WorldWideScience

Sample records for aeruginosa inhibits in-vitro

  1. Qualitative and quantitative determination of quorum sensing inhibition in vitro

    DEFF Research Database (Denmark)

    Jakobsen, Tim Holm; van Gennip, Maria; Christensen, Louise Dahl

    2011-01-01

    The formation of biofilms in conjunction with quorum sensing (QS)-regulated expression of virulence by opportunistic pathogens contributes significantly to immune evasion and tolerance to a variety of antimicrobial treatments. The present protocol describes methods to determine the in vitro...... of reporter strains consisting of a lasB-gfp or rhlA-gfp fusion in P. aeruginosa for qualitative and quantitative evaluation of the inhibition of the two major QS pathways, monitored as reduced expression of green fluorescence. By the use of an in vitro flow cell system it is possible to study the QSI...... activity by monitoring its ability to interfere with the protective functions of bacterial biofilm. For evaluation of the global effects of QSI compounds, we present a protocol for the DNA microarray-based transcriptomics. Using these in vitro methods it is possible to evaluate the potential of various QSI...

  2. Photodynamic antimicrobial therapy to inhibit pseudomonas aeruginosa of corneal isolates (Conference Presentation)

    Science.gov (United States)

    Durkee, Heather A.; Relhan, Nidhi; Arboleda, Alejandro; Halili, Francisco; De Freitas, Carolina; Alawa, Karam; Aguilar, Mariela C.; Amescua, Guillermo; Miller, Darlene; Parel, Jean-Marie

    2016-03-01

    Keratitis associated with Pseudomonas aeruginosa is difficult to manage. Treatment includes antibiotic eye drops, however, some strains of Pseudomonas aeruginosa are resistant. Current research efforts are focused on finding alternative and adjunct therapies to treat multi-drug resistant bacteria. One promising alternate technique is photodynamic therapy (PDT). The purpose of this study was to evaluate the effect of riboflavin- and rose bengal-mediated PDT on Pseudomonas aeruginosa keratitis isolates in vitro. Two isolates (S+U- and S-U+) of Pseudomonas aeruginosa were derived from keratitis patients and exposed to five experimental groups: (1) Control (dark, UV-A irradiation, 525nm irradiation); (2) 0.1% riboflavin (dark, UV-A irradiation); and (3) 0.1% rose bengal, (4) 0.05% rose bengal and (5) 0.01% rose bengal (dark, 525nm irradiation). Three days after treatment, in dark conditions of all concentration of riboflavin and rose bengal showed no inhibition in both S+U- and S-U+ strains of Pseudomonas aeruginosa. In 0.1% and 0.05% rose bengal irradiated groups, for both S+U- and S-U+ strains, there was complete inhibition of bacterial growth in the central 50mm zone corresponding to the diameter of the green light source. These in vitro results suggest that rose bengal photodynamic therapy may be an effective adjunct treatment for Pseudomonas aeruginosa keratitis.

  3. Ambroxol inhibits mucoid conversion of Pseudomonas aeruginosa and contributes to the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms.

    Science.gov (United States)

    Wang, Wenlei; Yu, Jialin; He, Yu; Wang, Zhengli; Li, Fang

    2016-07-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that can cause severe infections in immunocompromised individuals. Because it forms biofilms, which protect against host immune attack and increase resistance to conventional antibiotics, mucoid P. aeruginosa is nearly impossible to eradicate. Moreover, mucoid conversion of P. aeruginosa in cystic fibrosis (CF) patients leads to poor outcomes. This conversion is mainly due to mucA gene mutation, which is thought to be induced by polymorphonuclear leukocytes (PMNs) and the reactive oxygen species they release. Ambroxol, a mucolytic agent with antioxidant characteristics, is used clinically, and this compound has recently been demonstrated to possess anti-biofilm properties. In this study, we found that ambroxol inhibits the H2 O2 -mediated conversion of P. aeruginosa from a non-mucoid to a mucoid phenotype, an effect that is due to its antioxidant property against H2 O2 . Furthermore, the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms was increased in vitro when used in combination with ambroxol.

  4. In vitro investigate of the inhibition of baicalein on Pseudomonas aeruginosa motility%黄芩素抑制铜绿假单胞菌运动能力的体外研究

    Institute of Scientific and Technical Information of China (English)

    董必英; 孔晋亮; 陈一强; 王可; 罗劲; 李冰; 黄洪春

    2016-01-01

    OBJECTIVE To investigate the destructive effect of minimum inhibitory concentration (MIC)of baica-lein on swimming motility,swarmming motility and twitching motility of Pseudomonas aeruginosa and provide ba-sis for studying its effects on bacterial biofilm,so as to provide references for clinical medication.METHODS The experiments were divided into control group,different sub-MIC concentrations of baicalein group and clarithromy-cin group from Mar.2015 to Jul.2015.The MIC of test drugs were measured by the double dilution method.Dif-ferent medium were made,germ-free toothpick was vaccinated by an overnight single strain in the tablet,the shape of the zone that bacteria was observed,and the zone of motilities were measured to assess the motility of bac-teria.RESULTS The concentric region diameters formed by the swimming motility of P .aeruginosa in different concentrations of baicalein groups had no difference with control group,and the diameters of different concentra-tions of baicalein groups and control group were bigger than clarithromycin group (P <0.05).The surrounding of the circular area formed a sharp of radial-like gear in control group,but smooth surrounding could be seen in baica-lein groups with the concentrations of 128μg/ml,64μg/ml and clarithromycin group,without pseudopodial radia-tion.Their diameters of the circular area were smaller than those of control group (P <0.05).CONCLUSION It is shown that sub-MIC concentrations of baicalein cannot inhibit the swimming motility of P .aeruginosa,but can in-hibit the swarming motility and twitching motility significantly.It is shown that baicalein with the concentration of 64μg/ml can inhibit the twitching motility of P .aeruginosa and have no difference with clarithromycin.%目的:探讨最低抑菌浓度(MIC)的黄芩素对铜绿假单胞菌泳动、丛集运动和颤搐运动的影响,为研究其细菌生物膜的影响奠定基础,从而为临床用药提供参考。方法2015年3月-2015

  5. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    OpenAIRE

    Alicja Zajdel; Adam Wilczok; Ludmiła Węglarz; Zofia Dzierżewicz

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the deca...

  6. Inhibition of human lymphocyte proliferation and cleavage of interleukin-2 by Pseudomonas aeruginosa proteases

    DEFF Research Database (Denmark)

    Theander, T G; Kharazmi, A; Pedersen, B K

    1988-01-01

    This study was undertaken to determine the effect of Pseudomonas aeruginosa alkaline protease (AP) and elastase (ELA) on human lymphocyte function. AP at 50 micrograms/ml and ELA at 12 micrograms/ml caused a 50% inhibition of phytohemagglutinin-induced proliferation. There was no difference......, the inhibition was partly reversed. ELA at 10 micrograms/ml cleaved IL-2, as judged by size chromatography of a reaction mixture containing 125I-labeled IL-2 and the proteases. The ELA-digested IL-2 exhibited a reduced binding capacity to IL-2 receptors on the lymphocytes. Furthermore, treatment...... of phytohemagglutinin-stimulated lymphocytes with AP and ELA resulted in inhibition of binding of intact IL-2 to IL-2 receptors on the stimulated lymphocytes. These results indicated that P. aeruginosa-derived enzymes are able to interfere with human lymphocyte function in vitro and that this effect might be due...

  7. Pharmacodynamic effects of subinhibitory concentrations of imipenem on Pseudomonas aeruginosa in an in vitro dynamic model.

    OpenAIRE

    1994-01-01

    The postantibiotic effect (PAE), sub-MIC effect (SME), and postantibiotic sub-MIC effect (PASME) of imipenem on Pseudomonas aeruginosa were investigated with an in vitro dynamic model reproducing in vivo elimination kinetics of the antibiotic. The PASMEs were constantly longer than the corresponding SMEs, but differences between them were not statistically significant. Both PASMEs and SMEs were initially bactericidal and were significantly longer than PAEs. The mean values of both PASMEs and ...

  8. In vitro sensitivity of Acinetobacter baumannii and Pseudomonas aeruginosa to carbapenems among intensive care unit patients.

    Science.gov (United States)

    Guzek, A; Korzeniewski, K; Nitsch-Osuch, Aneta; Rybicki, Z; Prokop, E

    2013-01-01

    Acinetobacter baumannii and Pseudomonas aeruginosa pathogens are the most common causes of fatal pneumonia among patients treated in Intensive Care Units (ICU). Carbapenems remain a group of antibiotics characterized by the highest effectiveness in treatment of heavy infections of the lower respiratory tract. This study compared in vitro sensitivity of A. baumannii and P. aeruginosa to three carbapenems: imipenem, meropenem and doripenem. The material was collected from 71 patients treated in the ICU from April 2009 to January 2010. Bronchial tree was the predominant source of samples. Fifty-four strains of A. baumannii and 17 strains of P. aeruginosa were analyzed. Sensitivity to carbapenems was interpreted in line with Clinical and Laboratory Standard Institute (CLSI) and European Committee for Antimicrobial Susceptibility Testing (EUCAST) criteria (imipenem and meropenem) or in compliance with the Food and Drug Administration (FDA) and CLSI guidelines (doripenem). We found that A. baumannii was significantly more often sensitive to imipenem than to doripenem and meropenem, but only according to the CLSI and FDA and not EUCAST criteria. The sensitivity of P. aeruginosa was higher to imipenem than to doripenem and meropenem, according to both CLSI and EUCAST criteria (64.7 %). We conclude that the EUCAST criteria demonstrate a higher rigor than those of CLSI and FDA in the determination of carbapenems sensitivity. Imipenem appears more effective than doripenem and meropenem in treatment of A. baumannii and P. aeruginosa infections.

  9. Phytic Acid Inhibits Lipid Peroxidation In Vitro

    Directory of Open Access Journals (Sweden)

    Alicja Zajdel

    2013-01-01

    Full Text Available Phytic acid (PA has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II/ascorbate-induced peroxidation, as well as Fe(II/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II/ascorbate. The observed inhibitory effect of PA on Fe(II/ascorbate-induced lipid peroxidation was lower (10–20% compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II/ascorbate-induced peroxidation. In the absence of Fe(II/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products.

  10. Phytic acid inhibits lipid peroxidation in vitro.

    Science.gov (United States)

    Zajdel, Alicja; Wilczok, Adam; Węglarz, Ludmiła; Dzierżewicz, Zofia

    2013-01-01

    Phytic acid (PA) has been recognized as a potent antioxidant and inhibitor of iron-catalyzed hydroxyl radical formation under in vitro and in vivo conditions. Therefore, the aim of the present study was to investigate, with the use of HPLC/MS/MS, whether PA is capable of inhibiting linoleic acid autoxidation and Fe(II)/ascorbate-induced peroxidation, as well as Fe(II)/ascorbate-induced lipid peroxidation in human colonic epithelial cells. PA at 100 μM and 500 μM effectively inhibited the decay of linoleic acid, both in the absence and presence of Fe(II)/ascorbate. The observed inhibitory effect of PA on Fe(II)/ascorbate-induced lipid peroxidation was lower (10-20%) compared to that of autoxidation. PA did not change linoleic acid hydroperoxides concentration levels after 24 hours of Fe(II)/ascorbate-induced peroxidation. In the absence of Fe(II)/ascorbate, PA at 100 μM and 500 μM significantly suppressed decomposition of linoleic acid hydroperoxides. Moreover, PA at the tested nontoxic concentrations (100 μM and 500 μM) significantly decreased 4-hydroxyalkenal levels in Caco-2 cells which structurally and functionally resemble the small intestinal epithelium. It is concluded that PA inhibits linoleic acid oxidation and reduces the formation of 4-hydroxyalkenals. Acting as an antioxidant it may help to prevent intestinal diseases induced by oxygen radicals and lipid peroxidation products.

  11. A preliminary study on siHybrids technique on inhibiting the efflux pump gene mexB of Pseudomonas aeruginosa in vitro%siHybrids技术沉默铜绿假单胞菌外排泵 mexB基因体外效应的初步研究

    Institute of Scientific and Technical Information of China (English)

    毛艳; 宋莹; 陈佳; 许东; 邢铭友; 王丽丽; 谢旭华; 龚凤云; 夏超; 申爱霞

    2011-01-01

    synthesized three siHybrids molecule and one negative scamble siHybrids molecule. Pseudomonas aeruginosa PAO1 were intervened by the siHybrids molecules in 50 nmol/L, respectively. And the experiments were made of control groups[blank and scamble (sc) -001]and intervened groups[siHybrids( si ) -001, siHybrids( si ) -002 and siHybrids(si) -003]of Pseudomonas aeruginosa PAO1. The targeting efflux pump gene mexB mRNA expressions of Pseudomonas aeruginosa PAO1, including all groups, were measured by real-time PCR in 12 h and 24 h after interference in vitro. Further, the minimal inhibitory concentration (MIC) of chlormycetinCP, erythrocin( EM ), levofloxacin ( L-OFLX), ceftazidime ( CAZ), meropenem (MER) to those groups were detected by using Mueller-Hinton broth dilution before and after interference. Results The relative mexB mRNA amounts of Pseudomonas aeruginosa PAO1 intervened by different siHybrids were not much more different from each other after 12 h,but the expression of mexB mRNA of the intervened group ( si-001 ,si-002 ,si-003 ) was much lower than control groups after interference for 24 h. The relative mexB mRNA amounts, comparing 12 h with 24 h, we would find the blank control and negative control submit escalating trend. And the intervened control ,three different siHybrids were all with a downward tendency. However, in presence of 50 nmol/L siHybrids, the minimal inhibitory concentration(MIC) of CP, EM, L-OFLX, CAZ, MER to those controls were not much more different before and after interference. Conclusion On level of the mRNA expressions, siHybrids could inhibit the efflux pump gene mexB of Pseudomonas aeruginosa PAO1 in vitro, and within 24 h would be able to function effectively. Further, the effect was time-dependent.

  12. In vitro management of hospital Pseudomonas aeruginosa biofilm using indigenous T7-like lytic phage.

    Science.gov (United States)

    Ahiwale, Sangeeta; Tamboli, Nilofer; Thorat, Kiran; Kulkarni, Rajendra; Ackermann, Hans; Kapadnis, Balasaheb

    2011-02-01

    Pseudomonas aeruginosa, a human pathogen capable of forming biofilm and contaminating medical settings, is responsible for 65% mortality in the hospitals all over the world. This study was undertaken to isolate lytic phages against biofilm forming Ps. aeruginosa hospital isolates and to use them for in vitro management of biofilms in the microtiter plate. Multidrug resistant strains of Ps. aeruginosa were isolated from the hospital environment in and around Pimpri-Chinchwad, Maharashtra by standard microbiological methods. Lytic phages against these strains were isolated from the Pavana river water by double agar layer plaque assay method. A wide host range phage bacterial virus Ps. aeruginosa phage (BVPaP-3) was selected. Electron microscopy revealed that BVPaP-3 phage is a T7-like phage and is a relative of phage species gh-1. A phage at MOI-0.001 could prevent biofilm formation by Ps. aeruginosa hospital strain-6(HS6) on the pegs within 24 h. It could also disperse pre-formed biofilms of all hospital isolates (HS1-HS6) on the pegs within 24 h. Dispersion of biofilm was studied by monitoring log percent reduction in cfu and log percent increase in pfu of respective bacterium and phage on the peg as well as in the well. Scanning electron microscopy confirmed that phage BVPaP-3 indeed causes biofilm reduction and bacterial cell killing. Laboratory studies prove that BVPaP-3 is a highly efficient phage in preventing and dispersing biofilms of Ps. aeruginosa. Phage BVPaP-3 can be used as biological disinfectant to control biofilm problem in medical devices.

  13. Hydrolysis of cefazolin by enzymes produced by Pseudomonas aeruginosa after exposure to ceftazidime in vitro

    Directory of Open Access Journals (Sweden)

    Papaioannidou Paraskevi

    2009-01-01

    Full Text Available Background/Aim. Sometimes resistance of Pseudomonas aeruginosa (Ps. aeruginosa is developed during antibiotic treatment, in spite of the initial susceptibility in vitro. The aim of this study was to use an in vitro model for the study of the development of resistant strains of Ps. aeruginosa after a short exposure to ceftazidime, and to study the hydrolysing capacity of β-lactamases produced by the resistant strains. Methods. Among 563 clinical strains of Ps. aeruginosa, 37 multisensitive strains were collected for the study. After being identified, strains with simultaneous sensitivity to 5 expanded spectrum cephalosporins were chosen. For each strain, the minimal inhibitory concentration (MIC of the 5 expanded spectrum cephalosporins was determined, and the production of extended spectrum β-lactamases (ESBL was excluded by the double-disc synergy diffusion test. Strains non producing ESBL were cultivated in concentrations of ceftazidime equal to MIC×2 and MIC×4. After 24 hours of culture, the development of resistant strains was estimated and the cephalosporinase activity of the produced β-lactamases was determined by their ability to hydrolyse cefazolin. Hydrolysis of cefazolin was studied by measuring the change of its absorbance on 272 nm using a Shimadzu 160A spectrophotometer. The hydrolyzing capacity of the enzymes was expressed as the percentage of the antibiotic, which was hydrolysed in 10 sec. Results. A total of 60% and 50% of strains developed resistant strains after exposure to ceftazidime in concentration MIC×2 and MIC×4, respectively. The hydrolyzing capacity of the original strains was 15-36% while the hydrolyzing capacity of the resistant strains was 10-73%. Totally 64% of the resistant strains expressed higher hydrolyzing capacity than the original strains. Conclusion. Regardless of the susceptibility test results, Ps. aeruginosa presented a high tendency to develop resistant strains after a short exposure to

  14. Inhibition of Pseudomonas aeruginosa biofilm formation on wound dressings.

    Science.gov (United States)

    Brandenburg, Kenneth S; Calderon, Diego F; Kierski, Patricia R; Brown, Amanda L; Shah, Nihar M; Abbott, Nicholas L; Schurr, Michael J; Murphy, Christopher J; McAnulty, Jonathan F; Czuprynski, Charles J

    2015-01-01

    Chronic nonhealing skin wounds often contain bacterial biofilms that prevent normal wound healing and closure and present challenges to the use of conventional wound dressings. We investigated inhibition of Pseudomonas aeruginosa biofilm formation, a common pathogen of chronic skin wounds, on a commercially available biological wound dressing. Building on prior reports, we examined whether the amino acid tryptophan would inhibit P. aeruginosa biofilm formation on the three-dimensional surface of the biological dressing. Bacterial biomass and biofilm polysaccharides were quantified using crystal violet staining or an enzyme linked lectin, respectively. Bacterial cells and biofilm matrix adherent to the wound dressing were visualized through scanning electron microscopy. D-/L-tryptophan inhibited P. aeruginosa biofilm formation on the wound dressing in a dose dependent manner and was not directly cytotoxic to immortalized human keratinocytes although there was some reduction in cellular metabolism or enzymatic activity. More importantly, D-/L-tryptophan did not impair wound healing in a splinted skin wound murine model. Furthermore, wound closure was improved when D-/L-tryptophan treated wound dressing with P. aeruginosa biofilms were compared with untreated dressings. These findings indicate that tryptophan may prove useful for integration into wound dressings to inhibit biofilm formation and promote wound healing.

  15. Activity and interactions of antibiotic and phytochemical combinations against Pseudomonas aeruginosa in vitro

    Directory of Open Access Journals (Sweden)

    Premkumar Jayaraman, Meena K Sakharkar, Chu Sing Lim, Thean Hock Tang, Kishore R. Sakharkar

    2010-01-01

    Full Text Available In this study the in vitro activities of seven antibiotics (ciprofloxacin, ceftazidime, tetracycline, trimethoprim, sulfamethoxazole, polymyxin B and piperacillin and six phytochemicals (protocatechuic acid, gallic acid, ellagic acid, rutin, berberine and myricetin against five P. aeruginosa isolates, alone and in combination are evaluated. All the phytochemicals under investigation demonstrate potential inhibitory activity against P. aeruginosa. The combinations of sulfamethoxazole plus protocatechuic acid, sulfamethoxazole plus ellagic acid, sulfamethoxazole plus gallic acid and tetracycline plus gallic acid show synergistic mode of interaction. However, the combinations of sulfamethoxazole plus myricetin shows synergism for three strains (PA01, DB5218 and DR3062. The synergistic combinations are further evaluated for their bactericidal activity against P. aeruginosa ATCC strain using time-kill method. Sub-inhibitory dose responses of antibiotics and phytochemicals individually and in combination are presented along with their interaction network to suggest on the mechanism of action and potential targets for the phytochemicals under investigation. The identified synergistic combinations can be of potent therapeutic value against P. aeruginosa infections. These findings have potential implications in delaying the development of resistance as the antibacterial effect is achieved with lower concentrations of both drugs (antibiotics and phytochemicals.

  16. Tris-EDTA no teste de sensibilidade antimicrobiana in vitro em amostras de Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Tanaka E.M.

    2002-01-01

    Full Text Available In vitro antimicrobial susceptibility of strains of Pseudomonas aeruginosa by standard diffusion disk test and a modified method, by the addition Tris-EDTA, was evaluated. Increase in sensitivity of agent using modified method was observed mainly in aminoglycosides (amikacin, gentamicin, tobramycin, quinolones (ofloxacin and norfloxacin and cephalosporins (cefoperazone and ceftazidime groups. by standard diffusion disk test and a modified method, by the addition Tris-EDTA, was evaluated. Increase in sensitivity of agent using modified method was observed mainly in aminoglycosides (amikacin, gentamicin, tobramycin, quinolones (ofloxacin and norfloxacin and cephalosporins (cefoperazone and ceftazidime groups.

  17. Pharmacodynamic effects of subinhibitory concentrations of imipenem on Pseudomonas aeruginosa in an in vitro dynamic model.

    Science.gov (United States)

    Maggiolo, F; Taras, A; Frontespezi, S; Legnani, M C; Silanos, M A; Pravettoni, G; Suter, F

    1994-06-01

    The postantibiotic effect (PAE), sub-MIC effect (SME), and postantibiotic sub-MIC effect (PASME) of imipenem on Pseudomonas aeruginosa were investigated with an in vitro dynamic model reproducing in vivo elimination kinetics of the antibiotic. The PASMEs were constantly longer than the corresponding SMEs, but differences between them were not statistically significant. Both PASMEs and SMEs were initially bactericidal and were significantly longer than PAEs. The mean values of both PASMEs and SMEs were over 12 h. SMEs appear to be more relevant for the bacterial growth kinetics than PAEs.

  18. Fluconazole inhibits human adrenocortical steroidogenesis in vitro

    NARCIS (Netherlands)

    R. van der Pas (Rob); L.J. Hofland (Leo); J. Hofland (Johannes); A.E. Taylor (A.); W. Arlt (Wiebke); J. Steenbergen (Jacobie); P.M. van Koetsveld (Peter); W.W. de Herder (Wouter); F.H. de Jong (Frank); R.A. Feelders (Richard)

    2012-01-01

    textabstractThe antifungal agent ketoconazole is often used to suppress cortisol production in patients with Cushing's syndrome (CS). However, ketoconazole has serious side effects and is hepatotoxic. Here, the in vitro effects of ketoconazole and fluconazole, which might be less toxic, on human adr

  19. Pseudomonas aeruginosa displays an altered phenotype in vitro when grown in the presence of mannitol.

    Science.gov (United States)

    Moore, J E; Rendall, J C; Downey, D G

    2015-01-01

    D-mannitol has been approved in dry powder formulation as an effective antimucolytic agent in patients with cystic fibrosis. What is not known is the effect of adding a metabolisable sugar on the biology of chronic bacterial pathogens in the CF lung. Therefore, a series of simple in vitro experiments were performed to examine the effect of adding D-mannitol on the phenotype of the CF respiratory pathogens Pseudomonas aeruginosa and Burkholderia cenocepacia. Clinical isolates (n = 86) consisting of P. aeruginosa (n = 51), B. cenocepacia (n = 26), P. putida (n = 4), Stenotrophomonas maltophila (n = 3) and Pseudomonas spp. (n = 2) were examined by supplementing basal nutrient agar with varying concentrations of D-mannitol (0-20% [w/v]) and subsequently examining for any change in microbial phenotype. The effect of supplementation with mannitol was four-fold, namely i) To increase the proliferation and increase in cell density of all CF organisms examined, with an optimal concentration of 2-4% (w/v) D-mannitol. No such increase in cell proliferation was observed when mannitol was substituted with sodium chloride. ii) Enhanced pigment production was observed in 2/51 (3.9%) of the P. aeruginosa isolates examined, in one of the P. putida isolates, and in 3/26 (11.5%) of the B. cenocepacia isolates examined. iii). When examined at 4.0% (w/v) supplementation with mannitol, 11/51 (21.6%) P. aeruginosa isolates and 3/26 (11.5%) B. cenocepacia isolates were seen to exhibit the altered adhesion phenotype. iv). With respect to the altered mucoid phenotype, 5/51 (9.8%) P. aeruginosa produced this phenotype when grown at 4% mannitol. Mucoid production was greatest at 4%, was poor at 10% and absent at 20% (w/v) mannitol. The altered mucoid phenotype was not observed in the B. cenocepacia isolates or any of the other clinical taxa examined. Due consideration therefore needs to be given, where there is altered physiology within the small airways, leading to a potentially altered

  20. In vitro and in vivo antimicrobial activity of combined therapy of silver nanoparticles and visible blue light against Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Nour El Din S

    2016-04-01

    Full Text Available Suzanne Nour El Din,1 Tarek A El-Tayeb,2 Khaled Abou-Aisha,1 Mohamed El-Azizi1 1Department of Microbiology, Immunology and Biotechnology, Faculty of Pharmacy and Biotechnology, German University in Cairo, 2National Institute for Laser Enhanced Sciences, Cairo University, Cairo, Egypt Abstract: Silver nanoparticles (AgNPs have been used as potential antimicrobial agents against resistant pathogens. We investigated the possible therapeutic use of AgNPs in combination with visible blue light against a multidrug resistant clinical isolate of Pseudomonas aeruginosa in vitro and in vivo. The antibacterial activity of AgNPs against P. aeruginosa (1×105 colony forming unit/mL was investigated at its minimal inhibitory concentration (MIC and sub-MIC, alone and in combination with blue light at 460 nm and 250 mW for 2 hours. The effect of this combined therapy on the treated bacteria was then visualized using transmission electron microscope. The therapy was also assessed in the prevention of biofilm formation by P. aeruginosa on AgNP-impregnated gelatin biopolymer discs. Further, in vivo investigations were performed to evaluate the efficacy of the combined therapy to prevent burn-wound colonization and sepsis in mice and, finally, to treat a real infected horse with antibiotic-unresponsive chronic wound. The antimicrobial activity of AgNPs and visible blue light was significantly enhanced (P<0.001 when both agents were combined compared to each agent alone when AgNPs were tested at MIC, 1/2, or 1/4 MIC. Transmission electron microscope showed significant damage to the cells that were treated with the combined therapy compared to other cells that received either the AgNPs or blue light. In addition, the combined treatment significantly (P<0.001 inhibited biofilm formation by P. aeruginosa on gelatin discs compared to each agent individually. Finally, the combined therapy effectively treated a horse suffering from a chronic wound caused by mixed

  1. Interactions of Pseudomonas aeruginosa in predominant biofilm or planktonic forms of existence in mixed culture with Escherichia coli in vitro.

    Science.gov (United States)

    Kuznetsova, Marina V; Maslennikova, Irina L; Karpunina, Tamara I; Nesterova, Larisa Yu; Demakov, Vitaly A

    2013-09-01

    Pseudomonas aeruginosa and Escherichia coli are known to be involved in mixed communities in diverse niches. In this study we examined the influence of the predominant form of cell existence of and the exometabolite production by P. aeruginosa strains on interspecies interactions, in vitro. Bacterial numbers of P. aeruginosa and E. coli in mixed plankton cultures and biofilms compared with their numbers in single plankton cultures and biofilms changed in a different way, but were in accordance with the form of P. aeruginosa cell existence. The mass of a mixed-species biofilm was greater than the mass of a single-species biofilm. Among the mixed biofilms, the one with the "planktonic" P. aeruginosa strain had the least biomass. The total pyocyanin and pyoverdin levels were found to be lower in all mixed plankton cultures. Despite this, clinical P. aeruginosa strains irrespective of the predominant form of existence ("biofilm" or "planktonic") had a higher total concentration of exometabolites than did the reference strain in 12-24 h mixed cultures. The metabolism of E. coli, according to its bioluminescence, was reduced in mixed cultures, and the decrease was by 20- to 100-fold greater with the clinical Pseudomonas strains than the reference Pseudomonas strain. Thus, both the predominant form of existence of and the exometabolite production by distinct P. aeruginosa strains should be considered to fully understand the interspecies relationship and bacteria survival in natural communities.

  2. Glycerol inhibition of ruminal lipolysis in vitro

    Science.gov (United States)

    Supplemental glycerol inhibits rumen lipolysis, a prerequisite for rumen biohydrogenation, which is responsible for the saturation of dietary fatty acids consumed by ruminant animals. Feeding excess glycerol, however, adversely affects dry matter digestibility. To more clearly define the effect of...

  3. In vitro investigation of effects of commercially available food and fabric paints in different colors, on Methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Julide Sedef Göçmen

    2015-09-01

    Full Text Available Objective: The aim of this study to determine, the antibacterial effects of red, blue, green and yellow fabric and nutrient dyes, which were commonly used in our daily life on Methicillin Resistant Staphylococcus aureus (MRSA and Pseudomonas aeruginosa with different concentration. Methods: Serial dilutions of commercially available green, red, yellow, and blue fabric and food dyes in sterile saline were prepared. One milliliter from each concentration of dyes was splitted into the tubes. McFarland 0.5 standard were used to adjust the turbidity of bacterial suspensions of P. aeruginosa and S. aureus standard strains. This suspension of each strain dispensed 100 microliters to all food and fabric dyes concentrations and incubated at 37°C. After overnight incubation 1 microliter suspension from each tube is plated on Mueller Hinton agar to determine bactericidal with sterile disposable loop. After incubation of these plates at 37°C for 18 - 24 hours, colonies were counted. Results: Green, yellow and red colors of fabric and food dyes were inhibited MRSA, and they showed significantly less effect against P. aeruginosa. However, blue fabric and food dye antibacterial affects, were greater than other colors against MRSA and also against P. aeruginosa. Conclusion: In this study, we determined that inhibition effect of food and fabric dyes, on bacterial growth can be variable belong to the color and concentration of dye. Our in vitro findings were indicated that colors of dyes can be a factor to inhibit bacterial contamination and true color choice will be helpful for painting especially high risk places for bacterial contamination. J Clin Exp Invest 2015; 6 (3: 274-278

  4. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14.

    Science.gov (United States)

    Kim, Han-Shin; Park, Hee-Deung

    2013-01-01

    Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger's ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39-56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3'-5')-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor.

  5. Persistent Bacteremia from Pseudomonas aeruginosa with In Vitro Resistance to the Novel Antibiotics Ceftolozane-Tazobactam and Ceftazidime-Avibactam

    Directory of Open Access Journals (Sweden)

    Louie Mar Gangcuangco

    2016-01-01

    Full Text Available Ceftazidime-avibactam and ceftolozane-tazobactam are new antimicrobials with activity against multidrug-resistant Pseudomonas aeruginosa. We present the first case of persistent P. aeruginosa bacteremia with in vitro resistance to these novel antimicrobials. A 68-year-old man with newly diagnosed follicular lymphoma was admitted to the medical intensive care unit for sepsis and right lower extremity cellulitis. The patient was placed empirically on vancomycin and piperacillin-tazobactam. Blood cultures from Day 1 of hospitalization grew P. aeruginosa susceptible to piperacillin-tazobactam and cefepime identified using VITEK 2 (Biomerieux, Lenexa, KS. Repeat blood cultures from Day 5 grew P. aeruginosa resistant to all cephalosporins, as well as to meropenem by Day 10. Susceptibility testing performed by measuring minimum inhibitory concentration by E-test (Biomerieux, Lenexa, KS revealed that blood cultures from Day 10 were resistant to ceftazidime-avibactam and ceftolozane-tazobactam. The Verigene Blood Culture-Gram-Negative (BC-GN microarray-based assay (Nanosphere, Inc., Northbrook, IL was used to investigate underlying resistance mechanism in the P. aeruginosa isolate but CTX-M, KPC, NDM, VIM, IMP, and OXA gene were not detected. This case report highlights the well-documented phenomenon of antimicrobial resistance development in P. aeruginosa even during the course of appropriate antibiotic therapy. In the era of increasing multidrug-resistant organisms, routine susceptibility testing of P. aeruginosa to ceftazidime-avibactam and ceftolozane-tazobactam is warranted. Emerging resistance mechanisms to these novel antibiotics need to be further investigated.

  6. Inhibitive effects of three compositae plants on Microcystis aeruginosa

    Institute of Scientific and Technical Information of China (English)

    Weihao ZHANG; Fuqing XU; Wei HE; Xing ZHENG; Chen YANG

    2009-01-01

    Based on common phenomena of biochemical interaction between plants and microorganisms, the inhi-bitive effects of three common terrestrial compositae plants, namely Artemisia lavandulaefolia DC., Conyza canadensis (L.) Cronq., and Kalimeris indica (L.) Sch.-Bip. on the blue algae Microcystis aeruginosa was studied.Live compositae plants are co-cultivated with algae in two different inoculation doses for 10 days in 5-pools incuba-tors, in order to exclude the influence of bacteria and nutri-ents. The results show that Artemisia lavandulaefolia DC has the most inhibitive potential among the three plants as evidenced by the most drastic decrease in optical density (OD680) of the algae. The inhibition rate is 93.3% (with initial inoculation dose of 2.0 × l06 Cells/mL) and 89.3% (with initial inoculation dose of 4.0 × 106 Cells/mL)respectively on the 10th day of cultivation. The average inhibition rate during the later half of the experiment is 0.76 (with initial inoculation dose of 2.0 × 106 Cells/mL) and 0.71 (with initial inoculation dose of 4.0 × 106 Cells/ mL), respectively. Logistic model analysis shows that com-positae plants such as A. lavandulaefolia DC. causes the reduction of the habitat's carrying capacity of algae.ANOVA analysis is used to determine the similarity and differences between every experimental group and an aver-age inhibitive rate model is used to evaluate the inhibition effects. The results show that A. lavandulaefolia DC., which grow well in the aquatic environment, may have a great potential in controlling algae bloom in eutrophic water.

  7. Candida albicans Inhibits Pseudomonas aeruginosa Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis.

    Directory of Open Access Journals (Sweden)

    Eduardo Lopez-Medina

    2015-08-01

    Full Text Available Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa's ability to colonize the GI tract but does decrease P. aeruginosa's cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease.

  8. A three-phase in-vitro system for studying Pseudomonas aeruginosa adhesion and biofilm formation upon hydrogel contact lenses

    Directory of Open Access Journals (Sweden)

    Kohlmann Thomas

    2010-11-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is commonly associated with contact lens (CL -related eye infections, for which bacterial adhesion and biofilm formation upon hydrogel CLs is a specific risk factor. Whilst P. aeruginosa has been widely used as a model organism for initial biofilm formation on CLs, in-vitro models that closely reproduce in-vivo conditions have rarely been presented. Results In the current investigation, a novel in-vitro biofilm model for studying the adherence of P. aeruginosa to hydrogel CLs was established. Nutritional and interfacial conditions similar to those in the eye of a CL wearer were created through the involvement of a solid:liquid and a solid:air interface, shear forces and a complex artificial tear fluid. Bioburdens varied depending on the CL material and biofilm maturation occurred after 72 h incubation. Whilst a range of biofilm morphologies were visualised including dispersed and adherent bacterial cells, aggregates and colonies embedded in extracellular polymer substances (EPS, EPS fibres, mushroom-like formations, and crystalline structures, a compact and heterogeneous biofilm morphology predominated on all CL materials. Conclusions In order to better understand the process of biofilm formation on CLs and to test the efficacy of CL care solutions, representative in-vitro biofilm models are required. Here, we present a three-phase biofilm model that simulates the environment in the eye of a CL wearer and thus generates biofilms which resemble those commonly observed in-situ.

  9. In vitro activities of ceftobiprole combined with amikacin or levofloxacin against Pseudomonas aeruginosa: evidence of a synergistic effect using time?kill methodology

    OpenAIRE

    Kresken, Michael; Körber-Irrgang, Barbara; Läuffer, Jörg; Decker-Burgard, Sabine; Davies, Todd

    2011-01-01

    Abstract Ceftobiprole is an investigational intravenous broad-spectrum cephalosporin with in vitro activity against Gram-positive and Gram-negative pathogens, including meticillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. Pseudomonas aeruginosa is a frequent nosocomial pathogen, increasingly associated with complicated skin and skin-structure infections. Combination antimicrobial therapy is recommended as empirical therapy for serious infections where P. ae...

  10. Rapid development in vitro and in vivo of resistance to ceftazidime in biofilm-growing Pseudomonas aeruginosa due to chromosomal beta-lactamase

    DEFF Research Database (Denmark)

    Bagge, N; Ciofu, O; Skovgaard, L T;

    2000-01-01

    The aim of this study was to examine the development of resistance of biofilm-growing P. aeruginosa during treatment with ceftazidime. Biofilms were established in vitro using a modified Robbins device (MRD) and in vivo in the rat model of chronic lung infection. Three P. aeruginosa strains...

  11. Effectiveness of netilmicin and tobramycin against Pseudomonas aeruginosa in vitro and in an experimental tissue infection in mice.

    Science.gov (United States)

    Moffie, B G; Hoogeterp, J J; Lim, T; Douwes-Idema, A E; Mattie, H

    1993-03-01

    The activity of netilmicin and tobramycin against Pseudomonas aeruginosa was assessed in vitro in the presence of constant and exponentially declining concentrations, and in mice in an experimental thigh infection. The activity in vitro at constant concentrations was expressed as the maximal killing rate (ER) during 3 h of exposure. On the basis of the quantitative relation between E(R) and the drug concentration, the numbers of cfu expected at consecutive times, at constant as well as at declining concentrations, were predicted. The relationship between observed numbers and predicted values of ERt were similar under both conditions for both drugs. On the same basis the numbers of cfu expected in the experimental thigh infection were predicted. There was indeed a significant linear relationship between observed numbers of cfu in homogenized muscle and the values predicted on the basis of the pharmacokinetics of the aminoglycosides, but the slope of this relationship was only 0.22. There was no difference in this respect between the two antibiotics. It is concluded that the efficacy of netilmicin and tobramycin against P. aeruginosa is considerably less in vivo than in vitro, but the relation is about the same for the two drugs; therefore the slightly higher activity of tobramycin in vitro is relevant in the in-vivo situation.

  12. Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis

    DEFF Research Database (Denmark)

    Qin, Zhiqiang; Yang, Liang; Qu, Di

    2009-01-01

    Multiple bacterial species often coexist as communities, and compete for environmental resources. Here, we describe how an opportunistic pathogen, Pseudomonas aeruginosa, uses extracellular products to interact with the nosocomial pathogen Staphylococcus epidermidis. S. epidermidis biofilms...... and planktonic cultures were challenged with P. aeruginosa supernatant cultures overnight. Results indicated that quorum-sensing-controlled factors from P. aeruginosa supernatant inhibited S. epidermidis growth in planktonic cultures. We also found that P. aeruginosa extracellular products, mainly...... in overnight cultures had no effect on established P. aeruginosa biofilms and planktonic growth. These findings reveal that P. aeruginosa extracellular products are important microbial competition factors that overcome competition with S. epidermidis, and the results may provide clues for the development...

  13. Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth

    DEFF Research Database (Denmark)

    Høiby, N; Krogh Johansen, H; Moser, C

    2001-01-01

    The biofilm mode of growth is the survival strategy of environmental bacteria like Pseudomonas aeruginosa. Such P. aeruginosa biofilms also occur in the lungs of chronically infected cystic fibrosis patients, where they protect the bacteria against antibiotics and the immune response. The lung...

  14. Identification of natural compound inhibitors for multidrug efflux pumps of Escherichia coli and Pseudomonas aeruginosa using in silico high-throughput virtual screening and in vitro validation.

    Science.gov (United States)

    Aparna, Vasudevan; Dineshkumar, Kesavan; Mohanalakshmi, Narasumani; Velmurugan, Devadasan; Hopper, Waheeta

    2014-01-01

    Pseudomonas aeruginosa and Escherichia coli are resistant to wide range of antibiotics rendering the treatment of infections very difficult. A main mechanism attributed to the resistance is the function of efflux pumps. MexAB-OprM and AcrAB-TolC are the tripartite efflux pump assemblies, responsible for multidrug resistance in P. aeruginosa and E. coli respectively. Substrates that are more susceptible for efflux are predicted to have a common pharmacophore feature map. In this study, a new criterion of excluding compounds with efflux substrate-like features was used, thereby refining the selection process and enriching the inhibitor identification process. An in-house database of phytochemicals was created and screened using high-throughput virtual screening against AcrB and MexB proteins and filtered by matching with the common pharmacophore models (AADHR, ADHNR, AAHNR, AADHN, AADNR, AAADN, AAADR, AAANR, AAAHN, AAADD and AAADH) generated using known efflux substrates. Phytochemical hits that matched with any one or more of the efflux substrate models were excluded from the study. Hits that do not have features similar to the efflux substrate models were docked using XP docking against the AcrB and MexB proteins. The best hits of the XP docking were validated by checkerboard synergy assay and ethidium bromide accumulation assay for their efflux inhibition potency. Lanatoside C and diadzein were filtered based on the synergistic potential and validated for their efflux inhibition potency using ethidium bromide accumulation study. These compounds exhibited the ability to increase the accumulation of ethidium bromide inside the bacterial cell as evidenced by these increase in fluorescence in the presence of the compounds. With this good correlation between in silico screening and positive efflux inhibitory activity in vitro, the two compounds, lanatoside C and diadzein could be promising efflux pump inhibitors and effective to use in combination therapy against drug

  15. Gallium-Protoporphyrin IX Inhibits Pseudomonas aeruginosa Growth by Targeting Cytochromes

    Science.gov (United States)

    Hijazi, Sarah; Visca, Paolo; Frangipani, Emanuela

    2017-01-01

    Pseudomonas aeruginosa is a challenging pathogen due to both innate and acquired resistance to antibiotics. It is capable of causing a variety of infections, including chronic lung infection in cystic fibrosis (CF) patients. Given the importance of iron in bacterial physiology and pathogenicity, iron-uptake and metabolism have become attractive targets for the development of new antibacterial compounds. P. aeruginosa can acquire iron from a variety of sources to fulfill its nutritional requirements both in the environment and in the infected host. The adaptation of P. aeruginosa to heme iron acquisition in the CF lung makes heme utilization pathways a promising target for the development of new anti-Pseudomonas drugs. Gallium [Ga(III)] is an iron mimetic metal which inhibits P. aeruginosa growth by interfering with iron-dependent metabolism. The Ga(III) complex of the heme precursor protoporphyrin IX (GaPPIX) showed enhanced antibacterial activity against several bacterial species, although no inhibitory effect has been reported on P. aeruginosa. Here, we demonstrate that GaPPIX is indeed capable of inhibiting the growth of clinical P. aeruginosa strains under iron-deplete conditions, as those encountered by bacteria during infection, and that GaPPIX inhibition is reversed by iron. Using P. aeruginosa PAO1 as model organism, we show that GaPPIX enters cells through both the heme-uptake systems has and phu, primarily via the PhuR receptor which plays a crucial role in P. aeruginosa adaptation to the CF lung. We also demonstrate that intracellular GaPPIX inhibits the aerobic growth of P. aeruginosa by targeting cytochromes, thus interfering with cellular respiration.

  16. Nucleosomes Inhibit Cas9 Endonuclease Activity in Vitro.

    Science.gov (United States)

    Hinz, John M; Laughery, Marian F; Wyrick, John J

    2015-12-01

    During Cas9 genome editing in eukaryotic cells, the bacterial Cas9 enzyme cleaves DNA targets within chromatin. To understand how chromatin affects Cas9 targeting, we characterized Cas9 activity on nucleosome substrates in vitro. We find that Cas9 endonuclease activity is strongly inhibited when its target site is located within the nucleosome core. In contrast, the nucleosome structure does not affect Cas9 activity at a target site within the adjacent linker DNA. Analysis of target sites that partially overlap with the nucleosome edge indicates that the accessibility of the protospacer-adjacent motif (PAM) is the critical determinant of Cas9 activity on a nucleosome.

  17. Development and characterization of a Pseudomonas aeruginosa in vitro coupled transcription-translation assay system for evaluation of translation inhibitors

    Science.gov (United States)

    Fyfe, Corey; Sutcliffe, Joyce A.; Grossman, Trudy H.

    2013-01-01

    Bacterial transcription and translation have proven to be effective targets for broad-spectrum antimicrobial therapies owing to the critical role they play in bacterial propagation and the overall conservation of the associated machinery involved. Escherichia coli is the most common source of S30 extract used in bacterial in vitro coupled transcription-translation assays, however, transcription-translation assays in other important pathogens including Staphylococcus aureus and Streptococcus pneumoniae have been described (Murray et al., 2001; Dandliker et al., 2003). Pseudomonas aeruginosa is an important and difficult-to-treat Gram-negative pathogen. In a drug discovery program, to de-risk any potential species specificity of novel inhibitors, we developed and optimized a robust method for the preparation of S30 extract from P. aeruginosa strain PAO1. Further, a P. aeruginosa transcription-translation assay using a firefly luciferase reporter plasmid was validated and compared to an E. coli S30-based system using a wide range of antibiotics encompassing multiple classes of translation inhibitors. Results showed a similar ranking of the activities of known inhibitors, illustrative of the high degree of conservation between the transcription-translation pathways in both organisms. PMID:22677604

  18. Deoxyribozymes inhibit the expression of periodl gene in vitro

    Institute of Scientific and Technical Information of China (English)

    ZHOU Wei; WANG Yueqi; LIU Yanyou; PENG Wenzhen; XIAO Jing; ZHU Bin; WANG Zhengrong

    2005-01-01

    To investigate the effect of two deoxyribozymes targeting periodl (perl) mRNA in vitro for exploring a novel gene therapy approach about circadian rhythm diseases, the specific deoxyribozymes targeting perl were designed and synthesized chemically following MFold analysis according to its mRNA secondary structure, perl RNA fragments were prepared by in vitro transcription of pcDNA3.1 (+)-perl164:256. The cleavage reactions containing deoxyribozymes and perl RNA fragments were performed under certain conditions. With the transfection technique mediated by LipofectAMINETM, pcDNA3-perl and DRz164 or DRz256 were introduced into NIH3T3 cells. The effects of deoxyribozymes on perl were studied by reverse transcript-polymerase chain reaction (RT-PCR) and flow cytometry (FCM). When deoxyribozymes and RNA transcripts were incubated under the adopted conditions at 37℃ for 2 h, about 63% of perl164:256 RNA transcripts were cleaved by DRz164 and about 50.5% by DRz256. After cotransfecting pcDNA3-perl with DRz164 or DRz256, the expression of perl mRNA was decreased, as indicated by RT-PCR semi-quantity analysis. FCM analysis showed that Perl protein was inhibited. Both DRz164 and DRz256 targeting perl have the specific cleavage activity toward perl mRNA in vitro and can highly block the expression of perl gene in cellular milieu.

  19. Recruitment of Perisomatic Inhibition during Spontaneous Hippocampal Activity In Vitro.

    Directory of Open Access Journals (Sweden)

    Anna Beyeler

    Full Text Available It was recently shown that perisomatic GABAergic inhibitory postsynaptic potentials (IPSPs originating from basket and chandelier cells can be recorded as population IPSPs from the hippocampal pyramidal layer using extracellular electrodes (eIPSPs. Taking advantage of this approach, we have investigated the recruitment of perisomatic inhibition during spontaneous hippocampal activity in vitro. Combining intracellular and extracellular recordings from pyramidal cells and interneurons, we confirm that inhibitory signals generated by basket cells can be recorded extracellularly, but our results suggest that, during spontaneous activity, eIPSPs are mostly confined to the CA3 rather than CA1 region. CA3 eIPSPs produced the powerful time-locked inhibition of multi-unit activity expected from perisomatic inhibition. Analysis of the temporal dynamics of spike discharges relative to eIPSPs suggests significant but moderate recruitment of excitatory and inhibitory neurons within the CA3 network on a 10 ms time scale, within which neurons recruit each other through recurrent collaterals and trigger powerful feedback inhibition. Such quantified parameters of neuronal interactions in the hippocampal network may serve as a basis for future characterisation of pathological conditions potentially affecting the interactions between excitation and inhibition in this circuit.

  20. Distribution and Inhibition of Liposomes on Staphylococcus aureus and Pseudomonas aeruginosa Biofilm.

    Directory of Open Access Journals (Sweden)

    Dong Dong

    Full Text Available Staphylococcus aureus and Pseudomonas aeruginosa are major pathogens in chronic rhinosinusitis (CRS and their biofilms have been associated with poorer postsurgical outcomes. This study investigated the distribution and anti-biofilm effect of cationic (+ and anionic (- phospholipid liposomes with different sizes (unilamellar and multilamellar vesicle, ULV and MLV respectively on S. aureus and P. aeruginosa biofilms.Specific biofilm models for S. aureus ATCC 25923 and P. aeruginosa ATCC 15692 were established. Liposomal distribution was determined by observing SYTO9 stained biofilm exposed to DiI labeled liposomes using confocal scanning laser microscopy, followed by quantitative image analysis. The anti-biofilm efficacy study was carried out by using the alamarBlue assay to test the relative viability of biofilm treated with various liposomes for 24 hours and five minutes.The smaller ULVs penetrated better than larger MLVs in both S. aureus and P. aeruginosa biofilm. Except that +ULV and -ULV displayed similar distribution in S. aureus biofilm, the cationic liposomes adhered better than their anionic counterparts. Biofilm growth was inhibited at 24-hour and five-minute exposure time, although the decrease of viability for P. aeruginosa biofilm after liposomal treatment did not reach statistical significance.The distribution and anti-biofilm effects of cationic and anionic liposomes of different sizes differed in S. aureus and P. aeruginosa biofilms. Reducing the liposome size and formulating liposomes as positively charged enhanced the penetration and inhibition of S. aureus and P. aeruginosa biofilms.

  1. Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota.

    Science.gov (United States)

    Bai, Shaofeng; Chen, Huahai; Zhu, Liying; Liu, Wei; Yu, Hongwei D; Wang, Xin; Yin, Yeshi

    2017-01-01

    Alginates pertain to organic polysaccharides that have been extensively used in food- and medicine-related industries. The present study obtained alginates from an alginate overproducing Pseudomonas aeruginosa PAO1 mutant by screening transposon mutagenesis libraries. The interaction between bacterial and seaweed alginates and gut microbiota were further studied by using an in vitro batch fermentation system. Thin-layer chromatography (TLC) analysis indicated that both bacterial and seaweed alginates can be completely degraded by fecal bacteria isolated from study volunteers, indicating that a minor structural difference between bacterial and seaweed alginates (O-acetylation and lack of G-G blocks) didn't affect the digestion of alginates by human microbiota. Although, the digestion of bacterial and seaweed alginates was attributed to different Bacteroides xylanisolvens strains, they harbored similar alginate lyase genes. Genus Bacteroides with alginate-degrading capability were enriched in growth medium containing bacterial or seaweed alginates after in vitro fermentation. Short-chain fatty acid (SCFA) production in both bacterial and seaweed alginates was also comparable, but was significantly higher than the same medium using starch. In summary, the present study has isolated an alginate-overproducing P. aeruginosa mutant strain. Both seaweed and bacterial alginates were degraded by human gut microbiota, and their regulatory function on gut microbiota was similar.

  2. Polymicrobial Ventilator-Associated Pneumonia: Fighting In Vitro Candida albicans-Pseudomonas aeruginosa Biofilms with Antifungal-Antibacterial Combination Therapy

    Science.gov (United States)

    Pereira, Cláudia R.; Azevedo, Nuno F.; Lourenço, Anália; Henriques, Mariana; Pereira, Maria O.

    2017-01-01

    The polymicrobial nature of ventilator-associated pneumonia (VAP) is now evident, with mixed bacterial-fungal biofilms colonizing the VAP endotracheal tube (ETT) surface. The microbial interplay within this infection may contribute for enhanced pathogenesis and exert impact towards antimicrobial therapy. Consequently, the high mortality/morbidity rates associated to VAP and the worldwide increase in antibiotic resistance has promoted the search for novel therapeutic strategies to fight VAP polymicrobial infections. Under this scope, this work aimed to assess the activity of mono- vs combinational antimicrobial therapy using one antibiotic (Polymyxin B; PolyB) and one antifungal (Amphotericin B; AmB) agent against polymicrobial biofilms of Pseudomonas aeruginosa and Candida albicans. The action of isolated antimicrobials was firstly evaluated in single- and polymicrobial cultures, with AmB being more effective against C. albicans and PolyB against P. aeruginosa. Mixed planktonic cultures required equal or higher antimicrobial concentrations. In biofilms, only PolyB at relatively high concentrations could reduce P. aeruginosa in both monospecies and polymicrobial populations, with C. albicans displaying only punctual disturbances. PolyB and AmB exhibited a synergistic effect against P. aeruginosa and C. albicans mixed planktonic cultures, but only high doses (256 mg L-1) of PolyB were able to eradicate polymicrobial biofilms, with P. aeruginosa showing loss of cultivability (but not viability) at 2 h post-treatment, whilst C. albicans only started to be inhibited after 14 h. In conclusion, combination therapy involving an antibiotic and an antifungal agent holds an attractive therapeutic option to treat severe bacterial-fungal polymicrobial infections. Nevertheless, optimization of antimicrobial doses and further clinical pharmacokinetics/pharmacodynamics and toxicodynamics studies underpinning the optimal use of these drugs are urgently required to improve therapy

  3. A Phytoanticipin Derivative, Sodium Houttuyfonate, Induces in Vitro Synergistic Effects with Levofloxacin against Biofilm Formation by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Jing Shao

    2012-09-01

    Full Text Available Antibiotic resistance has become the main deadly factor in infections, as bacteria can protect themselves by hiding in a self-constructed biofilm. Consequently, more attention is being paid to the search for “non-antibiotic drugs” to solve this problem. Phytoanticipins, the natural antibiotics from plants, could be a suitable alternative, but few works on this aspect have been reported. In this study, a preliminary study on the synergy between sodium houttuyfonate (SH and levofloxacin (LFX against the biofilm formation of Pseudomonas aeruginosa was performed. The minimal inhibitory concentrations (MIC of LFX and SH, anti-biofilm formation and synergistic effect on Pseudomonas aeruginosa, and quantification of alginate were determined by the microdilution method, crystal violet (CV assay, checkerboard method, and hydroxybiphenyl colorimetry. The biofilm morphology of Pseudomonas aeruginosa was observed by fluorescence microscope and scanning electric microscope (SEM. The results showed that: (i LFX and SH had an obvious synergistic effect against Pseudomonas aeruginosa with MIC values of 0.25 μg/mL and 128 μg/mL, respectively; (ii ½ × MIC SH combined with 2 × MIC LFX could suppress the biofilm formation of Pseudomonas aeruginosa effectively, with up to 73% inhibition; (iii the concentration of alginate decreased dramatically by a maximum of 92% after treatment with the combination of antibiotics; and (iv more dead cells by fluorescence microscope and more removal of extracellular polymeric structure (EPS by SEM were observed after the combined treatment of LFX and SH. Our experiments demonstrate the promising future of this potent antimicrobial agent against biofilm-associated infections.

  4. Sound waves effectively assist tobramycin in elimination of Pseudomonas aeruginosa biofilms in vitro.

    Science.gov (United States)

    Bandara, H M H N; Harb, A; Kolacny, D; Martins, P; Smyth, H D C

    2014-12-01

    Microbial biofilms are highly refractory to antimicrobials. The aim of this study was to investigate the use of low-frequency vibration therapy (20-20 kHz) on antibiotic-mediated Pseudomonas aeruginosa biofilm eradication. In screening studies, low-frequency vibrations were applied on model biofilm compositions to identify conditions in which surface standing waves were observed. Alginate surface tension and viscosity were also measured. The effect of vibration on P. aeruginosa biofilms was studied using a standard biofilm assay. Subminimal inhibitory concentrations (sub-MIC) of tobramycin (5 μg/ml) were added to biofilms 3 h prior, during, and immediately after vibration and quantitatively assessed by (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reduction assay (XTT) and, qualitatively, by confocal laser scanning microscopy (CLSM). The standing waves occurred at frequencies vibrated without sub-MIC tobramycin showed a significantly reduced metabolism compared to untreated controls (p vibrated simultaneously (450, 530, 610, and 650 Hz), or vibrated (450 and 650 Hz) then treated with tobramycin subsequently, or vibrated (610 Hz, 650 Hz) after 3 h of tobramycin treatment showed significantly lower metabolism compared to P. aeruginosa biofilm treated with tobramycin alone (p vibrations assisted tobramycin in killing P. aeruginosa biofilms at sub-MIC. Thus, sound waves together with antibiotics are a promising approach in eliminating pathogenic biofilms.

  5. In vitro prevention of Pseudomonas aeruginosa early biofilm formation with antibiotics used in cystic fibrosis patients.

    Science.gov (United States)

    Fernández-Olmos, Ana; García-Castillo, María; Maiz, Luis; Lamas, Adelaida; Baquero, Fernando; Cantón, Rafael

    2012-08-01

    The ability of antibiotics used in bronchopulmonary infections in cystic fibrosis (CF) patients to prevent Pseudomonas aeruginosa early biofilm formation was studied using a biofilm microtitre assay with 57 non-mucoid P. aeruginosa isolates (44 first colonisers and 13 recovered during the initial intermittent colonisation stage) obtained from 35 CF patients. Minimum biofilm inhibitory concentrations (BICs) of levofloxacin, ciprofloxacin, imipenem, ceftazidime, tobramycin, colistin and azithromycin were determined by placing a peg lid with a formed biofilm onto microplates containing antibiotics. A modification of this protocol consisting of antibiotic challenge during biofilm formation was implemented in order to determine the biofilm prevention concentration (BPC), i.e. the minimum concentration able to prevent biofilm formation. The lowest BPCs were for fluoroquinolones, tobramycin and colistin and the highest for ceftazidime and imipenem. The former antibiotics had BPCs identical to or only slightly higher than their minimum inhibitory concentrations (MICs) determined by standard Clinical and Laboratory Standards Institute (CLSI) microdilution and were also active on formed biofilms as reflected by their low BIC values. In contrast, ceftazidime and imipenem were less effective for prevention of biofilm formation and on formed biofilms. In conclusion, the new BPC parameter determined in non-mucoid P. aeruginosa isolates recovered during early colonisation stages in CF patients supports early aggressive antimicrobial treatment guidelines in first P. aeruginosa-colonised CF patients.

  6. A peptide of heparin cofactor II inhibits endotoxin-mediated shock and invasive Pseudomonas aeruginosa infection.

    Directory of Open Access Journals (Sweden)

    Martina Kalle

    Full Text Available Sepsis and septic shock remain important medical problems with high mortality rates. Today's treatment is based mainly on using antibiotics to target the bacteria, without addressing the systemic inflammatory response, which is a major contributor to mortality in sepsis. Therefore, novel treatment options are urgently needed to counteract these complex sepsis pathologies. Heparin cofactor II (HCII has recently been shown to be protective against Gram-negative infections. The antimicrobial effects were mapped to helices A and D of the molecule. Here we show that KYE28, a 28 amino acid long peptide representing helix D of HCII, is antimicrobial against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa, the Gram-positive Bacillus subtilis and Staphylococcus aureus, as well as the fungus Candida albicans. Moreover, KYE28 binds to LPS and thereby reduces LPS-induced pro-inflammatory responses by decreasing NF-κB/AP-1 activation in vitro. In mouse models of LPS-induced shock, KYE28 significantly enhanced survival by dampening the pro-inflammatory cytokine response. Finally, in an invasive Pseudomonas infection model, the peptide inhibited bacterial growth and reduced the pro-inflammatory response, which lead to a significant reduction of mortality. In summary, the peptide KYE28, by simultaneously targeting bacteria and LPS-induced pro-inflammatory responses represents a novel therapeutic candidate for invasive infections.

  7. Apigenin inhibits African swine fever virus infection in vitro.

    Science.gov (United States)

    Hakobyan, Astghik; Arabyan, Erik; Avetisyan, Aida; Abroyan, Liana; Hakobyan, Lina; Zakaryan, Hovakim

    2016-12-01

    African swine fever virus (ASFV) is one of the most devastating diseases of domestic pigs for which no effective vaccines are available. Flavonoids, natural products isolated from plants, have been reported to have significant in vitro and in vivo antiviral activity against different viruses. Here, we tested the antiviral effect of five flavonoids on the replication of ASFV in Vero cells. Our results showed a potent, dose-dependent anti-ASFV effect of apigenin in vitro. Time-of-addition experiments revealed that apigenin was highly effective at the early stages of infection. Apigenin reduced the ASFV yield by more than 99.99 % when it was added at 1 hpi. The antiviral activity of apigenin was further investigated by evaluation of ASFV protein synthesis and viral factories. This flavonoid inhibited ASFV-specific protein synthesis and viral factory formation. ASFV-infected cells continuously treated with apigenin did not display a cytopathic effect. Further studies addressing the use of apigenin in vivo are needed.

  8. Poliovirus RNA synthesis in vitro: structural elements and antibody inhibition

    Energy Technology Data Exchange (ETDEWEB)

    Semler, B.L.; Hanecak, R.; Dorner, L.F.; Anderson, C.W.; Wimmer, E.

    1983-01-01

    The poliovirus RNA polymerase complex has been analyzed by immunoautoradiography using antibody probes derived from purified replicase (P3) region viral polypeptides. Antibody preparations made against the polio RNA polymerase, P3-4b, detected a previously unreported cellular protein that copurifies with the RNA polymerase. An IgG fraction purified from rabbit antiserum to polypeptide P3-2, a precursor fo the RNA polymerase, specifically inhibits poliovirus RNA synthesis in vitro. The authors have also immunoprecipitated a 60,000-dalton protein (P3-4a) with antiserum to protein P3-4b and have determined the precise genomic map position of this protein by automated Edman degradation. Protein P3-4a originates by cleavage of the RNA polymerase precursor at a glutamine-glucine amino acid pair not previously reported to be a viral cleavage site.

  9. Mechanism of azithromycin inhibition of HSL synthesis in Pseudomonas aeruginosa.

    Science.gov (United States)

    Zeng, Jianming; Zhang, Ni; Huang, Bin; Cai, Renxin; Wu, Binning; E, Shunmei; Fang, Chengcai; Chen, Cha

    2016-04-14

    Pseudomonas aeruginosa is an opportunistic pathogen and a leading cause of nosocomial infections. Unfortunately, P. aeruginosa has low antibiotic susceptibility due to several chromosomally encoded antibiotic resistance genes. Hence, we carried out mechanistic studies to determine how azithromycin affects quorum sensing and virulence in P. aeruginosa. lasI and rhlI single and double mutants were constructed. We then undertook a quantitative approach to determine the optimal concentration of azithromycin and culture time that can affect the expression of HSLs. Furthermore, based on the above results, the effect on quorum sensing was analyzed at a transcriptional level. It was found that 2 μg/mL azithromycin caused a 79% decrease in 3-oxo-C12-HSL secretion during cultivation, while C4-HSL secretion was strongly repressed in the early stages. Azithromycin acts on ribosomes; to determine whether this can elicit alternative modes of gene expression, transcriptional regulation of representative virulence genes was analyzed. We propose a new relationship for lasI and rhlI: lasI acts as a cell density sensor, and rhlI functions as a fine-tuning mechanism for coordination between different quorum sensing systems.

  10. The effects of hyperosmosis or high pH on a dual-species biofilm of Enterococcus faecalis and Pseudomonas aeruginosa : an in vitro study

    NARCIS (Netherlands)

    van der Waal, S. V.; van der Sluis, L. W. M.; Ozok, A. R.; Exterkate, R. A. M.; van Marle, J.; Wesselink, P. R.; de Soet, J. J.

    2011-01-01

    van der Waal SV, van der Sluis LWM, Ozok AR, Exterkate RAM, van Marle J, Wesselink PR, de Soet JJ. The effects of hyperosmosis or high pH on a dual-species biofilm of Enterococcus faecalis and Pseudomonas aeruginosa: an in vitro study. International Endodontic Journal, 44, 11101117, 2011. Aim To inv

  11. Valutazione in vitro dell’associazione di glicopeptidi, ceftazidime e azitromicina nei confronti di Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Barbara Repetto

    2005-12-01

    Full Text Available Objectives: Pseudomonas aeruginosa is an opportunistic human pathogen which is intrinsically resistant to many antibiotics and easily develops resistance towards many currently available agents. Intrisic resistance can be attributed to the low permeability of the P. aeruginosa outer membrane to a variety of antibiotics, including glycopeptides (GLYs. These drugs are active against Gram-positive bacteria and resistance is very rare, it appeared of some interest to evaluate the effect of combining these antimicrobial agents with antibiotics that might disorganize the structure of the outer membrane allowing the entry of glycopeptides into the Gram-negative cells. In order to verify this hypothesis, ceftazidime (CAZ has been tested in association with vancomycin (VAN or teicoplanin (TEI. The same experiments have been carried out also in the presence of azithromycin (AZI, which has been shown to interfere with some cellular synthesis in P. aeruginosa. Methods: A bacterial suspension of about 109CFU/ml was seeded on plates containing a fixed concentration of GLYs (500 mg/l and increasing doses (2x,4x,8x,16x of CAZ. Survivors were counted after 48 hs at 37°C. Results were interpreted as synergism (99%, additivity (90%, and indifference (10% of the CFU/ml reduction found in the drugs combination in comparison to the drug alone. The same experiments have been repeated adding AZI (16 mg/l and using GLYs at concentrations ranging from 500 to 300 mg/l. Results: CAZ in combination with GLYs reacted synergically in 20 out of 59 cases, additivity was found in 31/59 interactions and indifference was noted in 8/59 tests. Preliminary results (12 tests performed indicated that the addition of AZI increased the incidence of synergisms and additivities even when using GLYs concentration of 300 mg/l (figure I. Conclusions: CAZ combined with GLYs gave additive or synergistic results in the geat majority of experiments, while the simultaneous combination of AZI, CAZ

  12. Prevention of catheter-related Pseudomonas aeruginosa infection by levofloxacin-impregnated catheters in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Yan Ping; Liu Wei; Kong Jinliang; Wu Hong; Chen Yiqiang

    2014-01-01

    Background Implanted medical catheter-related infections are increasing,hence a need for developing catheter polymers bonded to antimicrobials.We evaluated preventive effects of levofloxacin-impregnated catheters in catheterrelated Psuedomonas aeruginosa (strain PAO1) infection.Methods Drug release from levofloxacin-impregnated catheters was measured in vitro.Levofloxacin-impregnated catheters and polyvinyl chloride (PVC) catheters were immersed in 5 ml 50% Luria Bertani medium containing 108 CFU/ml Pseudomonas aeruginosa then incubated for 6,12,24 or 48 hours at 37℃ when bacteria adhering to the catheters and bacteria in the growth culture medium were determined.Impregnated and PVC catheters were singly implanted subcutaneously in mice,50 μl (107CFU) of PAO1 was injected into catheters.After the first and fifth days challenge,bacterial counts on implanted catheters and in surrounding tissues were determined microbiologically.Bacterial colonization and biofilm formation on implanted catheters were assessed by scanning electron microscopy.Results Drug release from levofloxacin-impregnated catheters was rapid.Levofloxacin-impregnated catheters had significantly fewer bacteria compared to PVC in vitro.After first and fifth day of challenge,no or significantly fewer bacteria adhered to impregnated catheters or in surrounding tissues compared to PVC.Scanning electron microscopical images after first day displayed from none to significantly fewer bacteria adhering to impregnated implanted catheters,compared to bacteria and microcolonies adhering to PVC catheters.After the fifth day,no bacteria were found on impregnated catheters,compared to clusters surrounding mucus-like substance and coral-shaped biofilms with polymorphonuclear leukocyte on PVC catheters.After the first day of challenge,secretion occurred in all implanted catheters with surrounding tissues mildly hyperaemic and swollen.After the fifth day,minute secretions inside impregnated catheters and no

  13. GENISTEIN INHIBITS PROLIFERATION OF HUMAN ENDOMETRIAL ENDOTHELIAL CELL IN VITRO

    Institute of Scientific and Technical Information of China (English)

    Gui-hua Sha; Shou-qing Lin

    2008-01-01

    Objective To explore the effect of genistein on proliferation of human endometrial endothefial cells (HEECs) and glandular epithelium.Methods In vitro HEECs and human endometrial cancer-1B cell (HEC-1B) were cultured with 0, 1, 10, 50,100, and 200 μmol/L of genistein alone or indicated concentrations of genistein combined with 0.2 or 1 nmol/L 17β- estradiol (17β-E2 ). Cell proliferation was determined by [ 3H ]-thymidine incorporation and cell cycle was measured by flow cytometry.Results After 96 hours of treatment, genistein inhibited the proliferation of HEECs in a dose-dependent manner.The stimulation index reduced from 100% (without genistein treatment ) to about 1% (200 μmol/L genistein).HEECs were arrested at G1/0 and G2/M phase when treated with genistein for 96 hours. When the concentration of genistein was 200 μmol/L, the percentages of HEECs at GI/0, G2/M, and S phase were 96.0%, 2. 1%, and 1.9%,respectively. However, when HEECs were treated without genistein, the percentages of HEECs at G1/0, G2/M, and S phase were 76. 7%, 8.5%, and 14. 7%, respectively. 17β-E2 could not influence the effects of genistein on the prolif-eration of HEECs. Meanwhile, genistein could suppress the proliferation of HEC-1B. If the stimulation index of HEC-1B was defined as 100% when HEC-1B was treated with different doses of 1713-E2 ( without genistein), it was 67%,19, as well as 32% when cell was supplemented with 200 μmoi/L genistein combined with 0, 0.2, or 1 nmol/L 17β-E2, respectively.Conclusion Genistein at the concentration of 200 μmol/L can sufficiently inhibit the proliferation of HEECs and endometrial glandular epithelium simultaneously in vitro.

  14. Growth inhibition and microcystin degradation effects of Acinetobacter guillouiae A2 on Microcystis aeruginosa.

    Science.gov (United States)

    Yi, Yang-Lei; Yu, Xiao-Bo; Zhang, Chao; Wang, Gao-Xue

    2015-01-01

    Strain A2 with algicidal activity against Microcystis aeruginosa was isolated and identified with the genus Acinetobacter on the basis of phenotypic tests and 16S rRNA gene analysis. It was identified with the species Acinetobactor guillouiae by partial rpoB sequence analysis. When 10% (v/v) of the bacterial culture was co-incubated with M. aeruginosa culture, algicidal efficiency reached 91.6% after 7 days. Supernatant of A2 culture showed similar algicidal activity, while the cell pellet had little activity, suggesting that Acinetobacter guillouiae A2 indirectly attacked M. aeruginosa cells by secreting an extracellular algicidal compound, which was characterized as heat-stable. A significant decrease in the microcystin (microcystin-LR) concentration was observed after 10% (v/v) addition of A2 culture. Transcription of three microcystin-related genes (mcyA, mcyD and mcyH) was also found to be inhibited. The algicidal compound 4-hydroxyphenethylamine was obtained by further isolation and purification using various chromatographic techniques. The EC50, 3d and EC50, 7d values of 4-hydroxyphenethylamine against M. aeruginosa were 22.5 and 10.3 mgL(-1), respectively. These results indicate that A. guillouiae strain A2 inhibits growth of M. aeruginosa and degrades microcystin production. The identified compound, 4-hydroxyphenethylamine, has potential for development as a new algicidal formulation or product.

  15. Study on in vitro inhibitory activity of antibacterial material of Pseudomonas aeruginosa against Enterococcus faecium%铜绿假单胞菌抗菌物质对屎肠球菌的体外抑菌作用研究

    Institute of Scientific and Technical Information of China (English)

    秦金喜; 李仲兴; 杨永昌; 袁欣; 柏秀菊; 石忻罗

    2012-01-01

    Objective: To evaluate the in vitro inhibitory activity of antibacterial material of Pseudomonas aeruginosa against Enterococcus. Methods: The in vitro inhibitory activity of antibacterial material of Pseudomonas aeruginosa against 12 Enterococcus faecium was performed by using the cross streak assay. Results: The in vitro inhibitory activity of antibacterial material of Pseudomonas aeruginosa against Enterococcus was good. The inhibition rates of No. 1,4,5 and 6 strain of P. aeruginosas against Enterococcus faecium were all 100%. Conclusion: The antibacterial material of Pseudomonas aeruginosa against 12 Enterococcus had strong antibacterial activity, which has the potential to open a new train of thought for the antibiotics research of Enterococcus infection. This is the first report concerning antibacterial activity study for antimicrobial substances of Pseudomonas aeruginosa against Enterococcus.%目的:为了观察铜绿假单胞菌对屎肠球菌的体外抑菌活性.方法:用交叉条带实验方法进行铜绿假单胞菌对12株屎肠球菌的体外抑制活性的测定.结果:铜绿假单胞菌抗菌物质对屎肠球菌体外抑菌活性良好,所试10株的铜绿假单胞菌对屎肠球菌均有一定的抗菌活性,其中第1、4、5、6号株的铜绿假单胞菌对屎肠球菌抑制率达100%.结论:铜绿假单胞菌抗菌物质对12株肠球菌具有良好的抗菌活性,无疑对肠球菌的抗菌研究方面开辟了新的思路.这是首次进行铜绿假单胞菌抗菌物质对屎肠球菌的抗菌活性研究报告.

  16. Piroxicam inhibits herpes simplex virus type 1 infection in vitro.

    Science.gov (United States)

    Astani, A; Albrecht, U; Schnitzler, P

    2015-05-01

    Piroxicam is a potent, nonsteroidal, anti-inflammatory agent (NSAID) which also exhibits antipyretic activity. The antiviral effect of piroxicam against herpes simplex virus type 1 (HSV-1) was examined in vitro on RC-37 monkey kidney cells using a plaque reduction assay. Piroxicam was dissolved in ethanol or dimethylsulfoxide (DMSO) and the 50% inhibitory concentration (IC50) was determined at 4 μg/ml and 75 μg/ml, respectively. The IC50 for the standard antiherpetic drug acyclovir was determined at 1.6 μM. At non-cytotoxic concentrations of these piroxicam solutions, plaque formation was significantly reduced by 62.4% for ethanolic piroxicam and 72.8% for piroxicam in DMSO. The mode of antiviral action of these drugs was assessed by time-on-addition assays. No antiviral effect was observed when cells were incubated with piroxicam prior to infection with HSV-1 or when HSV-1 infected cells were treated with dissolved piroxicam. Herpesvirus infection was, however, significantly inhibited when HSV-1 was incubated with piroxicam prior to the infection of cells. These results indicate that piroxicam affected the virus before adsorption, but not after penetration into the host cell, suggesting that piroxicam exerts a direct antiviral effect on HSV-1. Free herpesvirus was sensitive to piroxicam in a concentration-dependent manner and the inhibition of HSV-1 appears to occur before entering the cell but not after penetration of the virus into the cell. Considering the lipophilic nature of piroxicam, which enables it to penetrate the skin, it might be suitable for topical treatment of herpetic infections.

  17. Positively charged biopolymeric nanoparticles for the inhibition of Pseudomonas aeruginosa biofilms

    Science.gov (United States)

    Chronopoulou, Laura; Di Domenico, Enea Gino; Ascenzioni, Fiorentina; Palocci, Cleofe

    2016-10-01

    Currently, many microbial infections have the potential to become lethal owing to the development of antimicrobial resistance by means of different mechanisms and mainly on the basis of the fact that many drugs are unable to reach therapeutic levels in the target sites. This requires the use of high doses and frequent administrations, causing adverse side effects or in some cases toxicity. The use of nanoparticle systems could help overcome such problems and increase drug efficacy. In the present study, we developed a new drug delivery system based on the use of biopolymeric nanovectors loaded with tobramycin (Tb), which is the standard antibiotic for the treatment of Cystic Fibrosis-associated P. aeruginosa lung infections. Tb-loaded biopolymeric nanoparticles composed by dextran sulfate (DS) and chitosan (CS) were prepared by ionotropic gelation. We optimized drug entrapment in DS/CS nanoparticles, obtaining particles of 170 nm and with a drug loading of 400 µg Tb/mg of nanoparticles. In accord with in vitro release experiments, such preparations were able to release approximately 25 % of their cargo in 60 h. In vitro, the antimicrobial efficacy of the drug delivery system on P. aeruginosa biofilm was tested and compared to the effects of free drug revealing that this formulation can reduce the viability of P. aeruginosa biofilms for 48 h with a single-dose administration.

  18. Effect of environmental factors on allelopathic inhibition of Microcystis aeruginosa by berberine.

    Science.gov (United States)

    Zhang, Shulin; Dai, Wei; Bi, Xiangdong; Zhang, Dajuan; Xing, Kezhi

    2013-01-01

    To understand how environmental conditions affect the allelopathic inhibition of toxic Microcystis aeruginosa by berberine, the independent effects of some environmental factors, including temperature, light, and aeration, on the growth and extracellular microcystin (MC) content of M. aeruginosa (FACHB 905) treated with 0.000 and 0.001% (w/v) berberine were investigated. The results showed that higher temperature and light density, and aeration in daytime were beneficial for the growth of M. aeruginosa under the measured environmental conditions. The allelopathic effects of berberine on M. aeruginosa were closely associated with the environmental conditions. Berberine had the best inhibitory effects when temperature, light and aeration were more optimal for growth. In darkness, no changes in the density of M. aeruginosa were observed with the prolongation of culture time and berberine could hardly exhibit algicidal effects. Disturbance in the photosynthesis process might be one of the main reasons responsible for algicidal function. Berberine could increase extracellular MC contents significantly via killing and lyzing algal cells. Other treatments coupled with berberine needed to be carried out to degrade or remove MC released from berberine-killed algal cells.

  19. Small-molecule inhibition of choline catabolism in Pseudomonas aeruginosa and other aerobic choline-catabolizing bacteria.

    Science.gov (United States)

    Fitzsimmons, Liam F; Flemer, Stevenson; Wurthmann, A Sandy; Deker, P Bruce; Sarkar, Indra Neil; Wargo, Matthew J

    2011-07-01

    Choline is abundant in association with eukaryotes and plays roles in osmoprotection, thermoprotection, and membrane biosynthesis in many bacteria. Aerobic catabolism of choline is widespread among soil proteobacteria, particularly those associated with eukaryotes. Catabolism of choline as a carbon, nitrogen, and/or energy source may play important roles in association with eukaryotes, including pathogenesis, symbioses, and nutrient cycling. We sought to generate choline analogues to study bacterial choline catabolism in vitro and in situ. Here we report the characterization of a choline analogue, propargylcholine, which inhibits choline catabolism at the level of Dgc enzyme-catalyzed dimethylglycine demethylation in Pseudomonas aeruginosa. We used genetic analyses and 13C nuclear magnetic resonance to demonstrate that propargylcholine is catabolized to its inhibitory form, propargylmethylglycine. Chemically synthesized propargylmethylglycine was also an inhibitor of growth on choline. Bioinformatic analysis suggests that there are genes encoding DgcA homologues in a variety of proteobacteria. We examined the broader utility of propargylcholine and propargylmethylglycine by assessing growth of other members of the proteobacteria that are known to grow on choline and possess putative DgcA homologues. Propargylcholine showed utility as a growth inhibitor in P. aeruginosa but did not inhibit growth in other proteobacteria tested. In contrast, propargylmethylglycine was able to inhibit choline-dependent growth in all tested proteobacteria, including Pseudomonas mendocina, Pseudomonas fluorescens, Pseudomonas putida, Burkholderia cepacia, Burkholderia ambifaria, and Sinorhizobium meliloti. We predict that chemical inhibitors of choline catabolism will be useful for studying this pathway in clinical and environmental isolates and could be a useful tool to study proteobacterial choline catabolism in situ.

  20. Influence of selected antimicrobials on the viability, endotoxicity and lipopolysaccharide composition of Pseudomonas aeruginosa in vitro.

    Science.gov (United States)

    Abraham, M; Venter, P; Lues, J F R; Ivanov, I; de Smidt, O

    2009-11-01

    This research focused on the influence of selected antimicrobial agents (AMAs) on the lipopolysaccharide (LPS) composition of Pseudomonas aeruginosa, a common causative agent of nosocomial infections. As LPS has been shown to play a role in attachment and virulence, the research is primarily aimed at shedding light on the response of these organisms to cleaning regimens in healthcare settings using various disinfectants. The endotoxicity and viability of the organisms following disinfection were further investigated via propagation in sublethal concentrations of the selected AMAs. The AMAs included a CIP chlorinated disinfectant, a heavy-duty alkaline detergent and a phenolic handwash solution. The effects of the antimicrobials on LPS both from intact cells and from debris were assessed by gas chromatography-mass spectrometry (GC-MS) analysis and a chromogenic Limulus amoebocyte lysate assay. Results indicated significant changes in the supramolecular structure of the O-polysaccharide when exposed to the AMAs. Adaptations occurred in both the total assessed saccharide and the lipid fractions, especially in the case of the heavy-duty alkaline detergent. Endotoxicity was found to be influenced by changes in the O-chain rather than the lipid fraction. The phenolic handwash and chlorine-based AMA treatments resulted in a slight decrease in the total amount of fatty acids in the LPS compared with saccharides, whereas the heavy-duty alkaline detergent resulted in a notable reduction in total saccharides. Microbial adaptation of the supramolecular structure of LPS may cause a reduction in membrane solubility of these organisms in an aqueous environment, thus affecting the organism's susceptibility to water-soluble AMAs as well as its ability to adhere to charged surfaces.

  1. Growth inhibition of bloom forming cyanobacterium Microcystis aeruginosa by green route fabricated copper oxide nanoparticles.

    Science.gov (United States)

    Sankar, Renu; Prasath, Barathan Balaji; Nandakumar, Ravichandran; Santhanam, Perumal; Shivashangari, Kanchi Subramanian; Ravikumar, Vilwanathan

    2014-12-01

    The cyanobacterium Microcystis aeruginosa can potentially proliferate in a wide range of freshwater bionetworks and create extensive secondary metabolites which are harmful to human and animal health. The M. aeruginosa release toxic microcystins that can create a wide range of health-related issues to aquatic animals and humans. It is essential to eliminate them from the ecosystem with convenient method. It has been reported that engineered metal nanoparticles are potentially toxic to pathogenic organisms. In the present study, we examined the growth inhibition effect of green synthesized copper oxide nanoparticles against M. aeruginosa. The green synthesized copper oxide nanoparticles exhibit an excitation of surface plasmon resonance (SPR) at 270 nm confirmed using UV-visible spectrophotometer. The dynamic light scattering (DLS) analysis revealed that synthesized nanoparticles are colloidal in nature and having a particle size of 551 nm with high stability at -26.6 mV. The scanning electron microscopy (SEM) analysis shows that copper oxide nanoparticles are spherical, rod and irregular in shape, and consistently distributed throughout the solution. The elemental copper and oxide peak were confirmed using energy dispersive x-ray analysis (EDAX). Fourier-transform infrared (FT-IR) spectroscopy indicates the presence of functional groups which is mandatory for the reduction of copper ions. Besides, green synthesized copper oxide nanoparticles shows growth inhibition against M. aeruginosa. The inhibition efficiency was 31.8 % at lower concentration and 89.7 % at higher concentration of copper oxide nanoparticles, respectively. The chlorophyll (a and b) and carotenoid content of M. aeruginosa declined in dose-dependent manner with respect to induction of copper oxide nanoparticles. Furthermore, we analyzed the mechanism behind the cytotoxicity of M. aeruginosa induced by copper oxide nanoparticles through evaluating membrane integrity, reactive oxygen species (ROS

  2. Construction and characterization of Pseudomonas aeruginosa protein F-deficient mutants after in vitro and in vivo insertion mutagenesis of the cloned gene.

    Science.gov (United States)

    Woodruff, W A; Hancock, R E

    1988-06-01

    Mutants with insertion mutations in the Pseudomonas aeruginosa protein F (oprF) gene were created in vivo by Tn1 mutagenesis of the cloned gene in Escherichia coli and in vitro by insertion of the streptomycin resistance-encoding omega fragment into the cloned gene, followed by transfer of the mutated protein F gene back to P. aeruginosa. Homologous recombination into the P. aeruginosa chromosome was driven by a bacteriophage F116L transduction method in the oprF::Tn1 mutants or Tn5-instability in the oprF::omega mutants. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western immunoblotting demonstrated that the resultant oprF insertion mutants had lost protein F, whereas restriction digestion and Southern blotting experiments proved that the mutants contained a single chromosomal oprF gene with either Tn1 or omega inserted into it. It has been proposed that protein F has a role in antibiotic uptake in P. aeruginosa. Measurement of antibiotic resistance levels showed small to marginal increases in resistance, compared with that of the parent P. aeruginosa strain, to a variety of beta-lactam antibiotics. Protein F-deficient mutants had altered barrier properties as revealed by a three- to fivefold increase in the uptake of the hydrophobic fluorescent probe 1-N-phenylnaphthylamine.

  3. Effect of Negative Pressure on Proliferation, Virulence Factor Secretion, Biofilm Formation, and Virulence-Regulated Gene Expression of Pseudomonas aeruginosa In Vitro

    Directory of Open Access Journals (Sweden)

    Guo-Qi Wang

    2016-01-01

    Full Text Available Objective. To investigate the effect of negative pressure conditions induced by NPWT on P. aeruginosa. Methods. P. aeruginosa was cultured in a Luria–Bertani medium at negative pressure of −125 mmHg for 24 h in the experimental group and at atmospheric pressure in the control group. The diameters of the colonies of P. aeruginosa were measured after 24 h. ELISA kit, orcinol method, and elastin-Congo red assay were used to quantify the virulence factors. Biofilm formation was observed by staining with Alexa Fluor® 647 conjugate of concanavalin A (Con A. Virulence-regulated genes were determined by quantitative RT-PCR. Results. As compared with the control group, growth of P. aeruginosa was inhibited by negative pressure. The colony size under negative pressure was significantly smaller in the experimental group than that in the controls (p<0.01. Besides, reductions in the total amount of virulence factors were observed in the negative pressure group, including exotoxin A, rhamnolipid, and elastase. RT-PCR results revealed a significant inhibition in the expression level of virulence-regulated genes. Conclusion. Negative pressure could significantly inhibit the growth of P. aeruginosa. It led to a decrease in the virulence factor secretion, biofilm formation, and a reduction in the expression level of virulence-regulated genes.

  4. Copper, aluminum, iron and calcium inhibit human acetylcholinesterase in vitro.

    Science.gov (United States)

    Pohanka, Miroslav

    2014-01-01

    Acetylcholinesterase (AChE) is an important part of cholinergic nerves where it participates in termination of neurotransmission. AChE can be inhibited by e.g. some Alzheimer disease drugs, nerve agents, and secondary metabolites. In this work, metal salts aluminum chloride, calcium chloride, cupric chloride, ferric chloride, potassium chloride, magnesium chloride and sodium chloride were tested for their ability to inhibit AChE. Standard Ellman assay based on human recombinant AChE was done and inhibition was measured using Dixon plot. No inhibition was proved for sodium, potassium and magnesium ions. However, aluminum, cupric, ferric and calcium ions were able to inhibit AChE via noncompetitive mechanism of inhibition. Though the inhibition is much weaker when compared to e.g. drugs with noncompetitive mechanism of action, biological relevance of the findings can be anticipated.

  5. In vitro activities of ceftobiprole combined with amikacin or levofloxacin against Pseudomonas aeruginosa: evidence of a synergistic effect using time-kill methodology.

    Science.gov (United States)

    Kresken, Michael; Körber-Irrgang, Barbara; Läuffer, Jörg; Decker-Burgard, Sabine; Davies, Todd

    2011-07-01

    Ceftobiprole is an investigational intravenous broad-spectrum cephalosporin with in vitro activity against Gram-positive and Gram-negative pathogens, including meticillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. Pseudomonas aeruginosa is a frequent nosocomial pathogen, increasingly associated with complicated skin and skin-structure infections. Combination antimicrobial therapy is recommended as empirical therapy for serious infections where P. aeruginosa is suspected. Therefore, in this study the interaction of ceftobiprole with two other antipseudomonal agents (amikacin and levofloxacin) was investigated. Time-kill studies were performed for each single agent and for the combination of ceftobiprole 4 mg/L with either amikacin or levofloxacin at 0.5×, 1× and 2× the minimum inhibitory concentration. Five clinical isolates of P. aeruginosa as well as the P. aeruginosa ATCC 27853 reference strain were tested at initial inocula of 5×10(5) colony-forming units (CFU)/mL (low inoculum) or 5×10(7) CFU/mL (high inoculum). Synergy was defined as a decrease of ≥2log(10) CFU/mL with the combination compared with the most active single drug at 6 h and 24 h. At low inoculum with ceftobiprole as a single agent, viable counts were decreased by 1.5-2log(10) at 6 h. Addition of either amikacin or levofloxacin resulted in synergistic bactericidal activity at 24 h. At high inoculum the combination of ceftobiprole with amikacin or levofloxacin demonstrated synergism in one of three and three of five strains, respectively. This study demonstrated that the combination of ceftobiprole at a clinically achievable concentration of 4 mg/L with amikacin or levofloxacin exhibited synergistic activity against P. aeruginosa. There was no evidence of antagonism for either combination.

  6. Phosphate limitation induces the intergeneric inhibition of Pseudomonas aeruginosa by Serratia marcescens isolated from paper machines.

    Science.gov (United States)

    Kuo, Pei-An; Kuo, Chih-Horng; Lai, Yiu-Kay; Graumann, Peter L; Tu, Jenn

    2013-06-01

    Phosphate is an essential nutrient for heterotrophic bacteria, affecting bacterioplankton in aquatic ecosystems and bacteria in biofilms. However, the influence of phosphate limitation on bacterial competition and biofilm development in multispecies populations has received limited attention in existing studies. To address this issue, we isolated 13 adhesive bacteria from paper machine aggregates. Intergeneric inhibition of Pseudomonas aeruginosa WW5 by Serratia marcescens WW4 was identified under phosphate-limited conditions, but not in Luria-Bertani medium or M9 minimal medium. The viable numbers of the pure S. marcescens WW4 culture decreased over 3 days in the phosphate-limited medium; however, the mortality of S. marcescens WW4 was significantly reduced when it was co-cultured with P. aeruginosa WW5, which appeared to sustain the S. marcescens WW4 biofilm. In contrast, viable P. aeruginosa WW5 cells immediately declined in the phosphate-limited co-culture. To identify the genetic/inhibitory element(s) involved in this process, we inserted a mini-Tn5 mutant of S. marcescens WW4 that lacked inhibitory effect. The results showed that an endonuclease bacteriocin was involved in this intergeneric inhibition by S. marcescens WW4 under phosphate limitation. In conclusion, this study highlights the importance of nutrient limitation in bacterial interactions and provides a strong candidate gene for future functional characterisation.

  7. Isolation of the Autoinducer-Quenching Strain that Inhibits LasR in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Lixing Weng

    2014-04-01

    Full Text Available Quorum sensing (QS has been recognized as a general phenomenon in microorganisms and plays an important role in many pathogenic bacteria. In this report, we used the Agrobacterium tumefaciens biosensor strain NT1 to rapidly screen for autoinducer-quenching inhibitors from bacteria. After initial screening 5389 isolates obtained from land and beach soil, 53 putative positive strains were identified. A confirmatory bioassay was carried out after concentrating the putative positive culture supernatant, and 22 strains were confirmed to have anti-LasR activity. Finally, we determined the strain JM2, which could completely inhibit biofilm formation of Pseudomonas aeruginosa PAO1, belonged to the genus Pseudomonas by analysis of 16S rDNA. Partially purified inhibitor factor(s F5 derived from culture supernatants specifically inhibited LasR-controlled elastase and protease in wild type P. aeruginosa PAO1 by 68% and 73%, respectively, without significantly affecting growth; the rhl-controlled pyocyanin and rhamnolipids were inhibited by 54% and 52% in the presence of 100 µg/mL of F5. The swarming motility and biofilm of PAO1 were also inhibited by F5. Real time RT-PCR on samples from 100 µg/mL F5-treated P. aeruginosa showed downregulation of autoinducer synthase (LasRI and rhlI and cognate receptor (lasR and rhlR genes by 50%, 28%, 48%, and 29%, respectively. These results provide compelling evidence that the F5 inhibitor(s interferes with the las system and significantly inhibits biofilm formation.

  8. In vitro antimicrobial resistance of Pseudomonas aeruginosa isolated from canine otitis externa in Rio de Janeiro , Brazil

    Directory of Open Access Journals (Sweden)

    B. Penna

    2011-12-01

    Full Text Available Isolates of Pseudomonas aeruginosa (167 were obtained from 528 samples of canine otitis externa, identified by biochemical reactions and tested for susceptibility to 10 antimicrobials. The most effective drug was ciprofloxacin. The study reports alarming resistance among P. aeruginosa isolated from canine otitis externa samples in Rio de Janeiro, Brazil.

  9. Iron inhibits respiratory burst of peritoneal phagocytes in vitro

    DEFF Research Database (Denmark)

    Gotfryd, Kamil; Jurek, Aleksandra; Kubit, Piotr

    2011-01-01

    Objective. This study examines the effects of iron ions Fe(3+) on the respiratory burst of phagocytes isolated from peritoneal effluents of continuous ambulatory peritoneal dialysis (CAPD) patients, as an in vitro model of iron overload in end-stage renal disease (ESRD). Material and Methods....... Respiratory burst of peritoneal phagocytes was measured by chemiluminescence method. Results. At the highest used concentration of iron ions Fe(3+) (100 µM), free radicals production by peritoneal phagocytes was reduced by 90% compared to control. Conclusions. Iron overload may increase the risk of infectious...

  10. Inhibition of in vitro cholesterol synthesis by fatty acids.

    Science.gov (United States)

    Kuroda, M; Endo, A

    1976-01-18

    Inhibitory effect of 44 species of fatty acids on cholesterol synthesis has been examined with a rat liver enzyme system. In the case of saturated fatty acids, the inhibitory activity increased with chain length to a maximum at 11 to 14 carbons, after which activity decreased rapidly. The inhibition increased with the degree of unsaturation of fatty acids. Introduction of a hydroxy group at the alpha-position of fatty acids abolished the inhibition, while the inhibition was enhanced by the presence of a hydroxy group located in an intermediate position of the chain. Branched chain fatty acids having a methyl group at the terminal showed much higher activity than the corresponding saturated straight chain fatty acids with the same number of carbons. With respect to the mechanism for inhibition, tridecanoate was found to inhibit acetoacetyl-CoA thiolase specifically without affecting the other reaction steps in the cholesterol synthetic pathway. The highly unsaturated fatty acids, arachidonate and linoleate, were specific inhibitors of 3-hydroxy-3-methyl-glutaryl-CoA synthase. On the other hand, ricinoleate (hydroxy acid) and phytanate (branched-chain acid) diminished the conversion of mevalonate to sterols by inhibiting a step or steps between squalene and lanosterol.

  11. Statin Drugs Markedly Inhibit Testosterone Production by Rat Leydig Cells In Vitro: Implications for Men

    Science.gov (United States)

    Statin drugs lower blood cholesterol by inhibiting hepatic 3-hydroxy-3-methylglutaryl-Coenzyme-A reductase. During drug development it was shown that statins inhibit production of cholesterol in the testis. We evaluated testosterone production in vitro, using highly purified rat ...

  12. Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development.

    Science.gov (United States)

    Bandara, H M H N; K Cheung, B P; Watt, R M; Jin, L J; Samaranayake, L P

    2013-02-01

    Elucidation of bacterial and fungal interactions in multispecies biofilms will have major impacts on understanding the pathophysiology of infections. The objectives of this study were to (i) evaluate the effect of Pseudomonas aeruginosa lipopolysaccharide (LPS) on Candida albicans hyphal development and transcriptional regulation, (ii) investigate protein expression during biofilm formation, and (iii) propose likely molecular mechanisms for these interactions. The effect of LPS on C. albicans biofilms was assessed by XTT-reduction and growth curve assays, light microscopy, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). Changes in candidal hypha-specific genes (HSGs) and transcription factor EFG1 expression were assessed by real-time polymerase chain reaction and two-dimensional gel electrophoresis, respectively. Proteome changes were examined by mass spectrometry. Both metabolic activities and growth rates of LPS-treated C. albicans biofilms were significantly lower (P GDH1), CaO19.11135(PGK1), CaO19.9877(HNT1) by P. aeruginosa LPS. Our data imply that bacterial LPS inhibit C. albicans biofilm formation and hyphal development. The P. aeruginosa LPS likely target glycolysis-associated mechanisms during candidal filamentation.

  13. Bioactive Organocopper Compound from Pseudomonas aeruginosa Inhibits the Growth of Xanthomonas citri subsp. citri

    Science.gov (United States)

    de Oliveira, Admilton G.; Spago, Flavia R.; Simionato, Ane S.; Navarro, Miguel O. P.; da Silva, Caroline S.; Barazetti, André R.; Cely, Martha V. T.; Tischer, Cesar A.; San Martin, Juca A. B.; de Jesus Andrade, Célia G. T.; Novello, Cláudio R.; Mello, João C. P.; Andrade, Galdino

    2016-01-01

    Citrus canker is a very destructive disease of citrus species. The challenge is to find new compounds that show strong antibiotic activity and low toxicity to plants and the environment. The objectives of the present study were (1) to extract, purify and evaluate the secondary metabolites with antibiotic activity produced by Pseudomonas aeruginosa LV strain in vitro against Xanthomonas citri subsp. citri (strain 306), (2) to determine the potential of semi-purified secondary metabolites in foliar application to control citrus canker under greenhouse conditions, and (3) to identify antibiotic activity in orange leaf mesophyll infected with strain 306, by electron microscopy. Two pure bioactive compounds were isolated, an organocopper antibiotic compound (OAC) and phenazine-1-carboxamide. Phenazine-1-carboxamide did not show any antibiotic activity under the experimental conditions used in this study. The OAC showed a high level of antibiotic activity with a minimum inhibitory concentration of 0.12 μg mL-1. In greenhouse tests for control of citrus canker in orange trees, the semi-purified fraction F3d reduced lesion formation by about 97%. The concentration used was 500 times lower than that for the recommended commercial copper-based product. Electron microscopy showed that F3d altered the exopolysaccharide matrix and caused cell lysis of the pathogen inside the citrus canker lesions. These results suggest that secondary metabolites produced by inducing P. aeruginosa LV strain have a high potential to be used as a bioproduct to control citrus canker. PMID:26903992

  14. Nesfatin-1 inhibits ovarian epithelial carcinoma cell proliferation in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Yang; Pang, Xiaoyan; Dong, Mei; Wen, Fang, E-mail: wenfang64@hotmail.com; Zhang, Yi, E-mail: syzi960@yahoo.com

    2013-11-01

    Highlights: •Nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest. •Nesfatin-1 enhances HO-8910 cell apoptosis. •Nesfatin-1 inhibits HO-8910 cell proliferation via mTOR and RhoA/ROCK signaling pathway. •The first report of nesfatin-1-mediated proliferation in ovarian epithelial carcinoma. -- Abstract: Nesfatin-1, an 82-amino-acid peptide derived from a 396-amino-acid precursor protein nucleobindin 2 (NUCB2), was originally identified in hypothalamic nuclei involved in the regulation of food intake. It was recently reported that nesfatin-1 is a novel depot specific adipokine preferentially produced by subcutaneous tissue, with obesity- and food deprivation-regulated expression. Although a relation between ovarian cancer mortality and obesity has been previously established, a role of nesfatin-1 in ovarian epithelial carcinoma remains unknown. The aim of the present study is to examine the effect of nesfatin-1 on ovary carcinoma cells proliferation. We found that nesfatin-1 inhibits the proliferation and growth of HO-8910 cells by G1 phase arrest, this inhibition could be abolished by nesfatin-1 neutralizing antibody. Nesfatin-1 enhances HO-8910 cell apoptosis, activation of mammalian target of rapamycin (mTOR) and RhoA/ROCK signaling pathway block the effects of nesfatin-1-induced apoptosis, therefore reverses the inhibition of HO-8910 cell proliferation by nesfatin-1. In conclusion, the present study demonstrated that nesfatin-1 can inhibit the proliferation in human ovarian epithelial carcinoma cell line HO-8910 cells through inducing apoptosis via mTOR and RhoA/ROCK signaling pathway. This study provides a novel regulatory signaling pathway of nesfatin-1-regulated ovarian epithelial carcinoma growth and may contribute to ovarian cancer prevention and therapy, especially in obese patients.

  15. The Theaflavin Monomers Inhibit the Cancer Cells Growth in Vitro

    Institute of Scientific and Technical Information of China (English)

    You-Ying TU; An-Bin TANG; Naoharu WATANABE

    2004-01-01

    The inhibition effects of tea theaflavins complex (TFs), theaflavin-3-3 '-digallate (TFDG),theaflavin-3'-gallate (TF2B), and an unidentified compound (UC) on the growth of human liver cancer BEL-7402 cells, gastric cancer MKN-28 cells and acute promyelocytic leukemia LH-60 cells were investigated.TFs was obtained through the catalysis of catechins with immobilized polyphenols oxidase. TFDG, TF2B and UC were isolated from TFs with high speed countercurrent chromatography (HSCCC). The results showed that TF2B significantly inhibited the growth of all three kinds of cancer cells, TFs, TFDG and UC had some effect on BEL-7402 and MKN-28, but little activity on LH-60. The inhibition effects of TF2B, TFDG, and UC on BEL-7402 and MKN-28 were stronger than TFs. The relationship coefficients between monomer concentration and its inhibition rate against MKN-28 and BEL-7402 were 0.87 and 0.98 for TF2B, 0.96 and 0.98 for UC, respectively. The IC50 values ofTFs, TF2B, and TFDG were 0.18, 0.11, and 0.16 mM on BEL-7402 cells, and 1.11, 0.22, and 0.25 mM on MKN-28 cells respectively.

  16. Inhibition of adenovirus replication in vitro by trifluridine.

    Science.gov (United States)

    Lennette, D A; Eiferman, R A

    1978-09-01

    At present, there is no effective chemotherapeutic agent available for the treatment of adenoviral keratoconjunctivitis. Recent evidence suggests that trifluridine (3FT) may effectively inhibit the replication of some adenovirus serotypes known to cause keratoconjunctivitis. The ability of 3FT to inhibit two reference strains of adenoviruses, type 8 and type 19, was examined using cell cultures. Two second-passage isolates of adenoviruses, identified as serotype 13, were also tested. Compared with untreated, virusinfected cell cultures, drug-treated cell cultures developed a lesser degree of cytopathic effect following infection with all three serotypes. Virus production was reduced in the drug-treated cell cultures: approximately tenfold for type 8, more than 1,000-fold for type 19, and 5,000-fold for the type 13 isolates.

  17. Alternative products in the "in vitro" inhibition of Sclerotinia sclerotiorum

    Directory of Open Access Journals (Sweden)

    Mello Alexandre Furtado Silveira

    2005-01-01

    Full Text Available The white mold, caused by Sclerotinia sclerotiorum, is a very important disease in tomato crops. The objective of this work was to study the effect of plant extracts, animal residues and industrial by-products extracts on the fungus in vitro growth. Treatments consisted of different concentrations of pyrolignous oil, neem oil, monosodium glutamate, sewage sludge and organic compost [coffee residue (50% coal residue (10%, maize residue (25%, poultry waste (12.5%, poultry meal (2.5%]. Positive control consisted of Petri dishes with PDA medium and negative control treatment consisted of PDA medium with procymidone. Fungus colonies were incubated at 22ºC and light intensity of 260 lux. Variables such as mycelium growth rate, sclerotia production, and viability 7 and 17 days after the transfer of mycelium disc to neon media were assessed. The extract of organic compost at 30% was effective in controlling mycelial growth and sclerotia production. This treatment, as well as neem oil at 0.5% increased soil respiration.

  18. Dietary relevant mixtures of phytoestrogens inhibit adipocyte differentiation in vitro

    DEFF Research Database (Denmark)

    Taxvig, Camilla; Specht, Ina Olmer; Boberg, Julie

    2013-01-01

    Phytoestrogens (PEs) are naturally occurring plant components, with the ability to induce biological responses in vertebrates by mimicking or modulating the action of endogenous hormones.Single isoflavones have been shown to affect adipocyte differentiation, but knowledge on the effect of dietary...... as tested for their PPARγ activating abilities. The results showed that mixtures of isoflavonoid parent compounds and metabolites, respectively, a mixture of lignan metabolites, as well as coumestrol concentration-dependently inhibited adipocyte differentiation. Furthermore, a mixture of isoflavonoid parent...

  19. In vitro and in vivo generation and characterization of Pseudomonas aeruginosa biofilm-dispersed cells via c-di-GMP manipulation.

    Science.gov (United States)

    Chua, Song Lin; Hultqvist, Louise D; Yuan, Mingjun; Rybtke, Morten; Nielsen, Thomas E; Givskov, Michael; Tolker-Nielsen, Tim; Yang, Liang

    2015-08-01

    Bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a global secondary bacterial messenger that controls the formation of drug-resistant multicellular biofilms. Lowering the intracellular c-di-GMP content can disperse biofilms, and it is proposed as a biofilm eradication strategy. However, freshly dispersed biofilm cells exhibit a physiology distinct from biofilm and planktonic cells, and they might have a clinically relevant role in infections. Here we present in vitro and in vivo protocols for the generation and characterization of dispersed cells from Pseudomonas aeruginosa biofilms by reducing the intracellular c-di-GMP content through modulation of phosphodiesterases (PDEs). Unlike conventional protocols that demonstrate biofilm dispersal by biomass quantification, our protocols enable physiological characterization of the dispersed cells. Biomarkers of dispersed cells are identified and quantified, serving as potential targets for treating the dispersed cells. The in vitro protocol can be completed within 4 d, whereas the in vivo protocol requires 7 d.

  20. Inhibition of Urogenital Chlamydia Trachomatis in Vitro by 12 Diuretic Traditional Chinese Medicines

    Institute of Scientific and Technical Information of China (English)

    LI Jianjun(李建军); TU Yuying(涂裕英); TONG Juzhen(佟菊贞); WANG Peitu(汪培土)

    2002-01-01

    Objective:To detect the inhibition of urogenital chlamydia trachomatis (CT) by 12 traditional Chinese medicines in vitro.Methods: The inhibition of CT isolates by these medicines was detected by micro-culture technique with McCoy cells in vitro.Results: All the diuretic traditional Chinese medicines inhibited urogenital CT. The minimum inhibitory concentrations (MICs) ranged from 0.122 mg ml-1 to 62.5 mg ml-1. Diathus superbus L., Poria cocos (Shcw.) Woft,Polyporus umbellatus (Pets.) Fries, and Artemisia capillaries Thunb showed stronger inhibition than the other eight traditional Chinese medicines. The numbers and sizes of inclusions bodies reduced gradually and disappeared finally with the increase of the concentrations.Conclusion: All the 12 diuretic traditional Chinese medicines inhibited urogenital CT.

  1. Inhibited growth of Pseudomonas aeruginosa by dextran- and polyacrylic acid-coated ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Wang Q

    2013-08-01

    Full Text Available Qi Wang,1 J Manuel Perez,2 Thomas J Webster1,3 1Bioengineering Program, College of Engineering, Northeastern University, Boston, MA, USA; 2Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA; 3Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA Abstract: Ceria (CeO2 nanoparticles have been widely studied for numerous applications, but only a few recent studies have investigated their potential applications in medicine. Moreover, there have been almost no studies focusing on their possible antibacterial properties, despite the fact that such nanoparticles may reduce reactive oxygen species. In this study, we coated CeO2 nanoparticles with dextran or polyacrylic acid (PAA because of their enhanced biocompatibility properties, minimized toxicity, and reduced clearance by the immune system. For the first time, the coated CeO2 nanoparticles were tested in bacterial assays involving Pseudomonas aeruginosa, one of the most significant bacteria responsible for infecting numerous medical devices. The results showed that CeO2 nanoparticles with either coating significantly inhibited the growth of Pseudomonas aeruginosa, by up to 55.14%, after 24 hours compared with controls (no particles. The inhibition of bacterial growth was concentration dependent. In summary, this study revealed, for the first time, that the characterized dextran- and PAA-coated CeO2 nanoparticles could be potential novel materials for numerous antibacterial applications. Keywords: antibacterial, biomedical applications

  2. Effect of Cinnamomum burmannii Nees ex Bl. and Massoia aromatica Becc. Essential Oils on Planktonic Growth and Biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus In Vitro

    Directory of Open Access Journals (Sweden)

    Sylvia Utami Tunjung Pratiwi

    2015-03-01

    Full Text Available Summary. Biofilms are communities of microorganisms that can be found in almost every habitat. They can be attached to a surface and protected by an extracellular matrix of biomolecules that substantially protect microorganisms from environmental effects. The aim of this research is to explore the potency of essential oils from Cinnamomum burmannii Nees ex Bl. and Massoia aromatica Becc. against planktonic growth and biofilm formation of, two opportunistic pathogens, Pseudomonas aeruginosa PAO1 and Staphylococcus aureus Cowan I. Essential oil from C. burmannii  and M. aromatica showed a 50% inhibition of  P. aeruginosa and S. aureus planktonic growth (PMIC50 at concentration of 0.12 % v/v. Essential oil from C. burmannii and M.  aromatica showed capability to inhibit 50% (MBIC50 of P. aeruginosa and S. aureus biofilm formation at concentration of 0.03 % v/v, whereas higher concentration (0.12 % v/v was needed by C. burmannii and M. aromatica oil to disrupt 50% of P. aeruginosa and S. aureus established biofilm. The analysis by GC-MS showed cinnamic aldehyde (92.02 % to be the major component of C. burmannii essential oil, whereas Massoialactone (92.05 % was the main constituent of M. aromatica essential oil. The results obtained in this study have made the oil of C. burmannii and M. aromatica oil as an interesting source for antibiofilm agents in the development of new strategies to treat infections caused by P. aeruginosa and  S. aureus biofilm.Industrial Relevance. Instead of freely swimming in solution (planktonic, in nature microbial tends to adhere to surfaces, and develop microbial biofilms. Microbial biofilms are exhibits resistance to both antimicrobial drugs and the host defence systems, which often results in persistent and difficult-to-treat infections. This makes the discovery of anti-infective agents which are active against planktonic and biofilm microbial represents an important goal. Plant is an interesting source for finding

  3. Dickkopf3 overexpression inhibits pancreatic cancer cell growth in vitro

    Institute of Scientific and Technical Information of China (English)

    Yu-Mei Gu; Yi-Hui Ma; Wu-Gan Zhao; Jie Chen

    2011-01-01

    AIM: To elucidate the role of dickkopf3 (Dkk3) in human pancreatic cancer cell growth.METHODS: Dkk3 mRNA and protein expression in human pancreatic cancer cell lines were detected by real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blotting and immunofluorescence. Methylation of the Dkk3 promoter sequence was examined by methylation-specific polymerase chain reaction (MSP) and Dkk3 mRNA expression was determined by real-time RT-PCR after 5-aza-2'-deoxycytidine (5-aza-dC) treatment. The effects of Dkk3 on cancer cell proliferation and in vitro sensitivity to gemcitabine were investigated by CellTiter 96. AQueous One Solution Cell Proliferation Assay (MTS) after transfecting the Dkk3 expression plasmid into human pancreatic cancer cells. The expression of β-catenin, phosphorylated extracellular signal-regulated protein kinases (pERK) and extracellular signal-regulated protein kinases (ERK) was also examined by real-time RT-PCR and Western blotting after upregulating Dkk3 expression in human pancreatic cancer cells.RESULTS: The results show that the expression levels of both Dkk3 mRNA and protein were low in all pancreatic cancer cell lines tested. The Dkk3 promoter sequence was methylated in the MIA PaCa-2 and AsPC-1 cell lines, which showed reduced Dkk3 expression. These two cell lines, which initially had a methylated Dkk3 promoter, showed increased Dkk3 mRNA expression that was dependent upon the dosage and timing of the DNA demethylating agent, 5-aza-dC, treatment (P < 0.05 or P < 0.01). When Dkk3 expression was upregulated following the transfection of a Dkk3 expression plasmid into MIA PaCa-2 cells, the ability of cells to proliferate decreased (P < 0.01), and the expression of β-catenin and pERK was downregulated (P < 0.01). Sensitivity to gemcitabine was enhanced in Dkk3 expression plasmid-transfected cells.CONCLUSION: Our findings, for the first time, implicate Dkk3 as a tumor suppressor in human pancreatic cancer

  4. Strontium Promotes Cementoblasts Differentiation through Inhibiting Sclerostin Expression In Vitro

    Directory of Open Access Journals (Sweden)

    Xingfu Bao

    2014-01-01

    Full Text Available Cementogenesis, performed by cementoblasts, is important for the repair of root resorption caused by orthodontic treatment. Based on recent studies, strontium has been applied for osteoporosis treatment due to its positive effect on osteoblasts. Although promising, the effect of strontium on cementoblasts is still unclear. So the aim of this research was to clarify and investigate the effect of strontium on cementogenesis via employing cementoblasts as model. A series of experiments including MTT, alkaline phosphatase activity, gene analysis, alizarin red staining, and western blot were carried out to evaluate the proliferation and differentiation of cementoblasts. In addition, expression of sclerostin was checked to analyze the possible mechanism. Our results show that strontium inhibits the proliferation of cementoblasts with a dose dependent manner; however, it can promote the differentiation of cementoblasts via downregulating sclerostin expression. Taking together, strontium may facilitate cementogenesis and benefit the treatment of root resorption at a low dose.

  5. Inhibition of dentin demineralization by fluoride in vitro.

    Science.gov (United States)

    ten Cate, J M; Damen, J J; Buijs, M J

    1998-01-01

    Compared with the knowledge accumulated on enamel-fluoride interactions, relatively little data is available regarding fluoride effects on dentin. This applies to both laboratory and clinical studies into the efficacy of fluoride schemes for the prevention of root surface caries. This study aimed to determine the effects of fluoride and pH on the demineralization of dentin, such as to provide information necessary to develop preventive programmes. Bovine dentin blocks were subjected to undersaturated calcium- and phosphate-containing solutions in the pH range 4.0-6.0 with fluoride added at concentrations between 0.5 and 10 ppm. Non-fluoride solutions served as controls. Mineral loss was assessed chemically and by transversal microradiography. Comparisons were made with similar studies on enamel demineralization. The results showed that demineralization of dentin depends on both pH and fluoride concentration in the demineralizing solution. Inhibition of demineralization that could be relevant from a clinical point of view was found at fluoride values 5-10 times the corresponding values for enamel. Also rapid depletion of fluoride from the solutions was observed, indicating the high uptake capacity of dentin for fluoride. Lesion depth depended on pH of the solution while the fluoride levels were associated with the surface layer, both in mineral content and depth. For dentin we propose a demineralization mechanism where acid penetrates rapidly into the tissue, presumably through the tubules, after which the released calcium and phosphate is partly trapped by the inward diffusing fluoride. This leads to the formation of a surface layer, which may even be hypermineralized compared to sound dentin.

  6. Cinnamon extract inhibits tau aggregation associated with Alzheimer’s Disease in vitro

    Science.gov (United States)

    An aqueous extract of Ceylon cinnamon (C. zeylanicum) was found to inhibit tau aggregation and filament formation, hallmarks of Alzheimer’s disease (AD) in vitro using brain cells taken from patients who died with AD. The extract also promoted complete disassembly of recombinant tau filaments, and ...

  7. Inhibition of Aspergillus fumigatus and Its Biofilm by Pseudomonas aeruginosa Is Dependent on the Source, Phenotype and Growth Conditions of the Bacterium.

    Science.gov (United States)

    Ferreira, Jose A G; Penner, John C; Moss, Richard B; Haagensen, Janus A J; Clemons, Karl V; Spormann, Alfred M; Nazik, Hasan; Cohen, Kevin; Banaei, Niaz; Carolino, Elisabete; Stevens, David A

    2015-01-01

    Aspergillus fumigatus (Af) and Pseudomonas aeruginosa (Pa) are leading fungal and bacterial pathogens, respectively, in many clinical situations. Relevant to this, their interface and co-existence has been studied. In some experiments in vitro, Pa products have been defined that are inhibitory to Af. In some clinical situations, both can be biofilm producers, and biofilm could alter their physiology and affect their interaction. That may be most relevant to airways in cystic fibrosis (CF), where both are often prominent residents. We have studied clinical Pa isolates from several sources for their effects on Af, including testing involving their biofilms. We show that the described inhibition of Af is related to the source and phenotype of the Pa isolate. Pa cells inhibited the growth and formation of Af biofilm from conidia, with CF isolates more inhibitory than non-CF isolates, and non-mucoid CF isolates most inhibitory. Inhibition did not require live Pa contact, as culture filtrates were also inhibitory, and again non-mucoid>mucoid CF>non-CF. Preformed Af biofilm was more resistant to Pa, and inhibition that occurred could be reproduced with filtrates. Inhibition of Af biofilm appears also dependent on bacterial growth conditions; filtrates from Pa grown as biofilm were more inhibitory than from Pa grown planktonically. The differences in Pa shown from these different sources are consistent with the extensive evolutionary Pa changes that have been described in association with chronic residence in CF airways, and may reflect adaptive changes to life in a polymicrobial environment.

  8. Pseudomonas aeruginosa biofilm growth inhibition on medical plastic materials by immobilized esterases and acylase.

    Science.gov (United States)

    Kisch, Johannes Martin; Utpatel, Christian; Hilterhaus, Lutz; Streit, Wolfgang R; Liese, Andreas

    2014-09-01

    Biofilms are matrix-encapsulated cell aggregates that cause problems in technical and health-related areas; for example, 65 % of all human infections are biofilm associated. This is mainly due to their ameliorated resistance against antimicrobials and immune systems. Pseudomonas aeruginosa, a biofilm-forming organism, is commonly responsible for nosocomial infections. Biofilm development is partly mediated by signal molecules, such as acyl-homoserine lactones (AHLs) in Gram-negative bacteria. We applied horse liver esterase, porcine kidney acylase, and porcine liver esterase; these can hydrolyze AHLs, thereby inhibiting biofilm formation. As biofilm infections are often related to foreign material introduced into the human body, we immobilized the enzymes on medical plastic materials. Biofilm formation was quantified by Crystal Violet staining and confocal laser scanning microscopy, revealing up to 97 % (on silicone), 54 % (on polyvinyl chloride), and 77 % (on polyurethane) reduced biomass after 68 h growth.

  9. Inhibition of human low-density lipoprotein oxidation in vitro by ginger extracts.

    Science.gov (United States)

    Gunathilake, K D Prasanna P; Rupasinghe, H P Vasantha

    2014-04-01

    Oxidative modification of low-density lipoprotein (LDL) is thought to play a key role in atherosclerotic plaque formation. Currently, there is a renewed interest in ginger because of its antioxidants and cardioprotective properties. The effects of ethanol, methanol, ethyl acetate, and hexane solvent extracts of ginger and pure major ginger constituents on Cu(2+)-induced oxidation of human LDL in vitro were examined. The LDL oxidation inhibition by ethanol, methanol, ethyl acetate, and hexane extracts of ginger was 71%, 76%, 67%, and 67%, respectively, at their optimum extraction conditions. Inhibition of LDL oxidation by water extracts of ginger, which was prepared by ultrasonic-assisted extraction conditions of 52°C for 15 min, was about 43%. Phenolic bioactives of ginger-6-gingerols, 8-gingerols, 10-gingerols, and 6-shogaol-seem to be strong inhibitors of Cu(+2)-induced LDL oxidation. Overall, ginger extracts, including the water extract possess the antioxidant activities to inhibit human LDL oxidation in vitro.

  10. Screening of BADH Activity of Borreria articularies (Linn. for the Inhibition of P. aeruginosa

    Directory of Open Access Journals (Sweden)

    Md Shamsuddin Sultan Khan

    2014-08-01

    Full Text Available Purposes: The present study was designed to investigate the antibacterial activities of the Ethanol and methanol extracts of the leaves of the plant Borreria articularies (Linn. effects on microbial growth inhibition in vitro, microbial cells in vivo and molecular enzyme (BADH targets in vitro.Methods: The preliminary phytochemicals of the extracts was determined by the standard methods and aliquoted with Thin Layer Chromatography (TLC and stored at 2-4oC. fluorescein diacetate (FDA and ethidium bromide (EB live-dead cell viability test for distinguishing the membrane active phytochemicals of the plant extract.  Betaine aldehyde dehydrogenase (BADH activity was assessed by spectrophotometer. Alkaloids, glycosides, steroids, gums, saponin and reducing sugar were found in extracts.Results: The results of the disc diffusion indicated that the crude extracts were able to inhibit the growth of bacteria within a concentration range of 0.5 to 2.0 mg/mL. At a similar concentration range (0.5 to 2.0 mg/mL the extract inhibited the growth of 90.12% of the tested microorganisms. Bacterial cell viability was found minor in the phytochemicals of crude extract. Also, constituents of crude extract inhibited the BADH activity to protect the adaptation in stress environment of the bacteria.Conclusion: Results of the present study showed the possible use of the studied plants extracts in the control of bacterial infections.   

  11. A comprehensive analysis of in vitro and in vivo genetic fitness of Pseudomonas aeruginosa using high-throughput sequencing of transposon libraries.

    Directory of Open Access Journals (Sweden)

    David Skurnik

    Full Text Available High-throughput sequencing of transposon (Tn libraries created within entire genomes identifies and quantifies the contribution of individual genes and operons to the fitness of organisms in different environments. We used insertion-sequencing (INSeq to analyze the contribution to fitness of all non-essential genes in the chromosome of Pseudomonas aeruginosa strain PA14 based on a library of ∼300,000 individual Tn insertions. In vitro growth in LB provided a baseline for comparison with the survival of the Tn insertion strains following 6 days of colonization of the murine gastrointestinal tract as well as a comparison with Tn-inserts subsequently able to systemically disseminate to the spleen following induction of neutropenia. Sequencing was performed following DNA extraction from the recovered bacteria, digestion with the MmeI restriction enzyme that hydrolyzes DNA 16 bp away from the end of the Tn insert, and fractionation into oligonucleotides of 1,200-1,500 bp that were prepared for high-throughput sequencing. Changes in frequency of Tn inserts into the P. aeruginosa genome were used to quantify in vivo fitness resulting from loss of a gene. 636 genes had <10 sequencing reads in LB, thus defined as unable to grow in this medium. During in vivo infection there were major losses of strains with Tn inserts in almost all known virulence factors, as well as respiration, energy utilization, ion pumps, nutritional genes and prophages. Many new candidates for virulence factors were also identified. There were consistent changes in the recovery of Tn inserts in genes within most operons and Tn insertions into some genes enhanced in vivo fitness. Strikingly, 90% of the non-essential genes were required for in vivo survival following systemic dissemination during neutropenia. These experiments resulted in the identification of the P. aeruginosa strain PA14 genes necessary for optimal survival in the mucosal and systemic environments of a mammalian

  12. In vitro inhibition of Helicobacter pylori growth and adherence to gastric mucosal cells by Pycnogenol.

    Science.gov (United States)

    Rohdewald, Peter; Beil, Winfried

    2008-05-01

    The emergence of antibiotic resistant H. pylori strains has necessitated the identification of alternative additive therapies for the treatment of this infection. The study tested whether a specific pine bark extract (Pycnogenol is effective in inhibiting the growth and adherence of H. pylori in vitro. Inhibition of H. pylori growth by Pycnogenol was tested in liquid medium as well as in an in vitro model by using sessile bacteria attached to AGS cells. Adherence was determined by co-incubation of gastric cells with Pycnogenol and H. pylori in vitro. Pycnogenol inhibited H. pylori growth in suspension with an MIC(50) of 12.5 microg/mL. Growth of H. pylori in infected cells was reduced to 10% of the control value by 125 microg/mL Pycnogenol. Adherence of H. pylori to gastric cells was reduced by 70% after 3 h incubation with 125 microg/mL Pycnogenol. The results show a significant, yet limited inhibition of growth and adherence of H. pylori to gastric cells by Pycnogenol. In vivo studies have to demonstrate the clinical relevance of these findings.

  13. In-Vitro Antibacterial Properties of Sage (Salvia officinalis Ethanol Extract against Multidrug Resistant Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae

    Directory of Open Access Journals (Sweden)

    Elham Mosafa

    2014-10-01

    Full Text Available Background: Due to excessive consumption of synthetic drugs, drug resistance rate of pathogenic bacteria is increasing and the need to find new compounds is necessary. The aim of this study was to investigate the antibacterial effect of ethanol extract of, sage to the four species of common pathogenic bacteria resistant to multiple drugs in vitro such as: Staphylococcus aureus (50 strains, Escherichia coli (50 strains, Pseudomonas aeruginosa (50 strains and Klebsiella pneumonia (50 strains. Materials and Methods: In this experimental study, antibacterial effect of ethanol extract of sage plants on the development of multi-drug resistant bacteria was performed by well diffusion at concentrations of 50, 400, 100 mg/mLand microdilution method. Results: Ethanol extracts of sage in well diffusion method showed significant inhibitory effect on the growth of isolated bacteria. The results indicate the inhibitory effects of ethanol extract of sage with MIC (Minimum Inhibitory Concentration=18.75 mg/mL for S. aureus, MIC=26.56 mg/mL for E. coli, MIC=33.75 mg/mL for P. aeruginosa and with MIC=31.25 mg/mL for K. pneumoniae. Conclusion: In relation with the antibacterial effect of ethanol extracts of Sage on the multi-drug resistant bacteria the use of herbs as an alternative to antibiotics after pharmacological studies, for treatment recommended.

  14. Tobramycin at subinhibitory concentration inhibits the RhlI/R quorum sensing system in a Pseudomonas aeruginosa environmental isolate

    Directory of Open Access Journals (Sweden)

    Venturi Vittorio

    2010-06-01

    Full Text Available Abstract Background Antibiotics are not only small molecules with therapeutic activity in killing or inhibiting microbial growth, but can also act as signaling molecules affecting gene expression in bacterial communities. A few studies have demonstrated the effect of tobramycin as a signal molecule on gene expression at the transcriptional level and its effect on bacterial physiology and virulence. These have shown that subinhibitory concentrations (SICs of tobramycin induce biofilm formation and enhance the capabilities of P. aeruginosa to colonize specific environments. Methods Environmental P. aeruginosa strain PUPa3 was grown in the presence of different concentrations of tobramycin and it was determined at which highest concentration SIC, growth, total protein levels and translation efficiency were not affected. At SIC it was then established if phenotypes related to cell-cell signaling known as quorum sensing were altered. Results In this study it was determined whether tobramycin sensing/response at SICs was affecting the two independent AHL QS systems in an environmental P. aeruginosa strain. It is reasonable to assume that P. aeruginosa encounters tobramycin in nature since it is produced by niche mate Streptomyces tenebrarius. It was established that SICs of tobramycin inhibited the RhlI/R system by reducing levels of C4-HSL production. This effect was not due to a decrease of rhlI transcription and required tobramycin-ribosome interaction. Conclusions Tobramycin signaling in P. aeruginosa occurs and different strains can have a different response. Understanding the tobramycin response by an environmental P. aeruginosa will highlight possible inter-species signalling taking place in nature and can possible also have important implications in the mode of utilization for human use of this very important antibiotic.

  15. 氨基酮戊酸光动力疗法对铜绿假单胞菌的杀灭作用的体外研究%Photodynamic inactivation of pseudomonas aeruginosa by 5-aminolevulinic acid in vitro

    Institute of Scientific and Technical Information of China (English)

    成琼辉; 陈年; 欧东; 刘渤; 伍津津; 雷霞

    2014-01-01

    目的:研究氨基酮戊酸(5-aminolevulinic acid,5-ALA)光动力疗法(photodynamic therapy)(ALA-PDT)对铜绿假单胞菌的杀灭作用。方法:以铜绿假单胞菌标准菌株ATCC27853为研究对象,采用ALA为光敏剂,用630nm的红光为光源,按不同的浓度剂量组合分为6组,用细菌涂板法观察细菌浓度,同时利用氯仿萃取法测定照射后48小时的绿脓毒素;结果:仅有光敏剂实验组与对照组(无ALA,无红光)细菌量相比,对铜绿假单胞菌无杀灭作用,仅有红光照射(90J/cm2×40分钟)组有轻度杀菌作用,抑制率为18.9%,而ALA与红光组合的三个ALA-PDT实验组对铜绿假单胞菌均有不同程度的杀菌作用(10nM ALA+90J/cm2红光×20分钟组的抑制率为82.0%,20nM ALA+90J/cm2红光×20分钟组的抑制率为96.4%,而20nM ALA+90J/cm2红光×40分钟组抑制率为100%),ALA-PDT对铜绿假单胞菌的杀灭作用随ALA浓度增高和红光能量增高作用加强;绿脓毒素的量在光动力治疗组也有明显下降,随剂量增加明显下降。结论:ALA-PDT对体外培养的铜绿假单胞菌ATCC27853具有明确的杀灭作用,能减少绿脓毒素分泌,且与剂量相关。%Objective To investigate the effect of 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT) on pseudomonas aeruginosa planktonic cells in vitro. Medhods: Pseudomonas aeruginosa standard strain ATCC27853 was used in this study. Pseudomonas aeruginosa was divided into 6 groups according to different dose of ALA and 630nm red light. Spread plate method was used to count the bacteria. The chloroform extraction method was used to detect the exotoxin of Pseudomonas aeruginosa. Results:Compared with blank group, the experimental group with only ALA had no effect to Pseudomonas aeruginosa. But, the experimental group with only red light has mild inhibition (18.9%) to Pseudomonas aeruginosa. Pseudomonas aeruginosa was inhibited in three

  16. In vitro screening assay for teratogens using growth inhibition of human embryonic cells.

    Science.gov (United States)

    Pratt, R M; Willis, W D

    1985-01-01

    We have tested 35 teratogenic and 20 nonteratogenic chemicals or drugs in a short-term, in vitro assay that identifies teratogens by their ability to inhibit growth of an established line of human embryonic palatal mesenchymal cells. Only those chemicals that exhibited a dose-dependent inhibition of growth at concentrations less than 1 mM were classified as inhibitory. An Aroclor-induced rat liver S-9 system was effective in metabolizing cyclophosphamide to its teratogenic form in culture. We suggest that this assay, along with the complementary tumor cell-attachment assay of Braun et al. [Braun, A. G., Emerson, D. J. & Nichinson, B. B. (1979) Nature (London) 282, 507-509] may be useful as a short-term in vitro battery for assessment of the teratogenic potential in environmental agents and to prioritize those chemicals which merit further testing in vivo. Images PMID:3862095

  17. In vitro screening assay for teratogens using growth inhibition of human embryonic cells

    Energy Technology Data Exchange (ETDEWEB)

    Pratt, R.M.; Willis, W.D.

    1985-09-01

    The authors have tested 35 teratogenic and 20 nonteratogenic chemicals or drugs in a short-term, in vitro assay that identifies teratogens by their ability to inhibit growth of an established line of human embryonic palatal mesenchymal cells. Only those chemicals that exhibited a dose-dependent inhibition of growth at concentrations less than 1 mM were classified as inhibitory. An Aroclor-induced rat liver S-9 system was effective in metabolizing cyclophosphamide to its teratogenic form in culture. The authors suggest that this assay, along with the complementary tumor cell-attachment assay of Braun may be useful as a short-term in vitro battery for assessment of the teratogenic potential in environmental agents and to prioritize those chemicals which merit further testing in vivo.

  18. Peptide aldehyde inhibitors of cathepsin K inhibit bone resorption both in vitro and in vivo.

    Science.gov (United States)

    Votta, B J; Levy, M A; Badger, A; Bradbeer, J; Dodds, R A; James, I E; Thompson, S; Bossard, M J; Carr, T; Connor, J R; Tomaszek, T A; Szewczuk, L; Drake, F H; Veber, D F; Gowen, M

    1997-09-01

    We have shown previously that cathepsin K, a recently identified member of the papain superfamily of cysteine proteases, is expressed selectively in osteoclasts and is the predominant cysteine protease in these cells. Based upon its abundant cell type-selective expression, potent endoprotease activity at low pH and cellular localization at the bone interface, cathepsin K has been proposed to play a specialized role in osteoclast-mediated bone resorption. In this study, we evaluated a series of peptide aldehydes and demonstrated that they are potent cathepsin K inhibitors. These compounds inhibited osteoclast-mediated bone resorption in fetal rat long bone (FRLB) organ cultures in vitro in a concentration-dependent manner. Selected compounds were also shown to inhibit bone resorption in a human osteoclast-mediated assay in vitro. Chz-Leu-Leu-Leu-H (in vitro enzyme inhibition Ki,app = 1.4 nM) inhibited parathyroid hormone (PTH)-stimulated resorption in the FRLB assay with an IC-50 of 20 nM and inhibited resorption by isolated human osteoclasts cultured on bovine cortical bone slices with an IC-50 of 100 nM. In the adjuvant-arthritic (AA) rat model, in situ hybridization studies demonstrated high levels of cathepsin K expression in osteoclasts at sites of extensive bone loss in the distal tibia. Cbz-Leu-Leu-Leu-H (30 mg/kg, intraperitoneally) significantly reduced this bone loss, as well as the associated hind paw edema. In the thyroparathyriodectomized rat model, Cbz-Leu-Leu-Leu-H inhibited the increase in blood ionized calcium induced by a 6 h infusion of PTH. These data indicate that inhibitors of cathepsin K are effective at reducing osteoclast-mediated bone resorption and may have therapeutic potential in diseases of excessive bone resorption such as rheumatoid arthritis or osteoporosis.

  19. In vitro synergistic activities of essential oils and surfactants in combination with cosmetic preservatives against Pseudomonas aeruginosa and Staphylococcus aureus.

    Science.gov (United States)

    Patrone, Vania; Campana, Raffaella; Vittoria, Emanuela; Baffone, Wally

    2010-04-01

    The aim of this study is to evaluate possible synergistic antimicrobial interactions between common cosmetic preservatives and selected essential oils or surfactants. The antimicrobial efficacy of six essential oils, three surfactants and five preservatives against Pseudomonas aeruginosa ATCC 9027 and Staphylococcus aureus ATCC 43387 was assessed by a broth micro-dilution assay. MICs for individual and combined antimicrobials were determined and then transformed to fractional inhibitory concentration (FIC) indexes. All essential oils exhibited antibacterial activity; among surfactants, bacteria resulted most susceptible to the cationic agent. Synergy was observed when essential oils of eucalyptus and mint were combined with methylparaben against P. aeruginosa, while essential oils of mint, oregano and sage combined with propylparaben and imidazolidinyl urea acted against S. aureus. Many binary mixtures of preservatives and surfactants produced synergistic activity with the most effective interactions involving the cationic and amphoteric compounds under study. FIC indexes demonstrated synergistic effects when preservatives were combined with either essential oils or surfactants against both bacterial strains. These results highlight the potential usefulness of essential oils and surfactants to enhance the activities of conventional biocides. This kind of study should contribute to the selection and optimization of preservative systems for cosmetic preparations.

  20. Nanosized particles of orlistat with enhanced in vitro dissolution rate and lipase inhibition.

    Science.gov (United States)

    Dolenc, Andrej; Govedarica, Biljana; Dreu, Rok; Kocbek, Petra; Srcic, Stane; Kristl, Julijana

    2010-08-30

    Orlistat is locally acting inhibitor of gastrointestinal lipases which has been developed for the treatment of obesity. The present study was designed with the intent to formulate orlistat in a different way compared to the current practice and investigate its inhibition of gastrointestinal lipases. Orlistat is considered as a technologically problematic and unmanageable substance because of waxy nature, low melting point and low chemical stability. The manuscript presents the critical issues regarding engineering of its nanosuspension with controlled particle size by melt emulsification and high pressure homogenization. In order to formulate dry product, lactose was dissolved in nanosuspension as filler and spray drying has been performed for obtaining the final powder product. Laser diffraction, scanning electron microscopy and atomic force microscopy have been used for orlistat nanosuspension characterization, dissolution studies and lipase inhibition studies were performed to characterize the in vitro efficacy of formulated orlistat. The advantage of selected technological procedures is nanosized orlistat with elevated in vitro dissolution rate in comparison to raw drug, physical mixture and marketed product. Furthermore, nanosuspension demonstrated significantly higher in vitro lipase inhibition in comparison to references. To conclude, the results show new technological solution and remarkable increase of pharmacological effect which could potentially lead to decreasing the dose and consequently dose dependent side effects.

  1. Parsley extract inhibits in vitro and ex vivo platelet aggregation and prolongs bleeding time in rats.

    Science.gov (United States)

    Gadi, Dounia; Bnouham, Mohamed; Aziz, Mohammed; Ziyyat, Abderrahim; Legssyer, Abdelkhaleq; Legrand, Chantal; Lafeve, Françoise Fauvel; Mekhfi, Hassane

    2009-08-17

    Many cardiovascular diseases are associated with an increase in blood platelet activity. In Morocco, parsley (Petroselinum crispum, Apiaceae) is one of the medicinal herbs used to treat cardiovascular diseases such as arterial hypertension. In this study, crude aqueous extract (CAE) of parsley was evaluated for its anti-platelet activity in experimental animals on platelet aggregation in vitro and ex vivo; and on bleeding time in vivo. The in vitro aggregation was monitored after pre-incubation of platelets with CAE. The bleeding time and ex vivo aggregation were performed after oral treatment. CAE inhibited dose dependently platelet aggregation in vitro induced by thrombin, ADP, collagen and epinephrine. The oral administration of CAE (3g/kg) inhibited significantly (p<0.001) platelet aggregation ex vivo and prolonged bleeding time (p<0.001) without changes in the platelet amount. The prolongation of bleeding time by CAE may be attributed to the observed inhibition of platelet aggregation. These effects could be related in part to the polyphenolic compounds present in the extract. These results support the hypothesis that the dietary intake of parsley may be benefit in the normalization of platelet hyperactivation, in the nutritional prevention of cardiovascular diseases and are potentially interesting in the development of new prevention strategies.

  2. Derivatives of amphotericin inhibit infection with human immunodeficiency virus in vitro by different modes of action

    DEFF Research Database (Denmark)

    Hansen, J E; Witzke, N M; Nielsen, C;

    1990-01-01

    Three water-soluble derivatives of amphotericin B were tested for inhibition of HIV infection in vitro. The compounds amphotericin B methyl ester (AME) and N-(N'-(2-(4'-methylmorpholinio)ethyl)N"-cyclohexyl guanyl) amphotericin B methyl ester (MCG) inhibited HIV infection by 50% at 1 microgram....../ml; N-(N'-(3-dimethylaminopropyl)N"-ethyl guanyl) amphotericin B (DAPEG) did so at 5-11 micrograms/ml. While the virus-inhibitory effect of AME was due to an interaction with target lymphocytes, the effect of MCG was due to a direct anti-viral action. AME increased the potential of infected cells...

  3. In vitro inhibition of Clostridium difficile and Clostridium perfringens by commercial probiotic strains

    DEFF Research Database (Denmark)

    Schoster, A.; Kokotovic, Branko; Permin, Anders

    2013-01-01

    of this study was to examine the in vitro inhibitory effects of selected commercial bacterial strains on pathogenic clostridia and their growth characteristics under simulated gastrointestinal conditions.The inhibitory effects of 17 commercial strains of Lactobacillus (n = 16) and Bifidobacterium (n = 1......), Bifidobacterium animalis lactis (n = 1)] were shown to inhibit all strains of C. difficile and C. perfringens. The inhibitory effect was probiotic strain-specific. Two strains showed a pH-independent inhibitory effect likely due to production of either antibiotics or bacteriocins inhibiting C. perfringens only...

  4. Neuronal growth inhibitory factor inhibits pheochromo-cytoma PC12 in vitro

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Neuronal growth inhibitory factor (GIF),named Metaliothioneins-Ⅲ (MT-Ⅲ), is the first protein validated to be capable of inhibiting the growth of neurons in nervous system. We have detected the effects of recombinant GIF on the growth of neuroblastoma SY5Y and pheochromocytoma PC12 by the MTT (Thiazolyl blue) reduction assay. Recombinant GIF inhibited PC12 in vitro; the inhibitory rate was about 25% when GIF was at 100 mg/L; and the inhibitory rate was about 50% when GIF was at 300 mg/L. It is shown that PC12 could serve as a proper model for detecting neuronal growth inhibitory activity of GIF. Recombinant GIF did not inhibit neuroblastoma SY5Y in vitro, a common model of neuroma; it is also shown that GIF could not inhibit neuromata extensively. The reason for GIF inhibiting PC12 may be that PC12 have some properties of cholinergic neuron. It must play an important role in discovering the mechanism of GIF's neuronal growth inhibitory activity.``

  5. Inhibition of human immunodeficiency virus (HIV) infection in vitro by anticarbohydrate monoclonal antibodies

    DEFF Research Database (Denmark)

    Hansen, J E; Clausen, H; Nielsen, C;

    1990-01-01

    ), and the cell type used as the infection target (MT4, PMC, or selected T4 lymphocytes). Inhibition was observed when viruses were preincubated with MAbs but not when cells were preincubated with MAbs before inoculation, and the MAbs were shown to precipitate 125I-labeled gp120. The MAbs therefore define......Carbohydrate structures are often involved in the initial adhesion of pathogens to target cells. In the present study, a panel of anticarbohydrate monoclonal antibodies (MAbs) was tested for their ability to inhibit in vitro human immunodeficiency virus infectivity. MAbs against three different N......- and O-linked carbohydrate epitopes (LeY, A1, and sialyl-Tn) were able to block infection by cell-free virus as well as inhibit syncytium formation. Inhibition of virus infectivity was independent of virus strain (HTLVIIIB or patient isolate SSI-002), the cell line used for virus propagation (H9 or MT4...

  6. Multivalency effects on Pseudomonas aeruginosa biofilm inhibition and dispersal by glycopeptide dendrimers targeting lectin LecA.

    Science.gov (United States)

    Bergmann, Myriam; Michaud, Gaëlle; Visini, Ricardo; Jin, Xian; Gillon, Emilie; Stocker, Achim; Imberty, Anne; Darbre, Tamis; Reymond, Jean-Louis

    2016-01-01

    The galactose specific lectin LecA partly mediates the formation of antibiotic resistant biofilms by Pseudomonas aeruginosa, an opportunistic pathogen causing lethal airways infections in immunocompromised and cystic fibrosis patients, suggesting that preventing LecA binding to natural saccharides might provide new opportunities for treatment. Here 8-fold (G3) and 16-fold (G4) galactosylated analogs of GalAG2, a tetravalent G2 glycopeptide dendrimer LecA ligand and P. aeruginosa biofilm inhibitor, were obtained by convergent chloroacetyl thioether (ClAc) ligation between 4-fold or 8-fold chloroacetylated dendrimer cores and digalactosylated dendritic arms. Hemagglutination inhibition, isothermal titration calorimetry and biofilm inhibition assays showed that G3 dendrimers bind LecA slightly better than their parent G2 dendrimers and induce complete biofilm inhibition and dispersal of P. aeruginosa biofilms, while G4 dendrimers show reduced binding and no biofilm inhibition. A binding model accounting for the observed saturation of glycopeptide dendrimer galactosyl groups and LecA binding sites is proposed based on the crystal structure of a G3 dendrimer LecA complex.

  7. 铜绿假单胞菌对耐甲氧西林表皮葡萄球菌和粪肠球菌的体外抑菌作用研究%Study of in vitro inhibitory activity of Pseudomonas aeruginosa against methicillin-resistant Staphylococcus epidermidis and Enterococcus faecalis

    Institute of Scientific and Technical Information of China (English)

    张新华; 秦金喜; 李仲兴

    2012-01-01

    目的 观察铜绿假单胞菌抗菌物质对耐甲氧西林表皮葡萄球菌(methicillin-resistant Staphylococcus epidermidis,MRSE)和粪肠球菌的体外抑菌活性.方法 用交叉条带实验方法进行铜绿假单胞菌对10株MRSE和11株粪肠球菌的体外抑制活性的测定.结果 铜绿假单胞菌抗菌物质对MRSE和粪肠球菌的体外抑菌活性良好,10株铜绿假单胞菌对MRSE和粪肠球菌的抗菌作用,其中第3、4、5、6号和8、9号铜绿假单胞菌对MRSE的抑制率均达到了100%,第1、3、4、6号铜绿假单胞菌对粪肠球菌抑制率也达到了100%.结论 铜绿假单胞菌抗菌物质对10株MRSE和11株粪肠球菌具有良好的抗菌活性,无疑对MRSE和粪肠球菌的抗菌药物研究方面开辟了新的思路.%Objective To evaluate the in vitro inhibitory activity of antibacterial material of Pseudomonas aeruginosa against methicillin-resistant Staphylococcus epidermidis(MRSE) ,and Enterococcus faecalis. Methods The in vitro inhibitory activity of antibacterial material of Pseudomonas aeruginosa against 10 MRSE, and 12 Enterococcus faecalis was performed by using the cross streak assay. Results The in vitro inhibitory activity of antibacterial material of Pseudomonas aeruginosa against MRSE, and E. Faecalis was good. The inhibition rates of No. 3,4,5,6 and 8,9 of P. Aeruginosas against MRSE were up to 100% ,and No. 1,3,4,and 6 of P. Aeruginosas against E faecalis up to 100% ,too. Conclusion The antibacterial material of Pseudomonas aeruginosa against 10 MRSE, and HE faecalis had strong antibacterial activity,which brings the potential to open a new train of thoughts for the antibiotics research of MRSE,' and Enterococcus infections.

  8. Effect of Hydropqinone on Ruminal?Urease in the Sheep and its Inhibition Kinetics in Vitro

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    Effect of hydropuinone (HQ) on rumen urease acivity was studied. Hydroquinone at concentration of 0. 01 mg· L-1 , 1 mg· L-1and 10 mg · L-1 inhibited urease of intact rumen microbes in vitro by 25%, 34%,55% and 64% respectively. In the present of low concentration of βmercaptoethanol, rumen urease could be solubilized and partially purified. The Km for the enzyme was 2 × 10-3 mol · L-1 with Vmax of 319. 144μmoles/mg/min. The kinetics of inhibition with partially purified rumen urease was investigated. The result showed that the inhibitory effect was not eliminated by increasing urea concentration indicating a noncompetitive in nature with inhibition constant 1.2 × 10-5mol · L-1. Hydropuinone at a concentration that produced 64% urease inhibition did not affect ruminal total dehydrogenase, proteolytic enzyme( P > 0. 05) but increased cellulase activity by 28% ( P < 0. 05 ) in vitro. These results demonstrated that hydropuinone was a specific inhibitor of rumen urease and could delay urea hydrolysis effectively without negative effect. The inhibitor appeared to offer the potential to improve nitrogen utilization by ruminants fed diets containing urea.

  9. Amygdalin-mediated inhibition of non-small cell lung cancer cell invasion in vitro.

    Science.gov (United States)

    Qian, Liyu; Xie, Bo; Wang, Yaguo; Qian, Jun

    2015-01-01

    Lung cancer is a common malignant tumor claiming the highest fatality worldwide for a long period of time. Unfortunately, most of the current treatment methods are still based on the characteristics of cancer cells in the primary lesion and the prognosis is often much poorer in patients with metastatic cancers. Amygdalin, a natural product of glycosides and lots of evidence shows that amygdalin can inhibit the proliferation of some kinds of cancer cells. In this study, we first obtained the highly metastatic NSCLC cell lines H1299/M and PA/M and further treated these cells with amygdalin. We found that the in vitro proliferability of H1299/M and PA/M was inhibited, but such inhibition required higher concentration of amygdalin. When lower concentration of amygdalin was used for the experiments, we observed that the in vitro invasive and migration capacities of H1299/M and PA/M were significantly inhibited. These results strongly suggested that amygdalin was likely to have anti-metastatic NSCLC effect. This study offers information of the role of amygdalin that may be useful as a therapeutic target in lung tumors.

  10. Inhibition of influenza A virus infection in vitro by saliphenylhalamide-loaded porous silicon nanoparticles.

    Science.gov (United States)

    Bimbo, Luis M; Denisova, Oxana V; Mäkilä, Ermei; Kaasalainen, Martti; De Brabander, Jef K; Hirvonen, Jouni; Salonen, Jarno; Kakkola, Laura; Kainov, Denis; Santos, Hélder A

    2013-08-27

    Influenza A viruses (IAVs) cause recurrent epidemics in humans, with serious threat of lethal worldwide pandemics. The occurrence of antiviral-resistant virus strains and the emergence of highly pathogenic influenza viruses have triggered an urgent need to develop new anti-IAV treatments. One compound found to inhibit IAV, and other virus infections, is saliphenylhalamide (SaliPhe). SaliPhe targets host vacuolar-ATPase and inhibits acidification of endosomes, a process needed for productive virus infection. The major obstacle for the further development of SaliPhe as antiviral drug has been its poor solubility. Here, we investigated the possibility to increase SaliPhe solubility by loading the compound in thermally hydrocarbonized porous silicon (THCPSi) nanoparticles. SaliPhe-loaded nanoparticles were further investigated for the ability to inhibit influenza A infection in human retinal pigment epithelium and Madin-Darby canine kidney cells, and we show that upon release from THCPSi, SaliPhe inhibited IAV infection in vitro and reduced the amount of progeny virus in IAV-infected cells. Overall, the PSi-based nanosystem exhibited increased dissolution of the investigated anti-IAV drug SaliPhe and displayed excellent in vitro stability, low cytotoxicity, and remarkable reduction of viral load in the absence of organic solvents. This proof-of-principle study indicates that PSi nanoparticles could be used for efficient delivery of antivirals to infected cells.

  11. In vitro inhibition of superoxide anion production and superoxide dismutase activity by zinc in human spermatozoa.

    Science.gov (United States)

    Gavella, M; Lipovac, V; Vucić, M; Sverko, V

    1999-08-01

    The in vitro effect of zinc on superoxide anion (O2-) generation and on SOD-like activity in spermatozoa of infertile men was investigated. The formation of superoxide anion was stimulated by NADPH and the level of superoxide anion was measured by the reduction of ferricytochrome c. Both Percoll-isolated (n = 14) and washed spermatozoa (n = 14) exposed to 1 mmol/L zinc (60 min, 37 degrees C), released less (p zinc-untreated spermatozoa. These results implicate a possible role for zinc as a scavenger of excessive superoxide anions produced by defective spermatozoa in semen after ejaculation. Additionally, zinc was found to dose-dependently inhibit superoxide dismutase (SOD)-like activity of spermatozoa in vitro. The inhibition of SOD-like activity by an equal concentration of zinc (1 mmol/L) was less pronounced in oligospermic (p zinc to inhibit SOD-like activity may be relevant to the physiological function of spermatozoa in fertilization. The evidence that zinc may elicit an inhibition of both superoxide anion production and SOD-like activity in human spermatozoa, indicate the existence of novel, zinc-related mechanism(s) involved in the oxidative events occurring after ejaculation, with a possible modulatory effect on germ cell function.

  12. Potassium humate inhibits complement activation and the production of inflammatory cytokines in vitro

    Energy Technology Data Exchange (ETDEWEB)

    van Rensburg, C.E.J.; Naude, P.J. [University of Pretoria, Pretoria (South Africa)

    2009-08-15

    The effects of brown coal derived potassium humate on lymphocyte proliferation, cytokine production and complement activation were investigated in vitro. Potassium humate increased lymphocyte proliferation of phytohaemaglutinin A (PHA) and pokeweed mitogen (PWM) stimulated mononuclear lymphocytes (MNL) in vitro from concentrations of 20 to 80 {mu} g/ml, in a dose dependant manner. On the other hand potassium humate, at 40 {mu} g/ml, significantly inhibited the release of TNF-alpha, IL-1 beta, IL-6 and IL-10 by PHA stimulated MNL. Regarding complement activation it was found that potassium humate inhibits the activation of both the alternative and classical pathways without affecting the stability of the red blood cell membranes. These results indicate that the anti-inflammatory potential of potassium humate could be partially due to the inhibition of pro-inflammatory cytokines responsible for the initiation of these reactions as well as inhibition of complement activation. The increased lymphocyte proliferation observed, might be due to increased IL-2 production as previously been documented.

  13. Noscapine inhibits human hepatocellular carcinoma growth through inducing apoptosis in vitro and in vivo.

    Science.gov (United States)

    Xu, G; Niu, Z; Dong, J; Zhao, Y; Zhang, Y; Li, X

    2016-01-01

    Noscapine, a phthalideisoquinoline alkaloid derived from opium, has been demonstrated as a promising anti-tumor compound against various cancers. However, the anti-cancer activity of noscapine in hepatocellular carcinoma has not been defined. In this study, we investigate the inhibitive effects of noscapine on human hepatocellular carcinoma (HCC) using both in vitro and in vivo models. In vitro proliferation assay showed that noscapine suppressed HepG2 and Huh7 cells in dose- and time-dependent manners. With a mouse xenograft model, noscapine showed notable inhibition on HCC tumor growth in vivo without suppression of body weight. Moreover, apoptotic induction and regulation of related signalings by noscapine were examined by nuclear DNA staining, TUNEL, and western blotting assays. Results showed that noscapine induced apoptosis in HCC cells both in vitro and in vivo. Further studies indicated that noscapine induced antive-capsase-3, cleavage PARP, and decreased the ratio of Bcl-2/Bax. Hence, these data indicates that noscapine selectively suppresses HCC cell growth through apoptosis induction, providing evidence for application of noscapine as a novel agent against human hepatocellular carcinoma.

  14. 不同品牌蜂蜜对铜绿假单胞菌的体外抗菌作用%Antibacterial activity of honey against pseudomonas aeruginosa in vitro

    Institute of Scientific and Technical Information of China (English)

    孙艳萍; 李萍

    2012-01-01

    [Objective] To study the antibacterial activity of different kinds of honey against pseudomonas aeruginosa in vitro. [ Methods] There were 9 kinds of commercially available honey in market, 4 kinds of imported [ Manuka UMF25+ (A) and Manuka UMF10+ (B) of New Zealand, Ulmo 90 (C) of Chile, HEATHER ( D) of UK), and 5 kinds of domestic ( sophora japonica honey (E) , camellia honey (F ) , codonopsis honey ( G ) , motherwort honey (H) and linden tree honey (I) ]. The honey and the sterile medium (nutrient agar) was mixed in 5%-50% (v/v) different concentrations, and the control was a sterile petri dish without honey. Nutrient agar containing 5% honey as medium was used for sterility test. Under the same concentration, the MIC of 9 kinds of honey and Dettol was compared. [ Results] The 9 kinds of honey had same antibacterial mode on 50 strains of Pseudomonas aeruginosa which were separated clinically. MIC of Honey A against Pseudomonas aeruginosa was 11%, Honey B and C was 12. 5% , MIC of Honey D was 25% , MIC of Honey E, F, H and I was 45% , MIC of Honey G was 50%. MIC of Dettol was 15%. [ Conclusion] Nine kinds of honey can inhibit Pseudomonas aeruginosa in vitro, especially the imported honey.%目的 研究不同蜂蜜对铜绿假单胞菌的体外抗菌作用.方法 取市售的9种蜂蜜,其中国外4个品牌:新西兰的Manuka UMF25+ (A)、Manuka UMF10+ (B)、智利的Ulmo 90蜂蜜(C)和英国的石南花(HEATHER)蜂蜜(D);国产5个品牌:槐花蜜(E)、山茶蜜(F)、党参蜜(G)、益母草蜜(H)和椴树蜜(I).将蜂蜜与无菌的培养基(营养琼脂)混合后得到5%~50%(体积分数)的不同浓度,用一个不加蜂蜜的无菌培养皿作对照.用一个含5%蜂蜜的营养琼脂作为蜂蜜和培养基的无菌性检验.在相同的浓度下,9种蜂蜜与氯二甲苯酚(Dettol)比较最低抑菌浓度(MIC).结果 9种蜂蜜对临床分离的50株铜绿假单胞菌具有相同的抑菌模式,对铜绿假单胞菌的MIC:蜂蜜A为11

  15. Herbicide Clomazone Does Not Inhibit In Vitro Geranylgeranyl Synthesis from Mevalonate 1

    Science.gov (United States)

    Weimer, Monte R.; Balke, Nelson E.; Buhler, Douglas D.

    1992-01-01

    Clomazone reduced the chlorophyll and carotenoid contents of spinach (Spinacia oleracea L.), barley (Hordeum vulgare L.), velvetleaf (Abutilon theophrasti Medik.), and soybean (Glycine max L. Merr.) seedlings. The order of species sensitivity was velvetleaf > spinach > barley > soybean. Clomazone (100 micromolar) did not affect the in vitro activities of spinach isopentenyl pyrophosphate isomerase or prenyl transferase. Clomazone also did not affect the synthesis of isopentenyl pyrophosphate from mevalonic acid. Thus, clomazone had no direct in vitro effect on the synthesis of geranylgeranyl pyrophosphate from mevalonic acid. Greening seedlings of both soybean and velvetleaf metabolized clomazone. No qualitative differences in the metabolites were detected between soybean and velvetleaf. Thus, differential metabolism of clomazone to a toxic chemical that inhibits terpenoid synthesis is unlikely. Clomazone has either a mode of action not yet identified or a metabolite that is selective in that it is much more active in sensitive than tolerant species. PMID:16668657

  16. Herbicide clomazone does not inhibit in vitro geranylgeranyl synthesis from mevalonate.

    Science.gov (United States)

    Weimer, M R; Balke, N E; Buhler, D D

    1992-02-01

    Clomazone reduced the chlorophyll and carotenoid contents of spinach (Spinacia oleracea L.), barley (Hordeum vulgare L.), velvetleaf (Abutilon theophrasti Medik.), and soybean (Glycine max L. Merr.) seedlings. The order of species sensitivity was velvetleaf > spinach > barley > soybean. Clomazone (100 micromolar) did not affect the in vitro activities of spinach isopentenyl pyrophosphate isomerase or prenyl transferase. Clomazone also did not affect the synthesis of isopentenyl pyrophosphate from mevalonic acid. Thus, clomazone had no direct in vitro effect on the synthesis of geranylgeranyl pyrophosphate from mevalonic acid. Greening seedlings of both soybean and velvetleaf metabolized clomazone. No qualitative differences in the metabolites were detected between soybean and velvetleaf. Thus, differential metabolism of clomazone to a toxic chemical that inhibits terpenoid synthesis is unlikely. Clomazone has either a mode of action not yet identified or a metabolite that is selective in that it is much more active in sensitive than tolerant species.

  17. The binding of actin to p38 MAPK and inhibiting its kinase activity in vitro

    Institute of Scientific and Technical Information of China (English)

    YANG; Kun; (杨; 琨); JIANG; Yong; (姜; 勇); HAN; Jiahuai; (韩家淮); GU; Jun; (顾; 军)

    2003-01-01

    p38 MAP kinase mediates a signal pathway that is involved in many physiological and pathological processes such as inflammation, cellular stress, apoptosis, cell cycle and growth, ischemia/re-perfusion, and myocardium hypertrophy. To determine the molecular and regulative mechanism of p38 signal pathway, we used in vitro binding methods to screen the proteins that interact with p38. Here we report two proteins from mouse macrophage RAW264.7 strain treated with lipopolysaccharide (LPS) or ultraviolet radiation (UV), binding directly to p38. One of them isβ-actin identified by peptide mass spectrum and ProFound program. Actin can inhibit the autophosphorylation of p38 and the phosphorylation of ATF by p38. It suggests that the binding of actin to p38 in vitro may represent a negative feedback to the kinase activity of p38, which leads to the regulation of p38 pathway and cellular function.

  18. Milk Thistle Extract and Silymarin Inhibit Lipopolysaccharide Induced Lamellar Separation of Hoof Explants in Vitro

    Directory of Open Access Journals (Sweden)

    Nicole Reisinger

    2014-10-01

    Full Text Available The pathogenesis of laminitis is not completely identified and the role of endotoxins (lipopolysaccharides, LPS in this process remains unclear. Phytogenic substances, like milk thistle (MT and silymarin, are known for their anti-inflammatory and antioxidant properties and might therefore have the potential to counteract endotoxin induced effects on the hoof lamellar tissue. The aim of our study was to investigate the influence of endotoxins on lamellar tissue integrity and to test if MT and silymarin are capable of inhibiting LPS-induced effects in an in vitro/ex vivo model. In preliminary tests, LPS neutralization efficiency of these phytogenics was determined in an in vitro neutralization assay. Furthermore, tissue explants gained from hooves of slaughter horses were tested for lamellar separation after incubation with different concentrations of LPS. By combined incubation of explants with LPS and either Polymyxin B (PMB; positive control, MT or silymarin, the influence of these substances on LPS-induced effects was assessed. In the in vitro neutralization assay, MT and silymarin reduced LPS concentrations by 64% and 75%, respectively, in comparison PMB reduced 98% of the LPS concentration. In hoof explants, LPS led to a concentration dependent separation. Accordantly, separation force was significantly decreased by 10 µg/mL LPS. PMB, MT and silymarin could significantly improve tissue integrity of explants incubated with 10 µg/mL LPS. This study showed that LPS had a negative influence on the structure of hoof explants in vitro. MT and silymarin reduced endotoxin activity and inhibited LPS-induced effects on the lamellar tissue. Hence, MT and silymarin might be used to support the prevention of laminitis and should be further evaluated for this application.

  19. In vitro inhibition of Plasmodium falciparum by pyrazofurin, an inhibitor of pyrimidine biosynthesis de novo.

    Science.gov (United States)

    Scott, H V; Gero, A M; O'Sullivan, W J

    1986-01-01

    The effect of pyrazofurin, an inhibitor of UMP synthesis, on Plasmodium falciparum growth in vitro has been studied. ID50 values (concentration of compound causing 50% inhibition of [3H]hypoxanthine incorporation) for the FCQ-27, FCI-1 and K-1 (chloroquine-resistant) isolates were 10 +/- 8.7, 6.4 +/- 5.3 and 6.3 +/- 0.5 microM, respectively. Comparative ID50 values for chloroquine were 13.5 +/- 4.2, 22.8 +/- 7.6 and 343 +/- 114 microM, respectively. Over the 48-h intraerythrocytic cycle of tightly synchronized parasites, pyrazofurin both reduced the parasitemia and retarded the maturation of trophozoites and schizonts. Addition of uracil or uridine to the in vitro culture did not decrease the anti-parasitic activity of pyrazofurin. Chloroquine reduced the parasitemia, but did not retard development of the remaining viable parasites. Pyrazofurin (20 microM) caused a 50% inhibition of parasite orotate phosphoribosyltransferase (E.C. 2.4.2.10) and, in the presence of adenosine kinase and ATP, a 73% inhibition of orotidine-5'-phosphate decarboxylase (E.C. 4.1.1.23).

  20. In vitro actinomycete biofilm development and inhibition by the polyene antibiotic, nystatin, on IUD copper surfaces.

    Science.gov (United States)

    Shanmughapriya, Santhanam; Francis, Arumugam Lency; Kavitha, Senthil; Natarajaseenivasan, Kalimuthusamy

    2012-01-01

    The presence of intrauterine contraceptive devices (IUDs) gives a solid surface for attachment and an ideal niche for biofilm to form and flourish. Pelvic actinomycosis is often associated with the use of IUDs. Treatment of IUD-associated pelvic actinomycosis requires the immediate removal of the IUD. Therefore, this article presents in vitro evidence to support the use of novel antibiotics in the treatment of actinomycete biofilms. Twenty one clinical actinomycetes isolates from endocervical swabs of IUD wearers were assessed for their biofilm forming ability. An in vitro biofilm model with three isolates, Streptomyces strain A4, Nocardia strain C15 and Nocardia strain C17 was subjected to treatment with nystatin. Inhibition of biofilm formation by nystatin was found to be concentration dependent, with MBIC50 values in the range 0.08-0.16 mg ml(-1). Furthermore, at a concentration of 0.16 mg ml(-1), nystatin inhibited the twitching motility of the isolates, providing evidence for a possible mechanism of biofilm inhibition.

  1. Fucoidan inhibits LPS-induced inflammation in vitro and during the acute response in vivo.

    Science.gov (United States)

    Park, Jisang; Cha, Jeong-Dan; Choi, Kyung-Min; Lee, Kyung-Yeol; Han, Kang Min; Jang, Yong-Suk

    2017-02-01

    Studies have been focused on natural products with antibacterial and anti-inflammatory activities, such as fucoidan. Many in vivo studies have evaluated the effect of fucoidan on tumor growth, diabetes, obesity, ischemia reperfusion, and oxidative stress. However, the effects of fucoidan on bacteria-induced gingival inflammation and periodontitis have not been reported. We previously characterized the anti-inflammatory effect of fucoidan in vitro. Here, we confirmed the anti-inflammatory activity of fucoidan in a macrophage cell line in terms of its inhibition of the expression of inflammatory mediators and pro-inflammatory cytokines. Additionally, we confirmed the ability of fucoidan to inhibit gingival inflammation, expression of pro-inflammatory cytokines, and neutrophil recruitment in the gingival tissue of mice injected with LPS prepared from P. gingivalis. Interestingly, however, fucoidan did not inhibit the expression of pro-inflammatory cytokines in a P. gingivalis-infected mouse model of periodontitis. Additionally, fucoidan treatment did not lead to clearance of P. gingivalis or improvement of P. gingivalis infection-mediated bone loss in the periodontitis model. We conclude that fucoidan exerts anti-inflammatory effects in vitro and in vivo, together with a limited antibacterial effect in vivo.

  2. 10种中草药提取物体外抗铜绿假单胞菌作用研究%Antibacterial activity screening of 10 Chinese herbal medicines against Pseudomonas aeruginosa in vitro

    Institute of Scientific and Technical Information of China (English)

    谢俊杰; 韩峻; 左国营; 王宁; 程子梦

    2016-01-01

    通过对粗糠柴等10种中草药采用80%乙醇室温下浸渍制备的提取物进行体外抗铜绿假单胞菌及其耐药菌活性研究,并采取药敏纸片法测定临床分离菌株的耐药性.结果表明:这10种中草药80%乙醇提取物中,粗糠柴的乙酸乙酯层对铜绿假单胞菌标准菌及其耐药菌的抑菌效果最好,其抑菌圈直径范围在10~17 mm之间,MIC范围在0.125~0.5 mg·mL-1之间,MBC范围在0.5~1 mg·mL-1之间;正丁醇层、水层的抑菌活性较乙酸乙酯层弱,石油醚层对铜绿假单胞菌没有效果.而小叶藤黄、滇南红厚壳、续随子的乙酸乙酯层,巴豆、罗汉松、肉桂醇提物对铜绿假单胞菌及其耐药菌株有较弱抗菌活性;滇南红厚壳的正丁醇层、续随子乙酸乙酯层以及大八角和郁金的醇提物对铜绿假单胞菌及其耐药菌株均无活性.从这些数据中可以得出,粗糠柴的乙酸乙酯层、正丁醇层和水层对铜绿假单胞菌及其耐药菌有较好的抑菌活性,尤以乙酸乙酯层活性最好,而粗糠柴的石油醚层没有活性.%To investigate the in vitro antibacterial activities of 80%ethanol extracts from 10 Chinese herbal medicines against Pseudomonas aeruginosa and its resistant strains, the drug-resistance spectrum of 7 P. aeruginosa stains isolated from the clinical sputum samples was determined by the Kirby-Bauer (K-B) method. The dried powder of the collected 10 Chinese herbal medicine samples were extracted with 80%ethanol and the solvent was evaporated under reduced pressure to get the Chinese herbal medicines ethanol extracts. The ethanol extracts were suspended in deioned water, then petroleum ether, ethyl acetate, and n-BuOH were used to extract successively. The activities of each extract against P. aeruginosa were screened of inhibition zone diameters (IZDs) by the agar-diffusion methods, and the minimum inhibitory concentration (MIC) and the minimum bactericidal concentration (MBC) were further

  3. An Engineered Arginase FC Protein Inhibits Tumor Growth In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Lihua Li

    2013-01-01

    Full Text Available Arginine is a semiessential amino acid required for the growth of melanoma and hepatocellular carcinoma, and the enzymatic removal of arginine by pegylated arginine deiminase (ADI or arginase is being tested clinically. Here, we report a genetically engineered arginase FC fusion protein exhibiting a prolonged half-life and enhanced efficacy. The use of this enzyme to treat different tumor lines both inhibited cell proliferation and impaired cellular migration in vitro and in vivo. Our data reinforce the hypothesis that nutritional depletion is a key strategy for cancer treatment.

  4. INHIBITION OF CALCIUM OXALATE CRYSTALLIZATION IN-VITRO BY VARIOUS EXTRACTS OF HYPTIS SUAVEOLENS (L. POIT.

    Directory of Open Access Journals (Sweden)

    Agarwal Kumkum

    2012-03-01

    Full Text Available Hyptis suaveolens (L Poit. commonly known as Vilayati tulsi, belongs to the Mint family Lamiaceae. The inhibition of in-vitro calcium-oxalate crystal (a major component of most urinary stones formation by various extracts of Hyptis was investigated by titrimetric method. The inhibitor potency of alcohol extracts of Hyptis suaveolens (L. Poit was found to be comparable to that of cystone (a proprietary drug for dissolving kidney stones. Thus alcohol extract could be further analyzed in vivo and further characterization of its active compound could lead to the discovery of a new candidate drug for the patients with urolithiasis.

  5. Inhibition of Aspergillus fumigatus and Its Biofilm by Pseudomonas aeruginosa Is Dependent on the Source, Phenotype and Growth Conditions of the Bacterium.

    Directory of Open Access Journals (Sweden)

    Jose A G Ferreira

    Full Text Available Aspergillus fumigatus (Af and Pseudomonas aeruginosa (Pa are leading fungal and bacterial pathogens, respectively, in many clinical situations. Relevant to this, their interface and co-existence has been studied. In some experiments in vitro, Pa products have been defined that are inhibitory to Af. In some clinical situations, both can be biofilm producers, and biofilm could alter their physiology and affect their interaction. That may be most relevant to airways in cystic fibrosis (CF, where both are often prominent residents. We have studied clinical Pa isolates from several sources for their effects on Af, including testing involving their biofilms. We show that the described inhibition of Af is related to the source and phenotype of the Pa isolate. Pa cells inhibited the growth and formation of Af biofilm from conidia, with CF isolates more inhibitory than non-CF isolates, and non-mucoid CF isolates most inhibitory. Inhibition did not require live Pa contact, as culture filtrates were also inhibitory, and again non-mucoid>mucoid CF>non-CF. Preformed Af biofilm was more resistant to Pa, and inhibition that occurred could be reproduced with filtrates. Inhibition of Af biofilm appears also dependent on bacterial growth conditions; filtrates from Pa grown as biofilm were more inhibitory than from Pa grown planktonically. The differences in Pa shown from these different sources are consistent with the extensive evolutionary Pa changes that have been described in association with chronic residence in CF airways, and may reflect adaptive changes to life in a polymicrobial environment.

  6. Equol inhibits growth, induces atresia, and inhibits steroidogenesis of mouse antral follicles in vitro.

    Science.gov (United States)

    Mahalingam, Sharada; Gao, Liying; Gonnering, Marni; Helferich, William; Flaws, Jodi A

    2016-03-15

    Equol is a non-steroidal estrogen metabolite produced by microbial conversion of daidzein, a major soy isoflavone, in the gut of some humans and many animal species. Isoflavones and their metabolites can affect endogenous estradiol production, action, and metabolism, potentially influencing ovarian follicle function. However, no studies have examined the effects of equol on intact ovarian antral follicles, which are responsible for sex steroid synthesis and further development into ovulatory follicles. Thus, the present study tested the hypothesis that equol inhibits antral follicle growth, increases follicle atresia, and inhibits steroidogenesis in the adult mouse ovary. To test this hypothesis, antral follicles isolated from adult CD-1 mice were cultured with vehicle control (dimethyl sulfoxide; DMSO) or equol (600 nM, 6 μM, 36 μM, and 100 μM) for 48 and 96 h. Every 24h, follicle diameters were measured to monitor growth. At 48 and 96 h, the culture medium was subjected to measurement of hormone levels, and the cultured follicles were subjected to gene expression analysis. Additionally, follicles were histologically evaluated for signs of atresia after 96 h of culture. The results indicate that equol (100 μM) inhibited follicle growth, altered the mRNA levels of bcl2-associated X protein and B cell leukemia/lymphoma 2, and induced follicle atresia. Further, equol decreased the levels of estradiol, testosterone, androstenedione, and progesterone, and it decreased mRNA levels of cholesterol side-chain cleavage, steroid 17-α-hydroxalase, and aromatase. Collectively, these data indicate that equol inhibits growth, increases atresia, and inhibits steroidogenesis of cultured mouse antral follicles.

  7. Kaempferol inhibits the growth and metastasis of cholangiocarcinoma in vitro and in vivo.

    Science.gov (United States)

    Qin, Youyou; Cui, Wu; Yang, Xuewei; Tong, Baifeng

    2016-03-01

    Kaempferol is a flavonoid that has been reported to exhibit antitumor activity in various malignant tumors. However, the role of kaempferol on cholangiocarcinoma (CCA) is largely unknown. In this article, we found that kaempferol inhibited proliferation, reduced colony formation ability, and induced apoptosis in HCCC9810 and QBC939 cells in vitro. Results from transwell assay and wound-healing assay demonstrated that kaempferol significantly suppressed the migration and invasion abilities of HCCC9810 and QBC939 cells in vitro. Kaempferol was found to decrease the expression of Bcl-2 and increase the expressions of Bax, Fas, cleaved-caspase 3, cleaved-caspase 8, cleaved-caspase 9, and cleaved-PARP. In addition, kaempferol also downregulated the levels of phosphorylated AKT, TIMP2, and MMP2. In vivo, it was found that the volume of subcutaneous xenograft (0.15 cm(3)) in the kaempferol-treated group was smaller than that (0.6 cm(3)) in the control group. Kaempferol also suppressed the number and volume of metastasis foci in the lung metastasis model, with no marked effects on body weight of mice. Immunohistochemistry assay showed that the number of Ki-67-positive cells was lower in the kaempferol-treated group than that in the control group. We further confirmed that the changes of apoptosis- and invasion-related proteins after kaempferol treatment in vivo were similar to the results in vitro. These data suggest that kaempferol may be a promising candidate agent for the treatment of CCA.

  8. Curcumin-induced HDAC inhibition and attenuation of medulloblastoma growth in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Olson James M

    2011-04-01

    Full Text Available Abstract Background Medulloblastoma is the most common brain tumor in children, and its prognosis is worse than for many other common pediatric cancers. Survivors undergoing treatment suffer from serious therapy-related side effects. Thus, it is imperative to identify safer, effective treatments for medulloblastoma. In this study we evaluated the anti-cancer potential of curcumin in medulloblastoma by testing its ability to induce apoptosis and inhibit tumor growth in vitro and in vivo using established medulloblastoma models. Methods Using cultured medulloblastoma cells, tumor xenografts, and the Smo/Smo transgenic medulloblastoma mouse model, the antitumor effects of curcumin were tested in vitro and in vivo. Results Curcumin induced apoptosis and cell cycle arrest at the G2/M phase in medulloblastoma cells. These effects were accompanied by reduced histone deacetylase (HDAC 4 expression and activity and increased tubulin acetylation, ultimately leading to mitotic catastrophe. In in vivo medulloblastoma xenografts, curcumin reduced tumor growth and significantly increased survival in the Smo/Smo transgenic medulloblastoma mouse model. Conclusions The in vitro and in vivo data suggest that curcumin has the potential to be developed as a therapeutic agent for medulloblastoma.

  9. The influence of haemoglobin and iron on in vitro mycobacterial growth inhibition assays

    Science.gov (United States)

    Tanner, Rachel; O’Shea, Matthew K.; White, Andrew D.; Müller, Julius; Harrington-Kandt, Rachel; Matsumiya, Magali; Dennis, Mike J.; Parizotto, Eneida A.; Harris, Stephanie; Stylianou, Elena; Naranbhai, Vivek; Bettencourt, Paulo; Drakesmith, Hal; Sharpe, Sally; Fletcher, Helen A.; McShane, Helen

    2017-01-01

    The current vaccine against tuberculosis, live attenuated Mycobacterium bovis BCG, has variable efficacy, but development of an effective alternative is severely hampered by the lack of an immune correlate of protection. There has been a recent resurgence of interest in functional in vitro mycobacterial growth inhibition assays (MGIAs), which provide a measure of a range of different immune mechanisms and their interactions. We identified a positive correlation between mean corpuscular haemoglobin and in vitro growth of BCG in whole blood from healthy UK human volunteers. Mycobacterial growth in peripheral blood mononuclear cells (PBMC) from both humans and macaques was increased following the experimental addition of haemoglobin (Hb) or ferric iron, and reduced following addition of the iron chelator deferoxamine (DFO). Expression of Hb genes correlated positively with mycobacterial growth in whole blood from UK/Asian adults and, to a lesser extent, in PBMC from South African infants. Taken together our data indicate an association between Hb/iron levels and BCG growth in vitro, which may in part explain differences in findings between whole blood and PBMC MGIAs and should be considered when using such assays. PMID:28256545

  10. In vitro inflammation inhibition model based on semi-continuous toll-like receptor biosensing.

    Directory of Open Access Journals (Sweden)

    Jin-Woo Jeon

    Full Text Available A chemical inhibition model of inflammation is proposed by semi-continuous monitoring the density of toll-like receptor 1 (TLR1 expressed on mammalian cells following bacterial infection to investigate an in vivo-mimicked drug screening system. The inflammation was induced by adding bacterial lysate (e.g., Pseudomonas aeruginosa to a mammalian cell culture (e.g., A549 cell line. The TLR1 density on the same cells was immunochemically monitored up to three cycles under optimized cyclic bacterial stimulation-and-restoration conditions. The assay was carried out by adopting a cell-compatible immunoanalytical procedure and signal generation method. Signal intensity relative to the background control obtained without stimulation was employed to plot the standard curve for inflammation. To suppress the inflammatory response, sodium salicylate, which inhibits nuclear factor-κB activity, was used to prepare the standard curve for anti-inflammation. Such measurement of differential TLR densities was used as a biosensing approach discriminating the anti-inflammatory substance from the non-effector, which was simulated by using caffeic acid phenethyl ester and acetaminophen as the two components, respectively. As the same cells exposed to repetitive bacterial stimulation were semi-continuously monitored, the efficacy and toxicity of the inhibitors may further be determined regarding persistency against time. Therefore, this semi-continuous biosensing model could be appropriate as a substitute for animal-based experimentation during drug screening prior to pre-clinical tests.

  11. Phentolamine inhibits angiogenesis in vitro: Suppression of proliferation migration and differentiation of human endothelial cells.

    Science.gov (United States)

    Pan, Liangli; Liu, Chenyang; Kong, Yanan; Piao, Zhengguo; Cheng, Biao

    2016-06-16

    It is widely known that the β-adrenergic receptor (AR) blocker (propranolol) inhibits human endothelial cell (EC) angiogenesis in vitro, but how the α-AR antagonist (phentolamine) affects human EC angiogenesis has not yet been studied. Here, we show for the first time that both human dermal microvascular ECs (HDMECs) and human brain microvascular ECs (HBMECs) express α-ARs. Moreover, our results indicate that phentolamine inhibits the proliferation, migration, and tubulogenesis of HDMECs and HBMECs. Finally, VEGFR-2 and Ang1/2 expression of HDMECs was suppressed by phentolamine. Together, these results indicate that phentolamine impairs several critical events of neovascularization, and α-ARs, as well as the VEGF/VEGFR-2 and Ang/Tie-2 signaling pathways, may be involved in these processes. Our results suggest a novel therapeutic strategy for the use of α-blockers in the treatment of human angiogenesis-dependent diseases.

  12. Inhibition of human platelet aggregation in vitro by standardized extract of Wendtia calycina

    Directory of Open Access Journals (Sweden)

    Milagros Garcia Mesa

    2011-10-01

    Full Text Available Wendtia calycina (Griseb. Griseb., Vivianiaceae, is a Paraguayan herbaceous plant commonly known as burrito. Our previous study indicated that burrito leaves are a very good source of phenylpropanoid glycosides, principally verbascoside. From W. calycina leaves, a standardized, water-soluble extract rich in phenylpropanoid glycosides (WSE has been developed on an industrial scale to be used as a food supplement, cosmetic, phytomedicine, and ingredient of different formulations. In this study, we investigated the effect of the WSE on human platelet aggregation in vitro induced by adenosine diphosphate (ADP, epinephrine (EPN, collagen (COL or arachidonic acid (AA. WSE, concentration-dependently, inhibited ADP and EP-induced human platelet aggregation (IC50 were 0.82±0.15 mg/mL and 0.41±0.02 mg/mL, respectively. It did not inhibit collagen-induced platelet aggregation, thus suggesting a selectivity for the ADP-induced platelet activation pathways.

  13. Effects of salvianolic acid B on in vitro growth inhibition and apoptosis induction of retinoblastoma cells

    Science.gov (United States)

    Liu, Xing-An

    2012-01-01

    AIM To observe the effects of salvianolic acid B (SalB) on in vitro growth inhibition and apoptosis induction of retinoblastoma HXO-RB44 cells. METHODS The effects of SalB on the HXO-RB44 cells proliferation in vitro were observed by MTT colorimetric method. The morphological changes of apoptosis before and after the treatment of SalB were observed by Hoechst 33258 fluorescent staining method. Apoptosis rate and cell cycle changes of HXO-RB44 cells were detected by flow cytometer at 48 hours after treated by SalB. The expression changes of Caspase-3 protein in HXO-RB44 cells were detected by Western Blot. RESULTS SalB significantly inhibited the growth of HXO-RB44 cells, while the inhibition was in a concentration-and time-dependent manner. The results of fluorescent staining method indicated that HXO-RB44 cells showed significant phenomenon of apoptosis including karyorrhexis, fragmentation and the formation of apoptotic bodies, etc. after 24, 48 and 72 hours co-culturing of SalB and HXO-RB44 cells. The results of flow cytometer showed that the apoptosis rate and the proportion of cells in S phase were gradually increased at 48 hours and 72 hours after treated by different concentrations of SalB. Western Blot strip showed that the expression of Caspase-3 protein in HXO-RB44 cells was gradually increased with the increase of the concentration of SalB. CONCLUSION SalB can significantly affect on HXO-RB44 cells growth inhibition and apoptosis induction which may be achieved through the up-regulation of Caspase-3 expression and the induction of cell cycle arrest. PMID:22773971

  14. Development of fluorescent Plasmodium falciparum for in vitro growth inhibition assays

    Directory of Open Access Journals (Sweden)

    Crabb Brendan S

    2010-06-01

    Full Text Available Abstract Background Plasmodium falciparum in vitro growth inhibition assays are widely used to evaluate and quantify the functional activity of acquired and vaccine-induced antibodies and the anti-malarial activity of known drugs and novel compounds. However, several constraints have limited the use of these assays in large-scale population studies, vaccine trials and compound screening for drug discovery and development. Methods The D10 P. falciparum line was transfected to express green fluorescent protein (GFP. In vitro growth inhibition assays were performed over one or two cycles of P. falciparum asexual replication using inhibitory polyclonal antibodies raised in rabbits, an inhibitory monoclonal antibody, human serum samples, and anti-malarials. Parasitaemia was evaluated by microscopy and flow cytometry. Results Transfected parasites expressed GFP throughout all asexual stages and were clearly detectable by flow cytometry and fluorescence microscopy. Measurement of parasite growth inhibition was the same when determined by detection of GFP fluorescence or staining with ethidium bromide. There was no difference in the inhibitory activity of samples when tested against the transfected parasites compared to the parental line. The level of fluorescence of GFP-expressing parasites increased throughout the course of asexual development. Among ring-stages, GFP-fluorescent parasites were readily separated from uninfected erythrocytes by flow cytometry, whereas this was less clear using ethidium bromide staining. Inhibition by serum and antibody samples was consistently higher when tested over two cycles of growth compared to one, and when using a 1 in 10 sample dilution compared to 1 in 20, but there was no difference detected when using a different starting parasitaemia to set-up growth assays. Flow cytometry based measurements of parasitaemia proved more reproducible than microscopy counts. Conclusions Flow cytometry based assays using GFP

  15. Alpha interferon and not gamma interferon inhibits salmonid alphavirus subtype 3 replication in vitro.

    Science.gov (United States)

    Xu, Cheng; Guo, Tz-Chun; Mutoloki, Stephen; Haugland, Øyvind; Marjara, Inderjit S; Evensen, Øystein

    2010-09-01

    Salmonid alphavirus (SAV) is an emerging virus in salmonid aquaculture, with SAV-3 being the only subtype found in Norway. Until now, there has been little focus on the alpha interferon (IFN-alpha)-induced antiviral responses during virus infection in vivo or in vitro in fish. The possible involvement of IFN-gamma in the response to SAV-3 is also not known. In this study, the two IFNs were cloned and expressed as recombinant proteins (recombinant IFN-alpha [rIFN-alpha] and rIFN-gamma) and used for in vitro studies. SAV-3 infection in a permissive salmon cell line (TO cells) results in IFN-alpha and IFN-stimulated gene (ISG) mRNA upregulation. Preinfection treatment (4 to 24 h prior to infection) with salmon rIFN-alpha induces an antiviral state that inhibits the replication of SAV-3 and protects the cells against virus-induced cytopathic effects (CPE). The antiviral state coincides with a strong expression of Mx and ISG15 mRNA and Mx protein expression. When rIFN-alpha is administered at the time of infection and up to 24 h postinfection, virus replication is not inhibited, and cells are not protected against virus-induced CPE. By 40 h postinfection, the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha) is phosphorylated concomitant with the expression of the E2 protein as assessed by Western blotting. Postinfection treatment with rIFN-alpha results in a moderate reduction in E2 expression levels in accordance with a moderate downregulation of cellular protein synthesis, an approximately 65% reduction by 60 h postinfection. rIFN-gamma has only a minor inhibitory effect on SAV-3 replication in vitro. SAV-3 is sensitive to the preinfection antiviral state induced by rIFN-alpha, while postinfection antiviral responses or postinfection treatment with rIFN-alpha is not able to limit viral replication.

  16. Berberine inhibits the growth of human colorectal adenocarcinoma in vitro and in vivo.

    Science.gov (United States)

    Cai, Yuchen; Xia, Qing; Luo, Rongzhen; Huang, Peiyu; Sun, Yueli; Shi, Yanxia; Jiang, Wenqi

    2014-01-01

    Berberine is an alkaloid isolated from the Chinese herbal medicine Huanglian, and has long been used as an antibiotic. Its antineoplastic properties were subsequently discovered in vitro. The purpose of this study was to investigate the effects of berberine on the growth of human colorectal carcinoma cells in vitro and in vivo. The results showed that berberine inhibited human colorectal adenocarcinoma (LoVo) cell growth in a time- and dose-dependent manner. A WST-1 assay showed that the IC50 value after 72 h was 40.79 ± 4.11 μM. Cell cycle analysis of 40 μM berberine-treated LoVo cells by flow cytometry showed accumulation of cells in the G2/M phase. The inhibition of LoVo cell growth by berberine was associated with the suppression of cyclin B1, cdc2, and cdc25c proteins. Berberine at a dose of 50 mg kg(-1) day(-1) showed inhibitory rates of 45.3% in a human colorectal adenocarcinoma xenograft in nude mice. The combination of berberine and 5-fluorouracil (5-FU) had a higher inhibitory rate (59.8%) than the berberine group (36.4%, P = 0.01), but no significant difference was observed between the 5-FU group (43.0%, P = 0.06) and the combination group. These results support the possibility that berberine may be useful as an alternative therapy for colorectal carcinoma.

  17. Inhibition of pepsin activity by alginates in vitro and the effect of epimerization.

    Science.gov (United States)

    Strugala, Vicki; Kennington, Erika J; Campbell, Robert J; Skjåk-Braek, Gudmund; Dettmar, Peter W

    2005-11-04

    Alginates are versatile biopolymers used extensively in the food, textile and pharmaceutical industries. One of the major uses is in the treatment of reflux disease and here we investigate whether alginates can influence pepsin activity, a major aggressor in reflux disease. The primary uronic acid structure of alginates can be altered using epimerase technology and we test tailor-made alginates to identify the optimal structure for pepsin inhibition. Pepsin activity in the presence of alginates was studied using an in vitro N-terminal assay and enzyme kinetics using a chromagenic peptide. The data described showed clearly that alginates were capable of concentration dependently reducing the activity of pepsin in a non-competitive manner, in vitro. This was variable between different alginates of wide ranging structure and size with positive correlation with alternating sequences of mannuronic and guluronic acid. We hypothesize that alginates may have a more extensive role in the treatment of reflux disease by inhibiting pepsin, a damaging component of the refluxate.

  18. Sinusoidal electromagnetic fields promote bone formation and inhibit bone resorption in rat femoral tissues in vitro.

    Science.gov (United States)

    Zhou, Jian; Ma, Xiao-Ni; Gao, Yu-Hai; Yan, Juan-Li; Shi, Wen-Gui; Xian, Cory J; Chen, Ke-Ming

    2016-01-01

    Effects of sinusoidal electromagnetic fields (SEMFs) on bone metabolism have not yet been well defined. The present study investigated SEMF effects on bone formation and resorption in rat femur bone tissues in vitro. Cultured femur diaphyseal (cortical bone) and metaphyseal (trabecular bone) tissues were treated with 50 Hz 1.8 mT SEMFs 1.5 h per day for up to 12 days and treatment effects on bone formation and resorption markers and associated gene expression were examined. Treatment with SEMFs caused a significant increase in alkaline phosphatase (ALP) activity and inhibited the tartrate-resistant acid phosphatase (TRACP) activity in the femoral diaphyseal or metaphyseal tissues. SEMFs also significantly increased levels of mRNA expression of osterix (OSX), insulin-like growth factor (IGF-1) and ALP in the bone tissues. SEMF treatment decreased glucose content and increased lactic acid contents in the culture conditioned medium. In addition, treatment with SEMFs decreased mRNA expression levels of bone resorption-related genes TRACP, macrophage colony stimulating factor (M-CSF) and cathepsin K (CTSK) in the cultured bone tissues. In conclusion, the current study demonstrated that treatment with 1.8 mT SEMFs at 1.5 h per day promoted bone formation, increased metabolism and inhibited resorption in both metaphyseal and diaphyseal bone tissues in vitro.

  19. The Antidiabetic Drug Metformin Inhibits the Proliferation of Bladder Cancer Cells in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Tao Zhang

    2013-12-01

    Full Text Available Recent studies suggest that metformin, a widely used antidiabetic agent, may reduce cancer risk and improve prognosis of certain malignancies. However, the mechanisms for the anti-cancer effects of metformin remain uncertain. In this study, we investigated the effects of metformin on human bladder cancer cells and the underlying mechanisms. Metformin significantly inhibited the proliferation and colony formation of 5637 and T24 cells in vitro; specifically, metformin induced an apparent cell cycle arrest in G0/G1 phases, accompanied by a strong decrease of cyclin D1, cyclin-dependent kinase 4 (CDK4, E2F1 and an increase of p21waf-1. Further experiments revealed that metformin activated AMP-activated protein kinase (AMPK and suppressed mammalian target of rapamycin (mTOR, the central regulator of protein synthesis and cell growth. Moreover, daily treatment of metformin led to a substantial inhibition of tumor growth in a xenograft model with concomitant decrease in the expression of proliferating cell nuclear antigen (PCNA, cyclin D1 and p-mTOR. The in vitro and in vivo results demonstrate that metformin efficiently suppresses the proliferation of bladder cancer cells and suggest that metformin may be a potential therapeutic agent for the treatment of bladder cancer.

  20. Cholecalciferol synthesized after UV-activation of 7-dehydrocholesterol onto titanium implants inhibits osteoclastogenesis in vitro.

    Science.gov (United States)

    Satué, María; Ramis, Joana M; Monjo, Marta

    2015-07-01

    UV-activated 7-dehydrocholesterol (7-DHC) has been successfully used as a biocompatible coating for titanium (Ti) implants producing active vitamin D with positive effect on osteoblast differentiation. Since an osseointegrating implant must promote bone formation while delay resorption, here we determine the effect of this coating on the pre-osteoclast cell line RAW 264.7. Moreover, D3 synthesis was optimized by (1) the supplementation with VitE of the 7-DHC coating to reduce 7-DHC oxidation and (2) the addition of an incubation step (48 h at 23°C) after UV-irradiation to favor isomerization. In vitro results with RAW264.7 cells showed no cytotoxic effect of the coatings and a significant decrease of osteoclastogenesis. Indeed, TRAP immunostaining suggested an inhibition of Trap-positive multinucleated cells and the mRNA levels of different phenotypic, fusion, and activity markers were reduced, particularly with 7-DHC:VitE. In conclusion, we demonstrate an improvement of the D3 synthesis from UV-activated 7-DHC when combined with VitE and show that these implants inhibit osteoclastogenesis in vitro.

  1. Anthocyanin Induces Apoptosis of DU-145 Cells In Vitro and Inhibits Xenograft Growth of Prostate Cancer

    Science.gov (United States)

    Ha, U-Syn; Bae, Woong Jin; Kim, Su Jin; Yoon, Byung Il; Hong, Sung Hoo; Lee, Ji Youl; Hwang, Tae-Kon; Hwang, Sung Yeoun; Wang, Zhiping

    2015-01-01

    Purpose To investigate the effects of anthocyanins extracted from black soybean, which have antioxidant activity, on apoptosis in vitro (in hormone refractory prostate cancer cells) and on tumor growth in vivo (in athymic nude mouse xenograft model). Materials and Methods The growth and viability of DU-145 cells treated with anthocyanins were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and apoptosis was assessed by DNA laddering. Immunoblotting was conducted to evaluate differences in the expressions of p53, Bax, Bcl, androgen receptor (AR), and prostate specific antigen (PSA). To study the inhibitory effects of anthocyanins on tumor growth in vivo, DU-145 tumor xenografts were established in athymic nude mice. The anthocyanin group was treated with daily oral anthocyanin (8 mg/kg) for 14 weeks. After 2 weeks of treatment, DU-145 cells (2×106) were inoculated subcutaneously into the right flank to establish tumor xenografts. Tumor dimensions were measured twice a week using calipers and volumes were calculated. Results Anthocyanin treatment of DU-145 cells resulted in 1) significant increase in apoptosis in a dose-dependent manner, 2) significant decrease in p53 and Bcl-2 expressions (with increased Bax expression), and 3) significant decrease in PSA and AR expressions. In the xenograft model, anthocyanin treatment significantly inhibit tumor growth. Conclusion This study suggests that anthocyanins from black soybean inhibit the progression of prostate cancer in vitro and in a xenograft model. PMID:25510742

  2. Linarin Inhibits the Acetylcholinesterase Activity In-vitro and Ex-vivo.

    Science.gov (United States)

    Feng, Xinchi; Wang, Xin; Liu, Youping; Di, Xin

    2015-01-01

    Linarin is a flavone glycoside in the plants Flos chrysanthemi indici, Buddleja officinalis, Cirsium setosum, Mentha arvensis and Buddleja davidii, and has been reported to possess analgesic, antipyretic, anti-inflammatory and neuroprotective activities. In this paper, linarin was investigated for its AChE inhibitory potential both in-vitro and ex-vivo. Ellman's colorimetric method was used for the determination of AChE inhibitory activity in mouse brain. In-vitro assays revealed that linarin inhibited AChE activity with an IC50 of 3.801 ± 1.149 μM. Ex-vivo study showed that the AChE activity was significantly reduced in both the cortex and hippocampus of mice treated intraperitoneally with various doses of linarin (35, 70 and 140 mg/Kg). The inhibition effects produced by high dose of linarin were the same as that obtained after huperzine A treatment (0.5 mg/Kg). Molecular docking study revealed that both 4'-methoxyl group and 7-O-sugar moiety of linarin played important roles in ligand-receptor binding and thus they are mainly responsible for AChE inhibitory activity. In view of its potent AChE inhibitory activity, linarin may be a promising therapeutic agent for the treatment of some diseases associated with AChE, such as glaucoma, myasthenia gravis, gastric motility and Alzheimer's disease.

  3. In vitro transcription and translation inhibition via DNA functionalized gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Conde, J; Baptista, P V [Centro de Investigacao em Genetica Molecular Humana (CIGMH), Departamento de Ciencias da Vida, Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica (Portugal); De la Fuente, J M, E-mail: pmvb@fct.unl.pt [Instituto de Nanociencia de Aragon, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza (Spain)

    2010-12-17

    The use of gold nanoparticles (AuNPs) has been gaining momentum as vectors for gene silencing strategies, combining the AuNPs' ease of functionalization with DNA and/or siRNA, high loading capacity and fast uptake by target cells. Here, we used AuNP functionalized with thiolated oligonucleotides to specifically inhibit transcription in vitro, demonstrating the synergetic effect between AuNPs and a specific antisense sequence that blocks the T7 promoter region. Also, AuNPs efficiently protect the antisense oligonucleotide against nuclease degradation, which can thus retain its inhibitory potential. In addition, we demonstrate that AuNPs functionalized with a thiolated oligonucleotide complementary to the ribosome binding site and the start codon, effectively shut down in vitro translation. Together, these two approaches can provide for a simple yet robust experimental set up to test for efficient gene silencing of AuNP-DNA conjugates. What is more, these results show that appropriate functionalization of AuNPs can be used as a dual targeting approach to an enhanced control of gene expression-inhibition of both transcription and translation.

  4. TGFβ Pathway Inhibition Redifferentiates Human Pancreatic Islet β Cells Expanded In Vitro.

    Directory of Open Access Journals (Sweden)

    Ginat Toren-Haritan

    Full Text Available In-vitro expansion of insulin-producing cells from adult human pancreatic islets could provide an abundant cell source for diabetes therapy. However, proliferation of β-cell-derived (BCD cells is associated with loss of phenotype and epithelial-mesenchymal transition (EMT. Nevertheless, BCD cells maintain open chromatin structure at β-cell genes, suggesting that they could be readily redifferentiated. The transforming growth factor β (TGFβ pathway has been implicated in EMT in a range of cell types. Here we show that human islet cell expansion in vitro involves upregulation of the TGFβ pathway. Blocking TGFβ pathway activation using short hairpin RNA (shRNA against TGFβ Receptor 1 (TGFBR1, ALK5 transcripts inhibits BCD cell proliferation and dedifferentiation. Treatment of expanded BCD cells with ALK5 shRNA results in their redifferentiation, as judged by expression of β-cell genes and decreased cell proliferation. These effects, which are reproducible in cells from multiple human donors, are mediated, at least in part, by AKT-FOXO1 signaling. ALK5 inhibition synergizes with a soluble factor cocktail to promote BCD cell redifferentiation. The combined treatment may offer a therapeutically applicable way for generating an abundant source of functional insulin-producing cells following ex-vivo expansion.

  5. ppGpp inhibits peptide elongation cycle of chloroplast translation system in vitro.

    Science.gov (United States)

    Nomura, Yuhta; Takabayashi, Taito; Kuroda, Hiroshi; Yukawa, Yasushi; Sattasuk, Kwanchanok; Akita, Mitsuru; Nozawa, Akira; Tozawa, Yuzuru

    2012-01-01

    Chloroplasts possess common biosynthetic pathways for generating guanosine 3',5'-(bis)pyrophosphate (ppGpp) from GDP and ATP by RelA-SpoT homolog enzymes. To date, several hypothetical targets of ppGpp in chloroplasts have been suggested, but they remain largely unverified. In this study, we have investigated effects of ppGpp on translation apparatus in chloroplasts by developing in vitro protein synthesis system based on an extract of chloroplasts isolated from pea (Pisum sativum). The chloroplast extracts showed stable protein synthesis activity in vitro, and the activity was sensitive to various types of antibiotics. We have demonstrated that ppGpp inhibits the activity of chloroplast translation in dose-effective manner, as does the toxic nonhydrolyzable GTP analog guanosine 5'-(β,γ-imido)triphosphate (GDPNP). We further examined polyuridylic acid-directed polyphenylalanine synthesis as a measure of peptide elongation activity in the pea chloroplast extract. Both ppGpp and GDPNP as well as antibiotics, fusidic acid and thiostrepton, inhibited the peptide elongation cycle of the translation system, but GDP in the similar range of the tested ppGpp concentration did not affect the activity. Our results thus show that ppGpp directly affect the translation system of chloroplasts, as they do that of bacteria. We suggest that the role of the ppGpp signaling system in translation in bacteria is conserved in the translation system of chloroplasts.

  6. Extracellular lipase of Pseudomonas aeruginosa: biochemical characterization and effect on human neutrophil and monocyte function in vitro

    DEFF Research Database (Denmark)

    Jaeger, K E; Kharazmi, A; Høiby, N

    1991-01-01

    on neutrophils. The inhibitory effect was concentration dependent and was abolished by heat treatment of the enzyme at 100 degrees C. Since monocytes are one of the important cells of the host defence system the inhibition of the function of these cells may contribute to the pathogenesis of infections caused...... concentrations of this lipase preparation were preincubated with human peripheral blood neutrophils and monocytes. The chemotaxis and chemiluminescence of these cells were then determined. It was shown that lipase inhibited the monocyte chemotaxis and chemiluminescence, whereas it had no or very little effect...... chromatography revealed spherical particles with diameters ranging from 5 to 20 nm. Biochemical characterization and SDS polyacrylamide gel electrophoresis suggested that these particles consisted of protein and carbohydrate including lipopolysaccharide with the major enzyme activity being lipase. Various...

  7. Co-aggregation and growth inhibition of probiotic lactobacilli and clinical isolates of mutans streptococci: An in vitro study

    DEFF Research Database (Denmark)

    Keller, Mette Kirstine; Hassl F, Pamela; Stecks N-Blicks, Christina

    2011-01-01

    Abstract Objective. Co-aggregation and growth inhibition abilities of probiotic bacteria may play a key role in their interference with the oral biofilm. The aim was to investigate the in vitro ability of selected commercial probiotic lactobacilli to co-aggregate and inhibit growth of oral mutans...

  8. Crude Aloe vera Gel Shows Antioxidant Propensities and Inhibits Pancreatic Lipase and Glucose Movement In Vitro

    Directory of Open Access Journals (Sweden)

    Urmeela Taukoorah

    2016-01-01

    Full Text Available Aloe vera gel (AVG is traditionally used in the management of diabetes, obesity, and infectious diseases. The present study aimed to investigate the inhibitory potential of AVG against α-amylase, α-glucosidase, and pancreatic lipase activity in vitro. Enzyme kinetic studies using Michaelis-Menten (Km and Lineweaver-Burk equations were used to establish the type of inhibition. The antioxidant capacity of AVG was evaluated for its ferric reducing power, 2-diphenyl-2-picrylhydrazyl hydrate scavenging ability, nitric oxide scavenging power, and xanthine oxidase inhibitory activity. The glucose entrapment ability, antimicrobial activity, and total phenolic, flavonoid, tannin, and anthocyanin content were also determined. AVG showed a significantly higher percentage inhibition (85.56±0.91 of pancreatic lipase compared to Orlistat. AVG was found to increase the Michaelis-Menten constant and decreased the maximal velocity (Vmax of lipase, indicating mixed inhibition. AVG considerably inhibits glucose movement across dialysis tubes and was comparable to Arabic gum. AVG was ineffective against the tested microorganisms. Total phenolic and flavonoid contents were 66.06±1.14 (GAE/mg and 60.95±0.97 (RE/mg, respectively. AVG also showed interesting antioxidant properties. The biological activity observed in this study tends to validate some of the traditional claims of AVG as a functional food.

  9. Induction of apoptosis and inhibition of proliferation in Hep-2 by antisense survivin RNA in vitro

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To study induction of apoptosis and inhibition of proliferation in Hep-2 by antisense survivin RNA. Methods: Antisense survivin RNA expression vector was constructed and then was transfected to human laryngeal carcinoma cell line Hep-2 by lipofectamine. HpEGFP/survivin cells (transfected with the combinant of antisense survivin RNA) were obstained by using G418. The levels of survivin protein before and after transfection were determined by Western-blot. Proliferation activity was measured by MTT assay. The experiment of colony formation in soft agar was carried out for assessing ability of proliferation of Hep-2 cell. Apoptosis was assessed by flow cytometry and acrdine orange(AO).Results:After antisense survivin RNA plasmids were transfected, the level of survivin protein was inhibited in Hep-2. ComPared with control, proliferation of HpEGFP/survivin cells were suppressed significantly. The experiment of colony formation in soft agar showed the ability of colony formation decreased in HpEGFP/survivin cells compared to control (P<0.05). Apoptosis rate increased about 1.81 folds compared with control. Conclusion: The antisense survivin RNA can partly inhibit the level of survivin protein expression in Hep-2 and can induce apoptosis and inhibit the proliferation of Hep-2 by down-regulating the expression of endogenous survivin in vitro.

  10. Redifferentiation of adult human β cells expanded in vitro by inhibition of the WNT pathway.

    Directory of Open Access Journals (Sweden)

    Ayelet Lenz

    Full Text Available In vitro expansion of adult human islet β cells is an attractive solution for the shortage of tissue for cell replacement therapy of type 1 diabetes. Using a lineage tracing approach we have demonstrated that β-cell-derived (BCD cells rapidly dedifferentiate in culture and can proliferate for up to 16 population doublings. Dedifferentiation is associated with changes resembling epithelial-mesenchymal transition (EMT. The WNT pathway has been shown to induce EMT and plays key roles in regulating replication and differentiation in many cell types. Here we show that BCD cell dedifferentiation is associated with β-catenin translocation into the nucleus and activation of the WNT pathway. Inhibition of β-catenin expression in expanded BCD cells using short hairpin RNA resulted in growth arrest, mesenchymal-epithelial transition, and redifferentiation, as judged by activation of β-cell gene expression. Furthermore, inhibition of β-catenin expression synergized with redifferentiation induced by a combination of soluble factors, as judged by an increase in the number of C-peptide-positive cells. Simultaneous inhibition of the WNT and NOTCH pathways also resulted in a synergistic effect on redifferentiation. These findings, which were reproducible in cells derived from multiple human donors, suggest that inhibition of the WNT pathway may contribute to a therapeutically applicable way for generation of functional insulin-producing cells following ex-vivo expansion.

  11. Daya hambat xylitol dan nistation terhadap pertumbuhan Candida albicans (in vitro (Inhibition effect of xylitol and nistatin combination on Candida albicans growth (in vitro

    Directory of Open Access Journals (Sweden)

    Sarah Kartimah Djajusman

    2014-09-01

    Full Text Available Background: The growth of Candida albicans can be controlled by using antifungal such as nystatin. These days we found that using antifungal is not enough to control Candida albicans, we also have to control the intake of sugar by using xylitol. Purpose: Purpose of the study was to determine the optimal inhibitory concentration of xylitol-nystatin in the Candida albicans growth. Methods: This was an in-vitro study using an antimicrobial test of serial dilution with xylitol-nystatin and sucrose–nystatin consentration of 1%, 3%, 5%, 7%, 9%, and 10%.Growth inhibition of C. albicans was determined by the inhibition zone of xylitol + nystatin on C. albicans culture media (in vitro Results: The result of study was the inhibitory consentration of xylitol-nystatin to inhibit Candida albicans growth was 3%-10%. Conclusion: The study showed that combination of xylitol and nystation could inhibit the growth of Candida albicans.Latar belakang: Pertumbuhan Candida albicans dapat dikontrol dengan menggunakan antijamur seperti nistatin. Penggunakan antijamur saja tidak cukup untuk mengontrol Candida albicans, namun perlu pula mengontrol asupan gula dengan menggunakan xylitol. Tujuan: Tujuan dari penelitian ini adalah untuk menentukan konsentrasi hambat optimal xylitol-nistatin dalam pertumbuhan Candida albicans. Metode: Penelitian ini merupakan penelitian in vitro menggunakan uji antimikroba pengenceran serial dengan xylitol-nistatin dan nystatin-sukrosa konsentrasi 1%, 3 %, 5 %, 7%, 9%, dan 10%. Daya hambat pertumbuhan C. albicans diukur dari zona hambat xylitol + nistatin pada media kultur C. albicans (in vitro Hasil: Konsentrasi penghambatan xylitol-nistatin untuk menghambat pertumbuhan Candida albicans adalah 3-10%. Simpulan: Hasil penelitian menunjukkan bahwa kombinasi xylitol dan nystation bisa menghambat pertumbuhan Candida albicans.

  12. Glioblastoma Inhibition by Cell Surface Immunoglobulin Protein EWI-2, In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Tatiana V. Kolesnikova

    2009-01-01

    Full Text Available EWI-2, a cell surface IgSF protein, is highly expressed in normal human brain but is considerably diminished in glioblastoma tumors and cell lines. Moreover, loss of EWI-2 expression correlated with a shorter survival time in human glioma patients, suggesting that EWI-2 might be a natural inhibitor of glioblastoma. In support of this idea, EWI-2 expression significantly impaired both ectopic and orthotopic tumor growth in nude mice in vivo. In vitro assays provided clues regarding EWI-2 functions. Expression of EWI-2 in T98G and/or U87-MG malignant glioblastoma cell lines failed to alter two-dimensional cell proliferation but inhibited glioblastoma colony formation in soft agar and caused diminished cell motility and invasion. At the biochemical level, EWI-2 markedly affects the organization of four molecules (tetraspanin proteins CD9 and CD81 and matrix metalloproteinases MMP-2 and MT1-MMP, which play key roles in the biology of astrocytes and gliomas. EWI-2 causes CD9 and CD81 to become more associated with each other, whereas CD81 and other tetraspanins become less associated with MMP-2 and MT1-MMP. We propose that EWI-2 inhibition of glioblastoma growth in vivo is at least partly explained by the capability of EWI-2 to inhibit growth and/or invasion in vitro. Underlying these functional effects, EWI-2 causes a substantial molecular reorganization of multiple molecules (CD81, CD9, MMP-2, and MT1-MMP known to affect proliferation and/or invasion of astrocytes and/or glioblastomas.

  13. Parathyroid hormone and calcitonin interactions in bone: Irradiation-induced inhibition of escape in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Krieger, N.S.; Tashjian, A.H. Jr.; Feldman, R.S.

    1982-01-01

    Calcitonin (CT) inhibits hormonally stimulated bone resorption only transiently in vitro. This phenomenon has been termed ''escape,'' but the mechanism for the effect is not understood. One possible explanation is that bone cell differentiation and recruitment of specific precursor cells, in response to stimulators of resorption, lead to the appearance of osteoclasts that are unresponsive to CT. To test this hypothesis, cell proliferation in neonatal mouse calvaria in organ culture was inhibited by irradiation from a cobalt-60 source. At a dose of 6000 R, (/sup 3/H)thymidine incorporation into intact calvaria was inhibited approximately 90%. Irradiation had no effect on the resorptive response to 0.1 U/ml parathyroid hormone (PTH). However, irradiation induced a dose-dependent inhibition of the escape response which was maximal at 6000 R. A dose of 6000 R did not affect the binding of /sup 125/I-salmon CT to calvaria and decreased PTH stimulation of cyclic AMP release from bone without affecting the cyclic AMP response to CT. Although irradiation caused a dose-dependent inhibition of DNA synthesis, the dose-response curves for that effect and inhibition of escape were not superimposable. A morphologic study of hormonally treated calvaria demonstrated that irradiation prevented the early increase in number of osteoclasts in PTH-treated calvaria that had been observed previously in unirradiated bones. Autoradiography showed that irradiation also prevented the PTH-stimulated recruitment of newly divided mononuclear cell precursors into osteoclasts. This may be correlated with the effect of irradiation to prevent the loss of responsiveness to CT in the presence of PTH.

  14. Delta-9 tetrahydrocannabinol (THC inhibits lytic replication of gamma oncogenic herpesviruses in vitro

    Directory of Open Access Journals (Sweden)

    Friedman Herman

    2004-09-01

    Full Text Available Abstract Background The major psychoactive cannabinoid compound of marijuana, delta-9 tetrahydrocannabinol (THC, has been shown to modulate immune responses and lymphocyte function. After primary infection the viral DNA genome of gamma herpesviruses persists in lymphoid cell nuclei in a latent episomal circular form. In response to extracellular signals, the latent virus can be activated, which leads to production of infectious virus progeny. Therefore, we evaluated the potential effects of THC on gamma herpesvirus replication. Methods Tissue cultures infected with various gamma herpesviruses were cultured in the presence of increasing concentrations of THC and the amount of viral DNA or infectious virus yield was compared to those of control cultures. The effect of THC on Kaposi's Sarcoma Associated Herpesvirus (KSHV and Epstein-Barr virus (EBV replication was measured by the Gardella method and replication of herpesvirus saimiri (HVS of monkeys, murine gamma herpesvirus 68 (MHV 68, and herpes simplex type 1 (HSV-1 was measured by yield reduction assays. Inhibition of the immediate early ORF 50 gene promoter activity was measured by the dual luciferase method. Results Micromolar concentrations of THC inhibit KSHV and EBV reactivation in virus infected/immortalized B cells. THC also strongly inhibits lytic replication of MHV 68 and HVS in vitro. Importantly, concentrations of THC that inhibit virus replication of gamma herpesviruses have no effect on cell growth or HSV-1 replication, indicating selectivity. THC was shown to selectively inhibit the immediate early ORF 50 gene promoter of KSHV and MHV 68. Conclusions THC specifically targets viral and/or cellular mechanisms required for replication and possibly shared by these gamma herpesviruses, and the endocannabinoid system is possibly involved in regulating gamma herpesvirus latency and lytic replication. The immediate early gene ORF 50 promoter activity was specifically inhibited by THC

  15. The flavonoid component isorhamnetin in vitro inhibits proliferation and induces apoptosis in Eca-109 cells.

    Science.gov (United States)

    Ma, Gang; Yang, Chunlei; Qu, Yi; Wei, Huaying; Zhang, Tongtong; Zhang, Najuan

    2007-04-25

    Isorhamnetin is one member of flavonoid components which has been used in the treatment of heart disease. Recently the in vitro anti-cancer effect of isorhamnetin on human esophageal squamous carcinoma cell line Eca-109 was investigated in our lab. When Eca-109 cells were in vitro exposed to the graded doses of isorhamnetin (0-80 microg/ml) for 48 h, respectively, isorhamnetin exhibited cytostatic effect on the treated cells, with an IC(50) of 40+/-0.08 microg/ml as estimated by MTT assay. Inhibition on proliferation by isorhamnetin was detected by trypan blue exclusion assay, clone formation test, immunocytochemical assay of PCNA and (3)H-thymidine uptake analysis. Cell cycle distribution was measured by FCM. It was found that the viability of Eca-109 cells was significantly hampered by isorhamnetin. Compared with the negative control group, the treated group which was exposed to isorhamnetin had increased population in G(0)/G(1) phase from 74.6 to 84 while had a significant reduction in G(2)/M phase from 11.9 to 5.8. In addition to its cytostatic effect, isorhamnetin also showed stimulatory effect on apoptosis. Typical apoptotic morphology such as condensation and fragmentation of nuclei and blebbing membrane of the apoptotic cells could be observed through transmission electron microscope. Moreover, the sharp increase in apoptosis rate between the control and treated group were detected by FCM from 6.3 to 16.3. To explore the possible molecular mechanisms that underlie the growth inhibition and apoptosis stimulatory effects of isorhamnetin, the expressions of six proliferation- and death-related genes were detected by FCM. Expressions of bcl-2, c-myc and H-ras were downregulated whereas Bax, c-fos and p53 were upregulated. However, the in vivo experiments were required to further confirm the anti-cancer effects of isorhamnetin. In conclusion, isorhamnetin appears to be a potent drug against esophageal cancer due to its in vitro potential to not only inhibit

  16. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound

    DEFF Research Database (Denmark)

    Hentzer, Morten; Riedel, Kathrin; Rasmussen, Thomas B;

    2002-01-01

    Novel molecular tools have been constructed which allow for in situ detection of N-acyl homoserine lactone (AHL)-mediated quorum sensing in Pseudomonas aeruginosa biofilms. The reporter responds to AHL activation of LasR by expression of an unstable version of the green-fluorescent protein (Gfp...... macroalga Delisea pulchra, is capable of interfering with AHL-mediated quorum sensing in P. aeruginosa. It is demonstrated that the furanone compound specifically represses expression of a PlasB-gfp reporter fusion without affecting growth or protein synthesis. In addition, it reduces the production...

  17. Inhibition of quorum sensing-mediated biofilm formation in Pseudomonas aeruginosa by a locally isolated Bacillus cereus.

    Science.gov (United States)

    Wahman, Shaimaa; Emara, Mohamed; Shawky, Riham M; El-Domany, Ramadan A; Aboulwafa, Mohammad Mabrouk

    2015-12-01

    Quorum sensing has been shown to play a crucial role in Pseudomonas aeruginosa pathogenesis where it activates expression of myriad genes that regulate the production of important virulence factors such as biofilm formation. Antagonism of quorum sensing is an excellent target for antimicrobial therapy and represents a novel approach to combat drug resistance. In this study, Chromobacterium violaceum biosensor strain was employed as a fast, sensitive, reliable, and easy to use tool for rapid screening of soil samples for Quorum Sensing Inhibitors (QSI) and the optimal conditions for maximal QSI production were scrutinized. Screening of 127 soil isolates showed that 43 isolates were able to breakdown the HHL signal. Out of the 43 isolates, 38 isolates were able to inhibit the violet color of the biosensor and to form easily detectable zones of color inhibition around their growth. A confirmatory bioassay was carried out after concentrating the putative positive cell-free lysates. Three different isolates that belonged to Bacillus cereus group were shown to have QSI activities and their QSI activities were optimized by changing their culture conditions. Further experiments revealed that the cell-free lysates of these isolates were able to inhibit biofilm formation by P. aeruginosa clinical isolates.

  18. Mechanical Stimulus Inhibits the Growth of a Bone Tissue Model Cultured In Vitro

    Institute of Scientific and Technical Information of China (English)

    Zong-ming Wan; Lu Liu; Jian-yu Li; Rui-xin Li; Yong Guo; Hao Li; Jian-ming Zhang; Xi-zheng Zhang

    2013-01-01

    Objectives To construct the cancellous bone explant model and a method of culturing these bone tissues in vitro, and to investigate the effect of mechanical load on growth of cancellous bone tissue in vitro. Methods Cancellous bone were extracted from rabbit femoral head and cut into 1-mm-thick and 8-mm-diameter slices under sterile conditions. HE staining and scanning electron microscopy were employed to identify the histomorphology of the model after being cultured with a new dynamic load and circulating perfusion bioreactor system for 0, 3, 5, and 7 days, respectively. We built a three-dimensional model using microCT and analyzed the loading effects using finite element analysis. The model was subjected to mechanical load of 1000, 2000, 3000, and 4000μεrespectively for 30 minutes per day. After 5 days of continuous stimuli, the activities of alkaline phosphatase (AKP) and tartrate-resistant acid phosphatase (TRAP) were detected. Apoptosis was analyzed by DNA ladder detection and caspase-3/8/9 activity detection. Results After being cultured for 3, 5, and 7 days, the bone explant model grew well. HE staining showed the apparent nucleus in cells at the each indicated time, and electron microscope revealed the living cells in the bone tissue. The activities of AKP and TRAP in the bone explant model under mechanical load of 3000 and 4000μεwere significantly lower than those in the unstressed bone tissues (all P Conclusions The cancellous bone explant model extracted from the rabbit femoral head could be alive at least for 7 days in the dynamic load and circulating perfusion bioreactor system, however, pathological mechanical load could affect the bone tissue growth by apoptosis in vitro. The differentiation of osteoblasts and osteoclasts might be inhibited after the model is stimulated by mechanical load of 3000 and 4000με.

  19. Lysophosphatidic acid inhibition of the accumulation of Pseudomonas aeruginosa PAO1 alginate, pyoverdin, elastase and LasA

    DEFF Research Database (Denmark)

    Laux, D.C.; Corson, J.M.; Givskov, Michael Christian;

    2002-01-01

    The pathogenesis of Pseudomonas aeruginosa is at least partially attributable to its ability to synthesize and secrete the siderophore pyoverdin and the two zinc metal loproteases elastase and LasA, and its ability to form biofilms in which bacterial cells are embedded in an alginate matrix...... pyoverdin. MPPA also inhibited biofilm formation. The inhibitory effects of MPPA occur independently of rpoS expression and without affecting the accumulation of the autoinducers N-(3-oxododecanoyl) homoserine lactone and N-butyryl-(L)-homoserine lactone, and may be due, at least in part, to the ability...

  20. Raddeanin A induces human gastric cancer cells apoptosis and inhibits their invasion in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Gang [Department of Oncology, Nanjing University of Chinese Medicine, Nanjing (China); Zou, Xi [Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Zhou, Jin-Yong [Laboratory Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Sun, Wei [Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Wu, Jian [Laboratory Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China); Xu, Jia-Li [Department of Oncology, Nanjing University of Chinese Medicine, Nanjing (China); Wang, Rui-Ping, E-mail: ruipingwang61@hotmail.com [Department of Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Traditional Chinese Medicine, Nanjing (China)

    2013-09-20

    Highlights: •Raddeanin A is a triterpenoid saponin in herb medicine Anemone raddeana Regel. •Raddeanin A can inhibit 3 kinds of gastric cancer cells’ proliferation and invasion. •Caspase-cascades’ activation indicates apoptosis induced by Raddeanin A. •MMPs, RECK, Rhoc and E-cad are involved in Raddeanin A-induced invasion inhibition. -- Abstract: Raddeanin A is one of the triterpenoid saponins in herbal medicine Anemone raddeana Regel which was reported to suppress the growth of liver and lung cancer cells. However, little was known about its effect on gastric cancer (GC) cells. This study aimed to investigate its inhibitory effect on three kinds of different differentiation stage GC cells (BGC-823, SGC-7901 and MKN-28) in vitro and the possible mechanisms. Proliferation assay and flow cytometry demonstrated Raddeanin A’s dose-dependent inhibitory effect and determined its induction of cells apoptosis, respectively. Transwell assay, wounding heal assay and cell matrix adhesion assay showed that Raddeanin A significantly inhibited the abilities of the invasion, migration and adhesion of the BGC-823 cells. Moreover, quantitative real time PCR and Western blot analysis found that Raddeanin A increased Bax expression while reduced Bcl-2, Bcl-xL and Survivin expressions and significantly activated caspase-3, caspase-8, caspase-9 and poly-ADP ribose polymerase (PARP). Besides, Raddeanin A could also up-regulate the expression of reversion inducing cysteine rich protein with Kazal motifs (RECK), E-cadherin (E-cad) and down-regulate the expression of matrix metalloproteinases-2 (MMP-2), MMP-9, MMP-14 and Rhoc. In conclusion, Raddeanin A inhibits proliferation of human GC cells, induces their apoptosis and inhibits the abilities of invasion, migration and adhesion, exhibiting potential to become antitumor drug.

  1. An in vitro screening with emerging contaminants reveals inhibition of carboxylesterase activity in aquatic organisms.

    Science.gov (United States)

    Solé, Montserrat; Sanchez-Hernandez, Juan C

    2015-12-01

    Pharmaceuticals and personal care products (PPCPs) form part of the new generation of pollutants present in many freshwater and marine ecosystems. Although environmental concentrations of these bioactive substances are low, they cause sublethal effects (e.g., enzyme inhibition) in non-target organisms. However, little is known on metabolism of PPCPs by non-mammal species. Herein, an in vitro enzyme trial was performed to explore sensitivity of carboxylesterase (CE) activity of aquatic organisms to fourteen PPCPs. The esterase activity was determined in the liver of Mediterranean freshwater fish (Barbus meridionalis and Squalius laietanus), coastal marine fish (Dicentrarchus labrax and Solea solea), middle-slope fish (Trachyrhynchus scabrus), deep-sea fish (Alepocephalus rostratus and Cataetix laticeps), and in the digestive gland of a decapod crustacean (Aristeus antennatus). Results showed that 100μM of the lipid regulators simvastatin and fenofibrate significantly inhibited (30-80% of controls) the CE activity of all target species. Among the personal care products, nonylphenol and triclosan were strong esterase inhibitors in most species (36-68% of controls). Comparison with literature data suggests that fish CE activity is as sensitive to inhibition by some PPCPs as that of mammals, although their basal activity levels are lower than in mammals. Pending further studies on the interaction between PPCPs and CE activity, we postulate that this enzyme may act as a molecular sink for certain PPCPs in a comparable way than that described for the organophosphorus pesticides.

  2. In-vitro cancer cell cytotoxicity and alpha amylase inhibition effect of seven tropical fruit residues

    Institute of Scientific and Technical Information of China (English)

    Priti Gupta; Ira Bhatnagar; Se-Kwon Kim; Ajay Kumar Verma; Anubhuti Sharma

    2014-01-01

    Objective:To determine quantitative phytochemical, anticancer and antidiabetic effect of seven Indian tropical fruit residues. Methods:In-vitro cytotoxic activity (IC50) was evaluated against cervical cancer cells (HeLa), breast cancer cells (MCF-7), hepatocellular carcinoma cells (HepG-2) and bone sarcoma cells (MG-63) and alpha amylase inhibition assay was used for antidiabetic activity. Results: Results of phytochemical analysis revealed that all residues contained remarkable amount of alkaloid, saponin, tannin and flavonoid. Notable cancer cell growth inhibition was observed for the extract from Carissa carandas pomace and Litchi sinensis seeds with IC50 values ranged from 56.72 to 89.24 μg/mL. Alpha amylase inhibition assay was measured at six different concentrations (5, 10, 25, 50, 100 and 200 mg/mL) by using different solvent extract. Results showed that Carissa carandas possessed best activity with IC50 value as 29.66 mg/mL followed by other residues in methanol extract. Conclusions:Study suggests that these fruit residues demonstrate promising antidiabetic and anticancer activity that substantiated its ethno medicinal use and may provide new molecules for the treatment of these diseases.

  3. Inhibition of adenovirus DNA synthesis in vitro by sera from patients with systemic lupus erythematosus

    Energy Technology Data Exchange (ETDEWEB)

    Horwitz, M.S.; Friefeld, B.R.; Keiser, H.D.

    1982-12-01

    Sera containing antinuclear antibodies from patients with systemic lupus erythematosus (SLE) and related disorders were tested for their effect on the synthesis of adenovirus (Ad) DNA in an in vitro replication system. After being heated at 60/sup 0/C for 1 h, some sera from patients with SLE inhibited Ad DNA synthesis by 60 to 100%. Antibodies to double-stranded DNA were present in 15 of the 16 inhibitory sera, and inhibitory activity copurified with anti-double-stranded DNA in the immunoglobulin G fraction. These SLE sera did not inhibit the DNA polymerases ..cap alpha.., BETA, ..gamma.. and had no antibody to the 72,000-dalton DNA-binding protein necessary for Ad DNA synthesis. The presence of antibodies to single-stranded DNA and a variety of saline-extractable antigens (Sm, Ha, nRNP, and rRNP) did not correlate with SLE serum inhibitory activity. Methods previously developed for studying the individual steps in Ad DNA replication were used to determine the site of inhibition by the SLE sera that contained antibody to double-stranded DNA. Concentrations of the SLE inhibitor that decreased the elongation of Ad DNA by greater than 85% had no effect on either the initiation of Ad DNA synthesis or the polymerization of the first 26 deoxyribonucleotides.

  4. In vitro inhibition of rat small intestinal absorption by lipophilic organic cations.

    Science.gov (United States)

    Elsenhans, B; Blume, R; Lembcke, B; Caspary, W F

    1985-02-28

    Cationic, lipid-soluble organic compounds may interfere with cation-mediated membrane transport processes. Thus, small intestinal absorption may be influenced by lipophilic organic cations. Therefore a series of arylalkylamines was studied in the concentration range from 0.5 to 20 mmol/l for their effect on the transport of various monosaccharides and leucine in the rat small intestine in vitro by means of the tissue accumulation technique. Whereas the monophenyl substituted monoamines (e.g. benzylamine, 2-phenylethylamine, 3-phenylpropylamine) did not show a significant effect on the active transport, the corresponding omega,omega-diphenyl derivatives exhibited a strong inhibition of the active transport of the sugars and the amino acid. These monoamines and drugs of similar structure (e.g. benzoctamine, diphenydramine) exhibited a mixed or non-competitive type of inhibition which correlated quite well with their octanol-water partition coefficients. In contrast, di- or triamines (e.g. harmaline, imipramine, pyrilamine) revealed a rather pure competitive type of inhibition. These findings tentatively suggest a different mode of action on the active transport by lipid-soluble organic amines according to the molecular charge distribution. In addition, membrane vesicles were used to examine the effect of the different amines on the sucrase activity. Regarding the cation-dependent hydrolysis of sucrose, however, no distinct pattern developed.

  5. AQUEOUS EXTRACTS OF PLANTS IN Colletotrichum gloeosporioides INHIBITION IN VITRO AND IN POSTHARVEST GUAVA

    Directory of Open Access Journals (Sweden)

    FERNANDO HENRIQUE ALVES DA SILVA

    2014-01-01

    Full Text Available The effect of plant aqueous extracts in the control of Colletotrichum gloeosporioides (Penz. Penz. & Sacc. the causal agent of guava anthracnose in, was evaluated in vitro with 1, 2 and 3% aqueous ex- tracts of Azadirachta indica, Nerium oleander, Ocimum gratissimum, Syzygium aromaticum. The experiment was installed in a complete randomized desing in a 3x4 factorial scheme (doses x extracts. For the evaluation, it was calculated the percentage of fungal inhibition. The experiment in vivo was conducted by applying Syzy- gium aromaticum and Azadirachta indica aqueous extract at 2 and 3%, respectively, in three different storage conditions: refrigerated with and without plastic film (PVC, and at ambient conditions. The experiment was installed in a completely randomized design, in a 2x3 factorial scheme (extracts x storage conditions. We evaluated the external appearance and severity of disease, loss of weight and Brix degrees. Syzygium aromati- cum extract at 2% provided 100% of fungal mycelial growth inhibition, and Azadirachta indica extract at the highest dosage (3% inhibited 20.22%. In fruits, there was not significant statistical difference between the ef- fect of extracts on the external appearance and severity of disease, loss of weight and Brix degrees. In relation to the storage conditions, the ones with plastic film and refrigerated differed from the other conditions obtain- ing better external appearance and less severity of disease, lower loss of weight and higher Brix degrees.

  6. In vitro inhibition of bovine enamel demineralization by enamel matrix derivative.

    Science.gov (United States)

    Ran, Jin Mei; Ieong, Cheng Cheng; Xiang, Chen Yang; Lv, Xue Ping; Xue, Jing; Zhou, Xue Dong; Li, Wei; Zhang, Ling Lin

    2014-01-01

    This study aimed to determine whether enamel matrix derivative (Emdogain) affects the demineralization of bovine enamel in vitro and to assess the agent's anti-caries potential. Bovine enamel blocks were prepared and randomly divided into three groups (n = 15 per group), which were treated with distilled water (negative control), NaF (positive control), or Emdogain. All three groups were pH-cycled 12 times over 6 days. The percentage of surface enamel microhardness reduction (%SMHR), calcium demineralization rate (CDR), surface roughness, lesion depth and mineral loss after demineralization were examined. Surface morphology of specimens was studied by scanning electron microscopy. The Emdogain and positive control groups showed similar surface roughness, lesion depths and mineral loss, which were significantly lower than those in the negative control group. In addition, the enamel surfaces of both the Emdogain and NaF groups showed much narrower intercrystalline spaces than the surfaces of the negative control group, which exhibited extensive microfractures along the crystal edges. %SMHR differed significantly among all three groups, with the smallest value in the Emdogain group and the greatest in the negative control group. These results indicate that enamel matrix derivative (Emdogain) can significantly inhibit demineralization of bovine enamel in vitro, suggesting that it has potential as an anti-caries agent.

  7. Bufalin inhibits CYP3A4 activity in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Hai-yun LI; Wen XU; Xi ZHANG; Wei-dong ZHANG; Li-wei HU

    2009-01-01

    Aim: To investigate the inhibitory interactions of bufalin and CYP3A4.Methods: Recombinant human CYP3A4 was incubated with bufalin in vitro. Bufalin was administered ig and iv to Wistar rats to further estimate its impact on CYP3A4, and midazolam was given to index the activity of CYP3A4. Results: The IC50 of bufalin was 14.52 μmol/L. Bufalin affected CYP3A4 activity with increases in AUC0-t and t1/2f and decreases in CL and the formation of 1-hydroxy-midazolam after ig or iv administration of midazolam (P<0.05). An increase in Cmax after ig bufalin administration (P<0.05) was observed.Conclusion: Bufalin showed a modest but significant inhibition of CYP3A4 both in vitro and in vivo. The likelihood of an interaction between bufalin and the CYP3A4-metabolized drugs in human might not be negated.

  8. Soluble Form of Canine Transferrin Receptor Inhibits Canine Parvovirus Infection In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Jiexia Wen

    2013-01-01

    Full Text Available Canine parvovirus (CPV disease is an acute, highly infectious disease threatening the dog-raising industry. So far there are no effective therapeutic strategies to control this disease. Although the canine transferrin receptor (TfR was identified as a receptor for CPV infection, whether extracellular domain of TfR (called soluble TfR (sTfR possesses anti-CPV activities remains elusive. Here, we used the recombinant sTfR prepared from HEK293T cells with codon-optimized gene structure to investigate its anti-CPV activity both in vitro and in vivo. Our results indicated that codon optimization could significantly improve sTfR expression in HEK293T cells. The prepared recombinant sTfR possessed a binding activity to both CPV and CPV VP2 capsid proteins and significantly inhibited CPV infection of cultured feline F81 cells and decreased the mortality of CPV-infected dogs, which indicates that the sTfR has the anti-CPV activity both in vitro and in vivo.

  9. GBT440 inhibits sickling of sickle cell trait blood under in vitro conditions mimicking strenuous exercise

    Directory of Open Access Journals (Sweden)

    Kobina Dufu

    2016-09-01

    Full Text Available In sickle cell trait (SCT, hemoglobin A (HbA and S (HbS are co-expressed in each red blood cell (RBC. While homozygous expression of HbS (HbSS leads to polymerization and sickling of RBCs resulting in sickle cell disease (SCD characterized by hemolytic anemia, painful vaso-occlusive episodes and shortened life-span, SCT is considered a benign condition usually with minor or no complications related to sickling. However, physical activities that cause increased tissue oxygen demand, dehydration and/or metabolic acidosis leads to increased HbS polymerization and life-threatening complications including death. We report that GBT440, an agent being developed for the treatment of SCD, increases the affinity of oxygen for Hb and inhibits in vitro polymerization of a mixture of HbS and HbA that simulates SCT blood. Moreover, GBT440 prevents sickling of SCT blood under in vitro conditions mimicking strenuous exercise with hypoxia, dehydration and acidosis. Together, our results indicate that GBT440 may have the potential to protect SCT individuals from sickling-related complications during conditions that favor HbS polymerization.

  10. In vitro crystallization, characterization and growth-inhibition study of urinary type struvite crystals

    Science.gov (United States)

    Chauhan, Chetan K.; Joshi, Mihir J.

    2013-01-01

    The formation of urinary stones, known as nephrolithiasis or urolithiasis, is a serious, debilitating problem throughout the world. Struvite—NH4MgPO4·6H2O, ammonium magnesium phosphate hexahydrate, is one of the components of urinary stones (calculi). Struvite crystals with different morphologies were grown by in vitro single diffusion gel growth technique with different growth parameters. The crystals were characterized by powder XRD, FT-IR, thermal analysis and dielectric study. The powder XRD results of struvite confirmed the orthorhombic crystal structure. The FT-IR spectrum proved the presence of water of hydration, metal-oxygen bond, N-H bond and P-O bond. For thermal analysis TGA, DTA and DSC were carried out simultaneously. The kinetic and thermodynamic parameters of dehydration/decomposition process were calculated. Vickers micro-hardness and related mechanical parameters were also calculated. The in vitro growth inhibition studies of struvite by the juice of Citrus medica Linn as well as the herbal extracts of Commiphora wightii, Boerhaavia diffusa Linn and Rotula aquatica Lour were carried out and found potent inhibitors of struvite.

  11. Soluble form of canine transferrin receptor inhibits canine parvovirus infection in vitro and in vivo.

    Science.gov (United States)

    Wen, Jiexia; Pan, Sumin; Liang, Shuang; Zhong, Zhenyu; He, Ying; Lin, Hongyu; Li, Wenyan; Wang, Liyue; Li, Xiujin; Zhong, Fei

    2013-01-01

    Canine parvovirus (CPV) disease is an acute, highly infectious disease threatening the dog-raising industry. So far there are no effective therapeutic strategies to control this disease. Although the canine transferrin receptor (TfR) was identified as a receptor for CPV infection, whether extracellular domain of TfR (called soluble TfR (sTfR)) possesses anti-CPV activities remains elusive. Here, we used the recombinant sTfR prepared from HEK293T cells with codon-optimized gene structure to investigate its anti-CPV activity both in vitro and in vivo. Our results indicated that codon optimization could significantly improve sTfR expression in HEK293T cells. The prepared recombinant sTfR possessed a binding activity to both CPV and CPV VP2 capsid proteins and significantly inhibited CPV infection of cultured feline F81 cells and decreased the mortality of CPV-infected dogs, which indicates that the sTfR has the anti-CPV activity both in vitro and in vivo.

  12. Boswellia carterii extract inhibits TH1 cytokines and promotes TH2 cytokines in vitro.

    Science.gov (United States)

    Chevrier, Marc R; Ryan, Abigail E; Lee, David Y-W; Zhongze, Ma; Wu-Yan, Zhang; Via, Charles S

    2005-05-01

    Traditional herbal formulas used to treat inflammatory arthritis in China and India include Boswellia carterii or Boswellia serrata. They both contain boswellic acids (BAs) which have been shown to exhibit anti-inflammatory and antiarthritic properties. This study tests the hypothesis that mixtures of BAs derived from B. carterii have immunomodulatory properties. B. carterii plant resin obtained from China was prepared as an ethanol extract, and the presence of seven BAs was confirmed by column chromatography, high-performance liquid chromatography, and UV laser desorption/ionization tandem mass spectroscopy. The extract was then tested for its ability to alter in vitro production of TH1 cytokines (interleukin-2 [IL-2] and gamma interferon) and TH2 cytokines (IL-4 and IL-10) by murine splenocytes. Delivery of the resin extract using ethanol as a solvent resulted in significant cellular toxicity not seen with the addition of ethanol alone. By contrast, delivery of the resin extract using a sesame oil solvent resulted in a dose-dependent inhibition of TH1 cytokines coupled with a dose-dependent potentiation of TH2 cytokines. These results indicate that a purified mixture of BAs from B. carterii plant resin exhibits carrier-dependent immunomodulatory properties in vitro.

  13. Inhibition of the in-vitro growth of Mycobacterium tuberculosis by a phytosiderophore.

    Science.gov (United States)

    Rajiv, J; Dam, T; Kumar, S; Bose, M; Aggarwal, K K; Babu, C R

    2001-10-01

    Non-compliance by patients and poor clinical management due to the use of incorrect regimens are the main reasons for the development of drug resistance by mycobacterial strains. New strategies for the control of multi-drug-resistant mycobacterial strains have become a necessity for proper management of tuberculosis, which, according to the WHO report (1997), is estimated to remain among the top 10 mortality-causing diseases of the twenty-first century. One of the strategies is the use of iron-sequestering agents like siderophores as active therapeutic agents in the treatment of tuberculosis. This report describes for the first time the inhibition of the growth of Mycobacterium tuberculosis H37Ra in vitro by a phytosiderophore isolated from the root washings of Tephrosia purpurea. This finding may help in the establishment of a new drug regimen which will be more effective in the treatment of tuberculosis.

  14. In vitro inhibition of Plasmodium falciparum by substances isolated from Amazonian antimalarial plants

    Directory of Open Access Journals (Sweden)

    Valter F de Andrade-Neto

    2007-06-01

    Full Text Available In the present study, a quassinoid, neosergeolide, isolated from the roots and stems of Picrolemma sprucei (Simaroubaceae, the indole alkaloids ellipticine and aspidocarpine, isolated from the bark of Aspidosperma vargasii and A. desmanthum (Apocynaceae, respectively, and 4-nerolidylcatechol, isolated from the roots of Pothomorphe peltata (Piperaceae, all presented significant in vitro inhibition (more active than quinine and chloroquine of the multi-drug resistant K1 strain of Plasmodium falciparum. Neosergeolide presented activity in the nanomolar range. This is the first report on the antimalarial activity of these known, natural compounds. This is also the first report on the isolation of aspidocarpine from A. desmanthum. These compounds are good candidates for pre-clinical tests as novel lead structures with the aim of finding new antimalarial prototypes and lend support to the traditional use of the plants from which these compounds are derived.

  15. The Acyclic Retinoid Peretinoin Inhibits Hepatitis C Virus Replication and Infectious Virus Release in Vitro

    Science.gov (United States)

    Shimakami, Tetsuro; Honda, Masao; Shirasaki, Takayoshi; Takabatake, Riuta; Liu, Fanwei; Murai, Kazuhisa; Shiomoto, Takayuki; Funaki, Masaya; Yamane, Daisuke; Murakami, Seishi; Lemon, Stanley M.; Kaneko, Shuichi

    2014-04-01

    Clinical studies suggest that the oral acyclic retinoid Peretinoin may reduce the recurrence of hepatocellular carcinoma (HCC) following surgical ablation of primary tumours. Since hepatitis C virus (HCV) infection is a major cause of HCC, we assessed whether Peretinoin and other retinoids have any effect on HCV infection. For this purpose, we measured the effects of several retinoids on the replication of genotype 1a, 1b, and 2a HCV in vitro. Peretinoin inhibited RNA replication for all genotypes and showed the strongest antiviral effect among the retinoids tested. Furthermore, it reduced infectious virus release by 80-90% without affecting virus assembly. These effects could be due to reduced signalling from lipid droplets, triglyceride abundance, and the expression of mature sterol regulatory element-binding protein 1c and fatty acid synthase. These negative effects of Peretinoin on HCV infection may be beneficial in addition to its potential for HCC chemoprevention in HCV-infected patients.

  16. Gamma ray irradiation inhibits Plasmodium falciparum multiplication in in vitro culture supplemented with tritium labeled hypoxanthine

    Directory of Open Access Journals (Sweden)

    HARRY NUGROHO EKO SURNIYANTORO

    2016-04-01

    Full Text Available Abstract. Surniyantoro HNE, Darlina, Nurhayati S, Tetriana D, Syaifudin M. 2015. Gamma ray irradiation inhibits Plasmodium falciparum multiplication in in vitro culture supplemented with tritium labeled hypoxanthine. Nusantara Bioscience 8: 8-13. Malaria remains a major public health threat in the world. Therefore an attempt to create malaria vaccine for supporting the control of disease was taken by attenuating parasites with gamma rays and it was proven effective based on microscopic observation. Objective of this research was to assess the effectiveness of gamma rays to attenuate malaria parasites based on isotopic method. A laboratory strain of P. falciparum (3D7 was in vitro cultured with standard procedure and it was irradiated with gamma rays at doses of 150-250 Gy and unirradiated parasites served as control. Twenty four hours after 1-2 µCi of 3H-hypoxanthine was added into culture 100 µl of medium was taken and was repeated at various times, then hypoxanthine incorporation was measured with beta counter. Microscopic observation of parasitemia in culture was also done. The results showed that there was a fluctuation in multiplication of parasites post irradiation mainly in higher dose (more than150 Gy. Irradiated of parasites were more active in incorporate with purine precursor up to 48 hours. Parasites returned to their highest activity at 116 hours after hypoxanthine addition. No significant difference was found among doses of irradiation with p of 0.05. This was quite different with the finding from microscopic observation. It was known that dose of 150 Gy was the most effective dose for inhibiting of the parasite multiplication where some factors affecting these facts.

  17. Growth inhibition and colony formation in the cyanobacterium Microcystis aeruginosa induced by the cyanobacterium Cylindrospermopsis raciborskii

    NARCIS (Netherlands)

    Mello, M.M.; Soares, M.C.S.; Roland, F.; Lürling, M.F.L.L.W.

    2012-01-01

    In a tropical reservoir, the cyanobacteria Microcystis aeruginosa and Cylindrospermopsis raciborskii are the dominant species, with changes in dominance throughout the year. Since allelopathy has been suggested as a factor that could promote or stabilize harmful algal blooms, we investigated potenti

  18. Growth-inhibiting effects of taxol on human liver cancer in vitro and in nude mice

    Institute of Scientific and Technical Information of China (English)

    Jin Hui Yuan; Ru Ping Zhang; Ru Gang Zhang; Li Xia Guo; Xing Wang Wang; Hong Xie; Dan Luo; Yong Xie

    2000-01-01

    AIM To investigate the effects of taxol on SMMC-7721 human hepatoma and its mechanisms. MLETHODS In vitro cell growth was assessed by trypan blue exclusion method. Experimental hepatoma model was established by seeding SMMC-7721 cells subcutaneously into Balb/c (nu/nu) nude mice. In vivo tumor growth was determined by measurement of tumor diameter with Vernier calipers. The syntheses of DNA,RNA and protein were analyzed by incorporation of 3H-thymidine, 3H-uridine and 3H-leucine respectively. Using light and electron microscopes to observe the morphological changes of cells including mitosis and apoptosis. RESULTS Taxol was effective against SMMC 7721 human hepetoma cell growth in the ranges of 2.5 nmol/L - 10 nmol/L with mitotic arrest and apoptosis in vitro. DNA, RNA and protein syntheses in cells were also obviously suppressed by in vitro treatment of taxol for 72 h. Taxol at 2.5 nmol/L reduced 3H-thymidine uptake to about 34% of the control value (P<0.05). Increasing the dose of taxol to 20 nmol/L resulted in a greater decrease in 3Hthymidine incorporation to 60% of the control value (P<0.01). At a concentration of 20 nmol/L, the 3H-uridine and 3H-leucine uptakes were reduced to 52% (P<0.05) and 63%(P<0.01), respectively. In vivo, taxol significantly inhibited SMMC-7721 tumor growth at 10 mg/kg, i.p., once daily for 10 d. A more than 90% decrease in tumor volume was observed by day 11 (P<0.01) similarly with mitotic arrest and cell apoptosis. CONCLUSION Taxol has a marked anticancer activity in SMMC-7721 human hepatoma both in vitro and in nude mice. Its mechanisms might be associated with mitotic arrest, subsequently,apoptosis of the hepatoma cells. No obvious toxicity was observed with in vivo administration of taxol.

  19. The effect of biyuanshu oral liquid on the formation of pseudomonas aeruginosa biofilms in vitro%鼻渊舒口服液对铜绿假单胞菌生物膜体外形成的抑制作用

    Institute of Scientific and Technical Information of China (English)

    刘向; 陈海红; 汪审清

    2012-01-01

    目的:观察鼻渊舒口服液对铜绿假单胞菌生物膜体外形成的抑制作用.方法:平板法建立铜绿假单胞菌细菌生物膜体外模型,银染法及扫描电子显微镜鉴定.不同浓度的鼻渊舒口服液及红霉素作用于成熟前阶段的及已形成的铜绿假单胞菌生物膜,银染法及连续稀释法菌落计数观察其对生物膜的抑制作用.结果:扫描电镜观察铜绿假单胞菌在硅胶片上7d形成生物膜,与银染结果一致.红霉素及鼻渊舒体外能抑制铜绿假单胞菌生物膜的形成,且抑制作用随药物浓度的增加而加强,但对已形成的细菌生物膜清除作用不明显.连续稀释法菌落计数结果表明,不同浓度红霉素及鼻渊舒能抑制成熟前的生物膜膜内细菌生长,与对照组比较差异有统计学意义(P<0.05).结论:鼻渊舒口服液及红霉素体外对铜绿假单胞菌生物膜的形成有抑制作用.%Objective:To observe the effect of biyuanshu oral liquid on the formation of pseudomonas aeruginosa biofilms in vitro. Method: Pseudomonas aeruginosa biofilm was established by plate culture and detected by Scanning electron microscopy and AgNO3 stainning . After treated with different dosages of biyuanshu oral liquid and erythromycin, the pseudomonas aeruginosa biofilms were observed by AgNO3 stainning and the number of viable bacteria were measured by serial dilution. Result; The pseudomonas aeruginosa biofilms could be detected by SEM at the seventh culture day and it was consistent with the detetion of AgNO3 stainning. The biyuanshu oral liquid and erythromycin have the effect on inhibiting the formation of pseudomonas aeruginosa biofilms. But with the already formed pseudomonas aeruginosa biofilms the inhibition was not significant. The serial dilution method showed that the viable counts of bacteria of biyuanshu oral liquid and erythromycin treated groups were significantly lower than those untreated groups(P<0. 05). Conclusion

  20. In vitro inhibition of human cytomegalovirus replication by calcium trinatrium diethylenetriaminepentaacetic acid.

    Science.gov (United States)

    Cinatl, J; Hoffmann, F; Cinatl, J; Weber, B; Scholz, M; Rabenau, H; Stieneker, F; Kabickova, H; Blasko, M; Doerr, H W

    1996-06-01

    Desferrioxamine (DFO) has been shown to inhibit human cytomegalovirus (CMV) replication in vitro. In the present study, we compared antiviral effects of DFO in human foreskin fibroblast (HFF) cells against several CMV strains with those of other chelators that interact with iron and other ions from different pools. DFO, a hydrophilic chelator, that may chelate both intracellular and extracellular ions inhibited production of CMV late antigen at 50% effective concentrations (EC50S) ranging from 6.2 to 8.9 microM. EC50S for calcium trinatrium diethylenetriaminepentaacetic acid (CaDTPA) ranged from 6.1 to 9.9 microM. EC50S for 2,2'-bipyridine (BPD), a hydrophobic chelator, which diffuses into cell membranes ranged from 65 to 72 microM. Concentrations which inhibited BrdU incorporation into cellular DNA by 50% (IC50S) ranged from 8.2 to 12.0 microM (DFO), from 65 to 89 microM (BPD), and from 139 to 249 microM (CaDTPA). CaDTPA was the only chelator which completely inhibited production of infectious virus in HFF and vascular endothelial cells at concentrations which had no significant effects on cellular DNA synthesis and growth. Addition of stoichiometric amounts of Fe3+ in the culture medium of HFF cells completely eliminated antiviral effects of DFO while antiviral effects of CaDTPA and BPD were only moderately affected. Fe2+ and Cu2+ were stronger inhibitors of CaDTPA than Fe3+; however, Mn2+ and Zn2+ completely suppressed antiviral effects of CaDTPA. The results show that CaDTPA is a novel nontoxic inhibitor of CMV replication. The antiviral activity of CaDTPA is suppressed by metal ions with a decreasing potency order of Mn2+/Zn2+ > Fe2+ > Cu2+ > Fe3+.

  1. Screening of selected pesticides for inhibition of CYP19 aromatase activity in vitro.

    Science.gov (United States)

    Vinggaard, A M; Hnida, C; Breinholt, V; Larsen, J C

    2000-06-01

    Many pesticides are able to block or activate the steroid hormone receptors and/or to affect the levels of sex hormones, thereby potentially affecting the development or expression of the male and female reproductive system or both. This emphasizes the relevance of screening pesticides for a wide range of hormone-mimicking effects. Twenty-two pesticides were tested for their ability to affect CYP19 aromatase activity in human placental microsomes using the classical [(3)H](2)O method. Prochloraz, imazalil, propioconazole, fenarimol, triadimenol, triadimefon (all fungicides), and dicofol (an acaricide) gave rise to a statistically significant inhibition of aromatase activity. The IC(50)s of prochloraz, imazalil, propioconazole fenarimol, triadimenol, and triadimefon were calculated from dose-response curves to be 0.04, 0.34, 6.5, 10, 21 and 32 microM, respectively. The IC(50) of dicofol was greater than 50 microM. The positive control 4-hydroxyandrostendione (1 microM) caused an inhibition of aromatase activity by 74%. The compounds, which did not affect the aromatase activity, were bromopropylate, chlorfenvinphos, chlorobenzilate, chlorpyrifos, diuron, heptachlor, iprodion, linuron, pentachlorphenol, procymidon, propyzamide, quintozen, tetrachlorvinphos and tetradifon. With the purpose of comparing the results for fenarimol obtained with the microsomal system with data from an intact cell system, an aromatase assay based on JEG-3 cells was established. 4-Hydroxyandrostendione (1 microM) inhibited the aromatase activity in JEG-3 cells by 94%. The IC(50) for fenarimol in this system was 2 microM, slightly lower than that observed in the microsomal system. For the first time, fenarimol has been demonstrated to inhibit aromatase activity in human tissues and, furthermore, propioconazole, triadimefon, and triadimenol were identified as weak aromatase inhibitors. In conclusion, seven out of 22 tested pesticides turned out to be weak to moderate aromatase inhibitors in

  2. Preclinical in vitro and in vivo characterization of the fully human monoclonal IgM antibody KBPA101 specific for Pseudomonas aeruginosa serotype IATS-O11

    DEFF Research Database (Denmark)

    Horn, Michael P; Zuercher, Adrian W; Imboden, Martin A

    2010-01-01

    Pseudomonas aeruginosa infection in ventilator-associated pneumonia is a serious and often life-threatening complication in intensive care unit patients, and new treatment options are needed. We used B-cell-enriched peripheral blood lymphocytes from a volunteer immunized with a P. aeruginosa O-polysaccharide...

  3. Bioguided Fractionation Shows Cassia alata Extract to Inhibit Staphylococcus epidermidis and Pseudomonas aeruginosa Growth and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Samuel Takashi Saito

    2012-01-01

    Full Text Available Plant extracts have a long history to be used in folk medicine. Cassia alata extracts are known to exert antibacterial activity but details on compounds and mechanism of action remain poorly explored. We purified and concentrated the aqueous leaf extract of C. alata by reverse phase-solid phase extraction and screened the resulting CaRP extract for antimicrobial activity. CaRP extract exhibited antimicrobial activity for Pseudomonas aeruginosa, Staphylococcus epidermidis, S. aureus, and Bacillus subtilis. CaRP also inhibited biofilm formation of S. epidermidis and P. aeruginosa. Several bacterial growth-inhibiting compounds were detected when CaRP extract was fractionated by TLC chromatography coupled to bioautography agar overlay technique. HPLC chromatography of CaRP extract yielded 20 subfractions that were tested by bioautography for antimicrobial activity against S. aureus and S. epidermidis. Five bioactive fractions were detected and chemically characterized, using high-resolution mass spectrometry (qTOF-MS/MS. Six compounds from four fractions could be characterized as kaempferol, kaempferol-O-diglucoside, kaempferol-O-glucoside, quercetin-O-glucoside, rhein, and danthron. In the Salmonella/microsome assay CaRP showed weak mutagenicity (MI<3 only in strain TA98, pointing to a frameshift mutation activity. These results indicate that C. alata leaf extract contains a minimum of 7 compounds with antimicrobial activity and that these together or as single substance are active in preventing formation of bacterial biofilm, indicating potential for therapeutic applications.

  4. Eritadenine from Edible Mushrooms Inhibits Activity of Angiotensin Converting Enzyme in Vitro.

    Science.gov (United States)

    Afrin, Sadia; Rakib, Md Abdur; Kim, Boh Hyun; Kim, Jeong Ok; Ha, Yeong Lae

    2016-03-23

    The inhibition of angiotensin converting enzyme (ACE) activity was determined in vitro by mushroom-derived eritadenine (EA), which was analyzed in 11 principal Korean edible mushrooms. EA inhibited ACE activity with 0.091 μM IC50, whereas the IC50 of captopril (CP), which is a reference compound, was 0.025 μM. Kinetic measurements of ACE reaction in the substrate of hippuryl-l-histidyl-l-leucine (HHL) with or without EA revealed that the Vmax (0.0465 O.D/30 min) was unchanged, but the the Km increased from 2.063 to 3.887 mM, indicating that EA competes with HHL for the active site. When EA was analyzed by HPLC, Lentinus edodes with a soft cap contained the highest amount EA (642.8 mg%); however, Phellinus linteus with a hard cap contained the least amount of EA (9.4 mg%). These results indicate that EA was a strong competitive inhibitor for ACE, and edible mushrooms with soft caps contained a significant amount of EA.

  5. Fenofibrate Inhibited the Differentiation of T Helper 17 Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Zhou Zhou

    2012-01-01

    Full Text Available Uncontrolled activity of T cells mediates autoimmune and inflammatory diseases such as multiple sclerosis, inflammatory bowel diseases, rheumatoid arthritis, type 1 diabetes, and atherosclerosis. Recent findings suggest that enhanced activity of interleukin-17 (IL-17 producing T helper 17 cells (Th17 cells plays an important role in autoimmune diseases and inflammatory diseases. Previous papers have revealed that a lipid-lowering synthetic ligand of peroxisome proliferator-activated receptor α (PPARα, fenofibrate, alleviates both atherosclerosis and a few nonlipid-associated autoimmune diseases such as autoimmune colitis and multiple sclerosis. However, the link between fenofibrate and Th17 cells is lacking. In the present study, we hypothesized that fenofibrate inhibited the differentiation of Th17 cells. Our results showed that fenofibrate inhibited transforming growth factor-β (TGF-β and IL-6-induced differentiation of Th17 cells in vitro. However, other PPARα ligands such as WY14643, GW7647 and bezafibrate did not show any effect on Th17 differentiation, indicating that this effect of fenofibrate might be PPARα independent. Furthermore, our data showed that fenofibrate reduced IL-21 production and STAT3 activation, a critical signal in the Th17 differentiation. Thus, by ameliorating the differentiation of Th17 cells, fenofibrate might be beneficial for autoimmunity and inflammatory diseases.

  6. Chronic exposure of low dose salinomycin inhibits MSC migration capability in vitro.

    Science.gov (United States)

    Scherzad, Agmal; Hackenberg, Stephan; Froelich, Katrin; Rak, Kristen; Hagen, Rudolf; Taeger, Johannes; Bregenzer, Maximillian; Kleinsasser, Norbert

    2016-03-01

    Salinomycin is a polyether antiprotozoal antibiotic that is used as a food additive, particularly in poultry farming. By consuming animal products, there may be a chronic human exposure to salinomycin. Salinomycin inhibits the differentiation of preadipocytes into adipocytes. As human mesenchymal stem cells (MSC) may differentiate into different mesenchymal cells, it thus appeared worthwhile to investigate whether chronic salinomycin exposure impairs the functional properties of MSC and induces genotoxic effects. Bone marrow MSC were treated with low-dose salinomycin (100 nM) (MSC-Sal) for 4 weeks, while the medium containing salinomycin was changed every other day. Functional changes were evaluated and compared to MSC without salinomycin treatment (MSC-control). MSC-Sal and MSC-control were positive for cluster of differentiation 90 (CD90), CD73 and CD44, and negative for CD34. There were no differences observed in cell morphology or cytoskeletal structures following salinomycin exposure. The differentiation into adipocytes and osteocytes was not counteracted by salinomycin, and proliferation capability was not inhibited following salinomycin exposure. The migration of MSC-Sal was attenuated significantly as compared to the MSC-control. There were no genotoxic effects after 4 weeks of salinomycin exposure. The present study shows an altered migration capacity as a sign of functional impairment of MSC induced by chronic salinomycin exposure. Further in vitro toxicological investigations, particularly with primary human cells, are required to understand the impact of chronic salinomycin consumption on human cell systems.

  7. Inhibition of serotonin release by bombesin-like peptides in rat hypothalamus in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Saporito, M.S.; Warwick, R.O. Jr.

    1989-01-01

    We investigated the activity of bombesin (BN), neuromedin-C (NM-C) and neuromedin-B (NM-B) on serotonin (5-HT) release and reuptake in rat hypothalamus (HYP) in vitro. BN and NM-C but not NM-B decreased K/sup +/ evoked /sup 3/H-5-HT release from superfused HYP slices by 25%. Bacitracin, a nonspecific peptidase inhibitor, reversed the inhibitory effect of BN on K/sup +/ evoked /sup 3/H-5-HT release. Phosphoramidon (PAN, 10 /mu/M) an endopeptidase 24.11 inhibitor, abolished the inhibitory effect of BN, but not NM-C, on K/sup +/ evoked /sup 3/H-5-HT release. The peptidyl dipeptidase A inhibitor enalaprilat (ENP, 10 /mu/M), enhanced both BN and NM-C inhibition of /sup 3/H-5-HT release. Bestatin (BST, 10 /mu/M) had no effect on BN or NM-C inhibitory activity on /sup 3/H-5-HT release. Neither BN, NM-C nor NM-B affected reuptake of /sup 3/H-5-HT into HYP synaptosomes alone or in combination with any of the peptidase inhibitors, nor did these peptides alter the ability of fluoxetine to inhibit /sup 3/H-5-HT uptake.

  8. Warifteine, an Alkaloid Purified from Cissampelos sympodialis, Inhibits Neutrophil Migration In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Thaline F. A. Lima

    2014-01-01

    Full Text Available Cissampelos sympodialis Eichl is a plant from the Northeast and Southeast of Brazil. Its root infusion is popularly used for treatment of inflammatory and allergic diseases. We investigated whether warifteine, its main alkaloid, would have anti-inflammatory effect due to a blockage of neutrophil function. In vivo warifteine treatment inhibited casein-induced neutrophil migration to the peritoneal cavity but did not inhibit neutrophil mobilization from the bone marrow. Analysis of the direct effect of warifteine upon neutrophil adherence and migration in vitro demonstrated that the alkaloid decreased cell adhesion to P and E-selectin-transfected cells. In addition, fLMP-induced neutrophil migration in a transwell system was blocked by warifteine; this effect was mimicked by cAMP mimetic/inducing substances, and warifteine increased intracellular cAMP levels in neutrophils. The production of DNA extracellular traps (NETs was also blocked by warifteine but there was no alteration on PMA-induced oxidative burst or LPS-stimulated TNFα secretion. Taken together, our data indicate that the alkaloid warifteine is a potent anti-inflammatory substance and that it has an effect on neutrophil migration through a decrease in both cell adhesion and migration.

  9. Iron Chelation Inhibits Osteoclastic Differentiation In Vitro and in Tg2576 Mouse Model of Alzheimer's Disease.

    Directory of Open Access Journals (Sweden)

    Jun-Peng Guo

    Full Text Available Patients of Alzheimer's disease (AD frequently have lower bone mineral density and higher rate of hip fracture. Tg2576, a well characterized AD animal model that ubiquitously express Swedish mutant amyloid precursor protein (APPswe, displays not only AD-relevant neuropathology, but also age-dependent bone deficits. However, the underlying mechanisms remain poorly understood. As APP is implicated as a regulator of iron export, and the metal chelation is considered as a potential therapeutic strategy for AD, we examined iron chelation's effect on the osteoporotic deficit in Tg2576 mice. Remarkably, in vivo treatment with iron chelator, clinoquinol (CQ, increased both trabecular and cortical bone-mass, selectively in Tg2576, but not wild type (WT mice. Further in vitro studies showed that low concentrations of CQ as well as deferoxamine (DFO, another iron chelator, selectively inhibited osteoclast (OC differentiation, without an obvious effect on osteoblast (OB differentiation. Intriguingly, both CQ and DFO's inhibitory effect on OC was more potent in bone marrow macrophages (BMMs from Tg2576 mice than that of wild type controls. The reduction of intracellular iron levels in BMMs by CQ was also more dramatic in APPswe-expressing BMMs. Taken together, these results demonstrate a potent inhibition on OC formation and activation in APPswe-expressing BMMs by iron chelation, and reveal a potential therapeutic value of CQ in treating AD-associated osteoporotic deficits.

  10. Iron Chelation Inhibits Osteoclastic Differentiation In Vitro and in Tg2576 Mouse Model of Alzheimer's Disease.

    Science.gov (United States)

    Guo, Jun-Peng; Pan, Jin-Xiu; Xiong, Lei; Xia, Wen-Fang; Cui, Shun; Xiong, Wen-Cheng

    2015-01-01

    Patients of Alzheimer's disease (AD) frequently have lower bone mineral density and higher rate of hip fracture. Tg2576, a well characterized AD animal model that ubiquitously express Swedish mutant amyloid precursor protein (APPswe), displays not only AD-relevant neuropathology, but also age-dependent bone deficits. However, the underlying mechanisms remain poorly understood. As APP is implicated as a regulator of iron export, and the metal chelation is considered as a potential therapeutic strategy for AD, we examined iron chelation's effect on the osteoporotic deficit in Tg2576 mice. Remarkably, in vivo treatment with iron chelator, clinoquinol (CQ), increased both trabecular and cortical bone-mass, selectively in Tg2576, but not wild type (WT) mice. Further in vitro studies showed that low concentrations of CQ as well as deferoxamine (DFO), another iron chelator, selectively inhibited osteoclast (OC) differentiation, without an obvious effect on osteoblast (OB) differentiation. Intriguingly, both CQ and DFO's inhibitory effect on OC was more potent in bone marrow macrophages (BMMs) from Tg2576 mice than that of wild type controls. The reduction of intracellular iron levels in BMMs by CQ was also more dramatic in APPswe-expressing BMMs. Taken together, these results demonstrate a potent inhibition on OC formation and activation in APPswe-expressing BMMs by iron chelation, and reveal a potential therapeutic value of CQ in treating AD-associated osteoporotic deficits.

  11. Curcumin and Boswellia serrata gum resin extract inhibit chikungunya and vesicular stomatitis virus infections in vitro.

    Science.gov (United States)

    von Rhein, Christine; Weidner, Tatjana; Henß, Lisa; Martin, Judith; Weber, Christopher; Sliva, Katja; Schnierle, Barbara S

    2016-01-01

    Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes chikungunya fever and has infected millions of people mainly in developing countries. The associated disease is characterized by rash, high fever, and severe arthritis that can persist for years. CHIKV has adapted to Aedes albopictus, which also inhabits temperate regions including Europe and the United States of America. CHIKV has recently caused large outbreaks in Latin America. No treatment or licensed CHIKV vaccine exists. Traditional medicines are known to have anti-viral effects; therefore, we examined whether curcumin or Boswellia serrata gum resin extract have antiviral activity against CHIKV. Both compounds blocked entry of CHIKV Env-pseudotyped lentiviral vectors and inhibited CHIKV infection in vitro. In addition, vesicular stomatitis virus vector particles and viral infections were also inhibited to the same extent, indicating a broad antiviral activity. Although the bioavailability of these compounds is rather poor, they might be used as a lead structure to develop more effective antiviral drugs or might be used topically to prevent CHIKV spread in the skin after mosquito bites.

  12. TFF1 inhibits proliferation and induces apoptosis of gastric cancer cells in vitro.

    Science.gov (United States)

    Ge, Yanli; Zhang, Junjie; Cao, Jianchun; Wu, Qiong; Sun, Longe; Guo, Likun; Wang, Zhirong

    2012-05-01

    Trefoil Factor Family (TFF) plays an essential role in the intestinal epithelial restitution, but the relationship between TFF1 and gastric cancer (GC) is still unclear. The present study aimed to determine the role of TFF1 in repairing gastric mucosa and in the pathogenesis of GC. The TFF1 expression in different gastric mucosas was measured with immunohistochemistry. Then, siRNA targeting TFF1 or plasmids expressing TFF1 gene were transfected into BGC823 cells, SGC7901 cells and GES-1 cells. The cell proliferation was detected with MTT assay and apoptosis and cell cycle measured by flow cytometry. From normal gastric mucosa to mucosa with dysplasia and to gastric cancer, the TFF1 expression had a decreasing trend. Down-regulation of TFF1 expression significantly reduced the apoptosis of three cell lines and markedly facilitated their proliferation but had no significant effect on cell cycle. Over-expression of TFF1 could promote apoptosis of three cell lines and inhibit proliferation but had no pronounced effect on cell cycle. TFF1 can inhibit proliferation and induce apoptosis of GC cells in vitro.

  13. Suramin Inhibits the In Vitro Expression of Encephalitis B Virus Proteins NS3 and E

    Institute of Scientific and Technical Information of China (English)

    徐可树; 任宏宇; 朱剑文; 杨昀; 廖芳

    2003-01-01

    In this study, the mechanism by which Suramin inhibits the replication of epidemic encephalitis B virus was explored to provide a theoretical basis for its further application in clinical practice. After viral infection of HepG2 and IMR-32 cells, different concentrations of Suramin were added to the culture media, and then the cultural supernatants and infected cells were collected 48 h later. For the evaluation of the curative effect, cytopathic effect (CPE), virus titers, the expression of viral protein and viral RNA were determined by Western blot, RT-PCR and in vitro RNA synthesis, respectively. At the concentration of 50 μg/ml of Suramin, HepG2 and IMR-32 infected with epidemic encephalitis B virus decreased by 51.8 % and 0.03 % respectively, as compared with controls. It was suggested that expression of encephalitis B virus proteins NS3 and E was notably reduced by Suramin. This is especially true of E protein. At RNA level, however, no difference in RNA virus was found between Suramin-treated virus and non-treated cells. Our results suggest that Suramin can inhibit viral replication by blocking the production of viral proteins.

  14. Binding of Galanthus nivalis lectin to Chlamydia trachomatis and inhibition of in vitro infection.

    Science.gov (United States)

    Amin, K; Beillevaire, D; Mahmoud, E; Hammar, L; Mårdh, P A; Fröman, G

    1995-10-01

    A glycoprotein present in Chlamydia trachomatis, serotype L1, elementary bodies (EBs) was earlier found to bind the lectin from Galanthus nivalis (GNA). In the present paper we investigate the interaction of GNA with chlamydial EBs and its effect on in vitro infectivity. The binding affinity was studied with 125I-GNA lectin. Within 15 min about 80% maximal binding was obtained. The chlamydia-GNA interaction was inhibited by alpha-methylmannoside, causing a decrease of about 50% at 1 mM. Curve fit analyses indicated two types of binding sites for GNA on the EBs. The affinity to these differed by a factor of 15. The influence of the lectin on the ability of C. trachomatis to infect McCoy cells was also investigated. There was a GNA-dependent inhibition with a 50% reduction in the number of intracellular inclusions at 0.2 microM of the lectin. The findings indicate the presence of terminal mannose structures on the chlamydial surface at or in the proximity of the cell-binding domains. Mannose-binding proteins of eukaryotic cells could be important for the initial uptake of EBs.

  15. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound

    DEFF Research Database (Denmark)

    Hentzer, Morten; Riedel, K.; Rasmussen, Thomas Bovbjerg;

    2002-01-01

    ). Gfp-based reporter technology has been applied for non-destructive, single-cell-level detection of quorum sensing in laboratory-based P. aeruginosa biofilms. It is reported that a synthetic halogenated furanone compound, which is a derivative of the secondary metabolites produced by the Australian...... of important virulence factors, indicating a general effect on target genes of the las quorum sensing circuit. The furanone was applied to P. aeruginosa biofilms established in biofilm flow chambers. The Gfp-based analysis reveals that the compound penetrates microcolonies and blocks cell signalling and quorum...... sensing in most biofilm cells. The compound did not affect initial attachment to the abiotic substratum. It does, however, affect the architecture of the biofilm and enhances the process of bacterial detachment, leading to a loss of bacterial biomass from the substratum....

  16. Oxylipins produced by Pseudomonas aeruginosa promote biofilm formation and virulence

    Science.gov (United States)

    Martínez, Eriel; Campos-Gómez, Javier

    2016-01-01

    The oxygenation of unsaturated fatty acids by dioxygenases occurs in all kingdoms of life and produces physiologically important lipids called oxylipins. The biological roles of oxylipins have been extensively studied in animals, plants, algae and fungi, but remain largely unidentified in prokaryotes. The bacterium Pseudomonas aeruginosa displays a diol synthase activity that transforms several monounsaturated fatty acids into mono- and di-hydroxylated derivatives. Here we show that oxylipins derived from this activity inhibit flagellum-driven motility and upregulate type IV pilus-dependent twitching motility of P. aeruginosa. Consequently, these oxylipins promote bacterial organization in microcolonies, increasing the ability of P. aeruginosa to form biofilms in vitro and in vivo (in Drosophila flies). We also demonstrate that oxylipins produced by P. aeruginosa promote virulence in Drosophila flies and lettuce. Our study thus uncovers a role for prokaryotic oxylipins in the physiology and pathogenicity of bacteria. PMID:27929111

  17. Novel triazine JPC-2067-B inhibits Toxoplasma gondii in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Ernest J Mui

    Full Text Available BACKGROUND AND METHODOLOGY: Toxoplasma gondii causes substantial morbidity, mortality, and costs for healthcare in the developed and developing world. Current medicines are not well tolerated and cause hypersensitivity reactions. The dihydrotriazine JPC-2067-B (4, 6-diamino-1, 2-dihydro-2, 2-dimethyl-1-(3'(2-chloro-, 4-trifluoromethoxyphenoxypropyloxy-1, 3, 5-triazine, which inhibits dihydrofolate reductase (DHFR, is highly effective against Plasmodium falciparum, Plasmodium vivax, and apicomplexans related to T. gondii. JPC-2067-B is the primary metabolite of the orally active biguanide JPC-2056 1-(3'-(2-chloro-4-trifluoromethoxyphenyloxypropyl oxy- 5-isopropylbiguanide, which is being advanced to clinical trials for malaria. Efficacy of the prodrug JPC-2056 and the active metabolite JPC-2067-B against T. gondii and T. gondii DHFR as well as toxicity toward mammalian cells were tested. PRINCIPAL FINDINGS AND CONCLUSIONS: Herein, we found that JPC-2067-B is highly effective against T. gondii. We demonstrate that JPC-2067-B inhibits T. gondii growth in culture (IC50 20 nM, inhibits the purified enzyme (IC50 6.5 nM, is more efficacious than pyrimethamine, and is cidal in vitro. JPC-2067-B administered parenterally and the orally administered pro-drug (JPC-2056 are also effective against T. gondii tachyzoites in vivo. A molecular model of T. gondii DHFR-TS complexed with JPC-2067-B was developed. We found that the three main parasite clonal types and isolates from South and Central America, the United States, Canada, China, and Sri Lanka have the same amino acid sequences preserving key binding sites for the triazine. SIGNIFICANCE: JPC-2056/JPC-2067-B have potential to be more effective and possibly less toxic treatments for toxoplasmosis than currently available medicines.

  18. A novel antifungal is active against Candida albicans biofilms and inhibits mutagenic acetaldehyde production in vitro.

    Directory of Open Access Journals (Sweden)

    Mikko T Nieminen

    Full Text Available The ability of C. albicans to form biofilms is a major virulence factor and a challenge for management. This is evident in biofilm-associated chronic oral-oesophageal candidosis, which has been shown to be potentially carcinogenic in vivo. We have previously shown that most Candida spp. can produce significant levels of mutagenic acetaldehyde (ACH. ACH is also an important mediator of candidal biofilm formation. We have also reported that D,L-2-hydroxyisocaproic acid (HICA significantly inhibits planktonic growth of C. albicans. The aim of the present study was to investigate the effect of HICA on C. albicans biofilm formation and ACH production in vitro. Inhibition of biofilm formation by HICA, analogous control compounds or caspofungin was measured using XTT to measure biofilm metabolic activity and PicoGreen as a marker of biomass. Biofilms were visualised by scanning electron microscopy (SEM. ACH levels were measured by gas chromatography. Transcriptional changes in the genes involved in ACH metabolism were measured using RT-qPCR. The mean metabolic activity and biomass of all pre-grown (4, 24, 48 h biofilms were significantly reduced after exposure to HICA (p40 µM of ACH were detected in 24 and 48 h biofilms at both pHs. Interestingly, no ACH production was detected from D-glucose in the presence of HICA at acidic pH (p<0.05. Expression of genes responsible for ACH catabolism was up-regulated by HICA but down-regulated by caspofungin. SEM showed aberrant hyphae and collapsed hyphal structures during incubation with HICA at acidic pH. We conclude that HICA has potential as an antifungal agent with ability to inhibit C. albicans cell growth and biofilm formation. HICA also significantly reduces the mutagenic potential of C. albicans biofilms, which may be important when treating bacterial-fungal biofilm infections.

  19. Isolation of Lactobacillus salivarius from Children and Purification of Bacteriocin to Inhibition Cancer Cell in Vitro

    Directory of Open Access Journals (Sweden)

    Waleed K. M. Al-Tememy

    2011-01-01

    Full Text Available Bacteria being used to make anticancer agents could provide an extra source of lead compounds for the pharmaceutical industry.  Bacterium Lactobacillus salivarius produce compounds that selectively inhibit growth of human cancer cells Lactobacillus salivarius naturally produces a compound called Bacteriocins.  Bacteriocins are bacterial proteins produced to prevent the growth of competing microorganisms in a particular biological niche and we can use it as antineoplastic. The aim of this study was to isolate bacteriocin produced by lactic acid bacteria. A preparation of bacteriocin from a strain Lactobacillus salivarius has long been shown to have antineoplastic activity against a variety of human tumor and animal tumor cell lines in vitro. A total of 60 LAB  were isolated from children stool 45 isolate showed a clear antimicrobial activity against indicator strain Streptococcus aureus and by used sodium phosphate buffer (pH8 from an 80% ammonium sulfate precipitate. The inhibition  activity was determent by well diffusion assay method technique, Bacteriocin purification processes were carried out by using ion-exchange (Trisacryl SP and gel filtration chromatography (Sephacryl – S300. The apparent molecular mass of partially purified bacteriocin was 15. 848 kDa,  Cell Culture was maintained in RPMI 1640 medium supplemented with 10% (vol/vol fetal calf serum,  Cytotoxicity of bacteriocin was assessed on human cell line (RD and animal cell line (MDCK cell viability after incubation for 48 h in medium containing 500AU/ml (1.15 mg/ml. Both cell types used in this study were sensitive to bacteriocin and the bacteriocin appeared to inhibit proliferation of tumor cell line. The animal cell line was more sensitivity than human cell line.

  20. Inhibition of duck hepatitis B virus replication by mimic peptides in vitro

    Science.gov (United States)

    JIA, HONGYU; LIU, CHANGHONG; YANG, YING; ZHU, HAIHONG; CHEN, FENG; LIU, JIHONG; ZHOU, LINFU

    2015-01-01

    The aim of the present study was to investigate the inhibitory effect of specific mimic peptides targeting duck hepatitis B virus polymerase (DHBVP) on duck hepatitis B virus (DHBV) replication in primary duck hepatocytes. Phage display technology (PDT) was used to screen for mimic peptides specifically targeting DHBVP and the associated coding sequences were determined using DNA sequencing. The selected mimic peptides were then used to treat primary duck hepatocytes infected with DHBV in vitro. Infected hepatocytes expressing the mimic peptides intracellularly were also prepared. The cells were divided into mimic peptide groups (EXP groups), an entecavir-treated group (positive control) and a negative control group. The medium was changed every 48 h. Following a 10-day incubation, the cell supernatants were collected. DHBV-DNA in the cellular nucleus, cytoplasm and culture supernatant was analyzed by quantitative polymerase chain reaction (qPCR). Eight mimic peptides were selected following three PDT screening rounds for investigation in the DHBV-infected primary duck hepatocytes. The qPCR results showed that following direct treatment with mimic peptide 2 or 7, intracellular expression of mimic peptide 2 or 7, or treatment with entecavir, the DHBV-DNA levels in the culture supernatant and cytoplasm of duck hepatocytes were significantly lower than those in the negative control (P<0.05). The cytoplasmic DHBV-DNA content of the cells treated with mimic peptide 7 was lower than that in the other groups (P<0.05). In addition, the DHBV-DNA content of the nuclear fractions following the intracellular expression of mimic peptide 7 was significantly lower than that in the other groups (P<0.05). Mimic peptides specifically targeting DHBVP, administered directly or expressed intracellularly, can significantly inhibit DHBV replication in vitro. PMID:26640539

  1. Impact of alginate-producing Pseudomonas aeruginosa on alveolar macrophage apoptotic cell clearance.

    Science.gov (United States)

    McCaslin, Charles A; Petrusca, Daniela N; Poirier, Christophe; Serban, Karina A; Anderson, Gregory G; Petrache, Irina

    2015-01-01

    Pseudomonas aeruginosa infection is a hallmark of lung disease in cystic fibrosis. Acute infection with P. aeruginosa profoundly inhibits alveolar macrophage clearance of apoptotic cells (efferocytosis) via direct effect of virulence factors. During chronic infection, P. aeruginosa evades host defense by decreased virulence, which includes the production or, in the case of mucoidy, overproduction of alginate. The impact of alginate on innate immunity, in particular on macrophage clearance of apoptotic cells is not known. We hypothesized that P. aeruginosa strains that exhibit reduced virulence impair macrophage clearance of apoptotic cells and we investigated if the polysaccharide alginate produced by mucoid P. aeruginosa is sufficient to inhibit alveolar macrophage efferocytosis. Rat alveolar or human peripheral blood monocyte (THP-1)-derived macrophage cell lines were exposed in vitro to exogenous alginate or to wild type or alginate-overproducing mucoid P. aeruginosa prior to challenge with apoptotic human Jurkat T-lymphocytes. The importance of LPS contamination and that of structural integrity of alginate polymers was tested using alginate of different purities and alginate lyase, respectively. Alginate inhibited alveolar macrophage efferocytosis in a dose- and time-dependent manner. This effect was augmented but not exclusively attributed to lipopolysaccharide (LPS) present in alginates. Alginate-producing P. aeruginosa inhibited macrophage efferocytosis by more than 50%. A mannuronic-specific alginate lyase did not restore efferocytosis inhibited by exogenous guluronic-rich marine alginate, but had a marked beneficial effect on efferocytosis of alveolar macrophages exposed to mucoid P. aeruginosa. Despite decreased virulence, mucoid P. aeruginosa may contribute to chronic airway inflammation through significant inhibition of alveolar clearance of apoptotic cells and debris. The mechanism by which mucoid bacteria inhibit efferocytosis may involve alginate

  2. Identification of Chemical Compounds That Inhibit the Function of Glutamyl-tRNA Synthetase from Pseudomonas aeruginosa.

    Science.gov (United States)

    Hu, Yanmei; Guerrero, Edgar; Keniry, Megan; Manrrique, Joel; Bullard, James M

    2015-10-01

    Pseudomonas aeruginosa glutamyl-tRNA synthetase (GluRS) was overexpressed in Escherichia coli. Sequence analysis indicated that P. aeruginosa GluRS is a discriminating GluRS and, similar to other GluRS proteins, requires the presence of tRNA(Glu) to produce a glutamyl-AMP intermediate. Kinetic parameters for interaction with tRNA were determined and the k(cat) and KM were 0.8 s(-1) and 0.68 µM, respectively, resulting in a k(cat)/KM of 1.18 s(-1) µM(-1). A robust aminoacylation-based scintillation proximity assay (SPA) assay was developed and 800 natural products and 890 synthetic compounds were screened for inhibitory activity against P. aeruginosa GluRS. Fourteen compounds with inhibitory activity were identified. IC50s were in the low micromolar range. The minimum inhibitory concentration (MIC) was determined for each of the compounds against a panel of pathogenic bacteria. Two compounds, BT_03F04 and BT_04B09, inhibited GluRS with IC50s of 21.9 and 24.9 µM, respectively, and both exhibited promising MICs against Gram-positive bacteria. Time-kill studies indicated that one compound was bactericidal and one was bacteriostatic against Gram-positive bacteria. BT_03F04 was found to be noncompetitive with both ATP and glutamic acid, and BT_04B09 was competitive with glutamic acid but noncompetitive with ATP. The compounds were not observed to be toxic to mammalian cells in MTT assays.

  3. The ongoing battle against multi-resistant strains: in-vitro inhibition of hospital-acquired MRSA, VRE, Pseudomonas, ESBL E. coli and Klebsiella species in the presence of plant-derived antiseptic oils.

    Science.gov (United States)

    Warnke, Patrick H; Lott, Alexander J S; Sherry, Eugene; Wiltfang, Joerg; Podschun, Rainer

    2013-06-01

    The fight against hospital-acquired infections involving antibiotic-resistant microorganisms has become of critical concern to surgeons worldwide. In addition to the development of new effective antibiotic chemotherapy, exploration of 'forgotten' topical antibacterial agents from the pre-antibiotic era has recently gained new attention. We report the promising efficacy of plant-derived antiseptic oils used in traditional aboriginal and south-east Asian treatments such as Lemongrass, Eucalyptus and Tea Tree Oil in the inhibition of clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant Enterococcus (VRE), multi-resistant Pseudomonas aeruginosa, ESBL-producing Escherichia coli and Klebsiella pneumoniae in the in-vitro setting. Large consistent zones of inhibition were observed for all three plant-derived oils tested in an agar diffusion test. The commonly used antibacterial agents chlorhexidine 0.1%, and ethanol (70%), and standard olive oil consistently demonstrated notably lower or no efficacy in regard to growth inhibition of strains. Notably, Lemongrass oil proved to be particularly active against gram-positive bacteria, while Tea Tree oil showed superior inhibition of gram-negative microorganisms. As proven in vitro, plant-derived antiseptic oils may represent a promising and affordable topical agent to support surgical treatment against multi-resistant and hospital-acquired infections.

  4. Invasion of erythrocytes in vitro by Plasmodium falciparum can be inhibited by monoclonal antibody directed against an S antigen.

    Science.gov (United States)

    Saul, A; Cooper, J; Ingram, L; Anders, R F; Brown, G V

    1985-11-01

    A monoclonal antibody has been produced which binds to the heat stable S antigen present in the FCQ-27/PNG isolate of Plasmodium falciparum. This monoclonal antibody also inhibits the invasion in vitro of erythrocytes by malarial merozoites thus demonstrating that the S antigens of Plasmodium falciparum may be a target of protective immune responses.

  5. Marchantin A, a macrocyclic bisbibenzyl ether, isolated from the liverwort Marchantia polymorpha, inhibits protozoal growth in vitro

    DEFF Research Database (Denmark)

    Jensen, Sophie; Omarsdottir, Sesselja; Bwalya, Angela Gono

    2012-01-01

    In vitro anti-plasmodial activity-guided fractionation of a diethyl ether extract of the liverwort species Marchantia polymorpha, collected in Iceland, led to isolation of the bisbibenzyl ether, marchantin A. The structure of marchantin A (1) was confirmed by NMR and HREIMS. Marchantin A inhibited...

  6. INHIBITION OF IN VITRO FERTILIZATION IN THE HAMSTER BY ANTIBODIES RAISED AGAINST THE RAT SPERM PROTEIN SP22

    Science.gov (United States)

    INHIBITION OF IN VITRO FERTILIZATION IN THE HAMSTER BY ANTIBODIES RAISED AGAINST THE RAT SPERM PROTEIN SP22. SC Jeffay*, SD Perreault, KL Bobseine*, JE Welch*, GR Klinefelter, US EPA, Research Triangle Park, NC. SP22, a rat sperm membrane protein that is highly-correlated w...

  7. Shikonin Promotes Skin Cell Proliferation and Inhibits Nuclear Factor-κB Translocation via Proteasome Inhibition In Vitro

    Institute of Scientific and Technical Information of China (English)

    Yan Yan; Minao Furumura; Takako Gouya; Atsufumi Iwanaga; Kwesi Teye; Sanae Numata; Tadashi Karashima

    2015-01-01

    Background:Shikonin is a major active chemical component extracted from Lithospermi Radix,an effective traditional herb in various types of wound healing.Shikonin can accelerate granulomatous tissue formation by the rat cotton pellet method and induce neovascularization in granulomatous tissue.The purpose of the study was to investigate its mechanism of action in human skin cells.Methods:MTS assay was used to measure cell growth.The collagen type Ⅰ (COL1) mRNA expression and procollagen type Ⅰ C-peptide (PIP) production were detected by real-time quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay,respectively.Immunofluorescence and western blot analyses were carried out to investigate nuclear factor-κB (NF-κB) signaling pathway.Cell-based proteasome activity assay was used to determine proteasome activity.Results:In this study,we found that 10 μmol/L shikonin stimulated the growth of normal human keratinocytes and 1 μmol/L shikonin promoted growth of human dermal fibroblasts.However,shikonin did not directly induce COLI mRNA expression and PIP production in dermal fibroblasts in vitro.In addition,1 μmol/L shikonin inhibited translocation of NF-κB p65 from cytoplasm to nucleus induced by tumor necrosis factor-α stimulation in dermal fibroblasts.Furthermore,shikonin inhibited chymotrypsin-like activity of proteasome and was associated with accumulation ofphosphorylated inhibitor κB-α in dermal fibroblasts.Conclusions:These results suggested that shikonin may promote wound healing via its cell growth promoting activity and suppress skin inflammation via inhibitory activity on proteasome.Thus,shikonin may be a potential therapeutic reagent both in wound healing and inflammatory skin diseases.

  8. Adenovirus-mediated expression of SSAT inhibits colorectal cancer cell growth in vitro

    Institute of Scientific and Technical Information of China (English)

    Hui SUN; Bin LIU; Ya-pei YANG; Chun-xiao XU; Yun-fei YAN; Wei WANG; Xian-xi LIU

    2008-01-01

    Aim: To construct a recombinant adenovirus that can express human spermidine/ spermine N1-acetyltransferase (SSAT) and detect its inhibitory effect on colorectal cancer cell growth in vitro. Methods: A 516 bp eDNA of SSAT was amplified and cloned into a pGL3-hTERT plasmid. The pGL3-hTERT-SSAT recombinant was digested, and the small fragment was cloned into the shuttle vector pAdTrack. The pAdTrack-hTERT-SSAT plasmids were recombined with pAdEasy-1 vectors in AdEasy-1 cells. Positive clones were selected and transfected into the HEK293 packaging cells (transformed human embryonic kidney cells) after they were lin-earized by PacI. The process of adenovirus packaging and amplification was monitored by green fluorescent protein (GFP) expression. The SSAT protein levels were determined by Western blotting, and the intracellular polyamine con-tent was detected by reverse-phase high performance liquid chromatography. The MTS (3-(4, 5-dimethylthiaol-2-yl)-5-(3-carboxy-methoxyphenyl)-2-(-4-sulfophenyl)-2H-tetrazolium, inner salt) and colony-forming assays were used to analyze the gene transduction efficiency and effect on the growth of HT-29 and LoVo cells. A viable cell count was used to determine the cell growth with or without exogenous polyamines. Results: The GFP expression in 293 cells during virus packing and amplification was observed by fluorescence microscopy. Western blotting results demonstrated that Ad-hTERT-SSAT could increase the expres-sion of SSAT, and consequently, spermidine and spermine were reduced to low levels. The MTS and colony-forming assay results showed that HT-29 and LoVo cell growth were significantly inhibited, and the inhibitory effect could be partially reversed by exogenous spermidine and spermine. Conclusion: The successfully constructed recombinant adenovirus Ad-hTERT-SSAT could accelerate polyamine catabolism and inhibit the colorectal cell growth in vitro. It also has therapeutic potential in the treatment of colorectal cancer.

  9. Inhibition of hepatitis B virus replication by pokeweed antiviral protein in vitro

    Institute of Scientific and Technical Information of China (English)

    Yong-Wen He; Chun-Xia Guo; Yan-Feng Pan; Cheng Peng; Zhi-Hong Weng

    2008-01-01

    AIM:To explore the inhibitory effects of pokeweed antiviral protein seed(PAP-S)and PAP encoded by a eukaryotic expression plasmid on hepatitis B virus(HBV)replication in vitro.METHODS:HepG2 2.2.15 cells in cultured medium were treated with different concentrations of PAP-S.HBsAg,HBeAg and HBV DNA in supernatants were determined by ELISA and fluorescent quantitative PCR respectively.MTT method was used to assay for cytotoxicity.HepG2 were cotransfected with various amounts of PAP encoded by a eukaryotic expression plasmid and replication competent wild-type HBV 1.3 fold overlength plasmid.On d 3 after transfection,HBsAg and HBeAg were determined by using ELISA.Levels of HBV core-associated DNA and RNA were detected by using Southern and Northern blot,respectively.RESULTS:The inhibitory effects of PAP-S on HBsAg,HBeAg and HBV DNA were gradually enhanced with the increase of PAP concentration.When the concentration of PAP-S was 10 μg/mL,the inhibition rates of HBsAg,HBeAg and HBV DNA were 20.9%,30.2% and 50%,respectively.After transfection of 1.0μg and 2.0μg plasmid pXF3H-PAP,the levels of HBV nucleocapsideassociated DNA were reduced by 38.0% and 74.0% respectively,the levels of HBsAg in the media by 76.8% and 99.7% respectively,and the levels of HBeAg by 72.7% and 99.3% respectively as compared with controls.Transfection with 2μg plasmid pXF3H-PAP reduced the levels of HBV nucleocapside-associated RNA by 69.0%.CONCLUSION:Both PAP-S and PAP encoded by a eukaryotic expression plasmid could effectively inhibit HBV replication and antigen expression in vitro,and the inhibitory effects were dose-dependent.

  10. An antisense peptide nucleic acid against Pseudomonas aeruginosa inhibiting bacterial-induced inflammatory responses in the cystic fibrosis IB3-1 cellular model system.

    Science.gov (United States)

    Montagner, Giulia; Bezzerri, Valentino; Cabrini, Giulio; Fabbri, Enrica; Borgatti, Monica; Lampronti, Ilaria; Finotti, Alessia; Nielsen, Peter E; Gambari, Roberto

    2017-02-03

    Discovery of novel antimicrobial agents against Pseudomonas aeruginosa able to inhibit bacterial growth as well as the resulting inflammatory response is a key goal in cystic fibrosis research. We report in this paper that a peptide nucleic acid (PNA3969) targeting the translation initiation region of the essential acpP gene of P. aeruginosa, and previously shown to inhibit bacterial growth, concomitantly also strongly inhibits PAO1 induced up-regulation of the pro-inflammatory markers IL-8, IL-6, G-CSF, IFN-γ, IP-10, MCP-1 and TNF-α in IB3-1 cystic fibrosis cells infected by P. aeruginosa PAO1. Remarkably, no effect on PAO1 induction of VEGF, GM-CSF and IL-17 was observed. Analogous experiments using a two base mis-match control PNA did not show such inhibition. Furthermore, no significant effects of the PNAs were seen on cell growth, apoptosis or secretome profile in uninfected IB3-1 cells (with the exception of a PNA-mediated up-regulation of PDGF, IL-17 and GM-CSF). Thus, we conclude that in cell culture an antimicrobial PNA against Pseudomonas can inhibit the expression of pro-inflammatory cytokines otherwise induced by the infection. In particular, the effects of PNA-3969 on IL-8 gene expression are significant considering the key role of this protein in the cystic fibrosis inflammatory process exacerbated by P. aeruginosa infection.

  11. Salinomycin inhibits proliferation and induces apoptosis of human hepatocellular carcinoma cells in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Fan Wang

    Full Text Available The anti-tumor antibiotic salinomycin (Sal was recently identified as a selective inhibitor of breast cancer stem cells; however, the effect of Sal on hepatocellular carcinoma (HCC is not clear. This study aimed to determine the anti-tumor efficacy and mechanism of Sal on HCC. HCC cell lines (HepG2, SMMC-7721, and BEL-7402 were treated with Sal. Cell doubling time was determinated by drawing growth curve, cell viability was evaluated using the Cell Counting Kit 8. The fraction of CD133(+ cell subpopulations was assessed by flow cytometry. We found that Sal inhibits proliferation and decreases PCNA levels as well as the proportion of HCC CD133(+cell subpopulations in HCC cells. Cell cycle was analyzed using flow cytometry and showed that Sal caused cell cycle arrest of the various HCC cell lines in different phases. Cell apoptosis was evaluated using flow cytometry and Hoechst 33342 staining. Sal induced apoptosis as characterized by an increase in the Bax/Bcl-2 ratio. Several signaling pathways were selected for further mechanistic analyses using real time-PCR and Western blot assays. Compared to control, β-catenin expression is significantly down-regulated upon Sal addition. The Ca(2+ concentration in HCC cells was examined by flow cytometry and higher Ca(2+ concentrations were observed in Sal treatment groups. The anti-tumor effect of Sal was further verified in vivo using the hepatoma orthotopic tumor model and the data obtained showed that the size of liver tumors in Sal-treated groups decreased compared to controls. Immunohistochemistry and TUNEL staining also demonstrated that Sal inhibits proliferation and induces apoptosis in vivo. Finally, the role of Sal on in vivo Wnt/β-catenin signaling was evaluated by Western blot and immunohistochemistry. This study demonstrates Sal inhibits proliferation and induces apoptosis of HCC cells in vitro and in vivo and one potential mechanism is inhibition of Wnt/β-catenin signaling via increased

  12. Flavonoids casticin and chrysosplenol D from Artemisia annua L. inhibit inflammation in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yu-Jie; Guo, Yan; Yang, Qing; Weng, Xiao-Gang; Yang, Lan; Wang, Ya-Jie; Chen, Ying; Zhang, Dong; Li, Qi; Liu, Xu-Cen; Kan, Xiao-Xi; Chen, Xi [Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 (China); Zhu, Xiao-Xin, E-mail: zhuxx59@163.com [Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700 (China); Kmoníèková, Eva [Institute of Pharmacology and Toxicology, Faculty of Medicine in Pilsen, Charles University, Pilsen (Czech Republic); Zídek, Zdenìk [Institute of Experimental Medicine, Academy of Sciences of the Czech Republic, Vídeòská 1083, 142 20 Prague (Czech Republic)

    2015-08-01

    Background: The aim of our experiments was to investigate the anti-inflammatory properties of casticin and chrysosplenol D, two flavonoids present in Artemisia annua L. Methods: Topical inflammation was induced in ICR mice using croton oil. Mice were then treated with casticin or chrysosplenol D. Cutaneous histological changes and edema were assessed. ICR mice were intragastrically administrated with casticin or chrysosplenol D followed by intraperitoneal injection of lipopolysaccharide (LPS). Mouse Raw264.7 macrophage cells were incubated with casticin or chrysosplenol D. Intracellular phosphorylation was detected, and migration was assessed by trans-well assay. HT-29/NFκB-luc cells were incubated with casticin or chrysosplenol D in the presence or absence of LPS, and NF-κB activation was quantified. Results: In mice, administration of casticin (0.5, 1 and 1.5 μmol/cm{sup 2}) and chrysosplenol D (1 and 1.5 μmol/cm{sup 2}) inhibited croton oil-induced ear edema (casticin: 29.39–64.95%; chrysosplenol D: 37.76–65.89%, all P < 0.05) in a manner similar to indomethacin (0.5, 1 and 1.5 μmol/cm{sup 2}; 55.63–84.58%). Casticin (0.07, 0.13 and 0.27 mmol/kg) and chrysosplenol D (0.07, 0.14 and 0.28 mmol/kg) protected against LPS-induced systemic inflammatory response syndrome (SIRS) in mice (all P < 0.05), in a manner similar to dexamethasone (0.03 mmol/kg). Casticin and chrysosplenol D suppressed LPS-induced release of IL-1 beta, IL-6 and MCP-1, inhibited cell migration, and reduced LPS-induced IκB and c-JUN phosphorylation in Raw264.7 cells. JNK inhibitor SP600125 blocked the inhibitory effect of chrysosplenol D on cytokine release. Conclusions: The flavonoids casticin and chrysosplenol D from A. annua L. inhibited inflammation in vitro and in vivo. - Highlights: • We report a new activity of the flavonoids present in Artemisia annua L. • These flavonoids inhibit croton oil-induced ear edema in mice. • These flavonoids protect against LPS-induced SIRS in

  13. Inhibition of Influenza A Virus Infection In Vitro by Peptides Designed In Silico

    Science.gov (United States)

    López-Martínez, Rogelio; Ramírez-Salinas, G. Lizbeth; Correa-Basurto, José; Barrón, Blanca L.

    2013-01-01

    Influenza A viruses are enveloped, segmented negative single-stranded RNA viruses, capable of causing severe human respiratory infections. Currently, only two types of drugs are used to treat influenza A infections, the M2 H+ ion channel blockers (amantadine and rimantadine) and the neuraminidase inhibitors (NAI) (oseltamivir and zanamivir). Moreover, the emergence of drug-resistant influenza A virus strains has emphasized the need to develop new antiviral agents to complement or replace the existing drugs. Influenza A virus has on the surface a glycoprotein named hemagglutinin (HA) which due to its important role in the initial stage of infection: receptor binding and fusion activities of viral and endosomal membranes, is a potential target for new antiviral drugs. In this work we designed nine peptides using several bioinformatics tools. These peptides were derived from the HA1 and HA2 subunits of influenza A HA with the aim to inhibit influenza A virus infection. The peptides were synthetized and their antiviral activity was tested in vitro against several influenza A viral strains: Puerto Rico/916/34 (H1N1), (H1N1)pdm09, swine (H1N1) and avian (H5N2). We found these peptides were able to inhibit the influenza A viral strains tested, without showing any cytotoxic effect. By docking studies we found evidence that all the peptides were capable to bind to the viral HA, principally to important regions on the viral HA stalk, thus could prevent the HA conformational changes required to carry out its membranes fusion activity. PMID:24146939

  14. Amygdalin inhibits the growth of renal cell carcinoma cells in vitro.

    Science.gov (United States)

    Juengel, Eva; Thomas, Anita; Rutz, Jochen; Makarevic, Jasmina; Tsaur, Igor; Nelson, Karen; Haferkamp, Axel; Blaheta, Roman A

    2016-02-01

    Although amygdalin is used by many cancer patients as an antitumor agent, there is a lack of information on the efficacy and toxicity of this natural compound. In the present study, the inhibitory effect of amygdalin on the growth of renal cell carcinoma (RCC) cells was examined. Amygdalin (10 mg/ml) was applied to the RCC cell lines, Caki-1, KTC-26 and A498, for 24 h or 2 weeks. Untreated cells served as controls. Tumor cell growth and proliferation were determined using MTT and BrdU tests, and cell cycle phases were evaluated. Expression of the cell cycle activating proteins cdk1, cdk2, cdk4, cyclin A, cyclin B, cyclin D1 and D3 as well as of the cell cycle inhibiting proteins p19 and p27 was examined by western blot analysis. Surface expression of the differentiation markers E- and N-cadherin was also investigated. Functional blockade by siRNA was used to determine the impact of several proteins on tumor cell growth. Amygdalin treatment caused a significant reduction in RCC cell growth and proliferation. This effect was correlated with a reduced percentage of G2/M-phase RCC cells and an increased percentage of cells in the G0/1-phase (Caki-1 and A498) or cell cycle arrest in the S-phase (KTC-26). Furthermore, amygdalin induced a marked decrease in cell cycle activating proteins, in particular cdk1 and cyclin B. Functional blocking of cdk1 and cyclin B resulted in significantly diminished tumor cell growth in all three RCC cell lines. Aside from its inhibitory effects on growth, amygdalin also modulated the differentiation markers, E- and N-cadherin. Hence, exposing RCC cells to amygdalin inhibited cell cycle progression and tumor cell growth by impairing cdk1 and cyclin B expression. Moreover, we noted that amygdalin affected differentiation markers. Thus, we suggest that amygdalin exerted RCC antitumor effects in vitro.

  15. Conazole fungicides inhibit Leydig cell testosterone secretion and androgen receptor activation in vitro

    Directory of Open Access Journals (Sweden)

    Maarke J.E. Roelofs

    2014-01-01

    Full Text Available Conazole fungicides are widely used in agriculture despite their suspected endocrine disrupting properties. In this study, the potential (anti-androgenic effects of ten conazoles were assessed and mutually compared with existing data. Effects of cyproconazole (CYPRO, fluconazole (FLUC, flusilazole (FLUS, hexaconazole (HEXA, myconazole (MYC, penconazole (PEN, prochloraz (PRO, tebuconazole (TEBU, triadimefon (TRIA, and triticonazole (TRIT were examined using murine Leydig (MA-10 cells and human T47D-ARE cells stably transfected with an androgen responsive element and a firefly luciferase reporter gene. Six conazoles caused a decrease in basal testosterone (T secretion by MA-10 cells varying from 61% up to 12% compared to vehicle-treated control. T secretion was concentration-dependently inhibited after exposure of MA-10 cells to several concentrations of FLUS (IC50 = 12.4 μM or TEBU (IC50 = 2.4 μM in combination with LH. The expression of steroidogenic and cholesterol biosynthesis genes was not changed by conazole exposure. Also, there were no changes in reactive oxygen species (ROS formation that could explain the altered T secretion after exposure to conazoles. Nine conazoles decreased T-induced AR activation (IC50s ranging from 10.7 to 71.5 μM and effect potencies (REPs were calculated relative to the known AR antagonist flutamide (FLUT. FLUC had no effect on AR activation by T. FLUS was the most potent (REP = 3.61 and MYC the least potent (REP = 0.03 AR antagonist. All other conazoles had a comparable REP from 0.12 to 0.38. Our results show distinct in vitro anti-androgenic effects of several conazole fungicides arising from two mechanisms: inhibition of T secretion and AR antagonism, suggesting potential testicular toxic effects. These effects warrant further mechanistic investigation and clearly show the need for accurate exposure data in order to perform proper (human risk assessment of this class of compounds.

  16. Efficacy of eight commercial formulations of lime sulphur on in vitro growth inhibition of Microsporum canis.

    Science.gov (United States)

    Diesel, Alison; Verbrugge, Maria; Moriello, Karen A

    2011-04-01

    Lime sulphur is a common topical treatment for dermatophytosis in animals. Until recently, a single veterinary lime sulphur formulation was available. The purpose of this study was to compare the efficacy of eight lime sulphur products for in vitro growth inhibition of Microsporum canis using the isolated infected spore model. Infective M. canis spores were isolated from hairs collected from untreated cats. Hairs were macerated in Triton-X solution and isolated according to a previously published protocol. Equal volumes of spore suspension and lime sulphur solutions were incubated for 5 min and plated onto modified BBL™ Mycosel™ agar (Becton, Dickinson and Company; Sparks, MD, USA) plates. Five plates were inoculated for each sample solution. Distilled water and bleach were used as controls. Colony forming units were counted daily for 21 days; positive control plates contained >300 colony forming units/plate. Seven of the products were supplied as concentrates and they were tested at the manufacturer's recommended dilution, twice label concentration and half label concentration. A prediluted product SulfaDip(®) (Trask Research, Inc.; Daluca, GA, USA) was tested at the label and half label concentration. All veterinary products formed recommended treatment dilutions of 3% sulphurated lime solution except one (LymDyp(®), IVX Animal Health Inc.; St Joseph, MO, USA), which formed a 2.4% sulphurated lime solution. Results of the study showed complete growth inhibition of M. canis spores by all products at all dilutions tested. These results indicate that all tested lime sulphur-containing products were equivalent. Field studies are needed to test product equivalency in vivo.

  17. Small interference RNA targeting tissue factor inhibits human lung adenocarcinoma growth in vitro and in vivo

    Directory of Open Access Journals (Sweden)

    Wang Jianing

    2011-05-01

    Full Text Available Abstract Background The human coagulation trigger tissue factor (TF is overexpressed in several types of cancer and involved in tumor growth, vascularization, and metastasis. To explore the role of TF in biological processes of lung adenocarcinoma, we used RNA interference (RNAi technology to silence TF in a lung adenocarcinoma cell line A549 with high-level expression of TF and evaluate its antitumor effects in vitro and in vivo. Methods The specific small interfering RNA (siRNA designed for targeting human TF was transfected into A549 cells. The expression of TF was detected by reverse transcription-PCR and Western blot. Cell proliferation was measured by MTT and clonogenic assays. Cell apoptosis was assessed by flow cytometry. The metastatic potential of A549 cells was determined by wound healing, the mobility and Matrigel invasion assays. Expressions of PI3K/Akt, Erk1/2, VEGF and MMP-2/-9 in transfected cells were detected by Western blot. In vivo, the effect of TF-siRNA on the growth of A549 lung adenocarcinoma xenografts in nude mice was investigated. Results TF -siRNA significantly reduced the expression of TF in the mRNA and protein levels. The down-regulation of TF in A549 cells resulted in the suppression of cell proliferation, invasion and metastasis and induced cell apoptosis in dose-dependent manner. Erk MAPK, PI3K/Akt pathways as well as VEGF and MMP-2/-9 expressions were inhibited in TF-siRNA transfected cells. Moreover, intratumoral injection of siRNA targeting TF suppressed the tumor growth of A549 cells in vivo model of lung adenocarcinoma. Conclusions Down-regulation of TF using siRNA could provide a potential approach for gene therapy against lung adenocarcinoma, and the antitumor effects may be associated with inhibition of Erk MAPK, PI3K/Akt pathways.

  18. Fluoxetine induces proliferation and inhibits differentiation of hypothalamic neuroprogenitor cells in vitro.

    Directory of Open Access Journals (Sweden)

    Lígia Sousa-Ferreira

    Full Text Available A significant number of children undergo maternal exposure to antidepressants and they often present low birth weight. Therefore, it is important to understand how selective serotonin reuptake inhibitors (SSRIs affect the development of the hypothalamus, the key center for metabolism regulation. In this study we investigated the proliferative actions of fluoxetine in fetal hypothalamic neuroprogenitor cells and demonstrate that fluoxetine induces the proliferation of these cells, as shown by increased neurospheres size and number of proliferative cells (Ki-67+ cells. Moreover, fluoxetine inhibits the differentiation of hypothalamic neuroprogenitor cells, as demonstrated by decreased number of mature neurons (Neu-N+ cells and increased number of undifferentiated cells (SOX-2+ cells. Additionally, fluoxetine-induced proliferation and maintenance of hypothalamic neuroprogenitor cells leads to changes in the mRNA levels of appetite regulator neuropeptides, including Neuropeptide Y (NPY and Cocaine-and-Amphetamine-Regulated-Transcript (CART. This study provides the first evidence that SSRIs affect the development of hypothalamic neuroprogenitor cells in vitro with consequent alterations on appetite neuropeptides.

  19. Melaleuca alternifolia Concentrate Inhibits in Vitro Entry of Influenza Virus into Host Cells

    Directory of Open Access Journals (Sweden)

    Lifang Jiang

    2013-08-01

    Full Text Available Influenza virus causes high morbidity among the infected population annually and occasionally the spread of pandemics. Melaleuca alternifolia Concentrate (MAC is an essential oil derived from a native Australian tea tree. Our aim was to investigate whether MAC has any in vitro inhibitory effect on influenza virus infection and what mechanism does the MAC use to fight the virus infection. In this study, the antiviral activity of MAC was examined by its inhibition of cytopathic effects. In silico prediction was performed to evaluate the interaction between MAC and the viral haemagglutinin. We found that when the influenza virus was incubated with 0.010% MAC for one hour, no cytopathic effect on MDCK cells was found after the virus infection and no immunofluorescence signal was detected in the host cells. Electron microscopy showed that the virus treated with MAC retained its structural integrity. By computational simulations, we found that terpinen-4-ol, which is the major bioactive component of MAC, could combine with the membrane fusion site of haemagglutinin. Thus, we proved that MAC could prevent influenza virus from entering the host cells by disturbing the normal viral membrane fusion procedure.

  20. Pentamidine inhibits Coxiella burnetii growth and 23S rRNA intron splicing in vitro.

    Science.gov (United States)

    Minnick, Michael F; Hicks, Linda D; Battisti, James M; Raghavan, Rahul

    2010-10-01

    Coxiella burnetii is the bacterial agent of Q fever in humans. Acute Q fever generally manifests as a flu-like illness and is typically self-resolving. In contrast, chronic Q fever usually presents with endocarditis and is often life-threatening without appropriate antimicrobial therapy. Unfortunately, available options for the successful treatment of chronic Q fever are both limited and protracted (>18 months). Pentamidine, an RNA splice inhibitor used to treat fungal and protozoal infections, was shown to reduce intracellular growth of Coxiella by ca. 73% at a concentration of 1 microM (ca. 0.6 microg/mL) compared with untreated controls, with no detectable toxic effects on host cells. Bacterial targets of pentamidine include Cbu.L1917 and Cbu.L1951, two group I introns that disrupt the 23S rRNA gene of Coxiella, as demonstrated by the drug's ability to inhibit intron RNA splicing in vitro. Since both introns are highly conserved amongst all eight genotypes of the pathogen, pentamidine is predicted to be efficacious against numerous strains of C. burnetii. To our knowledge, this is the first report describing antibacterial activity for this antifungal/antiprotozoal agent.

  1. Inhibition of nicotine-DNA adduct formation by polyphenolic compounds in vitro

    Institute of Scientific and Technical Information of China (English)

    CHENG Yan; WANG Hai-Fang; SUN Hong-Fang; LI Hong-Li

    2004-01-01

    Nicotine [3-(1-methyl-2-pyrrolidinyl)-pyridine], a major alkaloid in tobacco products, has proven to be a potential genotoxic compound. Some polyphenolic compounds can suppress the DNA adduction, and hence act as the potential inhibitors of carcinogenesis. In this study, the inhibitory effects of three polyphenolic compounds, curcumin (diferuloylmethane), resveratrol (trans-3, 5, 4-trihydroxystilbene) and tea polyphenols, on the nicotine-DNA adduction have been investigated in vitro using radiolabelled nicotine and liquid scintillation counting (LSC) technique. Also, the inhibition mechanism of these chemopreventive agents in regard to the activity of the biotransformation enzymes, including cytochrome P450 (CYP450), cytochrome b5 (CYb5) and glutathione S-transferase (GST), has been studied. The results demonstrated that these three polyphenols induced marked dose-dependent decrease in nicotine-DNA adducts as compared with the controls. The elimination rate of adducts reached above 46% at the highest dose for all the three agents with 51.6% for resveratrol. Correspondingly, three polyphenols all suppressed CYP450 and CYb5, whereas curcumin and resveratrol induced GST. We may arrive at a point that the three polyphenols are beneficial to prevent the nicotine adduct formation, and thus may be used to block the potential carcinogenesis induced by nicotine.

  2. Inhibition dominates in shaping spontaneous CA3 hippocampal network activities in vitro.

    Science.gov (United States)

    Ho, Ernest C Y; Zhang, Liang; Skinner, Frances K

    2009-02-01

    We have assessed the balance of excitation and inhibition in in vitro rodent hippocampal slices exhibiting spontaneous, basal sharp waves (bSPWs). A defining signature of a network exhibiting bSPWs is the rise and fall in local field activities with frequencies ranging from 0.5 to 4.5 Hz. This variation of extracellular local field activities manifests at the intracellular level as postsynaptic potentials (PSPs). In correspondence with the local field bSPWs, we consider "sparse" and "synchronous" parts of bSPWs at the intracellular level. We have used intracellular data of bSPW-associated PSPs together with mathematical extraction techniques to quantify the mean and variance of synaptic conductances that a neuron experiences during bSPW episodes. We find that inhibitory conductances dominate in pyramidal cells and in a putative interneuron, and that inhibitory variances are much greater than excitatory ones during synchronous parts of bSPWs. Specifically, we find that there is at least a twofold increase in inhibitory conductance dominance from "sparse" to "synchronous" bSPW states and that this transition is associated with inhibitory fluctuations of greater than 10% of the change in mean inhibitory conductance. On the basis of our findings, we suggest that such inhibitory fluctuations during transition may be a physiological feature of systems expressing such population activities. In summary, our results provide a quantified basis for understanding the interaction of excitatory and inhibitory neuronal subpopulations in bSPW activities.

  3. In vitro inhibition of feline coronavirus replication by small interfering RNAs.

    Science.gov (United States)

    McDonagh, Phillip; Sheehy, Paul A; Norris, Jacqueline M

    2011-06-01

    Infection with virulent biotypes of feline coronavirus (FCoV) can result in the development of feline infectious peritonitis (FIP), a typically fatal immune mediated disease for which there is currently no effective antiviral treatment. In this study we demonstrate the ability of small interfering RNA (siRNA) mediated RNA interference (RNAi) to inhibit the replication of virulent FCoV strain FIPV WSU 79-1146 in an immortalised feline cell line. A panel of eight synthetic siRNAs targeting four different regions of the FCoV genome were tested for antiviral effects. Efficacy was determined by qRT-PCR of intracellular viral genomic and messenger RNA, TCID50 infectivity assay of extracellular virus, and direct IFA for viral protein expression. All siRNAs demonstrated an inhibitory effect on viral replication in vitro. The two most effective siRNAs, targeting the untranslated 5' leader sequence (L2) and the nucleocapsid gene (N1), resulted in a >95% reduction in extracellular viral titre. Further characterisation of these two siRNAs demonstrated their efficacy when used at low concentrations and in cells challenged with high viral loads. Taken together these findings provide important information for the potential therapeutic application of RNAi in treating FIP.

  4. Indole-3-carbinol inhibits nasopharyngeal carcinoma growth through cell cycle arrest in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    Zhe Chen

    Full Text Available Nasopharyngeal carcinoma is a common malignant tumor in the head and neck. Because of frequent recurrence and distant metastasis which are the main causes of death, better treatment is needed. Indole-3-carbinol (I3C, a natural phytochemical found in the vegetables of the cruciferous family, shows anticancer effect through various signal pathways. I3C induces G1 arrest in NPC cell line with downregulation of cell cycle-related proteins, such as CDK4, CDK6, cyclin D1 and pRb. In vivo, nude mice receiving I3C protectively or therapeutically exhibited smaller tumors than control group after they were inoculated with nasopharyngeal carcinoma cells. The expression of CDK4, CDK6, cyclin D1 and pRb in preventive treatment group and drug treatment group both decreased compared with the control group. We conclude that I3C can inhibit the growth of NPC in vitro and in vivo by suppressing the expression of CDK and cyclin families. The drug was safe and had no toxic effects on normal tissues and organs.

  5. Plant polyphenols alter a pathway of energy metabolism by inhibiting fecal Bacteroidetes and Firmicutes in vitro.

    Science.gov (United States)

    Xue, Bin; Xie, Jinli; Huang, Jiachen; Chen, Long; Gao, Lijuan; Ou, Shiyi; Wang, Yong; Peng, Xichun

    2016-03-01

    The function of plant polyphenols in controlling body weight has been in focus for a long time. The aim of this study was to investigate the effect of plant polyphenols on fecal microbiota utilizing oligosaccharides. Three plant polyphenols, quercetin, catechin and puerarin, were added into liquid media for fermenting for 24 h. The pH values, OD600 of the cultures and the content of carbohydrates at 0, 6, 10, 14, 18 and 24 h were determined. The abundance of Bacteroidetes and Firmicutes in each culture was quantified with qPCR after 10 h of fermentation, and the bacterial composition was analyzed using the software Quantitative Insights Into Microbial Ecology. The results revealed that all three plant polyphenols could significantly inhibit the growth of Bacteroidetes (P polyphenols, catechin presented the most intense inhibitory activity towards the growth of Bacteroidetes and Firmicutes, and quercetin was the second. Only the samples with catechin had a significantly lower energy metabolism (P polyphenols can change the pathway of degrading FOS or even energy metabolism in vivo by altering gut microbiota composition. It may be one of the mechanisms in which plant polyphenols can lead to body weight loss. It's the first report to study in vitro gastrointestinal microbiota fermenting dietary fibers under the intervention of plant polyphenols.

  6. Inhibition by cyclosporin A of rodent malaria in vivo and human malaria in vitro.

    Science.gov (United States)

    Nickell, S P; Scheibel, L W; Cole, G A

    1982-01-01

    The development and course of normally lethal parasitemias in mice inoculated intraperitoneally with erythrocytic stages of Plasmodium yoelii or Plasmodium berghei were markedly affected by treatment with the antilymphoid drug cyclosporin A (CS-A). When the first of four daily subcutaneous 25-mg/kg doses of CS-A was given at the time of parasite inoculation, patent infections failed to develop. If begun up to 5 days earlier, this same treatment regimen prolonged the prepatent period, attenuated parasitemia, and reduced mortality. In mice with patient infections, two consecutive daily 25-mg/kg doses of CS-A were sufficient to terminate parasitemias which, after several days, reappeared but were self-limiting. This pattern of apparent cure followed by transient recrudescence remained unaltered even when daily treatment with the same drug dose was continued for 3 weeks. Recrudescence was associated with the emergence of parasite populations that were relatively resistant to CS-A and, in the case of P. yoelii, of reduced virulence. In more limited experiments, CS-A was found to be active in vitro against erythrocytic stages of the human malarial parasite palsmodium falciparum. Depending on the concentration of drug in the culture medium, parasite growth was either prevented or inhibited. PMID:6752020

  7. Salubrinal inhibits the expression of proteoglycans and favors neurite outgrowth from cortical neurons in vitro.

    Science.gov (United States)

    Barreda-Manso, M Asunción; Yanguas-Casás, Natalia; Nieto-Sampedro, Manuel; Romero-Ramírez, Lorenzo

    2015-07-01

    After CNS injury, astrocytes and mesenchymal cells attempt to restore the disrupted glia limitans by secreting proteoglycans and extracellular matrix proteins (ECMs), forming the so-called glial scar. Although the glial scar is important in sealing the lesion, it is also a physical and functional barrier that prevents axonal regeneration. The synthesis of secretory proteins in the RER is under the control of the initiation factor of translation eIF2α. Inhibiting the synthesis of secretory proteins by increasing the phosphorylation of eIF2α, might be a pharmacologically efficient way of reducing proteoglycans and other profibrotic proteins present in the glial scar. Salubrinal, a neuroprotective drug, decreased the expression and secretion of proteoglycans and other profibrotic proteins induced by EGF or TGFβ, maintaining eIF2α phosphorylated. Besides, Salubrinal also reduced the transcription of proteoglycans and other profibrotic proteins, suggesting that it induced the degradation of non-translated mRNA. In a model in vitro of the glial scar, cortical neurons grown on cocultures of astrocytes and fibroblasts with TGFβ treated with Salubrinal, showed increased neurite outgrowth compared to untreated cells. Our results suggest that Salubrinal may be considered of therapeutic value facilitating axonal regeneration, by reducing overproduction and secretion of proteoglycans and profibrotic protein inhibitors of axonal growth.

  8. The Study of Synergistic Effects of n.butanolic Cyclamen coum Extract and Ciprofloxacin on inhibition of Pseudomonas aeruginosa biofilm formation

    Directory of Open Access Journals (Sweden)

    ahya abdi ali

    2015-02-01

    Full Text Available   Introduction : Infections caused by Pseudomonas aeruginosa biofilm are the major causes of death in patients with cystic fibrosis (CF. Some studies revealed that biofilms are resistant to several antibiotics because of their impermeable structures. In order to re-sensitize bacteria to different antibiotics, biofilm formation should be inhibited. In this research, evaluation of antibiofilm activity of n-butanolic Cyclamen coum extract as a medici­nal plant from Myrsinaceae family, in combination with ciprofloxacin was carried out.   Materials and method s: The biofilm formation ability by P. aeruginosa PAO1 and one clinically isolated P. aeruginosa (PA214 was confirmed by microtiter plate method. Extraction of the tubers of Cyclamen coum was done by fractionation method . The antibiofilm and antibacterial properties of n-butanolic C. coum extract (which includes saponin compounds alone and in combination with ciprofloxacin by using microdilution and crystal violet methods were examined. The cytotoxicity effect of the n-butanolic extract on HT-29 cells was assayed by MTT (3- (4,5-dimethylthiazol-2-yl -2,5-diphenyl-tetrazolium bromide test.   Results : The biofilm formation ability by P. aeruginosa strains was quantitatively confirmed. Saponin content of the n-butanolic C.coum extract was 156 µg/mL. The extract revealed antibacterial activity against the growth of planktonic P. aeruginosa strains. The combination of n-butanolic C.coum extract and ciprofloxacin significantly inhibited P.aeruginosa biofilm formation (ΣFBIC = 0.5. The n-butanolic C.coum extract showed insignificant cytotoxic effect against HT-29 human cancer cell line after 48 hours and 72 hours incubation .   Discussion and conclusion : It can be concluded that n-butanolic C.coum extract in combination with ciprofloxacin significantly revealed antibiofilm activity against P. aeruginosa biofilm however, further clinical investigations are required.

  9. Inhibition of calcification of bovine pericardium after treatment with biopolymers, E-beam irradiation and in vitro endothelization

    Energy Technology Data Exchange (ETDEWEB)

    Polak, Roberta [Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, USP, Sao Paulo, SP (Brazil); Rodas, Andrea C.D. [Biotechnology Center, Energy and Nuclear Research Institute, IPEN-CNEN/SP, Sao Paulo, SP (Brazil); Chicoma, Dennis L.; Giudici, Reinaldo [Department of Chemical Engineering of Polytechnic School, University of Sao Paulo, SP (Brazil); Beppu, Marisa M. [School of Chemical Engineering, University of Campinas, UNICAMP, Campinas, SP (Brazil); Higa, Olga Z. [Biotechnology Center, Energy and Nuclear Research Institute, IPEN-CNEN/SP, Sao Paulo, SP (Brazil); Pitombo, Ronaldo N.M., E-mail: pitombo@usp.br [Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of Sao Paulo, USP, Sao Paulo, SP (Brazil)

    2013-01-01

    This work has investigated the in vitro calcification of bovine pericardium (BP) treated with chitosan (C), silk fibroin (SF) and electron beam irradiation after its endothelization in vitro. For this purpose, freeze-dried BP membranes treated with mixtures of C and SF (1:3, 1:1 and 3:1) and then irradiated by electron beam irradiation were seeded with human umbilical vein endothelial cells (HUVEC) in vitro. After 3 weeks of cultivation these membranes were submitted to in vitro calcification tests using simulated body fluid as the calcifying agent. Control membranes were also studied (without endothelial cells exposure). The results have shown that the membrane compatibility with HUVECs in vitro prevent such biomaterial from calcifying, showing a potential application in biomaterial area, such as cardiac valves and repair patches. - Highlights: Black-Right-Pointing-Pointer Bovine pericardium tissue treated with biopolymers followed by electron beam irradiation could be endothelized in vitro Black-Right-Pointing-Pointer Calcification was inhibited after endothelization, demonstrating a new anti calcifying treatment for BP membranes Black-Right-Pointing-Pointer This membranes could be used as cardiac valves and repair patches.

  10. An antisense peptide nucleic acid against Pseudomonas aeruginosa inhibiting bacterial-induced inflammatory responses in the cystic fibrosis IB3-1 cellular model system

    DEFF Research Database (Denmark)

    Montagner, Giulia; Bezzerri, Valentino; Cabrini, Giulio

    2017-01-01

    Discovery of novel antimicrobial agents against Pseudomonas aeruginosa able to inhibit bacterial growth as well as the resulting inflammatory response is a key goal in cystic fibrosis research. We report in this paper that a peptide nucleic acid (PNA3969) targeting the translation initiation regi...

  11. PENGHAMBATAN CAJUPUTS CANDY TERHADAP VIABILITAS KHAMIR Candida albicans SECARA IN VITRO [Inhibition of Cajuputs Candy Toward the Viability of Candida albicans by using In Vitro Assay

    Directory of Open Access Journals (Sweden)

    C. Hanny Wijaya1*

    2014-12-01

    Full Text Available The utilization of cajuput essential oil as a flavor in candy may produce a physiological active added value. Some compounds of cajuput plant (Melaleuca cajuputi L have been reported for their anti-microbial activities. Candida albicans is a normal commensal organism in human mouth. However, it may become virulent and responsible for oral diseases known as oral candidiasis. This study aimed to determine the effect of cajuput and peppermint oil in cajuputs candy in inhibiting the C. albicans biofilms formation by using in vitro biofilm assay and viability assay. Furthermore, the influence of concentration of cajuput oil on the anti-microbial activities had been analyzed. All the tested concentration of cajuput oil in cajuputs candy was effective to inhibit the viability of C. albicans. The provision of flavor components of cajuput and peppermint oil could produce synergistic effects compared to a single flavor component. The addition of cajuput oil at 0.6% was able to inhibit the viability of C. albicans. The activities of the cajuput oil showed positive correlation to the concentration. The variable of plus and minus 0.1% addition of the cajuput oil concentration, however, produced no significant difference to inhibit the growth of C. albicans in biofilm. Sensory test, hedonic test, was conducted to evaluate the flavor, aroma, and overall attributes, resulting in no significant difference between 0.6 to 0.8% additions of cajuput oil upon the sensory acceptance.

  12. Synergistic effect of polyaniline coverage and surface microstructure on the inhibition of Pseudomonas aeruginosa biofilm formation.

    Science.gov (United States)

    Gallarato, L A; Mulko, L E; Dardanelli, M S; Barbero, C A; Acevedo, D F; Yslas, E I

    2017-02-01

    Biofilm Formation is a survival strategy for microorganisms to adapt to their environment. Microbial cells in biofilm become tolerant and resistant to antibiotics and immune responses, increasing the difficulties for the clinical treatment of microbial infections. The surface chemistry and the micro/nano-topography of solid interfaces play a major role in mediating microorganism activity and adhesion. The effect of the surface chemical composition and topography on the adhesion and viability of Pseudomonas aeruginosa was studied. Polymeric (polyethylene terephthalate) surfaces were covered with a conducting polymer (polyaniline, PANI) film by in-situ polymerization and microstructured by Direct Laser Interference Patterning (DLIP). The viability of Pseudomonas aeruginosa on the different surfaces was investigated. The physicochemical properties of the surfaces were characterized by water contact angle measurements, scanning electron microscopy and atomic force microscopy. Bacterial biofilms were imaged by atomic force and scanning electron microscopies. The bacterial viability decreased on PANI compared with the substrate (polyethylene terephthalate) and it decreased even more upon micro-structuring the PANI films. In addition, the biofilm reduction could be improved using polymers with different chemical composition and/or the same polymer with different topographies. Both methods presented diminish the bacterial attachment and biofilm formation. These findings present a high impact related to materials for biomedical engineer applications regarding medical devices, as prostheses or catheters.

  13. Red wine and component flavonoids inhibit UGT2B17 in vitro

    Directory of Open Access Journals (Sweden)

    Jenkinson Carl

    2012-09-01

    Full Text Available Abstract Background The metabolism and excretion of the anabolic steroid testosterone occurs by glucuronidation to the conjugate testosterone glucuronide which is then excreted in urine. Alterations in UGT glucuronidation enzyme activity could alter the rate of testosterone excretion and thus its bioavailability. The aim of this study is to investigate if red wine, a common dietary substance, has an inhibitory effect on UGT2B17. Methods Testosterone glucuronidation was assayed using human UGT2B17 supersomes with quantification of unglucuronidated testosterone over time using HPLC with DAD detection. The selected red wine was analyzed using HPLC; and the inhibitory effects of the wine and phenolic components were tested independently in a screening assay. Further analyses were conducted for the strongest inhibitors at physiologically relevant concentrations. Control experiments were conducted to determine the effects of the ethanol on UGT2B17. Results Over the concentration range of 2 to 8%, the red wine sample inhibited the glucuronidation of testosterone by up to 70% over 2 hours. The ethanol content had no significant effect. Three red wine phenolics, identified by HPLC analyses, also inhibited the enzyme by varying amounts in the order of quercetin (72%, caffeic acid (22% and gallic acid (9%; using a ratio of phenolic:testosterone of 1:2.5. In contrast p-coumaric acid and chlorogenic acid had no effect on the UGT2B17. The most active phenolic was selected for a detailed study at physiologically relevant concentrations, and quercetin maintained inhibitory activity of 20% at 2 μM despite a ten-fold excess of testosterone. Conclusion This study reports that in an in vitro supersome-based assay, the key steroid-metabolizing enzyme UGT2B17 is inhibited by a number of phenolic dietary substances and therefore may reduce the rate of testosterone glucuronidation in vivo. These results highlight the potential interactions of a number of common

  14. The Pseudomonas aeruginosa quorum sensing signal molecule N-(3-oxododecanoyl) homoserine lactone enhances keratinocyte migration and induces Mmp13 gene expression in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Paes, Camila, E-mail: camilaquinetti@gmail.com [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nakagami, Gojiro, E-mail: gojiron-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Minematsu, Takeo, E-mail: tminematsu-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nagase, Takashi, E-mail: tnagase@fb3.so-net.ne.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Huang, Lijuan, E-mail: koureikenhlj@gmail.com [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sari, Yunita, E-mail: yunita-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Sanada, Hiromi, E-mail: hsanada-tky@umin.ac.jp [University of Tokyo, Department of Gerontological Nursing/Wound Care Management, Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2012-10-19

    Highlights: Black-Right-Pointing-Pointer An evidence of the positive effect of AHL on epithelialization process is provided. Black-Right-Pointing-Pointer AHL enhances keratinocyte's ability to migrate in an in vitro scratch wound model. Black-Right-Pointing-Pointer AHL induces the expression of Mmp13. Black-Right-Pointing-Pointer Topical application of AHL represents a possible strategy to treat chronic wounds. -- Abstract: Re-epithelialization is an essential step of wound healing involving three overlapping keratinocyte functions: migration, proliferation and differentiation. While quorum sensing (QS) is a cell density-dependent signaling system that enables bacteria to regulate the expression of certain genes, the QS molecule N-(3-oxododecanoyl) homoserine lactone (AHL) exerts effects also on mammalian cells in a process called inter-kingdom signaling. Recent studies have shown that AHL improves epithelialization in in vivo wound healing models but detailed understanding of the molecular and cellular mechanisms are needed. The present study focused on the AHL as a candidate reagent to improve wound healing through direct modulation of keratinocyte's activity in the re-epithelialization process. Results indicated that AHL enhances the keratinocyte's ability to migrate in an in vitro scratch wound healing model probably due to the high Mmp13 gene expression analysis after AHL treatment that was revealed by real-time RT-PCR. Inhibition of activator protein 1 (AP-1) signaling pathway completely prevented the migration of keratinocytes, and also resulted in a diminished Mmp13 gene expression, suggesting that AP-1 might be essential in the AHL-induced migration. Taken together, these results imply that AHL is a promising candidate molecule to improve re-epithelialization through the induction of migration of keratinocytes. Further investigation is needed to clarify the mechanism of action and molecular pathway of AHL on the keratinocyte migration

  15. Raffinose, a plant galactoside, inhibits Pseudomonas aeruginosa biofilm formation via binding to LecA and decreasing cellular cyclic diguanylate levels

    Science.gov (United States)

    Kim, Han-Shin; Cha, Eunji; Kim, Yunhye; Jeon, Young Ho; Olson, Betty H.; Byun, Youngjoo; Park, Hee-Deung

    2016-05-01

    Biofilm formation on biotic or abiotic surfaces has unwanted consequences in medical, clinical, and industrial settings. Treatments with antibiotics or biocides are often ineffective in eradicating biofilms. Promising alternatives to conventional agents are biofilm-inhibiting compounds regulating biofilm development without toxicity to growth. Here, we screened a biofilm inhibitor, raffinose, derived from ginger. Raffinose, a galactotrisaccharide, showed efficient biofilm inhibition of Pseudomonas aeruginosa without impairing its growth. Raffinose also affected various phenotypes such as colony morphology, matrix formation, and swarming motility. Binding of raffinose to a carbohydrate-binding protein called LecA was the cause of biofilm inhibition and altered phenotypes. Furthermore, raffinose reduced the concentration of the second messenger, cyclic diguanylate (c-di-GMP), by increased activity of a c-di-GMP specific phosphodiesterase. The ability of raffinose to inhibit P. aeruginosa biofilm formation and its molecular mechanism opens new possibilities for pharmacological and industrial applications.

  16. Pomegranate ellagitannins inhibit α-glucosidase activity in vitro and reduce starch digestibility under simulated gastro-intestinal conditions.

    Science.gov (United States)

    Bellesia, Andrea; Verzelloni, Elena; Tagliazucchi, Davide

    2015-02-01

    Pomegranate extract was tested for its ability to inhibit α-amylase and α-glucosidase activity. Pomegranate extract strongly inhibited rat intestinal α-glucosidase in vitro whereas it was a weak inhibitor of porcine α-amylase. The inhibitory activity was recovered in an ellagitannins-enriched fraction and punicalagin, punicalin, and ellagic acid were identified as α-glucosidase inhibitors (IC(50) of 140.2, 191.4, and 380.9 μmol/L, respectively). Kinetic analysis suggested that the pomegranate extract and ellagitannins inhibited α-glucosidase activity in a mixed mode. The inhibitory activity was demonstrated using an in vitro digestion system, mimicking the physiological gastro-intestinal condition, and potatoes as food rich in starch. Pre-incubation between ellagitannins and α-glucosidase increased the inhibitory activity, suggesting that they acted by binding to α-glucosidase. During digestion punicalin and punicalagin concentration decreased. Despite this loss, the pomegranate extract retained high inhibitory activity. This study suggests that pomegranate ellagitannins may inhibit α-glucosidase activity in vitro possibly affecting in vivo starch digestion.

  17. Knockdown of lymphoid enhancer factor 1 inhibits colon cancer progression in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Wen-Juan Wang

    Full Text Available Expression of lymphoid enhancer factor 1 (LEF1 is frequently altered in different human cancers. This study aimed to assess LEF1 expression in colon cancer tissues and to explore changed phenotypes, gene expressions, and the possible mechanism after knocked down LEF1 expression in colon cancer cell lines. A total of 106 colon cancer and matched paratumorous normal tissues were used to assess LEF1 expression using immunohistochemistry and qRT-PCR. LEF1 lentivirus was used to knockdown LEF1 expression for the assessment of cell viability, cell cycle distribution, apoptosis, and gene expressions. The nude mouse xenograft assay was performed to detect the effects of LEF1 knockdown in vivo. The data showed that the levels of LEF1 mRNA and protein were significantly increased in human colon cancer tissues compared to the matched paratumorous normal tissues and were associated with infiltration depth, lymph node and distant metastases, advanced TNM (tumor-node-metastasis stages, and shorter overall survival. Furthermore, LEF1 knockdown reduced tumor cell viability, invasion capacity, MMP2 and MMP-9 expression, but induced apoptosis. Nude mouse xenograft assay showed that LEF1 knockdown suppressed tumor formation and growth in vivo. In addition, the expression of Notch pathway-related proteins RBP-jκ and Hes1 was reduced in LEF1 knockdown cells. Taken together, LEF1 protein was overexpressed in colon cancer tissues and knockdown of LEF1 expression inhibited colon cancer growth in vitro and in vivo. These data suggest that targeting of LEF1 expression should be further evaluated for colon cancer prevention and therapy.

  18. Antisense MMP-9 RNA inhibits malignant glioma cell growth in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Cuiyun Sun; Qian Wang; Hongxu Zhou; Shizhu Yu; Alain R.Simard; Chunsheng Kang; Yanyan Li

    2013-01-01

    The matrix-degrading metalloproteinases (MMPs),particularly MMP-9,play important roles in the pathogenesis and development of malignant gliomas.In the present study,the oncogenic role of MMP-9 in malignant glioma cells was investigated via antisense RNA blockade in vitro and in vivo.TJ905 malignant glioma cells were transfected with pcDNA3.0 vector expressing antisense MMP-9 RNA (pcDNA-ASMMP9),which significantly decreased MMP-9 expression,and cell proliferation was assessed.For in vivo studies,U251 cells,a human malignant glioma cell line,were implanted subcutaneously into 4-to 6-week-old BALB/c nude mice.The mice bearing well-established U251 gliomas were treated with intratumoral pcDNA-AS-MMP9-Lipofectamine complex (AS-MMP-9-treated group),subcutaneous injection of endostatin (endostatin-treated group),or both (combined therapy group).Mice treated with pcDNA (empty vector)-Lipofectamine served as the control group.Four or eight weeks later,the volume and weight of tumor,MMP-9 expression,microvessel density and proliferative activity were assayed.We demonstrate that pcDNA-AS-MMP9 significantly decreased MMP-9 expression and inhibited glioma cell proliferation.Volume and weight of tumor,MMP-9 expression,microvessel density and proliferative activity in the antisense-MMP-9-treated and therapeutic alliance groups were significantly lower than those in the control group.The results suggest that MMP-9 not only promotes malignant glioma cell invasiveness,but also affects tumor cell proliferation.Blocking the expression of MMP-9 with antisense RNA substantially suppresses the malignant phenotype of glioma cells,and thus can be used as an effective therapeutic strategy for malignant gliomas.

  19. Guava leaves polyphenolics-rich extract inhibits vital enzymes implicated in gout and hypertension in vitro

    Science.gov (United States)

    Irondi, Emmanuel Anyachukwu; Agboola, Samson Olalekan; Oboh, Ganiyu; Boligon, Aline Augusti; Athayde, Margareth Linde; Shode, Francis O.

    2016-01-01

    Background/Aim: Elevated uric acid level, an index of gout resulting from the over-activity of xanthine oxidase (XO), increases the risk of developing hypertension. However, research has shown that plant-derived inhibitors of XO and angiotensin 1-converting enzyme (ACE), two enzymes implicated in gout and hypertension, respectively, can prevent or ameliorate both diseases, without noticeable side effects. Hence, this study characterized the polyphenolics composition of guava leaves extract and evaluated its inhibitory effect on XO and ACE in vitro. Materials and Methods: The polyphenolics (flavonoids and phenolic acids) were characterized using high-performance liquid chromatography (HPLC) coupled with diode array detection (DAD). The XO, ACE, and Fe2+-induced lipid peroxidation inhibitory activities, and free radicals (2,2-diphenylpicrylhydrazyl [DPPH]* and 2,2´-azino-bis-3-ethylbenzthiazoline-6-sulphonic [ABTS]*+) scavenging activities of the extract were determined using spectrophotometric methods. Results: Flavonoids were present in the extract in the order of quercetin > kaempferol > catechin > quercitrin > rutin > luteolin > epicatechin; while phenolic acids were in the order of caffeic acid > chlorogenic acid > gallic acids. The extract effectively inhibited XO, ACE and Fe2+-induced lipid peroxidation in a dose-dependent manner; having half-maximal inhibitory concentrations (IC50) of 38.24 ± 2.32 μg/mL, 21.06 ± 2.04 μg/mL and 27.52 ± 1.72 μg/mL against XO, ACE and Fe2+-induced lipid peroxidation, respectively. The extract also strongly scavenged DPPH* and ABTS*+. Conclusion: Guava leaves extract could serve as functional food for managing gout and hypertension and attenuating the oxidative stress associated with both diseases. PMID:27104032

  20. Silencing of ghrelin receptor expression inhibits endometrial cancer cell growth in vitro and in vivo.

    Science.gov (United States)

    Fung, Jenny N T; Jeffery, Penny L; Lee, John D; Seim, Inge; Roche, Deborah; Obermair, Andreas; Chopin, Lisa K; Chen, Chen

    2013-07-15

    Ghrelin is a 28-amino acid peptide hormone produced predominantly in the stomach but also in a range of normal cell types and tumors, where it has endocrine, paracrine, and autocrine roles. Previously, we have demonstrated that ghrelin has proliferative and antiapoptotic effects in endometrial cancer cell lines, suggesting a potential role in promoting tumor growth. In the present study, we investigated the effect of ghrelin receptor, GHSR, and gene silencing in vitro and in vivo and characterized ghrelin and GHSR1a protein expression in human endometrial tumors. GHSR gene silencing was achieved in the Ishikawa and KLE endometrial cancer cell lines, using a lentiviral short-hairpin RNA targeting GHSR. The effects of GHSR1a knockdown were further analyzed in vivo using the Ishikawa cell line in a NOD/SCID xenograft model. Cell proliferation was reduced in cultured GHSR1a knockdown Ishikawa and KLE cells compared with scrambled controls in the absence of exogenously applied ghrelin and in response to exogenous ghrelin (1,000 nM). The tumor volumes were reduced significantly in GHSR1a knockdown Ishikawa mouse xenograft tumors compared with scrambled control tumours. Using immunohistochemistry, we demonstrated that ghrelin and GHSR1a are expressed in benign and cancerous glands in human endometrial tissue specimens, although there was no correlation between the intensity of staining and cancer grade. These data indicate that downregulation of GHSR expression significantly inhibits endometrial cancer cell line and mouse xenograft tumour growth. This is the first preclinical evidence that downregulation of GHSR may be therapeutic in endometrial cancer.

  1. Inhibition of Matriptase Activity Results in Decreased Intestinal Epithelial Monolayer Integrity In Vitro.

    Directory of Open Access Journals (Sweden)

    E Pászti-Gere

    Full Text Available Barrier dysfunction in inflammatory bowel diseases implies enhanced paracellular flux and lowered transepithelial electrical resistance (TER causing effective invasion of enteropathogens or altered intestinal absorption of toxins and drug compounds. To elucidate the role of matriptase-driven cell surface proteolysis in the maintenance of intestinal barrier function, the 3-amidinophenylalanine-derived matriptase inhibitor, MI-432 was used on porcine IPEC-J2 cell monolayer. Studies with two fluorescent probes revealed that short (2 h treatment with MI-432 caused an altered distribution of oxidative species between intracellular and extracellular spaces in IPEC-J2 cells. This perturbation was partially compensated when administration of inhibitor continued for up to 48 h. Significant decrease in TER between apical and basolateral compartments of MI-432-treated IPEC-J2 cell monolayers proved that matriptase is one of the key effectors in the maintenance of barrier integrity. Changes in staining pattern of matriptase and in localization of the junctional protein occludin were observed suggesting that inhibition of matriptase by MI-432 can also exert an effect on paracellular gate opening via modulation of tight junctional protein assembly. This study confirms that non-tumorigenic IPEC-J2 cells can be used as an appropriate small intestinal model for the in vitro characterization of matriptase-related effects on intestinal epithelium. These findings demonstrate indirectly that matriptase plays a pivotal role in the development of barrier integrity; thus matriptase dysfunction can facilitate the occurence of leaky gut syndrome observed in intestinal inflammatory diseases.

  2. The Pseudomonas aeruginosa autoinducer dodecanoyl-homoserine lactone inhibits the putrescine synthesis in human cells

    DEFF Research Database (Denmark)

    Kristiansen, S.; Bjarnsholt, Thomas; Adeltoft, D.;

    2008-01-01

    . Polyamines are required for mitotic cell division and peak during this phase. The polyamine putrescine is synthesized by ornithine decarboxylase (ODC) as a rate-limiting step. The ODC enzyme concentration also peaks during the mitotic phase. This peak is mediated by translation of ODC mRNA by the ITAF45....... Finally, C-12-HSL-treated cells also had a time-course-dependent higher concentration of ODC mRNA. Based on these mitotic markers, more human cells were apparently trapped in the mitotic phase when treated with C-12-HSL. This should normally imply higher levels of putrescine. However, C-12-HSL......-treated human cells had a significantly lower concentration of putrescine and displayed a lower cell proliferation rate. In conclusion, the P. aeruginosa autoinducer C-12-oxo-HSL apparently arrests human cells in the mitotic phase by lowering the concentration of putrescine....

  3. In vitro efficacy of copper and silver ions in eradicating Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Acinetobacter baumannii: implications for on-site disinfection for hospital infection control.

    Science.gov (United States)

    Huang, Hsin-I; Shih, Hsiu-Yun; Lee, Chien-Ming; Yang, Thomas C; Lay, Jiunn-Jyi; Lin, Yusen E

    2008-01-01

    Pseudomonas aeruginosa, Stenotrophomonas maltophilia and Acinetobacter baumannii are major opportunistic waterborne pathogens causing hospital-acquired infections. Copper-silver ionization has been shown to be effective in controlling Legionella colonization in hospital water systems. The objective was to determine the efficacy of copper and silver ions alone and in combination in eradicating P. aeruginosa, S. maltophilia and A. baumannii at the concentration applied to Legionella control. Kill curve experiments and mathematical modeling were conducted at copper and silver ion concentrations of 0.1, 0.2, 0.4, 0.8 and 0.01, 0.02, 0.04, 0.08 mg/L, respectively. The combinations of copper and silver ions were tested at concentrations of 0.2/0.02 and 0.4/0.04 mg/L, respectively. Initial organism concentration was ca. of 3 x 10(6)cfu/mL, and viability of the test organisms was assessed at predetermined time intervals. Samples (0.1 mL) withdrawn were mixed with 10 microL neutralizer solution immediately, serially diluted and plated in duplicate onto blood agar plates. The culture plates were incubated for 48 h at 37 degrees C and enumerated for the cfu (detection limit 10 cfu/mL). The results showed all copper ion concentrations tested (0.1-0.8 mg/L) achieved more than 99.999% reduction of P. aeruginosa which appears to be more susceptible to copper ions than S. maltophilia and A. baumannii. Silver ions concentration of 0.08 mg/L achieved more than 99.999% reduction of P. aeruginosa, S. maltophilia and A. baumannii in 6, 12 and 96 h, respectively. Combination of copper and silver ions exhibited a synergistic effect against P. aeruginosa and A. baumannii while the combination exhibited an antagonistic effect against S. maltophilia. Ionization may have a potential to eradicate P. aeruginosa, S. maltophilia and A. baumannii from hospital water systems.

  4. Bacillus anthracis Edema Toxin Inhibits Staphylococcus aureus Enterotoxin B Effects in Vitro: A Potential Protein Therapeutic?

    Science.gov (United States)

    2005-10-01

    shown that the adverse effects of the SEs and TSST-1 are naturally poten- tiated by a ubiquitous component of all gram-negative bacte- ria, namely...5). Inherent characteristics of edema toxin and other procaryotic adenylate cyclases from Bordetella pertussis, Pseudomonas aeruginosa, and Yersinia...various groups (11, 28), and this effect is linked to gene transcription (9). As evidenced with other cell types (18), the cAMP levels in human

  5. Inhibition of the Crystal Growth and Aggregation of Calcium Oxalate by Algae Sulfated Polysaccharide In-vitro

    Institute of Scientific and Technical Information of China (English)

    Xiu Mei WU; Jian Ming OUYANG; Sui Ping DENG; Ying Zhou CEN

    2006-01-01

    The influence of sulfated polysaccharide (SPS) isolated from marine algae Sargassum fusiforme on the morphology and phase compositions of urinary crystal calcium oxalate was investigated in vitro by means of scanning electron microscopy and X-ray diffraction. SPS maybe is a potential inhibitor to CaOxa urinary stones by inhibiting the growth of calcium oxalate monohydrate (COM), preventing the aggregation of COM, and inducing the formation of calcium oxalate dihydrate (COD) crystals.

  6. OXA-18, a class D clavulanic acid-inhibited extended-spectrum beta-lactamase from Pseudomonas aeruginosa.

    Science.gov (United States)

    Philippon, L N; Naas, T; Bouthors, A T; Barakett, V; Nordmann, P

    1997-01-01

    Clinical isolate Pseudomonas aeruginosa Mus showed resistance both to extended-spectrum cephalosporins and to aztreonam. We detected a typical double-disk synergy image when ceftazidime or aztreonam was placed next to a clavulanic acid disk on an agar plate. This resistance phenotype suggested the presence of an extended-spectrum beta-lactamase. Isoelectric focusing revealed that this strain produced three beta-lactamases, of pI 5.5, 7.4, and 8.2. A 2.6-kb Sau3A fragment encoding the extended-spectrum beta-lactamase of pI 5.5 was cloned from P. aeruginosa Mus genomic DNA. This enzyme, named OXA-18, had a relative molecular mass of 30.6 kDa. OXA-18 has a broad substrate profile, hydrolyzing amoxicillin, ticarcillin, cephalothin, ceftazidime, cefotaxime, and aztreonam, but not imipenem or cephamycins. Its activity was totally inhibited by clavulanic acid at 2 microg/ml. Hydrolysis constants of OXA-18 (Vmax, Km) confirmed the MIC results. Cloxacillin and oxacillin hydrolysis was noticeable with the partially purified OXA-18. The blaOXA-18 gene encodes a 275-amino-acid protein which has weak identity with all class D beta-lactamases except OXA-9 and OXA-12 (45 and 42% amino acid identity, respectively). OXA-18 is likely to be chromosomally encoded since no plasmid was found in the strain and because attempts to transfer the resistance marker failed. OXA-18 is peculiar since it is a class D beta-lactamase which confers high resistance to extended-spectrum cephalosporins and seems to have unique hydrolytic properties among non-class A enzymes. PMID:9333046

  7. Inactivated Pseudomonas aeruginosa inhibits hypoxia-induced pulmonary hypertension by preventing TGF-β1/Smad signaling

    Directory of Open Access Journals (Sweden)

    S.D. Chai

    2016-01-01

    Full Text Available Pseudomonas aeruginosa is one of the common colonizing bacteria of the human body and is an opportunistic pathogen frequently associated with respiratory infections. Inactivated P. aeruginosa (IPA have a variety of biological effects against inflammation and allergy. Transforming growth factor-β (TGF-β signaling plays a critical role in the regulation of cell growth, differentiation, and development in a wide range of biological systems. The present study was designed to investigate the effects of IPA on TGF-β/Smad signaling in vivo, using a hypoxia-induced pulmonary hypertension (PH rat model. Sprague Dawley rats (n=40 were exposed to 10% oxygen for 21 days to induce PH. At the same time, IPA was administered intravenously from day 1 to day 14. Mean pulmonary artery pressure (mPAP and the right ventricle (RV to left ventricle plus the interventricular septum (LV+S mass ratio were used to evaluate the development of PH. Vessel thickness and density were measured using immunohistochemistry. Primary arterial smooth muscle cells (PASMCs were isolated and the proliferation of PASMCs was assayed by flow cytometry. The production of TGF-β1 in cultured supernatant of PASMCs was assayed by ELISA. The expression levels of α-smooth muscle actin (α-SMA, TGF-β1 and phospho-Smad 2/3 in PASMCs were assayed by western blot. Our data indicated that IPA attenuated PH, RV hypertrophy and pulmonary vascular remodeling in rats, which was probably mediated by restraining the hypoxia-induced overactive TGF-β1/Smad signaling. In conclusion, IPA is a promising protective treatment in PH due to the inhibiting effects on TGF-β1/Smad 2/3 signaling.

  8. A Galleria mellonella infection model reveals double and triple antibiotic combination therapies with enhanced efficacy versus a multidrug-resistant strain of Pseudomonas aeruginosa.

    Science.gov (United States)

    Krezdorn, Jessica; Adams, Sophie; Coote, Peter J

    2014-07-01

    The aim of this study was to compare the inhibitory effect of antibiotic combinations in vitro with efficacy in Galleria mellonella larvae in vivo to identify efficacious combinations that target Pseudomonas aeruginosa. P. aeruginosa NCTC 13437, a multidrug-resistant strain resistant to β-lactams and aminoglycosides, was used. Susceptibility to cefotaxime, piperacillin, meropenem, amikacin, levofloxacin and colistin alone, or in dual or triple combinations, was measured in vitro via a 24 h time-kill assay. In vitro results were then compared with the efficacy of the same dual or triple antibiotic combinations versus G. mellonella larvae infected with P. aeruginosa. G. mellonella haemolymph burden of P. aeruginosa was determined over 96 h post-infection and treatment with the most potent combination therapies. Many dual and triple combinations of antibiotics displayed synergistic inhibition of multidrug-resistant P. aeruginosa in vitro. There was little correlation between combinations that were synergistic in vitro and those that showed enhanced efficacy in vivo versus infected G. mellonella larvae. The most potent dual and triple combinations in vivo were cefotaxime plus piperacillin, and meropenem plus piperacillin and amikacin, respectively. Fewer combinations were found to offer enhanced therapeutic benefit in vivo compared with in vitro. The therapeutic benefit arising from treatment with antibiotic combinations in vivo correlated with reduced larval burden of P. aeruginosa. This study has identified antibiotic combinations that merit further investigation for their clinical potential and has demonstrated the utility of using G. mellonella to screen for novel antibiotic treatments that demonstrate efficacy in vivo.

  9. Total saponins from Albizia julibrissin inhibit vascular endothelial growth factor-mediated angiogenesis in vitro and in vivo.

    Science.gov (United States)

    Cai, Weiwei; Li, Yue; Yi, Qingqing; Xie, Fengshan; Du, Bin; Feng, Lei; Qiu, Liying

    2015-05-01

    Dried stem bark from Albizia julibrissin (AJ) is a highly valued Traditional Chinese Medicine, which has been shown to suppress tumor growth and angiogenesis. Total saponins from AJ (TSAJ) are one of the most bioactive components of AJ extract. The present study evaluated the anti‑tumor and anti‑angiogenic effects of TSAJ in vitro and in vivo. The anti‑angiogenic activity of TSAJ was investigated by measuring the effects on vascular endothelial growth factor (VEGF)‑induced proliferation, migration and tube formation of Ea.hy926 endothelial cells in vitro. The expression levels of proteins associated with VEGF‑induced angiogenesis were determined by western blotting. Furthermore, in vivo Matrigel™ plug and H22 hepatoma tumor models were used to verify the anti‑angiogenic effects of TSAJ. The present study demonstrated that TSAJ significantly inhibited VEGF‑mediated endothelial cell proliferation, migration and tube formation of Ea.hy926 cells in vitro. The anti‑angiogenic effects of TSAJ were modulated by suppression of phosphorylated‑(p‑) focal adhesion kinase, p‑Akt, and p‑extracellular signal‑regulated kinase in the VEGF/VEGF receptor 2 (R2) signaling pathway. Furthermore, oral administration of TSAJ significantly inhibited tumor growth and tumor‑induced angiogenesis, as well as the formation of functional vessels, in the Matrigel™ plug model. These results suggest that TSAJ may be a potential anti‑angiogenic agent that targets the VEGF/VEGFR2 signaling pathway, and inhibits tumor‑induced angiogenesis.

  10. SILIBININ INHIBITS ETHANOL METABOLISM AND ETHANOL-DEPENDENT CELL PROLIFERATION IN AN IN VITRO MODEL OF HEPATOCELLULAR CARCINOMA

    Science.gov (United States)

    Brandon-Warner, Elizabeth; Sugg, James A.; Schrum, Laura W.; McKillop, Iain H.

    2009-01-01

    Chronic ethanol consumption is a known risk factor for developing hepatocellular carcinoma (HCC). The use of plant-derived antioxidants is gaining increasing clinical prominence as a potential therapy to ameliorate the effects of ethanol on hepatic disease development and progression. This study demonstrates silibinin, a biologically active flavanoid derived from milk thistle, inhibits cytochrome p4502E1 induction, ethanol metabolism and reactive oxygen species generation in HCC cells in vitro. These silibinin-mediated effects also inhibit ethanol-dependent increases in HCC cell proliferation in culture. PMID:19900758

  11. Biofilm Filtrates of Pseudomonas aeruginosa Strains Isolated from Cystic Fibrosis Patients Inhibit Preformed Aspergillus fumigatus Biofilms via Apoptosis.

    Science.gov (United States)

    Shirazi, Fazal; Ferreira, Jose A G; Stevens, David A; Clemons, Karl V; Kontoyiannis, Dimitrios P

    2016-01-01

    Pseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af) colonize cystic fibrosis (CF) patient airways. Pa culture filtrates inhibit Af biofilms, and Pa non-CF, mucoid (Muc-CF) and nonmucoid CF (NMuc-CF) isolates form an ascending inhibitory hierarchy. We hypothesized this activity is mediated through apoptosis induction. One Af and three Pa (non-CF, Muc-CF, NMuc-CF) reference isolates were studied. Af biofilm was formed in 96 well plates for 16 h ± Pa biofilm filtrates. After 24 h, apoptosis was characterized by viability dye DiBAc, reactive oxygen species (ROS) generation, mitochondrial membrane depolarization, DNA fragmentation and metacaspase activity. Muc-CF and NMuc-CF filtrates inhibited and damaged Af biofilm (pbiofilms (3.7- fold) compared to treatment with filtrates from Muc-CF- (2.5- fold) or non-CF Pa (1.7- fold). Depolarization of mitochondrial potential was greater upon exposure to NMuc-CF (2.4-fold) compared to Muc-CF (1.8-fold) or non-CF (1.25-fold) (pbiofilm, compared to control, mediated by metacaspase activation. In conclusion, filtrates from CF-Pa isolates were more inhibitory against Af biofilms than from non-CF. The apoptotic effect involves mitochondrial membrane damage associated with metacaspase activation.

  12. Growth-Inhibiting Activity of Resveratrol Imine Analogs on Tumor Cells In Vitro

    Science.gov (United States)

    Wang, Shan; Willenberg, Ina; Krohn, Michael; Hecker, Tanja; Meckelmann, Sven; Li, Chang; Pan, Yuanjiang; Schebb, Nils Helge; Steinberg, Pablo; Empl, Michael Telamon

    2017-01-01

    Although resveratrol exerts manifold antitumorigenic effects in vitro, its efficacy against malignancies in vivo seems limited. This has been increasingly recognized in recent years and has prompted scientists to search for structurally related compounds with more promising anticarcinogenic and/or pharmacokinetic properties. A class of structurally modified resveratrol derivatives, so-called resveratrol imine analogs (IRA’s), might meet these requirements. Therefore, the biological activity of five of these compounds was examined and compared to that of resveratrol. Firstly, the antiproliferative potency of all five IRA’s was investigated using the p53 wildtype-carrying colorectal carcinoma cell line HCT-116wt. Then, using the former and a panel of various other tumor cell lines (including the p53 knockout variant HCT-116p53-/-), the growth-inhibiting and cell cycle-disturbing effects of the most potent IRA (IRA 5, 2-[[(2-hydroxyphenyl)methylene]amino]-phenol) were studied as was its influence on cyclooxygenase-2 expression and activity. Finally, rat liver microsomes were used to determine the metabolic stability of that compound. IRA 5 was clearly the most potent compound in HCT-116wt cells, with an unusually high IC50-value of 0.6 μM. However, in the other five cell lines used, the antiproliferative activity was mostly similar to resveratrol and the effects on the cell cycle were heterogeneous. Although all cell lines were affected by treatment with IRA 5, cells expressing functional p53 seemed to react more sensitively, suggesting that this protein plays a modulating role in the induction of IRA 5-mediated biological effects. Lastly, IRA 5 led to contradictory effects on cyclooxygenase-2 expression and activity and was less glucuronidated than resveratrol. As IRA 5 is approximately 50 times more toxic towards HCT-116wt cells, exerts different effects on the cyclooxygenase-2 and is metabolized to a lesser extent, it shows certain advantages over resveratrol

  13. Inhibition of APE1/Ref-1 redox activity with APX3330 blocks retinal angiogenesis in vitro and in vivo.

    Science.gov (United States)

    Jiang, Aihua; Gao, Hua; Kelley, Mark R; Qiao, Xiaoxi

    2011-01-01

    This study examines the role of APE1/Ref-1 in the retina and its potential as a therapeutic target for inhibiting retinal angiogenesis. APE1/Ref-1 expression was quantified by Western blot. The role of APE1/Ref-1 redox function in endothelial cell in vitro angiogenesis was examined by treating retinal vascular endothelial cells (RVECs) with APX3330, a small molecule inhibitor of APE1/Ref-1 redox activity. In vitro methods included a proliferation assay, a transwell migration assay, a Matrigel tube formation assay, and a Real-Time Cell Analysis (RTCA) using the xCELLigence System. In vivo functional studies of APE1/Ref-1 were carried out by treating very low density lipoprotein (VLDL) receptor knockout mice (Vldlr(-/-)) with intravitreal injection of APX3330, and subsequent measurement of retinal angiomatous proliferation (RAP)-like neovascularization for one week. APE1/Ref-1 was highly expressed in the retina and in RVECs and pericytes in mice. APX3330 (1-10 μM) inhibited proliferation, migration and tube formation of RVECs in vitro in a dose-dependent manner. Vldlr(-/-) RVECs were more sensitive to APX3330 than wild-type RVECs. In Vldlr(-/-) mice, a single intravitreal injection of APX3330 at the onset of RAP-like neovascularization significantly reduced RAP-like neovascularization development. APE1/Ref-1 is expressed in retinal vascular cells. APX3330 inhibits RVEC angiogenesis in vitro and significantly reduces RAP-like neovascularization in Vldlr(-/-) mice. These data support the conclusion that APE1/Ref-1 redox function is required for retinal angiogenesis. Thus, APE1/Ref-1 may have potential as a therapeutic target for treating neovascular age-related macular degeneration and other neovascular diseases.

  14. Alginate as a protease inhibitor in vitro and in a model gut system; selective inhibition of pepsin but not trypsin.

    Science.gov (United States)

    Chater, Peter Ian; Wilcox, Mathew D; Brownlee, Iain A; Pearson, Jeffrey P

    2015-10-20

    Alginates are widely used in the food and medical industries, including as a Gastro-Oesophagul Reflux treatment. This work investigates the inhibitory effects of alginate on the reflux aggressors trypsin and pepsin and the role of alginate-substrate binding, pH and alginate structure on inhibition. Alginates were shown to reduce pepsin activity by up to 53.9% (±9.5SD) in vitro. Strong positive correlation between alginate mannuronate residue frequency and levels of pepsin inhibition was observed. Limited inhibition of trypsin was shown. Viscometric observations of pH dependent interactions between alginate and protein suggest a mechanism whereby pH dependent ionic interactions reduce substrate availability to enzyme at acidic pH. To understand how dietary protein digestion is affected by alginate, proteolytic digestion was investigated in an in vitro model of the upper digestive tract. Significant inhibition of proteolysis was shown in the gastric phase of digestion, but not the small intestinal phase.

  15. Qushi Huayu Decoction Inhibits Hepatic Lipid Accumulation by Activating AMP-Activated Protein Kinase In Vivo and In Vitro

    Directory of Open Access Journals (Sweden)

    Qin Feng

    2013-01-01

    Full Text Available Qushi Huayu Decoction (QHD, a Chinese herbal formula, has been proven effective on alleviating nonalcoholic fatty liver disease (NAFLD in human and rats. The present study was conducted to investigate whether QHD could inhibit hepatic lipid accumulation by activating AMP-activated protein kinase (AMPK in vivo and in vitro. Nonalcoholic fatty liver (NAFL model was duplicated with high-fat diet in rats and with free fatty acid (FFA in L02 cells. In in vivo experimental condition, QHD significantly decreased the accumulation of fatty droplets in livers, lowered low-density lipoprotein cholesterol (LDL-c, alanine aminotransferase (ALT, and aspartate aminotransferase (AST levels in serum. Moreover, QHD supplementation reversed the HFD-induced decrease in the phosphorylation levels of AMPK and acetyl-CoA carboxylase (ACC and decreased hepatic nuclear protein expression of sterol regulatory element-binding protein-1 (SREBP-1 and carbohydrate-responsive element-binding protein (ChREBP in the liver. In in vitro, QHD-containing serum decreased the cellular TG content and alleviated the accumulation of fatty droplets in L02 cells. QHD supplementation reversed the FFA-induced decrease in the phosphorylation levels of AMPK and ACC and decreased the hepatic nuclear protein expression of SREBP-1 and ChREBP. Overall results suggest that QHD has significant effect on inhibiting hepatic lipid accumulation via AMPK pathway in vivo and in vitro.

  16. Inhibition of cytochrome P450 3A by acetoxylated analogues of resveratrol in in vitro and in silico models

    Science.gov (United States)

    Basheer, Loai; Schultz, Keren; Kerem, Zohar

    2016-08-01

    Many dietary compounds, including resveratrol, are potent inhibitors of CYP3A4. Here we examined the potential to predict inhibition capacity of dietary polyphenolics using an in silico and in vitro approaches and synthetic model compounds. Mono, di, and tri-acetoxy resveratrol were synthesized, a cell line of human intestine origin and microsomes from rat liver served to determine their in vitro inhibition of CYP3A4, and compared to that of resveratrol. Docking simulation served to predict the affinity of the synthetic model compounds to the enzyme. Modelling of the enzyme’s binding site revealed three types of interaction: hydrophobic, electrostatic and H-bonding. The simulation revealed that each of the examined acetylations of resveratrol led to the loss of important interactions of all types. Tri-acetoxy resveratrol was the weakest inhibitor in vitro despite being the more lipophilic and having the highest affinity for the binding site. The simulation demonstrated exclusion of all interactions between tri-acetoxy resveratrol and the heme due to distal binding, highlighting the complexity of the CYP3A4 binding site, which may allow simultaneous accommodation of two molecules. Finally, the use of computational modelling may serve as a quick predictive tool to identify potential harmful interactions between dietary compounds and prescribed drugs.

  17. Alternative to antibiotics against Pseudomonas aeruginosa: Effects of Glycyrrhiza glabra on membrane permeability and inhibition of efflux activity and biofilm formation in Pseudomonas aeruginosa and its in vitro time-kill activity.

    Science.gov (United States)

    Chakotiya, Ankita Singh; Tanwar, Ankit; Narula, Alka; Sharma, Rakesh Kumar

    2016-09-01

    The multi-drug resistance offered by Pseudomonas aeruginosa to antibiotics can be attributed towards its propensity to develop biofilm, modification in cell membrane and to efflux antibacterial drugs. The present study explored the activity of Glycyrrhiza glabra and one of its pure compounds, glycyrrhizic acid against P. aeruginosa and their mechanism of action in terms of the effect on membrane permeability, efflux activity, and biofilm formation were determined. Minimum inhibitory concentrations were determined by using broth dilution technique. The minimum bactericidal concentrations were assessed on agar plate. The MIC of the extract and glycyrrhizic acid was found to be 200 and 100 μg ml(-1), respectively. The MBC was found to be 800 and 400 μg ml(-1) in the case of extract and glycyrrhizic acid, respectively. Time -dependent killing efficacy was also estimated. Flowcytometric analysis with staining methods was used to determine the effect of extract and glycyrrhizic acid at 2 × MIC on different physiological parameters and compared it with the standard (antibiotic). The growth of P. aeruginosa was significantly inhibited by extract and the pure compound. The herbal extract and the glycyrrhic acid were also found to effective in targeting the physiological parameters of the bacteria that involve cell membrane permeabilization, efflux activity, and biofilm formation. This study reports the antipseudomonal action of Glycyrrhiza glabra and one of its compound and provides insight into their mode of action.

  18. Isolation and identification of biosurfactant-producing strains from the genus Pseudomonas aeruginosa and antibacterial effects of biosurfactant production in vitro

    Directory of Open Access Journals (Sweden)

    Salman Ahmady-Asbchin

    2013-01-01

    Full Text Available Introduction: Biosurfactants are amphiphilic biological compounds produced extracellularly or as part of the cell membranes by a variety of microorganisms. Because of their use in various industries, they are of a particular importance. The aim of this study was to identify a strain of bacteria of the genus Pseudomonas aeruginosa biosurfactant producers. Materials and methods: In this study, different samples of oil, water and soil contaminated with oil were prepared. Hemolytic activity, emulsification activity and measurement of surface tension were used and selected strains were identified by biochemical tests. The nature and effect of antibacterial biosurfactant was evaluated for strain selection.Results: In this study, eighty eight bacterial strains were isolated. Twenty four strains were isolated from the isolated strains with hemolytic activity. Among which, 14 strains have emulsification activity more than 70% and at last four strains reached surface tension to be less than 40 mN/m. Selected strain based on biochemical tests was recognized as a Pseudomonas aeruginosa. The nature of biosurfactant was determined by TLC, and proved to be of glycolipid kind. Therefore, the produced biosurfactant of the selected strain had antibacterial activity against six bacterial infectious. Sensitive bacteria to the effects of biosurfactant extract of Pseudomonas aeruginosa83, was Staphylococcus aureus and the most resistant bacteria to these extract, was the Proteus mirabilis. The results of MIC, MBC showed that MIC of the extract in concentration of 63 and 125 mg/ml on Escherichia coli, Staphylococcus epidermidis and Staphylococcus aureus respectively. Also, the MBC were extract in concentration of 63 and 125mg/ml on Staphylococcus epidermidis and Staphylococcus aureus respectively.Discussion and conclusion: Pseudomonas aeruginosa had high potential in reducing the surface tension and biosurfactant extracted had high antibacterial effects. Therefore, it

  19. BEL-1, a Novel Clavulanic Acid-Inhibited Extended-Spectrum β-Lactamase, and the Class 1 Integron In120 in Pseudomonas aeruginosa

    Science.gov (United States)

    Poirel, Laurent; Brinas, Laura; Verlinde, Annemie; Ide, Louis; Nordmann, Patrice

    2005-01-01

    Screening by a double-disk synergy test identified a Pseudomonas aeruginosa isolate that produced a clavulanic acid-inhibited expanded-spectrum β-lactamase (ESBL). Cloning and sequencing identified a novel ESBL, BEL-1, weakly related to other Ambler class A ESBLs. β-Lactamase BEL-1 hydrolyzed significantly most expanded-spectrum cephalosporins and aztreonam, and its activity was inhibited by clavulanic acid, tazobactam, cefoxitin, moxalactam, and imipenem. This chromosome-encoded ESBL gene was embedded in a class 1 integron containing three other gene cassettes. In addition, this integron was bracketed by Tn1404 transposon sequences at its right end and by P. aeruginosa-specific sequences at its left end. PMID:16127048

  20. LegC3, an effector protein from Legionella pneumophila, inhibits homotypic yeast vacuole fusion in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    Terry L Bennett

    Full Text Available During infection, the intracellular pathogenic bacterium Legionella pneumophila causes an extensive remodeling of host membrane trafficking pathways, both in the construction of a replication-competent vacuole comprised of ER-derived vesicles and plasma membrane components, and in the inhibition of normal phagosome:endosome/lysosome fusion pathways. Here, we identify the LegC3 secreted effector protein from L. pneumophila as able to inhibit a SNARE- and Rab GTPase-dependent membrane fusion pathway in vitro, the homotypic fusion of yeast vacuoles (lysosomes. This vacuole fusion inhibition appeared to be specific, as similar secreted coiled-coiled domain containing proteins from L. pneumophila, LegC7/YlfA and LegC2/YlfB, did not inhibit vacuole fusion. The LegC3-mediated fusion inhibition was reversible by a yeast cytosolic extract, as well as by a purified soluble SNARE, Vam7p. LegC3 blocked the formation of trans-SNARE complexes during vacuole fusion, although we did not detect a direct interaction of LegC3 with the vacuolar SNARE protein complexes required for fusion. Additionally, LegC3 was incapable of inhibiting a defined synthetic model of vacuolar SNARE-driven membrane fusion, further suggesting that LegC3 does not directly inhibit the activity of vacuolar SNAREs, HOPS complex, or Sec17p/18p during membrane fusion. LegC3 is likely utilized by Legionella to modulate eukaryotic membrane fusion events during pathogenesis.

  1. Comparison of in vitro and ex vivo thyroid hormone synthesis inhibition results and in vivo outcomes for a series of benzothiazoles

    Science.gov (United States)

    Assessing how in vitro data may be used to predict adverse effects in vivo is critical as efforts are advanced to incorporate in vitro assays into a risk assessment framework. Within the context of a thyroid hormone (TH) synthesis inhibition adverse outcome pathway (AOP), in vitr...

  2. Growth inhibiting activity of lipophilic extracts from Dipsacus sylvestris Huds. roots against Borrelia burgdorferi s. s. in vitro.

    Science.gov (United States)

    Liebold, T; Straubinger, R K; Rauwald, H W

    2011-08-01

    Fresh first year roots from Dipsacus sylvestris HUDS. were extracted with 70% ethanol, ethyl acetate as well as dichloromethane. Extracts were solubilized in water (lipophilic extracts with addition of polysorbate 80) and tested for their activity against Borrelia burgdorferi sensu stricto in vitro during an eight-day period using amoxicillin as standard. The hydroethanolic extract showed no growth inhibition whereas significant growth inhibiting activity could be shown in the two less polar fractions for the first time. Strongest inhibition was found in the ethyl acetate extract. The effect of polysorbate 80 on bacterial growth was examined and found to be negligible. As the nature of bioactive constituents has not been clarified yet, a micellar electrokinetic capillary chromatography fingerprint analysis for a methanolic extract was applied including loganin, chlorogenic acid, cantleyoside and caffeic acid as marker substances.

  3. Inhibition of C. difficile and C. perfringens by commercial and potential probiotic strains and their in-vitro growth characteristics

    DEFF Research Database (Denmark)

    Schoster, A.; Kokotovic, Branko; Permin, A.;

    2012-01-01

    and their growth characteristics. The objective of this study was to determine the inhibitory effect of commercial and potential probiotic on C. difficile and C. perfringens and assess their growth characteristics in-vitro. The inhibitory effect of a cell free probiotic supernatant of 17 commercial bacterial...... strains (Lactobacilli n=16, Bifidobacteria n=1) on growth of clostridia spp was assessed in an agar well diffusion assay and broth co-culture experiment, using supernatant harvested at different growth phases and with and without pH adjustment. To study growth characteristics MRS broth was adjusted to pH2...... it was harvested. 10/17 probiotic supernatants inhibited C. difficile in a pH dependant manner when harvested in the stationary growth phase. In the broth co-culture 5/17 probiotics inhibited C. perfringens and 10/17 inhibited C. difficile both in a pH dependant manner. All probiotic strains were able to grow at p...

  4. Rhodacyanine dye MKT-077 inhibits in vitro telomerase assay but has no detectable effects on telomerase activity in vivo.

    Science.gov (United States)

    Wadhwa, Renu; Colgin, Lorel; Yaguchi, Tomoko; Taira, Kazunari; Reddel, Roger R; Kaul, Sunil C

    2002-08-01

    MKT-077, a cationic rhodacyanine dye analogue, causes selective toxicity to cancer cells. Its cellular targets elucidated thus far include oncogenic Ras, F-actin, mortalin (hmot-2)/mthsp70, and telomerase. Here we report that MKT-077 causes growth arrest of cancer cells in culture independent of their Ras, p53, or telomerase status. Telomerase activity is inhibited in vitro by MKT-077 in the telomerase assay used. However, the in vivo toxicity seen in telomerase-positive cancer cells was not accompanied by inhibition of telomerase activity or telomere shortening. Furthermore, cells with an alternative mechanism for lengthening of telomeres were also sensitive to MKT-077 and showed enhanced formation of alternative mechanism for lengthening of telomeres-associated PML bodies in their nuclei. The data suggested that inhibition of telomerase activity is unlikely to be a prime cause of MKT-077-induced toxicity in cancer cells.

  5. [In vitro inhibition of granulopoiesis by beta-lactam antibiotics. Comparison of piperacillin, mezlocillin, ceftriaxone and ceftazidime].

    Science.gov (United States)

    Marie, J P; Thevenin, D; Zittoun, R

    1986-12-20

    The mechanism of neutropenia induced by beta-lactam antibiotics was explored by studying the action of these drugs on granulopoiesis in vitro. Normal bone marrows were cultivated in the presence of increasing concentrations of piperacillin (10 marrows), mezlocillin, ceftriaxone and ceftazidime (5 marrows each) in order to find out whether these antibiotics exhibited toxicity to granulocyte-monocyte precursors. A dose-dependent inhibition of granulopoiesis was found in all cases. When the doses used were equivalent to maximum plasma concentrations in vivo, inhibition was minimal with piperacillin and mezlocillin and much more pronounced with the cephalosporins. This dose-dependent inhibition suggests that toxicity is involved in the mechanism of neutropenia induced by beta-lactam antibiotics.

  6. Acetylcholinesterase Inhibition and in Vitro and in Vivo Antioxidant Activities of Ganoderma lucidum Grown on Germinated Brown Rice

    Directory of Open Access Journals (Sweden)

    Beong Ou Lim

    2013-06-01

    Full Text Available In this study, the acetylcholinesterase inhibition and in vitro and in vivo antioxidant activities of Ganoderma lucidum grown on germinated brown rice (GLBR were evaluated. In antioxidant assays in vitro, GLBR was found to have strong metal chelating activity, DPPH, ABTS, hydroxyl and superoxide radical scavenging activity. Cell-based antioxidant methods were used, including lipid peroxidation on brain homogenate and AAPH-induced erythrocyte haemolysis. In antioxidant assays in vivo, mice were administered with GLBR and this significantly enhanced the activities of antioxidant enzymes in the mice sera, livers and brains. The amount of total phenolic and flavonoid compounds were 43.14 mg GAE/g and 13.36 mg CE/g dry mass, respectively. GLBR also exhibited acetylcholinesterase inhibitory activity. In addition, HPLC analyses of GLBR extract revealed the presence of different phenolic compounds. These findings demonstrate the remarkable potential of GLBR extract as valuable source of antioxidants which exhibit interesting acetylcholinesterase inhibitory activity.

  7. Divalent metal addition restores sulfide-inhibited N2O reduction in Pseudomonas aeruginosa

    NARCIS (Netherlands)

    Bartacek, J.; Manconi, I.; Sansone, G.; Murgia, R.; Lens, P.N.L.

    2010-01-01

    Hydrogen sulfide (H2S) inhibits the last step of the denitrification process, i.e. the reduction of nitrous oxide (N2O) to dinitrogen gas (N-2), both in natural environments (marine sediments) and industrial processes (activated sludge, methanogenic sludge, BioDeNOx process). In a previously publish

  8. In vitro inhibition of Eimeria tenella invasion of epithelial cells by phytochemicals

    NARCIS (Netherlands)

    Burt, S.A.; Tersteeg-Zijderveld, M.H.G.; Jongerius-Gortemaker, B.G.M.; Vervelde, L.; Vernooij, J.C.M.

    2013-01-01

    Resistance to coccidiostats and possible future restrictions on their use raise the need for alternative methods of reducing coccidiosis in poultry. The aim of this study was to evaluate the effect of selected phytochemicals on Eimeria tenella sporozoite invasion in vitro. Four phytochemicals were s

  9. In vitro developmental toxicity test detects inhibition of stem cell differentiation by silica nanoparticles.

    NARCIS (Netherlands)

    Park, M.V.; Annema, W.; Salvati, A.; Lesniak, A.; Elsaesser, A.; Barnes, C.; McKerr, G.; Howard, C.; Lynch, I.; Dawson, K.; Piersma, A.H.; de Jong, W.H.

    2009-01-01

    While research into the potential toxic properties of nanomaterials is now increasing, the area of developmental toxicity has remained relatively uninvestigated. The embryonic stem cell test is an in vitro screening assay used to investigate the embryotoxic potential of chemicals by determining thei

  10. Arg-gly-asp-mannose-6-phosphate inhibits activation and proliferation of hepatic stellate cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Lian-Sheng Wang; Ying-Wei Chen; Ding-Guo Li; Han-Ming Lu

    2006-01-01

    AIM: To investigate the effect of arg-gly-asp-mannose-6phosphate (RGD-M6P) on the activation and proliferation of primary hepatic stellate cells in vitro.METHODS: Hepatic stellate cells (HSCs) were isolated from rats by in situ collagenase perfusion of liver and 18% Nycodenz gradient centrifugation and cultured on uncoated plastic plates for 24 h with DMEM containing 10% fetal bovine serum (FBS/DMEM) before the culture medium was substituted with 2% FBS/DMEM for another 24 h. Then, HSCs were cultured in 2% FBS/DMEM with transforming growth factor β1, M6P, RGD, or RGD-M6P, respectively. Cell morphology was observed under inverted microscope, smooth muscle α-actin (α-SMA)was detected by immunocytochemistry, type Ⅲprocollagen (PCⅢ) in supernatant was determined by radioimmunoassay, and the proliferation rate of HSCs was assessed by flow cytometry.RESULTS: RGD-M6P significantly inhibited the morphological transformation and the α-SMA and PC Ⅲ expressions of HSCs in vitro and also dramatically prevented the proliferation of HSCs in vitro. Such effects were remarkably different from those of RGD or M6P.CONCLUSION: The new compound, RGD-M6P, which has a dramatic effect on primary cultured HSCs in vitro, can inhibit the transformation of HSCs in culture caused by TGFβ1, suppresses the expression of PCⅢand decreases proliferation rate of HSC. RGD-M6P can be applied as a selective drug carrier targeting at HSCs,which may be a new approach to the prevention and treatment of liver fibrosis.

  11. Antibacterial phage ORFans of Pseudomonas aeruginosa phage LUZ24 reveal a novel MvaT inhibiting protein

    Directory of Open Access Journals (Sweden)

    Jeroen eWagemans

    2015-11-01

    Full Text Available The functional elucidation of small unknown phage proteins (‘ORFans’ presents itself as one of the major challenges of bacteriophage molecular biology. In this work, we mined the Pseudomonas aeruginosa infecting phage LUZ24 proteome for antibacterial and antibiofilm proteins against its host. Subsequently, their putative host target was identified. In one example, we observed an interaction between LUZ24 gp4 and the host transcriptional regulator MvaT. The polymerization of MvaT across AT-rich DNA strands permits gene silencing of foreign DNA, thereby limiting any potentially adverse effects of such DNA. Gel shift assays proved the inhibitory effect of LUZ24 gp4 on MvaT DNA binding activity. Therefore, we termed this gene product as Mip, the MvaT inhibiting protein. We hypothesize Mip prevents the AT-rich LUZ24 DNA from being physically blocked by MvaT oligomers right after its injection in the host cell, thereby allowing phage transcription and thus completion of the phage infection cycle.

  12. General gambogic acids inhibited growth of human hepatoma SMMC-7721 cells in vitro and in nude mice

    Institute of Scientific and Technical Information of China (English)

    Qing-long GUO; Qi-dong YOU; Zhao-qiu WU; Sheng-tao YUAN; Li ZHAO

    2004-01-01

    AIM: To study the inhibitory effect of general gambogic acids (GGA) on transplantation tumor SMMC-7721 in experimental animal model and SMMC-7721 cells in vitro. METHODS: Anti-tumor activity of GGA in the experimental transplantation tumor SMMC-7721 was evaluated by relative tumor growth ratio. Cell morphology was observed with inverted microscope and electron microscope. Cell proliferation was measured by MTT assay and the telomerase activity was determined by PCR. RESULTS: In vivo study indicated that GGA (2, 4, and 8 mg/kg,iv, 3 times per week for 3 weeks) displayed an inhibitory effect on the growth of transplantation tumor SMMC7721 in nude mice compared with the normal saline group (P<0.01). At the concentrations of 0.625-5.0 mg/L,GGA remarkably inhibited the proliferation of SMMC-7721 cells in vitro. GGA 2 mg/L dramatically changed morphology of SMMC-7721 cells and inhibited the telomerase activity in SMMC-7721 cells. CONCLUSION:GGA had inhibitory effect on the growth of SMMC-7721, which might be related to its inhibition of telomerase activity.

  13. Brivanib attenuates hepatic fibrosis in vivo and stellate cell activation in vitro by inhibition of FGF, VEGF and PDGF signaling.

    Directory of Open Access Journals (Sweden)

    Ikuo Nakamura

    Full Text Available Brivanib is a selective inhibitor of vascular endothelial growth factor receptor (VEGFR and fibroblast growth factor receptor (FGFR tyrosine kinases, which are both involved in mechanisms of liver fibrosis. We hypothesized that inhibition of VEGFR and FGFR by brivanib would inhibit liver fibrosis. We therefore examined the effect of brivanib on liver fibrosis in three mouse models of fibrosis.In vivo, we induced liver fibrosis by bile duct ligation (BDL, chronic carbon tetrachloride (CCl4, and chronic thioacetamide (TAA administration. Liver fibrosis was examined by immunohistochemistry and Western immunoblotting. In vitro, we used LX-2 human hepatic stellate cells (HSCs to assess the effect of brivanib on stellate cell proliferation and activation.After in vivo induction with BDL, CCl4, and TAA, mice treated with brivanib showed reduced liver fibrosis and decreased expression of collagen Iα1 and α-smooth muscle actin in the liver. In vitro, brivanib decreased proliferation of HSCs induced by platelet-derived growth factor (PDGF, VEGF, and FGF. Brivanib also decreased stellate cell viability and inhibited PDGFBB-induced phosphorylation of its cognate receptor.Brivanib reduces liver fibrosis in three different animal models and decreases human hepatic stellate cell activation. Brivanib may represent a novel therapeutic approach to treatment of liver fibrosis and prevention of liver cancer.

  14. Inhibition of Autophagy Potentiates Atorvastatin-Induced Apoptotic Cell Death in Human Bladder Cancer Cells in Vitro

    Directory of Open Access Journals (Sweden)

    Minyong Kang

    2014-05-01

    Full Text Available Statins are cholesterol reduction agents that exhibit anti-cancer activity in several human cancers. Because autophagy is a crucial survival mechanism for cancer cells under stress conditions, cooperative inhibition of autophagy acts synergistically with other anti-cancer drugs. Thus, this study investigates whether combined treatment of atorvastatin and autophagy inhibitors results in enhancing the cytotoxic effects of atorvastatin, upon human bladder cancer cells, T24 and J82, in vitro. To measure cell viability, we performed the EZ-Cytox cell viability assay. We examined apoptosis by flow cytometry using annexin-V/propidium iodide (PI and western blot using procaspase-3 and poly (ADP-ribose polymerase (PARP antibodies. To examine autophagy activation, we evaluated the co-localization of LC3 and LysoTracker by immunocytochemistry, as well as the expression of LC3 and p62/sequestosome-1 (SQSTM1 by western blot. In addition, we assessed the survival and proliferation of T24 and J82 cells by a clonogenic assay. We found that atorvastatin reduced the cell viability of T24 and J82 cells via apoptotic cell death and induced autophagy activation, shown by the co-localization of LC3 and LysoTracker. Moreover, pharmacologic inhibition of autophagy significantly enhanced atorvastatin-induced apoptosis in T24 and J82 cells. In sum, inhibition of autophagy potentiates atorvastatin-induced apoptotic cell death in human bladder cancer cells in vitro, providing a potential therapeutic approach to treat bladder cancer.

  15. The fungicide Pristine® inhibits mitochondrial function in vitro but not flight metabolic rates in honey bees.

    Science.gov (United States)

    Campbell, Jacob B; Nath, Rachna; Gadau, Juergen; Fox, Trevor; DeGrandi-Hoffman, Gloria; Harrison, Jon F

    2016-03-01

    Honey bees and other pollinators are exposed to fungicides that act by inhibiting fungal mitochondria. Here we test whether a common fungicide (Pristine®) inhibits the function of mitochondria of honeybees, and whether consumption of ecologically-realistic concentrations can cause negative effects on the mitochondria of flight muscles, or the capability for flight, as judged by CO2 emission rates and thorax temperatures during flight. Direct exposure of mitochondria to Pristine® levels above 5 ppm strongly inhibited mitochondrial oxidation rates in vitro. However, bees that consumed pollen containing Pristine® at ecologically-realistic concentrations (≈ 1 ppm) had normal flight CO2 emission rates and thorax temperatures. Mitochondria isolated from the flight muscles of the Pristine®-consuming bees had higher state 3 oxygen consumption rates than control bees, suggesting that possibly Pristine®-consumption caused compensatory changes in mitochondria. It is likely that the lack of a strong functional effect of Pristine®-consumption on flight performance and the in vitro function of flight muscle mitochondria results from maintenance of Pristine® levels in the flight muscles at much lower levels than occur in the food, probably due to metabolism and detoxification. As Pristine® has been shown to negatively affect feeding rates and protein digestion of honey bees, it is plausible that Pristine® consumption negatively affects gut wall function (where mitochondria may be exposed to higher concentrations of Pristine®).

  16. In vitro growth of multidrug-resistant Neisseria gonorrhoeae isolates is inhibited by ETX0914, a novel spiropyrimidinetrione.

    Science.gov (United States)

    Papp, John R; Lawrence, Kenneth; Sharpe, Samera; Mueller, John; Kirkcaldy, Robert D

    2016-09-01

    Antimicrobial resistance in Neisseria gonorrhoeae has severely limited the number of treatment options, and the emergence of extended-spectrum cephalosporin resistance threatens the effectiveness of the last remaining recommended treatment regimen. This study assessed the in vitro susceptibility of N. gonorrhoeae to ETX0914, a novel spiropyrimidinetrione that inhibits DNA biosynthesis. In vitro activity was determined by agar dilution against 100 N. gonorrhoeae isolates collected from men presenting with urethritis in the USA during 2012-2013 through the Gonococcal Isolate Surveillance Project. The minimum inhibitory concentration (MIC) that inhibited growth in 50% (MIC50) and 90% (MIC90) of isolates was calculated for each antimicrobial agent. ETX0914 demonstrated a high level of antimicrobial activity against N. gonorrhoeae, including isolates with decreased susceptibility or resistance to currently available agents. The ability of ETX0914 to inhibit the growth of N. gonorrhoeae was similar to ceftriaxone, which is currently recommended in combination with azithromycin to treat gonorrhoea. The data presented in this study strongly suggest that ETX0914 should be evaluated in a clinical trial for the treatment of N. gonorrhoeae.

  17. 1,25(OH)2D3 inhibits in vitro and in vivo intracellular growth of apicomplexan parasite Toxoplasma gondii.

    Science.gov (United States)

    Rajapakse, Rohan; Uring-Lambert, Béatrice; Andarawewa, Kumari L; Rajapakse, R P; Abou-Bacar, Ahmed; Marcellin, Luc; Candolfi, Ermanno

    2007-03-01

    The hormonal form of vitamin D, 1,25-dyhydroxyvitamin D3 (1,25(OH)2D3), is implicated in a wide range of functions other than its classical role in calcium and phosphorous homeostasis. When Toxoplasma gondii-infected BALB/c mice were treated with 1,25(OH)2D3, they succumb to death sooner than their counterparts. But they showed less parasite burden in tissues which was further supported by mild pathological lesions. As an effort to understand the physiological mechanism for the above observation an in vitro study was performed. Fewer parasites were observed when 1,25(OH)2D3 pre-treated murine intestinal epithelial cells were challenged with parasites. Moreover, the observed inhibition was dose-dependent and had a maximum effect with 10(-7)M of 1,25(OH)2D3. However, no observable difference was observed, when pre-incubated parasites were added to cells suggesting that the observed inhibition was a result of an effect from 1,25(OH)2D3 on Toxoplasma intracellular growth. Our data support the notion that 1,25(OH)2D3 may inhibit intra cellular T. gondii parasite proliferation in vivo and in vitro.

  18. IN-VITRO GROWTH CHARACTERISTICS OF COMMERCIAL PROBIOTIC STRAINS AND THEIR POTENTIAL FOR INHIBITION OF CLOSTRIDIUM DIFFICILE AND CLOSTRDIDUM PERFRINGENS

    DEFF Research Database (Denmark)

    Schoster, Angelika; Kokotovic, Branko; Permin, Anders;

    aerobic conditions was assessed. To evaluate inhibition of C. difficile and C. perfringens sterile supernatant of the probiotic culture was added to BHI inoculated with a standard C. difficile or C. perfringens suspension. Growth was measured spectrophotometrically at 0 and 24h and compared to the control......-four percent grew under aerobic conditions. Ninety-four percent of strains were inhibitory (0-20% growth compared to control) against C. difficile and 76% were inhibitory against C. perfringens. Sixty percent of the tested strains showed favourable in-vitro characteristics for use as potential equine...

  19. In-vitro growth characteristics of commercial probiotic strains and their potential for inhibition of Clostridium difficile and Clostridium perfringens

    DEFF Research Database (Denmark)

    Schoster, A.; Kokotovic, Branko; Permin, A.;

    2012-01-01

    aerobic conditions was assessed. To evaluate inhibition of C. difficile and C. perfringens sterile supernatant of the probiotic culture was added to BHI inoculated with a standard C. difficile or C. perfringens suspension. Growth was measured spectrophotometrically at 0 and 24h and compared to the control......-four percent grew under aerobic conditions. Ninety-four percent of strains were inhibitory (0-20% growth compared to control) against C. difficile and 76% were inhibitory against C. perfringens. Sixty percent of the tested strains showed favourable in-vitro characteristics for use as potential equine...

  20. Using recombinant CD74 protein to inhibit the activity of macrophage migration inhibitory factor (MIF) in vitro

    Institute of Scientific and Technical Information of China (English)

    Zhi-xinSHAN; Xi-yongYU; Qiu-xiongLIN; Yong-hengFU

    2005-01-01

    AIM Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine involved in the pathogenesis of a variety of autoimmune and inflammatory diseases, including arthritis, glomerulonephritis, Gram-positive and Gram-negative sepsis, and atherogenesis. Recent studies showed that CD74(antigen-associated invariant chain Ⅱ) is a high-affinity membrane-binding protein for MIF. The purpose of the present study was to express the recombinant human CD74 in E. coli and inhibit the activity of MIF by using recombinant CD74 in vitro.

  1. Thiopurine Drugs Azathioprine and 6-Mercaptopurine Inhibit Mycobacterium paratuberculosis Growth In Vitro

    OpenAIRE

    Shin, Sung Jae; Collins, Michael T.

    2008-01-01

    The in vitro susceptibility of human- and bovine-origin Mycobacterium paratuberculosis to the thioupurine drugs 6-mercaptopurine (6-MP) and azathioprine (AZA) was established using conventional plate counting methods and the MGIT 960 ParaTB culture system. Both 6-MP and AZA had antibacterial activity against M. paratuberculosis; isolates from Crohn's disease patients tended to be more susceptible than were bovine-origin isolates. Isolates of Mycobacterium avium, used as controls, were general...

  2. In vitro cytochrome P450 inhibition potential of methylenedioxy-derived designer drugs studied with a two-cocktail approach.

    Science.gov (United States)

    Dinger, Julia; Meyer, Markus R; Maurer, Hans H

    2016-02-01

    In vitro cytochrome P450 (CYP) inhibition assays are common approaches for testing the inhibition potential of drugs for predicting potential interactions. In contrast to marketed medicaments, drugs of abuse, particularly the so-called novel psychoactive substances, were not tested before distribution and consumption. Therefore, the inhibition potential of methylenedioxy-derived designer drugs (MDD) of different drug classes such as aminoindanes, amphetamines, benzofurans, cathinones, piperazines, pyrrolidinophenones, and tryptamines should be elucidated. The FDA-preferred test substrates, split in two cocktails, were incubated with pooled human liver microsomes and analysed after protein precipitation using LC-high-resolution-MS/MS. IC50 values were determined of MDD showing more than 50 % inhibition in the prescreening. Values were calculated by plotting the relative metabolite concentration formed over the logarithm of the inhibitor concentration. All MDD showed inhibition against CYP2D6 activity and most of them in the range of the clinically relevant CYP2D6 inhibitors quinidine and fluoxetine. In addition, the beta-keto compounds showed inhibition of the activity of CYP2B6, 5,6-MD-DALT of CYP1A2 and CYP3A, and MDAI of CYP2A6, all in the range of clinically relevant inhibitors. In summary, all MDD showed inhibition of the activity of CYP2D6, six of CYP1A2, three of CYP2A6, 13 of CYP2B6, two of CYP2C9, six of CYP2C19, one of CYP2E1, and six of CYP3A. These results showed that the CYP inhibition by MDD might be clinically relevant, but further studies are needed for final conclusions.

  3. Synergistic Effect of Fosfomycin Combined with Carbapenems against Drug-resistant Pseudomonas aerugi-nosa Isolated from Urinary Tract Infections in vitro%磷霉素联合碳青霉烯类抗尿路感染耐药铜绿假单胞菌的体外协同作用研究

    Institute of Scientific and Technical Information of China (English)

    孙凤军; 熊志坚; 冯伟; 孙艺璇; 夏培元

    2016-01-01

    目的:探讨磷霉素(FOS)联合碳青霉烯类抗尿路感染耐药铜绿假单胞菌的体外协同作用。方法:采用琼脂平板倍比稀释法检测耐碳青霉烯类铜绿假单胞菌的最低抑菌浓度,棋盘法测定其联合抑菌浓度指数,96孔板结晶紫法考察FOS与碳青霉烯类联用对其生物膜的影响。结果:12株耐碳青霉烯类铜绿假单胞菌对FOS及阿米卡星的敏感性较高,对亚胺培南和美罗培南的耐药率均达100%。FOS与亚胺培南联用时,4株(33.3%)为协同作用;FOS与美罗培南联用时,5株(41.7%)为协同作用;均未出现拮抗作用。FOS和碳青霉烯类联用对耐碳青霉烯类铜绿假单胞菌的生物膜均有抑制作用(P<0.05或P<0.01)。结论:FOS联合碳青霉烯类对部分耐碳青霉烯类铜绿假单胞菌具体外协同作用,其机制可能与抑制细菌生物膜有关。%OBJECTIVE:To investigate synergistic effect of carbapenems combined with fosfomycin(FOS)on carbapenems-re-sistant Pseudomonas aeruginosa isolates from urinary tract infections in vitro. METHODS:The minimum inhibitory concentration was detected using agar double dilution method. The fractional inhibitory concentration index was determined by checkerboard meth-od. The effect of carbapenems combined with FOS on biofilm of P. aeruginosa isolates was determined using 96 crystal violet stain-ing. RESULTS:12 strains of carbapenem-resistant P. aeruginosa isolates were highly sensitive to FOS and amikacin,and were com-pletely resistant to imipenem and meropenem. The combination of imipenem with FOS could induce a synergistic effect on 4 strains (33.3%);meropenem combined with FOS could induce a synergistic effect on 5 strains(41.7%);no antagonistic effect of carbap-enems combined with FOS appeared. FOS combined with carbapenems could inhibit the biofilm of carbapenems-resistant P. aerugi-nosa(P<0.05 or P<0.01). CONCLUSIONS:The combination of carbapenems with

  4. In vitro potentiation of carbapenems with ME1071, a novel metallo-beta-lactamase inhibitor, against metallo-beta-lactamase- producing Pseudomonas aeruginosa clinical isolates.

    Science.gov (United States)

    Ishii, Yoshikazu; Eto, Maki; Mano, Yoko; Tateda, Kazuhiro; Yamaguchi, Keizo

    2010-09-01

    ME1071, a maleic acid derivative, is a novel specific inhibitor for metallo-beta-lactamases (MBL). In this study, the potentiation of ME1071 in combination with several beta-lactams was evaluated using MBL-producing Pseudomonas aeruginosa isolates. The rates of susceptibility of MBL producers to carbapenems (imipenem, biapenem, and doripenem) and ceftazidime were increased by 8 to 27% in the presence of 32 microg/ml of ME1071. The corresponding resistance rates were decreased by 13 to 46%, respectively. On the other hand, ME1071 showed weaker or no potentiation with non-MBL producers. The K(i) value of ME1071 for IMP-1 was 0.4 microM, significantly lower than the K(m) values of carbapenems for the IMP-1 enzyme. On the other hand, the K(i) value of ME1071 for VIM-2 was 120 microM, higher than the K(m) values of carbapenems for the VIM-2 enzyme. Results of this study indicate that ME1071 can potentiate the activity of ceftazidime and carbapenems against MBL-producing strains of P. aeruginosa.

  5. In vitro production of biofilm in a flow cell system in a strain of Pseudomonas aeruginosa and Staphylococcus aureus and determination of efficiency of ciprofloxacin against them

    Directory of Open Access Journals (Sweden)

    Soham Gupta

    2011-01-01

    Full Text Available Background: Microorganisms develop biofilm on various medical devices. The process is particularly relevant in public health since biofilm associated organisms are much more resistant to antibiotics and have a potential to cause infections in patients with indwelling medical devices. Materials and Methods: To determine the efficiency of an antibiotic against the biofilm it is inappropriate to use traditional technique of determining Minimum Inhibitory Concentration (MIC on the free floating laboratory phenotype. Thus we have induced formation of biofilm in two strains (Pseudomonas aeruginosa and Staphylococcus aureus, which showed heavy growth of biofilm in screening by Tube method in a flow cell system and determined their antibiotic susceptibility against ciprofloxacin by agar dilution method in the range (0.25 mg/ml to 8 mg/ml. The MIC value of ciprofloxacin for the biofilm produced organism was compared with its free form and a standard strain as control on the same plates. Observations: Both the biofilm produced strains showed a higher resistance (MIC > 8 mg/ml than its free form, which were 2 μg/ml for Pseudomonas aeruginosa and 4 mg/ml for Staphylococcus aureus. Thus biofilm can pose a threat in the patient treatment.

  6. In vitro antioxidant and DNA damage inhibition activity of aqueous extract of Lantana camara L. (Verbenaceae) leaves

    Institute of Scientific and Technical Information of China (English)

    Kokati Venkata Bhaskara Rao

    2012-01-01

    Objective: To investigate the in vitro antioxidant and DNA damage inhibition potential of aqueous extract of Lantana camara leaves. Methods: Antioxidant activity of the aqueous extract of L. camara was estimated by 2, 2-diphenyl-1-picrylhydrazyl radical scavenging assay, metal chelating activity and reducing power assay. DNA damage inhibition was performed by photolysing H2O2 by UV radiation in the presence of pBR322 and extract. Estimation of phenolic content was carried out by Folin-Ciocalteau assay. Results: Extract exhibited high antioxidant activity in DPPH radical scavenng assay (IC50= 42.66 μg/ml), metal chelating activity (IC50= 1036.4μg/ml) and reducing power assay. Extract also exhibited the complete protection of pBR322 plasmid DNA during DNA damage inhibition assay. Extract showed high phenolic content which justified the antioxidant and DNA damage inhibition properties of the plant. Conclusions:These observations emphasize that aqueous extract of L. camara possess high antioxidant and DNA damage inhibition potential, thus, the plant can be used to develop natural antioxidant compounds for therapeutic use.

  7. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming, E-mail: wsenming@126.com

    2014-01-10

    Highlight: •We first evaluated the effect of salinomycin on nasopharyngeal carcinoma (NPC). •Salinomycin could inhibit Wnt/β-catenin signaling and induce apoptosis in NPC. •So salinomycin may be a good potential candidate for the chemotherapy of NPC. -- Abstract: Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  8. Inhibition of Osteoclastogenesis and Bone Resorption in vitro and in vivo by a prenylflavonoid xanthohumol from hops.

    Science.gov (United States)

    Li, Jing; Zeng, Li; Xie, Juan; Yue, Zhiying; Deng, Huayun; Ma, Xueyun; Zheng, Chunbing; Wu, Xiushan; Luo, Jian; Liu, Mingyao

    2015-12-01

    Excessive RANKL signaling leads to superfluous osteoclast formation and bone resorption, is widespread in the pathologic bone loss and destruction. Therefore, targeting RANKL or its signaling pathway has been a promising and successful strategy for this osteoclast-related diseases. In this study, we examined the effects of xanthohumol (XN), an abundant prenylflavonoid from hops plant, on osteoclastogenesis, osteoclast resorption, and RANKL-induced signaling pathway using both in vitro and in vivo assay systems. In mouse and human, XN inhibited osteoclast differentiation and osteoclast formation at the early stage. Furthermore, XN inhibited osteoclast actin-ring formation and bone resorption in a dose-dependent manner. In ovariectomized-induced bone loss mouse model and RANKL-injection-induced bone resorption model, we found that administration of XN markedly inhibited bone loss and resorption by suppressing osteoclast activity. At the molecular level, XN disrupted the association of RANK and TRAF6, resulted in the inhibition of NF-κB and Ca(2+)/NFATc1 signaling pathway during osteoclastogenesis. As a results, XN suppressed the expression of osteoclastogenesis-related marker genes, including CtsK, Nfatc1, Trap, Ctr. Therefore, our data demonstrated that XN inhibits osteoclastogenesis and bone resorption through RANK/TRAF6 signaling pathways. XN could be a promising drug candidate in the treatment of osteoclast-related diseases such as postmenopausal osteoporosis.

  9. Ribosome-inhibiting proteins from in vitro cultures of Phytolacca dodecandra

    DEFF Research Database (Denmark)

    Thomsen, S.; Hansen, Harald S.; Nyman, U.

    1991-01-01

    Phytolacca dodecandra (L'Herit) grown in cell cultures was investigated for content of ribosome-inhibiting proteins, which was evaluated hy measuring inhibition of protein synthesis in a cell-free rat liver extract. Calli initiated from leaf, cotyledon, radicle, and hypocotyl and suspension cells...

  10. Vasoactive Intestinal Peptide Inhibits Human Small-Cell Lung Cancer Proliferation in vitro and in vivo

    Science.gov (United States)

    Maruno, Kaname; Absood, Afaf; Said, Sami I.

    1998-11-01

    Small-cell lung carcinoma (SCLC) is an aggressive, rapidly growing and metastasizing, and highly fatal neoplasm. We report that vasoactive intestinal peptide inhibits the proliferation of SCLC cells in culture and dramatically suppresses the growth of SCLC tumor-cell implants in athymic nude mice. In both cases, the inhibition was mediated apparently by a cAMP-dependent mechanism, because the inhibition was enhanced by the adenylate cyclase activator forskolin and the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine in proportion to increases in intracellular cAMP levels, and the inhibition was abolished by selective inhibition of cAMP-dependent protein kinase. If confirmed in clinical trials, this antiproliferative action of vasoactive intestinal peptide may offer a new and promising means of suppressing SCLC in human subjects, without the toxic side effects of chemotherapeutic agents.

  11. In vitro porcine brain tubulin assembly inhibition by water extract from a Chinese medicinal herb, Tripterygium hypoglaucum Hutch

    Institute of Scientific and Technical Information of China (English)

    Zi-Qin Liang; Neng Cao; Zhong-Kui Song; Xu Wang

    2006-01-01

    AIM: To investigate the effect of Tripterygium hyp-oglaucum Hutch (THH) on the assembly and disassembly process of tubulin and its possible mode of action.METHODS: In vitro porcine brain tubulin assembly assay was employed to analyze the inhibitory effects of THH at different concentrations (0.05 μg/L, 0.07 μg/L, 0.09μg/L). Colchicine (0.0025 mmol/L, 0.0050 mmol/L, 0.0075mmol/L) was used as a positive control.RESULTS: THH could significantly inhibit the assembly of isolated porcine brain tubulin at all tested concentrations.CONCLUSION: THH is capable of inducing aneuploidy in mammals via tubulin polymerization inhibition pathway and may pose a genetic risk to human beings.

  12. Monohaloacetic acid drinking water disinfection by-products inhibit follicle growth and steroidogenesis in mouse ovarian antral follicles in vitro.

    Science.gov (United States)

    Jeong, Clara H; Gao, Liying; Dettro, Tyler; Wagner, Elizabeth D; Ricke, William A; Plewa, Michael J; Flaws, Jodi A

    2016-07-01

    Water disinfection greatly reduced the incidence of waterborne diseases, but the reaction between disinfectants and natural organic matter in water leads to the formation of drinking water disinfection by-products (DBPs). DBPs have been shown to be toxic, but their effects on the ovary are not well defined. This study tested the hypothesis that monohalogenated DBPs (chloroacetic acid, CAA; bromoacetic acid, BAA; iodoacetic acid, IAA) inhibit antral follicle growth and steroidogenesis in mouse ovarian follicles. Antral follicles were isolated and cultured with either vehicle or DBPs (0.25-1.00mM of CAA; 2-15μM of BAA or IAA) for 48 and 96h. Follicle growth was measured every 24h and the media were analyzed for estradiol levels at 96h. Exposure to DBPs significantly inhibited antral follicle growth and reduced estradiol levels compared to controls. These data demonstrate that DBP exposure caused ovarian toxicity in vitro.

  13. In vitro Plasmodium falciparum drug sensitivity assay: inhibition of parasite growth by incorporation of stomatocytogenic amphiphiles into the erythrocyte membrane

    DEFF Research Database (Denmark)

    Ziegler, Hanne L; Staerk, Dan; Christensen, Jette

    2002-01-01

    culture continued to grow well in untreated erythrocytes. Thus, the antiplasmodial activity of lupeol appears to be indirect, being due to stomatocytic transformation of the host cell membrane and not to toxic effects via action on a drug target within the parasite. A number of amphiphiles that cause...... stomatocyte formation, but not those causing echinocyte formation, were shown to inhibit growth of the parasites, apparently via a mechanism similar to that of lupeol. Since antiplasmodial agents that inhibit parasite growth through erythrocyte membrane modifications must be regarded as unsuitable as leads...... for development of new antimalarial drugs, care must be exercised in the interpretation of results of screening of plant extracts and natural product libraries by an in vitro Plasmodium toxicity assay....

  14. Antagonistic Activity and Mode of Action of Phenazine-1-Carboxylic Acid, Produced by Marine Bacterium Pseudomonas aeruginosa PA31x, Against Vibrio anguillarum In vitro and in a Zebrafish In vivo Model

    Science.gov (United States)

    Zhang, Linlin; Tian, Xueying; Kuang, Shan; Liu, Ge; Zhang, Chengsheng; Sun, Chaomin

    2017-01-01

    Phenazine and its derivatives are very important secondary metabolites produced from Pseudomonas spp. and have exhibited broad-spectrum antifungal and antibacterial activities. However, till date, there are few reports about marine derived Pseudomonas and its production of phenazine metabolites. In this study, we isolated a marine Pseudomonas aeruginosa strain PA31x which produced natural product inhibiting the growth of Vibrio anguillarum C312, one of the most serious bacterial pathogens in marine aquaculture. Combining high-resolution electro-spray-ionization mass spectroscopy and nuclear magnetic resonance spectroscopy analyses, the functional compound against V. anguillarum was demonstrated to be phenazine-1-carboxylic acid (PCA), an important phenazine derivative. Molecular studies indicated that the production of PCA by P. aeruginosa PA31x was determined by gene clusters phz1 and phz2 in its genome. Electron microscopic results showed that treatment of V. anguillarum with PCA developed complete lysis of bacterial cells with fragmented cytoplasm being released to the surrounding environment. Additional evidence indicated that reactive oxygen species generation preceded PCA-induced microbe and cancer cell death. Notably, treatment with PCA gave highly significant protective activities against the development of V. anguillarum C312 on zebrafish. Additionally, the marine derived PCA was further found to effectively inhibit the growth of agricultural pathogens, Acidovorax citrulli NP1 and Phytophthora nicotianae JM1. Taken together, this study reveals that marine Pseudomonas derived PCA carries antagonistic activities against both aquacultural and agricultural pathogens, which broadens the application fields of PCA. PMID:28289406

  15. High-power helium-neon laser irradiation inhibits the growth of traumatic scars in vitro and in vivo.

    Science.gov (United States)

    Shu, Bin; Ni, Guo-Xin; Zhang, Lian-Yang; Li, Xiang-Ping; Jiang, Wan-Ling; Zhang, Li-Qun

    2013-05-01

    This study explored the inhibitory effect of the high-power helium-neon (He-Ne) laser on the growth of scars post trauma. For the in vitro study, human wound fibroblasts were exposed to the high-power He-Ne laser for 30 min, once per day with different power densities (10, 50, 100, and 150 mW/cm(2)). After 3 days of repeated irradiation with the He-Ne laser, fibroblast proliferation and collagen synthesis were evaluated. For in vivo evaluation, a wounded animal model of hypertrophic scar formation was established. At postoperative day 21, the high-power He-Ne laser irradiation (output power 120 mW, 6 mm in diameter, 30 min each session, every other day) was performed on 20 scars. At postoperative day 35, the hydroxyproline content, apoptosis rate, PCNA protein expression and FADD mRNA level were assessed. The in vitro study showed that the irradiation group that received the power densities of 100 and 150 mW/cm(2) showed decreases in the cell proliferation index, increases in the percentage of cells in the G0/G1 phase, and decreases in collagen synthesis and type I procollagen gene expression. In the in vivo animal studies, regions exposed to He-Ne irradiation showed a significant decrease in scar thickness as well as decreases in hydroxyproline levels and PCNA protein expression. Results from the in vitro and in vivo studies suggest that repeated irradiation with a He-Ne laser at certain power densities inhibits fibroblast proliferation and collagen synthesis, thereby inhibits the growth of hypertrophic scars.

  16. Overexpression of TIMP-1 mediated by recombinant adenovirus in hepatocellular carcinoma cells inhibits proliferation and invasion in vitro

    Institute of Scientific and Technical Information of China (English)

    Dong Xia; Lu-Nan Yan; Jian-Guo Xie; Yu Tong; Mao-Lin Yan; Xin-Ping Wang; Ming-Man Zhang; Lan-Ying Zhao

    2006-01-01

    BACKGROUND: Matrix metalloproteinases (MMPs) and its natural tissue inhibitors of metalloproteinases (TIMPs) are involved in cancer progression. This study was undertaken to determine the effects of overexpression of TIMP-1 on human hepatocellular carcinoma (HCC) cell growth, proliferation, and invasion. METHODS: Employing the efifcient AdEasyTM system, recombinant adenovirus AdTIMP-1 containing full-length cDNA of TIMP-1 was generated by homologous recombination and ampliifed in 293 cells. Then, human HCC cell line (HepG2) underwent gene transfection to overexpress TIMP-1 (so-called HepG-T cells). The mRNA and protein expressions of TIMP-1 were detected with RT-PCR and Western blotting, respectively. The ultrastructure was observed with a transmission electron microscope and the proliferation of HepG-T cells was determined by MTT assay and growth curve. The potential of in vitro invasion was measured with Millicell Chamber. RESULTS:The resulting AdTIMP-1 and HepG-T cells were generated and the expression of TIMP-1 was detected in vitro. The cell proliferation curves and MTT assay showed HepG-T cells' growth, and proliferation were obviously inhibited. The invasion across Matrigel-coated iflters was signiifcantly decreased compared with controls. The suppression rate of HepG-2 cells with AdhTIMP-1 transfection was 50%, and AdhTIMP-1 transfection inhibited by more than 91.6% of the invasion into the Matrigel-coated iflter (P CONCLUSIONS: TIMP-1 overexpression results in the suppression of proliferative and invasive potential of HepG2 cells in vitro. This study demonstrates the potential role of TIMP-1 as a target for liver cancer gene therapy and has laid a foundation for further study on its anticancer function.

  17. Overexpression of coxsackie and adenovirus receptor inhibit growth of human bladder cancer cell in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Lin-lin ZHANG; Da-lin HE; Xiang LI; Lei LI; Guo-dong ZHU; Dong ZHANG; Xin-yang WANG

    2007-01-01

    Aim: To study the effect of the overexpression of coxsackie and the adenovirus receptor (CAR) on the growth of the human bladder cancer cell in vitro and in vivo.Methods: A retroviral vector pLXSN-CAR expressing CAR was constructed and confirmed by restriction enzyme mapping. The pLXSN-CAR vector and con-trol vector pLXSN were transfected into the PT67 packaging cell line to generate retrovirus with high titer. The CAR-negative T24 cell was infected with the pLXSN-CAR and the pLXSN retrovirns, respectively. The positive clone cells were selected with G418 for 2 weeks. The expression level of the CAR protein was detected by Western blot assay. T24 cell growth in vitro was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTI') assay. Anchor-age-independent growth was measured by soft-agar colony formation assay. In vivo cell growth was determined by a nude mice xenograft model.Results: The pLXSN-CAR vector containing full-length CAR cDNA was successfully constructed. Western blot analysis showed that a 46 kDa specific band was found in pLXSN-CA-transfected T24 cells. MTr assay identified the growth inhibition of T24/pLXSN-CAR cells. The cell colony forming ability of T24/pLXSN-CAR cells was significantly lower than that of T24/pLXSN and parental T24 cells.There was a reduction in the tumor size in the T24/pLXSN-CAR group as com-pared with that of the T24/pLXSN group and parental T24 group.Conclusion: The overexpression of CAR in T24 bladder cancer cells can inhibit cell growth both in vitro and in vivo.

  18. Duloxetine inhibits effects of MDMA ("ecstasy" in vitro and in humans in a randomized placebo-controlled laboratory study.

    Directory of Open Access Journals (Sweden)

    Cédric M Hysek

    Full Text Available UNLABELLED: This study assessed the effects of the serotonin (5-HT and norepinephrine (NE transporter inhibitor duloxetine on the effects of 3,4-methylenedioxy-methamphetamine (MDMA, ecstasy in vitro and in 16 healthy subjects. The clinical study used a double-blind, randomized, placebo-controlled, four-session, crossover design. In vitro, duloxetine blocked the release of both 5-HT and NE by MDMA or by its metabolite 3,4-methylenedioxyamphetamine from transmitter-loaded human cells expressing the 5-HT or NE transporter. In humans, duloxetine inhibited the effects of MDMA including elevations in circulating NE, increases in blood pressure and heart rate, and the subjective drug effects. Duloxetine inhibited the pharmacodynamic response to MDMA despite an increase in duloxetine-associated elevations in plasma MDMA levels. The findings confirm the important role of MDMA-induced 5-HT and NE release in the psychotropic effects of MDMA. Duloxetine may be useful in the treatment of psychostimulant dependence. TRIAL REGISTRATION: Clinicaltrials.gov NCT00990067.

  19. Inhibiting Effect and Its Mechanism of Ibandronate on the Proliferation of Humanized NSCLC A549 Cells in Vitro

    Institute of Scientific and Technical Information of China (English)

    YAO Qiang; HUA Dong

    2014-01-01

    Objective:To explore the effect of ibandronate on the proliferation and the expression of human telomerase reverse transcriptase (hTERT) of non-small cell lung cancer (NSCLC) A549 cell line in vitro. Methods: Methyl thiazolyl tetrazolium (MTT) assay, microscope, flow cytometry (FCM) and semi-quantitative RT-PCR were employed to detect the cell proliferation, cell cycle as well as the morphological change and the expression of hTERT mRNA of A549 cell line. Results:The data showed that ibandronate could effectively inhibit the proliferation of A549 cell line in time-and concentration-dependent. Under the microscope, the lfoating cells increased gradually as the drug concentration increasing. FCM detection showed that ibandronate could induce the cell cycle stopped in G0/G1 phase and downregulation expression of hTERT. Conclusion:Ibandronate can inhibit the proliferation of A549 cell line in vitro, whose mechanism may be associated with cell cycle arrestted in phase G0/G1 and downregulation expression of hTERT.

  20. Astaxanthin ameliorates lung fibrosis in vivo and in vitro by preventing transdifferentiation, inhibiting proliferation, and promoting apoptosis of activated cells.

    Science.gov (United States)

    Wang, Meirong; Zhang, Jinjin; Song, Xiaodong; Liu, Wenbo; Zhang, Lixia; Wang, Xiuwen; Lv, Changjun

    2013-06-01

    Astaxanthin, a member of the carotenoid family, is the only known ketocarotenoid transported into the brain by transcytosis through the blood-brain barrier. However, whether astaxanthin has antifibrotic functions is unknown. In this study, we investigated the effects of astaxanthin on transforming growth factor β1-mediated and bleomycin-induced pulmonary fibrosis in vitro and in vivo. The results showed that astaxanthin significantly improved the structure of the alveoli and alleviated collagen deposition in vivo. Compared with the control group, the astaxanthin-treated groups exhibited downregulated protein expressions of α-smooth muscle actin, vimentin, hydroxyproline, and B cell lymphoma/leukemia-2 as well as upregulated protein expressions of E-cadherin and p53 in vitro and in vivo. Astaxanthin also inhibited the proliferation of activated A549 and MRC-5 cells at median inhibitory concentrations of 40 and 30 μM, respectively. In conclusion, astaxanthin could relieve the symptoms and halt the progression of pulmonary fibrosis, partly by preventing transdifferentiation, inhibiting proliferation, and promoting apoptosis of activated cells.

  1. Inhibition of TGF-β signaling enables human corneal endothelial cell expansion in vitro for use in regenerative medicine.

    Directory of Open Access Journals (Sweden)

    Naoki Okumura

    Full Text Available Corneal endothelial dysfunctions occurring in patients with Fuchs' endothelial corneal dystrophy, pseudoexfoliation syndrome, corneal endotheliitis, and surgically induced corneal endothelial damage cause blindness due to the loss of endothelial function that maintains corneal transparency. Transplantation of cultivated corneal endothelial cells (CECs has been researched to repair endothelial dysfunction in animal models, though the in vitro expansion of human CECs (HCECs is a pivotal practical issue. In this study we established an optimum condition for the cultivation of HCECs. When exposed to culture conditions, both primate and human CECs showed two distinct phenotypes: contact-inhibited polygonal monolayer and fibroblastic phenotypes. The use of SB431542, a selective inhibitor of the transforming growth factor-beta (TGF-β receptor, counteracted the fibroblastic phenotypes to the normal contact-inhibited monolayer, and these polygonal cells maintained endothelial physiological functions. Expression of ZO-1 and Na(+/K(+-ATPase maintained their subcellular localization at the plasma membrane. Furthermore, expression of type I collagen and fibronectin was greatly reduced. This present study may prove to be the substantial protocol to provide the efficient in vitro expansion of HCECs with an inhibitor to the TGF-β receptor, and may ultimately provide clinicians with a new therapeutic modality in regenerative medicine for the treatment of corneal endothelial dysfunctions.

  2. Paeonol inhibits tumor growth in gastric cancer in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    AIM:To investigate the anti-tumor effects of paeonol in gastric cancer cell proliferation and apoptosis in vitro and in vivo.METHODS:Murine gastric cancer cell line mouse forestomach carcinoma(MFC) or human gastric cancer cell line SGC-7901 was cultured in the presence or absence of paeonol.Cell proliferation was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay,and cell cycle and apoptosis by flow cytometry and TUNEL staining.Tumor growth after subcutaneous implantation of MF...

  3. Lactic acid bacteria: inhibition of angiotensin converting enzyme in vitro and in vivo

    DEFF Research Database (Denmark)

    Fuglsang, Anders; Rattray, Fergal; Nilsson, Dan

    2003-01-01

    A total of 26 strains of wild-type lactic acid bacteria, mainly belonging to Lactococcus lactis and Lactobacillus helveticus , were assayed in vitro for their ability to produce a milk fermentate with inhibitory activity towards angiotensin converting enzyme (ACE). It was clear that the test...... were pre-fed with milks fermented using two strains of Lactobacillus helveticus . An increased response to bradykinin (10 μg/kg, intravenously injected) was observed using one of these fermented milks. It is concluded that Lactobacillus helveticus produces substances which in vivo can give rise...

  4. Screening of selected pesticides for inhibition of CYP19 aromatase activity in vitro

    DEFF Research Database (Denmark)

    Vinggaard, A.M.; Hnida, C.; Breinholt, V.

    2000-01-01

    Many pesticides are able to block or activate the steroid hormone receptors and/or to affect the levels of sex hormones, thereby potentially affecting the development or expression of the male and female reproductive system or both. This emphasizes the relevance of screening pesticides for a wide......, and triadimenol were identified as weak aromatase inhibitors. In conclusion, seven out of 22 tested pesticides turned out to be weak to moderate aromatase inhibitors in vitro, indicating the relevance of elucidating the endocrine effects in vivo of these compounds....

  5. Inhibition of secondary caries in a bacterial based in vitro caries model

    OpenAIRE

    Schneider, Franziska

    2010-01-01

    The aim of this study was to evaluate the preventive effect of fluoride precipitation with calcium hydroxide on secondary caries in a bacterial based in vitro caries model. Caries-free, retained wisdom teeth were randomly divided into four groups (n=30). The enamel was cut off and cylindrical cavities 3 mm in diameter and 1,5 mm in depth were prepared on each dentine surface. The cavities of Group A and B were restored with composite (Z100) only. A fluoride solution (43,500 ppm Fˉ as magne...

  6. The Pseudomonas aeruginosa toxin L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth and induces encystment in Acanthamoeba castellanii.

    Science.gov (United States)

    Lee, Xiaoyun; Reimmann, Cornelia; Greub, Gilbert; Sufrin, Janice; Croxatto, Antony

    2012-03-01

    L-2-Amino-4-methoxy-trans-3-butenoic acid (AMB) is a toxic antimetabolite produced by the opportunistic pathogen Pseudomonas aeruginosa. To evaluate its importance as a potential virulence factor, we tested the host response towards AMB using an Acanthamoeba castellanii cell model. We found that AMB (at concentrations ≥ 0.5 mM) caused amoebal encystment in salt buffer, while inhibiting amoebal growth in rich medium in a dose-dependent manner. However, no difference in amoebal plaque formation was observed on bacterial lawns of wild type and AMB-negative P. aeruginosa strains. We thereby conclude that AMB may eventually act as a virulence factor, but only at relatively high concentrations.

  7. Modification of β-Defensin-2 by Dicarbonyls Methylglyoxal and Glyoxal Inhibits Antibacterial and Chemotactic Function In Vitro.

    Directory of Open Access Journals (Sweden)

    Janna G Kiselar

    Full Text Available Beta-defensins (hBDs provide antimicrobial and chemotactic defense against bacterial, viral and fungal infections. Human β-defensin-2 (hBD-2 acts against gram-negative bacteria and chemoattracts immature dendritic cells, thus regulating innate and adaptive immunity. Immunosuppression due to hyperglycemia underlies chronic infection in Type 2 diabetes. Hyperglycemia also elevates production of dicarbonyls methylgloxal (MGO and glyoxal (GO.The effect of dicarbonyl on defensin peptide structure was tested by exposing recombinant hBD-2 (rhBD-2 to MGO or GO with subsequent analysis by MALDI-TOF MS and LC/MS/MS. Antimicrobial function of untreated rhBD-2 vs. rhBD-2 exposed to dicarbonyl against strains of both gram-negative and gram-positive bacteria in culture was determined by radial diffusion assay. The effect of dicarbonyl on rhBD-2 chemotactic function was determined by chemotaxis assay in CEM-SS cells.MGO or GO in vitro irreversibly adducts to the rhBD-2 peptide, and significantly reduces antimicrobial and chemotactic functions. Adducts derive from two arginine residues, Arg22 and Arg23 near the C-terminus, and the N-terminal glycine (Gly1. We show by radial diffusion testing on gram-negative E. coli and P. aeruginosa, and gram-positive S. aureus, and a chemotaxis assay for CEM-SS cells, that antimicrobial activity and chemotactic function of rhBD-2 are significantly reduced by MGO.Dicarbonyl modification of cationic antimicrobial peptides represents a potential link between hyperglycemia and the clinical manifestation of increased susceptibility to infection, protracted wound healing, and chronic inflammation in undiagnosed and uncontrolled Type 2 diabetes.

  8. Evaluation of in vitro urease and lipoxygenase inhibition activity of weight reducing tablets.

    Science.gov (United States)

    Jaffary, Syed Rashid Ali; Ahmed, Syed Waseemuddin; Shakeel, Sadia; Asif, Hafiz Muhammad; Usmanghani, Khan

    2016-07-01

    Enzyme inhibition is a significant part of research in pharmaceutical field in view of the fact that these studies have directed to the innovations of drugs having remarkable performance in diverse physiological conditions. The present study was aimed to assess urease and lipoxygenase inhibitory activity of weight reducing tablets. For evaluating the urease activity indophenol method was employed using Thiourea as the model urease inhibitor. The lipoxygenase inhibition was evaluated by measuring the hydroperoxides produced in lipoxygenation reaction using a purified lipoxygenase with lionoleic acid as substrate. When formulation of the weight reducing tablets was compared at various concentrations (50, 100 and 500µg/ml). The antiurease activity and lipoxygenase inhibition activity increased in a dose dependent manner. The formulations under test have an excellent antiurease and lipoxygenase inhibition potential and prospective to be used in the cure of a variety of complications associated with the production of urease and lipoxygenase enzymes.

  9. Inhibition of somatotroph growth and growth hormone biosynthesis by activin in vitro

    DEFF Research Database (Denmark)

    Billestrup, Nils; González-Manchón, C; Potter, E

    1990-01-01

    ]methionine-labeled cells, could be observed after 24 h of activin treatment, and maximal (70%) inhibition of GH biosynthesis was observed after 3 days. Activin inhibited basal as well as GH-releasing factor (GRF)-, glucocorticoid-, and thyroid hormone-stimulated GH biosynthesis. Inhibin, which is known to reverse...... the effect of activin on FSH secretion, did not reverse the effect of activin on GH biosynthesis. Treatment of somatotrophs with activin for 3 days completely inhibited the growth-promoting effect of GRF on somatotrophs. However, no effect of activin on GRF-stimulated expression of the c-fos protooncogene...... was observed. These data demonstrate that activin, in addition to its stimulatory effect on FSH secretion, is able to inhibit both expression of GH and growth of somatotropic cells....

  10. Tumor necrosis factor alpha inhibits in vitro bovine embryo development through a prostaglandin mediated mechanism

    Directory of Open Access Journals (Sweden)

    Jackson Lauren R

    2012-03-01

    Full Text Available Abstract Mastitis or other infectious diseases have been related to reduced fertility in cattle. Inflammatory cytokines such as tumor necrosis factor α (TNFα are released in response to infection and may have negative effects on embryo development. In the current study the effect of exposure to TNFα on the development of in vitro fertilized bovine embryos was examined. Indomethacin, a prostaglandin synthesis inhibitor, was used to determine if blockade of prostaglandin synthesis would alter the effects of TNFα. Ovaries were obtained from a local abattoir and immature COC were isolated from 2-10 mm follicles, in vitro matured and fertilized. After fertilization, groups of presumptive zygotes were randomly placed into either control development medium, medium containing 25 ng/mL TNFα or medium containing 25 ng/mL TNFα plus 1 μg/mL indomethacin. The proportion of blastocysts formed was assessed at day 7 of culture. Fewer embryos exposed to TNFα alone reached the blastocyst stage (17.5 ± 2.4%, P

  11. Clitocine targets Mcl-1 to induce drug-resistant human cancer cell apoptosis in vitro and tumor growth inhibition in vivo.

    Science.gov (United States)

    Sun, Jian-Guo; Li, Hua; Li, Xia; Zeng, Xueli; Wu, Ping; Fung, Kwok-Pui; Liu, Fei-Yan

    2014-05-01

    Drug resistance is a major reason for therapy failure in cancer. Clitocine is a natural amino nucleoside isolated from mushroom and has been shown to inhibit cancer cell proliferation in vitro. In this study, we observed that clitocine can effectively induce drug-resistant human cancer cell apoptosis in vitro and inhibit tumor xenograft growth in vivo. Clitocine treatment inhibited drug-resistant human cancer cell growth in vitro in a dose- and time-dependent manner. Biochemical analysis revealed that clitocine-induced tumor growth inhibition is associated with activation of caspases 3, 8 and 9, PARP cleavage, cytochrome c release and Bax, Bak activation, suggesting that clitocine inhibits drug-resistant cancer cell growth through induction of apoptosis. Analysis of apoptosis regulatory genes indicated that Mcl-1 level was dramatically decreased after clitocine treatment. Over-expression of Mcl-1 reversed the activation of Bax and attenuated clitocine-induced apoptosis, suggesting that clitocine-induced apoptosis was at least partially by inducing Mcl-1 degradation to release Bax and Bak. Consistent with induction of apoptosis in vitro, clitocine significantly suppressed the drug-resistant hepatocellular carcinoma xenograft growth in vivo by inducing apoptosis as well as inhibiting cell proliferation. Taken together, our data demonstrated that clitocine is a potent Mcl-1 inhibitor that can effectively induce apoptosis to suppress drug-resistant human cancer cell growth both in vitro and in vivo, and thus holds great promise for further development as potentially a novel therapeutic agent to overcome drug resistance in cancer therapy.

  12. Inhibition of Quorum Sensing-Controlled Virulence Factor Production in Pseudomonas aeruginosa PAO1 by Ayurveda Spice Clove (Syzygium Aromaticum Bud Extract

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2012-03-01

    Full Text Available Quorum sensing controls the virulence determinants in most proteobacteria. In this work, the hexane, chloroform and methanol extracts of an Ayurveda spice, namely clove (Syzygium aromaticum, shown anti-quorum sensing activity. Hexane and methanol extracts of clove inhibited the response of C. violaceum CV026 to exogenously supplied N‑hexanoylhomoserine lactone, in turn preventing violacein production. Chloroform and methanol extracts of clove significantly reduced bioluminescence production by E. coli [pSB1075] grown in the presence of N-(3-oxododecanoyl-L-homoserine lactone. We demonstrated that clove extract inhibited quorum sensing-regulated phenotypes in Pseudomonas aeruginosa PA01, including expression of lecA::lux (by hexane extract, swarming (maximum inhibition by methanol extract, pyocyanin (maximum inhibition by hexane extract. This study shows that the presence of natural compounds that exhibit anti-quorum sensing activity in the clove extracts may be useful as the lead of anti-infective drugs.

  13. Inhibition of nucleoside diphosphate kinase activity by in vitro phosphorylation by protein kinase CK2. Differential phosphorylation of NDP kinases in HeLa cells in culture

    DEFF Research Database (Denmark)

    Biondi, R M; Engel, M; Sauane, M

    1996-01-01

    that in vitro protein kinase CK2 catalyzed phosphorylation of human NDPK A inhibits its enzymatic activity by inhibiting the first step of its ping-pong mechanism of catalysis: its autophosphorylation. Upon in vivo 32P labeling of HeLa cells, we observed that both human NDPKs, A and B, were autophosphorylated...

  14. Inhibition of the entomopathogenic fungus Metarhizium anisopliae in vitro by the bed bug defensive secretions (E)-2-hexenal and (E)-2-octenal

    Science.gov (United States)

    The two major aldehydes (E)-2-hexenal and (E)-2-octenal emitted as defensive secretions by bed bugs Cimex lectularius L. (Hemiptera: Cimicidae), inhibit the in vitro growth of Metarhizium anisopliae (Metsch.) Sokorin (Hypocreales: Clavicipitaceae). These chemicals inhibit fungal growth by direct con...

  15. Licochalcone A, a new antimalarial agent, inhibits in vitro growth of the human malaria parasite Plasmodium falciparum and protects mice from em>P. yoelii infection

    DEFF Research Database (Denmark)

    Chen, M; Theander, T G; Christensen, S B;

    1994-01-01

    Licochalcone A, isolated from Chinese licorice roots, inhibited the in vitro growth of both chloroquine-susceptible (3D7) and chloroquine-resistant (Dd2) Plasmodium falciparum strains in a [3H]hypoxanthine uptake assay. The growth inhibition of the chloroquine-resistant strain by licochalcone A w...

  16. Salinomycin inhibits proliferation and induces apoptosis of human nasopharyngeal carcinoma cell in vitro and suppresses tumor growth in vivo.

    Science.gov (United States)

    Wu, Danxin; Zhang, Yu; Huang, Jie; Fan, Zirong; Shi, Fengrong; Wang, Senming

    2014-01-10

    Salinomycin (Sal) is a polyether ionophore antibiotic that has recently been shown to induce cell death in various human cancer cells. However, whether salinomycin plays a functional role in nasopharyngeal carcinoma (NPC) has not been determined to date. The present study investigated the chemotherapeutic efficacy of salinomycin and its molecular mechanisms of action in NPC cells. Salinomycin efficiently inhibited proliferation and invasion of 3 NPC cell lines (CNE-1, CNE-2, and CNE-2/DDP) and activated a extensive apoptotic process that is accompanied by activation of caspase-3 and caspase-9, and decreased mitochondrial membrane potential. Meanwhile, the protein expression level of the Wnt coreceptor lipoprotein receptor related protein 6 (LRP6) and β-catenin was down-regulated, which showed that the Wnt/β-catenin signaling was involved in salinomycin-induced apoptosis of NPC cells. In a nude mouse NPC xenograft model, the anti-tumor effect of salinomycin was associated with the downregulation of β-catenin expression. The present study demonstrated that salinomycin can effectively inhibit proliferation and invasion, and induce apoptosis of NPC cells in vitro and inhibit tumor growth in vivo, probably via the inhibition of Wnt/β-catenin signaling, suggesting salinomycin as a potential candidate for the chemotherapy of NPC.

  17. Herbal extracts of Tribulus terrestris and Bergenia ligulata inhibit growth of calcium oxalate monohydrate crystals in vitro

    Science.gov (United States)

    Joshi, V. S.; Parekh, B. B.; Joshi, M. J.; Vaidya, A. B.

    2005-02-01

    A large number of people in this world are suffering from urinary stone problem. Calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) containing stones (calculi) are commonly found. In the present study, COM crystals were grown by a double diffusion gel growth technique using U-tubes. The gel was prepared from hydrated sodium metasilicate solution. The gel framework acts like a three-dimensional crucible in which the crystal nuclei are delicately held in the position of their formation, and nutrients are supplied for the growth. This technique can be utilized as a simplified screening static model to study the growth, inhibition and dissolution of urinary stones in vitro. The action of putative litholytic medicinal plants, Tribulus terrestris Linn. ( T.t) and Bergenia ligulata Linn. ( B.l.), has been studied in the growth of COM crystals. Tribulus terrestris and Bergenia ligulata are commonly used as herbal medicines for urinary calculi in India. To verify the inhibitive effect, aqueous extracts of Tribulus terrestris and Bergenia ligulata were added along with the supernatant solutions. The growth was measured and compared, with and without the aqueous extracts. Inhibition of COM crystal growth was observed in the herbal extracts. Maximum inhibition was observed in Bergenia ligulata followed by Tribulus terrestris. The results are discussed.

  18. Cell cycle inhibition therapy that targets stathmin in in vitro and in vivo models of breast cancer.

    Science.gov (United States)

    Miceli, C; Tejada, A; Castaneda, A; Mistry, S J

    2013-05-01

    Stathmin is the founding member of a family of microtubule-destabilizing proteins that have a critical role in the regulation of mitosis. Stathmin is expressed at high levels in breast cancer and its overexpression is linked to disease progression. Although there is a large body of evidence to support a role for stathmin in breast cancer progression, the validity of stathmin as a viable therapeutic target for breast cancer has not been investigated. Here, we used a bicistronic adenoviral vector that co-expresses green fluorescent protein and a ribozyme that targets stathmin messenger RNA in preclinical breast cancer models with different estrogen receptor (ER) status. We examined the effects of anti-stathmin ribozyme on the malignant phenotype of breast cancer cells in vitro and in xenograft models in vivo both as a single agent and in combination with chemotherapeutic agents. Adenovirus-mediated gene transfer of anti-stathmin ribozyme resulted in a dose-dependent inhibition of proliferation and clonogenicity associated with a G2/M arrest and increase in apoptosis in both ER-positive and ER-negative breast cancer cell lines. This inhibition was markedly enhanced when stathmin-inhibited breast cancer cells were exposed to low concentrations of taxol, which resulted in virtually complete loss of the malignant phenotype. Interestingly, breast cancer xenografts treated with low doses of anti-stathmin therapy and taxol showed regression in a majority of tumors, while some tumors stopped growing completely. In contrast, combination of anti-stathmin ribozyme and adriamycin resulted in only a modest inhibition of growth in vitro and in breast cancer xenografts in vivo. Although inhibition of tumor growth was observed in both the combination treatment groups compared with groups treated with single agent alone, combination of anti-stathmin therapy and taxol had a more profound inhibition of tumorigenicity, as both agents target the microtubule pathway. Clinically, these

  19. Celecoxib in combination with retinoid CD437 inhibits melanoma A375 cell in vitro

    Institute of Scientific and Technical Information of China (English)

    Jianwen REN; Zhenhui PENG; Birong GUO; Min PAN

    2009-01-01

    This study aimed to investigate the effects of celecoxib, synthetic retinoid 6-[3-(1-adamantyl)-4-hydroxyphenyl]-2-naphthalenecarboxylicacid (CD437)and the combination of the two on cell proliferation, apoptosis, and cycle arrest of human malignant mela-noma A375 cells. 3-(4,5-dimethylthiazol-2-yl)-2,5-di-phenyltetrazoliumbromide assay (MTT assay) was applied to determine the anti-proliferative effects of the drugs on human malignant melanoma A375 cells. Flow cytometry was performed to investigate the influence of the drugs on cell cycle and cell apoptosis. Both celecoxib and CD437 could inhibit the growth of human malignant melanoma A375 cells in a dose-dependent manner. Celecoxib at 80 μmol/L inhibited proliferation, induced apoptosis and G2/M cell cycle arrest of human malignant melanoma A375 cells after treatment for 24 h [proliferation inhibiting rate: (50.2±2.51)%, apoptosis rate: (35.91±1.80)%]. CD437 at 10μmol/L inhibited proliferation, induced apoptosis and G0/G1 cell cycle arrest of human malignant melanoma A375 cells after treatment for 24 h [proliferation inhibiting rate: (58.6±2.38)%, apoptosis rate: (28.03± 0.77)%]. Celecoxib in combination with CD437 could significantly enhance the effects of inhibiting proliferation and inducing apoptosis of human malignant melanoma A375 cells 24 h after treatment compared with the drugalone [proliferation inhibiting rate: (68.92±1.72)%, apop-tosis rate: (42.09±1.05)%, both P <0.05] and decrease the proportion of the S phase in the cell cycle. Celecoxib could inhibit the growth of human malignant melanoma A375 cells by inducing apoptosis and G2/M cycle arrest. CD437 could inhibit the growth of human malignant melanoma A375 cells by inducing apoptosis and G0/G1 cycle arrest. Celecoxib exhibited additive effects with CD437 on retarding the growth and inducing apoptosis of human malignant melanoma A375 cells. Celecoxib in combination with CD437 may become an effective method for prevention and treatment of

  20. In vitro inhibition of the replication of classical swine fever virus by porcine Mx1 protein.

    Science.gov (United States)

    He, Dan-ni; Zhang, Xiao-min; Liu, Ke; Pang, Ran; Zhao, Jin; Zhou, Bin; Chen, Pu-yan

    2014-04-01

    Classical swine fever virus (CSFV) is the causative pathogen of classical swine fever (CSF), a highly contagious disease of swine. Mx proteins are interferon-induced dynamin-like GTPases present in all vertebrates with a wide range of antiviral activities. Although Zhao et al. (2011) have reported that human MxA can inhibit CSFV replication, whether porcine Mx1 (poMx1) has anti-CSFV activity remains unknown. In this study, we generated a cell line designated PK-15/EGFP-poMx1 which expressed porcine Mx1 protein constitutively, and we observed that the proliferation of progeny virus in this cell line was significantly inhibited as measured by virus titration, indirect immune fluorescence assay, Q-PCR and Western blot. Furthermore, when PTD-poMx1 fusion protein expressed in Escherichia coli (Zhang et al., 2013) was used to treat CSFV-infected PK-15 cells, the results showed that PTD-poMx1 inhibited CSFV replication in a dose-dependent manner. Additionally, the proliferation of progeny virus was inhibited as measured by virus titration and Q-PCR. Overall, the results demonstrated that poMx1 effectively inhibited CSFV replication, suggesting that poMx1 may be a valuable therapeutic agent against CSFV infection.

  1. In vitro characterization and inhibition of the CXCR4/CXCL12 chemokine axis in human uveal melanoma cell lines

    Directory of Open Access Journals (Sweden)

    Antecka Emilia

    2007-11-01

    Full Text Available Abstract Purpose The CXCR4/CXCL12 chemokine axis may play a critical role in guiding CXCR4+ circulating malignant cells to organ specific locations that actively secrete its ligand CXCL12 (SDF-1 such as bone, brain, liver, and lungs. We sought to characterize the presence of the CXCR4/CXCL12 axis in five uveal melanoma (UM cell lines in vitro. The ability of TN14003, a synthetic peptide inhibitor that targets the CXCR4 receptor complex, to inhibit this axis was also assessed. Methods Immunocytochemistry was performed against CXCR4 to confirm expression of this chemokine receptor in all five UM cell lines. Flow cytometry was preformed to evaluate CXCR4 cell surface expression on all five UM cell lines. A proliferation assay was also used to test effects TN14003 would have on cellular proliferation. Inhibition of cellular migration by specifically inhibiting the CXCR4/CXCL12 axis with TN14003 was also investigated. The binding efficacy of TN14003 to the CXCR4 receptor was assessed through flow cytometric methods. Results The CXCR4 receptor was present on all five UM cell lines. All five cell lines expressed different relative levels of surface CXCR4. TN14003 did not affect the proliferation of the five cell lines (p > 0.05. All cell lines migrated towards the chemokine CXCL12 at a level greater than the negative control (p Conclusion Interfering with the CXCR4/CXCL12 axis, using TN14003 was shown to effectively down regulate UM cell migration in vitro. Knowing that UM expresses the CXCR4 receptor, these CXCR4+ cells may be less likely to colonize distant organs that secrete the CXCL12 ligand, if treated with an inhibitor that binds CXCR4. Further studies should be pursued in order to test TN14003 efficacy in vivo.

  2. Purification, characterization, and investigation of in vitro inhibition by metals of paraoxonase from different sheep breeds.

    Science.gov (United States)

    Erol, Kadir; Gençer, Nahit; Arslan, Mikail; Arslan, Oktay

    2013-04-01

    Paraoxonase (PON) was purified and characterized from the Merino and Kivircik sheep's blood serums by a two-step procedure using ammonium sulphate precipitation and Sepharose-4B-L-tyrosine-1-napthylamine hydrophobic interaction chromatography for the first time. On SDS-polyacyrilamide gel electrophoresis, purified human serum paraoxonase yielded a single band of 66 kDa on SDS-PAGE. The KM and Vmax were 0.482 mM and 41.348 U/mL.dak for Merino PON enzyme, 0.153 mM and 70.289 U/mL.dak for Kivircik PON, respectively. The effect of Mn(2+) , Hg(2+) , Co(2+) , Cd(2+) , Ni(2+) and Cu(2+) heavy metals on purified Merino and Kivircik serum PON in vitro was determined.

  3. In vitro inhibition effect of some coumarin compounds on purified human serum paraoxonase 1 (PON1).

    Science.gov (United States)

    Gokce, Basak; Gencer, Nahit; Arslan, Oktay; Karatas, Mert Olgun; Alici, Bulent

    2016-08-01

    Human serum paraoxonase 1 (PON1; EC 3.1.8.1) is a high-density lipoprotein associated, calcium-dependent enzyme that hydrolyses aromatic esters, organophosphates and lactones and can protect the low-density lipoprotein against oxidation. In this study, in vitro effect of some hydroxy and dihydroxy ionic coumarin derivatives (1-20) on purified PON1 activity was investigated. Among these compounds, derivatives 11-20 are water soluble. In investigated compounds, compounds 6 and 13 were found the most active (IC50 = 35 and 34 µM) for PON1, respectively. The present study has demonstrated that PON1 activity is very highly sensitive to studied coumarin derivatives.

  4. Inhibition of hepatitis B virus replication by APOBEC3G in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Yan-Chang Lei; Dong-Liang Yang; You-Hua Hao; Zheng-Mao Zhang; Yong-Jun Tian; Bao-Ju Wang; Yan Yang; Xi-Ping Zhao; Meng-Ji Lu; Fei-Li Gong

    2006-01-01

    AIM: To investigate the effect of APOBEC3G mediated antiviral activity against hepatitis B virus (HBV) in cell cultures and replication competent HBV vector-based mouse model.METHODS: The mammalian hepatoma cells Huh7 and HepG2 were cotransfected with various amounts of CMV-driven expression vector encoding APOBEC3G and replication competent 1.3 fold over-length HBV. Levels of HBsAg and HBeAg in the media of the transfected cells were determined by ELISA. The expression of HBcAg in transfected cells was detected by western blot. HBV DNA and RNA from intracellular core particles were examined by Northern and Southern blot analyses. To assess activity of the APOBEC3G in vivo, an HBV vector-based model was used in which APOBEC3G and the HBV vector were co-delivered via high-volume tail vein injection.Levels of HBsAg and HBV DNA in the sera of mice as well as HBV core-associated RNA in the liver of mice were determined by ELISA and quantitative PCR analysis respectively.RESULTS: There was a dose dependent decrease in the levels of intracellular core-associated HBV DNA and extracellular production of HBsAg and HBeAg. The levels of intracellular core-associated viral RNA also decreased,but the expression of HBcAg in transfected cells showed almost no change. Consistent with in vitro results,levels of HBsAg in the sera of mice were dramatically decreased. More than 1.5 log10 decrease in levels of serum HBV DNA and liver HBV RNA were observed in the APOBEC3G-treated groups compared with the control groups.CONCLUSION: These findings indicate that APOBEC3G could suppress HBV replication and antigen expression both in vivo and in vitro, promising an advance in treatment of HBV infection.

  5. Comparative Cytochrome P450 In Vitro Inhibition by Atypical Antipsychotic Drugs

    OpenAIRE

    Guillermo Gervasini; Caballero, Maria J.; Carrillo, Juan A.; Julio Benitez

    2013-01-01

    The goal of this study was to assess in human liver microsomes the inhibitory capacity of commonly used antipsychotics on the most prominent CYP450 drug metabolizing enzymes (CYP1A2, CYP2C9, CYP2D6, and CYP3A). Chlorpromazine was the only antipsychotic that inhibited CYP1A2 activity (IC50 = 9.5  μ M), whilst levomepromazine, chlorpromazine, and thioridazine significantly decreased CYP2D6-mediated formation of 1′-hydroxybufuralol (IC50 range, 3.5–25.5  μ M). Olanzapine inhibited CYP3A-catalyze...

  6. Identification of one peptide which inhibited infectivity of avian infectious bronchitis virus in vitro

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Purified avian infectious bronchitis virus (IBV) was used to screen a random phage display peptide library. After the fourth panning, 10 positive phages were sequenced and characterized. The phages specifically inhibited IBV infectivity in HeLa cells and blocked IBV haemagglutination. One linear peptide "GSH HRH VHS PFV" from the positive phages with the highest neutralization titer was synthesized and this peptide inhibited IBV infection in HeLa as well. The results may contribute to development of antiviral therapeutics for IBV and studying the determinants for viral and cell interaction.

  7. Inhibition of Insulin-Degrading Enzyme Does Not Increase Islet Amyloid Deposition in Vitro.

    Science.gov (United States)

    Hogan, Meghan F; Meier, Daniel T; Zraika, Sakeneh; Templin, Andrew T; Mellati, Mahnaz; Hull, Rebecca L; Leissring, Malcolm A; Kahn, Steven E

    2016-09-01

    Islet amyloid deposition in human type 2 diabetes results in β-cell loss. These amyloid deposits contain the unique amyloidogenic peptide human islet amyloid polypeptide (hIAPP), which is also a known substrate of the protease insulin-degrading enzyme (IDE). Whereas IDE inhibition has recently been demonstrated to improve glucose metabolism in mice, inhibiting it has also been shown to increase cell death when synthetic hIAPP is applied exogenously to a β-cell line. Thus, we wanted to determine whether a similar deleterious effect is observed when hIAPP is endogenously produced and secreted from islets. To address this issue, we cultured hIAPP transgenic mouse islets that have the propensity to form amyloid for 48 and 144 hours in 16.7 mM glucose in the presence and absence of the IDE inhibitor 1. At neither time interval did IDE inhibition increase amyloid formation or β-cell loss. Thus, the inhibition of IDE may represent an approach to improve glucose metabolism in human type 2 diabetes, without inducing amyloid deposition and its deleterious effects.

  8. Cyclooxgenase-2 inhibiting perfluoropoly (ethylene glycol ether theranostic nanoemulsions-in vitro study.

    Directory of Open Access Journals (Sweden)

    Sravan Kumar Patel

    Full Text Available Cylcooxgenase-2 (COX-2 expressing macrophages, constituting a major portion of tumor mass, are involved in several pro-tumorigenic mechanisms. In addition, macrophages are actively recruited by the tumor and represent a viable target for anticancer therapy. COX-2 specific inhibitor, celecoxib, apart from its anticancer properties was shown to switch macrophage phenotype from tumor promoting to tumor suppressing. Celecoxib has low aqueous solubility, which may limit its tumor inhibiting effect. As opposed to oral administration, we propose that maximum anticancer effect may be achieved by nanoemulsion mediated intravenous delivery. Here we report multifunctional celecoxib nanoemulsions that can be imaged by both near-infrared fluorescence (NIRF and (19F magnetic resonance. Celecoxib loaded nanoemulsions showed a dose dependent uptake in mouse macrophages as measured by (19F NMR and NIRF signal intensities of labeled cells. Dramatic inhibition of intracellular COX-2 enzyme was observed in activated macrophages upon nanoemulsion uptake. COX-2 enzyme inhibition was statistically equivalent between free drug and drug loaded nanoemulsion. However, nanoemulsion mediated drug delivery may be advantageous, helping to avoid systemic exposure to celecoxib and related side effects. Dual molecular imaging signatures of the presented nanoemulsions allow for future in vivo monitoring of the labeled macrophages and may help in examining the role of macrophage COX-2 inhibition in inflammation-cancer interactions. These features strongly support the future use of the presented nanoemulsions as anti-COX-2 theranostic nanomedicine with possible anticancer applications.

  9. Erosion-inhibiting effect of sodium fluoride and titanium tetrafluoride treatment in vitro

    NARCIS (Netherlands)

    Rijkom, Hans van; Ruben, J.; Vieira, A.; Huysmans, M.C.; Truin, G-J.; Mulder, J.

    2003-01-01

    The prevention of dental erosion with fluoride is still largely unknown territory. It was the aim of this study to determine the erosion-inhibiting effect of topical neutral 1% sodium fluoride (NaF) application and an application of a 4% titanium tetrafluoride (TiF4) solution compared with no treatm

  10. Methylselenol, a selenium metabolite, inhibits colon cancer cell growth in vitro and in vivo

    Science.gov (United States)

    Methylselenol is hypothesized to be a critical selenium (Se) metabolite for anticancer activity. Submicromolar methylselenol exposure inhibited cell growth and led to an increase in the G1 and G2 fractions with a concomitant drop in the S-phase, and an induction of apoptosis in cancerous colon HCT11...

  11. Serum amyloid P component inhibits influenza A virus infections: in vitro and in vivo studies

    DEFF Research Database (Denmark)

    Horvath, A; Andersen, I; Junker, K;

    2001-01-01

    . These studies were extended to comprise five mouse-adapted influenza A strains, two swine influenza A strains, a mink influenza A virus, a ferret influenza A reassortant virus, a influenza B virus and a parainfluenza 3 virus. The HA activity of all these viruses was inhibited by SAP. Western blotting showed...

  12. Inhibition of creatine kinase activity from rat cerebral cortex by D-2-hydroxyglutaric acid in vitro.

    Science.gov (United States)

    da Silva, Cleide G; Bueno, Ana Rúbia F; Schuck, Patrícia F; Leipnitz, Guilhian; Ribeiro, César A J; Rosa, Rafael B; Dutra Filho, Carlos S; Wyse, Angela T S; Wannmacher, Clóvis M D; Wajner, Moacir

    2004-01-01

    D-2-Hydroxyglutaric acid (DGA) is the biochemical hallmark of patients affected by the neurometabolic disorder known as D-2-hydroxyglutaric aciduria (DHGA). Although this disease is predominantly characterized by severe neurological findings, the underlying mechanisms of brain injury are virtually unknown. In the present study, we investigated the effect of DGA on total, cytosolic, and mitochondrial creatine kinase (CK) activities from cerebral cortex of 30-day-old Wistar rats. Total CK activity (tCK) was measured in whole cell homogenates, whereas cytosolic and mitochondrial activities were measured in the cytosolic and mitochondrial preparations from cerebral cortex. We verified that CK activities were significantly inhibited by DGA (11-34% inhibition) at concentrations as low as 0.25 mM, being the mitochondrial fraction the most affected activity. Kinetic studies revealed that the inhibitory effect of DGA was non-competitive in relation to phosphocreatine. We also observed that this inhibition was fully prevented by pre-incubation of the homogenates with reduced glutathione, suggesting that the inhibitory effect of DGA on tCK activity is possibly mediated by oxidation of essential thiol groups of the enzyme. Considering the importance of CK activity for brain metabolism homeostasis, our results suggest that inhibition of this enzyme by increased levels of DGA may be related to the neurodegeneration of patients affected by DHGA.

  13. High iron sequestrating bifidobacteria inhibit enteropathogen growth and adhesion to intestinal epithelial cells in vitro

    Directory of Open Access Journals (Sweden)

    Pamela Vazquez-Gutierrez

    2016-09-01

    Full Text Available The gut microbiota plays an important role in host health, in particular by its barrier effect and competition with exogenous pathogenic bacteria. In the present study, the competition of Bifidobacterium pseudolongum PV8-2 (Bp PV8-2 and Bifidobacterium kashiwanohense PV20-2 (Bk PV20-2, isolated from anemic infant gut microbiota and selected for their high iron sequestration properties was investigated against Salmonella Typhimurium (S. Typhi and Escherichia coli O157:H45 (EHEC by using co-culture tests and assays with intestinal cell lines. Single and co-cultures were carried out anaerobically in chemically semi-defined low iron (1.5 µM Fe medium (CSDLIM without and with added ferrous iron (30 µM Fe. Surface properties of the tested strains were measured by bacterial adhesion to solvent xylene, chloroform, ethyl acetate, and to extracellular matrix molecules, mucus II, collagen I, fibrinogen, fibronectin. HT29-MTX mucus-secreting intestinal cell cultures were used to study bifidobacteria competition, inhibition and displacement of the enteropatogens. During co-cultures in CSDLIM we observed strain-dependent inhibition of bifidobacterial strains on enteropathogens, independent of pH, organic acid production and supplemented iron. Bp PV8-2 significantly (P<0.05 inhibited S. Typhi N15 and EHEC after 24 h compared to single culture growth. In contrast Bk PV20-2 showed less inhibition on S. Typhi N15 than Bp PV8-2, and no inhibition on EHEC. Affinity for intestinal cell surface glycoproteins was strain-specific, with high affinity of Bp PV8-2 for mucin and Bk PV20-2 for fibronectin. Bk PV20-2 showed high adhesion potential (15.6 +/- 6.0 % to HT29-MTX cell layer compared to Bp PV8-2 (1.4 +/- 0.4 %. In competition, inhibition and displacement tests, Bp PV8-2 significantly (P<0.05 reduced S. Typhi N15 and EHEC adhesion, while Bk PV20-2 was only active on S. Typhi N15 adhesion. To conclude, bifidobacterial strains selected for their high iron binding

  14. Characterization of plasma cholinesterase from the White stork (Ciconia ciconia) and its in vitro inhibition by anticholinesterase pesticides.

    Science.gov (United States)

    Oropesa, Ana-Lourdes; Gravato, Carlos; Sánchez, Susana; Soler, Francisco

    2013-11-01

    Blood plasma cholinesterase (ChE) activity is a sensitive biomarker of exposure to organophosphorus (OP) and carbamate (CB) insecticides in vertebrates. Several studies indicate that more than one ChE form may be present in blood of birds. In this study the predominant ChE activity (acetylcholinesterase - AChE- or butyrylcholinesterase - BChE-), the range of ChE activity as well as ChE age-dependent changes in non-exposed individuals of White stork (Ciconia ciconia) have been established. The in vitro sensitivity of ChE to OP and CB insecticides such as paraoxon-methyl, carbofuran and carbaryl was also investigated. Plasma ChE was characterised using three substrates (acetylthiocholine iodide, propionylthiocholine iodide, and S-butyrylthiocholine iodide) and three ChE inhibitors (eserine sulphate, BW284C51 and iso-OMPA). The results indicated that propionylthiocholine was the preferred substrate by plasma cholinesterase followed by acetylcholine and butyrylcholine and the predominant enzymatic activity in plasma of White storks was BChE. Normal plasma BChE activity in White stork was 0.32±0.01μmol/min/ml for adults and 0.28±0.03μmol/min/ml for juveniles. So, the age had no significant effect on the range of BChE activity. The study on the in vitro inhibitory potential of tested anticholinesterase pesticides on plasma ChE activity revealed that paraoxon-methyl is the most potent inhibitor followed by carbofuran and finally by carbaryl. The percentage of in vitro plasma ChE inhibition was observed to be similar between adults and juveniles.

  15. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology.

    Directory of Open Access Journals (Sweden)

    Courtney M Tate

    Full Text Available Bone morphogenetic proteins (BMPs, members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.

  16. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology

    Science.gov (United States)

    Pallini, Roberto; Vakana, Eliza; Wyss, Lisa; Blosser, Wayne; Ricci-Vitiani, Lucia; D’Alessandris, Quintino Giorgio; Morgante, Liliana; Giannetti, Stefano; Maria Larocca, Luigi; Todaro, Matilde; Benfante, Antonina; Colorito, Maria Luisa; Stassi, Giorgio; De Maria, Ruggero; Rowlinson, Scott; Stancato, Louis

    2015-01-01

    Bone morphogenetic proteins (BMPs), members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v) in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC) Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis. PMID:25919028

  17. Sonoran propolis and some of its chemical constituents inhibit in vitro growth of Giardia lamblia trophozoites.

    Science.gov (United States)

    Alday-Provencio, Samuel; Diaz, Gabriela; Rascon, Lucila; Quintero, Jael; Alday, Efrain; Robles-Zepeda, Ramón; Garibay-Escobar, Adriana; Astiazaran, Humberto; Hernandez, Javier; Velazquez, Carlos

    2015-06-01

    Propolis is a cereus resin with a complex chemical composition that possesses a wide range of biological activities. The aim of this study was to evaluate the in vitro anti-Giardia lamblia activity of Sonoran propolis collected from three different areas of Sonoran Desert in northwestern Mexico (Caborca, Pueblo de Alamos, and Ures) and some of its chemical constituents. Additionally, we also analyzed the seasonal effect on the anti-G. lamblia activity of propolis. G. lamblia trophozoite cultures were treated with different concentrations of Sonoran propolis or chemical compounds during 48 h cell proliferation and cell viability were determined. Ures propolis showed the highest inhibitory activity against G. lamblia (IC50 63.8 ± 7.1 µg/mL) in a dose-dependent manner (Ures > Pueblo de Alamos > Caborca). Season had a significant effect on the in vitro anti-G. lamblia activity of Ures propolis. Summer propolis showed the highest inhibitory effect on the G. lamblia trophozoite growth (IC50 23.8 ± 2.3 µg/mL), followed by propolis collected during winter (IC50 59.2 ± 34.7 µg/mL), spring (IC50 102.5 ± 15.3 µg/mL), and autumn (IC50 125.0 ± 3.1 µg/mL). Caffeic acid phenethyl ester, an Ures propolis exclusive constituent, had the highest growth-inhibitory activity towards G. lamblia [IC50 63.1 ± 0.9 µg/mL (222.1 ± 3.2 µM)]. To our knowledge, this is the first study showing that caffeic acid phenethyl ester possesses antiparasitic activity against G. lamblia. Naringenin [IC50 125.7 ± 20.7 µg/mL (461.8 ± 76.3 µM)], hesperetin [IC50 149.6 ± 24.8 µg/mL (494.9 ± 82.2 µM)], and pinocembrin [IC50 174.4 ± 26.0 µg/mL (680.6 ± 101.7 µM)] showed weak anti-G. lamblia activity. On the other hand, chrysin and rutin did not show significant antiparasitic activity. In conclusion, our results suggest that Sonoran propolis and some of its chemical constituents had inhibitory effects on the

  18. In-vitro inhibition of IFNγ+ iTreg mediated by monoclonal antibodies against cell surface determinants essential for iTreg function

    OpenAIRE

    Daniel Volker; Sadeghi Mahmoud; Wang Haihao; Opelz Gerhard

    2012-01-01

    Abstract Background IFNγ-producing CD4+CD25+Foxp3+ PBL represent a subtype of iTreg that are associated with good long-term graft outcome in renal transplant recipients and suppress alloresponses in-vitro. To study the mechanism of immunosuppression, we attempted to block cell surface receptors and thereby inhibited the function of this iTreg subset in-vitro using monoclonal antibodies and recombinant proteins. Methods PBL of healthy control individuals were stimulated polyclonally in-vitro i...

  19. In vitro growth inhibition of intra root canal pathogenic microorganisms by Lactic Acid Bacteria, an Antibiosis method

    Directory of Open Access Journals (Sweden)

    A. Nakhjavani F.

    2008-12-01

    Full Text Available "nBackground and Aim: Elimination of microorganisms and their byproducts from root canal system is one of important aims of root canal therapy. This object is gained by using of many chemomechanical techniques but with noncertain success. A new method is used of nonpathogenic bacteria for growth inhibition of pathogenic bacteria, Antibiosis, in root canal therapy.The aim of this study was in vitro evaluation of antimicrobial effect of probiotics, such as Lactic Acid Bacteria (LAB on the infected root canal bacteria. "nMaterials and Methods: Isolated bacteria from infected root canal were grown and then scattered onto the muller Hinton agar plates which contain wells, LAB, extracted from dairy products, were added into these wells, Inhibition effected of LAB was determined. Furthermore the sample taken from the inhibition zone and possible resistant monoclonal bacteria also were identified, then 6 sensitive and 14 resistant samples were selected and E. faecalis species were added to them; Then antimicrobial effects of LAB on these samples was reevaluated. "nResults: The results showed that 66.7% of the samples were sensitive at least to one type of LAB, and 33% were resistant to all kind of LAB. Meanwhile the outgrowing anaerobic bacteria inside the inhibition zone were from the low frequency oral bacterial flora. Furthermore, adding E. faecalis to the samples caused more sensitivity of them to LAB. Mc-Neamar test recognized the difference significant. "nConclusion: This study showed that the LAB inhibit growth of the pathogenic root canal bacteriae. Furthermore, presence of E. faecalis reinforces the antimicrobial effect of LAB. It seemed that LAB maybe have potential to use in endodontic practice for elimination of root canal infections.

  20. The involvement of nitric oxide in ultraviolet-B-inhibited pollen germination and tube growth of Paulownia tomentosa in vitro.

    Science.gov (United States)

    He, Jun-Min; Bai, Xiao-Ling; Wang, Rui-Bin; Cao, Bing; She, Xiao-Ping

    2007-10-01

    The role of nitric oxide (NO) in the ultraviolet-B radiation (UV-B)-induced reduction of in vitro pollen germination and tube growth of Paulownia tomentosa Steud. was studied. Results showed that exposure of the pollen to 0.4 and 0.8 W m(-2) UV-B radiation for 2 h resulted in not only the reduction of pollen germination and tube growth but also the enhancement of NO synthase (NOS, EC 1.14.13.39) activity and NO production in pollen grain and tube. Also, exogenous NO donors sodium nitroprusside and S-nitrosoglutathione inhibited both pollen germination and tube growth in a dose-dependence manner. NOS inhibitor N(G)-nitro-l-Arg-methyl eater (l-NAME) and NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) not only largely prevented the NO generation but also partly reversed the UV-B-inhibited pollen germination and tube growth. These results indicate that UV-B radiation inhibits pollen germination and tube growth partly via promoting NO production in pollen grain and tube by a NOS-like enzyme. Additionally, a guanylyl cyclase inhibitor 6-anilino-5,8-quinolinequinone (LY-83583) prevented both the UV-B- and NO donors-inhibited pollen germination and tube growth, suggesting that the NO function is mediated by cyclic guanosine 5'-monophosphate. However, the effects of c-PTIO, l-NAME and LY-83583 on the UV-B-inhibited pollen germination and tube growth were only partial, suggesting that there are NO-independent pathways in UV-B signal networks.

  1. The involvement of nitric oxide in ultraviolet-B-inhibited pollen germination and tube growth of Paulownia tomentosa in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Jun-Min He; Xiao-Ling Bai; Rui-Bin Wang; Bing Cao; Xiao-Ping She [School of Life Sciences, Shaanxi Normal Univ., Xi' an (China)

    2007-10-15

    The role of nitric oxide (NO) in the ultraviolet-B radiation (UV-B)-induced reduction of in vitro pollen germination and tube growth of Paulownia tomentosa Steud. was studied. Results showed that exposure of the pollen to 0.4 and 0.8 W m{sup -2} UV-B radiation for 2 h resulted in not only the reduction of pollen germination and tube growth but also the enhancement of NO synthase (NOS, EC 1.14.13.39) activity and NO production in pollen grain and tube. Also, exogenous NO donors sodium nitroprusside and S-nitrosoglutathione inhibited both pollen germination and tube growth in a dose-dependence manner. NOS inhibitor NG-nitro-L-Arg-methyl eater (L-NAME) and NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO) not only largely prevented the NO generation but also partly reversed the UV-B-inhibited pollen germination and tube growth. These results indicate that UV-B radiation inhibits pollen germination and tube growth partly via promoting NO production in pollen grain and tube by a NOS-like enzyme. Additionally, a guanylyl cyclase inhibitor 6-anilino-5, 8-quinolinequinone (LY-83583) prevented both the UV-B- and NO donors-inhibited pollen germination and tube growth, suggesting that the NO function is mediated by cyclic guanosine 5'-monophosphate. However, the effects of c-PTIO, L-NAME and LY-83583 on the UV-B-inhibited pollen germination and tube growth were only partial, suggesting that there are NO-independent pathways in UV-B signal networks. (au)

  2. Oral Multiple Sclerosis Drugs Inhibit the In vitro Growth of Epsilon Toxin Producing Gut Bacterium, Clostridium perfringens

    Science.gov (United States)

    Rumah, Kareem R.; Vartanian, Timothy K.; Fischetti, Vincent A.

    2017-01-01

    There are currently three oral medications approved for the treatment of multiple sclerosis (MS). Two of these medications, Fingolimod, and Teriflunomide, are considered to be anti-inflammatory agents, while dimethyl fumarate (DMF) is thought to trigger a robust antioxidant response, protecting vulnerable cells during an MS attack. We previously proposed that epsilon toxin from the gut bacterium, Clostridium perfringens, may initiate newly forming MS lesions due to its tropism for blood-brain barrier (BBB) vasculature and central nervous system myelin. Because gut microbiota will be exposed to these oral therapies prior to systemic absorption, we sought to determine if these compounds affect C. perfringens growth in vitro. Here we show that Fingolimod, Teriflunomide, and DMF indeed inhibit C. perfringens growth. Furthermore, several compounds similar to DMF in chemical structure, namely α, β unsaturated carbonyls, also known as Michael acceptors, inhibit C. perfringens. Sphingosine, a Fingolimod homolog with known antibacterial properties, proved to be a potent C. perfringens inhibitor with a Minimal Inhibitory Concentration similar to that of Fingolimod. These findings suggest that currently approved oral MS therapies and structurally related compounds possess antibacterial properties that may alter the gut microbiota. Moreover, inhibition of C. perfringens growth and resulting blockade of epsilon toxin production may contribute to the clinical efficacy of these disease-modifying drugs. PMID:28180112

  3. Oral Multiple Sclerosis Drugs Inhibit the In vitro Growth of Epsilon Toxin Producing Gut Bacterium, Clostridium perfringens.

    Science.gov (United States)

    Rumah, Kareem R; Vartanian, Timothy K; Fischetti, Vincent A

    2017-01-01

    There are currently three oral medications approved for the treatment of multiple sclerosis (MS). Two of these medications, Fingolimod, and Teriflunomide, are considered to be anti-inflammatory agents, while dimethyl fumarate (DMF) is thought to trigger a robust antioxidant response, protecting vulnerable cells during an MS attack. We previously proposed that epsilon toxin from the gut bacterium, Clostridium perfringens, may initiate newly forming MS lesions due to its tropism for blood-brain barrier (BBB) vasculature and central nervous system myelin. Because gut microbiota will be exposed to these oral therapies prior to systemic absorption, we sought to determine if these compounds affect C. perfringens growth in vitro. Here we show that Fingolimod, Teriflunomide, and DMF indeed inhibit C. perfringens growth. Furthermore, several compounds similar to DMF in chemical structure, namely α, β unsaturated carbonyls, also known as Michael acceptors, inhibit C. perfringens. Sphingosine, a Fingolimod homolog with known antibacterial properties, proved to be a potent C. perfringens inhibitor with a Minimal Inhibitory Concentration similar to that of Fingolimod. These findings suggest that currently approved oral MS therapies and structurally related compounds possess antibacterial properties that may alter the gut microbiota. Moreover, inhibition of C. perfringens growth and resulting blockade of epsilon toxin production may contribute to the clinical efficacy of these disease-modifying drugs.

  4. Matrine inhibits the growth and induces apoptosis of osteosarcoma cells in vitro by inactivating the Akt pathway.

    Science.gov (United States)

    Xu, Gong-Ping; Zhao, Wei; Zhuang, Jin-Peng; Zu, Jia-Ning; Wang, Duan-Yang; Han, Fei; Zhang, Zhi-Peng; Yan, Jing-Long

    2015-03-01

    Matrine, a natural product, has been demonstrated to be a promising chemotherapeutic drug for some cancers. Using flow cytometric analysis of the cell cycle and apoptosis, we found that matrine inhibited the proliferation and induced apoptosis in the human osteosarcoma (OS) cell lines MG63, HOS, U2OS, and SAOS2 in vitro in a dose-dependent manner. We therefore assessed the role of the serine/threonine kinase Akt in the regulation of matrine-mediated cell growth inhibition and apoptosis induction in human OS cell lines. After treatment for 48 h, matrine induced G0/G1-stage cell cycle arrest in MG63, U2OS, and SAOS2 cells associated with an increase in the expression of p27(Kip1) and a decrease in the expression of Akt, glycogen synthase kinase 3 (GSK3)-β (Ser9), and cyclin D1. Furthermore, the pro-apoptotic factor Bax was upregulated. Overall, our findings suggest that matrine may be an effective anti-osteosarcoma drug due to its ability to inhibit proliferation and induce apoptosis in OS cells, possibly through the involvement of Akt signaling.

  5. R-(-)-{beta}-O-methylsynephrine, a natural product, inhibits VEGF-induced angiogenesis in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nam Hee [Chemical Genomics Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Pham, Ngoc Bich; Quinn, Ronald J. [Eskitis Institute, Griffith University, Brisbane, QLD 4111 (Australia); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2010-08-13

    Research highlights: {yields} R-(-)-{beta}-O-methylsynephrine (OMe-Syn) is a natural compound isolated from a plant of the Rutaceae family. {yields} OMe-Syn possesses lead-like physicochemical properties, conferring good solubility. {yields} OMe-Syn effectively inhibited VEGF-induced angiogenesis in vitro and in vivo. {yields} OMe-Syn could be a novel basis for a small molecule targeting angiogenesis. -- Abstract: R-(-)-{beta}-O-methylsynephrine (OMe-Syn) is an active compound isolated from a plant of the Rutaceae family. We conducted cell proliferation assays on various cell lines and found that OMe-Syn more strongly inhibited the growth of human umbilical vein endothelial cells (HUVECs) than that of other normal and cancer cell lines tested. In angiogenesis assays, it inhibited vascular endothelial growth factor (VEGF)-induced invasion and tube formation of HUVECs with no toxicity. The anti-angiogenic activity of OMe-Syn was also validated in vivo using the chorioallantonic membrane (CAM) assay in growing chick embryos. Expression of the growth factors VEGF, hepatocyte growth factor, and basic fibroblast growth factor was suppressed by OMe-Syn in a dose-dependent manner. Taken together, our results indicate that this compound could be a novel basis for a small molecule targeting angiogenesis.

  6. Proanthocyanidins inhibit Ascaris suum glutathione-S-transferase activity and increase susceptibility of larvae to levamisole in vitro.

    Science.gov (United States)

    Hansen, Tina V A; Fryganas, Christos; Acevedo, Nathalie; Caraballo, Luis; Thamsborg, Stig M; Mueller-Harvey, Irene; Williams, Andrew R

    2016-08-01

    Proanthocyanidins (PAC) are a class of plant secondary metabolites commonly found in the diet that have shown potential to control gastrointestinal nematode infections. The anti-parasitic mechanism(s) of PAC remain obscure, however the protein-binding properties of PAC suggest that disturbance of key enzyme functions may be a potential mode of action. Glutathione-S-transferases (GSTs) are essential for parasite detoxification and have been investigated as drug and vaccine targets. Here, we show that purified PAC strongly inhibit the activity of both recombinant and native GSTs from the parasitic nematode Ascaris suum. As GSTs are involved in detoxifying xenobiotic substances within the parasite, we hypothesised that this inhibition may render parasites hyper-susceptible to anthelmintic drugs. Migration inhibition assays with A. suum larvae demonstrated that the potency of levamisole (LEV) and ivermectin (IVM) were significantly increased in the presence of PAC purified from pine bark (4.6-fold and 3.2-fold reduction in IC50 value for LEV and IVM, respectively). Synergy analysis revealed that the relationship between PAC and LEV appeared to be synergistic in nature, suggesting a specific enhancement of LEV activity, whilst the relationship between PAC and IVM was additive rather than synergistic, suggesting independent actions. Our results demonstrate that these common dietary compounds may increase the efficacy of synthetic anthelmintic drugs in vitro, and also suggest one possible mechanism for their well-known anti-parasitic activity.

  7. Inhibiting the growth of pancreatic adenocarcinoma in vitro and in vivo through targeted treatment with designer gold nanotherapeutics.

    Directory of Open Access Journals (Sweden)

    Rachel A Kudgus

    Full Text Available BACKGROUND: Pancreatic cancer is one of the deadliest of all human malignancies with limited options for therapy. Here, we report the development of an optimized targeted drug delivery system to inhibit advanced stage pancreatic tumor growth in an orthotopic mouse model. METHODPRINCIPAL FINDINGS: Targeting specificity in vitro was confirmed by preincubation of the pancreatic cancer cells with C225 as well as Nitrobenzylthioinosine (NBMPR - nucleoside transporter (NT inhibitor. Upon nanoconjugation functional activity of gemcitabine was retained as tested using a thymidine incorporation assay. Significant stability of the nanoconjugates was maintained, with only 12% release of gemcitabine over a 24-hour period in mouse plasma. Finally, an in vivo study demonstrated the inhibition of tumor growth through targeted delivery of a low dose of gemcitabine in an orthotopic model of pancreatic cancer, mimicking an advanced stage of the disease. CONCLUSION: We demonstrated in this study that the gold nanoparticle-based therapeutic containing gemcitabine inhibited tumor growth in an advanced stage of the disease in an orthotopic model of pancreatic cancer. Future work would focus on understanding the pharmacokinetics and combining active targeting with passive targeting to further improve the therapeutic efficacy and increase survival.

  8. Pyrrolidine dithiocarbamate inhibits UVB-induced skin inflammation and oxidative stress in hairless mice and exhibits antioxidant activity in vitro.

    Science.gov (United States)

    Ivan, Ana L M; Campanini, Marcela Z; Martinez, Renata M; Ferreira, Vitor S; Steffen, Vinicius S; Vicentini, Fabiana T M C; Vilela, Fernanda M P; Martins, Frederico S; Zarpelon, Ana C; Cunha, Thiago M; Fonseca, Maria J V; Baracat, Marcela M; Georgetti, Sandra R; Verri, Waldiceu A; Casagrande, Rúbia

    2014-09-05

    Ultraviolet B (UVB) irradiation may cause oxidative stress- and inflammation-dependent skin cancer and premature aging. Pyrrolidine dithiocarbamate (PDTC) is an antioxidant and inhibits nuclear factor-κB (NF-κB) activation. In the present study, the mechanisms of PDTC were investigated in cell free oxidant/antioxidant assays, in vivo UVB irradiation in hairless mice and UVB-induced NFκB activation in keratinocytes. PDTC presented the ability to scavenge 2,2'-azinobis-(3-ethyl benzothiazoline-6-sulfonic acid) radical (ABTS), 2,2-diphenyl-1-picryl-hydrazyl radical (DPPH) and hydroxyl radical (OH); and also efficiently inhibited iron-dependent and -independent lipid peroxidation as well as chelated iron. In vivo, PDTC treatment significantly decreased UVB-induced skin edema, myeloperoxidase (MPO) activity, production of the proinflammatory cytokine interleukin-1β (IL-1β), matrix metalloproteinase-9 (MMP-9), increase of reduced glutathione (GSH) levels and antioxidant capacity of the skin tested by the ferric reducing antioxidant power (FRAP) and ABTS assays. PDTC also reduced UVB-induced IκB degradation in keratinocytes. These results demonstrate that PDTC presents antioxidant and anti-inflammatory effects in vitro, which line up well with the PDTC inhibition of UVB irradiation-induced skin inflammation and oxidative stress in mice. These data suggest that treatment with PDTC may be a promising approach to reduce UVB irradiation-induced skin damages and merits further pre-clinical and clinical studies.

  9. Combinatorial Effects of Aromatic 1,3-Disubstituted Ureas and Fluoride on In vitro Inhibition of Streptococcus mutans Biofilm Formation.

    Science.gov (United States)

    Kaur, Gurmeet; Balamurugan, P; Uma Maheswari, C; Anitha, A; Princy, S Adline

    2016-01-01

    Dental caries occur as a result of disequilibrium between acid producing pathogenic bacteria and alkali generating commensal bacteria within a dental biofilm (dental plaque). Streptococcus mutans has been reported as a primary cariogenic pathogen associated with dental caries. Emergence of multidrug resistant as well as fluoride resistant strains of S. mutans due to over use of various antibiotics are a rising problem and prompted the researchers worldwide to search for alternative therapies. In this perspective, the present study was aimed to screen selective inhibitors against ComA, a bacteriocin associated ABC transporter, involved in the quorum sensing of S. mutans. In light of our present in silico findings, 1,3-disubstituted urea derivatives which had better affinity to ComA were chemically synthesized in the present study for in vitro evaluation of S. mutans biofilm inhibition. The results revealed that 1,3-disubstituted urea derivatives showed good biofilm inhibition. In addition, synthesized compounds exhibited potent synergy with a very low concentration of fluoride (31.25-62.5 ppm) in inhibiting the biofilm formation of S. mutans without affecting the bacterial growth. Further, the results were supported by confocal laser scanning microscopy. On the whole, from our experimental results we conclude that the combinatorial application of fluoride and disubstituted ureas has a potential synergistic effect which has a promising approach in combating multidrug resistant and fluoride resistant S. mutans in dental caries management.

  10. Afatinib and its encapsulated polymeric micelles inhibits HER2-overexpressed colorectal tumor cell growth in vitro and in vivo.

    Science.gov (United States)

    Guan, Siao-Syun; Chang, Jungshan; Cheng, Chun-Chia; Luo, Tsai-Yueh; Ho, Ai-Sheng; Wang, Chia-Chi; Wu, Cheng-Tien; Liu, Shing-Hwa

    2014-07-15

    Colorectal cancer (CRC) is known as a common malignant neoplasm worldwide. The role of EGFR/HER2 in CRC is unclear. Afatinib is an irreversible EGFR/HER2 inhibitor. There were few studies of afatinib on CRC. Here, we investigated the protein levels/expressions of HER2 in sera and tumors from CRC patients and the therapeutic effect of afatinib on HER2-overexpressed CRC in vitro and in vivo. The increased HER2 levels were detected in the collected sera and tumors of patients with CRC. The serological HER2 levels were correlated with the tumor HER2 expressions in patients. Afatinib also inhibited the HER2-positive tumor cell growth and caused apoptosis in HER2-overexpressed human colorectal cancer HCT-15 cells but not in low HER2 expressed human gastric cancer MKN45 cells. In vivo study showed that afatinib reduced tumor growth in HER2-overexpressed xenografts. Moreover, afatinib-encapsulated micelles displayed higher cytotoxic activity in HCT-15 cells and were more effective for tumor growth suppression in HCT-15-induced tumor xenografts than afatinib performance alone. Taken together, these findings suggest that higher serum HER2 levels reflect the higher HER2 contents in tumors of CRC patients, and the improved afatinib-encapsulated micelles possess high therapeutic efficacy in HER2-overexpressed CRC in vitro and in vivo.

  11. The kinase-inhibitor sorafenib inhibits multiple steps of the Hepatitis C Virus infectious cycle in vitro.

    Science.gov (United States)

    Descamps, Véronique; Helle, François; Louandre, Christophe; Martin, Elodie; Brochot, Etienne; Izquierdo, Laure; Fournier, Carole; Hoffmann, Thomas W; Castelain, Sandrine; Duverlie, Gilles; Galmiche, Antoine; François, Catherine

    2015-06-01

    Hepatitis C Virus (HCV) chronic infection is a major cause of hepatocellular carcinoma. Sorafenib is the only medical treatment that has been approved for the treatment of this cancer. It is a multikinase inhibitor with anti-tumor activity against a wide variety of cancers. Sorafenib blocks angiogenesis and tumor cell proliferation through inhibition of kinases, such as VEGFR2, PDGFR, or the serine/threonine kinases RAF. Previous studies have reported an anti-HCV effect of sorafenib in vitro, but various mechanisms of action have been described. The aim of this study was to clarify the action of sorafenib on the complete HCV infectious cycle. In order to examine the action of sorafenib on all steps of the HCV infectious cycle, we used a combination of validated cell culture models, based on the HuH-7 reference cell line and primary human hepatocytes. We found that sorafenib blocks HCV infection by altering the viral entry step and the production of viral particles. Moreover, we observed that treatment with sorafenib lead to a modification of Claudin-1 expression and localization, which could partly be responsible for the anti-HCV effect. Collectively, our findings confirm the anti-HCV effect of sorafenib in vitro, while highlighting the complexity of the action of sorafenib on the HCV infectious cycle.

  12. Minocycline inhibited the pro-apoptotic effect of microglia on neural progenitor cells and protected their neuronal differentiation in vitro.

    Science.gov (United States)

    Liu, Xuqing; Su, Huanxing; Chu, Tak-Ho; Guo, Anchen; Wu, Wutian

    2013-05-10

    Neural progenitor cell (NPC) transplantation offers great potential to treat spinal cord injury (SCI), but their efficiency is limited by poor survival and neuronal differentiation after transplantation. In the injury site, microglia may become activated and participate in the inflammation reaction. In vitro studies indicated that activated microglia might impair NPC survival and neuronal differentiation, but resting microglia did not. This study investigated the potential of minocycline to modify the negative effects of activated microglia on NPCs in vitro. First, the direct effects of minocycline on NPCs were tested. The results showed that at the concentration of 10μg/ml or lower, minocycline did not affect NPC survival and proliferation, but impaired neuronal differentiation. Then microglia were activated with lipopolysaccharide (LPS) or treated with LPS plus minocycline (LPSMC), and the effects of conditioned media on NPC apoptosis and differentiation were studied. The results showed that, compared with LPS treatment group, the microglia conditioned media of LPSMC treatment group resulted in a significantly lower apoptotic rate of NPCs, and increased the neuronal differentiation of NPCs. This suggested that minocycline might inhibit the negative effects of microglia on NPCs, and have the potential to support the survival and neuronal differentiation of transplanted NPCs for SCI.

  13. LAPTM4B Down Regulation Inhibits the Proliferation, Invasion and Angiogenesis of HeLa Cells In Vitro

    Directory of Open Access Journals (Sweden)

    Fanling Meng

    2015-09-01

    Full Text Available Background/Aims: LAPTM4B (lysosome-associated protein transmembrane 4 beta is a novel oncogene with important functions in aggressive human carcinomas, including cervical cancer. However, the specific functions and internal molecular mechanisms associated with this gene in the context of cervical cancer remain unclear. Methods: In this study, we explored the effects and mechanisms of LAPTM4B on tumor growth, metastasis and angiogenesis in vitro by depletion of LAPTM4B in Hela cell. RNA interference was used to induce down regulation of LAPTM4B gene expression in Hela cells. The motility, migration potential, and proliferation of the Hela cells were measured by flow cytometry, Transwell migration assays, wound healing assays, and Cell Counting Kit-8 assays. In addition, the cell cycle analysis utilized fluorescence-activated cell sorting. Results: In this study, RNAi-mediated LAPTM4B knockdown inhibited cell growth and angiogenesis. In vitro, HeLa cells with down regulated LAPTM4B also exhibited decreased migration and invasion activity as well as significantly reduced CDK12, HIF-1α, MMP-2, MMP-9 and VEGF expression. LAPTM4B blockade significantly decreased cord lengths and branch points in a tube formation assay. Conclusions: These results suggested that LAPTM4B inactivation could be a novel therapeutic target for cervical cancer.

  14. The Effects of Berberine and Palmatine on Efflux Pumps Inhibition with Different Gene Patterns in Pseudomonas aeruginosa Isolated from Burn Infections

    Science.gov (United States)

    Aghayan, Seyed Sajjad; Kalalian Mogadam, Hamidreza; Fazli, Mozhgan; Darban-Sarokhalil, Davood; Khoramrooz, Seyed Sajjad; Jabalameli, Fereshteh; Yaslianifard, Somayeh; Mirzaii, Mehdi

    2017-01-01

    Background: Related Multidrug Resistance (MDR) to efflux pumps is a significant problem in treating infections caused by Pseudomonas aeruginosa (P. aeruginosa). Plant compounds have been identified as Pump Inhibitors (EPIs). In the current study, the potential effect of Berberine and Palmatine as EPIs were investigated on efflux pump inhibition through focusing on different gene patterns in P. aeruginosa isolated from burn infections. Methods: All isolates were collected and identified using the standard biochemical tests. Antimicrobial sensitivity was performed based on disk agar diffusion method for 12 antibiotics. MIC-MBC tests were also performed based on the broth microdilution method to detect synergistic relationship between ciprofloxacin, Berberine and Palmatine. Detection of mexA, mexB, mexC, mexD, mexE, mexF and mexX was conducted by PCR assay. Fisher’s Exact test and Logistic Regression were used as statistical tools. Results: A total of 60 P. aeruginosa isolates were collected. The highest and lowest levels of resistance were found to be respectively against clindamycin and tigecycline. Comparing the MIC with MBC distribution, it was found that Berberine and Palmatine lower the MIC-MBC level of ciprofloxacin. The PCR results indicated that the highest frequency is about MexAB-OprM operon. The statistical analysis among different gene patterns of efflux pumps showed that there were no significant relationships between the effectiveness of Berberine and Palmatine (p>0.05). Conclusion: It can be speculated that Berberine and Palmatine both act as EPIs and can be used as auxiliary treatments with the purpose of increasing the effect of available antibiotics as well as decreasing the emergence of MDR bacteria. The efficiency of these combinations should be studied further under in vivo conditions to have a more comprehensive conclusion regarding this issue. PMID:28090273

  15. Inhibition by indomethacin and aspirin of 15 hydroxy prostaglandin dehydrogenase in vitro

    DEFF Research Database (Denmark)

    Hansen, Harald S.

    1974-01-01

    15 Hydroxyprostaglandin dehydrogenase from bovine lung was purified 7.4 times to a specific activity of 1.4 mU/mg of protein. The isoelectric point was estimated at 5.4 and the molecular weight by gel filtration at 40,000. K(m) for prostaglandin E and for NAD was found to be 3.4 µM and 1.1 x 10M ...... respectively. The enzyme was inhibited by indomethacin and aspirin. The indomethacin inhibition was found to be non competitive to prostaglandin E having a K(i) = 1.4 x 10M and a K'(i) = 1.6 x 10M....

  16. Epicatechin inhibits human plasma lipid peroxidation caused by haloperidol in vitro.

    Science.gov (United States)

    Dietrich-Muszalska, Anna; Kontek, Bogdan; Olas, Beata; Rabe-Jabłońska, Jolanta

    2012-03-01

    Epicatechin belongs to flavonoids protecting cells against oxidative/nitrative stress. Oxidative/nitrative stress observed in schizophrenia may be caused partially by the treatment of patients with various antipsychotics. The aim of our study was to establish the effects of epicatechin and antipsychotics action (the first generation antipsychotic (FGA)--haloperidol and the second generation antipsychotic (SGA)--amisulpride) on peroxidation of plasma lipids in vitro. Lipid peroxidation in human plasma was measured by the level of thiobarbituric acid reactive species (TBARS). The properties of epicatechin were also compared with the action of a well characterized antioxidative commercial polyphenol-resveratrol (3,4',5-trihydroxystilbene) and quercetin (3,5,7,3',4'-pentahydroxyflavone). Amisulpride, contrary to haloperidol (after 1 and 24 h) does not significantly influence the increase of plasma TBARS level in comparison with control samples (P > 0.05). After incubation (1 and 24 h) of plasma with haloperidol in the presence of epicatechin we observed a significantly decreases the level of TBARS (P < 0.001, P < 0.001, respectively). In our other experiments, we found that epicatechin also decreased the amount of TBARS in human plasma treated with amisulpride. In conclusion, the presented results indicate that epicatechin-the major polyphenolic component of green tea reduced significantly human plasma lipid peroxidation caused by haloperidol. Moreover, epicatechin was found to be a more effective antioxidant, than the solution of pure resveratrol or quercetin.

  17. In vitro cancer cell growth inhibition and antioxidant activity of Bombax ceiba (Bombacaceae) flower extracts.

    Science.gov (United States)

    Tundis, Rosa; Rashed, Khaled; Said, Ataa; Menichini, Francesco; Loizzo, Monica R

    2014-05-01

    The flowers of Bombax ceiba were investigated for their chemical composition, antioxidant effects and antiproliferative activity against seven human cancer cell lines. The antiproliferative responses of diethyl ether (DE) and light petroleum (PE) extracts were evaluated by sulforhodamine B (SRB) assay against MCF-7, HeLa, COR-L23, C32, A375, ACHN, and LNCaP cells in comparison with a human normal cell line, 142BR. Moreover, extracts were characterized by GC-MS analysis and tested for their antioxidant properties by different in vitro systems, namely DPPH, Fe-chelating activity and beta-carotene bleaching test. Both PE and DE extracts showed the highest antiproliferative activity against human renal adenocarcinoma (ACHN) in a concentration-dependent manner. PE extract showed the highest radical scavenging activity against the DPPH radical, while DE extract was more active in the beta-carotene bleaching test. The presence of beta-sitosterol and some fatty acids may contribute to the bioactivity of B. ceiba flower extracts.

  18. Acute exposure to apolipoprotein A1 inhibits macrophage chemotaxis in vitro and monocyte recruitment in vivo

    Science.gov (United States)

    Iqbal, Asif J; Barrett, Tessa J; Taylor, Lewis; McNeill, Eileen; Manmadhan, Arun; Recio, Carlota; Carmineri, Alfredo; Brodermann, Maximillian H; White, Gemma E; Cooper, Dianne; DiDonato, Joseph A; Zamanian-Daryoush, Maryam; Hazen, Stanley L; Channon, Keith M

    2016-01-01

    Apolipoprotein A1 (apoA1) is the major protein component of high-density lipoprotein (HDL) and has well documented anti-inflammatory properties. To better understand the cellular and molecular basis of the anti-inflammatory actions of apoA1, we explored the effect of acute human apoA1 exposure on the migratory capacity of monocyte-derived cells in vitro and in vivo. Acute (20–60 min) apoA1 treatment induced a substantial (50–90%) reduction in macrophage chemotaxis to a range of chemoattractants. This acute treatment was anti-inflammatory in vivo as shown by pre-treatment of monocytes prior to adoptive transfer into an on-going murine peritonitis model. We find that apoA1 rapidly disrupts membrane lipid rafts, and as a consequence, dampens the PI3K/Akt signalling pathway that coordinates reorganization of the actin cytoskeleton and cell migration. Our data strengthen the evidence base for therapeutic apoA1 infusions in situations where reduced monocyte recruitment to sites of inflammation could have beneficial outcomes. DOI: http://dx.doi.org/10.7554/eLife.15190.001 PMID:27572261

  19. Glycopeptide analogues of PSGL-1 inhibit P-selectin in vitro and in vivo.

    Science.gov (United States)

    Krishnamurthy, Venkata R; Sardar, Mohammed Y R; Ying, Yu; Song, Xuezheng; Haller, Carolyn; Dai, Erbin; Wang, Xiaocong; Hanjaya-Putra, Donny; Sun, Lijun; Morikis, Vasilios; Simon, Scott I; Woods, Robert J; Cummings, Richard D; Chaikof, Elliot L

    2015-01-01

    Blockade of P-selectin (P-sel)/PSGL-1 interactions holds significant potential for treatment of disorders of innate immunity, thrombosis and cancer. Current inhibitors remain limited due to low binding affinity or by the recognized disadvantages inherent to chronic administration of antibody therapeutics. Here we report an efficient approach for generating glycosulfopeptide mimics of N-terminal PSGL-1 through development of a stereoselective route for multi-gram scale synthesis of the C2 O-glycan building block and replacement of hydrolytically labile tyrosine sulfates with isosteric sulfonate analogues. Library screening afforded a compound of exceptional stability, GSnP-6, that binds to human P-sel with nanomolar affinity (Kd~22 nM). Molecular dynamics simulation defines the origin of this affinity in terms of a number of critical structural contributions. GSnP-6 potently blocks P-sel/PSGL-1 interactions in vitro and in vivo and represents a promising candidate for the treatment of diseases driven by acute and chronic inflammation.

  20. In vitro growth inhibition of mastitis causing bacteria by phenolics and metal chelators

    Energy Technology Data Exchange (ETDEWEB)

    Chew, B.P.; Tjoelker, L.W.; Tanaka, T.S.

    1985-11-01

    Antimicrobial activities of three phenolic compounds and four metal chelators were tested at 0, 250, 500, and 1000 ppm in vitro against four major mastitis-causing bacteria, Streptococcus agalactiae, Staphylococcus aureus, Klebsiella pnuemoniae, and Escherichia coli. Overall, butylated hydroxyanisole and tert-butylhydroquinone showed the greatest antimicrobial activity. These phenolics were bactericidal at 250 to 500 ppm against all four bacteria tested. The butylated hydroxytoluene was bactericidal against the gram-positive bacteria but was ineffective against the coliforms. At 250 ppm, disodium ethylenediaminetetraacetic acid was bactericidal against the gram-positive bacteria but much less effective against the gram-negatives. However, diethylene-triaminepentaacetic acid was more growth inhibitory than ethylenediaminetetraacetic acid against the gram-negative bacteria and especially against Escherichia coli. All other compounds were generally much less effective or ineffective against all four microorganisms. Therefore, butylated hydroxyanisole, butylated hydroxytoluene, tert-butylhydroquinone, ethylenediaminetetraacetic acid, and diethylenetriaminepentaacetic acid may have practical implications in the prevention or treatment of bovine mastitis.

  1. (+)-Dehydroabietic Acid, an Abietane-Type Diterpene, Inhibits Staphylococcus aureus Biofilms in Vitro

    Science.gov (United States)

    Fallarero, Adyary; Skogman, Malena; Kujala, Janni; Rajaratnam, Mohanathas; Moreira, Vânia M.; Yli-Kauhaluoma, Jari; Vuorela, Pia

    2013-01-01

    Potent drugs are desperately needed to counteract bacterial biofilm infections, especially those caused by gram-positive organisms, such as Staphylococcus aureus. Moreover, anti-biofilm compounds/agents that can be used as chemical tools are also needed for basic in vitro or in vivo studies aimed at exploring biofilms behavior and functionability. In this contribution, a collection of naturally-occurring abietane-type diterpenes and their derivatives was tested against S. aureus biofilms using a platform consisting of two phenotypic assays that have been previously published by our group. Three active compounds were identified: nordehydroabietylamine (1), (+)-dehydroabietic acid (2) and (+)-dehydroabietylamine (3) that prevented biofilm formation in the low micromolar range, and unlike typical antibiotics, only 2 to 4-fold higher concentrations were needed to significantly reduce viability and biomass of existing biofilms. Compound 2, (+)-dehydroabietic acid, was the most selective towards biofilm bacteria, achieving high killing efficacy (based on log Reduction values) and it was best tolerated by three different mammalian cell lines. Since (+)-dehydroabietic acid is an easily available compound, it holds great potential to be used as a molecular probe in biofilms-related studies as well as to serve as inspirational chemical model for the development of potent drug candidates. PMID:23739682

  2. (+-Dehydroabietic Acid, an Abietane-Type Diterpene, Inhibits Staphylococcus aureus Biofilms in Vitro

    Directory of Open Access Journals (Sweden)

    Pia Vuorela

    2013-06-01

    Full Text Available Potent drugs are desperately needed to counteract bacterial biofilm infections, especially those caused by gram-positive organisms, such as Staphylococcus aureus. Moreover, anti-biofilm compounds/agents that can be used as chemical tools are also needed for basic in vitro or in vivo studies aimed at exploring biofilms behavior and functionability. In this contribution, a collection of naturally-occurring abietane-type diterpenes and their derivatives was tested against S. aureus biofilms using a platform consisting of two phenotypic assays that have been previously published by our group. Three active compounds were identified: nordehydroabietylamine (1, (+-dehydroabietic acid (2 and (+-dehydroabietylamine (3 that prevented biofilm formation in the low micromolar range, and unlike typical antibiotics, only 2 to 4-fold higher concentrations were needed to significantly reduce viability and biomass of existing biofilms. Compound 2, (+-dehydroabietic acid, was the most selective towards biofilm bacteria, achieving high killing efficacy (based on log Reduction values and it was best tolerated by three different mammalian cell lines. Since (+-dehydroabietic acid is an easily available compound, it holds great potential to be used as a molecular probe in biofilms-related studies as well as to serve as inspirational chemical model for the development of potent drug candidates.

  3. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant.

    Science.gov (United States)

    Ignatova, Zoya; Gierasch, Lila M

    2006-09-05

    Small organic molecules termed osmolytes are harnessed by a variety of cell types in a wide range of organisms to counter unfavorable physiological conditions that challenge protein stability and function. Using a well characterized reporter system that we developed to allow in vivo observations, we have explored how the osmolyte proline influences the stability and aggregation of a model aggregation-prone protein, P39A cellular retinoic acid-binding protein. Strikingly, we find that the natural osmolyte proline abrogates aggregation both in vitro and in vivo (in an Escherichia coli expression system). Importantly, proline also prevented aggregation of constructs containing exon 1 of huntingtin with extended polyglutamine tracts. Although compatible osmolytes are known to stabilize the native state, our results point to a destabilizing effect of proline on partially folded states and early aggregates and a solubilizing effect on the native state. Because proline is believed to act through a combination of solvophobic backbone interactions and favorable side-chain interactions that are not specific to a particular sequence or structure, the observed effect is likely to be general. Thus, the osmolyte proline may be protective against biomedically important protein aggregates that are hallmarks of several late-onset neurodegenerative diseases including Huntington's, Alzheimer's, and Parkinson's. In addition, these results should be of practical importance because they may enable protein expression at higher efficiency under conditions where aggregation competes with proper folding.

  4. Inhibition of Low-Grade Inflammation by Anthocyanins after Microbial Fermentation in Vitro

    Directory of Open Access Journals (Sweden)

    Sabine Kuntz

    2016-07-01

    Full Text Available The anti-inflammatory effects of anthocyanins (ACNs on vascular functions are discussed controversially because of their low bioavailability. This study was performed to determine whether microorganism (MO-fermented ACNs influence vascular inflammation in vitro. Therefore, MO growth media were supplemented with an ACN-rich grape/berry extract and growth responses of Escherichia coli, E. faecalis and H. alvei, as well as ACN fermentation were observed. MO supernatants were used for measuring the anti-inflammatory effect of MO-fermented ACNs in an epithelial-endothelial co-culture transwell system. After basolateral enrichment (240 min, endothelial cells were stimulated immediately or after 20 h with TNF-α. Afterwards, leukocyte adhesion, expression of adhesion molecules and cytokine release were measured. Results indicate that E. coli, E. faecalis and H. alvei utilized ACNs differentially concomitant with different anti-inflammatory effects. Whereas E. coli utilized ACNs completely, no anti-inflammatory effects of fermented ACNs were observed on activated endothelial cells. In contrast, ACN metabolites generated by E. faecalis and H. alvei significantly attenuated low-grade stimulated leukocyte adhesion, the expression of adhesion molecules E-selectin, VCAM-1 and ICAM-1 and cytokine secretion (IL-8 and IL-6, as well as NF-κB mRNA expression with a more pronounced effect of E. faecalis than H. alvei. Thus, MO-fermented ACNs have the potential to reduce inflammation.

  5. Chronic exposure of low dose salinomycin inhibits MSC migration capability in vitro

    OpenAIRE

    Scherzad, Agmal; Hackenberg, Stephan; FROELICH, KATRIN; RAK, KRISTEN; Hagen, Rudolf; TAEGER, JOHANNES; BREGENZER, MAXIMILLIAN; KLEINSASSER, NORBERT

    2016-01-01

    Salinomycin is a polyether antiprotozoal antibiotic that is used as a food additive, particularly in poultry farming. By consuming animal products, there may be a chronic human exposure to salinomycin. Salinomycin inhibits the differentiation of preadipocytes into adipocytes. As human mesenchymal stem cells (MSC) may differentiate into different mesenchymal cells, it thus appeared worthwhile to investigate whether chronic salinomycin exposure impairs the functional properties of MSC and induc...

  6. Amygdalin-mediated inhibition of non-small cell lung cancer cell invasion in vitro

    OpenAIRE

    Qian, Liyu; Xie, Bo; Wang, Yaguo; Qian, Jun

    2015-01-01

    Lung cancer is a common malignant tumor claiming the highest fatality worldwide for a long period of time. Unfortunately, most of the current treatment methods are still based on the characteristics of cancer cells in the primary lesion and the prognosis is often much poorer in patients with metastatic cancers. Amygdalin, a natural product of glycosides and lots of evidence shows that amygdalin can inhibit the proliferation of some kinds of cancer cells. In this study, we first obtained the h...

  7. Screening of Drugs Inhibiting In vitro Oligomerization of Cu/Zn-Superoxide Dismutase with a Mutation Causing Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Anzai, Itsuki; Toichi, Keisuke; Tokuda, Eiichi; Mukaiyama, Atsushi; Akiyama, Shuji; Furukawa, Yoshiaki

    2016-01-01

    Dominant mutations in Cu/Zn-superoxide dismutase (SOD1) gene have been shown to cause a familial form of amyotrophic lateral sclerosis (SOD1-ALS). A major pathological hallmark of this disease is abnormal accumulation of mutant SOD1 oligomers in the affected spinal motor neurons. While no effective therapeutics for SOD1-ALS is currently available, SOD1 oligomerization will be a good target for developing cures of this disease. Recently, we have reproduced the formation of SOD1 oligomers abnormally cross-linked via disulfide bonds in a test tube. Using our in vitro model of SOD1 oligomerization, therefore, we screened 640 FDA-approved drugs for inhibiting the oligomerization of SOD1 proteins, and three effective classes of chemical compounds were identified. Those hit compounds will provide valuable information on the chemical structures for developing a novel drug candidate suppressing the abnormal oligomerization of mutant SOD1 and possibly curing the disease.

  8. Inhibition of grey mould in vitro and in vivo with essential oil of fennel (Foeniculum vulgare L.

    Directory of Open Access Journals (Sweden)

    Samane MOHAMMADI

    2013-03-01

    Full Text Available The aim of the study was to determine the antifungal effects of the fennel essential oil against fungal pathogen Botrytis cinerea the causal agent of grey mould disease of tomato fruit under in vitro and in vivo conditions. Treatments consisted of five concentrations (0, 200, 400, 600 and 800 lL-1.The fennel oil had a remarkable effect on spore germination of grey mould. The growth of grey mould was completely inhibited by fennel oil at 600 and 800 lL-1.The results in vivo showed that fennel oil increased the shelf life and decreased decay rate of tomato fruits. Also, fennel essential oil positively affected on postharvest quality factors. Treated fruits with fennel oil had significantly higher titrable acidity, total soluble solids, ascorbic acid, and lycopene and -carotene content comparison to control. Thus, these results showed that fennel essential oil has impact on postharvest decay and fruit quality of tomato.

  9. Kaempferol inhibits gastric cancer tumor growth: An in vitro and in vivo study.

    Science.gov (United States)

    Song, Haibin; Bao, Junjie; Wei, Yuzhe; Chen, Yang; Mao, Xiaoguang; Li, Jianguo; Yang, Zhiwei; Xue, Yingwei

    2015-02-01

    Kaempferol, which is one of the general flavonoids, has recently been reported to suppress proliferation, induce cell cycle arrest and promote apoptosis in various human cancer cell lines. In the present study, the effect and mechanism of kaempferol on gastric cancer (GC) was examined. The results showed that kaempferol significantly inhibited the proliferation of MKN28 and SGC7901 cell lines. However, no significant inhibition in the GSE-1 normal gastric epithelial cell line in our experimental dose was detected. Additionally, significant apoptosis and G2/M phase cell cycle arrest were identified following the treatment of kaempferol. More importantly, we observed that kaempferol inhibited the growth of the tumor xenografts although no marked effects on liver, spleen or body weight were induced. The expression levels of G2/M cell cycle‑regulating factors, cyclin B1, Cdk1 and Cdc25C, were significantly reduced. In addition, kaempferol treatment markedly decreased the level of Bcl-2 concomitant with an increase in Bax expression, resulting in the upregulation of cleaved caspase-3 and -9, which promoted PARP cleavage. Kaempferol-treated cells also led to a decrease in p-Akt, p-ERK and COX-2 expression levels. The present study therefore provided evidence that kaempferol may be a therapeutic agent for GC.

  10. Discovery of gramine derivatives that inhibit the early stage of EV71 replication in vitro.

    Science.gov (United States)

    Wei, Yanhong; Shi, Liqiao; Wang, Kaimei; Liu, Manli; Yang, Qingyu; Yang, Ziwen; Ke, Shaoyong

    2014-01-01

    Enterovirus 71 (EV71) is a notable causative agent of hand, foot, and mouth disease in children, which is associated with an increased incidence of severe neurological disease and death, yet there is no specific treatment or vaccine for EV71 infections. In this study, the antiviral activity of gramine and 21 gramine derivatives against EV71 was investigated in cell-based assays. Eighteen derivatives displayed some degree of inhibitory effects against EV71, in that they could effectively inhibit virus-induced cytopathic effects (CPEs), but the anti-EV71 activity of the lead compound gramine was not observed. Studies on the preliminary modes of action showed that these compounds functioned by targeting the early stage of the EV71 lifecycle after viral entry, rather than inactivating the virus directly, inhibiting virus adsorption or affecting viral release from the cells. Among these derivatives, one (compound 4s) containing pyridine and benzothiazole units showed the most potency against EV71. Further studies demonstrated that derivative 4s could profoundly inhibit viral RNA replication, protein synthesis, and virus-induced apoptosis in RD cells. These results indicate that derivative 4s might be a feasible therapeutic agent against EV71 infection and that these gramine derivatives may provide promising lead scaffolds for the further design and synthesis of potential antiviral agents.

  11. FAK Inhibition Decreases Hepatoblastoma Survival Both In Vitro and In Vivo12

    Science.gov (United States)

    Gillory, Lauren A; Stewart, Jerry E; Megison, Michael L; Nabers, Hugh C; Mroczek-Musulman, Elizabeth; Beierle, Elizabeth A

    2013-01-01

    Hepatoblastoma is the most frequently diagnosed liver tumor of childhood, and children with advanced, metastatic or relapsed disease have a disease-free survival rate under 50%. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is important in many facets of tumor development and progression. FAK has been found in other pediatric solid tumors and in adult hepatocellular carcinoma, leading us to hypothesize that FAK would be present in hepatoblastoma and would impact its cellular survival. In the current study, we showed that FAK was present and phosphorylated in human hepatoblastoma tumor specimens. We also examined the effects of FAK inhibition upon hepatoblastoma cells using a number of parallel approaches to block FAK including RNAi and small molecule FAK inhibitors. FAK inhibition resulted in decreased cellular survival, invasion, and migration and increased apoptosis. Further, small molecule inhibition of FAK led to decreased tumor growth in a nude mouse xenograft model of hepatoblastoma. The findings from this study will help to further our understanding of the regulation of hepatoblastoma tumorigenesis and may provide desperately needed novel therapeutic strategies and targets for aggressive, recurrent, or metastatic hepatoblastomas. PMID:23544173

  12. Comparison between synthetic retinoid CD437 and acitretin inhibiting melanoma A375 cell in vitro

    Institute of Scientific and Technical Information of China (English)

    Jianwen Ren; Zhenhui Peng; Min Pan; Birong Guo; Yan Liu; Xianglan Wang

    2008-01-01

    Objective: To investigate the effects of synthetic retinoid CD437 and acitretin on cell proliferation, apoptosis, cycle arrest and Bax/Bcl-2 protein expression of melanoma A375 cell. Methods:MTT assay was used to determine the anti-proliferative effects of CD437 and acitretin on melanoma A375 cell. Flow cytometry was performed to investigate the influence of CD437 and acitretin on cell cycle and cell apoptosis. SABC immunocytochemistry was employed for detection of Bax/bcl-2 protein expressions. Results:10-5 mol/L CD437 was more effective than acitretin in inhibiting proliferation and inducing apoptosis of A375 cell after 24 h treatment, growth inhibiting ratio and apoptosis ratio(58.6%vs43.25% and 28.03%vs17.13%, P < 0.05 respectively). CD437 promoted G0/G1 arrest in melanoma A375 cell, however acitretin could not. CD437 and acitretin could up-regulate the expression of Bax protein and downregulate the expression of bcl-2 protein(P< 0.05). Conclusion:CD437 is more effective than acitretin in inhibiting proliferation and inducing apoptosis and cycle arrest on A375 cell. CD437 may have more potentialities than acitretin for subsidiary treatment of melanoma. Mitochondrial apoptosis pathway is partially involved in two drugs inducing apoptosis on A375 cell.

  13. Tetramethylpyrazine Inhibits Activation of Hepatic Stellate Cells through Hedgehog Signaling Pathways In Vitro

    Directory of Open Access Journals (Sweden)

    Jue Hu

    2015-01-01

    Full Text Available Background and Aim. Tetramethylpyrazine (TMP, a major alkaloid isolated from Ligusticum chuanxiong, has been reported in hepatic fibrosis models. However, the action mechanism remains unclear. In the present study, effects of tetramethylpyrazine (TMP against hepatic stellate cell (HSC activation as well as the possible mechanisms were evaluated. Methods. Western blot assay was used to detect TMP effects on protein expression of Smo, Patched, Hhip, and Gli and to investigate the effects of TMP on Cyclin D1, Cyclin E1, CDK2, Bcl-2, Bax, and caspase expression with cyclopamine supplementation. Results. Our results showed that TMP significantly inhibits the expression of Cyclin D1, Cyclin E1, and Cyclin-dependent kinase CDK2 and changes the HSC cycle by inhibiting the proliferation of HSC. Moreover, TMP has also been shown to decrease the expression of Bcl-2 and increase the expression of Bax in HSC-T6 cells. Furthermore, TMP can inhibit the expression of connective tissue growth factor (CTGF, and the inhibitory effect was intensified after the application of joint treatment with TMP and cyclopamine. Conclusion. TMP may be an effective Hh signaling pathway inhibitor for hepatic fibrosis treatment.

  14. COX-2 inhibition is neither necessary nor sufficient for celecoxib to suppress tumor cell proliferation and focus formation in vitro

    Directory of Open Access Journals (Sweden)

    Petasis Nicos A

    2008-05-01

    Full Text Available Abstract Background An increasing number of reports is challenging the notion that the antitumor potential of the selective COX-2 inhibitor celecoxib (Celebrex® is mediated primarily via the inhibition of COX-2. We have investigated this issue by applying two different analogs of celecoxib that differentially display COX-2-inhibitory activity: the first analog, called unmethylated celecoxib (UMC, inhibits COX-2 slightly more potently than its parental compound, whereas the second analog, 2,5-dimethyl-celecoxib (DMC, has lost the ability to inhibit COX-2. Results With the use of glioblastoma and pancreatic carcinoma cell lines, we comparatively analyzed the effects of celecoxib, UMC, and DMC in various short-term (≤48 hours cellular and molecular studies, as well as in long-term (≤3 months focus formation assays. We found that DMC exhibited the most potent antitumor activity; celecoxib was somewhat less effective, and UMC clearly displayed the overall weakest antitumor potential in all aspects. The differential growth-inhibitory and apoptosis-stimulatory potency of these compounds in short-term assays did not at all correlate with their capacity to inhibit COX-2, but was closely aligned with their ability to trigger endoplasmic reticulum stress (ERS, as indicated by the induction of the ERS marker CHOP/GADD153 and activation of the ERS-associated caspase 7. In addition, we found that these compounds were able to restore contact inhibition and block focus formation during long-term, chronic drug exposure of tumor cells, and this was achieved at sub-toxic concentrations in the absence of ERS or inhibition of COX-2. Conclusion The antitumor activity of celecoxib in vitro did not involve the inhibition of COX-2. Rather, the drug's ability to trigger ERS, a known effector of cell death, might provide an alternative explanation for its acute cytotoxicity. In addition, the newly discovered ability of this drug to restore contact inhibition and

  15. Screening for lactic acid bacteria capable of inhibiting Campylobacter jejuni in in vitro simulations of the broiler chicken caecal environment.

    Science.gov (United States)

    Robyn, J; Rasschaert, G; Messens, W; Pasmans, F; Heyndrickx, M

    2012-12-01

    Thermotolerant Campylobacter spp., specifically Campylobacter jejuni and Campylobacter coli, are the most common bacterial causes of human gastroenteritis in developed countries. Consumption of improperly prepared poultry products and cross contamination are among the main causes of human campylobacteriosis. The aim of this study was to identify lactic acid bacterial (LAB) strains capable of inhibiting C. jejuni growth in initial in vitro trials ('spot-on-lawn' method), as well as in batch fermentation studies mimicking the broiler caecal environment. These experiments served as an indication for using these strains to decrease the capability of Campylobacter to colonise and grow in the chicken caeca during primary production, with the aim of reducing the number of human campylobacteriosis cases. A total of 1,150 LAB strains were screened for anti-Campylobacter activity. Six strains were selected: members of the species Lactobacillus reuteri, Lactobacillus agilis, Lactobacillus helveticus, Lactobacillus salivarius, Enterococcus faecalis and Enterococcus faecium. After treatment with catalase, proteinase K and a-chymotrypsin, anti-Campylobacter activity of cell-free culture supernatant fluid (CSF) for all six strains was retained, which indicated that activity was probably not exerted by bacteriocin production. Based on the activity found in CSF, the compounds produced by the selected strains are secreted and do not require presence of live bacterial producer cells for activity. During initial in vitro fermentation experiments, the E. faecalis strain exhibited the highest inhibitory activity for C. jejuni and was selected for further fermentation experiments. In these experiments we tested for therapeutic or protective effects of the E. faecalis strain against C. jejuni MB 4185 infection under simulated broiler caecal growth conditions. The best inhibition results were obtained when E. faecalis was inoculated before the C. jejuni strain, lowering C. jejuni counts at

  16. Curcumin-loaded apotransferrin nanoparticles provide efficient cellular uptake and effectively inhibit HIV-1 replication in vitro.

    Directory of Open Access Journals (Sweden)

    Upendhar Gandapu

    Full Text Available BACKGROUND: Curcumin (diferuloylmethane shows significant activity across a wide spectrum of conditions, but its usefulness is rather limited because of its low bioavailability. Use of nanoparticle formulations to enhance curcumin bioavailability is an emerging area of research. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, curcumin-loaded apotransferrin nanoparticles (nano-curcumin prepared by sol-oil chemistry and were characterized by electron and atomic force microscopy. Confocal studies and fluorimetric analysis revealed that these particles enter T cells through transferrin-mediated endocytosis. Nano-curcumin releases significant quantities of drug gradually over a fairly long period, ∼50% of curcumin still remaining at 6 h of time. In contrast, intracellular soluble curcumin (sol-curcumin reaches a maximum at 2 h followed by its complete elimination by 4 h. While sol-curcumin (GI(50 = 15.6 µM is twice more toxic than nano-curcumin (GI(50 = 32.5 µM, nano-curcumin (IC(50<1.75 µM shows a higher anti-HIV activity compared to sol-curcumin (IC(50 = 5.1 µM. Studies in vitro showed that nano-curcumin prominently inhibited the HIV-1 induced expression of Topo II α, IL-1β and COX-2, an effect not seen with sol-curcumin. Nano-curcumin did not affect the expression of Topoisomerase II β and TNF α. This point out that nano-curcumin affects the HIV-1 induced inflammatory responses through pathways downstream or independent of TNF α. Furthermore, nano-curcumin completely blocks the synthesis of viral cDNA in the gag region suggesting that the nano-curcumin mediated inhibition of HIV-1 replication is targeted to viral cDNA synthesis. CONCLUSION: Curcumin-loaded apotransferrin nanoparticles are highly efficacious inhibitors of HIV-1 replication in vitro and promise a high potential for clinical usefulness.

  17. Incorporation of Allium sativum in yogurt: In vitro study on inhibition of diabetes- and hypertension-associated enzymes

    Directory of Open Access Journals (Sweden)

    Shabboo Amirdivani Amirdivani

    2015-06-01

    Full Text Available The effects of inclusion of Allium sativum on yogurt formation and subsequent storage (4°C, up to 28 days on proteolysis, microbial activity, the inhibition of a-amylase, a-glucosidase and angiotensin-1 converting enzyme (ACE-1 in vitro were investigated. A. sativum-yogurt showed higher rates of pH reduction and increment of TA than plain-yogurt during incubation at 41°C. Highest proteolysis,  on day 7 showed in A. sativum-yogurt (62.7±0.80 mg/mL, which was 2-flod higher than plain yogurt (31.0±0.96 mg/mL. Bacterial counts in A.sativum-yogurt were higher for Lactobacillus spp. but lower for S. thermophillus (p<0.05 compared to those in plain yogurt throughout refrigerated storage. Highest inhibitory activities for α-amylase were recorded on day 14 of storage for A. sativum- and plain-yogurts (IC50= 13.7±1.99and 26.3±2.15mg respectively; p<0.05 and on day 7 for α-glucosidase (IC50= 120.7±22.71 and 192.3±33.24mg respectively; p<0.05. The highest anti-ACE-I activity was observed on day 7 of refrigerated storage with A. sativum-yogurt (IC50=6.9±0.23mg being more potent than plain-yogurt (IC50=9.7±0.12mg; p<0.05. A. sativum-yogurt was not favoured for overall aroma, sourness and bitterness in the sensory evaluations but recorded the same overall preference as plain yogurt. A. sativum enhanced the fermentation of yogurt in favour of the population of Lactobacillus spp, stimulated proteolysis of milk proteins and increased the in vitro inhibition of key enzymes associated with diabetes and hypertension.

  18. L-carnitine is an endogenous HDAC inhibitor selectively inhibiting cancer cell growth in vivo and in vitro.

    Directory of Open Access Journals (Sweden)

    Hongbiao Huang

    Full Text Available L-carnitine (LC is generally believed to transport long-chain acyl groups from fatty acids into the mitochondrial matrix for ATP generation via the citric acid cycle. Based on Warburg's theory that most cancer cells mainly depend on glycolysis for ATP generation, we hypothesize that, LC treatment would lead to disturbance of cellular metabolism and cytotoxicity in cancer cells. In this study, Human hepatoma HepG2, SMMC-7721 cell lines, primary cultured thymocytes and mice bearing HepG2 tumor were used. ATP content was detected by HPLC assay. Cell cycle, cell death and cell viability were assayed by flow cytometry and MTS respectively. Gene, mRNA expression and protein level were detected by gene microarray, Real-time PCR and Western blot respectively. HDAC activities and histone acetylation were detected both in test tube and in cultured cells. A molecular docking study was carried out with CDOCKER protocol of Discovery Studio 2.0 to predict the molecular interaction between L-carnitine and HDAC. Here we found that (1 LC treatment selectively inhibited cancer cell growth in vivo and in vitro; (2 LC treatment selectively induces the expression of p21(cip1 gene, mRNA and protein in cancer cells but not p27(kip1; (4 LC increases histone acetylation and induces accumulation of acetylated histones both in normal thymocytes and cancer cells; (5 LC directly inhibits HDAC I/II activities via binding to the active sites of HDAC and induces histone acetylation and lysine-acetylation accumulation in vitro; (6 LC treatment induces accumulation of acetylated histones in chromatin associated with the p21(cip1 gene but not p27(kip1 detected by ChIP assay. These data support that LC, besides transporting acyl group, works as an endogenous HDAC inhibitor in the cell, which would be of physiological and pathological importance.

  19. Impact of repeated nicotine and alcohol coexposure on in vitro and in vivo chlorpyrifos dosimetry and cholinesterase inhibition.

    Science.gov (United States)

    Lee, S; Poet, T S; Smith, J N; Hjerpe, A L; Gunawan, R; Timchalk, C

    2011-01-01

    Chlorpyrifos (CPF) is an organophosphorus insecticide, and neurotoxicity results from inhibition of acetylcholinesterase (AChE) by its metabolite, chlorpyrifos-oxon. Routine consumption of alcohol and tobacco modifies metabolic and physiological processes impacting the metabolism and pharmacokinetics of other xenobiotics, including pesticides. This study evaluated the influence of repeated ethanol and nicotine coexposure on in vivo CPF dosimetry and cholinesterase (ChE) response (ChE- includes AChE and/or butyrylcholinesterase (BuChE)). Hepatic microsomes were prepared from groups of naive, ethanol-only (1 g/kg/d, 7 d, po), and ethanol + nicotine (1 mg/kg/d 7 d, sc)-treated rats, and the in vitro metabolism of CPF was evaluated. For in vivo studies, rats were treated with saline or ethanol (1 g/kg/d, po) + nicotine (1 mg/kg/d, sc) in addition to CPF (1 or 5 mg/kg/d, po) for 7 d. The major CPF metabolite, 3,5,6-trichloro-2-pyridinol (TCPy), in blood and urine and the plasma ChE and brain acetylcholinesterase (AChE) activities were measured in rats. There were differences in pharmacokinetics, with higher TCPy peak concentrations and increased blood TCPy AUC in ethanol + nicotine groups compared to CPF only (approximately 1.8- and 3.8-fold at 1 and 5 mg CPF doses, respectively). Brain AChE activities after ethanol + nicotine treatments showed significantly less inhibition following repeated 5 mg CPF/kg dosing compared to CPF only (96 ± 13 and 66 ± 7% of naive at 4 h post last CPF dosing, respectively). Although brain AChE activity was minimal inhibited for the 1-mg CPF/kg/d groups, the ethanol + nicotine pretreatment resulted in a similar trend (i.e., slightly less inhibition). No marked differences were observed in plasma ChE activities due to the alcohol + nicotine treatments. In vitro, CPF metabolism was not markedly affected by repeated ethanol or both ethanol + nicotine exposures. Compared with a previous study of nicotine and CPF exposure, there were no

  20. Thiopurine drugs azathioprine and 6-mercaptopurine inhibit Mycobacterium paratuberculosis growth in vitro.

    Science.gov (United States)

    Shin, Sung Jae; Collins, Michael T

    2008-02-01

    The in vitro susceptibility of human- and bovine-origin Mycobacterium paratuberculosis to the thioupurine drugs 6-mercaptopurine (6-MP) and azathioprine (AZA) was established using conventional plate counting methods and the MGIT 960 ParaTB culture system. Both 6-MP and AZA had antibacterial activity against M. paratuberculosis; isolates from Crohn's disease patients tended to be more susceptible than were bovine-origin isolates. Isolates of Mycobacterium avium, used as controls, were generally resistant to both AZA and 6-MP, even at high concentrations (> or =64.0 microg/ml). Among rapidly growing mycobacteria, Mycobacterium phlei was susceptible to 6-MP and AZA whereas Mycobacterium smegmatis strains were not. AZA and 6-MP limited the growth of, but did not kill, M. paratuberculosis in a dose-dependent manner. Anti-inflammatory drugs in the sulfonamide family (sulfapyridine, sulfasalazine, and 5-aminosalycilic acid [mesalamine]) had little or no antibacterial activity against M. paratuberculosis. The conventional antibiotics azithromycin and ciprofloxacin, used as control drugs, were bactericidal for M. paratuberculosis, exerting their killing effects on the organism relatively quickly. Simultaneous exposure of M. paratuberculosis to 6-MP and ciprofloxacin resulted in significantly higher CFU than use of ciprofloxacin alone. These data may partially explain the paradoxical response of Crohn's disease patients infected with M. paratuberculosis to treatment with immunosuppressive thiopurine drugs, i.e., they do not worsen with anti-inflammatory treatment as would be expected with a microbiological etiologic pathogen. These findings also should influence the design of therapeutic trials to evaluate antibiotic treatments of Crohn's disease: AZA drugs may confound interpretation of data on therapeutic responses for both antibiotic-treated and control groups.

  1. Phosphodiesterase7 Inhibition Activates Adult Neurogenesis in Hippocampus and Subventricular Zone In Vitro and In Vivo.

    Science.gov (United States)

    Morales-Garcia, Jose A; Echeverry-Alzate, Victor; Alonso-Gil, Sandra; Sanz-SanCristobal, Marina; Lopez-Moreno, Jose A; Gil, Carmen; Martinez, Ana; Santos, Angel; Perez-Castillo, Ana

    2017-02-01

    The phosphodiesterase 7 (PDE7) enzyme is one of the enzymes responsible for controlling intracellular levels of cyclic adenosine 3',5'-monophosphate in the immune and central nervous system. We have previously shown that inhibitors of this enzyme are potent neuroprotective and anti-inflammatory agents. In addition, we also demonstrated that PDE7 inhibition induces endogenous neuroregenerative processes toward a dopaminergic phenotype. Here, we show that PDE7 inhibition controls stem cell expansion in the subgranular zone of the dentate gyrus of the hippocampus (SGZ) and the subventricular zone (SVZ) in the adult rat brain. Neurospheres cultures obtained from SGZ and SVZ of adult rats treated with PDE7 inhibitors presented an increased proliferation and neuronal differentiation compared to control cultures. PDE7 inhibitors treatment of neurospheres cultures also resulted in an increase of the levels of phosphorylated cAMP response element binding protein, suggesting that their effects were indeed mediated through the activation of the cAMP/PKA signaling pathway. In addition, adult rats orally treated with S14, a specific inhibitor of PDE7, presented elevated numbers of proliferating progenitor cells, and migrating precursors in the SGZ and the SVZ. Moreover, long-term treatment with this PDE7 inhibitor shows a significant increase in newly generated neurons in the olfactory bulb and the hippocampus. Also a better performance in memory tests was observed in S14 treated rats, suggesting a functional relevance for the S14-induced increase in SGZ neurogenesis. Taken together, our results indicate for the first time that inhibition of PDE7 directly regulates proliferation, migration and differentiation of neural stem cells, improving spatial learning and memory tasks. Stem Cells 2017;35:458-472.

  2. CD81 Inhibits the Proliferation of Astrocytes by Inducing G_0/G_1 Arrest In Vitro

    Institute of Scientific and Technical Information of China (English)

    马俊芳; 刘仁刚; 彭会明; 周洁萍; 李海朋

    2010-01-01

    Astrocytes play a major role in the reactive processes in response to neuronal injuries in the brain.Excessive gliosis is detrimental and can contribute to neuronal damage.CD81(TAPA),a member of the tetraspanin family of proteins,is upregulated by astrocytes after traumatic injury to the rat central nervous system(CNS).To further understand the role of CD81 in the inhibition of astrocytes,we analyzed the effects of a CD81 antibody,on cultured rat astrocytes.The results indicated that the effect worked in a ...

  3. In vitro inhibition effect of some dihydroxy coumarin compounds on purified human serum paraoxonase 1 (PON1).

    Science.gov (United States)

    Erzengin, Mahmut; Basaran, Ismet; Cakir, Umit; Aybey, Aynur; Sinan, Selma

    2012-11-01

    Human serum paraoxonase 1 (PON1; EC 3.1.8.1) is a high-density lipoprotein associated, calcium-dependent enzyme that hydrolyses aromatic esters, organophosphates and lactones and can protect the low-density lipoprotein against oxidation. In this study, in vitro inhibition effect of some dihydroxy coumarin compounds namely 6,7-dihydroxy-3-(2-methylphenyl)-2H-chromen-2-one (A), 6,7-dihydroxy-3-(3-methylphenyl)-2H-chromen-2-one (B) and 6,7-dihydroxy-3-(4-methylphenyl)-2H-chromen-2-one (C) on purified PON1 were investigated by using paraoxon as a substrate. PON1 was purified using two-step procedures, namely ammonium sulphate precipitation and Sepharose-4B-L-tyrosine-1-naphthylamine hydrophobic interaction chromatography. The purified enzyme had a specific activity of 11.76 U/mg. The dihydroxy coumarin derivatives of A and B compounds inhibited PON1 enzyme activity in a noncompetitive inhibition manner with K(i) of 0.0080±0.256 and 0.0003±0.018 mM values, respectively. C compound exerted an uncompetitive inhibition of PON1 enzyme activity with K(i) of 0.0010±0.173 mM. Moreover, dihydroxy coumarin derivatives of A, B and C compounds were effective inhibitors on purified human serum PON1 activity with IC(50) of 0.012, 0.022 and 0.003 mM values, respectively. IC(50) value of unsubstituted 6,7 dihydroxy coumarin was found as 0.178 mM. The present study has demonstrated that PON1 activity is very highly sensitive to studied coumarin derivatives.

  4. Curcumin inhibits srebp-2 expression in activated hepatic stellate cells in vitro by reducing the activity of specificity protein-1.

    Science.gov (United States)

    Kang, Qiaohua; Chen, Anping

    2009-12-01

    Elevated levels of cholesterol/low-density lipoprotein (LDL) are a risk factor for the development of nonalcoholic steatohepatitis and its associated hepatic fibrosis. However, underlying mechanisms remain elusive. We previously reported that curcumin induced gene expression of peroxisome proliferator-activated receptor (PPAR)-gamma and stimulated its activity, leading to the inhibition of the activation of hepatic stellate cells (HSCs), the major effector cells during hepatic fibrogenesis. We recently showed that curcumin suppressed gene expression of LDL receptor in activated HSCs in vitro by repressing gene expression of the transcription factor sterol regulatory element binding protein-2 (SREBP-2), leading to the reduction in the level of intracellular cholesterol in HSCs and to the attenuation of the stimulatory effects of LDL on HSCs activation. The current study aimed at exploring molecular mechanisms by which curcumin inhibits srebp-2 expression in HSCs. Promoter deletion assays, mutagenesis assays, and EMSAs localize a specificity protein-1 (SP-1) binding GC-box in the srebp-2 promoter, which is responsible for enhancing the promoter activity and responding to curcumin in HSCs. Curcumin suppresses gene expression of SP-1 and reduces its trans-activation activity, which are mediated by the activation of PPARgamma. The inhibitory effect of curcumin on SP-1 binding to the GC-box is confirmed by chromatin immuno-precipitation. In summary, our results demonstrate that curcumin inhibits srebp-2 expression in cultured HSCs by activating PPARgamma and reducing the SP-1 activity, leading to the repression of ldlr expression. These results provide novel insights into molecular mechanisms by which curcumin inhibits LDL-induced HSC activation.

  5. Inhibition of polyamine biosynthesis and growth in plant pathogenic fungi in vitro.

    Science.gov (United States)

    Rajam, B; Rajam, M V

    1996-02-01

    Polyamine (PA) biosynthesis inhibitors, difluoromethylornithine (DFMO), difluoromethylarginine (DFMA), methylglyoxal bis-(guanylhydrazone) (MGBG) and bis-(cyclohexylammonium) sulphate (BCHA) have been tested for their effects on colony diameters at different intervals after inoculation of four plant pathogenic fungi (Helminthosporium oryzae, Curvularia lunata, Pythium aphanidermatum and Colletotrichum capsici). All these inhibitors, except DFMA had strongly retarded the growth of four fungi in a dose- and species-dependent fashion, and H. oryzae and C. lunata were found to be most sensitive to the effects of PA inhibitors. P. aphanidermatum and C. capsici were relatively insensitive and required rather high concentrations of inhibitors to get greater inhibition of mycelial growth, except DFMA which had stimulatory effect on the growth of these two fungi. However DFMA had greatly suppressed the growth of H. oryzae and C. lunata. The effect was generally more pronounced with MGBG than with DFMO and BCHA, and 1 mM Put completely prevented the inhibitory effects of 1 and 5 mM DFMO. Analysis of free and conjugated PAs in two sensitive fungi (H. oryzae and C. lunata) revealed that Put was present in highest concentrations followed by Spd and Spm and their levels were greatly reduced by DFMO application, and such inhibitions were totally reversed by exogenously supplied Put; in fact, PA titers were considerably increased by 1 mM Put alone and in combination with 1 mM DFMO. These results suggest that PA inhibitors, particularly DFMO and MGBG may be useful as target-specific fungicides in plants.

  6. Minichromosome replication in vitro: inhibition of re-replication by replicatively assembled nucleosomes.

    Science.gov (United States)

    Krude, T; Knippers, R

    1994-08-19

    Single-stranded circular DNA, containing the SV40 origin sequence, was used as a template for complementary DNA strand synthesis in cytosolic extracts from HeLa cells. In the presence of the replication-dependent chromatin assembly factor CAF-1, defined numbers of nucleosomes were assembled during complementary DNA strand synthesis. These minichromosomes were then induced to semiconservatively replicate by the addition of the SV40 initiator protein T antigen (re-replication). The results indicate that re-replication of minichromosomes appears to be inhibited by two independent mechanisms. One acts at the initiation of minichromosome re-replication, and the other affects replicative chain elongation. To directly demonstrate the inhibitory effect of replicatively assembled nucleosomes, two types of minichromosomes were prepared: (i) post-replicative minichromosomes were assembled in a reaction coupled to replication as above; (ii) pre-replicative minichromosomes were assembled independently of replication on double-stranded DNA. Both types of minichromosomes were used as templates for DNA replication under identical conditions. Replicative fork movement was found to be impeded only on post-replicative minichromosome templates. In contrast, pre-replicative minichromosomes allowed one unconstrained replication cycle, but re-replication was inhibited due to a block in fork movement. Thus, replicatively assembled chromatin may have a profound influence on the re-replication of DNA.

  7. In vitro characterization of DNA gyrase inhibition by microcin B17 analogs with altered bisheterocyclic sites.

    Science.gov (United States)

    Zamble, D B; Miller, D A; Heddle, J G; Maxwell, A; Walsh, C T; Hollfelder, F

    2001-07-01

    Microcin B17 (MccB17) is a 3.1-kDa Escherichia coli antibiotic that contains thiazole and oxazole heterocycles in a peptide backbone. MccB17 inhibits its cellular target, DNA gyrase, by trapping the enzyme in a complex that is covalently bound to double-strand cleaved DNA, in a manner similar to the well-known quinolone drugs. The identification of gyrase as the target of MccB17 provides an opportunity to analyze the relationship between the structure of this unusual antibiotic and its activity. In this report, steady-state parameters are used to describe the induction of the cleavable complex by MccB17 analogs containing modified bisheterocyclic sites. The relative potency of these analogs corresponds to the capacity of the compounds to prevent growth of sensitive cells. In contrast to previously reported experiments, inhibition of DNA gyrase supercoiling activity by wild-type MccB17 also was observed. These results suggest that DNA gyrase is the main intracellular target of MccB17. This study probes the structure-function relationship of a new class of gyrase inhibitors and demonstrates that these techniques could be used to analyze compounds in the search for clinically useful antibiotics that block DNA gyrase.

  8. Fetal calf serum-mediated inhibition of neurite growth from ciliary ganglion neurons in vitro.

    Science.gov (United States)

    Davis, G E; Skaper, S D; Manthorpe, M; Moonen, G; Varon, S

    1984-01-01

    Embryonic chick ciliary ganglion (CG) neurons cultured in fetal calf serum-containing medium have been previously reported to extend neurites on polyornithine (PORN) substrata precoated with a neurite-promoting factor (PNPF) from rat schwannoma-conditioned medium. On PORN substrata alone, however, no neuritic growth occurred. This was interpreted as evidence that PORN was an incompetent substratum for ciliary neuritic growth. In this study, we now find that an untreated PORN substratum allows neuritic growth in serum-free defined medium. When PNPF was added to PORN, a more rapid and extensive neuritic response occurred. After 5 hr of culture, a 60% neuritic response occurred on PNPF/PORN, whereas no neurons initiated neurites until 10-12 hr on PORN. The inhibitory effect of fetal calf serum noted above on PORN could be obtained in part by pretreating the substratum with serum for 1 hr. Maximal inhibitory effects in the PORN pretreatment were achieved after 30 min and were not further improved by treatments up to 4 hr. Bovine serum albumin was also found to inhibit neurite growth on PORN to about 60% of the inhibition obtained by an equivalent amount of serum protein. Fetal calf serum was shown to cause a 15% reduction in the percentage of neurons bearing neurites after its addition to 18-hr serum-free PORN cultures and to cause statistically significant reductions in neurite lengths measured 2 hr later.

  9. In vitro inhibition of Helicobacter pylori urease with non and semi fermented Camellia sinensis

    Directory of Open Access Journals (Sweden)

    Shoae Hassani A

    2009-01-01

    Full Text Available Purpose: Helicobacter pylori is the etiological agent in duodenal and peptic ulcers. The growing problem of antibiotic resistance by the organism demands the search for novel compounds, especially from natural sources. This study was conducted to evaluate the effect of Camellia sinensis extracts on the urease enzyme that is a major colonization factor for H. pylori. Methods: Minimum inhibitory concentrations of nonfermented and semifermented C. sinensis methanol: water extracts were assessed by broth dilution method. Examination of the urease function was performed by Mc Laren method, and urease production was detected on 12% SDS polyacrylamide gel electrophoresis from whole cell and membrane bound proteins. Results: Both extracts had inhibitory effects against H. pylori and urease production. At a concentration of 2.5 mg/ml of nonfermented extract and 3.5 mg/ml of semifermented extract the production of Ure A and Ure B subunits of the urease enzyme were inhibited completely. A concentration of 4 mg/ml of nonfermented and 5.5 mg/ml of semifermented extract were bactericidal for H. pylori. Conclusions: C. sinensis extracts, especially the nonfermented, could reduce H. pylori population and inhibit urease production at lower concentrations. The superior effect of nonfermented extract is due to its rich polyphenolic compounds and catechin contents.

  10. Phenolic Compounds from Olea europaea L. Possess Antioxidant Activity and Inhibit Carbohydrate Metabolizing Enzymes In Vitro

    Directory of Open Access Journals (Sweden)

    Nadia Dekdouk

    2015-01-01

    Full Text Available Phenolic composition and biological activities of fruit extracts from Italian and Algerian Olea europaea L. cultivars were studied. Total phenolic and tannin contents were quantified in the extracts. Moreover 14 different phenolic compounds were identified, and their profiles showed remarkable quantitative differences among analysed extracts. Moreover antioxidant and enzymatic inhibition activities were studied. Three complementary assays were used to measure their antioxidant activities and consequently Relative Antioxidant Capacity Index (RACI was used to compare and easily describe obtained results. Results showed that Chemlal, between Algerian cultivars, and Coratina, among Italian ones, had the highest RACI values. On the other hand all extracts and the most abundant phenolics were tested for their efficiency to inhibit α-amylase and α-glucosidase enzymes. Leccino, among all analysed cultivars, and luteolin, among identified phenolic compounds, were found to be the best inhibitors of α-amylase and α-glucosidase enzymes. Results demonstrated that Olea europaea fruit extracts can represent an important natural source with high antioxidant potential and significant α-amylase and α-glucosidase inhibitory effects.

  11. Phenolic Compounds from Olea europaea L. Possess Antioxidant Activity and Inhibit Carbohydrate Metabolizing Enzymes In Vitro

    Science.gov (United States)

    Dekdouk, Nadia; Malafronte, Nicola; Russo, Daniela; Faraone, Immacolata; De Tommasi, Nunziatina; Ameddah, Souad; Severino, Lorella; Milella, Luigi

    2015-01-01

    Phenolic composition and biological activities of fruit extracts from Italian and Algerian Olea europaea L. cultivars were studied. Total phenolic and tannin contents were quantified in the extracts. Moreover 14 different phenolic compounds were identified, and their profiles showed remarkable quantitative differences among analysed extracts. Moreover antioxidant and enzymatic inhibition activities were studied. Three complementary assays were used to measure their antioxidant activities and consequently Relative Antioxidant Capacity Index (RACI) was used to compare and easily describe obtained results. Results showed that Chemlal, between Algerian cultivars, and Coratina, among Italian ones, had the highest RACI values. On the other hand all extracts and the most abundant phenolics were tested for their efficiency to inhibit α-amylase and α-glucosidase enzymes. Leccino, among all analysed cultivars, and luteolin, among identified phenolic compounds, were found to be the best inhibitors of α-amylase and α-glucosidase enzymes. Results demonstrated that Olea europaea fruit extracts can represent an important natural source with high antioxidant potential and significant α-amylase and α-glucosidase inhibitory effects. PMID:26557862

  12. In vitro inhibition of pigmentation and fiber development in colored cotton

    Institute of Scientific and Technical Information of China (English)

    Shu-na YUAN; Waqas MALIK; Shui-jin HUA; Noreen BIBI; Xue-de WANG

    2012-01-01

    Colored cotton has naturally pigmented fibers.The mechanism of pigmentation in cotton fiber is not well documented.This experiment was conducted to study the effects cf respiratory chain inhibitors,i.e.,rotenone and thiourea,on pigmentation and fiber development in colored cotton.After 1 d post-anthesis,ovaries were harvested and developing ovules were cultured on the liquid medium containing different concentrations of rotenone and thiourea for 30 d.The results demonstrate that both respiratory inhibitors reduced fiber length and ovule development under ovule culture conditions,and the inhibition efficiency of rotenone was much higher than that of thiourea.Rotenone and thiourea also showed significant effects on fiber pigment (color) development in colored cotton.In green cotton fiber,rotenone advanced fiber pigment development by 7 d at 200 μmol/L,while thiourea inhibited fiber pigmentation at all treatment levels (400,600,800,1000,and 2000 μmol/L).Both respiratory inhibitors,however,had no significant effects on pigmentation of brown cotton fibers.The activities of cytochrome c oxidase (COX) and polyphenol oxidase (PPO) decreased significantly with increasing levels of both respiratory inhibitors.It is suggested that both respiratory inhibitors have important roles in deciphering the mechanism of pigmentation and fiber development in colored cotton.

  13. In vitro inhibition of hyaluronidase by sodium copper chlorophyllin complex and chlorophyllin analogs

    Directory of Open Access Journals (Sweden)

    McCook JP

    2015-08-01

    Full Text Available John P McCook,1 Peter L Dorogi,2 David B Vasily,3 Dustin R Cefalo4 1Discovery Partners, LLC, Frisco, TX, 2CHL Industries, LLC, Easton, PA, 3Aesthetica Cosmetic and Laser Surgery Center, Bethlehem, PA, 4Frontier Scientific, Inc., Logan, UT, USA Background: Inhibitors of hyaluronidase are potent agents that maintain hyaluronic acid homeostasis and may serve as anti-aging, anti-inflammatory, and anti-microbial agents. Sodium copper chlorophyllin complex is being used therapeutically as a component in anti-aging cosmeceuticals, and has been shown to have anti-hyaluronidase activity. In this study we evaluated various commercial lots of sodium copper chlorophyllin complex to identify the primary small molecule constituents, and to test various sodium copper chlorophyllin complexes and their small molecule analog compounds for hyaluronidase inhibitory activity in vitro. Ascorbate analogs were tested in combination with copper chlorophyllin complexes for potential additive or synergistic activity. Materials and methods: For hyaluronidase activity assays, dilutions of test materials were evaluated for hydrolytic activity of hyaluronidase by precipitation of non-digested hyaluronate by measuring related turbidity at 595 nm. High-performance liquid chromatography and mass spectroscopy was used to analyze and identify the primary small molecule constituents in various old and new commercial lots of sodium copper chlorophyllin complex. Results: The most active small molecule component of sodium copper chlorophyllin complex was disodium copper isochlorin e4, followed by oxidized disodium copper isochlorin e4. Sodium copper chlorophyllin complex and copper isochlorin e4 disodium salt had hyaluronidase inhibitory activity down to 10 µg/mL. The oxidized form of copper isochlorin e4 disodium salt had substantial hyaluronidase inhibitory activity at 100 µg/mL but not at 10 µg/mL. Ascorbate derivatives did not enhance the hyaluronidase inhibitory activity of

  14. High dose 1,25(OH)2D3 inhibits osteoblast mineralization in vitro.

    Science.gov (United States)

    Yamaguchi, Masayoshi; Weitzmann, M Neale

    2012-05-01

    Vitamin D is essential for optimal calcium absorption needed for maintaining normal bone mineral density (BMD). Consequently, vitamin D-deficiency leads to poorly mineralized bone with diminished strength and load bearing capacity. Surprisingly, several animal and clinical studies have identified suppressive effects of high dose vitamin D supplementation on bone formation. These data suggest that while vitamin D is necessary for basal bone homeostasis, excessive concentrations may be detrimental to the skeleton. To further examine the direct effects of high dose vitamin D on the function of osteoblasts we differentiated primary osteoblast precursors and MC3T3 preosteoblastic cells, in the presence of supraphysiological doses of the active metabolite, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3]. In vitro osteoblast mineralization was potently suppressed by high dose 1,25(OH)2D3. To investigate the mechanism we used a bioassay to examine nuclear factor-κB (NF-κB) activation in MC3T3 cells. Although NF-κB agonists are generally potent inhibitors of osteoblast differentiation, surprisingly, 1,25(OH)2D3 dose-dependently suppressed, rather than stimulated, NF-κB activation. Interestingly, 1,25(OH)2D3 also suppressed Smad activation induced by the osteoblast commitment and differentiation factors transforming growth factor-β (TGF-β) and bone morphogenetic protein 2 (BMP2), which may account for the inhibitory activities of 1,25(OH)2D3 on mineralization. Our data suggest that vitamin D has complex pleiotropic effects on osteoblast signal transduction. As the net balance of high dose 1,25(OH)2D3 appears to be an inhibitory action on osteoblasts, our data suggest that the therapeutic value of vitamin D to maximize bone mass through indirect actions on calcium absorption may need to be carefully balanced with potential inhibitory direct effects on mineralizing cells. Our data suggest that indiscriminate over-dosing may be detrimental to bone formation and optimal

  15. SOCS3 inhibiting migration of A549 cells correlates with PYK2 signaling in vitro

    Directory of Open Access Journals (Sweden)

    Zhang Qingfu

    2008-05-01

    Full Text Available Abstract Background Suppressor of cytokine signaling 3 (SOCS3 is considered to inhibit cytokine responses and play a negative role in migration of various cells. Proline-rich tyrosine kinase 2 (PYK2 is a non-receptor kinase and has been found crucial to cell motility. However, little is known about whether SOCS3 could regulate PYK2 pro-migratory function in lung cancer. Methods The methylation status of SOCS3 was investigated in HBE and A549 cell lines by methylation-specific PCR. A549 cells were either treated with a demethylation agent 5-aza-2'-deoxycytidine or transfected with three SOCS3 mutants with various functional domains deleted. Besides, cells were pretreated with a proteasome inhibitor β-lactacystin where indicated. The effects of SOCS3 up-regulation on PYK2 expression, PYK2 and ERK1/2 phosphorylations were assessed by western blot using indicated antibodies. RT-PCR was used to estimate PYK2 mRNA levels. Transwell experiments were performed to evaluate cell migration. Results SOCS3 expression was found impaired in A549 cells and higher PYK2 activity was correlated with enhanced cell migration. We identified that SOCS3 was aberrantly methylated in the exon 2, and 5-aza-2'-deoxycytidine restored SOCS3 expression. Reactivation of SOCS3 attenuated PYK2 expression and phosphorylation, cell migration was inhibited as well. Transfection studies indicated that exogenous SOCS3 interacted with PYK2, and both the Src homology 2 (SH2 and the kinase inhibitory region (KIR domains of SOCS3 contributed to PYK2 binding. Furthermore, SOCS3 was found to inhibit PYK2-associated ERK1/2 activity in A549 cells. SOCS3 possibly promoted degradation of PYK2 in a SOCS-box-dependent manner and interfered with PYK2-related signaling events, such as cell migration. Conclusion These data indicate that SOCS3 negatively regulates cell motility and decreased SOCS3 induced by methylation may confer a migration advantage to A549 cells. These results also suggest a

  16. Bisquaternary oximes as reactivators of tabun-inhibited human brain cholinesterases: an in vitro study.

    Science.gov (United States)

    Kuca, Kamil; Jun, Daniel; Cabal, Jiri; Musilova, Lucie

    2007-07-01

    Intoxications caused by tabun nerve agent are generally very hard to treat by convential acetylcholinesterase (AChE) reactivators. Due to this, new AChE reactivators are still developed. In this study, we have tested three new promising bisquaternary AChE reactivators: K027, K033 and K048. These reactivators were previously tested on rat brain homogenate. To mimic reality, we studied the potency of these new oximes to reactivate tabun-inhibited human brain cholinesterases. As is evident from the results, reactivator K048 (reactivation 40%) surpassed all reactivators tested in this study [including the most promising ones, namely trimedoxime (37%) and obidoxime (33%)]. Moreover, if compared to our previous results from rat brain studies, species differences were demonstrated.

  17. In vitro inhibition by stiripentol of rat brain cytochrome P-450-mediated naphthalene hydroxylation.

    Science.gov (United States)

    Mesnil, M; Testa, B; Jenner, P

    1988-09-01

    1. The formation of 1-naphthol from naphthalene was investigated in rat brain 105,000 g particulate fraction. The reaction showed NADPH dependency and was inhibited by carbon monoxide. Michaelis-Menten kinetics were apparent with Vmax = 0.264 pmol/mg protein per min and Km = 22.6 microM. 2. Stiripentol, an antiepileptic drug containing a methylenedioxybenzene moiety, proved to be a potent inhibitor of the reaction, with an IC50 value close to 1 microM under the conditions of study and without preincubation. 3. The inhibitory activity of stiripentol was seen mainly after metabolic activation of the drug. The inhibitory effect appeared progressively when substrate and inhibitor were added together to the incubates, whereas its appearance was more rapid following preincubation of stiripentol.

  18. Calhex231 Ameliorates Cardiac Hypertrophy by Inhibiting Cellular Autophagy in Vivo and in Vitro

    Directory of Open Access Journals (Sweden)

    Lei Liu

    2015-07-01

    Full Text Available Background/Aims: Intracellular calcium concentration ([Ca2+]i homeostasis, an initial factor of cardiac hypertrophy, is regulated by the calcium-sensing receptor (CaSR and is associated with the formation of autolysosomes. The aim of this study was to investigate the role of Calhex231, a CaSR inhibitor, on the hypertrophic response via autophagy modulation. Methods: Cardiac hypertrophy was induced by transverse aortic constriction (TAC in 40 male Wistar rats, while 10 rats underwent a sham operation and served as controls. Cardiac function was monitored by transthoracic echocardiography, and the hypertrophy index was calculated. Cardiac tissue was stained with hematoxylin and eosin (H&E or Masson's trichrome reagent and examined by transmission electron microscopy. An angiotensin II (Ang II-induced cardiomyocyte hypertrophy model was established and used to test the involvement of active molecules. Intracellular calcium concentration ([Ca2+]i was determined by the introduction of Fluo-4/AM dye followed by confocal microscopy. The expression of various active proteins was analyzed by western blot. Results: The rats with TAC-induced hypertrophy had an increased heart size, ratio of heart weight to body weight, myocardial fibrosis, and CaSR and autophagy levels, which were suppressed by Calhex231. Experimental results using Ang II-induced hypertrophic cardiomyocytes confirmed that Calhex231 suppressed CaSR expression and downregulated autophagy by inhibiting the Ca2+/calmodulin-dependent-protein kinase-kinase-β (CaMKKβ- AMP-activated protein kinase (AMPK-mammalian target of rapamycin (mTOR pathway to ameliorate cardiomyocyte hypertrophy. Conclusions: Calhex231 ameliorates myocardial hypertrophy induced by pressure-overload or Ang II via inhibiting CaSR expression and autophagy. Our results may support the notion that Calhex231 can become a new therapeutic agent for the treatment of cardiac hypertrophy.

  19. Risperidone significantly inhibits interferon-gamma-induced microglial activation in vitro.

    Science.gov (United States)

    Kato, Takahiro; Monji, Akira; Hashioka, Sadayuki; Kanba, Shigenobu

    2007-05-01

    Microglia has recently been regarded to be a mediator of neuroinflammation via the release of proinflammatory cytokines, nitric oxide (NO) and reactive oxygen species (ROS) in the central nervous system (CNS). Microglia has thus been reported to play an important role in the pathology of neurodegenerative disease, such as Alzheimer's disease (AD) and Parkinson's disease (PD). The pathological mechanisms of schizophrenia remain unclear while some recent neuroimaging studies suggest even schizophrenia may be a kind of neurodegenerative disease. Risperidone has been reported to decrease the reduction of MRI volume during the clinical course of schizophrenia. Many recent studies have demonstrated that immunological mechanisms via such as interferon (IFN)-gamma and cytokines might be relevant to the pathophysiology of schizophrenia. In the present study, we thus investigated the effects of risperidone on the generation of nitric oxide, inducible NO synthase (iNOS) expression and inflammatory cytokines: interleukin (IL)-1beta, IL-6 and tumor necrosis factor (TNF)-alpha by IFN-gamma-activated microglia by using Griess assay, Western blotting and ELISA, respectively. In comparison with haloperidol, risperidone significantly inhibited the production of NO and proinflammatory cytokines by activated microglia. The iNOS levels of risperidone-treated cells were much lower than those of the haloperidol-treated cells. Antipsychotics, especially risperidone may have an anti-inflammatory effect via the inhibition of microglial activation, which is not only directly toxic to neurons but also has an inhibitory effect on neurogenesis and oligodendrogenesis, both of which have been reported to play a crucial role in the pathology of schizophrenia.

  20. Inhibition of hepatitis C virus replication in vitro by xanthohumol, a natural product present in hops.

    Science.gov (United States)

    Lou, Sai; Zheng, Yi-Min; Liu, Shan-Lu; Qiu, Jianming; Han, Qunying; Li, Na; Zhu, Qianqian; Zhang, Pingping; Yang, Cuiling; Liu, Zhengwen

    2014-02-01

    Hepatitis C virus is a major cause of chronic liver disease worldwide. Xanthohumol, a prenylated flavonoid from hops, has various biological activities including an antiviral effect. It was previously characterized as a compound that inhibits bovine viral diarrhea virus, a surrogate model of hepatitis C virus. In the present work, xanthohumol was examined for its ability to inhibit hepatitis C virus replication in a cell culture system carrying replicating hepatitis C virus RNA replicon. 0.2 % DMSO and 500 units/mL interferon-alpha treatments were set as a negative and positive control, respectively. The inhibitory effect by xanthohumol was determined by the luciferase activity of the infected Huh7.5 cell lysates and the hepatitis C virus RNA levels in the culture. Xanthohumol at 3.53 µM significantly decreased the luciferase activity compared to the negative control (p Xanthohumol at 7.05 µM further decreased the luciferase activity compared to xanthohumol at 3.53 µM (p = 0.015). Xanthohumol at 7.05 µM or 14.11 µM achieved an inhibitory effect similar to that of interferon-alpha 2b (p > 0.05). Xanthohumol at 3.53 µM significantly reduced the hepatitis C virus RNA level compared to the negative control (p = 0.001). Although the results of xanthohumol at 7.05 µM had a higher variation, xanthohumol at the 7.05 µM and 14.11 µM decreased the hepatitis C virus RNA level to that achieved by interferon-alpha (p > 0.05). In conclusion, xanthohumol displays anti-hepatitis C virus activity in a cell culture system and may be potentially used as an alternative or complementary treatment against the hepatitis C virus.

  1. Inhibition of fatty acid biosynthesis prevents adipocyte lipotoxicity on human osteoblasts in vitro.

    Science.gov (United States)

    Elbaz, Alexandre; Wu, Xiying; Rivas, Daniel; Gimble, Jeffrey M; Duque, Gustavo

    2010-04-01

    Although increased bone marrow fat in age-related bone loss has been associated with lower trabecular mass, the underlying mechanism responsible remains unknown. We hypothesized that marrow adipocytes exert a lipotoxic effect on osteoblast function and survival through the reversible biosynthesis of fatty acids (FA) into the bone marrow microenvironment. We have used a two-chamber system to co-culture normal human osteoblasts (NHOst) with differentiating pre-adipocytes in the absence or presence of an inhibitor of FA synthase (cerulenin) and separated by an insert that allowed unidirectional trafficking of soluble factors only and prevented direct cell-cell contact. Supernatants were assayed for the presence of FA using mass spectophotometry. After 3 weeks in co-culture, NHOst showed significantly lower levels of differentiation and function based on lower mineralization and expression of alkaline phosphatase, osterix, osteocalcin and Runx2. In addition, NHOst survival was affected by the presence of adipocytes as determined by MTS-formazan and TUNEL assays as well as higher activation of caspases 3/7. These toxic effects were inhibited by addition of cerulenin. Furthermore, culture of NHOst with either adipocyte-conditioned media alone in the absence of adipocytes themselves or with the addition of the most predominant FA (stearate or palmitate) produced similar toxic results. Finally, Runx2 nuclear binding was affected by addition of either adipocyte conditioned media or FA into the osteogenic media. We conclude that the presence of FA within the marrow milieu can contribute to the age-related changes in bone mass and can be prevented by the inhibition of FA synthase.

  2. Inhibition of matrix metalloproteinase-9 activity by doxycycline ameliorates RANK ligand-induced osteoclast differentiation in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Gilson C.N. [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Pharmacology, FOP/UNICAMP, Piracicaba, SP (Brazil); Kajiya, Mikihito [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA (United States); Nakanishi, Tadashi [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Ohta, Kouji [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA (United States); Rosalen, Pedro L.; Groppo, Francisco C. [Department of Pharmacology, FOP/UNICAMP, Piracicaba, SP (Brazil); Ernst, Cory W.O.; Boyesen, Janie L. [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Bartlett, John D.; Stashenko, Philip [Department of Cytokine Biology, Forsyth Institute, Cambridge, MA (United States); Taubman, Martin A. [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Kawai, Toshihisa, E-mail: tkawai@forsyth.org [Department of Immunology, Forsyth Institute, Cambridge, MA (United States); Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, MA (United States)

    2011-06-10

    Tetracycline antibiotics, including doxycycli/e (DOX), have been used to treat bone resorptive diseases, partially because of their activity to suppress osteoclastogenesis induced by receptor activator of nuclear factor kappa B ligand (RANKL). However, their precise inhibitory mechanism remains unclear. Therefore, the present study examined the effect of Dox on osteoclastogenesis signaling induced by RANKL, both in vitro and in vivo. Although Dox inhibited RANKL-induced osteoclastogenesis and down-modulated the mRNA expression of functional osteoclast markers, including tartrate-resistant acid phosphatase (TRAP) and cathepsin K, Dox neither affected RANKL-induced MAPKs phosphorylation nor NFATc1 gene expression in RAW264.7 murine monocytic cells. Gelatin zymography and Western blot analyses showed that Dox down-regulated the enzyme activity of RANKL-induced MMP-9, but without affecting its protein expression. Furthermore, MMP-9 enzyme inhibitor also attenuated both RANKL-induced osteoclastogenesis and up-regulation of TRAP and cathepsin K mRNA expression, indicating that MMP-9 enzyme action is engaged in the promotion of RANKL-induced osteoclastogenesis. Finally, Dox treatment abrogated RANKL-induced osteoclastogenesis and TRAP activity in mouse calvaria along with the suppression of MMP9 enzyme activity, again without affecting the expression of MMP9 protein. These findings suggested that Dox inhibits RANKL-induced osteoclastogenesis by its inhibitory effect on MMP-9 enzyme activity independent of the MAPK-NFATc1 signaling cascade.

  3. Chickpea (Cicer arietinum) and other plant-derived protease inhibitor concentrates inhibit breast and prostate cancer cell proliferation in vitro.

    Science.gov (United States)

    Magee, Pamela J; Owusu-Apenten, Richard; McCann, Mark J; Gill, Chris I; Rowland, Ian R

    2012-01-01

    The soybean-derived protease inhibitor, Bowman-Birk inhibitor (BBI), is currently showing great promise as a novel cancer chemopreventive agent. In contrast to the wealth of research conducted on this compound, the anticancer effects of protease inhibitors isolated from other leguminous sources have received limited attention. In the current study, 7 protease inhibitor concentrates (PICs) were isolated from various leguminous sources (including soybean) and characterized. The effects of PICs on the proliferation of breast and prostate cancer cells were investigated in vitro. Chickpea PIC significantly inhibited the viability of MDA-MB-231 breast cancer and PC-3 and LNCaP prostate cancer cells at all concentrations tested (25-400 μg/ml). In addition, kidney bean (200, 400 μg/ml), soybean (50, 100 μg/ml), and mungbean (100, 200 μg/ml) PICs inhibited LNCaP cell viability. These findings suggest that leguminous PICs may possess similar anticancer properties to that of soybean BBI and deserve further study as possible chemopreventive agents.

  4. Genistein sensitizes sarcoma cells in vitro and in vivo by enhancing apoptosis and by inhibiting DSB repair pathways.

    Science.gov (United States)

    Liu, X X; Sun, C; Jin, X D; Li, P; Zheng, X G; Zhao, T; Li, Q

    2016-06-01

    The aim of this work was to investigate the radiosensitization effects of genistein on mice sarcoma cells and the corresponding biological mechanisms in vitro and in vivo Using the non-toxic dosage of 10 μM genistein, the sensitizer enhancement ratios after exposure to X-rays at 50% cell survival (IC50) was 1.45 for S180 cells. For mice cotreated with genistein and X-rays, the excised tumor tissues had reduced blood vessels and decreased size and volume compared with the control and irradiation-only groups. Moreover, a significant increase in apoptosis was accompanied by upregulation of Bax and downregulation of Bcl-2 in the mitochondria, and lots of cytochrome c being transferred to the cytoplasm. Furthermore, X-rays combined with genistein inhibited the activity of DNA-PKcs, so DNA-injured sites were dominated by Ku70/80, leading to incompleteness of homologous recombination (HR) and non-homologous end-joining (NHEJ) repairs and the eventual occurrence of cell apoptosis. Our study, for the first time, demonstrated that genistein sensitized sarcoma cells to X-rays and that this radiosensitizing effect depended on induction of the mitochondrial apoptosis pathway and inhibition of the double-strand break (DSB) repair pathways.

  5. A novel human Fab antibody for Trop2 inhibits breast cancer growth in vitro and in vivo.

    Science.gov (United States)

    Lin, Hong; Zhang, Huiling; Wang, Jun; Lu, Meiping; Zheng, Feng; Wang, Changjun; Tang, Xiaojun; Xu, Ning; Chen, Renjie; Zhang, Dawei; Zhao, Ping; Zhu, Jin; Mao, Yuan; Feng, Zhenqing

    2014-03-01

    Human trophoblastic cell surface antigen 2 (Trop2) has been suggested as an oncogene, which is associated with the different types of tumors. In this study, a human Fab antibody against Trop2 extracellular domain was isolated from phage library by phage display technology, and characterized by ELISA, FACS, fluorescence staining and Western blotting analysis. MTT, apoptosis assay and wound healing assay were employed to evaluate the inhibitory effects of Trop2 Fab on breast cancer cell growth in vitro, while tumor-xenograft model was employed to evaluate the inhibitory effects on breast cancer growth in vivo. The results showed that Trop2 Fab inhibited the proliferation, induced the apoptosis and suspended the migration of MDA-MB-231 cells in a dose dependent manner. The expression caspase-3 was activated, and the expression of Bcl-2 was reduced while that of Bax was elevated in MDA-MB-231 cells by treating with Trop2 Fab. In addition, Trop2 Fab inhibited the growth of breast cancer xenografts and the expression of Bcl-2 was reduced while that of Bax was elevated in xenografts. Trop2 Fab, which was isolated successfully in this research, is a promising therapeutic agent for the treatment of Trop2 expressing breast cancer.

  6. Inhibition of Angiogenic Factor Production from Murine Mast Cells by an Antiallergic Agent (Epinastine Hydrochloride In Vitro

    Directory of Open Access Journals (Sweden)

    K. Asano

    2008-01-01

    Full Text Available Angiogenesis is an important event both in the development of allergic inflammatory responses and in the pathophysiology of tissue remodeling in allergic diseases. In the present study, therefore, we examined the influence of antihistamines on angiogenesis through the choice of epinastine hydrochloride (EP and murine mast cells in vitro. Mast cells (5×105 cells/mL presensitized with murine IgE specific for ovalbumin (OVA were stimulated with 10 ng/mL OVA in the presence of various concentrations of EP for 4 hours. The levels of angiogenesis factors, keratinocyte-derived chemokine (KC, tumor necrosis factor-α (TNF, and vascular endothelial growth factor (VEGF in culture supernatants, were examined by ELISA. We also examined mRNA expression for the angiogenesis factors by RT-PCR. EP significantly inhibited the production of KC, TNF, and VEGF induced by IgE-dependent mechanism at more than 25 ng/mL. Semiquantitative analysis using RT-PCR showed that EP also significantly reduced mRNA expressions for KC, TNF, and VEGF. These results strongly suggest that EP suppresses angiogenesis factor production through the inhibition of mRNA expression in mast cells and results in favorable modification of clinical conditions of allergic diseases.

  7. Inhibition of Oxidative Stress and Lipid Peroxidation by Anthocyanins from Defatted Canarium odontophyllum Pericarp and Peel Using In Vitro Bioassays

    Science.gov (United States)

    Khoo, Hock Eng; Azlan, Azrina; Ismail, Amin; Abas, Faridah; Hamid, Muhajir

    2014-01-01

    Canarium odontophyllum, also known as CO, is a highly nutritious fruit. Defatted parts of CO fruit are potent sources of nutraceutical. This study aimed to determine oxidative stress and lipid peroxidation effects of defatted CO pericarp and peel extracts using in vitro bioassays. Cell cytotoxic effect of the CO pericarp and peel extracts were also evaluated using HUVEC and Chang liver cell lines. The crude extracts of defatted CO peel and pericarp showed cytoprotective effects in t-BHP and 40% methanol-induced cell death. The crude extracts also showed no toxic effect to Chang liver cell line. Using CD36 ELISA, NAD+ and LDL inhibition assays, inhibition of oxidative stress were found higher in the crude extract of defatted CO peel compared to the pericarp extract. Hemoglobin and LDL oxidation assays revealed both crude extracts had significantly reduced lipid peroxidation as compared to control. TBARS values among defatted CO pericarp, peel, and cyanidin-3-glucoside showed no significant differences for hemoglobin and LDL oxidation assays. The protective effects of defatted CO parts, especially its peel is related to the presence of high anthocyanin that potentially offers as a pharmaceutical ingredient for cardioprotection. PMID:24416130

  8. Inhibition of Metastatic Potential in Breast Carcinoma In Vivo and In Vitro through Targeting VEGFRs and FGFRs

    Directory of Open Access Journals (Sweden)

    Ming-Hsien Chien

    2013-01-01

    Full Text Available Angiogenesis and lymphangiogenesis are considered to play key roles in tumor metastasis. Targeting receptor tyrosine kinases essentially involved in the angiogenesis and lymphangiogenesis would theoretically prevent cancer metastasis. However, the optimal multikinase inhibitor for metastasis suppression has yet to be developed. In this study, we evaluated the effect of NSTPBP 0100194-A (194-A, a multikinase inhibitor of vascular endothelial growth factor receptors (VEGFRs/fibroblast growth factor receptors (FGFRs, on lymphangiogenesis and angiogenesis in a mammary fat pad xenograft model of the highly invasive breast cancer cell line 4T1-Luc+. We investigated the biologic effect of 194-A on various invasive breast cancer cell lines as well as endothelial and lymphatic endothelial cells. Intriguingly, we found that 194-A drastically reduced the formation of lung, liver, and lymph node metastasis of 4T1-Luc+ and decreased primary tumor growth. This was associated with significant reductions in intratumoral lymphatic vessel length (LVL and microvessel density (MVD. 194-A blocked VEGFRs mediated signaling on both endothelial and lymphatic endothelial cells. Moreover, 194-A significantly inhibited the invasive capacity induced by VEGF-C or FGF-2 in vitro in both 4T1 and MDA-MB231 cells. In conclusion, these experimental results demonstrate that simultaneous inhibition of VEGFRs/FGFRs kinases may be a promising strategy to prevent breast cancer metastasis.

  9. Measuring melanoma-specific cytotoxic T lymphocytes elicited by dendritic cell vaccines with a tumor inhibition assay in vitro.

    Science.gov (United States)

    Paczesny, Sophie; Shi, Honhgzhen; Saito, Hiroaki; Mannoni, Patrice; Fay, Joseph; Banchereau, Jacques; Palucka, A Karolina

    2005-01-01

    Improving cancer vaccines depends on assays measuring elicited tumor-specific T-cell immunity. Cytotoxic effector cells are essential for tumor clearance and are commonly evaluated using 51Cr release from labeled target cells after a short (4 hours) incubation with T cells. The authors used a tumor inhibition assay (TIA) that assesses the capacity of cytotoxic T lymphocytes (CTLs) to control the survival/growth of EGFP-labeled tumor cell lines. TIA was validated using CD8+ T cells primed in vitro against melanoma and breast cancer cells. TIA was then used to assess the CTL function of cultured CD8+ T cells isolated from patients with metastatic melanoma who underwent vaccination with peptide-pulsed CD34+ HPCs-derived DCs. After the DC vaccination, T cells from six of eight patients yielded CTLs that could inhibit the survival/growth of melanoma cells. The results of TIA correlated with killing of tumor cells in a standard 4-hour 51Cr release assay, yet TIA allowed detection of CTL activities that appeared marginal in the 51Cr release assay. Thus, TIA might prove valuable for measuring spontaneous and induced antigen-specific cytotoxic T cells.

  10. Inhibition of oxidative stress and lipid peroxidation by anthocyanins from defatted Canarium odontophyllum pericarp and peel using in vitro bioassays.

    Directory of Open Access Journals (Sweden)

    Hock Eng Khoo

    Full Text Available Canarium odontophyllum, also known as CO, is a highly nutritious fruit. Defatted parts of CO fruit are potent sources of nutraceutical. This study aimed to determine oxidative stress and lipid peroxidation effects of defatted CO pericarp and peel extracts using in vitro bioassays. Cell cytotoxic effect of the CO pericarp and peel extracts were also evaluated using HUVEC and Chang liver cell lines. The crude extracts of defatted CO peel and pericarp showed cytoprotective effects in t-BHP and 40% methanol-induced cell death. The crude extracts also showed no toxic effect to Chang liver cell line. Using CD36 ELISA, NAD(+ and LDL inhibition assays, inhibition of oxidative stress were found higher in the crude extract of defatted CO peel compared to the pericarp extract. Hemoglobin and LDL oxidation assays revealed both crude extracts had significantly reduced lipid peroxidation as compared to control. TBARS values among defatted CO pericarp, peel, and cyanidin-3-glucoside showed no significant differences for hemoglobin and LDL oxidation assays. The protective effects of defatted CO parts, especially its peel is related to the presence of high anthocyanin that potentially offers as a pharmaceutical ingredient for cardioprotection.

  11. Adeno-associated virus mediated interferon-gamma inhibits the progression of hepatic fibrosis in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Miao Chen; Guang-Ji Wang; Yong Diao; Rui-An Xu; Hai-Tang Xie; Xin-Yan Li; Jian-Guo Sun

    2005-01-01

    AIM: To investigate the effects of adeno-associated virus (AAV) mediated expression of human interferon-γ for gene therapy in experimental hepatic fibrosisin vitro and in vivo.METHODS: We constructed the recombinant AAV encoding human INF-γ (rAAV- INF-γ) and took the primary rat hepatic stellate cells and carbon tetrachloride induced rats as the experimental hepatic fibrosis model in vitro and in vivo. Immunocytochemistry analysis was used to reveal the expression of α-SMA, the marker protein expressed in hepatic stellate cells. The mRNA expression of TGF-β, TIMP-L, and MMP-13 were analyzed by RT-PCR method. In vivo study, the hydroxyproline content in liver and serum AST, ALT were also detected.RESULTS: In vitro study, AAV vector could mediated efficient expression of human INF-γ,, which inhibit the activation of hepatic stellate cells, decrease the expression of α-SMA and mRNA of TIMP-1, TGF-β, with the MMP-13unchanged. In vivo study, the histological examination revealed that rAAV- INF-γ could inhibit the progression of the hepatic fibrosis. In the rAAV-INF-γ induced group,the hydroxyproline content and serum AST, ALT level were decreased to 177±28 μg/g wet liver, 668.5±140.0,458.4±123.5 U/L, compare with the fibrosis control group 236±31 μg/g wet liver, 1 019.1±276.3, 770.5±154.3 U/L,respectively (P<0.01). mRNA expression of TIMP-1 in the rAAV-INF-γ induced rat liver was decreased while no significant change was observed in TGF-β and MMP-13.CONCLUSION: All these results indicated that rAAV-INF-γhas potential effects for gene therapy of hepatic fibrosis,which could inhibit the progression of hepatic fibrosis.

  12. An easily accessible sulfated saccharide mimetic inhibits in vitro human tumor cell adhesion and angiogenesis of vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Grazia Marano

    2012-05-01

    Full Text Available Oligosaccharides aberrantly expressed on tumor cells influence processes such as cell adhesion and modulation of the cell’s microenvironment resulting in an increased malignancy. Schmidt’s imidate strategy offers an effective method to synthesize libraries of various oligosaccharide mimetics. With the aim to perturb interactions of tumor cells with extracellular matrix proteins and host cells, molecules with 3,4-bis(hydroxymethylfuran as core structure were synthesized and screened in biological assays for their abilities to interfere in cell adhesion and other steps of the metastatic cascade, such as tumor-induced angiogenesis.The most active compound, (4-{[(β-D-galactopyranosyloxy]methyl}furan-3-ylmethyl hydrogen sulfate (GSF, inhibited the activation of matrix-metalloproteinase-2 (MMP-2 as well as migration of the human melanoma cells of the lines WM-115 and WM-266-4 in a two-dimensional migration assay. GSF inhibited completely the adhesion of WM-115 cells to the extracellular matrix (ECM proteins, fibrinogen and fibronectin.In an in vitro angiogenesis assay with human endothelial cells, GSF very effectively inhibited endothelial tubule formation and sprouting of blood vessels, as well as the adhesion of endothelial cells to ECM proteins. GSF was not cytotoxic at biologically active concentrations; neither were 3,4-bis{[(β-D-galactopyranosyloxy]methyl}furan (BGF nor methyl β-D-galactopyranoside nor 3,4-bis(hydroxymethylfuran, which were used as controls, eliciting comparable biological activity. In silico modeling experiments, in which binding of GSF to the extracellular domain of the integrin αvβ3 was determined, revealed specific docking of GSF to the same binding site as the natural peptidic ligands of this integrin. The sulfate in the molecule coordinated with one manganese ion in the binding site.These studies show that this chemically easily accessible molecule GSF, synthesized in three steps from 3,4-bis

  13. Ethanol inhibits the motility of rabbit sphincter of Oddi in vitro

    Institute of Scientific and Technical Information of China (English)

    Réka Sári; Attila Pálv(o)lgyi; Zoltán Rakonczay Jr; Tamás Takács; János Lonovics; László Czakó; Zoltán Szilvássy; Péter Hegyi

    2004-01-01

    AIM: The role of the sphincter of Oddi (SO) in ethanol (ETOH)-induced pancreatitis is controversial. Our aim was to characterise the effect of ETOH on basal and stimulated SO motility.METHODS: SOs removed from white rabbits were placed in an organ bath (Krebs solution, pH7.4, 37 ℃). The effects of 2 mL/L, 4 mL/L, 6 mL/L and 8 mL/L of ETOH on the contractile responses of the sphincter were determined.SOs were stimulated with either 0.1 μmol/L carbachol, 1 μmol/L erythromycin or 0.1 μmol/L cholecystokinin (CCK).RESULTS: ETOH at a dose of 4 mL/L significantly decreased the baseline contractile amplitude from 11.98±0.05 mN to 11.19±0.07 mN. However, no significant changes in the contractile frequency were observed. ETOH (0.6%)significantly decreased both the baseline amplitude and the frequency compared to the control group (10.50±0.01 mN,12.13±0.10 mN and 3.53±0.13 c/min, 5.5±0.13 cycles(c)/min,respectively). Moreover, 0.8% of ETOH resulted in complete relaxation of the SO. Carbachol (0.1 μmol/L) or erythromycin (1 μmol/L) stimulated the baseline amplitudes (by 82%and 75%, respectively) and the contractile frequencies (by 150% and 106%, respectively). In the carbachol or erythromycin-stimulated groups 2-6 mL/L of ETOH significantly inhibited both the amplitude and the frequency. Interestingly,a 4-5 min administration of 6 mL/L ETOH suddenly and completely relaxed the SO. CCK (0.1 μmol/L) stimulated the baseline amplitude from 12.37±0.05 mN to 27.40±1.82mN within 1.60±0.24 min. After this peak, the amplitude decreased to 17.17±0.22 mN and remained constant during the experiment. The frequency peaked at 12.8±0.2 c/min,after which the constant frequency was 9.43±0.24 c/minthroughout the rest of the experiment. ETOH at a dose of 4 mL/L significantly decreased the amplitude from 16.13±0.23 mN to 14.93±0.19 mN. However, no significant changes in the contractile frequency were observed. ETOH at a dose of 6 mL/L inhibited both the amplitudes and the

  14. Total Flavonoids of Scutellaria barbata Inhibit Invasion of Hepatocarcinoma via MMP/TIMP in Vitro

    Directory of Open Access Journals (Sweden)

    Xi-Jing Wang

    2013-01-01

    Full Text Available Metastasis is the major cause of cancer-related deaths. Targeting the process of metastasis has been proposed as a strategy to fight cancer. Scutellaria barbata D. Don (S. barbata, a traditional Chinese medicine, is used for treatment of many diseases, including cancer. This study aimed to determine the anti-metastatic effect of total flavonoids of S. barbata (TF-SB using the human hepatocarcinoma MHCC97H cell line with high metastatic potential. Our results show that TF-SB could significantly inhibit the proliferation and invasion of MHCC97H cells in a dose-dependent manner. MMP-2 and MMP-9 expression were obviously decreased after TF-SB treatment at both the mRNA and protein level. TIMP-1 and TIMP-2 expression were simultaneously increased. The present study indicates that TF-SB could reduce the metastatic capability of MHCC97H cell, probably through decrease of the MMP expression, and simultaneous increase of the TIMP expression.

  15. rmhTNF-αCombined with Cisplatin Inhibits Proliferation of A549 Cell Line In Vitro

    Institute of Scientific and Technical Information of China (English)

    Le-min Xia; Yi-yang Zhou

    2014-01-01

    Objective To explore the inhibitory effect of recombinant mutant human tumor necrosis factor-α(rmhTNF-α) in combination with cisplatin on human lung adenocarcinoma cell line A549. Methods Human lung adenocarcinoma cell line A549 was treated with varying concentrations of rmhTNF-α (0.38, 0.75, 1.50, 6.00 and 12.00 IU/ml) or cisplatin (3.91, 7.81, 15.63, 31.25 and 62.50 μg/ml) for 24 hours. Viable cell number was analyzed by using crystal violet staining. The inhibitory rates of A549 cells growth by the two drugs were calculated. For analyzing whether there was a synergistic effect of rmhTNF-α with cisplatin, A549 cells were treated with 0.75 IU/ml rmhTNF-αand increased concentrations of cisplatin. Results rmhTNF-αor cisplatin inhibited the growth of A549 cell lines in a dose-dependent manner. The inhibitory effect of rmhTNF-αcombined with cisplatin was significantly greater than cisplatin alone at the same concentration (all P Conclusion rmhTNF-αcombined with cisplatin might have synergistic inhibitory effect on human lung adenocarcinoma cell line A549.

  16. Selective growth inhibition of a human malignant melanoma cell line by sesame oil in vitro.

    Science.gov (United States)

    Smith, D E; Salerno, J W

    1992-06-01

    Ayurveda, an ancient and comprehensive system of natural medicine, recommends regular topical application to the skin of sesame oil, above all other oils, as a health-promoting procedure. We examined the effect of sesame oil and several other vegetable oils and their major component fatty acids on the proliferation rate of human normal and malignant melanocytes growing at similar rates in serum-free media. We found that sesame and safflower oils, both of which contain large amounts of linoleate in triglyceride form, selectively inhibited malignant melanoma growth over normal melanocytes whereas coconut, olive and mineral oils, which contain little or no linoleate as triglyceride, did not. These oils were tested at a range of 10-300 micrograms/ml. We found that of the fatty acids tested, only linoleic acid was selectively inhibitory while palmitic and oleic were not. These fatty acids were tested in the range of 3-100 micrograms/ml. These results suggest that certain vegetable oils rich in linoleic acid, such as the sesame oil, recommended for topical use by Ayurveda, may contain selective antineoplastic properties which are similar to those demonstrated for essential polyunsaturated fatty acids and their metabolites. This suggests that whole vegetable oils may have potential clinical usefulness.

  17. Effective inhibition of porcine epidemic diarrhea virus by RNA interference in vitro.

    Science.gov (United States)

    Shen, Haiyan; Zhang, Chunhong; Guo, Pengju; Liu, Zhicheng; Zhang, Jianfeng

    2015-10-01

    Porcine epidemic diarrhea virus (PEDV) is a member of the coronaviridae family, which can cause acute and highly contagious enteric disease of swine characterized by severe entero-pathogenic diarrhea in piglets. Currently, the vaccines of PEDV are only partially effective and there is no specific drug available for treatment of PEDV infection. To exploit the possibility of using RNA interference (RNAi) as a strategy against PEDV infection, five shRNA-expressing plasmids targeting the N, M, and S genes of PEDV were constructed and transfected into Vero cells. The cytopathic effect and MTS assays demonstrated that two shRNAs (pSilencer4.1-M1 and pSilencer4.1-N) were capable of protecting cells against PEDV invasion with very high specificity and efficiency. The two shRNA expression plasmids were also able to inhibit the PEDV replication significantly, as shown by detection of virus titers (TCID50/mL). A real-time quantitative RT-PCR further confirmed that the amounts of viral RNAs in cell cultures pre-transfected with these two plasmids were reduced by 95.0 %. Our results suggest that RNAi might be a promising new strategy against PEDV infection.

  18. Short communication: Lactic acid bacteria from the honeybee inhibit the in vitro growth of mastitis pathogens.

    Science.gov (United States)

    Piccart, K; Vásquez, A; Piepers, S; De Vliegher, S; Olofsson, T C

    2016-04-01

    Despite the increasing knowledge of prevention and control strategies, bovine mastitis remains one of the most challenging diseases in the dairy industry. This study investigated the antimicrobial activity of 13 species of lactic acid bacteria (LAB), previously isolated from the honey crop of the honeybee, on several mastitis pathogens. The viable LAB were first reintroduced into a sterilized heather honey matrix. More than 20 different bovine mastitis isolates were tested against the mixture of the 13 LAB species in the honey medium using a dual-culture overlay assay. The mastitis isolates were identified through bacteriological culturing, followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Additionally, the mastitis isolates were subjected to antimicrobial susceptibility testing through disk diffusion. Growth of all tested mastitis pathogens, including the ones displaying antimicrobial resistance to one or more antimicrobial compounds, were inhibited to some extent by the honey and LAB combination. The antibacterial effect of these LAB opens up new perspectives on alternative treatment and prevention of bovine mastitis.

  19. A triticale water-deficit-inducible phytocystatin inhibits endogenous cysteine proteinases in vitro.

    Science.gov (United States)

    Chojnacka, Magdalena; Szewińska, Joanna; Mielecki, Marcin; Nykiel, Małgorzata; Imai, Ryozo; Bielawski, Wiesław; Orzechowski, Sławomir

    2015-02-01

    Water-deficit is accompanied by an increase in proteolysis. Phytocystatins are plant inhibitors of cysteine proteinases that belong to the papain and legumain family. A cDNA encoding the protein inhibitor TrcC-8 was identified in the vegetative organs of triticale. In response to water-deficit, increases in the mRNA levels of TrcC-8 were observed in leaf and root tissues. Immunoblot analysis indicated that accumulation of the TrcC-8 protein occurred after 72h of water-deficit in the seedlings. Using recombinant protein, inhibitory activity of TrcC-8 against cysteine proteases from triticale and wheat tissues was analyzed. Under water-deficit conditions, there are increases in cysteine proteinase activities in both plant tissues. The cysteine proteinase activities were inhibited by addition of the recombinant TrcC-8 protein. These results suggest a potential role for the triticale phytocystatin in modulating cysteine proteinase activities during water-deficit conditions.

  20. Inhibition of Alzheimer's amyloid toxicity with a tricyclic pyrone molecule in vitro and in vivo.

    Science.gov (United States)

    Hong, Hyun-Seok; Rana, Sandeep; Barrigan, Lydia; Shi, Aibin; Zhang, Yi; Zhou, Feimeng; Jin, Lee-Way; Hua, Duy H

    2009-02-01

    Small beta-amyloid (Abeta) 1-42 aggregates are toxic to neurons and may be the primary toxic species in Alzheimer's disease (AD). Methods to reduce the level of Abeta, prevent Abeta aggregation, and eliminate existing Abeta aggregates have been proposed for treatment of AD. A tricyclic pyrone named CP2 is found to prevent cell death associated with Abeta oligomers. We studied the possible mechanisms of neuroprotection by CP2. Surface plasmon resonance spectroscopy shows a direct binding of CP2 with Abeta42 oligomer. Circular dichroism spectroscopy reveals monomeric Abeta42 peptide remains as a random coil/alpha-helix structure in the presence of CP2 over 48 h. Atomic force microscopy studies show CP2 exhibits similar ability to inhibit Abeta42 aggregation as that of Congo red and curcumin. Atomic force microscopy closed-fluid cell study demonstrates that CP2 disaggregates Abeta42 oligomers and protofibrils. CP2 also blocks Abeta fibrillations using a protein quantification method. Treatment of 5x familial Alzheimer's disease mice, a robust Abeta42-producing animal model of AD, with a 2-week course of CP2 resulted in 40% and 50% decreases in non-fibrillar and fibrillar Abeta species, respectively. Our results suggest that CP2 might be beneficial to AD patients by preventing Abeta aggregation and disaggregating existing Abeta oligomers and protofibrils.

  1. Bisphosphonate binding affinity as assessed by inhibition of carbonated apatite dissolution in vitro

    Science.gov (United States)

    Henneman, Zachary J.; Nancollas, George H.; Ebetino, F. Hal; Russell, R. Graham G.; Phipps, Roger J.

    2009-01-01

    Bisphosphonates (BPs), which display a high affinity for calcium phosphate surfaces, are able to selectively target bone mineral, where they are potent inhibitors of osteoclast-mediated bone resorption. The dissolution of synthetic hydroxyapatite (HAP) has been used previously as a model for BP effects on natural bone mineral. The present work examines the influence of BPs on carbonated apatite (CAP), which mimics natural bone more closely than does HAP. Constant composition dissolution experiments were performed at pH 5.50, physiological ionic strength (0.15M) and temperature (37°C). Selected BPs were added at (0.5 × 10−6) to (50.0 × 10−6)M, and adsorption affinity constants, KL, were calculated from the kinetics data. The BPs showed concentration-dependent inhibition of CAP dissolution, with significant differences in rank order zoledronate > alendronate > risedronate. In contrast, for HAP dissolution at pH 5.50, the differences between the individual BPs were considerably smaller. The extent of CAP dissolution was also dependent on the relative undersaturation, σ, and CAP dissolution rates increased with increasing carbonate content. These results demonstrate the importance of the presence of carbonate in mediating the dissolution of CAP, and the possible involvement of bone mineral carbonate in observed differences in bone affinities of BPs in clinical use. PMID:17907244

  2. Discovery of new diketopiperazines inhibiting Burkholderia cenocepacia quorum sensing in vitro and in vivo

    Science.gov (United States)

    Scoffone, Viola C.; Chiarelli, Laurent R.; Makarov, Vadim; Brackman, Gilles; Israyilova, Aygun; Azzalin, Alberto; Forneris, Federico; Riabova, Olga; Savina, Svetlana; Coenye, Tom; Riccardi, Giovanna; Buroni, Silvia

    2016-01-01

    Burkholderia cenocepacia, an opportunistic respiratory pathogen particularly relevant for cystic fibrosis patients, is difficult to eradicate due to its high level of resistance to most clinically relevant antimicrobials. Consequently, the discovery of new antimicrobials as well as molecules capable of inhibiting its virulence is mandatory. In this regard quorum sensing (QS) represents a good target for anti-virulence therapies, as it has been linked to biofilm formation and is important for the production of several virulence factors, including proteases and siderophores. Here, we report the discovery of new diketopiperazine inhibitors of the B. cenocepacia acyl homoserine lactone synthase CepI, and report their anti-virulence properties. Out of ten different compounds assayed against recombinant CepI, four were effective inhibitors, with IC50 values in the micromolar range. The best compounds interfered with protease and siderophore production, as well as with biofilm formation, and showed good in vivo activity in a Caenorhabditis elegans infection model. These molecules were also tested in human cells and showed very low toxicity. Therefore, they could be considered for in vivo combined treatments with established or novel antimicrobials, to improve the current therapeutic strategies against B. cenocepacia. PMID:27580679

  3. Effects of RNAi-mediated inhibition of aggrecanase-1 and aggrecanase-2 on rat costochondral chondrocytes in vitro

    Institute of Scientific and Technical Information of China (English)

    Zheng-hui WANG; Zhuang-qun YANG; Xi-jing HE; Li WANG; Li-xia LI; Jun-bo TU

    2008-01-01

    Aim:Failure of transplanted cartilage or allogenic chondrocytes is attributed mainly to immunological rejection and cartilage degradation.A major feature is the loss of aggrecan from the cartilage matrix,primarily due to the action of the specific proteinases aggrecanase-1 and aggrecanase-2.The aim of this in vitro study was to determine whether the specific inhibition of aggrecanase-1 and aggrecanase-2 by RNAi would mitigate aggrecan loss from cultured chondrocytes.Methods:Expression plasmid vectors of shRNA targeting aggrecanase-1 and aggrecanase-2 were constructed and transfected into cultured rattus costochondral chondrocytes.The transfected cells were induced with interleukin-1 β (IL-1β).Gene mRNA levels were analyzed by RT-PCR.Aggrecan and collagen Ⅱ content were measured by immunohistochemistry and Western blotting.Results:As the chondrocytes underwent dedifferentiation,agggrecanase-1 increased significantly.The specific inhibition of aggrecanase-1 and aggrecanase-2 by RNAi had no negative effect on the morphology and growth velocity of the chondrocytes.The mRNA of aggrecanase-1 and aggrecanase-2 decreased significantly.The α-2-macroglobulin expression level was increased by the shRNA specific for aggrecanase-1.Other genes of the chondrocytic extracellular matrix were not affected.RNAi significantly increased the aggrecan and collagen Ⅱ content of chondrocytes treated with IL-1β.Conclusion:The results suggest that inhibition of aggrecanase-1 and aggrecanase-2 by RNAi can mitigate aggrecan degradation,without interfering with chondrocytic gene phenotype recovery.RNAi technology can be a useful tool for studying degenerative processes in cartilage.

  4. Metformin inhibits the proliferation, metastasis, and cancer stem-like sphere formation in osteosarcoma MG63 cells in vitro.

    Science.gov (United States)

    Chen, Xu; Hu, Chuanzhen; Zhang, Weibin; Shen, Yuhui; Wang, Jun; Hu, Fangqiong; Yu, Pei

    2015-12-01

    Metformin is an oral drug that has been widely used to treat type 2 diabetes mellitus. Interestingly, accumulated evidence indicate that metformin may reduce the risk of cancer in patients with type 2 diabetes and inhibit tumor cell growth and survival in numerous malignancies, including osteosarcoma (OS) cells. In the present study, we aimed to investigate the effects of metformin on the proliferation, migration, invasion, and sphere formation in OS MG63 cells in vitro. Metformin suppressed OS MG63 cell proliferation in a dose- and time-dependent manner and markedly blocked anti-metastatic potentials, migration, and invasion, by downregulating matrix metalloproteinase 2 (MMP2) and MMP9. Besides, we established OS cancer stem-like cell (CSC) model with sarcosphere formation assay and demonstrated that metformin posed damage on CSCs in OS by inhibiting sphere formation and by inducing their stemness loss. The stemness of CSCs in OS such as self-renewal and differentiation potentials was both impaired with a significant decrease of Oct-4 and Nanog activation. Consistent with this, the positive rates of CD90, CD133, and stage-specific embryonic antigen-4 (SSEA-4) were all observed with reductions in response to metformin exposure. In addition, Western blot showed that metformin activated AMPKα at Tyr172, followed by a downregulated phosphorylation of mammalian target of rapamycin (mTOR)/S6 and feedback activation of p-AKT Ser(473) in both OS MG63 cells and CSCs. This indicates that AMPK/mTOR/S6 signaling pathway might be involved in the growth inhibition of both OS MG63 cells and CSCs. These results suggest that metformin, a potential anti-neoplastic agent, might make it a novel therapeutic choice for the treatment of OS in the future.

  5. BRAF and MEK inhibition variably affect GD2-specific chimeric antigen receptor (CAR) T-cell function in vitro.

    Science.gov (United States)

    Gargett, Tessa; Fraser, Cara K; Dotti, Gianpietro; Yvon, Eric S; Brown, Michael P

    2015-01-01

    Cancer immunotherapy has long been used in the treatment of metastatic melanoma, and an anti-CTLA-4 monoclonal antibody treatment has recently been approved by the US Food and Drug Administration. Targeted therapies such as small molecule kinase inhibitors targeting deregulated mitogen-activated protein kinase (MAPK) signaling have markedly improved melanoma control in up to 50% of metastatic disease patients and have likewise been recently approved. Combination therapies for melanoma have been proposed as a way to exploit the high-level but short-term responses associated with kinase inhibitor therapies and the low-level but longer-term responses associated with immunotherapy. Cancer immunotherapy now includes adoptive transfer of autologous tumor-specific chimeric antigen receptor (CAR) T cells and this mode of therapy is a candidate for combination with small molecule drugs. This paper describes CART cells that target GD2-expressing melanoma cells and investigates the effects of approved MAPK pathway-targeted therapies for melanoma [vemurafenib (Vem), dabrafenib (Dab), and trametinib (Tram)] on the viability, activation, proliferation, and cytotoxic T lymphocyte activity of these CAR T cells, as well as on normal peripheral blood mononuclear cells. We report that, although all these drugs lead to inhibition of stimulated T cells at high concentrations in vitro, only Vem inhibited T cells at concentrations equivalent to reported plasma concentrations in treated patients. Although the combination of Dab and Tram also resulted in inhibition of T-cell effector functions at some therapeutic concentrations, Dab itself had little adverse effect on CAR T-cell function. These findings may have implications for novel therapeutic combinations of adoptive CAR T-cell immunotherapy and MAPK pathway inhibitors.

  6. The curry spice curcumin selectively inhibits cancer cells growth in vitro and in preclinical model of glioblastoma.

    Science.gov (United States)

    Zanotto-Filho, Alfeu; Braganhol, Elizandra; Edelweiss, Maria Isabel; Behr, Guilherme A; Zanin, Rafael; Schröder, Rafael; Simões-Pires, André; Battastini, Ana Maria Oliveira; Moreira, José Cláudio Fonseca

    2012-06-01

    Previous studies suggested that curcumin is a potential agent against glioblastomas (GBMs). However, the in vivo efficacy of curcumin in gliomas remains not established. In this work, we examined the mechanisms underlying apoptosis, selectivity, efficacy and safety of curcumin from in vitro (U138MG, U87, U373 and C6 cell lines) and in vivo (C6 implants) models of GBM. In vitro, curcumin markedly inhibited proliferation and migration and induced cell death in liquid and soft agar models of GBM growth. Curcumin effects occurred irrespective of the p53 and PTEN mutational status of the cells. Interestingly, curcumin did not affect viability of primary astrocytes, suggesting that curcumin selectivity targeted transformed cells. In U138MG and C6 cells, curcumin decreased the constitutive activation of PI3K/Akt and NFkappaB survival pathways, down-regulated the antiapoptotic NFkappaB-regulated protein bcl-xl and induced mitochondrial dysfunction as a prelude to apoptosis. Cells developed an early G2/M cell cycle arrest followed by sub-G1 apoptosis and apoptotic bodies formation. Caspase-3 activation occurred in the p53-normal cell type C6, but not in the p53-mutant U138MG. Besides its apoptotic effect, curcumin also synergized with the chemotherapeutics cisplatin and doxorubicin to enhance GBM cells death. In C6-implanted rats, intraperitoneal curcumin (50 mg kg(-1) d(-1)) decreased brain tumors in 9/11 (81.8%) animals against 0/11 (0%) in the vehicle-treated group. Importantly, no evidence of tissue (transaminases, creatinine and alkaline phosphatase), metabolic (cholesterol and glucose), oxidative or hematological toxicity was observed. In summary, data presented here suggest curcumin as a potential agent for therapy of GBMs.

  7. Plant-Derived MINA-05 Inhibits Human Prostate Cancer Proliferation In Vitro and Lymph Node Spread In Vivo

    Directory of Open Access Journals (Sweden)

    Kate Vandyke

    2007-04-01

    Full Text Available Few treatment options exist for metastatic prostate cancer (PC that becomes hormone refractory (HRPC. In vitro, plant-derived MINA-05 caused dose-dependent decreases in cell numbers in HRPC cell lines LNCaPC4-2B and PC-3, and in androgen-sensitive LNCaP-FGC, DuCaP, and LAPC-4, by WST-1 assay. MINA-05 pretreatment significantly decreased clonogenic survival in agar and on plastic at 1 × and 2 × IC50 for PC-3 (P < .05 and P < .001, respectively, and at 1/2 ×, 1 ×, and 2 × IC50 for LNCaP-FGC cells (P < .001. MINA-05 also induced G2M arrest of LNCaP-FGC and PC-3 cells (by flow cytometry and caused some apoptosis in LNCaPFGC (sub-G1, peak on flow, expression of activated caspase-3 but not in PC-3 cells. Western blotting indicated that these cell cycle changes were associated with decreased levels of regulatory proteins cyclin B1 and cdc25C. MINA-05 given daily by gavage for 39 days did not diminish primary orthotopic PC-3 growth in nude mice, but decreased the extent of lymph node invasion at higher doses. We conclude that MINA-05 induces G2M arrest, inhibits cell growth, reduces PC cell re-growth in vitro, and reduces lymph node invasion after orthotopic PC-3 cell implantation in vivo. It has potential as an adjuvant treatment for patients with PC.

  8. Dynamin Binding Protein (Tuba) Deficiency Inhibits Ciliogenesis and Nephrogenesis in Vitro and in Vivo.

    Science.gov (United States)

    Baek, Jeong-In; Kwon, Sang-Ho; Zuo, Xiaofeng; Choi, Soo Young; Kim, Seok-Hyung; Lipschutz, Joshua H

    2016-04-15

    Dysfunction of renal primary cilia leads to polycystic kidney disease. We previously showed that the exocyst, a protein trafficking complex, is essential for ciliogenesis and regulated by multiple Rho and Rab family GTPases, such as Cdc42. Cdc42 deficiency resulted in a disruption of renal ciliogenesis and a polycystic kidney disease phenotype in zebrafish and mice. Here we investigate the role of Dynamin binding protein (also known as Tuba), a Cdc42-specific guanine nucleotide exchange factor, in ciliogenesis and nephrogenesis using Tuba knockdown Madin-Darby canine kidney cells and tuba knockdown in zebrafish. Tuba depletion resulted in an absence of cilia, with impaired apical polarization and inhibition of hepatocyte growth factor-induced tubulogenesis in Tuba knockdown Madin-Darby canine kidney cell cysts cultured in a collagen gel. In zebrafish, tuba was expressed in multiple ciliated organs, and, accordingly, tuba start and splice site morphants showed various ciliary mutant phenotypes in these organs. Co-injection of tuba and cdc42 morpholinos at low doses, which alone had no effect, resulted in genetic synergy and led to abnormal kidney development with highly disorganized pronephric duct cilia. Morpholinos targeting two other guanine nucleotide exchange factors not known to be in the Cdc42/ciliogenesis pathway and a scrambled control morpholino showed no phenotypic effect. Given the molecular nature of Cdc42 and Tuba, our data strongly suggest that tuba and cdc42 act in the same ciliogenesis pathway. Our study demonstrates that Tuba deficiency causes an abnormal renal ciliary and morphogenetic phenotype. Tuba most likely plays a critical role in ciliogenesis and nephrogenesis by regulating Cdc42 activity.

  9. Induction of apoptosis and inhibition of proliferation of C6 glioma cells in vitro by tamoxifen

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Objective To investigate the anti-tumor effect and mechanism of tamoxifen on rat C6 glioma cells. Methods C6 cells were cultured in Dulbecco's modified Eagle's medium (DMEM) with 3% fetal calf serum (FCS), and treated with tamoxifen of different concentrations, i.e. group A (1.25μmol/L), group B (2.50 μmol/L), group C (5.00 μmol/L), group D (10.00 μmol/L), group E (20.00 μmol/L) and control group (0.00 μmol/L). Morphological changes, MTT assay and 5-bromo-2'-deoxyuriding labeling ratio were assessed. Apoptosis was observed by flow cytometry. Results C6 cells treated with different doses of tamoxifen for 24, 48, and 72 hours became irregular in shape, while cells treated with vehicle grew normally. MTT assay showed that tamoxifen did not suppress C6 cell growth until 72 hours after treatment. Seventy-two hours after treatment, there were significant differences in cell viable rate between group A versus groups C, D and E; so did group B versus group D as well as group E (P<0.05). BrdU incorporation assay indicated significant difference of BrdU labbled index (BrdU LI) among groups A, C, E and control group 48 hours after treatment (P<0.05). And the BrdU LI decreased with the increased concentration of tamoxifen. Flow cytometry (FCM) showed significant difference between treated group and control group at 24, 48, and 72 hours after treatment (P<0.05). Conclusion Tamoxifen significantly suppresses the growth of C6 glioma cells in a time- and dose-dependent manner. The mechanism of tamoxifen suppressing C6 glioma cells may be inhibiting proliferation and inducing apoptosis. Therefore, tamoxifen can be a candidate as a chemotherapy agent for glioma.

  10. Deferasirox (ICL670A) effectively inhibits oesophageal cancer growth in vitro and in vivo

    Science.gov (United States)

    Ford, SJ; Obeidy, P; Lovejoy, DB; Bedford, M; Nichols, L; Chadwick, C; Tucker, O; Lui, GYL; Kalinowski, DS; Jansson, PJ; Iqbal, TH; Alderson, D; Richardson, DR; Tselepis, C

    2013-01-01

    Background and Purpose Growing evidence implicates iron in the aetiology of gastrointestinal cancer. Furthermore, studies demonstrate that iron chelators possess potent anti-tumour activity, although whether iron chelators show activity against oesophageal cancer is not known. Experimental Approach The effect of the iron chelators, deferoxamine (DFO) and deferasirox, on cellular iron metabolism, viability and proliferation was assessed in two oesophageal adenocarcinoma cell lines, OE33 and OE19, and the squamous oesophageal cell line, OE21. A murine xenograft model was employed to assess the effect of deferasirox on oesophageal tumour burden. The ability of chelators to overcome chemoresistance and to enhance the efficacy of standard chemotherapeutic agents (cisplatin, fluorouracil and epirubicin) was also assessed. Key Results Deferasirox and DFO effectively inhibited cellular iron acquisition and promoted intracellular iron mobilization. The resulting reduction in cellular iron levels was reflected by increased transferrin receptor 1 expression and reduced cellular viability and proliferation. Treating oesophageal tumour cell lines with an iron chelator in addition to a standard chemotherapeutic agent resulted in a reduction in cellular viability and proliferation compared with the chemotherapeutic agent alone. Both DFO and deferasirox were able to overcome cisplatin resistance. Furthermore, in human xenograft models, deferasirox was able to significantly suppress tumour growth, which was associated with decreased tumour iron levels. Conclusions and Implications The clinically established iron chelators, DFO and deferasirox, effectively deplete iron from oesophageal tumour cells, resulting in growth suppression. These data provide a platform for assessing the utility of these chelators in the treatment of oesophageal cancer patients. Linked Article This article is commented on by Keeler and Brookes, pp. 1313–1315 of this issue. To view this commentary visit

  11. Inhibition effect of Chinese herbal medicine on transcription of hepatitis C virus structural gene in vitro

    Institute of Scientific and Technical Information of China (English)

    Jun Dou; Qian Chen; Jing Wang

    2005-01-01

    AIM: To investigate the inhibitory effect of Chinese herbal medicine on the transcription of hepatitis C virus (HCV) structural gene in Hela D cells.METHODS: Hela cell line was transfected with recombinant pBK-CMV-HCV containing HCV structural gene by Lipofectamine. RT-nested-PCR and Western blot assay were used to testify the HCV gene expression in Hela cells. The Hela cells expressing HCV structural protein were named Hela D cells. Prescriptions of Xiao chaihu Decoction (XCHD),Fufang Huangqi (FFHQ) and Bingganling (BGL) wererespectively added to Hela D cells in various concentrations. Semi-quantitative RT-nested-PCR product analysis was performed according to the fluorescent density between HCV DNA band and GAPDH DNA band in gel electrophoresisafter screened. RESULTS: Recombinant pBK-CMV-HCV could correctly express the HCV structural gene in Hela D cells. After coculture of Hela D cells with three prescriptional different concentrations for 48 h respectively, the transcription of HCVgene decreased with increasing of the concentration of each prescription. The lightness ratio of HCV product bands to GAPDH product bands was 0.24, 0.10 and 0.12 in Hela D cells incubated with 0.1 g/mL of XCHD, FFHQand BGL respectively and the lightness ratio HCV product bands to GAPDH product bands was 0.75, 0.67 and 0.61respectively in the control cells. CONCLUSION: The prescriptions of XCHD, FFHQ and BGL partly inhibit the transcription of HCV structural gene inHela D cells.

  12. A Scorpion Defensin BmKDfsin4 Inhibits Hepatitis B Virus Replication in Vitro

    Directory of Open Access Journals (Sweden)

    Zhengyang Zeng

    2016-04-01

    Full Text Available Hepatitis B virus (HBV infection is a major worldwide health problem which can cause acute and chronic hepatitis and can significantly increase the risk of liver cirrhosis and primary hepatocellular carcinoma (HCC. Nowadays, clinical therapies of HBV infection still mainly rely on nucleotide analogs and interferons, the usage of which is limited by drug-resistant mutation or side effects. Defensins had been reported to effectively inhibit the proliferation of bacteria, fungi, parasites and viruses. Here, we screened the anti-HBV activity of 25 scorpion-derived peptides most recently characterized by our group. Through evaluating anti-HBV activity and cytotoxicity, we found that BmKDfsin4, a scorpion defensin with antibacterial and Kv1.3-blocking activities, has a comparable high inhibitory rate of both HBeAg and HBsAg in HepG2.2.15 culture medium and low cytotoxicity to HepG2.2.15. Then, our experimental results further showed that BmKDfsin4 can dose-dependently decrease the production of HBV DNA and HBV viral proteins in both culture medium and cell lysate. Interestingly, BmKDfsin4 exerted high serum stability. Together, this study indicates that the scorpion defensin BmKDfsin4 also has inhibitory activity against HBV replication along with its antibacterial and potassium ion channel Kv1.3-blocking activities, which shows that BmKDfsin4 is a uniquely multifunctional defensin molecule. Our work also provides a good molecule material which will be used to investigate the link or relationship of its antiviral, antibacterial and ion channel–modulating activities in the future.

  13. A Scorpion Defensin BmKDfsin4 Inhibits Hepatitis B Virus Replication in Vitro

    Science.gov (United States)

    Zeng, Zhengyang; Zhang, Qian; Hong, Wei; Xie, Yingqiu; Liu, Yun; Li, Wenxin; Wu, Yingliang; Cao, Zhijian

    2016-01-01

    Hepatitis B virus (HBV) infection is a major worldwide health problem which can cause acute and chronic hepatitis and can significantly increase the risk of liver cirrhosis and primary hepatocellular carcinoma (HCC). Nowadays, clinical therapies of HBV infection still mainly rely on nucleotide analogs and interferons, the usage of which is limited by drug-resistant mutation or side effects. Defensins had been reported to effectively inhibit the proliferation of bacteria, fungi, parasites and viruses. Here, we screened the anti-HBV activity of 25 scorpion-derived peptides most recently characterized by our group. Through evaluating anti-HBV activity and cytotoxicity, we found that BmKDfsin4, a scorpion defensin with antibacterial and Kv1.3-blocking activities, has a comparable high inhibitory rate of both HBeAg and HBsAg in HepG2.2.15 culture medium and low cytotoxicity to HepG2.2.15. Then, our experimental results further showed that BmKDfsin4 can dose-dependently decrease the production of HBV DNA and HBV viral proteins in both culture medium and cell lysate. Interestingly, BmKDfsin4 exerted high serum stability. Together, this study indicates that the scorpion defensin BmKDfsin4 also has inhibitory activity against HBV replication along with its antibacterial and potassium ion channel Kv1.3-blocking activities, which shows that BmKDfsin4 is a uniquely multifunctional defensin molecule. Our work also provides a good molecule material which will be used to investigate the link or relationship of its antiviral, antibacterial and ion channel–modulating activities in the future. PMID:27128943

  14. Inhibition of hepatic tumor cell proliferation in vitro and tumor growth in vivo by taltobulin,a synthetic analogue of the tripeptide hemiasterlin

    Institute of Scientific and Technical Information of China (English)

    Yogesh K Vashist; Celine Tiffon; Christoforos Stoupis; Claudio A Redaelli

    2006-01-01

    AIM:To investigate the inhibitory effects of taltobulin (HTI-286),a synthetic analogue of natural hemiasterlin derived from marine sponges, on hepatic tumor growth in vitro andin vivo.METHODS: The potential anti-proliferative effects of HTI-286 on different hepatic tumor cell lines in vitro and in vivo were examined.RESULTS:HTI-286 significantly inhibited proliferation of all three hepatic tumor cell lines (mean IC50 = 2 nmol/L± 1 nmol/L)in vitro. Interestingly, no decrease in viable primary human hepatocytes (PHH) was detected under HTI-286 exposure. Moreover, intravenous administration of HTI-286 significantly inhibited tumor growth in vivo (rat allogratt model).CONCLUSION:HTI-286 might be considered a potent promising drug in treatment of liver malignancies.HTI-286 is currently undergoing clinical evaluation in cancer patients.

  15. Noscapine inhibits hypoxia-mediated HIF-1alpha expression andangiogenesis in vitro: a novel function for an old drug.

    Science.gov (United States)

    Newcomb, Elizabeth W; Lukyanov, Yevgeniy; Schnee, Tona; Ali, M Aktar; Lan, Li; Zagzag, David

    2006-05-01

    Overexpression of hypoxia-inducible factor-1 (HIF-1) is a common feature in solid malignancies related to oxygen deficiency. Since increased HIF-1 expression correlates with advanced disease stage, increased angiogenesis and poor prognosis, HIF-1 and its signaling pathway have become targets for cancer chemotherapy. In this study, we identified noscapine to be a novel small molecule inhibitor of the HIF-1 pathway based on its structure-function relation-ships with HIF-1 pathway inhibitors belonging to the benzylisoquinoline class of plant metabolites and/or to microtubule binding agents. We demonstrate that noscapine treatment of human glioma U87MG and T98G cell lines exposed to the hypoxic mimetic agent, CoCl2, inhibits hypoxia-mediated HIF-1alpha expression and transcriptional activity as measured by decreased secretion of VEGF, a HIF-1 target gene. Inhibition of hypoxia-mediated HIF-1alpha expression was due, in part, to its ability to inhibit accumulation of HIF-1alpha in the nucleus and target it for degradation via the proteasome. One mechanism of action of microtubule binding agents is their antiangiogenic activity associated with disruption of endothelial tubule formation. We show that noscapine has similar properties in vitro. Thus, noscapine may possess novel antiangiogenic activity associated with two broad mechanisms of action: first, by decreasing HIF-1alpha expression in hypoxic tumor cells, upregulation of target genes, such as VEGF, would be decreased concomitant with its associated angiogenic activity; second, by inhibiting endothelial cells from forming blood vessels in response to VEGF stimulation, it may limit the process of neo-vascularization, correlating with antitumor activity in vivo. For more than 75 years, noscapine has traditionally been used as an oral cough suppressant with no known toxic side effects in man. Thus, the studies reported here have found a novel function for an old drug. Given its low toxicity profile, its demonstrated

  16. Epigallocatechin-3-gallate inhibits proliferation and migration of human colon cancer SW620 cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Fang ZHOU; long ZHOU; Ting WANG; Yuan MU; Biao WU; Dong-lin GUO; Xian-mei ZHANG; Ying WU

    2012-01-01

    Epigallocatechin-3-gallate (EGCG) is the major polyphenolic constituent in green tea.The aim of this study is to investigate the effects of EGCG on proliferation and migration of the human colon cancer SW620 cells.Methods:Proliferation and migration of SW620 cells were induced by the protease-activated receptor 2-agonist peptide (PAR2-AP,100 μmol/L) or factor Vlla (10 nmol/L),and analyzed using MTT and Transwell assays,respectively.The cellular cytoskeleton was stained with rhodamine-conjugated phalloidin and examined with a laser scanning confocal fluorescence microscope.The expression of caspase-7,tissue factor (TF) and matrix metalloproteinase (MMP)-9 in the cells was examined using QT-PCR,ELISA and Western blot assays.The activation of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and nuclear factor-kappa B (NF-KB) signaling pathways was analyzed with Western blot.Results:Both PAR2-AP and factor Vlla promoted SW620 cell proliferation and migration,and caused cytoskeleton reorganization (increased filopodia and pseudopodia).Pretreatment with EGCG (25,50,75,and 100 μg/mL) dose-dependently blocked the cell proliferation and migration induced by PAR2-AP or factor Vlla.EGCG (100 μg/mL) prevented the cytoskeleton changes induced by PAR2-AP or factor Vlla.EGCG (100 μg/mL) counteracted the down-regulation of caspase-7 expression and up-regulation of TF and MMP-9 expression in the cells treated with PAR2-AP or factor Vlla.Furthermore,it blocked the activation of ERK1/2 and NF-κB (p65/RelA) induced by PAR2-AP or factor Vlla.Conclusion:EGCG blocks the proliferation and migration of SW620 cells induced by PAR2-AP and factor Vlla via inhibition of the ERK1/2 and NF-KB pathways.The compound may serve as a preventive and therapeutic agent for colon cancers.

  17. 小分子肽抑制破骨细胞附着和迁移%Peptides inhibit attaching and mobility of ostoclast in vitro

    Institute of Scientific and Technical Information of China (English)

    Tao Ma

    2009-01-01

    @@ 最近在Journal of Molecular Signaling发表的题为"Dramatic inhibition of osteoclast sealing ring formation and bone resorption in vitro by a WASP-peptide containing pTyr294 amino acid"的文章提出了治疗骨质疏松的新的靶点.

  18. Ribavirin inhibits in vitro hepatitis E virus replication through depletion of cellular GTP pools and is moderately synergistic with alpha interferon

    NARCIS (Netherlands)

    Y. Debing (Yannick); B. Emerson; Y. Wang (Yijin); Q. Pan (Qiuwei); J. Balzarini; K. Dallmeier (Kai); J. Neyts

    2014-01-01

    textabstractHepatitis E virus (HEV) is a common cause of acute hepatitis that results in high mortality in pregnant women and may establish chronic infections in immunocompromised patients. We demonstrate for the first time that alpha interferon (IFN-α) and ribavirin inhibit in vitro HEV replication

  19. Inhibition of Hepatitis B Virus Replication and Expression in Vitro and in Vivo by the Hammerhead Ribozymes Targeted Different Sites

    Institute of Scientific and Technical Information of China (English)

    Wei; Dai; Rong; Zhou; Hong; Yu; Xiao-juan; Li

    2012-01-01

    Objective To develop an effective and specific medicine targeting hepatitis B virus(HBV) pregenome. Based on the identified accessible target sites for hammerhead ribozyme in our previous researches, a recombinant hepatitis delta virus(HDV) ribozyme was chosen and used to demonstrate the effective cleavage in vitro and in vivo. Methods Three hammerhead ribozymes for potential target sites(S, X and C genes) and co-expression plasmid(pTr-dB, pTdδ-dB, pTrX-dB and pTrC-dB) as well as four HDV-ribozyme chimera constructs with HBV(pTdXX, pTdXC, pTdSX and pTdSC) were severally chosen to validate the inhibition of the replication and expression of HBV. The co-expression plasmids(pTdδ and pTr-Db) in physiological saline were hydrodynamically injected to mice by tail vein. Results Compared with the group injected with pTr-dB in Huh-7 cell, hepatitis B surface antigen(HBsAg) was reduced by 31% in the group injected with pTdδ-dB, by 54%, 26%, 72% and 97% in the group injected with recombinant-ribozymes pTdSX, pTdSC, pTdXC and pTdXX, respectively. The inhibiting effects of endogenous ribozymes RzX and RzC on the HBsAg expression were 66% and 57%, respectively. Compared with the positive control, the amount of HBsAg was decreased in mice injected with pTdXX through tail vein by 88% and 96% on the second day and the third day, respectively. HBsAg was undetectable on the 6th day and could not primitively be detected on the 9th day in the sera from all mice. HBV DNA was not detected in the sera of BALB/c mice injected with pTdXX-dB, pTrX-dB or replicating-defective plasmid pHBV, while HBV DNA replication in control group could be detected on the 6th day. While HBcAg could not be detected in liver tissues of mice injected with plasmid pTdXX-dB on the 3rd day. Conclusions Encoding regions of HBV S, C and X gene were the effective cleavage sites for hammerhead ribozyme in vitro and in vivo, which provides basis for further construction of therapeutic recombinant HDV and the

  20. Amino acids inhibit kynurenic acid formation via suppression of kynurenine uptake or kynurenic acid synthesis in rat brain in vitro.

    Science.gov (United States)

    Sekine, Airi; Okamoto, Misaki; Kanatani, Yuka; Sano, Mitsue; Shibata, Katsumi; Fukuwatari, Tsutomu

    2015-01-01

    The tryptophan metabolite, kynurenic acid (KYNA), is a preferential antagonist of the α7 nicotinic acetylcholine receptor at endogenous brain concentrations. Recent studies have suggested that increase of brain KYNA levels is involved in psychiatric disorders such as schizophrenia and depression. KYNA-producing enzymes have broad substrate specificity for amino acids, and brain uptake of kynurenine (KYN), the immediate precursor of KYNA, is via large neutral amino acid transporters (LAT). In the present study, to find out amino acids with the potential to suppress KYNA production, we comprehensively investigated the effects of proteinogenic amino acids on KYNA formation and KYN uptake in rat brain in vitro. Cortical slices of rat brain were incubated for 2 h in Krebs-Ringer buffer containing a physiological concentration of KYN with individual amino acids. Ten out of 19 amino acids (specifically, leucine, isoleucine, phenylalanine, methionine, tyrosine, alanine, cysteine, glutamine, glutamate, and aspartate) significantly reduced KYNA formation at 1 mmol/L. These amino acids showed inhibitory effects in a dose-dependent manner, and partially inhibited KYNA production at physiological concentrations. Leucine, isoleucine, methionine, phenylalanine, and tyrosine, all LAT substrates, also reduced tissue KYN concentrations in a dose-dependent manner, with their inhibitory rates for KYN uptake significantly correlated with KYNA formation. These results suggest that five LAT substrates inhibit KYNA formation via blockade of KYN transport, while the other amino acids act via blockade of the KYNA synthesis reaction in brain. Amino acids can be a good tool to modulate brain function by manipulation of KYNA formation in the brain. This approach may be useful in the treatment and prevention of neurological and psychiatric diseases associated with increased KYNA levels.

  1. CO2 laser and fluoride on the inhibition of root caries—an in vitro microbial model

    Science.gov (United States)

    Steiner-Oliveira, C.; Rodrigues, L. K. A.; Parisotto, T. M.; Sousa E Silva, C. M.; Hara, A. T.; Nobre-Dos-Santos, M.

    2010-09-01

    An increase in the dental caries prevalence on root surfaces has been observed mainly in elderly. This research assessed, in vitro, the effectiveness of a pulsed CO2 (λ = 10.6 μm) laser associated or not with fluoride, in reducing human root dentine demineralization in conditions that mimic an oral high cariogenic challenge. After sterilization, root dentine specimens were randomly assigned into 6 groups ( n = 30), in triplicate. The groups were Control (C), Streptococcus mutans (SM), Fluoride (F), Laser (L), Fluoride + laser (FL), and Laser + fluoride (LF). Except for the control group, all the specimens were inoculated with SM and immersed 3 times a day in a 40% sucrose bath. After a 7-day cariogenic challenge, the mineral loss and lesion depth were evaluated by transverse microradiography and fluoride in the biofilm was determined using an ion-selective electrode. Results were statistically analyzed by analysis of variance, at 5% of significance level. For groups C, SM, F, L, FL and LF, the means (standard-deviation) of mineral loss were 816.3 (552.5)a, 3291.5 (1476.2)c, 2508.5 (1240.5)bc, 2916.2 (1323.7)c, 1839.7 (815.2)b and 1955.0 (1001.4)b, respectively; while lesion depths were 39.6 (22.8)a, 103.1 (38.9)c, 90.3 (44.6)bc, 91.7 (27.0)bc, 73.3 (26.6)b, 75.1 (35.2)b, respectively (different superscript letters indicate significant differences among groups). In conclusion, irradiation of root dentine with a pulsed CO2 laser at fluency of 12.0 J/cm2 was able to inhibit root surface demineralization only when associated with fluoride. No synergy effect on the inhibition of root dentine mineral loss was provided by the combination of fluoride application and laser irradiation.

  2. LPS induces HUVEC angiogenesis in vitro through miR-146a-mediated TGF-β1 inhibition

    Science.gov (United States)

    Li, Yize; Zhu, Huayu; Wei, Xu; Li, Heng; Yu, Zhicao; Zhang, Hongmei; Liu, Wenchao

    2017-01-01

    Angiogenesis is an essential process for tissue growth and embryo development. However, inflammation, abnormal wound healing, vascular diseases, and tumor development and progression can result from inappropriate angiogenesis. Lipopolysaccharide (LPS) can activate various cells and alter endothelium function and angiogenesis. This study investigated the underlying molecular events involved in LPS-induced angiogenesis and revealed a novel strategy for controlling abnormal angiogenesis. LPS treatment promoted wound healing and tube formation in human umbilical vein endothelial cell (HUVEC) cultures and induced their expression of miR-146a. miR-146a was previously shown to regulate angiogenesis in HUVECs. Knockdown of miR-146a expression antagonized LPS-induced angiogenesis in vitro. Moreover, bioinformatic analyses predicted TGF-β1 as a target gene for miR-146a, which was confirmed by aluciferase reporter assay. Expression of miR-146a in HUVECs resulted in downregulation of TGF-β1 in HUVECs, whereas a miR-146a inhibitor upregulated the expression of TGF-β1 and TGF-β1 downstream proteins, such as phosphoraylation-Smad2 and plasminogen activator inhibitor type 1 (PAI-1). Furthermore, the TGF-β1 signaling inhibitor SB431542 impaired the ability of miR-146a knockdown to suppress LPS-induced angiogenesis. Thus, LPS-induced angiogenesis of HUVECs functions through miR-146a upregulation and TGF-β1 inhibition. This study suggests that knockdown of miR-146a could activate TGF-β1 signaling to inhibit angiogenesis as a potential therapy for angiogenesis-related diseases.

  3. The novel anti-neuroblastoma agent PF403, inhibits proliferation and invasion in vitro and in brain xenografts.

    Science.gov (United States)

    Li, Chao; Li, Yan; Lv, Haining; Li, Shaowu; Tang, Ke; Zhou, Wanqi; Yu, Shishan; Chen, Xiaoguang

    2015-07-01

    Neuroblastoma is the most common cancer in infants and the fourth most common cancer in children. Our previous study showed that PF403 had a potent antitumor ability. In the present study, we evaluated the anti-neuroblastoma property of PF403 and investigated the underlying mechanisms. MTT assay, colony formation assay and flow cytometry assay were used to assess cytotoxicity of PF403 on SH-SY5Y cells. Transwell assay was chosen to estimate the anti-invasion ability of PF403 on neuroblastoma cells. The protein expression was detected by western blot analysis. The SH-SY5Y brain xenograft model was used to assess in vivo antitumor activity of PF403. PF403-mediated SH-SY5Y cell death was found to be dose- and time-dependent, and PF403 was able to limit invasion and metastasis of neuroblastoma cells. MRI and pathology analysis proved that the pro-drug of PF403, CAT3, inhibited SH-SY5Y cells in vivo. PF403 decreased expression of phosphorylated FAK, MMP-2 and MMP-9 proteins, and downregulated the activity of PI3K/AKT and Raf/ERK pathways, followed by regulation of the proteins expression of Bcl-2 family, activated caspase-3, -9 and PARP and initiation of apoptosis of neuroblastoma cells. PF403 exerted cytotoxicity against SH-SY5Y neuroblastoma cell both in vitro and in vivo, and inhibited its invasion ability, suggesting PF403 has potential as a new anticancer drug for the treatment of neuroblastoma.

  4. Inhibition of CXCR4 activity with AMD3100 decreases invasion of human colorectal cancer cells in vitro

    Institute of Scientific and Technical Information of China (English)

    Ji-Kun Li; Liang Yu; Yun Shen; Li-Sheng Zhou; Yi-Cheng Wang; Jian-Hai Zhang

    2008-01-01

    AIM: To investigate the effect and mechanism of blockade of the CXC chemokine receptor-4 (CXCR4) signaling pathway by AMD3100, a small non-peptide CXCR4 inhibitor, on invasion and metastasis of colorectal cancer cells in vitro.METHODS: Human colorectal cancer cell line SW480 was treated with AMD3100 at different final concentrations.3-(4,5-dimethylthiazole-2-yl)-2.5-dipheny-ltetrazolium bromide (MTT) assay was used to detect the effect of AMD3100 on cell proliferation. The invasion ability of SW480 cells was determined by cell invasion assay kit.In the presence of AMD3100, the CXCL12-mediated migratory response of SW480 cells was tested by classical chemotaxis assays. RT-PCR analysis and Western blotting were used to detect the expression of vascular endothelial growth factor (VEGF), matrix metalloproteinase-2 (MMP-2)and -9 (MMP-9) in SW480 cells.RESULTS: Cell viability was significantly suppressed by AMD3100 in a dose-dependent manner. AMD3100 (100and 1000 ng/mL) significantly inhibited the invasion ability of SW480 cells. Treatment with AMD3100markedly reduced the expression of VEGF and MMP-9but not MMP-2 in SW480 cells.CONCLUSION: The CXCL12/CXCR4 system is an important mediator of proliferation and invasion of CXCR4-expressing colorectal cancer cells, AMD3100inhibited invasion and metastasis activity of the colorectal cancer cell line SW480 through down-regulation of VEGF and MMP-9 expression.

  5. In vitro inhibition of CYP2B1 monooxygenase by beta-myrcene and other monoterpenoid compounds.

    Science.gov (United States)

    De-Oliveira, A C; Ribeiro-Pinto, L F; Paumgartten, J R

    1997-06-16

    beta-myrcene (MYR) is an acyclic monoterpene found in the essential oils of several useful plants such as lemongrass (Cymbopogon citratus), hop, bay, verbena and others. Recently it has been reported that MYR as well as lemongrass oil blocked the metabolic activation of some promutagens (e.g., cyclophosphamide and aflatoxin B1) in in vitro genotoxicity assays. The present study was performed to evaluate the inhibitory effects of MYR and some other monoterpenoid compounds on microsomal enzymes involved in the activation of genotoxic substances. The effects of MYR and other monoterpenes on the activity of pentoxyresorufin-O-depenthylase (PROD), a selective marker for CYP2B1, was determined in a pool of liver microsomes prepared from phenobarbital-treated rats. The effect of MYR on the activity of ethoxyresorufin-O-deethylase (EROD), a marker for CYP4501A1, was investigated in liver microsomes of untreated rats. Results revealed that MYR had almost no effect on EROD (IC50 > 50 microM), but produced a concentration-dependent inhibition of PROD activity (IC50 =0.14 microM). The analysis of alterations produced by MYR on PROD kinetic parameters (Lineweaver-Burk plot) suggested that inhibition is competitive (Ki = 0.14 microM). The inhibitory effects of seven other monoterpenes on PROD activity (pentoxyresorufin 5 microM) were also studied and the IC50 were as follows: (-)-alpha-pinene, 0.087 microM; (+)-alpha-pinene, 0.089 microM; d-limonene, 0.19 microM; alpha-terpinene, 0.76 microM; citral, 1.19 microM; citronellal, 1.56 microM, and (+/-) camphor, 7.89 microM. The potent inhibitory effects on CYP4502B1 suggest that MYR, and other monoterpenes, interfere with the metabolism of xenobiotics which are substrates for this isoenzyme.

  6. Cyclosporin a inhibits rotavirus replication and restores interferon-beta signaling pathway in vitro and in vivo.

    Directory of Open Access Journals (Sweden)

    Zigang Shen

    Full Text Available Rotavirus (RV is the most common cause of severe diarrhea among infants and young children. Currently, there is no specific drug available against rotavirus, largely due to the lack of an ideal target molecule which has hampered drug development. Our previous studies have revealed that cyclosporin A (CsA might be potentially useful as an anti-RV drug. We therefore used both cellular and mouse models to study the immunological safety and effectiveness of CsA as an anti-RV drug. We found that CsA treatment of HT-29 cells before, during, and after viral infection efficiently inhibited Wa strain RV replication and restored IFN-β expression in a HT-29 cell line model. Exploring the underlying mechanisms showed that CsA promoted Interferon Regulatory Factor-5 (IRF-5 expression (a key positive regulator of the type I IFN signaling pathway, but not IRF-1, IRF-3, or IRF-7. Additionally, CsA inhibited SOCS-1 expression (the key negative regulator of IFN-α/β, but not SOCS-2 or SOCS-3. The antiviral effect of CsA was confirmed in an RV-infected neonatal mouse model by evaluation of antigen clearance and assessment of changes in intestinal tissue pathology. Also, no differences in T cell frequency or proliferation between the CsA- and vehicle-treated groups were observed. Thus, both our in vitro and in vivo findings suggest that CsA, through modulating the expression of key regulators in IFN signaling pathway, promote type I IFN-based intracellular innate immunity in RV host cells. These findings suggest that CsA may be a useful candidate to develop a new anti-RV strategy, although further evaluation and characterization of CsA on RV-induced diarrhea are warranted.

  7. Inhibition by Dications of in vitro growth of Leishmania major and Leishmania tropica: causative agents of old world cutaneous leishmaniasis.

    Science.gov (United States)

    Rosypal, Alexa C; Werbovetz, Karl A; Salem, Manar; Stephens, Chad E; Kumar, Arvind; Boykin, David W; Hall, James E; Tidwell, Richard R

    2008-06-01

    Old World cutaneous leishmaniasis is caused by infection with Leishmania major and Leishmania tropica. Pentamidine and related dications exhibit broad spectrum antiprotozoal activity. Based on the previously reported efficacy of these compounds against related organisms, 18 structural analogs of pentamidine were evaluated for in vitro antileishmanial activity, using pentamidine as the standard reference drug for comparison. Furan analogs and reversed amidine compounds were examined for activity against L. major and L. tropica promastigotes. The most active compounds against both Leishmania species were in the reversed amidine series. DB745 and DB746 exhibited the highest activity against L. major and DB745 was the most active compound against L. tropica. Both of these compounds exhibited 50% inhibitory concentrations (IC50) below 1 nM for L. major. Ten reversed amidines were also tested for their ability to inhibit growth in an axenic amastigote model. Nine of 10 reversed amidine analogs were active at concentrations below 1 nM. These results justify further study of dicationic compounds as potential new agents for treating cutaneous leishmaniasis.

  8. C5a receptor (CD88) inhibition improves hypothermia-induced neuroprotection in an in vitro ischemic model.

    Science.gov (United States)

    Thundyil, John; Pavlovski, Dale; Hsieh, Yu-Hsuan; Gelderblom, Mathias; Magnus, Tim; Fairlie, David P; Arumugam, Thiruma V

    2012-03-01

    The concept of 'salvageble penumbra' has prompted both scientists and physicians to explore various neuroprotective approaches that could be beneficial during stroke therapy. Unfortunately, most of them have proved ineffective in targeting multiple cellular death cascades incited within the ischemic penumbra. Hypothermia has been shown to be capable of addressing this problem to some extent. Although many studies have shown that hypothermia targets several cellular processes, its effects on innate immune receptor-mediated apoptotic death still remain unclear. Moreover, whether inhibiting the signaling of innate immune receptors like complement anaphylatoxin C5a receptor (CD88) plays a role in this hypothermic neuroprotection still need to be deciphered. Using various types of ischemic insults in different neuronal cells, we confirm that hypothermia does indeed attenuate apoptotic neuronal cell death in vitro and this effect can be further enhanced by pharmacologically blocking or knocking out CD88. Thus, our study raises a promising therapeutic possibility of adding CD88 antagonists along with hypothermia to improve stroke outcomes.

  9. Lectin I from Bauhinia variegata (BVL-I) expressed by Pichia pastoris inhibits initial adhesion of oral bacteria in vitro.

    Science.gov (United States)

    Klafke, Gabriel Baracy; Moreira, Gustavo Marçal Schmidt Garcia; Pereira, Juliano Lacava; Oliveira, Patrícia Diaz; Conceição, Fabricio Rochedo; Lund, Rafael Guerra; Grassmann, André Alex; Dellagostin, Odir Antonio; da Silva Pinto, Luciano

    2016-12-01

    Lectins are non-immune proteins that reversibly bind to carbohydrates in a specific manner. Bauhinia variegata lectin I (BVL-I) is a Gal/GalNAc-specific, single-chain lectin isolated from Bauhinia variegata seeds that has been implicated in the inhibition of bacterial adhesion and the healing of damaged skin. Since the source of the native protein (nBVL) is limited, this study aimed to produce recombinant BVL-I in Pichia pastoris (rBVL-Ip). The coding sequence for BVL-I containing preferential codons for P. pastoris was cloned into the pPICZαB plasmid. A single expressing clone was selected and fermented, resulting in the secretion and glycosylation of the protein. Fed-batch fermentation in 7L-scale was performed, and the recombinant lectin was purified from culture supernatant, resulting in a yield of 1.5mg/L culture. Further, rBVL-Ip was compared to nBVL and its recombinant version expressed in Escherichia coli BL21 (DE3) (rBVL-Ie). Although it was expressed as a monomer, rBVL-Ip retained its biological activity since it was able to impair the initial adhesion of Streptococcus mutans and S. sanguinis in an in vitro model of biofilm formation and bacterial adhesion. In summary, rBVL-Ip produced in Pichia pastoris represents a viable alternative to large-scale production, encouraging further biological application studies with this lectin.

  10. FGFR2 is overexpressed in myxoid liposarcoma and inhibition of FGFR signaling impairs tumor growth in vitro.

    Science.gov (United States)

    Künstlinger, Helen; Fassunke, Jana; Schildhaus, Hans-Ulrich; Brors, Benedikt; Heydt, Carina; Ihle, Michaela Angelika; Mechtersheimer, Gunhild; Wardelmann, Eva; Büttner, Reinhard; Merkelbach-Bruse, Sabine

    2015-08-21

    Myxoid liposarcomas account for more than one third of liposarcomas and about 10% of all adult soft tissue sarcomas. The tumors are characterized by specific chromosomal translocations leading to the chimeric oncogenes FUS-DDIT3 or EWS1R-DDIT3. The encoded fusion proteins act as aberrant transcription factors. Therefore, we implemented comparative expression analyses using whole-genome microarrays in tumor and fat tissue samples. We aimed at identifying differentially expressed genes which may serve as diagnostic or prognostic biomarkers or as therapeutic targets. Microarray analyses revealed overexpression of FGFR2 and other members of the FGF/FGFR family. Overexpression of FGFR2 was validated by qPCR, immunohistochemistry and western blot analysis in primary tumor samples. Treatment of the myxoid liposarcoma cell lines MLS 402 and MLS 1765 with the FGFR inhibitors PD173074, TKI258 (dovitinib) and BGJ398 as well as specific siRNAs reduced cell proliferation, induced apoptosis and delayed cell migration. Combination of FGFR inhibitors with trabectedin further increased the effect. Our study demonstrates overexpression of FGFR2 and a functional role of FGFR signaling in myxoid liposarcoma. As FGFR inhibition showed effects on proliferation and cell migration and induced apoptosis in vitro, our data indicate the potential use of FGFR inhibitors as a targeted therapy for these tumors.

  11. Inhibition of key enzymes related to diabetes and hypertension by Eugenol in vitro and in alloxan-induced diabetic rats.

    Science.gov (United States)

    Mnafgui, Kais; Kaanich, Fatima; Derbali, Amal; Hamden, Khaled; Derbali, Fatma; Slama, Sadok; Allouche, Noureddine; Elfeki, Abdelfattah

    2013-12-01

    The present study investigated the effect of treating diabetic rats with eugenol (EG). In vitro enzyme activity was measured in the presence of eugenol, and it was found to inhibit pancreatic α-amylase (IC(50) = 62.53 µg/mL) and lipase (IC(50) = 72.34 µg/mL) as well as angiotensin converting enzyme (ACE) activity (IC50 = 130.67 µg/mL). In vivo, EG reduced the activity of amylase in serum, pancreas and intestine also the peak level of glucose by 60% compared to diabetic rats. Furthermore, eugenol similar to acarbose reduced serum glycosylated hemoglobin (HbA1c), lipase and ACE levels. In addition, treatments with EG showed notable decrease in serum total-cholesterol, triglycerides and low density lipoprotein-cholesterol levels with an increase of high density lipoprotein-cholesterol. Overall, EG significantly reverted back to near normal the values of the biochemical biomarkers such as transaminases (AST&ALT), alkaline phosphatase (ALP), creatine phosphokinase (CPK) and gamma-glutamyl transpeptidase (GGT) activities, total-bilirubin, creatinine, urea and uric acid rates.

  12. Gemcitabine-loaded albumin nanospheres (GEM-ANPs) inhibit PANC-1 cells in vitro and in vivo

    Science.gov (United States)

    Li, Ji; Di, Yang; Jin, Chen; Fu, Deliang; Yang, Feng; Jiang, Yongjian; Yao, Lie; Hao, Sijie; Wang, Xiaoyi; Subedi, Sabin; Ni, Quanxing

    2013-04-01

    With the development of nanotechnology, special attention has been given to the nanomaterial application