WorldWideScience

Sample records for aeschynite

  1. The Photoluminescence Spectra of the Aeschynite Group Minerals

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Raman and photoluminescence spectra of the metamict and annealing recrystallization titanoaeschynite-(Nd) and nioboaeschynite-(Ce), found in Baiyunobo mineral deposit in China, were measured and discussed. The peaks or bands in the spectra of the metamic minerals are weak, broad and diffuse, but sharpen notably after heating. The results show that the distortion of the structure and disorder state of the elements exists in the minerals when natural crystalline minerals transformed into metamict minerals after a long period of self-irradiation structure damaging. And all bands in the photoluminescence spectra of the aeschynite group mineral stem from emission transitions of Nd3+, when 514.5nm laser is used as the excitation source.

  2. The Chemistry of Niobium Mineralisation at Bayan Obo,Inner Mongolia, China: Constraints on the Hydrothermal Precipitation and Alteration of Nb-Minerals%The Chemistry of Niobium Mineralisation at Bayan Obo,Inner Mongolia,China:Constraints on the Hydrothermal Precipitation and Alteration of Nb-Minerals

    Institute of Scientific and Technical Information of China (English)

    Martin SMITH; John SPRATT

    2012-01-01

    As well as world class Fe and REE resources the Bayan Obo mineral deposits also hosts significant niobium resources (estimated as 2.2 Mt Nb with an average grade of 0.13 wt% Nb).Niobium in this study is primarily hosted in aeschynite-(Ce) and (Nd),but with subsidiary amounts of pyrochlore,fergusonite-(Ce),fersmite and columbite.Here we report on the paragenetic and textural setting of aeschynite,pyrochlore and fergusonite in the main ore bodies and in a carbonatite dyke.Niobium in a carbonatite sample is hosted in a phase tentatively (due to significant Ca,Mn and Ti contents) identified as fergusonite-(Ce).Aeschynite occurs overgrowing foliation in banded ores,in fractures and vugs in aegirine-rich rocks and in calcite veins.The composition in all settings is similar,but some examples in banded ores develop significant zonation in Y,Th and the REE,inferred to relate to buffering of halogen acid species to low levels by dissolution and fluoritisation of calcite,and the preferential precipitation of LREE from solution due to lower mineral solubility products compared to the HREE.Although lower in total concentration the ratios of REE in pyrochlore are similar to those of aeschynite and suggest the same metal source.The crystallisation of pyroehlore probably relates to growth in paragenetic settings where carbonates had already been eliminated and hence the buffering of F-species activities in the hydrothermal fluid was reduced.Both aeschynite and pyrochlore show evidence of alteration.Primary alteration of aeschynite resulted in leaching of A-site cations (Ca,REE,Th) and Nh,addition of Fe,and ultimately replacement by Ba-Ti phases (baotite and bafertisite).Secondary,metamictisation enhanced,possibly supergene alteration of pyrochlore resulted in hydration,leaching of A-site cations leading to the development of lattice vacancies and increases in Si.The presence of hydrothermal Nb resources at Bayan Obo suggests there may be potential for further Nb discoveries in

  3. Sedimentary carbonate-hosted giant Bayan Obo REE-Fe-Nb ore deposit of Inner Mongolia, China; a cornerstone example for giant polymetallic ore deposits of hydrothermal origin

    Science.gov (United States)

    Chao, E.C.T.; Back, J.M.; Minkin, J.A.; Tatsumoto, M.; Junwen, Wang; Conrad, J.E.; McKee, E.H.; Zonglin, Hou; Qingrun, Meng; Shengguang, Huang

    1997-01-01

    Detailed, integrative field and laboratory studies of the textures, structures, chemical characteristics, and isotopically determined ages and signatures of mineralization of the Bayan Obo deposit provided evidence for the origin and characteristics favorable for its formation and parameters necessary for defining giant polymetallic deposits of hydrothermal origin. Bayan Obo is an epigenetic, metasomatic, hydrothermal rare earth element (REE)-Fe-Nb ore deposit that is hosted in the metasedimentary H8 dolostone marble of the Middle Proterozoic Bayan Obo Group. The metasedimentary sequence was deposited on the northern continental slope of the North China craton. The mine area is about 100 km south of the suture marking Caledonian subduction of the Mongolian oceanic plate from the north beneath the North China craton. The mineralogy of the deposit is very complex, consisting of more than 120 different minerals, some of which are epigenetic minerals introduced by hydrothermal solutions, and some of which are primary and secondary metamorphic minerals. The major REE minerals are monazite and bastnaesite, whereas magnetite and hematite are the dominant Fe-ore minerals, and columbite is the most abundant Nb mineral. Dolomite, alkali amphibole, fluorite, barite, aegirine augite, apatite, phlogopite, albite, and microcline are the most widespread gangue minerals. Three general types of ores occur at Bayan Obo: disseminated, banded, and massive ores. Broad zoning of these ore types occurs in the Main and East Orebodies. Disseminated ores are in the outermost zone, banded ores are in the intermediate zone, and massive ores are in the cores of the orebodies. On the basis of field relations, host rocks, textures, structures, and mineral assemblages, many varieties of these three types of ores have been recognized and mapped. Isotopic dating of monazite, bastnaesite, aeschynite, and metamorphic and metasomatic alkali amphiboles associated with the deposit provides constraints

  4. Round Top Mountain rhyolite (Texas, USA), a massive, unique Y-bearing-fluorite-hosted heavy rare earth element (HREE) deposit

    Institute of Scientific and Technical Information of China (English)

    PINGITORE Nicholas; CLAGUE Juan; GORSKI Daniel

    2014-01-01

    Round Top Mountain in Hudspeth County, west Texas, USA is a surface-exposed rhyolite intrusion enriched in Y and heavy rare earth elements (HREEs), as well as Nb, Ta, Be, Li, F, Sn, Rb, Th, and U. The massive tonnage, estimated at well over 1 billion tons, of the deposit makes it a target for recovery of valuable yttrium and HREEs (YHREEs), and possibly other scarce ele-ments. Because of the extremely fine grain size of the mineralized rhyolite matrix, it has not been clear which minerals host the YHREEs and in what proportions. REE-bearing minerals reported in the deposit included bastnäsite-Ce, Y-bearing fluorite, xeno-time-Y, zircon, aeschynite-Ce, a Ca-Th-Pb fluoride, and possibly ancylite-La and cerianite-Ce. Extended X-ray absorption fine struc-ture (EXAFS) indicated that virtually all of the yttrium, a proxy for the HREEs, resided in a coordination in the fluorite-type crystal structure, rather than those in the structures of bastnäsite-Ce and xenotime-Y. The YREE grade of the Round Top deposit was just over 0.05%, with 72%of this consisting of YHREEs. This grade was in the range of the South China ionic clay deposits that supply essentially all of the world’s YHREEs. Because the host Y-bearing fluorite is soluble in dilute sulfuric acid at room temperature, a heap leaching of the deposit appeared feasible, aided by the fact that 90%-95%of the rock consists of unreactive and insoluble feld-spars and quartz. The absence of overburden, remarkable consistency of mineralization grade throughout the massive rhyolite, prox-imity (a few km) to a US interstate highway, major rail systems and gas and electricity, temperate climate, and stable political location in the world’s largest economy all enhanced the potential economic appeal of Round Top.

  5. Magmatic and post-magmatic phenomena in the Karkonosze granite and its metamorphic envelope (West Sudetes, SW Poland)

    Science.gov (United States)

    Kozłowski, Andrzej; Ilnicki, Sławomir; Matyszczak, Witold; Marcinowska, Agnieszka

    2016-09-01

    Mineralogical studies of the Karkonosze granite (ca. 322-312 Ma) and its surroundings in West Sudetes (SW Poland) have provided data on Nb-Ta-REE minerals from pegmatites in the NE part of the pluton and several new finds of Ag minerals and 15 oxygenic Bi phases, hitherto not reported from the massif. The Karkonosze pegmatites are enriched in HREE as fergusonite-(Y) or xenotime-(Y) appear in almost every studied pegmatite, together with a subordinate assemblage of the aeschynite, euxenite or columbite group. The abundance of LREE minerals such as allanite-( Ce) and the monazite group, correlates inversely with the Nb-Ta-Ti minerals, whilst an early generation of monazite-(Ce) revealed an exceptionally high amount of Nd (up to 22 wt.% of Nd2O3 ). The physical and chemical conditions during the magmatic and post-magmatic processes were reconstructed and the effects of contact metamorphism in amphibolites from hornfelsed zones examined. Changes in solution composition and concentration at the early magmatic stage (825-920°C), pegmatitic stage overlapping with hydrothermal (560°C which ended at 160-90°C) and clearly hydrothermal stage (400 to 110°C) were studied in detail by means of melt and fluid inclusions in quartz. Furthermore, post-magmatic fluids, including some enriched in Li and B, were identified in rock-forming quartz from the whole pluton. In turn, study of the amphibolites indicates that the pair cummingtonite + anorthite or the presence of Ca-rich plagioclase with actinolite seem to be reliable mineral proxies of the thermal impact of the granitoid body on amphibolites in its envelope. The inferred conditions of the contact processes (450-550°C, 2.5- 4.8 kbar) point to an elevated geothermal gradient (ca. 32-45°C/km) probably reflecting the heat flow induced by the Karkonosze intrusion. Moreover, despite the textural and mineral changes imposed by regional and contact metamorphism, the amphibolites have their pre-metamorphic (magmatic) geochemical

  6. Geophysical interpretation of U, Th, and rare earth element mineralization of the Bokan Mountain peralkaline granite complex, Prince of Wales Island, southeast Alaska

    Science.gov (United States)

    McCafferty, Anne E.; Stoeser, Douglas B.; Van Gosen, Bradley S.

    2014-01-01

    A prospectivity map for rare earth element (REE) mineralization at the Bokan Mountain peralkaline granite complex, Prince of Wales Island, southeastern Alaska, was calculated from high-resolution airborne gamma-ray data. The map displays areas with similar radioelement concentrations as those over the Dotson REE-vein-dike system, which is characterized by moderately high %K, eU, and eTh (%K, percent potassium; eU, equivalent parts per million uranium; and eTh, equivalent parts per million thorium). Gamma-ray concentrations of rocks that share a similar range as those over the Dotson zone are inferred to locate high concentrations of REE-bearing minerals. An approximately 1300-m-long prospective tract corresponds to shallowly exposed locations of the Dotson zone. Prospective areas of REE mineralization also occur in continuous swaths along the outer edge of the pluton, over known but undeveloped REE occurrences, and within discrete regions in the older Paleozoic country rocks. Detailed mineralogical examinations of samples from the Dotson zone provide a means to understand the possible causes of the airborne Th and U anomalies and their relation to REE minerals. Thorium is sited primarily in thorite. Uranium also occurs in thorite and in a complex suite of ±Ti±Nb±Y oxide minerals, which include fergusonite, polycrase, and aeschynite. These oxides, along with Y-silicates, are the chief heavy REE (HREE)-bearing minerals. Hence, the eU anomalies, in particular, may indicate other occurrences of similar HREE-enrichment. Uranium and Th chemistry along the Dotson zone showed elevated U and total REEs east of the Camp Creek fault, which suggested the potential for increased HREEs based on their association with U-oxide minerals. A uranium prospectivity map, based on signatures present over the Ross-Adams mine area, was characterized by extremely high radioelement values. Known uranium deposits were identified in the U-prospectivity map, but the largest tract occurs