical and horizontal (perpendicular to the sliding direction) accelerations is also assessed. Besides, this research incorporates the velocity-displacement dependent friction law in the analysis to evaluate the influence of constant friction coefficient assumption. Result of this study illustrated that the aforementioned assumptions have significant effects on the calculated permeant displacement, moving speed, and failure initiation. To conclude, this study provides new insights on the initiation and kinematics of an earthquake induced wedge slide.

  12. First direct dating of Late Pleistocene ice-wedges by AMS

    NARCIS (Netherlands)

    Vasil'chuk, YK; van der Plicht, J; Jungner, H; Sonninen, E; Vasil'chuk, AC; Vasil'chuk, Yurij K.; Vasil'chuk, Alla C.

    2000-01-01

    We present the first direct dating by C-14-accelerator mass spectrometry of three Late Pleistocene syngenetic ice-wedges from the Seyaha cross-section. They are representative of permafrost with multistage ice-wedges from the North of Western Siberia. The most important result is the clear vertical

  13. Immediate and 1 week effects of laterally wedge insoles on gait biomechanics in healthy females.

    Science.gov (United States)

    Weinhandl, Joshua T; Sudheimer, Sarah E; Van Lunen, Bonnie L; Stewart, Kimberly; Hoch, Matthew C

    2016-03-01

    It is estimated that approximately 45% of the U.S. population will develop knee osteoarthritis, a disease that creates significant economic burdens in both direct and indirect costs. Laterally wedged insoles have been frequently recommended to reduce knee abduction moments and to manage knee osteoarthritis. However, it remains unknown whether the lateral wedge will reduce knee abduction moments over a prolonged period of time. Thus, the purposes of this study were to (1) examine the immediate effects of a laterally wedged insole in individuals normally aligned knees and (2) determine prolonged effects after the insole was worn for 1 week. Gait analysis was performed on ten women with and without a laterally wedged insole. After participants wore the wedges for a week, a second gait analysis was performed with and without the insole. The wedged insole did not affect peak knee abduction moment, although there was a significant increase in knee abduction angular impulse after wearing the insoles for 1 week. Furthermore, there was a significant increase in vertical ground reaction force at the instance of peak knee abduction moment with the wedges. While the laterally wedged insole used in the current study did not alter knee abduction moments as expected, other studies have shown alterations. Future studies should also examine a longer acclimation period, the influence of gait speed, and the effect of different shoe types with the insole.

  14. Pan-Arctic ice-wedge degradation in warming permafrost and its influence on tundra hydrology

    Science.gov (United States)

    Liljedahl, Anna K.; Boike, Julia; Daanen, Ronald P.; Fedorov, Alexander N.; Frost, Gerald V.; Grosse, Guido; Hinzman, Larry D.; Iijma, Yoshihiro; Jorgenson, Janet C.; Matveyeva, Nadya; Necsoiu, Marius; Raynolds, Martha K.; Romanovsky, Vladimir E.; Schulla, Jörg; Tape, Ken D.; Walker, Donald A.; Wilson, Cathy J.; Yabuki, Hironori; Zona, Donatella

    2016-04-01

    Ice wedges are common features of the subsurface in permafrost regions. They develop by repeated frost cracking and ice vein growth over hundreds to thousands of years. Ice-wedge formation causes the archetypal polygonal patterns seen in tundra across the Arctic landscape. Here we use field and remote sensing observations to document polygon succession due to ice-wedge degradation and trough development in ten Arctic localities over sub-decadal timescales. Initial thaw drains polygon centres and forms disconnected troughs that hold isolated ponds. Continued ice-wedge melting leads to increased trough connectivity and an overall draining of the landscape. We find that melting at the tops of ice wedges over recent decades and subsequent decimetre-scale ground subsidence is a widespread Arctic phenomenon. Although permafrost temperatures have been increasing gradually, we find that ice-wedge degradation is occurring on sub-decadal timescales. Our hydrological model simulations show that advanced ice-wedge degradation can significantly alter the water balance of lowland tundra by reducing inundation and increasing runoff, in particular due to changes in snow distribution as troughs form. We predict that ice-wedge degradation and the hydrological changes associated with the resulting differential ground subsidence will expand and amplify in rapidly warming permafrost regions.

  15. Duwamish Waterways Navigation Improvement Study: Analysis of Impacts on Water Quality and Salt Wedge Characteristics.

    Science.gov (United States)

    1981-02-01

    dissolved oxygen consumption in the saltwater wedge is emphasized. A section has also been prepared discussing sediment transport in the estuary...biomass produced and sedimented 23 1,000 800 00 0 400 Xi. . *-*’* 200 ox- :~. ---0 - .....’ ~ ’J FIGURE 6 Annual Dissolved Oxygen Consumption in the wedge

  16. Reflection of a converging cylindrical shock wave segment by a straight wedge

    Science.gov (United States)

    Gray, B.; Skews, B.

    2017-01-01

    As a converging cylindrical shock wave propagates over a wedge, the shock wave accelerates and the angle between the shock wave and the wedge decreases. This causes the conditions at the reflection point to move from what would be the irregular reflection domain for a straight shock wave into the regular reflection domain. This paper covers a largely qualitative study of the reflection of converging shock wave segments with Mach numbers between 1.2 and 2.1 by wedges inclined at angles between 15° and 60° from experimental and numerical results. The sonic condition conventionally used for predicting the type of reflection of straight shock waves was found to also be suitable for predicting the initial reflection of a curved shock wave. Initially regular reflections persisted until the shock was completely reflected by the wedge, whereas the triple point of initially irregular reflections was observed to return to the wedge surface, forming transitioned regular reflection. After the incident shock wave was completely reflected by the wedge, a shock wave focusing mechanism was observed to amplify the pressure on the surface of the wedge by a factor of up to 100 for low wedge angles.

  17. A quantum hybrid with a thin antenna at the vertex of a wedge

    Science.gov (United States)

    Carlone, Raffaele; Posilicano, Andrea

    2017-03-01

    We study the spectrum, resonances and scattering matrix of a quantum Hamiltonian on a "hybrid surface" consisting of a half-line attached by its endpoint to the vertex of a concave planar wedge. At the boundary of the wedge, outside the vertex, homogeneous Dirichlet conditions are imposed. The system is tunable by varying the measure of the angle at the vertex.

  18. Enhancement of linear and second-order hyperpolarizabilities in wedge-shaped nanostructures

    Science.gov (United States)

    Jayabalan, J.; Singh, Manoranjan P.; Rustagi, K. C.

    2003-08-01

    Analytical solutions for the wave functions for free electrons inside a wedge-shaped quantum dot are reported. For silver wedge-shaped quantum dots, linear and second-order hyperpolarizabilities are calculated for various apex angles. It is found that linear and nonlinear hyperpolarizabilities both increase with decreasing apex angle.

  19. Bonding mechanism of ultrasonic wedge bonding of copper wire on Au/Ni/Cu substrate

    Institute of Scientific and Technical Information of China (English)

    TIAN Yan-hong; WANG Chun-qing; Y. Norman ZHOU

    2008-01-01

    The ultrasonic wedge bonding with d25 μm copper wire was achieved on Au/Ni plated Cu substrate at ambient temperature. Ultrasonic wedge bonding mechanism was investigated by using SEM/EDX, pull test, shear test and microhardness test. The results show that the thinning of the Au layer occurs directly below the center of the bonding tool with the bonding power increasing. The interdiffusion between copper wire and Au metallization during the wedge bonding is assumed negligible, and the wedge bonding is achieved by wear action induced by ultrasonic vibration. The ultrasonic power contributes to enhance the deformation of copper wire due to ultrasonic softening effect which is then followed by the strain hardening of the copper wedge bonding.

  20. Two-dimensional electronic spectroscopy with birefringent wedges

    Energy Technology Data Exchange (ETDEWEB)

    Réhault, Julien; Maiuri, Margherita; Oriana, Aurelio; Cerullo, Giulio [IFN-CNR, Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano (Italy)

    2014-12-15

    We present a simple experimental setup for performing two-dimensional (2D) electronic spectroscopy in the partially collinear pump-probe geometry. The setup uses a sequence of birefringent wedges to create and delay a pair of phase-locked, collinear pump pulses, with extremely high phase stability and reproducibility. Continuous delay scanning is possible without any active stabilization or position tracking, and allows to record rapidly and easily 2D spectra. The setup works over a broad spectral range from the ultraviolet to the near-IR, it is compatible with few-optical-cycle pulses and can be easily reconfigured to two-colour operation. A simple method for scattering suppression is also introduced. As a proof of principle, we present degenerate and two-color 2D spectra of the light-harvesting complex 1 of purple bacteria.

  1. Fatigue crack behaviour: comparing three-point bend test and wedge splitting test data on vibrated concrete using Paris' law

    Directory of Open Access Journals (Sweden)

    S. Seitl

    2017-01-01

    Full Text Available The fatigue behaviour of concrete has become more important for the design of constructions due to the desire to build slimmer structures, which are more sensitive to fatigue loading. This article aims to evaluate and compare the fatigue crack propagation rate in vibrated concrete for four different stress ratios using the Paris-Erdogan law. The data evaluation in this article is based on crack mouth opening displacement (CMOD measurements from cyclic three-point bending tests on single edge notched beams and from wedge splitting tests on notched cubes, obtained from experiments at Ghent University. For this study, finite element analysis is used to obtain a mathematical relationship between the CMOD and the relative crack length a/W, as well as a relationship between the stress intensity ratio ∆K and a/W. The obtained mathematical relationships were then combined with the measured CMOD values to correlate the test data to the Paris-Erdogan law. Herein, the crack propagation rate da/dN is plotted against the corresponding stress intensity range ∆K in a log-log graph. In a final step, the Paris-Erdogan law parameters C and m were obtained through linear curve fitting on the data points from the obtained graphs. The parameters C and m are then used to compare and evaluate the fatigue crack behavior in vibrated concrete, and the differences between the results from the three-point bend tests and wedge splitting tests.

  2. Vertebral body or intervertebral disc wedging: which contributes more to thoracolumbar kyphosis in ankylosing spondylitis patients?

    Science.gov (United States)

    Liu, Hao; Qian, Bang-Ping; Qiu, Yong; Wang, Yan; Wang, Bin; Yu, Yang; Zhu, Ze-Zhang

    2016-01-01

    Abstract Both vertebral body wedging and disc wedging are found in ankylosing spondylitis (AS) patients with thoracolumbar kyphosis. However, their relative contribution to thoracolumbar kyphosis is not fully understood. The objective of this study was to compare different contributions of vertebral and disc wedging to the thoracolumbar kyphosis in AS patients, and to analyze the relationship between the apical vertebral wedging angle and thoracolumbar kyphosis. From October 2009 to October 2013, a total of 59 consecutive AS patients with thoracolumbar kyphosis with a mean age of 38.1 years were recruited in this study. Based on global kyphosis (GK), 26 patients with GK < 70° were assigned to group A, and the other 33 patients with GK ≥ 70° were included in group B. Each GK was divided into disc wedge angles and vertebral wedge angles. The wedging angle of each disc and vertebra comprising the thoracolumbar kyphosis was measured, and the proportion of the wedging angle to the GK was calculated accordingly. Intergroup and intragroup comparisons were subsequently performed to investigate the different contributions of disc and vertebra to the GK. The correlation between the apical vertebral wedging angle and GK was calculated by Pearson correlation analysis. The duration of disease and sex were also recorded in this study. With respect to the mean disease duration, significant difference was observed between the two groups (P < 0.01). The wedging angle and wedging percentage of discs were significantly higher than those of vertebrae in group A (34.8° ± 2.5° vs 26.7° ± 2.7°, P < 0.01 and 56.6% vs 43.4%, P < 0.01), whereas disc wedging and disc wedging percentage were significantly lower than vertebrae in group B (37.6° ± 7.0° vs 50.1° ± 5.1°, P < 0.01 and 42.7% vs 57.3%, P < 0.01). The wedging of vertebrae was significantly higher in group B than in group A (50.1° ± 5.1° vs 26.7° ± 2.7°, P < 0

  3. Biomechanical effects of lateral and medial wedge insoles on unilateral weight bearing.

    Science.gov (United States)

    Sawada, Tomonori; Kito, Nobuhiro; Yukimune, Masaki; Tokuda, Kazuki; Tanimoto, Kenji; Anan, Masaya; Takahashi, Makoto; Shinkoda, Koichi

    2016-01-01

    [Purpose] Lateral wedge insoles reduce the peak external knee adduction moment and are advocated for patients with knee osteoarthritis. However, some patients demonstrate adverse biomechanical effects with treatment. In this study, we examined the immediate effects of lateral and medial wedge insoles under unilateral weight bearing. [Subjects and Methods] Thirty healthy young adults participated in this study. The subjects were assessed by using the foot posture index, and were divided into three groups: normal foot, pronated foot, and supinated foot groups. The knee adduction moment and knee-ground reaction force lever arm under the studied conditions were measured by using a three-dimensional motion capture system and force plates. [Results] In the normal and pronated groups, the change in knee adduction moment significantly decreased under the lateral wedge insole condition compared with the medial wedge insole condition. In the normal group, the change in the knee-ground reaction force lever arm also significantly decreased under the lateral wedge insole condition than under the medial wedge insole condition. [Conclusion] Lateral wedge insoles significantly reduced the knee adduction moment and knee-ground reaction force lever arm during unilateral weight bearing in subjects with normal feet, and the biomechanical effects varied according to individual foot alignment.

  4. Verification of Varian Enhanced Dynamic Wedge implementation in masterplan treatment planning system.

    Science.gov (United States)

    Pasquino, Massimo; Casanova Borca, Valeria; Tofani, Santi; Ozzello, Franca

    2009-04-22

    This paper investigates the accuracy of the two available calculation algorithms of the Oncentra MasterPlan three-dimensional treatment planning system (TPS)-- the pencil beam method and collapsed-cone convolution--in modeling the Varian enhanced dynamic wedge (EDW). Measurements were carried out for a dual high energy (6-15 MV) Varian DHX-S linear accelerator using ionization chambers for beam axis measurements (wedge factors and depth doses), film dosimetry for off-axis dose profiles measurements, and a diode matrix detector for two dimensional absolute dose distributions. Using both calculation algorithms, different configuration of symmetric and asymmetric fields varying the wedge's angle were tested. Accuracy of the treatment planning system was evaluated in terms of percentage differences between measured and calculated values for wedge factors, depth doses, and profiles. As far as the absolute dose distribution was concerned, the gamma index method (Low et al.) was used with 3% and 3 mm as acceptance criteria for dose difference and distance-to-agreement, respectively. Wedge factors and percentage depth doses were within 1% deviation between calculated and measured values. The comparison of measured and calculated dose profiles shows that the Van Dyk's acceptance criteria (Van Dyk et al.) are generally met; a disagreement can be noted for large wedge angles and field size limited to the low dose-low gradient region only. The 2D absolute dose distribution analysis confirms the good accuracy of the two calculation algorithms in modeling the enhanced dynamic wedge.

  5. Measured Two-Dimensional Ice-Wedge Polygon Thermal Dynamics

    Science.gov (United States)

    Cable, William; Romanovsky, Vladimir; Busey, Robert

    2016-04-01

    Ice-wedge polygons are perhaps the most dominant permafrost related features in the arctic landscape. The microtopography of these features, that includes rims, troughs, and high and low polygon centers, alters the local hydrology, as water tends to collect in the low areas. During winter, wind redistribution of snow leads to an increased snowpack depth in the low areas, while the slightly higher areas often have very thin snow cover, leading to differences across the landscape in vegetation communities and soil moisture between higher and lower areas. These differences in local surface conditions lead to spatial variability of the ground thermal regime in the different microtopographic areas and between different types of ice-wedge polygons. To study these features in depth, we established temperature transects across four different types of ice-wedge polygons near Barrow, Alaska. The transects were composed of five vertical array thermistor probes (VATP) beginning in the center of each polygon and extending through the trough to the rim of the adjacent polygon. Each VATP had 16 thermistors from the surface to a depth of 1.5 m. In addition to these 80 subsurface temperature measurement points per polygon, soil moisture, thermal conductivity, heat flux, and snow depth were all measured in multiple locations for each polygon. Above ground, a full suite of micrometeorological instrumentation was present at each polygon. Data from these sites has been collected continuously for the last three years. We found snow cover, timing and depth, and active layer soil moisture to be major controlling factors in the observed thermal regimes. In troughs and in the centers of low-center polygons, the combined effect of typically saturated soils and increased snow accumulation resulted in the highest mean annual ground temperatures (MAGT). Additionally, these areas were the last part of the polygon to refreeze during the winter. However, increased active layer thickness was not

  6. Metastable olivine wedge beneath northeast China and its applications

    Science.gov (United States)

    Jiang, G.; Zhao, D.; Zhang, G.

    2013-12-01

    When the Pacific slab subducted into the mantle transition zone, there might exist a metastable olivine wedge (MOW) inside the slab due to the phase transition. Lots of researchers have adopted such various methods to detect the characteristics of this MOW as the forward modeling of travel times, shear wave amplitude patterns, teleseismic P wave coda, receiver function imaging, thermodynamic simulation and so on. Almost all results could be more or less affected by the source, the receiver and/or the velocity model passed through by the seismic rays. In this study, we have used 21 deep earthquakes, greater than 400 km and locating beneath northeast China, to study the velocity within the MOW. For more precisions, we have done further modifications in two ways based on our previous studies. (1) Double-difference location method is used to relocate all events with an error of 1-2 km with the data recorded by stations both at northeast China and at Japan. All relocated events locate in a zone about 30 km away from the upper boundary of Pacific slab. (2) Double residual travel times, generated by an event-pair at a common station at only Japan, are used to constrain the velocity anomaly rather than the residuals themselves. As a result, we have found that an ultra-lower velocity zone (ULVZ), averagely -7% relative to the iasp91 model, exists within the subducted Pacific slab around the deep earthquakes, which might be represented as the metastable olivine wedge. Because of the lower-velocity corresponding to the lower-density, the MOW would provide upward buoyancy forces which might prevent the slab from free subduction into the mantle transition zone. This feed-back mechanism of MOW to the slab is called ';parachute-effect', which is characterized by other researchers. In addition, the existence of the ULVZ or the MOW in the slab may supply a possible mechanism for triggering deep earthquakes, called ';phase transformation faulting', which was already proposed few

  7. Deformation processes in orogenic wedges: New methods and application to Northwestern Washington State

    Science.gov (United States)

    Thissen, Christopher J.

    is essentially two-dimensional. We use this constraint to develop a suite of orogenic deformation models that use slab height and erosion rate data as boundary conditions. We use the models to show that influx of sediments distributed along an accretionary front can greatly reduce deformation required to maintain wedge taper. Due to the two-dimensional nature of deformation in the Olympics, a series of two-dimensional transects across the peninsula provides an approximation for non-elastic deformation across the Peninsula. We show how the shallow slab height and deeper exhumation at the core of peninsula led to the domal structure of the Olympics. This model also explains the counter-clockwise vertical axis rotations north of the peninsula, and clockwise rotations south of the peninsula through horizontal shear, similar to opening a gate. Finally, the horizontal surface velocities predicted by the models suggests that up to 15% of GPS velocities may reflect non-elastic, permanent translation of material towards the rear of the wedge.

  8. Clinical implementation of enhanced dynamic wedges into the Pinnacle treatment planning system: Monte Carlo validation and patient-specific QA

    Science.gov (United States)

    Ahmad, Munir; Deng, Jun; Lund, Molly W.; Chen, Zhe; Kimmett, James; Moran, Meena S.; Nath, Ravinder

    2009-01-01

    The goal of this work is to present a systematic Monte Carlo validation study on the clinical implementation of the enhanced dynamic wedges (EDWs) into the Pinnacle3 (Philips Medical Systems, Fitchburg, WI) treatment planning system (TPS) and QA procedures for patient plan verification treated with EDWs. Modeling of EDW beams in the Pinnacle3 TPS, which employs a collapsed-cone convolution superposition (CCCS) dose model, was based on a combination of measured open-beam data and the 'Golden Segmented Treatment Table' (GSTT) provided by Varian for each photon beam energy. To validate EDW models, dose profiles of 6 and 10 MV photon beams from a Clinac 2100 C/D were measured in virtual water at depths from near-surface to 30 cm for a wide range of field sizes and wedge angles using the Profiler 2 (Sun Nuclear Corporation, Melbourne, FL) diode array system. The EDW output factors (EDWOFs) for square fields from 4 to 20 cm wide were measured in virtual water using a small-volume Farmer-type ionization chamber placed at a depth of 10 cm on the central axis. Furthermore, the 6 and 10 MV photon beams emerging from the treatment head of Clinac 2100 C/D were fully modeled and the central-axis depth doses, the off-axis dose profiles and the output factors in water for open and dynamically wedged fields were calculated using the Monte Carlo (MC) package EGS4. Our results have shown that (1) both the central-axis depth doses and the off-axis dose profiles of various EDWs computed with the CCCS dose model and MC simulations showed good agreement with the measurements to within 2%/2 mm; (2) measured EDWOFs used for monitor-unit calculation in Pinnacle3 TPS agreed well with the CCCS and MC predictions within 2%; (3) all the EDW fields satisfied our validation criteria of 1% relative dose difference and 2 mm distance-to-agreement (DTA) with 99-100% passing rate in routine patient treatment plan verification using MapCheck 2D diode array.

  9. One-way successive plate cross wedge rolling machine

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    In our last paper(Sci China Ser E-Tech Sci,2009,52(11):3117-3121) we designed the precision forming machine with rolling plate CWR(cross wedge rolling).This kind of machine colligates the advantages of high rigidity and small floor space for roller CWR machine and those of simple die manufacture and high precision for plate CWR machine.At the same time,it abandons the shortcomings of complex die manufacture and poor precision for roller CWR machine,and those of poor rigidity and large floor space for plate CWR machine.During rolling,the upper and lower rolling plates of the machine make reciprocating slide toward or away from each other,so the inertial forces should be overcome,which will cause great energy loss,besides,large floor space is needed when the rolled workpiece is large.In order to solve the above problems,this paper presents the one-way successive plate CWR machine,whose rolling plates need not make reciprocating slide.Hence,it has high energy utilization efficiency and production efficiency.Furthermore,the roll scale can be removed automatically.In particular,the machine can produce large axisymmetrical workpieces.

  10. Lateral closed wedge osteotomy for cubitus varus deformity

    Directory of Open Access Journals (Sweden)

    Srivastava Amit

    2008-01-01

    Full Text Available Background: Lateral closed wedge (LCW osteotomy is a commonly accepted method for the correction of the cubitus varus deformity. The fixation of osteotomy is required to prevent loss of correction achieved. The fixation of the osteotomy by the two screw and figure of eight wire is not stable enough to maintain the correction achieved during surgery. In this prospective study we supplemented the fixation by Kirschner′s (K- wires for stable fixation and evaluated the results. Materials and Methods: Twenty-one cases of the cubitus varus deformity following supracondylar fractures of the humerus were operated by LCW osteotomy during February 2001 to June 2006. The mean age of the patients at the time of corrective surgery was 8.5 years (range 6.6-14 years. The osteotomy was fixed by two screws with figure of eight tension band wire between them and the fixation was supplemented by passing two to three K-wires from the lateral condyle engaging the proximal medial cortex through the osteotomy site. Result: The mean follow-up period was 2.5 years (range seven months to 3.4 years. The results were assessed as per Morrey criteria. Eighteen cases showed excellent results and three cases showed good results. Two cases had superficial pin tract infection. Conclusion: The additional fixation by K wires controls rotational forces effectively besides angulation and translation forces and maintains the correction achieved peroperatively.

  11. Sinking, wedging, spreading - viscous spreading on a layer of fluid

    Science.gov (United States)

    Bergemann, Nico; Juel, Anne; Heil, Matthias

    2016-11-01

    We study the axisymmetric spreading of a sessile drop on a pre-existing layer of the same fluid in a regime where the drop is sufficiently large so that the spreading is driven by gravity while capillary and inertial effects are negligible. Experiments performed with 5 ml drops and layer thicknesses in the range 0.1 mm drop evolves as R tn , where the spreading exponent n increases with the layer thickness h. Numerical simulations, based on the axisymmetric free-surface Navier-Stokes equations, reveal three distinct spreading regimes depending on the layer thickness. For thick layers the drop sinks into the layer, accompanied by significant flow in the layer. By contrast, for thin layers the layer ahead of the propagating front is at rest and the spreading behaviour resembles that of a gravity-driven drop spreading on a dry substrate. In the intermediate regime the spreading is characterised by an advancing wedge, which is sustained by fluid flow from the drop into the layer.

  12. Precision forming machine with rolling plate cross wedge rolling

    Institute of Scientific and Technical Information of China (English)

    SONG YuQuan; LI ZhiGang; WANG MingHui; GUAN XiaoFang

    2009-01-01

    Roller cross wedge rolling (CWR) machines have high rigidity, but sector dies are difficult to process.Plate CWR machines have low rigidity and need large floor space, but plate dies are easy to process.Neither roller CWR machine nor plate CWR machine can produce larger workpieces.Based on the above conclusions, this paper presents the mechanical principle of the precision forming machine with rolling plate CWR.Then, its design principle and machine construction are presented.There are a top press roller above the upper sliding plate and a bottom press roller under the lower sliding plate.The press rollers make rolling contact with the sliding plates.The plate dies are mounted on the upper and lower sliding plates, respectively.Furthermore, the axes of both press rollers and centerline of work-piece always keep in the identical vertical plane during forming process.These make the machine re-tain advantages of high rigidity for roller CWR machine and simpleness of manufacturing dies for plate CWR machine, and abandon defects of poor rigidity for plate CWR machine and difficulty of manufac-turing dies for roller CWR machine.Moreover, the machine can produce larger workpieces.

  13. Precision forming machine with rolling plate cross wedge rolling

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Roller cross wedge rolling(CWR)machines have high rigidity, but sector dies are difficult to process. Plate CWR machines have low rigidity and need large floor space, but plate dies are easy to process. Neither roller CWR machine nor plate CWR machine can produce larger workpieces. Based on the above conclusions, this paper presents the mechanical principle of the precision forming machine with rolling plate CWR. Then, its design principle and machine construction are presented. There are a top press roller above the upper sliding plate and a bottom press roller under the lower sliding plate. The press rollers make rolling contact with the sliding plates. The plate dies are mounted on the upper and lower sliding plates, respectively. Furthermore, the axes of both press rollers and centerline of work-piece always keep in the identical vertical plane during forming process. These make the machine retain advantages of high rigidity for roller CWR machine and simpleness of manufacturing dies for plate CWR machine, and abandon defects of poor rigidity for plate CWR machine and difficulty of manufac-turing dies for roller CWR machine. Moreover, the machine can produce larger workpieces.

  14. Influence of intermolecular forces at critical-point wedge filling.

    Science.gov (United States)

    Malijevský, Alexandr; Parry, Andrew O

    2016-04-01

    We use microscopic density functional theory to study filling transitions in systems with long-ranged wall-fluid and short-ranged fluid-fluid forces occurring in a right-angle wedge. By changing the strength of the wall-fluid interaction we can induce both wetting and filling transitions over a wide range of temperatures and study the order of these transitions. At low temperatures we find that both wetting and filling transitions are first order in keeping with predictions of simple local effective Hamiltonian models. However close to the bulk critical point the filling transition is observed to be continuous even though the wetting transition remains first order and the wetting binding potential still exhibits a small activation barrier. The critical singularities for adsorption for the continuous filling transitions depend on whether retarded or nonretarded wall-fluid forces are present and are in excellent agreement with predictions of effective Hamiltonian theory even though the change in the order of the transition was not anticipated.

  15. Influence of intermolecular forces at critical-point wedge filling

    Science.gov (United States)

    Malijevský, Alexandr; Parry, Andrew O.

    2016-04-01

    We use microscopic density functional theory to study filling transitions in systems with long-ranged wall-fluid and short-ranged fluid-fluid forces occurring in a right-angle wedge. By changing the strength of the wall-fluid interaction we can induce both wetting and filling transitions over a wide range of temperatures and study the order of these transitions. At low temperatures we find that both wetting and filling transitions are first order in keeping with predictions of simple local effective Hamiltonian models. However close to the bulk critical point the filling transition is observed to be continuous even though the wetting transition remains first order and the wetting binding potential still exhibits a small activation barrier. The critical singularities for adsorption for the continuous filling transitions depend on whether retarded or nonretarded wall-fluid forces are present and are in excellent agreement with predictions of effective Hamiltonian theory even though the change in the order of the transition was not anticipated.

  16. Development of Cone Wedge Ring Expansion Test to Evaluate Mechanical Properties of Clad Tubing Structure

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Jy-An John [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-10-01

    To determine the hoop tensile properties of irradiated fuel cladding in a hot cell, a cone wedge ring expansion test method was developed. A four-piece wedge insert was designed with tapered angles matched to the cone shape of a loading piston. The ring specimen was expanded in the radial direction by the lateral expansion of the wedges under the downward movement of the piston. The advantages of the proposed method are that implementation of the test setup in a hot cell is simple and easy, and that it enables a direct strain measurement of the test specimen from the piston’s vertical displacement soon after the wedge-clad contact resistance is initiated.

  17. Fabrication and Determination of Refractive Index Profile of the Planar Waveguides by Wedge Technique

    Institute of Scientific and Technical Information of China (English)

    S.; M.; R.; Sadat; Hosseini; A.; Darudi

    2003-01-01

    Several planar waveguides have been fabricated. The waveguides have been polished for determination of their refractive index profiles (RIP) by wedge method. The RIP determined by inserting the sample in a Mach-Zehnder interferometer and applying fringe analysis methods.

  18. Fabrication and Determination of Refractive Index Profile of the Planar Waveguides by Wedge Technique

    Institute of Scientific and Technical Information of China (English)

    S. M. R. Sadat Hosseini; A. Darudi

    2003-01-01

    Several planar waveguides have been fabricated. The waveguides have been polished for determination of their refractiveindex profiles (RIP) by wedge method. The RIP determined by inserting the sample in a Mach-Zehnder interferometer andapplying fringe analysis methods.

  19. Experimental and Numerical Procedures of a Sonar Platform with a Sound Absorption Wedge

    Institute of Scientific and Technical Information of China (English)

    Danzhu Yu; Xiongliang Yao; Shaoshi Dai

    2011-01-01

    Experiments involving a sonar platform with a sound absorption wedge were carried out for the purpose of obtaining the low frequency acoustic characteristics.Acoustic characteristics of a sonar platform model with a sound absorption wedge were measured,and the effects of different wedge laid areas on platform acoustic characteristic were tested.Vibration acceleration and self-noise caused by model vibration were measured in four conditions:0%,36%,60%,and 100% of wedge laid area when the sonar platform was under a single frequency excitation force.An experiment was performed to validate a corresponding numerical calculation.The numerical vibration characteristics of platform area were calculated by the finite element method,and self-noise caused by the vibration in it was predicted by an experiential formula.The conclusions prove that the numerical calculation method can partially replace the experimental process for obtaining vibration and sound characteristics.

  20. Study on Mach stems induced by interaction of planar shock waves on two intersecting wedges

    Institute of Scientific and Technical Information of China (English)

    Gaoxiang Xiang; Chun Wang; Honghui Teng; Yang Yang; Zonglin Jiang

    2016-01-01

    The properties of Mach stems in hypersonic corner flow induced by Mach interaction over 3D inter-secting wedges were studied theoretically and numerically. A new method called “spatial dimension reduction” was used to analyze theoretically the location and Mach num-ber behind Mach stems. By using this approach, the problem of 3D steady shock/shock interaction over 3D intersecting wedges was transformed into a 2D moving one on cross sec-tions, which can be solved by shock-polar theory and shock dynamics theory. The properties of Mach interaction over 3D intersecting wedges can be analyzed with the new method, including pressure, temperature, density in the vicinity of triple points, location, and Mach number behind Mach stems. Theoretical results were compared with numerical results, and good agreement was obtained. Also, the influence of Mach number and wedge angle on the properties of a 3D Mach stem was studied.

  1. Statics of Magnetic Fluid Drop with Compound Magnetic Core in a Wedge-Shaped Channel

    Directory of Open Access Journals (Sweden)

    V. Bashtovoi

    2013-12-01

    Full Text Available A behavior of magnetic fluid drop with compound magnetic core in a wedge-shaped channel was studied experimentally. The study examines influence of magnetic fluid properties, its volume and magnetic field on statics of the system compound magnet – magnetic fluid drop in wedge-shaped channel. The possibility to change the static conditions of such system by altering magnetic field of the core was observed

  2. Comparison of the homogeneity of breast dose distributions with and without the medial wedge.

    Science.gov (United States)

    Ikner, C L; Russo, R; Podgorsak, M B; Proulx, G M; Lee, R J

    1998-01-01

    Radiation of the intact breast often requires medial and lateral wedges to improve dose homogeneity of its pyramidal shape and to achieve acceptable cosmesis. There is some concern that radiation scatter from the medial wedge may contribute to cancer in the uninvolved breast, yet treatment without the medial wedge is associated with inhomogeneity of magnitudes that affect cosmesis. These homogeneities are identified on treatment plans generated at the central axis (CAX). It is not known if comparing isodose curves at the central axis reflect homogeneity in superior and inferior planes. A study was undertaken to both examine inhomogeneity with and without the medial wedge, and to determine if plan selection at the CAX was representative of homogeneity above and below the CAX. Ten consecutive patients with early breast cancers had cranial, CAX, and caudal CT images of each breast compared with two wedging conditions, lateral only (LW) and medial and lateral wedged conditions (dual wedges = DW). Dosimetry was optimized at the CAX for DW and LW conditions. Dose distributions and hot spots relative to prescribed dose were compared for cranial, CAX, and caudal images. Mean chest wall separations were measured. Six of ten patients had equivalent LW and DW distributions at the levels examined. Only one of these patients had a single off-axis hot spot > 20%. Six patients had comparable LW and DW dosimetry and acceptable hot spots at the central axis, as well as chest wall separations < or = 22 cm. In conclusion, if isodose configurations are commensurate at the CAX, these patients will have homogeneity above and below the CAX. In patients with chest wall separations < or = 22 cm, treatment without the medial wedge is feasible, sparing the contralateral breast dose with little compromise to inhomogeneity in the treated breast.

  3. The effect of foot orthoses and in-shoe wedges during cycling: a systematic review

    OpenAIRE

    Yeo, Boon K; Bonanno, Daniel R

    2014-01-01

    Background The use of foot orthoses and in-shoe wedges in cycling are largely based on theoretical benefits and anecdotal evidence. This review aimed to systematically collect all published research on this topic, critically evaluate the methods and summarise the findings. Methods Study inclusion criteria were: all empirical studies that evaluated the effects of foot orthoses or in-shoe wedges on cycling; outcome measures that investigated physiological parameters, kinematics and kinetics of ...

  4. Assessment of a multibeam Fizeau wedge interferometer for Doppler wind lidar.

    Science.gov (United States)

    McKay, Jack A

    2002-03-20

    The Fabry-Perot interferometer is the standard instrument for the direct detection Doppler lidar measurement of atmospheric wind speeds. The multibeam Fizeau wedge has some practical advantages over the Fabry-Perot, such as the linear fringe pattern, and is evaluated for this application. The optimal Fizeau must have a resolving power of 10(6) or more. As the multibeam Fizeau wedge is pushed to such high resolving power, the interference fringes of the device become complicated by asymmetry and secondary maxima. A simple condition for the interferometer plate reflectance, optical gap, and wedge angle reveals whether a set of parameters will yield simple, Airy-like fringes or complex Fizeau fringes. Tilting of the Fizeau wedge improves the fringe shape and permits an extension of the regime of Airy-like fringes to higher resolving power. Sufficient resolving power for the wind lidar application is shown to be possible with a large-gap, low-finesse multibeam Fizeau wedge. Liabilities of the multibeam Fizeau wedge in the wind lidar application include a smaller acceptance solid angle and calibration sensitivity to localized deviations of the plates from the ideal.

  5. Experimental study of slot jet impingement heat transfer on a wedge-shaped surface

    Science.gov (United States)

    Rahimi, Mostafa; Irani, Mohammad

    2012-12-01

    An experimental investigation was conducted to study the convective heat transfer rate from a wedge-shaped surface to a rectangular subsonic air jet impinging onto the apex of the wedge. The jet Reynolds number, nozzle-to-surface distance and the wedge angle were considered as the main parameters. Jet Reynolds number was ranged from 5,000 to 20,000 and two dimensionless nozzle-to-surface distances h/w = 4 and 10 were examined. The apex angle of the wedge ranged from 30° to 180° where the latter case corresponds with that of a flat surface. Velocity profile and turbulence intensity were provided for free jet flow using hot wire anemometer. Local and average Nusselt numbers on the impinged surface are presented for all the configurations. Based on the results presented, the local Nusselt number at the stagnation region increases as the wedge angle is decreased but, it then decreases over the remaining area of the impinged surface. Average Nusselt number over the whole surface is maximum when the wedge angle is 180° (i.e. plane surface) for any jet and nozzle-to-surface configuration.

  6. EFFECT OF SALT WEDGE INTRUSION IN KUSHIRO WETLAND CONSIDERING SEA LEVEL RISE

    Science.gov (United States)

    Nakamoto, Atsushi; Shintani, Tetsuya; Nakayama, Keisuke; Maruya, Yasuyuki; Ishida, Tetsuya; Houmura, Kenichi

    This paper describes the effect of sea-level rise (SLR) on the salt wedge intrusion in terms of ecological system in Kushiro wetland. Kushiro wetland was registered by Ramsar Treaty and the largest wetland in Japan. A previous study demonstrates that the salt wedge intrusion may not affect ecological system of Kushiro wetland, such as loss of freshwater plants along Kushiro River. However, it is revealed that SLR may occur in the end of the 21st century, which enhances the increase in the distance of the salt wedge intrusion along Kushiro River and the loss of endangered species of Kushiro wetland along Kushiro River. This study thus aims to investigate the influence of the salt wedge intrusion on freshwater plants along Kushiro River, and to clarify the salt wedge intrusion when SLR occurs due to climate change. We attempted to investigate the influence of SLR on endangered species along Kyu-Kushiro River in which sea water is likely to intrude up to about 8 km from the river mouth. As results, it is suggested from field observations that salinity may decrease freshwater plants along Kushiro River, and it clarifies the possibility that the salt wedge intrudes Kushiro River due to SLR by using 3D hydrodynamic model, Fantom3D.

  7. Improve the transconductance of a graphene field-effect transistor by folding graphene into a wedge

    Science.gov (United States)

    Cao, Guiming; Liu, Weihua; Cao, Meng; Li, Xin; Zhang, Anping; Wang, Xiaoli; Chen, Bangdao

    2016-07-01

    The transport property of a graphene wedge channel is studied theoretically and its leakage current through field emission is estimated when considering the effect of the internal electric field. The transconductance of the graphene transistor is improved from 0.016 to 0.321 μS μm-1 when the graphene is folded into a wedge (with angle of wedge π/6 and radius curvature 2.7 nm at the tip), while the wedge height is much smaller than the space between the top-gate and the channel. The improved transconductance is due to the locally enhanced electric field, which results in a potential well and causes electron accumulation at the wedge tip. The leakage current through field emission J FE shows a super-linear increase with the channel conductive current J DS, where overall the electron supply for the field emission at the wedge tip is improved by the channel bias voltage V DS.

  8. Active Aerothermoelastic Control of Hypersonic Double-wedge Lifting Surface

    Institute of Scientific and Technical Information of China (English)

    Laith K Abbas; Chen Qian; Piergiovanni Marzocca; Gürdal Zafer; Abdalla Mostafa

    2008-01-01

    Designing reentry space vehicles and high-speed aireraft requires special attention to the nonlinear thermoelastic and aerodynamic instability of their structural components. The thermal effects are important since temperature environment brings dramatic influences on the static and dynamic behaviors of flight structures in supersonic/hypersonic regimes and is likely to cause instability, catastrophic failure and oscillations resulting in structural failure due to fatigue. In order to understand the dynamic behaviors of these "hot"structures, a double-wedge lifting surface with combining freeplay and cubic structural nonlinearities in both plunging and pitching degrees-of-freedom operating in supersonic/hypersonic flight speed regimes has been analyzed. A third order piston theory aerodynamic isused to estimate the applied nonlinear unsteady aerodynamic loads. Also considered is the loss of torsiunal stiffness that may be incurredby lifting surfaces subject to axial stresses induced by aerodynamic heating. The aerodynamic heating effects are estimated based on theadiabatic wall temperature due to high speed airstreams. As a recently emerging technology, the active aerothermoelastic control isaimed at providing solutions to a large number of problems involving the aeronautica Faerospace flight vehicle structures. To preventsuch damaging phenomena from occurring, an application of linear and nonlinear active control methods on both flutter boundary andpost-flutter behavior has been fulfilled. In this paper, modeling issues as well as numerical simulation have been presented and pertinent conclusions outlined. It is evidenced that a serious loss of torsional stiffness may induce the dynamic instability; however active controlcan be used to expand the flutter boundary and convert unstable limit cycle oscillations (LCO) into the stable LCO and/or to shift the transition between these two states toward higher flight Mach numbers.

  9. Modes of continental extension in a lithospheric wedge

    Science.gov (United States)

    Wu, G.; Lavier, L. L.; Choi, E.

    2014-12-01

    We studied extension of a lithospheric wedge as an approximation to an orogenic belt or a continental margin. We ran a series of numerical models to quantify the effects of the strength of the lower crust and a mid-crustal shear zone (MCSZ) on the extension processes. When the MCSZ is present, we found that the regional lower crustal flow plays a critical role in controlling the modes of extension. The compensation is long-wavelength when the lower crust flows from the highest to the lowest elevation in order to compensate upper crustal thinning. In response to this motion, the mantle flows towards the highest elevation in order to balance for the lower crust leaving the area under the highest topography. For weak (wet quartz regime with partial melting) or intermediate (wet quartz regime), or strong (dry quartz regime) lower crust, we recognized three predominantly decoupled modes of extension characterized by 1) significant lower crustal exhumation exemplified as a large massif, 2) formation of core complexes and detachment faults, and 3) distributive domino faulting, respectively. Without the MCSZ, however, the lower crustal flow is essentially subdued with predominantly coupled extension. For weak or intermediate, or strong lower crust, we recognized three coupled modes characterized by 1) localized generally symmetric crustal exhumation, 2) distributed grabens and narrow rifts, and 3) wide continental margins, respectively. The MCSZ controls the degree of decoupling of the lower crustal flow such that a frictionally stronger MCSZ does not change the behaviors of the models but results in a more distributed extension. Due to the long-wavelength compensation, subhorizontal Moho is achieved where intensive extension occurred for all the decoupled models with a MCSZ. Natural counterparts for each mode may be easily identified, for instance, in the Basin and Range or the Aegean.

  10. Laboratory investigation of water extraction effects on saltwater wedge displacement

    Directory of Open Access Journals (Sweden)

    S. Noorabadi

    2017-12-01

    Full Text Available There is a close connection between saltwater intrusion into aquifers and groundwater extraction. Freshwater extraction in coastal aquifers is one of the most important reasons for the saltwater intrusion into these aquifers. Condition of extraction system such as well depth, discharge rate, saltwater concentration and etc. could affect this process widely. Thus, investigating different extraction conditions comprises many management advantages.  In the present study, the effects of freshwater extraction on saltwater interface displacement have been investigated in a laboratory box. Three different well depths (H were considered with combinations of 3 different extraction rates (Q and 3 saltwater concentrations (C for detailed investigation of the effects of these factors variations on saltwater displacement. SEAWAT model has been used to simulate all the scenarios to numerically study of the process. The experimental and numerical results showed that when the C and Q rates were small and the well depth was shallow, the saltwater interface wouldn’t reach the extraction well, so the extracted water remained uncontaminated. When the C and Q rates were increased and the well was deepened, the salinity of the extracted water became higher. When the Q and C rates were high enough, in the shallow well depth, the final concentration of the extracted water was low but a huge part of the porous media was contaminated by the saltwater, furthermore when the well was deepened enough, the final concentration of the extracted water was increased but a small part of the porous media was contaminated by the saltwater. Finally, the results showed that when the Q and H rates were high enough, the extraction well behaved like a barrier and didn’t allow the advancing saltwater wedge toe to be intruded beyond the wells.

  11. Three-dimensional vertebral wedging in mild and moderate adolescent idiopathic scoliosis.

    Directory of Open Access Journals (Sweden)

    Sophie-Anne Scherrer

    Full Text Available BACKGROUND: Vertebral wedging is associated with spinal deformity progression in adolescent idiopathic scoliosis. Reporting frontal and sagittal wedging separately could be misleading since these are projected values of a single three-dimensional deformation of the vertebral body. The objectives of this study were to determine if three-dimensional vertebral body wedging is present in mild scoliosis and if there are a preferential vertebral level, position and plane of deformation with increasing scoliotic severity. METHODOLOGY: Twenty-seven adolescent idiopathic scoliotic girls with mild to moderate Cobb angles (10° to 50° participated in this study. All subjects had at least one set of bi-planar radiographs taken with the EOS® X-ray imaging system prior to any treatment. Subjects were divided into two groups, separating the mild (under 20° from the moderate (20° and over spinal scoliotic deformities. Wedging was calculated in three different geometric planes with respect to the smallest edge of the vertebral body. RESULTS: Factorial analyses of variance revealed a main effect for the scoliosis severity but no main effect of vertebral Levels (apex and each of the three vertebrae above and below it (F = 1.78, p = 0.101. Main effects of vertebral Positions (apex and above or below it (F = 4.20, p = 0.015 and wedging Planes (F = 34.36, p<0.001 were also noted. Post-hoc analysis demonstrated a greater wedging in the inferior group of vertebrae (3.6° than the superior group (2.9°, p = 0.019 and a significantly greater wedging (p≤0.03 along the sagittal plane (4.3°. CONCLUSIONS: Vertebral wedging was present in mild scoliosis and increased as the scoliosis progressed. The greater wedging of the inferior group of vertebrae could be important in estimating the most distal vertebral segment to be restrained by bracing or to be fused in surgery. Largest vertebral body wedging values obtained in the sagittal plane support

  12. Process Based Explanations for Correlations Between the Structural and Seismic Segmentation of the Cascadia Subduction Wedge

    Science.gov (United States)

    Fuller, C. W.; Brandon, M. T.; Willett, S. D.

    2006-12-01

    Variations in the geological and geophysical characteristics of the Cascadia subduction wedge, the region between the trench and arc, result in along-strike wedge segmentation. We focus on explaining the large-scale structural segmentation and how processes causing this segmentation influence segmentation with respect to the seismic behavior of the wedge and subduction thrust. The relationships we develop illustrate the fundamental interplay of processes controlling long-term structure and short-term seismic behavior. Our conclusions are based on the results of numerical models designed to simulate the growth and evolution of the Cascadia subduction wedge through the accretion of a thin layer of sediment to the basaltic Coast Range Terrane (CRT) of the Cascadia margin. Two aspects of wedge structural segmentation are of interest: (1) segmentation with respect to the location or absence of large, continental shelf, forearc basins, and (2) segmentation with respect to the Coastal Range (CR) structural high. Our models illustrate that the form of the submarine portion of the Cascadia wedge, including the basins or lack thereof, is a consequence of the frictional behavior of this region of wedge, subduction thrust strength, wedge strength, and dip thrust. We propose that basin segments have stronger wedge material, a weaker thrust, or a steeper thrust than basin free segments. The presence of basins is significant because they stabilize the margin and prevent subduction and accretion related deformation. This stabilization allows the thrust to preferentially support thermally induced, fluid overpressures and undergo fault healing thus increasing the likelihood of large coseismic slip within basin segments. While no historical earthquake data supporting this argument exists for Cascadia, such behavior has been observed in many margins (Song and Simons, 2003; Wells et al., 2003). It is reasonable to assume that large earthquakes in Cascadia will have the same association

  13. A case study comparing the relative benefit of optimizing beam weights, wedge angles, beam orientations and tomotherapy in stereotactic radiotherapy of the brain

    Science.gov (United States)

    Oldham, M.; Khoo, V. S.; Rowbottom, C. G.; Bedford, J. L.; Webb, S.

    1998-08-01

    A treatment-planning case study has been performed on a patient with a medium-sized, convex brain tumour. The study involved the application of advanced treatment-plan optimization techniques to improve on the dose distribution of the `standard plan' used to treat the patient. The standard plan was created according to conventional protocol at the Royal Marsden NHS Trust, and consisted of a three-field (one open and two wedged) non-coplanar arrangement, with field shaping to the beam's-eye view of the planning target volume (PTV). Three optimized treatment plans were created corresponding to (i) the optimization of the beam weights and wedge angles of the standard plan, (ii) the optimization of the beam orientations, beam weights and wedge angles of the standard plan, and (iii) a full fluence tomotherapy optimization of 1 cm wide (at isocentre), 43/8/010/img8.gif" ALIGN="MIDDLE"/> arcs. (i) and (ii) were created on the VOXELPLAN research 3D treatment-planning system, using in-house developed optimization algorithms, and (iii) was created on the PEACOCK tomotherapy planning system. The downhill-simplex optimization algorithm is used, in conjuction with `threshold-dose' cost-function terms enabling the algorithm to optimize specific regions of the dose-volume histogram (DVH) curve. The `beam-cost plot' tool is presented as a visual aid to the selection of beneficial beam directions. The methods and pitfalls in the transfer of plans and patient data between the two planning systems are discussed. Each optimization approach was evaluated, relative to the standard plan, on the basis of DVH and dose statistics in the PTV and organs at risk (OARs). All three optimization approaches were able to improve on the dose distribution of the standard plan. The magnitude of the improvement was greater for the optimized beam-orientation and tomotherapy plans (up to 15% and 30% for the maximum and mean OAR doses). A smaller improvement was observed in the beam-weight and wedge

  14. Effect of Laterally Wedged Insoles on the External Knee Adduction Moment across Different Reference Frames.

    Directory of Open Access Journals (Sweden)

    Satoshi Yamaguchi

    Full Text Available Biomechanical effects of laterally wedged insoles are assessed by reduction in the knee adduction moment. However, the degree of reduction may vary depending on the reference frame with which it is calculated. The purpose of this study was to clarify the effect of reference frame on the reduction in the knee adduction moment by laterally wedged insoles.Twenty-nine healthy participants performed gait trials with a laterally wedged insole and with a flat insole as a control. The knee adduction moment, including the first and second peaks and the angular impulse, were calculated using four different reference frames: the femoral frame, tibial frame, laboratory frame and the Joint Coordinate System.There were significant effects of reference frame on the knee adduction moment first and second peaks (P < 0.001 for both variables, while the effect was not significant for the angular impulse (P = 0.84. No significant interaction between the gait condition and reference frame was found in either of the knee adduction moment variables (P = 0.99 for all variables, indicating that the effects of laterally wedged insole on the knee adduction moments were similar across the four reference frames. On the other hand, the average percent changes ranged from 9% to 16% for the first peak, from 16% to 18% for the second peak and from 17% to 21% for the angular impulse when using the different reference frames.The effects of laterally wedged insole on the reduction in the knee adduction moment were similar across the reference frames. On the other hand, Researchers need to recognize that when the percent change was used as the parameter of the efficacy of laterally wedged insole, the choice of reference frame may influence the interpretation of how laterally wedged insoles affect the knee adduction moment.

  15. The effect of shoe design and lateral wedges on knee load and neuromuscular control in healthy subjects during walking

    DEFF Research Database (Denmark)

    Mølgaard, Carsten Møller; Kersting, Uwe G.

    2013-01-01

    design/type on the effectiveness of lateral wedging has not been investigated so far. The Purpose of the present study was to explore alterations in knee loading due to lateral foot wedges in three different shoes. Methods: Thirteen healthy participants with no history of knee pain were tested using...... three-dimensional gait analysis. Barefoot walking, walking in a running shoe, an Oxford-type leather shoe, and a rocker shoe were analysed. The shoes were tested both with and without a 10-degree full-length laterally wedged insole. Results: There were significant shoe wedge interactions on the first...... and second peak knee adduction moments. However, the variability of this moment between shoe designs was of similar magnitude as the effect of laterally wedged insoles. Only marginal changes in muscle activity for gastrocnemius when walking with the wedged Oxford shoe were revealed. Conclusion: Lateral...

  16. Enhanced dynamic wedge output factors for Varian 2300CD and the case for a reference database.

    Science.gov (United States)

    Njeh, Christopher F

    2015-09-08

    Dose inhomogeneity in treatment planning can be compensated using physical wedges. Enhanced dynamic wedges (EDW) were introduced by Varian to overcome some of the shortcomings of physical wedges. The objectives of this study were to measure EDW output factors for 6 MV and 20 MV photon energies for a Varian 2300CD. Secondly, to review the literature in terms of published enhanced dynamic wedge output factors (EDWOF) for different Varian models and thereby add credence to the case of the validity of reference databases. The enhanced dynamic wedge output factors were measured for the Varian 2300CD for both 6MV and 20 MV photon energies. Twelve papers with published EDWOF for different Varian linac models were found in the literature. Comparing our results with the published mean, we found an excellent agreement for 6 MV EDWOF, with the percentage differences ranging from 0.01% to 0.57%, with a mean of 0.03%. The coefficient of variation of published EDWOF ranged from 0.17% to 0.85% and 0.1% to 0.9% for the for 6 MV and 18 MV photon energies, respectively. This paper provides the first published EDWOF for 20 MV photon energy. In addition, we have provided the first compendium of EDWOFs for different Varian linac models. The consistency of value across models and institution provide further support that a standard dataset of basic photon and electron dosimetry could be established as a guide for future commissioning, beam modeling, and quality assurance purposes.

  17. Analysis of bonded anisotropic wedges with interface crack under anti-plane shear loading

    Institute of Scientific and Technical Information of China (English)

    M.GHADIRI; A.R.SHAHANI

    2014-01-01

    The antiplane stress analysis of two anisotropic finite wedges with arbitrary radii and apex angles that are bonded together along a common edge is investigated. The wedge radial boundaries can be subjected to displacement-displacement boundary condi-tions, and the circular boundary of the wedge is free from any traction. The new finite complex transforms are employed to solve the problem. These finite complex transforms have complex analogies to both kinds of standard finite Mellin transforms. The traction free condition on the crack faces is expressed as a singular integral equation by using the exact analytical method. The explicit terms for the strength of singularity are extracted, showing the dependence of the order of the stress singularity on the wedge angle, material constants, and boundary conditions. A numerical method is used for solving the resul-tant singular integral equations. The displacement boundary condition may be a general term of the Taylor series expansion for the displacement prescribed on the radial edge of the wedge. Thus, the analysis of every kind of displacement boundary conditions can be obtained by the achieved results from the foregoing general displacement boundary condition. The obtained stress intensity factors (SIFs) at the crack tips are plotted and compared with those obtained by the finite element analysis (FEA).

  18. Study and evaluation of the Siemens virtual wedge factor: dosimetric monitor system and variable field effects

    Energy Technology Data Exchange (ETDEWEB)

    Sendon Rio, J R Sendon; Martinez, C Otero; GarcIa, M Sanchez; Busto, R Lobato; Vega, V Luna; Sueiro, J Mosquera; Camean, M Pombar [Servizo de Radiofisica e Proteccion Radioloxica, Complexo Hospitalario Universitario de Santiago de Compostela (CHUS), Santiago de Compostela (Spain)], E-mail: jose.ramon.sendon.del.rio@sergas.es

    2008-03-07

    In the year 1997 Siemens introduced the virtual wedge in its accelerators. The idea was that a dose profile similar to that of a physical wedge can be obtained by moving one of the accelerator jaws at a constant speed while the dose rate is changing. This work explores the observed behaviour of virtual wedge factors. A model is suggested which takes into account that at any point in time, when the jaw moves, the dose at a point of interest in the phantom is not only due to the direct beam. It also depends on the scattered radiation in the phantom, the head scatter and the behaviour of the monitoring system of the accelerator. Measurements are performed in a Siemens Primus accelerator and compared to the model predictions. It is shown that the model agrees reasonably well with measurements spanning a wide range of conditions. A strong dependence of virtual wedge factors on the dosimetric board has been confirmed and an explanation has been given on how the balance between different contributions is responsible for virtual wedge factors values.

  19. Simulation of water entry of an elastic wedge using the FDS scheme and HCIB method

    Institute of Scientific and Technical Information of China (English)

    SHIN Sangmook; BAE Sung Yong

    2013-01-01

    The hydroelasticity of water entry of an elastic wedge is simulated using a code developed using the flux-difference splitting scheme for immiscible and incompressible fluids and the hybrid Cartesian/immersed boundary method.The free surface is regarded as a moving contact discontinuity and is captured without any additional treatment along the interface.Immersed boundary nodes are distributed inside a fluid domain based on the edges that cross an instantaneous body boundary.Dependent variables are reconstructed at each immersed boundary node with the help of an interpolation along a local normal line for providing a boundary condition for a discretized flow problem.A dynamic beam equation is used for modeling the elastic deformation of a wedge.The developed code is validated through comparisons with other experimental and computational results for a free-falling wedge.The effects of the elastic deformation of the wedge on the pressure fields and time histories of the impact force are investigated in relation to the stiffness and density of the structure.Grid independence test is carried out for the computed time history of the force acting on an elastic wedge.

  20. Parental arc magma compositions dominantly controlled by mantle-wedge thermal structure

    Science.gov (United States)

    Turner, Stephen J.; Langmuir, Charles H.; Katz, Richard F.; Dungan, Michael A.; Escrig, Stéphane

    2016-10-01

    The processes that lead to the fourfold variation in arc-averaged compositions of mafic arc lavas remain controversial. Control by the mantle-wedge thermal structure is supported by chemical correlations with the thickness of the underlying arc crust, which affects the thermal state of the wedge. Control by down-going slab temperature is supported by correlations with the slab thermal parameter. The Chilean Southern Volcanic Zone provides a test of these hypotheses. Here we use chemical data to demonstrate that the Southern Volcanic Zone and global arc averages define the same chemical trends, both among elements and between elements and crustal thickness. But in contrast to the global arc system, the Southern Volcanic Zone is built on crust of variable thickness with a constant slab thermal parameter. This natural experiment, along with a set of numerical simulations, shows that global arc compositional variability is dominated by different extents of melting that are controlled by the thermal structure of the mantle wedge. Slab temperatures play a subordinate role. Variations in the subducting slab's fluid flux and sediment compositions, as well as mantle-wedge heterogeneities, produce second-order effects that are manifested as distinctive trace element and isotopic signatures; these can be more clearly elucidated once the importance of wedge thermal structure is recognized.

  1. Interpretation and inverse analysis of the wedge splitting test

    DEFF Research Database (Denmark)

    Østergaard, Lennart; Stang, Henrik

    2002-01-01

    Determination of the stress-crack opening relationship, s(w) a material parameter in the fictitious crack model by Hillerborg has proven to be problematic and is still not a simple task to perform. However, this paper demonstrates that the cracked non-linear hinge model by Olesen may be applied t...

  2. A fully integrated high-Q Whispering-Gallery Wedge Resonator

    CERN Document Server

    Ramiro-Manzano, F; Pavesi, L; Pucker, G; Ghulinyan, M

    2012-01-01

    Microresonator devices which posses ultra-high quality factors are essential for fundamental investigations and applications. Microsphere and microtoroid resonators support remarkably high Q's at optical frequencies, while planarity constrains preclude their integration into functional lightwave circuits. Conventional semiconductor processing can also be used to realize ultra-high-Q's with planar wedge-resonators. Still, their full integration with side-coupled dielectric waveguides remains an issue. Here we show the full monolithic integration of a wedge-resonator/waveguide vertically-coupled system on a silicon chip. In this approach the cavity and the waveguide lay in different planes. This permits to realize the shallow-angle wedge while the waveguide remains intact, allowing therefore to engineer a coupling of arbitrary strength between these two. The precise size-control and the robustness against post-processing operation due to its monolithic integration makes this system a prominent platform for indu...

  3. Stress singularity in a top of composite wedge with internal functionally graded material

    Directory of Open Access Journals (Sweden)

    Victor V. Tikhomirov

    2015-10-01

    Full Text Available The antiplane problem of the composite wedge consisting of two homogeneous external wedge-shaped areas and an intermediate zone of the interphase is studied. The interphase material is assumed functionally graded. It is shown that the problem in each area is harmonic within the quadratic law of inhomogeneity of the material in the transverse direction. The influence of the interphase on the stress state at the top of the wedge is analyzed. As compared to the ideal contact of external materials, the presence of the interphase leads both to decrease and increase in the singularity exponent. Moreover, the stress asymptotic may have two singular terms for some values of the composite parameters.

  4. Water Impact of Rigid Wedges in Two-Dimensional Fluid Flow

    Directory of Open Access Journals (Sweden)

    Sawan Shah

    2015-01-01

    Full Text Available A combined experimental and numerical investigation was conducted into impact of rigid wedges on water in two-dimensional fluid conditions. Drop test experiments were conducted involving symmetric rigid wedges of varying angle and mass impacted onto water. The kinematic behaviour of the wedge and water was characterised using high-speed video. Numerical models were analysed in LS-DYNA® that combined regions of Smoothed Particle Hydrodynamics particles and a Lagrangian element mesh. The analysis captured the majority of experimental results and trends, within the bounds of experimental variance. Further, the combined modelling technique presented a highly attractive combination of computational efficiency and accuracy, making it a suitable candidate for aircraft ditching investigations.

  5. The synthesis and adsorption properties of some carbohydrate-terminated dendrimer wedges

    CERN Document Server

    Ainsworth, R L

    1997-01-01

    A range of dendritic molecules that are designed to bind to a cotton surface has been synthesised. The architecture of the molecules allows the location of various functional, property modifying units at the focus and the attachment of recognition groups at the periphery of a dendritic molecule with wedge topology. The synthesis and characterisation of dendrimer wedges up to the second generation using a divergent approach has been performed. These wedges are readily built up using a simple and efficient stepwise pathway from the central core, and surface recognising species are subsequently attached to the molecule utilising procedures developed in conjunction with Unilever Research Laboratories. Work has been carried out to assess their adsorption onto a cotton surface and the postulated adsorption mechanism is discussed.

  6. Pervasive seismic wave reflectivity and metasomatism of the Tonga mantle wedge.

    Science.gov (United States)

    Zheng, Yingcai; Lay, Thorne; Flanagan, Megan P; Williams, Quentin

    2007-05-11

    Subduction zones play critical roles in the recycling of oceanic lithosphere and the generation of continental crust. Seismic imaging can reveal structures associated with key dynamic processes occurring in the upper-mantle wedge above the sinking oceanic slab. Three-dimensional images of reflecting interfaces throughout the upper-mantle wedge above the subducting Tonga slab were obtained by migration of teleseismic recordings of underside P- and S-wave reflections. Laterally continuous weak reflectors with tens of kilometers of topography were detected at depths near 90, 125, 200, 250, 300, 330, 390, 410, and 450 kilometers. P- and S-wave impedances decreased at the 330-kilometer and 450-kilometer reflectors, and S-wave impedance decreased near 200 kilometers in the vicinity of the slab and near 390 kilometers, just above the global 410-kilometer increase. The pervasive seismic reflectivity results from phase transitions and compositional zonation associated with extensive metasomatism involving slab-derived fluids rising through the wedge.

  7. Quantitative comparisons of analogue models of brittle wedge dynamics

    Science.gov (United States)

    Schreurs, Guido

    2010-05-01

    Analogue model experiments are widely used to gain insights into the evolution of geological structures. In this study, we present a direct comparison of experimental results of 14 analogue modelling laboratories using prescribed set-ups. A quantitative analysis of the results will document the variability among models and will allow an appraisal of reproducibility and limits of interpretation. This has direct implications for comparisons between structures in analogue models and natural field examples. All laboratories used the same frictional analogue materials (quartz and corundum sand) and prescribed model-building techniques (sieving and levelling). Although each laboratory used its own experimental apparatus, the same type of self-adhesive foil was used to cover the base and all the walls of the experimental apparatus in order to guarantee identical boundary conditions (i.e. identical shear stresses at the base and walls). Three experimental set-ups using only brittle frictional materials were examined. In each of the three set-ups the model was shortened by a vertical wall, which moved with respect to the fixed base and the three remaining sidewalls. The minimum width of the model (dimension parallel to mobile wall) was also prescribed. In the first experimental set-up, a quartz sand wedge with a surface slope of ˜20° was pushed by a mobile wall. All models conformed to the critical taper theory, maintained a stable surface slope and did not show internal deformation. In the next two experimental set-ups, a horizontal sand pack consisting of alternating quartz sand and corundum sand layers was shortened from one side by the mobile wall. In one of the set-ups a thin rigid sheet covered part of the model base and was attached to the mobile wall (i.e. a basal velocity discontinuity distant from the mobile wall). In the other set-up a basal rigid sheet was absent and the basal velocity discontinuity was located at the mobile wall. In both types of experiments

  8. Tectonic and gravity extensional collapses in overpressured cohesive and frictional wedges

    Science.gov (United States)

    Yuan, X. P.; Leroy, Y. M.; Maillot, B.

    2015-03-01

    Two modes of extensional collapse in a cohesive and frictional wedge of arbitrary topography, finite extent, and resting on an inclined weak décollement are examined by analytical means. The first mode consists of the gravitational collapse by the action of a half-graben, rooting on the décollement and pushing seaward the frontal part of the wedge. The second mode results from the tectonics extension at the back wall with a similar half-graben kinematics and the landward sliding of the rear part of the wedge. The predictions of the maximum strength theorem, equivalent to the kinematic approach of limit analysis and based on these two collapse mechanisms, not only match exactly the solutions of the critical Coulomb wedge theory, once properly amended, but generalizes them in several aspects: wedge of finite size, composed of cohesive material and of arbitrary topography. This generalization is advantageous to progress in our understanding of many laboratory experiments and field cases. For example, it is claimed from analytical results validated by experiments that the stability transition for a cohesive, triangular wedge occurs with the activation of the maximum length of the décollement. It is shown that the details of the topography, for the particular example of the Mejillones peninsula (North Chile) is, however, responsible for the selection of a short length-scale, dynamic instability corresponding to a frontal gravitational instability. A reasonable amount of cohesion is sufficient for the pressures proposed in the literature to correspond to a stability transition and not with a dynamically unstable state.

  9. Numerical Simulation and Experimental Validation of an Integrated Sleeve-Wedge Anchorage for CFRP Rods

    DEFF Research Database (Denmark)

    Schmidt, Jacob Wittrup; Smith, Scott T.; Täljsten, Björn;

    2011-01-01

    . Recently, an integrated sleeve-wedge anchorage has been successfully developed specifically for CFRP rods. This paper in turn presents a numerical simulation of the newly developed anchorage using ABAQUS. The three-dimensional finite element (FE) model, which considers material non-linearity, uses...... hexagonal elements for the barrel and CFRP rod and tetrahedral elements for the integrated sleeve-wedge. The simulated barrel surface strains are shown to compare well with optically measured strains, however, the numerical results are shown to be sensitive to the mechanical properties of the anchorage...

  10. Global Solutions of Shock Reflection by Wedges for the Nonlinear Wave Equation

    Institute of Scientific and Technical Information of China (English)

    Xuemei DENG; Wei XIANG

    2011-01-01

    When a plane shock hits a wedge head on,it experiences a reflection-diffraction process and then a self-similar reflected shock moves outward as the original shock moves forward in time.In this paper,shock reflection by large-angle wedges for compressible flow modeled by the nonlinear wave equation is studied and a global theory of existence,stability and regularity is established.Moreover,C0,1 is the optimal regularity for the solutions across the degenerate sonic boundary.

  11. Comparison of infinite and wedge fringe settings in Mach Zehnder interferometer for temperature field measurement

    Energy Technology Data Exchange (ETDEWEB)

    Haridas, Divya [Department of Physics, National Institute of Technology Calicut, Kerala, 673601 (India); P, Vibin Antony; Sajith, V.; Sobhan, C. B. [School of Nano Science and Technology, National Institute of Technology Calicut, Kerala, 673601 (India)

    2014-10-15

    Interferometric method, which utilizes the interference of coherent light beams, is used to determine the temperature distribution in the vicinity of a vertical heater plate. The optical components are arranged so as to obtain wedge fringe and infinite fringe patterns and isotherms obtained in each case were compared. In wedge fringe setting, image processing techniques has been used for obtaining isotherms by digital subtraction of initial parallel fringe pattern from deformed fringe pattern. The experimental results obtained are compared with theoretical correlations. The merits and demerits of the fringe analysis techniques are discussed on the basis of the experimental results.

  12. RESEARCH ON THE MOTION CHARACTERISTICS OF FIBER SUSPENSIONS IN A WEDGE-SHAPED FLOW

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper the motion of cylindrical particles in a wedge-shaped flow was studied. The velocity distribution of wedge-shaped flow was simulated first, then the Euler-Lagrange model used to calculate the motion of cylindrical particles. The evolution of particle location, velocity and orientation with time was examined. The trajectories of the particles with different particle Stokes number, rate of flow and initial particle orientation were drawn. The results indicate that the Stokes number and initial orientation are important parameters which affect the particle motion. The conclusions are helpful to the engineering applications.

  13. Reconstruction of Bulk Operators within the Entanglement Wedge in Gauge-Gravity Duality

    Science.gov (United States)

    Dong, Xi; Harlow, Daniel; Wall, Aron C.

    2016-07-01

    In this Letter we prove a simple theorem in quantum information theory, which implies that bulk operators in the anti-de Sitter/conformal field theory (AdS/CFT) correspondence can be reconstructed as CFT operators in a spatial subregion A , provided that they lie in its entanglement wedge. This is an improvement on existing reconstruction methods, which have at most succeeded in the smaller causal wedge. The proof is a combination of the recent work of Jafferis, Lewkowycz, Maldacena, and Suh on the quantum relative entropy of a CFT subregion with earlier ideas interpreting the correspondence as a quantum error correcting code.

  14. Bulk Reconstruction in the Entanglement Wedge in AdS/CFT

    CERN Document Server

    Dong, Xi; Wall, Aron C

    2016-01-01

    In this note we prove a simple theorem in quantum information theory, which implies that bulk operators in the Anti-de Sitter / Conformal Field Theory (AdS/CFT) correspondence can be reconstructed as CFT operators in a spatial subregion $A$, provided that they lie in its entanglement wedge. This is an improvement on existing reconstruction methods, which have at most succeeded in the smaller causal wedge. The proof is a combination of the recent work of Jafferis, Lewkowycz, Maldacena, and Suh on the quantum relative entropy of a CFT subregion with earlier ideas interpreting the correspondence as a quantum error correcting code.

  15. Laparoscopic wedge resection of synchronous gastric intraepithelial neoplasia and stromal tumor: a case report.

    Science.gov (United States)

    Mou, Yi-Ping; Xu, Xiao-Wu; Xie, Kun; Zhou, Wei; Zhou, Yu-Cheng; Chen, Ke

    2010-10-21

    Synchronous occurrence of epithelial neoplasia and gastrointestinal stromal tumor (GIST) in the stomach is uncommon. Only rare cases have been reported in the literature. We present here a 60-year-old female case of synchronous occurrence of gastric high-level intraepithelial neoplasia and GIST with the features of 22 similar cases and detailed information reported in the English-language literature summarized. In the present patient, epithelial neoplasia and GIST were removed en bloc by laparoscopic wedge resection. To the best of our knowledge, this is the first reported case treated by laparoscopic wedge resection.

  16. Determination of refractive index of a simple negative, positive, or zero power lens using wedged plated interferometer

    Science.gov (United States)

    Shukla, R. P.; Perera, G. M.; George, M. C.; Venkateswarlu, P.

    1990-01-01

    A nondestructive technique for measuring the refractive index of a negative lens using a wedged plate interferometer is described. The method can be also used for measuring the refractive index of convex or zero power lenses. Schematic diagrams are presented for the use of a wedged plate interferometer for measuring the refractive index of a concave lens and of a convex lens.

  17. The effects of various kinds of lateral wedge insoles on performance of individuals with knee joint osteoarthritis

    Directory of Open Access Journals (Sweden)

    Masoud Rafiaee

    2012-01-01

    Conclusion: Using lateral wedge insole is a simple, inexpensive therapy for decreasing pain and improving quality of life; however, most research must be carried out to find the effects of lateral wedge on severity of knee joint OA and aligning TFA.

  18. 76 FR 24856 - Heavy Forged Hand Tools (i.e., Axes & Adzes, Bars & Wedges, Hammers & Sledges, and Picks...

    Science.gov (United States)

    2011-05-03

    ..., and Picks & Mattocks) From the People's Republic of China: Final Results of the Expedited Sunset... & Adzes, Bars & Wedges, Hammers & Sledges, and Picks & Mattocks) from the People's Republic of China..., track tools and wedges; (3) picks and mattocks; and (4) axes, adzes and similar hewing tools. Hand...

  19. 76 FR 52313 - Heavy Forged Hand Tools (i.e., Axes & Adzes, Bars & Wedges, Hammers & Sledges, and Picks...

    Science.gov (United States)

    2011-08-22

    ..., and Picks & Mattocks) From the People's Republic of China: Continuation of Antidumping Duty Orders... & Adzes, Bars & Wedges, Hammers & Sledges, and Picks & Mattocks) (``Hand Tools'') from the People's... & Wedges, Hammers & Sledges, and Picks & Mattocks) From the People's Republic of China: Final Results...

  20. The effect of shoe design and lateral wedges on knee load and neuromuscular control in healthy subjects during walking

    DEFF Research Database (Denmark)

    Mølgaard, Carsten; Kersting, Uwe G.

    2014-01-01

    three-dimensional gait analysis. Barefoot walking, walking in a running shoe, an Oxford-type leather shoe, and a rocker shoe were analysed. The shoes were tested both with and without a 10-degree full-length laterally wedged insole. Results: There were significant shoe wedge interactions on the first...

  1. Early age stress-crack opening relationships for high performance concrete

    DEFF Research Database (Denmark)

    Østergaard, Lennart; Lange, David A.; Stang, Henrik

    2004-01-01

    Stress–crack opening relationships for concrete in early age have been determined for two high performance concrete mixes with water to cementitious materials ratios of 0.307 and 0.48. The wedge splitting test setup was used experimentally and the cracked nonlinear hinge model based on the fictit...

  2. The distribution and depth of ion doses implanted into wedges by plasma immersion ion implantation in drifting and stationary plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Tarrant, R N; Devasahayam, S; McKenzie, D R; Bilek, M M M [School of Physics (A28), University of Sydney, NSW 2006 (Australia)

    2006-08-15

    The distribution of ion dose arising from plasma immersion ion implantation (PIII) of a complex shape in the form of a wedge is measured. Two types of plasma are considered: a drifting titanium plasma derived from a pulsed cathodic arc and a stationary plasma generated by PIII pulses in oxygen or nitrogen gas. The distributions of the implanted material over the surface of the aluminium wedge were studied using secondary ion mass spectroscopy and Rutherford backscattering. The effects of varying the apex angles of the wedge and the plasma density are investigated. We conclude that ion-focusing effects at the apex of the wedge were more important for the drifting plasma than for the stationary plasmas. In a drifting plasma, the ion drift velocity directed towards the apex of the wedge compresses the sheath close to the apex and enhances the concentration of the dose. For the stationary plasma, the dose is more uniform.

  3. Long range hybrid tube-wedge plasmonic waveguide with extreme light confinement and good fabrication error tolerance.

    Science.gov (United States)

    Ding, Li; Qin, Jin; Xu, Kai; Wang, Liang

    2016-02-22

    We studied a novel long range hybrid tube-wedge plasmonic (LRHTWP) waveguide consisting of a high index dielectric nanotube placed above a triangular metal wedge substrate. Using comprehensive numerical simulations on guiding properties of the designed waveguide, it is found that extreme light confinement and low propagation loss are obtained due to strong coupling between dielectric nanotube mode and wedge plasmon polariton. Comparing with previous studied hybrid plasmonic waveguides, the LRHTWP waveguide has longer propagation length and tighter mode confinement. In addition, the LRHTWP waveguide is quite tolerant to practical fabrication errors such as variation of the wedge tip angle and the horizontal misalignment between the nanotube and the metal wedge. The proposed LRHTWP waveguide could have many application potentials for various high performance nanophotonic components.

  4. Laterally wedged insoles in knee osteoarthritis: do biomechanical effects decline after one month of wear?

    Directory of Open Access Journals (Sweden)

    Bennell Kim L

    2009-11-01

    Full Text Available Abstract Objective This study aimed to determine whether the effect of laterally wedged insoles on the adduction moment in knee osteoarthritis (OA declined after one month of wear, and whether higher reported use of insoles was associated with a reduced effect on the adduction moment at one month. Methods Twenty people with medial compartment OA underwent gait analysis in their own shoes wearing i no insoles and; ii insoles wedged laterally 5° in random order. Testing occurred at baseline and after one month of use of the insoles. Participants recorded daily use of insoles in a log-book. Outcomes were the first and second peak external knee adduction moment and the adduction angular impulse, compared across conditions and time with repeated measures general linear models. Correlations were obtained between total insole use and change in gait parameters with used insoles at one month, and change scores were compared between high and low users of insoles using general linear models. Results There was a significant main effect for condition, whereby insoles significantly reduced the adduction moment (all p Conclusion Effects of laterally wedged insoles on the adduction moment do not appear to decline after one month of continuous use, suggesting that significant wedge degradation does not occur over the short-term.

  5. A new GTD slope diffraction coefficient for plane wave illumination of a wedge

    DEFF Research Database (Denmark)

    Lumholt, Michael; Breinbjerg, Olav

    1997-01-01

    Two wedge problems including slope diffraction are solved: one in which the incident field is a non-uniform plane wave, and one in which it is an inhomogeneous plane wave. The two solutions lead to the same GTD slope diffraction coefficient. This coefficient reveals the existence of a coupling ef...

  6. A Novel Continuous Extrusion Process to Fabricate Wedge-Shaped Light Guide Plates

    Directory of Open Access Journals (Sweden)

    Wen-Tse Hsiao

    2013-01-01

    Full Text Available Backlight modules are key components in thin-film transistor liquid crystal displays (TFT-LCD. Among the components of a backlight module, the light guide plate (LGP plays the most important role controlling the light projected to the eyes of users. A wedge-shaped LGP, with its asymmetrical structure, is usually fabricated by an injection proces, but the fabrication time of this process is long. This study proposes a continuous extrusion process to fabricate wedge-shaped LGPs. This continuous process has advantages for mass production. Besides a T-die and rollers, this system also has an in situ monitor of the melt-bank that forms during the extrusion process, helping control the plate thickness. Results show that the melt bank has a close relationship with the plate thickness. The temperature of the bottom heater and roller was adjusted to reduce the surface deformation of the wedge-shaped plate. This continuous extrusion system can successfully manufacture wedge-shaped LGPs for mass production.

  7. Dissolved organic carbon loss from Yedoma permafrost amplified by ice wedge thaw

    NARCIS (Netherlands)

    Vonk, J. E.; Mann, P. J.; Dowdy, K. L.; Davydova, A.; Davydov, S. P.; Zimov, N.; Spencer, R. G. M.; Bulygina, E. B.; Eglinton, T. I.; Holmes, R. M.

    2013-01-01

    Pleistocene Yedoma permafrost contains nearly a third of all organic matter (OM) stored in circum-arctic permafrost and is characterized by the presence of massive ice wedges. Due to its rapid formation by sediment accumulation and subsequent frozen storage, Yedoma OM is relatively well preserved an

  8. Estimation of treatment efficacy with complier average causal effects (CACE) in a randomized stepped wedge trial.

    Science.gov (United States)

    Gruber, Joshua S; Arnold, Benjamin F; Reygadas, Fermin; Hubbard, Alan E; Colford, John M

    2014-05-01

    Complier average causal effects (CACE) estimate the impact of an intervention among treatment compliers in randomized trials. Methods used to estimate CACE have been outlined for parallel-arm trials (e.g., using an instrumental variables (IV) estimator) but not for other randomized study designs. Here, we propose a method for estimating CACE in randomized stepped wedge trials, where experimental units cross over from control conditions to intervention conditions in a randomized sequence. We illustrate the approach with a cluster-randomized drinking water trial conducted in rural Mexico from 2009 to 2011. Additionally, we evaluated the plausibility of assumptions required to estimate CACE using the IV approach, which are testable in stepped wedge trials but not in parallel-arm trials. We observed small increases in the magnitude of CACE risk differences compared with intention-to-treat estimates for drinking water contamination (risk difference (RD) = -22% (95% confidence interval (CI): -33, -11) vs. RD = -19% (95% CI: -26, -12)) and diarrhea (RD = -0.8% (95% CI: -2.1, 0.4) vs. RD = -0.1% (95% CI: -1.1, 0.9)). Assumptions required for IV analysis were probably violated. Stepped wedge trials allow investigators to estimate CACE with an approach that avoids the stronger assumptions required for CACE estimation in parallel-arm trials. Inclusion of CACE estimates in stepped wedge trials with imperfect compliance could enhance reporting and interpretation of the results of such trials.

  9. On the shape of a droplet in a wedge: new insight from electrowetting

    NARCIS (Netherlands)

    Baratian, D.; Cavalli, A.; Ende, van den H.T.M.; Mugele, F.

    2015-01-01

    The equilibrium morphology of liquid drops exposed to geometric constraints can be rather complex. Even for simple geometries, analytical solutions are scarce. Here, we investigate the equilibrium shape and position of liquid drops confined in the wedge between two solid surfaces at an angle α. Usin

  10. Quantitative planar Raman imaging through a spectrograph: visualisation of a supersonic wedge flow

    NARCIS (Netherlands)

    Tolboom, R.A.L.; Dam, N.J.; Meulen, J.J. ter; Bakker, P.G.

    2005-01-01

    Planar Raman imaging through a spectrograph is demonstrated as a diagnostic tool for quantitative flow visualisation of internal supersonic wedge flow. A dedicated Bayesian deconvolution filter is used to remove the spectral structure that is introduced by the spectrograph. The 2D density field is d

  11. Analysis on electromagnetic scattering by a wedge with impedance faces under exact impedance boundary

    Institute of Scientific and Technical Information of China (English)

    吴良超; 汪茂光

    1995-01-01

    Under the exact impedance boundary condition (EIBC), by using wave equations and the longitudinal field method, the electromagnetic scattenng by an impedance wedge has been analysed in detail, following the Maliuzhinets approach, and the uniform diffraction coefficient of the diffracted field has been presented.

  12. Impingement of water droplets on wedges and diamond airfoils at supersonic speeds

    Science.gov (United States)

    Serafini, John S

    1953-01-01

    An analytical solution has been obtained for the equations of motion of water droplets impinging on a wedge in a two-dimensional supersonic flow field with a shock wave attached to the wedge. The closed-form solution yields analytical expressions for the equation of the droplet trajectory, the local rate of impingement and the impingement velocity at any point on the wedge surface, and the total rate of impingement. The analytical expressions are utilized to determine the impingement on the forward surfaces of diamond airfoils in supersonic flow fields with attached shock waves. The results presented include the following conditions: droplet diameters from 2 to 100 microns, pressure altitudes from sea level to 30,000 feet, free-stream static temperatures from 420 degrees to 460 degrees R. Also, free-stream Mach numbers from 1.1 to 2.0, semi-apex angles for the wedge from 1.14 degrees to 7.97 degrees, thickness-to-chord ratios for the diamond airfoil from 0.02 to 0.14, chord lengths from 1 to 20 feet, and angles of attack from zero to the inverse tangent of the airfoil thickness-to-chord ratio.

  13. Fossil predation: did some clavilithine fasciolariid gastropods employ valve-wedging to feed on bivalves?

    NARCIS (Netherlands)

    Vermeij, Geerat J.

    2015-01-01

    Several gastropods, including members of the Busyconinae, wedge or chip bivalve prey by inserting the outer lip between the valves. This habit, which is associated with an abapically downwardly convex outer lip, often results in breakage and subsequent repair of the lip. I tested the hypothesis that

  14. On the role of lateral waves in the radiation from the dielectric wedge

    DEFF Research Database (Denmark)

    Balling, Peter

    1973-01-01

    The field on the dielectric wedge is approximated by a plane-wave expansion as in [1]. Contributions from this solution to both the surface field and the radiation field are examined. Finally, an experimental radiation field is compared with the plane-wave solution and with a geometric-optical di...

  15. Optical necklaces generated by the diffraction on a stack of dielectric wedges

    Energy Technology Data Exchange (ETDEWEB)

    Izdebskaya, Yana [Nonlinear Physics Centre, Research School of Physical Sciences and Engineering, Australian National University, Canberra ACT 0200 (Australia); Department of Physics, V.I. Vernandsky Taurida National University, Simferopol 95007, Crimea (Ukraine)], E-mail: yvi124@rsphysse.anu.edu.au

    2008-05-19

    We demonstrate that the regular ring-shaped arrays of Gaussian beams, or optical necklaces, can be generated using diffraction on a stack of dielectric wedges. A condition for self-similarity and structural stability of the beams has been derived and shows good comparison with experimental data.

  16. Nanoscale guiding for cold atoms based on surface plasmons along the tips of metallic wedges

    Institute of Scientific and Technical Information of China (English)

    Wang Zheng-Ling; Tang Wei-Min; Zhou Ming; Gao Chuan-Yu

    2013-01-01

    We propose a novel scheme to guide neutral cold atoms in a nanoscale region based on surface plasmons (SPs) of one pair and two pairs of tips of metallic wedges with locally enhanced light intensity and sub-optical wavelength resolution.We analyze the near-field intensity distribution of the tip of the metallic wedge by the FDTD method,and study the total intensity as well as the total potential of optical potentials and van der Waals potentials for 87Rb atoms in the light field of one pair and two pairs of tips of metallic wedges.It shows that the total potentials of one pair and two pairs of tips of metallic wedges can generate a gravito-optical trap and a dark closed trap for nanoscale guiding of neutral cold atoms.Guided atoms can be cooled with efficient intensity-gradient Sisyphus cooling by blue-detuned light field.This provides an important step towards the generation of hybrid systems consisting of isolated atoms and solid devices.

  17. Phase transitions and interface fluctuations in double wedges and bi-pyramids with competing surface fields

    Science.gov (United States)

    Müller, M.; Milchev, A.; Binder, K.; Landau, D. P.

    2008-08-01

    The interplay between surface and interface effects on binary AB mixtures that are confined in unconventional geometries is investigated by Monte Carlo simulations and phenomenological considerations. Both double-wedge and bi-pyramid confinements are considered and competing surface fields are applied at the two opposing halves of the system. Below the bulk critical temperature, domains of opposite order parameter are stabilized at the corresponding corners and an interface runs across the middle of the bi-partite geometry. Upon decreasing the temperature further one encounters a phase transition at which the AB symmetry is broken. The interface is localized in one of the two wedges or pyramids, respectively, and the order parameter is finite. In both cases, the transition becomes discontinuous in the thermodynamic limit but it is not a first-order phase transition. In an antisymmetric double wedge geometry the transition is closely related to the wedge-filling transition. Choosing the ratio of the cross-section L × L of the wedge and its length L y according to L y / L 3 = const., simulations and phenomenological consideration show that the new type of phase transition is characterized by critical exponents α = 3/4, β = 0, and γ = 5/4 for the specific heat, order parameter, and susceptibility, respectively. In an antisymmetric bi-pyramid the transition occurs at the cone-filling transition of a single pyramid. The important critical fluctuations are associated with the uniform translation of the interface and they can be described by a Landau-type free energy. Monte Carlo results provide evidence that the coefficients of this Landau-type free energy exhibit a system-size dependence, which gives rise to critical amplitudes that diverge with system size and result in a transition that becomes discontinuous in the thermodynamic limit.

  18. Complex interactions between diapirs and 4-D subduction driven mantle wedge circulation.

    Science.gov (United States)

    Sylvia, R. T.; Kincaid, C. R.

    2015-12-01

    Analogue laboratory experiments generate 4-D flow of mantle wedge fluid and capture the evolution of buoyant mesoscale diapirs. The mantle is modeled with viscous glucose syrup with an Arrhenius type temperature dependent viscosity. To characterize diapir evolution we experiment with a variety of fluids injected from multiple point sources. Diapirs interact with kinematically induced flow fields forced by subducting plate motions replicating a range of styles observed in dynamic subduction models (e.g., rollback, steepening, gaps). Data is collected using high definition timelapse photography and quantified using image velocimetry techniques. While many studies assume direct vertical connections between the volcanic arc and the deeper mantle source region, our experiments demonstrate the difficulty of creating near vertical conduits. Results highlight extreme curvature of diapir rise paths. Trench-normal deflection occurs as diapirs are advected downward away from the trench before ascending into wedge apex directed return flow. Trench parallel deflections up to 75% of trench length are seen in all cases, exacerbated by complex geometry and rollback motion. Interdiapir interaction is also important; upwellings with similar trajectory coalesce and rapidly accelerate. Moreover, we observe a new mode of interaction whereby recycled diapir material is drawn down along the slab surface and then initiates rapid fluid migration updip along the slab-wedge interface. Variability in trajectory and residence time leads to complex petrologic inferences. Material from disparate source regions can surface at the same location, mix in the wedge, or become fully entrained in creeping flow adding heterogeneity to the mantle. Active diapirism or any other vertical fluid flux mechanism employing rheological weakening lowers viscosity in the recycling mantle wedge affecting both solid and fluid flow characteristics. Many interesting and insightful results have been presented based

  19. Three Years of High Resolution Year-Round Monitoring of Ice-Wedge Thermal Contraction Cracking in Svalbard

    Science.gov (United States)

    Christiansen, H. H.

    2006-12-01

    Most likely ice-wedges are the most widespread periglacial landform in lowlands with continuous permafrost. With a changing climate it is important to understand better the geomorphological processes controlling ice- wedge growth and decay, as they might cause large changes to the surface of the landscape, particularly if the active layer thickness increases causing melting of the most ice-rich permafrost top layer. As most settlements on permafrost are located in lowland areas, ice-wedge formation can also influence the infrastructure. Understanding the processes of ice-wedge growth and their thaw transformation into ice-wedge casts are essential when using contemporary ice wedges as analogues of Pleistocene thermal contraction cracking in palaeoenvironmental reconstructions. As ice-wedges are largely controlled by winter conditions, improved understanding of the factors controlling their growth will enable better palaeoclimatic reconstructions both directly from ice-wedges, but also from ice-wedge casts, than just mean winter temperatures. Detailed studies of ice-wedge dynamics, including quantification of movement, have only been done in very few places in the Arctic. In high arctic Svalbard at 78°N climate at sea level locates these islands close to the southern limit of the continuous permafrost zone, with MAAT of as much as -4 to -6°C. However, thermal contraction cracking is demonstrated to be widespread in the Adventdalen study area in Svalbard. The year-round field access from the University Centre in Svalbard, UNIS, has enabled the collection of different continuous or high frequency ice-wedge process monitoring data since 2002 to improve the understanding of the geomorphological activity of this landform. In all the winters the air temperature was below -30°C for shorter or longer periods. During all the winters, the temperature in the top permafrost was below -15°C both in the ice-wedge top for shorter or longer periods. The snow cover was

  20. Open hardware for open science

    CERN Multimedia

    CERN Bulletin

    2011-01-01

    Inspired by the open source software movement, the Open Hardware Repository was created to enable hardware developers to share the results of their R&D activities. The recently published CERN Open Hardware Licence offers the legal framework to support this knowledge and technology exchange.   Two years ago, a group of electronics designers led by Javier Serrano, a CERN engineer, working in experimental physics laboratories created the Open Hardware Repository (OHR). This project was initiated in order to facilitate the exchange of hardware designs across the community in line with the ideals of “open science”. The main objectives include avoiding duplication of effort by sharing results across different teams that might be working on the same need. “For hardware developers, the advantages of open hardware are numerous. For example, it is a great learning tool for technologies some developers would not otherwise master, and it avoids unnecessary work if someone ha...

  1. Open Access

    Science.gov (United States)

    Suber, Peter

    2012-01-01

    The Internet lets us share perfect copies of our work with a worldwide audience at virtually no cost. We take advantage of this revolutionary opportunity when we make our work "open access": digital, online, free of charge, and free of most copyright and licensing restrictions. Open access is made possible by the Internet and copyright-holder…

  2. Late Holocene stable-isotope based winter temperature records from ice wedges in the Northeast Siberian Arctic

    Science.gov (United States)

    Opel, Thomas; Meyer, Hanno; Laepple, Thomas; Dereviagin, Alexander Yu.

    2016-04-01

    The Arctic is currently undergoing an unprecedented warming. This highly dynamic response on changes in climate forcing and the global impact of the Arctic water, carbon and energy balances make the Arctic a key region to study past, recent and future climate changes. Recent proxy-based temperature reconstructions indicate a long-term cooling over the past about 8 millennia that is mainly related to a decrease in solar summer insolation and has been reversed only by the ongoing warming. Climate model results on the other hand show no significant change or even a slight warming over this period. This model-proxy data mismatch might be caused by a summer bias of the used climate proxies. Ice wedges may provide essential information on past winter temperatures for a comprehensive seasonal picture of Holocene Arctic climate variability. Polygonal ice wedges are a widespread permafrost feature in the Arctic tundra lowlands. Ice wedges form by the repeated filling of thermal contraction cracks with snow melt water, which quickly refreezes at subzero ground temperatures and forms ice veins. As the seasonality of frost cracking and infill is generally related to winter and spring, respectively, the isotopic composition of wedge ice is indicative of past climate conditions during the annual cold season (DJFMAM, hereafter referred to as winter). δ18O of ice is interpreted as proxy for regional surface air temperature. AMS radiocarbon dating of organic remains in ice-wedge samples provides age information to generate chronologies for single ice wedges as well as regionally stacked records with an up to centennial resolution. In this contribution we seek to summarize Holocene ice-wedge δ18O based temperature information from the Northeast Siberian Arctic. We strongly focus on own work in the Laptev Sea region but consider as well literature data from other regional study sites. We consider the stable-isotope composition of wedge ice, ice-wedge dating and chronological

  3. Death with "dignity": the wedge that divides the disability rights movement from the right to die movement.

    Science.gov (United States)

    Behuniak, Susan M

    2011-01-01

    Much of the American debate over physician assisted death (PAD) is framed as an ideological split between conservatives and liberals, pro life and pro choice advocates, and those who emphasize morality versus personal autonomy. Less examined, but no less relevant, is a split within the ranks of progressives--one that divides those supporting a right to die in the name of human rights from disability rights activists who invoke human rights to vehemently oppose euthanasia. This paper reviews how "dignity" serves both as a divisive wedge in this debate but also as a value that can span the divide between groups and open the way to productive discourse. Supporters of legalized euthanasia use "dignity" to express their position that some deaths might indeed be accelerated. At the same time, opponents adopt the concept to argue that physician assisted suicide stigmatizes life with a disability. To bridge this divide, the worldviews of two groups, Compassion & Choices and Not Dead Yet, are studied. The analysis concludes that the two organizations are more parallel than contrary--a finding that offers opportunities for dialogue and perhaps even advances in public policy.

  4. Orthotic Heel Wedges Do Not Alter Hindfoot Kinematics and Achilles Tendon Force During Level and Inclined Walking in Healthy Individuals.

    Science.gov (United States)

    Weinert-Aplin, Robert A; Bull, Anthony M J; McGregor, Alison H

    2016-04-01

    Conservative treatments such as in-shoe orthotic heel wedges to treat musculoskeletal injuries are not new. However, weak evidence supporting their use in the management of Achilles tendonitis suggests the mechanism by which these heel wedges works remains poorly understood. It was the aim of this study to test the underlying hypothesis that heel wedges can reduce Achilles tendon load. A musculoskeletal modeling approach was used to quantify changes in lower limb mechanics when walking due to the introduction of 12-mm orthotic heel wedges. Nineteen healthy volunteers walked on an inclinable walkway while optical motion, force plate, and plantar pressure data were recorded. Walking with heel wedges increased ankle dorsiflexion moments and reduced plantar flexion moments; this resulted in increased peak ankle dorsiflexor muscle forces during early stance and reduced tibialis posterior and toe flexor muscle forces during late stance. Heel wedges did not reduce overall Achilles tendon force during any walking condition, but did redistribute load from the medial to lateral triceps surae during inclined walking. These results add to the body of clinical evidence confirming that heel wedges do not reduce Achilles tendon load and our findings provide an explanation as to why this may be the case.

  5. Short- and long-term deformation and the earthquake cycle in the southern Bolivia Subandes: Implications for orogenic wedge processes

    Science.gov (United States)

    Brooks, B. A.; Bevis, M. G.; Whipple, K. X.; Kendrick, E. C.; Smalley, R.; Arrowsmith, R.; Zapata, T.

    2009-12-01

    In the context of critical taper wedge mechanics, we analyze a new GPS-derived surface velocity field from the southern Subandean (SSA) range on the east flank of the central Andean Plateau. The SSA is one of the few active orogenic wedges located far enough from a plate boundary so that the geodetic signature of contractional processes may be isolated. We observe and model a strong strike-perpendicular surface velocity gradient as arising from the change in frictional behaviour of the SSA basal decollement from freely slipping to locked. The estimated width of the locked zone is ~130 km, a value that is significantly larger than in other similar wedges in Nepal or Taiwan and implies the SSA thrust front could host great (larger than M 8) intraplate thrust earthquakes. In support of this, topographic data (individual scarps and landslide scars) are consistent with the surface expression of the ~500 km long Mandeyepecua thrust fault resulting from large earthquake ruptures with long recurrence intervals. In comparison to other similar wedges (the northern Subandes, Nepal, and Taiwan) precipitation rates in the SSA are significantly lower and thus a wider orogenic wedge width is predicted by critical taper theory. We explore the hypothesis that the geodetically-determined width is equivalent to the orogenic wedge width by using earthquake scaling relations for individual faults and surface displacements predicted from decollement ruptures to model the velocity profile derived from published, sequentially restored balanced cross-sections in the region. Our work provides two new important insights on the interaction between climate and tectonics in orogenic wedges: 1) a drier climate favours increased size of potential thrust-front earthquakes by permitting the width of the active wedge to increase; 2) frictional variations on a decollement may be spatially persistent over geologic time-scales and so should be taken into account in surface process models of orogenic

  6. Differential wedging of vertebral body and intervertebral disc in thoracic and lumbar spine in adolescent idiopathic scoliosis – A cross sectional study in 150 patients

    Directory of Open Access Journals (Sweden)

    Kim Hak-Jun

    2008-08-01

    Full Text Available Abstract Background Hueter-Volkmann's law regarding growth modulation suggests that increased pressure on the end plate of bone retards the growth (Hueter and conversely, reduced pressure accelerates the growth (Volkmann. Literature described the same principle in Rat-tail model. Human spine and its deformity i.e. scoliosis has also same kind of pattern during the growth period which causes wedging in disc or vertebral body. Methods This cross sectional study in 150 patients of adolescent idiopathic scoliosis was done to evaluate vertebral body and disc wedging in scoliosis and to compare the extent of differential wedging of body and disc, in thoracic and lumbar area. We measured wedging of vertebral bodies and discs, along with two adjacent vertebrae and disc, above and below the apex and evaluated them according to severity of curve (curve 30° to find the relationship of vertebral body or disc wedging with scoliosis in thoracic and lumbar spine. We also compared the wedging and rotations of vertebrae. Results In both thoracic and lumbar curves, we found that greater the degree of scoliosis, greater the wedging in both disc and body and the degree of wedging was more at apex supporting the theory of growth retardation in stress concentration area. However, the degree of wedging in vertebral body is more than the disc in thoracic spine while the wedging was more in disc than body in lumbar spine. On comparing the wedging with the rotation, we did not find any significant relationship suggesting that it has no relation with rotation. Conclusion From our study, we can conclude that wedging in disc and body are increasing with progression on scoliosis and maximum at apex; however there is differential wedging of body and disc, in thoracic and lumbar area, that is vertebral body wedging is more profound in thoracic area while disc wedging is more profound in lumbar area which possibly form 'vicious cycle' by asymmetric loading to spine for the

  7. Subsurface Thermal Erosion Of Ice-Wedge Polygon Terrains: Implications For Arctic Geosystem In Transition

    Science.gov (United States)

    Fortier, D.; Godin, E.; Lévesque, E.; Veillette, A.

    2014-12-01

    Subsurface thermal erosion is triggered by convective heat transfers between flowing water and permafrost. For inland ice-wedge polygon terrains, heat advection due to infiltration of run-off in the massive ice wedges and the ice-rich upper portion of permafrost creates sink holes and networks of interconnected tunnels in the permafrost. Mass movements such as collapse of tunnel's roof, retrogressive thaw-slumping along exposed permafrost and active layer detachment slides lead to the development of extensive gully networks in the landscape. These gullies drastically change the hydrology of ice-wedge polygon terrains and the fluxes of heat, water, sediment and carbon within the permafrost geosystem. Exportation of sediments by fluvial processes within gullies are positive mechanical feed-back effects that keep gully channels active over decades. Along gully margins, drainage of disturbed polygons and ponds, slope drainage, soil consolidation, plant colonization of disturbed gully slopes and wet to mesic plant succession of drained polygons change the thermal properties of the active layer and create negative feedback effects that stabilize active erosion processes and promote permafrost recovery in gully slopes and adjacent disturbed polygons. On Bylot Island (Nunavut), over 40 gullies were mapped and monitored to characterize gully geomorphology, thermal and mechanical processes of gully erosion, rates of gully erosion over time within different sedimentary deposits, total volume of eroded permafrost at the landscape scale and gully hydrology. We conducted field and laboratory experiments to quantify heat convection processes and speed of ice wedge ablation in order to derive empirical equations to develop a numerical, fully-coupled, heat and mass (water) transfer model of ice-wedge thermal erosion. We used data collected over 10 years of geomorphological gully monitoring, regional climate scenarios, our physics-based numerical thermal erosion model and our field

  8. Hydrodynamic controls on oxygen dynamics in a riverine salt wedge estuary, the Yarra River estuary, Australia

    Science.gov (United States)

    Bruce, L. C.; Cook, P. L. M.; Teakle, I.; Hipsey, M. R.

    2014-04-01

    Oxygen depletion in coastal and estuarine waters has been increasing rapidly around the globe over the past several decades, leading to decline in water quality and ecological health. In this study we apply a numerical model to understand how salt wedge dynamics, changes in river flow and temperature together control oxygen depletion in a micro-tidal riverine estuary, the Yarra River estuary, Australia. Coupled physical-biogeochemical models have been previously applied to study how hydrodynamics impact upon seasonal hypoxia; however, their application to relatively shallow, narrow riverine estuaries with highly transient patterns of river inputs and sporadic periods of oxygen depletion has remained challenging, largely due to difficulty in accurately simulating salt wedge dynamics in morphologically complex areas. In this study we overcome this issue through application of a flexible mesh 3-D hydrodynamic-biogeochemical model in order to predict the extent of salt wedge intrusion and consequent patterns of oxygen depletion. The extent of the salt wedge responded quickly to the sporadic riverine flows, with the strength of stratification and vertical density gradients heavily influenced by morphological features corresponding to shallow points in regions of tight curvature ("horseshoe" bends). The spatiotemporal patterns of stratification led to the emergence of two "hot spots" of anoxia, the first downstream of a shallow region of tight curvature and the second downstream of a sill. Whilst these areas corresponded to regions of intense stratification, it was found that antecedent conditions related to the placement of the salt wedge played a major role in the recovery of anoxic regions following episodic high flow events. Furthermore, whilst a threshold salt wedge intrusion was a requirement for oxygen depletion, analysis of the results allowed us to quantify the effect of temperature in determining the overall severity and extent of hypoxia and anoxia. Climate

  9. Open IS

    DEFF Research Database (Denmark)

    Germonprez, Matt; Crowston, Kevin; Avital, Michel

    2013-01-01

    The collective intelligence and collective action of “open” communities have produced a variety of complex knowledge goods and radical social change. The Information Systems (IS) community has invested significant effort into researching open communities and the ecosystems in which they operate...... therefore seeks to stimulate a thoughtful and dynamic discussion around the proposition that becoming a more open community will enhance the IS discipline’s scholarly inquiry and global impact....

  10. Estimating effective wedge factor for enhanced dynamic wedge 2100CD a Varian Clinac; Calculo De factor cuna efectiva para cuna dinamica mejorada de un Clinac 2100CD de Varian

    Energy Technology Data Exchange (ETDEWEB)

    Pizarro Trigo, F.; Morillas Ruiz, J.; Nunuz Martinez, L.; Sanchez Jimenez, J.

    2011-07-01

    The purpose of this paper is to compare different methods of calculating the effective factor enhanced dynamic wedge (EDWF) with the values ??obtained in measurements of symmetric and asymmetric fields.

  11. A Numerical Study on the Asymmetric Water Entry of A Wedge Section

    Institute of Scientific and Technical Information of China (English)

    M. S. Seif; S. M. Mousaviraad; S. H. Saddathosseini

    2004-01-01

    The effect of the asymmetric water entry over a submerged part of a ship on the hydrodynamic impact is investigated numerically. A wedge body is considered and the problem is assumed to be two-dimensional. The results of symmetric and asymmetric impacts are compared. The effect is found significant in the numerical simulation. The maximum hydrodynamic pressure at a heel angle of 10 degrees becomes about 95% more than that of the symmetric entry. The result of the present work proves the importance of asymmetrical hydrodynamic impact loading for structural design of a ship. Besides, the numerical procedure is not limited to a wedge type cross section and it is possible to apply it for any real geometry of ships and high-speed craft.

  12. Direct Preparation of Nano-Quasicrystals via a Water-Cooled Wedge-Shaped Copper Mould

    Directory of Open Access Journals (Sweden)

    Zhifeng Wang

    2012-01-01

    Full Text Available We have successfully synthesized multicomponent Mg-based nano-quasicrystals (nano-QCs through a simple route by using a water-cooled wedge-shaped copper mould. Nanoscale QCs are prepared directly on tip of wedge-shaped castings. The further study shows that nano-QCs in the Mg71Zn26Y2Cu1 alloy show well microhardness of greater than HV450. Electrochemical properties of three kinds of quasicrystal alloys are investigated in simulated seawater. The Mg71Zn26Y2Cu1 nano-QC alloy presents the best corrosion resistance in this study for the formation of well-distributed nano-QC phases (1~5 nm and polygonal Mg2(Cu,Y nanophases (40~50 nm.

  13. Behavior of the Siemens Virtual Wedge following an interruption to beam delivery.

    Science.gov (United States)

    Richmond, N D; Walker, C P

    2003-01-01

    Investigations were made into the beam profile shape and dose delivered by the Siemens Virtual Wedge trade mark under standard operational conditions compared with those following delivery interruption on two Siemens Primus linear accelerators (Type 7445 and 8067) running different versions of control software (7.2 and 7.0, respectively). The shape of the Virtual Wedge trade mark profiles was found to be unaffected by beam delivery interruption. An increase in the dose delivered to the central axis was found when delivery was interrupted and subsequently resumed using information recorded in a recall data file on one of the accelerators. This dose increase was attributed to a difference in delivered monitor units recorded in the recall data file compared to those displayed on the linear accelerator control console.

  14. Refinement of the wedge bar technique for compression tests at intermediate strain rates

    Directory of Open Access Journals (Sweden)

    Stander M.

    2012-08-01

    Full Text Available A refined development of the wedge-bar technique [1] for compression tests at intermediate strain rates is presented. The concept uses a wedge mechanism to compress small cylindrical specimens at strain rates in the order of 10s−1 to strains of up to 0.3. Co-linear elastic impact principles are used to accelerate the actuation mechanism from rest to test speed in under 300μs while maintaining near uniform strain rates for up to 30 ms, i.e. the transient phase of the test is less than 1% of the total test duration. In particular, a new load frame, load cell and sliding anvil designs are presented and shown to significantly reduce the noise generated during testing. Typical dynamic test results for a selection of metals and polymers are reported and compared with quasistatic and split Hopkinson pressure bar results.

  15. Soil carbon sequestration is a climate stabilization wedge: comments on Sommer and Bossio (2014).

    Science.gov (United States)

    Lassaletta, Luis; Aguilera, Eduardo

    2015-04-15

    Sommer and Bossio (2014) model the potential soil organic carbon (SOC) sequestration in agricultural soils (croplands and grasslands) during the next 87 years, concluding that this process cannot be considered as a climate stabilization wedge. We argue, however, that the amounts of SOC potentially sequestered in both scenarios (pessimistic and optimistic) fulfil the requirements for being considered as wedge because in both cases at least 25 GtC would be sequestered during the next 50 years. We consider that it is precisely in the near future, and meanwhile other solutions are developed, when this stabilization effort is most urgent even if after some decades the sequestration rate is significantly reduced. Indirect effects of SOC sequestration on mitigation could reinforce the potential of this solution. We conclude that the sequestration of organic carbon in agricultural soils as a climate change mitigation tool still deserves important attention for scientists, managers and policy makers.

  16. Large negative Goos-H(a)nchen shift from a wedge-shaped thin film

    Institute of Scientific and Technical Information of China (English)

    Jianping Bai; Yaoju Zhang

    2009-01-01

    The analytical expression for the complex amplitude of light reflected from a wedge-shaped thin film is derived.For plane wave incidence,a simple ray tracing approach is used to calculate Goos-H(a)nchen(GH)shifts;and for non-plane wave incidence,for example,a Gaussian beam,the angular spectrum approach of plane wave is used in simulation.The two approaches predict that a wedge-shaped thin film can produce large negative longitudinal GH shifts.Although the reflectivity is small near the condition of resonance,the large negative GH shifts can be more easily detected in comparison with the shift from a plane-paxallel film in vacuum.

  17. Wedge excision of the nail fold in the treatment of ingrown toenail.

    Science.gov (United States)

    Persichetti, Paolo; Simone, Pierfranco; Li Vecchi, Giancarlo; Di Lella, Filippo; Cagli, Barbara; Marangi, Giovanni Francesco

    2004-06-01

    Many treatment modalities of ingrown toenail are reported in the literature, often associated with unacceptably high recurrence rate. The authors present their technique, which aims at reducing the convexity of the nail fold. After complete removal of the nail plate and accurate debridement of the granulomatous tissue, a wedge-shaped ellipsis of skin and subcutaneous tissue, lateral to the affected nail fold, is removed. Approximation of the margins of the resulting defect determines eversion of the nail fold. One hundred twenty ingrown toenails were treated with the wedge excision of the nail fold at the outpatient clinic of the department of plastic surgery, Campus Bio-Medico University, Rome, Italy, between January 1998 and January 2002. Six recurrences were observed. In addition to the high cure rate, short postoperative pain duration, and morbidity as well as low risk of postoperative infection, the remarkable esthetic results achievable with this method are indicated.

  18. A Single Photon Imaging System Based on Wedge and Strip Anodes

    Institute of Scientific and Technical Information of China (English)

    MIAO Zhen-Hua; ZHAO Bao-Sheng; ZHANG Xing-Hua; LIU Yong-An

    2008-01-01

    A new prototype of single photon imaging system based on wedge and strip anodes is developed. The prototype can directly measure the intensity and position information for an ultra-weak radiant source which takes on the character of single photons. The image of the ultra-weak radiant source can be reconstructed with a wedge and strip anodes detector and an electronic readout subsystem by photon counting and photon position sensitive detecting in a period of time. With proper evaluation, the prototype reveals a spatial resolution superior to 150μm, a 66-kHz maximal counting rate and a dark-count below 0.67count/cm2s.

  19. Effect of ultrasonic power on wedge bonding strength and interface microstructure

    Institute of Scientific and Technical Information of China (English)

    WANG Fu-liang; LI Jun-hui; HAN Lei; ZHONG Jue

    2007-01-01

    During the aluminum wire wedge bonding, the ultrasonic power and bonding strength were obtained. Based on those data, the relationship between ultrasonic power and bonding strength was studied. The results show that: 1) ultrasonic power is affected by ultrasonic power ratio and other uncontrolled factors such as asymmetric substrate quality, unstable restriction on the interface between wedge tool and aluminum wire; 2) when ultrasonic power is less than 1.0 W, increasing ultrasonic power leads to increasing bonding strength and decreasing failure bonding; on the contrary, when ultrasonic power is greater than 1.6 W, increasing power leads to decreasing bonding strength and increasing failure bonding; 3) only when ultrasonic power is between 1.0 W and 1.6 W, can stable and high yield bonding be reached. Finally, the microstructure of bonding interface was observed, and a ring-shaped bond pattern is founded in the center and friction scrape besides the ring area.

  20. Analytic Study of Magnetohydrodynamic Flow and Boundary Layer Control Over a Wedge

    Institute of Scientific and Technical Information of China (English)

    M. Chandrasekar; S. Baskaran

    2008-01-01

    A genuine variational principle developed by Gyarmati, in the field of thermodynamics of irreversible processes unifying the theoretical requirements of technical, environmental and biological sciences is employed to study the effects of uniform suction and injection on MHD flow adjacent to an isothermal wedge with pressure gradient in the presence of a transverse magnetic field. The velocity distribution inside the boundary layer has been considered as a simple polynomial function and the variational principle is formulated. The Euler-Lagrange equation is reduced to a simple polynomial equation in terms of momentum boundary layer thickness. The velocity profiles, displacement thickness and the coefficient of skin friction are calculated for various values of wedge angle parameter m, magnetic parameter ε and suction/injection parameter H. The present results are compared with known available results and the comparison is found to be satisfactory. The present study establishes high accuracy of results obtained by this variational technique.

  1. Experiments on melt-rock reaction in the shallow mantle wedge

    Science.gov (United States)

    Mitchell, Alexandra L.; Grove, Timothy L.

    2016-12-01

    This experimental study simulates the interaction of hotter, deeper hydrous mantle melts with shallower, cooler depleted mantle, a process that is expected to occur in the upper part of the mantle wedge. Hydrous reaction experiments ( 6 wt% H2O in the melt) were conducted on three different ratios of a 1.6 GPa mantle melt and an overlying 1.2 GPa harzburgite from 1060 to 1260 °C. Reaction coefficients were calculated for each experiment to determine the effect of temperature and starting bulk composition on final melt compositions and crystallizing assemblages. The experiments used to construct the melt-wall rock model closely approached equilibrium and experienced phase equilibria, melt compositions, and reaction coefficients provide a framework for understanding how melt-wall rock reaction occurs in the natural system during melt ascent in the mantle wedge.

  2. On the shape of a droplet in a wedge: new insight from electrowetting.

    Science.gov (United States)

    Baratian, D; Cavalli, A; van den Ende, D; Mugele, F

    2015-10-21

    The equilibrium morphology of liquid drops exposed to geometric constraints can be rather complex. Even for simple geometries, analytical solutions are scarce. Here, we investigate the equilibrium shape and position of liquid drops confined in the wedge between two solid surfaces at an angle α. Using electrowetting, we control the contact angle and thereby manipulate the shape and the equilibrium position of aqueous drops in ambient oil. In the absence of contact angle hysteresis and buoyancy, we find that the equilibrium shape is given by a truncated sphere, at a position that is determined by the drop volume and the contact angle. At this position, the net normal force between drop and the surfaces vanishes. The effect of buoyancy gives rise to substantial deviations from this equilibrium configuration which we discuss here as well. We eventually show how the geometric constraint and electrowetting can be used to position droplets inside a wedge in a controlled way, without mechanical actuation.

  3. Structural control of the Gagua "Wedge" Zone east of Taiwan Island on the southern Okinawa Trough

    Institute of Scientific and Technical Information of China (English)

    ZHENG Yanpeng; LIU Baohua; WU Jinlong; LIANG Ruicai; LIU Chenguang; ZHANG Zhengmin

    2005-01-01

    Based on compositive analysis and interpretation of the observed and historical data, the geophysical field characters and structural properties of the Gagua "Wedge" Zone of the sea area east of Taiwan Island and the primary tectonic stress direction and its variabilities of backarc spreading in the southern Okinawa Trough are studied. It is concluded from the study results that the Gagua "Wedge" Zone is structurally consistent with the Gagua ridge and two fault basins on both sides of the Gagua ridge, and adjusts the moving direction and distance of the western Philippine Sea plate to make the northwestward motion of the plate on its east side change to the northward subduction of the plate on its west side so that the primary tectonic stress direction of the Okinawa Trough changed from NW-SE to nearly N-S, which provided the stress source for the Okinawa Trough to enter the second spreading stage.

  4. Plasmonic angular momentum on metal-dielectric nano-wedges in a sectorial indefinite metamaterial

    CERN Document Server

    Jin, Dafei

    2013-01-01

    We present an analytical study to the structure-modulated plasmonic angular momentum trapped on periodic metal-dielectric nano-wedges in the core region of a sectorial indefinite metamaterial. Employing a transfer-matrix calculation and a conformal-mapping technique, our theory is capable of dealing with realistic configurations of arbitrary sector numbers and rounded wedge tips. We demonstrate that in the deep-subwavelength regime strong electric field carrying high azimuthal variation can exist within only ten-nanometer length scale close to the structural center, and is naturally bounded by a characteristic radius of the order of hundred-nanometer away from the center. These extreme confining properties suggest that the structure under investigation may be superior to the conventional metal-dielectric waveguides or cavities in terms of nanoscale photonic manipulation.

  5. Generation of vector beams using a double-wedge depolarizer: Non-quantum entanglement

    Science.gov (United States)

    Samlan, C. T.; Viswanathan, Nirmal K.

    2016-07-01

    Propagation of horizontally polarized Gaussian beam through a double-wedge depolarizer generates vector beams with spatially varying state of polarization. Jones calculus is used to show that such beams are maximally nonseparable on the basis of even (Gaussian)-odd (Hermite-Gaussian) mode parity and horizontal-vertical polarization state. The maximum nonseparability in the two degrees of freedom of the vector beam at the double wedge depolarizer output is verified experimentally using a modified Sagnac interferometer and linear analyser projected interferograms to measure the concurrence 0.94±0.002 and violation of Clauser-Horne-Shimony-Holt form of Bell-like inequality 2.704±0.024. The investigation is carried out in the context of the use of vector beams for metrological applications.

  6. Evolution of Landau levels in graphene-based topological insulators in the presence of wedge disclinations

    CERN Document Server

    Oliveira, J R S; Furtado, C; Sergeenkov, S

    2016-01-01

    In this paper we consider modification of electronic properties of graphene-based topological insulator in the presence of wedge disclination and magnetic field by adopting the Kane-Mele model with intrinsic spin-orbit coupling. Using the properly defined Dirac-Weyl equation for this system, an exact solution for the Landau levels is obtained. The influence of the topological defect on the evolution of Landau levels is discussed.

  7. 2D Traveling Wave Array Employing a Trapezoidal Dielectric Wedge for Beam Steering

    Science.gov (United States)

    Host, Nicholas K.; Chen, Chi-Chih; Volakis, John L.; Miranada, Felix A.

    2014-01-01

    This presentation addresses the progress made so far in the development of an antenna array with reconfigurable transmission line feeds connecting each element in series. In particular, 2D traveling wave array employing trapezoidal Dielectric Wedge for Beam Steering will be discussed. The presentation includes current status of the effort and suggested future work. The work is being done as part of the NASA Office of the Chief Technologist's Space Technology Research Fellowship (NSTRF).

  8. Dehydration of chlorite explains anomalously high electrical conductivity in the mantle wedges.

    Science.gov (United States)

    Manthilake, Geeth; Bolfan-Casanova, Nathalie; Novella, Davide; Mookherjee, Mainak; Andrault, Denis

    2016-05-01

    Mantle wedge regions in subduction zone settings show anomalously high electrical conductivity (~1 S/m) that has often been attributed to the presence of aqueous fluids released by slab dehydration. Laboratory-based measurements of the electrical conductivity of hydrous phases and aqueous fluids are significantly lower and cannot readily explain the geophysically observed anomalously high electrical conductivity. The released aqueous fluid also rehydrates the mantle wedge and stabilizes a suite of hydrous phases, including serpentine and chlorite. In this present study, we have measured the electrical conductivity of a natural chlorite at pressures and temperatures relevant for the subduction zone setting. In our experiment, we observe two distinct conductivity enhancements when chlorite is heated to temperatures beyond its thermodynamic stability field. The initial increase in electrical conductivity to ~3 × 10(-3) S/m can be attributed to chlorite dehydration and the release of aqueous fluids. This is followed by a unique, subsequent enhancement of electrical conductivity of up to 7 × 10(-1) S/m. This is related to the growth of an interconnected network of a highly conductive and chemically impure magnetite mineral phase. Thus, the dehydration of chlorite and associated processes are likely to be crucial in explaining the anomalously high electrical conductivity observed in mantle wedges. Chlorite dehydration in the mantle wedge provides an additional source of aqueous fluid above the slab and could also be responsible for the fixed depth (120 ± 40 km) of melting at the top of the subducting slab beneath the subduction-related volcanic arc front.

  9. A Concise UTD Formulation for the Scattering by a Wedge with Impedance Faces

    Institute of Scientific and Technical Information of China (English)

    YUAN Fei; ZHU Guo-qiang

    2004-01-01

    A concise formulation of the uniform geometrical theory of diffraction (UTD) solution for the scattering by a wedge with isotropic impedance faces at a plane wave normally incident case is deduced in this paper, which inherits the uniformity of the original result. It overcomes the complexity of the former, expresses clearly physical meanings, and is very prone to calculation with computer. The numerical results agree well with those given by published papers.

  10. Open access

    CERN Document Server

    Suber, Peter

    2012-01-01

    The Internet lets us share perfect copies of our work with a worldwide audience at virtually no cost. We take advantage of this revolutionary opportunity when we make our work "open access": digital, online, free of charge, and free of most copyright and licensing restrictions. Open access is made possible by the Internet and copyright-holder consent, and many authors, musicians, filmmakers, and other creators who depend on royalties are understandably unwilling to give their consent. But for 350 years, scholars have written peer-reviewed journal articles for impact, not for money, and are free to consent to open access without losing revenue. In this concise introduction, Peter Suber tells us what open access is and isn't, how it benefits authors and readers of research, how we pay for it, how it avoids copyright problems, how it has moved from the periphery to the mainstream, and what its future may hold. Distilling a decade of Suber's influential writing and thinking about open access, this is the indispe...

  11. Duodenal Wedge Resection for Large Gastrointestinal Stromal Tumour Presenting with Life-Threatening Haemorrhage

    Directory of Open Access Journals (Sweden)

    Alexander Shaw

    2013-01-01

    Full Text Available Background. Duodenal gastrointestinal stromal tumours (GISTs are an uncommon malignancy of the gastrointestinal (GI tract. We present a case of life-threatening haemorrhage caused by a large ulcerating duodenal GIST arising from the third part of the duodenum managed by a limited duodenal wedge resection. Case Presentation. A 61-year-old patient presented with acute life-threatening gastrointestinal bleeding. After oesophagogastroduodenoscopy failed to demonstrate the source of bleeding, a 5 cm ulcerating exophytic mass originating from the third part of the duodenum was identified at laparotomy. A successful limited wedge resection of the tumour mass was performed. Histopathology subsequently confirmed a duodenal GIST. The patient remained well at 12-month followup with no evidence of local recurrence or metastatic spread. Conclusion. Duodenal GISTs can present with life-threatening upper GI haemorrhage. In the context of acute haemorrhage, even relatively large duodenal GISTs can be treated by limited wedge resection. This is a preferable alternative to duodenopancreatectomy with lower morbidity and mortality but comparable oncological outcome.

  12. CFD Simulations of the IHF Arc-Jet Flow: Compression-Pad/Separation Bolt Wedge Tests

    Science.gov (United States)

    Gokcen, Tahir; Skokova, Kristina A.

    2017-01-01

    This paper reports computational analyses in support of two wedge tests in a high enthalpy arc-jet facility at NASA Ames Research Center. These tests were conducted using two different wedge models, each placed in a free jet downstream of a corresponding different conical nozzle in the Ames 60-MW Interaction Heating Facility. Panel test articles included a metallic separation bolt imbedded in the compression-pad and heat shield materials, resulting in a circular protuberance over a flat plate. As part of the test calibration runs, surface pressure and heat flux measurements on water-cooled calibration plates integrated with the wedge models were also obtained. Surface heating distributions on the test articles as well as arc-jet test environment parameters for each test configuration are obtained through computational fluid dynamics simulations, consistent with the facility and calibration measurements. The present analysis comprises simulations of the non-equilibrium flow field in the facility nozzle, test box, and flow field over test articles, and comparisons with the measured calibration data.

  13. Flow Visualization around a Double Wedge Airfoil Model with Focusing Schlieren System

    Institute of Scientific and Technical Information of China (English)

    Masashi KASHITANI; Yutaka YAMAGUCHI

    2006-01-01

    In the present study, aerodynamic characteristics of the double wedge airfoil model were investigated in a transonic flow by using the shock tube as an intermittent wind tunnel. The driver and driven gases of the shock tube are dry air. The airfoil model of double wedge has the span of 58 mm, chord length c = 75 mm and its maximum thickness is 7.5 mm. The apex of the double wedge airfoil model is located on the 35% chord length from the leading edge. The range of hot gas Mach numbers are from 0.80 to 0.88, and the Reynolds numbers based on chord length are 3.11×105~3.49×105, respectively. The flow visualizations were performed by the sharp focusing schlieren method which can visualize the three dimensional flow fields. The results show that the present system can visualize the transonic flowfield clearer than the previous system, and the shock wave profiles of the center of span in the test section are visualized

  14. Analysis and design of wedge projection display system based on ray retracing method.

    Science.gov (United States)

    Lee, Chang-Kun; Lee, Taewon; Sung, Hyunsik; Min, Sung-Wook

    2013-06-10

    A design method for the wedge projection display system based on the ray retracing method is proposed. To analyze the principle of image formation on the inclined surface of the wedge-shaped waveguide, the bundle of rays is retraced from an imaging point on the inclined surface to the aperture of the waveguide. In consequence of ray retracing, we obtain the incident conditions of the ray, such as the position and the angle at the aperture, which provide clues for image formation. To illuminate the image formation, the concept of the equivalent imaging point is proposed, which is the intersection where the incident rays are extended over the space regardless of the refraction and reflection in the waveguide. Since the initial value of the rays arriving at the equivalent imaging point corresponds to that of the rays converging into the imaging point on the inclined surface, the image formation can be visualized by calculating the equivalent imaging point over the entire inclined surface. Then, we can find image characteristics, such as their size and position, and their degree of blur--by analyzing the distribution of the equivalent imaging point--and design the optimized wedge projection system by attaching the prism structure at the aperture. The simulation results show the feasibility of the ray retracing analysis and characterize the numerical relation between the waveguide parameters and the aperture structure for on-axis configuration. The experimental results verify the designed system based on the proposed method.

  15. Analysis of Mechanical Energy Transport on Free-Falling Wedge during Water-Entry Phase

    Directory of Open Access Journals (Sweden)

    Wen-Hua Wang

    2012-01-01

    Full Text Available For better discussing and understanding the physical phenomena and body-fluid interaction of water-entry problem, here mechanical-energy transport (wedge, fluid, and each other of water-entry model for free falling wedge is studied by numerical method based on free surface capturing method and Cartesian cut cell mesh. In this method, incompressible Euler equations for a variable density fluid are numerically calculated by the finite volume method. Then artificial compressibility method, dual-time stepping technique, and Roe's approximate Riemann solver are applied in the numerical scheme. Furthermore, the projection method of momentum equations and exact Riemann solution are used to calculate the fluid pressure on solid boundary. On this basis, during water-entry phase of the free-falling wedge, macroscopic energy conversion of overall body-fluid system and microscopic energy transformation in fluid field are analyzed and discussed. Finally, based on test cases, many useful conclusions about mechanical energy transport for water entry problem are made and presented.

  16. Integrated waste management as a climate change stabilisation wedge for the Maltese islands.

    Science.gov (United States)

    Falzon, Clyde; Fabri, Simon G; Frysinger, Steven

    2013-01-01

    The continuous increase in anthropogenic greenhouse gas emissions occurring since the Industrial Revolution is offering significant ecological challenges to Earth. These emissions are leading to climate changes which bring about extensive damage to communities, ecosystems and resources. The analysis in this article is focussed on the waste sector within the Maltese islands, which is the largest greenhouse gas emitter in the archipelago following the energy and transportation sectors. This work shows how integrated waste management, based on a life cycle assessment methodology, acts as an effective stabilisation wedge strategy for climate change. Ten different scenarios applicable to the Maltese municipal solid waste management sector are analysed. It is shown that the scenario that is most coherent with the stabilisation wedges strategy for the Maltese islands consists of 50% landfilling, 30% mechanical biological treatment and 20% recyclable waste export for recycling. It is calculated that 16.6 Mt less CO2-e gases would be emitted over 50 years by means of this integrated waste management stabilisation wedge when compared to the business-as-usual scenario. These scientific results provide evidence in support of policy development in Malta that is implemented through legislation, economic instruments and other applicable tools.

  17. Partial wedge resection of nail, nail bed and nail matrix in ingrown toenail treatment

    Directory of Open Access Journals (Sweden)

    Mustafa Dönmez

    2010-05-01

    Full Text Available Objectives: Ingrown toenail is a frequent problem which can be seen in all ages. There are many treatment methods both surgical and nonsurgical. In this study we evaluated the results of wedge resection of ingrown toe nail.Patients and Methods: A total of 80 toenails of 74 patients (55 female, 19 male who complaint with discharge and deformity of their toenail underwent partial wedge resection of the nail and nail matrix. According to the Heifetz’s staging system, 34 toenails were grade II, 46 toenails were grade III. There was active drainage due to an infectious process in all effected toe nails. All patients were operated after 10 day of oral antibiotic treatment. We evaluated the recurrence, postoperative infection, patient satisfaction and time to return to work.Results: The mean follow up period was 8 months (4-12 months. There was no recurrence in any patient. Two patients came with wound drainage in postoperative 14th day. Intravenous antibiotic treatment, debridement and wound dressing with rifampicine every other day were accomplished. All patients expressed their satisfaction with surgery.Conclusion: In treatment of ingrown toenail; wedge resection of nail, nail matrix and nail bed is a very effective treatment. Recurrence rate following this technique is negligible if it is done properly and it has high patient satisfaction.

  18. Cubitus varus in adults correction with lateral closing wedge osteotomy and fixation with posterior plating

    Directory of Open Access Journals (Sweden)

    S Pandey

    2012-09-01

    Full Text Available To share the result of lateral closing wedge osteotomy and fixation with posterior reconstruction plate in correction of cubitus varus in adults. It is a retrospective case analysis of 8 cases of cubitus varus in adult treated with lateral closing wedge osteotomy through posterior triceps retracting approach. Internal fixation was done with two posterior reconstruction plates. All cases were from 15 to 29 years of age (mean 22.3 with 3 female and 5 male. All had cubitus varus ranging from 15- 28 deg (mean 20.16 deg due to childhood malunited supracondylar fracture of humerus. Indication for operation was cosmetic reason only. Follow up duration was 4-22 months (mean 12.5 months. All the osteotomy united clinically in mean duration of 9 weeks ( range 8-12 weeks with mean carrying angle 8.33 degree in postoperative phase. There was no loss of motion, no loss of fixation, no surgical site infection, nonunion or neurovascular deficit. Lateral closing wedge corrective osteotomy and fixation with posterior reconstruction plate is easy technique with satisfactory result in correction of cubitus varus in adults. Journal of College of Medical Sciences-Nepal,2012,Vol-8,No-2, 49-53 DOI: http://dx.doi.org/10.3126/jcmsn.v8i2.6839

  19. Extension of a double-wedged orogen potentially leads to the current South China Sea

    Science.gov (United States)

    Wu, G.; Lavier, L. L.

    2015-12-01

    The South China Sea (SCS) is surrounded by South China on the NW, Palawan and Reed Bank on the SE, as well as several microplates, resembling a jigsaw puzzle. In an attempt to better understand its evolution, we designed simplified thermomechanical models to simulate extension of a double-wedge-shaped orogen with highlands on both sides and lowland in the center to mimic the geological condition of the proto-SCS. We imposed constant extension rates on both sides and Gaussian-shaped thermal impulse in the center. We also varied the strength of lower crust but did not explicitly incorporate mid-ocean ridges and searfloor spreading mechanisms. We currently used symmetric double-wedge, but further tests are planed for asymmetric double-wedges. Our preliminary results show that the models produced many structures that resemble those of SCS, such as 1) a series of domino or conjugate faults sitting above a subsurface detachment (or décollement), 2) exhumed domes of middle-lower crust, 3) extreme thinning of both upper crust and lower crust, and 4) propagation of extension towards NW and SE margins. Our models suggest that superimposition of these modeled characteristics produced during several phases of extension of the SCS that may be due to thermal impulsion, magmatic events, and subduction related relaxation potentially produces high resemblance of the SCS.

  20. Computational analysis of asymmetric water entry of wedge and ship section at constant velocity

    Science.gov (United States)

    Rahaman, Md. Mashiur; Ullah, Al Habib; Afroz, Laboni; Shabnam, Sharmin; Sarkar, M. A. Rashid

    2016-07-01

    Water impact problems receive much attention due to their short duration and large unsteady component of hydrodynamic loads. The effect of water entry has several important applications in various aspects of the naval field. Significant attention has been given to various water entry phenomena such as ship slamming, planning hulls, high-speed hydrodynamics of seaplanes, surface-piercing propellers and the interaction of high-speed liquid drops with structural elements. Asymmetric water entry may be caused by various natural phenomena such as weather conditions or strong winds. Since the determination of hydrodynamic impact load plays a vital role in designing safe and effcient vessels, an accurate and reliable prediction method is necessary to investigate asymmetric water entry problems. In this paper, water entry of a two-dimensional wedge and ship section at constant velocity in asymmetric condition will be analysed numerically and the effects of asymmetric impact on the velocity and pressure distribution will be discussed. The finite volume method is employed to solve the dynamic motion of the wedge in two-phase flow. During the water entry, the air and water interface is described implicitly by the volume of fluid (VOF) scheme. The numerical code and method was first validated for symmetric condition by one of the present author is applied for asymmetric wedge and ship section. The free surface, velocity and pressure distribution for asymmetric water entry are investigated and visualized with contour plots at different time steps.

  1. Dose conformation to the spine during palliative treatments using dynamic wedges

    Energy Technology Data Exchange (ETDEWEB)

    Ormsby, Matthew A., E-mail: Matthew.Ormsby@usoncology.com [West Texas Cancer Center at Medical Center Hospital, Odessa, TX (United States); Herndon, R. Craig; Kaczor, Joseph G. [West Texas Cancer Center at Medical Center Hospital, Odessa, TX (United States)

    2013-07-01

    Radiation therapy is commonly used to alleviate pain associated with metastatic disease of the spine. Often, isodose lines are manipulated using dynamic or physical wedges to encompass the section of spine needing treatment while minimizing dose to normal tissue. We will compare 2 methods used to treat the entire thoracic spine. The first method treats the thoracic spine with a single, nonwedged posterior-anterior (PA) field. Dose is prescribed to include the entire spine. Isodose lines tightly conform to the top and bottom vertebrae, but vertebrae between these 2 received more than enough coverage. The second method uses a combination of wedges to create an isodose line that mimics the curvature of the thoracic spine. This “C”-shaped curvature is created by overlapping 2 fields with opposing dynamic wedges. Machine constraints limit the treatment length and therefore 2 isocenters are used. Each of the 2 PA fields contributes a portion of the total daily dose. This technique creates a “C”-shaped isodose line that tightly conforms to the thoracic spine, minimizing normal tissue dose. Spinal cord maximum dose is reduced, as well as mean dose to the liver, esophagus, and heart.

  2. Analysis of stress-strain state on top of a rectangular wedge

    Directory of Open Access Journals (Sweden)

    Frishter Lyudmila Yur'evna

    2014-05-01

    Full Text Available Modeling singular solutions of the elasticity theory problems, which are determined by geometric factor - bird's mouth of the edge, make it necessary to analyze the solutions with some peculiarity, which are obtained experimentally with the help of photoelasticity method. In this article the peculiar stress-strain state is analyzed on the example of the known experimental solutions for a wedge under a concentrated force obtained by M. Frocht. Solution analysis for a wedge with a power-type peculiarity obtained experimentally by photoelasticity method, helps to detach a singular solution field, where fringe contour is not visible. Due to idealization of the boundary shape and loading technique, infinitely large stresses arise, which are obtained as a singular solution of the boundary problem in a planar domain. Comparison of theoretical and experimental solutions obtained for a wedge shows areas of overlap and areas of significant and insignificant differences as a result of the inability to experimentally apply the force to a single point.

  3. Automatic lumbar vertebra segmentation from clinical CT for wedge compression fracture diagnosis

    Science.gov (United States)

    Ghosh, Subarna; Alomari, Raja'S.; Chaudhary, Vipin; Dhillon, Gurmeet

    2011-03-01

    Lumbar vertebral fractures vary greatly in types and causes and usually result from severe trauma or pathological conditions such as osteoporosis. Lumbar wedge compression fractures are amongst the most common ones where the vertebra is severely compressed forming a wedge shape and causing pain and pressure on the nerve roots and the spine. Since vertebral segmentation is the first step in any automated diagnosis task, we present a fully automated method for robustly localizing and segmenting the vertebrae for preparation of vertebral fracture diagnosis. Our segmentation method consists of five main steps towards the CAD(Computer-Aided Diagnosis) system: 1) Localization of the intervertebral discs. 2) Localization of the vertebral skeleton. 3) Segmentation of the individual vertebra. 4) Detection of the vertebrae center line and 5) Detection of the vertebrae major boundary points. Our segmentation results are promising with an average error of 1.5mm (modified Hausdorff distance metric) on 50 clinical CT cases i.e. a total of 250 lumbar vertebrae. We also present promising preliminary results for automatic wedge compression fracture diagnosis on 15 cases, 7 of which have one or more vertebral compression fracture, and obtain an accuracy of 97.33%.

  4. Open-wedge osteotomy using an internal plate fixator in patients with medial-compartment gonarthritis and varus malalignment

    DEFF Research Database (Denmark)

    Niemeyer, Philipp; Schmal, Hagen; Hauschild, Oliver;

    2010-01-01

    months after HTO by use of subjective International Knee Documentation Committee and Lysholm scores. Arthroscopic findings before HTO and radiographic assessment of the metaphyseal deformity of the proximal tibia (tibial bone varus angle) were correlated with clinical outcome. RESULTS: A significant...

  5. An IBEM solution to the scattering of plane SH-waves by a lined tunnel in elastic wedge space

    Institute of Scientific and Technical Information of China (English)

    Zhongxian Liu; Lei Liu

    2015-01-01

    The indirect boundary element method (IBEM) is developed to solve the scattering of plane SH-waves by a lined tunnel in elastic wedge space.According to the theory of single-layer potential,the scattered-wave field can be constructed by applying virtual uniform loads on the surface of lined tunnel and the nearby wedge surface.The densities of virtual loads can be solved by establishing equations through the continuity conditions on the interface and zero-traction conditions on free surfaces.The total wave field is obtained by the superposition of free field and scattered-wave field in elastic wedge space.Numerical results indicate that the IBEM can solve the diffraction of elastic wave in elastic wedge space accurately and efficiently.The wave motion feature strongly depends on the wedge angle,the angle of incidence,incident frequency,the location of lined tunnel,and material parameters.The waves interference and amplification effect around the tunnel in wedge space is more significant,causing the dynamic stress concentration factor on rigid tunnel and the displacement amplitude of flexible tunnel up to 50.0 and 17.0,respectively,more than double that of the case of half-space.Hence,considerable attention should be paid to seismic resistant or anti-explosion design of the tunnel built on a slope or hillside.

  6. Open Education and the Open Science Economy

    Science.gov (United States)

    Peters, Michael A.

    2009-01-01

    Openness as a complex code word for a variety of digital trends and movements has emerged as an alternative mode of "social production" based on the growing and overlapping complexities of open source, open access, open archiving, open publishing, and open science. This paper argues that the openness movement with its reinforcing structure of…

  7. Great Earthquakes and Orogenic Wedge Front Processes in the Bolivian Backarc

    Science.gov (United States)

    Brooks, B. A.; Arrowsmith, R.; Echalar, A.; Yagupsky, D.; Ericksen, T. L.; Weiss, J. R.; Ahlgren, K.; Bevis, M. G.; Whipple, K. X.

    2011-12-01

    The potential for earthquakes greater than Mw 8 rupturing the decollement below Bolivia's Southern Subandes orogenic wedge has been recently recognized although great events are not documented in historical seismicity catalogs and paleoseismologic studies in this part of Bolivia are non-existent. Here, we present the first evidence for a recent surface-rupturing event of at least 7m at the range-front Mandeyapecua fault near the town of Carandaiti. SRTM topography and published industry sub-surface data demonstrate that the ~500km long fault has at least three main segments, each greater than 100 km, with total relief of 10s of meters. We acquired kinematic GPS and terrestrial laser scanner surveys at 26 sites along the 2 northern segments of the fault. Everywhere the profiles of the frontal scarp are very similar to one another: relief is ~8-12m and scarp face inclination is ~7 degrees. Moreover, the slope faces are unbroken and have constant dip, consistent with a single event rupturing each site. We estimate paleo- Mw using thrust earthquake scaling relations and an across-strike rupture length of 85-100km (the locked zone from the geodetic studies). A rupture aspect ratio of ~1:1 sets the lower limit at ~ Mw 8.0 although, if a single event is responsible, then minimum magnitude is more likely Mw ~ 8.2-8.4. Regional geomorphic studies constrain the age of the faulted lithofacies from 1.6 to 4.4ka and minimum short-term slip rates from 4.3 to 1.8 mm/yr. For comparison, published dates and seismic reflection data yield a Quaternary slip rate of 2.4mm/yr. Each of these estimates is significantly less than the geodetically-determined, currently accumulating slip rate of ~10mm/yr. The implication, then, is that some of the other structures within the wedge must be active, although, as yet, we have found no field evidence for this. We use minimum work orogenic models to investigate the physical controls on fault activity in the wedge and show that, whereas for high

  8. The Eocimmerian history of Central Iran: the accretionary wedge of Anarak

    Science.gov (United States)

    Malaspina, Nadia; Zanchi, Andrea; Berra, Fabrizio; Javadi, Hamid Reza; Koohpeyma, Meysam; Ghassemi, Mohammad R.; Sheikholeslami, Mohammad Reza; Bergomi, Maria; Tunesi, Annalisa; Zanchetta, Stefano

    2013-04-01

    The Anarak region of Central Iran is a key area for the understanding of the Late Palaeozoic to Triassic Cimmerian evolution of Iran. The Anarak Metamorphic Complex (AMC) forms an E-W trending mountain ridge, which separates the Triassic of Nakhlak to the north from a continuous non-metamorphic Palaeozoic to Mesozoic sedimentary succession to the south and was interpreted as an accretionary wedge active from Late Palaeozoic to Triassic times. The AMC is sharply cross-cut westward by the Upper Cretaceous "Coloured Melange", consisting of low- to medium- grade metamorphic rocks with tectonically intercalated slivers of serpentinite often associated to blue schists. The occurrence of this rock association in Central Iran poses several questions regarding its evolution and especially on the number of Cimmerian (Palaeotethys) sutures (single rather than multiple) between Eurasia and Iran. The AMC includes several subunits (Morghab, Chah Gorbeh, Patyar, Palhavand Gneiss, Lakh Marble and Doshak) which differ for composition and/or metamorphic evolution. Based on field observations, the Morghab and Chah Gorbeh units suggest a common deformation and a similar metamorphic history, characterised by three major folding events. The first two events developed pervasive axial plane foliations causing a complete transposition of the primary stratigraphic characters. Folding was accompanied by two main metamorphic events, the latter showing retrogression from possible medium to low grade conditions. During the third folding stage, large-scale plunging to vertical open folds were superposed on previous folds in the area north of the Kuh-e Chah Gorbeh, deforming the previous penetrative foliations. In this frame, the Palhavand Gneiss can be considered as part of the same metamorphic unit which escaped a more pervasive low grade retrogression. Concerning the Patyar unit, previous studies considered the Lakh Marble as the lagoonal sediments of an atoll. Field analyses indicate that the

  9. The Open

    Directory of Open Access Journals (Sweden)

    Saitya Brata Das

    2009-12-01

    Full Text Available In the Open darkness and light, remembrance and oblivion, coming into existence and disappearing in death play their originary co-belonging, or co-figuration. Existence belongs to this opening and is exposed to its coming to presence: it is on the basis of this originary opening, this originary historical which is revealed to this mortal being called ‘man,’ on the basis of this revelation, man founds something like politics and history. There thus comes into existence out of this freedom, out of this “play space”2, this field called ‘polis’3 where there takes place war and festival, where historical revolutions tear apart history, brings ruptures and discontinuities in the very mode of his existence, where man seeks the foundation of his own foundation (which is his metaphysical task , where occurs the dialectics of negativity between man and man, where man puts at stake his own death, his own dissolution, and by the power of his own dissolution stands in relation to the total world that he seeks to dominate. This means that man’s attempts to metaphysically found his own political and historical existence must presuppose a far more originary non-foundation, the differentiating revealing of the open, the ungrounded spacing play, or playing space of natality and mortality.

  10. Open innovation

    DEFF Research Database (Denmark)

    West, Joel; Bogers, Marcel

    2017-01-01

    by small, new, and not-for-profit organizations, as well as the linkage of individual actions and motivations to open innovation. Other opportunities include better measuring the costs, benefits, antecedents, mediators and moderators of the effects of OI on performance, and understanding why and how OI...

  11. Alternating augite-plagioclase wedges in basement dolerites of Lockne impact structure, Sweden: A new shock wave-induced deformation feature

    Science.gov (United States)

    Agarwal, A.; Reznik, B.; Alva-Valdivia, L. M.; Srivastava, D. C.

    2017-03-01

    This paper reports peculiar alternating augite-plagioclase wedges in basement dolerites of Lockne impact structure, Sweden. The combined microscopic and spectroscopic studies of the micro/nanoscale wedges reveal that these are deformation-induced features. First, samples showing wedges, 12 out of 18 studied, are distributed in the impact structure within a radius of up to 10 km from the crater center. Second, the margins between the augite and labradorite wedges are sharp and the {110} prismatic cleavage of augite develops into fractures and thereafter into wedges. The fractures are filled with molten labradorite pushed from the neighboring bulk labradorite grain. Third, compared to the bulk labradorite, the dislocation density and the residual strain in the labradorite wedges are significantly higher. A possible mechanism of genesis of the wedges is proposed. The mechanism explains that passing of the shock waves in the basement dolerite induced (i) formation of microfractures in augite and labradorite; (ii) development of the augite prismatic cleavages into the wedges, which overprint the microfracture in the labradorite wedges; and (iii) thereafter, infilling of microfractures in the augite wedges by labradorite.

  12. Open Source, Open Access, Open Review, Open Data. Initiativen zu mehr Offenheit in der digitalen Welt

    OpenAIRE

    Herb, Ulrich

    2011-01-01

    The article discusses the principles of openess, open access and open availability of information based on the examples of open access to scientific information, open government data, open geographical data and open source software.

  13. OpenAPC. Open-Access-Publikationskosten als Open Data

    OpenAIRE

    Tullney, Marco

    2015-01-01

    Präsentationsfolien zum Vortrag „OpenAPC. Open-Access-Publikationskosten als Open Data“ in der Session „Ausgestaltung eines wissenschaftsadäquaten APC-Marktes: Grundsätze, Finanzierungsansätze und Management“ der Open-Access-Tage 2015 in Zürich (https://www.open-access.net/community/open-access-tage/open-access-tage-2015-zuerich/programm/#c1974)

  14. A comparison of the biomechanical effects of valgus knee braces and lateral wedged insoles in patients with knee osteoarthritis.

    Science.gov (United States)

    Jones, Richard K; Nester, Christopher J; Richards, Jim D; Kim, Winston Y; Johnson, David S; Jari, Sanjiv; Laxton, Philip; Tyson, Sarah F

    2013-03-01

    Increases in the external knee adduction moment (EKAM) have been associated with increased mechanical load at the knee and progression of knee osteoarthritis. Valgus knee braces and lateral wedged insoles are common approaches to reducing this loading; however no study has directly compared the biomechanical and clinical effects of these two treatments in patients with medial tibiofemoral osteoarthritis. A cross-over randomised design was used where each intervention was worn by 28 patients for a two week period. Pre- and post-intervention gait kinematic/kinetic data and clinical outcomes were collected to evaluate the biomechanical and clinical effects on the knee joint. The valgus knee brace and the lateral wedged insole significantly increased walking speed, reduced the early stance EKAM by 7% and 12%, and the knee adduction angular impulse by 8.6 and 16.1% respectively. The lateral wedged insole significantly reduced the early stance EKAM compared to the valgus knee brace (p=0.001). The valgus knee brace significantly reduced the knee varus angle compared to the baseline and lateral wedged insole. Improvements in pain and function subscales were comparable for the valgus knee brace and lateral wedged insole. There were no significant differences between the two treatments in any of the clinical outcomes; however the lateral wedged insoles demonstrated greater levels of acceptance by patients. This is the first study to biomechanically compare these two treatments, and demonstrates that given the potential role of knee loading in osteoarthritis progression, that both treatments reduce this but lateral wedge insoles appear to have a greater effect.

  15. Control of structural inheritance on thrust initiation and material transfer in accretionary wedges

    Science.gov (United States)

    Leever, Karen; Geersen, Jacob; Ritter, Malte; Lieser, Kathrin; Behrmann, Jan

    2016-04-01

    Faults in the incoming sediment layer are commonly observed in subduction zone settings and well developed in the incoming plate off Sumatra. To investigate how they affect the structural development of the accretionary wedge, we conducted a series of 2D analogue tectonic experiments in which a 2 cm thick quartz sand layer on top of a thin detachment layer of glass beads was pulled against a rigid backstop by a basal conveyor belt in a 20cm wide box with glass walls. A gap at the base of the back wall avoids entrainment of the glass beads. At regular spacing of either 2.3, 5.5 or 7.8 cm (fractions of the thrust sheet length in the reference model), conjugate pairs of weakness zones dipping 60deg were created by cutting the sand layer with a thin (1 mm) metal blade. Both the undisturbed sand and the pre-cuts have an angle of internal friction of ~29o, but their cohesion is different by 50 Pa (110 Pa for the undisturbed material, 60 Pa along the pre-cuts). Friction of the glass beads is ~24deg. The experiments are monitored with high resolution digital cameras; displacement fields derived from digital image correlation are used to constrain fault activity. In all experiments, a critically tapered wedge developed with a surface slope of 7.5deg. In the reference model (no weakness zones in the input section), the position of new thrust faults is controlled by the frontal slope break. The average length of the thrust sheets is 11 cm and the individual thrusts accommodate on average 8 cm displacement each. The presence of weakness zones causes thrust initiation at a position different from the reference case, and affects their dip. For a fault spacing of 7.8 cm (or 75% of the reference thrust sheet length), every single incoming weakness zone causes the formation of a new thrust, thus resulting in thrust sheets shorter than the equilibrium case. In addition, less displacement is accommodated on each thrust. As a consequence, the frontal taper is smaller than expected

  16. Assessing strain mapping by electron backscatter diffraction and confocal Raman microscopy using wedge-indented Si

    Energy Technology Data Exchange (ETDEWEB)

    Friedman, Lawrence H.; Vaudin, Mark D.; Stranick, Stephan J.; Stan, Gheorghe; Gerbig, Yvonne B.; Osborn, William; Cook, Robert F., E-mail: robert.cook@nist.gov

    2016-04-15

    The accuracy of electron backscatter diffraction (EBSD) and confocal Raman microscopy (CRM) for small-scale strain mapping are assessed using the multi-axial strain field surrounding a wedge indentation in Si as a test vehicle. The strain field is modeled using finite element analysis (FEA) that is adapted to the near-indentation surface profile measured by atomic force microscopy (AFM). The assessment consists of (1) direct experimental comparisons of strain and deformation and (2) comparisons in which the modeled strain field is used as an intermediate step. Direct experimental methods (1) consist of comparisons of surface elevation and gradient measured by AFM and EBSD and of Raman shifts measured and predicted by CRM and EBSD, respectively. Comparisons that utilize the combined FEA–AFM model (2) consist of predictions of distortion, strain, and rotation for comparison with EBSD measurements and predictions of Raman shift for comparison with CRM measurements. For both EBSD and CRM, convolution of measurements in depth-varying strain fields is considered. The interconnected comparisons suggest that EBSD was able to provide an accurate assessment of the wedge indentation deformation field to within the precision of the measurements, approximately 2×10{sup −4} in strain. CRM was similarly precise, but was limited in accuracy to several times this value. - Highlights: • We map strain by electron backscatter diffraction and confocal Raman microscopy. • The test vehicle is the multi-axial strain field of wedge-indented silicon. • Strain accuracy is assessed by direct experimental intercomparison. • Accuracy is also assessed by atomic force microscopy and finite element analyses. • Electron diffraction measurements are accurate; Raman measurements need refinement.

  17. Numerical modeling of mantle wedge processes and exhumation of UHP mantle in subduction zones

    Science.gov (United States)

    Gorczyk, W.; Gerya, T. V.; Guillot, S.; Connolly, J. A.; Yuen, D.

    2007-12-01

    The upwelling of subduction generated partially molten rocks is potentially a mechanism for the exhumation of UHP rocks through the mantle wedge. We investigated this processes using a 2-D coupled petrological- thermomechanical model that incorporates slab dehydration and water transport as well as partial melting of mantle and crustal rocks. This approach allows us to study the dynamics of mantle wedge processes including evolution of partially molten plumes and their interaction with surrounding dry mantle. To study the internal structure of the plumes we used ultra-high resolution numerical simulations with 10 billion active markers to detail the internal structure of natural plumes originating from the slab. The plumes consist of partially molten hydrated peridotite, dry solid mantle and subducted oceanic crust, which may comprise up to 12 volume % of the plume. As the plumes grow and mature these materials mix chaotically resulting in attenuation and duplication of the original layering on scales of 1-1000 m. Comparison of numerical results with geological observations from the Horoman ultramafic complex in Japan suggests that mixing and differentiation processes related to development of partially molten plumes above slabs may be responsible for strongly layered lithologically mixed (marble cake) structure of asthenospheric mantle wedges. The recent discovery of garnet bearing peridotites in the subduction zone of the Great Antilles in Hispaniola has raised questions about the process that leads to their exhumation. To evaluate whether upwelling plumes are a plausible exhumation mechanism we investigated the dynamics of subduction of slow spreading ridges. The results show that subduction of strongly serpentinized oceanic plate causes strong dehydration of the slab and leads to a rheological weakening of the interface between subducting and overriding plate. This weakening triggers trench retreat and massive asthenospheric upwelling into the gap between the

  18. PROPERTIES OF NATURAL CAVITATION FLOWS AROUND A 2-D WEDGE IN SHALLOW WATER

    Institute of Scientific and Technical Information of China (English)

    CHEN Xin; LU Chuan-jing; LI Jie; CHEN Ying

    2011-01-01

    When a body navigates with cavity in shallow water,both flexible free surface and rigid bottom wall will produce great influences on the cavity shape and hydrodynamic performances,and further affect the motion attitude and stability of the body.In the present work,characteristics of the natural cavitating flow around a 2-D symmetrical wedge in shallow water were investigated and the influences of two type boundaries on the flow pattern were analyzed.The Volume Of Fluid (VOF) multiphaseflow method which is suitable for free surface problems was utilized,coupled with a natural cavitation model to deal with the mass-transfer process between liquid and vapor phases.Within the range of the cavitation number for computation (0.07-1.81),the cavity configurations would be divided into three types,viz.,stable type,transition type and wake-vortex type.In this article,the shapes of the free surface and the cavity surface,and the hydrodynamic performance of the wedge were discussed under the conditions of relatively small cavitation number ( < 0.256 ).The present numerical cavity lengths generally accord with experimental data.When the cavitation number was decreased,the cavity was found to become longer and thicker,and the scope of the deformation of the free surface also gradually extends.The free surface and the upper cavity surface correspond fairly to their shapes.However,the lower side of the cavity surface was rather leveled due to the influence of wall boundary.The lift and drag coefficients of this 2-D wedge basically keep linear relations with the natural cavitation number smaller than 0.157,whereas direct proportion for drag and inverse proportion for lift.

  19. Observations of the Columbia River salt wedge and estuarine turbidity maximum using AUVs

    Science.gov (United States)

    McNeil, C. L.; Shcherbina, A.; Litchendorf, T.; Sanford, T. B.; Martin, D.; Baptista, A. M.; Lopez, J.; Crump, B.

    2012-12-01

    We present detailed observations of the salt wedge and estuarine turbidity maxima (ETM) in the North Channel of the Columbia River estuary (OR, USA) under conditions of high river discharge during May 2012. Measurements were made using two REMUS-100 autonomous underwater vehicles (AUVs; Hydroid, Inc.) equipped with SBE-49 CTDs (Seabird-Electronics, Inc.) for water temperature and salinity, upward/downward looking ADCPs (Teledyne RDI, Inc.) for currents, and ECO Puck triplets (WET Labs, Inc.) for optical backscatter measurement of turbidity. The acoustic backscatter intensity from the ADCP was also used as a proxy measurement for suspended sediments and was found to correlate quite well with the optical backscatter measurements. Daily forecasts of tidal currents in the estuary were used to simulate the AUV path in advance of deployment to aid data collection. Repeat AUV sections were made along and across the channel during flood tide. The turbidity and height above riverbed of the bottom boundary layer was observed to increase toward the deeper waters at the center of the channel. An ETM-like feature was observed ahead of the advancing salt wedge front with locally higher turbidity levels, presumably the result of flocculation and resuspension. To visualize better the repeat section measurements we made data movies. Each frame of the movie is our best estimate of a synoptic snapshot of along-section tracer distribution at a given point in time. These snapshots were created by re-location of non-synoptic AUV measurements to account for the advection of water parcels. An example data movie showing the intrusion of the salt wedge during the flood tide will be presented.

  20. Earthquake occurrence processes in the Indo-Burmese wedge and Sagaing fault region

    Science.gov (United States)

    Kundu, Bhaskar; Gahalaut, V. K.

    2012-02-01

    Earthquakes in the Indo-Burmese wedge and Sagaing fault regions occur in response to the partitioning of the India-Sunda motion along these two distinct boundaries. Under the accretionary wedge of the Indo-Burmese arc, majority of the earthquakes occur in the depth range of 30-60 km and define an eastward gently dipping seismicity trend surface that coincides with the Indian slab. The dip of the slab steepens in the east direction and earthquakes occur down to a depth of 150 km, though the slab can be traced up to the 660 km discontinuity. Although these features are similar to a subduction zone, the nature of the earthquakes and our analysis of their focal mechanisms suggest that these earthquakes are of intra-slab type which occur on steep plane within the Indian plate and the sense of motion implies a northward relative motion with respect to the Sunda plate. Thus these earthquakes and the stress state do not support active subduction across the Indo-Burmese arc which is also consistent with the relative motion of India-Sunda plates. The absence of inter-plate earthquakes, lack of evidence of the occurrence of great earthquakes in the historical records and non-seismogenic nature of the plate interface under the accretionary wedge suggest that seismic hazard due to earthquakes along the plate boundary may be relatively low. However, major intra-slab earthquakes at shallow and intermediate depths may still cause damage in the sediment filled valley regions of Manipur and Cachar in India and Chittagong and Sylhet regions of Bangladesh. In the Sagaing fault region, earthquakes occur through dextral strike slip motion along the north-south oriented plane and the stress state is consistent with the plate motion across the Sagaing fault.

  1. External post-tensioning of cfrp tendons using integrated sleeve-wedge anchorage

    DEFF Research Database (Denmark)

    Schmidt, Jacob Wittrup; Bennitz, Anders; Goltermann, Per

    2012-01-01

    Strengthening of structures using external post-tension CFRP systems have proven to be anefficient method as such system increases the structural capacity and reduces cracks and deflection. Sufficient anchorage is of significant importance since the anchorage provides the connection between...... the post-tensioning system and the remaining structure. A special designed integrated sleeve-wedge anchorage has therefore been designed to improve the reliability of the mounting procedure, reduce the possible modes of failure and thus provide desired anchorage. The present research shows that adequate...

  2. Design, performance, and calibration of CMS hadron-barrel calorimeter wedges

    Energy Technology Data Exchange (ETDEWEB)

    Abdullin, S. [Fermi National Accelerator Lab., Batavia, IL (United States)]|[Univ. of Maryland, College Park, MD (United States); Abramov, V.; Goncharov, P.; Khmelnikov, A.; Korablev, A.; Korneev, Y.; Krinitsyn, A.; Kryshkin, V.; Lukanin, V.; Pikalov, V.; Ryazanov, A.; Talov, V.; Turchanovich, L.; Volkov, A. [IHEP, Protvino (Russian Federation); Acharya, B.; Banerjee, S.; Banerjee, S.; Chendvankar, S.; Dugad, S.; Kalmani, S.; Katta, S.; Mazumdar, K.; Mondal, N.; Nagaraj, P.; Patil, M.; Reddy, L.; Satyanarayana, B.; Sudhakar, K.; Verma, P. [Tata Inst. of Fundamental Research, Mumbai (India); Adams, M.; Burchesky, K.; Qian, W. [Univ. of Illinois at Chicago, Chicago, IL (United States); Akchurin, N.; Carrell, K.; Guemues, K.; Thomas, R. [Texas Tech Univ., Dept. of Physics, Lubbock, TX (United States); Akgun, U.; Ayan, S.; Duru, F.; Merlo, J.P.; Mestvirishvili, A.; Miller, M.; Norbeck, E.; Olson, J.; Onel, Y.; Schmidt, I. [Univ. of Iowa, Iowa City, IA (United States); Anderson, E.W.; Hauptman, J. [Iowa State Univ., Ames, IA (United States); Antchev, G.; Hazen, E.; Lawlor, C.; Machado, E.; Posch, C.; Rohlf, J.; Wu, S.X. [Boston Univ., Boston, MA (United States); Aydin, S.; Dumanoglu, I.; Eskut, E.; Kayis-Topaksu, A.; Polatoz, A.; Onengut, G.; Ozdes-Koca, N. [Cukurova Univ., Adana (Turkey); Baarmand, M.; Ralich, R.; Vodopiyanov, I. [Florida Inst. of Technology, Melbourne, FL (United States); Baden, D.; Bard, R.; Eno, S.; Grassi, T.; Jarvis, C.; Kellogg, R.; Kunori, S.; Skuja, A. [Univ. of Maryland, College Park, MD (United States); Barnes, V.; Laasanen, A.; Pompos, A. [Purdue Univ., West Lafayette, IN (United States); Bawa, H.; Beri, S.; Bhatnagar, V.; Kaur, M.; Kohli, J.; Kumar, A.; Singh, J. [Panjab Univ., Chandigarh (India); Baiatian, G.; Sirunyan, A. [Yerevan Physics Inst., Yerevan (Armenia); Bencze, G.; Vesztergombi, G.; Zalan, P. [KFKI-RMKI, Research Inst. for Particle and Nuclear Physics, Budapest (Hungary)] [and others

    2008-05-15

    Extensive measurements have been made with pions, electrons and muons on four production wedges of the compact muon solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/c. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. The energy dependent time slewing effect was measured and tuned for optimal performance. (orig.)

  3. Researches on the distribution law of vector sound field in elastic wedge bottom

    Institute of Scientific and Technical Information of China (English)

    ZHANG Haigang; PIAO Shengchun; YANG Shi'e; AN Xudong

    2011-01-01

    The method based on elastic parabolic equation method for calculating the sound vector field has been studied. The vector field in water and corresponding seismic wave field had been calculated for infra-sound in oceanic environment with elastic wedge bottom. The effects on sound field distribution for different frequency and depth of sound source had been researched, result shows that there is sound energy leakage into the bottom, the position where leakage occurred can be determined by the ratio of the ocean depth to the wavelength, as compared with normal mode theory.

  4. Polarization sensitive localization based super-resolution microscopy with a birefringent wedge

    Science.gov (United States)

    Sinkó, József; Gajdos, Tamás; Czvik, Elvira; Szabó, Gábor; Erdélyi, Miklós

    2017-03-01

    A practical method has been presented for polarization sensitive localization based super-resolution microscopy using a birefringent dual wedge. The measurement of the polarization degree at the single molecule level can reveal the chemical and physical properties of the local environment of the fluorescent dye molecule and can hence provide information about the sub-diffraction sized structure of biological samples. Polarization sensitive STORM imaging of the F-Actins proved correlation between the orientation of fluorescent dipoles and the axis of the fibril.

  5. A possible relict mantle wedge:Geochemical evidence from Paleogene volcanics in North China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The major and trace element and isotopic composition were analyzed for the Paleogene volcanics in North China dated by the K-Ar method. The geochemical data show that most volcanics are in caic-alkaline series and the minor is in alkaline series. They differ obviously from Neogene and Quaternary volcanics in geochemistry. In particular, the Paleogene volcanics from the southern part of North China were derived from enriched lithospheric mantle (EMⅡ), which were likely to be a relict mantle wedge formed during the subduction of the Yangtze plate into the North China plate in late Triassic (Indo- Sinian).

  6. Solution of the Falkner Skan equation for wedge by Adomian Decomposition Method

    Science.gov (United States)

    Alizadeh, Ebrahim; Farhadi, Mousa; Sedighi, Kurosh; Ebrahimi-Kebria, H. R.; Ghafourian, Akbar

    2009-03-01

    The Adomian Decomposition Method is employed in the solution of the two dimensional laminar boundary layer of Falkner-Skan equation for wedge. This work aims at the solution of momentum equation in the case of accelerated flow and decelerated flow with separation. The Adomian Decomposition Method is provided an analytical solution in the form of an infinite power series. The effect of Adomian polynomials terms is considered on accuracy of the results. The velocity profiles in boundary layer are obtained. Results show a good accuracy compared to the exact solution.

  7. Tunable-angle wedge transducer for improved acoustophoretic control in a microfluidic chip

    DEFF Research Database (Denmark)

    Iranmanesh, I.; Barnkob, Rune; Bruus, Henrik;

    2012-01-01

    coupling angle, and transducer actuation method (single-frequency actuation or frequency-modulation actuation). The energy-density analysis is based on measuring the transmitted light intensity through a microfluidic channel filled with a suspension of 5-μm-diameter beads and the results with the tunable...... particle patterns with average acoustic energy densities comparable to those obtained using single-frequency actuation.......We present a tunable-angle wedge ultrasound transducer for improved control of microparticle acoustophoresis in a microfluidic chip. The transducer is investigated by analyzing the pattern of aligned particles and induced acoustic energy density while varying the system geometry, transducer...

  8. Tunable-angle wedge transducer for improved acoustophoretic control in a microfluidic chip

    DEFF Research Database (Denmark)

    Iranmanesh, I.; Barnkob, Rune; Bruus, Henrik;

    2013-01-01

    coupling angle, and transducer actuation method (single-frequency actuation or frequency-modulation actuation). The energy-density analysis is based on measuring the transmitted light intensity through a microfluidic channel filled with a suspension of 5 µm diameter beads and the results with the tunable...... uniform particle patterns with average acoustic energy densities comparable to those obtained using single-frequency actuation.......We present a tunable-angle wedge ultrasound transducer for improved control of microparticle acoustophoresis in a microfluidic chip. The transducer is investigated by analyzing the pattern of aligned particles and induced acoustic energy density while varying the transducer geometry, transducer...

  9. Wedge Absorbers for Final Cooling for a High-Energy High-Luminosity Lepton Collider

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermilab; Mohayai, Tanaz [IIT, Chicago (main); Snopok, Pavel [IIT, Chicago; Summers, Don [Mississippi U.

    2016-06-01

    A high-energy high-luminosity muon collider scenario requires a "final cooling" system that reduces transverse emittance to ~25 microns (normalized) while allowing longitudinal emittance increase. Ionization cooling using high-field solenoids (or Li Lens) can reduce transverse emittances to ~100 microns in readily achievable configurations, confirmed by simulation. Passing these muon beams at ~100 MeV/c through cm-sized diamond wedges can reduce transverse emittances to ~25 microns, while increasing longitudinal emittance by a factor of ~5. Implementation will require optical matching of the exiting beam into downstream acceleration systems.

  10. Open University

    CERN Document Server

    Pentz,M

    1975-01-01

    Michel Pentz est née en Afrique du Sud et venu au Cern en 1957 comme physicien et président de l'associaion du personnel. Il est également fondateur du mouvement Antiapartheid de Genève et a participé à la fondation de l'Open University en Grande-Bretagne. Il nous parle des contextes pédagogiques, culturels et nationaux dans lesquels la méthode peut s'appliquer.

  11. CHIRP seismic reflection study of falling-stage (forced regressive) sediment wedges on the New Jersey outer continental shelf

    Science.gov (United States)

    Santra, M.; Goff, J.; Ron, S.; Austin, J.

    2007-12-01

    High-resolution (1-12 kHz), deep-towed and hull-mounted CHIRP seismic data were collected on the New Jersey outer shelf in 2001, 2002 and 2006 as part of Office of Naval Research-funded projects. These data have imaged two well-developed, offlapping sedimentary wedges (named outer-shelf wedge and deep-shelf wedge) that are now postulated to have developed on the falling-stage limb of the last glacial cycle, during some time prior to the Last Glacial Maximum (20-22 kyrs BP). These wedges formed atop the high-amplitude, regional R horizon, a complex erosional unconformity that formed about 40,000 years ago. The outer shelf wedge is also characterized in part by an enigmatic, erose boundary separating layered horizons below from a mostly transparent section above. New Jersey shelf wedges appear analogous to forced-regressive units imaged on the Rhone shelf edge, as well as Eocene sections documented from seismic-scale outcrops on Spitsbergen Island. These examples can reach thicknesses up to 100 m on the shelf edge and uppermost slope, but usually thin rapidly downslope. Such wedges represent one of two documented mechanisms involving sand transport across a shelf margin into deeper water settings, the other being a canyonized shelf-edge. Our study will includes analysis of the CHIRP data and, if available, additional ground truth provided by short cores collected in summer 2007 at numerous intra-wedge stratigraphic horizons. Our goals are to understand the external and internal geometry of the wedges and sediment pathways across the paleo-shelf. These data should allow us to characterize margin segments that build during sea-level fall by slope-apron accretion rather than by the formation of channel-levee complexes. The literature is heavily weighted by the latter and their associated canyon systems, but information on shelf-edge attached slope aprons and how they contribute to deep-water sedimentation, and in particular the delivery of clean sands to slope settings

  12. Changes in basal dip and frictional properties controlling orogenic wedge propagation and frontal collapse: the External central Betics case

    Science.gov (United States)

    Jiménez-Bonilla, Alejandro; Torvela, Taija; Balanyá, Juan-Carlos; Díaz-Azpiroz, Manuel; Expósito, Inmaculada

    2016-04-01

    Orogenic wedges and their key component, thin-skinned fold-and-thrust belts (FTBs), have been extensively studied through both field examples and modelling. The overall dynamics of FTBs are, therefore, well understood. One of the less understood aspects is: what is the combined influence of across-strike changes in the detachment properties and the basement topography on the behaviour of an orogenic wedge, as the deformation progresses towards the foreland? In this study, we use field data combined with reflection seismic interpretation and well data from the External Zones of the Central Betics FTB, S Spain, to identify a basement "threshold" coinciding with a thinning out of a weak substrate (Triassic evaporites) in the wedge basal detachment. The basal changes influenced the tempo-spatial (4D) local wedge dynamics at ~Early Langhian times, leading to stagnation of FTB propagation, topographic build-up and subsequent collapse of the FTB front, which was enhanced by arc-parallel stretching. This development led to a formation of an important depocentre filled with a thick Langhian mélange unit and later sediments deposited in the NW-migrating foreland basin. This case study illustrates the importance of across-strike changes in wedge basal properties to the stability of the FTB front, especially in terms of the collapse/extensional structures.

  13. Study on effect of segments erection tolerance and wedge-shaped segment on segment ring in shield tunnel

    Institute of Scientific and Technical Information of China (English)

    CHEN Jun-sheng; MO Hai-hong

    2006-01-01

    Deformation and dislocations of segments of shield tunnel in construction stage have apparent effect on tunnel structure stress and even cause local cracks and breakage in tunnel. 3D finite element method was used to analyze two segment ring models under uniform injected pressure: (1) segment ring without wedge-shaped segment, which has 16 types of preinstall erection tolerance; (2) segment ring with wedge-shaped segment, which has no preinstall erection tolerance. The analysis results indicate that different erection tolerances can cause irregular deformation in segment ring under uniform injected pressure, and that the tolerance values are enlarged further. Wedge-shaped segment apparently affects the overall deformation of segment ring without erection tolerances. The uniform injected pressure can cause deformation of ring with wedge-shaped segment irregular,and dislocations also appear in this situation. The stress of segment with erection tolerances is much larger than that of segment without erection tolerances. Enlarging the central angle of wedge-shaped segment can make the irregular deformation and dislocations of segments smaller. The analysis results also provide basis for erection tolerance control and improvement of segment constitution.

  14. Analytical correction of an extension of the "MU Fraction Approximation" for Varian enhanced dynamic wedges.

    Science.gov (United States)

    Gossman, Michael S; Sharma, Subhash C

    2010-04-01

    The most common method to determine enhanced dynamic wedge factors begins with the use of segmented treatment tables. These segmental dose delivery values set as a function of upper jaw position are the backbone of a calculation process coined the "MU Fraction Approximation." Analytical and theoretical attempts have been made to extend and alter the mathematics for this approximation for greater accuracy. A set of linear equations in the form of a matrix are introduced here which correct one published extension of the MU Fraction Approximation as it applies to both symmetric and asymmetric photon fields. The matrix results are compared to data collected from a commissioned Varian Eclipse Treatment Planning System and previously published research for Varian linear accelerators. A total enhanced dynamic wedge factor with excellent accuracy was achieved in comparison to the most accurate previous research found. The deviation seen here is only 0.4% and 1.0% for symmetric and asymmetric fields respectively, for both 6MV and 18MV photon beams.

  15. Computational Analysis of Arc-Jet Wedge Tests Including Ablation and Shape Change

    Science.gov (United States)

    Goekcen, Tahir; Chen, Yih-Kanq; Skokova, Kristina A.; Milos, Frank S.

    2010-01-01

    Coupled fluid-material response analyses of arc-jet wedge ablation tests conducted in a NASA Ames arc-jet facility are considered. These tests were conducted using blunt wedge models placed in a free jet downstream of the 6-inch diameter conical nozzle in the Ames 60-MW Interaction Heating Facility. The fluid analysis includes computational Navier-Stokes simulations of the nonequilibrium flowfield in the facility nozzle and test box as well as the flowfield over the models. The material response analysis includes simulation of two-dimensional surface ablation and internal heat conduction, thermal decomposition, and pyrolysis gas flow. For ablating test articles undergoing shape change, the material response and fluid analyses are coupled in order to calculate the time dependent surface heating and pressure distributions that result from shape change. The ablating material used in these arc-jet tests was Phenolic Impregnated Carbon Ablator. Effects of the test article shape change on fluid and material response simulations are demonstrated, and computational predictions of surface recession, shape change, and in-depth temperatures are compared with the experimental measurements.

  16. Microchip and wedge ion funnels and planar ion beam analyzers using same

    Science.gov (United States)

    Shvartsburg, Alexandre A; Anderson, Gordon A; Smith, Richard D

    2012-10-30

    Electrodynamic ion funnels confine, guide, or focus ions in gases using the Dehmelt potential of oscillatory electric field. New funnel designs operating at or close to atmospheric gas pressure are described. Effective ion focusing at such pressures is enabled by fields of extreme amplitude and frequency, allowed in microscopic gaps that have much higher electrical breakdown thresholds in any gas than the macroscopic gaps of present funnels. The new microscopic-gap funnels are useful for interfacing atmospheric-pressure ionization sources to mass spectrometry (MS) and ion mobility separation (IMS) stages including differential IMS or FAIMS, as well as IMS and MS stages in various configurations. In particular, "wedge" funnels comprising two planar surfaces positioned at an angle and wedge funnel traps derived therefrom can compress ion beams in one dimension, producing narrow belt-shaped beams and laterally elongated cuboid packets. This beam profile reduces the ion density and thus space-charge effects, mitigating the adverse impact thereof on the resolving power, measurement accuracy, and dynamic range of MS and IMS analyzers, while a greater overlap with coplanar light or particle beams can benefit spectroscopic methods.

  17. Secondary Subacromial Impingement after Valgus Closing-Wedge Osteotomy for Proximal Humerus Varus

    Directory of Open Access Journals (Sweden)

    Hirotaka Sano

    2015-01-01

    Full Text Available A 31-year-old construction worker had been suffering from both the motion pain and the restriction of elevation in his right shoulder due to severe varus deformity of humeral neck, which occurred after proximal humeral fracture. The angle for shoulder flexion and abduction was restricted to 50 and 80 degrees, respectively. Valgus closing-wedge osteotomy followed by the internal fixation using a locking plate was carried out at 12 months after injury. Postoperatively, the head-shaft angle of the humerus improved from 65 to 138 degrees. Active flexion and abduction angles improved from 80 to 135 degrees and from 50 to 135 degrees, respectively. However, the patient complained from a sharp pain with a clicking sound during shoulder abduction even after removal of the locking plate. Since subacromial steroid injection temporarily relieved his shoulder pain, we assumed that the secondary subacromial impingement was provoked after osteotomy. Thus, arthroscopic subacromial decompression was carried out at 27 months after the initial operation, which finally relieved his symptoms. In the valgus closing-wedge osteotomy, surgeons should pay attention to the condition of subacromial space to avoid causing the secondary subacromial impingement.

  18. Enhanced performance of fast-response 3-hole wedge probes for transonic flows in axial turbomachinery

    Science.gov (United States)

    Delhaye, D.; Paniagua, G.; Fernández Oro, J. M.; Dénos, R.

    2011-01-01

    The paper presents the development and application of a three-sensor wedge probe to measure unsteady aerodynamics in a transonic turbine. CFD has been used to perform a detailed uncertainty analysis related to probe-induced perturbations, in particular the separation zones appearing on the wedge apex. The effects of the Reynolds and Mach numbers are studied using both experimental data together with CFD simulations. The angular range of the probe and linearity of the calibration maps are enhanced with a novel zonal calibration technique, used for the first time in compressible flows. The data reduction methodology is explained and demonstrated with measurements performed in a single-stage high-pressure turbine mounted in the compression tube facility of the von Karman Institute. The turbine was operated at subsonic and transonic pressure ratios (2.4 and 5.1) for a Reynolds number of 106, representative of modern engine conditions. Complete maps of the unsteady flow angle and rotor outlet Mach number are documented. These data allow the study of secondary flows and rotor trailing edge shocks.

  19. Quantitative Verification of Dynamic Wedge Dose Distribution Using a 2D Ionization Chamber Array.

    Science.gov (United States)

    Sahnoun, Tarek; Farhat, Leila; Mtibaa, Anis; Besbes, Mounir; Daoud, Jamel

    2015-10-01

    The accuracy of two calculation algorithms of the Eclipse 8.9 treatment planning system (TPS)--the anisotropic analytic algorithm (AAA) and pencil-beam convolution (PBC)--in modeling the enhanced dynamic wedge (EDW) was investigated. Measurements were carried out for 6 and 18 MV photon beams using a 2D ionization chamber array. Accuracy of the TPS was evaluated using a gamma index analysis with the following acceptance criteria for dose differences (DD) and distance to agreement (DTA): 3%/3 mm and 2%/2 mm. The TPS models the dose distribution accurately except for 20×20 cm(2) field size, 60 (°) and 45 (°) wedge angles using PBC at 6 MV photon energy. For these latter fields, the pass rate and the mean value of gamma were less than 90% and more than 0.5, respectively at the (3%/3 mm) acceptance criteria. In addition, an accuracy level of (2%/2 mm) was achieved using AAA with better agreement for 18 MV photon energy.

  20. Template-Stripped Multifunctional Wedge and Pyramid Arrays for Magnetic Nanofocusing and Optical Sensing.

    Science.gov (United States)

    Kumar, Shailabh; Johnson, Timothy W; Wood, Christopher K; Qu, Tao; Wittenberg, Nathan J; Otto, Lauren M; Shaver, Jonah; Long, Nicholas J; Victora, Randall H; Edel, Joshua B; Oh, Sang-Hyun

    2016-04-13

    We present large-scale reproducible fabrication of multifunctional ultrasharp metallic structures on planar substrates with capabilities including magnetic field nanofocusing and plasmonic sensing. Objects with sharp tips such as wedges and pyramids made with noble metals have been extensively used for enhancing local electric fields via the lightning-rod effect or plasmonic nanofocusing. However, analogous nanofocusing of magnetic fields using sharp tips made with magnetic materials has not been widely realized. Reproducible fabrication of sharp tips with magnetic as well as noble metal layers on planar substrates can enable straightforward application of their material and shape-derived functionalities. We use a template-stripping method to produce plasmonic-shell-coated nickel wedge and pyramid arrays at the wafer-scale with tip radius of curvature close to 10 nm. We further explore the magnetic nanofocusing capabilities of these ultrasharp substrates, deriving analytical formulas and comparing the results with computer simulations. These structures exhibit nanoscale spatial control over the trapping of magnetic microbeads and nanoparticles in solution. Additionally, enhanced optical sensing of analytes by these plasmonic-shell-coated substrates is demonstrated using surface-enhanced Raman spectroscopy. These methods can guide the design and fabrication of novel devices with applications including nanoparticle manipulation, biosensing, and magnetoplasmonics.

  1. A dual wedge microneedle for sampling of perilymph solution via round window membrane.

    Science.gov (United States)

    Watanabe, Hirobumi; Cardoso, Luis; Lalwani, Anil K; Kysar, Jeffrey W

    2016-04-01

    Precision medicine for inner-ear disease is hampered by the absence of a methodology to sample inner-ear fluid atraumatically. The round window membrane (RWM) is an attractive portal for accessing cochlear fluids as it heals spontaneously. In this study, we report on the development of a microneedle for perilymph sampling that minimizes the size of RWM perforation, facilitates quick aspiration, and provides precise volume control. Here, considering the mechanical anisotropy of the RWM and hydrodynamics through a microneedle, a 31G stainless steel pipe was machined into wedge-shaped design via electrical discharge machining. The sharpness of the needle was evaluated via a surface profilometer. Guinea pig RWM was penetrated in vitro, and 1 μL of perilymph was sampled and analyzed via UV-vis spectroscopy. The prototype wedge shaped needle was successfully fabricated with the tip curvature of 4.5 μm and the surface roughness of 3.66 μm in root mean square. The needle created oval perforation with minor and major diameter of 143 and 344 μm (n = 6). The sampling duration and standard deviation of aspirated volume were 3 s and 6.8 % respectively. The protein concentration was 1.74 mg/mL. The prototype needle facilitated precise perforation of RWMs and rapid aspiration of cochlear fluid with precise volume control. The needle design is promising and requires testing in human cadaveric temporal bone and further optimization to become clinically viable.

  2. Living on the wedge: female control of paternity in a cooperatively polyandrous cichlid.

    Science.gov (United States)

    Kohda, Masanori; Heg, Dik; Makino, Yoshimi; Takeyama, Tomohiro; Shibata, Jun-ya; Watanabe, Katsutoshi; Munehara, Hiroyuki; Hori, Michio; Awata, Satoshi

    2009-12-07

    Theories suggest that, in cooperatively breeding species, female control over paternity and reproductive output may affect male reproductive skew and group stability. Female paternity control may come about through cryptic female choice or female reproductive behaviour, but experimental studies are scarce. Here, we show a new form of female paternity control in a cooperatively polyandrous cichlid fish (Julidochromis transcriptus), in which females prefer wedge-shaped nesting sites. Wedge-shaped sites allowed females to manipulate the siring success of the group member males by spawning the clutch at the spot where the large males were just able to enter and fertilize the outer part of the clutch. Small males fertilized the inner part of the clutch, protected from the large aggressive males, leading to low male reproductive skew. Small males provided more brood care than large males. Multiple paternity induced both males to provide brood care and reduced female brood care accordingly. This is, to our knowledge, the first documented case in a species with external fertilization showing female mating behaviour leading to multiple male paternity and increased male brood care as a result.

  3. Lightfront holography and area density of entropy associated with quantum localization on wedge-horizon

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil)]. E-mail: schroer@cbpf.br

    2002-08-01

    The lightfront quantization of the 70s is reviewed in the more rigorous setting of lightfront (LF) restriction of free fields in which the lightfront is considered to be linear extension of the upper causal horizon of a wedge region. Particular attention is given to the change of localization structure in passing from the wedge to its horizon which results in the emergence of a transverse quantum mechanical substructure of the QFT on the horizon and its lightfront extension. The vacuum fluctuations of QFT on the LF are compressed into the direction of the lightray (where they become associated with a chiral QFT) and lead to the notion of area density of a 'split localization' entropy. To overcome the limitation of this restriction approach and include interacting theories with non-canonical short distance behavior, we introduce a new concept of algebraic lightfront holography which uses ideas of algebraic QFT, in particular the modular structure of its associated local operator algebras. In this way the localization properties of LF degrees of freedom including the absence of transverse vacuum fluctuations are confirmed to be stable against interactions. The important universality aspect of lightfront holography is emphasized. Only in this way one is able to extract from the 'split-localization' entropy a split-independent additive entropy-like measure of the entanglement of the vacuum upon restriction to the horizon algebra. (author)

  4. Enhanced performance of fast-response 3-hole wedge probes for transonic flows in axial turbomachinery

    Energy Technology Data Exchange (ETDEWEB)

    Delhaye, D.; Paniagua, G. [von Karman Institute for Fluid Dynamics, Turbomachinery and Propulsion Department, Rhode-Saint-Genese (Belgium); Fernandez Oro, J.M. [Universidad de Oviedo, Area de Mecanica de Fluidos, Gijon (Spain); Denos, R. [European Commission, Directorate General for Research, Brussels (Belgium)

    2011-01-15

    The paper presents the development and application of a three-sensor wedge probe to measure unsteady aerodynamics in a transonic turbine. CFD has been used to perform a detailed uncertainty analysis related to probe-induced perturbations, in particular the separation zones appearing on the wedge apex. The effects of the Reynolds and Mach numbers are studied using both experimental data together with CFD simulations. The angular range of the probe and linearity of the calibration maps are enhanced with a novel zonal calibration technique, used for the first time in compressible flows. The data reduction methodology is explained and demonstrated with measurements performed in a single-stage high-pressure turbine mounted in the compression tube facility of the von Karman Institute. The turbine was operated at subsonic and transonic pressure ratios (2.4 and 5.1) for a Reynolds number of 10{sup 6}, representative of modern engine conditions. Complete maps of the unsteady flow angle and rotor outlet Mach number are documented. These data allow the study of secondary flows and rotor trailing edge shocks. (orig.)

  5. Simulation of arrested salt wedges with a multi-layer Shallow Water Lattice Boltzmann model

    Science.gov (United States)

    Prestininzi, P.; Montessori, A.; La Rocca, M.; Sciortino, G.

    2016-10-01

    The ability to accurately and efficiently model the intrusion of salt wedges into river beds is crucial to assay its interaction with human activities and the natural environment. We present a 2D multi-layer Shallow Water Lattice Boltzmann (SWLB) model able to predict the salt wedge intrusion in river estuaries. The formulation usually employed for the simulation of gravity currents is here equipped with proper boundary conditions to handle both the downstream seaside outlet and the upstream river inlet. Firstly, the model is validated against highly accurate semi-analytical solutions of the steady state 1D two-layer Shallow Water model. Secondly, the model is applied to a more complex, fully 3D geometry, to assess its capability to handle realistic cases. The simple formulation proposed for the shear interlayer stress is proven to be consistent with the general 3D viscous solution. In addition to the accuracy, the model inherits the efficiency of the Lattice Boltzmann approach to fluid dynamics problems.

  6. Compact multi-projection 3D display using a wedge prism

    Science.gov (United States)

    Park, Soon-gi; Lee, Chang-Kun; Lee, Byoungho

    2015-03-01

    We propose a compact multi-projection system based on integral floating method with waveguide projection. Waveguide projection can reduce the projection distance by multiple folding of optical path inside the waveguide. The proposed system is composed of a wedge prism, which is used as a waveguide, multiple projection-units, and an anisotropic screen made of floating lens combined with a vertical diffuser. As the projected image propagates through the wedge prism, it is reflected at the surfaces of prism by total internal reflections, and the final view image is created by the floating lens at the viewpoints. The position of view point is decided by the lens equation, and the interval of view point is calculated by the magnification of collimating lens and interval of projection-units. We believe that the proposed method can be useful for implementing a large-scale autostereoscopic 3D system with high quality of 3D images using projection optics. In addition, the reduced volume of the system will alleviate the restriction of installment condition, and will widen the applications of a multi-projection 3D display.

  7. Gauge invariant observables from Takahashi-Tanimoto scalar solutions in open string field theory

    CERN Document Server

    Zeze, Syoji

    2014-01-01

    Using Maccaferri's formula, we derive new wedge based solutions of open string field theory. The solutions are gauge equivalent to the Takahashi-Tanimoto scalar solutions. The classical action and the gauge invariant overlap are evaluated analytically. We find a perturbative vacuum solution whose gauge invariant observables vanish. We also identify a tachyon vacuum solution whose gauge invariant observables are identical to those of the Erler-Schnabl solution.

  8. DYNAMICS OF FREIGHT CARS ON BOGIES MODEL 18-1711 WITH DIFFERENT WEDGE DE-SIGNS OF SPRING SUSPENSION

    Directory of Open Access Journals (Sweden)

    N. B. Mankevych

    2014-01-01

    Full Text Available Purpose. To analyze the results of the study of dynamic parameters of a gondola car, model 12-1704-04 with axle load 23.5 ton in bogies, models 18-1750 and two gondola cars, model 12-1905 with axial load of 25 ton, one of which is equipped with bogies, model 18-1711 with friction wedges of spring suspension with spatial form with increased angle to the horizontal line of intersection of the contact surfaces between the wedge and bolster, the other gondola car, model 12-1905 is equipped with bogies of the same model on which the friction wedges fitted with a flat form of contact surface. It has an angle of inclination like a wedge of bogie, model 18-100. On the basis of the obtained results to draw conclusions about the feasibility of unification design bogie bolster, model 18-1711 with bogie, model 18-100 by contact surfaces with elements of spring suspension. Methodology. Research on dynamic performance of cars was performed during running dynamic tests of specimens of freight cars in experimental train consisting of two locomotives, a laboratory, and three gondola cars of the above mentioned models. Findings. Main results of dynamic studies are presented as graphs of indicators on the speed of the train and the experimental evidence that the freight gondola cars on bogies, model 18-1711 with flat-shaped wedges, in most cases are better than the others. Originality. Research results of cars on bogies, model 18-1711 were obtained. They let assess the dependence of the dynamic performance of the car from the design of the friction wedges of spring suspension. Practical value. Cast parts of bogie, model 18-1711 with 25 ton axle load can be used as a replacement of defective parts of bogie, model 18-100 and its analogs.

  9. A 5° medial wedge reduces frontal but not saggital plane motion during jump landing in highly trained women athletes

    Directory of Open Access Journals (Sweden)

    Michael F Joseph

    2010-03-01

    Full Text Available Michael F Joseph1, Craig R Denegar1, Elaine Horn1, Bradley MacDougall1, Michael Rahl1, Jessica Sheehan1, Thomas Trojian2, Jeffery M Anderson1, James E Clark1, William J Kraemer11Department of Kinesiology, 2Department of Sports Medicine, University of Connecticut, Storrs, CT, USAAbstract: Lower extremity mechanics during landing have been linked to traumatic and nontraumatic knee injuries, particularly in women’s athletics. The effects of efforts to mitigate these risks have not been fully elucidated. We previously reported that a 5° medial wedge reduced ankle eversion and knee valgus. In the present report we further investigated the effect of a 5° medial wedge inserted in the shoes of female athletes on frontal plane hip motion, as well as ankle, knee, hip, and trunk saggital plane motion during a jump landing task. Kinematic data were obtained from 10 intercollegiate female athletes during jump landings from a 31 cm platform with and without a 5° medial wedge. Hip adduction was reduced 1.98° (95% CI 0.97–2.99° by the medial wedge but saggital plane motions were unaffected. A 5° medial wedge reduces frontal plane motion and takes the knee away from a position associated with anterior cruciate ligament injury and patellofemoral pain syndrome. Although frontal plane motion was not captured it is unlikely to have increased in a bilateral landing task. Thus, it is likely that greater muscle forces were generated in these highly trained athletes to dissipate ground reaction forces when a medial wedge was in place. Additional investigation in younger and lesser trained athletes is warranted to assess the impact of orthotic devices on knee joint mechanics.Keywords: jump landing, foot orthotic, lower extremity kinematics, knee biomechanics, knee injury

  10. Coulomb theory applied to accretionary and nonaccretionary wedges: Possible causes for tectonic erosion and/or frontal accretion

    Science.gov (United States)

    Lallemand, Serge E.; Schnürle, Philippe; Malavieille, Jacques

    1994-06-01

    Based on observations from both modem convergent margins and sandbox modeling, we examine the possible conditions favoring frontal accretion and/or frontal and basal tectonic erosion. Mean characteristic parameters (μ, μ*b and λ) are used to discuss the mechanical stability of 28 transects across the frontal part of convergent margins where the Coulomb theory is applicable. Natural observations reveal that "typical accretionary wedges" are characterized by low tapers with smooth surface slope and subducting plate, low convergence rates and thick trench sediment, while "nonaccretionary wedges" display large tapers with irregular surface slopes and rough subducting plate, high convergence rates and almost no trench fill. Sandbox experiments were performed to illustrate the effects of seamounts/ridges in the subduction zone on the deformation of an accretionary wedge. These experiments show that a wedge of sand is first trapped and pushed in front of the seamount which acts as a moving bulldozer. This is followed by a tunnelling effect of the subducting seamount through the frontal wedge material, which results in considerable sand reworking. At an advanced subduction stage, the décollement jumps back from a high level in the wedge to its former basal position. We conclude that a high trench sedimentation rate relative to the convergence rate leads to frontal accretion. In contrast, several conditions may favor tectonic erosion of the upper plate. First, oceanic features, such as grabens, seamounts or ridges, may trap upper plate material during their subduction process. Second, destabilization of the upper plate material by internal fluid overpressuring causing hydrofracturing is probably another important mechanism.

  11. Numerical Simulation on Ramp Initiation and Propagation in a Fold-and-thrust Belt and Accretionary Wedge

    Science.gov (United States)

    Hu, C.; Liu, X.; Shi, Y.

    2015-12-01

    Fold-and-thrust belts and accretionary wedge develop along compressive plate boundaries, both in hinterland and foreland. Under the long-term compressive tectonic loading, a series ramps will initiate and propagate along the wedge. How do the ramps initiate? What are the timing and spacing intervals between the ramps? How many patterns are there for the ramp propagation? These questions are basic for the study of ramp initiation and propagation. Many scholars used three different methods, critical coulomb wedge theory, analogue sandbox models, and numerical simulation to research the initiation and propagation of the ramps, respectively. In this paper, we set up a 2-D elastic-plastic finite element model, with a frictional contact plane, to simulate the initiation and propagation of the ramps. In this model, the material in upper wedge is homogenous, but considering the effects of gravity and long-term tectonic loading. The model is very simple but simulated results are very interesting. The simulated results indicate that the cohesion of upper wedge and dip angle of detachment plane have strong effects on the initiation and propagation of ramps. There are three different patterns of ramp initiation and propagation for different values of the cohesion. The results are different from those by previous analogue sandbox models, and numerical simulation, in which there is usually only one pattern for the ramp initiation and propagation. The results are consistent with geological survey for the ramp formation in an accretionary wedge. This study will provide more knowledge of mechanism of the ramp initiation and propagation in Tibetan Plateau and central Taiwan.

  12. OpenER, a Dutch Initiative in Open Educational Resources

    Science.gov (United States)

    Schuwer, Robert; Mulder, Fred

    2009-01-01

    Over the period 2006-2008, the Dutch Open Universiteit Nederland conducted an experiment in which Open Educational Resources (OER) were offered in an effort to bridge the gap between informal and formal learning and to establish a new style of entry portal to higher education with no barriers at all. OpenER received considerable attention both in…

  13. Mixed convection flow over a stretching porous wedge with Newtonian heating in the presence of heat generation or absorption

    Science.gov (United States)

    Ashraf, M.; Narahari, Marneni; Muthuvalu, Mohana Sundaram

    2016-11-01

    Time independent mixed convective boundary layer flow of a viscous fluid over a porous stretching wedge is investigated analytically. The porous wedge is subjected to Newtonian heating in the existence of heat generation /absorption. Employing non-dimensional transformations the governing PDE's converted to nonlinear ODE's which are further solved by using homotopy analysis method. The convergence of the solution is properly checked and the effects of various involved parameters on velocity and temperature distributions are illustrated through graphs. The reliability and effectiveness of HAM have been verified by comparing the present analytical results with existing numerical results for skin-friction coefficient. The results are found to be in good agreement.

  14. Radiochromic film calibration wedge EBT2 using virtual fields; Calibracion de peliculas radiocromicos EBT2 mediante campos con cunas virtuales

    Energy Technology Data Exchange (ETDEWEB)

    Perez, M. A.; Macias, J.; Merchan, M. A.; Campo, J. L.; Moreno, J. C.; Terron, J. A.; Miras, H.; Ortiz, M.; Arrans, R.; Ortiz, A.; Fernandez, D.

    2011-07-01

    EBT2 film dosimetry after exposure to a gradient of these wedge dosimetry. In our case a virtual wedge 600. The primary objective is to automate the process, reduce the time spent in obtaining the calibration curve (color-dose). Time negligible due to the limited availability of accelerators. This method of obtaining the calibration curve provides similar results to the commonly accepted either with irradiation uniform of a single film with different dose levels (multiband ladder) or with irradiation uniform of small rectangular piece of film , decreasing by a factor about 20, the time spent. (Author)

  15. Openness initiative

    Energy Technology Data Exchange (ETDEWEB)

    Duncan, S.S. [Los Alamos National Lab., NM (United States)

    1995-12-31

    Although antinuclear campaigns seem to be effective, public communication and education efforts on low-level radioactive waste have mixed results. Attempts at public information programs on low-level radioactive waste still focus on influencing public opinion. A question then is: {open_quotes}Is it preferable to have a program focus on public education that will empower individuals to make informed decisions rather than trying to influence them in their decisions?{close_quotes} To address this question, a case study with both quantitative and qualitative data will be used. The Ohio Low-Level Radioactive Waste Education Program has a goal to provide people with information they want/need to make their own decisions. The program initiated its efforts by conducting a statewide survey to determine information needed by people and where they turned for that information. This presentation reports data from the survey and then explores the program development process in which programs were designed and presented using the information. Pre and post data from the programs reveal attitude and knowledge shifts.

  16. The role of aerothermochemistry in double cone and double wedge flows

    Science.gov (United States)

    Swantek, Andrew

    In this work, hypervelocity flows over double cone and double wedge geometries are studied. The flow configurations established over the double cone/double wedge models are extremely sensitive to thermochemistry, and thus serve as ideal benchmarks for validating chemical models. The goals of this research are: i) to investigate the coupling between the fluid mechanics and thermochemistry in these flow fields by varying freestream flow composition and enthalpy, ii) to implement a diagnostic suite for time-resolved surface and freestream measurements, iii) to investigate the nature of flow field unsteadiness across various test conditions, and lastly iv) to extend the experimental database for shock wave boundary/layer interactions. An expansion tube is used to generate flows with enthalpies ranging from 2.2-8.0 MJ/kg (2-4 km/s) and Mach numbers from 4-7. The expansion tube is a novel impulse facility for accelerating a test gas to these velocities, while maintaining a minimally dissociated freestream. Additionally, the facility allows variation of the freestream composition (between nitrogen and air), while maintaining freestream test parameters (Mach number, density, enthalpy) to within 0.5%. Two models are used: a 25-55 degree double cone model and a 30-55 degree double wedge. There are four diagnostic components to this research which aim to enable a better understanding of these canonical flow fields. Single frame, high resolution schlieren photography is used to visualize various flow features including: the separation zone formed in the corner, the triple point interaction, and a supersonic shear layer. From these images, a separation zone length scaling parameter is determined. This parameter, derived for wedge geometries, is successfully applied to conical geometries by using a judicious choice of flow properties for scaling. In the wedge image series, nitrogen test conditions exhibit a distinct increase in bow shock standoff distance. Additionally, aft

  17. Gallbladder removal - open

    Science.gov (United States)

    Cholecystectomy - open; Surgery - gallbladder - open ... a medical instrument called a laparoscope ( laparoscopic cholecystectomy ). Open gallbladder surgery is used when laparoscopic surgery cannot ...

  18. Thrust fault growth within accretionary wedges: New Insights from 3D seismic reflection data

    Science.gov (United States)

    Orme, H.; Bell, R. E.; Jackson, C. A. L.

    2015-12-01

    The shallow parts of subduction megathrust faults are typically thought to be aseismic and incapable of propagating seismic rupture. The 2011 Tohoku-Oki earthquake, however, ruptured all the way to the trench, proving that in some locations rupture can propagate through the accretionary wedge. An improved understanding of the structural character and physical properties of accretionary wedges is therefore crucial to begin to assess why such anomalously shallow seismic rupture occurs. Despite its importance, we know surprisingly little regarding the 3D geometry and kinematics of thrust network development in accretionary prisms, largely due to a lack of 3D seismic reflection data providing high-resolution, 3D images of entire networks. Thus our current understanding is largely underpinned by observations from analogue and numerical modelling, with limited observational data from natural examples. In this contribution we use PSDM, 3D seismic reflection data from the Nankai margin (3D Muroto dataset, available from the UTIG Academic Seismic Portal, Marine Geoscience Data System) to examine how imbricate thrust fault networks evolve during accretionary wedge growth. Previous studies have reported en-echelon thrust fault geometries from the NW part of the dataset, and have related this complex structure to seamount subduction. We unravel the evolution of faults within the protothrust and imbricate thrust zones by interpreting multiple horizons across faults and measuring fault displacement and fold amplitude along-strike; by doing this, we are able to investigate the three dimensional accrual of strain. We document a number of local displacement minima along-strike of faults, suggesting that, the protothrust and imbricate thrusts developed from the linkage of smaller, previously isolated fault segments. We also demonstrate that the majority of faults grew upward from the décollement, although there is some evidence for downward fault propagation. Our observations

  19. Upper crustal mechanical stratigraphy and the evolution of thrust wedges: insights from sandbox analogue experiments

    Science.gov (United States)

    Milazzo, Flavio; Storti, Fabrizio; Nestola, Yago; Cavozzi, Cristian; Magistroni, Corrado; Meda, Marco; Salvi, Francesca

    2016-04-01

    Crustal mechanical stratigraphy i.e. alternating mechanically weaker and stronger layers within the crust, plays a key role in determining how contractional deformations are accommodated at convergent plate boundaries. In the upper crust, evaporites typically provide preferential décollement layers for fault localization and foreland ward propagation, thus significantly influencing evolution of thrust-fold belts in terms of mechanical balance, geometries, and chronological sequences of faulting. Evaporites occur at the base of many passive margin successions that underwent positive inversion within orogenic systems. They typically produce salient geometries in deformation fronts, as in the Jura in the Northern Alps, the Salakh Arch in the Oman Mountains, or the Ainsa oblique thrust-fold belt in the Spanish Pyrenees. Evaporites frequently occur also in foredeep deposits, as in the Apennines, the Pyrenees, the Zagros etc. causing development of additional structural complexity. Low-friction décollement layers also occur within sedimentary successions involved in thrust-fold belts and they contribute to the development of staircase fault trajectories. The role of décollement layers in thrust wedge evolution has been investigated in many experimental works, particularly by sandbox analogue experiments that have demonstrated the impact of basal weak layers on many first order features of thrust wedges, including the dominant fold vergence, the timing of fault activity, and the critical taper. Some experiments also investigated on the effects of weak layers within accreting sedimentary successions, showing how this triggers kinematic decoupling of the stratigraphy above and below the décollements, thus enhancing disharmonic deformation. However, at present a systematic experimental study of the deformation modes of an upper crustal mechanical stratigraphy consisting of both low-friction and viscous décollement layers is still missing in the specific literature. In

  20. HF wedge #1" detail of the wedge tip taken at VNIITF in the construction workshop. The jig mounted on top is used to measure the conformity to the drawings.

    CERN Multimedia

    Official photographer of VNIITF (photo scanned by T. Camporesi)

    2001-01-01

    The photo has been taken as documetation of the acceptance procedure of the first wedge for the very forward calorimeter of CMS (HF). The detail shows the holes where the quartz fibers are going to be stuffed and the jig used to measure that the geometry was within the specified tolerances and that the geometry alignement track was conforming to the specifications.

  1. Opening Address

    Science.gov (United States)

    Crovini, L.

    1994-01-01

    Ladies and Gentlemen To quote Mr Jean Terrien: "Physics must be one step ahead of metrology". A long-serving Director of the BIPM, he said these words when visiting the IMGC in 1970 as a member of the scientific board of our Institute. At that time it was still an open question whether the IMGC should start research work on the absolute measurement of silicon lattice spacing. Mr Terrien underlined the revolutionary character of x-ray interferometry and, eventually, he caused the balance needle to lean towards the ... right direction. Mr Terrien correctly foresaw that, like Michelson's interferometer of 1880, x-ray interferometry could have a prominent place in today's science and technology. And while, in the first case, after more than a century we can see instruments based on electromagnetic wave interaction within every one's reach in laboratories and, sometimes, in workshops, in the second case, twenty-five years since the first development of an x-ray interferometer we can witness its role in nanometrology. Today and tomorrow we meet to discuss how to go beyond the sixth decimal place in the value of the Avogadro constant. We are aware that the quest for this achievement requires the cooperation of scientists with complementary capabilities. I am sure that the present workshop is a very good opportunity to present and discuss results and to improve and extend existing cooperation. The new adjustment of fundamental constants envisaged by the CODATA Task Group is redoubling scientists' efforts to produce competitive values of NA. The results of the measurements of the silicon lattice spacing in terms of an optical wavelength, which were available for the 1986 adjustment, combined with the determination of silicon molar volume, demonstrate how such an NA determination produces a consistent set of other constants and opens the way to a possible redefinition of the kilogram. We shall see in these two days how far we have progressed along this road. For us at the

  2. Open life science research, open software and the open century

    Institute of Scientific and Technical Information of China (English)

    Youhua Chen

    2015-01-01

    At the age of knowledge explosion and mass scientific information, I highlighted the importance of conducting open science in life and medical researches through the extensive usage of open software and documents. The proposal of conducting open science is to reduce the limited repeatability of researches in life science. I outlined the essential steps for conducting open life science and the necessary standards for creating, reusing and reproducing open materials. Different Creative Commons licenses were presented and compared of their usage scope and restriction. As a conclusion, I argued that open materials should be widely adopted in doing life and medical researches.

  3. Choice of Surgical Procedure for Patients With Non-Small-Cell Lung Cancer ≤ 1 cm or > 1 to 2 cm Among Lobectomy, Segmentectomy, and Wedge Resection

    DEFF Research Database (Denmark)

    Dai, Chenyang; Shen, Jianfei; Ren, Yijiu

    2016-01-01

    ,760 patients with T1aN0M0 NSCLC after surgery from the Surveillance, Epidemiology, and End Results database. Overall survival (OS) and lung cancer-specific survival (LCSS) were compared among patients after lobectomy, segmentectomy, or wedge resection. The proportional hazards model was applied to evaluate...... multiple prognostic factors. RESULTS: OS and LCSS favored lobectomy compared with segmentectomy or wedge resection in patients with NSCLC ≤ 1 cm and > 1 to 2 cm. Multivariable analysis showed that segmentectomy and wedge resection were independently associated with poorer OS and LCSS than lobectomy...... for NSCLC ≤ 1 cm and > 1 to 2 cm. With sublobar resection, lower OS and LCSS emerged for NSCLC > 1 to 2 cm after wedge resection, whereas similar survivals were observed for NSCLC ≤ 1 cm. Multivariable analyses showed that wedge resection is an independent risk factor of survival for NSCLC > 1 to 2 cm...

  4. Design, Performance, and Calibration of CMS Hadron-Barrel Calorimeter Wedges

    CERN Document Server

    Baiatian, G; Emeliantchik, Igor; Massolov, V; Shumeiko, Nikolai; Stefanovich, R; Damgov, Jordan; Dimitrov, Lubomir; Genchev, Vladimir; Piperov, Stefan; Vankov, Ivan; Litov, Leander; Bencze, Gyorgy; Vesztergombi, Gyorgy; Zálán, Peter; Bawa, Harinder Singh; Beri, Suman Bala; Bhatnagar, Vipin; Kaur, Manjit; Kohli, Jatinder Mohan; Kumar, Arun; Singh, Jas Bir; Acharya, Bannaje Sripathi; Banerjee, Sunanda; Banerjee, Sudeshna; Chendvankar, Sanjay; Dugad, Shashikant; Kalmani, Suresh Devendrappa; Katta, S; Mazumdar, Kajari; Mondal, Naba Kumar; Nagaraj, P; Patil, Mandakini Ravindra; Reddy, L; Satyanarayana, B; Sudhakar, Katta; Verma, Piyush; Paktinat, S; Golutvin, Igor; Kalagin, Vladimir; Kosarev, Ivan; Mescheryakov, G; Sergeyev, S; Smirnov, Vitaly; Volodko, Anton; Zarubin, Anatoli; Gavrilov, Vladimir; Gershtein, Yuri; Kaftanov, Vitali; Kisselevich, I; Kolossov, V; Krokhotin, Andrey; Kuleshov, Sergey; Litvintsev, Dmitri; Stolin, Viatcheslav; Ulyanov, A; Demianov, A; Gribushin, Andrey; Kodolova, Olga; Petrushanko, Sergey; Sarycheva, Ludmila; Vardanyan, Irina; Yershov, A; Abramov, Victor; Goncharov, Petr; Khmelnikov, Alexander; Korablev, Andrey; Korneev, Yury; Krinitsyn, Alexander; Kryshkin, V; Lukanin, Vladimir; Pikalov, Vladimir; Ryazanov, Anton; Talov, Vladimir; Turchanovich, L; Volkov, Alexey; Camporesi, Tiziano; De Visser, Theo; Vlassov, E; Aydin, Sezgin; Dumanoglu, Isa; Eskut, Eda; Kayis-Topaksu, A; Kuzucu-Polatoz, A; Onengüt, G; Ozdes-Koca, N; Cankocak, Kerem; Ozok, Ferhat; Serin-Zeyrek, M; Sever, Ramazan; Zeyrek, Mehmet; Gülmez, Erhan; Isiksal, Engin; Kaya, Mithat; Ozkorucuklu, Suat; Levchuk, Leonid; Sorokin, Pavel; Grinev, B; Lubinsky, V; Senchishin, V; Anderson, E Walter; Hauptman, John M; Elias, John E; Elvira, D; Freeman, Jim; Green, Dan; Lazic, Dragoslav; Los, Serguei; O'Dell, Vivian; Ronzhin, Anatoly; Suzuki, Ichiro; Vidal, Richard; Whitmore, Juliana; Antchev, Georgy; Hazen, Eric; Lawlor, C; Machado, Emanuel; Posch, C; Rohlf, James; Wu, Shouxiang; Adams, Mark Raymond; Burchesky, Kyle; Qiang, W; Abdullin, Salavat; Baden, Drew; Bard, Robert; Eno, Sarah Catherine; Grassi, Tullio; Jarvis, Chad; Kellogg, Richard G; Kunori, Shuichi; Skuja, Andris; Podrasky, V; Sanzeni, Christopher; Winn, Dave; Akgun, Ugur; Ayan, S; Duru, Firdevs; Merlo, Jean-Pierre; Mestvirishvili, Alexi; Miller, Michael; Norbeck, Edwin; Olson, Jonathan; Onel, Yasar; Schmidt, Ianos; Akchurin, Nural; Carrell, Kenneth Wayne; Gumu, K; Thomas, Ray; Baarmand, Marc M; Ralich, Robert; Vodopiyanov, Igor; Cushman, Priscilla; Heering, Arjan Hendrix; Sherwood, Brian; Cremaldi, Lucien Marcus; Reidy, Jim; Sanders, David A; Karmgard, Daniel John; Ruchti, Randy; Fisher, Wade Cameron; Mans, Jeremy; Tully, Christopher; De Barbaro, Pawel; Bodek, Arie; Budd, Howard; Chung, Yeon Sei; Haelen, T; Imboden, Matthias; Hagopian, Sharon; Hagopian, Vasken; Johnson, Kurtis F; Barnes, Virgil E; Laasanen, Alvin T; Pompos, Arnold

    2007-01-01

    Extensive measurements have been made with pions, electrons and muons on four production wedges of the Compact Muon Solenoid (CMS) hadron barrel (HB) calorimeter in the H2 beam line at CERN with particle momenta varying from 20 to 300 GeV/c. Data were taken both with and without a prototype electromagnetic lead tungstate crystal calorimeter (EB) in front of the hadron calorimeter. The time structure of the events was measured with the full chain of preproduction front-end electronics running at 34 MHz. Moving-wire radioactive source data were also collected for all scintillator layers in the HB. These measurements set the absolute calibration of the HB prior to first pp collisions to approximately 4%.

  5. Capillary migration of large confined super-hydrophobic drops in wedges

    Science.gov (United States)

    Torres, Logan; Weislogel, Mark; Arnold, Sam

    2016-11-01

    When confined within an interior corner, drops and bubbles migrate to regions of minimum energy by the combined effects of surface tension, surface wetting, and corner geometry. Such capillary phenomena are exploited for passive phase separation operations in micro-fluidic devices on earth and macro-fluidic devices aboard spacecraft. Our study focuses on the migration of large inertial-capillary drops confined between two planar super-hydrophobic surfaces. In our experiments, the near weightless environment of a drop tower produces Bo law behavior as a function of drop volume, wedge angle, initial confinement, and fluid properties including contact angle. We then further demonstrate how the experiment method may be employed as a large horizontal quiescent droplet generator for studies ranging from inertial non-wetting moving contact line investigations to large geyser-free horizontal drop impacts. NASA Cooperative Agreement NNX12AO47A, URMP.

  6. Double-wedged Wollaston-type polarimeter design and integration to RTT150-TFOSC

    Science.gov (United States)

    Helhel, Selcuk; Kirbiyik, Halil; Bayar, Cevdet; Khamitov, Irek; Kahya, Gizem; Okuyan, Oguzhan

    2016-07-01

    Photometric and spectroscopic observation capabilities of 1.5-m Russian- Turkish Telescope RTT150 has been broadened with the integration of presented polarimeter. The well-known double-wedged Wollaston-type dual-beam technique was preferred and applied to design and produce it. The designed polarimeter was integrated into the telescope detector TFOSC, and called TFOSC-WP. Its capabil- ities and limitations were attempted to be determined by a number of observation sets. Non-polarized and strongly polarized stars were observed to determine its limi- tations as well as its linearity. An instrumental intrinsic polarization was determined for the 1×5 arcmin field of view in equatorial coordinate system, the systematic error of polarization degree as 0.2% %, and position angle as 1.9°. These limitations and capabilities are denoted as good enough to satisfy telescopes' present and future astrophysical space missions related to GAIA and SRG projects.

  7. Thick-Walled Cylinder Theory Applied on a Conical Wedge Anchorage

    DEFF Research Database (Denmark)

    Bennitz, Anders; Grip, Niklas; Schmidt, Jacob Wittrup

    2011-01-01

    Conical wedge anchorages are frequently used to anchor steel tendons in prestressing applications within the construction industry. To replace the steel tendons with non-corrosive and low weight FRPs (Fiber Reinforced Polymers), the different mechanical interactions between the steel and FRPs call...... for further development of the anchorage.In this paper, we derive and examine an analytical model for the internal stresses and strains within the anchorage for a prescribed presetting distance. This model is derived from the theory of thick walled cylinders under the assumptions regarding plane stress...... and axial symmetry. We simplify the resulting system of ten nonlinear equations and derive a method for solving them numerically. A comparison of plotted results for three different angles on the wedge’s outer surface and six different presetting distances follows.These results are also compared to both axi...

  8. Synergistic effect of a new wedge-bond-type anchor for CFRP tendons

    Institute of Scientific and Technical Information of China (English)

    谢桂华; 刘荣桂; 陈蓓; 李明君; 石天罡

    2015-01-01

    In order to improve the anchoring force of anchors for carbon fiber reinforced polymer (CFRP) tendons further, a new wedge-bond-type anchor for CFRP tendons was developed. The increment in anchoring force induced by the clamping segment of anchor was studied. Taking the deformation of all parts in clamping segment in the transverse direction into consideration, the calculation formula for the increment of anchoring force was proposed based on the linear elastic hypotheses. The proposed model is verified by experiments and conclusions are drawn that the anchoring force is influenced mainly by the inclination angle of clamping pieces, the length of clamping part and the thickness of bonding medium. Especially, the thickness of bonding medium should be lowered in design to improve the synergistic effect of anchors.

  9. Benchmarking the Sandbox: Quantitative Comparisons of Numerical and Analogue Models of Brittle Wedge Dynamics (Invited)

    Science.gov (United States)

    Buiter, S.; Schreurs, G.; Geomod2008 Team

    2010-12-01

    When numerical and analogue models are used to investigate the evolution of deformation processes in crust and lithosphere, they face specific challenges related to, among others, large contrasts in material properties, the heterogeneous character of continental lithosphere, the presence of a free surface, the occurrence of large deformations including viscous flow and offset on shear zones, and the observation that several deformation mechanisms may be active simultaneously. These pose specific demands on numerical software and laboratory models. By combining the two techniques, we can utilize the strengths of each individual method and test the model-independence of our results. We can perhaps even consider our findings to be more robust if we find similar-to-same results irrespective of the modeling method that was used. To assess the role of modeling method and to quantify the variability among models with identical setups, we have performed a direct comparison of results of 11 numerical codes and 15 analogue experiments. We present three experiments that describe shortening of brittle wedges and that resemble setups frequently used by especially analogue modelers. Our first experiment translates a non-accreting wedge with a stable surface slope. In agreement with critical wedge theory, all models maintain their surface slope and do not show internal deformation. This experiment serves as a reference that allows for testing against analytical solutions for taper angle, root-mean-square velocity and gravitational rate of work. The next two experiments investigate an unstable wedge, which deforms by inward translation of a mobile wall. The models accommodate shortening by formation of forward and backward shear zones. We compare surface slope, rate of dissipation of energy, root-mean-square velocity, and the location, dip angle and spacing of shear zones. All models show similar cross-sectional evolutions that demonstrate reproducibility to first order. However

  10. Electric currents of a substorm current wedge on 24 February 2010

    Science.gov (United States)

    Connors, Martin; McPherron, Robert L.; Anderson, Brian J.; Korth, Haje; Russell, Christopher T.; Chu, Xiangning

    2014-07-01

    The three-dimensional "substorm current wedge" (SCW) was postulated by McPherron et al. (1973) to explain substorm magnetic perturbations. The origin and coherence as a physical system of this important paradigm of modern space physics remained unclear, however, with progress hindered by gross undersampling, and uniqueness problems in data inversion. Complementing AMPERE (Active Magnetosphere and Planetary Electrodynamics Response Experiment) space-derived radial electric currents with ground magnetic data allowing us to determine currents from the ionosphere up, we overcome problems of uniqueness identified by Fukushima (1969, 1994). For a substorm on 24 February 2010, we quantify SCW development consistently from ground and space data. Its westward electrojet carries 0.5 MA in the more poleward part of the auroral oval, in Region 1 (R1) sense spanning midnight. The evening sector electrojet also feeds into its upward current. We thus validate the SCW concept and obtain parameters needed for quantitative study of substorms.

  11. Area density of localization-entropy I: the case of wedge-localization

    Energy Technology Data Exchange (ETDEWEB)

    Schroer, Bert

    2006-04-15

    Using an appropriately formulated holographic light front projection, we derive an area law for the localization-entropy caused by vacuum polarization on the horizon of a wedge region. Its area density has a simple kinematic relation to the heat bath entropy of the light front algebra. Apart from a change of parametrization the infinite light like length contribution to the light front volume factor corresponds to the short-distance divergence of the area density of the localization entropy. This correspondence is a consequence of the conformal invariance of the light front holography combined with the well-known fact that in conformality relates short to long distances. In the explicit calculation of the strength factor we use the temperature duality relation of rational chiral theories whose derivation will be briefly reviewed. We comment on the potential relevance for the understanding of Black hole entropy. (author)

  12. The Wedge Splitting Test: Influence of Aggregate Size and Water-to-Cement Ratio

    DEFF Research Database (Denmark)

    Pease, Bradley Justin; Skocek, Jan; Geiker, Mette Rica;

    2007-01-01

    of various concrete mixtures there are limitations to the current analysis techniques. To date these techniques analyze the result of one WST specimen, thereby providing an estimate of material properties from single result. This paper utilizes a recent improvement to the inverse analysis technique, which......Since the development of the wedge splitting test (WST), techniques have been used to extract material properties that can describe the fracture behavior of the tested materials. Inverse analysis approaches are commonly used to estimate the stress-crack width relationship; which is described...... by the elastic modulus, tensile strength, fracture energy, and the assumed softening behavior. The stress-crack width relation can be implemented in finite element models for computing the cracking behavior of cementitious systems. While inverse analysis provides information about the material properties...

  13. Shielding effect of a nano-circular inclusion acting on semi-infinite wedge cracks

    Institute of Scientific and Technical Information of China (English)

    Song Hao-Peng; Gao Cun-Fa

    2013-01-01

    The model of a screw dislocation near a semi-infinite wedge crack tip inside a nano-circular inclusion is proposed to investigate the shielding effect of nano inclusions acting on cracks.Utilizing the complex function method,the closed-form solutions of the stress fields in the matrix and the inclusion region are derived.The stress intensity factor,the image force,as well as the critical loads for dislocation emission are discussed in detail.The results show that the nano inclusion not only enhances the shielding effect exerted by the dislocation,but also provides a shielding effect itself.Moreover,dislocations may be trapped in the nano inclusion even if the matrix is softer than the inclusion.This helps the dislocation shield crack,and reduces the dislocation density within the matrix.

  14. Analysis of Metal Forming in Two-Roll Cross Wedge Rolling Process Using Finite Element Method

    Institute of Scientific and Technical Information of China (English)

    WANG Min-ting; LI Xue-tong; DU Feng-shan

    2009-01-01

    A simulation model for two-roll cross wedge rolling (CWR) was presented by using three-dimensional rigid-plastic finite element method (FEM).The whole forming process of CWR,including knifing zone,guiding zone,stretching zone,and sizing zone,was simulated using the model in which dynamic adaptive remeshing technology for tetrahedral solid elements was used to fix element distortion.Based on the simulation results,the distributions of metal flow field,strain field,and damage field,and the geometry of the workpiece's end were analyzed.These results could provide theoretical guidance for realizing net shaping and reasonable design of tools.

  15. High tibial closing wedge osteotomy for medial compartment osteoarthrosis of knee

    Directory of Open Access Journals (Sweden)

    Tuli S

    2008-01-01

    Full Text Available Background: Most patients of symptomatic osteoarthrosis of knee are associated with varus malalignment that is causative or contributory to painful arthrosis. It is rational to correct the malalignment to transfer the functional load to the unaffected or less affected compartment of the knee to relieve symptoms. We report the outcome of a simple technique of high tibial osteotomy in the medial compartment of osteoarthrosis of the knee. Materials and Methods: Between 1996 and 2004 we performed closing wedge osteotomy in 78 knees in 65 patients. The patients selected for osteotomy were symptomatic essentially due to medial compartment osteoarthrosis associated with moderate genu varum. Of the 19 patients who had bilateral symptomatic disease 11 opted for high tibial osteotomy of their second knee 1-3 years after the first operation. Preoperative grading of osteoarthrosis and postoperative function was assessed using Japanese Orthopaedic Association (JOA rating scale. Results: At a minimum follow-up of 2 years (range 2-9 years 6-10° of valgus correction at the site of osteotomy was maintained, there was significant relief of pain while walking, negotiating stairs, squatting and sitting cross-legged. Walking distance in all patients improved by two to four times their preoperative distance of 200-400 m. No patient lost any preoperative knee function. The mean JOA scoring improved from preoperative 54 (40-65 to 77 (55-85 at final follow-up. Conclusion: Closing wedge high tibial osteotomy performed by our technique can be undertaken in any setup with moderate facilities. Operation related complications are minimal and avoidable. Kirschner wire fixation is least likely to interfere with replacement surgery if it becomes necessary.

  16. Coupled stratigraphic and structural evolution of a glaciated orogenic wedge, offshore St. Elias orogen, Alaska

    Science.gov (United States)

    Worthington, Lindsay L.; Gulick, Sean P. S.; Pavlis, Terry L.

    2010-12-01

    The St. Elias orogen is the result of ˜10 Myr of oblique convergence and flat-slab subduction in the Gulf of Alaska between North America and the Yakutat microplate. Extensive glaciation and a complex tectonic environment make this region a unique case study in which to examine the details of terrane accretion and the possible coupled influence of climate and tectonic drivers on the structural and topographic evolution of an orogenic wedge. Reflection seismic profiles across the offshore Pamplona zone fold-thrust belt, the frontal St. Elias orogenic wedge, provide constraints for quantifying Pleistocene deformation recorded in the glaciomarine Yakataga formation. The total amount of Pleistocene shortening observed varies from ˜3 to 5 mm/yr, compared to the current GPS-derived Yakutat-North America convergence rate across the St. Elias orogen of ˜45 mm/yr. Growth strata and kinematic fold analysis allow comparison of relative timing of fault activity, which reveals temporal and spatial shifting of active deformation during the glacial period: faulting localized adjacent to the coastline and at the current submarine deformation front. The abandoned, currently inactive region is colocated with the major glacial depocenter in the region, the Bering Trough. These observations imply that glacial processes such as sediment loading and focused erosion during advance-retreat cycles has a direct effect on the evolution of individual faults within the Pamplona zone and the overall deformation pattern in the offshore St. Elias margin. This information provides key constraints for understanding how climatic shifts may have affected the evolution of margin architecture during Pleistocene glacial-interglacial periods.

  17. Climate stabilization wedges in action: a systems approach to energy sustainability for Hawaii Island.

    Science.gov (United States)

    Johnson, Jeremiah; Chertow, Marian

    2009-04-01

    Pacala and Socolow developed a framework to stabilize global greenhouse gas levels for the next fifty years using wedges of constant size representing an increasing use of existing technologies and approaches for energy efficiency, carbon free generation, renewables, and carbon storage. The research presented here applies their approach to Hawaii Island, with modifications to support local scale analysis and employing a "bottom-up" methodology that allows for wedges of various sizes. A discretely bounded spatial unit offers a testing ground for a holistic approach to improving the energy sector with the identification of local options and limitations to the implementation of a comprehensive energy strategy. Nearly 80% of total primary energy demand across all sectors for Hawaii Island is currently met using petroleum-based fuels.The Sustainable Energy Plan scenario included here presents an internally consistent set of recommendations bounded by local constraints in areas such as transportation efficiency, centralized renewable generation (e.g., geothermal, wind), reduction in transmission losses, and improved building efficiency. This scenario shows thatthe demand for primary energy in 2030 could be reduced by 23% through efficiency measures while 46% could be met by renewable generation, resulting in only 31% of the projected demand being met by fossil fuels. In 2030, the annual releases of greenhouse gases would be 3.2 Mt CO2-eq/year under the Baseline scenario, while the Sustainable Energy Plan would reduce this to 1.2 Mt CO2-eq/year--an annual emissions rate 40% below 2006 levels and 10% below 1990 levels. The total for greenhouse gas emissions during the 24-year study period (2007 to 2030) is 59.9 Mt CO2-eq under the Baseline scenario and 32.5 Mt CO2-eq under the Sustainable Energy Plan scenario. Numerous combinations of efficiency and renewable energy options can be employed in a manner that stabilizes the greenhouse gas emissions of Hawaii Island.

  18. LBP and lower limb discrepancy: 3D evaluation of postural rebalancing via underfoot wedge correction.

    Science.gov (United States)

    D'Amico, Moreno; Roncoletta, Piero; Di Felice, Francesca; Porto, Daniele; Bellomo, Rosagrazia; Saggini, Raoul

    2012-01-01

    Leg Length Discrepancy (LLD) is very often associated to Low Back Pain (LBP), but still controversial is the use of underfoot wedge correction (heel rise) to re-balance pelvis and trunk posture. In a review of our last 5 years clinical activity we observed that more than 70% out of 300 LBP patients presented a LLD. In more than 80 % we ascertained, via Baropodography, the presence of underfoot asymmetric load, during standing. More durable therapy recovery effect has been observed when LLD correction had been adopted. These reasons led us to start a study to assess if a Full 3D multifactorial Posture evaluation approach, by means of Opto-electronic device associated to foot pressure maps recording, was able to quantitatively discriminate the clinically observed phenomena. On a 94 LBP (av. age 46.3±16 Y range 15-82 Y) patients sample, 83 (88%) have been found to improve posture when LLD was corrected. The 94 patients showed a mean lower limb discrepancy of μ=8±3.2mm associated to a mean scoliotic lumbar curve μ=10.5°±5.1° Cobb (frontal plane), mean Spinal offset μ=6.6±4.9mm and mean Global offset 10.7±8.8mm. The applied paired t-test comparison (indifferent vs. corrected orthostasis) showed significant (p < 0.05) postural improvements could be obtained in the whole or in a part of the considered parameters, both in rebalancing and in spine deformities reduction after the application of suitable under-foot wedge. The joint 3D opto-electronic and foot pressure map approach proved to be effective to control several clinical parameters with statistical significance.

  19. Deformation transients in the brittle regime: Insights from spring-wedge experiments

    Science.gov (United States)

    Rosenau, Matthias; Santimano, Tasca; Oncken, Onno

    2016-04-01

    Deformation of the earth's crust varies over timescales ranging from the seismic cycle to plate tectonic phases. Seismic cycles can generically be explained by sudden coseismic release of strain energy accumulated slowly over the interseismic period. The simplest models of such transient behavior is a spring-slider system where the spring stores elastic energy and the slider is characterized by static and dynamic friction at its base allowing cyclic occurrence of slip instabilities. Here we extend this model by allowing the slider to deform in an accretionary wedge type system. Because cyclic thrust formation is associated with bulk strain weakening this should introduce slip instabilities at the time-scale of accretionary cycles superimposed on seismic cycles which are controlled by static and dynamic friction at the wedge base. To test this hypothesis we set up sandbox-type experiments where the backwall is not rigid but elastic. We vary stiffness, friction coefficients and amount of strain weakening during fault formation and reactivation within realistic ranges when scaled to nature and monitor backwall push force and surface deformation at high resolution. We observe slip instabilities both at seismic and accretionary cycle scale. Depending on the ratio of the amount of strain weakening to elastic stiffness, shortening rate increases transiently by a factor of 2-3 during fault growth. Applied to nature our observation suggests that episodic deformation transients might be interpreted as longterm slip instabilities related to crustal weakening at all relevant spatial scales: At local scale "slow earthquakes" might be interpreted as the result of the interplay between matrix stiffness and strain weakening in fault gouge material. At regional scale, applying buckling theory, we predict that deformation zones bordered by "soft" oceanic plates (e.g. the Andes) are more susceptible to deformation transients than "stiff" intracontinental settings (e.g. the Himalaya).

  20. Olistostromes are the Source of Melange in Diapirs in the Cascadia-Olympics Accretionary Wedge , NW USA

    Science.gov (United States)

    Cowan, D. S.; Brandon, M. T.

    2011-12-01

    Diapirs consisting of block-in-matrix mélange are common in the ocean-ward part of the active Cascadia-Olympics wedge. Some of these bodies and similar Neogene mélanges ["Hoh mélange"] have been interpreted as having originated in shear zones related to accretion as oceanic crust of the Juan de Fuca plate was thrust beneath the wedge. However, this interpretation is untenable. The Hoh mélange contains fragments and blocks, ranging from centimeters to kilometers in size, of basalt. The chemistry of the basalt, and the microfossils in associated mudstone, prove that the basalt is Eocene: these basalts were derived from the Crescent Formation, not the much younger oceanic crust of the Juan de Fuca plate. The Crescent basalts originally formed the lid beneath which the Cascadia-Olympics wedge of sediments was underplated. Much of the lid has been eroded, but in Miocene time it extended to the coast and contributed fragments and blocks to muddy debris flows, which were deposited as olistostromes on the subducting Juan de Fuca plate. Younger sediments buried the olistostromes, which became overpressured and mobilized as mobile masses that have intruded as diapirs and anticlinal ridges. Analogous diapiric bodies, in the broad sense, are present in other active accretionary wedges, such as the in the Lesser Antilles.

  1. Detection of elevated pulmonary capillary wedge pressure in elderly patients with various cardiac disorders by the Valsalva manoeuvre.

    NARCIS (Netherlands)

    Remmen, J.J.; Aengevaeren, W.R.M.; Verheugt, F.W.A.; Jansen, R.W.M.M.

    2006-01-01

    In the present study, we assessed whether elevated (> or =15 mmHg) PCWP (pulmonary capillary wedge pressure) can be detected using the blood pressure response to the Valsalva manoeuvre in a group of elderly patients with various cardiac disorders, including atrial fibrillation and valvular heart dis

  2. CALCULATION OF DISPLACEMENT FIELD AND DEFORMATIONS OF WEDGE SHAPED TWIN WITH THE HELP OF MESOSCOPIC DISLOCATIONAL MODEL

    Directory of Open Access Journals (Sweden)

    Y. V. Vasilevich

    2011-01-01

    Full Text Available Displacements and deformations of a wedge-shaped twin have been calculated with the help of mesoscopic dislocational model. It has been shown that deformations are localized at twin boundaries and twin top and also at some limited areas which are rather far from the twin. 

  3. Acute effects of lateral shoe wedges on joint biomechanics of patients with medial compartment knee osteoarthritis during stationary cycling.

    Science.gov (United States)

    Gardner, Jacob K; Klipple, Gary; Stewart, Candice; Asif, Irfan; Zhang, Songning

    2016-09-06

    Cycling is commonly prescribed for individuals with knee osteoarthritis (OA) but very little biomechanical research exists on the topic. Individuals with OA may be at greater risk of OA progression or other knee injuries because of their altered knee kinematics. This study investigated the effects of lateral wedges on knee joint biomechanics and pain in patients with medial compartment knee OA during stationary cycling. Thirteen participants with OA and 11 paired healthy participants volunteered for this study. A motion analysis system and a customized instrumented pedal were used to collect 5 pedal cycles of kinematics and kinetics, respectively, during 2 minutes of cycling in 1 neutral and 2 lateral wedge (5° and 10°) conditions. Participants pedaled at 60 RPM and an 80W workrate and rated their knee pain on a visual analog scale during each minute of each condition. There was a 22% decrease in the internal knee abduction moment with the 10° wedge. However, this finding was not accompanied by a decrease in knee adduction angle or subjective pain. Additionally, there was an increase in vertical and horizontal pedal reaction force which may negate the advantages of the decreased internal knee abduction moment. For people with medial knee OA, cycling with 10° lateral wedges may not be sufficient to slow the progression of OA beyond the neutral riding condition.

  4. Anatexis of accretionary wedge, Pacific-type magmatism, and formation of vertically stratified continental crust in the Altai Orogenic Belt

    Science.gov (United States)

    Jiang, Y. D.; Schulmann, K.; Sun, M.; Å típská, P.; Guy, A.; Janoušek, V.; Lexa, O.; Yuan, C.

    2016-12-01

    Granitoid magmatism and its role in differentiation and stabilization of the Paleozoic accretionary wedge in the Chinese Altai are evaluated in this study. Voluminous Silurian-Devonian granitoids intruded a greywacke-dominated Ordovician sedimentary succession (the Habahe Group) of the accretionary wedge. The close temporal and spatial relationship between the regional anatexis and the formation of granitoids, as well as their geochemical similarities including rather unevolved Nd isotopic signatures and the strong enrichment of large-ion lithophile elements relative to many of the high field strength elements, may indicate that the granitoids are product of partial melting of the accretionary wedge rocks. Whole-rock geochemistry and pseudosection modeling show that regional anatexis of fertile sediments could have produced a large amount of melts compositionally similar to the granitoids. Such process could have left a high-density garnet- and/or garnet-pyroxene granulite residue in the deep crust, which can be the major reason for the gravity high over the Chinese Altai. Our results show that melting and crustal differentiation can transform accretionary wedge sediments into vertically stratified and stable continental crust. This may be a key mechanism contributing to the peripheral continental growth worldwide.

  5. The role of subducting bathymetric highs on the oceanic crust to deformation of accretionary wedge and earthquake segmentation in the Java forearc

    Science.gov (United States)

    Singh, S. C.; Mukti, M.; Deighton, I.

    2014-12-01

    Stratigraphic and structural observations of newly acquired seismic reflection data along the offshore south Java reveal the structural style of deformation along the forearc and the role of subducting bathymetric highs to the morphology of the forearc region. The forearc region can be divided in to two major structural units: accretionary wedge and forearc and forearc basin where a backthrust marks the boundary between the accretionary wedge and the forearc basin sediments. The continuous compression in the subduction zone has induced younger landward-vergent folds and thrusts within the seaward margin of the forearc basin sediments, which together with the backthrust is referred as the Offshore South Java Fault Zone (OSJFZ), representing the growth of the accretionary wedge farther landward. Seaward-vergent imbricated thrusts have deformed the sediments in the accretionary wedge younging seaward, and have developed fold-thrust belts in the accretionary wedge toward trench. Together with the backthrusts, these seaward-vergent thrusts characterize the growth of accretionary wedge in South of Java trench. Based on these new results, we suggest that accretionary wedge mechanic is not the first order factor in shaping the morphology of the accretionary wedge complex. Instead the subducting bathymetric highs play the main role in shaping the forearc that are manifested in the uplift of the forearc high and intense deformation along the OSJFZ. These subducting highs also induce compression within the accretionary sediments, evident from landward deflection of the subduction front at the trench and inner part of accretionary wedge in the seaward margin of the forearc basin. Intense deformation is also observed on the seaward portion of the accretionary wedge area where the bathymetric highs subducted. We suggest that these subducted bathymetric features define the segment boundaries for megathrust earthquakes, and hence reducing the maximum size of the earthquakes in the

  6. Open Standards, Open Source, and Open Innovation: Harnessing the Benefits of Openness

    Science.gov (United States)

    Committee for Economic Development, 2006

    2006-01-01

    Digitization of information and the Internet have profoundly expanded the capacity for openness. This report details the benefits of openness in three areas--open standards, open-source software, and open innovation--and examines the major issues in the debate over whether openness should be encouraged or not. The report explains each of these…

  7. Sandbox modeling of evolving thrust wedges with different preexisting topographic relief: Implications for the Longmen Shan thrust belt, eastern Tibet

    Science.gov (United States)

    Sun, Chuang; Jia, Dong; Yin, Hongwei; Chen, Zhuxin; Li, Zhigang; Shen, Li; Wei, Dongtao; Li, Yiquan; Yan, Bin; Wang, Maomao; Fang, Shaozhi; Cui, Jian

    2016-06-01

    To understand the effects of substantial topographic relief on deformation localization in the seismically active mountains, like the Longmen Shan thrust belt in the eastern Tibet, sandbox experiments were performed based on the framework of the critical taper theory. First, a reference experiment revealed that the critical taper angle was 12° for our experimental materials. Subsequently, different proto wedges (subcritical (6° in taper angle), critical (12°), and supercritical (20°)) were introduced to cover the range of natural topographic relief, and we used two setups: setup A considered only across-strike topographic relief, whereas setup B investigated along-strike segmentation of topography, consist of two adjacent proto wedges. In all experiments, thrust wedges grew by in-sequence accretion of thrust sheets. Setup A revealed an alternating mode of slip partitioning on the accreted thrusts, with large-displacement thrust and small-displacement thrust developing in turn. And contrasting wedge evolutions occurred according to whether the proto wedge was subcritical or critical-supercritical. In setup B, the differential deformation along the strike produced transverse structures such as tear fault and lateral ramp during frontal accretion. The observed tear fault and its associated thrust system resemble the seismogenic fault system of the 2008 Mw7.9 Wenchuan earthquake. Our experimental results could also explain first-order deformation features observed in the Longmen Shan. Consequently, we conclude that topographic features, including topographic relief across the range and along-strike segmentation of topography, contribute significantly to the kinematics and deformation localization in such active mountains.

  8. 3D Stress-Strain Analysis of a Failed Limestone Wedge Influenced by an Intact Rock Bridge

    Science.gov (United States)

    Paronuzzi, Paolo; Bolla, Alberto; Rigo, Elia

    2016-08-01

    This paper presents a back-analysis of a rock wedge failure (volume = 25-30 m3) that involved a limestone scarp in the Rosandra valley (Trieste karst, NE Italy). Thanks to the mechanical survey of the detachment surface, a single rock bridge having a size of about 15 cm × 30 cm has been ascertained. A 3D stress-strain analysis has been performed to examine the influence of the rock bridge on the block stability (initial unweathered condition: strength reduction factor SRF equal to 1.14). The shear strength provided by the basal and lateral joints represents the main contributing factor for the wedge stability (about 60-75 % of the whole resisting system). However, the equilibrium of the wedge was temporarily attained thanks to the strength contribution provided by the rock bridge (25-40 %) until the acting forces locally exceeded the resisting forces, thus determining the bridge rupture and, as a consequence, the wedge collapse. The mean shear stress acting on the rock bridge at failure ranges from about 3.5 to 5 MPa. Calculated block displacements up to failure vary from 0.6 to 1.5 mm, depending on the different elastic modulus assumed for the wedge ( E = 30, 10, and 4 GPa). Pre-collapse block displacements increase as a result of the shear strength decrease that was initially caused by the weathering of the delimiting rock joints and, further, by the progressive failure of the rock bridge. The cohesion at failure of the rock bridge ranges from 2.1 to 2.6 MPa (friction angle of intact rock φ = 40°).

  9. Role of Neogene Exhumation and Sedimentation on Critical-Wedge Kinematics in the Zagros Orogenic Belt, Northeastern Iraq, Kurdistan

    Science.gov (United States)

    Koshnaw, R. I.; Horton, B. K.; Stockli, D. F.; Barber, D. E.; Tamar-Agha, M. Y.; Kendall, J. J.

    2014-12-01

    The Zagros orogenic belt and foreland basin formed during the Cenozoic Arabia-Eurasia collision, but the precise histories of shortening and sediment accumulation remain ambiguous, especially at the NW extent of the fold-thrust belt in Iraqi Kurdistan. This region is characterized by well-preserved successions of Cenozoic clastic foreland-basin fill and deformed Paleozoic-Mesozoic hinterland bedrock. The study area provides an excellent opportunity to investigate the linkage between orogenic wedge behavior and surface processes of erosion and deposition. The aim of this research is to test whether the Zagros orogenic wedge advanced steadily under critical to supercritical wedge conditions involving in-sequence thrusting with minimal erosion or propagated intermittently under subcritical condition involving out-of-sequence deformation with intense erosion. These endmember modes of mountain building can be assessed by integrating geo/thermochronologic and basin analyses techniques, including apatite (U-Th)/He thermochronology, detrital zircon U-Pb geochronology, stratigraphic synthesis, and seismic interpretations. Preliminary apatite (U-Th)/He data indicate activation of the Main Zagros Fault (MZF) at ~10 Ma with frontal thrusts initiating at ~8 Ma. However, thermochronometric results from the intervening Mountain Front Flexure (MFF), located between the MZF and the frontal thrusts, suggest rapid exhumation at ~6 Ma. These results suggest that the MFF, represented by the thrust-cored Qaradagh anticline, represents a major episode of out-of-sequence deformation. Detrital zircon U-Pb analyses from the Neogene foreland-basin deposits show continuous sediment derivation from sources to the NNE in Iraq and western Iran, suggesting that out-of-sequence thrusting did not significantly alter sedimentary provenance. Rather, intense hinterland erosion and recycling of older foreland-basin fill dominated sediment delivery to the basin. The irregular distribution of

  10. Recent movements along the Main Boundary Thrust of the Himalayas: Normal faulting in an over-critical thrust wedge?

    Science.gov (United States)

    Mugnier, Jean-Louis; Huyghe, Pascale; Chalaron, Edouard; Mascle, Georges

    1994-11-01

    The Main Boundary Thrust (MBT) is one of the major Himalayan thrusts occurring during the Cainozoic, and it is presently incorporated within the Himalayan thrust wedge (Lesser and Outer Himalayas) displaced above the Indian lithosphere. Nonetheless the MBT shows recent normal displacement along most of its length. We suggest that the orientation of the major principal stress within the Himalayan thrust wedge deviates significantly from the horizontal and when this deviation exceeds the dip of the vectors normal to back-tilted thrusts, the normal component of displacement may act along these faults. Steep north-dipping segments of the MBT therefore show a normal component of displacement if a geometrical definition is used, but they are faults in a compressional regime where the major principal stress axis has deviated from the horizontal. Micro-structural data recorded along the Surkhet-Ghorahi segment of the MBT are consistent with a strong deviation of the state of stress. The presence of such peculiar normal faulting along the MBT is used to calibrate the mechanical characteristics of the belt considered as a Coulomb wedge. The following characteristics are suggested: (a) very poor strength contrast between basal decollement and rocks in the wedge body, (b) a high pore fluid pressure ratio (probably close to 0.8-0.9) and a higher fluid pressure ratio (close to 1.0) along the active normal faults if a high internal friction angle (close to the Byerlee value) is considered. The strong deviation in principal stress direction may have recently increased, due to a taper of the Himalayan wedge exceeding the stability boundary and may be controlled by erosion and isostatic uplift rebound of the Himalayan range.

  11. Effects of medially wedged foot orthoses on knee and hip joint running mechanics in females with and without patellofemoral pain syndrome.

    Science.gov (United States)

    Boldt, Andrew R; Willson, John D; Barrios, Joaquin A; Kernozek, Thomas W

    2013-02-01

    We examined the effects of medially wedged foot orthoses on knee and hip joint mechanics during running in females with and without patellofemoral pain syndrome (PFPS). We also tested if these effects depend on standing calcaneal eversion angle. Twenty female runners with and without PFPS participated. Knee and hip joint transverse and frontal plane peak angle, excursion, and peak internal knee and hip abduction moment were calculated while running with and without a 6° full-length medially wedged foot orthoses. Separate 3-factor mixed ANOVAs (group [PFPS, control] x condition [medial wedge, no medial wedge] x standing calcaneal angle [everted, neutral, inverted]) were used to test the effect of medially wedged orthoses on each dependent variable. Knee abduction moment increased 3% (P = .03) and hip adduction excursion decreased 0.6° (P < .01) using medially wedged foot orthoses. No significant group x condition or calcaneal angle x condition effects were observed. The addition of medially wedged foot orthoses to standardized running shoes had minimal effect on knee and hip joint mechanics during running thought to be associated with the etiology or exacerbation of PFPS symptoms. These effects did not appear to depend on injury status or standing calcaneal posture.

  12. Collinear spin-density-wave ordering in Fe/Cr multilayers and wedges

    Energy Technology Data Exchange (ETDEWEB)

    Fishman, R.S. [Solid State Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6032 (United States); Shi, Z. [Read-Rite Corporation, R D Division, 345 Los Coches Street, Milpitas, California 95035 (United States)

    1999-06-01

    Several recent experiments have detected a spin-density wave (SDW) within the Cr spacer of Fe/Cr multilayers and wedges. We use two simple models to predict the behavior of a collinear SDW within an Fe/Cr/Fe trilayer. Both models combine assumed boundary conditions at the Fe-Cr interfaces with the free energy of the Cr spacer. Depending on the temperature and the number {ital N} of Cr monolayers, the SDW may be either commensurate ({ital C}) or incommensurate ({ital I}) with the bcc Cr lattice. Model I assumes that the Fe-Cr interface is perfect and that the Fe-Cr interaction is antiferromagnetic. Consequently, the {ital I} SDW antinodes lie near the Fe-Cr interfaces. With increasing temperature, the Cr spacer undergoes a series of transitions between {ital I} SDW phases with different numbers {ital n} of nodes. If the {ital I} SDW has n=m nodes at T=0, then {ital n} increases by one at each phase transition from {ital m} to m{minus}1 to m{minus}2 up to the {ital C} phase with n=0 above T{sub IC}(N). For a fixed temperature, the magnetic coupling across the Cr spacer undergoes a phase slip whenever {ital n} changes by one. In the limit N{r_arrow}{infinity}, T{sub IC}(N) is independent of the Fe-Cr coupling strength. We find that T{sub IC}({infinity}) is always larger than the bulk N{acute e}el transition temperature and increases with the strain on the Cr spacer. These results explain the very high IC transition temperature of about 600 K extrapolated from measurements on Fe/Cr/Fe wedges. Model II assumes that the {ital I} SDW nodes lie precisely at the Fe-Cr interfaces. This condition may be enforced by the interfacial roughness of sputtered Fe/Cr multilayers. As a result, the {ital C} phase is never stable and the transition temperature T{sub N}(N) takes on a seesaw pattern as n{ge}2 increases with thickness. In agreement with measurements on both sputtered and epitaxially grown multilayers, model II predicts the {ital I} phase to be unstable above the bulk N

  13. Mud volcano venting induced gas hydrate formation at the upper slope accretionary wedge, offshore SW Taiwan

    Science.gov (United States)

    Lin, Saulwood; Tseng, Yi-Ting; Cheng, Wan-Yen; Chou, Cheng-Tien; Chen, NeiChen; Hsieh, I.-Chih

    2016-04-01

    TsanYao Mud Volcano (TYMV) is the largest mud volcano cone in the Hengchun Mud Volcano Group (HCMVG), located at the upper slope of the accrretionary wedge, southwest of Taiwan. The region is under active tectonic activity with the Philippine Plate, moving northwestward at a rate of ~8 cm/year. This region also receives huge quantity of suspended particle load of ~100 mT/year at present time from adjacent small rivers of the Island of Taiwan. Large loads of suspended sediments influx become a major source of organic carbon and later gas and other hydrocarbon. Gas and fluid in the mud volcano are actively venting from deep to the sea floor on the upper slope of the accretionary wedge. In order to understand venting on the HCMVG, echo sounder, towcam and coring were carried out. Pore water sulfate, chloride, potassium, calcium, stable isotope O-18, gas compositions, dissolved sulfide were analysed. The HCMVG consists of 12 volcano cones of different sizes. Large quantity of gas and fluid are venting directly from deep to the TYMV structure high, as well as 50+ other vents as appeared as flares on the echo sounder. Some flares are reaching to the atmosphere and likely a source of green house gases to the atmosphere. Venting fluids include gas bubbles, suspended particle, mud, and breccia. Breccia size could reach more than 12 cm in diameter. Circular bands in different color appeared around the cone may represent stages of vent eruptions. Compositions of vent gas include methane, ethane and propane. High proportions of ethane and propane in the vent gas demonstrated that source of gas are thermogenic in origin. Patchy authigenic carbonate, bacterial mats, bivalves, tube worms and other chemosynthesis organisms were supported by venting gas AOM process near the sea floor. Pore water chloride concentrations show distinct variation pattern from center cone to the side of the volcano, with low in the center and high away from the cone. Pore water with higher than seawater

  14. Holocene ice-wedge polygon development in northern Yukon permafrost peatlands (Canada)

    Science.gov (United States)

    Fritz, Michael; Wolter, Juliane; Rudaya, Natalia; Palagushkina, Olga; Nazarova, Larisa; Obu, Jaroslav; Rethemeyer, Janet; Lantuit, Hugues; Wetterich, Sebastian

    2016-09-01

    Ice-wedge polygon (IWP) peatlands in the Arctic and Subarctic are extremely vulnerable to climatic and environmental change. We present the results of a multidisciplinary paleoenvironmental study on IWPs in the northern Yukon, Canada. High-resolution laboratory analyses were carried out on a permafrost core and the overlying seasonally thawed (active) layer, from an IWP located in a drained lake basin on Herschel Island. In relation to 14 Accelerator Mass Spectrometry (AMS) radiocarbon dates spanning the last 5000 years, we report sedimentary data including grain size distribution and biogeochemical parameters (organic carbon, nitrogen, C/N ratio, δ13C), stable water isotopes (δ18O, δD), as well as fossil pollen, plant macrofossil and diatom assemblages. Three sediment units (SUs) correspond to the main stages of deposition (1) in a thermokarst lake (SU1: 4950 to 3950 cal yrs BP), (2) during transition from lacustrine to palustrine conditions after lake drainage (SU2: 3950 to 3120 cal yrs BP), and (3) in palustrine conditions of the IWP field that developed after drainage (SU3: 3120 cal yrs BP to 2012 CE). The lacustrine phase (pre 3950 cal yrs BP) is characterized by planktonic-benthic and pioneer diatom species indicating circumneutral waters, and very few plant macrofossils. The pollen record has captured a regional signal of relatively stable vegetation composition and climate for the lacustrine stage of the record until 3950 cal yrs BP. Palustrine conditions with benthic and acidophilic diatom species characterize the peaty shallow-water environments of the low-centered IWP. The transition from lacustrine to palustrine conditions was accompanied by acidification and rapid revegetation of the lake bottom within about 100 years. Since the palustrine phase we consider the pollen record as a local vegetation proxy dominated by the plant communities growing in the IWP. Ice-wedge cracking in water-saturated sediments started immediately after lake drainage at

  15. Deformation in the mantle wedge associated with Laramide flat-slab subduction

    Science.gov (United States)

    Behr, Whitney M.; Smith, Douglas

    2016-07-01

    Laramide crustal deformation in the Rocky Mountains of the west-central United States is often considered to relate to a narrow segment of shallow subduction of the Farallon slab, but there is no consensus as to how deformation along the slab-mantle lithosphere interface was accommodated. Here we investigate deformation in mantle rocks associated with hydration and shear above the flat-slab at its contact with the base of the North American plate. The rocks we focus on are deformed, hydrated, ultramafic inclusions hosted within diatremes of the Navajo Volcanic Field in the central Colorado Plateau that erupted during the waning stages of the Laramide orogeny. We document a range of deformation textures, including granular peridotites, porphyroclastic peridotites, mylonites, and cataclasites, which we interpret to reflect different proximities to a slab-mantle-interface shear zone. Mineral assemblages and chemistries constrain deformation to hydrous conditions in the temperature range ˜550-750°C. Despite the presence of hydrous phyllosilicates in modal percentages of up to 30%, deformation was dominated by dislocation creep in olivine. The mylonites exhibit an uncommon lattice preferred orientation (LPO) in olivine, known as B-type LPO in which the a-axes are aligned perpendicular to the flow direction. The low temperature, hydrated setting in which these fabrics formed is consistent with laboratory experiments that indicate B-type LPOs form under conditions of high stress and high water contents; furthermore, the mantle wedge context of these LPOs is consistent with observations of trench-parallel anisotropy in the mantle wedge above many modern subduction zones. Differential stress magnitudes in the mylonitic rocks estimated using paleopiezometry range from 290 to 444 MPa, and calculated effective viscosities using a wet olivine flow law are on the order of 1019-1023 Pa s. The high stress magnitudes, high effective viscosities, and high strains recorded in these

  16. Sandia OpenSHMEM

    Energy Technology Data Exchange (ETDEWEB)

    2016-03-15

    Sandia OpenSHMEM is an implementation of the OpenSHMEM Standard over the Portals 4 Networking API and the OpenFabrics Interface (OFI). Sandia OpenSHMEM is designed to be a low-overhead implementation of the OpenSHMEM standard which takes advantage of the many features of the Portals 4 specification.

  17. Open access, open education resources and open data in Uganda.

    Science.gov (United States)

    Salvo, Ivana Di; Mwoka, Meggie; Kwaga, Teddy; Rukundo, Priscilla Aceng; Ernest, Dennis Ssesanga; Osaheni, Louis Aikoriogie; John, Kasibante; Shafik, Kasirye; de Sousa, Agostinho Moreira

    2015-01-01

    As a follow up to OpenCon 2014, International Federation of Medical Students' Associations (IFMSA) students organized a 3 day workshop Open Access, Open Education Resources and Open Data in Kampala from 15-18 December 2014. One of the aims of the workshop was to engage the Open Access movement in Uganda which encompasses the scientific community, librarians, academia, researchers and students. The IFMSA students held the workshop with the support of: Consortium for Uganda University Libraries (CUUL), The Right to Research Coalition, Electronic Information for Libraries (EIFL), Makerere University, International Health Sciences University (IHSU), Pan African Medical Journal (PAMJ) and the Centre for Health Human Rights and Development (CEHURD). All these organizations are based or have offices in Kampala. The event culminated in a meeting with the Science and Technology Committee of Parliament of Uganda in order to receive the support of the Ugandan Members of Parliament and to make a concrete change for Open Access in the country.

  18. Open heart surgery

    Science.gov (United States)

    Heart surgery - open ... lung machine is used in most cases during open heart surgery. While the surgeon works on the ... with these procedures, the surgeon may have to open the chest to do the surgery.

  19. NUMERICAL MODELING AND DYNAMIC SIMULATIONS OF NONLINEAR AEROTHERMOELASTIC OF A DOUBLE-WEDGE LIFTING SURFACE

    Directory of Open Access Journals (Sweden)

    ARIF A. EBRAHEEM AL-QASSAR

    2008-12-01

    Full Text Available The design of the re-entry space vehicles and high-speed aircrafts requires special attention to the nonlinear thermoelastic and aerodynamic instabilities of their structural components. The thermal effects are important since temperature environment influences significantly the static and dynamic behaviors of flight structures in supersonic/hypersonic regimes. To contribute to the understanding of dynamic behavior of these “hot” structures, a double-wedge lifting surface with combined freeplay and cubic stiffening structural nonlinearities in both plunging and pitching degrees-of-freedom operating in supersonic/hypersonic flight speed regimes has been analyzed. A third order Piston Theory Aerodynamics is used to evaluate the applied nonlinear unsteady aerodynamic loads. The loss of torsional stiffness that may be incurred by lifting surfaces subjected to axial stresses induced by aerodynamic heating is also considered. The aerodynamic heating effect is estimated based on the adiabatic wall temperature due to high speed airstreams. Modelling issues as well as simulation results have been presented and pertinent conclusions outlined. It is highlighted that a serious loss of torsional stiffness may induce the dynamic instability of the lifting surfaces. The influence of various parameters such as flight condition, thickness ratio, freeplays and pitching stiffness nonlinearity are also discussed.

  20. Solving Large-Scale TSP Using a Fast Wedging Insertion Partitioning Approach

    Directory of Open Access Journals (Sweden)

    Zuoyong Xiang

    2015-01-01

    Full Text Available A new partitioning method, called Wedging Insertion, is proposed for solving large-scale symmetric Traveling Salesman Problem (TSP. The idea of our proposed algorithm is to cut a TSP tour into four segments by nodes’ coordinate (not by rectangle, such as Strip, FRP, and Karp. Each node is located in one of their segments, which excludes four particular nodes, and each segment does not twist with other segments. After the partitioning process, this algorithm utilizes traditional construction method, that is, the insertion method, for each segment to improve the quality of tour, and then connects the starting node and the ending node of each segment to obtain the complete tour. In order to test the performance of our proposed algorithm, we conduct the experiments on various TSPLIB instances. The experimental results show that our proposed algorithm in this paper is more efficient for solving large-scale TSPs. Specifically, our approach is able to obviously reduce the time complexity for running the algorithm; meanwhile, it will lose only about 10% of the algorithm’s performance.

  1. Seismic evidence for flow in the hydrated mantle wedge of the Ryukyu subduction zone

    Science.gov (United States)

    Nagaya, Takayoshi; Walker, Andrew M.; Wookey, James; Wallis, Simon R.; Ishii, Kazuhiko; Kendall, J.-Michael

    2016-07-01

    It is widely accepted that water-rich serpentinite domains are commonly present in the mantle above shallow subducting slabs and play key roles in controlling the geochemical cycling and physical properties of subduction zones. Thermal and petrological models show the dominant serpentine mineral is antigorite. However, there is no good consensus on the amount, distribution and alignment of this mineral. Seismic velocities are commonly used to identify antigorite-rich domains, but antigorite is highly-anisotropic and depending on the seismic ray path, its properties can be very difficult to distinguish from non-hydrated olivine-rich mantle. Here, we utilize this anisotropy and show how an analysis of seismic anisotropy that incorporates measured ray path geometries in the Ryukyu arc can constrain the distribution, orientation and amount of antigorite. We find more than 54% of the wedge must consist of antigorite and the alignment must change from vertically aligned to parallel to the slab. This orientation change suggests convective flow in the hydrated forearc mantle. Shear wave splitting analysis in other subduction zones indicates large-scale serpentinization and forearc mantle convection are likely to be more widespread than generally recognized. The view that the forearc mantle of cold subduction zones is dry needs to be reassessed.

  2. Pengaruh Media Pendingin pada Heat Treatment Terhadap Struktur Mikro dan Sifat Mekanik Friction Wedge AISI 1340

    Directory of Open Access Journals (Sweden)

    Bayu Adie Septianto

    2013-09-01

    Full Text Available Baja AISI 1340 termasuk baja paduan rendah dengan komposisi karbon 0.38-0.43% dan Mangan 1,78%. Baja ini digunakan untuk komponen kereta api Friction Wedge yang memiliki standar kekerasan minimal 300 BHN. Untuk menambah kekerasan, salah satu cara yang digunakan adalah heat treatment. Pada penelitian ini variasi yang digunakan adalah media pendingin air, oli SAE 20W, PVA 20% dan pendinginan udara pada tempertaur austenitisasi 8400C dan waktu tahan 20 menit. Kekerasan yang dihasilkan oleh media pendingin air adalah 556,6 BHN, sedangkan quench oli dan polimer 461,8 BHN dan 416 BHN. Pada pendinginan udara dihasilkan kekerasan dibawah 300 BHN. Perbedaan media pendingin berpengaruh terhadap struktur mikro yang terbentuk. Pada pendinginan dengan media air dan oli diperoleh struktur martensit dengan bentuk kristal BCT. Sedangkan pada pendinginan udara terbentuk struktur ferrit dan perlit dengan bentuk kristal BCC. Selain berpengaruh pada sifat mekanik dan struktur mikronya, variasi media pendingin juga memberikan efek terhadap sifat termalnya dan berpengaruh terhadap elongation pada temperatur maksimum kerja. Dari hasil uji TMA, performa paling baik pada temperatur 300oC dihasilkan pada pendinginan quench oli SAE 20W, dengan pertambahan panjang sebesar 0,65%.

  3. A computational study of supersonic combustion behind a wedge-shaped flameholder

    Science.gov (United States)

    Fureby, C.; Fedina, E.; Tegnér, J.

    2014-01-01

    In this study, large eddy simulation (LES) has been used to examine supersonic flow, mixing, self-ignition and combustion in a model scramjet combustor and has been compared against the experimental data. The LES model is based on an unstructured finite-volume discretization, using monotonicity-preserving flux reconstruction of the filtered mass, momentum, species and energy equations. Both a two-step and a seven-step hydrogen-air mechanism are used to describe the chemical reactions. Additional comparisons are made with results from a previously presented flamelet model. The subgrid flow terms are modeled using a mixed model, whereas the subgrid turbulence-chemistry interaction terms are modeled using the partially stirred reactor model. Simulations are carried out on a scramjet model experimentally studied at Deutsches Zentrum für Luft- und Raumfahrt consisting of a one-sided divergent channel with a wedge-shaped flame holder at the base of which hydrogen is injected. The LES predictions are compared with experimental data for velocity, temperature, wall pressure at different cross sections as well as schlieren images, showing good agreement for both first- and second-order statistics. In addition, the LES results are used to illustrate and explain the intrinsic flow, and mixing and combustion features of this combustor.

  4. Active shortening within the Himalayan orogenic wedge implied by the 2015 Gorkha earthquake

    Science.gov (United States)

    Whipple, Kelin X.; Shirzaei, Manoochehr; Hodges, Kip V.; Ramon Arrowsmith, J.

    2016-09-01

    Models of Himalayan neotectonics generally attribute active mountain building to slip on the Himalayan Sole Thrust, also termed the Main Himalayan Thrust, which accommodates underthrusting of the Indian Plate beneath Tibet. However, the geometry of the Himalayan Sole Thrust and thus how slip along it causes uplift of the High Himalaya are unclear. We show that the geodetic record of the 2015 Gorkha earthquake sequence significantly clarifies the architecture of the Himalayan Sole Thrust and suggests the need for revision of the canonical view of how the Himalaya grow. Inversion of Gorkha surface deformation reveals that the Himalayan Sole Thrust extends as a planar gently dipping fault surface at least 20-30 km north of the topographic front of the High Himalaya. This geometry implies that building of the high range cannot be attributed solely to slip along the Himalayan Sole Thrust over a steep ramp; instead, shortening within the Himalayan wedge is required to support the topography and maintain rapid rock uplift. Indeed, the earthquake sequence may have included a moderate rupture (Mw 6.9) on an out-of-sequence thrust fault at the foot of the High Himalaya. Such internal deformation is an expected response to sustained, focused rapid erosion, and may be common to most compressional orogens.

  5. Hospital-wide rollout of antimicrobial stewardship: a stepped-wedge randomized trial.

    Science.gov (United States)

    Palmay, Lesley; Elligsen, Marion; Walker, Sandra A N; Pinto, Ruxandra; Walker, Scott; Einarson, Thomas; Simor, Andrew; Rachlis, Anita; Mubareka, Samira; Daneman, Nick

    2014-09-15

    Our objective was to rigorously evaluate the impact of an antimicrobial stewardship audit-and-feedback intervention, via a stepped-wedge randomized trial. An effective intensive care unit (ICU) audit-and-feedback program was rolled out to 6 non-ICU services in a randomized sequence. The primary outcome was targeted antimicrobial utilization, using a negative binomial regression model to assess the impact of the intervention while accounting for secular and seasonal trends. The intervention was successfully transitioned, with high volumes of orders reviewed, suggestions made, and recommendations accepted. Among patients meeting stewardship review criteria, the intervention was associated with a large reduction in targeted antimicrobial utilization (-21%, P = .004); however, there was no significant change in targeted antibiotic use among all admitted patients (-1.2%, P = .9), and no reductions in overall costs and microbiologic outcomes. An ICU day 3 audit-and-feedback program can be successfully expanded hospital-wide, but broader benefits on non-ICU wards may require interventions earlier in the course of treatment.

  6. Stationary bubble formation and cavity collapse in wedge-shaped hoppers

    CERN Document Server

    Yagisawa, Yui; Okumura, Ko

    2016-01-01

    The hourglass is one of the apparatuses familiar to everyone, but reveals intriguing behaviors peculiar to granular materials, and many issues are remained to be explored. In this study, we examined the dynamics of falling sand in a special form of hourglass, i.e., a wedge-shaped hopper, when a suspended granular layer is stabilized to a certain degree. As a result, we found remarkably different dynamics, bubbling and cavity regimes. In the bubbling regime, bubbles of nearly equal size are created in the sand at a regular time interval. In the cavity regime, a cavity grows as sand beads fall before a sudden collapse of the cavity. Bubbling found here is quite visible to a level never discussed in the physics literature and the cavity regime is a novel phase, which is neither continuous, intermittent nor completely blocked phase. We elucidate the physical conditions necessary for the bubbling and cavity regimes and develop simple theories for the regimes to successfully explain the observed phenomena by consid...

  7. Self-assembling supramolecular systems of different symmetry formed by wedged macromolecular dendrons

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbina, M. A., E-mail: shcherbina@ispm.ru; Bakirov, A. V. [Russian Academy of Sciences, Institute of Synthetic Polymer Materials (Russian Federation); Yakunin, A. N. [Karpov Institute of Physical Chemistry (Russian Federation); Percec, V. [University of Pennsylvania (United States); Beginn, U. [Universitaet Osnabrueck, Institut fuer Chemie (Germany); Moeller, M. [Institute for Technical and Macromolecular Chemistry (Germany); Chvalun, S. N. [Russian Academy of Sciences, Institute of Synthetic Polymer Materials (Russian Federation)

    2012-03-15

    The main stages of the self-assembling of supramolecular ensembles have been revealed by studying different functional wedged macromolecules: polymethacrylates with tapered side chains based on gallic acid, their macromonomers, and salts of 2,3,4- and 3,4,5-tris(dodecyloxy)benzenesulphonic acid. The first stage is the formation of individual supramolecular aggregates (long cylinders or spherical micelles) due to the weak noncovalent interactions of mesogenic groups and the subsequent ordering in these aggregates, which is accompanied by a decrease in the free energy of the system. Supramolecular aggregates, in turn, form 2D or 3D lattices. The shape of supramolecular aggregates and its change with temperature are delicate functions of the mesogen chemical structure; this circumstance makes it possible to rationally design complex self-assembling systems with the ability to respond smartly to external stimuli. X-ray diffraction analysis allows one to study the structure of supramolecular systems with different degrees of order, determine the type of mesophases formed by these systems, and reveal the phase behavior of the material. Particular attention has been paid to the method for reconstruction of electron density distribution from the relative reflection intensity. The application of a suite of experimental methods, including wide- and small-angle X-ray diffraction, molecular modeling, differential scanning calorimetry, and polarization optical microscopy, allows one to establish the relationship between the shape of the structural unit (molecule or molecular aggregate), the nature of the interaction, and the phase behavior of the material.

  8. Irregular Characteristics of Bond Interface Formation in Ultrasonic Wire Wedge Bonding

    Institute of Scientific and Technical Information of China (English)

    Mingyu LI; Hongjun JI; Chunqing WANG; Au Tai KUNG; Han Sur BANG; Hee Seon BANG

    2006-01-01

    The mechanism of ultrasonic wire wedge bonding, one of the die/chip interconnection methods, was investigated based on the characteristics of the ultrasonic wire bonding joints. The Al-1%Si wire of 25 μm in diameter was bonded on Au/Ni/Cu pad and the joint cross-section was analyzed by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). The results indicated that it is irregular for the ultrasonic bond formation, non-welded at the centre but joining well at the periphery, especially at the heel and toe of the joint. Furthermore, the diffusion and/or reaction at the cross-section interface are not clear at C-zone, while there exists a strip layer microstructure at P-zone, and the composition is 78.96 at. pct Al and 14.88 at. pct Ni, close to the Al3Ni intermetallic compound. All these observations are tentatively ascribed to the plastic flow enhanced by ultrasonic vibration and repeated cold deformation driving interdiffusion between Al and Ni at bond interface.

  9. Agenesis of the Corpus Callosum Due to Defective Glial Wedge Formation in Lhx2 Mutant Mice.

    Science.gov (United States)

    Chinn, Gregory A; Hirokawa, Karla E; Chuang, Tony M; Urbina, Cecilia; Patel, Fenil; Fong, Jeanette; Funatsu, Nobuo; Monuki, Edwin S

    2015-09-01

    Establishment of the corpus callosum involves coordination between callosal projection neurons and multiple midline structures, including the glial wedge (GW) rostrally and hippocampal commissure caudally. GW defects have been associated with agenesis of the corpus callosum (ACC). Here we show that conditional Lhx2 inactivation in cortical radial glia using Emx1-Cre or Nestin-Cre drivers results in ACC. The ACC phenotype was characterized by aberrant ventrally projecting callosal axons rather than Probst bundles, and was 100% penetrant on 2 different mouse strain backgrounds. Lhx2 inactivation in postmitotic cortical neurons using Nex-Cre mice did not result in ACC, suggesting that the mutant phenotype was not autonomous to the callosal projection neurons. Instead, ACC was associated with an absent hippocampal commissure and a markedly reduced to absent GW. Expression studies demonstrated strong Lhx2 expression in the normal GW and in its radial glial progenitors, with absence of Lhx2 resulting in normal Emx1 and Sox2 expression, but premature exit from the cell cycle based on EdU-Ki67 double labeling. These studies define essential roles for Lhx2 in GW, hippocampal commissure, and corpus callosum formation, and suggest that defects in radial GW progenitors can give rise to ACC.

  10. A two-dimensional model of the methane cycle in a sedimentary accretionary wedge

    Directory of Open Access Journals (Sweden)

    D. E. Archer

    2012-08-01

    Full Text Available A two-dimensional model of sediment column geophysics and geochemistry has been adapted to the problem of an accretionary wedge formation, patterned after the margin of the Juan de Fuca plate as it subducts under the North American plate. Much of the model description is given in a companion paper about the application of the model to an idealized passive margin setting; here we build on that formulation to simulate the impact of the sediment deformation, as it approaches the subduction zone, on the methane cycle. The active margin configuration of the model shares sensitivities with the passive margin configuration, in that sensitivities to organic carbon deposition and respiration kinetics, and to vertical bubble transport and redissolution in the sediment, are stronger than the sensitivity to ocean temperature. The active margin simulation shows a complex sensitivity of hydrate inventory to plate subduction velocity, with results depending strongly on the geothermal heat flux. In low heat-flux conditions, the model produces a larger inventory of hydrate per meter of coastline in the passive margin than active margin configurations. However, the local hydrate concentrations, as pore volume saturation, are higher in the active setting than in the passive, as generally observed in the field.

  11. Mixed Convection Flow of Magnetic Viscoelastic Polymer from a Nonisothermal Wedge with Biot Number Effects

    Directory of Open Access Journals (Sweden)

    S. Abdul Gaffar

    2015-01-01

    Full Text Available Magnetic polymers are finding increasing applications in diverse fields of chemical and mechanical engineering. In this paper, we investigate the nonlinear steady boundary layer flow and heat transfer of such fluids from a nonisothermal wedge. The incompressible Eyring-Powell non-Newtonian fluid model is employed and a magnetohydrodynamic body force is included in the simulation. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a second-order accurate implicit finite difference Keller Box technique. The numerical code is validated with previous studies. The influence of a number of emerging nondimensional parameters, namely, the Eyring-Powell rheological fluid parameter (ε, local non-Newtonian parameter based on length scale (δ, Prandtl number (Pr, Biot number (γ, pressure gradient parameter (m, magnetic parameter (M, mixed convection parameter (λ, and dimensionless tangential coordinate (ξ, on velocity and temperature evolution in the boundary layer regime is examined in detail. Furthermore, the effects of these parameters on surface heat transfer rate and local skin friction are also investigated.

  12. Turbulent transport coefficients in spherical wedge dynamo simulations of solar-like stars

    CERN Document Server

    Warnecke, Jörn; Käpylä, Petri J; Käpylä, Maarit J; Brandenburg, Axel

    2016-01-01

    We investigate the magnetic field generation in global solar-like convective dynamos in the framework of mean-field theory. We simulate a solar-type star in a wedge-shaped spherical shell, where the interplay between convection and rotation self-consistently drives large-scale dynamo. To analyze the dynamo mechanism we apply the test-field method for azimuthally ($\\phi$) averaged fields to determine the 27 turbulent transport coefficients of the electromotive force, of which 9 are related to the $\\alpha$ effect tensor. This method has previously been used either in simulations in Cartesian coordinates or in the geodynamo context and it is applied here for the first time in simulations of solar-like dynamo action. We find that the $\\phi\\phi$-component of the $\\alpha$ tensor does not follow the profile expected from that of kinetic helicity. Beside the dominant $\\alpha$-$\\Omega$ dynamo, also an $\\alpha^2$ dynamo is locally enhanced. The turbulent pumping velocities significantly alter the effective mean flows a...

  13. Receptivity of Boundary Layer over a Blunt Wedge due to Freestream Pulse Disturbances at Mach 6

    Directory of Open Access Journals (Sweden)

    Jianqiang Shi

    2016-01-01

    Full Text Available Direct numerical simulation (DNS of a hypersonic compressible flow over a blunt wedge with fast acoustic disturbances in freestream is performed. The receptivity characteristics of boundary layer to freestream pulse acoustic disturbances are numerically investigated at Mach 6, and the frequency effects of freestream pulse wave on boundary layer receptivity are discussed. Results show that there are several main disturbance mode clusters in boundary layer under acoustic pulse wave, and the number of main disturbance clusters decreases along the streamwise. As disturbance wave propagates from upstream to downstream direction, the component of the modes below fundamental frequency decreases, and the component of the modes above second harmonic components increases quickly in general. There are competition and disturbance energy transfer between different boundary layer modes. The nose boundary layer is dominated by the nearby mode of fundamental frequency. The number of the main disturbance mode clusters decreases as the freestream disturbance frequency increases. The frequency range with larger growth narrows along the streamwise. In general, the amplitudes of both fundamental mode and harmonics become larger with the decreasing of freestream disturbance frequency. High frequency freestream disturbance accelerates the decay of disturbance wave in downstream boundary layer.

  14. Transmission electron microtomography without the 'missing wedge' for quantitative structural analysis

    Energy Technology Data Exchange (ETDEWEB)

    Kawase, Noboru [Research and Development Department, Nitto Analytical Techno-Center Co. Ltd., 1-1-2, Shimohozumi, Ibaraki-city, Osaka 567-8680 (Japan); Kato, Mitsuro [Research and Development Department, Nitto Analytical Techno-Center Co. Ltd., 1-1-2, Shimohozumi, Ibaraki-city, Osaka 567-8680 (Japan); Nishioka, Hideo [Joint Research Center for Project on Nanostructure Polymeric Materials, Japan Chemical Innovation Institute (JCII), Kyoto Institute of Technology, Kyoto 606-8585 (Japan); Jinnai, Hiroshi [Department of Molecular Science and Engineering, Graduate School of Science and Engineering, Kyoto Institute of Technology, Matsugasaki, Kyoto 606-8585 (Japan)]. E-mail: hjinnai@kit.ac.jp

    2007-01-15

    A three-dimensional (3D) visualization and structural analysis of a rod-shaped specimen of a zirconia/polymer nanocomposite material were carried out by transmission electron microtomography (TEMT) with particular emphasis on complete rotation of the specimen (tilt angular range: {+-}90 deg.). In order to achieve such an ideal experimental condition for the TEMT, improvements in the specimen as well as the sample holder were made. A rod-shaped specimen was necessary in order to obtain a high transmission of the specimen upon tilting to large angles. The image resolution of the reconstructed tomogram was isotropic, in sharp contrast to the anisotropic image resolution of the conventional TEMT with a limited angular range (the 'missing wedge' problem). A volume fraction of zirconia, {phi}, evaluated from the 3D reconstruction was in quantitative agreement with the known composition of the nanocomposite. A series of 3D reconstructions was made from the tilt series with complete rotation by limiting the maximum tilt angle, {alpha}, from which a couple of structural parameters, the volume fraction and surface area per unit volume, {sigma}, of the zirconia, were evaluated as a function of {alpha}. It was confirmed from actual experimental data that both {phi} and {sigma} slightly decreased with the increasing {alpha} and reached constant values at around {alpha}=80 deg., suggesting that the specimen may have to be tilted to {+-}80 deg. for truly quantitative measurements.

  15. The age of formation of the mirabilite and sand wedges in the Hexi Corridor and their paleoclimatic interpretation

    Institute of Scientific and Technical Information of China (English)

    WANG Nai'ang; ZHANG Jianming; CHENG Hongyi; GUO Jianying; ZHAO Qiang

    2003-01-01

    Sand wedges in the Hexi Corridor mainly formed in an alluvial gravel stratum of the late Pleistocene and the radiocarbon ages of the eolian sand infilling wedge prove that they were a product of the last ice age. During their period of formation, the mean annual air temperature in the Hexi Corridor was about -5.3℃, i. e. about 13℃ lower than that of the present. This estimated value iscoincident with the decrease in air temperature predicated from mirabilite (Na2SO4·10H2O) sedimentary layer in study area, and also agrees with research on theestimated amplitude of air temperature lowering in middle and high latitudes ofthe Northern Hemisphere during the last glacial period. The annual precipitation in the Western Hexi Corridor at that time was probably about 100-200 mm, i.e.about 100 mm more than at present.

  16. Numerical simulations of an ocean/continent convergent system: influence of subduction geometry and mantle wedge hydration on crustal recycling

    CERN Document Server

    Roda, Manuel; Spalla, Maria Iole; 10.1029/2009GC003015

    2011-01-01

    The effects of the hydration mechanism on continental crust recycling are analyzed through a 2D finite element thermo-mechanical model. Oceanic slab dehydration and consequent mantle wedge hydration are implemented using a dynamic method. Hydration is accomplished by lawsonite and serpentine breakdown; topography is treated as a free surface. Subduction rates of 1, 3, 5, 7.5 and 10 cm/y, slab angles of 30o, 45o and 60o and a mantle rheology represented by dry dunite and dry olivine flow laws, have been taken into account during successive numerical experiments. Model predictions pointed out that a direct relationship exists between mantle rheology and the amount of recycled crustal material: the larger the viscosity contrast between hydrated and dry mantle, the larger the percentage of recycled material into the mantle wedge. Slab dip variation has a moderate impact on the recycling. Metamorphic evolution of recycled material is influenced by subduction style. TPmax, generally representative of eclogite facie...

  17. Anti-plane deformations around arbitrary-shaped canyons on a wedge-shape half-space: moment method solutions

    Institute of Scientific and Technical Information of China (English)

    Nazaret Dermendjian; Vincent W. Lee; Jianwen Liang(梁建文)

    2003-01-01

    The wave propagation behavior in an elastic wedge-shaped medium with an arbitrary shaped cylindrical canyon at its vertex has been studied. Nunerical computation of the wave displacement field is carried out on and near the canyon surfaces using weighted-residuals (moment method). The wave displacement fields are computed by the residual mcthod for the cases of elliptic, circular, rounded-rectangular and flat-elliptic canyons. The analysis demonstrates that thc resulting surface displacemcnt depends, as in similar previous analyses, on several factors including, but not limited, to the angle of thc wedge, thc geometry of thc vertex, the frcquencies of thc incident waves, the angles of incidence, and the material properties of the media. The analysis provides intriguing results that help to explain geophysical observations regarding the amplification of seismic energy as a function of site conditions.

  18. The shape effects of nanoparticles suspended in HFE-7100 over wedge with entropy generation and mixed convection

    Science.gov (United States)

    Ellahi, R.; Hassan, M.; Zeeshan, A.; Khan, Ambreen A.

    2016-06-01

    The flow of mixed convection nanofluid over wedge under the effects of porous medium is investigated. The HFE-7100 Engineered Fluid having Nimonic 80a metal nanoparticles of spherical and non-spherical shapes with different sizes is used. The particle shape effects on Bejan number and entropy generation are taken into account. The system of partial differential equations is first written in terms of ordinary differential equations using adequate similarity transformations and then solved analytically. Analytical solutions of the resulting equations are obtained for the velocity and temperature profiles. Simultaneous effects of porous medium, particle volume friction, mixed convection parameter, and angle of wedge in the presence of different shapes nanoparticles are demonstrated graphically. Effects of particle concentrations, sizes on wall stress, heat transfer coefficient of Skin friction, and Nusselt are discussed in the form of tables.

  19. Exploration of Salt Wedge Dynamics in the Columbia River Estuary Using Optical Measurements of Internal Ship Wakes.

    Science.gov (United States)

    Holman, R. A.; Greydanus, S. J.

    2014-12-01

    In May of 2013 and beyond, Argus optical measurements of the mouth of the Columbia River estuary and plume were collected as part of the RIVET II multi-investigator field experiment. One surprise was the strength of eddy and internal wave signatures observed in movies computed from one-minute averages of high-frequency snapshots (such that gravity waves were averaged out but slicks and variable surface roughness remained). In particular, passing ships left wakes that propagated away at speeds on the order of 0.5 m/s, much slower than gravity waves and presumably surface manifestations of internal waves associated with the time-varying salt-wedge. Thus, these internal ship wakes appear to act as probes of internal stratification dynamics. This paper will explore the time variations of these internal wakes and relate them to corresponding variations in the estuary salt wedge.

  20. Apraxia of lid opening

    Directory of Open Access Journals (Sweden)

    Jebasingh Y

    2006-01-01

    Full Text Available Apraxia of lid opening is a condition where patients do not have ptosis but have difficulty in overcoming levator palpebrae inhibition. We report a patient who presented with difficulty in opening eyelids with out diurnal variation, ptosis or blepharospasm. The diagnosis of Apraxia of lid opening is confirmed by electro physiology. The possibility of apraxia of lid opening should be considered in patients who present with difficulty in opening eyes. Various causes of Apraxia of lid opening are discussed.

  1. Grid generation and adaptation for the Direct Simulation Monte Carlo Method. [for complex flows past wedges and cones

    Science.gov (United States)

    Olynick, David P.; Hassan, H. A.; Moss, James N.

    1988-01-01

    A grid generation and adaptation procedure based on the method of transfinite interpolation is incorporated into the Direct Simulation Monte Carlo Method of Bird. In addition, time is advanced based on a local criterion. The resulting procedure is used to calculate steady flows past wedges and cones. Five chemical species are considered. In general, the modifications result in a reduced computational effort. Moreover, preliminary results suggest that the simulation method is time step dependent if requirements on cell sizes are not met.

  2. Thermal erosion of ice-wedge polygon terrains changes fluxes of energy and matter of permafrost geosystems

    Science.gov (United States)

    Fortier, D.; Godin, E.; Lévesque, E.; Veillette, A.; Lamarque, L.

    2015-12-01

    Subsurface thermal erosion is triggered by convective heat transfers between flowing water and permafrost. Heat advection due to infiltration of run-off in the massive ice wedges and the ice-rich upper portion of permafrost creates sink holes and networks of interconnected tunnels in the permafrost. Mass movements such as collapse of tunnel's roof, retrogressive thaw-slumping and active layer detachment slides lead to the development of extensive gully networks in the landscape. These gullies drastically change the hydrology of ice-wedge polygon terrains and the fluxes of heat, water, sediment, nutrients and carbon within the geosystem. Exportation of sediments out of gullies are positive mechanical feed-back that keep channels active for decades. Along gully margins, drainage of disturbed polygons and ponds, slope drainage, soil consolidation, gully walls colonization by vegetation and wet to mesic plant succession change the thermal properties of the active layer and create negative feedback effects that stabilize active erosion processes and promote permafrost recovery in gully slopes and adjacent disturbed polygons. On Bylot Island (Nunavut), over 40 gullies were monitored to characterize gully geomorphology, thermal and mechanical processes of gully erosion, rates of gully erosion over time within different sedimentary deposits, total volume of eroded permafrost at the landscape scale and gully hydrology. We conducted field and laboratory experiments to quantify heat convection processes and speed of ice wedge ablation in order to derive empirical equations to develop model of permafrost thermal erosion. We used data, collected over 10 years, of geomorphological gully monitoring and regional climate scenarios to evaluate the potential response of ice-wedge polygon terrains to changes in snow, permafrost thermal regime and hydrological conditions over the coming decades and its implication for the short and long term dynamics of arctic permafrost geosystems.

  3. Effects of filters and wedges on skin sparing and gamma/neutron dose ratios in neutron teletherapy.

    Science.gov (United States)

    Smathers, J; Graves, R; Almond, P; Otte, V; Grant, W

    1980-01-01

    The effects of skin sparing and the gamma/neutron dose ratios in the clinical situations presently in use at the TAMVEC neutron teletherapy facility are not appreciably affected by the presence of filters and/or wedges. It is also shown that if skin sparing is lost due to close proximity of a hydrogenous scattering source, it can be restored by the use of thin lead filters.

  4. Numerical And Experimental Study On Producing Aluminum Alloy 6061 Shafts By Cross Wedge Rolling Using A Universal Rolling Mill

    Directory of Open Access Journals (Sweden)

    Tofil A.

    2015-06-01

    Full Text Available The paper presents a selection of numerical and theoretical results of the cross wedge rolling process for producing stepped shafts made of aluminum alloy 6061. The numerical modeling was performed using the FEM-based Simufact Forming simulation software. In the simulations, we examined the kinematics of metal flow and determined the distribution patterns of effective strains, temperatures, axial stresses and the Cockroft-Latham damage criterion. Variations in the rolling forces were determined, too. The numerical results were verified experimentally using a universal rolling mill designed and constructed by the present authors. This machine can be used to perform such processes as cross wedge rolling, longitudinal rolling and round bar cropping. During the experiments, we examined process stability and finished product geometry and recorded the torques. The experimental results confirm that axisymmetric aluminum alloy shafts can be produced by cross wedge rolling with two rolls. Last but not least, the experiments served to evaluate the technological potential of the rolling mill used.

  5. Oxygen grain-boundary transport in polycrystalline alumina using wedge-geometry bilayer samples: Effect of Y-doping

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, H. [Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015 (United States)] [Center for Advanced Materials and Nanotechnology, Lehigh University, Bethlehem, PA 18015 (United States); Caram, H.S.; Schiesser, W.E. [Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015 (United States); Rickman, J.M.; Chan, H.M. [Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015 (United States)] [Center for Advanced Materials and Nanotechnology, Lehigh University, Bethlehem, PA 18015 (United States); Harmer, M.P., E-mail: mph2@lehigh.edu [Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015 (United States)] [Center for Advanced Materials and Nanotechnology, Lehigh University, Bethlehem, PA 18015 (United States)

    2010-04-15

    Novel wedge-geometry, dual-layer alumina samples, both undoped and 500 ppm Y{sup 3+}-doped, were studied in the temperature regime 1250-1400 deg. C to determine the effect of Y{sup 3+} on oxygen grain-boundary transport in alumina. The samples consisted of a wedge-shaped, single-phase alumina top layer, diffusion bonded to an alumina/Ni substrate containing a fine, uniform dispersion of Ni marker particles (0.5 vol.%). The extent of the alumina spinel oxidation layer was measured as a function of the wedge thickness for a series of heat-treatment conditions. Models of the transport behavior were used to derive values for the rate constants (k) in both the alumina top layer and the alumina/Ni substrate. It was found that the presence of yttrium slows oxygen grain-boundary diffusion in alumina by a factor of {approx}5 (at 1300 deg. C), and increases the corresponding activation enthalpy for oxidation from 407 {+-} 20 to 486 {+-} 34 kJ mol{sup -1}. Microstructural observations suggested that yttrium also slows Ni outward diffusion. A comparison of the different k values revealed that, at 1300 deg. C, the presence of Ni alone enhances transport by a factor of {approx}2 relative to undoped alumina.

  6. A new method to calculate lateral force acting on stabilizing piles based on multi-wedge translation mechanism

    Institute of Scientific and Technical Information of China (English)

    罗渝; 许强; 何思明; 李新坡; 何尽川; 吴永

    2015-01-01

    A new method based on the multi-wedge translation mechanism is presented to calculate the lateral force acting on the stabilizing piles. At first, there is no assumption for the shape of potential sliding surface, it is just considered that the potential sliding surface is a composite of a number of straight lines. And then, the potential sliding mass is divided into a number of triangular wedges take with these straight lines as its base. The kinematic theorem of limit analysis is adopted to calculate the rate of external work and the rate of energy dissipation for each triangular wedge, respectively. Furthermore, the multivariate functions are established to calculate the lateral force acting on the stabilizing piles. The lateral force and the corresponding potential sliding surfaces can be obtained by an optimizational technique. At last, an example is taken to illustrate the method. The effect of soil strength parameters, slope angle and pile roughness on the lateral force and the corresponding potential sliding surface are analyzed. The result are compared with those obtained using other methods.

  7. THE SAND WEDGE AND MIRABILITE OF THE LAST ICE AGE AND THEIR PALEOCLIMATIC SIGNIFICANCE IN HEXI CORRIDOR

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The sand wedges in Hexi Corridor occur in the alluvial gravel stratum of bajada and high terraces. The 14C ages of eolian sand in sand wedges prove that they formed during the Last Ice Age, with the mean annual air temperature about 5.6℃. The common 14C and AMS 14C dating ages of terrestrial branch relicts in Huahai clay-mirabilite interlayer are ( 11 600 ±280) a B. P. and (1118 ±54) a B.P. respectively, proving that the mirabilite formed at the cold episode of the Last Glacial Maximum(LGM) and Younger Dryers(YD) in Huahai Lake. It is pointed out that the mean annual air temperature in Hexi Corridor during LGM was about - 3℃ - - 7℃ ,11℃ - 15℃ lower than that of present, and that during YD was about 0℃ - 2℃,6℃ - 8℃ lower than at present. This decreasing temperature values are generally coincident with those inferred by pollen, sand wedge and ice core in the northern China, and also with the research on temperature-falling amplitude of middle and high latitude on the Northern Hemisphere recently.

  8. Pengaruh Variasi Temperatur Austenisasi pada Proses Heat Treatment Quenching Terhadap Sifat Mekanik dan Struktur Mikro Friction Wedge AISI 1340

    Directory of Open Access Journals (Sweden)

    Fahmi Aziz Husain

    2013-09-01

    Full Text Available Permasalahan yang sering timbul dalam pembuatan friction wedge AISI 1340 adalah adanya Crack yang terjadi setelah proses quenching dalam pembuatan friction wedge. Kemungkinan penyebab kegagalan yang terjadi yakni kurang tepatnya perlakuan panas yang dilakukan.Oleh karena itu perlu adanya suatu penelitian untuk mencari perlakuan panas yang tepat. . Metodologi yang digunakan adalah heat treatment quenching dengan variasi temperatur austenisasi 830°C, 850°C, 870°C dan 920°C dengan waktu penahanan 20 menit, kemudian didinginkan cepat dengan media pendingin oli. Hasil dari penelitian ini adalah semua spesimen hasil treatment memenuhi standar kekerasan friction wedge. Nilai kekerasan naik seiring naiknya temperatur austenisasi. Hasil paling baik didapat dari spesimen heat treatment quenching di media pendingin oli pada temperatur austenisasi 830oC dengan nilai kekerasan 458 BHN, tidak ada Crack yang terjadi dan memiliki nilai elongasi yang paling rendah yaitu 0,43%, sehingga bisa tahan pada temperatur kerja daripada spesimen yang lain. Struktur mikro yang dihasilkan berupa martensit dan austenit sisa. Dari pengujian XRD didapatkan fasa Fe1.91 C0.09 (Martensit BCT dan Fe15.1 C (Austenit FCC.

  9. On the dual equivalence of the self-dual and topologically massive $B\\wedge F$ models coupled to dynamical fermionic matter

    CERN Document Server

    Menezes, R; Ribeiro, R F; Wotzasek, C

    2002-01-01

    We study the equivalence between the $B\\wedge F$ self-dual ($SD_{B\\wedge F}$) and the $B\\wedge F$ topologically massive ($TM_{B\\wedge F}$) models including the coupling to dynamical, U(1) charged fermionic matter. This is done through an iterative procedure of gauge embedding that produces the dual mapping. In the interactive cases, the minimal coupling adopted for both vector and tensor fields in the self-dual representation is transformed into a non minimal magnetic like coupling in the topologically massive representation but with the currents swapped. It is known that to establish this equivalence a current-current interaction term is needed to render the matter sector unchanged. We show that both terms arise naturally from the embedding procedure.

  10. Reduced emissions of greenhouse gases 2050: Technological wedges - Input to the Commission on Low Emissions; Reduserte klimagassutslipp 2050: Teknologiske kiler - Innspill til Lavutslippsutvalget

    Energy Technology Data Exchange (ETDEWEB)

    Rosenberg, Eva; Espegren, Kari Aamodt; Finden, Per; Hageman, Rolf; Stenersen, Dag

    2006-09-15

    The Commission on Low Emissions was established in March 2005 and has been charged with the task of describing how Norway can achieve a 50-80 percent reduction in emissions of greenhouse gases by 2050. The commission describes the desired total reduction in emissions to be a set of actions or 'wedges', meaning that the reduction in emissions are linked to an array of technological and behavioural changes. The technological wedges are described here, while the behavioural wedges are treated in a different report. The potentials described are based on the Low Emission's reference line. Possible changes in the reference line will result in changed potentials. The technological wedges studied comprise to a great extent a potential of 50-80 percent reduction in greenhouse gases by 2050. This depends on considerable effort from research and development, and a determination to change external conditions.

  11. Tax wedge on labour income in Croatia and the European Union : Preface to the special issue of Financial Theory and Practice

    Directory of Open Access Journals (Sweden)

    Ivica Urban

    2016-06-01

    Full Text Available This article is a preface to a special issue of Financial Theory and Practice, which is devoted to the comparison of tax wedge on labour income in Croatia and other EU countries. The articles in this issue have arisen from the students’ research project, undertaken in 2015. This Preface outlines the motivation behind the research project, explains the most important methodological issues, and reviews the literature on the measurement of tax wedge in Croatia.

  12. Brucite as an important phase of the shallow mantle wedge: Evidence from the Shiraga unit of the Sanbagawa subduction zone, SW Japan

    Science.gov (United States)

    Kawahara, Hirokazu; Endo, Shunsuke; Wallis, Simon R.; Nagaya, Takayoshi; Mori, Hiroshi; Asahara, Yoshihiro

    2016-06-01

    Large parts of the shallow mantle wedge are thought to be hydrated due to release of fluids from the subducting slab and serpentinization of the overlying mantle rocks. If serpentinization proceeds under low SiO2 activity, brucite can be a major phase in the low-temperature (< 450 °C) part of the serpentinized mantle wedge, but only very few natural examples have been documented. A combined petrological, geochemical, and geological study shows that brucite is widely distributed in the wedge mantle-derived Shiraga metaserpentinite body in the Sanbagawa metamorphic belt of SW Japan. Thermodynamic modeling combined with bulk rock composition and point counting indicates that the original fully hydrated shallow parts of the Sanbagawa mantle wedge contained ~ 10-15 vol.% brucite before the onset of exhumation of the Shiraga body and before peak metamorphic conditions. A distinct zone of brucite-free essentially monomineralic antigorite serpentinite occurs limited to a 100-m-thick marginal zone of the body. This indicates a limited degree of Si-metasomatism by slab-derived fluids in the shallow mantle wedge. The presence of brucite may strongly affect the H2O budget and mechanical properties of serpentinite; these should be taken into consideration when examining the behavior of the shallow mantle wedge.

  13. Glaucoma, Open-Angle

    Science.gov (United States)

    ... Programs Home > Statistics and Data > Glaucoma, Open-angle Glaucoma, Open-angle Open-angle Glaucoma Defined In open-angle glaucoma, the fluid passes ... 2010 2010 U.S. Age-Specific Prevalence Rates for Glaucoma by Age and Race/Ethnicity The prevalence of ...

  14. JISC Open Access Briefing Paper

    OpenAIRE

    Swan, Alma

    2005-01-01

    What Open Access is. What Open Access is not. How is Open Access provided? Open Access archives or repositories. Open Access journals. Why should authors provide Open Access to their work? Further information and resources

  15. OpenGL Insights

    CERN Document Server

    Cozzi, Patrick

    2012-01-01

    Get Real-World Insight from Experienced Professionals in the OpenGL Community With OpenGL, OpenGL ES, and WebGL, real-time rendering is becoming available everywhere, from AAA games to mobile phones to web pages. Assembling contributions from experienced developers, vendors, researchers, and educators, OpenGL Insights presents real-world techniques for intermediate and advanced OpenGL, OpenGL ES, and WebGL developers. Go Beyond the Basics The book thoroughly covers a range of topics, including OpenGL 4.2 and recent extensions. It explains how to optimize for mobile devices, explores the design

  16. Experimental Investigation on Cross Flow of Wedge-shaped Gap in the core of Prismatic VHTR

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong Hun; Park, Goon Cherl; Cho, Hyoung Kyu [Seoul National University, Seoul (Korea, Republic of); Yoon, Su Jong [Idaho National Laboratory, Idaho Falls (United States)

    2014-10-15

    The core of the PMR type reactor consists of assemblies of hexagonal graphite blocks. The graphite blocks have lots of advantages for neutron economy and high temperature structural integrity. The height and flat-to-flat width of fuel bock are 793 mm and 360 mm, respectively. Each block has 108 coolant channels of which the diameter is 16 mm. And there are gaps between blocks not only vertically but also horizontally for reloading of the fuel elements. The vertical gap induces the bypass flow and through the horizontal gap the cross flow is formed. Since the complicated flow distribution occurs by the bypass flow and cross flow, flow characteristics in the core of the PMR reactor cannot be treated as a simple pipe flow. The fuel zone of the PMR core consists of multiple layers of fuel blocks. The shape change of the fuel blocks could be caused by the thermal expansion and fast-neutron induced shrinkage. It could make different axial shrinkage of fuel block and this leads to wedge-shaped gaps between two stacked fuel blocks. The cross flow is often considered as a leakage flow through the horizontal gap between stacked fuel blocks and it complicates the flow distribution in the reactor core by connecting the coolant channel and the bypass gap. Moreover, the cross flow could lead to uneven coolant distribution and consequently cause superheating of individual fuel element zones with increased fission product release. Since the core cross flow has a negative impact on safety and efficiency of VHTR, core cross flow phenomena have to be investigated to improve the core thermal margin of VHTR. To develop the cross flow loss coefficient model for determination of the flow distribution for PMR core analysis codes, study on cross flow for PMR200 core is essential. In particular, to predict the amount of flow through the cross flow gap, obtaining accurate flow loss coefficient is important. In this study, the full-scale cross flow experimental facility was constructed to

  17. Computational analysis of responses of a wedge-shaped-tip optical fiber probe in bubble measurement.

    Science.gov (United States)

    Sakamoto, A; Saito, T

    2012-07-01

    Optical-fiber probing is widely employed in bubble/droplet measurement in gas-liquid two-phase flows. Several types of optical fiber probes with a very high S/N ratio and high performance have been developed, but further improvement in the probes' measurement accuracy and reliability for industrial applications is desired. We tried to eliminate optical noise in the probe measurements, and we found that the signals include some peak signs that have potential for advanced measurement with optical-fiber probing. We developed a ray-tracing numerical simulator and identified the mechanisms underlying the generation of the signals. In order to numerically simulate the optical probing signals, the simulator must use 3D frameworks composed of incident beams, the reflection and refraction on the surfaces of the optical elements (i.e., an optical fiber, a sensing tip, an air phase, and a water phase), and beams returning from the sensing tip to the other tip through the fiber. We used all of these in a simple rendering framework based on a ray-tracing algorithm with Fresnel's law, and we observed the mechanism of some promising signals that may be useful for extracting the hidden potential of optical-fiber probing. To verify the simulator's performance, we carried out three comparative experiments with fundamental setups using a wedge-shaped single-tip optical fiber probe, examining: (1) the beam trajectories and energy leaking out from the sensing tip into the surrounding air phase or water phase, (2) the probing signals throughout penetration of the sensing tip at the air-water free interface in light of the three-dimensional deformation, and (3) the probing signals throughout penetration of the sensing tip into a bubble in light of the three-dimensional bubble shape. As a result, (a) we found that an optical fiber probe with a wedge-shaped tip has particular characteristics of beam emissions from the tip, and the emitting angles switched depending on the phases covering

  18. Foot alignments influence the effect of knee adduction moment with lateral wedge insoles during gait.

    Science.gov (United States)

    Sawada, Tomonori; Tokuda, Kazuki; Tanimoto, Kenji; Iwamoto, Yoshitaka; Ogata, Yuta; Anan, Masaya; Takahashi, Makoto; Kito, Nobuhiro; Shinkoda, Koichi

    2016-09-01

    Lateral wedge insoles (LWIs) reduce the peak external knee adduction moment (KAM). However, the efficacy of LWIs is limited in certain individuals for whom they fail to decrease KAM. Possible explanations for a lack of desired LWI response are variations in foot alignments. The purpose of this study was to evaluate whether the immediate biomechanical effects of LWIs depend on individual foot alignments during gait. Fifteen healthy adults participated in this study. Their feet were categorized as normal, pronated, and supinated using the foot posture index. All subjects were subsequently requested to perform a normal gait under barefoot and LWI conditions. A three-dimensional motion analysis system was used to record the kinematic and kinetic data, included peak KAM, KAM impulse (KAAI), center of pressure displacement, and knee-ground reaction force lever arm (KLA). Furthermore, lower limb frontal plane kinematic parameters at the rear foot, ankle, knee, and hip were evaluated. Among all feet, there was no significant difference in the peak KAM and KAAI between the conditions. In contrast, the peak KAM was significantly reduced under the LWI condition relative to the barefoot condition in the normal foot group. Reductions in the peak KAM were correlated with a more lateral center of pressure and reduced KLA. In addition, a reduced KLA was correlated with decreased hip adduction. LWIs significantly reduced the peak KAM in normal feet, indicating that biomechanical effects of LWIs vary between individual foot alignments. Our findings suggest that it is helpful to assess individual foot alignment to ensure adequate insole treatment for patients with knee osteoarthritis.

  19. Structural and metamorphic evolution of serpentinites and rodingites recycled in the Alpine subduction wedge

    Science.gov (United States)

    Zanoni, D.; Rebay, G.; Spalla, M. I.

    2015-12-01

    Hydration-dehydration of mantle rocks affects the viscosity of the mantle wedge and plays a prominent role in subduction zone tectonics, facilitating marble cake-type instead of large-slice dynamics. An accurate structural and petrologic investigation of serpentinites from orogenic belts, supported by their long-lived structural memory, can help to recognize pressure-sensitive mineral assemblages for deciphering their P-prograde and -retrograde tectonic trajectories. The European Alps preserve large volumes of the hydrated upper part of the oceanic lithosphere that represents the main water carrier into the Alpine subduction zone. Therefore, it is important to understand what happens during subduction when these rocks reach P-T conditions proximal to those that trigger the break-down of serpentine, formed during oceanic metamorphism, to produce olivine and clinopyroxene. Rodingites associated with serpentinites are usually derived from metasomatic ocean floor processes but rodingitization can also happen in subduction environments. Multiscale structural and petrologic analyses of serpentinites and enclosed rodingites have been combined to define the HP mineral assemblages in the Zermatt-Saas ophiolites. They record 3 syn-metamorphic stages of ductile deformation during the Alpine cycle, following the ocean floor history that is testified by structural and metamorphic relics in both rock types. D1 and D2 developed under HP to UHP conditions and D3 under lower P conditions. Syn-D2 assemblages in serpentinites and rodingites indicate conditions of 2.5 ± 0.3 GPa and 600 ± 20°C. This interdisciplinary approach shows that the dominant structural and metamorphic imprint of the Zermatt-Saas eclogitized serpentinites and rodingites developed during the Alpine subduction and that subduction-related serpentinite de-hydration occurred exclusively at Pmax conditions, during D2 deformation. In contrast, in the favourable rodingite bulk composition (Ca-rich), hydrated minerals

  20. Open Government and (Linked (Open (Government (Data

    Directory of Open Access Journals (Sweden)

    Christian Philipp Geiger

    2012-12-01

    Full Text Available This article explores the opening and the free usage of stored public sector data, supplied by state. In the age of Open Government and Open Data it’s not enough just to put data online. It should be rather weighed out whether, how and which supplied public sector data can be published. Open Data are defined as stored data which could be made accessible in a public interest without any restrictions for usage and distribution. These Open Data can possibly be statistics, geo data, maps, plans, environmental data and weather data in addition to materials of the parliaments, ministries and authorities. The preparation and the free access to existing data permit varied approaches to the reuse of data, discussed in the article. In addition, impulses can be given for Open Government – the opening of state and administration, to more transparency, participation and collaboration as well as to innovation and business development. The Open Data movement tries to get to the bottom of current publication processes in the public sector which could be formed even more friendly to citizens and enterprises.

  1. Abrupt change in magma generation processes across the Central American arc in southeastern Guatemala: flux-dominated melting near the base of the wedge to decompression melting near the top of the wedge

    Science.gov (United States)

    Walker, J. A.; Carr, M. J.; Patino, L. C.; Johnson, C. M.; Feigenson, M. D.; Ward, R. L.

    1995-07-01

    Lavas erupted behind the volcanic front in southeastern Guatemala have many important distinctions from lavas erupted on the volcanic front. These include: generally higher MgO, Nb, Sr, TiO2, and rare earth element concentrations; higher La/Yb and Nb/Y ratios; and lower Ba/La, La/Nb, Ba/Zr and Zr/Nb ratios. These major and trace element distinctions are caused by reduced fractionation during ascent and storage in the crust, lower degrees of melting in the source, and greatly reduced contributions from the subducted Cocos plate in the source. In addition, because all of these important distinctions are even borne in lavas erupted within 20 km of the front, there is little apparent petrogenetic continuity between front and behind-the-front magmas. What little geochemical continuity exists is in radiogenic isotopes: 143Nd/144Nd falls across the arc, Pb isotopic ratios (except 206Pb/204Pb) rise across the arc, and 87Sr/86Sr rise across the arc after an initial discontinuity within 20 km of the front. These continuous across-arc changes in radiogenic isotopes are caused by increased contamination with older, more isotopically disparate rocks, away from the front. Once the effects of crustal contamination are removed, the remaining isotopic variability behind the front is non-systematic and reflects the inherent isotopic heterogeneity of the source, the mantle wedge. Geochemical disconnection in southeastern Guatemala suggests that behind-the-front magmas are produced by decompression melting near the top of the wedge, not by flux-dominated melting near the base of the wedge.

  2. Intraplate volcanism and mantle dynamics in East Asia: Big mantle wedge (BMW) model (Invited)

    Science.gov (United States)

    Zhao, D.

    2009-12-01

    In the East Asia continent there are many Cenozoic volcanoes, but only a few are still active now, such as the Changbai, Wudalianchi, and Tengchong volcanoes which have erupted several times in the past 1000 years. Although many studies have been made by using various approaches, the origin of the intraplate volcanoes in East Asia is still not very clear. Recently we used regional and global seismic tomography to determine high-resolution 3-D mantle structure under Western Pacific to East Asia (Zhao, 2004; Huang and Zhao, 2006; Zhao et al., 2009). Our results show prominent low-velocity anomalies from the surface down to 410 km depth beneath the intraplate volcanoes and a broad high-velocity anomaly in the mantle transition zone under East Asia. Focal-mechanism solutions of deep earthquakes indicate that the subducting Pacific slab under the Japan Sea and the East Asia margin is subject to compressive stress regime. These results suggest that the Pacific slab meets strong resistance at the 660-km discontinuity and so it becomes stagnant in the mantle transition zone under East Asia. The Philippine Sea slab has also subducted down to the mantle transition zone under western Japan and the Ryukyu back-arc region. The western edge of the stagnant slab is generally parallel with the Japan trench and the Ryukyu trench and roughly coincides with a prominent surface topography and gravity boundary in East China, which is located approximately 1800 km west of the trenches. The upper mantle under East Asia has formed a big mantle wedge (BMW) above the stagnant slab. The BMW exhibits low seismic-velocity and high electrical-conductivity, which is hot and wet because of the deep dehydration reactions of the stagnant slab and the convective circulation process in the BMW. These processes lead to the upwelling of hot and wet asthenospheric materials and thinning and fracturing of the continental lithosphere, leading to the formation of the active intraplate volcanoes in East

  3. Thrust fault segmentation and downward fault propagation in accretionary wedges: New Insights from 3D seismic reflection data

    Science.gov (United States)

    Orme, Haydn; Bell, Rebecca; Jackson, Christopher

    2016-04-01

    The shallow parts of subduction megathrust faults are typically thought to be aseismic and incapable of propagating seismic rupture. The 2011 Tohoku-Oki earthquake, however, ruptured all the way to the trench, proving that in some locations rupture can propagate through the accretionary wedge. An improved understanding of the structural character and physical properties of accretionary wedges is therefore crucial to begin to assess why such anomalously shallow seismic rupture occurs. Despite its importance, we know surprisingly little regarding the 3D geometry and kinematics of thrust network development in accretionary prisms, largely due to a lack of 3D seismic reflection data providing high-resolution, 3D images of entire networks. Thus our current understanding is largely underpinned by observations from analogue and numerical modelling, with limited observational data from natural examples. In this contribution we use PSDM, 3D seismic reflection data from the Nankai margin (3D Muroto dataset, available from the UTIG Academic Seismic Portal, Marine Geoscience Data System) to examine how imbricate thrust fault networks evolve during accretionary wedge growth. We unravel the evolution of faults within the protothrust and imbricate thrust zones by interpreting multiple horizons across faults and measuring fault displacement and fold amplitude along-strike; by doing this, we are able to investigate the three dimensional accrual of strain. We document a number of local displacement minima along-strike of faults, suggesting that, the protothrust and imbricate thrusts developed from the linkage of smaller, previously isolated fault segments. Although we often assume imbricate faults are likely to have propagated upwards from the décollement we show strong evidence for fault nucleation at shallow depths and downward propagation to intersect the décollement. The complex fault interactions documented here have implications for hydraulic compartmentalisation and pore

  4. The impact of slab dip variations, gaps and rollback on mantle wedge flow: insights from fluids experiments

    Science.gov (United States)

    MacDougall, Julia G.; Kincaid, Chris; Szwaja, Sara; Fischer, Karen M.

    2014-05-01

    Observed seismic anisotropy and geochemical anomalies indicate the presence of 3-D flow around and above subducting slabs. To investigate how slab geometry and velocity affect mantle flow, we conducted a set of experiments using a subduction apparatus in a fluid-filled tank. Our models comprise two independently adjustable, continuous belts to represent discrete sections of subducting slabs that kinematically drive flow in the surrounding glucose syrup that represents the upper mantle. We analyse how slab dip (ranging from 30° to 80°), slab dip difference between slab segments (ranging from 20° to 50°), rates of subduction (4-8 cm yr-1) and slab/trench rollback (0-3 cm yr-1) affect mantle flow. Whiskers were used to approximate mineral alignment induced by the flow, as well as to predict directions of seismic anisotropy. We find that dip variations between slab segments generate 3-D flow in the mantle wedge, where the path lines of trenchward moving mantle material above the slab are deflected towards the slab segment with the shallower dip. The degree of path line deflection increases as the difference in slab dip between the segments increases, and, for a fixed dip difference, as slab dip decreases. In cases of slab rollback and large slab dip differences, we observe intrusion of subslab material through the gap and into the wedge. Flow through the gap remains largely horizontal before eventual downward entrainment. Whisker alignment in the wedge flow is largely trench-normal, except near the lateral edges of the slab where toroidal flow dominates. In addition, whisker azimuths located above the slab gap deviate most strongly from trench-normal orientations when slab rollback does not occur. Such flow field complexities are likely sufficient to affect deep melt production and shallow melt delivery. However, none of the experiments produced flow fields that explain the trench-parallel shear wave splitting fast directions observed over broad arc and backarc

  5. 楔状缺损临床研究进展%Clinical research progress of wedge shaped defects

    Institute of Scientific and Technical Information of China (English)

    韦界飞

    2012-01-01

    Wedge shaped defects is common non-caries dental disease, which caused by chronic consumption of hard tissue close to lips, huccal and neck. The defects formed by the intersection of two planes, with neatly edge, hard and smooth surface; the defects general had the same color of dental hard tissue, but sometimes could also be with other different colors; the defects were commonly found in the premolars, especially in the first premolar; wedge-shaped defect increase with age growth. In recent years, there were more and more studies focusing on the etiology and clinical progress. Here, we summarized the risk factors, prevalence and clinical treatment for wedge shaped defects.%楔状缺损是非龋性疾病中的常见病,是牙齿唇、颊面牙颈部硬组织发生慢性消耗所致的缺损.其缺损由两个平面相交而成,边缘整齐,表面坚硬光滑,一般均为牙体硬组织本色,有时可有不同程度的着色,好发生于前磨牙,尤其是第一前磨牙,随着年龄增长,楔状缺损有增加的趋势,年龄愈大,楔状缺损愈严重.近年来国内外学者对于楔状缺损的病因学研究更加深入、临床治疗进展的报道也越来越多,本文对楔状缺损的病因、流行情况及治疗进展进行综述.

  6. Possibility of titanium transportation within a mantle wedge: formation process of titanoclinohumite in Fujiwara dunite in Sanbagawa belt, Japan

    Directory of Open Access Journals (Sweden)

    S. Ishimaru

    2012-01-01

    Full Text Available Titinoclinohumite-bearing dunites from Fujiwara, the Sanbagawa metamorphic belt of high-pressure type, Japan, were described to examine the possibility of Ti mobility during metasomatism within the mantle wedge. The Fujiwara dunite body and surrounding high-pressure Sanbagawa schists possibly form a subduction complex, and the dunites are a good analogue to the mantle wedge overlying the slab. The Fujiwara dunites are of deserpentinization origin; the deserpentinized olivine is high in Fo (up to 96 and low in NiO (0.2 to 0.3 wt %, and contains magnetite inclusions. Titanoclinohumites are associated with the deserpentinized olivine, as lamellar intergrowth or veinlets, up to 1 cm in width. Other metamorphic minerals include antigorite, brucite, chlorite, ilmenite, perovskite, Ti-rich ludwigite, and carbonates. The protolith of the Fujiwara dunite was partially serpentinized cumulative dunites from intra-plate magma, containing relatively low-Fo (85 to 86 olivines and TiO2-rich (up to 3 wt % chromian spinels. The metamorphic olivines and titanoclinohumites contain micro-inclusions of methane (CH4 with or without serpentine and brucite. The source of Ti for titanoclinohumite was possibly the Ti-rich chromian spinel, but Ti was mobile through hydrocarbon-rich fluids, which were activated during the metamorphism. The hydrocarbons, of which remnants are carbonates and methane micro-inclusions, were derived from carbonaceous materials or bitumen, possibly incorporated in the precursory serpentinized and brecciated peridotite (= the protolith for the Fujiwara dunites before subduction. Ti can be mobile in the mantle wedge if hydrocarbons are available from the subducted slab.

  7. Slab-derived halogens and noble gases illuminate closed system processes controlling volatile element transport into the mantle wedge

    Science.gov (United States)

    Kobayashi, Masahiro; Sumino, Hirochika; Nagao, Keisuke; Ishimaru, Satoko; Arai, Shoji; Yoshikawa, Masako; Kawamoto, Tatsuhiko; Kumagai, Yoshitaka; Kobayashi, Tetsuo; Burgess, Ray; Ballentine, Chris J.

    2017-01-01

    Halogen and noble gas systematics are powerful tracers of volatile recycling in subduction zones. We present halogen and noble gas compositions of mantle peridotites containing H2O-rich fluid inclusions collected at volcanic fronts from two contrasting subduction zones (the Avacha volcano of Kamchatka arc and the Pinatubo volcano of Luzon arcs) and orogenic peridotites from a peridotite massif (the Horoman massif, Hokkaido, Japan) which represents an exhumed portion of the mantle wedge. The aims are to determine how volatiles are carried into the mantle wedge and how the subducted fluids modify halogen and noble gas compositions in the mantle. The halogen and noble gas signatures in the H2O-rich fluids are similar to those of marine sedimentary pore fluids and forearc and seafloor serpentinites. This suggests that marine pore fluids in deep-sea sediments are carried by serpentine and supplied to the mantle wedge, preserving their original halogen and noble gas compositions. We suggest that the sedimentary pore fluid-derived water is incorporated into serpentine through hydration in a closed system along faults at the outer rise of the oceanic, preserving Cl/H2O and 36Ar/H2O values of sedimentary pore fluids. Dehydration-hydration process within the oceanic lithospheric mantle maintains the closed system until the final stage of serpentine dehydration. The sedimentary pore fluid-like halogen and noble gas signatures in fluids released at the final stage of serpentine dehydration are preserved due to highly channelized flow, whereas the original Cl/H2O and 36Ar/H2O ratios are fractionated by the higher incompatibility of halogens and noble gases in hydrous minerals.

  8. OpenCities Project

    Data.gov (United States)

    US Agency for International Development — The Open Cities Project aims to catalyze the creation, management and use of open data to produce innovative solutions for urban planning and resilience challenges...

  9. Open Payments Data

    Data.gov (United States)

    U.S. Department of Health & Human Services — Open Payments (otherwise known as the Sunshine Act) - Open Payments is a Congressionally-mandated transparency program that increases awareness of financial...

  10. Open Hardware Business Models

    Directory of Open Access Journals (Sweden)

    Edy Ferreira

    2008-04-01

    Full Text Available In the September issue of the Open Source Business Resource, Patrick McNamara, president of the Open Hardware Foundation, gave a comprehensive introduction to the concept of open hardware, including some insights about the potential benefits for both companies and users. In this article, we present the topic from a different perspective, providing a classification of market offers from companies that are making money with open hardware.

  11. Erosional Reduction of an Orogenic Wedge: Structural Response to Neogene Climate Change within the St. Elias Orogen, Alaska

    Science.gov (United States)

    Berger, A. L.; Spotila, J. A.; Chapman, J. B.; Pavlis, T. L.; Enkelmann, E.; Buscher, J. T.

    2007-12-01

    The kinematics and architecture of orogenic systems may be heavily influenced by climate, but little research has focused on the long term effects of glacial erosion on orogenesis. Apatite and zircon (U-Th)/He thermochronometry on >75 bedrock samples across the St. Elias orogen, one of the best examples of a glaciated orogenic wedge, is the basis for a new kinematic model and demonstrates an association between glacial denudation and orogenic architecture. The spatial pattern of low temperature cooling indicates that exhumation and deformation are focused within a thin-skinned fold and thrust belt on the windward flank, whereas the leeward flank of the orogen functions as a deformational backstop. A previously unrecognized structure beneath the Bagley ice field must separate these domains with south-side-up motion. We propose this structure is a backthrust making the orogen doubly-vergent. Suggestive of accelerated backthrust motion in response to climate change, cooling rates within the hanging wall block and across the entire windward flank of the orogen accelerated ten-fold coeval with enhanced glaciation. As backthrust motion increased, glacial unroofing also coincided with a regional shift in deformation away from prominent forethrusts including the North American-Yakutat terrane suture (Chugach St. Elias fault) and the seaward deformation front (Pamplona zone). Across the windward flank of the orogen, exhumation, at rates of up to 5 mm/yr, is focused within a narrow zone, where the glacial equilibrium line altitude (ELA) intersects the orogenic wedge. This zone of rapid exhumation, not present prior to the onset of enhanced glaciation, cuts across the structural trend of the orogen and is more narrowly focused than orographic precipitation. Accelerated denudation at the ELA thus appears to have redistributed strain along a series of forethrusts that lie at the zone of heaviest glacial flux, while the backthrust progressively truncates the southward

  12. Stem thrust prediction model for Westinghouse wedge gate valves with linkage type stem-to-disk connection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, J.K.; Sharma, V.; Kalsi, M.S. [Kalsi Engineering, Inc., Sugar Land, TX (United States)] [and others

    1996-12-01

    The Electric Power Research Institute (EPRI) conducted a comprehensive research program with the objective of providing nuclear utilities with analytical methods to predict motor operated valve (MOV) performance under design basis conditions. This paper describes the stem thrust calculation model developed for evaluating the performance of one such valve, the Westinghouse flexible wedge gate valve. These procedures account for the unique functional characteristics of this valve design. In addition, model results are compared to available flow loop and in situ test data as a basis for evaluating the performance of the valve model.

  13. Evidence of Arc Magma Genesis in a Paleo-Mantle Wedge, the Higashi-Akaishi Peridotite, Japan

    Science.gov (United States)

    Till, C. B.; Guild, M. R.; Grove, T. L.; Carlson, R. W.

    2014-12-01

    Located in the Sanbagawa subduction-related high-pressure metamorphic belt in SW Japan on the island of Shikoku, the Higashi-akaishi peridotite body is composed of dunite, lherzolite and garnet clinopyroxenite, interfingered in one locality with quartz-rich eclogite. Previous work indicates the P-T history of the peridotite includes rapid prograde metamorphism with peak temperatures of 700-810°C and pressures of 2.9-3.8 GPa [1] at ~88-89 Ma followed by rapid exhumation at >2.5 cm/yr [2,3]. Major and trace element and isotopic data from samples within the Higashi-akaishi peridotite presented here and in another recent study [4] provide a record of subduction zone melting processes in a paleo-mantle wedge. Ultramafic samples range from 40-52 wt.% SiO2, 1-11 wt.% Al2O3 and 21-45 wt.% MgO with olivine and clinopyroxene Mg#'s as high as 0.93. The quartz-rich eclogite contains 62 wt.% SiO2, 6 wt.% MgO and 13 wt.% Al2O3 with trace element concentrations that are enriched relative to the ultramafic samples. 87Sr/86Sr (.703237-.704288), 143Nd/144Nd (ɛNd=+2 to +6) and Pb isotopic compositions are within the range of previously studied Japanese arc rocks. We interpret the pyroxenites as shallowly crystallized cumulates with varying amounts of trapped hydrous melt and the harzburgites as residues of melting. The peak P-T conditions of these rocks are similar to the solidus conditions of H2O-saturated fertile mantle near the base of the mantle wedge [5,6]. The presence of garnet porphyroblasts that enclose primary euhedral chlorite together with the chemical evidence, suggest these samples are associated with mantle melting in the presence of H2O. Major element modeling suggests the quartz-rich eclogite composition can be reproduced through mixing melts of subducted sediment with wet peridotite melts in the mantle wedge. Thus the Higashi-aikashi rock suite provides an in-situ record of the beginnings of hydrous melting and the mechanisms of metasomatism in the mantle wedge

  14. Using meteoric 10Be to constrain the age and structure of the frontal wedge at the Japan Trench

    Science.gov (United States)

    Regalla, C.; Bierman, P. R.; Rood, D.; Motoyama, I.; Fisher, D. M.

    2013-12-01

    We present new meteoric 10Be concentration data from marine sediments recovered during International Ocean Drilling Program (IODP) Exp. 343 that help constrain the age and internal structure of the frontal prism at the Japan trench in the vicinity of the 2011 Tohoku-oki M9 earthquake rupture. Exp. 343 recovered sediments from an ~200 m interval of the frontal wedge at site C0019. Core and log observations identify the plate boundary décollement at ~820 mbsf, which separates a deformed sedimentary wedge from relatively undeformed underthrust sediments. However, reconstructions of the structural evolution of the wedge are difficult because of similarity in lithology between sediments from the incoming and overriding plate, and the chaotic character of seismic reflectors in the frontal wedge. We utilize the radiogenic decay of 10Be (t1/2 =1.36 Ma) in marine sediments to constrain variations in sediment age with depth in core C0019. Meteoric 10Be was isolated from marine sediments at the University of Vermont using total fusion and 10Be/9Be ratios were measured at the Scottish Universities Environmental Research Centre. Concentrations of meteoric 10Be in core C0019 range from 1.7x107 to 2.1x109 atm/g and are consistent with 10Be concentrations at nearby DSDP sites 436 and 434. We calculate 10Be sediment ages for analyzed samples assuming a range of initial 10Be concentrations from 1.6 to 2.1x109 atm/g. These concentrations are constrained by a 10Be sample co-located with a radiolarian micropaleontology sample at 780 mbsf that yields a Quaternary age, and from previously reported 10Be concentrations for Quaternary sediments in nearby DSDP cores. 10Be and radiolarian micropaleontology samples from similar depths yield consistent ages for late Miocene to Quaternary sediments (R2 = 0.89). Calculated 10Be ages range from 0-10 Ma, with ~50% of analyzed samples yielding ages 10Be concentrations (109 to 107 atm/g) occurs across the plate boundary décollement between cores 16

  15. Open Rotor Development

    Science.gov (United States)

    Van Zante, Dale E.; Rizzi, Stephen A.

    2016-01-01

    The ERA project executed a comprehensive test program for Open Rotor aerodynamic and acoustic performance. System studies used the data to estimate the fuel burn savings and acoustic margin for an aircraft system with open rotor propulsion. The acoustic measurements were used to produce an auralization that compares the legacy blades to the current generation of open rotor designs.

  16. OpenFlow cookbook

    CERN Document Server

    Smiler S, Kingston

    2015-01-01

    This book is intended for network protocol developers, SDN controller application developers, and academics who would like to understand and develop their own OpenFlow switch or OpenFlow controller in any programming language. With basic understanding of OpenFlow and its components, you will be able to follow the recipes in this book.

  17. Dimensions of Openness

    DEFF Research Database (Denmark)

    Dalsgaard, Christian; Thestrup, Klaus

    2015-01-01

    The objective of the paper is to present a pedagogical approach to openness. The paper develops a framework for understanding the pedagogical opportunities of openness in education. Based on the pragmatism of John Dewey and sociocultural learning theory, the paper defines openness in education...

  18. Open Source Business Solutions

    Directory of Open Access Journals (Sweden)

    Ion IVAN

    2008-01-01

    Full Text Available This analyses the Open source movement. Open source development process and management is seen different from the classical point of view. This focuses on characteristics and software market tendencies for the main Open source initiatives. It also points out the labor market future evolution for the software developers.

  19. Theoretical and experimental investigation of a new CFRP tendon wedge-anchor%新型CFRP筋夹片式锚具理论与试验研究

    Institute of Scientific and Technical Information of China (English)

    诸葛萍; 强士中

    2011-01-01

    A new theory for CFRP tendon wedge-anchor was presented and a new CFRP tendon wedge-anchor system was developed. The wedge-anchor system consists of a soft metal (aluminum alloy or copper) sleeve coated with sand, four steel wedges and a stee} barrel. In the theoretical analysis, the anchor components were divided into segments along the length, and the analytical modes of all components are established with the independence between the four wedges considered. The anchorage performance was evaluated through static test. Analytical and test results for the stress of the barrel were compared. The results show that the theory can evaluate the stress and transverse displacement and provide a reasonable prediction for the carrying capacity of the wedge-anchor system. The wedge-anchor can be applied to anchor high strength CFRP tendons, the average anchorage efficiency coefficient of the wedge-anchor system was as high as 94.9% in the test, and the wedge-anchor system is reliable.%提出CFRP筋夹片式锚具新的计算理论,并以此理论为依据设计一种新型CFRP筋夹片式锚具,它由锚杯、四片式夹片、涂砂铝套管或涂砂铜套管组成。在理论推导过程中,将夹片式锚具各组件在长度方向上分成多个等份,对其中各组件任意等份建立力学计算模型,并考虑各夹片间的独立性;通过静载试验对夹片式锚具的锚固性能进行测试,并分析比较锚杯拉应力的理论计算与试验实测结果。结果表明,该CFRP筋夹片式锚具计算理论能计算锚具各点的应力及横向位移,并能预测锚具极限承载力;此夹片式锚具适用于锚固高强CFRP筋,它的平均锚固效率系数达到94.9%,且性能稳定;锚杯拉应力的理论计算与试验实测结果较吻合。

  20. OpenSubspace

    DEFF Research Database (Denmark)

    Müller, Emmanuel; Assent, Ira; Günnemann, Stephan

    2009-01-01

    Subspace clustering and projected clustering are recent research areas for clustering in high dimensional spaces. As the field is rather young, there is a lack of comparative studies on the advantages and disadvantages of the different algorithms. Part of the underlying problem is the lack...... of available open source implementations that could be used by researchers to understand, compare, and extend subspace and projected clustering algorithms. In this paper, we discuss the requirements for open source evaluation software. We propose OpenSubspace, an open source framework that meets...... these requirements. OpenSubspace integrates state-of-the-art performance measures and visualization techniques to foster research in subspace and projected clustering....

  1. Implementing OpenShift

    CERN Document Server

    Miller, Adam

    2013-01-01

    A standard tutorial-based approach to using OpenShift and deploying custom or pre-built web applications to the OpenShift Online cloud.This book is for software developers and DevOps alike who are interested in learning how to use the OpenShift Platform-as-a-Service for developing and deploying applications, how the environment works on the back end, and how to deploy their very own open source Platform-as-a-Service based on the upstream OpenShift Origin project.

  2. Deploying OpenStack

    CERN Document Server

    Pepple, Ken

    2011-01-01

    OpenStack was created with the audacious goal of being the ubiquitous software choice for building public and private cloud infrastructures. In just over a year, it's become the most talked-about project in open source. This concise book introduces OpenStack's general design and primary software components in detail, and shows you how to start using it to build cloud infrastructures. If you're a developer, technologist, or system administrator familiar with cloud offerings such as Rackspace Cloud or Amazon Web Services, Deploying OpenStack shows you how to obtain and deploy OpenStack softwar

  3. Openness, Web 2.0 Technology, and Open Science

    Science.gov (United States)

    Peters, Michael A.

    2010-01-01

    Open science is a term that is being used in the literature to designate a form of science based on open source models or that utilizes principles of open access, open archiving and open publishing to promote scientific communication. Open science increasingly also refers to open governance and more democratized engagement and control of science…

  4. Open Access @ DTU

    DEFF Research Database (Denmark)

    Ekstrøm, Jeannette

    Open Access is high on the agenda in Denmark and internationally. Denmark has announced a national strategy for Open Access that aims to achieve Open Access to 80% in 2017 and 100% in 2022 to peer review research articles. All public Danish funders as well as H2020 requires that all peer review...... articles that is an outcome of their funding will be Open Access. Uploading your full texts (your final author manuscript after review ) to DTU Orbit is a fundamental part of providing Open Access to your research. We are here to answer all your questions with regards to Open Access and related topics...... such as copyright, DTU Orbit, Open Access journals, APCs, Vouchers etc....

  5. Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations.

    Science.gov (United States)

    Pot, Michiel W; Faraj, Kaeuis A; Adawy, Alaa; van Enckevort, Willem J P; van Moerkerk, Herman T B; Vlieg, Elias; Daamen, Willeke F; van Kuppevelt, Toin H

    2015-04-29

    Aligned unidirectional collagen scaffolds may aid regeneration of those tissues where alignment of cells and extracellular matrix is essential, as for instance in cartilage, nerve bundles, and skeletal muscle. Pores can be introduced by ice crystal formation followed by freeze-drying, the pore architecture reflecting the ice crystal morphology. In this study we developed a wedge-based system allowing the production of a wide range of collagen scaffolds with unidirectional pores by directional freezing. Insoluble type I collagen suspensions were frozen using a custom-made wedge system, facilitating the formation of a horizontal as well as a vertical temperature gradient and providing a controlled solidification area for ice dendrites. The system permitted the growth of aligned unidirectional ice crystals over a large distance (>2.5 cm), an insulator prolonging the freezing process and facilitating the construction of crack-free scaffolds. Unidirectional collagen scaffolds with tunable pore sizes and pore morphologies were constructed by varying freezing rates and suspension media. The versatility of the system was indicated by the construction of unidirectional scaffolds from albumin, poly(vinyl alcohol) (a synthetic polymer), and collagen-polymer blends producing hybrid scaffolds. Macroscopic observations, temperature measurements, and scanning electron microscopy indicated that directed horizontal ice dendrite formation, vertical ice crystal nucleation, and evolutionary selection were the basis of the aligned unidirectional ice crystal growth and, hence, the aligned unidirectional pore structure. In conclusion, a simple, highly adjustable freezing system has been developed allowing the construction of large (hybrid) bioscaffolds with tunable unidirectional pore architecture.

  6. Deterministic Spin-Orbit Torque Switching of a Perpendicularly Polarized Magnet Using Wedge Shape of the Magnet

    Science.gov (United States)

    Bhowmik, Debanjan; Salahuddin, Sayeef

    2016-10-01

    Spin-orbit torque provides an efficient way to switch magnets for low power memory applications by reducing the current density needed to switch the magnetization. Perpendicularly polarized magnets are preferred for high density data storage applications because of their high thermal stability in scaled dimensions. However, spin-orbit torque cannot switch a perpendicularly polarized magnet deterministically from up to down and down to up in the absence of an external magnetic field because spin-orbit torque alone cannot break the symmetry of the system. This poses a severe challenge to the applicability of spin-orbit torque for memory devices. In this paper, we show through micromagnetic simulations that when spin-orbit torque is applied on a magnet with a wedge shape, the moments of the magnet are aligned in-plane. On removal of the spin-orbit torque the moments deterministically evolve to vertically upward or downward direction because the anisotropy axis of the magnet is tilted away from the vertical direction owing to the wedge shape of the magnet. Thus, spin-orbit torque driven deterministic switching of the magnet in the absence of an external magnetic field is possible.

  7. Sedimentological characteristics of ice-wedge polygon terrain in Adventdalen (Svalbard) - environmental and climatic implications for the late Holocene

    Science.gov (United States)

    Oliva, M.; Vieira, G.; Pina, P.; Pereira, P.; Neves, M.; Freitas, M. C.

    2014-09-01

    Ice wedges are widespread periglacial features in the landscape of Adventdalen, Svalbard. The networks of ice wedges have created areas with well-developed polygonal terrains in the lowest fluvial terraces in this valley. We have examined the sedimentological characteristics of the northern and southern banks of the Advent river for palaeoenvironmental purposes. The base of two sedimentary sections reported radiocarbon dates of 3.3 and 3.9 ka BP, respectively. The northern site is constituted by three very different lithostratigraphical units, which suggests that their formation should be related to different environmental and climate conditions. By contrast, the southern section shows a rather homogeneous composition, with no significant variations in grain size and organic matter content. In both cases the uppermost sediments are constituted by a thick aeolian deposit. According to our data, warmer climate conditions may have prevailed during the mid Holocene until 3.3 ka BP with widespread peat formation in the valley bottom. Subsequently, a period with alternating soil formation and aeolian sedimentation took place from 3 to 2.5 ka BP, probably due to increasing climatic severity. During the last millennium a long-term cooling trend has favoured aeolian deposition in the lowest part of Adventdalen.

  8. Sedimentological characteristics of ice-wedge polygon terrain in Adventdalen (Svalbard. Environmental and climatic implications for the Late Holocene

    Directory of Open Access Journals (Sweden)

    M. Oliva

    2014-05-01

    Full Text Available Ice-wedges are widespread periglacial features in the landscape of Adventalen, Svalbard. The networks of ice-wedges have created areas with well-developed polygonal terrains in the lowest fluvial terraces in this valley. We have examined the sedimentological characteristics of the northern and southern banks of the Advent river for palaeoenvironmental purposes. The base of two sedimentary sections reported radiocarbon dates of 3.3 and 3.9 ka cal BP, respectively. The northern site is constituted by three very different lithostratigraphical units, which suggests that their formation should be related to different environmental and climate conditions. By contrast, the southern section shows a rather homogeneous composition, with no significant variations in grain size and organic matter content. In both cases the uppermost sediments are constituted by a thick aeolian deposit. According to our data, warmer climate conditions may have prevailed during the Mid Holocene until 3.3 ka cal BP with widespread peat formation in the valley bottom. Subsequently, a period with alternating soil formation and aeolian sedimentation took place from 3 to 2.5 ka cal BP, probably due to increasing climatic severity. During the last millennium a long-term cooling trend has favoured aeolian deposition in the lowest Adventalen valley.

  9. Sedimentological characteristics of ice-wedge polygon terrain in Adventdalen (Svalbard). Environmental and climatic implications for the Late Holocene

    Science.gov (United States)

    Oliva, M.; Vieira, G.; Pina, P.; Pereira, P.; Neves, M.; Freitas, M. C.

    2014-05-01

    Ice-wedges are widespread periglacial features in the landscape of Adventalen, Svalbard. The networks of ice-wedges have created areas with well-developed polygonal terrains in the lowest fluvial terraces in this valley. We have examined the sedimentological characteristics of the northern and southern banks of the Advent river for palaeoenvironmental purposes. The base of two sedimentary sections reported radiocarbon dates of 3.3 and 3.9 ka cal BP, respectively. The northern site is constituted by three very different lithostratigraphical units, which suggests that their formation should be related to different environmental and climate conditions. By contrast, the southern section shows a rather homogeneous composition, with no significant variations in grain size and organic matter content. In both cases the uppermost sediments are constituted by a thick aeolian deposit. According to our data, warmer climate conditions may have prevailed during the Mid Holocene until 3.3 ka cal BP with widespread peat formation in the valley bottom. Subsequently, a period with alternating soil formation and aeolian sedimentation took place from 3 to 2.5 ka cal BP, probably due to increasing climatic severity. During the last millennium a long-term cooling trend has favoured aeolian deposition in the lowest Adventalen valley.

  10. Investigation of Boundary Effects on the Natural Cavitating Flow around a 2D Wedge in Shallow Water

    Directory of Open Access Journals (Sweden)

    Xin Chen

    2011-01-01

    Full Text Available When a cavitated body moves in shallow water, both flexible free surface and rigid bottom wall will produce great influence on the cavity pattern and hydrodynamics to change the motion attitude and stability of the body. In this paper, a single-fluid multiphase flow method coupled with a natural cavitation model was employed to study the effects of two kinds of boundaries on the natural cavitating flow around a two-dimensional symmetry wedge in shallow water. Within the range of the cavitation number for computation (0.05 ~ 2.04, the cavity pattern would be divided into three types, namely, stable type, transition type and wake-vortex type. The shape of the free surface is fairly similar to that of the cavity's upper surface with well right-and-left symmetry. However, when the immersion depth and the cavitation number are decreasing, the symmetry of the cavity shape is destroyed due to the influence of bottom wall effects. When the cavitation number is less than about 0.1, with the immersion depth going down, free surface effects exerts a stronger influence on the drag coefficient of this 2D wedge, whereas wall effects bring a stronger influence on the lift coefficient.

  11. A prospective comparison of wedge matrix resection with nail matrix phenolization for the treatment of ingrown toenail.

    Science.gov (United States)

    Herold, N; Houshian, S; Riegels-Nielsen, P

    2001-01-01

    In a prospective study, 110 patients with ingrown toenails were operated on, 55 with wedge matrix resection (WMR) and 55 with nail matrix phenolization (NMP). The patients were randomized on the basis of their address. All patients were reviewed by questionnaire 4 weeks postoperatively to establish the degree of pain, time of pain relief, walking and working ability, and the presence of infection. Furthermore, they were examined clinically at a median follow-up time of 11 months postoperatively to evaluate recurrence rate, rate of spicula formation, and patient satisfaction with regard to cosmesis and symptom relief. The data were tested for statistical significance using the chi-square test and Mann-Whitney rank sum test. The recurrence rate of ingrown toenail for the WMR group was 5.5% (3 patients) with a spicula rate of 36% (20 patients) and a reoperation rate of 20% (9 patients). In the NMP group, there were no recurrences (p = n.s.), the spicula rate was 7.3% (4 patients) (p ingrown toenails and may be preferable to nail wedge resection.

  12. The New Wedge-Shaped Hubble Diagram of 398 SCP Supernovae According to the Expansion Center Model

    CERN Document Server

    Lorenzi, Luciano

    2010-01-01

    Following the successful dipole test on 53 SCP SNe Ia presented at SAIt2004 in Milan, this 9th contribution to the ECM series beginning in 1999 in Naples (43th SAIt meeting: "Revolutions in Astronomy") deals with the construction of the new wedge-shaped Hubble diagram obtained with 398 supernovae of the SCP Union Compilation (Kowalski et al. 2008) by applying a calculated correlation between SNe Ia absolute blue magnitude MB and central redshift z0, according to the expansion center model. The ECM distance D of the Hubble diagram (cz versus D) is computed as the ratio between the luminosity distance DL and 1 + z. Mathematically D results to be a power series of the light-space r run inside the expanding cosmic medium or Hubble flow; thus its expression is independent of the corresponding z. In addition one can have D = D(z, h) from the ECM Hubble law by using the h convention with an anisotropic HX. It is proposed to the meeting that the wedge-shape of this new Hubble diagram be confirmed independently as mai...

  13. Effects of rainfall and salt-wedge movement on phytoplankton succession in the Swan-Canning Estuary, Western Australia

    Science.gov (United States)

    Twomey, L.; John, J.

    2001-09-01

    Annual data sets, from 1980-81 and 1994-95, provide evidence that inter-annual differences in the seasonal succession of phytoplankton in the Swan River Estuary can be attributed to rainfall and salt-wedge movement. The distribution and succession of phytoplankton are influenced by seasonal variation of rainfall and its subsequent effect on the spatial distribution of salinity. The longer duration of rainfall in 1980-81 compared with 1994-95 effectively restricted the movement of the salt-water wedge, thereby delaying the progression of marine phytoplankton into the estuary. There was little difference in the phytoplankton composition and biomass in the lower estuary, while the upper estuary appeared to have more blooms of dinoflagellates in the summer and autumn of 1994-95 compared with 1980-81.The intensity and duration of rainfall appeared to affect the availability of soluble nutrients. Although there was no significant difference in phytoplankton biomass between the two periods, it was likely that the high phytoplankton biomass in the upper estuary in 1994-95 was due to availability of more soluble nutrients from internal recycling processes at the sediment/water interface.

  14. Evaluation of the fixation of the trabecular metal wedge in patients undergoing revision of total hip arthroplasty

    Directory of Open Access Journals (Sweden)

    Victor Magalhães Callado

    2014-08-01

    Full Text Available Objective:this study aimed to evaluate the fixation of the trabecular metal wedge in patients undergoing revision of total hip arthroplasty.Methods:twenty-three cases with minimum grading of Paprosky II-B that were operated between July 2008 and February 2013 were evaluated. These cases were evaluated based on radiographs before the operation, immediately after the operation and later on after the operation. Loss of fixation was defined as a change in the abduction angle of the component greater than 10° or any mobilization greater than 6 mm.Results:it was found that there was 100% fixation of the acetabula after a mean of 29.5 months. One case underwent removal of the implanted components due to infection.Conclusions:there is still no consensus regarding the best option for reconstructing hips with bone loss. However, revision using a trabecular metal wedge has presented excellent short-and medium-term results. This qualifies it as an important tool for achieving a fixed and stable acetabular component.

  15. Inside the subduction factory: Modeling fluid mobile element enrichment in the mantle wedge above a subduction zone

    Science.gov (United States)

    Shervais, John W.; Jean, Marlon M.

    2012-10-01

    Enrichment of the mantle wedge above subduction zones with fluid mobile elements is thought to represent a fundamental process in the origin of arc magmas. This "subduction factory" is typically modeled as a mass balance of inputs (from the subducted slab) and outputs (arc volcanics). We present here a new method to model fluid mobile elements, based on the composition of peridotites associated with supra-subduction ophiolites, which form by melt extraction and fluid enrichment in the mantle wedge above nascent subduction zones. The Coast Range ophiolite (CRO), California, is a Jurassic supra-subduction zone ophiolite that preserves mantle lithologies formed in response to hydrous melting. We use high-precision laser ablation ICP-MS analyses of relic pyroxenes from these peridotites to document fluid-mobile element (FME) concentrations, along with a suite of non-fluid mobile elements that includes rare earth and high-field strength elements. In the CRO, fluid-mobile elements are enriched by factors of up to 100× DMM, whereas fluid immobile elements are progressively depleted by melt extraction. The high concentrations of fluid mobile elements in supra-subduction peridotite pyroxene can be attributed to a flux of aqueous fluid or fluid-rich melt phase derived from the subducting slab. To model this enrichment, we derive a new algorithm that calculates the concentration of fluid mobile elements added to the source: C=[C/[[D/(D-PF)]∗[1-(PF/D)

  16. Analytical Investigation of Laminar Viscoelastic Fluid Flow over a Wedge in the Presence of Buoyancy Force Effects

    Directory of Open Access Journals (Sweden)

    B. Rostami

    2014-01-01

    Full Text Available An analytical strong method, the homotopy analysis method (HAM, is employed to study the mixed convective heat transfer in an incompressible steady two-dimensional viscoelastic fluid flow over a wedge in the presence of buoyancy effects. The two-dimensional boundary-layer governing partial differential equations (PDEs are derived by the consideration of Boussinesq approximation. By the use of similarity transformation, we have obtained the ordinary differential nonlinear (ODE forms of momentum and energy equations. The highly nonlinear forms of momentum and energy equations are solved analytically. The effects of different involved parameters such as viscoelastic parameter, Prandtl number, buoyancy parameter, and the wedge angle parameter, which is related to the exponent m of the external velocity, on velocity and temperature distributions are plotted and discussed. An excellent agreement can be seen between the results and the previously published papers for f′′(0 and θ′(0 in some of the tables and figures of the paper for velocity and temperature profiles for various values of viscoelastic parameter and Prandtl number. The effects of buoyancy parameter on the velocity and temperature distributions are completely illustrated in detail.

  17. Open-ended education

    DEFF Research Database (Denmark)

    Nørgård, Rikke Toft; Paaskesen, Rikke Berggreen

    2016-01-01

    THE ARTICLE DESCRIBES OPEN-ENDED EDUCATION FOR 21ST CENTURY LEARNING AS THE COMING TOGETHER OF OPEN-ENDED TECHNOLOGY, OPEN-ENDED PROJECTS, AND OPEN-ENDED INSTITUTIONS IN WAYS THAT FOSTER AND PROMOTE FUTURE EDUCATION FOR CITIZENSHIP IN SOCIETY. THROUGH THE CASE OF THE CODING PIRATES FUTURE ISLAND,...... FOR EDUCATION AND HIGHLIGHTS THE FACT THAT THE EMPHASIS IN BLOOM’S REVISED TAXONOMY ON INGENUITY, ORIGINALITY, PARTICIPATION, AND ASPIRATION IMPACTS THE PRACTICE OF EDUCATION.......THE ARTICLE DESCRIBES OPEN-ENDED EDUCATION FOR 21ST CENTURY LEARNING AS THE COMING TOGETHER OF OPEN-ENDED TECHNOLOGY, OPEN-ENDED PROJECTS, AND OPEN-ENDED INSTITUTIONS IN WAYS THAT FOSTER AND PROMOTE FUTURE EDUCATION FOR CITIZENSHIP IN SOCIETY. THROUGH THE CASE OF THE CODING PIRATES FUTURE ISLAND......, THE ARTICLE DEMONSTRATES HOW OPEN-ENDED EDUCATION CAN BE PRACTICED TO FOSTER AND PROMOTE TECHNOLOGICAL IMAGINATION, ENTERPRISING, AND PARTICIPATION. THIS PRACTICE IS THEN DEVELOPED INTO A THEORETICAL MODEL FOR THE CONCEPT OF OPEN-ENDED EDUCATION AS A WAY OF AND FRAMEWORK FOR PRACTICING FUTURE EDUCATION FOR 21...

  18. Combined intra-articular and varus opening wedge osteotomy for lateral depression and valgus malunion of the proximal part of the tibia. Surgical technique

    NARCIS (Netherlands)

    Kerkhoffs, G.M.M.J.; Rademakers, M.V.; Altena, M.; Marti, R.K.

    2009-01-01

    BACKGROUND: Reconstructive surgical measures for treatment of posttraumatic deformities of the lateral tibial plateau are seldom reported on in the literature. We report the long-term follow-up results of a consecutive series of reconstructive osteotomies performed to treat depression and valgus mal

  19. Open Data and Beyond

    Directory of Open Access Journals (Sweden)

    Frederika Welle Donker

    2016-04-01

    Full Text Available In recent years, there has been an increasing trend of releasing public sector information as open data. Governments worldwide see the potential benefits of opening up their data. The potential benefits are more transparency, increased governmental efficiency and effectiveness, and external benefits, including societal and economic benefits. The private sector also recognizes potential benefits of making their datasets available as open data. One such company is Liander, an energy network administrator in the Netherlands. Liander views open data as a contributing factor to energy conservation. However, to date there has been little research done into the actual effects of open data. This research has developed a monitoring framework to assess the effects of open data, and has applied the framework to Liander’s small-scale energy consumption dataset.

  20. Altering Knee Abduction Angular Impulse Using Wedged Insoles for Treatment of Patellofemoral Pain in Runners: A Six-Week Randomized Controlled Trial.

    Directory of Open Access Journals (Sweden)

    Ryan T Lewinson

    Full Text Available Determine if a change in internal knee abduction angular impulse (KAAI is related to pain reduction for runners with patellofemoral pain (PFP by comparing lateral and medial wedge insole interventions, and increased KAAI and decreased KAAI groups.Randomized controlled clinical trial (ClinicalTrials.gov ID# NCT01332110.Biomechanics laboratory and community.Thirty-six runners with physician-diagnosed PFP enrolled in the trial, and 27 were analyzed.Runners with PFP were randomly assigned to either an experimental 3 mm lateral wedge or control 6 mm medial wedge group. Participants completed a biomechanical gait analysis to quantify KAAIs with their assigned insole, and then used their assigned insole for six-weeks during their regular runs. Usual pain during running was measured at baseline and at six-week follow-up using a visual analog scale. Statistical tests were performed to identify differences between wedge types, differences between biomechanical response types (i.e. increase or decrease KAAI, as well as predictors of pain reduction.Percent change in KAAI relative to neutral, and % change in pain over six weeks.Clinically meaningful reductions in pain (>33% were measured for both footwear groups; however, no significant differences between footwear groups were found (p = 0.697. When participants were regrouped based on KAAI change (i.e., increase or decrease, again, no significant differences in pain reduction were noted (p = 0.146. Interestingly, when evaluating absolute change in KAAI, a significant relationship between absolute % change in KAAI and % pain reduction was observed (R2 = 0.21; p = 0.030, after adjusting for baseline pain levels.The greater the absolute % change in KAAI during running, the greater the % reduction in pain over six weeks, regardless of wedge type, and whether KAAIs increased or decreased. Lateral and medial wedge insoles were similar in effectiveness for treatment of PFP.Altering KAAI should be a focus of future

  1. Numerical Analysis of the Cross-Wedge Rolling Process by Means of Three Tools of Stepped Shafts From Aluminum Alloy 7075

    Directory of Open Access Journals (Sweden)

    Bartnicki J.

    2015-04-01

    Full Text Available This paper presents results of numerical calculations for the rolling process by means of three tools of stepped shafts from aluminum alloy 7075. Forming with the usage of tools with three different wedge spreading angles underwent analysis. In the paper, the obtained distributions of stresses, strains and Cockcroft-Latham damage criterion were given. Moreover, the influence of the wedge spreading angle on shape faults presence in the obtained product was determined. At the same time, the force parameters, which play a crucial role in the designed experiment, were analyzed.

  2. Formation of ophiolite-bearing tectono-sedimentary mélanges in accretionary wedges by gravity driven submarine erosion: Insights from analogue models and case studies

    Science.gov (United States)

    Malavieille, Jacques; Molli, Giancarlo; Genti, Manon; Dominguez, Stephane; Beyssac, Olivier; Taboada, Alfredo; Vitale-Brovarone, Alberto; Lu, Chia-Yu; Chen, Chih-Tung

    2016-10-01

    Orogenic wedges locally present chaotic tectonostratigraphic units that contain exotic blocks of various size, origin, age and lithology, embedded in a sedimentary matrix. The occurrence of ophiolitic blocks, sometimes huge, in such "mélanges" raises questions on (i) the mechanisms responsible for the incorporation of oceanic basement rocks into an accretionary wedge and (ii) the mechanisms allowing exhumation and redeposition of these exotic elements in "mélanges" during wedge growth. To address these questions, we present the results of a series of analogue experiments performed to characterize the processes and parameters responsible for accretion, exhumation and tectonosedimentary reworking of oceanic basement lithospheric fragments in an accretionary wedge. The experimental setup is designed to simulate the interaction between tectonics, erosion and sedimentation. Different configurations are applied to study the impact of various parameters, such as irregular oceanic floor due to structural inheritance, or the presence of layers with contrasted rheology that can affect deformation partitioning in the wedge (frontal accretion vs basal accretion) influencing its growth. Image correlation technique allows extracting instantaneous velocity field, and tracking of passive particles. By retrieving the particle paths determined from models, the pressure-temperature path of mélange units or elementary blocks can be discussed. The experimental results are then compared with observations from ophiolite-bearing mélanges in Taiwan (Lichi and Kenting mélanges) and Raman spectroscopy of carbonaceous material (RSCM) Thermometry data on rocks from the northern Apennines (Casanova mélange). A geological scenario is proposed following basic observations. The tectonic evolution of the retroside of doubly vergent accretionary wedges is mainly controlled by backthrusting and backfolding. The retro wedge is characterized by steep slopes that are prone to gravitational

  3. Geometrical determinations of IMRT photon pencil-beam path in radiotherapy wedges and limit divergence angle with the Anisotropic Analytic Algorithm (AAA

    Directory of Open Access Journals (Sweden)

    Francisco Casesnoves

    2014-08-01

    Full Text Available Purpose: Static wedge filters (WF are commonly used in radiation therapy, forward and/or inverse planning. We calculated the exact 2D/3D geometrical pathway of the photon-beam through the usual alloy WF, in order to get a better dose related to the beam intensity attenuation factor(s, after the beam has passed through the WF. The objective was to provide general formulation into the Anisotropic Analytical Algorithm (AAA model coordinates system (depending on collimator/wedge angles that also can be applied to other models. Additionally, second purpose of this study was to develop integral formulation for 3D wedge exponential factor with statistical approximations, with introduction for the limit angle/conformal wedge.Methods: The radiotherapy model used to develop this mathematical task is the classical superposition-convolution algorithm, AAA (developed by Ulmer and Harder. We worked with optimal geometrical approximations to make the computational IMRT calculations quicker/reduce the planning-system time. Analytic geometry/computational-techniques to carry out simulations (for standard wedges are detailed/developed sharply. Integral developments/integral-statistical approximations are explained. Beam-divergence limit Angle for optimal wedge filtration formulas is calculated/sketched, with geometrical approximations. Fundamental trigonometry is used for this purpose.Results: Extent simulation tables for WF of 15º, 30º, 45º, and 60º are shown with errors. As a result, it is possible to determine the best individual treatment dose distribution for each patient. We presented these basic simulations/numerical examples for standard manufacturing WF of straight sloping surface, to check the accuracy/errors of the calculations. Simulations results give low RMS/Relative Error values (formulated for WF of 15º, 30º, 45º, and 60º.Conclusion: We obtained a series of formulas of analytic geometry for WF that can be applied for any particular dose

  4. Monte Carlo simulation of the Varian Clinac 600C accelerator using dynamic wedges; Simulacao Monte Carlo do acelerador Varian Clinac 600C utilizando cunhas dinamicas

    Energy Technology Data Exchange (ETDEWEB)

    Moreno, S. [Universidade da Beira Interior (UBI), Covilha (Portugal); Chaves, A.; Lopes, M.C. [Instituto Portugues de Oncologia Doutor Francisco Gentil (IPO), Coimbra (Portugal); Peralta, L. [Laboratorio de Instrumentacao e Fisica Experimental de Particulas (LIP), Lisboa (Portugal)]|[Universidade de Lisboa (Portugal). Faculdade de Ciencias

    2004-07-01

    The advent of linear accelerators (linac) with computer-controlled dynamic collimation systems and functional and anatomical imaging techniques allowed a more exact delimitation and localisation of the target volume. These advanced treatment techniques inevitably increase the complexity level of dose calculation because of the introduction of the temporal variable. On account of this, it is mandatory the usage of more accurate modelling techniques of the collimator components, as it is the case of Monte Carlo (MC) simulation, which has created an enormous interest in research and clinical practice. Because the patients bodies are not homogenous nor are their body surfaces plane and regular, the dose distribution may differ significantly from the standard distribution from the linac calibration. It is in the treatment planning systems, which include algorithms that are usually measured in homogeneous water phantoms specific for each correction that the dose distributions from each case are obtained. In a real treatment, exception made to superficial lesions, two or more radiation fields are used in order to obtain the recommended dose distributions. The simplest arrangement is made from two parallel and opposed fields that originate a homogeneous dose distribution in almost all the irradiated volume. The available resources are, for example, different types of energies and of radiation, the application of bolus, the protection of healthy structures, the usage of wedged filters and the application of dynamic wedges. A virtual or dynamic wedge, modelled through the movement of one of the jaws, when compared with a set of physical wedges offers an alternative calculation method of an arbitrary number of wedged fields, instead of the four traditional fields of 15 deg, 30 deg, 45 deg and 60 deg angle and obtained with physical wedges. The goal of this work consists in the study of the application of dynamic wedges in tailoring the radiation field by the Varian Clinac 600

  5. Visitors speak openly on the Open Day

    CERN Multimedia

    2004-01-01

    On Open Day, CERN was filled with visitors from around Europe—and beyond—who toured the LHC detector sites and visited a multitude of experimental halls and workshops across the Meyrin and Prevessin sites, the vast majority in buildings normally closed to the public.

  6. Opening and Closing in Open Systems.

    Science.gov (United States)

    Klapp, Orrin E.

    In open information systems, such as in the case of human interchange with the self and the environment, input quantities have no upper limits. The human information utilization system, however, is psychologically and behaviorally unable to accept ever increasing loads of information. Because of this apparent fact, human information systems should…

  7. Opening Up Access to Open Access

    Science.gov (United States)

    Singer, Ross

    2008-01-01

    As the corpus of gray literature grows and the price of serials rises, it becomes increasingly important to explore ways to integrate the free and open Web seamlessly into one's collections. Users, after all, are discovering these materials all the time via sites such as Google Scholar and Scirus or by searching arXiv.org or CiteSeer directly.…

  8. Open-mindedness

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Open-mindness1 is a much-valued2 quality of human being. We value such a quality, because it is good to society as a whole. Almost all the great men are marked with such a quality. It is the openness to things new and strange. Open-minded person is willing toconsider new opinions, new arguments and new way of doing things.

  9. 3D modelling of the Austroalpine-Penninic collisional wedge of the NW Alps: dataset management and preliminary results

    Science.gov (United States)

    Monopoli, Bruno; Bistacchi, Andrea; Bertolo, Davide; Dal Piaz, Giovanni; Gouffon, Yves; Massironi, Matteo; Sartori, Mario; Vittorio Dal Piaz, Giorgio

    2016-04-01

    We know since the beginning of the 20th century, thanks to mapping and structural studies by the Italian Regio Servizio Geologico (Franchi et al., 1908) and Argand's work (1909; 1911; 1916), that the Austroalpine-Penninic collisional wedge of the NW Alps is spectacularly exposed across the Aosta Valley and Valais ranges (Italy and Switzerland). In the 150th anniversary of the first ascent to Ruskin's "most noble cliff in Europe" - the Cervino/Matterhorn (Whymper, July 14th 1865), first described in a geological profile by Giordano (1869) and in a detailed map by Gerlach (1869; 1871), we have seen the conclusion of very detailed mapping projects carried out in the last years over the two regions, with collaborative efforts across the Italy-Switzerland border, constellated by 4000 m-high peaks. These projects have pictured with an unprecedented detail (up to 1:10.000 scale) the geology of this complex region, resulting from pre-Alpine events, Alpine subduction- and collision-related ductile deformations, and finally late-Alpine brittle deformations from the Oligocene to the Present. Based on this dataset, we use up-to-date technology and software to undertake a 3D modelling study aimed at: i) reconstructing the 3D geometry of the principal tectonic units, ii) detecting and unravelling problems and incongruences in the 2D geometrical models, iii) modelling the kinematics of the Oligocene and Miocene brittle fault network using 2D and 3D balancing and palinspastic restoration techniques. In this contribution we mainly discuss the prerequisites of the project. Common geomodelling paradigms (mainly developed for the hydrocarbon industry) cannot be applied in this project due to (i) the little scale, (ii) the source of the data - fieldwork, and (iii) the polyphase ductile and brittle deformations in the metamorphic nappe stack. Our goals at the moment are to model the post-metamorphic fault network and the boundaries of the principal tectonic units, which will be

  10. Open3DQSAR

    DEFF Research Database (Denmark)

    Tosco, Paolo; Balle, Thomas

    2011-01-01

    Open3DQSAR is a freely available open-source program aimed at chemometric analysis of molecular interaction fields. MIFs can be imported from different sources (GRID, CoMFA/CoMSIA, quantum-mechanical electrostatic potential or electron density grids) or generated by Open3DQSAR itself. Much focus...... has been put on automation through the implementation of a scriptable interface, as well as on high computational performance achieved by algorithm parallelization. Flexibility and interoperability with existing molecular modeling software make Open3DQSAR a powerful tool in pharmacophore assessment...

  11. SEMI-OPENNESS AND ALMOST-OPENNESS OF INDUCED MAPPINGS

    Institute of Scientific and Technical Information of China (English)

    HuangXianjiu; ZengFanping; ZhangGengrong

    2005-01-01

    Given a mapping f between continua. Let 2f and C(f) mean the induced mappings between hyperspaces. Relations are studied under the conditions :f is semi-open (almost open, respectively), 2f is semi-open (almost open, respectively) and C(f) is semi-open (almost open, respectively).

  12. 基于Matlab的劈尖干涉仿真%Simulation of wedge interference based on Matlab

    Institute of Scientific and Technical Information of China (English)

    任志浩; 马琨

    2016-01-01

    Based on the fundamental theory of equal thickness interference,the light intensity distribution at different pa⁃rameters in the wedge interference experiments is simulated by means of Matlab platform programming. The interference fringes conducting the defect detection of plain glass surface by wedge interference are simulated with Peaks function of Matlab. The in⁃terference image obtained from simulation is meticulous and realistic,and can dynamically reflect the changing process of inter⁃ference fringes with the change of parameters,which makes the physics rules visual and intuitive. The interference image simu⁃lated by Matlab is identical with experimental result. The parameters can be set flexibly,which greatly extends the research ap⁃proach and method of wedge interference subject,is helpful for students to profoundly understand the phenomenon and rules of physical optics,and provides the convenience for optical theory teaching and experimental mode selection.%根据等厚干涉的基本理论,利用Matlab平台编程进行仿真,模拟劈尖干涉实验在不同参数条件下的光强分布情况。并用Matlab自带的Peaks函数模拟利用劈尖干涉对平面玻璃表面进行缺陷检测的干涉条纹。仿真所得到的干涉图像细致逼真,并且能够动态地反映出干涉条纹随参数的改变而发生变化的过程,使得物理规律形象直观。Matlab模拟出的干涉图像与实验结果非常吻合,还可以灵活地调节参数,大大扩展了劈尖干涉问题的研究途径与方法,有助于学生更加深刻地理解物理光学的现象和规律,也为光学的理论教学和实验方式提供了便利。

  13. Checks for quality control of wedge dynamics in treatment units and the planning system; Verificaciones para control de calidad de la cuna dinamica en las unidades de tratamiento y el sistema de planificacion

    Energy Technology Data Exchange (ETDEWEB)

    Mateos Salvador, P.; Rodriguez Lopez, B.; Font Gelabert, J.; Hernandez Rodriguez, J.; Arino Gil, A.

    2013-07-01

    The objective of this study is to verify the implementation of enhanced dynamic wedge (EDW) vary in the Eclipse planning system and the experimental determination of the parameters that define the dosimetry characteristics of enhanced dynamic wedge of our treatment units. (Author)

  14. Quality control of virtual wedge in a linear electron accelerator with a computerized radiography system (CR); Control de calidad de la cuna virtual en un acelerador lineal de electrones mediante un sistema de radiografia competerizada (CR)

    Energy Technology Data Exchange (ETDEWEB)

    Ordiales, J. M.; Alvarez, F. J.; Falero, B.

    2011-07-01

    For quality control of the virtual wedge there are several systems on the market as arrays of detectors or ionization chambers, linear or 2D configuration, radiochromic films or digital imaging systems incorporated in electron linear accelerators (ALE ). The present work aims at implementing a system of Computed Radiography (CR) for a routine check of the virtual wedge.

  15. Mastering OpenStack

    CERN Document Server

    Khedher, Omar

    2015-01-01

    This book is intended for system administrators, cloud engineers, and system architects who want to deploy a cloud based on OpenStack in a mid- to large-sized IT infrastructure. If you have a fundamental understanding of cloud computing and OpenStack and want to expand your knowledge, then this book is an excellent checkpoint to move forward.

  16. All channels open

    NARCIS (Netherlands)

    Frank Huysmans; Jos de Haan

    2010-01-01

    Original title: Alle kanalen staan open. The rapid changes taking place in the media landscape in the Netherlands - characterised by digitisation and convergence of media technologies - raise the question of how the Dutch are dealing with the many new opportunities that have opened up. All channels

  17. OpenStack essentials

    CERN Document Server

    Radez, Dan

    2015-01-01

    If you need to get started with OpenStack or want to learn more, then this book is your perfect companion. If you're comfortable with the Linux command line, you'll gain confidence in using OpenStack.

  18. Bisimilarity of Open Terms

    NARCIS (Netherlands)

    Rensink, Arend; Palamidessi, C.; Parrow, J.

    1997-01-01

    The standard way of lifting a binary relation, R, from closed terms of an algebra to open terms is to define its closed-instance extension, R_{ci}, which holds for a given pair of open terms if and only if R holds for all their closed instantiations. In this paper, we study alternatives for the case

  19. Pro OpenSSH

    CERN Document Server

    Stahnke, Michael

    2006-01-01

    SSH, acronym for Secure Socket Shell, is for users and administrators wishing to establish secure communication between disparate networks. 'Pro OpenSSH', authored by two Fortune 100 system administrators, provides readers with a highly practical reference for configuring and deploying OpenSSH in their own environment.

  20. Open Verlinde line operators

    CERN Document Server

    Gaiotto, Davide

    2014-01-01

    We reformulate the action of Verlinde line operators on conformal blocks in a 3d TFT language and extend it to line operators labelled by open paths joining punctures on the Riemann surface. We discuss the possible applications of open Verlinde line operators to quantum Teichm\\"uller theory, supersymmetric gauge theory and quantum groups

  1. OpenShift cookbook

    CERN Document Server

    Gulati, Shekhar

    2014-01-01

    If you are a web application developer who wants to use the OpenShift platform to host your next big idea but are looking for guidance on how to achieve this, then this book is the first step you need to take. This is a very accessible cookbook where no previous knowledge of OpenShift is needed.

  2. Open Data and Beyond

    NARCIS (Netherlands)

    Welle Donker, Frederika; Loenen, Van Bastiaan; Bregt, Arnold

    2016-01-01

    In recent years, there has been an increasing trend of releasing public sector information as open data. Governments worldwide see the potential benefits of opening up their data. The potential benefits are more transparency, increased governmental efficiency and effectiveness, and external benefits

  3. Open G(2) strings

    NARCIS (Netherlands)

    de Boer, J.; de Medeiros, P.; El-Showk, S.; Sinkovics, A.

    2008-01-01

    We consider an open string version of the topological twist previously proposed for sigma-models with G(2) target spaces. We determine the cohomology of open strings states and relate these to geometric deformations of calibrated submanifolds and to flat or anti-self-dual connections on such submani

  4. OpenJDK cookbook

    CERN Document Server

    Kasko, Alex; Mironchenko, Alexey

    2015-01-01

    If you are an experienced Java developer using Java 7 platform and want to get your grips on OpenJDK for Java development, this is the book for you. JDK users who wish to migrate to OpenJDK will find this book very useful.

  5. Creating Open Source Conversation

    Science.gov (United States)

    Sheehan, Kate

    2009-01-01

    Darien Library, where the author serves as head of knowledge and learning services, launched a new website on September 1, 2008. The website is built with Drupal, an open source content management system (CMS). In this article, the author describes how she and her colleagues overhauled the library's website to provide an open source content…

  6. Open Access policy effectiveness

    OpenAIRE

    Swan, Alma

    2015-01-01

    This presentation discusses the policy elements that are necessary for an effective open access policy, according to the findings of the analysis of the revamped ROARMAP tool for open access policies by PASTEUR4OA. It contains graphs, charts and numbers for evidence-based arguments

  7. Open-Minded Cognition.

    Science.gov (United States)

    Price, Erika; Ottati, Victor; Wilson, Chase; Kim, Soyeon

    2015-11-01

    The present research conceptualizes open-minded cognition as a cognitive style that influences how individuals select and process information. An open-minded cognitive style is marked by willingness to consider a variety of intellectual perspectives, values, opinions, or beliefs-even those that contradict the individual's opinion. An individual's level of cognitive openness is expected to vary across domains (such as politics and religion). Four studies develop and validate a novel measure of open-minded cognition, as well as two domain-specific measures of religious and political open-minded cognition. Exploratory and confirmatory factor analysis (controlling for acquiescence bias) are used to develop the scales in Studies 1 to 3. Study 4 demonstrates that these scales possess convergent and discriminant validity. Study 5 demonstrates the scale's unique predictive validity using the outcome of Empathic Concern (Davis, 1980). Study 6 demonstrates the scale's unique predictive validity using the outcomes of warmth toward racial, religious, and sexual minorities.

  8. Passive Control of Turbulent Jet Flow with Wedged Nozzle%加齿被动控制自由湍射流多尺度涡结构的实验研究

    Institute of Scientific and Technical Information of China (English)

    刘欣; 姜楠

    2005-01-01

    Turbulent flow field of the free jet with circular nozzle and wedged nozzles is measured using hot wire anemometry with resolution higher than the smallest turbulence time scale. Wavelet analysis is employed to perform multi-scale decomposition of instantaneous turbulence fluctuating velocity signals, and the energy distribution of the turbulent multi-scale eddy structures over scales is studied using wavelet coefficients. Investigation of the multi-scale eddy structures of circular jet and various wedged jets reveals the transport of the energy of these wedged jets in the space from the axis to the side of the jet, as compared with the circular jet. Furthermore, not only the eddy structures at the wedge tines in the near field are crashed, but also the interactions such as eddy structure union and entrainment take place at different longitudinal and normal locations along with the development of the jets because of the existence of wedges.

  9. Influence of process parameters on the microstructural evolution of a rear axle tube during cross wedge rolling

    Science.gov (United States)

    Ma, Jia-wei; Yang, Cui-ping; Zheng, Zhen-hua; Zhang, Kang-sheng; Ma, Wen-yu

    2016-11-01

    In the shaping process of cross wedge rolling (CWR), metal undergoes a complex microstructural evolution, which affects the quality and mechanical properties of the product. Through secondary development of the DEFORM-3D software, we developed a rigid plastic finite element model for a CWR-processed rear axle tube, coupled with thermomechanical and microstructural aspects of workpieces. Using the developed model, we investigated the microstructural evolution of the CWR process. Also, the influence of numerous parameters, including the initial temperature of workpieces, the roll speed, the forming angle, and the spreading angle, on the grain size and the grain-size uniformity of the rolled workpieces was analyzed. The numerical simulation was verified through rolling and metallographic experiments. Good agreement was obtained between the calculated and experimental results, which demonstrated the reliability of the model constructed in this work.

  10. Final « pop-up » structural reactivation of the internal part of an orogenic wedge: west-central Pyrenees

    Science.gov (United States)

    Meresse, F.; Jolivet, M.; Labaume, P.; Teixell, A.

    2009-04-01

    Université Montpellier 2, INSU-CNRS, Laboratoire Géosciences Montpellier, cc060, 34095 Montpellier Cedex 5, France florian.meresse@gm.univ-montp2.fr Tectonics-sedimentation relationships are often used to describe the tectonic evolution of orogenic wedges. However, does the sedimentary record associated to the build-up of the wedge recall the entire tectonic history? Numerous studies based on tectono-stratigraphic and thermochronological data, as well as numerical modeling, have demonstrated that on the large scale the growth of the Pyrenees is characterized by a southward propagation of the deformation (e.g., Muñoz, 1992; Morris et al., 1998; Fitzgerald et al., 1999; Beaumont et al., 2000). However, in the west-central Pyrenees, recent thermochronological data have suggested that the in-sequence propagation of the basement thrust system was followed by out-of-sequence (re)activation of hinterland structures after the South-Pyrenean Frontal Thrust had been sealed (Jolivet et al., 2007). To better describe the structural evolution of the Pyrenean prism, we focused our work on a NNE-SSW transect from the northern piedmont (Bagnères-de-Bigorre), through the Axial Zone and down to the Jaca basin where tectonics-sedimentation relationships have been extensively described (e.g., Teixell, 1996). A crustal scale cross-section combined with detailed apatite fission track analysis are used as a case study to unravel in detail the deformation history. Apatite fission track data from the Bagnères-de-Bigorre Paleozoic massif (central ages: 41-42 Ma) and the Lesponne Hercynian granite (central age: 31 Ma) located in the North-Pyrenean Zone and in the north of the Axial Zone, respectively, reveal Middle Eocene-Early Oligocene denudation ages of the northern part of the wedge. Immediately to the south, central ages around 24-20 Ma attest to a Latest Oligocene-Early Miocene denudation ages of the Chiroulet granite. According to the structural context, these results suggest a

  11. Suppressing the preferential σ-polarization oscillation in a high power Nd∶YVO4 laser with wedge laser crystal

    Institute of Scientific and Technical Information of China (English)

    Zheng Yao-Hui; Zhou Hai-Jun; Wang Ya-Jun; Wu Zhi-Qiang

    2013-01-01

    We observe the phenomenon of priority oscillation of the unexpected σ-polarization in high-power Nd∶YVO4 ring laser.The severe thermal lens of the σ-polarized lasing,compared with the π-polarized lasing,is the only reason for the phenomenon.By designing a wedge Nd∶YVO4 crystal as the gain medium,the unexpected σ-polarization is completely suppressed in the entire range of pump powers,and the polarization stability of the expected π-polarized output is enhanced.With the output power increasing from threshold to the maximum power,no σ-polarization lasing is observed.As a result,25.3 W of stable single-frequency laser output at 532 nm is experimentally demonstrated.

  12. Is it safe to perform completion lobectomy after diagnostic wedge resection using video-assisted thoracoscopic surgery?

    DEFF Research Database (Denmark)

    Holbek, Bo Laksáfoss; Petersen, René Horsleben; Hansen, Henrik Jessen

    2016-01-01

    an institutional database of consecutive VATS lobectomies between January 1st 2007 and December 31st 2013. Patients were grouped into CL or SL. Patient characteristics, operative data, converted procedures, complications, and mortality was compared using Pearson Chi square, Fisher's exact test, or Mann-Whitney U......OBJECTIVES: The objective of this study was to assess the safety of video-assisted thoracoscopic surgery (VATS) completion lobectomy (CL) for non-small cell lung cancer (NSCLC) after diagnostic wedge resection by comparing with standard VATS lobectomy (SL). METHODS: Data were retrieved from...... test. RESULTS: In total 80 CL and 958 SLs were performed. There were no significant differences in median operating time, median chest drain duration or median length of stay. Median operative bleeding was 100 mL (IQR 50-238) in the CL group compared to 75 mL (IQR 25-200) in the SL group (p = 0...

  13. WEIGHTED KOPPELMAN-LERAY-NORGUET FORMULAS ON A LOCAL q-CONCAVE WEDGE IN A COMPLEX MANIFOLD

    Institute of Scientific and Technical Information of China (English)

    邱春晖; 姚宗元

    2003-01-01

    A weighted Koppelman-Leray-Norguet formula of (r, s) differential forms ona local q-concave wedge in a complex manifold is obtained. By constructing the newweighted kernels, the authors give a new weighted Koppelman-Leray-Norguet formula with-out boundary integral of (r, s) differential forms, which is different from the classical one.The new weighted formula is especially suitable for the case of the local q-concave wedgewith a non-smooth boundary, so one can avoid complex estimates of boundary integralsand the density of integral may be not defined on the boundary but only in the domain.Moreover, the weighted integral formulas have much freedom in applications such as in theinterpolation of functions.

  14. Evaluation of Wedged Arterial Injection as a New Technique for Delivery of Experimental Therapeutic Sustances into the Porcine Pancreas

    Directory of Open Access Journals (Sweden)

    Rafael Latorre

    2011-01-01

    Materials and Methods. Selective angiographies were completed in ten pigs under general anaesthesia. By superselective angiography, the catheter was inserted and wedged into the major pancreatic artery, blocking the blood flow. In order to evaluate the efficacy of the WAI method, a DNA-specific fluorescent dye (Hoechst 33258 was used. Results. Histological study revealed a uniform distribution of the fluorescent dye within the nuclei of the endocrine and exocrine pancreatic cells. Pancreatic and liver enzymes as well as histopathology of the pancreas were normal. Conclusion. WAI is a highly effective minimally invasive methodology to target the porcine pancreas. The findings suggest that WAI may contribute to developing preclinical assays of pancreas gene or cell-transfer therapies in swine model.

  15. Energy constancy checking for electron beams using a wedge-shaped solid phantom combined with a beam profile scanner

    Energy Technology Data Exchange (ETDEWEB)

    Rosenow, U.F.; Islam, M.K.; Gaballa, H.; Rashid, H. (Univ. of Goettingen (Germany, F.R.))

    1991-01-01

    An energy constancy checking method is presented which involves a specially designed wedge-shaped solid phantom in combination with a multiple channel ionization chamber array known as the Thebes device. Once the phantom/beam scanner combination is set up, measurements for all electron energies can be made and evaluated without re-entering the treatment room. This is also valid for the readjustment of beam energies which are found to deviate from required settings. The immediate presentation of the measurements is in the form of crossplots which resemble depth dose profiles. The evaluation of the measured data can be performed using a hand-held calculator, but processing of the measured signals through a PC-type computer is advisable. The method is insensitive to usual fluctuations in beam flatness. The sensitivity and reproducibility of the method are more than adequate. The method may also be used in modified form for photon beams.

  16. Energy constancy checking for electron beams using a wedge-shaped solid phantom combined with a beam profile scanner.

    Science.gov (United States)

    Rosenow, U F; Islam, M K; Gaballa, H; Rashid, H

    1991-01-01

    An energy constancy checking method is presented which involves a specially designed wedge-shaped solid phantom in combination with a multiple channel ionization chamber array known as the Thebes device. Once the phantom/beam scanner combination is set up, measurements for all electron energies can be made and evaluated without re-entering the treatment room. This is also valid for the readjustment of beam energies which are found to deviate from required settings. The immediate presentation of the measurements is in the form of crossplots which resemble depth dose profiles. The evaluation of the measured data can be performed using a hand-held calculator, but processing of the measured signals through a PC-type computer is advisable. The method is insensitive to usual fluctuations in beam flatness. The sensitivity and reproducibility of the method are more than adequate. The method may also be used in modified form for photon beams.

  17. Impact of thermal radiation on MHD slip flow of a ferrofluid over a non-isothermal wedge

    Science.gov (United States)

    Rashad, A. M.

    2017-01-01

    This article is concerned with the problem of magnetohydrodynamic (MHD) mixed convection flow of Cobalt-kerosene ferrofluid adjacent a non-isothermal wedge under the influence of thermal radiation and partial slip. Such type of problems are posed by electric generators and biomedical enforcement. The governing equations are solved using the Thomas algorithm with finite-difference type and solutions for a wide range of magnet parameter are presented. It is found that local Nusselt number manifests a considerable diminishing for magnetic parameter and magnifies intensively in case of slip factor, thermal radiation and surface temperature parameters. Further, the skin friction coefficient visualizes a sufficient enhancement for the parameters thermal radiation, surface temperature and magnetic field, but a huge reduction is recorded by promoting the slip factor.

  18. MIPPO技术治疗有楔形骨块的锁骨干骨折%Applying MIPPO technique to treat clavicle shaft fractures with wedge fracture fragment

    Institute of Scientific and Technical Information of China (English)

    杨明; 司徒炫明; 张殿英; 王天兵; 付中国; 张培训; 陈建海; 姜保国

    2016-01-01

    目的探讨 MIPPO 技术治疗有楔形骨块的锁骨干骨折的手术方法及疗效。方法自2011年4月至2014年4月,应用闭合复位、髓内克氏针临时固定并行 MIPPO 技术,治疗有楔形骨块的锁骨干骨折26例患者为试验组(MIPPO 组)。术后定期复查 X 线片,观察骨折愈合情况,并用Constant评分评估患者的肩关节功能。同时以2007年3月至2011年11月收治的传统切开复位板钉固定的29例患者为对照组(ORIF组),进行回顾性随访研究,比较两组的疗效和并发症。结果经过平均15个月的随访,MIPPO 组无1例骨折不愈合,ORIF组有1例骨折不愈合并接骨板失效,两组之间失效率差异无统计学意义。MIPPO 组在手术时间、出血量方面优于 ORIF组,差异有统计学意义。在骨折愈合时间以及 Constant评分方面,两组间差异无统计学意义。MIPPO 组有2例患者因接骨板隆起而坚决要求二次手术取出内固定物。结论 MIPPO 技术治疗有楔形骨块锁骨干骨折,创伤小,可减少手术时间和出血量,提高愈合几率。%Background Because the nonunion rate of conservative treatment was up to 1 5%, midshaft clavicle fractures with wedge-shaped fragments had been mainly treated with operation in recent years.Plate fixation was still one of the mainstream internal fixation methods,although a few scholars advocated various intramedullary fixations.For conventional plate and screw fixation techniques,one of the principles was to fix the free wedge-shaped fragments with lag screws as far as possible.We had ever improved the conventional techniques by intramedullary K-wire assistance in reduction,binding fragments with suture,and bridging plate fixation,which obtained good effects. But we found that the open reduction and bridging plate fixation increased the operation trauma because of the long incisions.We had made further improvement on this basis.From April 2011 to April 2014,26 patients of midshaft clavicular

  19. Tomitella biformata gen. nov., sp. nov., a new member of the suborder Corynebacterineae isolated from a permafrost ice wedge.

    Science.gov (United States)

    Katayama, Taiki; Kato, Tomoko; Tanaka, Michiko; Douglas, Thomas A; Brouchkov, Anatoli; Abe, Ayumi; Sone, Teruo; Fukuda, Masami; Asano, Kozo

    2010-12-01

    Gram-reaction-positive, aerobic, non-spore-forming, irregular rod-shaped bacteria, designated AHU1821(T) and AHU1820, were isolated from an ice wedge in the Fox permafrost tunnel, Alaska. The strains were psychrophilic, growing at -5 to 27°C. Phylogenetic analysis of the 16S rRNA and gyrB gene sequences indicated that the ice-wedge isolates formed a clade distinct from other mycolic-acid-containing bacteria within the suborder Corynebacterineae. The cell wall of strains AHU1821(T) and AHU1820 contained meso-diaminopimelic acid, arabinose and galactose, indicating chemotype IV. The muramic acids in the peptidoglycan were glycolated. The predominant menaquinone was MK-9(H(2)). The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylinositol mannosides and an unidentified glycolipid. The major fatty acids were hexadecenoic acid (C(16 : 1)), hexadecanoic acid (C(16 : 0)), octadecenoic acid (C(18 : 1)) and tetradecanoic acid (C(14 : 0)). Tuberculostearic acid was present in relatively small amounts (1 %). Strains AHU1821(T) and AHU1820 contained mycolic acids with 42-52 carbons. The DNA G+C content of the two strains was 69.3-71.6 mol% (T(m)). 16S rRNA, rpoB and recA gene sequences were identical between strains AHU1821(T) and AHU1820 and those of the gyrB gene showed 99.9 % similarity. Based on phylogenetic and phenotypic evidence, strains AHU1821(T) and AHU1820 represent a single novel species of a novel genus, for which the name Tomitella biformata gen. nov., sp. nov. is proposed. The type strain of Tomitella biformata is AHU1821(T) (=DSM 45403(T) =NBRC 106253(T)).

  20. Phase relations and dehydration behaviour of calcareous sediments at P-T conditions of accretionary wedge systems

    Science.gov (United States)

    Massonne, H.-J.

    2009-04-01

    In a recent paper (Eur. J. Mineral. 20), Massonne and Willner (2008) presented P-T pseudosections for common rocks involved in accretionary wedge systems and argued that the dehydration of psammopelitic rocks could be an essential process for the formation of these systems. These authors assumed that this dehydration process leads to softening of the sedimentary cover of oceanic crust during early subduction so that this material can be scraped off the basic crust. Since many accretionary wedge systems contain metamorphosed calcareous sediments it was tested which influence carbonates, ignored by Massonne and Willner (2008), could have on the dehydration behaviour of these sediments. For this purpose, P-T pseudosections were calculated for a calcareous greywacke and a marly limestone in the system Na-Ca-K-Fe-Mn-Mg-Al-Si-Ti-C-O-H with the PERPLEX software package (Connolly, 2005) for the pressure-temperature range 1-25 kbar and 150-450°C. In addition to the thermodynamic data and solid solution models already used by Massonne and Willner (2008), a newly created quaternary (Ca-Mn-Mg-Fe2+) solid solution model was applied to carbonate with calcite structure together with an existing dolomite-ankerite model. Aragonite was considered as a pure phase. The Mn end-member was added to the previously used stilpnomelane model in order to calculate the P-T conditions of garnet formation at high pressure. Along a low geotherm of 10-12°C/km, the dehydration behaviour of a calcareous greywacke resembles that of the previously studied psammopelite. However, the relevant dehydration event (release of about 1 wt% H2O) occurs in the temperature interval 270-330°C and, thus, at temperatures about 30°C higher than in an ordinary psammopelite. The calculated compositions of fluids generated at low geotherms (

  1. Periodic verification of beam with wedge dynamics through analysis of dynalog files; Verificacion periodica de hace con cuna dinamica mediante analisis de los archivos dynalog

    Energy Technology Data Exchange (ETDEWEB)

    Camacho, C.; Perez-Alija, J.; Pedro, A.

    2013-07-01

    During the administration of the field such information is it sampled and collected in files called Dynalog. The objective of this work is the analysis of these files as a complement to regular quality control of the EDW technique, as well as the independent verification system of generation and control of dynamic wedge fields. (Author)

  2. A structural multidisciplinary approach to depression management in nursing-home residents: a multicentre, stepped-wedge cluster-randomised trial

    NARCIS (Netherlands)

    Leontjevas, R.; Gerritsen, D.L.; Smalbrugge, M.; Teerenstra, S.; Vernooij-Dassen, M.J.F.J.; Koopmans, R.T.C.M.

    2013-01-01

    BACKGROUND: Depression in nursing-home residents is often under-recognised. We aimed to establish the effectiveness of a structural approach to its management. METHODS: Between May 15, 2009, and April 30, 2011, we undertook a multicentre, stepped-wedge cluster-randomised trial in four provinces of t

  3. Deep long-period earthquakes west of the volcanic arc in Oregon: evidence of serpentine dehydration in the fore-arc mantle wedge

    Science.gov (United States)

    Vidale, John E.; Schmidt, David A.; Malone, Stephen D.; Hotovec-Ellis, Alicia J.; Moran, Seth C.; Creager, Kenneth C.; Houston, Heidi

    2014-01-01

    Here we report on deep long-period earthquakes (DLPs) newly observed in four places in western Oregon. The DLPs are noteworthy for their location within the subduction fore arc: 40–80 km west of the volcanic arc, well above the slab, and near the Moho. These “offset DLPs” occur near the top of the inferred stagnant mantle wedge, which is likely to be serpentinized and cold. The lack of fore-arc DLPs elsewhere along the arc suggests that localized heating may be dehydrating the serpentinized mantle wedge at these latitudes and causing DLPs by dehydration embrittlement. Higher heat flow in this region could be introduced by anomalously hot mantle, associated with the western migration of volcanism across the High Lava Plains of eastern Oregon, entrained in the corner flow proximal to the mantle wedge. Alternatively, fluids rising from the subducting slab through the mantle wedge may be the source of offset DLPs. As far as we know, these are among the first DLPs to be observed in the fore arc of a subduction-zone system.

  4. Thrust-related, diapiric, and extensional doming in a frontal orogenic wedge: example of the Montagne Noire, Southern French Hercynian Belt

    Science.gov (United States)

    Soula, Jean-Claude; Debat, Pierre; Brusset, Stéphane; Bessière, Gilbert; Christophoul, Frédéric; Déramond, Joachim

    2001-11-01

    The Montagne Noire, which is situated at the toe of the orogenic wedge of the French Massif Central South European Variscides, appears to be a well-suited area for studying the origin and evolution of middle to upper crustal domes adjacent to foreland basins. The data reported in the present paper show that the Montagne Noire dome is a particular type of basement-involved frontal culmination in an orogenic wedge and foreland basin system. This frontal culmination is characterized by a syn-contractional HT decompression recorded by clockwise PTt paths and widespread strata overturning in thrust and fold structures, which controlled the sedimentation in the adjacent foreland basin. These unusual characteristics are interpreted to be a result of the succession of thrusting, diapirism and extensional collapse. Antiformal stacking of syn-metamorphic thrust sheets controlled the first stages of the foreland basin development. Diapirism was essentially responsible for the HT decompression and widespread strata overturning. Extensional doming was a result of late- to post-metamorphic collapse acting on the pre-existing high-amplitude dome. Diapirism and associated isothermal decompression metamorphism, which constitute the essential difference between the Montagne Noire and 'ordinary' frontal ridges in orogenic wedges, were probably enhanced by a local partial melting of the upper to middle crust. It is suggested that the occurrence of these phenomena in front of an orogenic wedge was related to local over-thickening due to the superposition of an upper crustal antiformal stack on top of a lower crustal ramp anticline.

  5. Open innovation with an effective open innovation team.

    OpenAIRE

    Vanvoorden, Jonas

    2014-01-01

    This master's thesis explores how open innovation teams can successfully support open innovation inside of an organisation. Open innovation is a paradigm introduced by Henry Chesbrough (2003) a decade ago. It expands the innovation potential of organisations by opening them up to new ways of working with external partners. To implement open innovation, many companies rely on a small group of managers named open innovation teams. Although open innovation teams can potentially be vital for impl...

  6. Limited climate control of the Chugach/St. Elias thrust wedge in southern Alaska demonstrated by orogenic widening during Pliocene to Quaternary climate change

    Science.gov (United States)

    Meigs, Andrew

    2014-05-01

    Critical taper wedge theory is the gold standard by which climate control of convergent orogenic belts is inferred. The theory predicts (and models reproduce) that an orogenic belt narrows if erosion increases in erosion in the face of a constant tectonic influx. Numerous papers now argue on the basis of thermochronologic data that the Chugach/ St. Elias Range (CSE) of southern Alaska narrowed as a direct response to Quaternary climate change because glaciers dominated erosion of the orogenic belt. The CSE formed in response to collision of a microplate with North America and is notable because glacial erosion has dominated the CSE for the past 5 to 6 Ma. An increase in sediment accumulation rates in the foreland basin over that time suggests that glacial erosion become more efficient. If correct, it is possible that glacial erosion outpaced rock influx thereby inducing a climatically controlled narrowing of the orogenic wedge during the Quaternary. Growth strata preserved within the wedge provide a test of that interpretation because they demonstrate the spatial and temporal pattern of deformation during the Pliocene to Quaternary climate transition. A thrust front established between 6 and 5 Ma jumped towards the foreland by 30 and 15 km at 1.8 and 0.25 Ma, respectively. Distributed deformation within the thrust belt accompanied the thrust front relocations. Continuous exhumation recorded by low-temperature thermochronometers occurred contemporaneously with the shortening, parallel the structural not the topographic grain, and ages become younger towards the foreland as well. Interpreted in terms of critical wedge theory, continuous distributed deformation reflects a sub-critical wedge taper resulting from the combined effects of persistent exhumation and incremental accretion and orogenic widening via thrust front jumps into the undeformed foreland. Taper angle varies according to published cross-sections and ranges from 3 to 9 degrees. If the wedge oscillated

  7. [Pulmonary artery wedge pressure and heart rate measurement during pharmacological stress induction for left cardial function diagnosis in horses with and without heart disease].

    Science.gov (United States)

    Gehlen, H; Groner, U; Rohn, K; Stadler, P

    2006-07-01

    In 18 horses, the pulmonary artery wedge pressure and the heart rate were measured during pharmacological stress load. 12 horses were healthy (4 trained, 8 untrained) and 6 horses had a heart disease (3 trained, 3 untrained). Pharmacological stress induction was carried out with the sympathomimetic drug dobutamine at a dosage rate of 7.5 microg/kg/min over 10 minutes of infusion. At the fourth minute, the parasympatholytic drug atropine was administered (5 microg/kg bw), and the heart rate and the pulmonary artery wedge pressure were continuously measured over 26 minutes. During sole dobutamine infusion, a significant decrease in heart rate and a significant increase in pulmonary artery wedge pressure were observed. After the application of atropine in the fourth minute, a significant increase in heart rate (from 35.7 +/- 6 up to 106 +/- 38/ min) and in pulmonary artery wedge pressure (from 15.7 +/- 3 up to 24 +/- 8.6 mmHg) were visible in the group of healthy horses. The horses with heart diseases had a significantly higher increase in both parameters (heart rate and pulmonary artery wedge pressure) with a significantly positive correlation (r = 0.7). The heart rate increased in the horses with heart diseases from 35.2 +/- 2,8 beats/min up to 132 +/- 45.7 beats/min and the pulmonary artery wedge pressure increased from 17.3 +/- 3,2 mmHg up to 32.7 +/- 13 mmHg. The cardiac status (healthy or heart disease) as well as the training level of the horses (untrained or trained) had a significant influence on the heart rate and the pulmonary artery wedge pressure. The untrained horses (healthy and heart disease) showed significantly higher values over a longer period of time than did the trained horses with the same cardiac status. Additionally the influence of pharmacological stress induction on echocardiographic parameters was investigated. The left atrial size (p = 0.015) and left ventricular diameter were significanly different in the systole (p = 0.008) and in the

  8. Open3DGRID

    DEFF Research Database (Denmark)

    Tosco, Paolo; Balle, Thomas

    2011-01-01

    Description Open3DGRID is an open-source software aimed at high-throughput generation of molecular interaction fields (MIFs). Open3DGRID can generate steric potential, electron density and MM/QM electrostatic potential fields; furthermore, it can import GRIDKONT binary files produced by GRID and Co......, Solaris x86 32/64-bit, FreeBSD 32/64-bit, Intel Mac OS X 32/64-bit), source code is portable and can be compiled under any *NIX platform supporting POSIX threads. The modular nature of the code allows for easy implementation of new features, so that the core application can be customized to meet...

  9. OpenLabNotes

    DEFF Research Database (Denmark)

    List, Markus; Franz, Michael; Tan, Qihua;

    2015-01-01

    be advantageous if an ELN was Integrated with a laboratory information management system to allow for a comprehensive documentation of experimental work including the location of samples that were used in a particular experiment. Here, we present OpenLabNotes, which adds state-of-the-art ELN capabilities to Open......LabFramework, a powerful and flexible laboratory information management system. In contrast to comparable solutions, it allows to protect the intellectual property of its users by offering data protection with digital signatures. OpenLabNotes effectively Closes the gap between research documentation and sample management...

  10. OpenNI cookbook

    CERN Document Server

    Falahati, Soroush

    2013-01-01

    This is a Cookbook with plenty of practical recipes enriched with explained code and relevant screenshots to ease your learning curve. If you are a beginner or a professional in NIUI and want to write serious applications or games, then this book is for you. Even OpenNI 1 and OpenNI 1.x programmers who want to move to new versions of OpenNI can use this book as a starting point. This book uses C++ as the primary language but there are some examples in C# and Java too, so you need to have about a basic working knowledge of C or C++ for most cases.

  11. Open Media Science

    DEFF Research Database (Denmark)

    Møller Moltke Martiny, Kristian; Pedersen, David Budtz; Hansted, Allan Alfred Birkegaard

    2016-01-01

    In this article, we present three challenges to the emerging Open Science (OS) movement: the challenge of communication, collaboration and cultivation of scientific research. We argue that to address these challenges OS needs to include other forms of data than what can be captured in a text...... and extend into a fully-fledged Open Media movement engaging with new media and non-traditional formats of science communication. We discuss two cases where experiments with open media have driven new collaborations between scientists and documentarists. We use the cases to illustrate different advantages...

  12. Linking open vocabularies

    CERN Document Server

    Greifender, Elke; Seadle, Michael

    2013-01-01

    Linked Data (LD), Linked Open Data (LOD) and generating a web of data, present the new knowledge sharing frontier. In a philosophical context, LD is an evolving environment that reflects humankinds' desire to understand the world by drawing on the latest technologies and capabilities of the time. LD, while seemingly a new phenomenon did not emerge overnight; rather it represents the natural progression by which knowledge structures are developed, used, and shared. Linked Open Vocabularies is a significant trajectory of LD. Linked Open Vocabularies targets vocabularies that have traditionally b

  13. Ice-wedge Pseudomorphs Showing Climatic Change Since the Late Pleistocene in the Source Area of the Yellow River, Northeast Tibet

    Institute of Scientific and Technical Information of China (English)

    CHENG Jie; ZHANG Xujiao; TIAN Mingzhong; YU Wenyang; YU Jiangkuan; TANG Dexiang; YUE Jianwei

    2005-01-01

    The source area of the Yellow River is located in the northeastern Tibetan Plateau, and is a high-elevation region with the annual mean temperature of-3.9℃. The ice-wedge pseudomorphs discovered in this region are recognized as two types.One was found in sandy gravel beds of the second terrace of the Yellow River. This ice-wedge pseudomorph is characterized by higher ratio of breadth/depth, and are 1~1.4 m wide and about 1 m deep. The bottom border of the ice-wedge pseudomorph is round arc in section. Another discovered in the pedestal of the second terrace has lower ratio of width/depth, and is 0.3~1.0 m wide and 1~2 m deep. Its bottom border is sharp. Based on the TL dating, the former was formed at the middle Holocene (5.69±0.43 ka BP and 5.43±0.41 ka BP),that is, the Megathermal, and the latter was formed at the late Last Glacial Maximum (13.49± 1.43 ka BP).Additionally, the thawing-freezing folders discovered in the late Late Pleistocene proluvium are 39.83±3.84 ka BP in age. The study on the ice-wedge pseudomorphs showed that the air temperature was lowered by up to 6~7 ℃ in the source area of the Yellow River when the ice-wedge pseudomorphs and thawing-freezing folds developed.

  14. Commentary: open access, open business, closed fairness!

    Science.gov (United States)

    Moustafa, Khaled

    2015-01-01

    A strong trend to move from print to online publication is largely perceived in scientific and nonscientific fields. A growing number of publishers increasingly opt for online publication as an option or a compulsory alternative. From readers' perspective, this is a highly appreciated facility, but from the author's, things are different mainly because of excessive article processing charges (APC) that make the open access system sometimes as a hindrance for many authors but a lucrative enterprise for many shareholders, enticing the most traditional and conservative publishers.

  15. Reframing Open Big Data

    DEFF Research Database (Denmark)

    Marton, Attila; Avital, Michel; Jensen, Tina Blegind

    2013-01-01

    Recent developments in the techniques and technologies of collecting, sharing and analysing data are challenging the field of information systems (IS) research let alone the boundaries of organizations and the established practices of decision-making. Coined ‘open data’ and ‘big data......’, these developments introduce an unprecedented level of societal and organizational engagement with the potential of computational data to generate new insights and information. Based on the commonalities shared by open data and big data, we develop a research framework that we refer to as open big data (OBD......) by employing the dimensions of ‘order’ and ‘relationality’. We argue that these dimensions offer a viable approach for IS research on open and big data because they address one of the core value propositions of IS; i.e. how to support organizing with computational data. We contrast these dimensions with two...

  16. Summer Restaurant opening times

    CERN Multimedia

    2015-01-01

    Restaurant No. 1: Open as usual in July and August. Open from 7 a.m. to 10 p.m. on Thursday, 10 September (Jeûne genevois).   Restaurant No. 2: Open as usual in July and August. Closed on Thursday, 10 September (Jeûne genevois) and Friday, 11 September. The Brasserie (table service) will be closed from Monday, 4 August to Friday, 11 September.   Restaurant No. 3: Open as usual in July and August, but closed on Saturday, 1 August; Saturday, 15 August; Thursday, 10 September (Jeûne genevois); and Friday, 11 September.   Snack bar in Building 54: Closed from Monday, 4 August to Friday, 11 September.   Snack bars in Buildings 13, 30 and 6: Closed on Thursday, 10 September (Jeûne genevois) and Friday, 11 September.

  17. Official Antimonopoly Website Opens

    Institute of Scientific and Technical Information of China (English)

    Guo Liqin

    2011-01-01

    @@ China's antimonopoly law website opened in December 19, 2009.Netizens can log in at http://www.antimonopolylaw.org to see the update information of indepth anti-monopoly law theory and case studies, according to the organizer.

  18. Privacy and Open Government

    Directory of Open Access Journals (Sweden)

    Teresa Scassa

    2014-06-01

    Full Text Available The public-oriented goals of the open government movement promise increased transparency and accountability of governments, enhanced citizen engagement and participation, improved service delivery, economic development and the stimulation of innovation. In part, these goals are to be achieved by making more and more government information public in reusable formats and under open licences. This paper identifies three broad privacy challenges raised by open government. The first is how to balance privacy with transparency and accountability in the context of “public” personal information. The second challenge flows from the disruption of traditional approaches to privacy based on a collapse of the distinctions between public and private sector actors. The third challenge is that of the potential for open government data—even if anonymized—to contribute to the big data environment in which citizens and their activities are increasingly monitored and profiled.

  19. Trade Openness and Inequality

    Directory of Open Access Journals (Sweden)

    Nasfi Fkili Wahiba

    2013-12-01

    Full Text Available This paper is intended to test the effect of trade openness on inequality of wage distribution in Tunisia. The study through econometric estimates showed that the impact of openness on inequality is remarkable in the period marked by an intensive integration into the global economy. However, investment in human capital can have a positive effect and leas to reduce wage disparities. Opening to the world economy is able to achieve positive economic performance, except that one of the challenges for Tunisia is to find the best equilibrium between the benefits and costs of this policy. Globalization can be beneficial for the economy, but the debate is open about its impact on the social level, many are those who accuse it of increasing disparities and inequalities between workers.

  20. ON REICH'S OPEN QUESTION

    Institute of Scientific and Technical Information of China (English)

    张石生

    2003-01-01

    Under more general form and more general conditions an affirmative answer to Reich's open question is given. The results presented also extend and improve some recent results of Reich, Shioji, Takahashi and Wittmann.