WorldWideScience

Sample records for aeruginosa inhibits angiogenesis

  1. A complex extracellular sphingomyelinase of Pseudomonas aeruginosa inhibits angiogenesis by selective cytotoxicity to endothelial cells.

    Directory of Open Access Journals (Sweden)

    Michael L Vasil

    2009-05-01

    Full Text Available The hemolytic phospholipase C (PlcHR expressed by Pseudomonas aeruginosa is the original member of a Phosphoesterase Superfamily, which includes phosphorylcholine-specific phospholipases C (PC-PLC produced by frank and opportunistic pathogens. PlcHR, but not all its family members, is also a potent sphingomyelinase (SMase. Data presented herein indicate that picomolar (pM concentrations of PlcHR are selectively lethal to endothelial cells (EC. An RGD motif of PlcHR contributes to this selectivity. Peptides containing an RGD motif (i.e., GRGDS, but not control peptides (i.e., GDGRS, block the effects of PlcHR on calcium signaling and cytotoxicity to EC. Moreover, RGD variants of PlcHR (e.g., RGE, KGD are significantly reduced in their binding and toxicity, but retain the enzymatic activity of the wild type PlcHR. PlcHR also inhibits several EC-dependent in vitro assays (i.e., EC migration, EC invasion, and EC tubule formation, which represent key processes involved in angiogenesis (i.e., formation of new blood vessels from existing vasculature. Finally, the impact of PlcHR in an in vivo model of angiogenesis in transgenic zebrafish, and ones treated with an antisense morpholino to knock down a key blood cell regulator, were evaluated because in vitro assays cannot fully represent the complex processes of angiogenesis. As little as 2 ng/embryo of PlcHR was lethal to approximately 50% of EGFP-labeled EC at 6 h after injection of embryos at 48 hpf (hours post-fertilization. An active site mutant of PlcHR (Thr178Ala exhibited 120-fold reduced inhibitory activity in the EC invasion assay, and 20 ng/embryo elicited no detectable inhibitory activity in the zebrafish model. Taken together, these observations are pertinent to the distinctive vasculitis and poor wound healing associated with P. aeruginosa sepsis and suggest that the potent antiangiogenic properties of PlcHR are worthy of further investigation for the treatment of diseases where

  2. Curcumin inhibition of angiogenesis and adipogenesis

    Science.gov (United States)

    The growth of new blood vessels or angiogenesis is necessary for the growth of adipose tissue. Adipokines produced by fat cells stimulate this process. Some dietary polyphenols with antiangiogenic activity may suppress adipose tissue growth not only by inhibiting angiogenesis, but also by interferin...

  3. Functional inhibition of UQCRB suppresses angiogenesis in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yoon Sun; Jung, Hye Jin [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Seok, Seung Hyeok [Department of Microbiology and Immunology, Institute for Experimental Animals, Seoul National University College of Medicine, Seoul 110-799 (Korea, Republic of); Payumo, Alexander Y.; Chen, James K. [Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305 (United States); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2013-04-19

    Highlights: ► This is the first functional characterization of UQCRB in vivo model. ► Angiogenesis is inhibited with UQCRB loss of function in zebrafish. ► UQCRB is introduced as a prognostic marker for mitochondria- and angiogenesis-related diseases. -- Abstract: As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levels in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases.

  4. Safrole oxide inhibits angiogenesis by inducing apoptosis.

    Science.gov (United States)

    Zhao, Jing; Miao, Junying; Zhao, Baoxiang; Zhang, Shangli; Yin, Deling

    2005-06-01

    Our previous studies indicate that 3, 4-(methylenedioxy)-1-(2', 3'-epoxypropyl)-benzene (safrole oxide), a newly synthesized compound, induces apoptosis in vascular endothelial cells (VECs) and A549 lung cancer cells. To our knowledge, the inhibition of angiogenesis by safrole oxide has not been reported yet. We report here that cultured rat aorta treated with safrole oxide exhibited a significant microvessel reduction as determined by counting the number of microvessels in a phase contrast microscope. There were more microvessels formed in the presence of A549 lung cancer cells in rat aorta model, while a dramatic inhibition of angiogenesis was obtained by adding 220-450 micromol l(-1) of safrole oxide to the growth medium (Psafrole oxide produced only some abortive endothelial cells but not microvessels. Furthermore, safrole oxide induced antiangiogenic effect in the chorioallantoic membranes (CAM) as a dose dependent manner. Eggs treated with 2-11 micromol 100 microl(-1) per egg of the safrole oxide for 48 h exhibited a significant reduction in blood vessel area of the CAM, a process likely mediated by apoptosis as demonstrated by DNA fragmentation. Our results suggest that safrole oxide has antiangiogenic activity and this effect might occur by induction of cellular apoptosis.

  5. Liposomal targeting of glucocorticoids to inhibit tumor angiogenesis

    NARCIS (Netherlands)

    Banciu, M.

    2007-01-01

    Glucocorticoids (GC) have inhibitory actions on solid tumor growth due to suppressive effects on tumor angiogenesis and inflammation. When evaluating the preclinical studies on solid tumor growth inhibition, it appears that GC-induced antitumor effects are achieved by using substantially higher dose

  6. Angiogenesis Inhibition in Prostate Cancer: Current Uses and Future Promises

    Directory of Open Access Journals (Sweden)

    Jeanny B. Aragon-Ching

    2010-01-01

    Full Text Available Angiogenesis has been well recognized as a fundamental part of a multistep process in the evolution of cancer progression, invasion, and metastasis. Strategies for inhibiting angiogenesis have been one of the most robust fields of cancer investigation, focusing on the vascular endothelial growth factor (VEGF family and its receptors. There are numerous regulatory drug approvals to date for the use of these agents in treating a variety of solid tumors. While therapeutic efficacy has been established, challenges remain with regards to overcoming resistance and assessing response to antiangiogenic therapies. Prostate cancer is the most common noncutaneous malignancy among American men and angiogenesis plays a role in disease progression. The use of antiangiogenesis agents in prostate cancer has been promising and is hereby explored.

  7. An IP-10 (CXCL10-derived peptide inhibits angiogenesis.

    Directory of Open Access Journals (Sweden)

    Cecelia C Yates-Binder

    Full Text Available Angiogenesis plays a critical role in processes such as organ development, wound healing, and tumor growth. It requires well-orchestrated integration of soluble and matrix factors and timely recognition of such signals to regulate this process. Previous work has shown that newly forming vessels express the chemokine receptor CXC receptor 3 (CXCR3 and, activation by its ligand IP-10 (CXCL10, both inhibits development of new vasculature and causes regression of newly formed vessels. To identify and develop new therapeutic agents to limit or reverse pathological angiogenesis, we identified a 21 amino acid fragment of IP-10, spanning the α-helical domain residues 77-98, that mimic the actions of the whole IP-10 molecule on endothelial cells. Treatment of the endothelial cells with the 22 amino acid fragment referred to as IP-10p significantly inhibited VEGF-induced endothelial motility and tube formation in vitro, properties critical for angiogenesis. Using a Matrigel plug assay in vivo, we demonstrate that IP-10p both prevented vessel formation and induced involution of nascent vessels. CXCR3 neutralizing antibody was able to block the inhibitory effects of the IP-10p, demonstrating specificity of the peptide. Inhibition of endothelial function by IP-10p was similar to that described for IP-10, secondary to CXCR3-mediated increase in cAMP production, activation of PKA inhibiting cell migration, and inhibition of VEGF-mediated m-calpain activation. IP-10p provides a novel therapeutic agent that inhibits endothelial cell function thus, allowing for the modulation of angiogenesis.

  8. Targeted inhibition of tumor growth and angiogenesis

    NARCIS (Netherlands)

    van der Meel, R.

    2013-01-01

    Two main strategies have been pursued for the development of an effective and targeted anti-cancer treatment. The first strategy comprised the generation of a targeted nanomedicine for the inhibition of tumor cell proliferation by blocking growth factor receptor pathways. The epidermal growth factor

  9. Lonidamine Causes Inhibition of Angiogenesis-Related Endothelial Cell Functions

    OpenAIRE

    Donatella Del Bufalo; Daniela Trisciuoglio; Marco Scarsella; Giulia D'Amati; Antonio Candiloro; Angela Iervolino; Carlo Leonetti; Gabriella Zupi

    2004-01-01

    The aim of this study was to assess whether lonidamine (LND) interferes with some steps in angiogenesis progression. We report here, for the first time, that LND inhibited angiogenic-related endothelial cell functions in a dose-dependent manner (1-50 μg/ml). In particular, LND decreased proliferation, migration, invasion, and morphogenesis on matrigel of different endothelial cell lines. Zymographic and Western blot analysis assays showed that LND treatment produced a reduction in the secreti...

  10. Antimyeloma effects of resveratrol through inhibition of angiogenesis

    Institute of Scientific and Technical Information of China (English)

    HU Yu; SUN Chun-yan; HUANG Jing; HONG Liu; ZHANG Lu; CHU Zhang-bo

    2007-01-01

    Background In multiple myeloma (MM), bone marrow angiogenesis parallels tumour progression and correlates with disease activity. Recent studies have proved resveratrol possesses antiangiogenic activity in vitro and in vivo. In this study, we examined the effects of resveratrol on myeloma cell dependent angiogenesis and the effects of resveratrol on some important angiogenic factors of RPMI 8226 cells.Methods RPMI 8226 cells were cocultured with human umbilical vein endothelial cells (HUVECs) to evaluate the effects of myeloma cells on angiogenesis. The RPMI 8226 cells were treated with various concentrations of resveratrol (6.25-50.00 μmol/L) for different times (12-72 hours). Reverse transcriptase polymerase chain reaction (RT-PCR) was used to assay vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF), metalloproteinases (MMP)-2 and MMP-9 mRNA. Gelatin zymography was used to analyze MMP-2 and MMP-9 activity. VEGF and bFGF proteins secreted by the cells in the medium were quantified by enzyme linked immunosorbent assay (ELISA).Results Cell proliferation, migration and differentiation of HUVECs markedly increased by coculture with RPMI 8226 cells. Resveratrol inhibited proliferation, migration and tube formation of HUVECs cocultured with myeloma cells in a dose dependent manner. Treatment of RPMI 8226 cells with resveratrol caused a decrease in MMP-2 and MMP-9 activity.Resveratrol inhibited VEGF and bFGF protein expression in a dose and time dependent manner. Furthermore,decreased levels of VEGF, bFGF, MMP-2 and MMP-9 mRNA from cells treated with various concentrations of resveratrol confirmed its antiangiogenic action at the level of gene expression.Conclusions Resveratrol inhibits multiple myeloma angiogenesis by regulating expression and secretion of VEGF,bFGF, MMP-2 and MMP-9. Resveratrol may be a potential candidate for the treatment of multiple myeloma.

  11. Inhibition of Pseudomonas aeruginosa biofilm formation on wound dressings.

    Science.gov (United States)

    Brandenburg, Kenneth S; Calderon, Diego F; Kierski, Patricia R; Brown, Amanda L; Shah, Nihar M; Abbott, Nicholas L; Schurr, Michael J; Murphy, Christopher J; McAnulty, Jonathan F; Czuprynski, Charles J

    2015-01-01

    Chronic nonhealing skin wounds often contain bacterial biofilms that prevent normal wound healing and closure and present challenges to the use of conventional wound dressings. We investigated inhibition of Pseudomonas aeruginosa biofilm formation, a common pathogen of chronic skin wounds, on a commercially available biological wound dressing. Building on prior reports, we examined whether the amino acid tryptophan would inhibit P. aeruginosa biofilm formation on the three-dimensional surface of the biological dressing. Bacterial biomass and biofilm polysaccharides were quantified using crystal violet staining or an enzyme linked lectin, respectively. Bacterial cells and biofilm matrix adherent to the wound dressing were visualized through scanning electron microscopy. D-/L-tryptophan inhibited P. aeruginosa biofilm formation on the wound dressing in a dose dependent manner and was not directly cytotoxic to immortalized human keratinocytes although there was some reduction in cellular metabolism or enzymatic activity. More importantly, D-/L-tryptophan did not impair wound healing in a splinted skin wound murine model. Furthermore, wound closure was improved when D-/L-tryptophan treated wound dressing with P. aeruginosa biofilms were compared with untreated dressings. These findings indicate that tryptophan may prove useful for integration into wound dressings to inhibit biofilm formation and promote wound healing.

  12. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Boram; Kim, Ki Hyun; Jung, Hye Jin [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Matairesinol suppresses mitochondrial ROS generation during hypoxia. Black-Right-Pointing-Pointer Matairesinol exhibits potent anti-angiogenic activity both in vitro and in vivo. Black-Right-Pointing-Pointer Matairesinol could be a basis for the development of novel anti-angiogenic agents. -- Abstract: Mitochondrial reactive oxygen species (mROS) are involved in cancer initiation and progression and function as signaling molecules in many aspects of hypoxia and growth factor-mediated signaling. Here we report that matairesinol, a natural small molecule identified from the cell-based screening of 200 natural plants, suppresses mROS generation resulting in anti-angiogenic activity. A non-toxic concentration of matairesinol inhibited the proliferation of human umbilical vein endothelial cells. The compound also suppressed in vitro angiogenesis of tube formation and chemoinvasion, as well as in vivo angiogenesis of the chorioallantoic membrane at non-toxic doses. Furthermore, matairesinol decreased hypoxia-inducible factor-1{alpha} in hypoxic HeLa cells. These results demonstrate that matairesinol could function as a novel angiogenesis inhibitor by suppressing mROS signaling.

  13. Selective PKCalpha inhibition uncouples platelet angiogenesis promotion from collagen-induced aggregation

    OpenAIRE

    Radomski, Marek

    2013-01-01

    Platelets promote angiogenesis by releasing angiogenesis-regulating factors from their α-granules upon aggregation. This effect has both physiologic and pathologic significance as it may contribute to carcinogenesis. Platelet α-granule release and aggregation are regulated, in part, via protein kinase C (PKC) α and β signaling. Our study investigated the effects of PKC inhibition on aggregation, angiogenesis-regulator secretion from α-granules, and platelet-stimulated angiogenesis. We hypothe...

  14. Erythropoietin blockade inhibits the induction of tumor angiogenesis and progression.

    Directory of Open Access Journals (Sweden)

    Matthew E Hardee

    Full Text Available BACKGROUND: The induction of tumor angiogenesis, a pathologic process critical for tumor progression, is mediated by multiple regulatory factors released by tumor and host cells. We investigated the role of the hematopoietic cytokine erythropoietin as an angiogenic factor that modulates tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: Fluorescently-labeled rodent mammary carcinoma cells were injected into dorsal skin-fold window chambers in mice, an angiogenesis model that allows direct, non-invasive, serial visualization and real-time assessment of tumor cells and neovascularization simultaneously using intravital microscopy and computerized image analysis during the initial stages of tumorigenesis. Erythropoietin or its antagonist proteins were co-injected with tumor cells into window chambers. In vivo growth of cells engineered to stably express a constitutively active erythropoietin receptor EPOR-R129C or the erythropoietin antagonist R103A-EPO were analyzed in window chambers and in the mammary fat pads of athymic nude mice. Co-injection of erythropoietin with tumor cells or expression of EPOR-R129C in tumor cells significantly stimulated tumor neovascularization and growth in window chambers. Co-injection of erythropoietin antagonist proteins (soluble EPOR or anti-EPO antibody with tumor cells or stable expression of antagonist R103A-EPO protein secreted from tumor cells inhibited angiogenesis and impaired tumor growth. In orthotopic tumor xenograft studies, EPOR-R129C expression significantly promoted tumor growth associated with increased expression of Ki67 proliferation antigen, enhanced microvessel density, decreased tumor hypoxia, and increased phosphorylation of extracellular-regulated kinases ERK1/2. R103A-EPO antagonist expression in mammary carcinoma cells was associated with near-complete disruption of primary tumor formation in the mammary fat pad. CONCLUSIONS/SIGNIFICANCE: These data indicate that erythropoietin is an

  15. INHIBITION OF VIRULENCE FACTORS OF PSEUDOMONAS AERUGINOSA BY DICLOFENAC SODIUM.

    Science.gov (United States)

    Abbas, Hisham A

    2015-01-01

    Resistance of Pseudomonas aeruginosa to antibiotics is a major problem. Targeting virulence factors is an alternative option to avoid the emergence of resistance to antibiotics. The effect of sub-inhibitory concentration of diclofenac sodium on the production of virulence factors of P. aeruginosa was investigated. The virulence factors included protease, haemolysin, pyocyanin and pyoverdin, in addition to pathogenic behaviors such as swimming and twitching motilities and biofilm formation. Diclofenac sodium showed significant inhibition of virulence factors as compared to the control. Diclofenac sodium decreased twitching and swimming motilities by 29.27% and 45.36%, respectively. The percentage of inhibition of pyocyanin by diclofenac sodium was 42.32%. On the other hand, pyoverdin was inhibited to a lesser extent (36.72%). Diclofenac sodium reduced protease by 52.58% and biofilm formation by 58.37%. Moreover, haemolytic activity in the presence of diclofenac sodium was 15.64% as compared to the control (100% haemolytic activity). The inhibitory activities may be due to inhibition of quorum sensing that regulates the expression of virulence factors. This study suggests the potential for the use of diclofenac sodium as an anti-virulence agent in the treatment of Pseudomonas aeruginosa infections. PMID:27328521

  16. Synergistic inhibition of angiogenesis and glioma cell-induced angiogenesis by the combination of temozolomide and enediyne antibiotic lidamycin.

    Science.gov (United States)

    Li, Xing-Qi; Ouyang, Zhi-Gang; Zhang, Sheng-Hua; Liu, Hong; Shang, Yue; Li, Yi; Zhen, Yong-Su

    2014-04-01

    Present work mainly evaluated the inhibitory effects of lidamycin (LDM), an enediyne antibiotic, on angiogenesis or glioma-induced angiogenesis in vitro and in vivo, especially its synergistic anti-angiogenesis with temozolomide (TMZ). LDM alone efficiently inhibited proliferations and induced apoptosis of rat brain microvessel endothelial cells (rBMEC). LDM also interrupted the tube formation of rat brain microvessel endothelial cells (rBMEC) and rat aortic ring spreading. The blockade of rBMEC invasion and C6 cell-induced rBMEC migration by LDM was associated with decrease of VEGF secretion in a co-culture system. TMZ dramatically potentiated the effects of LDM on anti-proliferation, apoptosis induction, and synergistically inhibited angiogenesis events. As determined by western blot and ELISA, the interaction of tumor cells and the rBMEC was markedly interrupted by LDM plus TMZ with synergistic regulations of VEGF induced angiogenesis signal pathway, tumor cell invasion/migration, and apoptosis signal pathway. Immunofluorohistochemistry of CD31 and VEGF showed that LDM plus TMZ resulted in synergistic decrease of microvessel density (MVD) and VEGF expression in human glioma U87 cell subcutaneous xenograft. This study indicates that the high efficacy of LDM and the synergistic effects of LDM plus TMZ against glioma are mediated, at least in part, by the potentiated anti-angiogenesis. PMID:24424202

  17. Inhibition of endothelial cell apoptosis by netrin-1 during angiogenesis.

    Science.gov (United States)

    Castets, Marie; Coissieux, Marie-May; Delloye-Bourgeois, Céline; Bernard, Laure; Delcros, Jean-Guy; Bernet, Agnès; Laudet, Vincent; Mehlen, Patrick

    2009-04-01

    Netrin-1 was recently proposed to play an important role in embryonic and pathological angiogenesis. However, data reported led to the apparently contradictory conclusions that netrin-1 is either a pro- or an antiangiogenic factor. Here, we reconcile these opposing observations by demonstrating that netrin-1 acts as a survival factor for endothelial cells, blocking the proapoptotic effect of the dependence receptor UNC5B and its downstream death signaling effector, the serine/threonine kinase DAPK. The netrin-1 effect on blood vessel development is mimicked by caspase inhibitors in ex vivo assays, and the inhibition of caspase activity, the silencing of the UNC5B receptor, and the silencing of DAPK are each sufficient to rescue the vascular sprouting defects induced by netrin-1 silencing in zebrafish. Thus, the proapoptotic effect of unbound UNC5B and the survival effect of netrin-1 on endothelial cells finely tune the angiogenic process. PMID:19386270

  18. Antisense angiopoietin-1 inhibits tumorigenesis and angiogenesis of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Jun Wang; Kai-Chun Wu; De-Xin Zhang; Dai-Ming Fan

    2006-01-01

    AIM: To investigate the effect of angiopoietin-1 (Ang-1)on biological behaviors in vitro and tumorigenesis and angiogenesis in vitro of human gastric cancer cells.METHODS: Human full-length Ang-1 gene was cloned from human placental tissues by RT-PCR method.Recombinant human Ang-1 antisense eukaryotic expression vector was constructed by directional cloning,and transfected by lipofectin method into human gastric cancer line SGC7901 with high Ang-1 expression level.Inhibition efficiency was confirmed by semi- quantitive PCR and Western blot method. Cell growth curve and cell cycle were observed with MTT assays and flow cytometry, respectively. Nude mice tumorigenicity test was employed to compare in vitro tumorigenesis of cells with Ang-1 suppression. Microvessel density (MVD) of implanted tumor tissues was analyzed by immunohistochemistry for factor Ⅷ staining.RESULTS: Full-length Ang-1 gene was successfully cloned and stable transfectants were established,namely 7Ang1- for antisense, and 7901P for empty vector transfected. 7Ang1- cells showed down-regulated Ang-1 expression, while its in vitro proliferation and cell cycle distribution were not significantly changed.In contrast, xenograft of 7Ang1- cells in nude mice had lower volume and weight than those of 7901P after 30 days' implantation (P<0.01, 293.00±95.54 mg vs. 624.00±77.78 mg) accompanied with less vessel formation with MVD 6.00±1.73 compared to 7901P group 8.44±1.33 (P<0.01).CONCLUSION: Ang-1 may play an important role in tumorigenesis and angiogenesis of gastric cancer, and targeting its expression may be beneficial for the therapy of gastric cancer.

  19. Dihydrotanshinone I inhibits angiogenesis both in vitro and in vivo

    Institute of Scientific and Technical Information of China (English)

    Weipeng Bian; Fei Chen; Ling Bai; Ping Zhang; Wenxin Qin

    2008-01-01

    Dihydrotanshinone I (DI),a naturally occurring compound extracted from Salvia miltiorrhiza Bunge,has been reported to have cytotoxicity to a variety of tumor cells.In this study,we investigated its anti-angiogenic capacity in human umbilical vein endothelial cells.DI induced a potent cytotoxicity to human umbilical vein endothelial cells,with an IC50 value of approximately 1.28 μg/ml.At 0.25.1 μg/ml,DI dose-dependently suppressed human umbilical vein endothelial cell migration,invasion,and tube formation detected by wound healing,Transwell invasion and Matrigel tube formation assays,respectively.Moreover,DI showed significant in vivo anti-angiogenic activity in chick embryo chorioallantoic membrane assay.DI induced a 61.1% inhibitory rate of microvessel density at 0.2 μg/egg.Taken together,our results showed that DI could inhibit angiogenesis through suppressing endothelial cell proliferation,migration,invasion and tube formation,indicating that DI has a potential to be developed as a novel anti-angiogenic agent.

  20. Lonidamine Causes Inhibition of Angiogenesis-Related Endothelial Cell Functions

    Directory of Open Access Journals (Sweden)

    Donatella Del Bufalo

    2004-09-01

    Full Text Available The aim of this study was to assess whether lonidamine (LND interferes with some steps in angiogenesis progression. We report here, for the first time, that LND inhibited angiogenic-related endothelial cell functions in a dose-dependent manner (1-50 μg/ml. In particular, LND decreased proliferation, migration, invasion, and morphogenesis on matrigel of different endothelial cell lines. Zymographic and Western blot analysis assays showed that LND treatment produced a reduction in the secretion of matrix metalloproteinase-2 and metalloproteinase-9 by endothelial cells. Vessel formation in a matrigel plug was also reduced by LND. The viability, migration, invasion, and matrix metalloproteinase production of different tumor cell lines were not affected by low doses of LND (1-10 μg/ml, whereas 50 μg/ml LND, which corresponds to the dose used in clinical management of tumors, triggered apoptosis both in endothelial and tumor cells. Together, these data demonstrate that LND is a compound that interferes with endothelial cell functions, both at low and high doses. Thus, the effect of LND on endothelial cell functions, previously undescribed, may be a significant contributor to the antitumor effect of LND observed for clinical management of solid tumors.

  1. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium

    OpenAIRE

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J.; Wiegand, Stanley J; Rabinovitch, Marlene; Druzin, Maurice L.; Brenner, Robert M.; Giudice, Linda C.; Nayak, Nihar R.

    2008-01-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that ...

  2. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14.

    Science.gov (United States)

    Kim, Han-Shin; Park, Hee-Deung

    2013-01-01

    Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger's ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39-56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3'-5')-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor. PMID:24086697

  3. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14.

    Directory of Open Access Journals (Sweden)

    Han-Shin Kim

    Full Text Available Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger's ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39-56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3'-5'-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor.

  4. In vitro inhibition of Pseudomonas aeruginosa adhesion by Xylitol

    Directory of Open Access Journals (Sweden)

    Letícia Pinheiro de Sousa

    2011-10-01

    Full Text Available This study evaluated, in vitro, the antimicrobial activity and the anti-adherent property of xylitol (0.5, 2.5 and 5.0%, w/v on two Pseudomonas aeruginosa strains (ATCC 9027 and clinical. The assay of antimicrobial activity was performed to determine a minimum inhibitory concentration (MIC and the adhesion test was performed, by which the parameters regarding, growth in the culture medium, number of colony forming units (CFUs released and slide evaluation by scanning electron microscopy (SEM were analyzed. The Statistical Package for the Social Sciences (SPSS was employed for statistical analysis. Results showed that xylitol had no antimicrobial activity on these strains; however, the inhibition of bacterial adherence was observed in microphotographs obtained by SEM. These results indicated that xylitol could be a future alternative to combat bacterial colonization.

  5. Candida albicans Inhibits Pseudomonas aeruginosa Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis.

    Directory of Open Access Journals (Sweden)

    Eduardo Lopez-Medina

    2015-08-01

    Full Text Available Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa's ability to colonize the GI tract but does decrease P. aeruginosa's cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease.

  6. The tetrapeptide Arg-Leu-Tyr-Glu inhibits VEGF-induced angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Yi-Yong; Lee, Dong-Keon [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); So, Ju-Hoon; Kim, Cheol-Hee [Department of Biology, Chungnam National University, Daejeon, 305-764 (Korea, Republic of); Jeoung, Dooil [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Lee, Hansoo [Department of Life Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Choe, Jongseon [Department of Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Won, Moo-Ho [Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Ha, Kwon-Soo [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Kwon, Young-Guen [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-752 (Korea, Republic of); Kim, Young-Myeong, E-mail: ymkim@kangwon.ac.kr [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of)

    2015-08-07

    Kringle 5, derived from plasminogen, is highly capable of inhibiting angiogenesis. Here, we have designed and synthesized 10 tetrapeptides, based on the amino acid properties of the core tetrapeptide Lys-Leu-Tyr-Asp (KLYD) originating from anti-angiogenic kringle 5 of human plasminogen. Of these, Arg-Leu-Tyr-Glu (RLYE) effectively inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation, migration and tube formation, with an IC{sub 50} of 0.06–0.08 nM, which was about ten-fold lower than that of the control peptide KLYD (0.79 nM), as well as suppressed developmental angiogenesis in a zebrafish model. Furthermore, this peptide effectively inhibited the cellular events that precede angiogenesis, such as ERK and eNOS phosphorylation and nitric oxide production, in endothelial cells stimulated with VEGF. Collectively, these data demonstrate that RLYE is a potent anti-angiogenic peptide that targets the VEGF signaling pathway. - Highlights: • The tetrapeptide RLYE inhibited VEGF-induced angiogenesis in vitro. • RLYE also suppressed neovascularization in a zebrafish model. • Its effect was correlated with inhibition of VEGF-induced ERK and eNOS activation. • RLYE may be used as a therapeutic drug for angiogenesis-related diseases.

  7. ELK3 suppresses angiogenesis by inhibiting the transcriptional activity of ETS-1 on MT1-MMP.

    Science.gov (United States)

    Heo, Sun-Hee; Cho, Je-Yoel

    2014-01-01

    Ets transcription factors play important roles in vasculogenesis and angiogenesis. Knockout of the Ets gene family members in mice resulted in disrupted angiogenesis and malformed vascular systems. In this study, the role and mechanism of ELK3, an Ets factor, in angiogenesis was investigated using ELK3-specific siRNA in human vascular endothelial cells (HUVECs) and in vivo implantation assay. The suppression of ELK3 expression resulted in the reinforcement of VEGF-induced tube formation in HUVECs. The in vivo Matrigel plug assay also showed that ELK3 knockdown resulted in increased angiogenesis. Luciferase activity of the MT1-MMP promoter induced by ETS-1 factor was attenuated ELK3 co-transfection. CHIP assay showed the binding of ELK3 on the MT1-MMP promoter. MT1-MMP knockdown in the ELK3 knockdowned cells resulted in the decrease of tube formation suggesting that MT1-MMP transcriptional repression is required for ELK3-mediated anti-angiogenesis effect. Our data also showed that the suppressive effect of ELK3 on the angiogenesis was partly due to the inhibitory effect of ELK3 to the ETS-1 transcriptional activity on the MT1-MMP promoter rather than direct suppression of ELK3 on the target gene, since the expression level of co-repressor Sin3A is low in endothelial cells. Our results suggest that ELK3 plays a negative role of VEGF-induced angiogenesis through indirectly inhibiting ETS-1 function. PMID:24719561

  8. Isthmin is a novel secreted angiogenesis inhibitor that inhibits tumour growth in mice.

    Science.gov (United States)

    Xiang, Wei; Ke, Zhiyuan; Zhang, Yong; Cheng, Grace Ho-Yuet; Irwan, Ishak Darryl; Sulochana, K N; Potturi, Padma; Wang, Zhengyuan; Yang, He; Wang, Jingyu; Zhuo, Lang; Kini, R Manjunatha; Ge, Ruowen

    2011-02-01

    Anti-angiogenesis represents a promising therapeutic strategy for the treatment of various malignancies. Isthmin (ISM) is a gene highly expressed in the isthmus of the midbrain-hindbrain organizer in Xenopus with no known functions. It encodes a secreted 60 kD protein containing a thrombospondin type 1 repeat domain in the central region and an adhesion-associated domain in MUC4 and other proteins (AMOP) domain at the C-terminal. In this work, we demonstrate that ISM is a novel angiogenesis inhibitor. Recombinant mouse ISM inhibited endothelial cell (EC) capillary network formation on Matrigel through its C-terminal AMOP domain. It also suppressed vascular endothelial growth factor (VEGF)-basic fibroblast growth factor (bFGF) induced in vivo angiogenesis in mouse. It mitigated VEGF-stimulated EC proliferation without affecting EC migration. Furthermore, ISM induced EC apoptosis in the presence of VEGF through a caspase-dependent pathway. ISM binds to αvβ(5) integrin on EC surface and supports EC adhesion. Overexpression of ISM significantly suppressed mouse B16 melanoma tumour growth through inhibition of tumour angiogenesis without affecting tumour cell proliferation. Knockdown of isthmin in zebrafish embryos using morpholino antisense oligonucleotides led to disorganized intersegmental vessels in the trunk. Our results demonstrate that ISM is a novel endogenous angiogenesis inhibitor with functions likely in physiological as well as pathological angiogenesis.

  9. Toluhydroquinone, the secondary metabolite of marine algae symbiotic microorganism, inhibits angiogenesis in HUVECs.

    Science.gov (United States)

    Kim, Nan-Hee; Jung, Hyun-Il; Choi, Woo-Suk; Son, Byeng-Wha; Seo, Yong-Bae; Choi, Jae Sue; Kim, Gun-Do

    2015-03-01

    Angiogenesis, the growth of new blood vessels from the existing ones, occurs during embryo development and wound healing. However, most malignant tumors require angiogenesis for their growth and metastasis as well. Therefore, inhibition of angiogenesis has been focused as a new strategy of cancer therapies. To treat cancer, there are marine microorganism-derived secondary metabolites developed as chemotherapeutic agents. In this study, we used toluhydroquinone (2-methyl-1,4-hydroquinone), one of the secondary metabolites isolated from marine algae symbiotic fungus, Aspergillus sp. We examined the effects of toluhydroquinone on angiogenesis using HUVECs. We identified that toluhydroquinone inhibited the activity of β-catenin and down-regulated Ras/Raf/MEK/ERK signaling which are crucial components during angiogenesis. In addition, the expression and activity of MMPs are reduced by the treatment of toluhydroquinone. In conclusion, we confirmed that toluhydroquinone has inhibitory effects on angiogenic behaviors of human endothelial cells, HUVECs. Our findings suggest that toluhydroquinone can be proposed as a potent anti-angiogenesis drug candidate to treat cancers. PMID:25776491

  10. Oridonin inhibits tumor growth and metastasis through anti-angiogenesis by blocking the Notch signaling.

    Directory of Open Access Journals (Sweden)

    Yanmin Dong

    Full Text Available While significant progress has been made in understanding the anti-inflammatory and anti-proliferative effects of the natural diterpenoid component Oridonin on tumor cells, little is known about its effect on tumor angiogenesis or metastasis and on the underlying molecular mechanisms. In this study, Oridonin significantly suppressed human umbilical vascular endothelial cells (HUVECs proliferation, migration, and apillary-like structure formation in vitro. Using aortic ring assay and mouse corneal angiogenesis model, we found that Oridonin inhibited angiogenesis ex vivo and in vivo. In our animal experiments, Oridonin impeded tumor growth and metastasis. Immunohistochemistry analysis further revealed that the expression of CD31 and vWF protein in xenografts was remarkably decreased by the Oridonin. Furthermore, Oridonin reinforced endothelial cell-cell junction and impaired breast cancer cell transendothelial migration. Mechanistically, Oridonin not only down-regulated Jagged2 expression and Notch1 activity but also decreased the expression of their target genes. In conclusion, our results demonstrated an original role of Oridonin in inhibiting tumor angiogenesis and propose a mechanism. This study also provides new evidence supporting the central role of Notch in tumor angiogenesis and suggests that Oridonin could be a potential drug candidate for angiogenesis related diseases.

  11. Ambroxol inhibits mucoid conversion of Pseudomonas aeruginosa and contributes to the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms.

    Science.gov (United States)

    Wang, Wenlei; Yu, Jialin; He, Yu; Wang, Zhengli; Li, Fang

    2016-07-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that can cause severe infections in immunocompromised individuals. Because it forms biofilms, which protect against host immune attack and increase resistance to conventional antibiotics, mucoid P. aeruginosa is nearly impossible to eradicate. Moreover, mucoid conversion of P. aeruginosa in cystic fibrosis (CF) patients leads to poor outcomes. This conversion is mainly due to mucA gene mutation, which is thought to be induced by polymorphonuclear leukocytes (PMNs) and the reactive oxygen species they release. Ambroxol, a mucolytic agent with antioxidant characteristics, is used clinically, and this compound has recently been demonstrated to possess anti-biofilm properties. In this study, we found that ambroxol inhibits the H2 O2 -mediated conversion of P. aeruginosa from a non-mucoid to a mucoid phenotype, an effect that is due to its antioxidant property against H2 O2 . Furthermore, the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms was increased in vitro when used in combination with ambroxol.

  12. Ambroxol inhibits mucoid conversion of Pseudomonas aeruginosa and contributes to the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms.

    Science.gov (United States)

    Wang, Wenlei; Yu, Jialin; He, Yu; Wang, Zhengli; Li, Fang

    2016-07-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that can cause severe infections in immunocompromised individuals. Because it forms biofilms, which protect against host immune attack and increase resistance to conventional antibiotics, mucoid P. aeruginosa is nearly impossible to eradicate. Moreover, mucoid conversion of P. aeruginosa in cystic fibrosis (CF) patients leads to poor outcomes. This conversion is mainly due to mucA gene mutation, which is thought to be induced by polymorphonuclear leukocytes (PMNs) and the reactive oxygen species they release. Ambroxol, a mucolytic agent with antioxidant characteristics, is used clinically, and this compound has recently been demonstrated to possess anti-biofilm properties. In this study, we found that ambroxol inhibits the H2 O2 -mediated conversion of P. aeruginosa from a non-mucoid to a mucoid phenotype, an effect that is due to its antioxidant property against H2 O2 . Furthermore, the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms was increased in vitro when used in combination with ambroxol. PMID:27102839

  13. Pseudomonas aeruginosa alkaline protease degrades human gamma interferon and inhibits its bioactivity.

    OpenAIRE

    Horvat, R T; Parmely, M J

    1988-01-01

    This study was performed to determine the effect of Pseudomonas aeruginosa on gamma interferon (IFN-gamma) production by antigen-stimulated human T-cell clones. Crude bacterial filtrates prepared from certain strains of P. aeruginosa inhibited IFN-gamma production by T cells and reduced the antiviral activity of preformed IFN-gamma. Bacterial filtrates prepared from mutant strains that did not produce the exoenzyme alkaline protease (AP) did not inhibit IFN-gamma activity. The inhibitory acti...

  14. Celecoxib and octreotide synergistically ameliorate portal hypertension via inhibition of angiogenesis in cirrhotic rats.

    Science.gov (United States)

    Gao, Jin-Hang; Wen, Shi-Lei; Feng, Shi; Yang, Wen-Juan; Lu, Yao-Yao; Tong, Huan; Liu, Rui; Tang, Shi-Hang; Huang, Zhi-Yin; Tang, Ying-Mei; Yang, Jin-Hui; Xie, Hui-Qi; Tang, Cheng-Wei

    2016-10-01

    Abnormal angiogenesis is critical for portal hypertension in cirrhosis. Except for etiological treatment, no efficient medication or regime has been explored to treat the early stage of cirrhosis when angiogenesis is initiated or overwhelming. In this study, we explored an anti-angiogenesis effort through non-cytotoxic drugs octreotide and celecoxib to treat early stage of cirrhotic portal hypertension in an animal model. Peritoneal injection of thioacetamide (TAA) was employed to induce liver cirrhosis in rats. A combination treatment of celecoxib and octreotide was found to relieve liver fibrosis, portal venous pressure, micro-hepatic arterioportal fistulas, intrahepatic and splanchnic angiogenesis. Celecoxib and octreotide exerted their anti-angiogenesis effect via an axis of cyclooxygenase-2/prostaglandin E2/EP-2/somatostatin receptor-2, which consequently down-regulated phosphorylation of extracellular signal-regulated kinase (p-ERK)-hypoxia-inducible factor-1α (HIF-1α)-vascular endothelial growth factor (VEGF) integrated signaling pathways. In conclusions, combination of celecoxib and octreotide synergistically ameliorated liver fibrosis and portal hypertension of the cirrhotic rats induced by TAA via the inhibition of intrahepatic and extrahepatic angiogenesis. The potential mechanisms behind the regimen may due to the inactivation of p-ERK-HIF-1α-VEGF signaling pathway. PMID:27380212

  15. Dimethyl phenyl piperazine iodide (DMPP) induces glioma regression by inhibiting angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    He, Yan-qing; Li, Yan; Wang, Xiao-yu [Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632 (China); He, Xiao-dong [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Jun, Li [Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Chuai, Manli [Division of Cell and Developmental Biology, University of Dundee, Dundee, DD1 5EH (United Kingdom); Lee, Kenneth Ka Ho [Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin (Hong Kong); Wang, Ju [Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Wang, Li-jing, E-mail: wanglijing62@163.com [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Yang, Xuesong, E-mail: yang_xuesong@126.com [Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632 (China)

    2014-01-15

    1,1-Dimethyl-4-phenyl piperazine iodide (DMPP) is a synthetic nicotinic acetylcholine receptor (nAChR) agonist that could reduce airway inflammation. In this study, we demonstrated that DMPP could dramatically inhibit glioma size maintained on the chick embryonic chorioallantoic membrane (CAM). We first performed MTT and BrdU incorporation experiments on U87 glioma cells in vitro to understand the mechanism involved. We established that DMPP did not significantly affect U87 cell proliferation and survival. We speculated that DMPP directly caused the tumor to regress by affecting the vasculature in and around the implanted tumor on our chick CAM model. Hence, we conducted detailed analysis of DMPP's inhibitory effects on angiogenesis. Three vasculogenesis and angiogenesis in vivo models were used in the study which included (1) early chick blood islands formation, (2) chick yolk-sac membrane (YSW) and (3) CAM models. The results revealed that DMPP directly suppressed all developmental stages involved in vasculogenesis and angiogenesis – possibly by acting through Ang-1 and HIF-2α signaling. In sum, our results show that DMPP could induce glioma regression grown on CAM by inhibiting vasculogenesis and angiogenesis. - Highlights: ●We demonstrated that DMPP inhibited the growth of glioma cells on chick CAM. ●DMPP did not significantly affect the proliferation and survival of U87 cells. ●We revealed that DMPP suppressed vasculogenesis and angiogenesis in chick embryo. ●Angiogenesis in chick CAM was inhibited by DMPP via most probably Ang-1 and HIF-2α. ●DMPP could be potentially developed as an anti-tumor drug in the future.

  16. Dimethyl phenyl piperazine iodide (DMPP) induces glioma regression by inhibiting angiogenesis

    International Nuclear Information System (INIS)

    1,1-Dimethyl-4-phenyl piperazine iodide (DMPP) is a synthetic nicotinic acetylcholine receptor (nAChR) agonist that could reduce airway inflammation. In this study, we demonstrated that DMPP could dramatically inhibit glioma size maintained on the chick embryonic chorioallantoic membrane (CAM). We first performed MTT and BrdU incorporation experiments on U87 glioma cells in vitro to understand the mechanism involved. We established that DMPP did not significantly affect U87 cell proliferation and survival. We speculated that DMPP directly caused the tumor to regress by affecting the vasculature in and around the implanted tumor on our chick CAM model. Hence, we conducted detailed analysis of DMPP's inhibitory effects on angiogenesis. Three vasculogenesis and angiogenesis in vivo models were used in the study which included (1) early chick blood islands formation, (2) chick yolk-sac membrane (YSW) and (3) CAM models. The results revealed that DMPP directly suppressed all developmental stages involved in vasculogenesis and angiogenesis – possibly by acting through Ang-1 and HIF-2α signaling. In sum, our results show that DMPP could induce glioma regression grown on CAM by inhibiting vasculogenesis and angiogenesis. - Highlights: ●We demonstrated that DMPP inhibited the growth of glioma cells on chick CAM. ●DMPP did not significantly affect the proliferation and survival of U87 cells. ●We revealed that DMPP suppressed vasculogenesis and angiogenesis in chick embryo. ●Angiogenesis in chick CAM was inhibited by DMPP via most probably Ang-1 and HIF-2α. ●DMPP could be potentially developed as an anti-tumor drug in the future

  17. Hedyotis diffusa Willd extract suppresses Sonic hedgehog signaling leading to the inhibition of colorectal cancer angiogenesis.

    Science.gov (United States)

    Lin, Jiumao; Wei, Lihui; Shen, Aling; Cai, Qiaoyan; Xu, Wei; Li, Huang; Zhan, Youzhi; Hong, Zhenfeng; Peng, Jun

    2013-02-01

    Sonic hedgehog (SHH) signaling pathway promotes the process of angiogenesis, contributing to the growth and progression of many human malignancies including colorectal cancer (CRC), which therefore has become a promising target for cancer chemotherapy. Hedyotis diffusa Willd (HDW), as a well-known traditional Chinese herbal medicine, has long been used in China for the clinic treatment of various cancers. Recently, we reported that HDW can inhibit colorectal cancer growth in vivo and in vitro via suppression of the STAT3 pathway. In addition, we demonstrated the anti-angiogenic activity of HDW in vitro. To further elucidate the mechanism of the tumoricidal activity of HDW, by using a CRC mouse xenograft model we evaluated the in vivo effect of the ethanol extract of HDW (EEHDW) on tumor angiogenesis, and investigated the underlying molecular mechanisms. We found that EEHDW could significantly reduce intratumoral microvessel density (MVD), indicating its activity of antitumor angiogenesis in vivo. EEHDW suppressed the activation of SHH signaling in CRC xenograft tumors since it significantly decreased the expression of key mediators of SHH pathway. EEHDW treatment inhibited the expression of the critical SHH signaling target gene VEGF-A as well as its specific receptor VEGFR2. Taken together, we propose for the first time that Hedyotis diffusa Willd inhibits colorectal cancer growth in vivo via inhibition of SHH-mediated tumor angiogenesis. PMID:23291612

  18. Targeting Notch1 inhibits invasion and angiogenesis of human breast cancer cells via inhibition Nuclear Factor-κB signaling.

    Science.gov (United States)

    Liu, Yuan; Su, Chuanfu; Shan, Yuqing; Yang, Shouxiang; Ma, Guifeng

    2016-01-01

    Notch-1, a type-1 transmembrane protein, plays critical roles in the pathogenesis and progression of human malignancies, including breast cancer; however, the precise mechanism by which Notch-1 causes tumor cell invasion and angiogenesis remain unclear. Nuclear factor-κB (NF-κB), interleukin-8 (IL-8), vascular endothelial growth factor (VEGF), and matrix metalloproteinases (MMP) are critically involved in the processes of tumor cell invasion and metastasis, we investigated whether targeting Notch-1 could be mechanistically associated with the down-regulation of NF-κB, IL-8, VEGF, and MMP-9, resulting in the inhibition of invasion and angiogenesis of breast cancer cells. Our data showed that down-regulation of Notch-1 leads to the inactivation of NF-κB activity and inhibits the expression of its target genes, such as IL-8, VEGF and MMP-9. We also found that down-regulation of Notch-1 decreased cell invasion, and vice versa Consistent with these results, we also found that the down-regulation of Notch-1 not only decreased MMP-9 mRNA and its protein expression but also inhibited MMP-9 active form. Moreover, conditioned medium from Notch-1 siRNA-transfected breast cancer cells showed reduced levels of IL-8 and VEGF and, in turn, inhibited the tube formation of HUVECs, suggesting that down-regulation of Notch-1 leads to the inhibition of angiogenesis. Furthermore, conditioned medium from Notch-1 cDNA-transfected breast cancer cells showed increased levels of IL-8 and VEGF and, in turn, promoted the tube formation of HUVECs, suggesting that Notch-1 overexpression leads to the promotion of angiogenesis.We therefore concluded that down-regulation of Notch-1 leads to the inactivation NF-κB and its target genes (IL-8, MMP-9 and VEGF), resulting in the inhibition of invasion and angiogenesis.

  19. Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis

    DEFF Research Database (Denmark)

    Qin, Zhiqiang; Yang, Liang; Qu, Di;

    2009-01-01

    Multiple bacterial species often coexist as communities, and compete for environmental resources. Here, we describe how an opportunistic pathogen, Pseudomonas aeruginosa, uses extracellular products to interact with the nosocomial pathogen Staphylococcus epidermidis. S. epidermidis biofilms...... and planktonic cultures were challenged with P. aeruginosa supernatant cultures overnight. Results indicated that quorum-sensing-controlled factors from P. aeruginosa supernatant inhibited S. epidermidis growth in planktonic cultures. We also found that P. aeruginosa extracellular products, mainly...... polysaccharides, disrupted established S. epidermidis biofilms. Cellulase-treated P. aeruginosa supernatant, and supernatant from pelA, ps/F and pe/Aps/BCD mutants, which are deficient in polysaccharide biosynthesis, diminished the disruption of S. epidermidis biofilms. In contrast, S. epidermidis supernatant...

  20. Downregulation of Focal Adhesion Kinase (FAK) by cord blood stem cells inhibits angiogenesis in glioblastoma

    OpenAIRE

    Dasari, Venkata Ramesh; Kaur, Kiranpreet; Velpula, Kiran Kumar; Dinh, Dzung H.; Andrew J Tsung; Mohanam, Sanjeeva; Rao, Jasti S.

    2010-01-01

    Angiogenesis involves the formation of new blood vessels by rerouting or remodeling existing ones and is believed to be the primary method of vessel formation in gliomas. To study the mechanisms by which angiogenesis of glioma cells can be inhibited by human umbilical cord blood stem cells (hUCBSC), we studied two glioma cell lines (SNB19, U251) and a glioma xenograft cell line (5310) alone and in co-culture with hUCBSC. Conditioned media from co-cultures of glioma cells with hUCBSC showed re...

  1. Cytochalasin D, a tropical fungal metabolite, inhibits CT26 tumor growth and angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Feng-Ying Huang; Yue-Nan Li; Wen-Li Mei; Hao-Fu Dai; Peng Zhou; Guang-Hong Tan

    2012-01-01

    Objective:To investigate whether cytochalasin D can induce antitumor activities in a tumor model.Methods: Murine CT26 colorectal carcinoma cells were culturedin vitro and cytochalasin D was used as a cytotoxic agent to detect its capabilities of inhibitingCT26 cell proliferation and inducing cell apoptosis by MTT and aTUNEL-based apoptosis assay. MurineCT26 tumor model was established to observe the tumor growth and survival time. Tumor tissues were used to detect the microvessel density by immunohistochemistry. In addition, alginate encapsulated tumor cell assay was used to quantify the tumor angiogenesis in vivo.Results: Cytochalasin D inhibited CT26 tumor cell proliferation in time and dose dependent manner and induced significantCT26 cell apoptosis, which almost reached the level induced by the positive control nuclease. The optimum effective dose of cytochalasinD for in vivo therapy was about50 mg/kg. CytochalasinD in vivotreatment significantly inhibited tumor growth and prolonged the survival times inCT26 tumor-bearing mice. The results of immunohistochemistry analysis and alginate encapsulation assay indicated that the cytochalasinD could effectively inhibited tumor angiogenesis. Conclusions:Cytochalasin D inhibitsCT26 tumor growth potentially through inhibition of cell proliferation, induction of cell apoptosis and suppression of tumor angiogenesis.

  2. KR-31831, benzopyran derivative, inhibits VEGF-induced angiogenesis of HUVECs through suppressing KDR expression.

    Science.gov (United States)

    Park, Shi-Young; Seo, Eun-Hee; Song, Hyun Seok; Jung, Seung-Youn; Lee, Young-Kyoung; Yi, Kyu-Yang; Yoo, Sung-Eun; Kim, Yung-Jin

    2008-06-01

    Angiogenesis is important in the development and progression of cancer, therefore the therapeutic approach based on anti-angiogenesis may represent a promising therapeutic option. KR-31831 is a novel anti-ischemic agent. Previously, we reported the anti-angiogenic activity of KR-31831. In the present study we investigated the molecular mechanisms underlying anti-angiogenic activity of KR-31831. We show that KR-31831 inhibits vascular endothelial growth factor (VEGF)-induced proliferation and tube formation via release of intracellular Ca2+ and phosphorylation of extra-cellular regulated kinase 1/2 (Erk 1/2) in human umbilical vein endothelial cells (HUVECs). Moreover, the expression of VEGF receptor 2 (VEGFR2, known as Flk-1 or KDR) was reduced by the treatment of KR-31831. These results suggest that KR-31831 may have inhibitory effects on tumor angiogenesis through down-regulation of KDR expression.

  3. Increased shear stress inhibits angiogenesis in veins and not arteries during vascular development.

    Science.gov (United States)

    Chouinard-Pelletier, Guillaume; Jahnsen, Espen D; Jones, Elizabeth A V

    2013-01-01

    Vascular development is believed to occur first by vasculogenesis followed by angiogenesis. Though angiogenesis is the formation of new vessels, we found that vascular density actually decreases during this second stage. The onset of the decrease coincided with the entry of erythroblasts into circulation. We therefore measured the level of shear stress at various developmental stages and found that it was inversely proportional to vascular density. To investigate whether shear stress was inhibitory to angiogenesis, we altered shear stress levels either by preventing erythroblasts from entering circulation ("low" shear stress) or by injection of a starch solution to increase the blood plasma viscosity ("high" shear stress). By time-lapse microscopy, we show that reverse intussusception (merging of two vessels) is inversely proportional to the level of shear stress. We also found that angiogenesis (both sprouting and splitting) was inversely proportional to shear stress levels. These effects were specific to the arterial or venous plexus however, such that the effect on reverse intussusception was present only in the arterial plexus and the effect on sprouting only in the venous plexus. We cultured embryos under altered shear stress in the presence of either DAPT, a Notch inhibitor, or DMH1, an inhibitor of the bone morphogenetic protein (BMP) pathway. DAPT treatment phenocopied the inhibition of erythroblast circulation ("low" shear stress) and the effect of DAPT treatment could be partially rescued by injection of starch. Inhibition of the BMP signaling prevented the reduction in vascular density that was observed when starch was injected to increase shear stress levels.

  4. Photodynamic antimicrobial therapy to inhibit pseudomonas aeruginosa of corneal isolates (Conference Presentation)

    Science.gov (United States)

    Durkee, Heather A.; Relhan, Nidhi; Arboleda, Alejandro; Halili, Francisco; De Freitas, Carolina; Alawa, Karam; Aguilar, Mariela C.; Amescua, Guillermo; Miller, Darlene; Parel, Jean-Marie

    2016-03-01

    Keratitis associated with Pseudomonas aeruginosa is difficult to manage. Treatment includes antibiotic eye drops, however, some strains of Pseudomonas aeruginosa are resistant. Current research efforts are focused on finding alternative and adjunct therapies to treat multi-drug resistant bacteria. One promising alternate technique is photodynamic therapy (PDT). The purpose of this study was to evaluate the effect of riboflavin- and rose bengal-mediated PDT on Pseudomonas aeruginosa keratitis isolates in vitro. Two isolates (S+U- and S-U+) of Pseudomonas aeruginosa were derived from keratitis patients and exposed to five experimental groups: (1) Control (dark, UV-A irradiation, 525nm irradiation); (2) 0.1% riboflavin (dark, UV-A irradiation); and (3) 0.1% rose bengal, (4) 0.05% rose bengal and (5) 0.01% rose bengal (dark, 525nm irradiation). Three days after treatment, in dark conditions of all concentration of riboflavin and rose bengal showed no inhibition in both S+U- and S-U+ strains of Pseudomonas aeruginosa. In 0.1% and 0.05% rose bengal irradiated groups, for both S+U- and S-U+ strains, there was complete inhibition of bacterial growth in the central 50mm zone corresponding to the diameter of the green light source. These in vitro results suggest that rose bengal photodynamic therapy may be an effective adjunct treatment for Pseudomonas aeruginosa keratitis.

  5. Blockade of Wnt signaling inhibits angiogenesis and tumor growth in hepatocellular carcinoma

    OpenAIRE

    J. Hu; Dong, A.; Fernandez-Ruiz, V. (Verónica); Shan, J.; Kawa, M. (Milosz); Martinez-Anso, E. (Eduardo); J. Prieto; Qian, C

    2009-01-01

    Aberrant activation of Wnt signaling plays an important role in hepatocarcinogenesis. In addition to direct effects on tumor cells, Wnt signaling might be involved in the organization of tumor microenvironment. In this study, we have explored whether Wnt signaling blockade by exogenous expression of Wnt antagonists could inhibit tumor angiogenesis and control tumor growth. Human Wnt inhibitory factor 1 (WIF1) and secreted frizzled-related protein 1 (sFRP1) were each fused with Fc fragment of ...

  6. Glipizide suppresses prostate cancer progression in the TRAMP model by inhibiting angiogenesis

    OpenAIRE

    Cuiling Qi; Bin Li; Yang Yang; Yongxia Yang; Jialin Li; Qin Zhou; Yinxin Wen; Cuiling Zeng; Lingyun Zheng; Qianqian Zhang; Jiangchao Li; Xiaodong He; Jia Zhou; Chunkui Shao; Lijing Wang

    2016-01-01

    Drug repurposing of non-cancer drugs represents an attractive approach to develop new cancer therapy. Using the TRAMP transgenic mouse model, glipizide, a widely used drug for type 2 diabetes mellitus, has been identified to suppress prostate cancer (PC) growth and metastasis. Angiogenesis is intimately associated with various human cancer developments. Intriguingly, glipizide significantly reduces microvessel density in PC tumor tissues, while not inhibiting prostate cancer cell proliferatio...

  7. Lonidamine Causes Inhibition of Angiogenesis-Related Endothelial Cell Functions1

    OpenAIRE

    Del Bufalo, Donatella; Trisciuoglio, Daniela; Scarsella, Marco; d'Amati, Giulia; Candiloro, Antonio; Iervolino, Angela; Leonetti, Carlo; Zupi, Gabriella

    2004-01-01

    The aim of this study was to assess whether lonidamine (LND) interferes with some steps in angiogenesis progression. We report here, for the first time, that LND inhibited angiogenic-related endothelial cell functions in a dose-dependent manner (1–50 µg/ml). In particular, LND decreased proliferation, migration, invasion, and morphogenesis on matrigel of different endothelial cell lines. Zymographic and Western blot analysis assays showed that LND treatment produced a reduction in the secreti...

  8. Inhibition of PAI-1 Limits Tumor Angiogenesis Regardless of Angiogenic Stimuli in Malignant Pleural Mesothelioma.

    Science.gov (United States)

    Takayama, Yusuke; Hattori, Noboru; Hamada, Hironobu; Masuda, Takeshi; Omori, Keitaro; Akita, Shin; Iwamoto, Hiroshi; Fujitaka, Kazunori; Kohno, Nobuoki

    2016-06-01

    Malignant pleural mesothelioma (MPM) is an aggressive malignant tumor that secretes various angiogenic factors. The main inhibitor of plasminogen activators, PAI-1 (SERPINE1), has been implicated in tumor progression and angiogenesis, and high PAI-1 expression has been associated with poor prognosis in MPM patients. In this study, we examined the antiangiogenic effects of PAI-1 inhibition in MPM. We administered the PAI-1 inhibitor, SK-216, to orthotopic mouse models in which MPM cells expressing high levels of VEGF (VEGFA) or bFGF (FGF2) were intrapleurally transplanted. SK-216 administration reduced tumor weights and the degree of angiogenesis in intrapleural tumors, irrespective of their angiogenic expression profiles. In addition, a combination of SK-216 and the chemotherapeutic agent cisplatin significantly reduced tumor weights compared with monotherapy, prolonging the survival of animals compared with cisplatin treatment alone. Furthermore, SK-216 inhibited migration and tube formation of cultured human umbilical vein endothelial cells induced by various angiogenic factors known to be secreted by MPM. These findings suggest that PAI-1 inactivation by SK-216 may represent a general strategy for inhibiting angiogenesis, including for the treatment of MPM. Cancer Res; 76(11); 3285-94. ©2016 AACR. PMID:27197170

  9. SNS-032 Prevents Tumor Cell-Induced Angiogenesis By Inhibiting Vascular Endothelial Growth Factor

    Directory of Open Access Journals (Sweden)

    M. Aktar Ali

    2007-05-01

    Full Text Available Cell proliferation, migration, and capillary network formation of endothelial cells are the fundamental steps for angiogenesis, which involves the formation of new blood vessels. The purpose of this study is to investigate the effect of a novel aminothiazole SNS-032 on these critical steps for in vitro angiogenesis using a coculture system consisting of human umbilical vein endothelial cells (HUVECs and human glioblastoma cells (U87MG. SNS-032 is a potent selective inhibitor of cyclin-dependent kinases 2, 7, and 9, and inhibits both transcription and cell cycle. In this study, we examined the proliferation and viability of HUVECs and U87MG cells in the presence of SNS-032 and observed a dose-dependent inhibition of cellular proliferation in both cell lines. SNS-032 inhibited threedimensional capillary network formations of endothelial cells. In a coculture study, SNS-032 completely prevented U87MG cell-mediated capillary formation of HUVECs. This inhibitor also prevented the migration of HUVECs when cultured alone or cocultured with U87MG cells. In addition, SNS-032 significantly prevented the production of vascular endothelial growth factor (VEGF in both cell lines, whereas SNS-032 was less effective in preventing capillary network formation and migration of endothelial cells when an active recombinant VEGF was added to the medium. In conclusion, SNS-032 prevents in vitro angiogenesis, and this action is attributable to blocking of VEGF.

  10. Amentoflavone inhibits angiogenesis of endothelial cells and stimulates apoptosis in hypertrophic scar fibroblasts.

    Science.gov (United States)

    Zhang, Jinli; Liu, Zhihe; Cao, Wenjuan; Chen, Liying; Xiong, Xifeng; Qin, Shengnan; Zhang, Zhi; Li, Xiaojian; Hu, Chien-an A

    2014-08-01

    Amentoflavone (8-[5-(5,7-dihydroxy-4-oxo-chromen-2-yl)-2-hydroxy-phenyl]-5,7-dihydroxy-2-(4-hydroxyphenyl) chromen-4-one; AF) is a biflavonoid derived from the extracts of Selaginella tamariscina. It has been shown that AF has diverse biological effects such as antitumour, etc. It is well known that high cell proliferation, viability, angiogenesis and low apoptosis are key factors in hypertrophic scar formation. In this study, we report that AF inhibited viability and stimulated apoptosis in hypertrophic scar fibroblasts (HSFBs). Incubation of HSFBs with AF showed its inhibitory effect on cell viability and the exhibition of a series of cellular changes that were consistent with apoptosis. By Western-blot analysis, our data indicated significant increases in the amounts of cleaved caspases 3, 8, 9 and Bax, several apoptotic promoters and a significant decrease in translationally controlled tumour protein (TCTP), an apoptotic inhibitor, in HSFBs treated with AF. Furthermore, AF showed significant inhibitions on the viability, migration and tube formation of endothelial cells, which are associated with angiogenesis. In conclusion, this study suggests that AF stimulates apoptosis in HSFBs and inhibits angiogenesis of endothelial cells. Therefore, AF is a promising molecule that can be used in hypertrophic scar treatment.

  11. Tryptanthrin inhibits angiogenesis by targeting the VEGFR2-mediated ERK1/2 signalling pathway.

    Directory of Open Access Journals (Sweden)

    Xuemei Liao

    Full Text Available Angiogenesis is a key step for tumour growth and metastasis, and anti-angiogenesis has been proposed as an important strategy for cancer therapy. Tryptanthrin is a weakly basic alkaloid isolated from the dried roots of medicinal indigo plants and has been shown to possess anti-tumour activities on various cancer cell types. This study aims to investigate the in vitro and in vivo anti-angiogenic activities of tryptanthrin and to unravel its underlying molecular action mechanisms. Our results show that tryptanthrin inhibited the in vitro proliferation, migration, and tube formation of the human microvascular endothelial cells (HMEC-1 in a concentration-dependent manner and significantly suppressed angiogenesis in Matrigel plugs in mice. Mechanistic studies indicated that tryptanthrin reduced the expression of several pro-angiogenic factors (Ang-1, PDGFB and MMP2. Tryptanthrin was also found to suppress the VEGFR2-mediated ERK1/2 signalling pathway in HMEC-1 cells and molecular docking simulation indicated that tryptanthrin could bound to the ATP-binding site of VEGFR2. Collectively, the present study demonstrated that tryptanthrin exhibited both in vitro and in vivo anti-angiogenic activities by targeting the VEGFR2-mediated ERK1/2 signalling pathway and might have therapeutic potential for the treatment of angiogenesis-related diseases.

  12. In vitro inhibition of Pseudomonas aeruginosa adhesion by Xylitol

    OpenAIRE

    Letícia Pinheiro de Sousa; Annelisa Farah da Silva; Natalia Oliveira Calil; Murilo Gomes Oliveira; Silvio Silvério da Silva; Nádia Rezende Barbosa Raposo

    2011-01-01

    This study evaluated, in vitro, the antimicrobial activity and the anti-adherent property of xylitol (0.5, 2.5 and 5.0%, w/v) on two Pseudomonas aeruginosa strains (ATCC 9027 and clinical). The assay of antimicrobial activity was performed to determine a minimum inhibitory concentration (MIC) and the adhesion test was performed, by which the parameters regarding, growth in the culture medium, number of colony forming units (CFUs) released and slide evaluation by scanning electron microscopy (...

  13. Mechanism of azithromycin inhibition of HSL synthesis in Pseudomonas aeruginosa.

    Science.gov (United States)

    Zeng, Jianming; Zhang, Ni; Huang, Bin; Cai, Renxin; Wu, Binning; E, Shunmei; Fang, Chengcai; Chen, Cha

    2016-04-14

    Pseudomonas aeruginosa is an opportunistic pathogen and a leading cause of nosocomial infections. Unfortunately, P. aeruginosa has low antibiotic susceptibility due to several chromosomally encoded antibiotic resistance genes. Hence, we carried out mechanistic studies to determine how azithromycin affects quorum sensing and virulence in P. aeruginosa. lasI and rhlI single and double mutants were constructed. We then undertook a quantitative approach to determine the optimal concentration of azithromycin and culture time that can affect the expression of HSLs. Furthermore, based on the above results, the effect on quorum sensing was analyzed at a transcriptional level. It was found that 2 μg/mL azithromycin caused a 79% decrease in 3-oxo-C12-HSL secretion during cultivation, while C4-HSL secretion was strongly repressed in the early stages. Azithromycin acts on ribosomes; to determine whether this can elicit alternative modes of gene expression, transcriptional regulation of representative virulence genes was analyzed. We propose a new relationship for lasI and rhlI: lasI acts as a cell density sensor, and rhlI functions as a fine-tuning mechanism for coordination between different quorum sensing systems.

  14. Synergistic Inhibition of Angiogenesis by Artesunate and Captopril In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Benjamin Krusche

    2013-01-01

    Full Text Available Inhibition of angiogenesis represents one major strategy of cancer chemotherapy. In the present investigation, we investigated the synergism of artesunate and captopril to inhibit angiogenesis. Artesunate is an antimalarial derivative of artemisinin from the Chinese medicinal plant, Artemisia annua L., which also reveals profound anticancer activity in vitro and in vivo. Captopril is an angiotensin I-converting (ACE inhibitor, which is well established in Western academic medicine. Both compounds inhibited migration of human umbilical vein endothelial cells (HUVECs in vitro. The combination of both drugs resulted in synergistically inhibited migration. Whereas artesunate inhibited HUVEC growth in the XTT assay, captopril did not, indicating independent modes of action. We established a chorioallantoic membrane (CAM assay of quail embryos (Coturnix coturnix L. and a computer-based evaluation routine for quantitative studies on vascularization processes in vivo. Artesunate and captopril inhibited blood vessel formation and growth. For the first time, we demonstrated that both drugs revealed synergistic effects when combined. These results may also have clinical impact, since cardiovascular diseases and cancer frequently occur together in older cancer patients. Therefore, comorbid patients may take advantage, if they take captopril to treat cardiovascular symptoms and artesunate to treat cancer.

  15. Synergistic inhibition of angiogenesis by artesunate and captopril in vitro and in vivo.

    Science.gov (United States)

    Krusche, Benjamin; Arend, Joachim; Efferth, Thomas

    2013-01-01

    Inhibition of angiogenesis represents one major strategy of cancer chemotherapy. In the present investigation, we investigated the synergism of artesunate and captopril to inhibit angiogenesis. Artesunate is an antimalarial derivative of artemisinin from the Chinese medicinal plant, Artemisia annua L., which also reveals profound anticancer activity in vitro and in vivo. Captopril is an angiotensin I-converting (ACE) inhibitor, which is well established in Western academic medicine. Both compounds inhibited migration of human umbilical vein endothelial cells (HUVECs) in vitro. The combination of both drugs resulted in synergistically inhibited migration. Whereas artesunate inhibited HUVEC growth in the XTT assay, captopril did not, indicating independent modes of action. We established a chorioallantoic membrane (CAM) assay of quail embryos (Coturnix coturnix L.) and a computer-based evaluation routine for quantitative studies on vascularization processes in vivo. Artesunate and captopril inhibited blood vessel formation and growth. For the first time, we demonstrated that both drugs revealed synergistic effects when combined. These results may also have clinical impact, since cardiovascular diseases and cancer frequently occur together in older cancer patients. Therefore, comorbid patients may take advantage, if they take captopril to treat cardiovascular symptoms and artesunate to treat cancer. PMID:24223058

  16. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    International Nuclear Information System (INIS)

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA3.1 empty vector, pcDNA3.1-VEGF111b or pcDNA3.1-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth

  17. Inhibition of endothelial Cdk5 reduces tumor growth by promoting non-productive angiogenesis.

    Science.gov (United States)

    Merk, Henriette; Zhang, Siwei; Lehr, Thorsten; Müller, Christoph; Ulrich, Melanie; Bibb, James A; Adams, Ralf H; Bracher, Franz; Zahler, Stefan; Vollmar, Angelika M; Liebl, Johanna

    2016-02-01

    Therapeutic success of VEGF-based anti-angiogenic tumor therapy is limited due to resistance. Thus, new strategies for anti-angiogenic cancer therapy based on novel targets are urgently required. Our previous in vitro work suggested that small molecule Cdk5 inhibitors affect angiogenic processes such as endothelial migration and proliferation. Moreover, we recently uncovered a substantial role of Cdk5 in the development of lymphatic vessels. Here we pin down the in vivo impact of endothelial Cdk5 inhibition in angiogenesis and elucidate the underlying mechanism in order to judge the potential of Cdk5 as a novel anti-angiogenic and anti-cancer target. By the use of endothelial-specific Cdk5 knockout mouse models and various endothelial and tumor cell based assays including human tumor xenograft models, we show that endothelial-specific knockdown of Cdk5 results in excessive but non-productive angiogenesis during development but also in tumors, which subsequently leads to inhibition of tumor growth. As Cdk5 inhibition disrupted Notch function by reducing the generation of the active Notch intracellular domain (NICD) and Cdk5 modulates Notch-dependent endothelial cell proliferation and sprouting, we propose that the Dll4/Notch driven angiogenic signaling hub is an important and promising mechanistic target of Cdk5. In fact, Cdk5 inhibition can sensitize tumors to conventional anti-angiogenic treatment as shown in tumor xenograft models. In summary our data set the stage for Cdk5 as a drugable target to inhibit Notch-driven angiogenesis condensing the view that Cdk5 is a promising target for cancer therapy. PMID:26755662

  18. CTR1 silencing inhibits angiogenesis by limiting copper entry into endothelial cells.

    Directory of Open Access Journals (Sweden)

    Gomathy Narayanan

    Full Text Available Increased levels of intracellular copper stimulate angiogenesis in human umbilical vein endothelial cells (HUVECs. Copper transporter 1 (CTR1 is a copper importer present in the cell membrane and plays a major role in copper transport. In this study, three siRNAs targeting CTR1 mRNA were designed and screened for gene silencing. HUVECs when exposed to 100 µM copper showed 3 fold increased proliferation, migration by 1.8-fold and tube formation by 1.8-fold. One of the designed CTR1 siRNA (si 1 at 10 nM concentration decreased proliferation by 2.5-fold, migration by 4-fold and tube formation by 2.8-fold. Rabbit corneal packet assay also showed considerable decrease in matrigel induced blood vessel formation by si 1 when compared to untreated control. The designed si 1 when topically applied inhibited angiogenesis. This can be further developed for therapeutic application.

  19. Angiogenesis inhibition causes hypertension and placental dysfunction in a rat model of preeclampsia

    DEFF Research Database (Denmark)

    Carlström, Mattias; Wentzel, Parri; Skøtt, Ole;

    2009-01-01

    and placentae were smaller (2.8 g and 0.51 g) than the pregnant controls rats' fetuses and placentae (3.5 g and 0.56 g). Resorptions tended to be higher in the pregnant Suramin-treated rat litters compared with the pregnant control rat litters (P = 0.08). The area of the maternal blood vessels...... and fetal outcome exerted by the angiogenesis inhibitor Suramin (100 mg/kg i.p.) during early placentation. Blood pressure and heart rate were measured continuously with telemetry in Sprague-Dawley rats of four experimental groups: nonpregnant controls, Suramin-treated nonpregnant rats, pregnant controls...... in the mesometrial triangle was smaller in the pregnant Suramin-treated rats group than in the pregnant control rats group. CONCLUSION: The inhibition of uterine angiogenesis increases maternal blood pressure and compromises fetal and placental development. Placental hypoxia and subsequent activation of the renin...

  20. Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2’-bipyridyl, lipoic, kojic and picolinic acids

    Directory of Open Access Journals (Sweden)

    Kübra Çevik

    2015-08-01

    Full Text Available Objective(s:The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. Materials and Methods:The inhibitory activity of 2,2’-bipyridyl, lipoic acid, kojic acid and picolinic acidonbiofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginosa  PAK01,P. aeruginosa PAK02 and P. aeruginosa PAK03 were investigated, based on crystal violet assay, and swarming motility test. Results:The kojic, lipoic and picolinic acid inhibited biofilm formation by 5-33% in all tested P. aeruginosa isolates. When chelated iron was added, biofilm inhibition rates were determined to be 39-57%. Among the tested chelators against P. aeruginosa, lipoic acid (84% and kojic acid (68% presented the highest inhibition of swarming motility. This is the first study to report the inhibitory effect of lipoic acid on biofilm formation and swarming motility of P. aeruginosa. Conclusion: It is considered that lipoic and picolinic acids can serve as alternatives for the treatment of the P. aeruginosa infections by inhibiting biofilm formation.

  1. Flavonoids from the leaves of Carya cathayensis Sarg. inhibit vascular endothelial growth factor-induced angiogenesis.

    Science.gov (United States)

    Tian, Sha-Sha; Jiang, Fu-Sheng; Zhang, Kun; Zhu, Xue-Xin; Jin, Bo; Lu, Jin-Jian; Ding, Zhi-Shan

    2014-01-01

    The total flavonoids (TFs) were isolated from the leaves of Carya cathayensis Sarg. (LCC), a well-known Chinese medicinal herb commercially cultivated in Tianmu Mountain district, a cross area of Zhejiang and Anhui provinces in China. Five flavonoids, i.e. cardamonin, pinostrobin chalcone (PC), wogonin, chrysin, and pinocembrin were the main components of the TFs. The TFs and these pure compounds suppressed vascular endothelial growth factor (VEGF)-induced angiogenesis as detected in the mouse aortic ring assay, and cardamonin showed the best effect among them. To further elucidate the mechanisms for suppressing angiogenesis of these flavonoids, assays of VEGF-induced proliferation and migration in human umbilical vein endothelial cells (HUVECs) were performed. The TFs, cardamonin, pinocembrin, and chrysin obviously suppressed both VEGF-induced HUVEC proliferation and migration. However, PC and wogonin not only slightly inhibited VEGF-induced proliferation but also remarkably suppressed those of migration in HUVECs. Our further study showed that cardamonin decreased the phosphorylation of ERK and AKT induced by VEGF with a dose-dependent manner in HUVECs. Our findings indicate that the TFs and these pure flavonoids may become potential preventive and/or therapeutic agents against angiogenesis-related diseases. PMID:24096161

  2. Butein Inhibits Angiogenesis of Human Endothelial Progenitor Cells via the Translation Dependent Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ching-Hu Chung

    2013-01-01

    Full Text Available Compelling evidence indicates that bone marrow-derived endothelial progenitor cells (EPCs can contribute to postnatal neovascularization and tumor angiogenesis. EPCs have been shown to play a “catalytic” role in metastatic progression by mediating the angiogenic switch. Understanding the pharmacological functions and molecular targets of natural products is critical for drug development. Butein, a natural chalcone derivative, has been reported to exert potent anticancer activity. However, the antiangiogenic activity of butein has not been addressed. In this study, we found that butein inhibited serum- and vascular endothelial growth factor- (VEGF- induced cell proliferation, migration, and tube formation of human EPCs in a concentration dependent manner without cytotoxic effect. Furthermore, butein markedly abrogated VEGF-induced vessels sprouting from aortic rings and suppressed microvessel formation in the Matrigel implant assay in vivo. In addition, butein concentration-dependently repressed the phosphorylation of Akt, mTOR, and the major downstream effectors, p70S6K, 4E-BP1, and eIF4E in EPCs. Taken together, our results demonstrate for the first time that butein exhibits the antiangiogenic effect both in vitro and in vivo by targeting the translational machinery. Butein is a promising angiogenesis inhibitor with the potential for treatment of cancer and other angiogenesis-related diseases.

  3. Effect of environmental factors on allelopathic inhibition of Microcystis aeruginosa by berberine.

    Science.gov (United States)

    Zhang, Shulin; Dai, Wei; Bi, Xiangdong; Zhang, Dajuan; Xing, Kezhi

    2013-01-01

    To understand how environmental conditions affect the allelopathic inhibition of toxic Microcystis aeruginosa by berberine, the independent effects of some environmental factors, including temperature, light, and aeration, on the growth and extracellular microcystin (MC) content of M. aeruginosa (FACHB 905) treated with 0.000 and 0.001% (w/v) berberine were investigated. The results showed that higher temperature and light density, and aeration in daytime were beneficial for the growth of M. aeruginosa under the measured environmental conditions. The allelopathic effects of berberine on M. aeruginosa were closely associated with the environmental conditions. Berberine had the best inhibitory effects when temperature, light and aeration were more optimal for growth. In darkness, no changes in the density of M. aeruginosa were observed with the prolongation of culture time and berberine could hardly exhibit algicidal effects. Disturbance in the photosynthesis process might be one of the main reasons responsible for algicidal function. Berberine could increase extracellular MC contents significantly via killing and lyzing algal cells. Other treatments coupled with berberine needed to be carried out to degrade or remove MC released from berberine-killed algal cells.

  4. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer—Part 1

    OpenAIRE

    Sagar, S.M.; Yance, D.; Wong, R.K.

    2006-01-01

    An integrative approach for managing a patient with cancer should target the multiple biochemical and physiologic pathways that support tumour development and minimize normal-tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also manifest other anticancer activities. The present article focuses on products that have a high degree of anti-angiogenic activity, but it also describes some of the many other actions of ...

  5. Efficient inhibition of tumor angiogenesis and growth by a synthetic peptide blocking S100A4-methionine aminopeptidase 2 interaction

    OpenAIRE

    Ochiya, Takahiro; Takenaga, Keizo; Asagiri, Masataka; Nakano, Kazumi; Satoh, Hitoshi; Watanabe, Toshiki; Imajoh-Ohmi, Shinobu; Endo, Hideya

    2015-01-01

    The prometastatic calcium-binding protein, S100A4, is expressed in endothelial cells, and its downregulation markedly suppresses tumor angiogenesis in a xenograft cancer model. Given that endothelial S100A4 can be a molecular target for inhibiting tumor angiogenesis, we addressed here whether synthetic peptide capable of blocking S100A4-effector protein interaction could be a novel antiangiogenic agent. To examine this hypothesis, we focused on the S100A4-binding domain of methionine aminopep...

  6. Recombinant Mouse Canstatin Inhibits Chicken Embryo Chorioallantoic Membrane Angiogenesis and Endothelial Cell Proliferation

    Institute of Scientific and Technical Information of China (English)

    Wei-Hong HOU; Tian-Yun WANG; Bao-Mei YUAN; Yu-Rong CHAI; Yan-Long JIA; Fang TIAN; Jian-Min WANG; Le-Xun XUE

    2004-01-01

    Human canstatin, a 24 kD fragment of the α2 chain of type Ⅳ collagen, has been proved to be one of the most effective inhibitors of angiogenesis and tumor growth. To investigate in vivo antiangiogenesis activity and in vitro effects on endothelial cell proliferation of recombinant mouse canstatin, the cDNA of mouse canstatin was introduced into an expression vector pQE40 to construct a prokaryotic expression vector pQE-mCan. The recombinant mouse canstatin efficiently expressed in E. coli M 15 after IPTG induction was monitored by SDS-PAGE and by Western blotting with an anti-hexahistidine tag antibody. The expressed mouse canstatin, mainly as inclusion bodies, accounted for approximately 35% of the total bacterial proteins. The inclusion bodies were washed, lysed and purified by the nickel affinity chromatography to a purity of approximately 93%. The refolded mouse canstatin was tested on the chicken embryo chorioallantoic membranes (CAM), and a large number of newly formed blood vessels were significantly regressed. In addition, recombinant mouse canstatin potently inhibited endothelial cell proliferation with no inhibition on non-endothelial cells. Taken together, these findings demonstrate that the recombinant mouse canstatin effectively inhibited angiogenesis of the chicken embryo in a dose-dependent manner and specially suppressed in vitro the proliferation of human umbilical vein endothelial cells.

  7. Halofuginone Inhibits Angiogenesis and Growth in Implanted Metastatic Rat Brain Tumor Model-an MRI Study

    Directory of Open Access Journals (Sweden)

    Rinat Abramovitch

    2004-09-01

    Full Text Available Tumor growth and metastasis depend on angiogenesis; therefore, efforts are made to develop specific angiogenic inhibitors. Halofuginone (HF is a potent inhibitor of collagen type α1(I. In solid tumor models, HF has a potent antitumor and antiangiogenic effect in vivo, but its effect on brain tumors has not yet been evaluated. By employing magnetic resonance imaging (MRI, we monitored the effect of HF on tumor progression and vascularization by utilizing an implanted malignant fibrous histiocytoma metastatic rat brain tumor model. Here we demonstrate that treatment with HF effectively and dose-dependently reduced tumor growth and angiogenesis. On day 13, HF-treated tumors were fivefold smaller than control (P < .001. Treatment with HF significantly prolonged survival of treated animals (142%; P = .001. In HF-treated rats, tumor vascularization was inhibited by 30% on day 13 and by 37% on day 19 (P < .05. Additionally, HF treatment inhibited vessel maturation (P = .03. Finally, in HF-treated rats, we noticed the appearance of a few clusters of satellite tumors, which were distinct from the primary tumor and usually contained vessel cores. This phenomenon was relatively moderate when compared to previous reports of other antiangiogenic agents used to treat brain tumors. We therefore conclude that HF is effective for treatment of metastatic brain tumors.

  8. Combretastatin A-4 efficiently inhibits angiogenesis and induces neuronal apoptosis in zebrafish

    Science.gov (United States)

    Shi, Yun-Wei; Yuan, Wei; Wang, Xin; Gong, Jie; Zhu, Shun-Xing; Chai, Lin-Lin; Qi, Jia-Ling; Qin, Yin-Yin; Gao, Yu; Zhou, Yu-Ling; Fan, Xiao-Le; Ji, Chun-Ya; Wu, Jia-Yi; Wang, Zhi-Wei; Liu, Dong

    2016-01-01

    Cis-stilbene combretastatin A-4 (CA-4) and a large group of its derivant compounds have been shown significant anti-angiogenesis activity. However the side effects even the toxicities of these chemicals were not evaluated adequately. The zebrafish model has become an important vertebrate model for evaluating drug effects. The testing of CA-4 on zebrafish is so far lacking and assessment of CA-4 on this model will provide with new insights of understanding the function of CA-4 on angiogenesis, the toxicities and side effects of CA-4. We discovered that 7–9 ng/ml CA-4 treatments resulted in developmental retardation and morphological malformation, and led to potent angiogenic defects in zebrafish embryos. Next, we demonstrated that intraperitoneal injection of 5, 10 and 20 mg/kg CA-4 obviously inhibited vessel plexus formation in regenerated pectoral fins of adult zebrafish. Interestingly, we proved that CA-4 treatment induced significant cell apoptosis in central nervous system of zebrafish embryos and adults. Furthermore, it was demonstrated that the neuronal apoptosis induced by CA-4 treatment was alleviated in p53 mutants. In addition, notch1a was up-regulated in CA-4 treated embryos, and inhibition of Notch signaling by DAPT partially rescued the apoptosis in zebrafish central nervous system caused by CA-4. PMID:27452835

  9. Aspirin may inhibit angiogenesis and induce autophagy by inhibiting mTOR signaling pathway in murine hepatocarcinoma and sarcoma models

    Science.gov (United States)

    Zhao, Qianqian; Wang, Zhaopeng; Wang, Zhaoxia; Wu, Licun; Zhang, Weidong

    2016-01-01

    Aspirin is known to have inhibitory effects on growth development in various types of tumor. In previous studies, it was observed to inhibit angiogenesis by downregulating the expression of vascular endothelial growth factor-A (VEGF-A). In the present study, murine H22 hepatocarcinoma and S180 sarcoma models were used to ascertain whether aspirin could inhibit angiogenesis and promote autophagy in tumors. Tumor-bearing mice were randomly divided into four groups with 10 mice per group: i) no treatment; ii) low-dose aspirin (100 mg/kg); iii) high-dose aspirin (400 mg/kg); iv) everolimus group (4 mg/kg). The effects of high-dose aspirin were validated through preliminary experiments. The drug treatment was administered every day for 14 days. The tumor size was measured every other day and then the tumor growth curve was plotted, and the tumor inhibitory rates were calculated. The expression levels of phosphorylated mammalian target of rapamycin (p-mTOR), hypoxia-inducible factor-1α (HIF-1α), VEGF-A, UNC-51-like kinase-1 (ULK1) and microtubule-associated protein 1 light chain 3A (LC3A) were detected by immunohistochemistry and western blot analysis, respectively. We observed that tumor growth delay was achieved in both H22 hepatocarcinoma and S180 sarcoma models following treatment with aspirin. The tumor growth inhibition rates induced by low and high-dose aspirin and everolimus were 19.6, 33.6 and 53.7% (PHIF-1α and VEGF-A was decreased, while the expression of ULK1 and LC3A was increased following treatment with aspirin and everolimus. The changes were more apparent in the high-dose aspirin and everolimus groups (PHIF-1α and VEGF-A. Alternatively, aspirin may induce autophagy by inhibiting the mTOR signaling target and then increasing ULK1 and LC3A.

  10. Wogonin inhibits tumor angiogenesis via degradation of HIF-1α protein

    Energy Technology Data Exchange (ETDEWEB)

    Song, Xiuming; Yao, Jing; Wang, Fei; Zhou, Mi; Zhou, Yuxin; Wang, Hu; Wei, Libin; Zhao, Li; Li, Zhiyu; Lu, Na, E-mail: luna555@163.com; Guo, Qinglong, E-mail: anticancer_drug@yahoo.com.cn

    2013-09-01

    Wogonin, a plant-derived flavone, has been shown recently to have antitumor effects. However, the mechanisms that wogonin inhibits tumor angiogenesis are not well known. In this study, we investigated the effects of wogonin on expression of hypoxia-inducible factor-1α (HIF-1α) and secretion of vascular endothelial growth factor (VEGF) in tumor cells. We found that wogonin decreased the expression of HIF-1α by affecting its stability and reduced the secretion of VEGF, which suppressed angiogenesis in cancer. Wogonin promoted the degradation of HIF-1α by increasing its prolyl hydroxylation, which depended on prolyl hydroxylase (PHD) and the von Hippel–Lindau tumor suppressor (VHL). Intriguingly, wogonin impeded the binding between heat-shock protein 90 (Hsp90) and HIF-1α. In addition, wogonin down-regulated the Hsp90 client proteins EGFR, Cdk4 and survivin, but did not affect the level of Hsp90. Wogonin also increased ubiquitination of HIF-1α and promoted its degradation in proteasome. We also found that wogonin could inhibit nuclear translocation of HIF-1α. Electrophoresis mobility shift assay (EMSA) showed that wogonin decreased the binding activity of exogenous consensus DNA oligonucleotide with HIF-1α in nuclear extracts from MCF-7 cells. Chromatin immunoprecipitation (ChIP) assay also revealed that HIF-1α directly binded to endogenous hypoxia-responsive element (HRE) and this binding was significantly decreased in MCF-7 cells treated with wogonin. Preliminary results indicated in vivo activity of wogonin against xenograft-induced angiogenesis in nude mice. Taken together, the results suggested that wogonin was a potent inhibitor of HIF-1α and provided a new insight into the mechanisms of wogonin against cancers. - Highlights: • Wogonin is an all around inhibitor of VEGF signaling. • We firstly demonstrate that wogonin inhibits secretion of VEGF by decreasing HIF-1α. • Wogonin enhances PDH and VHL expression and inhibits Hsp90 function.

  11. Ginger Extract Inhibits Biofilm Formation by Pseudomonas aeruginosa PA14

    OpenAIRE

    Han-Shin Kim; Hee-Deung Park

    2013-01-01

    Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger's ability ...

  12. sFlt Multivalent Conjugates Inhibit Angiogenesis and Improve Half-Life In Vivo

    Science.gov (United States)

    Altiok, Eda I.; Browne, Shane; Khuc, Emily; Moran, Elizabeth P.; Qiu, Fangfang; Zhou, Kelu; Santiago-Ortiz, Jorge L.; Ma, Jian-xing; Chan, Matilda F.; Healy, Kevin E.

    2016-01-01

    Current anti-VEGF drugs for patients with diabetic retinopathy suffer from short residence time in the vitreous of the eye. In order to maintain biologically effective doses of drug for inhibiting retinal neovascularization, patients are required to receive regular monthly injections of drug, which often results in low patient compliance and progression of the disease. To improve the intravitreal residence time of anti-VEGF drugs, we have synthesized multivalent bioconjugates of an anti-VEGF protein, soluble fms-like tyrosine kinase-1 (sFlt) that is covalently grafted to chains of hyaluronic acid (HyA), conjugates that are termed mvsFlt. Using a mouse corneal angiogenesis assay, we demonstrate that covalent conjugation to HyA chains does not decrease the bioactivity of sFlt and that mvsFlt is equivalent to sFlt at inhibiting corneal angiogenesis. In a rat vitreous model, we observed that mvsFlt had significantly increased intravitreal residence time compared to the unconjugated sFlt after 2 days. The calculated intravitreal half-lives for sFlt and mvsFlt were 3.3 and 35 hours, respectively. Furthermore, we show that mvsFlt is more effective than the unconjugated form at inhibiting retinal neovascularization in an oxygen-induced retinopathy model, an effect that is most likely due to the longer half-life of mvsFlt in the vitreous. Taken together, our results indicate that conjugation of sFlt to HyA does not affect its affinity for VEGF and this conjugation significantly improves drug half-life. These in vivo results suggest that our strategy of multivalent conjugation could substantially improve upon drug half-life, and thus the efficacy of currently available drugs that are used in diseases such as diabetic retinopathy, thereby improving patient quality of life. PMID:27257918

  13. Celecoxib-erlotinib combination delays growth and inhibits angiogenesis in EGFR-mutated lung cancer.

    Science.gov (United States)

    Li, Yi Xiao; Wang, Jia Le; Gao, Meng; Tang, Hao; Gui, Rong; Fu, Yun Feng

    2016-01-01

    Combination treatment for non-small cell lung cancer (NSCLC) is becoming more popular due to the anticipation that it may be more effective than single drug treatment. In addition, there are efforts to genetically screen patients for specific mutations in light of attempting to administer specific anticancer agents that are most effective. In this study, we evaluate the anticancer and anti-angiogenic effects of low dose celecoxib-erlotinib combination in NSCLC in vitro and in vivo. In NSCLC cells harboring epidermal growth factor receptor (EGFR) mutations, combination celecoxib-erlotinib treatment led to synergistic cell death, but there was minimal efficacy in NSCLC cells with wild-type EGFR. In xenograft models, combination treatment also demonstrated greater inhibition of tumor growth compared to individual treatment. The anti-tumor effect observed was secondary to the targeting of angiogenesis, evidenced by decreased vascular endothelial growth factor A (VEGFA) levels and decreased levels of CD31 and microvessel density. Combination treatment targets angiogenesis through the modulation of of the PI3K/AKT and ERK/Raf1-1 pathway in NSCLC with EGFR exon 19 deletions. These findings may have significant clinical implications in patients with tumors harboring EGFR exon 19 deletions as they may be particularly sensitive to this regimen. PMID:27508092

  14. Phosphate limitation induces the intergeneric inhibition of Pseudomonas aeruginosa by Serratia marcescens isolated from paper machines.

    Science.gov (United States)

    Kuo, Pei-An; Kuo, Chih-Horng; Lai, Yiu-Kay; Graumann, Peter L; Tu, Jenn

    2013-06-01

    Phosphate is an essential nutrient for heterotrophic bacteria, affecting bacterioplankton in aquatic ecosystems and bacteria in biofilms. However, the influence of phosphate limitation on bacterial competition and biofilm development in multispecies populations has received limited attention in existing studies. To address this issue, we isolated 13 adhesive bacteria from paper machine aggregates. Intergeneric inhibition of Pseudomonas aeruginosa WW5 by Serratia marcescens WW4 was identified under phosphate-limited conditions, but not in Luria-Bertani medium or M9 minimal medium. The viable numbers of the pure S. marcescens WW4 culture decreased over 3 days in the phosphate-limited medium; however, the mortality of S. marcescens WW4 was significantly reduced when it was co-cultured with P. aeruginosa WW5, which appeared to sustain the S. marcescens WW4 biofilm. In contrast, viable P. aeruginosa WW5 cells immediately declined in the phosphate-limited co-culture. To identify the genetic/inhibitory element(s) involved in this process, we inserted a mini-Tn5 mutant of S. marcescens WW4 that lacked inhibitory effect. The results showed that an endonuclease bacteriocin was involved in this intergeneric inhibition by S. marcescens WW4 under phosphate limitation. In conclusion, this study highlights the importance of nutrient limitation in bacterial interactions and provides a strong candidate gene for future functional characterisation.

  15. Isolation of the Autoinducer-Quenching Strain that Inhibits LasR in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Lixing Weng

    2014-04-01

    Full Text Available Quorum sensing (QS has been recognized as a general phenomenon in microorganisms and plays an important role in many pathogenic bacteria. In this report, we used the Agrobacterium tumefaciens biosensor strain NT1 to rapidly screen for autoinducer-quenching inhibitors from bacteria. After initial screening 5389 isolates obtained from land and beach soil, 53 putative positive strains were identified. A confirmatory bioassay was carried out after concentrating the putative positive culture supernatant, and 22 strains were confirmed to have anti-LasR activity. Finally, we determined the strain JM2, which could completely inhibit biofilm formation of Pseudomonas aeruginosa PAO1, belonged to the genus Pseudomonas by analysis of 16S rDNA. Partially purified inhibitor factor(s F5 derived from culture supernatants specifically inhibited LasR-controlled elastase and protease in wild type P. aeruginosa PAO1 by 68% and 73%, respectively, without significantly affecting growth; the rhl-controlled pyocyanin and rhamnolipids were inhibited by 54% and 52% in the presence of 100 µg/mL of F5. The swarming motility and biofilm of PAO1 were also inhibited by F5. Real time RT-PCR on samples from 100 µg/mL F5-treated P. aeruginosa showed downregulation of autoinducer synthase (LasRI and rhlI and cognate receptor (lasR and rhlR genes by 50%, 28%, 48%, and 29%, respectively. These results provide compelling evidence that the F5 inhibitor(s interferes with the las system and significantly inhibits biofilm formation.

  16. Squalamine inhibits angiogenesis and solid tumor growth in vivo and perturbs embryonic vasculature.

    Science.gov (United States)

    Sills, A K; Williams, J I; Tyler, B M; Epstein, D S; Sipos, E P; Davis, J D; McLane, M P; Pitchford, S; Cheshire, K; Gannon, F H; Kinney, W A; Chao, T L; Donowitz, M; Laterra, J; Zasloff, M; Brem, H

    1998-07-01

    The novel aminosterol, squalamine, inhibits angiogenesis and tumor growth in multiple animal models. This effect is mediated, at least in part, by blocking mitogen-induced proliferation and migration of endothelial cells, thus preventing neovascularization of the tumor. Squalamine has no observable effect on unstimulated endothelial cells, is not directly cytotoxic to tumor cells, does not alter mitogen production by tumor cells, and has no obvious effects on the growth of newborn vertebrates. Squalamine was also found to have remarkable effects on the primitive vascular bed of the chick chorioallantoic membrane, which has striking similarities to tumor capillaries. Squalamine may thus be well suited for treatment of tumors and other diseases characterized by neovascularization in humans. PMID:9661892

  17. Tumstatin transfected into human glioma cell line U251 represses tumor growth by inhibiting angiogenesis

    Institute of Scientific and Technical Information of China (English)

    YE Hong-xing; YAO Yu; JIANG Xin-jun; YUAN Xian-rui

    2013-01-01

    Background Angiogenesis is a prerequisite for tumor growth and plays an important role in rapidly growing tumors,such as malignant gliomas.A variety of factors controlling the angiogenic balance have been described,and among these,the endogenous inhibitor of angiogenesis,tumstatin,has drawn considerable attention.The current study investigated whether expression of tumstatin by glioma cells could alter this balance and prevent tumor formation.Methods We engineered stable transfectants from human glioma cell line U251 to constitutively secrete a human tumstatin protein with c-myc and polyhistidine tags.Production and secretion of the tumstatin-c-myc-His fusion protein by tumstatin-transfected cells were confirmed by Western blotting analysis.In the present study,we identify the anti-angiogenic capacity of tumstatin using several in vitro and in vivo assays.Student's t-test and one-way analysis of variance (ANOVA) test were used to determine the statistical significance in this study.Results The tumstatin transfectants and control transfectants (stably transfected with a control plasmid) had similar in vitro growth rates compared to their parental cell lines.However,the conditioned medium from the tumstatin transfected tumor cells significantly inhibits proliferation and causes apoptosis of endothelial cells.It also inhibits tube formation of endothelial cells on Matrigel.Examination of armpit tumors arising from cells overexpressing tumstatin repress the growth of tumor,accompanying the decreased density of CD31 positive vessels in tumors ((5.62±1.32)/HP),compared to the control-transfectants group ((23.84+1.71)/HP) and wild type U251 glioma cells group ((29.33+4.45)/HP).Conclusion Anti-angiogenic gene therapy using human tumstatin gene may be an effective strategy for the treatment of glioma.

  18. Inhibition of Hyaluronic Acid Synthesis Suppresses Angiogenesis in Developing Endometriotic Lesions.

    Directory of Open Access Journals (Sweden)

    Carla N Olivares

    Full Text Available The development and long-term survival of endometriotic lesions is crucially dependent on an adequate vascularization. Hyaluronic acid (HA through its receptor CD44 has been described to be involved in the process of angiogenesis.To study the effect of HA synthesis inhibition using non-toxic doses of 4-methylumbelliferone (4-MU on endometriosis-related angiogenesis.The cytotoxicity of different in vitro doses of 4-MU on endothelial cells was firstly tested by means of a lactate dehydrogenase assay. The anti-angiogenic action of non-cytotoxic doses of 4-MU was then assessed by a rat aortic ring assay. In addition, endometriotic lesions were induced in dorsal skinfold chambers of female BALB/c mice, which were daily treated with an intraperitoneal injection of 0.9% NaCl (vehicle group; n = 6, 20 mg/kg 4-MU (n = 8 or 80 mg/kg 4-MU (n = 7 throughout an observation period of 14 days. The effect of 4-MU on their vascularization, survival and growth were studied by intravital fluorescence microscopy, histology and immunohistochemistry.Non-cytotoxic doses of 4-MU effectively inhibited vascular sprout formation in the rat aortic ring assay. Endometriotic lesions in dorsal skinfold chambers of 4-MU-treated mice dose-dependently exhibited a significantly smaller vascularized area and lower functional microvessel density when compared to vehicle-treated controls. Histological analyses revealed a downregulation of HA expression in 4-MU-treated lesions. This was associated with a reduced density of CD31-positive microvessels within the lesions. In contrast, numbers of PCNA-positive proliferating and cleaved caspase-3-positive apoptotic cells did not differ between 4-MU-treated and control lesions.The present study demonstrates for the first time that targeting the synthesis of HA suppresses angiogenesis in developing endometriotic lesions. Further studies have to clarify now whether in the future this anti-angiogenic effect can be used beneficially for the

  19. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Zhengfu, He; Hu, Zhang; Huiwen, Miao; Zhijun, Li [Department of Thoracic Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China); Jiaojie, Zhou [Zhejiang University School of Medicine, Hangzhou (China); Xiaoyi, Yan, E-mail: xiaoyiyan163@163.com [Zhejiang University School of Medicine, Hangzhou (China); Xiujun, Cai, E-mail: xiujuncaomaj@163.com [Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China)

    2015-08-21

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice.

  20. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    International Nuclear Information System (INIS)

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice

  1. Kalkitoxin Inhibits Angiogenesis, Disrupts Cellular Hypoxic Signaling, and Blocks Mitochondrial Electron Transport in Tumor Cells

    Directory of Open Access Journals (Sweden)

    J. Brian Morgan

    2015-03-01

    Full Text Available The biologically active lipopeptide kalkitoxin was previously isolated from the marine cyanobacterium Moorea producens (Lyngbya majuscula. Kalkitoxin exhibited N-methyl-d-aspartate (NMDA-mediated neurotoxicity and acted as an inhibitory ligand for voltage-sensitive sodium channels in cultured rat cerebellar granule neurons. Subsequent studies revealed that kalkitoxin generated a delayed form of colon tumor cell cytotoxicity in 7-day clonogenic cell survival assays. Cell line- and exposure time-dependent cytostatic/cytotoxic effects were previously observed with mitochondria-targeted inhibitors of hypoxia-inducible factor-1 (HIF-1. The transcription factor HIF-1 functions as a key regulator of oxygen homeostasis. Therefore, we investigated the ability of kalkitoxin to inhibit hypoxic signaling in human tumor cell lines. Kalkitoxin potently and selectively inhibited hypoxia-induced activation of HIF-1 in T47D breast tumor cells (IC50 5.6 nM. Mechanistic studies revealed that kalkitoxin inhibits HIF-1 activation by suppressing mitochondrial oxygen consumption at electron transport chain (ETC complex I (NADH-ubiquinone oxidoreductase. Further studies indicate that kalkitoxin targets tumor angiogenesis by blocking the induction of angiogenic factors (i.e., VEGF in tumor cells.

  2. Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis.

    Science.gov (United States)

    Hyde, C A C; Missailidis, S

    2009-06-01

    Arachidonic acid (AA) and its metabolites have recently generated a heightened interest due to growing evidence of their significant role in cancer biology. Thus, inhibitors of the AA cascade, first and foremost COX inhibitors, which have originally been of interest in the treatment of inflammatory conditions and certain types of cardiovascular disease, are now attracting attention as an arsenal against cancer. An increasing number of investigations support their role in cancer chemoprevention, although the precise molecular mechanisms that link levels of AA, and its metabolites, with cancer progression have still to be elucidated. This article provides an overview of the AA cascade and focuses on the roles of its inhibitors and their implication in cancer treatment. In particular, emphasis is placed on the inhibition of cell proliferation and neo-angiogenesis through inhibition of the enzymes COX-2, 5-LOX and CYP450. Downstream effects of inhibition of AA metabolites are analysed and the molecular mechanisms of action of a selected number of inhibitors of catalytic pathways reviewed. Lastly, the benefits of dietary omega-3 fatty acids and their mechanisms of action leading to reduced cancer risk and impeded cancer cell growth are mentioned. Finally, a proposal is put forward, suggesting a novel and integrated approach in viewing the molecular mechanisms and complex interactions responsible for the involvement of AA metabolites in carcinogenesis and the protective effects of omega-3 fatty acids in inflammation and tumour prevention. PMID:19239926

  3. Subinhibitory concentration of ciprofloxacin targets quorum sensing system of Pseudomonas aeruginosa causing inhibition of biofilm formation & reduction of virulence

    Directory of Open Access Journals (Sweden)

    Parul Gupta

    2016-01-01

    Results: Sub-minimum inhibitory concentration (sub-MIC of CIP significantly reduced the motility of P. aeruginosa stand and strain and clinical isolates and affected biofilm forming capacity. Production of protease, elastase, siderophore, alginate, and rhamnolipid was also significantly reduced by CIP. Interpretation & conclusions: Reduction in virulence factors and biofilm formation was due to inhibition of QS mechanism which was indicated by reduced production of QS signal molecules by P. aeruginosa in presence of subinhibitory concentration of CIP.

  4. Pseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation.

    Science.gov (United States)

    Cott, Catherine; Thuenauer, Roland; Landi, Alessia; Kühn, Katja; Juillot, Samuel; Imberty, Anne; Madl, Josef; Eierhoff, Thorsten; Römer, Winfried

    2016-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen that induces severe lung infections such as ventilator-associated pneumonia and acute lung injury. Under these conditions, the bacterium diminishes epithelial integrity and inhibits tissue repair mechanisms, leading to persistent infections. Understanding the involved bacterial virulence factors and their mode of action is essential for the development of new therapeutic approaches. In our study we discovered a so far unknown effect of the P. aeruginosa lectin LecB on host cell physiology. LecB alone was sufficient to attenuate migration and proliferation of human lung epithelial cells and to induce transcriptional activity of NF-κB. These effects are characteristic of impaired tissue repair. Moreover, we found a strong degradation of β-catenin, which was partially recovered by the proteasome inhibitor lactacystin. In addition, LecB induced loss of cell-cell contacts and reduced expression of the β-catenin targets c-myc and cyclin D1. Blocking of LecB binding to host cell plasma membrane receptors by soluble l-fucose prevented these changes in host cell behavior and signaling, and thereby provides a powerful strategy to suppress LecB function. Our findings suggest that P. aeruginosa employs LecB as a virulence factor to induce β-catenin degradation, which then represses processes that are directly linked to tissue recovery. PMID:26862060

  5. Curcumin Inhibits Tumor Growth and Angiogenesis in an Orthotopic Mouse Model of Human Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Sabrina Bimonte

    2013-01-01

    Full Text Available Pancreatic cancer is a malignant neoplasm originating from transformed cells arising in tissues forming the pancreas. The best chemotherapeutic agent used to treat pancreatic cancer is the gemcitabine. However, gemcitabine treatment is associated with many side effects. Thus novel strategies involving less toxic agents for treatment of pancreatic cancer are necessary. Curcumin is one such agent that inhibits the proliferation and angiogenesis of a wide variety of tumor cells, through the modulation of many cell signalling pathways. In this study, we investigated whether curcumin plays antitumor effects in MIA PaCa-2 cells. In vitro studies showed that curcumin inhibits the proliferation and enhances apoptosis of MIA PaCa-2 cells. To test whether the antitumor activity of curcumin is also observed in vivo, we generated an orthotopic mouse model of pancreatic cancer by injection of MIA PaCa-2 cells in nude mice. We placed mice on diet containing curcumin at 0.6% for 6 weeks. In these treated mice tumors were smaller with respect to controls and showed a downregulation of the transcription nuclear factor NF-κB and NF-κB-regulated gene products. Overall, our data indicate that curcumin has a great potential in treatment of human pancreatic cancer through the modulation of NF-κB pathway.

  6. The axonal repellent Slit2 inhibits pericyte migration: potential implications in angiogenesis.

    Science.gov (United States)

    Guijarro-Muñoz, I; Cuesta, A M; Alvarez-Cienfuegos, A; Geng, J G; Alvarez-Vallina, L; Sanz, L

    2012-02-15

    The Slit family of secreted proteins acts through the Roundabout (Robo) receptors to repel axonal migration during central nervous system development. Emerging evidence shows that Slit/Robo interactions also play a role in angiogenesis. The effect of Robo signaling on endothelial cells has been shown to be context-dependent. However, the role of Slit/Robo in pericytes has been largely unexplored. The aim of this study was to determine the effect of Slit2 on primary human pericytes and to address the underlying mechanisms, including the receptors potentially implicated. We demonstrate that both Robo1 and Robo4 are expressed by human pericytes. In the presence of their ligand Slit2, spontaneous and PDGF-induced migration of pericytes was impaired. This antimigratory activity of Slit-2 correlated with the inhibition of actin-based protrusive structures. Interestingly, human pericyte interaction with immobilized Slit2 was inhibited in the presence of anti-Robo1 and anti-Robo4 blocking antibodies, suggesting the implication of both receptors. These results add new insights into the role of Slit proteins during the angiogenic process that relies on the directional migration not only of endothelial cells but also of pericytes.

  7. ELK3 Suppresses Angiogenesis by Inhibiting the Transcriptional Activity of ETS-1 on MT1-MMP

    OpenAIRE

    Heo, Sun-Hee; Cho, Je-Yoel

    2014-01-01

    Ets transcription factors play important roles in vasculogenesis and angiogenesis. Knockout of the Ets gene family members in mice resulted in disrupted angiogenesis and malformed vascular systems. In this study, the role and mechanism of ELK3, an Ets factor, in angiogenesis was investigated using ELK3-specific siRNA in human vascular endothelial cells (HUVECs) and in vivo implantation assay. The suppression of ELK3 expression resulted in the reinforcement of VEGF-induced tube formation in HU...

  8. Suppression of pancreatic carcinoma growth by activating peroxisome proliferator-activated receptor γ involves angiogenesis inhibition

    Institute of Scientific and Technical Information of China (English)

    Yu-Wei Dong; Xing-Peng Wang; Kai Wu

    2009-01-01

    AIM: To study the possible actions and mechanisms of peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated transcription factor, in pancreatic carcinogenesis,especially in angiogenesis.METHODS: Expressions of PPARγ and retinoid acid receptor (RXRα) were examined by reverse-transcription polymerase chain reaction (RT-PCR) with immunocytochemical staining. Pancreatic carcinoma cells, PANC-1,were treated either with 9-cis-RA, a ligand of RXRα,or with 15-deoxy-Δ12,14 prostaglandin J2(15d-PGJ2), a ligand of PPARγ, or both. Antiproliferative effect was evaluated by cell viability using methyltetrazolium (MTT) assay. A pancreatic carcinoma xenograft tumor model of nude mice was established by inoculating PANC-1 cells subcutaneously. Rosiglitazone, a specific ligand of PPARγ, was administered via water drinking in experimental group of nude mice. After 75 d, all mice were sacrificed. Expression of proliferating cell nuclear antigen (PCNA) in tumor tissue was examined with immunohistochemical staining. Expression of vascular endothelial growth factor (VEGF) mRNA in PANC-1 cells, which were treated with 15d-PGJ2 or 9-cis-RA at variousconcentrations or different duration, was detected by semi-quantitative RT-PCR. Effects of Rosiglitazone on changes of microvascular density (MVD) and VEGF expression were investigated in xenograft tumor tissue. Neovasculature was detected with immunohistochemistry staining labeled with anti-Ⅳ collagen antibody, and indicated by MVD.RESULTS: RT-PCR and immunocytochemical staining showed that PPARγ and RXRα were expressed in PANC-1 cells at both transcription level and translation level. MTT assay demonstrated that 15d-PGJ2, 9-cis-RA and their combination inhibited the growth of PANC-1 cells in a dose-dependent manner. 9-cis-RA had a combined inhibiting action with 15d-PGJ2 on the growth of pancreatic carcinoma. In vivo studies revealed that Rosiglitazone significantly suppressed the growth of pancreatic carcinoma

  9. Indomethacin suppresses growth of colon cancer via inhibition of angiogenesis in vivo

    Institute of Scientific and Technical Information of China (English)

    Hong-Mei Wang; Gui-Ying Zhang

    2005-01-01

    AIM: It has been reported that regular consumption of nonsteroidal anti-inflammatory drugs like indomethacin decreases the incidence and mortality rate of a number of gastrointestinal cancers. We aimed to explore the efficacy and possible mechanisms of indomethacin on tumor growth and tumor angiogenesis of human colon cancer xenografts in nude mice,METHODS: MTT (thiazolyl blue) assay was used to assess the effect of indomethacin on cultured human colorectal cancer cell line HCT116. HCT116 cells were inoculated subcutaneously into BALB/c-nu/nu mice. After oral administration of indomethacin, 3 mg/kg·d for 4 wk, animals were sacrificed by cervical dislocation. Immunohistochemical staining was employed to determine the microvessel density (MVD) and vascular endothelial growth factor (VEGF)expression in tumor tissues.RESULTS: Indomethacin, a non-selective COX inhibitor,significantly decreased the viability of HCT116 cells in a dose-dependent manner (P<0.05) with 50% inhibition at approximately 318.2±12.7 μmol/L. Growth of HCT116 cell tumor was significantly suppressed by indomethacin. The tumor volume was significantly decreased in the treated group (458.89±32.07 mm3) compared to the control group (828.21±31.59 mm3) (P<0.05). The MVD of the treated group (19.50±5.32) was markedly decreased compared to the control group (37.40±4.93) (P<0.001). The VEGF expression of the treated group (1.19±0.17) was obviously reduced as compared to the control group (1.90±0.48)(P<0.01). The decrease in MVD was positively correlated with the decrease of VEGF expression (rs = 0.714, P<0.05).We did not see gastrointestinal complications in the treated group and no differences were noted in the body weight of the mice between the two groups throughout the study (P>0.05).CONCLUSION: Indomethacin can significantly decrease the viability of cultured HCT116 cells and retard human colorectal HCT116 cell tumor growth via inhibiting tumor angiogenesis, which might be through

  10. The isoflavone metabolite 6-methoxyequol inhibits angiogenesis and suppresses tumor growth

    Directory of Open Access Journals (Sweden)

    Bellou Sofia

    2012-05-01

    Full Text Available Abstract Background Increased consumption of plant-based diets has been linked to the presence of certain phytochemicals, including polyphenols such as flavonoids. Several of these compounds exert their protective effect via inhibition of tumor angiogenesis. Identification of additional phytochemicals with potential antiangiogenic activity is important not only for understanding the mechanism of the preventive effect, but also for developing novel therapeutic interventions. Results In an attempt to identify phytochemicals contributing to the well-documented preventive effect of plant-based diets on cancer incidence and mortality, we have screened a set of hitherto untested phytoestrogen metabolites concerning their anti-angiogenic effect, using endothelial cell proliferation as an end point. Here, we show that a novel phytoestrogen, 6-methoxyequol (6-ME, inhibited VEGF-induced proliferation of human umbilical vein endothelial cells (HUVE cells, whereas VEGF-induced migration and survival of HUVE cells remained unaffected. In addition, 6-ME inhibited FGF-2-induced proliferation of bovine brain capillary endothelial (BBCE cells. In line with its role in cell proliferation, 6-ME inhibited VEGF-induced phosphorylation of ERK1/2 MAPK, the key cascade responsible for VEGF-induced proliferation of endothelial cells. In this context, 6-ME inhibited in a dose dependent manner the phosphorylation of MEK1/2, the only known upstream activator of ERK1/2. 6-ME did not alter VEGF-induced phosphorylation of p38 MAPK or AKT, compatible with the lack of effect on VEGF-induced migration and survival of endothelial cells. Peri-tumor injection of 6-ME in A-431 xenograft tumors resulted in reduced tumor growth with suppressed neovasularization compared to vehicle controls (P  Conclusions 6-ME inhibits VEGF- and FGF2-induced proliferation of ECs by targeting the phosphorylation of MEK1/2 and it downstream substrate ERK1/2, both key components of the mitogenic MAPK

  11. Inhibited growth of Pseudomonas aeruginosa by dextran- and polyacrylic acid-coated ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Wang Q

    2013-08-01

    Full Text Available Qi Wang,1 J Manuel Perez,2 Thomas J Webster1,3 1Bioengineering Program, College of Engineering, Northeastern University, Boston, MA, USA; 2Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA; 3Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA Abstract: Ceria (CeO2 nanoparticles have been widely studied for numerous applications, but only a few recent studies have investigated their potential applications in medicine. Moreover, there have been almost no studies focusing on their possible antibacterial properties, despite the fact that such nanoparticles may reduce reactive oxygen species. In this study, we coated CeO2 nanoparticles with dextran or polyacrylic acid (PAA because of their enhanced biocompatibility properties, minimized toxicity, and reduced clearance by the immune system. For the first time, the coated CeO2 nanoparticles were tested in bacterial assays involving Pseudomonas aeruginosa, one of the most significant bacteria responsible for infecting numerous medical devices. The results showed that CeO2 nanoparticles with either coating significantly inhibited the growth of Pseudomonas aeruginosa, by up to 55.14%, after 24 hours compared with controls (no particles. The inhibition of bacterial growth was concentration dependent. In summary, this study revealed, for the first time, that the characterized dextran- and PAA-coated CeO2 nanoparticles could be potential novel materials for numerous antibacterial applications. Keywords: antibacterial, biomedical applications

  12. Systemic miRNA-7 delivery inhibits tumor angiogenesis and growth in murine xenograft glioblastoma

    NARCIS (Netherlands)

    Babae, N.; Bourajjaj, M.; Liu, Y.; Beijnum, J.R.; Cerisoli, F.; Scaria, P.V.; Verheul, Mark; Berkel, M.P.; Pieters, E.H.; Haastert, van R.J.; Yousefi, A.; Mastrobattista, E.; Storm, G.; Berezikov, E.; Cuppen, E.; Woodle, M.; Schaapveld, R.Q.J.; Prevost, G.P.; Griffioen, A.W.; Noort, P.I.; Schiffelers, R.M.

    2014-01-01

    Tumor-angiogenesis is the multi-factorial process of sprouting of endothelial cells (EC) into micro-vessels to provide tumor cells with nutrients and oxygen. To explore miRNAs as therapeutic angiogenesis-inhibitors, we performed a functional screen to identify miRNAs that are able to decrease EC via

  13. Curcumin Inhibits Angiogenesis and Adipogenesis in Cell Culture System and in Mice Fed High Fat Diet

    Science.gov (United States)

    Angiogenesis is necessary for the growth of adipose tissue. Dietary polyphenols may suppress growth of adipose tissue through their antiangiogenic activity and by modulating adipocyte metabolism. In the present study, we examined the effect of curcumin on angiogenesis and adipocyte development in a ...

  14. Lonidamine Causes Inhibition of Angiogenesis-Related Endothelial Cell Functions1

    Science.gov (United States)

    Del Bufalo, Donatella; Trisciuoglio, Daniela; Scarsella, Marco; D'Amati, Giulia; Candiloro, Antonio; Iervolino, Angela; Leonetti, Carlo; Zupi, Gabriella

    2004-01-01

    Abstract The aim of this study was to assess whether lonidamine (LND) interferes with some steps in angiogenesis progression. We report here, for the first time, that LND inhibited angiogenic-related endothelial cell functions in a dose-dependent manner (1–50 µg/ml). In particular, LND decreased proliferation, migration, invasion, and morphogenesis on matrigel of different endothelial cell lines. Zymographic and Western blot analysis assays showed that LND treatment produced a reduction in the secretion of matrix metalloproteinase- 2 and metalloproteinase-9 by endothelial cells. Vessel formation in a matrigel plug was also reduced by LND. The viability, migration, invasion, and matrix metalloproteinase production of different tumor cell lines were not affected by low doses of LND (1–10 µg/ml), whereas 50 µg/ml LND, which corresponds to the dose used in clinical management of tumors, triggered apoptosis both in endothelial and tumor cells. Together, these data demonstrate that LND is a compound that interferes with endothelial cell functions, both at low and high doses. Thus, the effect of LND on endothelial cell functions, previously undescribed, may be a significant contributor to the antitumor effect of LND observed for clinical management of solid tumors. PMID:15548359

  15. Total Saponin from Root of Actinidia valvata Dunn Inhibits Hepatoma 22 Growth and Metastasis In Vivo by Suppression Angiogenesis

    Directory of Open Access Journals (Sweden)

    Guo-Yin Zheng

    2012-01-01

    Full Text Available The root of Actinidia valvata dunn has been widely used in the treatment of hepatocellular carcinoma (HCC, proved to be beneficial for a longer and better life in China. In present work, total saponin from root of Actinidia valvata Dunn (TSAVD was extracted, and its effects on hepatoma H22-based mouse in vivo were observed. Primarily transplanted hypodermal hepatoma H22-based mice were used to observe TSAVD effect on tumor growth. The microvessel density (MVD, vascular endothelial growth factor (VEGF, basic fibroblast growth factor (bFGF are characterized factors of angiogenesis, which were compared between TSAVD-treated and control groups. Antimetastasis effect on experimental pulmonary metastasis hepatoma mice was also observed in the study. The results demonstrated that TSAVD can effectively inhibit HCC growth and metastasis in vivo, inhibit the formation of microvessel, downregulate expressions of VEGF and bFGF, and retrain angiogenesis of hepatoma 22 which could be one of the reasons.

  16. Effect of Low Molecular Weight Heparins (LMWHs on antiphospholipid Antibodies (aPL-mediated inhibition of endometrial angiogenesis.

    Directory of Open Access Journals (Sweden)

    Silvia D'Ippolito

    Full Text Available Antiphospholipid syndrome (APS is an autoimmune disorder characterized by vascular thrombosis and/or pregnancy morbidity in the presence of circulating antiphospholipid antibodies (aPL. Different pathogenic mechanisms for aPL-mediated pregnancy failure have been proposed. In particular a direct effect of aPL on both maternal and fetal side of the placental tissue has been reported, since their reactivity with β2-glycoprotein I (β2GPI makes them adhere to trophoblast and human endometrial endothelial cell (HEEC membranes. β2GPI can be recognized by aPL that, once bound, interfere with both trophoblast functions and with the HEEC differentiation.APS patients can be successfully treated with Low Molecular Weight Heparin (LMWH. Recent reports suggest that LMWH acts through mechanisms alternative to its well known anticoagulant effect, because of its ability to bind β2GPI. In our previous studies, we showed that LMWH is able to reduce the aPL binding to trophoblasts and restore cell invasiveness and differentiation. So far, however, no study has described its effects on endometrial angiogenesis.The aim of our research was to evaluate whether two LMWHs, tinzaparin and enoxaparin, have an effect on the aPL-inhibited endometrial angiogenesis. This prompted us to investigate: (i in vitro HEEC angiogenesis through a Matrigel assay; (ii VEGF secretion by ELISA; (iii matrix metalloproteinase-2 (MMP-2 activity by gelatin zymography; (iv Nuclear Factor-κB (NF-κB DNA binding activity by colorimetric assay; (v STAT-3 activation by a sandwich-ELISA kit. Furthermore, using an in vivo murine model we investigated the LMWHs effects on angiogenesis.We demonstrated that the addition of LMWHs prevents aPL-inhibited HEEC angiogenesis, both in vitro and in vivo, and is able to restore the aPL inhibited NF-κB and/or STAT-3 activity, the VEGF secretion and the MMPs activity.The demonstration of a beneficial role for LMWHs on the aPL-inhibited HEEC angiogenesis

  17. Inhibition of angiogenesis: a novel antitumor mechanism of the herbal compound arctigenin.

    Science.gov (United States)

    Gu, Yuan; Scheuer, Claudia; Feng, Dilu; Menger, Michael D; Laschke, Matthias W

    2013-09-01

    Arctigenin, a functional ingredient of several traditional Chinese herbs, has been reported to have potential antitumor activity. However, its mechanisms of action are still not well elucidated. Because the establishment and metastatic spread of tumors is crucially dependent on angiogenesis, here we investigated whether arctigenin inhibits tumor growth by disturbing blood vessel formation. For this purpose, human dermal microvascular endothelial cells were exposed to different arctigenin doses to study their viability, proliferation, protein expression, migration, and tube formation compared with vehicle-treated controls. In addition, arctigenin action on vascular sprouting was analyzed in an aortic ring assay. Furthermore, we studied direct arctigenin effects on CT26.WT colon carcinoma cells. Spheroids of these tumor cells were transplanted into the dorsal skinfold chamber of arctigenin-treated and vehicle-treated BALB/c mice for the in-vivo analysis of tumor vascularization and growth by intravital fluorescence microscopy, histology, and immunohistochemistry. We found that noncytotoxic doses of arctigenin dose dependently reduced the proliferation of human dermal microvascular endothelial cells without affecting their migratory and tube-forming capacity. Arctigenin treatment also resulted in a decreased cellular expression of phosphorylated serine/threonine protein kinase AKT, vascular endothelial growth factor receptor 2, and proliferating cell nuclear antigen and inhibited vascular sprouting from aortic rings. In addition, proliferation, but not secretion of vascular endothelial growth factor, was decreased in arctigenin-treated tumor cells. Finally, arctigenin suppressed the vascularization and growth of engrafting CT26.WT tumors in the dorsal skinfold chamber model. Taken together, these results show for the first time an antiangiogenic action of arctigenin, which may contribute considerably toward its antitumor activity. PMID:23744558

  18. Inhibition of angiogenesis mediated by extremely low-frequency magnetic fields (ELF-MFs.

    Directory of Open Access Journals (Sweden)

    Simona Delle Monache

    Full Text Available The formation of new blood vessels is an essential therapeutic target in many diseases such as cancer, ischemic diseases, and chronic inflammation. In this regard, extremely low-frequency (ELF electromagnetic fields (EMFs seem able to inhibit vessel growth when used in a specific window of amplitude. To investigate the mechanism of anti-angiogenic action of ELF-EMFs we tested the effect of a sinusoidal magnetic field (MF of 2 mT intensity and frequency of 50 Hz on endothelial cell models HUVEC and MS-1 measuring cell status and proliferation, motility and tubule formation ability. MS-1 cells when injected in mice determined a rapid tumor-like growth that was significantly reduced in mice inoculated with MF-exposed cells. In particular, histological analysis of tumors derived from mice inoculated with MF-exposed MS-1 cells indicated a reduction of hemangioma size, of blood-filled spaces, and in hemorrhage. In parallel, in vitro proliferation of MS-1 treated with MF was significantly inhibited. We also found that the MF-exposure down-regulated the process of proliferation, migration and formation of tubule-like structures in HUVECs. Using western blotting and immunofluorescence analysis, we collected data about the possible influence of MF on the signalling pathway activated by the vascular endothelial growth factor (VEGF. In particular, MF exposure significantly reduced the expression and activation levels of VEGFR2, suggesting a direct or indirect influence of MF on VEGF receptors placed on cellular membrane. In conclusion MF reduced, in vitro and in vivo, the ability of endothelial cells to form new vessels, most probably affecting VEGF signal transduction pathway that was less responsive to activation. These findings could not only explain the mechanism of anti-angiogenic action exerted by MFs, but also promote the possible development of new therapeutic applications for treatment of those diseases where excessive angiogenesis is involved.

  19. Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development.

    Science.gov (United States)

    Bandara, H M H N; K Cheung, B P; Watt, R M; Jin, L J; Samaranayake, L P

    2013-02-01

    Elucidation of bacterial and fungal interactions in multispecies biofilms will have major impacts on understanding the pathophysiology of infections. The objectives of this study were to (i) evaluate the effect of Pseudomonas aeruginosa lipopolysaccharide (LPS) on Candida albicans hyphal development and transcriptional regulation, (ii) investigate protein expression during biofilm formation, and (iii) propose likely molecular mechanisms for these interactions. The effect of LPS on C. albicans biofilms was assessed by XTT-reduction and growth curve assays, light microscopy, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). Changes in candidal hypha-specific genes (HSGs) and transcription factor EFG1 expression were assessed by real-time polymerase chain reaction and two-dimensional gel electrophoresis, respectively. Proteome changes were examined by mass spectrometry. Both metabolic activities and growth rates of LPS-treated C. albicans biofilms were significantly lower (P yeasts in test biofilms compared with the controls. SEM and CLSM further confirmed these data. Significantly upregulated HSGs (at 48 h) and EFG1 (up to 48 h) were noted in the test biofilms (P < 0.05) but cAMP levels remained unaffected. Proteomic analysis showed suppression of candidal septicolysin-like protein, potential reductase-flavodoxin fragment, serine hydroxymethyltransferase, hypothetical proteins Cao19.10301(ATP7), CaO19.4716(GDH1), CaO19.11135(PGK1), CaO19.9877(HNT1) by P. aeruginosa LPS. Our data imply that bacterial LPS inhibit C. albicans biofilm formation and hyphal development. The P. aeruginosa LPS likely target glycolysis-associated mechanisms during candidal filamentation. PMID:23194472

  20. Inhibition of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa by human serum paraoxonase.

    Science.gov (United States)

    Aybey, Aynur; Demirkan, Elif

    2016-02-01

    The role of quorum sensing (QS) in the regulation of virulence factor production in Pseudomonas aeruginosa is well established. Increased antibiotic resistance in this bacterium has led to the search for new treatment options, and inhibition of the QS system has been explored for potential therapeutic benefits. If the use of QS inhibitory agents were to lead to a reduction in bacterial virulence, new approaches in the treatment of P. aeruginosa infections could be further developed. Accordingly, we examined whether human serum paraoxonase 1 (hPON1), which uses lactonase activity to hydrolyse N-acyl homoserine lactones, could cleave P. aeruginosa-derived signalling molecules. hPON1 was purified using ammonium sulfate precipitation and hydrophobic interaction chromatography (Sepharose 4B-L-tyrosine-1-naphthylamine). Different concentrations of hPON1 were found to reduce various virulence factors including pyocyanin, rhamnolipid, elastase, staphylolytic LasA protease and alkaline protease. Although treatment with 0.1-10 mg hPON1 ml(-1) did not show a highly inhibitory effect on elastase and staphylolytic LasA protease production, it resulted in good inhibitory effects on alkaline protease production at concentrations as low as 0.1 mg ml(-1). hPON1 also reduced the production of pyocyanin and rhamnolipid at a concentration of 1.25 mg ml(-1 )(within a range of 0.312-5 mg ml(-1)). In addition, rhamnolipid, an effective biosurfactant reported to stimulate the biodegradation of hydrocarbons, was able to degrade oil only in the absence of hPON1. PMID:26654051

  1. Cucurbitacin B inhibits breast cancer metastasis and angiogenesis through VEGF-mediated suppression of FAK/MMP-9 signaling axis.

    Science.gov (United States)

    Sinha, Sonam; Khan, Sajid; Shukla, Samriddhi; Lakra, Amar Deep; Kumar, Sudhir; Das, Gunjan; Maurya, Rakesh; Meeran, Syed Musthapa

    2016-08-01

    Available breast cancer therapeutic strategies largely target the primary tumor but are ineffective against tumor metastasis and angiogenesis. In our current study, we determined the effect of Cucurbitacin B (CuB), a plant triterpenoid, on the metastatic and angiogenic potential of breast cancer cells. CuB was found to inhibit cellular proliferation and induce apoptosis in breast cancer cells in a time- and dose-dependent manner. Further, CuB-treatment significantly inhibited the migratory and invasive potential of highly metastatic breast cancer MDA-MB-231 and 4T1 cells at sub-IC50 concentrations, where no significant apoptosis was observed. CuB was also found to inhibit migratory, invasive and tube-forming capacities of HUVECs in vitro. In addition, inhibition of pre-existing vasculature in chick embryo chorioallantoic membrane ex vivo further supports the anti-angiogenic effect of CuB. CuB-mediated anti-metastatic and anti-angiogenic effects were associated with the downregulation of VEGF/FAK/MMP-9 signaling, which has been validated by using FAK-inhibitor (FI-14). CuB-treatment resulted in a significant inhibition of VEGF-induced phosphorylation of FAK and MMP-9 expressions similar to the action of FI-14. CuB was also found to decrease the micro-vessel density as evidenced by the decreased expression of CD31, a marker for neovasculature. Further, CuB-treatment inhibited tumor growth, lung metastasis and angiogenesis in a highly metastatic 4T1-syngeneic mouse mammary cancer. Collectively, our findings suggest that CuB inhibited breast cancer metastasis and angiogenesis, at least in part, through the downregulation of VEGF/FAK/MMP-9 signaling. PMID:27210504

  2. Berberine reverses epithelial-to-mesenchymal transition and inhibits metastasis and tumor-induced angiogenesis in human cervical cancer cells.

    Science.gov (United States)

    Chu, Shu-Chen; Yu, Cheng-Chia; Hsu, Li-Sung; Chen, Kuo-Shuen; Su, Mei-Yu; Chen, Pei-Ni

    2014-12-01

    Metastasis is the most common cause of cancer-related death in patients, and epithelial-to-mesenchymal transition (EMT) is essential for cancer metastasis, which is a multistep complicated process that includes local invasion, intravasation, extravasation, and proliferation at distant sites. When cancer cells metastasize, angiogenesis is also required for metastatic dissemination, given that an increase in vascular density will allow easier access of tumor cells to circulation, and represents a rational target for therapeutic intervention. Berberine has several anti-inflammation and anticancer biologic effects. In this study, we provided molecular evidence that is associated with the antimetastatic effect of berberine by showing a nearly complete inhibition on invasion (P metalloproteinase-2 and urokinase-type plasminogen activator. Berberine reversed transforming growth factor-β1-induced EMT and caused upregulation of epithelial markers such as E-cadherin and inhibited mesenchymal markers such as N-cadherin and snail-1. Selective snail-1 inhibition by snail-1-specific small interfering RNA also showed increased E-cadherin expression in SiHa cells. Berberine also reduced tumor-induced angiogenesis in vitro and in vivo. Importantly, an in vivo BALB/c nude mice xenograft model and tail vein injection model showed that berberine treatment reduced tumor growth and lung metastasis by oral gavage, respectively. Taken together, these findings suggested that berberine could reduce metastasis and angiogenesis of cervical cancer cells, thereby constituting an adjuvant treatment of metastasis control.

  3. Platelet factor-4 and its p17-70 peptide inhibit myeloma proliferation and angiogenesis in vivo

    International Nuclear Information System (INIS)

    Angiogenesis plays an important role in the development of multiple myeloma (MM). The interaction between MM cells and the bone marrow microenvironment stimulates the proliferation and migration of endothelial progenitor cells (EPCs). Vascular endothelial growth factor (VEGF) contributes to the formation of new blood vessels by actively recruiting circulating EPCs. The production of proangiogenic and antiangiogenic factors is also dysregulated in MM. Platelet factor 4 (PF4) is a potent angiostatic cytokine that inhibits angiogenesis and tumor growth in several animal models. In this study, we stably transfected human myeloma cell lines with the PF4 gene or the sequence encoding its more potent p17-70 peptide and investigated the effects of PF4 and p17-70 on angiogenesis and tumor growth in vitro and in a SCID-rab myeloma model. PF4 and p17-70 significantly attenuated VEGF production, both in vitro and in vivo. In a migration study using a Transwell system, PF4 or p17-70 markedly suppressed the migration of co-cultured human endothelial progenitor cells. PF4 or p17-70 also caused a significant reduction in microvessel densities in myeloma xenografts and markedly reduced the tumor volume in the SCID mice. Kaplan-Meier analysis demonstrated that PF4 and p17-70 significantly extended the overall survival of SCID mice bearing human myeloma xenografts. Our findings indicate that PF4 or p17-70 could be valuable in combating multiple myeloma by disrupting tumor angiogenesis

  4. Inhibition of APE1/Ref-1 redox activity with APX3330 blocks retinal angiogenesis in vitro and in vivo.

    Science.gov (United States)

    Jiang, Aihua; Gao, Hua; Kelley, Mark R; Qiao, Xiaoxi

    2011-01-01

    This study examines the role of APE1/Ref-1 in the retina and its potential as a therapeutic target for inhibiting retinal angiogenesis. APE1/Ref-1 expression was quantified by Western blot. The role of APE1/Ref-1 redox function in endothelial cell in vitro angiogenesis was examined by treating retinal vascular endothelial cells (RVECs) with APX3330, a small molecule inhibitor of APE1/Ref-1 redox activity. In vitro methods included a proliferation assay, a transwell migration assay, a Matrigel tube formation assay, and a Real-Time Cell Analysis (RTCA) using the xCELLigence System. In vivo functional studies of APE1/Ref-1 were carried out by treating very low density lipoprotein (VLDL) receptor knockout mice (Vldlr(-/-)) with intravitreal injection of APX3330, and subsequent measurement of retinal angiomatous proliferation (RAP)-like neovascularization for one week. APE1/Ref-1 was highly expressed in the retina and in RVECs and pericytes in mice. APX3330 (1-10 μM) inhibited proliferation, migration and tube formation of RVECs in vitro in a dose-dependent manner. Vldlr(-/-) RVECs were more sensitive to APX3330 than wild-type RVECs. In Vldlr(-/-) mice, a single intravitreal injection of APX3330 at the onset of RAP-like neovascularization significantly reduced RAP-like neovascularization development. APE1/Ref-1 is expressed in retinal vascular cells. APX3330 inhibits RVEC angiogenesis in vitro and significantly reduces RAP-like neovascularization in Vldlr(-/-) mice. These data support the conclusion that APE1/Ref-1 redox function is required for retinal angiogenesis. Thus, APE1/Ref-1 may have potential as a therapeutic target for treating neovascular age-related macular degeneration and other neovascular diseases.

  5. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Qingyi [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Qing, Yong, E-mail: qingyongxy@yahoo.co.jp [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Yang [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Hu, Xiaojuan; Jiang, Lei [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Xiaohua, E-mail: wuxh@scu.edu.cn [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China)

    2014-12-01

    Dioscin has shown cytotoxicity against cancer cells, but its in vivo effects and the mechanisms have not elucidated yet. The purpose of the current study was to assess the antitumor effects and the molecular mechanisms of dioscin. We showed that dioscin could inhibit tumor growth in vivo and has no toxicity at the test condition. The growth suppression was accompanied by obvious blood vessel decrease within solid tumors. We also found dioscin treatment inhibited the proliferation of cancer and endothelial cell lines, and most sensitive to primary cultured human umbilical vein endothelial cells (HUVECs). What's more, analysis of HUVECs migration, invasion, and tube formation exhibited that dioscin has significantly inhibitive effects to these actions. Further analysis of blood vessel formation in the matrigel plugs indicated that dioscin could inhibit VEGF-induced blood vessel formation in vivo. We also identified that dioscin could suppress the downstream protein kinases of VEGFR2, including Src, FAK, AKT and Erk1/2, accompanied by the increase of phosphorylated P38MAPK. The results potently suggest that dioscin may be a potential anticancer drug, which efficiently inhibits angiogenesis induced by VEGFR2 signaling pathway as well as AKT/MAPK pathways. - Highlights: • Dioscin inhibits tumor growth in vivo and does not exhibit any toxicity. • Dioscin inhibits angiogenesis within solid tumors. • Dioscin inhibits the proliferation, migration, invasion, and tube formation of HUVECs. • Dioscin inhibits VEGF–induced blood vessel formation in vivo. • Dioscin inhibits VEGFR2 signaling pathway as well as AKT/MAPK pathway.

  6. A BMP7 Variant Inhibits Tumor Angiogenesis In Vitro and In Vivo through Direct Modulation of Endothelial Cell Biology.

    Directory of Open Access Journals (Sweden)

    Courtney M Tate

    Full Text Available Bone morphogenetic proteins (BMPs, members of the TGF-β superfamily, have numerous biological activities including control of growth, differentiation, and vascular development. Using an in vitro co-culture endothelial cord formation assay, we investigated the role of a BMP7 variant (BMP7v in VEGF, bFGF, and tumor-driven angiogenesis. BMP7v treatment led to disruption of neo-endothelial cord formation and regression of existing VEGF and bFGF cords in vitro. Using a series of tumor cell models capable of driving angiogenesis in vitro, BMP7v treatment completely blocked cord formation. Pre-treatment of endothelial cells with BMP7v significantly reduced their cord forming ability, indicating a direct effect on endothelial cell function. BMP7v activated the canonical SMAD signaling pathway in endothelial cells but targeted gene knockdown using shRNA directed against SMAD4 suggests this pathway is not required to mediate the anti-angiogenic effect. In contrast to SMAD activation, BMP7v selectively decreased ERK and AKT activation, significantly decreased endothelial cell migration and down-regulated expression of critical RTKs involved in VEGF and FGF angiogenic signaling, VEGFR2 and FGFR1 respectively. Importantly, in an in vivo angiogenic plug assay that serves as a measurement of angiogenesis, BMP7v significantly decreased hemoglobin content indicating inhibition of neoangiogenesis. In addition, BMP7v significantly decreased angiogenesis in glioblastoma stem-like cell (GSLC Matrigel plugs and significantly impaired in vivo growth of a GSLC xenograft with a concomitant reduction in microvessel density. These data support BMP7v as a potent anti-angiogenic molecule that is effective in the context of tumor angiogenesis.

  7. Pseudomonas aeruginosa biofilm growth inhibition on medical plastic materials by immobilized esterases and acylase.

    Science.gov (United States)

    Kisch, Johannes Martin; Utpatel, Christian; Hilterhaus, Lutz; Streit, Wolfgang R; Liese, Andreas

    2014-09-01

    Biofilms are matrix-encapsulated cell aggregates that cause problems in technical and health-related areas; for example, 65 % of all human infections are biofilm associated. This is mainly due to their ameliorated resistance against antimicrobials and immune systems. Pseudomonas aeruginosa, a biofilm-forming organism, is commonly responsible for nosocomial infections. Biofilm development is partly mediated by signal molecules, such as acyl-homoserine lactones (AHLs) in Gram-negative bacteria. We applied horse liver esterase, porcine kidney acylase, and porcine liver esterase; these can hydrolyze AHLs, thereby inhibiting biofilm formation. As biofilm infections are often related to foreign material introduced into the human body, we immobilized the enzymes on medical plastic materials. Biofilm formation was quantified by Crystal Violet staining and confocal laser scanning microscopy, revealing up to 97 % (on silicone), 54 % (on polyvinyl chloride), and 77 % (on polyurethane) reduced biomass after 68 h growth.

  8. D-Amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects.

    Science.gov (United States)

    El Sayed, S M; El-Magd, R M Abou; Shishido, Y; Yorita, K; Chung, S P; Tran, D H; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-10-01

    Angiogenesis is critical for cancer growth and metastasis. Steps of angiogenesis are energy consuming, while vascular endothelial cells are highly glycolytic. Glioblastoma multiforme (GBM) is a highly vascular tumor and this enhances its aggressiveness. D-amino acid oxidase (DAO) is a promising therapeutic protein that induces oxidative stress upon acting on its substrates. Oxidative stress-energy depletion (OSED) therapy was recently reported (El Sayed et al., Cancer Gene Ther, 19, 1-18, 2012). OSED combines DAO-induced oxidative stress with energy depletion caused by glycolytic inhibitors such as 3-bromopyruvate (3BP), a hexokinase II inhibitor that depleted ATP in cancer cells and induced production of hydrogen peroxide. 3BP disturbs the Warburg effect and antagonizes effects of lactate and pyruvate (El Sayed et al., J Bioenerg Biomembr, 44, 61-79, 2012). Citrate is a natural organic acid capable of inhibiting glycolysis by targeting phosphofructokinase. Here, we report that DAO, 3BP and citrate significantly inhibited angiogenesis, decreased the number of vascular branching points and shortened the length of vascular tubules. OSED delayed the growth of C6/DAO glioma cells. 3BP combined with citrate delayed the growth of C6 glioma cells and decreased significantly the number and size of C6 glioma colonies in soft agar. Human GBM cells (U373MG) were resistant to chemotherapy e.g. cisplatin and cytosine arabinoside, while 3BP was effective in decreasing the viability and disturbing the morphology of U373MG cells. PMID:22802136

  9. Efficient inhibition of tumor angiogenesis and growth by a synthetic peptide blocking S100A4-methionine aminopeptidase 2 interaction.

    Science.gov (United States)

    Ochiya, Takahiro; Takenaga, Keizo; Asagiri, Masataka; Nakano, Kazumi; Satoh, Hitoshi; Watanabe, Toshiki; Imajoh-Ohmi, Shinobu; Endo, Hideya

    2015-01-01

    The prometastatic calcium-binding protein, S100A4, is expressed in endothelial cells, and its downregulation markedly suppresses tumor angiogenesis in a xenograft cancer model. Given that endothelial S100A4 can be a molecular target for inhibiting tumor angiogenesis, we addressed here whether synthetic peptide capable of blocking S100A4-effector protein interaction could be a novel antiangiogenic agent. To examine this hypothesis, we focused on the S100A4-binding domain of methionine aminopeptidase 2, an effector protein, which plays a role in endothelial cell growth. Overexpression of the domain in mouse endothelial MSS31 cells reduced DNA synthesis, and the corresponding synthetic peptide (named NBD) indeed interacted with S100A4 and inhibited capillary formation in vitro and new blood vessel formation in vivo. Intriguingly, a single intra-tumor administration of the NBD peptide in human prostate cancer xenografts significantly reduced vascularity, resulting in tumor regression. Mechanistically, the NBD peptide enhanced assembly of nonmuscle myosin IIA filaments along with Ser1943 phosphorylation, stimulated formation of focal adhesions without phosphorylation of focal adhesion kinase, and provoked G1/S arrest of the cell cycle. Altogether, the NBD peptide is a potent inhibitor for tumor angiogenesis, and is the first example of an anticancer peptide drug developed on the basis of an endothelial S100A4-targeted strategy. PMID:26029719

  10. Inhibition of NO biosynthesis, but not elevated blood pressure, reduces angiogenesis in rat models of secondary hypertension.

    Science.gov (United States)

    Kiefer, Fabrice N; Misteli, Heidi; Kalak, Nabil; Tschudin, Karin; Fingerle, Jürgen; Van der Kooij, Maaike; Stumm, Michael; Sumanovski, Lazar T; Sieber, Cornel C; Battegay, Edouard J

    2002-01-01

    Arterial hypertension (AH) is characterized by reduced nitric oxide (NO) biosynthesis, vasoconstriction, and reduced microvascular density. In this study we asked whether AH also reduces the number of microvessels by impairing angiogenesis. AH was induced in Dahl salt-sensitive rats (DSS) with a salt diet and in Wistar-Kyoto rats by inhibiting NO formation with Nomega-nitro-L-arginine (NNA). Three weeks after induction of AH, two wound chambers containing collagen I (Vitrogen) were sutured into the mesenteric cavity of each animal. After additional 14 days, wound chamber neovascularization and the extent of vascularized connective tissue ingrowth were quantified. In NNA-induced AH, the number of newly formed vessels and the ingrowth of vascularized connective tissue into the wound chamber decreased as compared to controls. However, the number of newly formed vessels and the ingrowth of vascularized connective tissue did not change with increasing blood pressure in salt-fed DSS rats as compared to those fed a normal diet. Inhibition of NO biosynthesis, but not necessarily elevating blood pressure, reduces angiogenesis. Microvascular rarefaction in AH may be partially due to reduced angiogenesis because of impaired NO biosynthesis.

  11. Local inhibition of angiogenesis results in an atrophic non-union in a rat osteotomy model

    Directory of Open Access Journals (Sweden)

    M Fassbender

    2011-07-01

    Full Text Available Long bone and in particular tibia fractures frequently fail to heal. A disturbed revascularisation is supposed to be a major cause for impaired bone healing or the development of non-unions. We aim to establish an animal model, which reliably mimics the clinical situation. Human microvascular endothelial cells (HMEC-1 and primary human osteoblast like cells (POBs were cultured with different angiogenesis-inhibitors (Fumagillin, SU5416, Artesunate and 3,5,4’-Trimethoxystilbene released out of poly(D,L-Lactide (PDLLA coated k-wires and cell activity was determined. Discs containing PDLLA or PDLLA + Fumagillin/Artesunate were placed at the chorionallantoic membrane of hen eggs and the effect on vessel formation and egg vitality was observed. Tibia osteotomy was performed in rats and stabilised with K-wires coated with PDLLA + Fumagillin or with PDLLA only (control group. The healing was compared at different time points to the PDLLA control. Fumagillin and Artesunate inhibited the activity of HMEC-1 with minor effect on POBs. Artesunate caused embryonic death, whereas Fumagillin had no effects on egg vitality, but reduced the blood vessels. In the animal study all rats showed an impaired healing with reduced biomechanical stability. The Fumagillin treated tibiae had a significantly decreased callus size at day 42 and 84, less blood vessels in the early callus, a reduced histological callus size at day 10, 28 and 84, as well as an altered callus composition. This study presents a less vascularised, atrophic, tibia non-union and can be used in further investigations to analyse the pathology of atrophic non-union and to test new interventions.

  12. Two-chain high molecular weight kininogen induces endothelial cell apoptosis and inhibits angiogenesis: partial activity within domain 5.

    Science.gov (United States)

    Zhang, J C; Claffey, K; Sakthivel, R; Darzynkiewicz, Z; Shaw, D E; Leal, J; Wang, Y C; Lu, F M; McCrae, K R

    2000-12-01

    We previously reported that the binding of two-chain high molecular weight kininogen (HKa) to endothelial cells may occur through interactions with endothelial urokinase receptors. Since the binding of urokinase to urokinase receptors activates signaling responses and may stimulate mitogenesis, we assessed the effect of HKa binding on endothelial cell proliferation. Unexpectedly, HKa inhibited proliferation in response to several growth factors, with 50% inhibition caused by approximately 10 nM HKa. This activity was Zn(2+) dependent and not shared by either single-chain high molecular weight kininogen (HK) or low molecular weight kininogen. HKa selectively inhibited the proliferation of human umbilical vein and dermal microvascular endothelial cells, but did not affect that of umbilical vein or human aortic smooth muscle cells, trophoblasts, fibroblasts, or carcinoma cells. Inhibition of endothelial proliferation by HKa was associated with endothelial cell apoptosis and unaffected by antibodies that block the binding of HK or HKa to any of their known endothelial receptors. Recombinant HK domain 5 displayed activity similar to that of HKa. In vivo, HKa inhibited neovascularization of subcutaneously implanted Matrigel plugs, as well as rat corneal angiogenesis. These results demonstrate that HKa is a novel inhibitor of angiogenesis, whose activity is dependent on the unique conformation of the two-chain molecule. PMID:11099478

  13. Lysophosphatidic acid inhibition of the accumulation of Pseudomonas aeruginosa PAO1 alginate, pyoverdin, elastase and LasA

    DEFF Research Database (Denmark)

    Laux, D.C.; Corson, J.M.; Givskov, Michael Christian;

    2002-01-01

    The pathogenesis of Pseudomonas aeruginosa is at least partially attributable to its ability to synthesize and secrete the siderophore pyoverdin and the two zinc metal loproteases elastase and LasA, and its ability to form biofilms in which bacterial cells are embedded in an alginate matrix....... In the present study, a lysophospholipid, 1-paimitoyl-2-hydroxy-sn-glycero-3-phosphate [also called monopalmitoylphosphatidic acid (MPPA)], which accumulates in inflammatory exudates, was shown to inhibit the extracellular accumulation of P. aeruginosa PAO1 alginate, elastase, LasA protease and the siderophore...

  14. Inhibition of miR-7 promotes angiogenesis in human umbilical vein endothelial cells by upregulating VEGF via KLF4.

    Science.gov (United States)

    Li, Yi-Ze; Wen, Lei; Wei, Xu; Wang, Qian-Rong; Xu, Long-Wen; Zhang, Hong-Mei; Liu, Wen-Chao

    2016-09-01

    Recent lentiviral-based microRNA (miRNA) library screening has identified miRNA-7 (miR-7) as an anti‑angiogenic miRNA in human umbilical vein endothelial cells (HUVECs). However, the underlying mechanism of miR-7 in the suppression of angiogenesis remains largely unknown. In the present study, we report that miR-7 inhibition promoted angiogenesis by upregulating vascular endothelial growth factor (VEGF) and directly targeting Krüppel-like factor 4 (KLF4). Downregulation of miR-7 promoted tube formation of HUVECs, accompanied by upregulation of mRNA and protein levels of both VEGF and KLF4. miR-7 directly targeted KLF4 as demonstrated by luciferase reporter assay and miR-7 mimics decreased KLF4. Furthermore, bioinformatic analysis revealed the presence of multiple DNA-binding elements of KLF4 in the VEGF promoter. Chromatin immunoprecipitation (ChIP) demonstrated that the KLF4 antibody specifically pulled down the VEGF promoter in the HUVECs. Furthermore, ectopic overexpression of KLF4 induced VEGF mRNA and protein levels. In addition, KLF4 silencing inhibited the angiogenesis induced by the miR-7 inhibitor in the HUVECs. Our results demonstrated that KLF4 is a direct target of miR-7 and a transcription activator of VEGF. These findings indicate that the miR-7-KLF4-VEGF signaling axis plays an important role in the regulation of angiogenesis in HUVECs, suggesting that miR-7 is a potential agent for the development of anti-angiogenic therapeutics in vascular diseases and solid tumors. PMID:27431648

  15. VEGF Silencing Inhibits Human Osteosarcoma Angiogenesis and Promotes Cell Apoptosis via PI3K/AKT Signaling Pathway.

    Science.gov (United States)

    Zhao, Jian; Zhang, Zi-Ru; Zhao, Na; Ma, Bao-An; Fan, Qing-Yu

    2015-11-01

    Vascular endothelial growth factor (VEGF) is one of the most effective angiogenic factors that promote generation of tumor vasculature. VEGF is usually up-regulated in multiple cancers including osteosarcoma and glioma. To further explore the potential molecular mechanism that inhibits tumor growth induced by interference of VEGF expression, we constructed a Lv-shVEGF vector and assessed the efficiency of VEGF silencing and its influence in U2OS cells. The data demonstrate that Lv-shVEGF has high inhibition efficiency on VEGF expression, which inhibits proliferation and promotes apoptosis of U2OS cells in vitro. Our results also indicate that inhibition of VEGF expression suppresses osteosarcoma tumor growth in vivo and reduces osteosarcoma angiogenesis. We also found that the activations of phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) were considerably reduced after osteosarcoma cells were treated with Lv-shVEGF. Taken together, our data demonstrate that VEGF silencing suppresses cell proliferation, promotes cell apoptosis, and reduces osteosarcoma angiogenesis through inactivation of PI3K/AKT signaling pathway. PMID:27352347

  16. Tobramycin at subinhibitory concentration inhibits the RhlI/R quorum sensing system in a Pseudomonas aeruginosa environmental isolate

    Directory of Open Access Journals (Sweden)

    Venturi Vittorio

    2010-06-01

    Full Text Available Abstract Background Antibiotics are not only small molecules with therapeutic activity in killing or inhibiting microbial growth, but can also act as signaling molecules affecting gene expression in bacterial communities. A few studies have demonstrated the effect of tobramycin as a signal molecule on gene expression at the transcriptional level and its effect on bacterial physiology and virulence. These have shown that subinhibitory concentrations (SICs of tobramycin induce biofilm formation and enhance the capabilities of P. aeruginosa to colonize specific environments. Methods Environmental P. aeruginosa strain PUPa3 was grown in the presence of different concentrations of tobramycin and it was determined at which highest concentration SIC, growth, total protein levels and translation efficiency were not affected. At SIC it was then established if phenotypes related to cell-cell signaling known as quorum sensing were altered. Results In this study it was determined whether tobramycin sensing/response at SICs was affecting the two independent AHL QS systems in an environmental P. aeruginosa strain. It is reasonable to assume that P. aeruginosa encounters tobramycin in nature since it is produced by niche mate Streptomyces tenebrarius. It was established that SICs of tobramycin inhibited the RhlI/R system by reducing levels of C4-HSL production. This effect was not due to a decrease of rhlI transcription and required tobramycin-ribosome interaction. Conclusions Tobramycin signaling in P. aeruginosa occurs and different strains can have a different response. Understanding the tobramycin response by an environmental P. aeruginosa will highlight possible inter-species signalling taking place in nature and can possible also have important implications in the mode of utilization for human use of this very important antibiotic.

  17. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice.

    Science.gov (United States)

    Ejaz, Asma; Wu, Dayong; Kwan, Paul; Meydani, Mohsen

    2009-05-01

    Angiogenesis is necessary for the growth of adipose tissue. Dietary polyphenols may suppress growth of adipose tissue through their antiangiogenic activity and by modulating adipocyte metabolism. We investigated the effect of curcumin, the major polyphenol in turmeric spice, on angiogenesis, adipogenesis, differentiation, apoptosis, and gene expression involved in lipid and energy metabolism in 3T3-L1 adipocyte in cell culture systems and on body weight gain and adiposity in mice fed a high-fat diet (22%) supplemented with 500 mg curcumin/kg diet for 12 wk. Curcumin (5-20 micromol/L) suppressed 3T3-L1 differentiation, caused apoptosis, and inhibited adipokine-induced angiogenesis of human umbilical vein endothelial cells. Supplementing the high-fat diet of mice with curcumin did not affect food intake but reduced body weight gain, adiposity, and microvessel density in adipose tissue, which coincided with reduced expression of vascular endothelial growth factor (VEGF) and its receptor VEGFR-2. Curcumin increased 5'AMP-activated protein kinase phosphorylation, reduced glycerol-3-phosphate acyl transferase-1, and increased carnitine palmitoyltransferase-1 expression, which led to increased oxidation and decreased fatty acid esterification. The in vivo effect of curcumin on the expression of these enzymes was also confirmed by real-time RT-PCR in subcutaneous adipose tissue. In addition, curcumin significantly lowered serum cholesterol and expression of PPARgamma and CCAAT/enhancer binding protein alpha, 2 key transcription factors in adipogenesis and lipogenesis. The curcumin suppression of angiogenesis in adipose tissue together with its effect on lipid metabolism in adipocytes may contribute to lower body fat and body weight gain. Our findings suggest that dietary curcumin may have a potential benefit in preventing obesity.

  18. Kaempferol inhibits angiogenesis and VEGF expression through both HIF dependent and independent pathways in human ovarian cancer cells.

    Science.gov (United States)

    Luo, Haitao; Rankin, Gary O; Liu, Lingzhi; Daddysman, Matthew K; Jiang, Bing-Hua; Chen, Yi Charlie

    2009-01-01

    Ovarian cancer is 1 of the most significant malignancies in the Western world, and the antiangiogenesis strategy has been postulated for prevention and treatment of ovarian cancers. Kaempferol is a natural flavonoid present in many fruits and vegetables. The antiangiogenesis potential of kaempferol and its underlying mechanisms were investigated in two ovarian cancer cell lines, OVCAR-3 and A2780/CP70. Kaempferol mildly inhibits cell viability but significantly reduces VEGF gene expression at mRNA and protein levels in both ovarian cancer cell lines. In chorioallantoic membranes of chicken embryos, kaempferol significantly inhibits OVCAR-3-induced angiogenesis and tumor growth. HIF-1alpha, a regulator of VEGF, is downregulated by kaempferol treatment in both ovarian cancer cell lines. Kaempferol also represses AKT phosphorylation dose dependently at 5 to 20 muM concentrations. ESRRA is a HIF-independent VEGF regulator, and it is also downregulated by kaempferol in a dose-dependent manner. Overall, this study demonstrated that kaempferol is low in cytotoxicity but inhibits angiogenesis and VEGF expression in human ovarian cancer cells through both HIF-dependent (Akt/HIF) and HIF-independent (ESRRA) pathways and deserves further studies for possible application in angio prevention and treatment of ovarian cancers.

  19. Inhibition of Pseudomonas aeruginosa elastase and Pseudomonas keratitis using a thiol-based peptide.

    OpenAIRE

    Burns, F R; Paterson, C. A.; Gray, R. D.; Wells, J T

    1990-01-01

    Pseudomonas aeruginosa elastase is a zinc metalloproteinase which is released during P. aeruginosa infections. Pseudomonas keratitis, which occurs following contact lens-induced corneal trauma, can lead to rapid, liquefactive necrosis of the cornea. This destruction has been attributed to the release of both host-derived enzymes and the bacterial products P. aeruginosa elastase, alkaline protease, exotoxin A, and lipopolysaccharide endotoxin. A synthetic metalloproteinase inhibitor, HSCH2 (DL...

  20. PPAR-γ Activation Inhibits Angiogenesis by Blocking ELR+CXC Chemokine Production in Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Venkateshwar G. Keshamouni

    2005-03-01

    Full Text Available Activation of peroxisome proliferator-activated receptor-γ (PPAR-γ results in inhibition of tumor growth in various types of cancers, but the mechanism(s by which PPAR-γ induces growth arrest has not been completely defined. In a recent study, we demonstrated that treatment of A549 (human non small cell lung cancer cell line tumor-bearing SCID mice with PPAR-γ ligands troglitazone (Tro and pioglitazone significantly inhibits primary tumor growth. In this study, immunohistochemical analysis of Tro-treated and Pio-treated tumors with factor VIII antibody revealed a significant reduction in blood vessel density compared to tumors in control animals, suggesting inhibition of angiogenesis. Further analysis showed that treatment of A549 cells in vitro with Tro or transient transfection of A549 cells with constitutively active PPAR-γ (VP16-PPAR-γ construct blocked the production of the angiogenic ELR +CXC chemokines IL-8 (CXCL8, ENA-78 (CXCL5, Gro-α (CXCL1. Similarly, an inhibitor of NF-ΚB activation (PDTC also blocked CXCL8, CXCL5, CXCL1 production, consistent with their NF-ΚB-dependent regulation. Conditioned media from A549 cells induce human microvascular endothelial cell (HMVEC chemotaxis. However, conditioned media from Tro-treated A549 cells induced significantly less HMVEC chemotaxis compared to untreated A549 cells. Furthermore, PPAR-γ activation inhibited NF-ΚB transcriptional activity, as assessed by TransAM reporter gene assay. Collectively, our data suggest that PPAR-γ ligands can inhibit tumor-associated angiogenesis by blocking the production of ELR+CXC chemokines, which is mediated through antagonizing NF-ΚB activation. These antiangiogenic effects likely contribute to the inhibition of primary tumor growth by PPAR-γ ligands.

  1. Multivalency effects on Pseudomonas aeruginosa biofilm inhibition and dispersal by glycopeptide dendrimers targeting lectin LecA.

    Science.gov (United States)

    Bergmann, Myriam; Michaud, Gaëlle; Visini, Ricardo; Jin, Xian; Gillon, Emilie; Stocker, Achim; Imberty, Anne; Darbre, Tamis; Reymond, Jean-Louis

    2016-01-01

    The galactose specific lectin LecA partly mediates the formation of antibiotic resistant biofilms by Pseudomonas aeruginosa, an opportunistic pathogen causing lethal airways infections in immunocompromised and cystic fibrosis patients, suggesting that preventing LecA binding to natural saccharides might provide new opportunities for treatment. Here 8-fold (G3) and 16-fold (G4) galactosylated analogs of GalAG2, a tetravalent G2 glycopeptide dendrimer LecA ligand and P. aeruginosa biofilm inhibitor, were obtained by convergent chloroacetyl thioether (ClAc) ligation between 4-fold or 8-fold chloroacetylated dendrimer cores and digalactosylated dendritic arms. Hemagglutination inhibition, isothermal titration calorimetry and biofilm inhibition assays showed that G3 dendrimers bind LecA slightly better than their parent G2 dendrimers and induce complete biofilm inhibition and dispersal of P. aeruginosa biofilms, while G4 dendrimers show reduced binding and no biofilm inhibition. A binding model accounting for the observed saturation of glycopeptide dendrimer galactosyl groups and LecA binding sites is proposed based on the crystal structure of a G3 dendrimer LecA complex.

  2. Kruppel-like factor 2 inhibit the angiogenesis of cultured human liver sinusoidal endothelial cells through the ERK1/2 signaling pathway

    International Nuclear Information System (INIS)

    Kruppel-like factor 2 (KLF2) is a crucial anti-angiogenic factor. However, its precise role in hepatic angiogenesis induced by liver sinusoidal endothelial cells (LSECs) remain unclear. This study was aimed to evaluate the effect of KLF2 on angiogenesis of LSECs and to explore the corresponding mechanism. Cultured human LSECs were infected with different lentiviruses to overexpress or suppress KLF2 expression. The CCK-8 assay, transwell migration assay and tube formation test, were used to investigate the roles of KLF2 in the proliferation, migration and vessel tube formation of LSECs, respectively. The expression and phosphorylation of ERK1/2 were detected by western blot. We discovered that the up-regulation of KLF2 expression dramatically inhibited proliferation, migration and tube formation in treated LSECs. Correspondingly, down-regulation of KLF2 expression significantly promoted proliferation, migration and tube formation in treated LSECs. Additionally, KLF2 inhibited the phosphorylation of ERK1/2 pathway, followed by the function of KLF2 in the angiogenesis of LSECs disrupted. In conclusion, KLF2 suppressed the angiogenesis of LSECs through inhibition of cell proliferation, migration, and vessel tube formation. These functions of KLF2 may be mediated through the ERK1/2 signaling pathway. - Highlights: • Overexpression of KLF2 inhibits the proliferation and migration of LSECs. • Overexpression of KLF2 inhibits the angiogenesis of LSECs. • ERK1/2 signaling pathway involved in the anti-angiogenic process of KLF2 on LSECs

  3. Kruppel-like factor 2 inhibit the angiogenesis of cultured human liver sinusoidal endothelial cells through the ERK1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiao-Qing, E-mail: zeng.xiaoqing@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Na, E-mail: Linala.2009@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Pan, Du-Yi, E-mail: lasikesmi@hotmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Miao, Qing, E-mail: sadsadvenus@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Ma, Gui-Fen, E-mail: ma.guifen@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Liu, Yi-Mei, E-mail: liuyimei1988@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Tseng, Yu-Jen, E-mail: dianatseng14@gmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Feng, E-mail: li.feng2@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Xu, Li-Li, E-mail: xu.lili3@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Shi-Yao, E-mail: chen.shiyao@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Institute of Endoscopic Research of Zhongshan Hospital, Fudan University, Shanghai (China)

    2015-09-04

    Kruppel-like factor 2 (KLF2) is a crucial anti-angiogenic factor. However, its precise role in hepatic angiogenesis induced by liver sinusoidal endothelial cells (LSECs) remain unclear. This study was aimed to evaluate the effect of KLF2 on angiogenesis of LSECs and to explore the corresponding mechanism. Cultured human LSECs were infected with different lentiviruses to overexpress or suppress KLF2 expression. The CCK-8 assay, transwell migration assay and tube formation test, were used to investigate the roles of KLF2 in the proliferation, migration and vessel tube formation of LSECs, respectively. The expression and phosphorylation of ERK1/2 were detected by western blot. We discovered that the up-regulation of KLF2 expression dramatically inhibited proliferation, migration and tube formation in treated LSECs. Correspondingly, down-regulation of KLF2 expression significantly promoted proliferation, migration and tube formation in treated LSECs. Additionally, KLF2 inhibited the phosphorylation of ERK1/2 pathway, followed by the function of KLF2 in the angiogenesis of LSECs disrupted. In conclusion, KLF2 suppressed the angiogenesis of LSECs through inhibition of cell proliferation, migration, and vessel tube formation. These functions of KLF2 may be mediated through the ERK1/2 signaling pathway. - Highlights: • Overexpression of KLF2 inhibits the proliferation and migration of LSECs. • Overexpression of KLF2 inhibits the angiogenesis of LSECs. • ERK1/2 signaling pathway involved in the anti-angiogenic process of KLF2 on LSECs.

  4. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling pathways.

    Directory of Open Access Journals (Sweden)

    Poyil Pratheeshkumar

    Full Text Available Angiogenesis is a crucial step in the growth and metastasis of cancers, since it enables the growing tumor to receive oxygen and nutrients. Cancer prevention using natural products has become an integral part of cancer control. We studied the antiangiogenic activity of quercetin using ex vivo, in vivo and in vitro models. Rat aortic ring assay showed that quercetin at non-toxic concentrations significantly inhibited microvessel sprouting and exhibited a significant inhibition in the proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Most importantly, quercetin treatment inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM and matrigel plug assay. Western blot analysis showed that quercetin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, mTOR, and ribosomal protein S6 kinase in HUVECs. Quercetin (20 mg/kg/d significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that quercetin inhibited tumorigenesis by targeting angiogenesis. Furthermore, quercetin reduced the cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, mTOR and P70S6K expressions. Collectively the findings in the present study suggest that quercetin inhibits tumor growth and angiogenesis by targeting VEGF-R2 regulated AKT/mTOR/P70S6K signaling pathway, and could be used as a potential drug candidate for cancer therapy.

  5. A function blocking anti-mouse integrin α5β1 antibody inhibits angiogenesis and impedes tumor growth in vivo

    Directory of Open Access Journals (Sweden)

    Powers David

    2007-11-01

    Full Text Available Abstract Background Integrins are important adhesion molecules that regulate tumor and endothelial cell survival, proliferation and migration. The integrin α5β1 has been shown to play a critical role during angiogenesis. An inhibitor of this integrin, volociximab (M200, inhibits endothelial cell growth and movement in vitro, independent of the growth factor milieu, and inhibits tumor growth in vivo in the rabbit VX2 carcinoma model. Although volociximab has already been tested in open label, pilot phase II clinical trials in melanoma, pancreatic and renal cell cancer, evaluation of the mechanism of action of volociximab has been limited because this antibody does not cross-react with murine α5β1, precluding its use in standard mouse xenograft models. Methods We generated a panel of rat-anti-mouse α5β1 antibodies, with the intent of identifying an antibody that recapitulated the properties of volociximab. Hybridoma clones were screened for analogous function to volociximab, including specificity for α5β1 heterodimer and blocking of integrin binding to fibronectin. A subset of antibodies that met these criteria were further characterized for their capacities to bind to mouse endothelial cells, inhibit cell migration and block angiogenesis in vitro. One antibody that encompassed all of these attributes, 339.1, was selected from this panel and tested in xenograft models. Results A panel of antibodies was characterized for specificity and potency. The affinity of antibody 339.1 for mouse integrin α5β1 was determined to be 0.59 nM, as measured by BIAcore. This antibody does not significantly cross-react with human integrin, however 339.1 inhibits murine endothelial cell migration and tube formation and elicits cell death in these cells (EC50 = 5.3 nM. In multiple xenograft models, 339.1 inhibited the growth of established tumors by 40–60% (p Conclusion The results herein demonstrate that 339.1, like volociximab, exhibits potent anti-α5β1

  6. Scopolin isolated from Erycibe obtusifolia Benth stems suppresses adjuvant-induced rat arthritis by inhibiting inflammation and angiogenesis

    Institute of Scientific and Technical Information of China (English)

    PAN Rong; DAI Yue; GAO Xing-hua; XIA Yu-feng

    2008-01-01

    Objective To study the effects and mechanisms of scopolin isolated from the stems of Erycibe obtusifolia Benth in arthritis-associated inflammation and angiogenesis. Methods Adjuvant-induced arthritic rat, an animal model for human RA was used in this study for examining the potential remedial effect of scopolin. The swelling in both inoculated and non-inoculated paws, body weights and articular index (AI) scores were detected to evaluate the severity of the arthritis. Histologic assessment of tissue sections from rat ankles was also performed. Furthermore, the blood vessel density in the synovial tissues was quantitatively evaluated. In addition, expressions of VEGF, FGF-2, TNF-α, IL-1β and IL-6 in rat synovial tissues were determined by immunohistochemistry assay in an attempt to explain the mechanisms of scopolin for suppressing arthritis. Results Scopolin dose-dependently inhibited both inoculated and non-inoculated paw swelling in rat AIA. The mean AI scores of scopolin treated groups were also dose-dependently lower than that of model group. In addition, compared with the weights of model group, the mean body weights of rats treated with scopolin (50,100 mg·kg-1) were higher from day 13 to 22, perhaps indicative of healthier animals. The histologic architecture of the joint was highly abnormal in the model group rats, while high dose of scopolin treated rats preserved a nearly normal histologic architecture of the joint. Moreover, the new blood vessels were reduced dose-dependently in the synovial tissue of rat AIA treated with scopolin. Further, scopolin reduced the overexpression of IL-6,VEGF and FGF-2 in rat synovial tissues. Conclusions Scopolin is capable of reducing clinical symptoms of rat AIA by inhibiting inflammation and angiogenesis, and this compound may be a potent therapeutic agent for angiogenesis related diseases and can serve as structural base for screening for more potent synthetic analogs.

  7. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer-Part 1.

    Science.gov (United States)

    Sagar, S M; Yance, D; Wong, R K

    2006-02-01

    An integrative approach for managing a patient with cancer should target the multiple biochemical and physiologic pathways that support tumour development and minimize normal-tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also manifest other anticancer activities. The present article focuses on products that have a high degree of anti-angiogenic activity, but it also describes some of the many other actions of these agents that can inhibit tumour progression and reduce the risk of metastasis. Natural health products target molecular pathways other than angiogenesis, including epidermal growth factor receptor, the HER2/neu gene, the cyclooxygenase-2 enzyme, the nuclear factor kappa-B transcription factor, the protein kinases, the Bcl-2 protein, and coagulation pathways. The herbs that are traditionally used for anticancer treatment and that are anti-angiogenic through multiple interdependent processes (including effects on gene expression, signal processing, and enzyme activities) include Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (curcumin), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinalis (ginger), Panax ginseng, Rabdosia rubescens hora (Rabdosia), and Chinese destagnation herbs. Quality assurance of appropriate extracts is essential prior to embarking upon clinical trials. More data are required on dose-response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations. During active cancer therapy, they should generally be evaluated in combination with chemotherapy and radiation. In this role, they act as modifiers of biologic response or as

  8. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis.

    Directory of Open Access Journals (Sweden)

    Pierre Sonveaux

    Full Text Available Switching to a glycolytic metabolism is a rapid adaptation of tumor cells to hypoxia. Although this metabolic conversion may primarily represent a rescue pathway to meet the bioenergetic and biosynthetic demands of proliferating tumor cells, it also creates a gradient of lactate that mirrors the gradient of oxygen in tumors. More than a metabolic waste, the lactate anion is known to participate to cancer aggressiveness, in part through activation of the hypoxia-inducible factor-1 (HIF-1 pathway in tumor cells. Whether lactate may also directly favor HIF-1 activation in endothelial cells (ECs thereby offering a new druggable option to block angiogenesis is however an unanswered question. In this study, we therefore focused on the role in ECs of monocarboxylate transporter 1 (MCT1 that we previously identified to be the main facilitator of lactate uptake in cancer cells. We found that blockade of lactate influx into ECs led to inhibition of HIF-1-dependent angiogenesis. Our demonstration is based on the unprecedented characterization of lactate-induced HIF-1 activation in normoxic ECs and the consecutive increase in vascular endothelial growth factor receptor 2 (VEGFR2 and basic fibroblast growth factor (bFGF expression. Furthermore, using a variety of functional assays including endothelial cell migration and tubulogenesis together with in vivo imaging of tumor angiogenesis through intravital microscopy and immunohistochemistry, we documented that MCT1 blockers could act as bona fide HIF-1 inhibitors leading to anti-angiogenic effects. Together with the previous demonstration of MCT1 being a key regulator of lactate exchange between tumor cells, the current study identifies MCT1 inhibition as a therapeutic modality combining antimetabolic and anti-angiogenic activities.

  9. Inhibition of Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa biofilm formation with a class of TAGE-triazole conjugates.

    Science.gov (United States)

    Huigens, Robert W; Rogers, Steven A; Steinhauer, Andrew T; Melander, Christian

    2009-02-21

    A chemically diverse library of TAGE-triazole conjugates was synthesized utilizing click chemistry on the TAGE scaffold. This library of small molecules was screened for anti-biofilm activity and found to possess the ability of inhibiting biofilm formation against Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa. One such compound in this library demonstrated the most potent inhibitory effect against Staphylococcus aureus biofilm formation that has been displayed by any 2-aminoimidazole derivative. PMID:19194596

  10. Angiogenesis inhibition and cell cycle arrest induced by treatment with Pseudolarix acid B alone or combined with 5-fluorouracil

    Institute of Scientific and Technical Information of China (English)

    Jingtao Liu; Wei Guo; Bo Xu; Fuxiang Ran; Mingming Chu; Hongzheng Fu; Jingrong Cui

    2012-01-01

    Angiogenesis inhibitors combined with chemotherapeutic drugs have significant efficacy in the treatment of a variety of cancers.Pseudolarix acid B (PAB) is a traditional pregnancy-terminating agent,which has previously been shown to reduce tumor growth and angiogenesis.In this study,we used the high content screening assay to examine the effects of PAB on human umbilical vein endothelial cells (HUVECs).Two hepatocarcinoma 22-transplanted mouse models were used to determine PAB efficacy in combination with 5-fluorouracil (5-Fu).Our results suggested that PAB (0.156-1.250 μM) inhibited HUVECs motility in a concentration-dependent manner without obvious cytotoxicity in vitro.In vivo,PAB (25 mg/kg/day) promoted the anti-tumor efficacy of 5-Fu (5 mg/kg/2 days) in combination therapy,resulting in significantly higher tumor inhibition rates,lower microvessel density values,and prolonged survival times.It was also demonstrated that PAB acted by blocking the cell cycle at both the G1/S boundary and M phase,down-regulation of vascular endothelial growth factor,hypoxia-inducible factor 1α and cyclin E expression,and up-regulation of cdc2 expression.These observations provide the first evidence that PAB in combination with 5-Fu may be useful in cancer treatment.

  11. Yiguanjian decoction and its ingredients inhibit angiogenesis in carbon tetrachloride-induced cirrhosis mice

    OpenAIRE

    Zhou, Ya-Ning; Mu, Yong-Ping; Fu, Wen-Wei; Ning, Bing-Bing; Du, Guang-Li; Chen, Jia-Mei; Sun, Ming-yu; Zhang, Hua; Hu, Yi-yang; Liu, Cheng-Hai; Xu, Lie-Ming; Liu, Ping

    2015-01-01

    Background Cirrhosis is associated with angiogenesis and disruption of hepatic vascular architecture. Yiguanjian (YGJ) decoction, a prescription from traditional Chinese medicine, is widely used for treating liver diseases. We studied whether YGJ or its ingredients (iYGJ) had an anti-angiogenic effect and explored possible mechanisms underlying this process. Methods Cirrhosis was induced with carbon tetrachloride (CCl4) (ip) in C57BL/6 mice for 6 weeks. From week 4 to week 6, cirrhotic mice w...

  12. Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1α and Notch1 in head neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Wei-Ming Wang

    Full Text Available Angiogenesis, a marker of cancer development, affects response to radiotherapy sensibility. This preclinical study aims to understand the receptor tyrosine kinase-mediated angiogenesis in head neck squamous cell carcinoma (HNSCC. The receptor tyrosine kinase activity in a transgenic mouse model of HNSCC was assessed. The anti-tumorigenetic and anti-angiogenetic effects of cetuximab-induced epidermal growth factor receptor (EGFR inhibition were investigated in xenograft and transgenic mouse models of HNSCC. The signaling transduction of Notch1 and hypoxia-inducible factor-1α (HIF-1α was also analyzed. EGFR was overexpressed and activated in the Tgfbr1/Pten deletion (2cKO mouse model of HNSCC. Cetuximab significantly delayed tumor onset by reducing tumor angiogenesis. This drug exerted similar effects on heterotopic xenograft tumors. In the human HNSCC tissue array, increased EGFR expression correlated with increased HIF-1α and micro vessel density. Cetuximab inhibited tumor-induced angiogenesis in vitro and in vivo by significantly downregulating HIF-1α and Notch1. EGFR is involved in the tumor angiogenesis of HNSCC via the HIF-1α and Notch1 pathways. Therefore, targeting EGFR by suppressing hypoxia- and Notch-induced angiogenesis may benefit HNSCC therapy.

  13. Asparagus polysaccharide and gum with hepatic artery embolization induces tumor growth and inhibits angiogenesis in an orthotopic hepatocellular carcinoma model.

    Science.gov (United States)

    Weng, Ling-Ling; Xiang, Jian-Feng; Lin, Jin-Bo; Yi, Shang-Hui; Yang, Li-Tao; Li, Yi-Sheng; Zeng, Hao-Tao; Lin, Sheng-Ming; Xin, Dong-Wei; Zhao, Hai-Liang; Qiu, Shu-Qi; Chen, Tao; Zhang, Min-Guang

    2014-01-01

    Liver cancer is one of leading digestive malignancies with high morbidity and mortality. There is an urgent need for the development of novel therapies for this deadly disease. It has been proven that asparagus polysaccharide, one of the most active derivates from the traditional medicine asparagus, possesses notable antitumor properties. However, little is known about the efficacy of asparagus polysaccharide as an adjuvant for liver cancer chemotherapy. Herein, we reported that asparagus polysaccharide and its embolic agent form, asparagus gum, significantly inhibited liver tumor growth with transcatheter arterial chemoembolization (TACE) therapy in an orthotopic hepatocellular carcinoma (HCC) tumor model, while significantly inhibiting angiogenesis and promoting tumor cell apoptosis. Moreover, asparagine gelatinous possessed immunomodulatory functions and showed little toxicity to the host. These results highlight the chemotherapeutic potential of asparagus polysaccharide and warrant a future focus on development as novel chemotherapeutic agent for liver cancer TACE therapy.

  14. Asparagus polysaccharide and gum with hepatic artery embolization induces tumor growth and inhibits angiogenesis in an orthotopic hepatocellular carcinoma model.

    Science.gov (United States)

    Weng, Ling-Ling; Xiang, Jian-Feng; Lin, Jin-Bo; Yi, Shang-Hui; Yang, Li-Tao; Li, Yi-Sheng; Zeng, Hao-Tao; Lin, Sheng-Ming; Xin, Dong-Wei; Zhao, Hai-Liang; Qiu, Shu-Qi; Chen, Tao; Zhang, Min-Guang

    2014-01-01

    Liver cancer is one of leading digestive malignancies with high morbidity and mortality. There is an urgent need for the development of novel therapies for this deadly disease. It has been proven that asparagus polysaccharide, one of the most active derivates from the traditional medicine asparagus, possesses notable antitumor properties. However, little is known about the efficacy of asparagus polysaccharide as an adjuvant for liver cancer chemotherapy. Herein, we reported that asparagus polysaccharide and its embolic agent form, asparagus gum, significantly inhibited liver tumor growth with transcatheter arterial chemoembolization (TACE) therapy in an orthotopic hepatocellular carcinoma (HCC) tumor model, while significantly inhibiting angiogenesis and promoting tumor cell apoptosis. Moreover, asparagine gelatinous possessed immunomodulatory functions and showed little toxicity to the host. These results highlight the chemotherapeutic potential of asparagus polysaccharide and warrant a future focus on development as novel chemotherapeutic agent for liver cancer TACE therapy. PMID:25605207

  15. Inhibition of VEGF-dependent angiogenesis by the anti-CD82 monoclonal antibody 4F9 through regulation of lipid raft microdomains.

    Science.gov (United States)

    Nomura, Sayaka; Iwata, Satoshi; Hatano, Ryo; Komiya, Eriko; Dang, Nam H; Iwao, Noriaki; Ohnuma, Kei; Morimoto, Chikao

    2016-05-20

    CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulating the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis.

  16. Coral-Derived Compound WA-25 Inhibits Angiogenesis by Attenuating the VEGF/VEGFR2 Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Shih-Wei Lin

    2015-02-01

    Full Text Available Background: WA-25 (dihydroaustrasulfone alcohol, a synthetic derivative of marine compound WE-2 suppresses atherosclerosis in rats by reducing neointima formation. Because angiogenesis plays a critical role in the pathogenesis of atherosclerosis, the present study investigated the angiogenic function and mechanism of WA-25. Methods: The angiogenic effect of WA-25 was evaluated using a rat aortic ring assay and transgenic zebrafish models were established using transgenic Tg(fli-1:EGFPy1 and Tg(kdrl:mCherryci5-fli1a:negfpy7 zebrafish embryos. In addition, the effect of WA-25 on distinct angiogenic processes, including matrix metalloproteinase (MMP expression, endothelial cell proliferation and migration, as well as tube formation, was studied using human umbilical vein endothelial cells (HUVECs. The effect of WA-25 on the endothelial vascular endothelial growth factor (VEGF signaling pathway was elucidated using qRT-PCR, immunoblot analysis, immunofluorescence and flow cytometric analyses. Results: The application of WA-25 perturbed the development of intersegmental vessels in transgenic zebrafish. Moreover, WA-25 potently suppressed microvessel sprouting in organotypic rat aortic rings. Among cultured endothelial cells, WA-25 significantly and dose-dependently inhibited MMP-2/MMP-9 expression, proliferation, migration and tube formation in HUVECs. Mechanistic studies revealed that WA-25 significantly reduced the VEGF release by reducing VEGF expression at the mRNA and protein levels. In addition, WA-25 reduced surface VEGF receptor 2 (VEGFR2/Flk-1 expression by repressing the VEGFR2 mRNA level. Finally, an exogenous VEGF supply partially rescued the WA-25-induced angiogenesis blockage in vitro and in vivo. Conclusions: WA-25 is a potent angiogenesis inhibitor that acts through the down-regulation of VEGF and VEGFR2 in endothelial cells. General Significance: WA-25 may constitute a novel anti-angiogenic drug that acts by targeting endothelial

  17. MRI monitoring of tumor response following angiogenesis inhibition in an experimental human breast cancer model

    International Nuclear Information System (INIS)

    The aim of this study was to evaluate the potential of dynamic magnetic resonance imaging (MRI) enhanced by macromolecular contrast agents to monitor noninvasively the therapeutic effect of an anti-angiogenesis VEGF receptor kinase inhibitor in an experimental cancer model. MDA-MB-435, a poorly differentiated human breast cancer cell line, was implanted into the mammary fat pad in 20 female homozygous athymic rats. Animals were assigned randomly to a control (n=10) or drug treatment group (n=10). Baseline dynamic MRI was performed on sequential days using albumin-(GdDTPA)30 (6.0 nm diameter) and ultrasmall superparamagnetic iron oxide (USPIO) particles (30 nm diameter). Subjects were treated either with PTK787/ZK 222584, a VEGF receptor tyrosine kinase inhibitor, or saline given orally twice daily for 1 week followed by repeat MRI examinations serially using each contrast agent. Employing a unidirectional kinetic model comprising the plasma and interstitial water compartments, tumor microvessel characteristics including fractional plasma volume and transendothelial permeability (KPS) were estimated for each contrast medium. Tumor growth and the microvascular density, a histologic surrogate of angiogenesis, were also measured. Control tumors significantly increased (PPS) based on MRI assays using both macromolecular contrast media. In contrast, tumor growth was significantly reduced (PPS values declined slightly. Estimated values for the fractional plasma volume did not differ significantly between treatment groups or contrast agents. Microvascular density counts correlated fairly with the tumor growth rate (r=0.64) and were statistically significant higher (PPS), using either of two macromolecular contrast media, were able to detect effects of treatment with a VEGF receptor tyrosine kinase inhibitor on tumor vascular permeability. In a clinical setting such quantitative MRI measurements could be used to monitor tumor anti-angiogenesis therapy. (orig.)

  18. Inhibition of tumor angiogenesis by angiostatin: from recombinant protein to gene therapy.

    Science.gov (United States)

    Dell'Eva, Raffaella; Pfeffer, Ulrich; Indraccolo, S; Albini, Adriana; Noonan, Douglas

    2002-01-01

    Tumor growth, local invasion, and metastatic dissemination are dependent on the formation of new microvessels. The process of angiogenesis is regulated by a balance between pro-angiogenic and anti-angiogenic factors, and the shift to an angiogenic phenotype (the "angiogenic switch") is a key event in tumor progression. The use of anti-angiogenic agents to restore this balance represents a promising approach to cancer treatment. Known physiological inhibitors include trombospondin, several interleukins, and the proteolytic break-down products of several proteins. Angiostatin, an internal fragment of plasminogen, is one of the more potent of this latter class of angiogenesis inhibitors. Like endostatin, another anti-angiogenic peptide derived from collagen XVIII, angiostatin can induce tumor vasculature regression, leading to a complete cessation of tumor growth. Inhibitors of angiogenesis target normal endothelial cells, therefore the development of resistance to these drugs is unlikely. The efficacy of angiostatin has been demonstrated in animal models for many different types of solid tumors. Anti-angiogenic cancer therapy with angiostatin requires prolonged administration of the peptide. The production of the functional polypeptides is expensive and technical problems related to physical properties and purity are frequently encountered. Gene transfer represents an alternative method to deliver angiostatin. Gene therapy has the potential to produce the therapeutic agent in high concentrations in a local area for a sustained period, thereby avoiding the problems encountered with long-term administration of recombinant proteins, monoclonal antibodies, or anti-angiogenic drugs. In this review we compare the different gene therapy strategies that have been applied to angiostatin, with special regard to their ability to provide sufficient angiostatin at the target site. PMID:12901356

  19. Diet-derived polyphenols inhibit angiogenesis by modulating the interleukin-6/STAT3 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lamy, Sylvie; Akla, Naoufal; Ouanouki, Amira; Lord-Dufour, Simon; Beliveau, Richard, E-mail: oncomol@nobel.si.uqam.ca

    2012-08-01

    Several epidemiological studies have indicated that abundant consumption of foods from plant origin is associated with a reduced risk of developing several types of cancers. This chemopreventive effect is related to the high content of these foods in phytochemicals, such as polyphenols, that interfere with several processes involved in cancer progression including tumor cell growth, survival and angiogenesis. In addition to the low intake of plant-based foods, increased body mass and physical inactivity have recently emerged as other important lifestyle factors influencing cancer risk, leading to the generation of low-grade chronic inflammatory conditions which are a key process involved in tumor progression. The objectives of the current study are to investigate the inhibitory effects of these polyphenols on angiogenesis triggered by an inflammatory cytokine (IL-6) and to determine the mechanisms underlying this action. We found that, among the tested polyphenols, apigenin and luteolin were the most potent angiogenesis inhibitors through their inhibitory effect on the inflammatory cytokine IL-6/STAT3 pathway. These effects resulted in modulation of the activation of extracellular signal-regulated kinase-1/2 signaling triggered by IL-6, as well as in a marked reduction in the proliferation, migration and morphogenic differentiation of endothelial cells. Interestingly, these polyphenols also modulated the expression of IL-6 signal transducing receptor (IL-6R{alpha}) and the secretion of the extracellular matrix degrading enzyme MMP-2 as well as the expression of suppressor of cytokine signaling (SOCS3) protein. Overall, these results may provide important new information on the role of diet in cancer prevention.

  20. Anti-adjuvant arthritis of recombinant human endostatin in rats via inhibition of angiogenesis and proinflammatory factors

    Institute of Scientific and Technical Information of China (English)

    Li YUE; Hua WANG; Li-hua LIU; Yu-xian SHEN; Wei WEI

    2004-01-01

    AIM: To investigate the profile of endostatin on adjuvant arthritis (AA) and angiogenesis blockade in synovitis.METHODS: The model of rat AA was induced by injection of intradermal complete Freund's adjuvant (CFA). Hind paw volume of rat was measured by volume meter and the activities of interleukin- 1 (IL- 1) and IL-2 Were measured by the assay of thymocytes proliferation. IL-1 β and tumor necrosis factor-α (TNF-α) produced by synoviocytes was estimated with radioimmunoassay. The number of new blood vessels in knee joint synovium was counted under microscope by hematoxylin and eosin (HE) staining. RESULTS: The secondary inflammation of AA rats appeared on the 10th day after injection of CFA. The therapeutic administration of endostatin (0.1, 0.5, and 2.5secondary paw swelling and the number of new blood vessels in the synovium of AA rats. Endostatin significantly decreased the production of IL-1 derived from both peritoneal macrophages and synoviocytes and IL-2 from splenocytes, especially at the dose of 2.5 mg/kg. This effect of endostatin also was seen on TNF-α produced by synoviocytes. CONCLUSION: The recombinant human endostatin had an inhibitory effect on rat AA, which was related to its anti-angiogenesis and inhibition of proinflammatory cytokines.

  1. 4-isothiocyanate-2, 2, 6, 6-tetramethyl piperidinooxyl inhibits angiogenesis by suppressing VEGFR2 and Tie2 phosphorylation

    Science.gov (United States)

    Liu, Yuanyuan; Gao, Jing; Huang, Shuangsheng; Hu, Lamei; Wang, Zhiqiang; Wang, Zheyuan; Chen, Xiao; Zhang, Xiaoyu; Li, Wenguang

    2016-01-01

    Reactive oxygen species (ROS) are involved in the signaling pathway and are triggered by angiogenic factors, including vascular endothelial growth factor and angiopoietins. 4-isothiocyanate-2, 2, 6, 6-tetramethyl piperidinooxyl (4-ISO-Tempo) is one of the nitroxides that exhibits antioxidant activity. However, the anti-angiogenic effect of 4-ISO-Tempo remains unknown. The aim of this study was to investigate the effect of 4-ISO-Tempo on tumor proliferation and angiogenesis as well as its underlying mechanisms. Our results revealed that 4-ISO-Tempo significantly inhibited the viability of neoplastic and endothelial cells. Furthermore, the effective concentration of 4-ISO-Tempo on human microvascular endothelial cell 1 (HMEC-1) was lower than that on human lung adenocarcinoma A549 and human colon cancer SW620 cells. This suggested that endothelial cells were more sensitive to 4-ISO-Tempo than tumor cells. Furthermore, we demonstrated that 4-ISO-Tempo also suppressed secretion of matrix metalloproteinase (MMP)-2 and MMP-9, and migration and tube formation of HMEC-1 cells. The mechanism is attributed to the decreasing ROS generation and further phosphorylation of vascular endothelial growth factor receptor 2 and Tie2. Our findings suggest that 4-ISO-Tempo should be investigated for its usefulness in anti-angiogenesis therapies. PMID:27698866

  2. Inhibition of human monocyte chemotaxis and chemiluminescence by Pseudomonas aeruginosa elastase

    DEFF Research Database (Denmark)

    Kharazmi, A; Nielsen, H

    1991-01-01

    The in vitro effect of Pseudomonas aeruginosa elastase on human monocyte function was examined. Mononuclear cells isolated from the peripheral blood of healthy individuals were incubated with various concentrations of elastase, and the chemotactic activity and chemiluminescence response of these ......The in vitro effect of Pseudomonas aeruginosa elastase on human monocyte function was examined. Mononuclear cells isolated from the peripheral blood of healthy individuals were incubated with various concentrations of elastase, and the chemotactic activity and chemiluminescence response...

  3. NSK-01105, a Novel Sorafenib Derivative, Inhibits Human Prostate Tumor Growth via Suppression of VEGFR2/EGFR-Mediated Angiogenesis

    Science.gov (United States)

    Yu, Pengfei; Ye, Liang; Wang, Hongbo; Du, Guangying; Zhang, Jianzhao; Zuo, Yanhua; Zhang, Jinghai; Tian, Jingwei

    2014-01-01

    The purpose of this study is to investigate the anti-angiogenic activities of NSK-01105, a novel sorafenib derivative, in in vitro, ex vivo and in vivo models, and explore the potential mechanisms. NSK-01105 significantly inhibited vascular endothelial growth factor (VEGF)-induced migration and tube formation of human umbilical vein endothelial cells at non-cytotoxic concentrations as shown by wound-healing, transwell migration and endothelial cell tube formation assays, respectively. Cell viability and invasion of LNCaP and PC-3 cells were significantly inhibited by cytotoxicity assay and matrigel invasion assay. Furthermore, NSK-01105 also inhibited ex vivo angiogenesis in matrigel plug assay. Western blot analysis showed that NSK-01105 down-regulated VEGF-induced phosphorylation of VEGF receptor 2 (VEGFR2) and the activation of epidermal growth factor receptor (EGFR). Tumor volumes were significantly reduced by NSK-01105 at 60 mg/kg/day in both xenograft models. Immunohistochemical staining demonstrated a close association between inhibition of tumor growth and neovascularization. Collectively, our results suggest a role of NSK-01105 in treatment for human prostate tumors, and one of the potential mechanisms may be attributed to anti-angiogenic activities. PMID:25551444

  4. A synthetic dl-nordihydroguaiaretic acid (Nordy, inhibits angiogenesis, invasion and proliferation of glioma stem cells within a zebrafish xenotransplantation model.

    Directory of Open Access Journals (Sweden)

    Xiaojun Yang

    Full Text Available The zebrafish (Danio rerio and their transparent embryos represent a promising model system in cancer research. Compared with other vertebrate model systems, we had previously shown that the zebrafish model provides many advantages over mouse or chicken models to study tumor invasion, angiogenesis, and tumorigenesis. In this study, we systematically investigated the biological features of glioma stem cells (GSCs in a zebrafish model, such as tumor angiogenesis, invasion, and proliferation. We demonstrated that several verified anti-angiogenic agents inhibited angiogenesis that was induced by xenografted-GSCs. We next evaluated the effects of a synthetic dl-nordihydroguaiaretic acid compound (dl-NDGA or "Nordy", which revealed anti-tumor activity against human GSCs in vitro by establishing parameters through studying its ability to suppress angiogenesis, tumor invasion, and proliferation. Furthermore, our results indicated that Nordy might inhibit GSCs invasion and proliferation through regulation of the arachidonate 5-lipoxygenase (Alox-5 pathway. Moreover, the combination of Nordy and a VEGF inhibitor exhibited an enhanced ability to suppress angiogenesis that was induced by GSCs. By contrast, even following treatment with 50 µM Nordy, there was no discernible effect on zebrafish embryonic development. Together, these results suggested efficacy and safety of using Nordy in vivo, and further demonstrated that this model should be suitable for studying GSCs and anti-GSC drug evaluation.

  5. Insulin-like growth factor-binding protein-3 inhibition of prostate cancer growth involves suppression of angiogenesis.

    Science.gov (United States)

    Liu, B; Lee, K-W; Anzo, M; Zhang, B; Zi, X; Tao, Y; Shiry, L; Pollak, M; Lin, S; Cohen, P

    2007-03-15

    Insulin-like growth factor-binding protein-3 (IGFBP-3) is a multifunctional protein that induces apoptosis utilizing both insulin-like growth factor receptor (IGF)-dependent and -independent mechanisms. We investigated the effects of IGFBP-3 on tumor growth and angiogenesis utilizing a human CaP xenograft model in severe-combined immunodeficiency mice. A 16-day course of IGFBP-3 injections reduced tumor size and increased apoptosis and also led to a reduction in the number of vessels stained with CD31. In vitro, IGFBP-3 inhibited both vascular endothelial growth factor- and IGF-stimulated human umbilical vein endothelial cells vascular network formation in a matrigel assay. This action is primarily IGF independent as shown by studies utilizing the non-IGFBP-binding IGF-1 analog Long-R3. Additionally, we used a fibroblast growth factor-enriched matrigel-plug assay and chick allantoic membrane assays to show that IGFBP-3 has potent antiangiogenic actions in vivo. Finally, overexpression of IGFBP-3 or the non-IGF-binding GGG-IGFBP-3 mutant in Zebrafish embryos confirmed that both IGFBP-3 and the non-IGF-binding mutant inhibited vessel formation in vivo, indicating that the antiangiogenic effect of IGFBP-3 is an IGF-independent phenomenon. Together, these studies provide the first evidence that IGFBP-3 has direct, IGF-independent inhibitory effects on angiogenesis providing an additional mechanism by which it exerts its tumor suppressive effects and further supporting its development for clinical use in the therapy of patients with prostate cancer. PMID:16983336

  6. Capacity of wild-type and chemokine-armed parvovirus H-1PV for inhibiting neo-angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Lavie, Muriel [Tumor Virology Division, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany); Struyf, Sofie [Laboratory of Molecular Immunology, Rega Institute for Medical Research, K.U. Leuven, Leuven (Belgium); Stroh-Dege, Alexandra; Rommelaere, Jean [Tumor Virology Division, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany); Van Damme, Jo [Laboratory of Molecular Immunology, Rega Institute for Medical Research, K.U. Leuven, Leuven (Belgium); Dinsart, Christiane, E-mail: c.dinsart@dkfz.de [Tumor Virology Division, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany)

    2013-12-15

    Anti-angiogenic therapy has been recognized as a powerful potential strategy for impeding the growth of various tumors. However no major therapeutic effects have been observed to date, mainly because of the emergence of several resistance mechanisms. Among novel strategies to target tumor vasculature, some oncolytic viruses open up new prospects. In this context, we addressed the question whether the rodent parvovirus H-1PV can target endothelial cells. We show that cultures of human normal (HUVEC) and immortalized (KS-IMM) endothelial cells sustain an abortive viral cycle upon infection with H-1PV and are sensitive to H-1PV cytotoxicity. H-1PV significantly inhibits infected KS-IMM tumor growth. This effect may be traced back by the virus ability to both kill proliferating endothelial cells and inhibit VEGF production Recombinant H-1PV vectors can also transduce tumor cells with chemokines endowed with anti-angiogenesis properties, and warrant further validation for the treatment of highly vascularized tumors. - Highlights: • The oncolytic parvovirus H-1PV can target endothelial cells. • Abortive viral cycle upon infection of endothelial cells with H-1PV. • Inhibition of VEGF expression and KS-IMM tumor growth by H-1PV.

  7. Human plasminogen kringle 1-5 inhibits angiogenesis and induces thrombomodulin degradation in a protein kinase A-dependent manner.

    Science.gov (United States)

    Cho, Chia-Fong; Chen, Po-Ku; Chang, Po-Chiao; Wu, Hau-Lin; Shi, Guey-Yueh

    2013-10-01

    Kringle 1-5 (K1-5), an endogenous proteolytic fragment of human plasminogen (Plg), is an angiostatin-related protein that inhibits angiogenesis. Many angiostatin-related proteins have been identified, but the detailed molecular mechanisms underlying their antiangiogenic effects remain unclear. Thrombomodulin (TM) is a transmembrane glycoprotein that plays a major role in the anticoagulation process in endothelial cells. Previously, we demonstrated that recombinant TM could interact with Plg to enhance Plg activation. In the present study, we investigated the interaction between TM and K1-5, and their functions in endothelial cells. We found that K1-5 colocalized with TM and directly interacted with TM through the TM lectin-like domain. After K1-5 interacted with TM, it induced TM internalization and degradation. In addition, the K1-5-induced TM internalization and degradation in proteasomes after ubiquitin modification were dependent on protein kinase A (PKA). Moreover, a PKA-specific inhibitor reversed the effects of K1-5 on cell migration and tube formation. Consistent with these findings, TM overexpression resulted in increased cell migration; moreover, K1-5 inhibited the increase of TM-mediated cell migration in a PKA-dependent manner. We determined that TM acts as a K1-5 receptor and that K1-5 induces TM internalization, ubiquitination, and degradation through the PKA pathway, by which K1-5 may inhibit endothelial cell migration and tube formation. PMID:23880609

  8. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound

    DEFF Research Database (Denmark)

    Hentzer, Morten; Riedel, Kathrin; Rasmussen, Thomas B;

    2002-01-01

    Novel molecular tools have been constructed which allow for in situ detection of N-acyl homoserine lactone (AHL)-mediated quorum sensing in Pseudomonas aeruginosa biofilms. The reporter responds to AHL activation of LasR by expression of an unstable version of the green-fluorescent protein (Gfp...... macroalga Delisea pulchra, is capable of interfering with AHL-mediated quorum sensing in P. aeruginosa. It is demonstrated that the furanone compound specifically represses expression of a PlasB-gfp reporter fusion without affecting growth or protein synthesis. In addition, it reduces the production......). Gfp-based reporter technology has been applied for non-destructive, single-cell-level detection of quorum sensing in laboratory-based P. aeruginosa biofilms. It is reported that a synthetic halogenated furanone compound, which is a derivative of the secondary metabolites produced by the Australian...

  9. Potent inhibition of angiogenesis and liver tumor growth by administration of an aerosol containing a transferrin-liposome-endostatin complex

    Institute of Scientific and Technical Information of China (English)

    Xi Li; Geng-Feng Fu; Yan-Rong Fan; Chan-Fu Shi; Xin-Juan Liu; Gen-Xing Xu; Jian-Jun Wang

    2003-01-01

    AIM: To obtain an efficient delivery system for transportingendostatin gene to mouse liver tumor xenografts byadministration of aerosol.METHODS: Recombinant plasmid pcDNA3.0/endostatincontaining human endostatin gene together with signalpeptide from alkaline phosphatase were transferred intohuman umbilical vein endothelial cell (HUVEC) by transfenin(TF)-liposome-endostatin complex. Western blot was usedto detect the expression of human endostatin in transfectedHUVEC cells and its medium. After the tumor-bearing micewere administrated with TF-liposome-endostatin complex,the lung tissue was analyzed by immunohistochemicalmethod for expression of endostatin and the tumors weretreated with CD-31 antibody to detect the density ofmicrovesseles in tumor tissues. The inhibition of tumorgrowth was estimated by the weight of tumors from groupstreated with different dos es of TF-liposome-endostatincomplex. DNA fragmentation assay was used to detect theapoptosis of the cells from primary liver tumor.RESULTS: Western blot analysis and immunohistochemicalmethod confirmed the expression of endostatin proteininvitro and in vivo. After the tumor sections were treated withCD-31 antibody, the positive reaction cells appeared brownwhile the negative cells were colorless. The positively stainedarea of the TF-liposome-endostatin treated group wassignificantly smaller (P<0.01, 645.8+55.2 μm2) than that ofthe control group (1325.4+198.5 μm2). The data showed asignificant inhibition of angiogenesis. After administrationof TF-liposome-endostatin, comparing with the control groupadministrated with TF-liposome-pcDNA3.0, liver tumorgrowth in the mice treated with 50, 250 and 500 mg DNA/kg was inhibited by 36.6 %, 40.8 %, and 72.8 %, respectively(P<0.01). And a typical DNA fragmentation of apoptosis wasfound in the cells from tumor tissues of the mice treatedwith TF-liposome-endostatin but none in the control group.CONCLUSION: Endostatin gene could be efficientlytransported into the mice

  10. Inhibition of human lymphocyte proliferation and cleavage of interleukin-2 by Pseudomonas aeruginosa proteases

    DEFF Research Database (Denmark)

    Theander, T G; Kharazmi, A; Pedersen, B K;

    1988-01-01

    This study was undertaken to determine the effect of Pseudomonas aeruginosa alkaline protease (AP) and elastase (ELA) on human lymphocyte function. AP at 50 micrograms/ml and ELA at 12 micrograms/ml caused a 50% inhibition of phytohemagglutinin-induced proliferation. There was no difference...... in the effect of proteases on CD4- and CD8-positive cells. To determine the effect of proteases on interleukin-2 (IL-2)-induced cell proliferation, the proteases and IL-2 were added to the IL-2-dependent CTLL-2 cell line. AP and ELA inhibited the proliferation of these cells. When IL-2 was added in excess......, the inhibition was partly reversed. ELA at 10 micrograms/ml cleaved IL-2, as judged by size chromatography of a reaction mixture containing 125I-labeled IL-2 and the proteases. The ELA-digested IL-2 exhibited a reduced binding capacity to IL-2 receptors on the lymphocytes. Furthermore, treatment...

  11. Surface-retained organic matter of Microcystis aeruginosa inhibiting coagulation with polyaluminum chloride in drinking water treatment.

    Science.gov (United States)

    Takaara, Tomoko; Sano, Daisuke; Masago, Yoshifumi; Omura, Tatsuo

    2010-07-01

    Algogenic organic matter produced by the excess growth of cyanobacteria in semi-closed water areas causes coagulation inhibition in drinking water production. In this study, hydrophilic substances of Microcystis aeruginosa, which were mainly composed of lipopolysaccharide (LPS) and RNA, were prepared, and the involvement of these cyanobacterial hydrophilic substances in coagulation inhibition was investigated. As a result, it was found that the negatively charged hydrophilic substances with a molecular weight higher than 10 kDa have a significant role in coagulation inhibition. Further fractionation of cyanobacterial hydrophilic substances revealed that surface-retained organic matter (SOM), including LPS, could exhibit a potent inhibitory effect on the coagulation using polyaluminum chloride (PACl), presumably because of the direct interaction of hydrophilic SOM with cations originated from PACl, which could impede the hydrolysis of the coagulant. PMID:20570314

  12. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound

    DEFF Research Database (Denmark)

    Hentzer, Morten; Riedel, K.; Rasmussen, Thomas Bovbjerg;

    2002-01-01

    macroalga Delisea pulchra, is capable of interfering with AHL-mediated quorum sensing in P. aeruginosa. It is demonstrated that the furanone compound specifically represses expression of a PlasB-gfp reporter fusion without affecting growth or protein synthesis. In addition, it reduces the production...

  13. Growth inhibition and colony formation in the cyanobacterium Microcystis aeruginosa induced by the cyanobacterium Cylindrospermopsis raciborskii

    NARCIS (Netherlands)

    Mello, M.M.; Soares, M.C.S.; Roland, F.; Lürling, M.F.L.L.W.

    2012-01-01

    In a tropical reservoir, the cyanobacteria Microcystis aeruginosa and Cylindrospermopsis raciborskii are the dominant species, with changes in dominance throughout the year. Since allelopathy has been suggested as a factor that could promote or stabilize harmful algal blooms, we investigated potenti

  14. An easily accessible sulfated saccharide mimetic inhibits in vitro human tumor cell adhesion and angiogenesis of vascular endothelial cells

    Directory of Open Access Journals (Sweden)

    Grazia Marano

    2012-05-01

    Full Text Available Oligosaccharides aberrantly expressed on tumor cells influence processes such as cell adhesion and modulation of the cell’s microenvironment resulting in an increased malignancy. Schmidt’s imidate strategy offers an effective method to synthesize libraries of various oligosaccharide mimetics. With the aim to perturb interactions of tumor cells with extracellular matrix proteins and host cells, molecules with 3,4-bis(hydroxymethylfuran as core structure were synthesized and screened in biological assays for their abilities to interfere in cell adhesion and other steps of the metastatic cascade, such as tumor-induced angiogenesis.The most active compound, (4-{[(β-D-galactopyranosyloxy]methyl}furan-3-ylmethyl hydrogen sulfate (GSF, inhibited the activation of matrix-metalloproteinase-2 (MMP-2 as well as migration of the human melanoma cells of the lines WM-115 and WM-266-4 in a two-dimensional migration assay. GSF inhibited completely the adhesion of WM-115 cells to the extracellular matrix (ECM proteins, fibrinogen and fibronectin.In an in vitro angiogenesis assay with human endothelial cells, GSF very effectively inhibited endothelial tubule formation and sprouting of blood vessels, as well as the adhesion of endothelial cells to ECM proteins. GSF was not cytotoxic at biologically active concentrations; neither were 3,4-bis{[(β-D-galactopyranosyloxy]methyl}furan (BGF nor methyl β-D-galactopyranoside nor 3,4-bis(hydroxymethylfuran, which were used as controls, eliciting comparable biological activity. In silico modeling experiments, in which binding of GSF to the extracellular domain of the integrin αvβ3 was determined, revealed specific docking of GSF to the same binding site as the natural peptidic ligands of this integrin. The sulfate in the molecule coordinated with one manganese ion in the binding site.These studies show that this chemically easily accessible molecule GSF, synthesized in three steps from 3,4-bis

  15. An easily accessible sulfated saccharide mimetic inhibits in vitro human tumor cell adhesion and angiogenesis of vascular endothelial cells

    Science.gov (United States)

    Marano, Grazia; Gronewold, Claas; Frank, Martin; Merling, Anette; Kliem, Christian; Sauer, Sandra; Wiessler, Manfred; Frei, Eva

    2012-01-01

    Summary Oligosaccharides aberrantly expressed on tumor cells influence processes such as cell adhesion and modulation of the cell’s microenvironment resulting in an increased malignancy. Schmidt’s imidate strategy offers an effective method to synthesize libraries of various oligosaccharide mimetics. With the aim to perturb interactions of tumor cells with extracellular matrix proteins and host cells, molecules with 3,4-bis(hydroxymethyl)furan as core structure were synthesized and screened in biological assays for their abilities to interfere in cell adhesion and other steps of the metastatic cascade, such as tumor-induced angiogenesis. The most active compound, (4-{[(β-D-galactopyranosyl)oxy]methyl}furan-3-yl)methyl hydrogen sulfate (GSF), inhibited the activation of matrix-metalloproteinase-2 (MMP-2) as well as migration of the human melanoma cells of the lines WM-115 and WM-266-4 in a two-dimensional migration assay. GSF inhibited completely the adhesion of WM-115 cells to the extracellular matrix (ECM) proteins, fibrinogen and fibronectin. In an in vitro angiogenesis assay with human endothelial cells, GSF very effectively inhibited endothelial tubule formation and sprouting of blood vessels, as well as the adhesion of endothelial cells to ECM proteins. GSF was not cytotoxic at biologically active concentrations; neither were 3,4-bis{[(β-D-galactopyranosyl)oxy]methyl}furan (BGF) nor methyl β-D-galactopyranoside nor 3,4-bis(hydroxymethyl)furan, which were used as controls, eliciting comparable biological activity. In silico modeling experiments, in which binding of GSF to the extracellular domain of the integrin αvβ3 was determined, revealed specific docking of GSF to the same binding site as the natural peptidic ligands of this integrin. The sulfate in the molecule coordinated with one manganese ion in the binding site. These studies show that this chemically easily accessible molecule GSF, synthesized in three steps from 3,4-bis

  16. A new anti-angiogenic small molecule, G0811, inhibits angiogenesis via targeting hypoxia inducible factor (HIF)-1α signal transduction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Hyun; Jung, Hye Jin; Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr

    2013-11-15

    Highlights: •G0811 suppresses HIF-1α expression without cell toxicity. •G0811 exhibits anti-angiogenic activity both in vitro and in vivo. •G0811 provides a new molecular scaffold for the development of therapeutics targeting angiogenesis. -- Abstract: Regulation of hypoxia inducible factor (HIF)-1α stabilization, which in turn contributes to adaptation of tumor cells to hypoxia has been highlighted as a promising therapeutic target in angiogenesis-related diseases. We have identified a new small molecule, G0811, as a potent angiogenesis inhibitor that targets HIF-1α signal transduction. G0811 suppressed HIF-1α stability in cancer cells and inhibited in vitro and in vivo angiogenesis, as validated by tube formation, chemoinvasion, and chorioallantoic membrane (CAM) assays. In addition, G0811 effectively decreased the expression of vascular endothelial growth factor (VEGF), which is one of target genes of HIF-1α. However, G0811 did not exhibit anti-proliferative activities or toxicity in human umbilical vein endothelial cells (HUVECs) at effective doses. These results demonstrate that G0811 could be a new angiogenesis inhibitor that acts by targeting HIF-1α signal transduction pathway.

  17. Capacity of wild-type and chemokine-armed parvovirus H-1PV for inhibiting neo-angiogenesis.

    Science.gov (United States)

    Lavie, Muriel; Struyf, Sofie; Stroh-Dege, Alexandra; Rommelaere, Jean; Van Damme, Jo; Dinsart, Christiane

    2013-12-01

    Anti-angiogenic therapy has been recognized as a powerful potential strategy for impeding the growth of various tumors. However no major therapeutic effects have been observed to date, mainly because of the emergence of several resistance mechanisms. Among novel strategies to target tumor vasculature, some oncolytic viruses open up new prospects. In this context, we addressed the question whether the rodent parvovirus H-1PV can target endothelial cells. We show that cultures of human normal (HUVEC) and immortalized (KS-IMM) endothelial cells sustain an abortive viral cycle upon infection with H-1PV and are sensitive to H-1PV cytotoxicity. H-1PV significantly inhibits infected KS-IMM tumor growth. This effect may be traced back by the virus ability to both kill proliferating endothelial cells and inhibit VEGF production Recombinant H-1PV vectors can also transduce tumor cells with chemokines endowed with anti-angiogenesis properties, and warrant further validation for the treatment of highly vascularized tumors.

  18. Rapamycin Protects from Type-I Peritoneal Membrane Failure Inhibiting the Angiogenesis, Lymphangiogenesis, and Endo-MT

    Science.gov (United States)

    Aguirre, Anna Rita; Loureiro, Jesús; Abensur, Hugo; Sandoval, Pilar; Sánchez-Tomero, José Antonio; del Peso, Gloria; Jiménez-Heffernan, José Antonio; Ruiz-Carpio, Vicente; Selgas, Rafael; López-Cabrera, Manuel; Aguilera, Abelardo; Liappas, Georgios

    2015-01-01

    Preservation of peritoneal membrane (PM) is essential for long-term survival in peritoneal dialysis (PD). Continuous presence of PD fluids (PDF) in the peritoneal cavity generates chronic inflammation and promotes changes of the PM, such as fibrosis, angiogenesis, and lymphangiogenesis. Mesothelial-to-mesenchymal transition (MMT) and endothelial-to-mesenchymal transition (Endo-MT) seem to play a central role in this pathogenesis. We speculated that Rapamycin, a potent immunosuppressor, could be beneficial by regulating blood and lymphatic vessels proliferation. We demonstrate that mice undergoing a combined PD and Rapamycin treatment (PDF + Rapa group) presented a reduced PM thickness and lower number of submesothelial blood and lymphatic vessels, as well as decreased MMT and Endo-MT, comparing with their counterparts exposed to PD alone (PDF group). Peritoneal water transport in the PDF + Rapa group remained at control level, whereas PD effluent levels of VEGF, TGF-β, and TNF-α were lower than in the PDF group. Moreover, the treatment of mesothelial cells with Rapamycin in vitro significantly decreased VEGF synthesis and selectively inhibited the VEGF-C and VEGF-D release when compared with control cells. Thus, Rapamycin has a protective effect on PM in PD through an antifibrotic and antiproliferative effect on blood and lymphatic vessels. Moreover, it inhibits Endo-MT and, at least partially, MMT. PMID:26688823

  19. Rapamycin Protects from Type-I Peritoneal Membrane Failure Inhibiting the Angiogenesis, Lymphangiogenesis, and Endo-MT

    Directory of Open Access Journals (Sweden)

    Guadalupe Tirma González-Mateo

    2015-01-01

    Full Text Available Preservation of peritoneal membrane (PM is essential for long-term survival in peritoneal dialysis (PD. Continuous presence of PD fluids (PDF in the peritoneal cavity generates chronic inflammation and promotes changes of the PM, such as fibrosis, angiogenesis, and lymphangiogenesis. Mesothelial-to-mesenchymal transition (MMT and endothelial-to-mesenchymal transition (Endo-MT seem to play a central role in this pathogenesis. We speculated that Rapamycin, a potent immunosuppressor, could be beneficial by regulating blood and lymphatic vessels proliferation. We demonstrate that mice undergoing a combined PD and Rapamycin treatment (PDF + Rapa group presented a reduced PM thickness and lower number of submesothelial blood and lymphatic vessels, as well as decreased MMT and Endo-MT, comparing with their counterparts exposed to PD alone (PDF group. Peritoneal water transport in the PDF + Rapa group remained at control level, whereas PD effluent levels of VEGF, TGF-β, and TNF-α were lower than in the PDF group. Moreover, the treatment of mesothelial cells with Rapamycin in vitro significantly decreased VEGF synthesis and selectively inhibited the VEGF-C and VEGF-D release when compared with control cells. Thus, Rapamycin has a protective effect on PM in PD through an antifibrotic and antiproliferative effect on blood and lymphatic vessels. Moreover, it inhibits Endo-MT and, at least partially, MMT.

  20. STAT5b as Molecular Target in Pancreatic Cancer—Inhibition of Tumor Growth, Angiogenesis, and Metastases

    Directory of Open Access Journals (Sweden)

    Christian Moser

    2012-10-01

    Full Text Available The prognosis of patients suffering from pancreatic cancer is still poor and novel therapeutic options are urgently needed. Recently, the transcription factor signal transducer and activator of transcription 5b (STAT5b was associated with tumor progression in human solid cancer. Hence, we assessed whether STAT5b might serve as an anticancer target in ductal pancreatic adenocarcinoma (DPAC. We found that nuclear expression of STAT5b can be detected in approximately 50% of DPAC. Blockade of STAT5b by stable shRNA-mediated knockdown showed no effects on tumor cell growth in vitro. However, inhibition of tumor cell motility was found even in response to stimulation with epidermal growth factor or interleukin-6. These findings were paralleled by a reduction of prometastatic and proangiogenic factors in vitro. Subsequent in vivo experiments revealed a strong growth inhibition on STAT5b blockade in subcutaneous and orthotopic models. These findings were paralleled by impaired tumor angiogenesis in vivo. In contrast to the subcutaneous model, the orthotopic model revealed a strong reduction of tumor cell proliferation that emphasizes the meaning of assessing targets in an appropriate microenvironment. Taken together, our results suggest that STAT5b might be a potential novel target for human DPAC.

  1. OSU-A9 inhibits angiogenesis in human umbilical vein endothelial cells via disrupting Akt–NF-κB and MAPK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Hany A. [Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (United States); Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Arafa, El-Shaimaa A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Salama, Samir A. [Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11511 (Egypt); Arab, Hany H. [Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562 (Egypt); Wu, Chieh-Hsi, E-mail: chhswu@mail.cmu.edu.tw [School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Weng, Jing-Ru, E-mail: columnster@gmail.com [Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan (China)

    2013-11-01

    Since the introduction of angiogenesis as a useful target for cancer therapy, few agents have been approved for clinical use due to the rapid development of resistance. This problem can be minimized by simultaneous targeting of multiple angiogenesis signaling pathways, a potential strategy in cancer management known as polypharmacology. The current study aimed at exploring the anti-angiogenic activity of OSU-A9, an indole-3-carbinol-derived pleotropic agent that targets mainly Akt–nuclear factor-kappa B (NF-κB) signaling which regulates many key players of angiogenesis such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Human umbilical vein endothelial cells (HUVECs) were used to study the in vitro anti-angiogenic effect of OSU-A9 on several key steps of angiogenesis. Results showed that OSU-A9 effectively inhibited cell proliferation and induced apoptosis and cell cycle arrest in HUVECs. Besides, OSU-A9 inhibited angiogenesis as evidenced by abrogation of migration/invasion and Matrigel tube formation in HUVECs and attenuation of the in vivo neovascularization in the chicken chorioallantoic membrane assay. Mechanistically, Western blot, RT-PCR and ELISA analyses showed the ability of OSU-A9 to inhibit MMP-2 production and VEGF expression induced by hypoxia or phorbol-12-myristyl-13-acetate. Furthermore, dual inhibition of Akt–NF-κB and mitogen-activated protein kinase (MAPK) signaling, the key regulators of angiogenesis, was observed. Together, the current study highlights evidences for the promising anti-angiogenic activity of OSU-A9, at least in part through the inhibition of Akt–NF-κB and MAPK signaling and their consequent inhibition of VEGF and MMP-2. These findings support OSU-A9's clinical promise as a component of anticancer therapy. - Highlights: • The antiangiogenic activity of OSU-A9 in HUVECs was explored. • OSU-A9 inhibited HUVECs proliferation, migration, invasion and tube formation. • OSU-A9

  2. Bioguided Fractionation Shows Cassia alata Extract to Inhibit Staphylococcus epidermidis and Pseudomonas aeruginosa Growth and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Samuel Takashi Saito

    2012-01-01

    Full Text Available Plant extracts have a long history to be used in folk medicine. Cassia alata extracts are known to exert antibacterial activity but details on compounds and mechanism of action remain poorly explored. We purified and concentrated the aqueous leaf extract of C. alata by reverse phase-solid phase extraction and screened the resulting CaRP extract for antimicrobial activity. CaRP extract exhibited antimicrobial activity for Pseudomonas aeruginosa, Staphylococcus epidermidis, S. aureus, and Bacillus subtilis. CaRP also inhibited biofilm formation of S. epidermidis and P. aeruginosa. Several bacterial growth-inhibiting compounds were detected when CaRP extract was fractionated by TLC chromatography coupled to bioautography agar overlay technique. HPLC chromatography of CaRP extract yielded 20 subfractions that were tested by bioautography for antimicrobial activity against S. aureus and S. epidermidis. Five bioactive fractions were detected and chemically characterized, using high-resolution mass spectrometry (qTOF-MS/MS. Six compounds from four fractions could be characterized as kaempferol, kaempferol-O-diglucoside, kaempferol-O-glucoside, quercetin-O-glucoside, rhein, and danthron. In the Salmonella/microsome assay CaRP showed weak mutagenicity (MI<3 only in strain TA98, pointing to a frameshift mutation activity. These results indicate that C. alata leaf extract contains a minimum of 7 compounds with antimicrobial activity and that these together or as single substance are active in preventing formation of bacterial biofilm, indicating potential for therapeutic applications.

  3. Red Raspberry Phenols Inhibit Angiogenesis: A Morphological and Subcellular Analysis Upon Human Endothelial Cells.

    Science.gov (United States)

    Sousa, M; Machado, V; Costa, R; Figueira, M E; Sepodes, B; Barata, P; Ribeiro, L; Soares, R

    2016-07-01

    Polyphenols are a class of natural compounds whose potential as antioxidant, anti-inflammatory, and anti-angiogenesis has been reported in many pathological conditions. Red raspberry extract, rich in polyphenols, has been reported to exert anti-inflammatory effects and prevent cell proliferation in distinct animal models. However, the signaling pathways involved remain unknown. Herein, we used human microvascular endothelial cells (HMVECs) to determine the influence of red raspberry phenolic compound extract concentrations, ranging from 10 to 250 µg gallic acid equivalents (GAE)/mL, on endothelium viability (MTS assay), proliferation (BrdU incorporation), migration (injury assay), and capillary-like structures formation (Matrigel assay). Protein expression in cell lysates was determined by Western blot analysis. We showed that red raspberry extracts reduced cell viability (GI50  = 87,64 ± 6,59 μg GAE/mL) and proliferation in a dose-dependent manner. A significant abrogation of cells ability to migrate to injured areas, even at low concentrations, was observed by injury assay. Cell assembly into capillary-like structures on Matrigel also decreased in a dose dependent-manner for higher extract concentrations, as well as the number of branching points per unit of area. Protein expression analysis showed a dose-dependent decrease in Phospho-VEGFR2 expression, implying abrogation of VEGF signaling activity. We also showed for the first time that red raspberry phenolic compounds induce the rearrangement of filamentous actin cytoskeleton, with an isotropy increase found for higher testing concentrations. Taken together, our findings corroborate the anti-angiogenic potential of red raspberry phenolic compounds and provide new insights into their mode of action upon endothelium. J. Cell. Biochem. 117: 1604-1612, 2016. © 2015 Wiley Periodicals, Inc. PMID:26590362

  4. Betaine inhibits in vitro and in vivo angiogenesis through suppression of the NF-κB and Akt signaling pathways.

    Science.gov (United States)

    Yi, Eui-Yeun; Kim, Yung-Jin

    2012-11-01

    Angiogenesis is defined as the formation of new blood vessels form existing vessels surrounding a tumor. The process of angiogenesis is an important step for tumor growth and metastasis, as is inflammation. Thus, angiogenesis inhibitors that suppress inflammation have been studied as an anticancer treatment. Recently, many research groups have investigated the anti-angiogenic activity of natural compounds since some have been demonstrated to have anticancer properties. Among many natural compounds, we focused on betaine, which is known to suppress inflammation. Betaine, trimethylglycine (TMG), was first discovered in the juice of sugar beets and was later shown to be present in wheat, shellfish and spinach. In Southeast Asia, betaine is used in traditional oriental medicine for the treatment of hepatic disorders. Here, we report the anti-angiogenic action of betaine. Betaine inhibited in vitro angiogenic cascade, tube formation, migration and invasion of human umbilical vein endothelial cells (HUVECs). Betaine also inhibited in vivo angiogenesis in the mouse Matrigel plug assay. The mRNA expression levels of basic fibroblast growth factor (bFGF), matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) in HUVECs were decreased by betaine treatment. In addition, betaine suppressed NF-κB and Akt activation. PMID:22940742

  5. A mathematical model of systemic inhibition of angiogenesis in metastatic development

    OpenAIRE

    Benzekry, Sebastien; Gandolfi, Alberto; Hahnfeldt, Philip

    2013-01-01

    Nous pr\\'{e}sentons un mod\\'{e}le math\\'{e}matique d\\'{e}crivant le d\\'{e}veloppement temporel d'une population de tumeurs en interactions mutuelles \\textit{via} des signaux d'inhibition de l'angiog\\'{e}n\\'{e}se. Bas\\'{e} sur une d\\'{e}rivation biophysique, il d\\'{e}crit la dynamique, \\'{a} l'\\'{e}chelle de l'organisme, qui r\\'{e}sulte de l'influence relative de trois processus: naissance (diss\\'{e}mination de tumeurs secondaires), croissance et inhibition (de l'angiog\\'{e}n\\'{e}se). Le mod\\'...

  6. Inhibition of Breast Cancer Metastasis and Angiogenesis by Antiosteopontin Single-Chain Fv-Fc Fusion Protein

    Directory of Open Access Journals (Sweden)

    Ling Peng

    2009-05-01

    Full Text Available Osteopontin (OPN is associated with many diseases, and its role in tumor growth and metastasis has been studied in breast cancers. Previous studies have described anti-OPN antibodies that could inhibit tumor cell adhesion and invasion in vitro, but until now, there are no systematic studies on antitumor effects of anti-OPN antibodies in vivo. In the present study, we have raised several anti-OPN single-chain variable fragments from phage antibody library and expressed them as single-chain variable fragment-constant region fragment fusion proteins in Chinese hamster ovary cells. Of them, two antibodies (1A12 and 2H8 were able to inhibit MDA-MB-435s breast cancer cell attachment, invasion, migration, and colony formation in soft agar. Furthermore, 1A12 and 2H8 inhibited the anti-apoptotic and prosurvival functions of OPN in human umbilical vein endothelial cell. In human umbilical vein endothelial cell capillary tube formation, chicken chorioallantoic membrane assay, and rabbit corneal micropocket assay, the two antibodies showed markedly inhibitory effects toward angiogenesis. We investigated antitumor effects of anti-OPN antibodies in nude mice by assessing xenograft tumor growth and lung metastasis potential. The results showed that the two antibodies were capable of delaying primary tumor growth and reducing spontaneous lung metastasis. Epitope mappings of these two anti-OPN antibodies were performed, and a new binding site of 1A12 was revealed. In summary, the present study has demonstrated the roles of anti-OPN antibodies in blocking the function of OPN, suggesting that they may have the potential to be developed for future clinical use.

  7. TSU-68 (SU6668) inhibits local tumor growth and liver metastasis of human colon cancer xenografts via anti-angiogenesis.

    Science.gov (United States)

    Yorozuya, Kyoko; Kubota, Tetsuro; Watanabe, Masahiko; Hasegawa, Hirotoshi; Ozawa, Soji; Kitajima, Masaki; Chikahisa, Lumi Muramatsu; Yamada, Yuji

    2005-09-01

    A number of receptor tyrosine kinases (RTKs) are involved in angiogenesis. TSU-68 (SU-6668) was developed as an inhibitor of RTKs involved in VEGF, bFGF and PDGF signaling, which then inhibits endothelial cell proliferation. We investigated the antitumor effects of TSU-68 against human colon cancer xenografts in male SCID mice and its anti-angiogenic activity using a dorsal air-sac (DAS) assay. TSU-68 was administered orally at a dose of 200 mg/kg twice daily. Mice bearing human colon carcinoma, HT-29, or WiDr xenografts were treated for 16 days. To determine the effect on hepatic metastasis, cell suspensions of HT-29 or WAV-I were injected into the spleen of mice on day 0, and mice treated for 28 days starting from day 1. For the DAS assay, HT-29, WiDr or WAV-I cells suspended in PBS at 2 x 10(7) cells/Millipore chamber were implanted subcutaneously into SCID mice, which were then treated from day 0 to 5, On day 6, the anti-angiogenic effects were assessed. Results indicated that TSU-68 significantly inhibited the growth of subcutaneous tumors. In the hepatic metastasis model, liver weights of the TSU-68-treated group were significantly reduced, compared to those of control mice. In the DAS assay, the angiogenic indices of the treated groups were significantly decreased for HT-29, WiDr and WAV-I tumors, with T/C ratios of 13.4, 50 and 35.3%, respectively. As TSU-68 significantly inhibited tumor growth and liver metastasis formation of human colon cancer xenografts, probably through anti-angiogenic activity, this agent may be useful for the treatment of colon cancer.

  8. Pharmacological inhibition of microsomal prostaglandin E synthase-1 suppresses epidermal growth factor receptor-mediated tumor growth and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Federica Finetti

    Full Text Available BACKGROUND: Blockade of Prostaglandin (PG E(2 production via deletion of microsomal Prostaglandin E synthase-1 (mPGES-1 gene reduces tumor cell proliferation in vitro and in vivo on xenograft tumors. So far the therapeutic potential of the pharmacological inhibition of mPGES-1 has not been elucidated. PGE(2 promotes epithelial tumor progression via multiple signaling pathways including the epidermal growth factor receptor (EGFR signaling pathway. METHODOLOGY/PRINCIPAL FINDINGS: Here we evaluated the antitumor activity of AF3485, a compound of a novel family of human mPGES-1 inhibitors, in vitro and in vivo, in mice bearing human A431 xenografts overexpressing EGFR. Treatment of the human cell line A431 with interleukin-1beta (IL-1β increased mPGES-1 expression, PGE(2 production and induced EGFR phosphorylation, and vascular endothelial growth factor (VEGF and fibroblast growth factor-2 (FGF-2 expression. AF3485 reduced PGE(2 production, both in quiescent and in cells stimulated by IL-1β. AF3485 abolished IL-1β-induced activation of the EGFR, decreasing VEGF and FGF-2 expression, and tumor-mediated endothelial tube formation. In vivo, in A431 xenograft, AF3485, administered sub-chronically, decreased tumor growth, an effect related to inhibition of EGFR signalling, and to tumor microvessel rarefaction. In fact, we observed a decrease of EGFR phosphorylation, and VEGF and FGF-2 expression in tumours explanted from treated mice. CONCLUSION: Our work demonstrates that the pharmacological inhibition of mPGES-1 reduces squamous carcinoma growth by suppressing PGE(2 mediated-EGFR signalling and by impairing tumor associated angiogenesis. These results underscore the potential of mPGES-1 inhibitors as agents capable of controlling tumor growth.

  9. Identification of Chemical Compounds That Inhibit the Function of Glutamyl-tRNA Synthetase from Pseudomonas aeruginosa.

    Science.gov (United States)

    Hu, Yanmei; Guerrero, Edgar; Keniry, Megan; Manrrique, Joel; Bullard, James M

    2015-10-01

    Pseudomonas aeruginosa glutamyl-tRNA synthetase (GluRS) was overexpressed in Escherichia coli. Sequence analysis indicated that P. aeruginosa GluRS is a discriminating GluRS and, similar to other GluRS proteins, requires the presence of tRNA(Glu) to produce a glutamyl-AMP intermediate. Kinetic parameters for interaction with tRNA were determined and the k(cat) and KM were 0.8 s(-1) and 0.68 µM, respectively, resulting in a k(cat)/KM of 1.18 s(-1) µM(-1). A robust aminoacylation-based scintillation proximity assay (SPA) assay was developed and 800 natural products and 890 synthetic compounds were screened for inhibitory activity against P. aeruginosa GluRS. Fourteen compounds with inhibitory activity were identified. IC50s were in the low micromolar range. The minimum inhibitory concentration (MIC) was determined for each of the compounds against a panel of pathogenic bacteria. Two compounds, BT_03F04 and BT_04B09, inhibited GluRS with IC50s of 21.9 and 24.9 µM, respectively, and both exhibited promising MICs against Gram-positive bacteria. Time-kill studies indicated that one compound was bactericidal and one was bacteriostatic against Gram-positive bacteria. BT_03F04 was found to be noncompetitive with both ATP and glutamic acid, and BT_04B09 was competitive with glutamic acid but noncompetitive with ATP. The compounds were not observed to be toxic to mammalian cells in MTT assays.

  10. ADENOVIRUS-MEDIATED EXPRESSION OF PEX, A NONCATALYTIC FRAGMENT OF MATRIX METALLOPROTEINASE-2, AND IT'S INHIBITION ON ANGIOGENESIS AND TUMOR GROWTH

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To develop an adenovirus system to deliver biologically active peptides or proteins such as angiogenesis inhibitors in vivo for the treatment of cancer. Methods: DNA recombination techniques were employed to construct adenovirus shuttle vector, in which angiogenesis inhibitor was put downstream of rat growth hormone signal peptide, and the C-terminal was the myc-epitope 10-amino-acid peptide for the following up of the protein. Adenovirus was made using the bacteria recombination method. We tested this system using an angiogenesis inhibitor chick MMP-2 C-terminal hemopexin-like fragment (PEX) in Sarcoma 180 (S-180) bearing Kunming mice. The anti-angiogenic effect was performed by chick chorioallantoic membrane assay. Results: PEX was readily secreted outside human stomach carcinoma BGC823 cells as demonstrated by immunofluorescent staining and western blot infected by adenovirus with rat growth hormone signal peptide (E-T-rGH-PEX). However, without signal peptide (E-T-PEX), PEX was expressed and localized in the cytoplasm of the infected cells, and formed large aggregates, which suggested that PEX was insoluble. The adenovirus E-T-rGH-PEX could inhibit angiogenesis, while E-T-rGH-PEX not. The adenoviruses of E-T-rGH-PEX inhibited the growth of S-180 tumor significantly compared with the empty virus control group E-T (P=0.026) and without signal peptide group E-T-PEX (P=0.006) respectively, while E-T-PEX had little effect. Conclusion: These results suggest that this adenoviral system is likely to be used in the gene therapy of cancer to deliver angiogenesis inhibitors.

  11. Angiogenesis and tumor

    Directory of Open Access Journals (Sweden)

    Kamran Mansouri

    2010-12-01

    Full Text Available Angiogenesis, the process of new blood vessel formation from existing ones, plays an important role in the physiologic circumstances such as embryonic development, placenta formation, and wound healing. It is also crucial to progress of pathogenic processes of a variety of disorders, including tumor growth and metastasis. In general, angiogenesis process is a multi-factorial and highly structured sequence of cellular events comprising migration, proliferation and differentiation of endothelial cells and finally vascular formation, maturation and remodeling.Thereby, angiogenesis inhibition as a helping agent to conventional therapies such as chemotherapy and radiation has attracted the scientists’ attentions studying in this field.

  12. Inhibition of metastasis, angiogenesis, and tumor growth by Chinese herbal cocktail Tien-Hsien Liquid

    Directory of Open Access Journals (Sweden)

    Sun Andy

    2010-04-01

    Full Text Available Abstract Background Advanced cancer is a multifactorial disease that demands treatments targeting multiple cellular pathways. Chinese herbal cocktail which contains various phytochemicals may target multiple dys-regulated pathways in cancer cells and thus may provide an alternative/complementary way to treat cancers. Previously we reported that the Chinese herbal cocktail Tien-Hsien Liguid (THL can specifically induce apoptosis in various cancer cells and have immuno-modulating activity. In this study, we further evaluated the anti-metastatic, anti-angiogenic and anti-tumor activities of THL with a series of in vitro and in vivo experiments. Methods The migration and invasion of cancer cells and endothelial cells was determined by Boyden chamber transwell assays. The effect of THL on pulmonary metastasis was done by injecting CT-26 colon cancer cells intravenously to syngenic mice. The in vitro and in vivo microvessel formation was determined by the tube formation assay and the Matrigel plug assay, respectively. The in vivo anti-tumor effect of THL was determined by a human MDA-MB-231 breast cancer xenograft model. The expression of metalloproteinase (MMP-2, MMP-9, and urokinase plasminogen activator (uPA was measured by gelatin zymography. The expression of HIF-1α and the phosphorylation of ERK1/2 were determined by Western blot. Results THL inhibited the migration and invasion ability of various cancer cells in vitro, decreased the secretion of MMP-2, MMP-9, and uPA and the activity of ERK1/2 in cancer cells, and suppressed pulmonary metastasis of CT-26 cancer cells in syngenic mice. Moreover, THL inhibited the migration, invasion, and tube formation of endothelial cells in vitro, decreased the secretion of MMP-2 and uPA in endothelial cells, and suppressed neovascularization in Matrigel plugs in mice. Besides its inhibitory effect on endothelial cells, THL inhibited hypoxia-induced HIF-1α and vascular endothelial growth factor-A expression

  13. Inhibition of HMGB1-induced angiogenesis by cilostazol via SIRT1 activation in synovial fibroblasts from rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Hye Young Kim

    Full Text Available High mobility group box chromosomal protein 1 (HMGB-1 released from injured cells plays an important role in the development of arthritis. This study investigated the anti-angiogenic effects of cilostazol in collagen-induced arthritis (CIA of mice, and the underlying mechanisms involved. The expressions of HIF-1α, VEGF, NF-κB p65 and SIRT1 in synovial fibroblasts obtained from rheumatoid arthritis (RA patients were assessed by Western blotting, and in vitro and in vivo angiogenesis were analyzed. Tube formations by human microvascular endothelial cells (HMVECs were significantly increased by direct exposure to HMGB1 or to conditioned medium derived from HMGB1-stimulated RA fibroblasts, and these increases were attenuated by cilostazol, the latter of which was blocked by sirtinol. HMGB1 increased the expression of HIF-1α and VEGF and concomitantly increased nuclear NF-κB p65 and DNA binding activity, but these effects of HMGB1 were inhibited by cilostazol. SIRT1 protein expression was time-dependently decreased (3-24 hr by HMGB1, which was recovered by pretreatment with cilostazol (1-30 µM or resveratrol, accompanying with increased SIRT1 deacetylase activity. In the tibiotarsal joint tissues of CIA mice treated with vehicle, HIF-1α- and VEGF-positive spots and CD31 staining were markedly exaggerated, whereas SIRT1 immunofluorescence was diminished. These variables were wholly reversed in cilostazol (30 mg/kg/day-treated mice. Furthermore, number of blood vessels stained by von Willebrand factor antibody was significantly lower in cilostazol-treated CIA mice. Summarizing, cilostazol activated SIRT1 and inhibited NF-κB-mediated transcription, thereby suppressing the expression of HIF-1α and VEGF. In addition, cilostazol caused HIF-1α deacetylation by enhancing SIRT1 activity and reduced VEGF production, thereby had an anti-angiogenic effect in vitro studies and in CIA murine model.

  14. Selenium Induces an Anti-tumor Effect Via Inhibiting Intratumoral Angiogenesis in a Mouse Model of Transplanted Canine Mammary Tumor Cells.

    Science.gov (United States)

    Li, Wenyu; Guo, Mengyao; Liu, Yuzhu; Mu, Weiwei; Deng, Ganzhen; Li, Chengye; Qiu, Changwei

    2016-06-01

    Selenium (Se) has been widely reported to possess anti-tumor effects. Angiogenesis is the formation of new blood vessels and is required to supply oxygen, nutrients, and growth factors for tumor growth, progression, and metastasis. To explore whether the anti-tumor effect of Se was associated with angiogenesis in vivo, we studied the effects of sodium selenite (Sel) and methylseleninic acid (MSA) on tumors induced by canine mammary tumor cells (CMT1211) in mice; cyclophosphamide (CTX) served as a positive control. The results showed that the Se content was significantly increased in the Sel and MSA groups. Se significantly inhibited the tumor weights and volumes. Large necrotic areas and scattered and abnormal small necrotic areas were observed in the Se treatment group. Immunofluorescence double staining showed a reduction in the microvessel density (MVD) and increment in the vessel maturation index (VMI) compared with the untreated control group. As expected, the protein and mRNA levels of the angiogenesis factors angiopoietin-2 (Ang-2), platelet-derived growth factor (PDGF), and vascular endothelial growth factor (VEGF) were decreased in the Se-treated tumors by IHC, as shown by western blotting and RT-QPCR. We also found that organic Se MSA provided stronger inhibition of tumor growth compared with inorganic sodium selenite (Sel). Altogether, our results indicated that Se exerted anti-tumor effects in vivo at least partially by inhibiting angiogenic factors. PMID:26507439

  15. Direct binding of recombinant plasminogen kringle 1-3 to angiogenin inhibits angiogenin-induced angiogenesis in the chick embryo CAM.

    Science.gov (United States)

    Youn, Mi-Ran; Park, Mee-Hee; Choi, Chang-Ki; Ahn, Byung-Cheol; Kim, Hak Yong; Kang, Sang Sun; Hong, Yong-Kil; Joe, Young Ae; Kim, Jong-Soo; You, Weon-Kyoo; Lee, Hyo-Sil; Chung, Soo-Il; Chang, Soo-Ik

    2006-05-12

    Angiogenin is one of the most potent angiogenesis-inducing proteins. Angiostatin is one of the most potent angiogenesis inhibitors, and it contains the first four kringle domains of plasminogen (K1-4). Recombinant human plasminogen kringle 1-3 (rK1-3) was expressed in Escherichia coli and purified to homogeneity. The binding of t-4-aminomethylcyclohexanecarboxylic acid with the purified kringle 1-3 was determined by changes in intrinsic fluorescence. rK1-3 exhibits comparable ligand-binding properties as native human plasminogen kringle 1-3. The purified rK1-3 inhibits neovascularization in the chick embryo chorioallantoic membrane (CAM) assay. Interaction of angiogenin with rK1-3 was examined by immunological binding assay and surface plasmon resonance kinetic analysis, and the equilibrium dissociation constants for the complex, Kd, are 0.89 and 0.18 microM, respectively. rK1-3 inhibits angiogenin-induced angiogenesis in the chick embryo CAM in a concentration-dependent manner. These results indicate that rK1-3 directly binds to angiogenin and thus rK1-3 inhibits the angiogenic activity of angiogenin. PMID:16564503

  16. Polysaccharides from Korean Citrus hallabong peels inhibit angiogenesis and breast cancer cell migration.

    Science.gov (United States)

    Park, J Y; Shin, M S; Kim, S N; Kim, H Y; Kim, K H; Shin, K S; Kang, K S

    2016-04-01

    Although the peel of the hallabong (Citrus sphaerocarpa) fruit is rich in polysaccharides, which are valuable dietary ingredients for human health, it is normally wasted. The present study aimed to utilize the peel waste and identify properties it may have against breast cancer metastasis. Hallabong peel extract containing crude polysaccharides was fractionated by gel permeation chromatography to produce four different polysaccharide fractions (HBE-I, -II, -III, and -IV). The HBE polysaccharides significantly blocked tube formation of human umbilical vein vascular endothelial cells (HUVECs), at a concentration of 12.5 or 25 μg/mL. Tube formation appeared to be more sensitive to HBE-II than to other HBE polysaccharides. HBE-II also inhibited breast cancer cell migration, through downregulation of matrix metalloproteinase-9 (MMP-9) in MDA-MB-231 triple-negative breast cancer cells. Therefore, inhibition of tube formation and MMP-9-mediated migration observed in HUVEC and MDA-MB-231 cells, respectively, are likely to be important therapeutic targets in triple-negative breast cancer metastasis. PMID:26778161

  17. The Study of Synergistic Effects of n.butanolic Cyclamen coum Extract and Ciprofloxacin on inhibition of Pseudomonas aeruginosa biofilm formation

    Directory of Open Access Journals (Sweden)

    ahya abdi ali

    2015-02-01

    Full Text Available   Introduction : Infections caused by Pseudomonas aeruginosa biofilm are the major causes of death in patients with cystic fibrosis (CF. Some studies revealed that biofilms are resistant to several antibiotics because of their impermeable structures. In order to re-sensitize bacteria to different antibiotics, biofilm formation should be inhibited. In this research, evaluation of antibiofilm activity of n-butanolic Cyclamen coum extract as a medici­nal plant from Myrsinaceae family, in combination with ciprofloxacin was carried out.   Materials and method s: The biofilm formation ability by P. aeruginosa PAO1 and one clinically isolated P. aeruginosa (PA214 was confirmed by microtiter plate method. Extraction of the tubers of Cyclamen coum was done by fractionation method . The antibiofilm and antibacterial properties of n-butanolic C. coum extract (which includes saponin compounds alone and in combination with ciprofloxacin by using microdilution and crystal violet methods were examined. The cytotoxicity effect of the n-butanolic extract on HT-29 cells was assayed by MTT (3- (4,5-dimethylthiazol-2-yl -2,5-diphenyl-tetrazolium bromide test.   Results : The biofilm formation ability by P. aeruginosa strains was quantitatively confirmed. Saponin content of the n-butanolic C.coum extract was 156 µg/mL. The extract revealed antibacterial activity against the growth of planktonic P. aeruginosa strains. The combination of n-butanolic C.coum extract and ciprofloxacin significantly inhibited P.aeruginosa biofilm formation (ΣFBIC = 0.5. The n-butanolic C.coum extract showed insignificant cytotoxic effect against HT-29 human cancer cell line after 48 hours and 72 hours incubation .   Discussion and conclusion : It can be concluded that n-butanolic C.coum extract in combination with ciprofloxacin significantly revealed antibiofilm activity against P. aeruginosa biofilm however, further clinical investigations are required.

  18. Clove bud oil reduces kynurenine and inhibits pqs A gene expression in P. aeruginosa.

    Science.gov (United States)

    H, Jayalekshmi; Omanakuttan, Athira; Pandurangan, N; S Vargis, Vidhu; Maneesh, M; G Nair, Bipin; B Kumar, Geetha

    2016-04-01

    Quorum sensing (QS), a communication system involved in virulence of pathogenic bacteria like Pseudomonas aeruginosa is a promising target to combat multiple drug resistance. In vitro studies using clove bud oil (CBO) in P. aeruginosa revealed a concentration dependent attenuation of a variety of virulence factors including motility, extracellular DNA, exopolysaccharides and pigment production. Furthermore, treatment with CBO demonstrated a distinct dose-dependent reduction in biofilm formation as well as promoting dispersion of already formed biofilm, observations that were also supported by porcine skin ex vivo studies. Expression studies of genes involved in signalling systems of P. aeruginosa indicated a specific decrease in transcription of pqsA, but not in the lasI or rhlI levels. Additionally, the expression of vfr and gacA genes, involved in regulation, was also not affected by CBO treatment. CBO also influenced the PQS signalling pathway by decreasing the levels of kynurenine, an effect which was reversed by the addition of exogenous kynurenine. Though the synthesis of the signalling molecules of the Las and Rhl pathways was not affected by CBO, their activity was significantly affected, as observed by decrease in levels of their various effectors. Molecular modelling studies demonstrated that eugenol, the major component of CBO, favourably binds to the QS receptor by hydrophobic interactions as well as by hydrogen bonding with Arg61 and Tyr41 which are key amino acid residues of the LasR receptor. These results thus elucidate the molecular mechanism underlying the action of CBO and provide the basis for the identification of an attractive QS inhibitor. PMID:26821927

  19. Cathepsin B and uPAR Knockdown Inhibits Tumor-induced Angiogenesis by Modulating VEGF Expression in Glioma

    OpenAIRE

    MALLA, RAMA RAO; Gopinath, Sreelatha; Christopher S Gondi; Alapati, Kiranmai; Dinh, Dzung H.; Gujrati, Meena; Rao, Jasti S.

    2011-01-01

    Angiogenesis, which is the process of sprouting of new blood vessels from pre-existing vessels, is vital for tumor progression. Proteolytic remodeling of extracellular matrix is a key event in vessel sprouting during angiogenesis. Urokinase plasminogen activator receptor (uPAR) and cathepsin B are both known to be overexpressed and implicated in tumor angiogenesis. In the present study, we observed that knockdown of uPAR and cathepsin B using puPAR (pU), pCathepsin B (pC), and a bicistronic c...

  20. Bioactive organocopper compound from Pseudomonas aeruginosa inhibits the growth of Xanthomonas citri subsp. citri

    Directory of Open Access Journals (Sweden)

    Admilton Gonçalves de Oliveira

    2016-02-01

    Full Text Available Citrus canker is a lot destructive disease of citrus species. The challenge is to find new compounds that show strong antibiotic activity, low toxicity to plants and the environment. The objectives of the present study are (1 produce, purify and evaluate the antibiotic activity of secondary metabolites produced by induction by P. aeruginosa LV strain in vitro against Xanthomonas citri subsp. citri (strain 306, (2 study the potential for semi-purified secondary metabolites on foliar application to control citrus canker under greenhouse conditions, (3 identify the antibiotic activity in orange leaf mesophyll infected with strain 306 by electron microscopy. Two pure bioactive compounds were isolated, organocopper antibiotic compound and phenazine-1-carboxamide. The phenazine-1-carboxamide did not show any antibiotic activity under the experimental conditions used in this study. The organocopper antibiotic compound showed a high level of antibiotic activity with a minimum inhibitory concentration of 0.12 µg mL-1. In greenhouse tests for control of citrus canker in orange trees, the semi-purified fraction F3d, reduced lesion formation about 97%. The concentration used was five hundred times lower than recommended commercial product of metallic copper-based. Electron microscopy showed that F3d altered the exopolysaccharide matrix and causing cell lysis of the pathogen inside the citrus canker lesions. These results suggest that secondary metabolites produced by induction by P. aeruginosa LV strain has a high potential to be used as a bioproduct to control citrus canker.

  1. Nanotherapy silencing the interleukin-8 gene produces regression of prostate cancer by inhibition of angiogenesis.

    Science.gov (United States)

    Aalinkeel, Ravikumar; Nair, Bindukumar; Chen, Chih-Kuang; Mahajan, Supriya D; Reynolds, Jessica L; Zhang, Hanguang; Sun, Haotian; Sykes, Donald E; Chadha, Kailash C; Turowski, Steven G; Bothwell, Katelyn D; Seshadri, Mukund; Cheng, Chong; Schwartz, Stanley A

    2016-08-01

    Interleukin-8 (IL-8) is a pro-angiogenic cytokine associated with aggressive prostate cancer (CaP). We detected high levels of IL-8 in sera from patients with CaP compared with healthy controls and patients with benign prostatic hypertrophy. This study examines the role of IL-8 in the pathogenesis of metastatic prostate cancer. We developed a biocompatible, cationic polylactide (CPLA) nanocarrier to complex with and efficiently deliver IL-8 small interfering RNA (siRNA) to CaP cells in vitro and in vivo. CPLA IL-8 siRNA nanocomplexes (nanoplexes) protect siRNA from rapid degradation, are non-toxic, have a prolonged lifetime in circulation, and their net positive charge facilitates penetration of cell membranes and subsequent intracellular trafficking. Administration of CPLA IL-8 siRNA nanoplexes to immunodeficient mice bearing human CaP tumours produced significant antitumour activities with no adverse effects. Systemic (intravenous) or local intra-tumour administration of IL-8 siRNA nanoplexes resulted in significant inhibition of CaP growth. Magnetic resonance imaging and ultrasonography of experimental animals demonstrated reduction of tumour perfusion in vivo following nanoplex treatment. Staining of tumour sections for CD31 confirmed significant damage to tumour neovasculature after nanoplex therapy. These studies demonstrate the efficacy of IL-8 siRNA nanotherapy for advanced, treatment-resistant human CaP. PMID:27159450

  2. Serratia Secondary Metabolite Prodigiosin Inhibits Pseudomonas aeruginosa Biofilm Development by Producing Reactive Oxygen Species that Damage Biological Molecules

    Science.gov (United States)

    Kimyon, Önder; Das, Theerthankar; Ibugo, Amaye I.; Kutty, Samuel K.; Ho, Kitty K.; Tebben, Jan; Kumar, Naresh; Manefield, Mike

    2016-01-01

    Prodigiosin is a heterocyclic bacterial secondary metabolite belonging to the class of tripyrrole compounds, synthesized by various types of bacteria including Serratia species. Prodigiosin has been the subject of intense research over the last decade for its ability to induce apoptosis in several cancer cell lines. Reports suggest that prodigiosin promotes oxidative damage to double-stranded DNA (dsDNA) in the presence of copper ions and consequently leads to inhibition of cell-cycle progression and cell death. However, prodigiosin has not been previously implicated in biofilm inhibition. In this study, the link between prodigiosin and biofilm inhibition through the production of redox active metabolites is presented. Our study showed that prodigiosin (500 μM) (extracted from Serratia marcescens culture) and a prodigiosin/copper(II) (100 μM each) complex have strong RNA and dsDNA cleaving properties while they have no pronounced effect on protein. Results support a role for oxidative damage to biomolecules by H2O2 and hydroxyl radical generation. Further, it was demonstrated that reactive oxygen species scavengers significantly reduced the DNA and RNA cleaving property of prodigiosin. P. aeruginosa cell surface hydrophobicity and biofilm integrity were significantly altered due to the cleavage of nucleic acids by prodigiosin or the prodigiosin/copper(II) complex. In addition, prodigiosin also facilitated the bactericidal activity. The ability of prodigiosinto cause nucleic acid degradation offers novel opportunities to interfere with extracellular DNA dependent bacterial biofilms. PMID:27446013

  3. Serratia secondary metabolite prodigiosin inhibit Pseudomonas aeruginosa biofilm development by producing reactive oxygen species that damage biological molecules.

    Directory of Open Access Journals (Sweden)

    Onder eKimyon

    2016-06-01

    Full Text Available Prodigiosin is a heterocyclic bacterial secondary metabolite belonging to the class of tripyrrole compounds, synthesized by various types of bacteria including Serratia species. Prodigiosin has been the subject of intense research over the last decade for its ability to induce apoptosis in several cancer cell lines. Reports suggest that prodigiosin promotes oxidative damage to double-stranded DNA (dsDNA in the presence of copper ions and consequently leads to inhibition of cell-cycle progression and cell death. However, prodigiosin has not been previously implicated in biofilm inhibition. In this study, the link between prodigiosin and biofilm inhibition through the production of redox active metabolites is presented. Our study showed that prodigiosin (500 µM (extracted from Serratia marcescens culture and a prodigiosin/copper(II (100 µM each complex have strong RNA and dsDNA cleaving properties while they have no pronounced effect on protein. Results support a role for oxidative damage to biomolecules by H2O2 and hydroxyl radical generation. Further, it was demonstrated that reactive oxygen species scavengers significantly reduced the DNA and RNA cleaving property of prodigiosin. P. aeruginosa cell surface hydrophobicity and biofilm integrity were significantly altered due to the cleavage of nucleic acids by prodigiosin or the prodigiosin/copper(II complex. In addition, prodigiosin also facilitated the bactericidal activity. The ability of prodigiosin to cause nucleic acid degradation offers novel opportunities to interfere with extracellular DNA dependent bacterial biofilms.

  4. CS5931, a Novel Polypeptide in Ciona savignyi, Represses Angiogenesis via Inhibiting Vascular Endothelial Growth Factor (VEGF and Matrix Metalloproteinases (MMPs

    Directory of Open Access Journals (Sweden)

    Ge Liu

    2014-03-01

    Full Text Available CS5931 is a novel polypeptide from Ciona savignyi with anticancer activities. Previous study in our laboratory has shown that CS5931 can induce cell death via mitochondrial apoptotic pathway. In the present study, we found that the polypeptide could inhibit angiogenesis both in vitro and in vivo. CS5931 inhibited the proliferation, migration and formation of capillary-like structures of HUVECs (Human Umbilical Vein Endothelial Cell in a dose-dependent manner. Additionally, CS5931 repressed spontaneous angiogenesis of the zebrafish vessels. Further studies showed that CS5931 also blocked vascular endothelial growth factor (VEGF production but without any effect on its mRNA expression. Moreover, CS5931 reduced the expression of matrix metalloproteinases (MMP-2 and MMP-9 both on protein and mRNA levels in HUVEC cells. We demonstrated that CS5931 possessed strong anti-angiogenic activity both in vitro and in vivo, possible via VEGF and MMPs. This study indicates that CS5931 has the potential to be developed as a novel therapeutic agent as an inhibitor of angiogenesis for the treatment of cancer.

  5. The Pseudomonas aeruginosa autoinducer dodecanoyl-homoserine lactone inhibits the putrescine synthesis in human cells

    DEFF Research Database (Denmark)

    Kristiansen, S.; Bjarnsholt, Thomas; Adeltoft, D.;

    2008-01-01

    Pseudomonas aeruginosa uses acyl-homoserine lactones to coordinate gene transcription in a process called quorum sensing (QS). The QS molecules C-4-HSL and C-12-oxo-HSL are synthesized from the universal precursor S-adenosyl methionine, which is also a precursor of polyamines in human cells...... protein, which translocates from the nuclear compartment to the cytoplasm in a phosphorylation-dependent manner. We observed that C-12-HSL-treated human epidermal cells had a higher cytoplasm-to-nuclear ITAF45 protein concentration and this translocation was dependent on the dephosphorylation of ITAF45....... Finally, C-12-HSL-treated cells also had a time-course-dependent higher concentration of ODC mRNA. Based on these mitotic markers, more human cells were apparently trapped in the mitotic phase when treated with C-12-HSL. This should normally imply higher levels of putrescine. However, C-12-HSL...

  6. Suppressing Akt phosphorylation and activating Fas by safrole oxide inhibited angiogenesis and induced vascular endothelial cell apoptosis in the presence of fibroblast growth factor-2 and serum.

    Science.gov (United States)

    Zhao, Jing; Miao, Junying; Zhao, Baoxiang; Zhang, Shangli; Yin, Deling

    2006-01-01

    At present, vascular endothelial cell (VEC) apoptosis induced by deprivation of fibroblast growth factor-2 (FGF-2) and serum has been well studied. But how to trigger VEC apoptosis in the presence of FGF-2 and serum is not well known. To address this question, in this study, the effects of safrole oxide on angiogenesis and VEC growth stimulated by FGF-2 were investigated. The results showed that safrole oxide inhibited angiogenesis and induced VEC apoptosis in the presence of FGF-2 and serum. To understand the possible mechanism of safrole oxide acting, we first examined the phosphorylation of Akt and the activity of nitric oxide synthase (NOS); secondly, we analyzed the expressions and distributions of Fas and P53; then we measured the activity of phosphatidylcholine specific phospholipase C (PC-PLC) in the VECs treated with and without safrole oxide. The results showed that this small molecule obviously suppressed Akt phosphorylation and the activity of NOS, and promoted the expressions of Fas and P53 markedly. Simultaneously, Fas protein clumped on cell membrane, instead of homogenously distributed. The activity of PC-PLC was not changed obviously. The data suggested that safrole oxide effectively inhibited angiogenesis and triggered VEC apoptosis in the presence of FGF-2 and serum, and it might perform its functions by suppressing Akt/NOS signal pathway, upregulating the expressions of Fas and P53 and modifying the distributing pattern of Fas in VEC. This finding provided a powerful chemical probe for promoting VEC apoptosis during angiogenesis stimulated by FGF-2.

  7. Inhibition of Tumor Angiogenesis and Tumor Growth by the DSL Domain of Human Delta-Like 1 Targeted to Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Xing-Cheng Zhao

    2013-07-01

    Full Text Available The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of newdrug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation of Notch pathway to prevent tumor angiogenesis might be an alternative choice. However, an in vivo deliverable reagent with highly efficient Notch-activating capacity has not been developed. Here, we generated a polypeptide, hD1R, which consists of the Delta-Serrate-Lag-2 fragment of the human Notch ligand Delta-like 1 and an arginine-glycine-aspartate (RGD motif targeting endothelial cells (ECs. We showed that hD1R could bind to ECs specifically through its RGD motif and effectively triggered Notch signaling in ECs. We demonstrated both in vitro and in vivo that hD1R inhibited angiogenic sprouting and EC proliferation. In tumor-bearing mice, the injection of hD1R effectively repressed tumor growth, most likely through increasing tumor hypoxia and tissue necrosis. The amount and width of vessels reduced remarkably in tumors of mice treated with hD1R. Moreover, vessels in tumors of mice treated with hD1R recruited more NG2+ perivascular cells and were better perfused. Combined application of hD1R and chemotherapy with cisplatin and teniposide revealed that these two treatments had additive antitumor effects. Our study provided a new strategy for antiangiogenic tumor therapy.

  8. Inactivated Pseudomonas aeruginosa inhibits hypoxia-induced pulmonary hypertension by preventing TGF-β1/Smad signaling.

    Science.gov (United States)

    Chai, S D; Liu, T; Dong, M F; Li, Z K; Tang, P Z; Wang, J T; Ma, S J

    2016-01-01

    Pseudomonas aeruginosa is one of the common colonizing bacteria of the human body and is an opportunistic pathogen frequently associated with respiratory infections. Inactivated P. aeruginosa (IPA) have a variety of biological effects against inflammation and allergy. Transforming growth factor-β (TGF-β) signaling plays a critical role in the regulation of cell growth, differentiation, and development in a wide range of biological systems. The present study was designed to investigate the effects of IPA on TGF-β/Smad signaling in vivo, using a hypoxia-induced pulmonary hypertension (PH) rat model. Sprague Dawley rats (n=40) were exposed to 10% oxygen for 21 days to induce PH. At the same time, IPA was administered intravenously from day 1 to day 14. Mean pulmonary artery pressure (mPAP) and the right ventricle (RV) to left ventricle plus the interventricular septum (LV+S) mass ratio were used to evaluate the development of PH. Vessel thickness and density were measured using immunohistochemistry. Primary arterial smooth muscle cells (PASMCs) were isolated and the proliferation of PASMCs was assayed by flow cytometry. The production of TGF-β1 in cultured supernatant of PASMCs was assayed by ELISA. The expression levels of α-smooth muscle actin (α-SMA), TGF-β1 and phospho-Smad 2/3 in PASMCs were assayed by western blot. Our data indicated that IPA attenuated PH, RV hypertrophy and pulmonary vascular remodeling in rats, which was probably mediated by restraining the hypoxia-induced overactive TGF-β1/Smad signaling. In conclusion, IPA is a promising protective treatment in PH due to the inhibiting effects on TGF-β1/Smad 2/3 signaling. PMID:27580007

  9. OXA-18, a class D clavulanic acid-inhibited extended-spectrum beta-lactamase from Pseudomonas aeruginosa.

    Science.gov (United States)

    Philippon, L N; Naas, T; Bouthors, A T; Barakett, V; Nordmann, P

    1997-01-01

    Clinical isolate Pseudomonas aeruginosa Mus showed resistance both to extended-spectrum cephalosporins and to aztreonam. We detected a typical double-disk synergy image when ceftazidime or aztreonam was placed next to a clavulanic acid disk on an agar plate. This resistance phenotype suggested the presence of an extended-spectrum beta-lactamase. Isoelectric focusing revealed that this strain produced three beta-lactamases, of pI 5.5, 7.4, and 8.2. A 2.6-kb Sau3A fragment encoding the extended-spectrum beta-lactamase of pI 5.5 was cloned from P. aeruginosa Mus genomic DNA. This enzyme, named OXA-18, had a relative molecular mass of 30.6 kDa. OXA-18 has a broad substrate profile, hydrolyzing amoxicillin, ticarcillin, cephalothin, ceftazidime, cefotaxime, and aztreonam, but not imipenem or cephamycins. Its activity was totally inhibited by clavulanic acid at 2 microg/ml. Hydrolysis constants of OXA-18 (Vmax, Km) confirmed the MIC results. Cloxacillin and oxacillin hydrolysis was noticeable with the partially purified OXA-18. The blaOXA-18 gene encodes a 275-amino-acid protein which has weak identity with all class D beta-lactamases except OXA-9 and OXA-12 (45 and 42% amino acid identity, respectively). OXA-18 is likely to be chromosomally encoded since no plasmid was found in the strain and because attempts to transfer the resistance marker failed. OXA-18 is peculiar since it is a class D beta-lactamase which confers high resistance to extended-spectrum cephalosporins and seems to have unique hydrolytic properties among non-class A enzymes. PMID:9333046

  10. The inhibition of angiogenesis and tumor growth by denbinobin is associated with the blocking of insulin-like growth factor-1 receptor signaling.

    Science.gov (United States)

    Tsai, An-Chi; Pan, Shiow-Lin; Lai, Chin-Yu; Wang, Chih-Ya; Chen, Chien-Chih; Shen, Chien-Chang; Teng, Che-Ming

    2011-07-01

    Denbinobin, which is a phenanthraquinone derivative present in the stems of Ephemerantha lonchophylla, has been demonstrated to display antitumor activity. Recent reports suggest that the enhanced activity of insulin-like growth factor-1 receptor (IGF-1R) is closely associated with tumor angiogenesis and growth. This study aims at investigating the roles of denbinobin in suppressing these effects and at further elucidating the underlying molecular mechanisms. In the present study, we used an in vivo xenograft model antitumor and the Matrigel implant assays to show that denbinobin suppresses lung adenocarcinoma A549 growth and microvessel formation. Additionally, crystal violet and capillary-like tube formation assays indicated that denbinobin selectively inhibits insulin-like growth factor-1 (IGF-1)-induced proliferation (GI50=1.3×10⁻⁸ M) and tube formation of human umbilical vascular endothelial cells (HUVECs) without influencing the effect of epidermal growth factor; vascular endothelial growth factor and basic fibroblast growth factor. Furthermore, denbinobin inhibited the IGF-1-induced migration of HUVECs in a concentration-dependent fashion. Western blotting and immunoprecipitation demonstrated that denbinobin causes more efficient inhibition of IGF-1-induced activation of IGF-1R and its downstream signaling targets, including , extracellular signal-regulated kinase, Akt, mTOR, p70S6K, 4EBP and cyclin D1. All of our results provide evidences that denbinobin suppresses the activation of IGF-1R and its downstream signaling pathway, which leads to the inhibition of angiogenesis. Our findings suggest that denbinobin may be a novel IGF-1R kinase inhibitor and has potential therapeutic abilities for angiogenesis-related diseases such as cancer. PMID:20951021

  11. Biofilm Filtrates of Pseudomonas aeruginosa Strains Isolated from Cystic Fibrosis Patients Inhibit Preformed Aspergillus fumigatus Biofilms via Apoptosis.

    Science.gov (United States)

    Shirazi, Fazal; Ferreira, Jose A G; Stevens, David A; Clemons, Karl V; Kontoyiannis, Dimitrios P

    2016-01-01

    Pseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af) colonize cystic fibrosis (CF) patient airways. Pa culture filtrates inhibit Af biofilms, and Pa non-CF, mucoid (Muc-CF) and nonmucoid CF (NMuc-CF) isolates form an ascending inhibitory hierarchy. We hypothesized this activity is mediated through apoptosis induction. One Af and three Pa (non-CF, Muc-CF, NMuc-CF) reference isolates were studied. Af biofilm was formed in 96 well plates for 16 h ± Pa biofilm filtrates. After 24 h, apoptosis was characterized by viability dye DiBAc, reactive oxygen species (ROS) generation, mitochondrial membrane depolarization, DNA fragmentation and metacaspase activity. Muc-CF and NMuc-CF filtrates inhibited and damaged Af biofilm (pbiofilms (3.7- fold) compared to treatment with filtrates from Muc-CF- (2.5- fold) or non-CF Pa (1.7- fold). Depolarization of mitochondrial potential was greater upon exposure to NMuc-CF (2.4-fold) compared to Muc-CF (1.8-fold) or non-CF (1.25-fold) (pbiofilm, compared to control, mediated by metacaspase activation. In conclusion, filtrates from CF-Pa isolates were more inhibitory against Af biofilms than from non-CF. The apoptotic effect involves mitochondrial membrane damage associated with metacaspase activation.

  12. Inhibition of marine Vibrio sp. by pyoverdine from Pseudomonas aeruginosa PA1.

    Science.gov (United States)

    Zhang, Weiwei; Liang, Weikang; Li, Chenghua

    2016-01-25

    Siderophores are low-molecular-weight chemicals that are secreted by many microorganisms to chelate iron from the external environment in order to facilitate their growth and diverse metabolisms. In this study, a fluorescent siderophore, pyoverdine, secreted by Pseudomonas aeruginosa PA1 was purified by affinity chromatography using Cu-sepharose. Pyoverdine was determined to have a molecular mass of 1333.54 Da, as determined by MALDI-TOF/TOF, and belong to type I pyoverdine, as determined by PCR analysis of its corresponding outer membrane ferri-pyoverdine receptor. Pyoverdine showed different degrees of inhibitory effects on the growth of marine Vibrio sp. strains. It was also shown that the biofilm developed by Vibrio parahaemolyticus WzW1 and Wz2121 and Vibrio cyclitrophicus HS12 was significantly reduced, alone with the repressed growth in the presence of pyoverdine. Siderophore production was determined in the strains of Vibrio sp. in response to the pyoverdine-induced iron-limited conditions. The siderophore production of most Vibrio sp. was up-regulated, with the exception of the bacteria that produced little siderophore. Furthermore, Apostichopus japonicus cultured in pyoverdine pretreated seawater showed a relative percent of survival of 89% when they were challenged by Vibrio splendidus. Our results demonstrated that pyoverdine may be a promising agent that could be potentially applied to treat vibriosis. PMID:26476308

  13. Antagonizing the αv β3 integrin inhibits angiogenesis and impairs woven but not lamellar bone formation induced by mechanical loading.

    Science.gov (United States)

    Tomlinson, Ryan E; Schmieder, Anne H; Quirk, James D; Lanza, Gregory M; Silva, Matthew J

    2014-09-01

    Angiogenesis and osteogenesis are critically linked, although the role of angiogenesis is not well understood in osteogenic mechanical loading. In this study, either damaging or non-damaging cyclic axial compression was used to generate woven bone formation (WBF) or lamellar bone formation (LBF), respectively, at the mid-diaphysis of the adult rat forelimb. αv β3 integrin-targeted nanoparticles or vehicle was injected intravenously after mechanical loading. β3 integrin subunit expression on vasculature was maximal 7 days after damaging mechanical loading, but was still robustly expressed 14 days after loading. Accordingly, targeted nanoparticle delivery in WBF-loaded limbs was increased compared with non-loaded limbs. Vascularity was dramatically increased after WBF loading (+700% on day 14) and modestly increased after LBF loading (+50% on day 14). This increase in vascularity was inhibited by nanoparticle treatment in both WBF- and LBF-loaded limbs at days 7 and 14 after loading. Decreased vascularity led to diminished woven, but not lamellar, bone formation. Decreased woven bone formation resulted in impaired structural properties of the skeletal repair, particularly in post-yield behavior. These results demonstrate that αv β3 integrin-mediated angiogenesis is critical for recovering fracture resistance after bone injury but is not required for bone modeling after modest mechanical strain. © 2014 American Society for Bone and Mineral Research. PMID:24644077

  14. Bevacizumab Inhibits Breast Cancer-Induced Osteolysis, Surrounding Soft Tissue Metastasis, and Angiogenesis in Rats as Visualized by VCT and MRI

    Directory of Open Access Journals (Sweden)

    Tobias Bäuerle

    2008-05-01

    Full Text Available The aim of this study was to evaluate the effect of an antiangiogenic treatment with the vascular endothelial growth factor antibody bevacizumab in an experimental model of breast cancer bone metastasis and to monitor osteolysis, soft tissue tumor, and angiogenesis in bone metastasis noninvasively by volumetric computed tomography (VCT and magnetic resonance imaging (MRI. After inoculation of MDA-MB-231 human breast cancer cells into nude rats, bone metastasis was monitored with contrast-enhanced VCT and MRI from day 30 to day 70 after tumor cell inoculation, respectively. Thereby, animals of the treatment group (10 mg/kg bevacizumab IV weekly, n = 15 were compared with sham-treated animals (n = 17. Treatment with bevacizumab resulted in a significant difference versus control in osteolytic as well as soft tissue lesion sizes (days 50 to 70 and 40 to 70 after tumor cell inoculation, respectively; P < .05. This observation was paralleled with significantly reduced vascularization in the treatment group as shown by reduced increase in relative signal intensity in dynamic contrast-enhanced MRI from days 40 to 70 (P < .05. Contrast-enhanced VCT and histology confirmed decreased angiogenesis as well as new bone formation after application of bevacizumab. In conclusion, bevacizumab significantly inhibited osteolysis, surrounding soft tissue tumor growth, and angiogenesis in an experimental model of breast cancer bone metastasis as visualized by VCT and MRI.

  15. Blocking S1P interaction with S1P{sub 1} receptor by a novel competitive S1P{sub 1}-selective antagonist inhibits angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yasuyuki, E-mail: y.fujii@po.rd.taisho.co.jp [Department of Molecular Function and Pharmacology Laboratories, Taisho Pharmaceutical Co. Ltd., 1-403 Saitama, Saitama 331-9530 (Japan); Ueda, Yasuji; Ohtake, Hidenori; Ono, Naoya; Takayama, Tetsuo; Nakazawa, Kiyoshi [Department of Molecular Function and Pharmacology Laboratories, Taisho Pharmaceutical Co. Ltd., 1-403 Saitama, Saitama 331-9530 (Japan); Igarashi, Yasuyuki [Laboratory of Biomembrane and Biofunctional Chemistry, Hokkaido University, Sapporo, Hokkaido 060-0812 (Japan); Goitsuka, Ryo [Division of Development and Aging, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba 278-0022 (Japan)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer The effect of a newly developed S1P{sub 1}-selective antagonist on angiogenic responses. Black-Right-Pointing-Pointer S1P{sub 1} is a critical component of VEGF-related angiogenic responses. Black-Right-Pointing-Pointer S1P{sub 1}-selective antagonist showed in vitro activity to inhibit angiogenesis. Black-Right-Pointing-Pointer S1P{sub 1}-selective antagonist showed in vivo activity to inhibit angiogenesis. Black-Right-Pointing-Pointer The efficacy of S1P{sub 1}-selective antagonist for anti-cancer therapies. -- Abstract: Sphingosine 1-phosphate receptor type 1 (S1P{sub 1}) was shown to be essential for vascular maturation during embryonic development and it has been demonstrated that substantial crosstalk exists between S1P{sub 1} and other pro-angiogenic growth factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor. We developed a novel S1P{sub 1}-selective antagonist, TASP0277308, which is structurally unrelated to S1P as well as previously described S1P{sub 1} antagonists. TASP0277308 inhibited S1P- as well as VEGF-induced cellular responses, including migration and proliferation of human umbilical vein endothelial cells. Furthermore, TASP0277308 effectively blocked a VEGF-induced tube formation in vitro and significantly suppressed tumor cell-induced angiogenesis in vivo. These findings revealed that S1P{sub 1} is a critical component of VEGF-related angiogenic responses and also provide evidence for the efficacy of TASP0277308 for anti-cancer therapies.

  16. T11TS inhibits Angiopoietin-1/Tie-2 signaling, EGFR activation and Raf/MEK/ERK pathway in brain endothelial cells restraining angiogenesis in glioma model.

    Science.gov (United States)

    Bhattacharya, Debanjan; Chaudhuri, Suhnrita; Singh, Manoj Kumar; Chaudhuri, Swapna

    2015-06-01

    Malignant gliomas represent one of the most aggressive and hypervascular primary brain tumors. Angiopoietin-1, the peptide growth factor activates endothelial Tie-2 receptor promoting vessel maturation and vascular stabilization steps of angiogenesis in glioma. Epidermal growth factor receptor (EGFR) and Tie-2 receptor on endothelial cells once activated transmits signals through downstream Raf/MEK/ERK pathway promoting endothelial cell proliferation and migration which are essential for angiogenesis induction. The in vivo effect of sheep erythrocyte membrane glycopeptide T11-target structure (T11TS) on angiopoietin-1/Tie-2 axis, EGFR signaling and Raf/MEK/ERK pathway in glioma associated endothelial cells has not been investigated previously. The present study performed with rodent glioma model aims to investigate the effect of T11TS treatment on angiopoietin-1/Tie-2 signaling, EGFR activity and Raf/MEK/ERK pathway in glioma associated endothelial cells within glioma milieu. T11TS administration in rodent glioma model inhibited angiopoietin-1 expression and attenuated Tie-2 expression and activation in glioma associated brain endothelial cells. T11TS treatment also downregulated total and phosphorylated EGFR expression in glioma associated endothelial cells. Additionally T11TS treatment inhibited Raf-1 expression, MEK-1 and ERK-1/2 expression and phosphorylation in glioma associated brain endothelial cells. Thus T11TS therapy remarkably inhibits endothelial angiopoietin-1/Tie-2 signaling associated with vessel maturation and simultaneously antagonizes endothelial cell proliferation signaling by blocking EGFR activation and components of Raf/MEK/ERK pathway. Collectively, the findings demonstrate a multi-targeted anti-angiogenic activity of T11TS which augments the potential for clinical translation of T11TS as an effective angiogenesis inhibitor for glioma treatment.

  17. Cancer gene therapy targeting angiogenesis: An updated review

    OpenAIRE

    Liu, Ching-Chiu; Shen, Zan; Kung, Hsiang-Fu; Lin, Marie CM

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971, scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of anti-angiogenesis therapy. Transfer of anti-angiogenesis genes has received attention recently not only because of the advancement of recombinant vectors, but also because of the localized an...

  18. Down-regulation of MTA1 protein leads to the inhibition of migration, invasion, and angiogenesis of non-small-cell lung cancer cell line

    Institute of Scientific and Technical Information of China (English)

    Shuhai Li; Hui Tian; Weiming Yue; Lin Li; Cun Gao; Libo Si; Wenjun Li

    2013-01-01

    Metastasis-associated protein 1 (MTA1) high expression has been detected in a wide variety of human aggressive tumors and plays important roles in the malignant biological behaviors such as invasion,metastasis,and angiogenesis.However,the specific roles and mechanisms of MTA1 protein in regulating the malignant behaviors of non-small-cell lung cancer (NSCLC) cells still remain unclear.To elucidate the detailed functions of MTA1 protein,we down-regulated the MTA1 protein expression in NSCLC cell line by RNA interference (RNAi) in vitro,and found that down-regulation of MTA1 protein significantly inhibited the migration and invasion potentials of 95D cells.Further research revealed that down-reguiation of MTA1 protein significantly decreased the activity of matrix metalloproteinase-9,which could be the mechanism responsible for the inhibition of 95D cells migration and invasion.In addition,the tube formation assay demonstrated that the number of complete tubes induced by the conditioned medium of MTA1-siRNA 95D cells was significantly smaller than that of 95D cells.These findings demonstrate that MTA1 protein plays important roles in regulating the migration,invasion,and angiogenesis potentials of 95D cells,suggesting that MTA1 protein down-regulation by RNAi might be a novel therapeutic approach to inhibit the progression of NSCLC.

  19. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice

    Science.gov (United States)

    The growth of new blood vessels or angiogenesis is necessary for the growth of adipose tissue. Dietary polyphenols may suppress growth of adipose tissue through their antiangiogenic activity and by modulating adipocyte metabolism. In the present study, we examined the effect of curcumin, a polyphen...

  20. Recombinant snake venom cystatin inhibits tumor angiogenesis in vitro and in vivo associated with downregulation of VEGF-A165, Flt-1 and bFGF.

    Science.gov (United States)

    Xie, Qun; Tang, Nanhong; Wan, Rong; Qi, Yuanlin; Lin, Xu; Lin, Jianyin

    2013-05-01

    Previous studies have shown that recombinant snake venom cystatin (sv-cystatin) inhibits the invasion and metastasis of tumor cells in vitro and in vivo. The purpose of this study was to investigate the ability of recombinant sv-cystatin to inhibit tumor angiogenesis in vitro and in vivo, and the mechanisms underlying this effect. Recombinant sv-cystatin inhibited proliferation of human umbilical vein endothelial cells (HUVECs) at 100 and 200 μg/mL after 72, 96 and 120 h. Recombinant sv-cystatin also inhibited tumor-endothelial cell adhesion at 25, 50, 100 and 200 μg/mL. Recombinant sv-cystatin inhibited capillary-like tube formation by HUVECs at 10, 25, 50, 100 and 200 μg/mL following 12, 24 and 36 h incubation. Furthermore, recombinant sv-cystatin significantly suppressed microvessel density (MVD) of lung tumor colonies in C57BL/6 mice inoculated in the lateral tail vein with B16F10 melanoma cells. Administration of recombinant sv-cystatin significantly decreased MVD of primary tumor tissues in nude mice implanted subcutaneously with human hepatocellular carcinoma cells (MHCC97H). Exposure of B16F10 and MHCC97H cells to increasing doses of recombinant sv-cystatin suppressed secretion of vascular endothelial growth factor (VEGF)-A165 and basic fibroblast growth factor (bFGF) into the surrounding medium (P cystatin (P cystatin inhibits tumor angiogenesis associated with downregulation of VEGF-A165, Flt-1 and bFGF. This suggests that recombinant sv-cystatin may have potential pharmaceutical applications as an antiangiogenic and antimetastatic therapeutic agent.

  1. BEL-1, a Novel Clavulanic Acid-Inhibited Extended-Spectrum β-Lactamase, and the Class 1 Integron In120 in Pseudomonas aeruginosa

    Science.gov (United States)

    Poirel, Laurent; Brinas, Laura; Verlinde, Annemie; Ide, Louis; Nordmann, Patrice

    2005-01-01

    Screening by a double-disk synergy test identified a Pseudomonas aeruginosa isolate that produced a clavulanic acid-inhibited expanded-spectrum β-lactamase (ESBL). Cloning and sequencing identified a novel ESBL, BEL-1, weakly related to other Ambler class A ESBLs. β-Lactamase BEL-1 hydrolyzed significantly most expanded-spectrum cephalosporins and aztreonam, and its activity was inhibited by clavulanic acid, tazobactam, cefoxitin, moxalactam, and imipenem. This chromosome-encoded ESBL gene was embedded in a class 1 integron containing three other gene cassettes. In addition, this integron was bracketed by Tn1404 transposon sequences at its right end and by P. aeruginosa-specific sequences at its left end. PMID:16127048

  2. Screening of BADH Activity of Borreria articularies (Linn. for the Inhibition of P. aeruginosa

    Directory of Open Access Journals (Sweden)

    Md Shamsuddin Sultan Khan

    2014-08-01

    Full Text Available Purposes: The present study was designed to investigate the antibacterial activities of the Ethanol and methanol extracts of the leaves of the plant Borreria articularies (Linn. effects on microbial growth inhibition in vitro, microbial cells in vivo and molecular enzyme (BADH targets in vitro.Methods: The preliminary phytochemicals of the extracts was determined by the standard methods and aliquoted with Thin Layer Chromatography (TLC and stored at 2-4oC. fluorescein diacetate (FDA and ethidium bromide (EB live-dead cell viability test for distinguishing the membrane active phytochemicals of the plant extract.  Betaine aldehyde dehydrogenase (BADH activity was assessed by spectrophotometer. Alkaloids, glycosides, steroids, gums, saponin and reducing sugar were found in extracts.Results: The results of the disc diffusion indicated that the crude extracts were able to inhibit the growth of bacteria within a concentration range of 0.5 to 2.0 mg/mL. At a similar concentration range (0.5 to 2.0 mg/mL the extract inhibited the growth of 90.12% of the tested microorganisms. Bacterial cell viability was found minor in the phytochemicals of crude extract. Also, constituents of crude extract inhibited the BADH activity to protect the adaptation in stress environment of the bacteria.Conclusion: Results of the present study showed the possible use of the studied plants extracts in the control of bacterial infections.   

  3. Divalent metal addition restores sulfide-inhibited N2O reduction in Pseudomonas aeruginosa

    NARCIS (Netherlands)

    Bartacek, J.; Manconi, I.; Sansone, G.; Murgia, R.; Lens, P.N.L.

    2010-01-01

    Hydrogen sulfide (H2S) inhibits the last step of the denitrification process, i.e. the reduction of nitrous oxide (N2O) to dinitrogen gas (N-2), both in natural environments (marine sediments) and industrial processes (activated sludge, methanogenic sludge, BioDeNOx process). In a previously publish

  4. Tumor Angiogenesis: Insights and Innovations

    Directory of Open Access Journals (Sweden)

    Fernando Nussenbaum

    2010-01-01

    Full Text Available Angiogenesis is a vital process resulting in the formation of new blood vessels. It is normally a highly regulated process that occurs during human development, reproduction, and wound repair. However, angiogenesis can also become a fundamental pathogenic process found in cancer and several other diseases. To date, the inhibition of angiogenesis has been researched at both the bench and the bedside. While several studies have found moderate improvements when treating with angiogenesis inhibitors, greater success is being seen when the inhibition of angiogenesis is combined with other traditional forms of available therapy. This review summarizes several important angiogenic factors, examines new research and ongoing clinical trials for such factors, and attempts to explain how this new knowledge may be applied in the fight against cancer and other angiogenic-related diseases.

  5. Antibacterial phage ORFans of Pseudomonas aeruginosa phage LUZ24 reveal a novel MvaT inhibiting protein

    Directory of Open Access Journals (Sweden)

    Jeroen eWagemans

    2015-11-01

    Full Text Available The functional elucidation of small unknown phage proteins (‘ORFans’ presents itself as one of the major challenges of bacteriophage molecular biology. In this work, we mined the Pseudomonas aeruginosa infecting phage LUZ24 proteome for antibacterial and antibiofilm proteins against its host. Subsequently, their putative host target was identified. In one example, we observed an interaction between LUZ24 gp4 and the host transcriptional regulator MvaT. The polymerization of MvaT across AT-rich DNA strands permits gene silencing of foreign DNA, thereby limiting any potentially adverse effects of such DNA. Gel shift assays proved the inhibitory effect of LUZ24 gp4 on MvaT DNA binding activity. Therefore, we termed this gene product as Mip, the MvaT inhibiting protein. We hypothesize Mip prevents the AT-rich LUZ24 DNA from being physically blocked by MvaT oligomers right after its injection in the host cell, thereby allowing phage transcription and thus completion of the phage infection cycle.

  6. The inhibition of Pseudomonas aeruginosa biofilm formation by micafungin and the enhancement of antimicrobial agent effectiveness in BALB/c mice.

    Science.gov (United States)

    Kissoyan, Kohar Annie B; Bazzi, Wael; Hadi, Usamah; Matar, Ghassan M

    2016-08-01

    Micafungin inhibits biofilm formation by impeding 1,3-β-D-glucan synthesis in Candida albicans. Since Pseudomonas aeruginosa also has 1,3-β-D-glucan in its cell wall, this study assessed the effects of antibacterial agents in vitro and in vivo on micafungin-treated biofilm-forming P. aeruginosa isolates. After treatment with micafungin as well as with a panel of four antibacterial agents, biofilm production was significantly reduced as measured by spectrophotometry. The relative mRNA transcription levels for the genes encoding pellicles (pelC) and cell wall 1,3-β-D-glucan (ndvB), which were measured by quantitative reverse transcription PCR (qRT-PCR), significantly decreased with micafungin treatment. In vivo, the survival rates of P. aeruginosa-infected BALB/c mice significantly increased after combined treatment with micafungin and each of the antibacterial agents. Of these treatments, the combination of micafungin with levofloxacin had the highest survival rate; this combination was the most effective treatment against P. aeruginosa-induced infection. PMID:27347641

  7. Global Tumor RNA Expression in Early Establishment of Experimental Tumor Growth and Related Angiogenesis following Cox-Inhibition Evaluated by Microarray Analysis

    Directory of Open Access Journals (Sweden)

    Kent Lundholm

    2007-01-01

    Full Text Available Altered expression of COX-2 and overproduction of prostaglandins, particularly prostaglandin E2, are common in malignant tumors. Consequently, non-steroidal anti-inflammatory drugs (NSAIDs attenuate tumor net growth, tumor related cachexia, improve appetite and prolong survival. We have also reported that COX-inhibition (indomethacin interfered with early onset of tumor endothelial cell growth, tumor cell proliferation and apoptosis. It is however still unclear whether such effects are restricted to metabolic alterations closely related to eicosanoid pathways and corresponding regulators, or whether a whole variety of gene products are involved both up- and downstream effects of eicosanoids. Therefore, present experiments were performed by the use of an in vivo, intravital chamber technique, where micro-tumor growth and related angiogenesis were analyzed by microarray to evaluate for changes in global RNA expression caused by indomethacin treatment. Indomethacin up-regulated 351 and down-regulated 1852 genes significantly (p < 0.01; 1066 of these genes had unknown biological function. Genes with altered expression occurred on all chromosomes. Our results demonstrate that indomethacin altered expression of a large number of genes distributed among a variety of processes in the carcinogenic progression involving angiogenesis, apoptosis, cell-cycling, cell adhesion, inflammation as well as fatty acid metabolism and proteolysis. It remains a challenge to distinguish primary key alterations from secondary adaptive changes in transcription of genes altered by cyclooxygenase inhibition.

  8. A potential novel treatment strategy: inhibition of angiogenesis and inflammation by resveratrol for regression of endometriosis in an experimental rat model.

    Science.gov (United States)

    Ozcan Cenksoy, Pinar; Oktem, Mesut; Erdem, Ozlem; Karakaya, Cengiz; Cenksoy, Cahit; Erdem, Ahmet; Guner, Haldun; Karabacak, Onur

    2015-03-01

    The aim of our study was to evaluate the effectiveness of resveratrol in experimentally induced endometrial implants in rats through inhibiting angiogenesis and inflammation. Endometrial implants were surgically induced in 24 female Wistar-Albino rats in the first surgery. After confirmation of endometriotic foci in the second surgery, the rats were divided into resveratrol (seven rats), leuprolide acetate (eight rats), and control (seven rats) groups and medicated for 21 d. In the third surgery, the measurements of mean areas and histopathological analysis of endometriotic lesions, VEGF, and MCP-1 measurements in blood and peritoneal fluid samples, and immunohistochemical staining were evaluated. After treatment, significant reductions in mean areas of implants (p treatment were also significantly lower in the resveratrol and leuprolide acetate groups. Resveratrol appears to be a potential novel therapeutic agent in the treatment of endometriosis through inhibiting angiogenesis and inflammation. Further studies are needed to determine the optimum effective dose in humans and to evaluate other effects on reproductive physiology.

  9. Inhibitors of Angiogenesis.

    Science.gov (United States)

    Büning, H; Hacker, U T

    2016-01-01

    Angiogenesis plays a pivotal role in malignant, ischemic, inflammatory, infectious and immune disorders. The increasing molecular understanding of angiogenic processes fostered the development of strategies to induce or inhibit angiogenesis for therapeutic purposes. Here, we focus on anti-angiogenic therapies, which represent a standard of care in the treatment of different cancer types and in neovascular age-related macular degeneration. Specifically, strategies related to the blockade of angiogenic proteins and receptors will be outlined covering both preclinical and clinical aspects. Finally, examples of gene therapy based anti-angiogenic approaches are presented. PMID:27236560

  10. Downregulation of FoxM1 inhibits proliferation, invasion and angiogenesis of HeLa cells in vitro and in vivo.

    Science.gov (United States)

    Chen, Hong; Zou, Yang; Yang, Hong; Wang, Jingjing; Pan, Hong

    2014-12-01

    FoxM1 is a specific transcription factor that has an important function in aggressive human carcinomas, including cervical cancer. However, the specific function and internal molecular mechanism in cervical cancer remain unclear. In this study, RNAi-mediated FoxM1 knockdown inhibited cell growth. This process also decreased the migration and invasion activities of HeLa cells in vitro. Downregulation of FoxM1 inhibited tumor growth and angiogenesis in vivo. In addition, the expressions of uPA, matrix metalloproteinase (MMP)-2, MMP-9 and VEGF were significantly decreased in vitro and in vivo. These results suggested that the inactivation of FoxM1 could be a novel therapeutic target for cervical cancer treatment.

  11. EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression.

    Science.gov (United States)

    Gu, Jian-Wei; Makey, Kristina L; Tucker, Kevan B; Chinchar, Edmund; Mao, Xiaowen; Pei, Ivy; Thomas, Emily Y; Miele, Lucio

    2013-01-01

    The role of EGCG, a major green tea catechin in breast cancer therapy is poorly understood. The present study tests the hypothesis that EGCG can inhibit the activation of HIF-1α and NFκB, and VEGF expression, thereby suppressing tumor angiogenesis and breast cancer progression. Sixteen eight-wk-old female mice (C57BL/6 J) were inoculated with 10^6 E0771 (mouse breast cancer) cells in the left fourth mammary gland fat pad. Eight mice received EGCG at 50-100 mg/kg/d in drinking water for 4 weeks. 8 control mice received drinking water only. Tumor size was monitored using dial calipers. At the end of the experiment, blood samples, tumors, heart and limb muscles were collected for measuring VEGF expression using ELISA and capillary density (CD) using CD31 immunohistochemistry. EGCG treatment significantly reduced tumor weight over the control (0.37 ± 0.15 vs. 1.16 ± 0.30 g; P < 0.01), tumor CD (109 ± 20 vs. 156 ± 12 capillary #/mm^2; P < 0.01), tumor VEGF expression (45.72 ± 1.4 vs. 59.03 ± 3.8 pg/mg; P < 0.01), respectively. But, it has no effects on the body weight, heart weight, angiogenesis and VEGF expression in the heart and skeletal muscle of mice. EGCG at 50 μg/ml significantly inhibited the activation of HIF-1α and NFκB as well as VEGF expression in cultured E0771 cells, compared to the control, respectively. These findings support the hypothesis that EGCG, a major green tea catechin, directly targets both tumor cells and tumor vasculature, thereby inhibiting tumor growth, proliferation, migration, and angiogenesis of breast cancer, which is mediated by the inhibition of HIF-1α and NFκB activation as well as VEGF expression.

  12. Erlotinib-Cisplatin Combination Inhibits Growth and Angiogenesis through c-MYC and HIF-1α in EGFR-Mutated Lung Cancer In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Jasmine G. Lee

    2015-02-01

    Full Text Available Combination treatment for non–small cell lung cancer (NSCLC is becoming more popular due to the anticipation that it may be more effective than single drug treatment. In addition, there are efforts to genetically screen patients for specific mutations in light of attempting to administer specific anticancer agents that are most effective. In this study, we evaluate the anticancer and anti-angiogenic effects of low dose erlotinib-cisplatin combination in NSCLC in vitro and in vivo. In NSCLC cells harboring epidermal growth factor receptor (EGFR mutations, combination erlotinib-cisplatin treatment led to synergistic cell death, but there was minimal efficacy in NSCLC cells with wild-type EGFR. In xenograft models, combination treatment also demonstrated greater inhibition of tumor growth compared to individual treatment. The anti-tumor effect observed was secondary to the targeting of angiogenesis, evidenced by decreased vascular endothelial growth factor (VEGF levels and decreased levels of CD31 and microvessel density. Combination treatment targets angiogenesis through down-regulation of the c-MYC/hypoxia inducible factor 1-alpha (HIF-1α pathway. In fact, cell lines with EGFR exon 19 deletions expressed high basal levels of c-MYC and HIF-1α and correlate with robust responses to combination treatment. These results suggest that low dose erlotinib-cisplatin combination exhibits its anti-tumor activity by targeting angiogenesis through the modulation of the c-MYC/HIF-1α/VEGF pathway in NSCLC with EGFR exon 19 deletions. These findings may have significant clinical implications in patients with tumors harboring EGFR exon 19 deletions as they may be particularly sensitive to this regimen.

  13. Murine epidermal growth factor (EGF) fragment (33-42) inhibits both EGF- and laminin-dependent endothelial cell motility and angiogenesis.

    Science.gov (United States)

    Nelson, J; Allen, W E; Scott, W N; Bailie, J R; Walker, B; McFerran, N V; Wilson, D J

    1995-09-01

    Laminin, murine epidermal growth factor (mEGF), and the synthetic laminin peptide Lam.B1(925-933) (a linear peptide from the B1 chain of murine laminin, CDPGY1GSR-amide) all stimulate endothelial cell motility above basal rates, whereas a synthetic mEGF fragment, mEGF33-42 (a linear peptide from the C-loop of mEGF, acetyl-C-[S-Acm]-VIGYSGDR-C-[S-Acm]-amide), inhibits motility. In both human SK HEP-1 and embryonic chick endothelial cells, mEGF33-42 blocks both EGF- and laminin-stimulated locomotion of endothelial cells. In vivo, mEGF33-42 also blocks both laminin- and mEGF-induced angiogenesis in the chick. In the human cell line. Lam.B1(925-933) has an additive effect in coincubation with either laminin or mEGF, but it blocks their effects in the chick cells. Lam.B1(925-933) alone stimulates angiogenesis in the chick but blocks laminin-induced angiogenesis. Thus, mEGF33-42 acts as a general laminin antagonist, whereas Lam.B1(925-933) acts as a laminin agonist in human cells, but in chick cells it acts as a partial antagonist. We propose that the presence of an anionic group at the eighth residue of mEGF33-42 may be the source of the antagonistic effects seen with this peptide as compared with the laminin fragment. These findings have important implications in the design of human antiangiogenic agents, and also in the use of chick models in the study of human disease. PMID:7543818

  14. Inhibition of Quorum Sensing-Controlled Virulence Factor Production in Pseudomonas aeruginosa PAO1 by Ayurveda Spice Clove (Syzygium Aromaticum Bud Extract

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2012-03-01

    Full Text Available Quorum sensing controls the virulence determinants in most proteobacteria. In this work, the hexane, chloroform and methanol extracts of an Ayurveda spice, namely clove (Syzygium aromaticum, shown anti-quorum sensing activity. Hexane and methanol extracts of clove inhibited the response of C. violaceum CV026 to exogenously supplied N‑hexanoylhomoserine lactone, in turn preventing violacein production. Chloroform and methanol extracts of clove significantly reduced bioluminescence production by E. coli [pSB1075] grown in the presence of N-(3-oxododecanoyl-L-homoserine lactone. We demonstrated that clove extract inhibited quorum sensing-regulated phenotypes in Pseudomonas aeruginosa PA01, including expression of lecA::lux (by hexane extract, swarming (maximum inhibition by methanol extract, pyocyanin (maximum inhibition by hexane extract. This study shows that the presence of natural compounds that exhibit anti-quorum sensing activity in the clove extracts may be useful as the lead of anti-infective drugs.

  15. The Ape-1/Ref-1 redox antagonist E3330 inhibits the growth of tumor endothelium and endothelial progenitor cells: therapeutic implications in tumor angiogenesis.

    Science.gov (United States)

    Zou, Gang-Ming; Karikari, Collins; Kabe, Yasuaki; Handa, Hiroshi; Anders, Robert A; Maitra, Anirban

    2009-04-01

    The apurinic/apyrimidinic endonuclease 1/redox factor-1 (Ape-1/Ref-1) is a multi-functional protein, involved in DNA repair and the activation of redox-sensitive transcription factors. The Ape-1/Ref-1 redox domain acts as a cytoprotective element in normal endothelial cells, mitigating the deleterious effects of apoptotic stimuli through induction of survival signals. We explored the role of the Ape-1/Ref-1 redox domain in the maintenance of tumor-associated endothelium, and of endothelial progenitor cells (EPCs), which contribute to tumor angiogenesis. We demonstrate that E3330, a small molecule inhibitor of the Ape-1/Ref-1 redox domain, blocks the in vitro growth of pancreatic cancer-associated endothelial cells (PCECs) and EPCs, which is recapitulated by stable expression of a dominant-negative redox domain mutant. Further, E3330 blocks the differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) into CD31(+) endothelial progeny. Exposure of PCECs to E3330 results in a reduction of H-ras expression and intracellular nitric oxide (NO) levels, as well as decreased DNA-binding activity of the hypoxia-inducible transcription factor, HIF-1alpha. E3330 also reduces secreted and intracellular vascular endothelial growth factor expression by pancreatic cancer cells, while concomitantly downregulating the cognate receptor Flk-1/KDR on PCECs. Inhibition of the Ape-1/Ref-1 redox domain with E3330 or comparable angiogenesis inhibitors might be a potent therapeutic strategy in solid tumors.

  16. How phototherapy affects angiogenesis

    Science.gov (United States)

    Dyson, Mary

    2007-02-01

    Angiogenesis is essential for normal growth, tissue repair and regeneration. Its stimulation accelerates repair and regeneration including wound healing where these processes are delayed. Its inhibition can reduce the rate of growth of solid tumors. Phototherapy can accelerate the resolution of acute inflammation with the result that the proliferative phase of tissue repair, when angiogenesis occurs, begins earlier than in sham-irradiated controls. Evidence that angiogenesis is enhanced in dermal repair, tendon repair and bone regeneration in rodents is presented. The cellular mechanisms that control angiogenesis involve the interaction of endothelial cells, macrophages, pericytes and other cells in response, for example, to changes in the availability of oxygen in the local environment. Pericytes and macrophages modulate endothelial cell proliferation; pericytes guide endothelial cell migration. The stimulation of endothelial cell proliferation in vitro following exposure to red (660 nm) and infrared (820 nm) radiation, 15 mW, at 2-8 J/cm2 is presented. 1J/cm2 was ineffective. 820 nm irradiation, 15 mW, at 8 J/cm2 was observed to inhibit pericyte proliferation in vitro. Indirect effects on endothelial cell and pericyte proliferation followed stimulation of soluble mediator production by macrophages following exposure to red and infrared radiation. The potential clinical significance of the results obtained is discussed and the necessity of clinical trials emphasized.

  17. Angiogenesis and Anti-Angiogenic Treatments

    Directory of Open Access Journals (Sweden)

    Ersin Demirer

    2013-10-01

    Full Text Available Blood vessels in our body is developed by vasculogenesis and angiogenesis. There have been new advances in molecular pathology and tumor biology areas in recent years. Angiogenesis is modulated by the balance between angiogenic and anti-angiogenic factors. Angiogenesis plays a key role in tumor growth. Drugs inhibiting angiogenesis have been in use in various malign or non-malign diseases. Inhibition of angiogenesis in malign diseases is a very attractive subject in medicine and studies are going on about long term affects and toxicities. Inhibition of angiogenesis is not an only treatment choice alone. It is a supplemental treatment option applied with conventional chemotherapy, radiotherapy, surgery, immunotherapy and hormonal therapy. It has been used in colorectal carcinoma, renal cell carcinoma, non-small cell lung cancer, glioblastoma, heoatocellular carcinoma, pancreatic neuroendocrine tumor, tyroid medullary cancer.

  18. Discovery and characterization of a novel cyclic peptide that effectively inhibits ephrin binding to the EphA4 receptor and displays anti-angiogenesis activity.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Han

    Full Text Available The EphA4 receptor tyrosine kinase regulates a variety of physiological and pathological processes during neural development and the formation of tumor blood vessels; thus, it represents a new and promising therapeutic target. We used a combination of phage peptide display and computer modeling/docking approaches and discovered a novel cyclic nonapeptide, now designated TYY. This peptide selectively inhibits the binding of the ephrinA5 ligand with EphA4 and significantly blocks angiogenesis in a 3D matrigel culture system. Molecular docking reveals that TYY recognizes the same binding pocket on EphA4 that the natural ephrin ligand binds to and that the Tyr3 and Tyr4 side chains of TYY are both critical for the TYY/EphA4 interaction. The discovery of TYY introduces a valuable probe of EphA4 function and a new lead for EphA4-targeted therapeutic development.

  19. PF573,228 inhibits vascular tumor cell growth, migration as well as angiogenesis, induces apoptosis and abrogates PRAS40 and S6RP phosphorylation.

    Science.gov (United States)

    Mabeta, Peace

    2016-09-01

    PF573,228 is a compound that targets focal adhesion kinase (FAK), a non-receptor protein kinase, which is over-expressed in various tumors. The aim of this study was to evaluate the effects of PF573,228 on the cells derived from mouse vascular tumors, namely, endothelioma cells. The treatment of endothelioma cells with PF573,228 reduced their growth with an IC50 of approximately 4.6 μmol L-1 and inhibited cell migration with an IC50 of about 0.01 μmol L-1. Microscopic studies revealed morphological attributes of apoptosis. These observations were confirmed by ELISA, which showed increased caspase-3 activity. PF573,228 also inhibited angiogenesis in a dose-dependent manner, with an IC50 of approximately 3.7 μmol L-1, and abrogated the phosphorylation of cell survival proteins, proline-rich Akt substrate (PRAS40) and S6 ribosomal protein (S6RP). Array data further revealed that PF573,228 induced caspase-3 activation, thus promoting apoptosis. Since all the processes inhibited by PF573,228 provide important support to tumor survival and progression, the drug may have a potential role in the treatment of vascular tumors. PMID:27383888

  20. A novel action mechanism for MPT0G013, a derivative of arylsulfonamide, inhibits tumor angiogenesis through up-regulation of TIMP3 expression.

    Science.gov (United States)

    Wang, Chih-Ya; Liou, Jing-Ping; Tsai, An-Chi; Lai, Mei-Jung; Liu, Yi-Min; Lee, Hsueh-Yun; Wang, Jing-Chi; Pan, Shiow-Lin; Teng, Che-Ming

    2014-10-30

    Tissue inhibitors of metalloproteinases 3 (TIMP3) were originally characterized as inhibitors of matrix metalloproteinases (MMPs), acting as potent antiangiogenic proteins. In this study, we demonstrated that the arylsulfonamide derivative MPT0G013 has potent antiangiogenic activities in vitro and in vivo viainducing TIMP3 expression. Treatments with MPT0G013 significantly inhibited endothelial cell functions, such as cell proliferation, migration, and tube formation, as well as induced p21 and cell cycle arrest at the G0/G1 phase. Subsequent microarray analysis showed significant induction of TIMP3 gene expression by MPT0G013, and siRNA-mediated blockage of TIMP3 up-regulation abrogated the antiangiogenic activities of MPT0G013 and prevented inhibition of p-AKT and p-ERK proteins. Importantly, MPT0G013 exhibited antiangiogenic activities in in vivo Matrigel plug assays, inhibited tumor growth and up-regulated TIMP3 and p21 proteins in HCT116 mouse xenograft models. These data suggest potential therapeutic application of MPT0G013 for angiogenesis-related diseases such as cancer.

  1. Melittin inhibits tumor angiogenesis modulated by endothelial progenitor cells associated with the SDF-1α/CXCR4 signaling pathway in a UMR-106 osteosarcoma xenograft mouse model.

    Science.gov (United States)

    Qin, Gang; Chen, Yongqiang; Li, Haidong; Xu, Suyang; Li, Yumei; Sun, Jian; Rao, Wu; Chen, Chaowei; Du, Mindong; He, Kaiyi; Ye, Yong

    2016-07-01

    Endothelial progenitor cells (EPCs) are important in tumor angiogenesis. Stromal cell-derived factor-1α (SDF-1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4) are key in stem cell homing. Melittin, a component of bee venom, exerts antitumor activity, however, the underlying mechanisms remain to be elucidated. The present study aimed to assess the effects of melittin on EPCs and angiogenesis in a mouse model of osteosarcoma. UMR‑106 cells and EPCs were treated with various concentrations of melittin and cell viability was determined using the MTT assay. EPC adherence, migration and tube forming ability were assessed. Furthermore, SDF‑1α, AKT and extracellular signal‑regulated kinase (ERK)1/2 expression levels were detected by western blotting. Nude mice were inoculated with UMR‑106 cells to establish an osteosarcoma mouse model. The tumors were injected with melittin, and its effects were assessed by immunohistochemistry and immunofluorescence. Melittin decreased the viability of UMR‑106 cells and EPCs. In addition, it decreased EPC adhesion, migration and tube formation when compared with control and SDF‑1α‑treated cells. Melittin decreased the expression of phosphorylated (p)‑AKT, p‑ERK1/2, SDF‑1α and CXCR4 in UMR‑106 cells and EPCs when compared with the control. The proportions of cluster of differentiation (CD)34/CD133 double‑positive cells were 16.4±10.4% in the control, and 7.0±4.4, 2.9±1.2 and 1.3±0.3% in tumors treated with 160, 320 and 640 µg/kg melittin per day, respectively (P<0.05). At 11 days, melittin reduced the tumor size when compared with that of the control (control, 4.8±1.3 cm3; melittin, 3.2±0.6, 2.6±0.5, and 2.0±0.2 cm3 for 160, 320 and 640 µg/kg, respectively; all P<0.05). Melittin decreased the microvessel density, and SDF‑1α and CXCR4 protein expression levels in the tumors. Melittin may decrease the effect of osteosarcoma on EPC‑mediated angiogenesis, possibly via inhibition

  2. Vasa vasorum anti-angiogenesis through H2O2, HIF-1α, NF-κB, and iNOS inhibition by mangosteen pericarp ethanolic extract (Garcinia mangostana Linn in hypercholesterol-diet-given Rattus norvegicus Wistar strain

    Directory of Open Access Journals (Sweden)

    Wihastuti TA

    2014-08-01

    Full Text Available Titin Andri Wihastuti,1 Djanggan Sargowo,2 Askandar Tjokroprawiro,3 Nur Permatasari,4 Mohammad Aris Widodo,4 Setyowati Soeharto4 1Department of Biomedical, Medical Faculty, Brawijaya University, Malang, Indonesia; 2Department of Cardiology, Medical Faculty, Brawijaya University, Malang, Indonesia; 3Department of Endocrinology, Medical Faculty, Airlangga University, Surabaya, Indonesia; 4Department of Pharmacology, Medical Faculty, Brawijaya University, Malang, Indonesia Background: Oxidative stress in atherosclerosis produces H2O2 and triggers the activation of nuclear factor kappa beta (NF-κB and increase of inducible nitric oxide synthase (iNOS. The formation of vasa vasorum occurs in atherosclerosis. Vasa vasorum angiogenesis is mediated by VEGFR-1 and upregulated by hypoxia-inducible factor-1α (HIF-1α. The newly formed vasa vasorum are fragile and immature and thus increase plaque instability. It is necessary to control vasa vasorum angiogenesis by using mangosteen pericarp antioxidant. This study aims to demonstrate that mangosteen pericarp ethanolic extract can act as vasa vasorum anti-angiogenesis through H2O2, HIF-1α, NF-κB, and iNOS inhibition in rats given a hypercholesterol diet. Methods: This was a true experimental laboratory, in vivo posttest with control group design, with 20 Rattus norvegicus Wistar strain rats divided into five groups (normal group, hypercholesterol group, and hypercholesterol groups with certain doses of mangosteen pericarp ethanolic extract: 200, 400, and 800 mg/kg body weight. The parameters of this study were H2O2 measured by using colorimetric analysis, as well as NF-κB, iNOS, and HIF-1α, which were measured by using immunofluorescence double staining and observed with a confocal laser scanning microscope in aortic smooth muscle cell. The angiogenesis of vasa vasorum was quantified from VEGFR-1 level in aortic tissue and confirmed with hematoxylin and eosin staining. Results: Analysis of variance

  3. Angiogenesis Assays.

    Science.gov (United States)

    Nambiar, Dhanya K; Kujur, Praveen K; Singh, Rana P

    2016-01-01

    Neoangiogenesis constitutes one of the first steps of tumor progression beyond a critical size of tumor growth, which supplies a dormant mass of cancerous cells with the required nutrient supply and gaseous exchange through blood vessels essentially needed for their sustained and aggressive growth. In order to understand any biological process, it becomes imperative that we use models, which could mimic the actual biological system as closely as possible. Hence, finding the most appropriate model is always a vital part of any experimental design. Angiogenesis research has also been much affected due to lack of simple, reliable, and relevant models which could be easily quantitated. The angiogenesis models have been used extensively for studying the action of various molecules for agonist or antagonistic behaviour and associated mechanisms. Here, we have described two protocols or models which have been popularly utilized for studying angiogenic parameters. Rat aortic ring assay tends to bridge the gap between in vitro and in vivo models. The chorioallantoic membrane (CAM) assay is one of the most utilized in vivo model system for angiogenesis-related studies. The CAM is highly vascularized tissue of the avian embryo and serves as a good model to study the effects of various test compounds on neoangiogenesis. PMID:26608294

  4. Lycopene Enriched Tomato Extract Inhibits Hypoxia, Angiogenesis, and Metastatic Markers in early Stage N-Nitrosodiethylamine Induced Hepatocellular Carcinoma.

    Science.gov (United States)

    Bhatia, Nisha; Gupta, Prachi; Singh, Baljinder; Koul, Ashwani

    2015-01-01

    Targeting altered pathways during initial stage of hepatocellular carcinoma (HCC) development is viewed as an effective and promising strategy to control this disease. Present study investigated the potential effect of lycopene-enriched tomato extract (LycT) on hypoxia-induced factor (HIF)-1α, HOX, VEGF, CD31, matrix metalloproteinase (MMP)-2, MMP-9, and alpha fetoprotein (AFP)expression during initial stages of N-nitrosodiethylamine (NDEA) induced HCC. Female Balb/c mice (8-10 wk) were assigned to 4 groups: control, NDEA (200 mg NDEA i.p./kg body weight, cumulative), LycT (5 mg lycopene orally/kg body weight; 3 times a week), and LycT + NDEA. LycT treatment began 2 wk before NDEA administration and continued until the end of the 10 wk study. The onset of HCC by NDEA was associated with significant alteration in serum biochemical markers [alanine transaminases (ALT), aspartate transaminases (AST), and alkaline phosphatases (ALP), lactate dehydrogenase (LDH), urea, A/G ratio, and bilirubin] and in liver histopathology. LycT treatment significantly reduced the levels of these markers. LycT treatment to NDEA mice also led to significant reduction in protein levels of AFP, HIF-1α, VEGF, CD31, MMP-2, and MMP-9 in comparison with NDEA group alone. These parameters are important biomarkers of hypoxia, angiogenesis, and metastasis, which reflect the advanced disease stage. The study provides evidence that prophylactic dietary supplementation with LycT may counteract HCC progression and/or protect against disease onset. PMID:26474105

  5. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer-Part 2.

    Science.gov (United States)

    Sagar, S M; Yance, D; Wong, R K

    2006-06-01

    The herbalist has access to hundreds of years of observational data on the anticancer activity of many herbs. Laboratory studies are expanding the clinical knowledge that is already documented in traditional texts. The herbs that are traditionally used for anti-cancer treatment and that are anti-angiogenic through multiple interdependent processes (including effects on gene expression, signal processing, and enzyme activities) include Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (curcumin), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinalis (ginger), Panax ginseng, Rabdosia rubescens hora (Rabdosia), and Chinese destagnation herbs. Natural health products target molecular pathways other than angiogenesis, including epidermal growth factor receptor, the HER2/neu gene, the cyclo-oxygenase-2 enzyme, the nuclear factor kappa-B transcription factor, the protein kinases, the Bcl-2 protein, and coagulation pathways. Quality assurance of appropriate extracts is essential prior to embarking upon clinical trials. More data are required on dose-response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations. During active cancer therapy they should generally be evaluated in combination with chemotherapy and radiation. In this role, they act as modifiers of biologic response or as adaptogens, potentially enhancing the efficacy of the conventional therapies or reducing toxicity. Their effectiveness may be increased when multiple agents are used in optimal combinations. New designs for trials to demonstrate activity in human subjects are required. Although controlled trials may be preferable, smaller studies with appropriate endpoints and

  6. Inhibition of Aspergillus fumigatus and Its Biofilm by Pseudomonas aeruginosa Is Dependent on the Source, Phenotype and Growth Conditions of the Bacterium.

    Science.gov (United States)

    Ferreira, Jose A G; Penner, John C; Moss, Richard B; Haagensen, Janus A J; Clemons, Karl V; Spormann, Alfred M; Nazik, Hasan; Cohen, Kevin; Banaei, Niaz; Carolino, Elisabete; Stevens, David A

    2015-01-01

    Aspergillus fumigatus (Af) and Pseudomonas aeruginosa (Pa) are leading fungal and bacterial pathogens, respectively, in many clinical situations. Relevant to this, their interface and co-existence has been studied. In some experiments in vitro, Pa products have been defined that are inhibitory to Af. In some clinical situations, both can be biofilm producers, and biofilm could alter their physiology and affect their interaction. That may be most relevant to airways in cystic fibrosis (CF), where both are often prominent residents. We have studied clinical Pa isolates from several sources for their effects on Af, including testing involving their biofilms. We show that the described inhibition of Af is related to the source and phenotype of the Pa isolate. Pa cells inhibited the growth and formation of Af biofilm from conidia, with CF isolates more inhibitory than non-CF isolates, and non-mucoid CF isolates most inhibitory. Inhibition did not require live Pa contact, as culture filtrates were also inhibitory, and again non-mucoid>mucoid CF>non-CF. Preformed Af biofilm was more resistant to Pa, and inhibition that occurred could be reproduced with filtrates. Inhibition of Af biofilm appears also dependent on bacterial growth conditions; filtrates from Pa grown as biofilm were more inhibitory than from Pa grown planktonically. The differences in Pa shown from these different sources are consistent with the extensive evolutionary Pa changes that have been described in association with chronic residence in CF airways, and may reflect adaptive changes to life in a polymicrobial environment.

  7. Dietary phenethyl isothiocyanate inhibition of androgen-responsive LNCaP prostate cancer cell tumor growth correlates with decreased angiogenesis

    Science.gov (United States)

    Phenethyl isothiocyanate (PEITC), found in certain cruciferous vegetables, has antitumor activity in several cancer models, including prostate cancer. In our xenograft model, dietary administration of PEITC (100-150 mg/kg/d) inhibited androgen-responsive LNCaP human prostate cancer cell tumor growth...

  8. Cancer gene therapy targeting angiogenesis: An updated review

    Institute of Scientific and Technical Information of China (English)

    Ching-Chiu Liu; Zan Shen; Hsiang-Fu Kung; Marie CM Lin

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971,scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of antiangiogenesis therapy. Transfer of anti-angiogenesis genes has Received attention recently not only because of the advancement of recombinant vectors, but also because of the localized and sustained expression of therapeutic gene product inside the tumor after gene transfer. This review provides the up-to-date information about the strategies and the vectors studied in the field of anti-angiogenesis cancer gene therapy.

  9. Luteolin抑制血管生成的机制研究%Angiogenesis inhibition mechanism of luteolin in human cancer

    Institute of Scientific and Technical Information of China (English)

    李文仿; 欧琴; 王耕; 赵宗彬

    2015-01-01

    Objective:To study the blood vessels inhibition mechanism with luteolin. Methods:Different concen-trations of luteolin Processing human microvascular endothelial cells,cell growth,and MDA-MB 231 culture medium mediated chemotaxis were observed,and IL-8 signal in endothelial cell activation was observed. Results:Luteolin in-hibited microvascular endothelial cell Proliferation,and breast cancer cells MDA-MB 231 culture medium mediated of endothelial cell chemotaxis,and significantly inhibited IL-8 on endothelial cell activation. Conclusion:Luteolin can inhibit microvascular endothelial cell Proliferation and MDA -MB 231 culture medium mediated chemotaxis. Luteolin can inhibit the IL-8 signal activation of human microvascular endothelial cells,indicates luteolin anti-an-giogenesis effect in the Prevention of cancer recurrence and metastasis.%目的:探讨luteolin对血管的抑制机制。方法:采用不同浓度luteolin处理人微血管内皮细胞,观察luteolin对内皮细胞生长,乳腺癌细胞MDA-MB 231培养液介导的内皮细胞趋化抑制作用。并探讨luteolin对内皮细胞中IL-8信号激活的抑制作用,及luteolin对血管生成抑制作用机制。结果:Luteolin对人微血管内皮细胞细胞增殖抑制作用明显( P<0.01)。Luteolin可抑制乳腺癌细胞MDA-MB 231培养液介导的内皮细胞趋化作用( P<0.01),并明显抑制IL-8对内皮细胞ERK及AKT的激活。结论:Luteolin可抑制人微血管内皮细胞增殖及乳腺癌细胞MDA-MB 231培养液介导的趋化作用,并可抑制IL-8对人微血管内皮细胞的信号激活作用,luteolin抗血管生成作用在预防恶性肿瘤复发及转移中可能有重要的作用。

  10. Inhibition of angiogenesis, fibrosis and thrombosis by tetramethylpyrazine: mechanisms contributing to the SDF-1/CXCR4 axis.

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Cai

    Full Text Available BACKGROUND: Tetramethylpyrazine (TMP is one of the active ingredients extracted from the Chinese herb Chuanxiong, which has been used to treat cerebrovascular and cardiovascular diseases, pulmonary diseases and cancer. However, the molecular mechanisms underlying the actions of TMP have not been fully elucidated. In a previous study we showed that TMP-mediated glioma suppression and neural protection involves the inhibition of CXCR4 expression. The SDF-1/CXCR4 axis plays a fundamental role in many physiological and pathological processes. In this study, we further investigated whether the regulation of the SDF-1/CXCR4 pathway is also involved in the TMP-mediated inhibition of neovascularization or fibrosis and improvement of microcirculation. METHODOLOGY/PRINCIPAL FINDINGS: Using a scratch-wound assay, we demonstrated that TMP significantly suppressed the migration and tubule formation of the human umbilical vein endothelial cell line ECV304 in vitro. The expression of CXCR4 in ECV304 cells is notably down-regulated after TMP treatment. In addition, TMP significantly suppresses corneal neovascularization in a rat model of corneal alkali burn injury. The expression of CXCR4 on days 1, 3 and 7 post-injury was determined through RT-PCR analysis. Consistent with our hypotheses, the expression of CXCR4 in the rat cornea is significantly increased with alkali burn and dramatically down-regulated with TMP treatment. Moreover, TMP treatment significantly attenuates bleomycin-induced rat pulmonary fibrosis, while immunofluorescence shows a notably decreased amount of CXCR4-positive cells in the TMP-treated group. Furthermore, TMP significantly down-regulates the expression of CXCR4 in platelets, lymphocytes and red blood cells. Whole-blood viscosity and platelet aggregation in rats are significantly decreased by TMP treatment. CONCLUSIONS: These results show that TMP exerts potent effects in inhibiting neovascularization, fibrosis and thrombosis under

  11. A novel peptide (GX1 homing to gastric cancer vasculature inhibits angiogenesis and cooperates with TNF alpha in anti-tumor therapy

    Directory of Open Access Journals (Sweden)

    Wang Li

    2009-09-01

    Full Text Available Abstract Background The discovery of the importance of angiogenesis in tumor growth has emphasized the need to find specific vascular targets for tumor-targeted therapies. Previously, using phage display technology, we identified the peptide GX1 as having the ability to target the gastric cancer vasculature. The present study investigated the bioactivities of GX1, as well as its potential ability to cooperate with recombinant mutant human tumor necrosis factor alpha (rmhTNFα, in gastric cancer therapy. Results Tetrazolium salt (MTT assay showed that GX1 could inhibit cell proliferation of both human umbilical vein endothelial cells (HUVEC (44% and HUVEC with tumor endothelium characteristics, generated by culturing in tumor-conditioned medium (co-HUVEC (62%. Flow-cytometry (FCM and western blot assays showed that GX1 increased the rate of apoptosis from 11% to 31% (p in vivo, with the microvessel count decreasing from 21 to 11 (p In vitro MTT and FCM assays showed that, compared to rmhTNFα alone, GX1-rmhTNFα was more effective at suppressing co-HUVEC proliferation (45% vs. 61%, p p 3 vs. 134 mm3, p p Conclusion GX1 had both homing activity and the ability to inhibit vascular endothelial cell proliferation in vitro and neovascularization in vivo. Furthermore, when GX1 was conjugated to rmhTNFα, the fusion protein was selectively delivered to targeted tumor sites, significantly improving the anti-tumor activity of rmhTNFα and decreasing systemic toxicity. These results demonstrate the potential of GX1 as a homing peptide in vascular targeted therapy for gastric cancer.

  12. The novel desmopressin analogue [V4Q5]dDAVP inhibits angiogenesis, tumour growth and metastases in vasopressin type 2 receptor-expressing breast cancer models

    Science.gov (United States)

    GARONA, JUAN; PIFANO, MARINA; ORLANDO, ULISES D.; PASTRIAN, MARIA B.; IANNUCCI, NANCY B.; ORTEGA, HUGO H.; PODESTA, ERNESTO J.; GOMEZ, DANIEL E.; RIPOLL, GISELLE V.; ALONSO, DANIEL F.

    2015-01-01

    Desmopressin (dDAVP) is a safe haemostatic agent with previously reported antitumour activity. It acts as a selective agonist for the V2 vasopressin membrane receptor (V2r) present on tumour cells and microvasculature. The purpose of this study was to evaluate the novel peptide derivative [V4Q5]dDAVP in V2r-expressing preclinical mouse models of breast cancer. We assessed antitumour effects of [V4Q5]dDAVP using human MCF-7 and MDA-MB-231 breast carcinoma cells, as well as the highly metastatic mouse F3II cell line. Effect on in vitro cancer cell growth was evaluated by cell proliferation and clonogenic assays. Cell cycle distribution was analysed by flow cytometry. In order to study the effect of intravenously administered [V4Q5]dDAVP on tumour growth and angiogenesis, breast cancer xenografts were generated in athymic mice. F3II cells were injected into syngeneic mice to evaluate the effect of [V4Q5]dDAVP on spontaneous and experimental metastatic spread. In vitro cytostatic effects of [V4Q5]dDAVP against breast cancer cells were greater than those of dDAVP, and associated with V2r-activated signal transduction and partial cell cycle arrest. In MDA-MB-231 xenografts, [V4Q5]dDAVP (0.3 μg/kg, thrice a week) reduced tumour growth and angiogenesis. Treatment of F3II mammary tumour-bearing immunocompetent mice resulted in complete inhibition of metastatic progression. [V4Q5]dDAVP also displayed greater antimetastatic efficacy than dDAVP on experimental lung colonisation by F3II cells. The novel analogue was well tolerated in preliminary acute toxicology studies, at doses ≥300-fold above that required for anti-angiogenic/antimetastatic effects. Our data establish the preclinical activity of [V4Q5]dDAVP in aggressive breast cancer, providing the rationale for further clinical trials. PMID:25846632

  13. Mammalian Target of Rapamycin Inhibitors Induce Tumor Cell Apoptosis In Vivo Primarily by Inhibiting VEGF Expression and Angiogenesis

    Directory of Open Access Journals (Sweden)

    Patrick Frost

    2013-01-01

    Full Text Available We found that rapalog mTOR inhibitors induce G1 arrest in the PTEN-null HS Sultan B-cell lymphoma line in vitro, but that administration of rapalogs in a HS Sultan xenograft model resulted in significant apoptosis, and that this correlated with induction of hypoxia and inhibition of neoangiogenesis and VEGF expression. Mechanistically, rapalogs prevent cap-dependent translation, but studies have shown that cap-independent, internal ribosome entry site (IRES-mediated translation of genes, such as c-myc and cyclin D, can provide a fail-safe mechanism that regulates tumor survival. Therefore, we tested if IRES-dependent expression of VEGF could likewise regulate sensitivity of tumor cells in vivo. To achieve this, we developed isogenic HS Sultan cell lines that ectopically express the VEGF ORF fused to the p27 IRES, an IRES sequence that is insensitive to AKT-mediated inhibition of IRES activity and effective in PTEN-null tumors. Mice challenged with p27-VEGF transfected tumor cells were more resistant to the antiangiogenic and apoptotic effects of the rapalog, temsirolimus, and active site mTOR inhibitor, pp242. Our results confirm the critical role of VEGF expression in tumors during treatment with mTOR inhibitors and underscore the importance of IRES activity as a resistance mechanism to such targeted therapy.

  14. Garcinol inhibits tumour cell proliferation, angiogenesis, cell cycle progression and induces apoptosis via NF-κB inhibition in oral cancer.

    Science.gov (United States)

    Aggarwal, Sadhna; Das, Satya N

    2016-06-01

    Garcinol, a polyisoprenylated benzophenone is extracted from the rind of the fruit of Garcinia indica, a plant found extensively in tropical regions. Its ability to inhibit tumour growth has been demonstrated in certain cancers. In this study, we evaluated the potential anti-tumour effects of garcinol on oral squamous cell carcinoma (OSCC) cells. Three OSCC cell lines (SCC-4, SCC-9 and SCC-25) were treated with garcinol for 48 h and its effect on growth and proliferation, clonogenic survival, cell cycle and apoptosis was studied by MTT, clonogenic assay, propidium iodide (PI) staining and annexin-V binding assay, respectively. The alteration in expression of NF-κB and COX-2 was studied by western blot analysis and that of VEGF by ELISA. Garcinol treatment significantly (p < 0.001) inhibited the growth and proliferation and colony formation of OSCC cells with a concomitant induction of apoptosis and cell cycle arrest. It did not show toxic effect on normal cells. It significantly (p < 0.05) reduced the expression of NK-κB and COX-2 expression in treated cells as compared to untreated controls besides inhibiting VEGF expression. It appears that garcinol exerts anti-proliferative, pro-apoptotic, cell-cycle regulatory and anti-angiogenic effects on oral cancer cells through inhibition of NF-κB and COX-2. Thus, garcinol may be developed as a potential chemopreventive and/or chemotherapeutic agent for treatment of oral squamous cell carcinoma. PMID:26662963

  15. Inhibitor of growth 4 suppresses colorectal cancer growth and invasion by inducing G1 arrest, inhibiting tumor angiogenesis and reversing epithelial-mesenchymal transition.

    Science.gov (United States)

    Qu, Hui; Yin, Hong; Yan, Su; Tao, Min; Xie, Yufeng; Chen, Weichang

    2016-05-01

    Previous studies have found that inhibitor of growth 4 (ING4), a tumor suppressor, is reduced in human colorectal cancer (CRC), and is inversely correlated with clinical Dukes' stage, histological grade, lymph node metastasis and microvessel density (MVD). However, its underlying mechanism remains undetermined. In the present study, we analyzed ING4 expression in a panel of human CRC cells using low (LS174T and SW480) and high (LoVo and SW620) metastatic cell lines. We demonstrated that both the low and high metastatic CRC cells exhibited a lower level of ING4 compared to the level in normal human colorectal mucous epithelial FHC cells. Furthermore, ING4 expression in high metastatic CRC cells was less than that in low metastatic CRC cells. We then generated a lentivirus construct expressing ING4 and green fluorescent protein (GFP), established a ING4-stably transgenic LoVo CRC cell line, and investigated the effect of lentiviral-mediated ING4 expression on high metastatic LoVo CRC cells. Gain-of-function studies revealed that ING4 significantly inhibited LoVo CRC cell growth and invasion in vitro and induced cell cycle G1 phase arrest. Moreover, ING4 obviously suppressed LoVo CRC subcutaneously xenografted tumor growth and reduced tumor MVD in vivo in athymic BALB/c nude mice. Mechanistically, ING4 markedly upregulated P21 and E-cadherin but downregulated cyclin E, interleukin (IL)-6, IL-8, vascular endothelial growth factor (VEGF), Snail1, N-cadherin and vimentin in the LoVo CRC cells. Our data provide compelling evidence that i) ING4 suppresses CRC growth possibly via induction of G1 phase arrest through upregulation of P21 cyclin-dependent kinase (CDK) inhibitor and downregulation of cyclin E as well as inhibition of tumor angiogenesis through reduction of IL-6, IL-8 and VEGF proangiogenic factors; ii) ING4 inhibits CRC invasion and metastasis probably via a switch from mesenchymal marker N-cadherin to epithelial marker E-cadherin through downregulation of

  16. Inhibition of Aspergillus fumigatus and Its Biofilm by Pseudomonas aeruginosa Is Dependent on the Source, Phenotype and Growth Conditions of the Bacterium.

    Directory of Open Access Journals (Sweden)

    Jose A G Ferreira

    Full Text Available Aspergillus fumigatus (Af and Pseudomonas aeruginosa (Pa are leading fungal and bacterial pathogens, respectively, in many clinical situations. Relevant to this, their interface and co-existence has been studied. In some experiments in vitro, Pa products have been defined that are inhibitory to Af. In some clinical situations, both can be biofilm producers, and biofilm could alter their physiology and affect their interaction. That may be most relevant to airways in cystic fibrosis (CF, where both are often prominent residents. We have studied clinical Pa isolates from several sources for their effects on Af, including testing involving their biofilms. We show that the described inhibition of Af is related to the source and phenotype of the Pa isolate. Pa cells inhibited the growth and formation of Af biofilm from conidia, with CF isolates more inhibitory than non-CF isolates, and non-mucoid CF isolates most inhibitory. Inhibition did not require live Pa contact, as culture filtrates were also inhibitory, and again non-mucoid>mucoid CF>non-CF. Preformed Af biofilm was more resistant to Pa, and inhibition that occurred could be reproduced with filtrates. Inhibition of Af biofilm appears also dependent on bacterial growth conditions; filtrates from Pa grown as biofilm were more inhibitory than from Pa grown planktonically. The differences in Pa shown from these different sources are consistent with the extensive evolutionary Pa changes that have been described in association with chronic residence in CF airways, and may reflect adaptive changes to life in a polymicrobial environment.

  17. Cinnamon extract inhibits angiogenesis in zebrafish and human endothelial cells by suppressing VEGFR1, VEGFR2, and PKC-mediated MAP kinase

    OpenAIRE

    Bansode, R. R.; Leung, T; Randolph, P.; L. L. Williams; Ahmedna, M.

    2013-01-01

    Angiogenesis is a process of new blood vessel generation and under pathological conditions, lead to tumor development, progression, and metastasis. Many bioactive components have been studied for its antiangiogenic properties as a preventive strategy against tumor development. This study is focused on the effects of cinnamon extract in modulating the pathway involved in angiogenesis. Human umbilical vein endothelial cells (HUVEC) were treated with cinnamon extract at a concentration of 25 μg/...

  18. Complex role of matrix metalloproteinases in angiogenesis

    Institute of Scientific and Technical Information of China (English)

    SANGQINGXIANGAMY

    1998-01-01

    Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) play a significant role in regulating angiogenesis,the process of new blood vessel formation.Interstitial collagenase (MMP-1),72kDa gelatinase A/type IV collagenase (MMP-2),and 92 kDA gelatinase B/type IV collagenase (MMP-9) dissolve extracellular matrix (ECM) and may initiate and promote angiogenesis.TIMP-1,TIMP-2,TIMP-3,and possibly,TIMP-4 inhibit neovascularization.A new paradign is emerging that matrilysin (MMP-7),MMP-9,and metalloelastase (MMP-12) may block angiogenesis by converting plasminogen to angiostatin,which is one of the most potent angiogenesis antagonists.MMPs and TIMPs play a complex role in regulating angiogenesis.An understanding of the biochemical and cellular pathways and mechanisms of angiogenesis will provide important information to allow the control of angiogenesis,e.g.the stimulation of angiogenesis for coronary collateral circulation formation;while the inhibition for treating arthritis and cancer.

  19. The effect of macrophage and angiogenesis inhibition on the drug release and absorption from an intramuscular sustained-release paliperidone palmitate suspension.

    Science.gov (United States)

    Darville, Nicolas; van Heerden, Marjolein; Mariën, Dirk; De Meulder, Marc; Rossenu, Stefaan; Vermeulen, An; Vynckier, An; De Jonghe, Sandra; Sterkens, Patrick; Annaert, Pieter; Van den Mooter, Guy

    2016-05-28

    The intramuscular (IM) administration of long-acting injectable (LAI) aqueous nano-/microsuspensions elicits a chronic granulomatous injection site reaction, which recently has been hypothesized to drive the (pro)drug dissolution and systemic absorption resulting in flip-flop pharmacokinetics. The goal of this mechanistic study was to investigate the effects of the local macrophage infiltration and angiogenesis on the systemic drug exposure following a single IM administration of a paliperidone palmitate (PP) LAI nano-/microsuspension in the rat. Liposomal clodronate (CLO) and sunitinib (SNT) were co-administered to inhibit the depot infiltration and nano-/microparticle phagocytosis by macrophages, and the neovascularization of the depot, respectively. Semi-quantitative histopathology of the IM administration sites at day 1, 3, 7, 14, 21 and 28 after dosing with PP-LAI illustrated that CLO significantly decreased the rate and extent of the granulomatous inflammatory reaction. The macrophage infiltration was slowed down, but only partially suppressed by CLO and this translated in paliperidone (PAL) plasma concentration-time profiles that resembled those observed upon injection of PP-LAI only, albeit with a lower PAL input rate and delayed maximum plasma concentration (CMAX). Conversely, SNT treatment completely suppressed the granulomatous reaction, besides effectively inhibiting the neovascularization of the PP-LAI depot. This resulted in an even slower systemic PAL input with delayed and lower maximum PAL CMAX. The reduced PP-LAI lymph node retention after CLO and SNT treatment, as well as pharmacokinetic drug-drug interactions were rejected as possible sources of the observed pharmacokinetic differences. The biphasic PAL plasma concentration-time profiles could best be described by an open first-order disposition model with parallel fast (first-order) and slow (sequential zero-first-order) absorption. The correlation of the pharmacokinetic data with the

  20. Melittin inhibits tumor angiogenesis modulated by endothelial progenitor cells associated with the SDF-1α/CXCR4 signaling pathway in a UMR-106 osteosarcoma xenograft mouse model

    OpenAIRE

    Qin, Gang; Chen, Yongqiang; Li, Haidong; Xu, Suyang; Li, Yumei; Sun, Jian; RAO, WU; CHEN, CHAOWEI; DU, MINDONG; HE, KAIYI; Ye, Yong

    2016-01-01

    Endothelial progenitor cells (EPCs) are important in tumor angiogenesis. Stromal cell-derived factor-1α (SDF-1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4) are key in stem cell homing. Melittin, a component of bee venom, exerts antitumor activity, however, the underlying mechanisms remain to be elucidated. The present study aimed to assess the effects of melittin on EPCs and angiogenesis in a mouse model of osteosarcoma. UMR-106 cells and EPCs were treated with various concentra...

  1. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.; Hentzer, Morten;

    2004-01-01

    Introduction: Antibiotics are used to treat bacterial infections by killing the bacteria or inhibiting their growth, but resistance to antibiotics can develop readily. The discovery that bacterial quorum-sensing regulates bacterial virulence as well as the formation of biofilms opens up new ways...... to control certain bacterial infections. Furanone compounds capable of inhibiting bacterial quorum-sensing systems have been isolated from the marine macro alga Delisea pulchra. Objectives: Two synthetic furanones were tested for their ability to attenuate bacterial virulence in the mouse models of chronic...... lung infection by targeting bacterial quorum-sensing without directly killing bacteria or inhibiting their growth. Methods: Study I. Mice with Escherichia coli MT102 [luxR-PluxI-gfp(ASV)] lung infection were injected intravenously with N-acyl homoserine lactones with or without furanones to test...

  2. 强力霉素抑制角膜移植后的新生血管%Doxycycline inhibits corneal angiogenesis after keratoplasty

    Institute of Scientific and Technical Information of China (English)

    黎韦华; 徐建刚; 张雪菲; 凌士奇

    2009-01-01

    能抑制角膜移植后角膜新生血管的生长,延长植片的生存时间.%BACKROUND:Corneal hemangiogenesis occurs in 40%-60%patients after keratoplasty.Blood vessel is one of the high risk factors for corneal immunological rejection.To inhibit corneal hemangiogenesis would prolong the survival time of the grafts and promote the successful rate of the keratoplasty.OBJECTIVE:To explore the inhibitive effects of doxycycline on corneal angiogenesis after keratoplasty.DESIGN,TIME AND SETTING:A randomized controlled animal experiment was performed at the State Key Laboratory of Ophthalmology(No.2006DA105054),Zhongshan Ophthalmic Center,Sun Yat-sen University from March to August 2007.MATERIALS:A total of 48 healthy dean Sprague Dawley rats served as recipients(right eye)and 24 Wistar rats as donors(both eyes).CD31-PEfluorescent antibody was obtained from Sigma,USA.Sandwich enzyme-linked immunosorbent assay(ELISA)kit for vascular endothelial growth factor(VEGF)was brought from RapidBio,USA.METHODS:Corneal allogenic transplantation models were established in rats.Recipients were equally and randomly divided into 2 groups:saline control group and doxycycline group.Twenty minutes prior to surgery,mydriasis was performed using 1%atropine,with a diameter of 2.75 mm of implant and 2.5 mm of implant bed.In the saline control group,conjunctiva of the right eye received saline,three times a day,following surgery.In the doxycycline group,conjunctiva of the right eye received 1%doxycycline,three times a day,till 30 days following surgery.MAIN OUTCOME MEASURES:The following parameters were measured:corneal angiogenesis using immunofluorescence,expression of VEGF protein by using ELISA.RESULTS:Compared with the survival time of saline control group[(9.67±2.73)days],the mean survival time of doxycycline group[(20.67±3.01)days]was significantly prolonged(P<0.01).The mean percentages of neovascularized corneal area in the saline control group were(4.00±1.00)%,(14.33±4

  3. Inhibition of a Putative Dihydropyrimidinase from Pseudomonas aeruginosa PAO1 by Flavonoids and Substrates of Cyclic Amidohydrolases.

    Directory of Open Access Journals (Sweden)

    Cheng-Yang Huang

    Full Text Available Dihydropyrimidinase is a member of the cyclic amidohydrolase family, which also includes allantoinase, dihydroorotase, hydantoinase, and imidase. These metalloenzymes possess very similar active sites and may use a similar mechanism for catalysis. However, whether the substrates and inhibitors of other cyclic amidohydrolases can inhibit dihydropyrimidinase remains unclear. This study investigated the inhibition of dihydropyrimidinase by flavonoids and substrates of other cyclic amidohydrolases. Allantoin, dihydroorotate, 5-hydantoin acetic acid, acetohydroxamate, orotic acid, and 3-amino-1,2,4-triazole could slightly inhibit dihydropyrimidinase, and the IC50 values of these compounds were within the millimolar range. The inhibition of dihydropyrimidinase by flavonoids, such as myricetin, quercetin, kaempferol, galangin, dihydromyricetin, and myricitrin, was also investigated. Some of these compounds are known as inhibitors of allantoinase and dihydroorotase. Although the inhibitory effects of these flavonoids on dihydropyrimidinase were substrate-dependent, dihydromyricetin significantly inhibited dihydropyrimidinase with IC50 values of 48 and 40 μM for the substrates dihydrouracil and 5-propyl-hydantoin, respectively. The results from the Lineweaver-Burk plot indicated that dihydromyricetin was a competitive inhibitor. Results from fluorescence quenching analysis indicated that dihydromyricetin could form a stable complex with dihydropyrimidinase with the K(d value of 22.6 μM. A structural study using PatchDock showed that dihydromyricetin was docked in the active site pocket of dihydropyrimidinase, which was consistent with the findings from kinetic and fluorescence studies. This study was the first to demonstrate that naturally occurring product dihydromyricetin inhibited dihydropyrimidinase, even more than the substrate analogs (>3 orders of magnitude. These flavonols, particularly myricetin, may serve as drug leads and dirty drugs (for

  4. Inhibition of K562 cell growth and tumor angiogenesis in nude mice by transfection of anti-VEGF hairpin ribozyme gene into the cells

    Institute of Scientific and Technical Information of China (English)

    许文林

    2006-01-01

    Objective To explore the effect of anti-VEGF hairpin ribozyme gene on the tumor cell growth and tumor angiogenesis in nude mice. Methods The recombinant eukaryotic expression plasmid pcDNA-RZ containing anti-VEGF hairpin ribozyme gene and the empty vector plasmid pcDNA were introduced separately into K562 cells

  5. Inhibition of Hydrogen Sulfide-induced Angiogenesis and Inflammation in Vascular Endothelial Cells: Potential Mechanisms of Gastric Cancer Prevention by Korean Red Ginseng.

    Science.gov (United States)

    Choi, Ki-Seok; Song, Heup; Kim, Eun-Hee; Choi, Jae Hyung; Hong, Hua; Han, Young-Min; Hahm, Ki Baik

    2012-04-01

    Previously, we reported that Helicobacter pylori-associated gastritis and gastric cancer are closely associated with increased levels of hydrogen sulfide (H2S) and that Korean red ginseng significantly reduced the severity of H. pylori-associated gastric diseases by attenuating H2S generation. Because the incubation of endothelial cells with H2S has been known to enhance their angiogenic activities, we hypothesized that the amelioration of H2S-induced gastric inflammation or angiogenesis in human umbilical vascular endothelial cells (HUVECs) might explain the preventive effect of Korean red ginseng on H. pylori-associated carcinogenesis. The expression of inflammatory mediators, angiogenic growth factors, and angiogenic activities in the absence or presence of Korean red ginseng extracts (KRGE) were evaluated in HUVECs stimulated with the H2S generator sodium hydrogen sulfide (NaHS). KRGE efficiently decreased the expression of cystathionine β-synthase and cystathionine γ-lyase, enzymes that are essential for H2S synthesis. Concomitantly, a significant decrease in the expression of inflammatory mediators, including cyclooxygenase-2 and inducible nitric oxide synthase, and several angiogenic factors, including interleukin (IL)-8, hypoxia inducible factor-1a, vascular endothelial growth factor, IL-6, and matrix metalloproteinases, was observed; all of these factors are normally induced after NaHS. An in vitro angiogenesis assay demonstrated that NaHS significantly increased tube formation in endothelial cells, whereas KRGE pretreatment significantly attenuated tube formation. NaHS activated p38 and Akt, increasing the expression of angiogenic factors and the proliferation of HUVECs, whereas KRGE effectively abrogated this H2S-activated angiogenesis and the increase in inflammatory mediators in vascular endothelial cells. In conclusion, KRGE was able to mitigate H2S-induced angiogenesis, implying that antagonistic action against H2S-induced angiogenesis may be the

  6. A novel microtubule-modulating agent EM011 inhibits angiogenesis by repressing the HIF-1α axis and disrupting cell polarity and migration

    OpenAIRE

    Karna, Prasanthi; Rida, Padmashree C. G.; Turaga, Ravi Chakra; Gao, Jinmin; Gupta, Meenakshi; Fritz, Andreas; Werner, Erica; Yates, Clayton; Zhou, Jun; Aneja, Ritu

    2012-01-01

    Endothelial tubular morphogenesis relies on an exquisite interplay of microtubule dynamics and actin remodeling to propel directed cell migration. Recently, the dynamicity and integrity of microtubules have been implicated in the trafficking and efficient translation of the mRNA for HIF-1α (hypoxia-inducible factor), the master regulator of tumor angiogenesis. Thus, microtubule-disrupting agents that perturb the HIF-1α axis and neovascularization cascade are attractive anticancer drug candida...

  7. Growth Inhibition Effect of Immobilized Pectinase on Microcystis aeruginosa%固定化果胶酶抑制铜绿微囊藻生长研究

    Institute of Scientific and Technical Information of China (English)

    沈清清; 彭谦; 赖泳红; 纪开燕; 韩秀林

    2012-01-01

    为证实固定化果胶酶抑制蓝藻生长的作用,在实验室条件下,以铜绿微囊藻(Microcystis aeruginosa)为受试藻种,用共培养法观察了固定化果胶酶对藻细胞群体的作用、用电镜观察了共培养后藻细胞的损伤状况,测定了对其生理生化特征的影响.结果表明固定化果胶酶与藻共培养液第3 d明显黄化,且黄化程度与固定化果胶酶的用量和培养时间呈正相关系;电镜照片显示固定化果胶酶对藻细胞有损伤作用,轻微损伤的藻细胞出现质壁分离,表面粗糙、凸凹不平,形状不规则,严重损伤的藻细胞表面发生深度皱缩或细胞结构完全解体;随着固定化果胶酶与铜绿微囊藻共培养时间的延长,藻细胞生长量、叶绿素a含量显著降低,表明藻细胞受到胁迫和伤害,藻细胞正常的光合作用受到严重影响.丙二醛(MDA)值显示藻细胞抗氧化防御体系被破坏,细胞内发生严重膜脂过氧化.固定化果胶酶能有效抑制铜绿微囊藻细胞的生长,铜绿微囊藻生长抑制率可高达96%.%To confirm the growth inhibition effect of immobilized pectinase on algae,co-cultivation method was used to investigate the effect of immobilized pectinase on the growth of Microcystis aeruginosa.After co-cultivation,the damage status of the algae was observed through electron microscope,and the effect of immobilized pectase on the physiological and biochemical characteristics of the algae was also measured.The results showed that the algae and immobilized pectase co-cultivated solution etiolated distinctly on the third day and there was a significantly positive correlation between the extent of etiolation and the dosage as well as the treating time of the immobilized pectinase.Under electron microscope,plasmolysis was found in the slightly damaged cells,and the cell surface of these cells was rough,uneven and irregular;the severely damaged cells were collapsed or disintegrated completely

  8. The Hemostatic System and Angiogenesis in Malignancy

    Directory of Open Access Journals (Sweden)

    Marek Z. Wojtukiewicz

    2001-01-01

    Full Text Available Coagulopathy and angiogenesis are among the most consistent host responses associated with cancer. These two respective processes, hitherto viewed as distinct, may in fact be functionally inseparable as blood coagulation and fibrinolysis, in their own right, influence tumor angiogenesis and thereby contribute to malignant growth. In addition, tumor angiogenesis appears to be controlled through both standard and non-standard functions of such elements of the hemostatic system as tissue factor, thrombin, fibrin, plasminogen activators, plasminogen, and platelets. “Cryptic” domains can be released from hemostatic proteins through proteolytic cleavage, and act systemically as angiogenesis inhibitors (e.g., angiostatin, antiangiogenic antithrombin III aaATIII. Various components of the hemostatic system either promote or inhibit angiogenesis and likely act by changing the net angiogenic balance. However, their complex influences are far from being fully understood. Targeted pharmacological and/ or genetic inhibition of pro-angiogenic activities of the hemostatic system and exploitation of endogenous angiogenesis inhibitors of the angiostatin and aaATIII variety are under study as prospective anti-cancer treatments.

  9. Angiogenesis and vascular targeting: Relevance for hyperthermia

    DEFF Research Database (Denmark)

    Horsman, Michael R

    2008-01-01

    The creation of a functional blood supply from the normal tissue vasculature via the process of angiogenesis is critical for the continued growth and development of solid tumours. This importance has led to the concept of targeting the tumour vasculature as a therapeutic strategy, and two major...... types of vascular targeting agents (VTAs) have developed; those that inhibit the angiogenic process-angiogenesis inhibiting agents (AIAs)-and those that specifically damage the already established neovasculature-vascular disrupting agents (VDAs). The tumour vasculature also plays a critical role...

  10. Mediators of ocular angiogenesis

    Indian Academy of Sciences (India)

    Yureeda Qazi; Surekha Maddula; Balamurali K. Ambati

    2009-12-01

    Angiogenesis is the formation of new blood vessels from pre-existing vasculature. Pathologic angiogenesis in the eye can lead to severe visual impairment. In our review, we discuss the roles of both pro-angiogenic and anti-angiogenic molecular players in corneal angiogenesis, proliferative diabetic retinopathy, exudative macular degeneration and retinopathy of prematurity, highlighting novel targets that have emerged over the past decade.

  11. Methotrexate Locally Released from Poly(e-Caprolactone) Implants: Inhibition of the Inflammatory Angiogenesis Response in a Murine Sponge Model and the Absence of Systemic Toxicity.

    Science.gov (United States)

    De Oliveira, Leandro Gonzaga; Figueiredo, Letîcia Aparecida; Fernandes-Cunha, Gabriella Maria; Marina Barcelos, De Miranda; Machado, Laser Antonio; Dasilva, Gisele Rodrigues; Sandra Aparecida Lima, De Moura

    2015-11-01

    In this study, the methotrexate (MTX) was incorporated into the poly(e-caprolactone) (PCL) to design implants (MTX PCL implants) aiming the local treatment of inflammatory angiogenesis diseases without causing systemic side effects. Sponges were inserted into the subcutaneous tissue of mice as a framework for fibrovascular tissue growth. After 4days, MTX PCL implants were also introduced, and anti-inflammatory, antiangiogenic, and antifibrogenic activities of the MTX were determined. MTX reduced the vascularization (hemoglobin content), the neutrophil, and monocyte/macrophage infiltration (MPO and NAG activities, respectively), and the collagen deposition in sponges. MTX reduced tumor necrosis factor-a and IL-6 levels, demonstrating its local antiangiogenic and anti-inflammatory effects. Furthermore, hepatotoxicity, nephrotoxicity, and myelotoxicity, which could be induced by the drug, were evaluated. However, MTX did not promote toxicity to these organs, as the levels of AST and ALT (hepatic markers) and creatinine and urea (renal markers) were not increased, and the complete blood count was not decreased. In conclusion, MTX PCL implants demonstrated to be effective in regulating the components of the inflammatory angiogenesis locally established, and presented an acceptable safety profile. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3731-3742, 2015. PMID:27524686

  12. Panax ginseng has anti-infective activity against opportunistic pathogen Pseudomonas aeruginosa by inhibiting quorum sensing, a bacterial communication process critical for establishing infection

    DEFF Research Database (Denmark)

    Song, Z; Kong, K F; Wu, H;

    2010-01-01

    immune systems and cystic fibrosis. The QS systems of P. aeruginosa use N-acylated homoserine lactone (AHL) as signal molecules. Previously we have demonstrated that Panax ginseng treatment allowed the animals with P. aeruginosa pneumonia to effectively clear the bacterial infection. We postulated......A and LasB and down-regulated the synthesis of the AHL molecules. Ginseng has a negative effect on the QS system of P. aeruginosa, may explain the ginseng-dependent bacterial clearance from the animal lungs in vivo in our previous animal study. It is possible that enhancing and repressing activities...... of ginseng are mutually exclusive as it is a complex mixture, as shown with the HPLC analysis of the hot water extract. Though ginseng is a promising natural synergetic remedy, it is important to isolate and evaluate the ginseng compounds associated with the anti-QS activity....

  13. Modulation of angiogenesis by tissue inhibitor of metalloproteinase-4

    International Nuclear Information System (INIS)

    Despite the importance of MMP activity in the regulation of angiogenesis, relatively little is known about the role of TIMP-4, the most recently discovered endogenous MMP inhibitor, in modulating neovascularization. It has largely been assumed that all TIMPs are capable of inhibiting angiogenesis in vivo. However, it is now widely appreciated that TIMPs-1, -2, and -3 differ significantly in their ability to modulate angiogenic processes in vitro and angiogenesis in vivo. In order to study the effect of TIMP-4 in controlling angiogenesis, we have cloned and expressed TIMP-4 in a Pichia pastoris expression system, purified it to homogeneity, and tested its ability to regulate angiogenesis in vivo and in vitro. Our studies demonstrate that TIMP-4 is an inhibitor of capillary endothelial cell migration, but not of proliferation or of angiogenesis in vivo

  14. Soliton driven angiogenesis

    Science.gov (United States)

    Bonilla, L. L.; Carretero, M.; Terragni, F.; Birnir, B.

    2016-08-01

    Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process.

  15. Angiogenesis and liver fibrosis

    Institute of Scientific and Technical Information of China (English)

    Gülsüm ?zlem Elpek

    2015-01-01

    Recent data indicate that hepatic angiogenesis,regardless of the etiology, takes place in chronic liverdiseases (CLDs) that are characterized by inflammationand progressive fibrosis. Because antiangiogenictherapy has been found to be efficient inthe prevention of fibrosis in experimental models ofCLDs, it is suggested that blocking angiogenesis couldbe a promising therapeutic option in patients withadvanced fibrosis. Consequently, efforts are beingdirected to revealing the mechanisms involved inangiogenesis during the progression of liver fibrosis.Literature evidences indicate that hepatic angiogenesisand fibrosis are closely related in both clinical andexperimental conditions. Hypoxia is a major inducer ofangiogenesis together with inflammation and hepaticstellate cells. These profibrogenic cells stand at theintersection between inflammation, angiogenesis andfibrosis and play also a pivotal role in angiogenesis.This review mainly focuses to give a clear view on therelevant features that communicate angiogenesis withprogression of fibrosis in CLDs towards the-end point ofcirrhosis that may be translated into future therapies.The pathogenesis of hepatic angiogenesis associatedwith portal hypertension, viral hepatitis, non-alcoholicfatty liver disease and alcoholic liver disease are alsodiscussed to emphasize the various mechanisms involvedin angiogenesis during liver fibrogenesis.

  16. Control of Angiogenesis by AIBP-mediated Cholesterol Efflux

    Science.gov (United States)

    Fang, Longhou; Choi, Soo-Ho; Baek, Ji Sun; Liu, Chao; Almazan, Felicidad; Ulrich, Florian; Wiesner, Philipp; Taleb, Adam; Deer, Elena; Pattison, Jennifer; Torres-Vázquez, Jesús; Li, Andrew C.; Miller, Yury I.

    2013-01-01

    Cholesterol is a structural component of the cell, indispensable for normal cellular function, but its excess often leads to abnormal proliferation, migration, inflammatory responses and/or cell death. To prevent cholesterol overload, ATP-binding cassette (ABC) transporters mediate cholesterol efflux from the cells to apolipoprotein A-I (ApoA-I) and to the ApoA-I-containing high-density lipoprotein (HDL)1-3. Maintaining efficient cholesterol efflux is essential for normal cellular function4-6. However, the role of cholesterol efflux in angiogenesis and the identity of its local regulators are poorly understood. Here we show that ApoA-I binding protein (AIBP) accelerates cholesterol efflux from endothelial cells (EC) to HDL and thereby regulates angiogenesis. AIBP/HDL-mediated cholesterol depletion reduces lipid rafts, interferes with VEGFR2 dimerization and signaling, and inhibits VEGF-induced angiogenesis in vitro and mouse aortic neovascularization ex vivo. Remarkably, Aibp regulates the membrane lipid order in embryonic zebrafish vasculature and functions as a non-cell autonomous regulator of zebrafish angiogenesis. Aibp knockdown results in dysregulated sprouting/branching angiogenesis, while forced Aibp expression inhibits angiogenesis. Dysregulated angiogenesis is phenocopied in Abca1/Abcg1-deficient embryos, and cholesterol levels are increased in Aibp-deficient and Abca1/Abcg1-deficient embryos. Our findings demonstrate that secreted AIBP positively regulates cholesterol efflux from EC and that effective cholesterol efflux is critical for proper angiogenesis. PMID:23719382

  17. Evening primrose oil and celecoxib inhibited pathological angiogenesis, inflammation, and oxidative stress in adjuvant-induced arthritis: novel role of angiopoietin-1.

    Science.gov (United States)

    El-Sayed, R M; Moustafa, Y M; El-Azab, M F

    2014-10-01

    Rheumatoid arthritis is a chronic inflammatory disease characterized by overproduction of inflammatory mediators along with undermined oxidative defensive mechanisms. Pathological angiogenesis was found to play a critical role in the progression of this disease. The current study was carried out to evaluate the anti-angiogenic, anti-inflammatory, and anti-oxidant effects of evening primrose oil (EPO), rich in gamma linolenic acid (GLA), either alone or in combination with aspirin or celecoxib, on adjuvant-induced arthritis. Arthritis was induced by subcutaneous injection of complete Freund's adjuvant (CFA) in the right hind paw of male albino rats. All treatments were administered orally from day 0 (EPO, 5 g/kg b.w.) or day 4 (celecoxib, 5 mg/kg; aspirin, 150 mg/kg) till day 27 after CFA injection. In the arthritic group, the results revealed significant decrease in the body weight and increase in ankle circumference, plasma angiopoietin-1 (ANG-1) and tumor necrosis factor-alpha (TNF-α) levels. Anti-oxidant status was suppressed as manifested by significant decline in reduced glutathione content along with decreased enzymatic activity of superoxide dismutase and increased lipid peroxidation. Oral administration of EPO exerted normalization of body weight, ANG-1, and TNF-α levels with restoration of activity as shown by reduced malondialdehyde levels. Moreover, histopathological examination demonstrated that EPO significantly reduced the synovial hyperplasia and inflammatory cells invasion in joint tissues, an effect that was enhanced by combination with aspirin or celecoxib. The joint use of GLA-rich natural oils, which possess anti-angiogenic, anti-inflammatory, and anti-oxidant activities, with traditional analgesics represents a promising strategy to restrain the progression of rheumatoid arthritis.

  18. Trisubstituted pyrazolopyrimidines as novel angiogenesis inhibitors.

    Directory of Open Access Journals (Sweden)

    Sabine B Weitensteiner

    Full Text Available Current inhibitors of angiogenesis comprise either therapeutic antibodies (e.g. bevacicumab binding to VEGF-A or small molecular inhibitors of receptor tyrosin kinases like e.g. sunitinib, which inhibits PDGFR and VEGFR. We have recently identified cyclin-dependent kinase 5 (Cdk5 as novel alternative and pharmacologically accessible target in the context of angiogenesis. In the present work we demonstrate that trisubstituted pyrazolo[4,3-d]pyrimidines constitute a novel class of compounds which potently inhibit angiogenesis. All seven tested compounds inhibited endothelial cell proliferation with IC(50 values between 1 and 18 µM. Interestingly, this seems not to be due to cytotoxicity, since none of them showed acute cytotoxic effects on endothelial cells at a concentration of 10 µM,. The three most potent compounds (LGR1404, LGR1406 and LGR1407 also inhibited cell migration (by 27, 51 and 31%, resp., chemotaxis (by 50, 70 and 60% in accumulative distance, resp., and tube formation (by 25, 60 and 30% of total tube length, resp. at the non-toxic concentration of 10 µM. Furthermore, angiogenesis was reduced in vivo in the CAM assay by these three compounds. A kinase selectivity profiling revealed that the compounds prevalently inhibit Cdk2, Cdk5 and Cdk9. The phenotype of the migrating cells (reduced formation of lamellipodia, loss of Rac-1 translocation to the membrane resembles the previously described effects of silencing of Cdk5 in endothelial cells. We conclude that especially LGR1406 and LGR1407 are highly attractive anti-angiogenic compounds, whose effects seem to largely depend on their Cdk5 inhibiting properties.

  19. Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1/2, MCL-1 and ezrin pathways

    Directory of Open Access Journals (Sweden)

    Ferrari Stefano

    2009-12-01

    Full Text Available Abstract Background Osteosarcoma (OS is the most common primary bone tumour in children and young adults. Despite improved prognosis, metastatic or relapsed OS remains largely incurable and no significant improvement has been observed in the last 20 years. Therefore, the search for alternative agents in OS is mandatory. Results We investigated phospho-ERK 1/2, MCL-1, and phospho-Ezrin/Radixin/Moesin (P-ERM as potential therapeutic targets in OS. Activation of these pathways was shown by immunohistochemistry in about 70% of cases and in all OS cell lines analyzed. Mutational analysis revealed no activating mutations in KRAS whereas BRAF gene was found to be mutated in 4/30 OS samples from patients. Based on these results we tested the multi-kinase inhibitor sorafenib (BAY 43-9006 in preclinical models of OS. Sorafenib inhibited OS cell line proliferation, induced apoptosis and downregulated P-ERK1/2, MCL-1, and P-ERM in a dose-dependent manner. The dephosphorylation of ERM was not due to ERK inhibition. The downregulation of MCL-1 led to an increase in apoptosis in OS cell lines. In chick embryo chorioallantoic membranes, OS supernatants induced angiogenesis, which was blocked by sorafenib and it was also shown that sorafenib reduced VEGF and MMP2 production. In addition, sorafenib treatment dramatically reduced tumour volume of OS xenografts and lung metastasis in SCID mice. Conclusion In conclusion, ERK1/2, MCL-1 and ERM pathways are shown to be active in OS. Sorafenib is able to inhibit their signal transduction, both in vitro and in vivo, displaying anti-tumoural activity, anti-angiogenic effects, and reducing metastatic colony formation in lungs. These data support the testing of sorafenib as a potential therapeutic option in metastatic or relapsed OS patients unresponsive to standard treatments.

  20. Targeting angiogenesis: a review of angiogenesis inhibitors in the treatment of lung cancer.

    Science.gov (United States)

    Sridhar, Srikala S; Shepherd, Frances A

    2003-12-01

    It has now been almost 30 years since Dr J. Folkman first proposed that inhibition of angiogenesis could play a key role in treating cancer; however, it is only recently that anti-angiogenesis agents have entered the clinical setting. The search for novel therapies is particularly important in lung cancer, where the majority of patients succumb to their disease despite aggressive treatments. Several classes of agents now exist that target the different steps involved in angiogenesis. These include drugs inhibiting matrix breakdown, the matrix metalloproteinase inhibitors (MMPIs), such as marimastat, prinomastat, BMS275291, BAY12-9566, and neovastat drugs that block endothelial cell signaling via vascular endothelial growth factor (VEGF) and its receptor (VEGFR) including rhuMAb VEGF, SU5416, SU6668, ZD6474, CP-547,632 and ZD4190. Drugs that are similar to endogenous inhibitors of angiogenesis including endostatin, angiostatin and interferons. There has also been renewed interest in thalidomide. Drugs such as squalamine, celecoxib, ZD6126, TNP-470 and those targeting the integrins are also being evaluated in lung cancer. Despite early enthusiasm for many of these agents, Phase III trials have not yet demonstrated significant increases in overall survival and toxicity remains an issue. It is hoped that as our understanding of the complex process of angiogenesis increases, so will our ability to design more effective targeted therapies. PMID:14611919

  1. A New Group of Phage Anti-CRISPR Genes Inhibits the Type I-E CRISPR-Cas System of Pseudomonas aeruginosa

    OpenAIRE

    Pawluk, April; Bondy-Denomy, Joseph; Cheung, Vivian H. W.; Maxwell, Karen L.; Davidson, Alan R.

    2014-01-01

    ABSTRACT CRISPR-Cas systems are one of the most widespread phage resistance mechanisms in prokaryotes. Our lab recently identified the first examples of phage-borne anti-CRISPR genes that encode protein inhibitors of the type I-F CRISPR-Cas system of Pseudomonas aeruginosa. A key question arising from this work was whether there are other types of anti-CRISPR genes. In the current work, we address this question by demonstrating that some of the same phages carrying type I-F anti-CRISPR genes ...

  2. 重组表达人载脂蛋白(a)羧基末端kringle结构域抑制新生血管%Recombinant human apolipoprotein (a)carboxyl terminal kringles inhibites angiogenesis

    Institute of Scientific and Technical Information of China (English)

    申乐; 陈保生; 薛红

    2013-01-01

    Objective To characterize some purified recombinant Apo (a) kringles expressed by Pichia pastoris and to illustrate their antiangiogenic and antitumorogenic capacities.Methods Two recombinant proteins RHAKA (kringle Ⅴ) and RHAKB (kringle Ⅳ type 10 and kringle Ⅴ) were expressed by Pichia pastoris.Both RHAKA and RHAKB,recombined into pPICZαA,were secreted by Pichia pastoris X-33.Recombinant proteins were concentrated and dialyzed before His · Tag affinity chromatography.Six amido terminal amino acids of RHAKB were analyzed through sequencing the purified protein from reverse-phase high performance liquid chromatography.We've also illustrated several important characters of recombinant proteins,such as glycosylation and disulfide bonds formation.Finally,recombinant proteins' influence on in vitro cellular proliferation and in vivo angiogenesis of chick embryo chorioallantoic membrane (CAM) were tested.Results Pichia pastoris as an expression host may not only express recombinant proteins at a high level but modify them well.Both RHAKA and RHAKB could inhibit angiogenesis in vitro or in vivo,but no such inhibitory effect was found in cultured carcinoma cells.Conclusions Recombinant Apo(a) carboxyl terminal kringles expressed by Pichia pastoris may inhibit angiogenesis significantly.%目的 利用毕赤酵母重组表达人载脂蛋白(a)[Apo(a)]羧基末端kringle结构域,明确其抑制新生血管和肿瘤细胞增殖的能力.方法 分别构建重组表达Apo(a)羧基末端kringle Ⅴ结构域(RHAKA)与kringleⅣ10型-krin-gle Ⅴ结构域(RHAKB)的pPICZαA质粒;转染毕赤酵母X-33分泌表达RHAKA与RHAKB,RHAKs利用His· Tag亲和层析纯化,以及反相高效液相色谱与氨基酸残基测序鉴定;明确RHAKs的糖基化及二硫键形成情况后,利用细胞增殖实验与鸡胚绒毛尿囊膜(C AM)实验检测RHAKs对新生血管和肿瘤细胞增殖的影响.结果 毕赤酵母可以大量表达RHAKs,并对RHAKs进行翻译后修饰

  3. Decoy oligodeoxyribonucleotides and peptide nucleic acids-DNA chimeras targeting nuclear factor kappa-B: inhibition of IL-8 gene expression in cystic fibrosis cells infected with Pseudomonas aeruginosa.

    Science.gov (United States)

    Gambari, Roberto; Borgatti, Monica; Bezzerri, Valentino; Nicolis, Elena; Lampronti, Ilaria; Dechecchi, Maria Cristina; Mancini, Irene; Tamanini, Anna; Cabrini, Giulio

    2010-12-15

    Cystic fibrosis (CF) is characterized by a deep inflammatory process, with production and release of cytokines and chemokines, among which interleukin 8 (IL-8) represents one of the most important. Accordingly, there is a growing interest in developing therapies against IL-8, with the aim of reducing the excessive inflammatory response in the airways of CF patients. Since transcription factor NF-kappaB plays a critical role in IL-8 expression, the transcription factor decoy (TFD) strategy might be of interest. TFD is based on biomolecules mimicking the target sites of transcription factors (TFs) and able to interfere with TF activity when delivered to target cells. Here, we review the inhibitory effects of decoy oligodeoxyribonucleotides (ODNs) on expression of IL-8 gene and secretion of IL-8 by cystic fibrosis cells infected by Pseudomonas aeruginosa. In addition, the effects of decoy molecules based on peptide nucleic acids (PNAs) are discussed. In this respect PNA-DNA-PNA (PDP) chimeras are interesting: (a) unlike PNAs, they can be complexed with liposomes and microspheres; (b) unlike oligodeoxyribonucleotides (ODNs), they are resistant to DNAses, serum and cytoplasmic extracts; (c) unlike PNA/PNA and PNA/DNA hybrids, they are potent decoy molecules. Interestingly, PDP/PDP NF-kappaB decoy chimeras inhibit accumulation of pro-inflammatory mRNAs (including IL-8 mRNA) in P. aeruginosa infected IB3-1, cells reproducing the effects of decoy oligonucleotides. The effects of PDP/PDP chimeras, unlike ODN-based decoys, are observed even in absence of protection with lipofectamine. Since IL-8 is pivotal in pro-inflammatory processes affecting cystic fibrosis, inhibition of its functions might have a clinical relevance. PMID:20615393

  4. ER Stress and Angiogenesis.

    Science.gov (United States)

    Binet, François; Sapieha, Przemyslaw

    2015-10-01

    Proper tissue vascularization is vital for cellular function as it delivers oxygen, nutrients, hormones, and immune cells and helps to clear cellular debris and metabolic waste products. Tissue angiogenesis occurs to satisfy energy requirements and cellular sensors of metabolic imbalance coordinate vessel growth. In this regard, the classical pathways of the unfolded protein response activated under conditions of ER stress have recently been described to generate angiomodulatory or angiostatic signals. This review elaborates on the link between angiogenesis and ER stress and discusses the implications for diseases characterized by altered vascular homeostasis, such as cancer, retinopathies, and atherosclerosis.

  5. From angiogenesis to neuropathology

    Science.gov (United States)

    Greenberg, David A.; Jin, Kunlin

    2005-12-01

    Angiogenesis - the growth of new blood vessels - is a crucial force for shaping the nervous system and protecting it from disease. Recent advances have improved our understanding of how the brain and other tissues grow new blood vessels under normal and pathological conditions. Angiogenesis factors, especially vascular endothelial growth factor, are now known to have roles in the birth of new neurons (neurogenesis), the prevention or mitigation of neuronal injury (neuroprotection), and the pathogenesis of stroke, Alzheimer's disease and motor neuron disease. As our understanding of pathophysiology grows, these developments may point the way towards new molecular and cell-based therapies.

  6. Inhibition effects of all trans-retinoic acid on the growth and angiogenesis of esophageal squamous cell carcinoma in nude mice

    Institute of Scientific and Technical Information of China (English)

    LU Tai-ying; LI Wen-cai; CHEN Ren-yin; FAN Qing-xia; WANG Liu-xing; WANG Rui-lin; LU Shi-xin; MENG Hui

    2011-01-01

    Background The potential application of retinoic acid receptor activators,such as all trans-retinoic acid (ATRA),for treating various cancers have been studied both pre-clinically and clinically.Whether ATRA has an anticancer effect on human esophageal squamous cancer cell (ESCC) is still unknown.We have explored the anticancer effect of ATRA in ESCC,and in this study,the effects of ATRA on levels and patterns of expression of the vascular endothelial growth factor (VEGF) signal transduction pathway in transplantable tumor growth of the human ESCC cell line,EC9706,in nude mice.Methods The animal model of the ESCC xenograft was made by subcutaneous implantation of tumor cells into nude mice.Reverse transcription-polymerase chain reaction (RT-PCR),Western blotting and immunohistochemical assays were used to detect the expression of the VEGF signal transduction pathway in ESCC xenograft tissues.Results Compared to the control group,the tumor inhibition rates in the low dose ATRA,high dose ATRA,and 5-FU groups were 83.21%,88.32%,91.02%,respectively.The protein and mRNA levels of VEGF were down-regulated after being treated with ATRA and 5-FU compared to the control group (P <0.05).The study also revealed that ATRA specifically down-regulated VEGF and the component of the VEGF signal transduction pathway of CD31,CD34,and CD105 (component of the TGF-β receptor) in ESCC xenograft tissues (P <0.05).Conclusions ATRA can significantly inhibit tumor growth and has anticancer effects on transplantable tumor growth of human ESCC cell line EC9706 in nude mice.These findings indicate that ATRA specifically down regulated VEGF and the components of VEGF signal transduction,which may be an important mechanism responsible for the neoangiogenesis inhibition of ESCC cells.

  7. Cancer Immunotherapy of Targeting Angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Jianmei Hou; Ling Tian; Yuquan Wei

    2004-01-01

    Tumor growth and metastasis are angiogenesis-dependent. Anti-angiogenic therapy may be a useful approach to cancer therapy. This review discussed tumor angiogenesis and immunotherapy of targeting tumor angiogenesis from two main aspects: (1) active vaccination to induce effective anti-angiogenesis immunity; (2) passive immunotherapy with anti-pro-angiogenic molecules relevant antibody. Evidence from the recent years suggested that anti-angiogenic therapy should be one of the most promising approaches to cancer therapy.

  8. Controlling Biofilm Formation by Inhibiting the Quorum-Sensing Activity of Pseudomonas aeruginosa using the Ethanolic Extracts of Piper nigrum (Piperaceae Fruit, Punica granatum (Lythraceae Pericarp, and Pisum sativum (Fabaceae Seed

    Directory of Open Access Journals (Sweden)

    M.V. Dazal

    2015-07-01

    Full Text Available Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Pseudomonas aeruginosa is a well-known pathogen that exhibit biofilm formation through quorum-sensing, which is a bacterial cell-to-cell communication that regulates the production of many virulence factors. The inhibition of biofilm formation is a viable option for bacterial eradication. The antibacterial effect of Piper nigrum is related to the presence of phenolic and flavonoid components. Punica granatum has been reported to possess a wide range of biological actions, with tannins and alkaloids stated to be the reason of its antibacterial property. Pisum sativum, on the other hand, contains various constituents, but the tannins and phenolic compounds stated as responsible for its antibacterial property. The minimum inhibitory concentration using the susceptibility testing of P. nigrum, P. granatum, P. sativum ethanolic extracts were 6.67×10-4 g/mL, 2.1978×10-5 g/mL, and 6.25×10-4 g/mL, respectively. On the swarming assay, P. granatum and P. sativum inhibits swarming motility at concentrations of 2.1978×10-2 up to 2.1978×10-4 g/mL, and 6.25×10-2 to 6.25×10-3 g/mL, respectively. The P. nigrum extract did not inhibit the motility.

  9. The Harvard angiogenesis story.

    Science.gov (United States)

    Miller, Joan W

    2014-01-01

    I shall discuss the work of researchers at Harvard Medical School who came together in the early 1990s. Scattered across various Harvard-affiliated hospitals and research centers, these individuals were unified by their interest in ocular neovascularization. Together and separately, they investigated models of ocular neovascularization, exploring tumor angiogenesis in eye development and disease.

  10. Angiogenesis in vestibular schwannomas

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Werther, Kim; Nalla, Amarnadh;

    2010-01-01

    Vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) are potent mediators of tumor angiogenesis. It has been demonstrated that vestibular schwannoma VEGF expression correlates with tumor growth pattern, whereas knowledge on the expression of MMPs is lacking. This study t...

  11. Vasculogenesis and angiogenesis in diabetes mellitus: novel pathogenetic concepts for treatment of vascular complications

    Directory of Open Access Journals (Sweden)

    Vladimir Iosifovich Konenkov

    2012-12-01

    Full Text Available Hyperglycemia along with other metabolic disorders may disrupt the balance of pro- and antiangiogenic regulators, thus leading to a maladaptive formation of new blood vessels in the state of diabetes mellitus (DM. In their turn, aberrant angiogenesis and vasculogenesis are important mechanisms of vascular complications in DM. Activation of retinal angiogenesis is a cornerstone of proliferative diabetic retinopathy, though in diabetic nephropathy excessive angiogenesis is only seen at early stages. Quite on the contrary, macrovascular complications are characterized by certain inhibition of both angiogenesis and vasculogenesis. Novel therapeutic approaches, based on correction of angiogenesis, have emerged recently. Clinical trials have shown efficacy of angiogenesis inhibitors (the «anti-VEGF» agents for management of diabetic macular edema and proliferative retinopathy. Experimental evidence also indicates that this treatment may hinder the progress of diabetic nephropathy. In addition, stimulation of angiogenesis and vasculogenesis with stem cells or growth factors promise an option for treatment of large vessels in DM.

  12. Marine bromophenol bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, represses angiogenesis in HUVEC cells and in zebrafish embryos via inhibiting the VEGF signal systems.

    Science.gov (United States)

    Qi, Xin; Liu, Ge; Qiu, Lin; Lin, Xiukun; Liu, Ming

    2015-10-01

    Bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (BDDE) is a bromophenol compound derived from marine algae. Our previous reports have shown that BDDE possessed anticancer activity in vitro. However, its antiangiogenesis activity and possible mechanisms remain unclear. The present study demonstrated that BDDE displayed in vitro antiangiogenesis capabilities by significantly inhibiting HUVEC cells proliferation, migration, and tube formation, without any effect on the preformed vascular tube. Western blot analysis revealed that BDDE decreased the protein level of VEGF and VEGFR but not that of EGFR, FGFR, and IGFR. In addition, BDDE inactivated the VEGF downstream signaling molecules including mTOR and Src, whereas activated Akt and ERK. Moreover, BDDE blocked subintestinal vessel formation in zebrafish embryos in vivo and showed toxicity under high concentrations of BDDE. The results of this present study indicated that BDDE, which has unique chemical structure different from current antiangiogenesis agents, could be used as a potential drug candidate for cancer prevention and therapy. PMID:26463632

  13. 二甲双胍抗肿瘤血管及抑制胃癌细胞生长的实验研究%Experimental study of Metformin for inhibiting tumor angiogenesis and gastric cancer cell growth

    Institute of Scientific and Technical Information of China (English)

    童陈琦; 王维; 梁斌鑫

    2015-01-01

    目的:探讨二甲双胍对肿瘤血管及胃癌细胞生长的抑制作用。方法利用人脐静脉血管内皮细胞(HU-VEC)细胞划痕试验、Transwell侵袭实验、Matrigel血管状结构形成实验,研究二甲双胍对血管内皮细胞侵袭、迁移及血管状结构形成的影响,且运用流式细胞仪检测二甲双胍对血管内皮生长因子(VEGF)表达的影响;利用胃癌细胞BGC823的MTT实验、苏木精凋亡染色、Annexin-吁细胞凋亡实验、定量PCR凋亡因子检测实验,研究二甲双胍对胃癌细胞增殖、凋亡的影响。结果二甲双胍能够明显抑制HUVEC的迁移、侵袭、血管状结构形成,并且明显减少细胞VEGF的表达;二甲双胍对胃癌BGC823细胞的增殖有明显的抑制作用,且具有浓度依赖性,其中最大抑制率为68.80%,半抑制浓度(IC50)为(11.97±1.84)mmol/L;二甲双胍可以诱导胃癌BGC823细胞凋亡,具有浓度依赖性,10 mmol/L二甲双胍组凋亡比例接近60%;二甲双胍组BGC823细胞的Bcl-2 mRNA减少,而AMP-Kα1、Bax、Bad mRNA的表达增加。结论二甲双胍能够抑制肿瘤血管形成和胃癌细胞增殖,并诱导胃癌细胞凋亡,发挥抗胃癌细胞生长作用。%Objective To investigate the inhibiting effect of Metformin on the tumor angiogenesis and gastric cancer cell growth. Methods The cell scratch test, Transwell invasion assay and Matrigel vascular structure formation experi-ment of human umbilical vein endothelial cells (HUVEC) were used to study the effect of Metformin on vascular en-dothelial cell migration, invasion and the vascular structure formation, and the influence of Metformin on VEGF ex-pression was illuminated by flow cytometry; then MTT assay, hematoxylin apoptosis of dyeing, Annexin-Ⅴ apoptosis and quantitative PCR detection for apoptosis factors of gastric cancer BGC823 cells were conducted to research the ef-fect of Metformin on gastric cancer cell proliferation and apoptosis

  14. The effects of ethanol on angiogenesis after myocardial infarction, and preservation of angiogenesis with rosuvastatin after heavy drinking.

    Science.gov (United States)

    Zhang, Yuying; Yuan, Haitao; Sun, Yongle; Wang, Yong; Wang, Aihong

    2016-08-01

    The cardioprotective effects of moderate alcohol consumption and statins have been known for years. However, heavy or binge drinking confers a high risk of cardiovascular disease. This study aimed to investigate the effects of different levels of alcohol consumption on acute myocardial infarction that was induced experimentally in rats, with a focus on the potential mechanism of angiogenesis and the effects of statins on heavy drinking. The experimental rats were fed low-dose ethanol (0.5 g/kg/day), high-dose ethanol (5 g/kg/day), and high-dose ethanol with rosuvastatin (10 mg/kg/day) during the entire experiment. Acute myocardial infarctions were induced 4 weeks after the beginning of the experiment. We assessed the capillary density in the myocardium via immunohistochemistry and quantified the expression of vascular endothelial growth factor (VEGF) and endostatin via enzyme-linked immunosorbent assay kits on the 4th day after myocardial infarction. The results revealed that low ethanol consumption promoted angiogenesis in association with higher VEGF and lower endostatin. High ethanol intake suppressed angiogenesis with unchanged VEGF and elevated endostatin. Treatment with rosuvastatin preserved angiogenesis following high ethanol intake, with an upregulation of VEGF. This study highlights that low ethanol consumption obviously promotes angiogenesis in myocardial-infarction rats while increasing the expression of VEGF, whereas high ethanol consumption inhibits ischemia-induced angiogenesis. This study also provides evidence that rosuvastatin alleviates the inhibitory effects of heavy drinking on angiogenesis. PMID:27565753

  15. Angiogenesis and Multiple Myeloma

    OpenAIRE

    Giuliani, Nicola; Storti, Paola; Bolzoni, Marina; Palma, Benedetta Dalla; Bonomini, Sabrina

    2011-01-01

    The bone marrow microenvironment in multiple myeloma is characterized by an increased microvessel density. The production of pro-angiogenic molecules is increased and the production of angiogenic inhibitors is suppressed, leading to an “angiogenic switch”. Here we present an overview of the role of angiogenesis in multiple myeloma, the pro-angiogenic factors produced by myeloma cells and the microenvironment, and the mechanisms involved in the myeloma-induced angiogenic switch. Current data s...

  16. Prostanoids in tumor angiogenesis: therapeutic intervention beyond COX-2.

    Science.gov (United States)

    Salvado, M Dolores; Alfranca, Arántzazu; Haeggström, Jesper Z; Redondo, Juan Miguel

    2012-04-01

    Prostanoids regulate angiogenesis in carcinoma and chronic inflammatory disease progression. Although prostanoid biosynthetic enzymes and signaling have been extensively analyzed in inflammation, little is known about how prostanoids mediate tumor-induced angiogenesis. Targeted cyclooxygenase (COX)-2 inhibition in tumor, stromal and endothelial cells is an attractive antiangiogenic strategy; however, the associated cardiovascular side effects have led to the development of a new generation of nonsteroidal anti-inflammatory drugs (NSAIDs) acting downstream of COX. These agents target terminal prostanoid synthases and prostanoid receptors, which may also include several peroxisome proliferator-activated receptors (PPARs). Here, we discuss the role of prostanoids as modulators of tumor angiogenesis and how prostanoid metabolism reflects complex cell-cell crosstalk that determines tumor growth. Finally, we discuss the potential of new NSAIDs for the treatment of angiogenesis-dependent tumor development.

  17. Endostatin derivative angiogenesis inhibitors

    Institute of Scientific and Technical Information of China (English)

    ZHENG Meng-jie

    2009-01-01

    Objective To throw light on the superiority of the anti-angiogenesis activity of endostatin (ES) derivatives by reviewing the recent progress in the field of ES molecular structure modification.Data sources The data used in this article were mainly from PubMed with relevant English articles published from 1971 to May 2008.The search terms were "endostatin" and "angiothesis".Study selection Articles involved in the ES molecular structure modification and the original milestone articles were selected.Results A number of ES derivatives were designed and studied to improve its clinical relevance.The modified ES with polyethylene glycol (PEG),low molecular weight heparin (LMWH) and IgG Fc domain extended the circulation half-life.Meanwhile the recombinant ESs showed more potent anti-tumor activity than native ES in mouse xenografts.Mutated ES also changed its anti-angiogenesis activity.Conclusions The anti-angiogenesis treatment remains a promising tumor therapeutic strategy.New ES derivatives would be a good choice to meet the future challenge on clinical application of ES.

  18. 乳酸钠抑制铜绿假单胞菌生长的机理%Mechanism Analysis of Sodium Lactate Inhibiting Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    姚远; 董庆利; 熊成

    2012-01-01

    为探索乳酸钠(NaL)抑制铜绿假单胞菌(Pseudomonas aeruginosa)生长的机理,从NaL影响目标菌细胞膜(壁)结构完整性和胞内ATP的合成两方面进行了探讨。研究结果表明,0.02 g/mL NaL显著破坏了细胞膜结构的完整性,对照组破坏程度较小,两者差异显著(P〈0.05);另一方面,0.02 g/mL NaL抑制了胞内ATP合成,而对照组中ATP含量明显高于NaL试验组(P〈0.05)。试验结果为合理、高效利用乳酸钠为新型肉类防腐剂提供了理论依据。%The antibacterial mechanism of sodium lactate(NaL) to Pseudomonas aeruginosa was studied in this paper.Two aspects were designed as the following: the structural integrity of bacterial cell membrane(wall) and the synthesis of ATP in bacteria.The results showed that the structural integrity of bacterial cell membrane was much more significantly destroyed by 0.02 g/mL NaL than control(P0.05).Meanwhile,ATP product of the treatment with 2 g/100mL NaL was less than that of the control.The conclusion of experiment provides some theoretical references for using NaL as right and effective new food preservatives.

  19. Effects of ginseng on Pseudomonas aeruginosa motility and biofilm formation

    DEFF Research Database (Denmark)

    Wu, Hong; Lee, Baoleri; Yang, Liang;

    2011-01-01

    of P. aeruginosa at concentrations as low as 0.25%. Oral administration of ginseng extracts in mice promoted phagocytosis of P. aeruginosa PAO1 by airway phagocytes, but did not affect phagocytosis of a PAO1-filM mutant. Our study suggests that ginseng treatment may help to eradicate the biofilm......Biofilm-associated chronic Pseudomonas aeruginosa lung infections in patients with cystic fibrosis are virtually impossible to eradicate with antibiotics because biofilm-growing bacteria are highly tolerant to antibiotics and host defense mechanisms. Previously, we found that ginseng treatments...... protected animal models from developing chronic lung infection by P. aeruginosa. In the present study, the effects of ginseng on the formation of P. aeruginosa biofilms were further investigated in vitro and in vivo. Ginseng aqueous extract at concentrations of 0.5-2.0% did not inhibit the growth of P...

  20. 牛蒡子苷元对肿瘤血管生成抑制作用的观察%Inhibition effect of arctigenin on the angiogenesis of hepatocarcinoma

    Institute of Scientific and Technical Information of China (English)

    郑国灿; 王兵; 黄聪华; 李国明; 李叔强; 袁家天

    2013-01-01

    . 82±0. 26. The luminance ratio of VEGF gene in the experimental group was lower than that in the control group (44. 16% vs 82. 13%). MVD in the experimental group (19. 29 + 2. 06) was lower than that in the blank control group (39. 43±3. 31) and 5-FU group (21. 57 + 2. 82,P<0. 01). CONCLUSION:Arctigenin can inhibit the expression of VEGF gene and protein in hepatocarcinoma cell and the angiogenesis of hepatocarcinoma in nude mice.

  1. Platelets actively sequester angiogenesis regulators

    OpenAIRE

    Lakka Klement, Giannoula; Yip, Tai-Tung; Cassiola, Flavia; Kikuchi, Lena; Cervi, David; Podust, Vladimir; Italiano, Joseph E.; Wheatley, Erin; Abou-Slaybi, Abdo; Bender, Elise; Almog, Nava; Kieran, Mark W.; Folkman, Judah

    2009-01-01

    Clinical trials with antiangiogenic agents have not been able to validate plasma or serum levels of angiogenesis regulators as reliable markers of cancer presence or therapeutic response. We recently reported that platelets contain numerous proteins that regulate angiogenesis. We now show that accumulation of angiogenesis regulators in platelets of animals bearing malignant tumors exceeds significantly their concentration in plasma or serum, as well as their levels in platelets from non–tumor...

  2. Increased angiogenesis in portal hypertensive rats: role of nitric oxide.

    Science.gov (United States)

    Sumanovski, L T; Battegay, E; Stumm, M; van der Kooij, M; Sieber, C C

    1999-04-01

    Systemic and especially splanchnic arterial vasodilation accompany chronic portal hypertension. Different soluble mediators causing this vasodilation have been proposed, the strongest evidence being for nitric oxide (NO). No data exist if structural vascular changes may partly account for this vasodilatory state. Here, we developed a new in vivo quantitative angiogenesis assay in the abdominal cavity and determined if: 1) portal hypertensive rats show increased angiogenesis; and 2) angiogenesis is altered by inhibiting NO formation. Portal hypertension was induced by partial portal vein ligation (PVL). Sham-operated rats served as controls (CON). During the index operation (day 0), a teflon ring filled with collagen I (Vitrogen 100) was sutured in the mesenteric cavity. After 16 days, rings were explanted, embedded in paraffin, and ingrown vessels counted using a morphometry system. The role of NO was tested by adding an antagonist of NO formation (Nomega-nitro-L-arginine [NNA], 3.3 mg/kg/d) into the drinking water. The mean number of ingrown vessels per implant was significantly higher in PVL rats compared with CON rats, i.e., 1,453 +/- 187 versus 888 +/- 116, respectively (P <.05; N = 5 per group). NNA significantly (P <.01) inhibited angiogenesis in PVL (202 +/- 124; N = 5) and in CON (174 +/- 25; N = 6) rats, respectively. In contrast, the beta-adrenergic blocker, propranolol, did not prevent angiogenesis either in PVL or CON rats in a separate set of experiments (data not shown). The conclusions drawn from this study are that: 1) rats with portal hypertension show increased angiogenesis; and 2) inhibition of NO formation significantly prevents angiogenesis in both PVL and CON rats. Therefore, splanchnic vasodilation in chronic portal hypertension may also be a result of structural changes.

  3. The Pseudomonas aeruginosa oxyvinylglycine L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth of Erwinia amylovora and acts as a weak seed germination-arrest factor

    Science.gov (United States)

    The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) is demonstrated to share biological activities with 4-formylaminooxyvinylglycine, a related molecule produced by Pseudomonas fluorescens WH6. We found that culture filtrates of a P. aeruginosa strain overproduc...

  4. Acquisition and role of molybdate in Pseudomonas aeruginosa.

    Science.gov (United States)

    Pederick, Victoria G; Eijkelkamp, Bart A; Ween, Miranda P; Begg, Stephanie L; Paton, James C; McDevitt, Christopher A

    2014-11-01

    In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO4 (2-)). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition. PMID:25172858

  5. Acquisition and role of molybdate in Pseudomonas aeruginosa.

    Science.gov (United States)

    Pederick, Victoria G; Eijkelkamp, Bart A; Ween, Miranda P; Begg, Stephanie L; Paton, James C; McDevitt, Christopher A

    2014-11-01

    In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO4 (2-)). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition.

  6. Inhibition of virulence gene expression in Rhodococcus fascians and Pseudomonas aeruginosa by flavonoïds isolated from the genera Dalbergia and Combretum

    OpenAIRE

    Rajaonson, Sanda

    2011-01-01

    Plants are continuously confronted with a multitude attack either abiotic but also biotic in nature. Interestingly, despite the abundance of bacteria that plant has to face, only few are able to induce death or disease in the host plant. It is therefore likely that, in addition to secondary metabolites with antimicrobial properties, plants also synthesize secondary metabolites which are able to inhibit the expression of virulence genes in bacteria without affecting either growth or viability,...

  7. Depletion of Serotonin and Selective Inhibition of 2B Receptor Suppressed Tumor Angiogenesis by Inhibiting Endothelial Nitric Oxide Synthase and Extracellular Signal-Regulated Kinase 1/2 Phosphorylation

    Directory of Open Access Journals (Sweden)

    Masanori Asada

    2009-04-01

    Full Text Available The effects of serotonin (5-HT on tumor growth are inconsistent. We investigated whether a decreased level of 5-HT affected tumor growth using 5-HT transporter knockout (5-HTT-/- mice, which showed 5-HT depletion. When cancer cells were injected subcutaneously into both 5-HTT-/- and 5-HTT+/+ mice, the tumor growth was markedly attenuated in 5-HTT-/- mice. Serotonin levels in the blood, forebrain, and tumors of 5-HTT-/- mice bearing tumors were significantly smaller than those of their 5-HTT+/+ littermates. However, 5-HT did not increase cancer cells' proliferation in vitro. When we applied 5-HTT inhibitors to the wild mice bearing tumors, they did not inhibit tumor growth. The endothelial nitric oxide synthase (eNOS expressions in tumors were reduced in 5-HTT-/- mice compared with 5-HTT+/+ mice. Stimulations with 5-HT (1–50 µM induced eNOS expressions in human umbilical vein endothelial cell (HUVEC in a concentration-dependent manner. When we measured activations of multiple signaling pathways by using a high-throughput phosphospecific antibodies platform, 5-HT stimulated the extracellular signal-regulated kinase 1/2 (ERK1/2 in HUVEC. Moreover, we found that the physiological level of 5-HT induced phosphorylation of both ERK1/2 and eNOS in HUVEC. Human umbilical vein endothelial cell expressed both 5-HT2B and 5-HT2C receptors. SB204741, a specific 5-HT2B receptor inhibitor, blocked 5-HT-induced ERK1/2 and eNOS phosphorylations, whereas RS102221, a specific 5-HT2C receptor inhibitor, did not in HUVEC. SB204741 reduced microvessel density in tumors and inhibited the proliferation of HUVEC in vitro. These results suggest that regulation of 5-HT and 5-HT receptors, especially the 5-HT2B receptor, may serve as a therapeutic strategy in cancer therapy.

  8. Airway epithelial cell tolerance to Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Verghese Margrith W

    2005-04-01

    Full Text Available Abstract Background The respiratory tract epithelium is a critical environmental interface that regulates inflammation. In chronic infectious airway diseases, pathogens may permanently colonize normally sterile luminal environments. Host-pathogen interactions determine the intensity of inflammation and thus, rates of tissue injury. Although many cells become refractory to stimulation by pathogen products, it is unknown whether the airway epithelium becomes either tolerant or hypersensitive in the setting of chronic infection. Our goals were to characterize the response of well-differentiated primary human tracheobronchial epithelial cells to Pseudomonas aeruginosa, to understand whether repeated exposure induced tolerance and, if so, to explore the mechanism(s. Methods The apical surface of well-differentiated primary human tracheobronchial epithelial cell cultures was repetitively challenged with Pseudomonas aeruginosa culture filtrates or the bacterial media control. Toxicity, cytokine production, signal transduction events and specific effects of dominant negative forms of signaling molecules were examined. Additional experiments included using IL-1β and TNFα as challenge agents, and performing comparative studies with a novel airway epithelial cell line. Results An initial challenge of the apical surface of polarized human airway epithelial cells with Pseudomonas aeruginosa culture filtrates induced phosphorylation of IRAK1, JNK, p38, and ERK, caused degradation of IκBα, generation of NF-κB and AP-1 transcription factor activity, and resulted in IL-8 secretion, consistent with activation of the Toll-like receptor signal transduction pathway. These responses were strongly attenuated following a second Pseudomonas aeruginosa, or IL-1β, but not TNFα, challenge. Tolerance was associated with decreased IRAK1 protein content and kinase activity and dominant negative IRAK1 inhibited Pseudomonas aeruginosa -stimulated NF-κB transcriptional

  9. Anti-angiogenesis therapies: their potential in cancer management

    Directory of Open Access Journals (Sweden)

    Andrew Eichholz

    2010-05-01

    Full Text Available Andrew Eichholz, Shairoz Merchant, Andrew M GayaDepartment of Clinical Oncology, Guy’s and St. Thomas’ NHS Foundation Trust, London, United KingdomAbstract: Angiogenesis plays an important role in normal animal growth and development. This process is also vital for the growth of tumors. Angiogenesis inhibitors have a different mechanism of action to traditional chemotherapy agents and radiation therapy. The angiogenesis inhibitors can act synergistically with conventional treatments and tend to have non-overlapping toxicities. There are four drugs which have a proven role in treating cancer patients. Bevacizumab is a humanized monoclonal antibody that binds to and neutralizes vascular endothelial growth factor (VEGF. Sunitinib and sorafenib inhibit multiple tyrosine kinase receptors that are important for angiogenesis. Thalidomide inhibits the activity of basic fibroblast growth factor-2 (bFGF. The licensed indications and the supporting evidence are discussed. Other drugs are currently being tested in clinical trials and the most promising of these drugs are discussed. Aflibercept, also known as VEGF-trap, is a recombinant fusion protein that binds to circulating VEGF. The vascular disrupting agents act by targeting established blood vessels. These exciting new treatments have the potential to transform the management of cancer.Keywords: angiogenesis, bevacizumab, tyrosine kinase inhibitors, thalidomide, aflibercept, vascular disrupting agents

  10. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet α granules and differentially released

    OpenAIRE

    Italiano, Joseph E.; Richardson, Jennifer L.; Patel-Hett, Sunita; Battinelli, Elisabeth; Zaslavsky, Alexander; Short, Sarah; Ryeom, Sandra; Folkman, Judah; Klement, Giannoula L.

    2008-01-01

    Platelets, in addition to their function in hemostasis, play an important role in wound healing and tumor growth. Because platelets contain angiogenesis stimulators and inhibitors, the mechanisms by which platelets regulate angiogenesis remain unclear. As platelets adhere to activated endothelium, their action can enhance or inhibit local angiogenesis. We therefore suspected a higher organization of angiogenesis regulators in platelets. Using double immunofluorescence and immunoelectron micro...

  11. Recent advances in angiogenesis, anti-angiogenesis and vascular targeting.

    Science.gov (United States)

    Bikfalvi, Andreas; Bicknell, Roy

    2002-12-01

    Angiogenesis, the development of new blood vessels, has become a major focus of research. This has been stimulated by the therapeutic opportunities offered by the ability to manipulate the vasculature in pathologies such as cancer. Here, we present an overview of recent advances in angiogenesis. Especially noteworthy is the large volume of information from developmental studies, particularly those that involve transgenic and gene knockout mice. We also discuss the increasing repertoire of drugs with which to manipulate angiogenesis and new endothelial-specific genes with which to target the vasculature. PMID:12457776

  12. Modelling approaches for angiogenesis.

    Science.gov (United States)

    Taraboletti, G; Giavazzi, R

    2004-04-01

    The development of a functional vasculature within a tumour is a requisite for its growth and progression. This fact has led to the design of therapies directed toward the tumour vasculature, aiming either to prevent the formation of new vessels (anti-angiogenic) or to damage existing vessels (vascular targeting). The development of agents with different mechanisms of action requires powerful preclinical models for the analysis and optimization of these therapies. This review concerns 'classical' assays of angiogenesis in vitro and in vivo, recent approaches to target identification (analysis of gene and protein expression), and the study of morphological and functional changes in the vasculature in vivo (imaging techniques). It mainly describes assays designed for anti-angiogenic compounds, indicating, where possible, their application to the study of vascular-targeting agents. PMID:15120043

  13. Integrated in silico and experimental methods revealed that Arctigenin inhibited angiogenesis and HCT116 cell migration and invasion through regulating the H1F4A and Wnt/β-catenin pathway.

    Science.gov (United States)

    Zhang, Shouyue; Li, Jie; Song, Sicheng; Li, Jing; Tong, Rongsheng; Zang, Zhihe; Jiang, Qinglin; Cai, Lulu

    2015-11-01

    Arctigenin (ARG) has been previously reported to exert diverse biological activities including anti-proliferation, anti-inflammatory, and antiviral, etc. In the current study, the anti-metastasis and anti-angiogenesis activities of ARG were investigated. To further understand how ARG played these bioactivities, proteomic approaches were used to profile the proteome changes in response to ARG treatment using 2DE-MS/MS. Using these approaches, a total of 50 differentially expressed proteins were identified and clustered. Bioinformatics analysis suggested that multiple signalling pathways were involved. Moreover, ARG induced anti-metastatic and anti-angiogenesis activities were mainly accompanied by a deactivation of the Wnt/β-catenin pathway in HCT116 cells. PMID:26267229

  14. Integrated in silico and experimental methods revealed that Arctigenin inhibited angiogenesis and HCT116 cell migration and invasion through regulating the H1F4A and Wnt/β-catenin pathway.

    Science.gov (United States)

    Zhang, Shouyue; Li, Jie; Song, Sicheng; Li, Jing; Tong, Rongsheng; Zang, Zhihe; Jiang, Qinglin; Cai, Lulu

    2015-11-01

    Arctigenin (ARG) has been previously reported to exert diverse biological activities including anti-proliferation, anti-inflammatory, and antiviral, etc. In the current study, the anti-metastasis and anti-angiogenesis activities of ARG were investigated. To further understand how ARG played these bioactivities, proteomic approaches were used to profile the proteome changes in response to ARG treatment using 2DE-MS/MS. Using these approaches, a total of 50 differentially expressed proteins were identified and clustered. Bioinformatics analysis suggested that multiple signalling pathways were involved. Moreover, ARG induced anti-metastatic and anti-angiogenesis activities were mainly accompanied by a deactivation of the Wnt/β-catenin pathway in HCT116 cells.

  15. Pancreatic cancer cell inhibition and anti-angiogenesis by angiostatin in vivo and in vitro%血管抑素对胰腺癌血管生成的抑制作用

    Institute of Scientific and Technical Information of China (English)

    石磊; 岳媛; 王作仁

    2011-01-01

    Objective To observe the inhibition of pancreatic cancer cells with anti-angiogenesis by angiostatin in vitro and in vivo. Methods The recombinant vector pcDNA3. 1 (+ )-angiostatin was transfected into human pancreatic cancer cells PC-3 with lipofectamine 2000. Angiostatin protein expression was determined by Western blot. The supernatant was collected to treat endothelial cells and cell proliferation in vitro was observed under microscope. The size of tumors was measured, and microvessel density count (MVD) in tumor tissues was assessed by immunohistochemistry with primary anti-CD34 antibody. Results After transfected into PC-3 with lipofectamine 2000 and selected by G418, macroscopic resistant cell clones were formed in the experiment group transfected with pcDNA 3. L( + )-angiostatin and vector control group. After treatment with the supernatant, the endothelial cell (ECV-304) proliferation was inhibited. In nude mice model, markedly inhibited tumorigenesis and slowed tumor expansion were observed in the experiment group as compared to those in the control group. The microvessel density was obviously smaller in the experiment group (19. 6 + 3. 6) than in the blank control group (48.5±4.7) and the liposome control group (51.1±5.4). Conclusion Angiostatin inhibits the proliferation of endothelial cell growth in vitro and further exerts an anti-tumor function through antiangiogenesis in a paracrine way in vivo.%目的 观察血管抑素在胰腺癌血管生成中的作用.方法 采用Lipofectamine 2000基因转染技术将真核表达载体pcDNA3.1(+)-angiostatin导入人胰腺癌PC-3细胞,筛选阳性克隆并扩大培养.PC-3细胞分为血管抑素转染组、空白对照组及脂质体对照组,分别检测各组血管抑素蛋白表达;利用显微镜下细胞计数法测定转染前后PC-3细胞的体外生长曲线;检测各组PC-3细胞培养上清所分泌的血管抑素对血管内皮细胞ECV-304增殖的影响.进一步

  16. Influence of Levamisole and Other Angiogenesis Inhibitors on Angiogenesis and Endothelial Cell Morphology in Vitro

    Directory of Open Access Journals (Sweden)

    Gunnar Houen

    2013-06-01

    Full Text Available Angiogenesis, the formation of new blood vessels from existing vessels is required for many physiological processes and for growth of solid tumors. Initiated by hypoxia, angiogenesis involves binding of angiogenic factors to endothelial cell (EC receptors and activation of cellular signaling, differentiation, migration, proliferation, interconnection and canalization of ECs, remodeling of the extracellular matrix and stabilization of newly formed vessels. Experimentally, these processes can be studied by several in vitro and in vivo assays focusing on different steps in the process. In vitro, ECs form networks of capillary-like tubes when propagated for three days in coculture with fibroblasts. The tube formation is dependent on vascular endothelial growth factor (VEGF and omission of VEGF from the culture medium results in the formation of clusters of undifferentiated ECs. Addition of angiogenesis inhibitors to the coculture system disrupts endothelial network formation and influences EC morphology in two distinct ways. Treatment with antibodies to VEGF, soluble VEGF receptor, the VEGF receptor tyrosine kinase inhibitor SU5614, protein tyrosine phosphatase inhibitor (PTPI IV or levamisole results in the formation of EC clusters of variable size. This cluster morphology is a result of inhibited EC differentiation and levamisole can be inferred to influence and block VEGF signaling. Treatment with platelet factor 4, thrombospondin, rapamycin, suramin, TNP-470, salubrinal, PTPI I, PTPI II, clodronate, NSC87877 or non-steriodal anti-inflammatory drugs (NSAIDs results in the formation of short cords of ECs, which suggests that these inhibitors have an influence on later steps in the angiogenic process, such as EC proliferation and migration. A humanized antibody to VEGF is one of a few angiogenesis inhibitors used clinically for treatment of cancer. Levamisole is approved for clinical treatment of cancer and is interesting with respect to anti

  17. Influence of Levamisole and Other Angiogenesis Inhibitors on Angiogenesis and Endothelial Cell Morphology in Vitro

    Energy Technology Data Exchange (ETDEWEB)

    Friis, Tina; Engel, Anne-Marie; Bendiksen, Christine D.; Larsen, Line S.; Houen, Gunnar, E-mail: gh@ssi.dk [Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen (Denmark)

    2013-06-24

    Angiogenesis, the formation of new blood vessels from existing vessels is required for many physiological processes and for growth of solid tumors. Initiated by hypoxia, angiogenesis involves binding of angiogenic factors to endothelial cell (EC) receptors and activation of cellular signaling, differentiation, migration, proliferation, interconnection and canalization of ECs, remodeling of the extracellular matrix and stabilization of newly formed vessels. Experimentally, these processes can be studied by several in vitro and in vivo assays focusing on different steps in the process. In vitro, ECs form networks of capillary-like tubes when propagated for three days in coculture with fibroblasts. The tube formation is dependent on vascular endothelial growth factor (VEGF) and omission of VEGF from the culture medium results in the formation of clusters of undifferentiated ECs. Addition of angiogenesis inhibitors to the coculture system disrupts endothelial network formation and influences EC morphology in two distinct ways. Treatment with antibodies to VEGF, soluble VEGF receptor, the VEGF receptor tyrosine kinase inhibitor SU5614, protein tyrosine phosphatase inhibitor (PTPI) IV or levamisole results in the formation of EC clusters of variable size. This cluster morphology is a result of inhibited EC differentiation and levamisole can be inferred to influence and block VEGF signaling. Treatment with platelet factor 4, thrombospondin, rapamycin, suramin, TNP-470, salubrinal, PTPI I, PTPI II, clodronate, NSC87877 or non-steriodal anti-inflammatory drugs (NSAIDs) results in the formation of short cords of ECs, which suggests that these inhibitors have an influence on later steps in the angiogenic process, such as EC proliferation and migration. A humanized antibody to VEGF is one of a few angiogenesis inhibitors used clinically for treatment of cancer. Levamisole is approved for clinical treatment of cancer and is interesting with respect to anti-angiogenic activity

  18. Influence of levamisole and other angiogenesis inhibitors on angiogenesis and endothelial cell morphology in vitro.

    Science.gov (United States)

    Friis, Tina; Engel, Anne-Marie; Bendiksen, Christine D; Larsen, Line S; Houen, Gunnar

    2013-01-01

    Angiogenesis, the formation of new blood vessels from existing vessels is required for many physiological processes and for growth of solid tumors. Initiated by hypoxia, angiogenesis involves binding of angiogenic factors to endothelial cell (EC) receptors and activation of cellular signaling, differentiation, migration, proliferation, interconnection and canalization of ECs, remodeling of the extracellular matrix and stabilization of newly formed vessels. Experimentally, these processes can be studied by several in vitro and in vivo assays focusing on different steps in the process. In vitro, ECs form networks of capillary-like tubes when propagated for three days in coculture with fibroblasts. The tube formation is dependent on vascular endothelial growth factor (VEGF) and omission of VEGF from the culture medium results in the formation of clusters of undifferentiated ECs. Addition of angiogenesis inhibitors to the coculture system disrupts endothelial network formation and influences EC morphology in two distinct ways. Treatment with antibodies to VEGF, soluble VEGF receptor, the VEGF receptor tyrosine kinase inhibitor SU5614, protein tyrosine phosphatase inhibitor (PTPI) IV or levamisole results in the formation of EC clusters of variable size. This cluster morphology is a result of inhibited EC differentiation and levamisole can be inferred to influence and block VEGF signaling. Treatment with platelet factor 4, thrombospondin, rapamycin, suramin, TNP-470, salubrinal, PTPI I, PTPI II, clodronate, NSC87877 or non-steriodal anti-inflammatory drugs (NSAIDs) results in the formation of short cords of ECs, which suggests that these inhibitors have an influence on later steps in the angiogenic process, such as EC proliferation and migration. A humanized antibody to VEGF is one of a few angiogenesis inhibitors used clinically for treatment of cancer. Levamisole is approved for clinical treatment of cancer and is interesting with respect to anti-angiogenic activity

  19. Influence of Levamisole and Other Angiogenesis Inhibitors on Angiogenesis and Endothelial Cell Morphology in Vitro

    International Nuclear Information System (INIS)

    Angiogenesis, the formation of new blood vessels from existing vessels is required for many physiological processes and for growth of solid tumors. Initiated by hypoxia, angiogenesis involves binding of angiogenic factors to endothelial cell (EC) receptors and activation of cellular signaling, differentiation, migration, proliferation, interconnection and canalization of ECs, remodeling of the extracellular matrix and stabilization of newly formed vessels. Experimentally, these processes can be studied by several in vitro and in vivo assays focusing on different steps in the process. In vitro, ECs form networks of capillary-like tubes when propagated for three days in coculture with fibroblasts. The tube formation is dependent on vascular endothelial growth factor (VEGF) and omission of VEGF from the culture medium results in the formation of clusters of undifferentiated ECs. Addition of angiogenesis inhibitors to the coculture system disrupts endothelial network formation and influences EC morphology in two distinct ways. Treatment with antibodies to VEGF, soluble VEGF receptor, the VEGF receptor tyrosine kinase inhibitor SU5614, protein tyrosine phosphatase inhibitor (PTPI) IV or levamisole results in the formation of EC clusters of variable size. This cluster morphology is a result of inhibited EC differentiation and levamisole can be inferred to influence and block VEGF signaling. Treatment with platelet factor 4, thrombospondin, rapamycin, suramin, TNP-470, salubrinal, PTPI I, PTPI II, clodronate, NSC87877 or non-steriodal anti-inflammatory drugs (NSAIDs) results in the formation of short cords of ECs, which suggests that these inhibitors have an influence on later steps in the angiogenic process, such as EC proliferation and migration. A humanized antibody to VEGF is one of a few angiogenesis inhibitors used clinically for treatment of cancer. Levamisole is approved for clinical treatment of cancer and is interesting with respect to anti-angiogenic activity

  20. Bidirectional regulation of angiogenesis by phytoestrogens through estrogen receptor-mediated signaling networks.

    Science.gov (United States)

    Liu, Hai-Xin; Wang, Yu; Lu, Qing; Yang, Ming-Zhu; Fan, Guan-Wei; Karas, Richard H; Gao, Xiu-Mei; Zhu, Yan

    2016-04-01

    Sex hormone estrogen is one of the most active intrinsic angiogenesis regulators; its therapeutic use has been limited due to its carcinogenic potential. Plant-derived phytoestrogens are attractive alternatives, but reports on their angiogenic activities often lack in-depth analysis and sometimes are controversial. Herein, we report a data-mining study with the existing literature, using IPA system to classify and characterize phytoestrogens based on their angiogenic properties and pharmacological consequences. We found that pro-angiogenic phytoestrogens functioned predominantly as cardiovascular protectors whereas anti-angiogenic phytoestrogens played a role in cancer prevention and therapy. This bidirectional regulation were shown to be target-selective and, for the most part, estrogen-receptor-dependent. The transactivation properties of ERα and ERβ by phytoestrogens were examined in the context of angiogenesis-related gene transcription. ERα and ERβ were shown to signal in opposite ways when complexed with the phytoestrogen for bidirectional regulation of angiogenesis. With ERα, phytoestrogen activated or inhibited transcription of some angiogenesis-related genes, resulting in the promotion of angiogenesis, whereas, with ERβ, phytoestrogen regulated transcription of angiogenesis-related genes, resulting in inhibition of angiogenesis. Therefore, the selectivity of phytoestrogen to ERα and ERβ may be critical in the balance of pro- or anti-angiogenesis process. PMID:27114311

  1. Cystic Fibrosis Transmembrane Conductance Regulator is an Epithelial Cell Receptor for Clearance of Pseudomonas aeruginosa from the Lung

    Science.gov (United States)

    Pier, Gerald B.; Grout, Martha; Zaidi, Tanweer S.

    1997-10-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel, but its relationship to the primary clinical manifestation of CF, chronic Pseudomonas aeruginosa pulmonary infection, is unclear. We report that CFTR is a cellular receptor for binding, endocytosing, and clearing P. aeruginosa from the normal lung. Murine cells expressing recombinant human wild-type CFTR ingested 30-100 times as many P. aeruginosa as cells lacking CFTR or expressing mutant Δ F508 CFTR protein. Purified CFTR inhibited ingestion of P. aeruginosa by human airway epithelial cells. The first extracellular domain of CFTR specifically bound to P. aeruginosa and a synthetic peptide of this region inhibited P. aeruginosa internalization in vivo, leading to increased bacterial lung burdens. CFTR clears P. aeruginosa from the lung, indicating a direct connection between mutations in CFTR and the clinical consequences of CF.

  2. Angiogenesis and Its Therapeutic Opportunities

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2013-01-01

    Full Text Available Angiogenesis plays critical roles in human physiology that range from reproduction and fetal growth to wound healing and tissue repair. The sophisticated multistep process is tightly regulated in a spatial and temporal manner by “on-off switch signals” between angiogenic factors, extracellular matrix components, and endothelial cells. Uncontrolled angiogenesis may lead to several angiogenic disorders, including vascular insufficiency (myocardial or critical limb ischemia and vascular overgrowth (hemangiomas, vascularized tumors, and retinopathies. Thus, numerous therapeutic opportunities can be envisaged through the successful understanding and subsequent manipulation of angiogenesis. Here, we review the clinical implications of angiogenesis and discuss pro- and antiangiogenic agents that offer potential therapy for cancer and other angiogenic diseases.

  3. Copper and angiogenesis: unravelling a relationship key to cancer progression.

    Science.gov (United States)

    Finney, Lydia; Vogt, Stefan; Fukai, Tohru; Glesne, David

    2009-01-01

    1. Angiogenesis, the formation of new capillaries from existing vasculature, is a critical process in normal physiology as well as several physiopathologies. A desire to curb the supportive role angiogenesis plays in the development and metastasis of cancers has driven exploration into anti-angiogenic strategies as cancer therapeutics. Key to this, angiogenesis additionally displays an exquisite sensitivity to bioavailable copper. Depletion of copper has been shown to inhibit angiogenesis in a wide variety of cancer cell and xenograft systems. Several clinical trials using copper chelation as either an adjuvant or primary therapy have been conducted. Yet, the biological basis for the sensitivity of angiogenesis remains unclear. Numerous molecules important to angiogenesis regulation have been shown to be either directly or indirectly influenced by copper, yet a clear probative answer to the connection remains elusive. 2. Measurements of copper in biological systems have historically relied on techniques that, although demonstrably powerful, provide little or no information as to the spatial distribution of metals in a cellular context. Therefore, several new approaches have been developed to image copper in a biological context. One such approach relies on synchrotron-derived X-rays from third-generation synchrotrons and the technique of high resolution X-ray fluorescence microprobe (XFM) analysis. 3. Recent applications of XFM approaches to the role of copper in regulating angiogenesis have provided unique insight into the connection between copper and cellular behaviour. Using XFM, copper has been shown to be highly spatially regulated, as it is translocated from perinuclear areas of the cell towards the tips of extending filopodia and across the cell membrane into the extracellular space during angiogenic processes. Such findings may explain the heightened sensitivity of this cellular process to this transition metal and set a new paradigm for the kinds of

  4. Effects of norspermidine on Pseudomonas aeruginosa biofilm formation and eradication.

    Science.gov (United States)

    Qu, Lin; She, Pengfei; Wang, Yangxia; Liu, Fengxia; Zhang, Di; Chen, Lihua; Luo, Zhen; Xu, Huan; Qi, Yong; Wu, Yong

    2016-06-01

    Biofilms are defined as aggregation of single cell microorganisms and associated with over 80% of all the microbial infections. Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen capable of leading to various infections in immunocompromised people. Recent studies showed that norspermidine, a kind of polyamine, prevented and disrupted biofilm formation by some Gram-negative bacterium. In this study, the effects of norspermidine on P. aeruginosa biofilm formation and eradication were tested. Microtiter plate combined with crystal violet staining was used to study the effects of norspermidine on P. aeruginosa initial attachment, then we employed SEM (scanning electron microscope), qRT-PCR, and QS-related virulence factor assays to investigate how norspermidine prevent biofilm formation by P. aeruginosa. We reported that high-dose norspermidine had bactericide effect on P. aeruginosa, and norspermidine began to inhibit biofilm formation and eradicate 24-h mature biofilm at concentration of 0.1 and 1 mmol/L, respectively, probably by preventing cell-surface attachment, inhibiting swimming motility, and downregulating QS-related genes expression. To investigate the potential utility of norspermidine in preventing device-related infections, we found that catheters immersed with norspermidine were effective in eradicating mature biofilm. These results suggest that norspermidine could be a potent antibiofilm agent for formulating strategies against P. aeruginosa biofilm. PMID:26817804

  5. CANSTATIN, A ENDOGENOUS INHIBITOR OF ANGIOGENESIS AND TUMOR GROWTH

    Institute of Scientific and Technical Information of China (English)

    苏影; 朱建思

    2004-01-01

    Canstatin is a novel inhibitor of angiogenesis and tumor growth, derived from the C-terminal globular non-collageneous (NCl) domain of the (2 chain of type IV collagen. It inhibits endothelial cell proliferation and migration in a dose-dependent manner, and induces endothelial cell apoptosis. In vivo experiments show that canstatin significantly inhibits solid tumor growth. The canstatin mediated inhibition of tumor is related to apoptosis. Canstatin- induced apoptosis is associated with phosphatidylinositol 3-kinase/Akt inhibition and is dependend upon signaling events transduced trough membrane death receptor.

  6. CXCRl/CXCR2受体拮抗剂-G31P抑制前列腺癌血管新生的体内实验%Inhibition of G31P : Chemokine Receptor CXCR1/CXCR2 Antagonist, in Angiogenesis of Human Prostate Cancer Cells in vivo

    Institute of Scientific and Technical Information of China (English)

    刘欣; 戴晓冬; 李星云; 王晓丽; 李芳

    2012-01-01

    Objective To investigate the inhibition of G31P on the angiogenesis of the prostate cancer PC-3 cell in vivo. Methods The effect of G31P on angiogenesis of human prostate tumor of nude mice were observed in nude mice by building a human androgen-independent prostate cancer PC-3 (GFP-labeled) or-thotopic transplantation tumor cells model. Results The tumor angiogenesis of G31P treated group (1. 26 ±0.46)was significantly reduced (0. 49±0. 12,P<0. 05) compared with the control group. VEGF(P< 0. 01) and NF-KB(P<0. 01) expression of G31P treated groupwas significantly reduced (immunohisto-chemistry) compared with the control group. Conclusion G31P could inhibit the angiogenesis of the prostate cancer PC-3 cell in vivo.%目的 探讨G31P(CXCR1/CXCR2受体拮抗剂)对人前列腺癌PC-3细胞的体内血管新生的抑制作用.方法 建立体内绿色荧光蛋白(GFP)标记的人雄激素非依赖性前列腺癌细胞PC-3的裸鼠原位移植瘤模型,观察G31P对裸鼠前列腺原位移植瘤血管新生的影响.结果 与对照组(1.26±0.46)相比,G31P处理组明显抑制前列腺肿瘤的血管新生(0.49±0.12,P<0.05),与对照组相比,G31P处理组VEGF(P<0.01)和NF-kB(P<0.01)的表达具有统计学意义(免疫组织化学法).结论 在裸鼠原位移植瘤模型中G31P对人雄激素非依赖性前列腺癌的血管新生有明显抑制作用.

  7. Angiogenesis in female reproductive system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Neovascularization, i.e. new blood vessels formation, can be divided into two different processes: vasculogenesis, whereby a primitive vascular network is established during embryogenesis from multipotential mesenchymal progenitors; and angiogenesis, which refers to the new blood vessels formation from pre-existing vessels[1,2]. Angiogenesis contributes to the most process throughout the whole life span from embryonic development to adult growth[2]. In this meaning, neovascularization is usually used to imply angiogenesis. Under physiological condi-tions, angiogenesis is a strictly regulated event and rarely happens in most adult tissues except for fracture or heal-ing of wounds[2,3]. However, a notable phenomenon is that the tissues of ovary and uterine endometrium are unique in the cycle-specific changes in vascularity that occur in each estrous/menstrual cycle. Active angiogenesis occurs in placenta to satisfy the needs of embryonic implantation and development. Defects in angiogenesis are associated with some gynecopathies including luteal phase defect, endometriosis, pregnancy loss and preeclampsia[4].

  8. Glutathione exhibits antibacterial activity and increases tetracycline efficacy against Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    ZHANG YaNi; DUAN KangMin

    2009-01-01

    Glutathione (GSH) plays important roles in pulmonary diseases, and inhaled GSH therapy has been used to treat cystic fibrosis (CF) patients in clinical trials. The results in this report revealed that GSH altered the sensitivity of Pseudomonas aeruginosa to different antibiotics through pathways unrelated to the oxidative stress as generally perceived. In addition, GSH and its oxidized form inhibited the growth of P. Aeruginosa.

  9. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  10. Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa.

    Science.gov (United States)

    Chen, Lei; Gin, Karina Y H; He, Yiliang

    2016-02-01

    Increasing sulfate in freshwater systems, caused by human activities and climate change, may have negative effects on aquatic organisms. Microcystis aeruginosa (M. aeruginosa) is both a major primary producer and a common toxic cyanobacterium, playing an important role in the aquatic environment. This study first investigated the effects of sulfate on M. aeruginosa. The experiment presented here aims at analyzing the effects of sulfate on physiological indices, molecular levels, and its influencing mechanism. The results of our experiment showed that sulfate (at 40, 80, and 300 mg L(-1)) inhibited M. aeruginosa growth, increased both intracellular and extracellular toxin contents, and enhanced the mcyD transcript level. Sulfate inhibited the photosynthesis of M. aeruginosa, based on the decrease in pigment content and the down-regulation of photosynthesis-related genes after sulfate exposure. Furthermore, sulfate decreased the maximum electron transport rate, causing the cell to accumulate surplus electrons and form reactive oxygen species (ROS). Sulfate also increased the malondialdehyde (MDA) content, which showed that sulfate damaged the cytomembrane. This damage contributed to the release of intracellular toxin to the culture medium. Although sulfate increased superoxide dismutase (SOD) activities, expression of sod, and total antioxidant capacity in M. aeruginosa, it still overwhelmed the antioxidant system since the ROS level simultaneously increased, and finally caused oxidative stress. Our results indicate that sulfate has direct effects on M. aeruginosa, inhibits photosynthesis, causes oxidative stress, increases toxin production, and affects the related genes expression in M. aeruginosa.

  11. Effect of Hedyotis Diffusa Willd extract on tumor angiogenesis.

    Science.gov (United States)

    Lin, Jiumao; Wei, Lihui; Xu, Wei; Hong, Zhenfeng; Liu, Xianxiang; Peng, Jun

    2011-01-01

    Inhibition of tumor angiogenesis has become an attractive target of anticancer chemotherapy. However, drug resistance and cytotoxicity against non-tumor associated endothelial cells limit the long-term use and the therapeutic effectiveness of angiogenesis inhibitors, thus increasing the necessity for the development of multi-target agents with minimal side effects. Traditional Chinese medicine (TCM) formulas, which have relatively fewer side effects and have been used clinically to treat various types of diseases, including cancer, for thousands of years, are considered to be multi-component and multi-target agents exerting their therapeutic function in a more holistic way. Hedyotis Diffusa Willd (EEHDW) has long been used as an important component in several TCM formulas to treat various types of cancer. Although recently we reported that EEHDW promotes cancer cell apoptosis via activation of the mitochondrial-dependent pathway, the precise mechanism of its tumoricidalactivity still remains to be clarified. In the present study, we investigated the angiogenic effects of the ethanol extract of EEHDW. Cell cycle analysis was perfomed using flow cytometry. Cell viability was analyzed using MTT assay. We found that EEHDW inhibited angiogenesis in vivo in chick embryo chorioallantoic membrane (CAM). In addition, we observed that EEHDW dose- and time-dependently inhibited the prolife-ration of human umbilical vein endothelial cells (HUVEC) by blocking the cell cycle G1 to S progression. Moreover, EEHDW inhibited the migration and tube formation of HUVECs. Furthermore, EEHDW treatment down-regulated the mRNA and protein expression levels of VEGF-A in HT-29 human colon carcinoma cells and HUVECs. Our findings suggest that inhibiting tumor angiogenesis is one of the mechanisms by which EEHDW is involved in cancer therapy. PMID:21887465

  12. IL-32 promotes angiogenesis

    NARCIS (Netherlands)

    Nold-Petry, C.A.; Rudloff, I.; Baumer, Y.; Ruvo, M.; Marasco, D.; Botti, P.; Farkas, L.; Cho, S.X.; Zepp, J.A.; Azam, T.; Dinkel, H.; Palmer, B.E.; Boisvert, W.A.; Cool, C.D.; Taraseviciene-Stewart, L.; Heinhuis, B.; Joosten, L.A.; Dinarello, C.A.; Voelkel, N.F.; Nold, M.F.

    2014-01-01

    IL-32 is a multifaceted cytokine with a role in infections, autoimmune diseases, and cancer, and it exerts diverse functions, including aggravation of inflammation and inhibition of virus propagation. We previously identified IL-32 as a critical regulator of endothelial cell (EC) functions, and we n

  13. Aminoacyl-tRNA synthetase dependent angiogenesis revealed by a bioengineered macrolide inhibitor.

    Science.gov (United States)

    Mirando, Adam C; Fang, Pengfei; Williams, Tamara F; Baldor, Linda C; Howe, Alan K; Ebert, Alicia M; Wilkinson, Barrie; Lounsbury, Karen M; Guo, Min; Francklyn, Christopher S

    2015-08-14

    Aminoacyl-tRNA synthetases (AARSs) catalyze an early step in protein synthesis, but also regulate diverse physiological processes in animal cells. These include angiogenesis, and human threonyl-tRNA synthetase (TARS) represents a potent pro-angiogenic AARS. Angiogenesis stimulation can be blocked by the macrolide antibiotic borrelidin (BN), which exhibits a broad spectrum toxicity that has discouraged deeper investigation. Recently, a less toxic variant (BC194) was identified that potently inhibits angiogenesis. Employing biochemical, cell biological, and biophysical approaches, we demonstrate that the toxicity of BN and its derivatives is linked to its competition with the threonine substrate at the molecular level, which stimulates amino acid starvation and apoptosis. By separating toxicity from the inhibition of angiogenesis, a direct role for TARS in vascular development in the zebrafish could be demonstrated. Bioengineered natural products are thus useful tools in unmasking the cryptic functions of conventional enzymes in the regulation of complex processes in higher metazoans.

  14. Functional role of inorganic trace elements in angiogenesis part III: (Ti, Li, Ce, As, Hg, Va, Nb and Pb).

    Science.gov (United States)

    Saghiri, Mohammad Ali; Orangi, Jafar; Asatourian, Armen; Sorenson, Christine M; Sheibani, Nader

    2016-02-01

    Many essential elements exist in nature with significant influence on human health. Angiogenesis is vital in developmental, repair, and regenerative processes, and its aberrant regulation contributes to pathogenesis of many diseases including cancer. Thus, it is of great importance to explore the role of these elements in such a vital process. This is third in a series of reviews that serve as an overview of the role of inorganic elements in regulation of angiogenesis and vascular function. Here we will review the roles of titanium, lithium, cerium, arsenic, mercury, vanadium, niobium, and lead in these processes. The roles of other inorganic elements in angiogenesis were discussed in part I (N, Fe, Se, P, Au, and Ca) and part II (Cr, Si, Zn, Cu, and S) of these series. The methods of exposure, structure, mechanisms, and potential activities of these elements are briefly discussed. An electronic search was performed on the role of these elements in angiogenesis from January 2005 to April 2014. These elements can promote and/or inhibit angiogenesis through different mechanisms. The anti-angiogenic effect of titanium dioxide nanoparticles comes from the inhibition of angiogenic processes, and not from its toxicity. Lithium affects vasculogenesis but not angiogenesis. Nanoceria treatment inhibited tumor growth by inhibiting angiogenesis. Vanadium treatment inhibited cell proliferation and induced cytotoxic effects through interactions with DNA. The negative impact of mercury on endothelial cell migration and tube formation activities was dose and time dependent. Lead induced IL-8 production, which is known to promote tumor angiogenesis. Thus, understanding the impact of these elements on angiogenesis will help in development of new modalities to modulate angiogenesis under various conditions. PMID:26638864

  15. Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis

    OpenAIRE

    Battinelli, Elisabeth M.; Markens, Beth A.; Italiano, Joseph E.

    2011-01-01

    An association between platelets, angiogenesis, and cancer has long been recognized, but the mechanisms linking them remains unclear. Platelets regulate new blood vessel growth through numerous stimulators and inhibitors of angiogenesis by several pathways, including differential exocytosis of angiogenesis regulators. Herein, we investigated the differential release of angiogenesis stimulators and inhibitors from platelets. Activation of human platelets with adenosine diphosphate (ADP) stimul...

  16. Ramucirumab (IMC-1121B): a novel attack on angiogenesis.

    Science.gov (United States)

    Spratlin, Jennifer L; Mulder, Karen E; Mackey, John R

    2010-07-01

    Angiogenesis is a critical hallmark of malignancy, and attempts to inhibit this process have characterized the age of biologic anticancer therapies for solid tumors. VEGF receptor-2 is the premier receptor responsible for many of the cancer-driven VEGF-induced spectrum of biologic changes, including modification of blood vessel structure and function, proliferation and migration. Unlike all clinically approved angiogenesis inhibitors, the fully human monoclonal antibody ramucirumab (IMC-1121B) specifically and potently inhibits VEGF receptor-2. Phase I clinical trials have shown safety across a wide range of ramucirumab doses with impressive, albeit early, evidence of both stable disease and partial responses in a variety of tumor types. In this article, we review the current data on ramucirumab and make comparisons with commercially available antiangiogenic agents.

  17. Zebrafish as an Emerging Model Organism to Study Angiogenesis in Development and Regeneration

    OpenAIRE

    Myra N Chávez; Aedo, Geraldine; Fierro, Fernando A.; Allende, Miguel L; Egaña, José T.

    2016-01-01

    Angiogenesis is the process through which new blood vessels are formed from preexisting ones and plays a critical role in several conditions including embryonic development, tissue repair and disease. Moreover, enhanced therapeutic angiogenesis is a major goal in the field of regenerative medicine and efficient vascularization of artificial tissues and organs is one of the main hindrances in the implementation of tissue engineering approaches, while, on the other hand, inhibition of angiogene...

  18. Phagocytosis of Pseudomonas aeruginosa by polymorphonuclear leukocytes and monocytes: effect of cystic fibrosis serum.

    OpenAIRE

    Thomassen, M J; Demko, C A; Wood, R E; Sherman, J. M.

    1982-01-01

    It has been shown previously that serum from chronically infected patients with cystic fibrosis inhibits the phagocytosis of Pseudomonas aeruginosa by both normal and cystic fibrosis alveolar macrophages. In the present study, the ability of peripheral monocytes and polymorphonuclear leukocytes from normal volunteers and cystic fibrosis patients to phagocytize P. aeruginosa was shown not to be inhibited in the presence of serum from cystic fibrosis patients.

  19. Stilbene glycosides are natural product inhibitors of FGF-2-induced angiogenesis

    Directory of Open Access Journals (Sweden)

    Naz Humera

    2009-04-01

    Full Text Available Abstract Background Angiogenesis, the growth of new blood vessels from the pre-existing vasculature is associated with pathological processes, in particular tumour development, and is a target for the development of new therapies. We have investigated the anti-angiogenic potential of two naturally occurring stilbene glycosides (compounds 1 and 2 isolated from the medicinal plant Boswellia papyriferai using large and smallvessel-derived endothelial cells. Compound 1 (trans-4',5'-dihydroxy-3-methoxystilbene-5-O-{α-L-rhamnopyranosyl-(1→2-[α-L-rhamnopyranosyl-(1→6}-β-D-glucopyranoside was the more hydrophilic and inhibited FGF-2-induced proliferation, wound healing, invasion in Matrigel, tube formation and angiogenesis in large and small vessel-derived endothelial cells and also in the chick chorioallantoic membrane assay. Using a binding assay we were able to show compound 1 reduced binding of FGF-2 to fibroblast growth factor receptors-1 and -2. In all cases the concentration of compound 1 which caused 50% inhibition (IC50 was determined. The effect of compound 1 on EGF and VEGF-induced proliferation was also investigated. Results Compound 1 inhibited all stages of FGF-2 induced angiogenesis with IC50 values in the range 5.8 ± 0.18 – 48.90 ± 0.40 μM but did not inhibit EGF or VEGF-induced angiogenesis. It also inhibited FGF-2 binding to FGF receptor-1 and -2 with IC50 values of 5.37 ± 1.04 and 9.32 ± 0.082 μM respectively and with concommotant down-regulation of phosphorylated-ERK-1/-2 expression. Compound 2 was an ineffective inhibitor of angiogenesis despite its structural homology to compound 1. Conclusion Compound 1 inhibited FGF-2 induced angiogenesis by binding to its cognate receptors and is an addition to the small number of natural product inhibitors of angiogenesis

  20. Antivirulence activity of azithromycin in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Francesco eImperi

    2014-04-01

    Full Text Available Antibiotics represent our bulwark to combat bacterial infections, but the spread of antibiotic resistance compromises their clinical efficacy. Alternatives to conventional antibiotics are urgently needed in order to complement the existing antibacterial arsenal. The macrolide antibiotic azithromycin (AZM provides a paradigmatic example of an unconventional antibacterial drug. Besides its growth-inhibiting activity, AZM displays potent anti-inflammatory properties, as well as antivirulence activity on some intrinsically resistant bacteria, such as Pseudomonas aeruginosa. In this bacterium, the antivirulence activity of AZM mainly relies on its ability to interact with the ribosome, resulting in direct and/or indirect repression of specific subsets of genes involved in virulence, quorum sensing, biofilm formation and intrinsic antibiotic resistance. Both clinical experience and clinical trials have shown the efficacy of AZM in the treatment of chronic pulmonary infections caused by P. aeruginosa. The aim of this review is to combine results from laboratory studies with evidence from clinical trials in order to unify the information on the in vivo mode of action of AZM in P. aeruginosa infection.

  1. Targeting angiogenesis with integrative cancer therapies.

    Science.gov (United States)

    Yance, Donald R; Sagar, Stephen M

    2006-03-01

    An integrative approach for managing a patient with cancer should target the multiple biochemical and physiological pathways that support tumor development while minimizing normal tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also manifest other anticancer activities. The authors will focus on natural health products (NHPs) that have a high degree of antiangiogenic activity but also describe some of their many other interactions that can inhibit tumor progression and reduce the risk of metastasis. NHPs target various molecular pathways besides angiogenesis, including epidermal growth factor receptor (EGFR), the HER-2/neu gene, the cyclooxygenase-2 enzyme, the NF-kB transcription factor, the protein kinases, Bcl-2 protein, and coagulation pathways. The herbalist has access to hundreds of years of observational data on the anticancer activity of many herbs. Laboratory studies are confirming the knowledge that is already documented in traditional texts. The following herbs are traditionally used for anticancer treatment and are antiangiogenic through multiple interdependent processes that include effects on gene expression, signal processing, and enzyme activities: Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (turmeric), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinale (ginger), Panax ginseng, Rabdosia rubescens (rabdosia), and Chinese destagnation herbs. Quality assurance of appropriate extracts is essential prior to embarking on clinical trials. More data are required on dose response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations

  2. The enigmatic role of angiopoietin-1 in tumor angiogenesis

    Institute of Scientific and Technical Information of China (English)

    LINDA J METHENY-BARLOW; LU YUAN LI

    2003-01-01

    A tumor vasculature is highly unstable and immature, characterized by a high proliferation rate of endothelial cells,hyper-permeability, and chaotic blood flow. The dysfunctional vasculature gives rise to continual plasma leakage and hypoxia in the tumor, resulting in constant on-sets of inflammation and angiogenesis. Tumors are thus likened to wounds that will not heal. The lack of functional mural cells, including pericytes and vascular smooth muscle cells,in tumor vascular structure contributes significantly to the abnormality of tumor vessels. Angiopoietin- 1 (Angl) is a physiological angiogenesis promoter during embryonic development. The function of Ang 1 is essential to endothelial cell survival, vascular branching, and pericyte recruitment. However, an increasing amount of experimental data suggest that Ang 1-stimulated association of mural cells with endothelial cells lead to stabilization of newly formed blood vessels. This in turn may limit the otherwise continuous angiogenesis in the tumor, and consequently give rise to inhibition of tumor growth. We discuss the enigmatic role of Ang1 in tumor angiogenesis in this review.

  3. Angiogenic Factor AGGF1 Activates Autophagy with an Essential Role in Therapeutic Angiogenesis for Heart Disease

    Science.gov (United States)

    Hu, Zhenkun; Hu, Changqing; Song, Qixue; Ye, Jian; Xu, Chengqi; Wang, Annabel Z.; Wang, Qing Kenneth

    2016-01-01

    AGGF1 is an angiogenic factor with therapeutic potential to treat coronary artery disease (CAD) and myocardial infarction (MI). However, the underlying mechanism for AGGF1-mediated therapeutic angiogenesis is unknown. Here, we show for the first time that AGGF1 activates autophagy, a housekeeping catabolic cellular process, in endothelial cells (ECs), HL1, H9C2, and vascular smooth muscle cells. Studies with Atg5 small interfering RNA (siRNA) and the autophagy inhibitors bafilomycin A1 (Baf) and chloroquine demonstrate that autophagy is required for AGGF1-mediated EC proliferation, migration, capillary tube formation, and aortic ring-based angiogenesis. Aggf1+/- knockout (KO) mice show reduced autophagy, which was associated with inhibition of angiogenesis, larger infarct areas, and contractile dysfunction after MI. Protein therapy with AGGF1 leads to robust recovery of myocardial function and contraction with increased survival, increased ejection fraction, reduction of infarct areas, and inhibition of cardiac apoptosis and fibrosis by promoting therapeutic angiogenesis in mice with MI. Inhibition of autophagy in mice by bafilomycin A1 or in Becn1+/- and Atg5 KO mice eliminates AGGF1-mediated angiogenesis and therapeutic actions, indicating that autophagy acts upstream of and is essential for angiogenesis. Mechanistically, AGGF1 initiates autophagy by activating JNK, which leads to activation of Vps34 lipid kinase and the assembly of Becn1-Vps34-Atg14 complex involved in the initiation of autophagy. Our data demonstrate that (1) autophagy is essential for effective therapeutic angiogenesis to treat CAD and MI; (2) AGGF1 is critical to induction of autophagy; and (3) AGGF1 is a novel agent for treatment of CAD and MI. Our data suggest that maintaining or increasing autophagy is a highly innovative strategy to robustly boost the efficacy of therapeutic angiogenesis. PMID:27513923

  4. Intra-laboratory validation of a human cell based in vitro angiogenesis assay for testing angiogenesis modulators

    Directory of Open Access Journals (Sweden)

    Jertta-Riina Sarkanen

    2011-01-01

    Full Text Available The developed standardized human cell based in vitro angiogenesis assay was intra-laboratory validated to verify that the method is reliable and relevant for routine testing of modulators of angiogenesis e.g. pharmaceuticals and industrial chemicals. This assay is based on the earlier published method but it was improved and shown to be more sensitive and rapid than the previous assay. The performance of the assay was assessed by using 6 reference chemicals, which are widely used pharmaceuticals that inhibit angiogenesis: acetyl salicylic acid, erlotinib, 2-methoxyestradiol, levamisole, thalidomide, and anti-vascular endothelial growth factor. In the intra-laboratory validation, the sensitivity of the assay (upper and lower limits of detection and linearity of response in tubule formation, batch to batch variation in tubule formation between different Master cell bank batches, and precision as well as the reliability of the assay (reproducibility and repeatability were tested. The pre-set acceptance criteria for the intra-laboratory validation study were met. The relevance of the assay in man was investigated by comparing the effects of reference chemicals and their concentrations to the published human data. The comparison showed a good concordance, which indicates that this human cell based angiogenesis model predicts well the effects in man and has the potential to be used to supplement and/or replace of animal tests.

  5. Effects of antibiotics on quorum sensing in pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Skindersø, Mette Elena; Alhede, Morten; Phipps, Richard Kerry;

    2008-01-01

    in animal infection models. Treatment of cystic fibrosis (CF) patients chronically infected with P. aeruginosa with the macrolide antibiotic azithromycin (AZM) has been demonstrated to improve the clinical outcome. Several studies indicate that AZM may accomplish its beneficial action in CF patients...... by impeding QS, thereby reducing the pathogenicity of P. aeruginosa. This led us to investigate whether QS inhibition is a common feature of antibiotics. We present the results of a screening of 12 antibiotics for their QS-inhibitory activities using a previously described QS inhibitor selector 1 strain....... Three of the antibiotics tested, AZM, ceftazidime (CFT), and ciprofloxacin (CPR), were very active in the assay and were further examined for their effects on QS-regulated virulence factor production in P. aeruginosa. The effects of the three antibiotics administered at subinhibitory concentrations were...

  6. Ursolic acid-loaded chitosan nanoparticles induce potent anti-angiogenesis in tumor.

    Science.gov (United States)

    Jin, Hua; Pi, Jiang; Yang, Fen; Wu, Chaomin; Cheng, Xueli; Bai, Haihua; Huang, Dan; Jiang, Jinhuan; Cai, Jiye; Chen, Zheng W

    2016-08-01

    Angiogenesis provides necessary nutrients and oxygen for tumor growth and metastasis; thus, every stage of angiogenesis process is the potential target for cancer therapies. Ursolic acid (UA) is reported to decrease tumor burden through anti-angiogenesis pathway, but its poor water solubility greatly limits its efficiency and clinical application. Here, a simple method for preparing UA-loaded chitosan nanoparticles (CH-UA-NPs) with anti-angiogenesis and anti-tumor activity was demonstrated. In vitro, CH-UA-NPs could significantly inhibit the proliferation, migration, and tube formation of human umbilical vascular endothelial cells (HUVECs). After uptake by HUVECs, CH-UA-NPs were mainly localized in lysosomes and mitochondria, but not nuclei. CH-UA-NPs induced the destruction of lysosome membrane integrity, collapse of mitochondrial membrane potential, and reorganization of cell cytoskeleton. All these changes led to the apoptosis or necrosis in HUVECs. In vivo, CH-UA-NPs could inhibit the angiogenesis in chicken chorioallantoic membrane (CAM) model and H22 xenograft model. Notably, comparing with free UA, such synthesized CH-UA-NPs could save about tenfold of UA doses, implying that this could significantly decrease the side effects induced by high doses of UA in biological organism. Our data showed that CH-UA-NPs and this nanoparticle-based drug delivery system could be as a potential drug candidate for anti-angiogenesis treatment. PMID:26883344

  7. Angiogenesis in obesity and cancer

    OpenAIRE

    Bråkenhielm, Ebba

    2003-01-01

    Angiogenesis is the process of blood vessel growth from pre-existing vasculatures. In the adult, it is involved in certain physiological processes, such as in organ and tissue regeneration, wound healing, and in female reproductive cycles. Like during embryonic development, the growth and expansion of adult tissues is dependent on neovascularization. The adipose tissue has a unique capacity to substantially increase or decrease in size throughout adult life. This indicates t...

  8. Targeting vascular NADPH oxidase 1 blocks tumor angiogenesis through a PPARα mediated mechanism.

    Directory of Open Access Journals (Sweden)

    Sarah Garrido-Urbani

    Full Text Available Reactive oxygen species, ROS, are regulators of endothelial cell migration, proliferation and survival, events critically involved in angiogenesis. Different isoforms of ROS-generating NOX enzymes are expressed in the vasculature and provide distinct signaling cues through differential localization and activation. We show that mice deficient in NOX1, but not NOX2 or NOX4, have impaired angiogenesis. NOX1 expression and activity is increased in primary mouse and human endothelial cells upon angiogenic stimulation. NOX1 silencing decreases endothelial cell migration and tube-like structure formation, through the inhibition of PPARα, a regulator of NF-κB. Administration of a novel NOX-specific inhibitor reduced angiogenesis and tumor growth in vivo in a PPARα dependent manner. In conclusion, vascular NOX1 is a critical mediator of angiogenesis and an attractive target for anti-angiogenic therapies.

  9. Proinflammatory mediators stimulate neutrophil-directed angiogenesis.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Vascular endothelial growth factor (VEGF; vascular permeability factor) is one of the most potent proangiogenic cytokines, and it plays a central role in mediating the process of angiogenesis or new blood vessel formation. Neutrophils (PMNs) recently have been shown to produce VEGF. HYPOTHESIS: The acute inflammatory response is a potent stimulus for PMN-directed angiogenesis. METHODS: Neutrophils were isolated from healthy volunteers and stimulated with lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6), and anti-human Fas monoclonal antibody. Culture supernatants were assayed for VEGF using enzyme-linked immunosorbent assays. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs were then added to human umbilical vein endothelial cells and human microvessel endothelial cells and assessed for endothelial cell proliferation using 5-bromodeoxyuridine labeling. Tubule formation was also assessed on MATRIGEL basement membrane matrix. Neutrophils were lysed to measure total VEGF release, and VEGF expression was detected using Western blot analysis. RESULTS: Lipopolysaccharide and TNF-alpha stimulation resulted in significantly increased release of PMN VEGF (532+\\/-49 and 484+\\/-80 pg\\/mL, respectively; for all, presented as mean +\\/- SEM) compared with control experiments (32+\\/-4 pg\\/mL). Interleukin 6 and Fas had no effect. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs also resulted in significant increases (P<.005) in macrovascular and microvascular endothelial cell proliferation and tubule formation. Adding anti-human VEGF-neutralizing polyclonal antibody to stimulated PMN supernatant inhibited these effects. Total VEGF release following cell lysis and Western blot analysis suggests that the VEGF is released from an intracellular store. CONCLUSION: Activated human PMNs are directly angiogenic by releasing VEGF, and this has important implications for inflammation, capillary leak syndrome

  10. Methionine AminoPeptidase Type-2 Inhibitors Targeting Angiogenesis.

    Science.gov (United States)

    Ehlers, Tedman; Furness, Scott; Robinson, Thomas Philip; Zhong, Haizhen A; Goldsmith, David; Aribser, Jack; Bowen, J Phillip

    2016-01-01

    Angiogenesis has been identified as a crucial process in the development and spread of cancers. There are many regulators of angiogenesis which are not yet fully understood. Methionine aminiopeptidase is a metalloenzyme with two structurally distinct forms in humans, Type-1 (MetAP-1) and Type-2 (MetAP-2). It has been shown that small molecule inhibitors of MetAP-2 suppress endothelial cell proliferation. The initial discovery by Donald Ingber of MetAP-2 inhibition as a potential target in angiogenesis began with a fortuitous observation similar to the discovery of penicillin activity by Sir Alexander Fleming. From a drug design perspective, MetAP-2 is an attractive target. Fumagillin and ovalicin, known natural products, bind with IC50 values in low nanomolar concentrations. Crystal structures of the bound complexes provide 3-dimensional coordinates for advanced computational studies. More recent discoveries have shown other biological activities for MetAP-2 inhibition, which has generated new interests in the design of novel inhibitors. Semisynthetic fumagillin derivatives such as AGM-1470 (TNP-470) have been shown to have better drug properties, but have not been very successful in clinical trials. The rationale and development of novel multicyclic analogs of fumagillin are reviewed. PMID:26369821

  11. [Methods for prevention of mass development of the cyanobacterium Microcystis aeruginosa Kutz emend. Elenk. in aquatic ecosystems].

    Science.gov (United States)

    Kolmakov, V I

    2006-01-01

    Methods for prevention of mass development of the cyanobacterium Microcystis aeruginosa Kutz emend. Elenk. in continental water bodies and industrial water supply systems are reviewed. The physicochemical, chemical, and biological methods for prevention of M. aeruginosa development in water bodies and water supply systems are considered; examples of successful inhibition of M. aeruginosa growth in laboratory experiments are demonstrated. The scientific problems are outlined that are to be solved for perfecting techniques for prevention of M. aeruginosa mass development in open water bodies and in closed water supply systems. PMID:16758860

  12. Expression of PPARγ and paraoxonase 2 correlated with Pseudomonas aeruginosa infection in cystic fibrosis.

    Directory of Open Access Journals (Sweden)

    Phoebe E Griffin

    Full Text Available The Pseudomonas aeruginosa quorum sensing signal molecule N-3-oxododecanoyl-l-homoserine lactone (3OC(12HSL can inhibit function of the mammalian anti-inflammatory transcription factor peroxisome proliferator activated receptor (PPARγ, and can be degraded by human paraoxonase (PON2. Because 3OC(12HSL is detected in lungs of cystic fibrosis (CF patients infected with P. aeruginosa, we investigated the relationship between P. aeruginosa infection and gene expression of PPARγ and PON2 in bronchoalveolar lavage fluid (BALF of children with CF. Total RNA was extracted from cell pellets of BALF from 43 children aged 6 months-5 years and analyzed by reverse transcription-quantitative real time PCR for gene expression of PPARγ, PON2, and P. aeruginosa lasI, the 3OC(12HSL synthase. Patients with culture-confirmed P. aeruginosa infection had significantly lower gene expression of PPARγ and PON2 than patients without P. aeruginosa infection. All samples that were culture-positive for P. aeruginosa were also positive for lasI expression. There was no significant difference in PPARγ or PON2 expression between patients without culture-detectable infection and those with non-Pseudomonal bacterial infection, so reduced expression was specifically associated with P. aeruginosa infection. Expression of both PPARγ and PON2 was inversely correlated with neutrophil counts in BALF, but showed no correlation with other variables evaluated. Thus, lower PPARγ and PON2 gene expression in the BALF of children with CF is associated specifically with P. aeruginosa infection and neutrophilia. We cannot differentiate whether this is a cause or the effect of P. aeruginosa infection, but propose that the level of expression of these genes may be a marker for susceptibility to early acquisition of P. aeruginosa in children with CF.

  13. Newly discovered angiogenesis inhibitors and their mechanisms of action

    Institute of Scientific and Technical Information of China (English)

    Ze-hong MIAO; Jian-ming FENG; Jian DING

    2012-01-01

    In the past decade,the success of angiogenesis inhibitors in clinical contexts has established the antiangiogenic strategy as an important part of cancer therapy,During that time period,we have discovered and reported 17 compounds that exert potent inhibition on angiogenesis.These compounds exhibit tremendous diversity in their sources,structures,targets and mechanisms.These studies have generated new models for further modification and optimization of inhibitory compounds,new information for mechanistic studies and a new drug candidate for clinical development.In particular,through studies on the antiangiogenic mechanism of pseudolaric acid B,we discovered a novel mechanism by which the stability of hypoxia-irducible factor 1α is regulated by the transcription factor c-Jun.We also completed a preclinical study of AL3810,a compound with the potential to circumvent tumor drug resistance to a certain extent.All of these findings will be briefly reviewed in this article.

  14. Molecular and hormonal regulation of angiogenesis in proliferative endometrium

    Directory of Open Access Journals (Sweden)

    Yousef Rezaei Chianeh

    2014-02-01

    Full Text Available Angiogenesis is a hallmark of wound healing, the menstrual cycle, cancer, and various ischemic and inflammatory diseases. A rich variety of pro and anti-angiogenic molecules have already been identified. Vascular endothelial growth factor (VEGF is an interesting inducer of angiogenesis and lymphangiogenesis, because it is a highly specific mitogen for endothelial cells. Signal transduction involves binding to tyrosine kinase receptors and results in endothelial cell proliferation, migration, and new vessel formation. In this article, the role of VEGF and other growth factors in the pathology of dysfunctional uterine bleeding is reviewed. We also discuss the role of VEGF expression and interaction with extracellular matrix that lead to possible inhibition or stimulation of Angiogenic factor on endometrium of dysfunctional uterine bleeding patients. [Int J Res Med Sci 2014; 2(1.000: 1-9

  15. Efficiency of Ocimum sanctum Linn. Leaf extract on Angiogenesis

    Directory of Open Access Journals (Sweden)

    Shah Ujwala

    2014-09-01

    Full Text Available Ocimum sanctum, a holy plant is used by many traditional medical practitioners for various diseases in day to day life. This holy plant- Tulsi is used in the present investigation for study of its angiogenesis efficiency. The effect of acetone extract of O. sanctumleaves was studied by using chick chorioallantoic membrane (CAM assay in ovo. The angiogenesis was studied after 48 hrs, 72 hrs and 96 hrs treatment chick embryos after day 6. The morphometry and histology was studied during this investigation. There was notable reduction in number of secondary and tertiary blood vessels along with reduction in their diameter as comparedto that of in normal CAM. It is due to inhibition of angiogenic factors or due to cellular apoptosis. Angiostatic property of acetone extract of leaves support anti-cancerous ethnomedicinal property of this plant and paves the foundation to synthesize the drug againsttumor.

  16. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    Bacteria in natural, industrial and clinical settings predominantly live in biofilms, i.e., sessile structured microbial communities encased in self-produced extracellular matrix material. One of the most important characteristics of microbial biofilms is that the resident bacteria display...... a remarkable increased tolerance toward antimicrobial attack. Biofilms formed by opportunistic pathogenic bacteria are involved in devastating persistent medical device-associated infections, and chronic infections in individuals who are immune-compromised or otherwise impaired in the host defense. Because...... the use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  17. Angiostatin and endostatin: endothelial cell-specific endogenous inhibitors of angiogenesis and tumor growth.

    Science.gov (United States)

    Sim, B K

    1998-01-01

    Angiostatin and Endostatin are potent inhibitors of angiogenesis. These proteins are endogenously produced and specifically target endothelial cells resulting in angiogenesis inhibition. Recombinant preparations of these proteins inhibit the growth of metastases and regress primary tumors to dormant microscopic lesions. A variety of murine tumors as well as human breast, prostate and colon tumors in human xenograft models regress when treated with Angiostatin or Endostatin. Regression of tumors upon systemic treatment with these proteins is in part due to increased tumor cell apoptosis. Repeated cycles of Endostatin therapy lead to prolonged tumor dormancy without further treatment and are not associated with any apparent toxicity or acquired drug resistance. PMID:14517374

  18. Study on the release routes of allelochemicals from Pistia stratiotes Linn., and its anti-cyanobacteria mechanisms on Microcystis aeruginosa.

    Science.gov (United States)

    Wu, Xiang; Wu, Hao; Ye, Jinyun; Zhong, Bin

    2015-12-01

    Allelochemicals in Pistia stratiotes Linn. have a strong anti-cyanobacteria effect on Microcystis aeruginosa. To further determine the release routes of allelochemicals in P. stratiotes and understand their anti-cyanobacteria mechanisms, we aimed to systematically investigate the allelopathic effects of leaf leachates, leaf volatilization, root exudates, and residue decomposition of P. stratiotes on M. aeruginosa. The influences of P. stratiotes allelochemicals on the physiological properties of M. aeruginosa were also studied. Root exudates of P. stratiotes exhibited the strongest inhibitory effect on M. aeruginosa growth. The residue decomposition and leaf leachates exhibited a relatively strong inhibitory effect on M. aeruginosa growth. By contrast, the leaf volatilization stimulated M. aeruginosa growth. Therefore, root exudation was determined to be the main release route of allelochemicals from P. stratiotes. The mixed culture experiment of P. stratiotes root exudates and M. aeruginosa showed that the allelochemicals released from root exudation had no effect on the electron transfer of M. aeruginosa photosynthetic system II. However, it reduced the phycocyanin (PC) content and phycocyanin to allophycocyanin (PC/APC) ratio in the photosynthetic system. As the root exudates concentration increased, the electrical conductivity (EC) and superoxide anion radical (O2(*-)) values in the M. aeruginosa culture fluid increased significantly, indicating that the allelochemicals released from the root of P. stratiotes inhibited algae growth by affecting the PC and PC/APC levels in photosynthesis, destroying the cell membrane, and increasing O2(*-) content to result in oxidative damage of M. aeruginosa.

  19. Study on the release routes of allelochemicals from Pistia stratiotes Linn., and its anti-cyanobacteria mechanisms on Microcystis aeruginosa.

    Science.gov (United States)

    Wu, Xiang; Wu, Hao; Ye, Jinyun; Zhong, Bin

    2015-12-01

    Allelochemicals in Pistia stratiotes Linn. have a strong anti-cyanobacteria effect on Microcystis aeruginosa. To further determine the release routes of allelochemicals in P. stratiotes and understand their anti-cyanobacteria mechanisms, we aimed to systematically investigate the allelopathic effects of leaf leachates, leaf volatilization, root exudates, and residue decomposition of P. stratiotes on M. aeruginosa. The influences of P. stratiotes allelochemicals on the physiological properties of M. aeruginosa were also studied. Root exudates of P. stratiotes exhibited the strongest inhibitory effect on M. aeruginosa growth. The residue decomposition and leaf leachates exhibited a relatively strong inhibitory effect on M. aeruginosa growth. By contrast, the leaf volatilization stimulated M. aeruginosa growth. Therefore, root exudation was determined to be the main release route of allelochemicals from P. stratiotes. The mixed culture experiment of P. stratiotes root exudates and M. aeruginosa showed that the allelochemicals released from root exudation had no effect on the electron transfer of M. aeruginosa photosynthetic system II. However, it reduced the phycocyanin (PC) content and phycocyanin to allophycocyanin (PC/APC) ratio in the photosynthetic system. As the root exudates concentration increased, the electrical conductivity (EC) and superoxide anion radical (O2(*-)) values in the M. aeruginosa culture fluid increased significantly, indicating that the allelochemicals released from the root of P. stratiotes inhibited algae growth by affecting the PC and PC/APC levels in photosynthesis, destroying the cell membrane, and increasing O2(*-) content to result in oxidative damage of M. aeruginosa. PMID:26233747

  20. Staphylococcus aureus Alters Growth Activity, Autolysis, and Antibiotic Tolerance in a Human Host-Adapted Pseudomonas aeruginosa Lineage

    DEFF Research Database (Denmark)

    Frydenlund Michelsen, Charlotte; Christensen, Anne-Mette; Bojer, Martin Saxtorph;

    2014-01-01

    Interactions among members of polymicrobial infections or between pathogens and the commensal flora may determine disease outcomes. Pseudomonas aeruginosa and Staphylococcus aureus are important opportunistic human pathogens and are both part of the polymicrobial infection communities in human....... aeruginosa DK2 strains outcompeted S. aureus during coculture on agar plates, we found that later P. aeruginosa DK2 strains showed a commensal-like interaction, where S. aureus was not inhibited by P. aeruginosa and the growth activity of P. aeruginosa was enhanced in the presence of S. aureus. This effect...... is mediated by one or more extracellular S. aureus proteins greater than 10 kDa, which also suppressed P. aeruginosa autolysis and prevented killing by clinically relevant antibiotics through promoting small-colony variant (SCV) formation. The commensal interaction was abolished with S. aureus strains mutated...

  1. Evaluation of a FRET-peptide substrate to predict virulence in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Wendy E Kaman

    Full Text Available Pseudomonas aeruginosa produces a number of proteases that are associated with virulence and disease progression. A substrate able to detect P. aeruginosa-specific proteolytic activity could help to rapidly alert clinicians to the virulence potential of individual P. aeruginosa strains. For this purpose we designed a set of P. aeruginosa-specific fluorogenic substrates, comprising fluorescence resonance energy transfer (FRET-labeled peptides, and evaluated their applicability to P. aeruginosa virulence in a range of clinical isolates. A FRET-peptide comprising three glycines (3xGly was found to be specific for the detection of P. aeruginosa proteases. Further screening of 97 P. aeruginosa clinical isolates showed a wide variation in 3xGly cleavage activity. The absence of 3xGly degradation by a lasI knock out strain indicated that 3xGly cleavage by P. aeruginosa could be quorum sensing (QS-related, a hypothesis strengthened by the observation of a strong correlation between 3xGly cleavage, LasA staphylolytic activity and pyocyanin production. Additionally, isolates able to cleave 3xGly were more susceptible to the QS inhibiting antibiotic azithromycin (AZM. In conclusion, we designed and evaluated a 3xGly substrate possibly useful as a simple tool to predict virulence and AZM susceptibility.

  2. Effects of Microcystis aeruginosa on life history of water flea Daphnia magna

    Science.gov (United States)

    Liu, Liping; Li, Kang; Chen, Taoying; Dai, Xilin; Jiang, Min; Diana, James S.

    2011-07-01

    Cyanobacterial blooms in eutrophic freshwater systems are a worldwide problem, creating adverse effects for many aquatic organisms by producing toxic microcystins and deteriorating water quality. In this study, microcystins (MCs) in Microcystis aeruginosa, and Daphnia magna exposed to M. aeruginosa, were analyzed by HPLC-MS, and the effects of M. aeruginosa on D. magna were investigated. When D. magna was exposed to M. aeruginosa for more than 2 h, Microcystin-LR (MC-LR) was detected. When exposed to 1.5 × 106, 3 × 106, 0.75 × 107, and 1.5 × 107 cell/mL of M. aeruginosa for 96 h, average survival of D. magna for treatments were 23.33%, 33.33%, 13.33%, 16.67%, respectively, which were significantly lower than the average 100% survival in the control group ( P < 0.05). The adverse effects of M. aeruginosa on body length, time for the first brood, brood numbers, gross fecundity, lifespan, and population growth of D. magna were density-dependent. These results suggest that the occurrence of M. aeruginosa blooms could strongly inhibit the population growth of D. magna through depression of survival, individual growth and gross fecundity. In the most serious situations, M. aeruginosa blooms could undermine the food web by eliminating filter-feeding zooplankton, which would destroy the ecological balance of aquaculture water bodies.

  3. Chemokine Regulation of Angiogenesis During Wound Healing

    OpenAIRE

    Bodnar, Richard J.

    2015-01-01

    Significance: Angiogenesis plays a critical role in wound healing. A defect in the formation of a neovasculature induces ulcer formation. One of the challenges faced by the clinician when devising strategies to promote healing of chronic wounds is the initiation of angiogenesis and the formation of a stable vasculature to support tissue regeneration. Understanding the molecular factors regulating angiogenesis during wound healing will lead to better therapies for healing chronic wounds.

  4. Pseudomonas aeruginosa in Healthcare Settings

    Science.gov (United States)

    ... CDC.gov . Healthcare-associated Infections (HAIs) Share Compartir Pseudomonas aeruginosa in Healthcare Settings On this Page What ... and/or help treat infections? What is a Pseudomonas infection? Pseudomonas infection is caused by strains of ...

  5. Reduction of PCN biosynthesis by NO in Pseudomonas aeruginosa.

    Science.gov (United States)

    Gao, Lei; Zhang, Yuying; Wang, Yan; Qiao, Xinhua; Zi, Jing; Chen, Chang; Wan, Yi

    2016-08-01

    Pyocyanin (PCN), a virulence factor synthesized by Pseudomonas aeruginosa, plays an important role during clinical infections. There is no study of the effect of nitric oxide (NO) on PCN biosynthesis. Here, the effect of NO on PCN levels in Pseudomonas aeruginosa strain PAO1, a common reference strain, was tested. The results showed that the NO donor sodium nitroprusside (SNP) can significantly reduce PCN levels (82.5% reduction at 60μM SNP). Furthermore, the effect of endogenous NO on PCN was tested by constructing PAO1 nor (NO reductase gene) knockout mutants. Compared to the wild-type strain, the Δnor strain had a lower PCN (86% reduction in Δnor). To examine whether the results were universal with other P. aeruginosa strains, we collected 4 clinical strains from a hospital, tested their PCN levels after SNP treatment, and obtained similar results, i.e., PCN biosynthesis was inhibited by NO. These results suggest that NO treatment may be a new strategy to inhibit PCN biosynthesis and could provide novel insights into eliminating P. aeruginosa virulence as a clinical goal. PMID:26874276

  6. Reduction of PCN biosynthesis by NO in Pseudomonas aeruginosa.

    Science.gov (United States)

    Gao, Lei; Zhang, Yuying; Wang, Yan; Qiao, Xinhua; Zi, Jing; Chen, Chang; Wan, Yi

    2016-08-01

    Pyocyanin (PCN), a virulence factor synthesized by Pseudomonas aeruginosa, plays an important role during clinical infections. There is no study of the effect of nitric oxide (NO) on PCN biosynthesis. Here, the effect of NO on PCN levels in Pseudomonas aeruginosa strain PAO1, a common reference strain, was tested. The results showed that the NO donor sodium nitroprusside (SNP) can significantly reduce PCN levels (82.5% reduction at 60μM SNP). Furthermore, the effect of endogenous NO on PCN was tested by constructing PAO1 nor (NO reductase gene) knockout mutants. Compared to the wild-type strain, the Δnor strain had a lower PCN (86% reduction in Δnor). To examine whether the results were universal with other P. aeruginosa strains, we collected 4 clinical strains from a hospital, tested their PCN levels after SNP treatment, and obtained similar results, i.e., PCN biosynthesis was inhibited by NO. These results suggest that NO treatment may be a new strategy to inhibit PCN biosynthesis and could provide novel insights into eliminating P. aeruginosa virulence as a clinical goal.

  7. Reduction of PCN biosynthesis by NO in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Lei Gao

    2016-08-01

    Full Text Available Pyocyanin (PCN, a virulence factor synthesized by Pseudomonas aeruginosa, plays an important role during clinical infections. There is no study of the effect of nitric oxide (NO on PCN biosynthesis. Here, the effect of NO on PCN levels in Pseudomonas aeruginosa strain PAO1, a common reference strain, was tested. The results showed that the NO donor sodium nitroprusside (SNP can significantly reduce PCN levels (82.5% reduction at 60 μM SNP. Furthermore, the effect of endogenous NO on PCN was tested by constructing PAO1 nor (NO reductase gene knockout mutants. Compared to the wild-type strain, the Δnor strain had a lower PCN (86% reduction in Δnor. To examine whether the results were universal with other P. aeruginosa strains, we collected 4 clinical strains from a hospital, tested their PCN levels after SNP treatment, and obtained similar results, i.e., PCN biosynthesis was inhibited by NO. These results suggest that NO treatment may be a new strategy to inhibit PCN biosynthesis and could provide novel insights into eliminating P. aeruginosa virulence as a clinical goal.

  8. Zebrafish as an Emerging Model Organism to Study Angiogenesis in Development and Regeneration.

    Science.gov (United States)

    Chávez, Myra N; Aedo, Geraldine; Fierro, Fernando A; Allende, Miguel L; Egaña, José T

    2016-01-01

    Angiogenesis is the process through which new blood vessels are formed from preexisting ones and plays a critical role in several conditions including embryonic development, tissue repair and disease. Moreover, enhanced therapeutic angiogenesis is a major goal in the field of regenerative medicine and efficient vascularization of artificial tissues and organs is one of the main hindrances in the implementation of tissue engineering approaches, while, on the other hand, inhibition of angiogenesis is a key therapeutic target to inhibit for instance tumor growth. During the last decades, the understanding of cellular and molecular mechanisms involved in this process has been matter of intense research. In this regard, several in vitro and in vivo models have been established to visualize and study migration of endothelial progenitor cells, formation of endothelial tubules and the generation of new vascular networks, while assessing the conditions and treatments that either promote or inhibit such processes. In this review, we address and compare the most commonly used experimental models to study angiogenesis in vitro and in vivo. In particular, we focus on the implementation of the zebrafish (Danio rerio) as a model to study angiogenesis and discuss the advantages and not yet explored possibilities of its use as model organism. PMID:27014075

  9. Zebrafish as an emerging model organism to study angiogenesis in development and regeneration

    Directory of Open Access Journals (Sweden)

    Myra Noemi Chavez

    2016-03-01

    Full Text Available Angiogenesis is the process through which new blood vessels are formed from preexisting ones and plays a critical role in several conditions including embryonic development, tissue repair and disease. Moreover, enhanced therapeutic angiogenesis is a major goal in the field of regenerative medicine and efficient vascularization of artificial tissues and organs is one of the main hindrances in the implementation of tissue engineering approaches, while, on the other hand, inhibition of angiogenesis is a key therapeutic target to inhibit for instance tumor growth. During the last decades, the understanding of cellular and molecular mechanisms involved in this process has been matter of intense research. In this regard, several in vitro and in vivo models have been established to visualize and study migration of endothelial progenitor cells, formation of endothelial tubules and the generation of new vascular networks, while assessing the conditions and treatments that either promote or inhibit such processes. In this review, we address and compare the most commonly used experimental models to study angiogenesis in vitro and in vivo. In particular, we focus on the implementation of the zebrafish (Danio rerio as a model to study angiogenesis and discuss the advantages and not yet explored possibilities of its use as model organism.

  10. Suppressive Effect of Icaritin on Angiogenesis and Its Mechanisms

    Directory of Open Access Journals (Sweden)

    ZHANG Da

    2014-09-01

    Full Text Available Objective: To explore the suppressive effect of icaritin on angiogenesis and its mechanisms. Methods: After 48 or 24 h exposure to different concentrations of icaritin, cell proliferation was analyzed using tetrazolium blue (MTT assay, the migration ability of Human umbilical vein endothelial cells (HUVEC was tested in a Transwell Chamber and tube formation ability of HUVEC was determined by tube formation assay in vitro. Results: Icaritin inhibited the proliferation of HUVEC in dose-dependent manner; Tubes with high density formed in control group while treated with icaritin in 15~60 μg/mL range of concentrations, the number of tubes decreased and the lumen was incomplete. After treatment with icaritin, migration cells were significantly less than those in control group. Tube formation and migration ability was inhibited in dose-dependent manner with a correlation coefficient of -0.934 and -0.933, respectively. Conclusion: Icaritin can effectively inhibit the angiogenesis of HUVEC in vitro and its mechanism may be related to the inhibition of proliferation, migration and tube formation.

  11. 3-(Benzo[d][1,3]dioxol-5-ylamino)-N-(4-fluorophenyl)thiophene-2-carboxamide overcomes cancer chemoresistance via inhibition of angiogenesis and P-glycoprotein efflux pump activity.

    Science.gov (United States)

    Mudududdla, Ramesh; Guru, Santosh K; Wani, Abubakar; Sharma, Sadhana; Joshi, Prashant; Vishwakarma, Ram A; Kumar, Ajay; Bhushan, Shashi; Bharate, Sandip B

    2015-04-14

    3-((Quinolin-4-yl)methylamino)-N-(4-(trifluoromethoxy)phenyl)thiophene-2-carboxamide (OSI-930, 1) is a potent inhibitor of c-kit and VEGFR2, currently under phase I clinical trials in patients with advanced solid tumors. In order to understand the structure-activity relationship, a series of 3-arylamino N-aryl thiophene 2-carboxamides were synthesized by modifications at both quinoline and amide domains of the OSI-930 scaffold. All the synthesized compounds were screened for in vitro cytotoxicity in a panel of cancer cell lines and for VEGFR1 and VEGFR2 inhibition. Thiophene 2-carboxamides substituted with benzo[d][1,3]dioxol-5-yl and 2,3-dihydrobenzo[b][1,4]dioxin-6-yl groups 1l and 1m displayed inhibition of VEGFR1 with IC50 values of 2.5 and 1.9 μM, respectively. Compounds 1l and 1m also inhibited the VEGF-induced HUVEC cell migration, indicating its anti-angiogenic activity. OSI-930 along with compounds 1l and 1m showed inhibition of P-gp efflux pumps (MDR1, ABCB1) with EC50 values in the range of 35-74 μM. The combination of these compounds with doxorubicin led to significant enhancement of the anticancer activity of doxorubicin in human colorectal carcinoma LS180 cells, which was evident from the improved IC50 of doxorubicin, the increased activity of caspase-3 and the significant reduction in colony formation ability of LS180 cells after treatment with doxorubicin. Compound 1l showed a 13.8-fold improvement in the IC50 of doxorubicin in LS180 cells. The ability of these compounds to display dual inhibition of VEGFR and P-gp efflux pumps demonstrates the promise of this scaffold for its development as multi-drug resistance-reversal agents.

  12. Glycan involvement in the adhesion of Pseudomonas aeruginosa to tears.

    Science.gov (United States)

    Kautto, Liisa; Nguyen-Khuong, Terry; Everest-Dass, Arun; Leong, Andrea; Zhao, Zhenjun; Willcox, Mark D P; Packer, Nicolle H; Peterson, Robyn

    2016-04-01

    The human eye is constantly bathed by tears, which protect the ocular surface via a variety of mechanisms. The O-linked glycans of tear mucins have long been considered to play a role in binding to pathogens and facilitating their removal in the tear flow. Other conjugated glycans in tears could similarly contribute to pathogen binding and removal but have received less attention. In the work presented here we assessed the contribution of glycan moieties, in particular the protein attached N-glycans, presented by the broad complement of tear proteins to the adhesion of the opportunistic pathogen Pseudomonas aeruginosa, a leading cause of microbial keratitis and ulceration of the cornea. Our adhesion assay involved immobilising the macromolecular components of tears into the wells of a polyvinyl difluoride (PVDF) microtitre filter plate and probing the binding of fluorescently labelled bacteria. Three P. aeruginosa strains were studied: a cytotoxic strain (6206) and an invasive strain (6294) from eye infections, and an invasive strain (320) from a urinary tract infection (UTI). The ocular isolates adhered two to three times more to human tears than to human saliva or porcine gastric mucin, suggesting ocular niche-specific adaptation. Support for the role of the N-glycans carried by human tear proteins in the binding and removal of P. aeruginosa from the eye was shown by: 1) pre-incubation of the bacteria with free component sugars, galactose, mannose, fucose and sialyl lactose (or combination thereof) inhibiting adhesion of all the P. aeruginosa strains to the immobilised tear proteins, with the greatest inhibition of binding of the ocular cytotoxic 6206 and least for the invasive 6294 strain; 2) pre-incubation of the bacteria with N-glycans released from the commercially available human milk lactoferrin, an abundant protein that carries N-linked glycans in tears, inhibiting the adhesion to tears of the ocular bacteria by up to 70%, which was significantly more

  13. Glutathione exhibits antibacterial activity and increases tetracycline efficacy against Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Glutathione(GSH) plays important roles in pulmonary diseases,and inhaled GSH therapy has been used to treat cystic fibrosis(CF) patients in clinical trials.The results in this report revealed that GSH altered the sensitivity of Pseudomonas aeruginosa to different antibiotics through pathways unrelated to the oxidative stress as generally perceived.In addition,GSH and its oxidized form inhibited the growth of P.aeruginosa.

  14. Control of Candida albicans Metabolism and Biofilm Formation by Pseudomonas aeruginosa Phenazines

    OpenAIRE

    Morales, Diana K.; Grahl, Nora; Okegbe, Chinweike; Dietrich, Lars E. P.; Jacobs, Nicholas J.; Hogan, Deborah A.

    2013-01-01

    ABSTRACT Candida albicans has developmental programs that govern transitions between yeast and filamentous morphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm development were inhibited during interactions between Candida albicans and Pseudomonas aeruginosa through the action of P. aeruginosa-produced phenazines. While phenazines are toxic to C. albicans at millimolar concentrations, we found that lower concentra...

  15. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation

    OpenAIRE

    O’Loughlin, Colleen T.; Miller, Laura C.; Siryaporn, Albert; Drescher, Knut; Semmelhack, Martin F.; Bassler, Bonnie L.

    2013-01-01

    In this study, we prepare synthetic molecules and analyze them for inhibition of the Pseudomonas quorum-sensing receptors LasR and RhlR. Our most effective compound, meta-bromo-thiolactone, not only prevents virulence factor expression and biofilm formation but also protects Caenorhabditis elegans and human A549 lung epithelial cells from quorum-sensing–mediated killing by Pseudomonas aeruginosa. This anti–quorum-sensing molecule is capable of influencing P. aeruginosa virulence in tissue cul...

  16. New molecular connections in angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Qiling Xu; David Wilkinson

    2010-01-01

    @@ In vertebrates, oxygen and nutrients are delivered to tissues by the circula-tion of blood through vessels, comprised of a branched network of endothelial tubes termed the vasculature. Crucial for the formation of blood vessels during development is the process of angiogenesis, in which new sprouts form from pre-existing vessels in a complex cascade of cellular events. This involves the activation of an endothelial cell in the vessel to become a highly exploratory 'tip' cell that migrates to invade the surrounding tissues, while remaining tightly connected to the fol-lowing cells that subsequently generate the tubular structures of a new vessel.

  17. Tpl2 Inhibitors Thwart Endothelial Cell Function in Angiogenesis and Peritoneal Dissemination

    Directory of Open Access Journals (Sweden)

    Wen-Jane Lee

    2013-09-01

    Full Text Available Angiogenesis is critical in the development of cancer, which involves several angiogenic factors in its peritoneal dissemination. The role of protein tumor progression locus 2 (Tpl2 in angiogenic factor-related endothelial cell angiogenesis is still unclear. To understand the precise mechanism(s of Tpl2 inhibition in endothelial cells, this study investigated the role of Tpl2 in mediating angiogenic signals using in vitro, in vivo, and ex vivo models. Results showed that inhibition of Tpl2 inhibitor significantly reduced peritoneal dissemination in a mouse model by positron emission tomography/computed tomography imaging. Simultaneously, inhibiting Tpl2 blocked angiogenesis in tumor nodules and prevented angiogenic factor-induced proliferating cell nuclear antigen (PCNA in endothelial cells. Vascular endothelial growth factor (VEGF or chemokine (C-X-C motif ligand 1 (CXCL1 increased Tpl2 kinase activity and phosphorylation in a dose- and time-dependent manner. Furthermore, Tpl2 inhibition or ablation by siRNA prevented the angiogenic signal-induced tube formation in Matrigel plug assay or aortic ring assay. Inhibiting Tpl2 also prevented the angiogenic factor-induced chemotactic motility and migration of endothelial cells. Tpl2 inhibition by CXCL1 or epidermal growth factor in endothelial cells was associated with inactivation of CCAAT/enhancer binding protein β, nuclear factor κ light-chain enhancer of activated B cells, and activating protein 1 and suppression of VEGF expression. Thus, Tpl2 inhibitors thwart Tpl2-regulated VEGF by inactivating transcription factors involved in angiogenic factor-triggered endothelial cell angiogenesis. These results suggest that the therapeutic inhibition of Tpl2 may extend beyond cancer and include the treatment of other diseases involving pathologic angiogenesis.

  18. Angiogenesis inhibitors under study for the treatment of lung cancer.

    Science.gov (United States)

    Shepherd, Frances A; Sridhar, Srikala S

    2003-08-01

    Several classes of agents now exist that target the different steps involved in angiogenesis. These include drugs inhibiting matrix breakdown, the matrix metalloproteinase inhibitors (MMPIs), such as marimastat, prinomastat, BMS275291, BAY12-9566, and neovastat. Trials of this class of agents have all been negative to date. Drugs that block endothelial cell signaling via vascular endothelial growth factor (VEGF) and its receptor (VEGFR) including rhuMAb VEGF, SU5416, SU6668, ZD6474, CP-547,632 and ZD4190 are all in earlier stages of clinical trial. Drugs that are similar to endogenous inhibitors of angiogenesis including interferons have also been evaluated without success. Endostatin has been shown to have an acceptable toxicity profile, but clinical evidence of activity has not yet been demonstrated. There has also been renewed interest in thalidomide. Drugs such as squalamine, celecoxib, ZD6126, TNP-470 and those targeting the integrins are also being evaluated in lung cancer. Despite early enthusiasm for many of these agents, Phase III trials have not yet demonstrated significant increases in overall survival and toxicity remains an issue. It is hoped that as our understanding of the complex process of angiogenesis increases, so will our ability to design more effective targeted therapies. PMID:12867064

  19. [Angiogenesis and lymphangiogenesis in primary cutaneous T-cell lymphomas].

    Science.gov (United States)

    Jankowska-Konsur, Alina; Kobierzycki, Christopher; Dzięgiel, Piotr

    2015-01-01

    Primary cutaneous T-cell lymphomas are a group of rare hematologic malignancies, derived from mature T lymphocytes and initially developing only in the skin. The most common lymphomas representing this group are mycosis fungoides and Sezary syndrome. Mycosis fungoides is an indolent disease with a chronic course and characteristic evolution of the skin lesions from erythematous patches, through plaques to tumors. Sezary syndrome is characterized by an aggressive course and a triad of symptoms (erythroderma, generalized lymphadenopathy, and the presence of atypical cells in the skin, lymph nodes and peripheral blood). The etiopathogenesis of cutaneous lymphomas is not fully understood, but a few studies on angiogenesis and lymphangiogenesis in these malignancies indicate a significant role in their development and progression. Angiogenesis is a process of formation of new blood vessels from existing ones. Lymphangiogenesis is a similar process concerning lymphatic vasculature. Development of new vessels is a complex process composed of several successive stages: migration, proliferation, and differentiation of endothelial cells, extracellular matrix degradation and formation and stabilization of new vessels, regulated by growth factors, cytokines and other proteins. Both phenomena are essential in the development and progression of solid tumors and hematological malignancies. Therapeutic strategies involving the inhibition of tumor angiogenesis and lymphangiogenesis are a promising new direction of studies in antitumor therapy, requiring further experiments. PMID:26561847

  20. Hydrogels for therapeutic cardiovascular angiogenesis.

    Science.gov (United States)

    Rufaihah, Abdul Jalil; Seliktar, Dror

    2016-01-15

    Acute myocardial infarction (MI) caused by ischemia is the most common cause of cardiac dysfunction. While growth factor or cell therapy is promising, the retention of bioactive agents in the highly vascularized myocardium is limited and prevents sustained activation needed for adequate cellular responses. Various types of biomaterials with different physical and chemical properties have been developed to improve the localized delivery of growth factor and/or cells for therapeutic angiogenesis in ischemic tissues. Hydrogels are particularly advantageous as carrier systems because they are structurally similar to the tissue extracellular matrix (ECM), they can be processed under relatively mild conditions and can be delivered in a minimally invasive manner. Moreover, hydrogels can be designed to degrade in a timely fashion that coincides with the angiogenic process. For these reasons, hydrogels have shown great potential as pro-angiogenic matrices. This paper reviews a few of the hydrogel systems currently being applied together with growth factor delivery and/or cell therapy to promote therapeutic angiogenesis in ischemic tissues, with emphasis on myocardial applications.

  1. 蜂毒素(Mel)对裸鼠骨肉瘤的抑制作用与影响肿瘤血管生成、细胞增殖和凋亡的关系%The relation of inhibiting angiogenesis and inducing cell apoptosis of melittin ( Mel) on xenotransplanted models of nude mice

    Institute of Scientific and Technical Information of China (English)

    高启龙; 李寒冰; 姚亚民; 陈永强; 杨峰

    2012-01-01

    目的 探讨蜂毒素(melittin,Mel)抑制骨肉瘤裸鼠移植瘤的作用机制.方法 用SD大鼠成骨肉瘤UMR- 106细胞株建立骨肉瘤原位移植瘤裸鼠模型,将18只裸鼠随机等分为3组,生理盐水组、Mel组和顺铂组.观察各组裸鼠骨肉瘤的体积和体质量抑制率;应用免疫组织化学法检测各组裸鼠瘤体CD31、CD105、PCNA蛋白表达;应用TUNEL法检测肿瘤细胞凋亡;运用相关性分析法研究Mel抑制骨肉瘤血管生成与细胞增殖、凋亡的关系.结果 Mel组肿瘤体积和体质量抑制率分别为42.98%和39.03%,Mel能明显抑制CD31、CD105标记的血管生成密度,能明显抑制肿瘤细胞增殖,促进细胞凋亡,且Mel抑制肿瘤血管生成与细胞增殖呈正相关及与细胞凋亡呈负相关.结论 Mel具有抑制骨肉瘤裸鼠移植瘤生长的作用,其作用机制可能与其能够抑制肿瘤血管生成、诱导肿瘤细胞凋亡及抑制细胞增殖有关.%Objective To study the antitumor effects and mechanism of melittin (Mel) on xenotransplanted models of nude mice. Methods Xenotransplanted models of SD rat osteosarcoma (OS) cell UMR-106 in the laevo-hind tibia of nude mice were established. Eighteen inoculated mice were randomly divided into normal saline group, positive control group and Mel group. All the nude mice were sacrificed after treatment. The size and weight of tumor were measured and the tumor volumes, and the inhibition rates of tumor were calculated. The expressions of CD31.CD1D5 and PCNA were deteced by immunohistochemical method. TUNEL semi-quantitative assay was used to study the melittin-induced apoptosis in OS cell line. The relation of inhibiting angiogenesis and inducing cell apoptosis was analyzed by correlation test . Results The mice treated with Mel showed significantly smaller in tumor volume and weight than those of NS group after treatment. Microvessel densities and the protein expressions of CD31 ,CD1()5 and PCNA in Mel group were

  2. Immunotherapy of tumor by targeting angiogenesis

    Institute of Scientific and Technical Information of China (English)

    HOU; Jianmei; TIAN; Ling; WEI; Yuquan

    2004-01-01

    Tumor growth and metastasis are angiogenesis-dependent. Anti-angiogenic therapy represents a new strategy for the development of anti-cancer therapies. In recent years, there has been made great progress in anti-angiogenic therapy. As far as the passive immunotherapy is concerned, a recombinant humanized antibody to vascular endothelial growth factor (VEGF)-Avastin has been approved by FDA as the first angiogenesis inhibitor to treat colorectal cancer. For active specific immunotherapy, various strategies for cancer vaccines, including whole endothelial cell vaccines, dendritic cell vaccines, DNA vaccines, and peptides or protein vaccines, have been developed to break immune tolerance against important molecules associated with tumor angiogenesis and induce angiogenesis-specific immune responses. This article reviews the angiogenesis-targeted immunotherapy of tumor from the above two aspects.

  3. Fosfomycin Enhances the Active Transport of Tobramycin in Pseudomonas aeruginosa

    OpenAIRE

    MacLeod, David L.; Velayudhan, Jyoti; Kenney, Thomas F.; Therrien, Joseph H.; Sutherland, Jennifer L.; Barker, Lynn M.; Baker, William R.

    2012-01-01

    Elevated levels of mucins present in bronchiectatic airways predispose patients to bacterial infections and reduce the effectiveness of antibiotic therapies by directly inactivating antibiotics. Consequently, new antibiotics that are not inhibited by mucins are needed to treat chronic respiratory infections caused by Pseudomonas aeruginosa and Staphylococcus aureus. In these studies, we demonstrate that fosfomycin synergistically enhances the activity of tobramycin in the presence of mucin. T...

  4. Development of potent inhibitors of pyocyanin production in Pseudomonas aeruginosa

    OpenAIRE

    Miller, Laura C.; O’Loughlin, Colleen T.; Zhang, Zinan; Siryaporn, Albert; Silpe, Justin E.; Bassler, Bonnie L.; Semmelhack, Martin F.

    2015-01-01

    The development of new approaches for the treatment of antimicrobial-resistant infections is an urgent public health priority. The Pseudomonas aeruginosa pathogen, in particular, is a leading source of infection in hospital settings, with few available treatment options. In the context of an effort to develop antivirulence strategies to combat bacterial infection, we identified a series of highly effective small molecules that inhibit the production of pyocyanin, a redox-active virulence fact...

  5. Gamma-linolenic acid inhibits both tumour cell cycle progression and angiogenesis in the orthotopic C6 glioma model through changes in VEGF, Flt1, ERK1/2, MMP2, cyclin D1, pRb, p53 and p27 protein expression

    Directory of Open Access Journals (Sweden)

    Colquhoun Alison

    2009-03-01

    Full Text Available Abstract Background Gamma-linolenic acid is a known inhibitor of tumour cell proliferation and migration in both in vitro and in vivo conditions. The aim of the present study was to determine the mechanisms by which gamma-linolenic acid (GLA osmotic pump infusion alters glioma cell proliferation, and whether it affects cell cycle control and angiogenesis in the C6 glioma in vivo. Methods Established C6 rat gliomas were treated for 14 days with 5 mM GLA in CSF or CSF alone. Tumour size was estimated, microvessel density (MVD counted and protein and mRNA expression measured by immunohistochemistry, western blotting and RT-PCR. Results GLA caused a significant decrease in tumour size (75 ± 8.8% and reduced MVD by 44 ± 5.4%. These changes were associated with reduced expression of vascular endothelial growth factor (VEGF (71 ± 16% and the VEGF receptor Flt1 (57 ± 5.8% but not Flk1. Expression of ERK1/2 was also reduced by 27 ± 7.7% and 31 ± 8.7% respectively. mRNA expression of matrix metalloproteinase-2 (MMP2 was reduced by 35 ± 6.8% and zymography showed MMP2 proteolytic activity was reduced by 32 ± 8.5%. GLA altered the expression of several proteins involved in cell cycle control. pRb protein expression was decreased (62 ± 18% while E2F1 remained unchanged. Cyclin D1 protein expression was increased by 42 ± 12% in the presence of GLA. The cyclin dependent kinase inhibitors p21 and p27 responded differently to GLA, p27 expression was increased (27 ± 7.3% while p21 remained unchanged. The expression of p53 was increased (44 ± 16% by GLA. Finally, the BrdU incorporation studies found a significant inhibition (32 ± 11% of BrdU incorporation into the tumour in vivo. Conclusion Overall the findings reported in the present study lend further support to the potential of GLA as an inhibitor of glioma cell proliferation in vivo and show it has direct effects upon cell cycle control and angiogenesis. These effects involve changes in protein

  6. Bach1 Represses Wnt/β-Catenin Signaling and Angiogenesis

    Science.gov (United States)

    Liu, Junxu; Wang, Xinhong; Niu, Cong; Kang, Xueling; Xu, Jie; Zhou, Zhongwei; Sun, Shaoyang; Wang, Xu; Zheng, Xiaojun; Duan, Shengzhong; Yao, Kang; Qian, Ruizhe; Sun, Ning; Chen, Alex; Wang, Rui; Zhang, Jianyi; Chen, Sifeng; Meng, Dan

    2015-01-01

    Rationale Wnt/β-catenin signaling has an important role in the angiogenic activity of endothelial cells (ECs). Bach1 is a transcription factor and is expressed in ECs, but whether Bach1 regulates angiogenesis is unknown. Objective This study evaluated the role of Bach1 in angiogenesis and Wnt/β-catenin signaling. Methods and Results Hind-limb ischemia was surgically induced in Bach1−/− mice and their wild-type littermates and in C57BL/6J mice treated with adenoviruses coding for Bach1 or GFP. Lack of Bach1 expression was associated with significant increases in perfusion and vascular density and in the expression of proangiogenic cytokines in the ischemic hindlimb of mice, with enhancement of the angiogenic activity of ECs (eg, tube formation, migration, and proliferation). Bach1 overexpression impaired angiogenesis in mice with hind-limb ischemia and inhibited Wnt3a-stimulated angiogenic response and the expression of Wnt/β-catenin target genes, such as interleukin-8 and vascular endothelial growth factor, in human umbilical vein ECs. Interleukin-8 and vascular endothelial growth factor were responsible for the antiangiogenic response of Bach1. Immunoprecipitation and GST pull-down assessments indicated that Bach1 binds directly to TCF4 and reduces the interaction of β-catenin with TCF4. Bach1 overexpression reduces the interaction between p300/CBP and β-catenin, as well as β-catenin acetylation, and chromatin immunoprecipitation experiments confirmed that Bach1 occupies the TCF4-binding site of the interleukin-8 promoter and recruits histone deacetylase 1 to the interleukin-8 promoter in human umbilical vein ECs. Conclusions Bach1 suppresses angiogenesis after ischemic injury and impairs Wnt/β-catenin signaling by disrupting the interaction between β-catenin and TCF4 and by recruiting histone deacetylase 1 to the promoter of TCF4-targeted genes. PMID:26123998

  7. Anti-angiogenesis in prostate cancer:knocked down but not out

    Institute of Scientific and Technical Information of China (English)

    Marijo Bilusic; Yu-Ning Wong

    2014-01-01

    Angiogenesis is a very complex physiological process, which involves multiple pathways that are dependent on the homeostatic balance between the growth factors (stimulators and inhibitors). This tightly controlled process is stimulated by angiogenic factors, which are present within the tumor and surrounding tumor-associated stromal cells. The dependence of tumor propagation, invasion and metastasis on angiogenesis makes the inhibitors of new blood vessel formation attractive drugs for treating the malignancies. Angiogenesis can be disrupted by several distinct mechanisms:by inhibiting endothelial cells, by interrupting the signaling pathways or by inhibiting other activators of angiogenesis. This strategy has shown therapeutic beneift in several types of solid tumors, leading to Food and Drug Administration (FDA) approval of anti-angiogenic agents in the treatment of kidney, non-small cell lung, colon and brain cancers. Although no angiogenesis inhibitors have been approved for patients with metastatic prostate cancer, therapies that target new blood vessel formation are still an emerging and promising area of prostate cancer research.

  8. Anti-angiogenesis in prostate cancer: knocked down but not out

    Directory of Open Access Journals (Sweden)

    Marijo Bilusic

    2014-06-01

    Full Text Available Angiogenesis is a very complex physiological process, which involves multiple pathways that are dependent on the homeostatic balance between the growth factors (stimulators and inhibitors. This tightly controlled process is stimulated by angiogenic factors, which are present within the tumor and surrounding tumor-associated stromal cells. The dependence of tumor propagation, invasion and metastasis on angiogenesis makes the inhibitors of new blood vessel formation attractive drugs for treating the malignancies. Angiogenesis can be disrupted by several distinct mechanisms: by inhibiting endothelial cells, by interrupting the signaling pathways or by inhibiting other activators of angiogenesis. This strategy has shown therapeutic benefit in several types of solid tumors, leading to Food and Drug Administration (FDA approval of anti-angiogenic agents in the treatment of kidney, non-small cell lung, colon and brain cancers. Although no angiogenesis inhibitors have been approved for patients with metastatic prostate cancer, therapies that target new blood vessel formation are still an emerging and promising area of prostate cancer research.

  9. Inhibition of Corneal Neovascularization with the Combination of Bevacizumab and Plasmid Pigment Epithelium-Derived Factor-Synthetic Amphiphile INTeraction-18 (p-PEDF-SAINT-18 Vector in a Rat Corneal Experimental Angiogenesis Model

    Directory of Open Access Journals (Sweden)

    Ching-Hsein Chen

    2013-04-01

    Full Text Available Bevacizumab, a 149-kDa protein, is a recombinant humanized monoclonal antibody to VEGF. PEDF, a 50-kDa glycoprotein, has demonstrated anti-vasopermeability properties. In this study, we demonstrated that the combination of bevacizumab and plasmid pigment epithelium-derived factor-synthetic amphiphile INTeraction-18 (p-PEDF-SAINT-18 has a favorable antiangiogenic effect on corneal NV. Four groups (Group A: 0 μg + 0 μg, B: 0.1 μg + 0.1 μg, C: 1 μg + 1 μg, and D: 10 μg + 10 μg of bevacizumab + p-PEDF-SAINT-18 were prepared and implanted into the rat subconjunctival substantia propria 1.5 mm from the limbus on the temporal side. Then, 1 μg of p-bFGF-SAINT-18 was prepared and implanted into the rat corneal stroma 1.5 mm from the limbus on the same side. The inhibition of NV was observed and quantified from days 1 to 60. Biomicroscopic examination, western blot analysis and immunohistochemistry were used to analyze the 18-kDa bFGF, 50-kDa PEDF and VEGF protein expression. No inhibition activity for normal limbal vessels was noted. Subconjunctival injection with the combination of bevacizumab and p-PEDF-SAINT-18 successfully inhibited corneal NV. The bFGF and PEDF genes were successfully expressed as shown by western blot analysis, and a mild immune response to HLA-DR was shown by immunohistochemistry. We concluded that the combination of bevacizumab and p-PEDF-SAINT-18 may have more potent and prolonged antiangiogenic effects, making it possible to reduce the frequency of subconjunctival.Bevacizumab, a 149-kDa protein, is a recombinant humanized monoclonalantibody to VEGF. PEDF, a 50-kDa glycoprotein, has demonstrated anti-vasopermeabilityproperties. In this study, we demonstrated that the combination of bevacizumaband plasmid pigment epithelium-derived factor-synthetic amphiphile INTeraction-18(p-PEDF-SAINT-18 has a favorable antiangiogenic effect on corneal NV. Four groups(Group A: 0 μg + 0 μg, B: 0.1 μg + 0.1 μg, C: 1 μg + 1 μg, and

  10. Treatment of hypertension and renal injury induced by the angiogenesis inhibitor sunitinib: preclinical study.

    Science.gov (United States)

    Lankhorst, Stephanie; Kappers, Mariëtte H W; van Esch, Joep H M; Smedts, Frank M M; Sleijfer, Stefan; Mathijssen, Ron H J; Baelde, Hans J; Danser, A H Jan; van den Meiracker, Anton H

    2014-12-01

    Common adverse effects of angiogenesis inhibition are hypertension and renal injury. To determine the most optimal way to prevent these adverse effects and to explore their interdependency, the following drugs were investigated in unrestrained Wistar Kyoto rats exposed to the angiogenesis inhibitor sunitinib: the dual endothelin receptor antagonist macitentan; the calcium channel blocker amlodipine; the angiotensin-converting enzyme inhibitor captopril; and the phosphodiesterase type 5 inhibitor sildenafil. Mean arterial pressure was monitored telemetrically. After 8 days, rats were euthanized and blood samples and kidneys were collected. In addition, 24-hour urine samples were collected. After sunitinib start, mean arterial pressure increased rapidly by ≈30 mm Hg. Coadministration of macitentan or amlodipine largely prevented this rise, whereas captopril or sildenafil did not. Macitentan, captopril, and sildenafil diminished the sunitinib-induced proteinuria and endothelinuria and glomerular intraepithelial protein deposition, whereas amlodipine did not. Changes in proteinuria and endothelinuria were unrelated. We conclude that in our experimental model, dual endothelin receptor antagonism and calcium channel blockade are suitable to prevent angiogenesis inhibition-induced hypertension, whereas dual endothelin receptor antagonism, angiotensin-converting enzyme inhibitor, and phosphodiesterase type 5 inhibition can prevent angiogenesis inhibition-induced proteinuria. Moreover, the variable response of hypertension and renal injury to different antihypertensive agents suggests that these side effects are, at least in part, unrelated.

  11. Growth and Laboratory Maintenance of Pseudomonas aeruginosa

    OpenAIRE

    LaBauve, Annette E.; Wargo, Matthew J.

    2012-01-01

    Pseudomonas aeruginosa is a common, free-living, Gram-negative bacterium that can cause significant disease as an opportunistic pathogen. Rapid growth, facile genetics, and a large suite of virulence-related phenotypes make P. aeruginosa a common model organism to study Gram-negative opportunistic pathogens and basic microbiology. This unit describes the basic laboratory growth and maintenance of P. aeruginosa.

  12. Welcome to Journal of Angiogenesis Research

    Directory of Open Access Journals (Sweden)

    Slevin Mark

    2009-09-01

    Full Text Available Abstract Angiogenesis is the growth of new blood vessels and is a key process which occurs during both physiological and pathological disease processes. Knowledge of the mechanisms through which this process is initiated and maintained will have a significant impact on the treatment of these diseases. Pathological angiogenesis occurs in major diseases such as cancer, diabetic retinopathies, age-related macular degeneration and atherosclerosis. In other diseases such as stroke and myocardial infarction, insufficient or improper angiogenesis results in tissue loss and ultimately higher morbidity and mortality.

  13. Mechanical and Chemical Signaling in Angiogenesis

    CERN Document Server

    2013-01-01

    This volume of Studies in Mechanobiology, Tissue Engineering and Biomaterials describes the most recent advances in angiogenesis research at all biological length scales: molecular, cellular and tissue, in both in vivo and in vitro settings.  Angiogenesis experts from diverse fields including engineering, cell and developmental biology, and chemistry have contributed chapters which focus on the mechanical and chemical signals which affect and promote blood vessel growth. Specific emphasis is given to novel methodologies and biomaterials that have been developed and applied to angiogenesis research. 

  14. Anti-Angiogenesis and Anti-Tumor Effect of Shark Cartilage Extract

    Institute of Scientific and Technical Information of China (English)

    王锋; 王漪涛; 谢莉萍; 张荣庆

    2001-01-01

    The effect of shark cartilage extract (SCE), purified in this laboratory, on angiogenesis in chick chorioallantoic membrane (CAM), on the activity of collagenase IV and on human umbilical vein endothelial cell (ECV-304) proliferation and apoptosis was investigated in vitro. The results showed that SCE caused a decline in CAM blood vessels and significantly prevented collagenase-induced collagenolysis. Moreover, SCE produced a dose-dependent decline in ECV-304 proliferation and altered its normal cell cycle. These results suggest that the anti-angiogenesis and anti-tumor effects of shark cartilage may be due to inhibition of endothelial cells as well as collagenolysis.

  15. Nitrosoglutathione generating nitric oxide nanoparticles as an improved strategy for combating Pseudomonas aeruginosa-infected wounds.

    Science.gov (United States)

    Chouake, Jason; Schairer, David; Kutner, Allison; Sanchez, David A; Makdisi, Joy; Blecher-Paz, Karin; Nacharaju, Parimala; Tuckman-Vernon, Chaim; Gialanella, Phil; Friedman, Joel M; Nosanchuk, Joshua D; Friedman, Adam J

    2012-12-01

    Pseudomonas aeruginosa is a community-acquired, nosocomial pathogen that is an important cause of human morbidity and mortality; it is intrinsically resistant to several antibiotics and is capable of developing resistance to newly developed drugs via a variety of mechanisms. P aeruginosa's ubiquity and multidrug resistance (MDR) warrants the development of innovative methods that overcome its ability to develop resistance. We have previously described a nitric oxide-releasing nanoparticle (NO-np) platform that effectively kills gram-positive and gram-negative organisms in vitro and accelerates clinical recovery in vivo in murine wound and abscess infection models. We have also demonstrated that when glutathione (GSH) is added to NO-np, the nitroso intermediate S-nitrosoglutathione (GSNO) is formed, which has greater activity against P aeruginosa and other gram-negative organisms compared with NO-np alone. In the current study, we evaluate the potential of NO-np to generate GSNO both in vitro and in vivo in a murine excisional wound model infected with an MDR clinical isolate of P aeruginosa. Whereas NO-np alone inhibited P aeruginosa growth in vitro for up to 8 hours, NO-np+GSH completely inhibited P aeruginosa growth for 24 hours. Percent survival in the NO-np+GSH-treated isolates was significantly lower than in the NO-np (36.1% vs 8.3%; P=.004). In addition, NO-np+GSH accelerated wound closure in P aeruginosa-infected wounds, and NO-np+GSH-treated wounds had significantly lower bacterial burden when compared to NO-np-treated wounds (P<.001). We conclude that GSNO is easily generated from our NO-np platform and has the potential to be used as an antimicrobial agent against MDR organisms such as P aeruginosa. PMID:23377518

  16. Targeting p35/Cdk5 Signalling via CIP-Peptide Promotes Angiogenesis in Hypoxia

    Science.gov (United States)

    Bosutti, Alessandra; Qi, Jie; Pennucci, Roberta; Bolton, David; Matou, Sabine; Ali, Kamela; Tsai, Li-Huei; Krupinski, Jerzy; Petcu, Eugene B.; Montaner, Joan; Al Baradie, Raid; Caccuri, Francesca; Caruso, Arnaldo; Alessandri, Giulio; Kumar, Shant; Rodriguez, Cristina; Martinez-Gonzalez, Jose; Slevin, Mark

    2013-01-01

    Cyclin-dependent kinase-5 (Cdk5) is over-expressed in both neurons and microvessels in hypoxic regions of stroke tissue and has a significant pathological role following hyper-phosphorylation leading to calpain-induced cell death. Here, we have identified a critical role of Cdk5 in cytoskeleton/focal dynamics, wherein its activator, p35, redistributes along actin microfilaments of spreading cells co-localising with p(Tyr15)Cdk5, talin/integrin beta-1 at the lamellipodia in polarising cells. Cdk5 inhibition (roscovitine) resulted in actin-cytoskeleton disorganisation, prevention of protein co-localization and inhibition of movement. Cells expressing Cdk5 (D144N) kinase mutant, were unable to spread, migrate and form tube-like structures or sprouts, while Cdk5 wild-type over-expression showed enhanced motility and angiogenesis in vitro, which was maintained during hypoxia. Gene microarray studies demonstrated myocyte enhancer factor (MEF2C) as a substrate for Cdk5-mediated angiogenesis in vitro. MEF2C showed nuclear co-immunoprecipitation with Cdk5 and almost complete inhibition of differentiation and sprout formation following siRNA knock-down. In hypoxia, insertion of Cdk5/p25-inhibitory peptide (CIP) vector preserved and enhanced in vitro angiogenesis. These results demonstrate the existence of critical and complementary signalling pathways through Cdk5 and p35, and through which coordination is a required factor for successful angiogenesis in sustained hypoxic condition. PMID:24098701

  17. Targeting p35/Cdk5 signalling via CIP-peptide promotes angiogenesis in hypoxia.

    Directory of Open Access Journals (Sweden)

    Alessandra Bosutti

    Full Text Available Cyclin-dependent kinase-5 (Cdk5 is over-expressed in both neurons and microvessels in hypoxic regions of stroke tissue and has a significant pathological role following hyper-phosphorylation leading to calpain-induced cell death. Here, we have identified a critical role of Cdk5 in cytoskeleton/focal dynamics, wherein its activator, p35, redistributes along actin microfilaments of spreading cells co-localising with p(Tyr15Cdk5, talin/integrin beta-1 at the lamellipodia in polarising cells. Cdk5 inhibition (roscovitine resulted in actin-cytoskeleton disorganisation, prevention of protein co-localization and inhibition of movement. Cells expressing Cdk5 (D144N kinase mutant, were unable to spread, migrate and form tube-like structures or sprouts, while Cdk5 wild-type over-expression showed enhanced motility and angiogenesis in vitro, which was maintained during hypoxia. Gene microarray studies demonstrated myocyte enhancer factor (MEF2C as a substrate for Cdk5-mediated angiogenesis in vitro. MEF2C showed nuclear co-immunoprecipitation with Cdk5 and almost complete inhibition of differentiation and sprout formation following siRNA knock-down. In hypoxia, insertion of Cdk5/p25-inhibitory peptide (CIP vector preserved and enhanced in vitro angiogenesis. These results demonstrate the existence of critical and complementary signalling pathways through Cdk5 and p35, and through which coordination is a required factor for successful angiogenesis in sustained hypoxic condition.

  18. A peptide fusion protein in hibits angiogenesis and tumorgrowth by blocking VEGF binding to KDR

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Vascular endothelial growth factor (VEGF) binding to its tyrosine kinase receptors (KDR/FLK1, Flt-1) induces angiogenesis. In search of the peptides blocking VEGF binding to its receptor KDR/FLK1 to inhibit tumor- angiogenesis and growth, we screened a phage display peptide library with KDR as target protein, and some candidate peptides were isolated. In this study, we cloned the DNA fragment coding the peptide K237 from the library, into a vector pQE42 to express fusion protein DHFR-K237 in E. coli M15. The affection of fusion protein DHFR-K237 on endothelial cell proliferation and angiogenesis was investigated. In vitro, DHFR-K237 could completely block VEGF binding to KDR and significantly inhibit the VEGF-medi- ated proliferation of the human vascular endothelial cells. In vivo, DHFR-K237 inhibited angiogenesis in chick embryo chorioa- llantoric membrane and tumor growth in nude mice. These results suggest that K237 is an effective antagonist of VEGF binding to KDR, and could be a potential agent for cancer biotherapy.

  19. Aberrant angiogenesis: The gateway to diabetic complications

    Directory of Open Access Journals (Sweden)

    Sunil K Kota

    2012-01-01

    Full Text Available Diabetes Mellitus is a metabolic cum vascular syndrome with resultant abnormalities in both micro- and macrovasculature. The adverse long-term effects of diabetes mellitus have been described to involve many organ systems. Apart from hyperglycemia, abnormalities of angiogenesis may cause or contribute toward many of the clinical manifestations of diabetes. These are implicated in the pathogenesis of vascular abnormalities of the retina, kidneys, and fetus, impaired wound healing, increased risk of rejection of transplanted organs, and impaired formation of coronary collaterals. A perplexing feature of the aberrant angiogenesis is that excessive and insufficient angiogenesis can occur in different organs in the same individual. The current article hereby reviews the molecular mechanisms including abnormalities in growth factors, cytokines, and metabolic derangements, clinical implications, and therapeutic options of dealing with abnormal angiogenesis in diabetes.

  20. Galectins in angiogenesis: consequences for gestation.

    Science.gov (United States)

    Blois, Sandra M; Conrad, Melanie L; Freitag, Nancy; Barrientos, Gabriela

    2015-04-01

    Members of the galectin family have been shown to exert several roles in the context of reproduction. They contribute to placentation, maternal immune regulation and facilitate angiogenesis encompassing decidualisation and placenta formation during pregnancy. In the context of neo-vascularisation, galectins have been shown to augment signalling pathways that lead to endothelial cell activation, cell proliferation, migration and tube formation in vitro in addition to angiogenesis in vivo. Angiogenesis during gestation ensures not only proper foetal growth and development, but also maternal health. Consequently, restriction of placental blood flow has major consequences for both foetus and mother, leading to pregnancy diseases. In this review we summarise both the established and the emerging roles of galectin in angiogenesis and discuss the possible implications during healthy and pathological gestation.

  1. Semaphorin signaling in angiogenesis, lymphangiogenesis and cancer

    Institute of Scientific and Technical Information of China (English)

    Atsuko Sakurai; Colleen Doci; J Silvio Gutkind

    2012-01-01

    Angiogenesis,the formation of new blood vessels from preexisting vasculature,is essential for many physiological processes,and aberrant angiogenesis contributes to some of the most prevalent human diseases,including cancer.Angiogenesis is controlled by delicate balance between pro- and anti-angiogenic signals.While pro-angiogenic signaling has been extensively investigated,how developmentally regulated,naturally occurring anti-angiogenic molecules prevent the excessive growth of vascular and lymphatic vessels is still poorly understood.In this review,we summarize the current knowledge on how semaphorins and their receptors,plexins and neuropilins,control normal and pathological angiogenesis,with an emphasis on semaphorin-regulated anti-angiogenic signaling circuitries in vascular and lymphatic endothelial cells.This emerging body of information may afford the opportunity to develop novel anti-angiogenic therapeutic strategies.

  2. Monitoring angiogenesis using magnetic resonance methods

    DEFF Research Database (Denmark)

    Holm, David Alberg

    2008-01-01

    -angiogenic treatment is presented in the first manuscript. In the second and third manuscript, two separate methods of quantifying perfusion, blood volume and vessel permeability are presented. The methods are used to show that drug delivery to a xenografted tumor is plausible and to show possible vascular maturation......When a tumor reaches a certain size it can no longer rely on passive perfusion for nutrition. The tumor therefore emits signaling molecules which stimulating surrounding vessels to divide and grow towards the tumor, a process known as angiogenesis. Very little angiogenesis is present in healthy...... and the involved signaling molecules. Subsequently, a short review of contrast agents and perfusion measurements is given. Finally, methods for monitoring angiogenesis using magnetic resonance imaging are reviewed. A method for monitoring early stages of angiogenesis as well as the effect of anti...

  3. A novel peptide derived from human apolipoprotein E is an inhibitor of tumor growth and ocular angiogenesis.

    Directory of Open Access Journals (Sweden)

    Partha S Bhattacharjee

    Full Text Available Angiogenesis is a hallmark of tumor development and metastasis and now a validated target for cancer treatment. We previously reported that a novel dimer peptide (apoEdp derived from the receptor binding region of human apolipoprotein E (apoE inhibits virus-induced angiogenesis. However, its role in tumor anti-angiogenesis is unknown. This study demonstrates that apoEdp has anti-angiogenic property in vivo through reduction of tumor growth in a mouse model and ocular angiogenesis in a rabbit eye model. Our in vitro studies show that apoEdp inhibits human umbilical vein endothelial cell proliferation, migration, invasion and capillary tube formation. We document that apoEdp inhibits vascular endothelial growth factor-induced Flk-1 activation as well as downstream signaling pathways that involve c-Src, Akt, eNOS, FAK, and ERK1/2. These in vitro data suggest potential sites of the apoE dipeptide inhibition that could occur in vivo.This is the first evidence that a synthetic dimer peptide mimicking human apoE has anti-angiogenesis functions and could be an anti-tumor drug candidate.

  4. HIF-2alpha-dependent PAI-1 induction contributes to angiogenesis in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Geis, Theresa, E-mail: geis@biochem.uni-frankfurt.de [Institute of Biochemistry I—Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Döring, Claudia, E-mail: C.Doering@em.uni-frankfurt.de [Dr. Senckenberg Institute of Pathology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Popp, Rüdiger, E-mail: popp@vrc.uni-frankfurt.de [Institute for Vascular Signalling, Centre for Molecular Medicine, Faculty of Medicine Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main (Germany); Grossmann, Nina, E-mail: grossmann@biochem.uni-frankfurt.de [Institute of Biochemistry I—Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Fleming, Ingrid, E-mail: fleming@vrc.uni-frankfurt.de [Institute for Vascular Signalling, Centre for Molecular Medicine, Faculty of Medicine Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main (Germany); Hansmann, Martin-Leo, E-mail: m.l.hansmann@em.uni-frankfurt.de [Dr. Senckenberg Institute of Pathology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Dehne, Nathalie, E-mail: dehne@biochem.uni-frankfurt.de [Institute of Biochemistry I—Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Brüne, Bernhard, E-mail: b.bruene@biochem.uni-frankfurt.de [Institute of Biochemistry I—Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany)

    2015-02-01

    Hypoxia promotes progression of hepatocellular carcinoma (HCC), not only affecting tumor cell proliferation and invasion, but also angiogenesis and thus, increasing the risk of metastasis. Hypoxia inducible factors (HIF)-1α and -2α cause adaptation of tumors to hypoxia, still with uncertainties towards the angiogenic switch. We created a stable knockdown of HIF-1α and HIF-2α in HepG2 cells and generated cocultures of HepG2 spheroids with embryonic bodies as an in vitro tumor model mimicking the cancer microenvironment. The naturally occuring oxygen and nutrient gradients within the cocultures allow us to question the role of distinct HIF isoforms in regulating HCC angiogenesis. In cocultures with a HIF-2α knockdown, angiogenesis was attenuated, while the knockdown of HIF-1α was without effect. Microarray analysis identified plasminogen activator inhibitor 1 (PAI-1) as a HIF-2α target gene in HepG2 cells. The knockdown of PAI-1 in HepG2 cells also lowered angiogenesis. Blocking plasmin, the downstream target of PAI-1, with aprotinin in HIF-2α knockdown (k/d) cells proved a cause–effect relation and restored angiogenesis, with no effect on control cocultures. Suggestively, HIF-2α increases PAI-1 to lower concentrations of active plasmin, thereby supporting angiogenesis. We conclude that the HIF-2α target gene PAI-1 favors the angiogenic switch in HCC. - Highlights: • HepG2 were cocultured with stem cells to mimic a cancer microenvironment in vitro. • A knockdown of HIF-2α reduces angiogenesis. • PAI-1 was identified as a HIF-2α target gene in HCC by microarray analysis. • HIF-2α induces the angiogenic switch via inhibition of plasmin.

  5. Lack of Involvement of CEP Adducts in TLR Activation and in Angiogenesis

    Science.gov (United States)

    Gounarides, John; Cobb, Jennifer S.; Zhou, Jing; Cook, Frank; Yang, Xuemei; Yin, Hong; Meredith, Erik; Rao, Chang; Huang, Qian; Xu, YongYao; Anderson, Karen; De Erkenez, Andrea; Liao, Sha-Mei; Crowley, Maura; Buchanan, Natasha; Poor, Stephen; Qiu, Yubin; Fassbender, Elizabeth; Shen, Siyuan; Woolfenden, Amber; Jensen, Amy; Cepeda, Rosemarie; Etemad-Gilbertson, Bijan; Giza, Shelby; Mogi, Muneto; Jaffee, Bruce; Azarian, Sassan

    2014-01-01

    Proteins that are post-translationally adducted with 2-(ω-carboxyethyl)pyrrole (CEP) have been proposed to play a pathogenic role in age-related macular degeneration, by inducing angiogenesis in a Toll Like Receptor 2 (TLR2)-dependent manner. We have investigated the involvement of CEP adducts in angiogenesis and TLR activation, to assess the therapeutic potential of inhibiting CEP adducts and TLR2 for ocular angiogenesis. As tool reagents, several CEP-adducted proteins and peptides were synthetically generated by published methodology and adduction was confirmed by NMR and LC-MS/MS analyses. Structural studies showed significant changes in secondary structure in CEP-adducted proteins but not the untreated proteins. Similar structural changes were also observed in the treated unadducted proteins, which were treated by the same adduction method except for one critical step required to form the CEP group. Thus some structural changes were unrelated to CEP groups and were artificially induced by the synthesis method. In biological studies, the CEP-adducted proteins and peptides failed to activate TLR2 in cell-based assays and in an in vivo TLR2-mediated retinal leukocyte infiltration model. Neither CEP adducts nor TLR agonists were able to induce angiogenesis in a tube formation assay. In vivo, treatment of animals with CEP-adducted protein had no effect on laser-induced choroidal neovascularization. Furthermore, in vivo inactivation of TLR2 by deficiency in Myeloid Differentiation factor 88 (Myd88) had no effect on abrasion-induced corneal neovascularization. Thus the CEP-TLR2 axis, which is implicated in other wound angiogenesis models, does not appear to play a pathological role in a corneal wound angiogenesis model. Collectively, our data do not support the mechanism of action of CEP adducts in TLR2-mediated angiogenesis proposed by others. PMID:25343517

  6. Lack of involvement of CEP adducts in TLR activation and in angiogenesis.

    Directory of Open Access Journals (Sweden)

    John Gounarides

    Full Text Available Proteins that are post-translationally adducted with 2-(ω-carboxyethylpyrrole (CEP have been proposed to play a pathogenic role in age-related macular degeneration, by inducing angiogenesis in a Toll Like Receptor 2 (TLR2-dependent manner. We have investigated the involvement of CEP adducts in angiogenesis and TLR activation, to assess the therapeutic potential of inhibiting CEP adducts and TLR2 for ocular angiogenesis. As tool reagents, several CEP-adducted proteins and peptides were synthetically generated by published methodology and adduction was confirmed by NMR and LC-MS/MS analyses. Structural studies showed significant changes in secondary structure in CEP-adducted proteins but not the untreated proteins. Similar structural changes were also observed in the treated unadducted proteins, which were treated by the same adduction method except for one critical step required to form the CEP group. Thus some structural changes were unrelated to CEP groups and were artificially induced by the synthesis method. In biological studies, the CEP-adducted proteins and peptides failed to activate TLR2 in cell-based assays and in an in vivo TLR2-mediated retinal leukocyte infiltration model. Neither CEP adducts nor TLR agonists were able to induce angiogenesis in a tube formation assay. In vivo, treatment of animals with CEP-adducted protein had no effect on laser-induced choroidal neovascularization. Furthermore, in vivo inactivation of TLR2 by deficiency in Myeloid Differentiation factor 88 (Myd88 had no effect on abrasion-induced corneal neovascularization. Thus the CEP-TLR2 axis, which is implicated in other wound angiogenesis models, does not appear to play a pathological role in a corneal wound angiogenesis model. Collectively, our data do not support the mechanism of action of CEP adducts in TLR2-mediated angiogenesis proposed by others.

  7. Biomarkers of Angiogenesis in Colorectal Cancer

    OpenAIRE

    Luay Mousa; Salem, Mohamed E.; Sameh Mikhail

    2015-01-01

    Colorectal cancer (CRC) is the third most common cancer worldwide and accounts for 10% of all new cancer diagnoses. Angiogenesis is a tightly regulated process that is mediated by a group of angiogenic factors such as vascular endothelial growth factor and its receptors. Given the widespread use of antiangiogenic agents in CRC, there has been considerable interest in the development of methods to identify novel markers that can predict outcome in the treatment of this disease with angiogenesi...

  8. Inhibition effect of aquaculture water of Salvinia natans (L.)All.on Microcystis aeruginosa PCC7806%槐叶萍养殖水对铜绿微囊藻的抑制效应

    Institute of Scientific and Technical Information of China (English)

    张胜娟; 夏文彤; 杨晓辉; 张庭廷

    2016-01-01

    目的 研究槐叶萍[Salvinia natans(L.)All.]养殖水的抑藻效应及抑制机制.方法 将不同浓度5%、10%、20%和40%槐叶萍养殖水作用于7.5×105cells/mL的铜绿微囊藻(Microcystis aeruginosa),测定其对藻细胞的溶藻率、电导率、藻液核酸和蛋白含量、丙二醛(MDA)含量以及超氧化物歧化酶(SOD)活性等的影响.结果 40%处理组第4d的抑制率达100%,5%处理组第7d的抑制率达65%,藻细胞溶藻率、电导率、藻液中核酸含量,蛋白含量,以及藻细胞MDA含量均随养殖水浓度的增大而升高,SOD酶活性随着槐叶萍养殖水浓度增大先上升,然后又下降.结论 槐叶萍养殖水通过改变藻细胞结构和胞内酶活性等抑制铜绿微囊藻的生长.

  9. Endogenous ribosomal protein L29 (RPL29: a newly identified regulator of angiogenesis in mice

    Directory of Open Access Journals (Sweden)

    Dylan T. Jones

    2013-01-01

    Cellular ribosomal protein L29 (RPL29 is known to be important in protein synthesis, but its function during angiogenesis has never been described before. We have shown previously that mice lacking β3-integrins support enhanced tumour angiogenesis and, therefore, deletion of endothelial αvβ3 can provide a method for discovery of novel regulators of tumour angiogenesis. Here, we describe significant upregulation of RPL29 in β3-null endothelial cells at both the mRNA and protein level. Ex vivo, we show that VEGF-stimulated microvessel sprouting was reduced significantly in Rpl29-heterozygous and Rpl29-null aortic ring assays compared with wild-type controls. Moreover, we provide in vivo evidence that RPL29 can regulate tumour angiogenesis. Tumour blood vessel density in subcutaneously grown Lewis lung carcinomas was reduced significantly in Rpl29-mutant mice. Additionally, depletion of Rpl29 using RNA interference inhibited VEGF-induced aortic ring sprouting, suggesting that anti-RPL29 strategies might have anti-angiogenic potential. Overall, our results identify that loss or depletion of RPL29 can reduce angiogenesis in vivo and ex vivo.

  10. Development of collateral vessels: A new paradigm in CAM angiogenesis model.

    Science.gov (United States)

    Gatne, Dipti P; Mungekar, Snehal; Addepalli, Veeranjaneyulu; Mohanraj, Krishnapriya; Ghone, Sanjeevani A; Rege, Nirmala N

    2016-01-01

    The chorioallantoic membrane (CAM) assay is one of the most widely used models to study angiogenesis. In this study, collateral vessel development is reported in CAM assay useful in analysis of angiogenesis. Four days old white Leghorn fertilized chicken eggs were inoculated with vehicle, standard or test angiogenesis inhibitor using standard protocol. Central vessel growth was seen tapering down and collateral vessels were developed from the lower side of the chorioallantoic membrane moving upward in 12 days old standard or test treated CAMs. In the absence of the central vessel, collateral blood supply helped in survival of embryos. Hence, development of collateral vessels was used for ranking of blood vessels and angiogenesis in addition to well-known standard parameters related to central vessel. The finding could differentiate molecules inhibiting angiogenesis with or without collateralization which is crucial in anti-angiogenic therapy used for cardiovascular diseases and cancer. This study proposes a new avenue to distinguish pro-angiogenic molecules from anti-angiogenic ones as well as anti-angiogenic molecules which may or may not support alternative vascularization pathway that would have great impact on future angiogenic and anti-angiogenic therapy. PMID:26390964

  11. Anti-angiogenesis properties of Crocus pallasii subsp. haussknechtii, a popular ethnic food

    Directory of Open Access Journals (Sweden)

    M. Mosaddegh

    2015-06-01

    Full Text Available Background and objectives: Angiogenesis is essential for tumor survival. Inhibiting angiogenesis could be a mechanism for hindering tumor development. Numerous studies have now been focused on agiogenesis inhibitors and many of such studies have targeted plant materials. In the present study, Crocus pallasii subsp. haussknechtii has been evaluated for anti-angiogenesis properties. Methods: Anti-angiogenesis activity of the plant extracts and fractions has been investigated through wound healing assay in HUV-EC-C cells. The cytotoxic activity has also been evaluated by MTT assay. Results: The methanol extract and the methanol fraction of the corm along with the chloroform fraction of the aerial parts demonstrated to be cytotoxic to HUV-EC-C cells with IC50 values of 27.2, 74.1 and 60.0 μg/mL, respectively while the chloroform fraction of the corm showed the most considerable anti-angiogenesis property among the samples in wound healing assay. Conclusion: Regarding the results of the present study, Crocus pallasii subsp. haussknechtii is suggested for further studies in cancer research evaluations.

  12. Effect of melatonin on tumor growth and angiogenesis in xenograft model of breast cancer.

    Science.gov (United States)

    Jardim-Perassi, Bruna Victorasso; Arbab, Ali S; Ferreira, Lívia Carvalho; Borin, Thaiz Ferraz; Varma, Nadimpalli R S; Iskander, A S M; Shankar, Adarsh; Ali, Meser M; de Campos Zuccari, Debora Aparecida Pires

    2014-01-01

    As neovascularization is essential for tumor growth and metastasis, controlling angiogenesis is a promising tactic in limiting cancer progression. Melatonin has been studied for their inhibitory properties on angiogenesis in cancer. We performed an in vivo study to evaluate the effects of melatonin treatment on angiogenesis in breast cancer. Cell viability was measured by MTT assay after melatonin treatment in triple-negative breast cancer cells (MDA-MB-231). After, cells were implanted in athymic nude mice and treated with melatonin or vehicle daily, administered intraperitoneally 1 hour before turning the room light off. Volume of the tumors was measured weekly with a digital caliper and at the end of treatments animals underwent single photon emission computed tomography (SPECT) with Technetium-99m tagged vascular endothelial growth factor (VEGF) C to detect in vivo angiogenesis. In addition, expression of pro-angiogenic/growth factors in the tumor extracts was evaluated by membrane antibody array and collected tumor tissues were analyzed with histochemical staining. Melatonin in vitro treatment (1 mM) decreased cell viability (pbreast cancer xenografts nude mice treated with melatonin showed reduced tumor size and cell proliferation (Ki-67) compared to control animals after 21 days of treatment (p0.05) images. In addition, there was a decrease of micro-vessel density (Von Willebrand Factor) in melatonin treated mice (pmelatonin treatment showed effectiveness in reducing tumor growth and cell proliferation, as well as in the inhibition of angiogenesis. PMID:24416386

  13. 电穿孔介导免疫调节因子及血管生成抑制因子转移治疗脉络膜黑色素瘤%Inhibition of choroidal melanoma cell growth by electroporation-mediated transfer of immunologic cytokines or anti-angiogenesis genes

    Institute of Scientific and Technical Information of China (English)

    韦芳; 王丰; 刘新建; 李惠明; 田毓华; 黄倩

    2011-01-01

    μμg antiVEGF121 + sFLK-1 +ExTek and 30 μg mIL2+mIL12 respectively by electroporation. Seven, 14, 21, 28, 35 and 42 days after treatment, the tumor volumes were measured to calculate the tumor inhibition rate. Results ELISA and Western blot showed that mIL2, mIL12, sFLK-1 and ExTek were expressed after electroporation, VEGF expression was decreased remarkably. After treatment, the tumors of mIL2 + mIL12 group were greatly inhibited with a tumor inhibition rate of 97.33%, while the tumors of antiVEGF121 + sFLK-1 + ExTek and pNGVL group were partially inhibited with tumor inhibition rates of 53. 33% and 36. 33% respectively.Conclusions Immunologic cytokines transfer mediated by electroporation can inhibit the growth of melanoma,but anti-angiogenesis only have a mild effects.

  14. Cis-2-dodecenoic acid signal modulates virulence of Pseudomonas aeruginosa through interference with quorum sensing systems and T3SS

    Science.gov (United States)

    2013-01-01

    Background Cis-2-dodecenoic acid (BDSF) is well known for its important functions in intraspecies signaling in Burkholderia cenocepacia. Previous work has also established an important role of BDSF in interspecies and inter-kingdom communications. It was identified that BDSF modulates virulence of Pseudomonas aeruginosa. However, how BDSF interferes with virulence of P. aeruginosa is still not clear. Results We report here that BDSF mediates the cross-talk between B. cenocepacia and P. aeruginosa through interference with quorum sensing (QS) systems and type III secretion system (T3SS) of P. aeruginosa. Bioassay results revealed that exogenous addition of BDSF not only reduced the transcriptional expression of the regulator encoding gene of QS systems, i.e., lasR, pqsR, and rhlR, but also simultaneously decreased the production of QS signals including 3-oxo-C12-HSL, Pseudomonas quinolone signal (PQS) and C4-HSL, consequently resulting in the down-regulation of biofilm formation and virulence factor production of P. aeruginosa. Furthermore, BDSF and some of its derivatives are also capable of inhibiting T3SS of P. aeruginosa at a micromolar level. Treatment with BDSF obviously reduced the virulence of P. aeruginosa in both HeLa cell and zebrafish infection models. Conclusions These results depict that BDSF modulates virulence of P. aeruginosa through interference with QS systems and T3SS. PMID:24134835

  15. Broad targeting of angiogenesis for cancer prevention and therapy.

    Science.gov (United States)

    Wang, Zongwei; Dabrosin, Charlotta; Yin, Xin; Fuster, Mark M; Arreola, Alexandra; Rathmell, W Kimryn; Generali, Daniele; Nagaraju, Ganji P; El-Rayes, Bassel; Ribatti, Domenico; Chen, Yi Charlie; Honoki, Kanya; Fujii, Hiromasa; Georgakilas, Alexandros G; Nowsheen, Somaira; Amedei, Amedeo; Niccolai, Elena; Amin, Amr; Ashraf, S Salman; Helferich, Bill; Yang, Xujuan; Guha, Gunjan; Bhakta, Dipita; Ciriolo, Maria Rosa; Aquilano, Katia; Chen, Sophie; Halicka, Dorota; Mohammed, Sulma I; Azmi, Asfar S; Bilsland, Alan; Keith, W Nicol; Jensen, Lasse D

    2015-12-01

    Deregulation of angiogenesis--the growth of new blood vessels from an existing vasculature--is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding "the most important target" may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the "Halifax Project" within the "Getting to know cancer" framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the

  16. Broad targeting of angiogenesis for cancer prevention and therapy.

    Science.gov (United States)

    Wang, Zongwei; Dabrosin, Charlotta; Yin, Xin; Fuster, Mark M; Arreola, Alexandra; Rathmell, W Kimryn; Generali, Daniele; Nagaraju, Ganji P; El-Rayes, Bassel; Ribatti, Domenico; Chen, Yi Charlie; Honoki, Kanya; Fujii, Hiromasa; Georgakilas, Alexandros G; Nowsheen, Somaira; Amedei, Amedeo; Niccolai, Elena; Amin, Amr; Ashraf, S Salman; Helferich, Bill; Yang, Xujuan; Guha, Gunjan; Bhakta, Dipita; Ciriolo, Maria Rosa; Aquilano, Katia; Chen, Sophie; Halicka, Dorota; Mohammed, Sulma I; Azmi, Asfar S; Bilsland, Alan; Keith, W Nicol; Jensen, Lasse D

    2015-12-01

    Deregulation of angiogenesis--the growth of new blood vessels from an existing vasculature--is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding "the most important target" may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the "Halifax Project" within the "Getting to know cancer" framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the

  17. Galectin-3 induces pulmonary artery endothelial cell morphogenesis and angiogenesis

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li; LI Yu-mei; WANG Xiao-yan; ZHU Da-ling

    2016-01-01

    AIM:Increasing evidence suggests that carbohydrate-binding proteins play an essential role in tumor growth and metastasis .Ga-lectin-3, a multifunctional protein of an expanding family of β-galactoside-binding animal lectins , is the major nonintegrin cellular laminin-binding protein , and is implicated in a variety of biologic events , such as inflammation and angiogenesis .Because galectin-3 expression was shown to participate in mediating tumor angiogenesis and initiate signaling cascades in several diseases .We hypothe-sized that galectin-3 may promote pulmonary vascular endothelial neovascularization .METHODS:Hypoxic and MCT rat model of pul-monary artery remodeling was used .The mRNA and protein levels of galectin-3 in rats were measured by in situ hybrization and West-ern blot analysis.Endothelial cell (EC) proliferation, migration and tube formation were measured using MTT , cell scratch and Matri-gel assays, respectively.Protein expression was quantitated by Western blot analysis .LC 3A/B staining was detected with cellular im-munofluorescence staining .RESULTS:We found that galectin-3 was localized on the intima and adventitial wall .Galectin-3 was in-creased after rat hypoxia and MCT administration .Galectin-3 promoted EC proliferation , migration and tube formation , while its roles were reversed by RNA interference.Galectin-3 induced Atg 5, Beclin-1, LAMP-2, and LC 3A/B expression increases.Galectin-3 al-so increased LC 3A/B staining in ECs.Akt/mTOR and GSK-3βsignaling pathways were activated after galectin-3 treated ECs using its specific phosphorylation antibodies , while blocked it with LY294002 inhibited cell autophagy and EC dynamic alterations induced by galectin-3.CONCLUSION:These findings demonstrate that galectin-3 can induce an Akt signaling cascade leading to cell autoph-agy, and then the differentiation and angiogenesis of pulmonary artery endothelial cells .

  18. Angiogenesis is induced by airway smooth muscle strain.

    Science.gov (United States)

    Hasaneen, Nadia A; Zucker, Stanley; Lin, Richard Z; Vaday, Gayle G; Panettieri, Reynold A; Foda, Hussein D

    2007-10-01

    Angiogenesis is an important feature of airway remodeling in both chronic asthma and chronic obstructive pulmonary disease (COPD). Airways in those conditions are exposed to excessive mechanical strain during periods of acute exacerbations. We recently reported that mechanical strain of human airway smooth muscle (HASM) led to an increase in their proliferation and migration. Sustained growth in airway smooth muscle in vivo requires an increase in the nutritional supply to these muscles, hence angiogenesis. In this study, we examined the hypothesis that cyclic mechanical strain of HASM produces factors promoting angiogenic events in the surrounding vascular endothelial cells. Our results show: 1) a significant increase in human lung microvascular endothelial cell (HMVEC-L) proliferation, migration, and tube formation following incubation in conditioned media (CM) from HASM cells exposed to mechanical strain; 2) mechanical strain of HASM cells induced VEGF expression and release; 3) VEGF neutralizing antibodies inhibited the proliferation, migration, and tube formations of HMVEC-L induced by the strained airway smooth muscle CM; 4) mechanical strain of HASM induced a significant increase in hypoxia-inducible factor-1alpha (HIF-1alpha) mRNA and protein, a transcription factor required for VEGF gene transcription; and 5) mechanical strain of HASM induced HIF-1alpha/VEGF through dual phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and ERK pathways. In conclusion, exposing HASM cells to mechanical strain induces signal transduction pathway through PI3K/Akt/mTOR and ERK pathways that lead to an increase in HIF-1alpha, a transcription factor required for VEGF expression. VEGF release by mechanical strain of HASM may contribute to the angiogenesis seen with repeated exacerbation of asthma and COPD. PMID:17693481

  19. Phenolic compounds affect production of pyocyanin, swarming motility and biofilm formation of Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    Aylin Ugurlu; Aysegul Karahasan Yagci; Seyhan Ulusoy; Burak Aksu; Gulgun Bosgelmez-Tinaz

    2016-01-01

    Objective: To investigate the effects of plant-derived phenolic compounds (i.e. caffeic acid, cinnamic acid, ferulic acid and vanillic acid) on the production of quorum sensing regulated virulence factors such as pyocyanin, biofilm formation and swarming motility of Pseudomonas aeruginosa (P. aeruginosa) isolates. Methods: Fourteen clinical P. aeruginosa isolates obtained from urine samples and P. aeruginosa PA01 strain were included in the study. The antibacterial effects of phenolic compounds were screened by well diffusion assay. Pyocyanin and biofilm ac-tivity were measured from culture supernatants and the absorbance values were measured using a spectrophotometer. Swarming plates supplemented with phenolic acids were point inoculated with P. aeruginosa strains and the ability to swarm was determined by measuring the distance of swarming from the central inoculation site. Results: Tested phenolic compounds reduced the production of pyocyanin and biofilm formation without affecting growth compared to untreated cultures. Moreover, these compounds blocked about 50% of biofilm production and swarming motility in P. aeruginosa isolates. Conclusions: We may suggest that if swarming and consecutive biofilm formation could be inhibited by the natural products as shown in our study, the bacteria could not attach to the surfaces and produce chronic infections. Antimicrobials and natural products could be combined and the dosage of antimicrobials could be reduced to overcome antimicrobial resistance and drug side effects.

  20. A novel angiogenesis inhibitor impairs lovo cell survival via targeting against human VEGFR and its signaling pathway of phosphorylation.

    Science.gov (United States)

    Zhang, Y M; Dai, B L; Zheng, L; Zhan, Y Z; Zhang, J; Smith, W W; Wang, X L; Chen, Y N; He, L C

    2012-10-11

    Colorectal cancer represents the fourth commonest malignancy, and constitutes a major cause of significant morbidity and mortality among other diseases. However, the chemical therapy is still under development. Angiogenesis plays an important role in colon cancer development. We developed HMQ18-22 (a novel analog of taspine) with the aim to target angiogenesis. We found that HMQ18-22 significantly reduced angiogenesis of chicken chorioallantoic membrane (CAM) and mouse colon tissue, and inhibited cell migration and tube formation as well. Then, we verified the interaction between HMQ18-22 and VEGFR2 by AlphaScreen P-VEGFR assay, screened the targets on angiogenesis by VEGF Phospho Antibody Array, validated the target by western blot and RNAi in lovo cells. We found HMQ18-22 could decrease phosphorylation of VEGFR2(Tyr(1214)), VEGFR1(Tyr(1333)), Akt(Tyr(326)), protein kinase Cα (PKCα) (Tyr(657)) and phospholipase-Cγ-1 (PLCγ-1) (Tyr(771)). Most importantly, HMQ18-22 inhibited proliferation of lovo cell and tumor growth in a human colon tumor xenografted model of athymic mice. Compared with normal lovo cells proliferation, the inhibition on proliferation of knockdown cells (VEGFR2, VEGFR1, Akt, PKCα and PLCγ-1) by HMQ18-22 decreased. These results suggested that HMQ18-22 is a novel angiogenesis inhibitor and can be a useful therapeutic candidate for colon cancer intervention.

  1. Tumor-host interactions in the gallbladder suppress distal angiogenesis and tumor growth: involvement of transforming growth factor beta1.

    Science.gov (United States)

    Gohongi, T; Fukumura, D; Boucher, Y; Yun, C O; Soff, G A; Compton, C; Todoroki, T; Jain, R K

    1999-10-01

    Angiogenesis inhibitors produced by a primary tumor can create a systemic anti-angiogenic environment and maintain metastatic tumor cells in a state of dormancy. We show here that the gallbladder microenvironment modulates the production of transforming growth factor (TGF)-beta1, a multifunctional cytokine that functions as an endogenous anti-angiogenic and anti-tumor factor in a cranial window preparation. We found that a wide variety of human gallbladder tumors express TGF-beta1 irrespective of histologic type. We implanted a gel impregnated with basic fibroblast growth factor or Mz-ChA-2 tumor in the cranial windows of mice without tumors or mice with subcutaneous or gallbladder tumors to study angiogenesis and tumor growth at a secondary site. Angiogenesis, leukocyte-endothelial interaction in vessels and tumor growth in the cranial window were substantially inhibited in mice with gallbladder tumors. The concentration of TGF-beta1 in the plasma of mice with gallbladder tumors was 300% higher than that in the plasma of mice without tumors or with subcutaneous tumors. In contrast, there was no difference in the plasma levels of other anti- and pro-angiogenic factors. Treatment with neutralizing antibody against TGF-beta1 reversed both angiogenesis suppression and inhibition of leukocyte rolling induced by gallbladder tumors. TGF-beta1 also inhibited Mz-ChA-2 tumor cell proliferation. Our results indicate that the production of anti-angiogenesis/proliferation factors is regulated by tumor-host interactions. PMID:10502827

  2. Silver against Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Kirketerp-Møller, K.; Kristiansen, S.;

    2007-01-01

    bacteria in both the planktonic and biofilm modes of growth. The action of silver on mature in vitro biofilms of Pseudomonas aeruginosa, a primary pathogen of chronic infected wounds, was investigated. The results show that silver is very effective against mature biofilms of P. aeruginosa......, but that the silver concentration is important. A concentration of 5-10 ig/mL silver sulfadiazine eradicated the biofilm whereas a lower concentration (1 ig/mL) had no effect. The bactericidal concentration of silver required to eradicate the bacterial biofilm was 10-100 times higher than that used to eradicate...... planktonic bacteria. These observations strongly indicate that the concentration of silver in currently available wound dressings is much too low for treatment of chronic biofilm wounds. It is suggested that clinicians and manufacturers of the said wound dressings consider whether they are treating wounds...

  3. MiR-506 suppresses liver cancer angiogenesis through targeting sphingosine kinase 1 (SPHK1) mRNA.

    Science.gov (United States)

    Lu, Zhanping; Zhang, Weiying; Gao, Shan; Jiang, Qiulei; Xiao, Zelin; Ye, Lihong; Zhang, Xiaodong

    MicroRNAs acting as oncogenes or tumor suppressor genes play crucial roles in human cancers. Sphingosine kinase 1 (SPHK1) and its metabolite sphingosine 1-phosphate (S1P) contribute to tumor angiogenesis. We have reported that the down-regulation of miR-506 targeting YAP mRNA results in the hepatocarcinogenesis. In the present study, we report a novel function of miR-506, which suppresses tumor angiogenesis through targeting SPHK1 mRNA in liver cancer. Bioinformatics analysis showed that miR-506 might target 3'-untranslated region (3'UTR) of SPHK1 mRNA. Then, we validated that by luciferase reporter gene assays. MiR-506 was able to reduce the expression of SPHK1 at the levels of mRNA and protein using reverse transcription-polymerase chain reaction and Western blot analysis in hepatoma HepG2 cells. Functionally, human umbilical vein endothelial cell (HUVEC) tube formation assays demonstrated that the forced miR-506 expression remarkably inhibited the production of S1P in the supernatant of hepatoma cells. The supernatant resulted in the inhibition of tumor angiogenesis. Interestingly, the supernatant with overexpression of SPHK1 could rescue the inhibition of angiogenesis of liver cancer mediated by miR-506. Anti-miR-506 increased the production of S1P in the supernatant of hepatoma cells, but the supernatant with silencing of SPHK1 abolished anti-miR-506-induced acceleration of tumor angiogenesis. Clinically, we observed that the levels of miR-506 were negatively related to those of SPHK1 mRNA in liver cancer tissues. Thus, we conclude that miR-506 depresses the angiogenesis of liver cancer through targeting 3'UTR of SPHK1 mRNA. Our finding provides new insights into the mechanism of tumor angiogenesis.

  4. Peptide-coated gold nanoparticles for modulation of angiogenesis in vivo

    Science.gov (United States)

    Roma-Rodrigues, Catarina; Heuer-Jungemann, Amelie; Fernandes, Alexandra R; Kanaras, Antonios G; Baptista, Pedro V

    2016-01-01

    In this work, peptides designed to selectively interact with cellular receptors involved in the regulation of angiogenesis were anchored to oligo-ethylene glycol-capped gold nanoparticles (AuNPs) and used to evaluate the modulation of vascular development using an ex ovo chick chorioallantoic membrane assay. These nanoparticles alter the balance between naturally secreted pro- and antiangiogenic factors, under various biological conditions, without causing toxicity. Exposure of chorioallantoic membranes to AuNP–peptide activators of angiogenesis accelerated the formation of new arterioles when compared to scrambled peptide-coated nanoparticles. On the other hand, antiangiogenic AuNP–peptide conjugates were able to selectively inhibit angiogenesis in vivo. We demonstrated that AuNP vectorization is crucial for enhancing the effect of active peptides. Our data showed for the first time the effective control of activation or inhibition of blood vessel formation in chick embryo via AuNP-based formulations suitable for the selective modulation of angiogenesis, which is of paramount importance in applications where promotion of vascular growth is desirable (eg, wound healing) or ought to be contravened, as in cancer development. PMID:27354794

  5. Phosphate taxis in Pseudomonas aeruginosa.

    OpenAIRE

    Kato, J.; Ito, A.; Nikata, T; Ohtake, H

    1992-01-01

    Pseudomonas aeruginosa was shown to be attracted to phosphate. The chemotactic response was induced by phosphate starvation. The specificity of chemoreceptors for phosphate was high so that no other tested phosphorus compounds elicited a chemotactic response as strong as that elicited by phosphate. Competition experiments showed that the chemoreceptors for phosphate appeared to be different from those for the common amino acids. Mutants constitutive for alkaline phosphatase showed the chemota...

  6. Frondoside a suppressive effects on lung cancer survival, tumor growth, angiogenesis, invasion, and metastasis.

    Science.gov (United States)

    Attoub, Samir; Arafat, Kholoud; Gélaude, An; Al Sultan, Mahmood Ahmed; Bracke, Marc; Collin, Peter; Takahashi, Takashi; Adrian, Thomas E; De Wever, Olivier

    2013-01-01

    A major challenge for oncologists and pharmacologists is to develop less toxic drugs that will improve the survival of lung cancer patients. Frondoside A is a triterpenoid glycoside isolated from the sea cucumber, Cucumaria frondosa and was shown to be a highly safe compound. We investigated the impact of Frondoside A on survival, migration and invasion in vitro, and on tumor growth, metastasis and angiogenesis in vivo alone and in combination with cisplatin. Frondoside A caused concentration-dependent reduction in viability of LNM35, A549, NCI-H460-Luc2, MDA-MB-435, MCF-7, and HepG2 over 24 hours through a caspase 3/7-dependent cell death pathway. The IC50 concentrations (producing half-maximal inhibition) at 24 h were between 1.7 and 2.5 µM of Frondoside A. In addition, Frondoside A induced a time- and concentration-dependent inhibition of cell migration, invasion and angiogenesis in vitro. Frondoside A (0.01 and 1 mg/kg/day i.p. for 25 days) significantly decreased the growth, the angiogenesis and lymph node metastasis of LNM35 tumor xenografts in athymic mice, without obvious toxic side-effects. Frondoside A (0.1-0.5 µM) also significantly prevented basal and bFGF induced angiogenesis in the CAM angiogenesis assay. Moreover, Frondoside A enhanced the inhibition of lung tumor growth induced by the chemotherapeutic agent cisplatin. These findings identify Frondoside A as a promising novel therapeutic agent for lung cancer. PMID:23308143

  7. Frondoside a suppressive effects on lung cancer survival, tumor growth, angiogenesis, invasion, and metastasis.

    Directory of Open Access Journals (Sweden)

    Samir Attoub

    Full Text Available A major challenge for oncologists and pharmacologists is to develop less toxic drugs that will improve the survival of lung cancer patients. Frondoside A is a triterpenoid glycoside isolated from the sea cucumber, Cucumaria frondosa and was shown to be a highly safe compound. We investigated the impact of Frondoside A on survival, migration and invasion in vitro, and on tumor growth, metastasis and angiogenesis in vivo alone and in combination with cisplatin. Frondoside A caused concentration-dependent reduction in viability of LNM35, A549, NCI-H460-Luc2, MDA-MB-435, MCF-7, and HepG2 over 24 hours through a caspase 3/7-dependent cell death pathway. The IC50 concentrations (producing half-maximal inhibition at 24 h were between 1.7 and 2.5 µM of Frondoside A. In addition, Frondoside A induced a time- and concentration-dependent inhibition of cell migration, invasion and angiogenesis in vitro. Frondoside A (0.01 and 1 mg/kg/day i.p. for 25 days significantly decreased the growth, the angiogenesis and lymph node metastasis of LNM35 tumor xenografts in athymic mice, without obvious toxic side-effects. Frondoside A (0.1-0.5 µM also significantly prevented basal and bFGF induced angiogenesis in the CAM angiogenesis assay. Moreover, Frondoside A enhanced the inhibition of lung tumor growth induced by the chemotherapeutic agent cisplatin. These findings identify Frondoside A as a promising novel therapeutic agent for lung cancer.

  8. Inhibition of angiogenesis by platelets in systemic sclerosis patients

    OpenAIRE

    Hirigoyen, Daniela; Burgos, Paula I.; Mezzano, Veronica; Duran, Josefina; Barrientos, Magaly; Saez, Claudia G.; Panes, Olga; Mezzano, Diego; Iruretagoyena, Mirentxu

    2015-01-01

    Introduction Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by microvascular damage, inflammation, and fibrosis. It has become increasingly evident that platelets, beyond regulating hemostasis, are important in inflammation and innate immunity. Platelets may be an important source of proinflammatory and profibrotic cytokines in the vascular microenvironment. In this study, we sought to assess the contribution of platelet-derived factors in patients with SSc to the angi...

  9. Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo

    DEFF Research Database (Denmark)

    Grodzik, Marta; Sawosz, Ewa; Wierzbicki, Mateusz;

    2011-01-01

    The objective of the study was to determine the effect of carbon nanoparticles produced by different methods on the growth of brain tumor and the development of blood vessels. Glioblastoma multiforme cells were cultured on the chrioallantoic membrane of chicken embryo and after 7 days of incubati...... antiangiogenic activity of carbon nanoparticles, making them potential factors for anticancer therapy.......The objective of the study was to determine the effect of carbon nanoparticles produced by different methods on the growth of brain tumor and the development of blood vessels. Glioblastoma multiforme cells were cultured on the chrioallantoic membrane of chicken embryo and after 7 days of incubation......, were treated with carbon nanoparticles administered in ovo to the tumor. Both types of nanoparticles significantly decreased tumor mass and volume, fibroblast growth factor-2 and vascular endothelial growth factor expression at the messenger ribonucleic acid level. The present results demonstrate...

  10. Automated angiogenesis quantification through advanced image processing techniques.

    Science.gov (United States)

    Doukas, Charlampos N; Maglogiannis, Ilias; Chatziioannou, Aristotle; Papapetropoulos, Andreas

    2006-01-01

    Angiogenesis, the formation of blood vessels in tumors, is an interactive process between tumor, endothelial and stromal cells in order to create a network for oxygen and nutrients supply, necessary for tumor growth. According to this, angiogenic activity is considered a suitable method for both tumor growth or inhibition detection. The angiogenic potential is usually estimated by counting the number of blood vessels in particular sections. One of the most popular assay tissues to study the angiogenesis phenomenon is the developing chick embryo and its chorioallantoic membrane (CAM), which is a highly vascular structure lining the inner surface of the egg shell. The aim of this study was to develop and validate an automated image analysis method that would give an unbiased quantification of the micro-vessel density and growth in angiogenic CAM images. The presented method has been validated by comparing automated results to manual counts over a series of digital chick embryo photos. The results indicate the high accuracy of the tool, which has been thus extensively used for tumor growth detection at different stages of embryonic development. PMID:17946107

  11. Structural Insight into Multivalent Galactoside Binding to Pseudomonas aeruginosa Lectin LecA

    NARCIS (Netherlands)

    Visini, Ricardo; Jin, Xian; Bergmann, Myriam; Michaud, Gaelle; Pertici, Francesca; Fu, Ou; Pukin, Aliaksei; Branson, Thomas R.; Thies-Weesie, Dominique M E; Kemmink, Johan; Gillon, Emilie; Imberty, Anne; Stocker, Achim; Darbre, Tamis; Pieters, Roland J.; Reymond, Jean Louis

    2015-01-01

    Multivalent galactosides inhibiting Pseudomonas aeruginosa biofilms may help control this problematic pathogen. To understand the binding mode of tetravalent glycopeptide dendrimer GalAG2 [(Gal-β-OC6H4CO-Lys-Pro-Leu)4(Lys-Phe-Lys-Ile)2Lys-His-Ile-NH2] to its target lectin LecA, crystal structures of

  12. Mesoscopic and continuum modelling of angiogenesis

    KAUST Repository

    Spill, F.

    2014-03-11

    Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.

  13. COX-2, VEGF and tumour angiogenesis.

    LENUS (Irish Health Repository)

    Toomey, D P

    2009-06-01

    Epidemiological evidence suggests a protective effective of regular NSAID use against developing cancer. Cyclooxygenase-2, a target of NSAIDs, is upregulated in many cancers and has been associated with increased VEGF production and angiogenesis. Angiogenesis is the formation of new vessels from existing vasculature and as an essential process for tumour development represents an important therapeutic target. Following an extensive review of the literature this article details the current knowledge on the role of COX-2 in tumorigenesis focusing on its relationship to angiogenesis and VEGF production by tumour cells. While COX-2 is clearly detrimental to prognosis and NSAIDs have a beneficial effect, the possibility of COX-2 independent effects being partly or wholly responsible for this benefit cannot be excluded.

  14. Experimental study on Cr(Ⅵ) reduction by Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    LIU Yun-guo; XU Wei-hua; ZENG Guang-ming; TANG Chun-fang; LI Cheng-feng

    2004-01-01

    Investigation on Cr(Ⅵ) reduction was conducted using Pseudomonas aeruginosa. The study demonstrated that the Cr(Ⅵ) can be effectively reduced to Cr(Ⅲ) by Pseudomonas aeruginosa. The effects of the factors affecting Cr(Ⅵ) reduction rate including carbon source type, pH, initial Cr(Ⅵ) concentration and amount of cells inoculum were thoroughly studied. Malate was found to yield maximum biotransformation, followed by succinate and glucose, with the reduction rate of 60.86%, 43.76% and 28.86% respectively. The optimum pH for Cr(Ⅵ) reduction was 7.0, with reduction efficiency of 61.71% being achieved. With the increase of initial Cr(Ⅵ) concentration, the rate of Cr(Ⅵ) reduction decreased. The reduction was inhibited strongly when the initial Cr(Ⅵ) concentration increased to 157 mg/L. As the amount of cells inoculum increased, the rate of Cr(Ⅵ) reduction also increased. The mechanism of Cr(Ⅵ) reduction and final products were also analysed. The results suggested that the soluble enzymes appear to be responsible for Cr(Ⅵ) reduction by Pseudomonas aeruginosa, and the reduced Cr(Ⅲ) was not precipitated in the form of Cr(OH)3.

  15. 抗癌防移片抑制4T1乳腺癌血管生成的机制研究%Mechanism Study of Kang’ai Fangyi Tablets in Inhibiting Angiogenesis of 4T1 Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    侯超; 胡志希

    2015-01-01

    【目的】探讨抗癌防移片抑制4T1乳腺癌血管生成的机理。【方法】选用BALB/c小鼠建立4T1乳腺癌模型,随机分成空白对照组、模型组、环磷酰胺(CTX,剂量为0.04 g·kg-1·d-1)组和抗癌防移片组(剂量为5.2 g·kg-1·d-1),分别给予药物或生理盐水,给药4周后处死小鼠,测量剥离瘤质量,计算剥离瘤质量抑制率以及计数肺转移结节数,并通过免疫组织化学染色法测定肿瘤微血管数与血管内皮细胞生长因子(vascular endothelial growth factor, VEGF)表达。【结果】与模型组比较,抗癌防移片组剥离瘤质量显著减轻(P<0.05),肺转移结节数目显著减少(P<0.05),且剥离瘤微血管数与VEGF表达有降低趋势。【结论】抗癌防移片可能通过下调VEGF、抑制肿瘤微血管生成从而抑制4T1小鼠乳腺癌生长与转移。%Objective To study the angiogenesis-inhibitory mechanism of Kang’ai Fangyi Tablets ( KFT) , a Chinese compound recipe with the action of inhibiting cancer metastasis, for 4T1 breast cancer. Methods BALB/c mice were divided into blank control group, model group, Cytoxan ( CTX, 0.04 g·kg-1·d-1) group, and KFT ( 5.2 g·kg-1·d-1) group. Mice model of 4T1 breast cancer was established. Except that the blank control group and model group were given the saline, the mice in the medication groups were given the corresponding medicine. After medication for 4 weeks, the mice were executed, and then we calculated the mass of tumor, the inhibition rate of tumor mass, and the number of lung metastatic nodules. The number of microvessel and expression of vascular endothelial growth factor (VEGF) were measured by immunohistochemical method. Results Compared with the model group, mice tumor mass was decreased ( P<0.05) , the number of pulmonary metastatic nodules was reduced ( P<0.05) , and the number of tumor microvessel and VEGF expression in the isolated tumor mass showed the decreasing trend in

  16. Moderation of calpain activity promotes neovascular integration and lumen formation during VEGF-induced pathological angiogenesis.

    Directory of Open Access Journals (Sweden)

    Mien V Hoang

    Full Text Available BACKGROUND: Successful neovascularization requires that sprouting endothelial cells (ECs integrate to form new vascular networks. However, architecturally defective, poorly integrated vessels with blind ends are typical of pathological angiogenesis induced by vascular endothelial growth factor-A (VEGF, thereby limiting the utility of VEGF for therapeutic angiogenesis and aggravating ischemia-related pathologies. Here we investigated the possibility that over-exuberant calpain activity is responsible for aberrant VEGF neovessel architecture and integration. Calpains are a family of intracellular calcium-dependent, non-lysosomal cysteine proteases that regulate cellular functions through proteolysis of numerous substrates. METHODOLOGY/PRINCIPAL FINDINGS: In a mouse skin model of VEGF-driven angiogenesis, retroviral transduction with dominant-negative (DN calpain-I promoted neovessel integration and lumen formation, reduced blind ends, and improved vascular perfusion. Moderate doses of calpain inhibitor-I improved VEGF-driven angiogenesis similarly to DN calpain-I. Conversely, retroviral transduction with wild-type (WT calpain-I abolished neovessel integration and lumen formation. In vitro, moderate suppression of calpain activity with DN calpain-I or calpain inhibitor-I increased the microtubule-stabilizing protein tau in endothelial cells (ECs, increased the average length of microtubules, increased actin cable length, and increased the interconnectivity of vascular cords. Conversely, WT calpain-I diminished tau, collapsed microtubules, disrupted actin cables, and inhibited integration of cord networks. Consistent with the critical importance of microtubules for vascular network integration, the microtubule-stabilizing agent taxol supported vascular cord integration whereas microtubule dissolution with nocodazole collapsed cord networks. CONCLUSIONS/SIGNIFICANCE: These findings implicate VEGF-induction of calpain activity and impairment of

  17. Fluorescence imaging of angiogenesis in green fluorescent protein-expressing tumors

    Science.gov (United States)

    Yang, Meng; Baranov, Eugene; Jiang, Ping; Li, Xiao-Ming; Wang, Jin W.; Li, Lingna; Yagi, Shigeo; Moossa, A. R.; Hoffman, Robert M.

    2002-05-01

    The development of therapeutics for the control of tumor angiogenesis requires a simple, reliable in vivo assay for tumor-induced vascularization. For this purpose, we have adapted the orthotopic implantation model of angiogenesis by using human and rodent tumors genetically tagged with Aequorea victoria green fluorescent protein (GFP) for grafting into nude mice. Genetically-fluorescent tumors can be readily imaged in vivo. The non-luminous induced capillaries are clearly visible against the bright tumor fluorescence examined either intravitally or by whole-body luminance in real time. Fluorescence shadowing replaces the laborious histological techniques for determining blood vessel density. High-level GFP-expressing tumor cell lines made it possible to acquire the high-resolution real-time fluorescent optical images of angiogenesis in both primary tumors and their metastatic lesions in various human and rodent tumor models by means of a light-based imaging system. Intravital images of angiogenesis onset and development were acquired and quantified from a GFP- expressing orthotopically-growing human prostate tumor over a 19-day period. Whole-body optical imaging visualized vessel density increasing linearly over a 20-week period in orthotopically-growing, GFP-expressing human breast tumor MDA-MB-435. Vessels in an orthotopically-growing GFP- expressing Lewis lung carcinoma tumor were visualized through the chest wall via a reversible skin flap. These clinically-relevant angiogenesis mouse models can be used for real-time in vivo evaluation of agents inhibiting or promoting tumor angiogenesis in physiological micro- environments.

  18. Prostate specific membrane antigen (PSMA regulates angiogenesis independently of VEGF during ocular neovascularization.

    Directory of Open Access Journals (Sweden)

    Christina L Grant

    Full Text Available BACKGROUND: Aberrant growth of blood vessels in the eye forms the basis of many incapacitating diseases and currently the majority of patients respond to anti-angiogenic therapies based on blocking the principal angiogenic growth factor, vascular endothelial growth factor (VEGF. While highly successful, new therapeutic targets are critical for the increasing number of individuals susceptible to retina-related pathologies in our increasingly aging population. Prostate specific membrane antigen (PSMA is a cell surface peptidase that is absent on normal tissue vasculature but is highly expressed on the neovasculature of most solid tumors, where we have previously shown to regulate angiogenic endothelial cell invasion. Because pathologic angiogenic responses are often triggered by distinct signals, we sought to determine if PSMA also contributes to the pathologic angiogenesis provoked by hypoxia of the retina, which underlies many debilitating retinopathies. METHODOLOGY/PRINCIPAL FINDINGS: Using a mouse model of oxygen-induced retinopathy, we found that while developmental angiogenesis is normal in PSMA null mice, hypoxic challenge resulted in decreased retinal vascular pathology when compared to wild type mice as assessed by avascular area and numbers of vascular tufts/glomeruli. The vessels formed in the PSMA null mice were more organized and highly perfused, suggesting a more 'normal' phenotype. Importantly, the decrease in angiogenesis was not due to an impaired hypoxic response as levels of pro-angiogenic factors are comparable; indicating that PSMA regulation of angiogenesis is independent of VEGF. Furthermore, both systemic and intravitreal administration of a PSMA inhibitor in wild type mice undergoing OIR mimicked the PSMA null phenotype resulting in improved retinal vasculature. CONCLUSIONS/SIGNIFICANCE: Our data indicate that PSMA plays a VEGF-independent role in retinal angiogenesis and that the lack of or inhibition of PSMA may

  19. KSHV-Mediated Angiogenesis in Tumor Progression

    Directory of Open Access Journals (Sweden)

    Pravinkumar Purushothaman

    2016-07-01

    Full Text Available Human herpesvirus 8 (HHV-8, also known as Kaposi’s sarcoma-associated herpesvirus (KSHV, is a malignant human oncovirus belonging to the gamma herpesvirus family. HHV-8 is closely linked to the pathogenesis of Kaposi’s sarcoma (KS and two other B-cell lymphoproliferative diseases: primary effusion lymphoma (PEL and a plasmablastic variant of multicentric Castleman’s disease (MCD. KS is an invasive tumor of endothelial cells most commonly found in untreated HIV-AIDS or immuno-compromised individuals. KS tumors are highly vascularized and have abnormal, excessive neo-angiogenesis, inflammation, and proliferation of infected endothelial cells. KSHV directly induces angiogenesis in an autocrine and paracrine fashion through a complex interplay of various viral and cellular pro-angiogenic and inflammatory factors. KS is believed to originate due to a combination of KSHV’s efficient strategies for evading host immune systems and several pro-angiogenic and pro-inflammatory stimuli. In addition, KSHV infection of endothelial cells produces a wide array of viral oncoproteins with transforming capabilities that regulate multiple host-signaling pathways involved in the activation of angiogenesis. It is likely that the cellular-signaling pathways of angiogenesis and lymph-angiogenesis modulate the rate of tumorigenesis induction by KSHV. This review summarizes the current knowledge on regulating KSHV-mediated angiogenesis by integrating the findings reported thus far on the roles of host and viral genes in oncogenesis, recent developments in cell-culture/animal-model systems, and various anti-angiogenic therapies for treating KSHV-related lymphoproliferative disorders.

  20. KSHV-Mediated Angiogenesis in Tumor Progression

    Science.gov (United States)

    Purushothaman, Pravinkumar; Uppal, Timsy; Sarkar, Roni; Verma, Subhash C.

    2016-01-01

    Human herpesvirus 8 (HHV-8), also known as Kaposi’s sarcoma-associated herpesvirus (KSHV), is a malignant human oncovirus belonging to the gamma herpesvirus family. HHV-8 is closely linked to the pathogenesis of Kaposi’s sarcoma (KS) and two other B-cell lymphoproliferative diseases: primary effusion lymphoma (PEL) and a plasmablastic variant of multicentric Castleman’s disease (MCD). KS is an invasive tumor of endothelial cells most commonly found in untreated HIV-AIDS or immuno-compromised individuals. KS tumors are highly vascularized and have abnormal, excessive neo-angiogenesis, inflammation, and proliferation of infected endothelial cells. KSHV directly induces angiogenesis in an autocrine and paracrine fashion through a complex interplay of various viral and cellular pro-angiogenic and inflammatory factors. KS is believed to originate due to a combination of KSHV’s efficient strategies for evading host immune systems and several pro-angiogenic and pro-inflammatory stimuli. In addition, KSHV infection of endothelial cells produces a wide array of viral oncoproteins with transforming capabilities that regulate multiple host-signaling pathways involved in the activation of angiogenesis. It is likely that the cellular-signaling pathways of angiogenesis and lymph-angiogenesis modulate the rate of tumorigenesis induction by KSHV. This review summarizes the current knowledge on regulating KSHV-mediated angiogenesis by integrating the findings reported thus far on the roles of host and viral genes in oncogenesis, recent developments in cell-culture/animal-model systems, and various anti-angiogenic therapies for treating KSHV-related lymphoproliferative disorders. PMID:27447661

  1. KSHV-Mediated Angiogenesis in Tumor Progression.

    Science.gov (United States)

    Purushothaman, Pravinkumar; Uppal, Timsy; Sarkar, Roni; Verma, Subhash C

    2016-01-01

    Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is a malignant human oncovirus belonging to the gamma herpesvirus family. HHV-8 is closely linked to the pathogenesis of Kaposi's sarcoma (KS) and two other B-cell lymphoproliferative diseases: primary effusion lymphoma (PEL) and a plasmablastic variant of multicentric Castleman's disease (MCD). KS is an invasive tumor of endothelial cells most commonly found in untreated HIV-AIDS or immuno-compromised individuals. KS tumors are highly vascularized and have abnormal, excessive neo-angiogenesis, inflammation, and proliferation of infected endothelial cells. KSHV directly induces angiogenesis in an autocrine and paracrine fashion through a complex interplay of various viral and cellular pro-angiogenic and inflammatory factors. KS is believed to originate due to a combination of KSHV's efficient strategies for evading host immune systems and several pro-angiogenic and pro-inflammatory stimuli. In addition, KSHV infection of endothelial cells produces a wide array of viral oncoproteins with transforming capabilities that regulate multiple host-signaling pathways involved in the activation of angiogenesis. It is likely that the cellular-signaling pathways of angiogenesis and lymph-angiogenesis modulate the rate of tumorigenesis induction by KSHV. This review summarizes the current knowledge on regulating KSHV-mediated angiogenesis by integrating the findings reported thus far on the roles of host and viral genes in oncogenesis, recent developments in cell-culture/animal-model systems, and various anti-angiogenic therapies for treating KSHV-related lymphoproliferative disorders. PMID:27447661

  2. Targeting CD9 produces stimulus-independent antiangiogenic effects predominantly in activated endothelial cells during angiogenesis: A novel antiangiogenic therapy

    Energy Technology Data Exchange (ETDEWEB)

    Kamisasanuki, Taro [Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Tokushige, Saori [Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Terasaki, Hiroto [Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Khai, Ngin Cin; Wang, Yuqing [Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Sakamoto, Taiji [Department of Ophthalmology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan); Kosai, Ken-ichiro, E-mail: kosai@m2.kufm.kagoshima-u.ac.jp [Department of Gene Therapy and Regenerative Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544 (Japan)

    2011-09-16

    Highlights: {yields} CD9 plays stimulus-independent roles in angiogenesis in vitro and in vivo. {yields} Targeting CD9 expression is effective in an angiogenic disease model. {yields} Targeting CD9 expression predominantly affects activated endothelial cells. {yields} CD9 is involved in endothelial cell proliferation, but not survival. {yields} CD9 is part of angiogenic machinery in endothelial cells during angiogenesis. -- Abstract: The precise roles of tetraspanin CD9 are unclear. Here we show that CD9 plays a stimulus-independent role in angiogenesis and that inhibiting CD9 expression or function is a potential antiangiogenic therapy. Knocking down CD9 expression significantly inhibited in vitro endothelial cell migration and invasion induced by vascular endothelial growth factor (VEGF) or hepatocyte growth factor (HGF). Injecting CD9-specific small interfering RNA (siRNA-CD9) markedly inhibited HGF- or VEGF-induced subconjunctival angiogenesis in vivo. Both results revealed potent and stimulus-independent antiangiogenic effects of targeting CD9. Furthermore, intravitreous injections of siRNA-CD9 or anti-CD9 antibodies were therapeutically effective for laser-induced retinal and choroidal neovascularization in mice, a representative ocular angiogenic disease model. In terms of the mechanism, growth factor receptor and downstream signaling activation were not affected, whereas abnormal localization of integrins and membrane type-1 matrix metalloproteinase was observed during angiogenesis, by knocking down CD9 expression. Notably, knocking down CD9 expression did not induce death and mildly inhibited proliferation of quiescent endothelial cells under conditions without an angiogenic stimulus. Thus, CD9 does not directly affect growth factor-induced signal transduction, which is required in angiogenesis and normal vasculature, but is part of the angiogenesis machinery in endothelial cells during angiogenesis. In conclusion, targeting CD9 produced stimulus

  3. Targeting CD9 produces stimulus-independent antiangiogenic effects predominantly in activated endothelial cells during angiogenesis: A novel antiangiogenic therapy

    International Nuclear Information System (INIS)

    Highlights: → CD9 plays stimulus-independent roles in angiogenesis in vitro and in vivo. → Targeting CD9 expression is effective in an angiogenic disease model. → Targeting CD9 expression predominantly affects activated endothelial cells. → CD9 is involved in endothelial cell proliferation, but not survival. → CD9 is part of angiogenic machinery in endothelial cells during angiogenesis. -- Abstract: The precise roles of tetraspanin CD9 are unclear. Here we show that CD9 plays a stimulus-independent role in angiogenesis and that inhibiting CD9 expression or function is a potential antiangiogenic therapy. Knocking down CD9 expression significantly inhibited in vitro endothelial cell migration and invasion induced by vascular endothelial growth factor (VEGF) or hepatocyte growth factor (HGF). Injecting CD9-specific small interfering RNA (siRNA-CD9) markedly inhibited HGF- or VEGF-induced subconjunctival angiogenesis in vivo. Both results revealed potent and stimulus-independent antiangiogenic effects of targeting CD9. Furthermore, intravitreous injections of siRNA-CD9 or anti-CD9 antibodies were therapeutically effective for laser-induced retinal and choroidal neovascularization in mice, a representative ocular angiogenic disease model. In terms of the mechanism, growth factor receptor and downstream signaling activation were not affected, whereas abnormal localization of integrins and membrane type-1 matrix metalloproteinase was observed during angiogenesis, by knocking down CD9 expression. Notably, knocking down CD9 expression did not induce death and mildly inhibited proliferation of quiescent endothelial cells under conditions without an angiogenic stimulus. Thus, CD9 does not directly affect growth factor-induced signal transduction, which is required in angiogenesis and normal vasculature, but is part of the angiogenesis machinery in endothelial cells during angiogenesis. In conclusion, targeting CD9 produced stimulus-independent antiangiogenic effects

  4. Marine Cyclotripeptide X-13 Promotes Angiogenesis in Zebrafish and Human Endothelial Cells via PI3K/Akt/eNOS Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Zhong Pei

    2012-06-01

    Full Text Available Cyclotripeptide X-13 is a core of novel marine compound xyloallenoide A isolated from mangrove fungus Xylaria sp. (no. 2508. We found that X-13 dose-dependently induced angiogenesis in zebrafish embryos and in human endothelial cells, which was accompanied by increased phosphorylation of eNOS and Akt and NO release. Inhibition of PI3K/Akt/eNOS by LY294002 or l-NAME suppressed X-13-induced angiogenesis. The present work demonstrates that X-13 promotes angiogenesis via PI3K/Akt/eNOS pathways.

  5. Antibiofilm activities of certain biocides in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    S Gharavi

    2009-12-01

    Full Text Available Background and objectives: Pseudomonas aeruginosa is an opportunistic pathogen that can produce biofilm. Biofilm is a complex, three dimensional structure in which microorganisms are attached to a surface and embedded in a matrix made of extracellular polymers. Due to high resistance to antimicrobial agents, biofilms create difficulties in various situations in healthcare. In this study, antibiofilm activities of some biocides in P. aeruginosa were studied."nMaterials and methods: The biofilm production ability of P. aeruginosa strain 214 (a clinical isolate was determined in the presence of six biocides including of ethylene diamine tetra acetic acid (EDTA, silver nitrate (AgNO3, bismuth ethanedithiol (BisEDT, bismuth dimercaprol (BisBAL, bismuth-2-mercaptoethanol (BisMEO and bismuth propanedithiol (BisPDT using the modified microtiter plate method. Bactericidal activity of the biocides against biofilm and planktonic cells was investigated. In this study, permeation of biocides through alginate layer was evaluated with a sandwich cup method."nResults: The results demonstrated that in the presence of bismuth thiols, biofilm production in MIC and sub MIC concentrations was considerably inhibited. Bismuththiols had lower antibiofilm bactericidal activity than EDTA and silver nitrate. One possible mechanism of biofilm resistance is exopolysaccharide production which prevents the access of antimicrobial agents to cells inside the biofilm. Bismuth thiols could not penetrate, while EDTA and silver nitrate had high penetration rate."nConclusions: Due to the frequent use of silver nitrate and EDTA in various applications, low efficacy in the inhibition of biofilm production, unstudied toxicity of BTs for humans and high efficacy in the inhibition of biofilm production, it is suggested that combinatory effect of BTs with silver nitrate or EDTA on biofilms and biofilm production be investigated.

  6. Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    M.Z. El-Fouly

    2015-01-01

    Full Text Available Sixty-three isolates belonging to the genus Pseudomonas were isolated from different environmental sources including; soil, water and clinical specimens. Twenty out of them were identified as Pseudomonas aeruginosa and individually screened for pyocyanin production. P. aeruginosa R1; isolated from rice-cultivated soil and P. aeruginosa U3 selected from clinical specimen (Urinary tract infection were the highest pyocyanin producers; pyocyanin production reached 9.3 and 5.9 μg/ml, respectively on synthetic glucose supplemented nutrient medium (GSNB. The identification of both selected strains (P. aeruginosa R1 and P. aeruginosa U3 was confirmed by 16S rRNA, the similarity with other strains available in database was 97% (with P. aeruginosa FPVC 14 and 94% (with P. aeruginosa 13.A, respectively. P. aeruginosa R1 and P. aeruginosa U3 are accessed at gene bank with accession numbers KM924432 and KM603511, in the same order. Pyocyanin was extracted by standard methods, purified by column chromatography and characterized by UV-Vis absorption, mass spectrometry and nuclear magnetic resonance. The antimicrobial activity of purified pyocyanin against multi-drug resistant microbes was investigated; the efficiency of pyocyanin was more obvious in Gram +ve bacteria than Gram−ve bacteria and yeast. To reduce the cost of pyocyanin production, a new conventional medium based on cotton seed meal supplemented with peptone was designed. The pyocyanin production of both selected strains P. aeruginosa R1 and P. aeruginosa U3 using the new medium is increased by 30.1% and 17.2%, respectively in comparison with synthetic GSNB medium, while the cost of production process is reduced by 56.7%.

  7. In Vivo Models of Muscle Angiogenesis.

    Science.gov (United States)

    Egginton, Stuart

    2016-01-01

    Angiogenesis is an important determinant of tissue function, from delivery of oxygen and other substrates to removal of waste products, in health and disease (e.g., adaptive or pathological remodelling). The phenotype and functional responses of endothelial cells are conditioned by systemic humoral signals and local environmental factors, including the haemodynamic forces that act upon them. Here we describe some interventions that have been helpful in unraveling the integrative nature of the complex in vivo response, and quantitative assessment of angiogenesis in muscle.

  8. Regulation of Matrix Metalloproteinase-2 Activity by COX-2-PGE2-pAKT Axis Promotes Angiogenesis in Endometriosis

    Science.gov (United States)

    Ray, Amlan K.; DasMahapatra, Pramathes; Swarnakar, Snehasikta

    2016-01-01

    Endometriosis is characterized by the ectopic development of the endometrium which relies on angiogenesis. Although studies have identified the involvement of different matrix metalloproteinases (MMPs) in endometriosis, no study has yet investigated the role of MMP-2 in endometriosis-associated angiogenesis. The present study aims to understand the regulation of MMP-2 activity in endothelial cells and on angiogenesis during progression of ovarian endometriosis. Histological and biochemical data showed increased expressions of vascular endothelial growth factor (VEGF), VEGF receptor-2, cycloxygenase (COX)-2, von Willebrand factor along with angiogenesis during endometriosis progression. Women with endometriosis showed decreased MMP-2 activity in eutopic endometrium as compared to women without endometriosis. However, ectopic ovarian endometrioma showed significantly elevated MMP-2 activity with disease severity. In addition, increased MT1MMP and decreased tissue inhibitors of metalloproteinases (TIMP)-2 expressions were found in the late stages of endometriosis indicating more MMP-2 activation with disease progression. In vitro study using human endothelial cells showed that prostaglandin E2 (PGE2) significantly increased MMP-2 activity as well as tube formation. Inhibition of COX-2 and/or phosphorylated AKT suppressed MMP-2 activity and endothelial tube formation suggesting involvement of PGE2 in regulation of MMP-2 activity during angiogenesis. Moreover, specific inhibition of MMP-2 by chemical inhibitor significantly reduced cellular migration, invasion and tube formation. In ovo assay showed decreased angiogenic branching upon MMP-2 inhibition. Furthermore, a significant reduction of lesion numbers was observed upon inhibition of MMP-2 and COX-2 in mouse model of endometriosis. In conclusion, our study establishes the involvement of MMP-2 activity via COX-2-PGE2-pAKT axis in promoting angiogenesis during endometriosis progression. PMID:27695098

  9. IGF binding protein-6 expression in vascular endothelial cells is induced by hypoxia and plays a negative role in tumor angiogenesis

    OpenAIRE

    ZHANG, CHUNYANG; Lu, Ling; Li, Yun; Wang, Xianlei; Zhou, Jianfeng; Liu, Yunzhang; Fu, Ping; Gallicchio, Marisa A; Bach, Leon A.; Duan, Cunming

    2011-01-01

    Hypoxia stimulates tumor angiogenesis by inducing the expression of angiogenic molecules. The negative regulators of this process, however, are not well understood. Here we report that hypoxia induced the expression of insulin-like growth factor binding protein-6 (IGFBP-6), a tumor repressor, in human and rodent vascular endothelial cells (VECs) via a HIF-mediated mechanism. Addition of human IGFBP-6 to cultured human VECs inhibited angiogenesis in vitro. An IGFBP-6 mutant with at least 10,00...

  10. Antimicrobial activity of green tea extract against isolates of methicillin-resistant Staphylococcus aureus and multi-drug resistant Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    Maksum Radji; Rafael Adi Agustama; Berna Elya; Conny Riana Tjampakasari

    2013-01-01

    Objective: To evaluate antibacterial activity of the Indonesian water soluble green tea extract,Camellia sinensis, against clinical isolates of methicillin-resistant Staphylococcus aureus (S. aureus) (MRSA) and multi-drug resistant Pseudomonas aeruginosa (MDR-P. aeruginosa). Methods:Antimicrobial activity of green tea extract was determined by the disc diffusion method and the minimum inhibitory concentration (MIC) was determined by the twofold serial broth dilutions method. The tested bacteria using in this study were the standard strains and multi-drug resistant clinical isolates of S. aureus and P. aeruginosa, obtained from Laboratory of Clinical Microbiology, Faculty of Medicine, University of Indonesia. Results:The results showed that the inhibition zone diameter of green tea extracts for S. aureus ATCC 25923 and MRSA were (18.970±0.287) mm, and (19.130±0.250) mm respectively. While the inhibition zone diameter for P. aeruginosa ATCC 27853 and MDR-P. aeruginosa were (17.550±0.393) mm and (17.670±0.398) mm respectively. The MIC of green tea extracts against S. aureus ATCC 25923 and MRSA were 400 µg/mL and 400 µg/mL, respectively, whereas the MIC for P. aeruginosa ATCC 27853 and MDR-P. aeruginosa were 800 µg/mL, and 800 µg/mL, respectively. Conclusions: Camellia sinensis leaves extract could be useful in combating emerging drug-resistance caused by MRSA and P. aeruginosa.

  11. Role of endogenous angiogenesis inhibitors in Down syndrome.

    Science.gov (United States)

    Ryeom, Sandra; Folkman, Judah

    2009-03-01

    New blood vessel growth via angiogenesis is a fundamental process in both physiological and pathological conditions. Physiological angiogenesis is critical during embryogenesis and placental development, whereas pathological angiogenesis plays an important role in the progression of many diseases, most notably tumor growth. Tumor angiogenesis is well accepted to be regulated by a balance of proangiogenic and antiangiogenic factors produced both by tumor cells and surrounding stromal cells. For many years, investigation of antiangiogenic therapies for cancer has focused on the proangiogenic cytokine, vascular endothelial growth factor; its receptors; or downstream signaling pathways. However, more recently with the identification of endogenous angiogenesis inhibitors, studies have turned toward understanding the role of endogenous antiangiogenic proteins in preventing disease progression. Clinical clues have suggested that specific populations may have dysregulated angiogenesis due to differential expression of endogenous angiogenesis regulators. For example, individuals with Down syndrome may possess a systemic antiangiogenic state with a significantly decreased incidence of angiogenesis-dependent diseases. Our work suggests that endogenous angiogenesis inhibitors may be the master regulators controlling progression of angiogenesis-dependent diseases such as vascular anomalies and cancer. The molecular regulation of angiogenesis is not yet fully understood; however, the Down syndrome population may give us insights toward novel therapies for controlling angiogenesis in disease.

  12. Impact of KITENIN on tumor angiogenesis and lymphangiogenesis in colorectal cancer.

    Science.gov (United States)

    Oh, Hyung-Hoon; Park, Kang-Jin; Kim, Nuri; Park, Sun-Young; Park, Young-Lan; Oak, Chan-Young; Myung, Dae-Seong; Cho, Sung-Bum; Lee, Wan-Sik; Kim, Kyung-Keun; Joo, Young-Eun

    2016-01-01

    Angiogenesis and lymphangiogenesis are involved in the dissemination of tumor cells from solid tumors to regional lymph nodes and various distant sites. KAI1 COOH-terminal interacting tetraspanin (KITENIN) contributes to tumor progression and poor clinical outcomes in various cancers including colorectal cancer. The aim of the present study was to evaluate whether KITENIN affects tumor angiogenesis and lymphangiogenesis in colorectal cancer. A KITENIN small interfering RNA vector was used to silence KITENIN expression in colorectal cancer cell lines including DLD1 and SW480 cells. To evaluate the ability of KITENIN to induce angiogenesis and lymphangiogenesis in human umbilical vein endothelial cells (HUVECs) and lymphatic endothelial cells (HLECs), we performed Matrigel invasion and tube formation assays. Immunohistochemistry was used to determine the expression of KITENIN in colorectal cancer tissues. Angiogenesis and lymphangiogenesis were evaluated by immunostaining with CD34 and D2-40 antibodies. KITENIN silencing inhibited both HUVEC invasion and tube formation in the DLD1 and SW480 cells. KITENIN silencing led to decreased expression of the angiogenic inducers vascular endothelial growth factor (VEGF)-A and hypoxia-inducible factor-1α and increased expression of the angiogenic inhibitor angiostatin. KITENIN silencing did not inhibit either HLEC invasion or tube formation in all tested cells, but it resulted in decreased expression of the lymphangiogenic inducer VEGF-C. KITENIN expression was significantly associated with tumor stage, depth of invasion, lymph node and distant metastases and poor survival. The mean microvessel density was significantly higher in the KITENIN-positive tumors than that in the KITENIN-negative tumors. However, the mean lymphatic vessel density of KITENIN-positive tumors was not significantly higher than that of the KITENIN-negative tumors. These results suggest that KITENIN promotes tumor progression by enhancing angiogenesis in

  13. P61CATHEPSIN K IN AN IN VITRO MODEL OF GLIOMA ANGIOGENESIS

    Science.gov (United States)

    Briggs, S.; Stevenson, K.; Verbovšek, U.; Yin, L.H.; Pilkington, G.; Lah, T.; Fillmore, H.L.

    2014-01-01

    INTRODUCTION: Cathepsin K, a cysteine protease expressed in osteoclasts, involved in bone resorption is expressed in other cells including brain cells. Reports suggest that cathepsin K may be involved in cancers associated with bone metastasis. Little is known about its expression in brain tumours. There is evidence of a potential interaction of cathepsin K with stromal cell derived factor 1 (SDF-1) in haemapoietic stem cell motility. Because of the importance of SDF-1 in brain tumour angiogenesis and recruitment of glioma like stem cells to vascular niches, we investigated cathepsin K in an in vitro model of angiogenesis. METHOD: Brain endothelial cells (hCMEC) and glioma cell lines (SNB-19 and UP-007) cultured under normoxic and hypoxic conditions were analysed using flow cytometry and western blotting. Angiogenesis was assessed using an in vitro model of brain endothelial cell tube formation. Brain endothelial tube length, number of tube projections and number of branch points were measured. RESULTS: Under hypoxic conditions, there is a significant decrease in cathepsin K expression in brain endothelial cells when compared to normoxic conditions (P ≤ 0.05). Addition of Odanacatib, a cathepsin K inhibitor, to the angiogenesis assay revealed that inhibition of cathepsin K resulted in a significant increase in endothelial tube length in normoxic conditions (p < 0.05). CONCLUSION: The decrease in cathepsin K expression in endothelial cells under hypoxia, coupled with the increase in tube length following inhibition of cathepsin K, suggests an involvement of cathepsin K with angiogenesis. These data provide rationale and basis for further study into the function of cathepsin K and its relationship with SDF-1 in gliomas.

  14. Lipo-chitin oligosaccharides, plant symbiosis signalling molecules that modulate mammalian angiogenesis in vitro.

    Directory of Open Access Journals (Sweden)

    Michael A Djordjevic

    Full Text Available Lipochitin oligosaccharides (LCOs are signaling molecules required by ecologically and agronomically important bacteria and fungi to establish symbioses with diverse land plants. In plants, oligo-chitins and LCOs can differentially interact with different lysin motif (LysM receptors and affect innate immunity responses or symbiosis-related pathways. In animals, oligo-chitins also induce innate immunity and other physiological responses but LCO recognition has not been demonstrated. Here LCO and LCO-like compounds are shown to be biologically active in mammals in a structure dependent way through the modulation of angiogenesis, a tightly-regulated process involving the induction and growth of new blood vessels from existing vessels. The testing of 24 LCO, LCO-like or oligo-chitin compounds resulted in structure-dependent effects on angiogenesis in vitro leading to promotion, or inhibition or nil effects. Like plants, the mammalian LCO biological activity depended upon the presence and type of terminal substitutions. Un-substituted oligo-chitins of similar chain lengths were unable to modulate angiogenesis indicating that mammalian cells, like plant cells, can distinguish between LCOs and un-substituted oligo-chitins. The cellular mode-of-action of the biologically active LCOs in mammals was determined. The stimulation or inhibition of endothelial cell adhesion to vitronectin or fibronectin correlated with their pro- or anti-angiogenic activity. Importantly, novel and more easily synthesised LCO-like disaccharide molecules were also biologically active and de-acetylated chitobiose was shown to be the primary structural basis of recognition. Given this, simpler chitin disaccharides derivatives based on the structure of biologically active LCOs were synthesised and purified and these showed biological activity in mammalian cells. Since important chronic disease states are linked to either insufficient or excessive angiogenesis, LCO and LCO

  15. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis.

    Science.gov (United States)

    Wang, Yi; Qiu, Juhui; Luo, Shisui; Xie, Xiang; Zheng, Yiming; Zhang, Kang; Ye, Zhiyi; Liu, Wanqian; Gregersen, Hans; Wang, Guixue

    2016-12-01

    Rupture of atherosclerotic plaques causing thrombosis is the main cause of acute coronary syndrome and ischemic strokes. Inhibition of thrombosis is one of the important tasks developing biomedical materials such as intravascular stents and vascular grafts. Shear stress (SS) influences the formation and development of atherosclerosis. The current review focuses on the vulnerable plaques observed in the high shear stress (HSS) regions, which localizes at the proximal region of the plaque intruding into the lumen. The vascular outward remodelling occurs in the HSS region for vascular compensation and that angiogenesis is a critical factor for HSS which induces atherosclerotic vulnerable plaque formation. These results greatly challenge the established belief that low shear stress is important for expansive remodelling, which provides a new perspective for preventing the transition of stable plaques to high-risk atherosclerotic lesions. PMID:27482467

  16. Angiogenesis inhibitors in the treatment of prostate cancer

    Directory of Open Access Journals (Sweden)

    Heath Elisabeth I

    2010-08-01

    Full Text Available Abstract Prostate cancer remains a significant public health problem, with limited therapeutic options in the setting of castrate-resistant metastatic disease. Angiogenesis inhibition is a relatively novel antineoplastic approach, which targets the reliance of tumor growth on the formation of new blood vessels. This strategy has been used successfully in other solid tumor types, with the FDA approval of anti-angiogenic agents in breast, lung, colon, brain, and kidney cancer. The application of anti-angiogenic therapy to prostate cancer is reviewed in this article, with attention to efficacy and toxicity results from several classes of anti-angiogenic agents. Ultimately, the fate of anti-angiogenic agents in prostate cancer rests on the eagerly anticipated results of several key phase III studies.

  17. The acute phase reactant orosomucoid-1 is a bimodal regulator of angiogenesis with time- and context-dependent inhibitory and stimulatory properties.

    Directory of Open Access Journals (Sweden)

    Giovanni Ligresti

    Full Text Available BACKGROUND: Tissues respond to injury by releasing acute phase reaction (APR proteins which regulate inflammation and angiogenesis. Among the genes upregulated in wounded tissues are tumor necrosis factor-alpha (TNFα and the acute phase reactant orosomucoid-1 (ORM1. ORM1 has been shown to modulate the response of immune cells to TNFα, but its role on injury- and TNFα-induced angiogenesis has not been investigated. This study was designed to characterize the role of ORM1 in the angiogenic response to injury and TNFα. METHODS AND RESULTS: Angiogenesis was studied with in vitro, ex vivo, and in vivo angiogenesis assays. Injured rat aortic rings cultured in collagen gels produced an angiogenic response driven by macrophage-derived TNFα. Microarray analysis and qRT-PCR showed that TNFα and ORM1 were upregulated prior to angiogenic sprouting. Exogenous ORM1 delayed the angiogenic response to injury and inhibited the proangiogenic effect of TNFα in cultures of aortic rings or isolated endothelial cells, but stimulated aortic angiogenesis over time while promoting VEGF production and activity. ORM1 inhibited injury- and TNFα-induced phosphorylation of MEK1/2 and p38 MAPK in aortic rings, but not of NFκB. This effect was injury/TNFα-specific since ORM1 did not inhibit VEGF-induced signaling, and cell-specific since ORM1 inhibited TNFα-induced phosphorylation of MEK1/2 and p38 MAPK in macrophages and endothelial cells, but not mural cells. Experiments with specific inhibitors demonstrated that the MEK/ERK pathway was required for angiogenesis. ORM1 inhibited angiogenesis in a subcutaneous in vivo assay of aortic ring-induced angiogenesis, but stimulated developmental angiogenesis in the chorioallantoic membrane (CAM assay. CONCLUSION: ORM1 regulates injury-induced angiogenesis in a time- and context-dependent manner by sequentially dampening the initial TNFα-induced angiogenic response and promoting the downstream stimulation of the angiogenic

  18. Differential effect of non-thermal atmospheric-pressure plasma on angiogenesis

    Directory of Open Access Journals (Sweden)

    Beate Haertel

    2014-06-01

    Full Text Available Angiogenesis is a special feature in wound healing and carcinogenesis. For improving wound healing angiogenesis should be promoted, whereas in treating tumors it should be inhibited.Depending on several factors physical non-thermal plasmas can stimulate or inhibit cellular processes and can, thereby, influence angiogenesis. This study focused on effects of plasma on angiogenesis in the chick embryo chorioallantoic membrane (CAM assay and rat aortic ring (AOR test, in which plasma-treated PBS or medium was applied. ImageJ was used to analyze vessel area and branching of vessels of CAM’s. Aortic rings (LEW.1W, WOK.W rats embedded in Matrigel were analyzed by a newly-developed semi-quantitative method to quantify vessel sprouting from aortic rings. In both models spontaneous vessel formation was detected. Vessel area and branching in CAM’s were significantly enhanced by 120-s-plasma-treated PBS compared to untreated controls. This result was comparable with the effect of the growth factor VEGF. No effect of plasma on vessel sprouting from AOR prepared from LEW.1W rats was detected, while it was significantly inhibited in rings of WOK.W rats. Dexamethasone inhibited vessel sprouting from AOR of both rat strains. In conclusion, angiogenic response to plasma was found to be differentially influenced, depending on the models used and on the rat strain in the AOR test. It will now be of importance to learn how plasma has to be designed for either pro- or anti-angiogenic responses.

  19. Study of capillary network directionality and irrigation of hypoxic tissue in an angiogenesis lattice model

    Science.gov (United States)

    Moglia, Belén; Guisoni, Nara; Albano, Ezequiel V.

    2013-12-01

    To shed light on the understanding of the angiogenesis process, we study a simplified lattice model for the capillary network formation between an existing blood vessel and an initially hypoxic tissue. We consider that the cells of the tissue surface can release growth factors that will diffuse, leading to the formation of new capillaries that ultimately arrive at the tissue. Additionally, we consider the local production of growth factors by the growing capillary network. We also propose the existence of an inhibition mechanism at the hypoxic surface, i.e., a fixed number of neighboring sites of an already irrigated site of the hypoxic tissue stop releasing growth factors due to the arrival of nutrients. Particularly, the goal of this work is to study the effect of the release of local growth factors and the inhibition mechanism on properties such as the directionality of the growing network and the irrigation of the hypoxic tissue. Therefore we propose the quantification of these two relevant features for angiogenesis modeling. We establish a relationship between the model behavior without the release of local growth factors in the presence of the inhibition mechanism and a normal angiogenesis process. In this situation, the model gives a directional capillary network and a good irrigation of the hypoxic tissue. On the other hand, for a large number of released local growth factors in the absence of the inhibition mechanism, the model could be appropriate for the description of tumor angiogenesis. In this case, the model provides a rather small directionality for the growing structure, with a worse degree of irrigation of the hypoxic tissue, as well as a more tortuous capillary network with many closed branches and loops.

  20. Involvement of Heme Oxygenase-1 in Orexin-A-induced Angiogenesis in Vascular Endothelial Cells

    OpenAIRE

    Kim, Mi-Kyoung; Park, Hyun-Joo; Kim, Su-Ryun; Choi, Yoon Kyung; Bae, Soo-Kyung; Bae, Moon-Kyoung

    2015-01-01

    The cytoprotective enzyme heme oxygenase-1 (HO-1) influences endothelial cell survival, proliferation, inflammatory response, and angiogenesis in response to various angiogenic stimuli. In this study, we investigate the involvement of HO-1 in the angiogenic activity of orexin-A. We showed that orexin-A stimulates expression and activity of HO-1 in human umbilical vein endothelial cells (HUVECs). Furthermore, we showed that inhibition of HO-1 by tin (Sn) protoporphryin-IX (SnPP) reduced orexin...

  1. Comparative effect of methioninyl adenylate on the growth of Salmonella typhimurium and Pseudomonas aeruginosa.

    Science.gov (United States)

    Enouf, J; Laurence, F; Farrugia, G; Blanchard, P; Robert-Gero, M

    1976-10-11

    The bacteriostatic effect of methioninyl adenylate(MAMP)--a specific inhibitor of the enzyme methionyl-tRNA synthetase--was investigated on Salmonella typhimurium and Pseudomonas aeruginosa. 0.1 mM of this molecule added to the culture, inhibits the growth of S. typhimurium. The inhibition is specifically reversible by 0.1 mM L-methionine. In the same conditions even 1-2 mM MAMP has a very slight effect on the growth rate of P. aeruginosa and only during the first two generations. The same observation was made with the two other members of the fluorescens group P.fluorescens and P.putida. The growth rate of P. testosteroni with 1 mM MAMP in the medium is similar to the growth rate of P. aeruginosa but the other member of the acidovorans group P. acidovorans is much more affected by the smae concentration of the inhibitor. --P. multivorans is inhibited by MAMP like P. acidovorans but with a somewhat higher yield at the end of the culture. --MAMP has no effect on P. alcaligenes. The possible reasons for the weak bacteriostatic effect of MAMP on P. aeruginosa were investigated. It was established that the inhibitor enters the cells and is not used as a carbon and energy source. The intracellular methionine concentration in S. typhimurium and in P. aeruginosa is about the same and does not increase when bacteria are cultivated with MAMP. The MTS of the two microorganisms is inhibited by MAMP in vitro to about the same extent. Furthermore the tRNAmet from P. aeruginosa are fully acylated after 3 to 4 generations with this compound. Nevertheless MAMP elicits higher MTS activity in P. aeruginosa and in P. acidovorans after 1 h of incubation. The most striking difference between S. typhimurium and P. aeruginosa is that the intra and extracellular level of 5'phosphodiesterase which degrades MAMP is 10-20 fold higher in the second than in the first species.

  2. Dexamethasone alleviates tumor-associated brain damage and angiogenesis.

    Directory of Open Access Journals (Sweden)

    Zheng Fan

    Full Text Available Children and adults with the most aggressive form of brain cancer, malignant gliomas or glioblastoma, often develop cerebral edema as a life-threatening complication. This complication is routinely treated with dexamethasone (DEXA, a steroidal anti-inflammatory drug with pleiotropic action profile. Here we show that dexamethasone reduces murine and rodent glioma tumor growth in a concentration-dependent manner. Low concentrations of DEXA are already capable of inhibiting glioma cell proliferation and at higher levels induce cell death. Further, the expression of the glutamate antiporter xCT (system Xc-; SLC7a11 and VEGFA is up-regulated after DEXA treatment indicating early cellular stress responses. However, in human gliomas DEXA exerts differential cytotoxic effects, with some human glioma cells (U251, T98G resistant to DEXA, a finding corroborated by clinical data of dexamethasone non-responders. Moreover, DEXA-resistant gliomas did not show any xCT alterations, indicating that these gene expressions are associated with DEXA-induced cellular stress. Hence, siRNA-mediated xCT knockdown in glioma cells increased the susceptibility to DEXA. Interestingly, cell viability of primary human astrocytes and primary rodent neurons is not affected by DEXA. We further tested the pharmacological effects of DEXA on brain tissue and showed that DEXA reduces tumor-induced disturbances of the microenvironment such as neuronal cell death and tumor-induced angiogenesis. In conclusion, we demonstrate that DEXA inhibits glioma cell growth in a concentration and species-dependent manner. Further, DEXA executes neuroprotective effects in brains and reduces tumor-induced angiogenesis. Thus, our investigations reveal that DEXA acts pleiotropically and impacts tumor growth, tumor vasculature and tumor-associated brain damage.

  3. Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics.

    Directory of Open Access Journals (Sweden)

    Ehud Segal

    Full Text Available BACKGROUND: There is an immense clinical need for novel therapeutics for the treatment of angiogenesis-dependent calcified neoplasms such as osteosarcomas and bone metastases. We developed a new therapeutic strategy to target bone metastases and calcified neoplasms using combined polymer-bound angiogenesis inhibitors. Using an advanced "living polymerization" technique, the reversible addition-fragmentation chain transfer (RAFT, we conjugated the aminobisphosphonate alendronate (ALN, and the potent anti-angiogenic agent TNP-470 with N-(2-hydroxypropylmethacrylamide (HPMA copolymer through a Glycine-Glycine-Proline-Norleucine linker, cleaved by cathepsin K, a cysteine protease overexpressed at resorption sites in bone tissues. In this approach, dual targeting is achieved. Passive accumulation is possible due to the increase in molecular weight following polymer conjugation of the drugs, thus extravasating from the tumor leaky vessels and not from normal healthy vessels. Active targeting to the calcified tissues is achieved by ALN's affinity to bone mineral. METHODS AND FINDING: The anti-angiogenic and antitumor potency of HPMA copolymer-ALN-TNP-470 conjugate was evaluated both in vitro and in vivo. We show that free and conjugated ALN-TNP-470 have synergistic anti-angiogenic and antitumor activity by inhibiting proliferation, migration and capillary-like tube formation of endothelial and human osteosarcoma cells in vitro. Evaluation of anti-angiogenic, antitumor activity and body distribution of HPMA copolymer-ALN-TNP-470 conjugate was performed on severe combined immunodeficiency (SCID male mice inoculated with mCherry-labeled MG-63-Ras human osteosarcoma and by modified Miles permeability assay. Our targeted bi-specific conjugate reduced VEGF-induced vascular hyperpermeability by 92% and remarkably inhibited osteosarcoma growth in mice by 96%. CONCLUSIONS: This is the first report to describe a new concept of a narrowly-dispersed combined

  4. Discovery of an inhibitor of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells

    Science.gov (United States)

    Morkunas, Bernardas; Gal, Balint; Galloway, Warren R J D; Hodgkinson, James T; Ibbeson, Brett M; Sing Tan, Yaw; Welch, Martin

    2016-01-01

    Summary Pyocyanin is a small molecule produced by Pseudomonas aeruginosa that plays a crucial role in the pathogenesis of infections by this notorious opportunistic pathogen. The inhibition of pyocyanin production has been identified as an attractive antivirulence strategy for the treatment of P. aeruginosa infections. Herein, we report the discovery of an inhibitor of pyocyanin production in cultures of wild-type P. aeruginosa which is based around a 4-alkylquinolin-2(1H)-one scaffold. To the best of our knowledge, this is the first reported example of pyocyanin inhibition by a compound based around this molecular framework. The compound may therefore be representative of a new structural sub-class of pyocyanin inhibitors, which could potentially be exploited in in a therapeutic context for the development of critically needed new antipseudomonal agents. In this context, the use of wild-type cells in this study is notable, since the data obtained are of direct relevance to native situations. The compound could also be of value in better elucidating the role of pyocyanin in P. aeruginosa infections. Evidence suggests that the active compound reduces the level of pyocyanin production by inhibiting the cell–cell signalling mechanism known as quorum sensing. This could have interesting implications; quorum sensing regulates a range of additional elements associated with the pathogenicity of P. aeruginosa and there is a wide range of other potential applications where the inhibition of quorum sensing is desirable. PMID:27559393

  5. Fibromodulin Enhances Angiogenesis during Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Zhong Zheng, PhD

    2014-12-01

    Conclusions: Altogether, we demonstrated that in addition to reducing scar formation, FMOD also promotes angiogenesis. As blood vessels organize and regulate wound healing, its potent angiogenic properties will further expand the clinical application of FMOD for cutaneous healing of poorly vascularized wounds.

  6. Angiogenesis and the inception of pregnancy

    NARCIS (Netherlands)

    Kapiteijn, Kitty

    2006-01-01

    Vascular maladaptation prior and during implantation may lead to serious complications during pregnancy, perinatally, but also later in life (Barker hypothesis). The consequences later in life often appear to be related to endothelial dysfunction. Angiogenesis, the formation of new blood vessels fro

  7. Activation of the endothelin system mediates pathological angiogenesis during ischemic retinopathy.

    Science.gov (United States)

    Patel, Chintan; Narayanan, S Priya; Zhang, Wenbo; Xu, Zhimin; Sukumari-Ramesh, Sangeetha; Dhandapani, Krishnan M; Caldwell, R William; Caldwell, Ruth B

    2014-11-01

    Retinopathy of prematurity adversely affects premature infants because of oxygen-induced damage of the immature retinal vasculature, resulting in pathological neovascularization (NV). Our pilot studies using the mouse model of oxygen-induced retinopathy (OIR) showed marked increases in angiogenic mediators, including endothelins and endothelin receptor (EDNR) A. We hypothesized that activation of the endothelin system via EDNRA plays a causal role in pathological angiogenesis and up-regulation of angiogenic mediators, including vascular endothelial growth factor A (VEGFA) in OIR. Mice were exposed to 75% oxygen from post-natal day P7 to P12, treated with either vehicle or EDNRA antagonist BQ-123 or EDNRB antagonist BQ-788 on P12, and kept at room air from P12 to P17 (ischemic phase). RT-PCR analysis revealed increased levels of EDN2 and EDNRA mRNA, and Western blot analysis revealed increased EDN2 expression during the ischemic phase. EDNRA inhibition significantly increased vessel sprouting, resulting in enhanced physiological angiogenesis and decreased pathological NV, whereas EDNRB inhibition modestly improved vascular repair. OIR triggered significant increases in VEGFA protein and mRNA for delta-like ligand 4, apelin, angiopoietin-2, and monocyte chemoattractant protein-1. BQ-123 treatment significantly reduced these alterations. EDN2 expression was localized to retinal glia and pathological NV tufts of the OIR retinas. EDN2 also induced VEGFA protein expression in cultured astrocytes. In conclusion, inhibition of the EDNRA during OIR suppresses pathological NV and promotes physiological angiogenesis. PMID:25203536

  8. Gold nanoparticles induce nanostructural reorganization of VEGFR2 to repress angiogenesis.

    Science.gov (United States)

    Pan, Yunlong; Ding, Hui; Qin, Li; Zhao, Xiaoxu; Cai, Jiye; Du, Bin

    2013-10-01

    The inhibition of the binding between VEGFs and their receptors reduces angiogenesis and retards tumor growth. Owing to the large amount of antibodies required, the antibody-based anti-angiogenic drug remains limited. Gold nanoparticles (AuNPs) displayed excellent biocompatibility, low toxicity and anti-angiogenic effect, but the mechanism of anti-angiogenesis was unknown. Here, the antitumor effects of a well-dispersed AuNPs, specifically regarding its influence on VEGF signaling, were examined mechanistically. The effects of AuNPs on the interaction of VEGF with its receptor, VEGFR2 were observed using near-field scanning optical microscopy/quantum dot (NSOM/QD) imaging. We found AuNPs can reduce VEGF165-induced VEGFR2 and AKT phosphorylation. Furthermore, the antitumor effects of AuNPs were determined using xenograft and ascites model. AuNPs inhibited VEGF165-VEGFR2 interaction and suppressed the formation of nanodomains of VEGFR2 on the HUVEC. As determined by CD34 immunhistochemistry, AuNPs reduced angiogenesis in a liver tumor nude mice model, as observed by a decreased microvascular density in liver tumor sections and reduced the tumor weight and volume. In addition, AuNPs inhibited ascites formation in mice. Taken together, this study provides new insights into nanomaterial-based antitumor drug development. PMID:24015504

  9. Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress.

    Science.gov (United States)

    Chen, Lei; Mao, Feijian; Kirumba, George Chira; Jiang, Cheng; Manefield, Mike; He, Yiliang

    2015-12-01

    Microcystis (M.) aeruginosa, one of the most common bloom-forming cyanobacteria, occurs worldwide. The Qingcaosha (QCS) Reservoir is undergoing eutrophication and faces the problem of saltwater intrusion. The aim of this study was to investigate the effects of sudden salinity changes on physiological parameters and related gene transcription in M. aeruginosa under controlled laboratory conditions. The results showed that sodium chloride (50, 200 and 500 mg L(-1) NaCl) inhibited the algal growth and decreased pigment concentrations (chlorophyll a, carotenoid and phycocyanin). Sodium chloride increased both the intracellular and extracellular microcystin contents and elevated the mcyD transcript level in M. aeruginosa. It also increased the malondialdehyde (MDA) content and caused cytomembrane damage. This damage caused the release of intracellular toxins into the culture medium. In addition, NaCl decreased the maximum electron transport rate, increased the levels of reactive oxygen species (ROS) and changed the cellular redox status. Consequently, NaCl inhibited the expression of cpcB, psbA and rbcL. Furthermore, NaCl increased the activities of superoxide dismutases (SOD), catalase (CAT), glutathione reductase (GR), and total glutathione peroxidase (GPx). The transcript levels of sod and reduced glutathione (gsh) were also increased after exposure to NaCl. Our results indicate that a sudden increase in salinity increases the production and excretion of microcystin, changes the cellular redox status, enhances the activities of antioxidant enzymes, inhibits photosynthesis, and affects transcript levels of related genes in M. aeruginosa. PMID:26232039

  10. Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa.

    Science.gov (United States)

    Gökalsın, Barış; Sesal, Nüzhet Cenk

    2016-09-01

    Cystic Fibrosis is a genetic disease and it affects the respiratory and digestive systems. Pseudomonas aeruginosa infections in Cystic Fibrosis are presented as the main cause for high mortality and morbidity rates. Pseudomonas aeruginosa populations can regulate their virulence gene expressions via the bacterial communication system: quorum sensing. Inhibition of quorum sensing by employing quorum sensing inhibitors can leave the bacteria vulnerable. Therefore, determining natural sources to obtain potential quorum sensing inhibitors is essential. Lichens have ethnobotanical value for their medicinal properties and it is possible that their secondary metabolites have quorum sensing inhibitor properties. This study aims to investigate an alternative treatment approach by utilizing lichen secondary metabolite evernic acid to reduce the expressions of Pseudomonas aeruginosa virulence factors by inhibiting quorum sensing. For this purpose, fluorescent monitor strains were utilized for quorum sensing inhibitor screens and quantitative reverse-transcriptase PCR analyses were conducted for comparison. Results indicate that evernic acid is capable of inhibiting Pseudomonas aeruginosa quorum sensing systems. PMID:27465850

  11. VEGF-mediated angiogenesis stimulates neural stem cell proliferation and differentiation in the premature brain

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jinqiao, E-mail: jinqiao1977@163.com [Institute of Pediatrics, Children' s Hospital of Fudan University (China); Sha, Bin [Department of Neonatology, Children' s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102 (China); Zhou, Wenhao, E-mail: zhou_wenhao@yahoo.com.cn [Department of Neonatology, Children' s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102 (China); Yang, Yi [Institute of Pediatrics, Children' s Hospital of Fudan University (China)

    2010-03-26

    This study investigated the effects of angiogenesis on the proliferation and differentiation of neural stem cells in the premature brain. We observed the changes in neurogenesis that followed the stimulation and inhibition of angiogenesis by altering vascular endothelial growth factor (VEGF) expression in a 3-day-old rat model. VEGF expression was overexpressed by adenovirus transfection and down-regulated by siRNA interference. Using immunofluorescence assays, Western blot analysis, and real-time PCR methods, we observed angiogenesis and the proliferation and differentiation of neural stem cells. Immunofluorescence assays showed that the number of vWF-positive areas peaked at day 7, and they were highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at every time point. The number of neural stem cells, neurons, astrocytes, and oligodendrocytes in the subventricular zone gradually increased over time in the VEGF up-regulation group. Among the three groups, the number of these cells was highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at the same time point. Western blot analysis and real-time PCR confirmed these results. These data suggest that angiogenesis may stimulate the proliferation of neural stem cells and differentiation into neurons, astrocytes, and oligodendrocytes in the premature brain.

  12. In vivo evidence for platelet-induced physiological angiogenesis by a COX driven mechanism.

    Science.gov (United States)

    Packham, Ian M; Watson, Steve P; Bicknell, Roy; Egginton, Stuart

    2014-01-01

    We sought to determine a role for platelets in in vivo angiogenesis, quantified by changes in the capillary to fibre ratio (C:F) of mouse skeletal muscle, utilising two distinct forms of capillary growth to identify differential effects. Capillary sprouting was induced by muscle overload, and longitudinal splitting by chronic hyperaemia. Platelet depletion was achieved by anti-GPIbα antibody treatment. Sprouting induced a significant increase in C:F (1.42±0.02 vs. contralateral 1.29±0.02, Pplatelet depletion, while the significant C:F increase caused by splitting (1.40±0.03 vs. control 1.28±0.03, PVEGF overexpression failed to rescue angiogenesis following platelet depletion, suggesting the mechanism is not simply reliant on growth factor release. Sprouting occurred normally following antibody-induced GPVI shedding, suggesting platelet activation via collagen is not involved. BrdU pulse-labelling showed no change in the proliferative potential of cells associated with capillaries after platelet depletion. Inhibition of platelet activation by acetylsalicylic acid abolished sprouting, but not splitting angiogenesis, paralleling the response to platelet depletion. We conclude that platelets differentially regulate mechanisms of angiogenesis in vivo, likely via COX signalling. Since endothelial proliferation is not impaired, we propose a link between COX1 and induction of endothelial migration. PMID:25238071

  13. In vivo evidence for platelet-induced physiological angiogenesis by a COX driven mechanism.

    Directory of Open Access Journals (Sweden)

    Ian M Packham

    Full Text Available We sought to determine a role for platelets in in vivo angiogenesis, quantified by changes in the capillary to fibre ratio (C:F of mouse skeletal muscle, utilising two distinct forms of capillary growth to identify differential effects. Capillary sprouting was induced by muscle overload, and longitudinal splitting by chronic hyperaemia. Platelet depletion was achieved by anti-GPIbα antibody treatment. Sprouting induced a significant increase in C:F (1.42±0.02 vs. contralateral 1.29±0.02, P<0.001 that was abolished by platelet depletion, while the significant C:F increase caused by splitting (1.40±0.03 vs. control 1.28±0.03, P<0.01 was unaffected. Granulocyte/monocyte depletion showed this response was not immune-regulated. VEGF overexpression failed to rescue angiogenesis following platelet depletion, suggesting the mechanism is not simply reliant on growth factor release. Sprouting occurred normally following antibody-induced GPVI shedding, suggesting platelet activation via collagen is not involved. BrdU pulse-labelling showed no change in the proliferative potential of cells associated with capillaries after platelet depletion. Inhibition of platelet activation by acetylsalicylic acid abolished sprouting, but not splitting angiogenesis, paralleling the response to platelet depletion. We conclude that platelets differentially regulate mechanisms of angiogenesis in vivo, likely via COX signalling. Since endothelial proliferation is not impaired, we propose a link between COX1 and induction of endothelial migration.

  14. Endothelial precursor cell-based therapy to target the pathologic angiogenesis and compensate tumor hypoxia.

    Science.gov (United States)

    Collet, Guillaume; Szade, Krzysztof; Nowak, Witold; Klimkiewicz, Krzysztof; El Hafny-Rahbi, Bouchra; Szczepanek, Karol; Sugiyama, Daisuke; Weglarczyk, Kazimierz; Foucault-Collet, Alexandra; Guichard, Alan; Mazan, Andrzej; Nadim, Mahdi; Fasani, Fabienne; Lamerant-Fayel, Nathalie; Grillon, Catherine; Petoud, Stéphane; Beloeil, Jean-Claude; Jozkowicz, Alicja; Dulak, Jozef; Kieda, Claudine

    2016-01-28

    Hypoxia-inducing pathologies as cancer develop pathologic and inefficient angiogenesis which rules tumor facilitating microenvironment, a key target for therapy. As such, the putative ability of endothelial precursor cells (EPCs) to specifically home to hypoxic sites of neovascularization prompted to design optimized, site-specific, cell-mediated, drug-/gene-targeting approach. Thus, EPC lines were established from aorta-gonad-mesonephros (AGM) of murine 10.5 dpc and 11.5 dpc embryo when endothelial repertoire is completed. Lines representing early endothelial differentiation steps were selected: MAgEC10.5 and MagEC11.5. Distinct in maturation, they differently express VEGF receptors, VE-cadherin and chemokine/receptors. MAgEC11.5, more differentiated than MAgEC 10.5, displayed faster angiogenesis in vitro, different response to hypoxia and chemokines. Both MAgEC lines cooperated to tube-like formation with mature endothelial cells and invaded tumor spheroids through a vasculogenesis-like process. In vivo, both MAgEC-formed vessels established blood flow. Intravenously injected, both MAgECs invaded Matrigel(TM)-plugs and targeted tumors. Here we show that EPCs (MAgEC11.5) target tumor angiogenesis and allow local overexpression of hypoxia-driven soluble VEGF-receptor2 enabling drastic tumor growth reduction. We propose that such EPCs, able to target tumor angiogenesis, could act as therapeutic gene vehicles to inhibit tumor growth by vessel normalization resulting from tumor hypoxia alleviation. PMID:26577811

  15. Tumor angiogenesis in the absence of fibronectin or its cognate integrin receptors.

    Directory of Open Access Journals (Sweden)

    Patrick A Murphy

    Full Text Available Binding of α5β1 and αvβ3/β5 integrin receptors on the endothelium to their fibronectin substrate in the extracellular matrix has been targeted as a possible means of blocking tumor angiogenesis and tumor growth. However, clinical trials of blocking antibodies and peptides have been disappointing despite promising preclinical results, leading to questions about the mechanism of the inhibitors and the reasons for their failure. Here, using tissue-specific and inducible genetics to delete the α5 and αv receptors in the endothelium or their fibronectin substrate, either in the endothelium or globally, we show that both are dispensable for tumor growth, in transplanted tumors as well as spontaneous and angiogenesis-dependent RIP-Tag-driven pancreatic adenocarcinomas. In the nearly complete absence of fibronectin, no differences in vascular density or the deposition of basement membrane laminins, ColIV, Nid1, Nid2, or the TGFβ binding matrix proteins, fibrillin-1 and -2, could be observed. Our results reveal that fibronectin and the endothelial fibronectin receptor subunits, α5 and αv, are dispensable for tumor angiogenesis, suggesting that the inhibition of angiogenesis induced by antibodies or small molecules may occur through a dominant negative effect, rather than a simple functional block.

  16. Angiogenesis in Interstitial Lung Diseases: a pathogenetic hallmark or a bystander?

    Directory of Open Access Journals (Sweden)

    Anevlavis Stavros

    2006-05-01

    Full Text Available Abstract The past ten years parallels have been drawn between the biology of cancer and pulmonary fibrosis. The unremitting recruitment and maintenance of the altered fibroblast phenotype with generation and proliferation of immortal myofibroblasts is reminiscent with the transformation of cancer cells. A hallmark of tumorigenesis is the production of new blood vessels to facilitate tumor growth and mediate organ-specific metastases. On the other hand several chronic fibroproliferative disorders including fibrotic lung diseases are associated with aberrant angiogenesis. Angiogenesis, the process of new blood vessel formation is under strict regulation determined by a dual, yet opposing balance of angiogenic and angiostatic factors that promote or inhibit neovascularization, respectively. While numerous studies have examined so far the interplay between aberrant vascular and matrix remodeling the relative role of angiogenesis in the initiation and/or progression of the fibrotic cascade still remains elusive and controversial. The current article reviews data concerning the pathogenetic role of angiogenesis in the most prevalent and studied members of ILD disease-group such as IIPs and sarcoidosis, presents some of the future perspectives and formulates questions for potential further research.

  17. Synthesis of specific nanoparticles for targeting tumor angiogenesis using electron-beam irradiation

    Science.gov (United States)

    Deshayes, Stéphanie; Maurizot, Victor; Clochard, Marie-Claude; Berthelot, Thomas; Baudin, Cécile; Déléris, Gérard

    2010-03-01

    Angiogenesis plays a critical role in both growth and metastasis of tumors. Vascular endothelial growth factor (VEGF) is an endogenous mediator of tumor angiogenesis. Blocking associations of the VEGF with its corresponding receptors (KDR) have become critical for anti-tumor therapy. A cyclo-peptide (CBO-P11), derived from VEGF, able to inhibit the interaction between the growth factor and its receptor, was synthesized in our laboratory to provide a target for angiogenesis. We have prepared biocompatible poly(vinylidene fluoride) (PVDF) nanoparticles in order to obtain long blood circulating systems. Electron-beam (EB) irradiation was used to activate the PVDF nanoparticles. From electron paramagnetic resonance (EPR) measurements, we studied the radical stability in order to optimize the radio-grafting of acrylic acid (AA). Further functionalization of PVDF-g-PAA nanoparticles with the cyclo-peptide via a spacer arm was also possible by performing coupling reactions. High resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) and MALDI mass spectrometry allowed us to follow each chemical step of this peptide immobilization. We designed a new nanodevice suggesting a great potential for targeting angiogenesis. 7727-21-1

  18. Endogenous angiogenesis inhibitors and their therapeutic implications.

    Science.gov (United States)

    Cao, Y

    2001-04-01

    A number of endogenous inhibitors targeting the tumor vasculature have recently been identified using in vitro and in vivo antiangiogenesis models. While many of these angiogenesis inhibitors display a broad spectrum of biological actions on several systems in the body, several inhibitors including angiostatin, endostatin, and serpin antithrombin seem to act specifically on the proliferating endothelial cell compartment of the newly formed blood vessels. The discovery of these specific endothelial inhibitors not only increases our understanding of the functions of these molecules in the regulation of physiological and pathological angiogenesis, but may also provide an important therapeutic strategy for the treatment of cancer and other angiogenesis dependent diseases, including diabetic retinopathy and chronic inflammations. Systemic administration of these angiogenesis inhibitors in animals significantly suppresses the growth of a variety of tumors and their metastases. However, their production as functional recombinant proteins has been proven to be difficult. In addition, high dosages of these inhibitors are required to suppress tumor growth in animal studies. Other disadvantages of the antiangiogenic protein therapy include repeated injections, prolonged treatment, transmission of toxins and infectious particles, and high cost for manufacturing large amounts of protein molecules. Thus, alternative strategies need to be developed in order to improve the clinical settings of antiangiogenic therapy. Developments of these strategies are ongoing and they include identification of more potent inhibitors, antiangiogenic gene therapy, improvement of protein/compound half-lives in the circulation, increase of their concentrations at the disease location, and combinatorial therapies with approaches including chemotherapy, radiotherapy, and immunotherapy. Despite the above-mentioned disadvantages, a few inhibitors have entered into the early stages of clinical trials and

  19. Pyoverdine and proteases affect the response of Pseudomonas aeruginosa to gallium in human serum.

    Science.gov (United States)

    Bonchi, Carlo; Frangipani, Emanuela; Imperi, Francesco; Visca, Paolo

    2015-09-01

    Gallium is an iron mimetic which has recently been repurposed as an antibacterial agent due to its capability to disrupt bacterial iron metabolism. In this study, the antibacterial activity of gallium nitrate [Ga(NO3)3] was investigated in complement-free human serum (HS) on 55 Pseudomonas aeruginosa clinical isolates from cystic fibrosis and non-cystic fibrosis patients. The susceptibility of P. aeruginosa to Ga(NO3)3 in HS was dependent on the bacterial ability to acquire iron from serum binding proteins (i.e., transferrin). The extent of serum protein degradation correlated well with P. aeruginosa growth in HS, while pyoverdine production did not. However, pyoverdine-deficient P. aeruginosa strains were unable to grow in HS and overcome iron restriction, albeit capable of releasing proteases. Predigestion of HS with proteinase K promoted the growth of all strains, irrespective of their ability to produce proteases and/or pyoverdine. The MICs of Ga(NO3)3 were higher in HS than in an iron-poor Casamino Acids medium, where proteolysis does not affect iron availability. Coherently, strains displaying high proteolytic activity were less susceptible to Ga(NO3)3 in HS. Our data support a model in which both pyoverdine and proteases affect the response of P. aeruginosa to Ga(NO3)3 in HS. The relatively high Ga(NO3)3 concentration required to inhibit the growth of highly proteolytic P. aeruginosa isolates in HS poses a limitation to the potential of Ga(NO3)3 in the treatment of P. aeruginosa bloodstream infections. PMID:26149986

  20. microRNA-218 Inhibits Oxygen-induced Retinal Neovascularization via Reducing the Expression of Roundabout 1

    Directory of Open Access Journals (Sweden)

    Shuang Han

    2016-01-01

    Conclusions: Our experiments showed that restoration of miR-218 inhibited retinal angiogenesis via targeting Robo1. MiR-218 contributed to the inhibition of retinal angiogenesis and miR-218 might be a new therapeutic target for preventing RNV.

  1. Fructooligosacharides reduce Pseudomonas aeruginosa PAO1 pathogenicity through distinct mechanisms.

    Science.gov (United States)

    Ortega-González, Mercedes; Sánchez de Medina, Fermín; Molina-Santiago, Carlos; López-Posadas, Rocío; Pacheco, Daniel; Krell, Tino; Martínez-Augustin, Olga; Abdelali, Daddaoua

    2014-01-01

    Pseudomonas aeruginosa is ubiquitously present in the environment and acts as an opportunistic pathogen on humans, animals and plants. We report here the effects of the prebiotic polysaccharide inulin and its hydrolysed form FOS on this bacterium. FOS was found to inhibit bacterial growth of strain PAO1, while inulin did not affect growth rate or yield in a significant manner. Inulin stimulated biofilm formation, whereas a dramatic reduction of the biofilm formation was observed in the presence of FOS. Similar opposing effects were observed for bacterial motility, where FOS inhibited the swarming and twitching behaviour whereas inulin caused its stimulation. In co-cultures with eukaryotic cells (macrophages) FOS and, to a lesser extent, inulin reduced the secretion of the inflammatory cytokines IL-6, IL-10 and TNF-α. Western blot experiments indicated that the effects mediated by FOS in macrophages are associated with a decreased activation of the NF-κB pathway. Since FOS and inulin stimulate pathway activation in the absence of bacteria, the FOS mediated effect is likely to be of indirect nature, such as via a reduction of bacterial virulence. Further, this modulatory effect is observed also with the highly virulent ptxS mutated strain. Co-culture experiments of P. aeruginosa with IEC18 eukaryotic cells showed that FOS reduces the concentration of the major virulence factor, exotoxin A, suggesting that this is a possible mechanism for the reduction of pathogenicity. The potential of these compounds as components of antibacterial and anti-inflammatory cocktails is discussed.

  2. [Allelopathy effects of ferulic acid and coumarin on Microcystis aeruginosa].

    Science.gov (United States)

    Guo, Ya-Li; Fu, Hai-Yan; Huang, Guo-He; Gao, Pan-Feng; Chai, Tian; Yan, Bin; Liao, Huan

    2013-04-01

    The inhibitory effects and allelopathy mechanism of ferulic acid and coumarin on Microcystis aeruginosa were investigated by measuring the D680 value, the content of chlorophyll-a, the electrical conductivity (EC) and superoxide anion radical O*- value. Ferulic acid and coumarin had allelopathic effects on the growth of M. aeruginosa and promoted the physiological metabolism at low concentrations while inhibited the metabolism at high concentrations. Obvious inhibitory effects were observed when the concentration of ferulic acid or coumarin was over 100 mg x L(-1). The average inhibitory rates reached 80.3% and 58.0% after six days when the concentration of ferulic acid or coumarin was 200 mg x L(-1). The content of chlorophyll-a was decreased while the EC value and O2*- concentration were promoted by higher concentrations of ferulic acid or coumarin, suggesting that the growth of algae was inhibited probably by the damage of cell membrane, increase in the content of O2*- and decrease in the content of chlorophyll-a. In addition, seed germination test elucidated that Ferulic acid was safer than Coumarin.

  3. P70S6K 1 regulation of angiogenesis through VEGF and HIF-1{alpha} expression

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Chuan-Xiu; Shi, Zhumei [Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing 210029 (China); Meng, Qiao; Jiang, Yue; Liu, Ling-Zhi [Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States); Jiang, Bing-Hua, E-mail: binghjiang@yahoo.com [Department of Pathology, Cancer Center, Nanjing Medical University, Nanjing 210029 (China); Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107 (United States)

    2010-07-30

    Research highlights: {yields} P70S6K1 regulates VEGF expression; {yields} P70S6K1 induces transcriptional activation through HIF-1{alpha} binding site; {yields} P70S6K1 regulates HIF-1{alpha}, but not HIF-1{beta} protein expression; {yields} P70S6K1 mediates tumor growth and angiogenesis through HIF-1{alpha} and VEGF expression. -- Abstract: The 70 kDa ribosomal S6 kinase 1 (p70S6K1), a downstream target of phosphoinositide 3-kinase (PI3K) and ERK mitogen-activated protein kinase (MAPK), is an important regulator of cell cycle progression, and cell proliferation. Recent studies indicated an important role of p70S6K1 in PTEN-negative and AKT-overexpressing tumors. However, the mechanism of p70S6K1 in tumor angiogenesis remains to be elucidated. In this study, we specifically inhibited p70S6K1 activity in ovarian cancer cells using vector-based small interfering RNA (siRNA) against p70S6K1. We found that knockdown of p70S6K1 significantly decreased VEGF protein expression and VEGF transcriptional activation through the HIF-1{alpha} binding site at its enhancer region. The expression of p70S6K1 siRNA specifically inhibited HIF-1{alpha}, but not HIF-1{beta} protein expression. We also found that p70S6K1 down-regulation inhibited ovarian tumor growth and angiogenesis, and decreased cell proliferation and levels of VEGF and HIF-1{alpha} expression in tumor tissues. Our results suggest that p70S6K1 is required for tumor growth and angiogenesis through HIF-1{alpha} and VEGF expression, providing a molecular mechanism of human ovarian cancer mediated by p70S6K1 signaling.

  4. Insufficient radiofrequency ablation promotes angiogenesis of residual hepatocellular carcinoma via HIF-1α/VEGFA.

    Directory of Open Access Journals (Sweden)

    Jian Kong

    Full Text Available BACKGROUND: The mechanism of rapid growth of the residual tumor after radiofrequency (RF ablation is poorly understood. In this study, we investigated the effect of hyperthermia on HepG2 cells and generated a subline with enhanced viability and dys-regulated angiogenesis in vivo, which was used as a model to further determine the molecular mechanism of the rapid growth of residual HCC after RF ablation. METHODOLOGY/PRINCIPAL FINDINGS: Heat treatment was used to establish sublines of HepG2 cells. A subline (HepG2 k with a relatively higher viability and significant heat tolerance was selected. The cellular protein levels of VEGFA, HIF-1α and p-Akt, VEGFA mRNA and secreted VEGFA were measured, and all of these were up-regulated in this subline compared to parental HepG2 cells. HIF-1α inhibitor YC-1 and VEGFA siRNA inhibited the high viability of the subline. The conditioned media from the subline exerted stronger pro-angiogenic effects. Bevacizumab, VEGFA siRNA and YC-1 inhibited proangiogenic effects of the conditioned media of HepG2 k cells and abolished the difference between parental HepG2 cells and HepG2 k cells. For in vivo studies, a nude mouse model was used, and the efficacy of bavacizumab was determined. HepG2 k tumor had stronger pro-angiogenic effects than parental HepG2 tumor. Bevacizumab could inhibit the tumor growth and angiogenesis, and also eliminate the difference in tumor growth and angiogenesis between parental HepG2 tumor and HepG2 k tumor in vivo. CONCLUSIONS/SIGNIFICANCE: The angiogenesis induced by HIF1α/VEGFA produced by altered cells after hyperthermia treatment may play an important role in the rapid growth of residual HCC after RF ablation. Bevacizumab may be a good candidate drug for preventing and treating the process.

  5. Versatile cloning vector for Pseudomonas aeruginosa.

    OpenAIRE

    Wood, D O; Hollinger, M F; Tindol, M B

    1981-01-01

    A pBR322:RSF1010 composite plasmid, constructed in vitro, was used as a cloning vector in Pseudomonas aeruginosa. This nonamplifiable plasmid, pMW79, has a molecular weight of 8.4 X 10(6) and exists as a multicopy plasmid in both P. aeruginosa and Escherichia coli. In P. aeruginosa strain PAO2003, pMW79 conferred resistance to carbenicillin and tetracycline. Characterization of pMW79 with restriction enzymes revealed that four enzymes (BamHI, SalI, HindIII, and HpaI) cleaved the plasmid at un...

  6. Suppression of Aspergillus by Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Jensen, Britt Guillaume; Jelsbak, Lars; Søndergaard, Ib;

    Objectives: Cystic fibrosis patients are commonly infected by Pseudomonas aeruginosa, but Aspergilli are also frequently isolated. Our aim was to examine the possible interaction between P. aeruginosa and different Aspergillus. Methods: A suspension of 106 fungal spores/ml was streaked onto WATM...... suppressed growth of A. fumigatus, A. niger, A. flavus, A. oryzae, A. terreus and E. nidulans. HPLC and LC-DAD-MS results showed an increase in phenazine-1-carboxylic acid and phenazine-1-carboxamide production by P. aeruginosa in the contact area of Aspergillus. Different quinolones were also identified...

  7. Effects of cloned tumstatin-related and angiogenesis-inhibitory peptides on proliferation and apoptosis of endothelial ceils

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guang-mei; ZHANG Ying-mei; FU Song-bin; LIU Xing-han; FU Xue; YU Yan; ZHANG Zhi-yi

    2008-01-01

    Background Tumstatin is a recently developed endogenous vascular endothelial growth inhibitor that can be applied as an anti-angiogenesis and antineoplastic agent.The study aimed to design and synthesize the small molecular angiogenesis inhibition-related peptide (peptide 21),to replicate the structural and functional features of the active zone of angiogenesis inhibition using tumstatin and to prove that synthesized peptide 21 has a similar activity:specifically inhibiting tumor angiogenesis like tumstatin.Methods Peptide 21 was designed and synthesized using biological engineering technology.To determine its biological action,the human umbilical vein endothelial cell line ECV304,the human ovarian cancer cell line SKOV-3 and the mouse embryo-derived NIH3T3 fibroblasts were used in in vitro experiments to determine the effect of peptide 21 on proliferation of the three cell lines using the MTT test and growth curves.Transmission electron microscopy (TEM) and flow cytometry (FCM) were applied to analyze the peptide 21-induced apoptosis of the three cell lines qualitatively and quantitatively.In animal experiments,tumor models in nude mice subcutaneously grafted with SKOV-3 were used to observe the effects of peptide 21 on tumor weight,size and microvessel density (MVD).To initially investigate the role of peptide 21,the effect of peptide 21 on the expression of vascular endothelial growth factors (VEGFs) by tumor tissue was semi-quantitatively analyzed.Results The in vitro MTT test and growth curves all indicated that cloned peptide 21 could specifically inhibit ECV304 proliferation in a dose-dependent manner (P <0.01);TEM and FCM showed that peptide 21 could specifically induce ECV304 apoptosis (P <0.01).Results of in vivo experiments showed that tumors in the peptide 21 group grew more slowly.The weight and size of the tumors after 21 days of treatment were smaller than those in the control group (P <0.05),with a mean tumor inhibition rate of 67.86%;MVD of

  8. A collagen based vitro model of angiogenesis designed for tissue-engineering material

    Energy Technology Data Exchange (ETDEWEB)

    Feng Ting; Chen Yuanwei; Shi Guoqi [Department of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); Yu Xixun [Department of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China)], E-mail: yuxixun@163.com; Wan Changxiu [Department of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China)], E-mail: wanchangxiu@163.com

    2008-11-15

    Angiogenesis is central importance to tissue-engineering. Many vitro models are developed to study the mechanism of angiogenesis, making a great deal of contribution to drug development against tumor, and often may be expensive, time-consuming. Till now, few reported models have been applied to evaluating the effect of degradation fluid of tissue-engineering material to angiogenesis. In present study, we used ECV304 cell as the model cell line, type I collagen matrix that contained no stimulatory factors as a culture substratum to develop a testing model. Tube-like structure (TLS) formed within 8 h on lower density of collagen (0.2, 0.5 mg/ml), which is not found on dense collagen (1, 2 mg/ml). After ECV304 cells were seeded on the surface of collagen matrix, adherence occurred within 1 h. Soon afterwards, ECV304 cells migrated into cell aggregates, then sent out elongated cell processes to form TLS by cytoplasmic anastomosis. Proliferation was obviously perceived during the course. To investigate the efficiency of the model, we took poly(lactic acid) (PLA) degradation fluid with degradation time varying from 1 to 120 days as the testing material. TLS formation is enhanced by ECV304 cells exposed to early degradation fluid before 50-day point, and the trend of inhibition grew as the degradation time increased. Further, no formation was found in degradation fluid after 90-day point. The model is sensitive to the surrounding environment, and can demonstrate the effects of testing material quantitatively to angiogenesis. In summary, the simplicity, reproducibility and miniaturized character of the model described here may make it highly useful as a medium to test the effect of degradation fluid of tissue-engineering material to angiogenesis.

  9. Effect of melatonin on tumor growth and angiogenesis in xenograft model of breast cancer.

    Directory of Open Access Journals (Sweden)

    Bruna Victorasso Jardim-Perassi

    Full Text Available As neovascularization is essential for tumor growth and metastasis, controlling angiogenesis is a promising tactic in limiting cancer progression. Melatonin has been studied for their inhibitory properties on angiogenesis in cancer. We performed an in vivo study to evaluate the effects of melatonin treatment on angiogenesis in breast cancer. Cell viability was measured by MTT assay after melatonin treatment in triple-negative breast cancer cells (MDA-MB-231. After, cells were implanted in athymic nude mice and treated with melatonin or vehicle daily, administered intraperitoneally 1 hour before turning the room light off. Volume of the tumors was measured weekly with a digital caliper and at the end of treatments animals underwent single photon emission computed tomography (SPECT with Technetium-99m tagged vascular endothelial growth factor (VEGF C to detect in vivo angiogenesis. In addition, expression of pro-angiogenic/growth factors in the tumor extracts was evaluated by membrane antibody array and collected tumor tissues were analyzed with histochemical staining. Melatonin in vitro treatment (1 mM decreased cell viability (p0.05 images. In addition, there was a decrease of micro-vessel density (Von Willebrand Factor in melatonin treated mice (p<0.05. However, semiquantitative densitometry analysis of membrane array indicated increased expression of epidermal growth factor receptor and insulin-like growth factor 1 in treated tumors compared to vehicle treated tumors (p<0.05. In conclusion, melatonin treatment showed effectiveness in reducing tumor growth and cell proliferation, as well as in the inhibition of angiogenesis.

  10. Ferrite Nanoparticles in Pharmacological Modulation of Angiogenesis

    Science.gov (United States)

    Deshmukh, Aparna; Radha, S.; Khan, Y.; Tilak, Priya

    2011-07-01

    Nanoparticles are being explored in the targeted drug delivery of pharmacological agents : angiogenesis being one such novel application which involves formation of new blood vessels or branching of existing ones. The present study involves the use of ferrite nanoparticles for precise therapeutic modulation of angiogenesis. The ferrite nanoparticles synthesized by co-precipitation of ferrous and ferric salts by a suitable base, were found to be 10-20 nm from X-ray diffraction and TEM measurements. The magnetization measurements showed superparamagnetic behavior of the uncoated nanoparticles. These ferrite nanoparticles were found to be bio-compatible with lymphocytes and neural cell lines from the biochemical assays. The chick chorioallantoic membrane(CAM) from the shell of fertile white Leghorn eggs was chosen as a model to study angiogenic activity. An enhancement in the angiogenic activity in the CAM due to addition of uncoated ferrite nanoparticles was observed.

  11. Toll-Like Receptors in Angiogenesis

    Directory of Open Access Journals (Sweden)

    Karsten Grote

    2011-01-01

    Full Text Available Toll-like receptors (TLRs are known as pattern-recognition receptors related to the Toll protein of Drosophila. After recognition of pathogen-associated molecular patterns of microbial origin, the TLRs alert the immune system, and initiate innate and adaptive immune responses. The TLR system, though, is not confined solely to the leukocyte-mediated immune defense against exogenous pathogens. Besides myeloid cells, TLR expression has been reported in multiple tissues and cell types, including epithelial and endothelial cells. Moreover, despite the microbial patterns that are commonly accepted as TLR ligands, there is increasing evidence that TLRs also recognize host-derived molecules. In this regard, recent studies point to an involvement of TLRs in various chronic inflammatory disorders and cardiovascular diseases, including atherosclerosis, rheumatoid arthritis, systemic lupus erythematosus, and even cancer. A common feature of these disorders is an enhanced so-called inflammation-induced angiogenesis. However, inflammation-induced angiogenesis is not solely a key component of pathogen defense during acute infection or chronic inflammatory disorders, but also plays a critical role in repair mechanisms, e.g., wound healing and subsequent tissue regeneration. Interestingly, the latest research could coincidentally demonstrate that TLR activation promotes angiogenesis in various inflammatory settings in response to both exogenous and endogenous ligands, although the precise mode of action of TLRs in this context still remains ambiguous. The objective of this review is to present evidence for the implication of TLRs in angiogenesis during physiological and pathophysiological processes, and the potential clinical relevance for new treatment regimes involving TLR modulation.

  12. Advances and challenges in skeletal muscle angiogenesis

    DEFF Research Database (Denmark)

    Olfert, I Mark; Baum, Oliver; Hellsten, Ylva;

    2016-01-01

    during health, but poorly controlled in disease - resulting in either excessive capillary growth (pathological angiogenesis) or losses in capillarity (rarefaction). Given that skeletal muscle comprises nearly 40% of body mass in humans, skeletal muscle capillary density has a significant impact...... on 1) the methodological concerns that have arisen in determining skeletal muscle capillarity, and 2) highlight the concepts that are reshaping our understanding of the angio-adaptation process. We also summarize selected new findings (physical influences, molecular changes and ultrastructural...

  13. Class 3 semaphorin in angiogenesis and lymphangiogenesis.

    Science.gov (United States)

    Bussolino, Federico; Giraudo, Enrico; Serini, Guido

    2014-01-01

    Semaphorins were originally identified as axon guidance molecules involved in the development of the neuronal system. However, accumulating evidences have clearly demonstrated that the semaphorin system is not restricted to the brain but supports functions of other organs. Here, we review the rapidly emerging functions of sempahorins and, in particular class 3 semaphorin, in vascular and lymphatic systems during the development, tumor angiogenesis and ischemic revascularization. PMID:24217603

  14. Low-molecular-weight heparins and angiogenesis.

    Science.gov (United States)

    Norrby, Klas

    2006-02-01

    The involvement of the vascular system in malignancy encompasses not only angiogenesis, but also systemic hypercoagulability and a pro-thrombotic state, and there is increasing evidence that pathways of blood coagulation and angiogenesis are reciprocally linked. In fact, cancer atients often display hypercoagulability resulting in markedly increased thromboembolism, which requires anti-coagulant treatment using heparins, for example. Clinical trials reveal that treatment with various low-molecular-weight heparins (LMWHs) improves the survival time in cancer patients receiving chemotherapy compared with those receiving unfractionated standard heparin (UFH) or no heparin treatment, as well as in cancer patients receiving LMWH as thrombosis prophylaxis during primary surgery. This anti-tumor effect of the heparins appears to be unrelated to their anti-coagulant activity, but the mechanisms involved are not fully understood. Tumor growth and spread are dependent on angiogenesis and it is noteworthy that the most potent endogenous pro- and anti-angiogenic factors are heparin-binding proteins that may be affected by systemic treatment with heparins. Heparin and other glycosaminoglycans play a role in vascular endothelial cell function, as they are able to modulate the activities of angiogenic growth factors by facilitating the interaction with their receptor and promoting receptor activation. To date, preclinical studies have demonstrated that only LMWH fragments produced by the heparinase digestion of UFH, i.e. tinzaparin, exer