WorldWideScience

Sample records for aeruginosa inhibits angiogenesis

  1. A complex extracellular sphingomyelinase of Pseudomonas aeruginosa inhibits angiogenesis by selective cytotoxicity to endothelial cells.

    Directory of Open Access Journals (Sweden)

    Michael L Vasil

    2009-05-01

    Full Text Available The hemolytic phospholipase C (PlcHR expressed by Pseudomonas aeruginosa is the original member of a Phosphoesterase Superfamily, which includes phosphorylcholine-specific phospholipases C (PC-PLC produced by frank and opportunistic pathogens. PlcHR, but not all its family members, is also a potent sphingomyelinase (SMase. Data presented herein indicate that picomolar (pM concentrations of PlcHR are selectively lethal to endothelial cells (EC. An RGD motif of PlcHR contributes to this selectivity. Peptides containing an RGD motif (i.e., GRGDS, but not control peptides (i.e., GDGRS, block the effects of PlcHR on calcium signaling and cytotoxicity to EC. Moreover, RGD variants of PlcHR (e.g., RGE, KGD are significantly reduced in their binding and toxicity, but retain the enzymatic activity of the wild type PlcHR. PlcHR also inhibits several EC-dependent in vitro assays (i.e., EC migration, EC invasion, and EC tubule formation, which represent key processes involved in angiogenesis (i.e., formation of new blood vessels from existing vasculature. Finally, the impact of PlcHR in an in vivo model of angiogenesis in transgenic zebrafish, and ones treated with an antisense morpholino to knock down a key blood cell regulator, were evaluated because in vitro assays cannot fully represent the complex processes of angiogenesis. As little as 2 ng/embryo of PlcHR was lethal to approximately 50% of EGFP-labeled EC at 6 h after injection of embryos at 48 hpf (hours post-fertilization. An active site mutant of PlcHR (Thr178Ala exhibited 120-fold reduced inhibitory activity in the EC invasion assay, and 20 ng/embryo elicited no detectable inhibitory activity in the zebrafish model. Taken together, these observations are pertinent to the distinctive vasculitis and poor wound healing associated with P. aeruginosa sepsis and suggest that the potent antiangiogenic properties of PlcHR are worthy of further investigation for the treatment of diseases where

  2. Curcumin inhibition of angiogenesis and adipogenesis

    Science.gov (United States)

    The growth of new blood vessels or angiogenesis is necessary for the growth of adipose tissue. Adipokines produced by fat cells stimulate this process. Some dietary polyphenols with antiangiogenic activity may suppress adipose tissue growth not only by inhibiting angiogenesis, but also by interferin...

  3. Functional inhibition of UQCRB suppresses angiogenesis in zebrafish

    International Nuclear Information System (INIS)

    Highlights: ► This is the first functional characterization of UQCRB in vivo model. ► Angiogenesis is inhibited with UQCRB loss of function in zebrafish. ► UQCRB is introduced as a prognostic marker for mitochondria- and angiogenesis-related diseases. -- Abstract: As a subunit of mitochondrial complex III, UQCRB plays an important role in complex III stability, electron transport, and cellular oxygen sensing. Herein, we report UQCRB function regarding angiogenesis in vivo with the zebrafish (Danio rerio). UQCRB knockdown inhibited angiogenesis in zebrafish leading to the suppression of VEGF expression. Moreover, the UQCRB-targeting small molecule terpestacin also inhibited angiogenesis and VEGF levels in zebrafish, supporting the role of UQCRB in angiogenesis. Collectively, UQCRB loss of function by either genetic and pharmacological means inhibited angiogenesis, indicating that UQCRB plays a key role in this process and can be a prognostic marker of angiogenesis- and mitochondria-related diseases

  4. Indirubin derivative E804 inhibits angiogenesis

    International Nuclear Information System (INIS)

    It has previously been shown that indirubin derivative E804 (IDR-E804) blocks signal transducer and activator of transcription-3 signaling in human breast and prostate cancer cells and inhibits Src kinase activity. To further establish its role in angiogenesis, we tested its potential using human umbilical vein endothelial cells (HUVECs) and analyzed the effects of IDR-E804 on cellular and molecular events related to angiogenesis. The anti-angiogenic effects of IDR-E804 were examined by assessing the proliferation, migration and capillary tube formation of HUVECs were induced by vascular endothelial growth factor (VEGF) with or without various concentrations of IDR-E804. The inhibitory effect of IDR-E804 angiogenesis and tumor growth in vivo was also investigated in Balb/c mice subcutaneously transplanted with CT-26 colon cancer cells. IDR-E804 significantly decreased proliferation, migration and tube formation of vascular endothelial growth factor VEGF-treated HUVECs. These effects were accompanied by decreased phosphorylation of VEGF receptor (VEGFR)-2, AKT and extracellular signal regulated kinase in VEGF-treated HUVECs. Intratumor injections of IDR-E804 inhibited the growth of subcutaneously inoculated CT-26 allografts in syngenic mice. Immunohistochemistry revealed a decreased CD31 microvessel density index and Ki-67 proliferative index, but an increased apoptosis index in IDR-E804-treated tumors. These data revealed that IDR-E804 is an inhibitor of angiogenesis and also provide evidence for the efficacy of IDR-E804 for anti-tumor therapies

  5. Inhibition of angiogenesis by S-adenosylmethionine

    International Nuclear Information System (INIS)

    Highlights: → Effects of S-adenosylmethionine (SAM) were investigated in endothelial cells. → Our results showed that SAM decreased proliferation of endothelial cells. → SAM influentially inhibited the percentage of cell migration. → SAM probably stopped migration as independent from its effects on proliferation. → SAM was shown to suppress in vitro angiogenesis. -- Abstract: Metastasis is a leading cause of mortality and morbidity in cancer. One of the steps in metastasis process is the formation of new blood vessels. Aberrant DNA methylation patterns are common in cancer cells. In recent studies, S-adenosylmethionine (SAM), which is a DNA methylating agent, has been found to have inhibitory effects on some carcinoma cells in vivo and in vitro. In the present study, we have used SAM to investigate whether it is effective against angiogenesis in vitro. Our results have shown that SAM can reduce the formation and organization of capillary-like structures of endothelial cells in tumoral environment. Besides, we have found SAM can block endothelial cell proliferation and the migration of cells towards growth factors-rich media. In conclusion, our study suggests that SAM may be used against angiogenesis as a natural bio-product.

  6. An IP-10 (CXCL10-derived peptide inhibits angiogenesis.

    Directory of Open Access Journals (Sweden)

    Cecelia C Yates-Binder

    Full Text Available Angiogenesis plays a critical role in processes such as organ development, wound healing, and tumor growth. It requires well-orchestrated integration of soluble and matrix factors and timely recognition of such signals to regulate this process. Previous work has shown that newly forming vessels express the chemokine receptor CXC receptor 3 (CXCR3 and, activation by its ligand IP-10 (CXCL10, both inhibits development of new vasculature and causes regression of newly formed vessels. To identify and develop new therapeutic agents to limit or reverse pathological angiogenesis, we identified a 21 amino acid fragment of IP-10, spanning the α-helical domain residues 77-98, that mimic the actions of the whole IP-10 molecule on endothelial cells. Treatment of the endothelial cells with the 22 amino acid fragment referred to as IP-10p significantly inhibited VEGF-induced endothelial motility and tube formation in vitro, properties critical for angiogenesis. Using a Matrigel plug assay in vivo, we demonstrate that IP-10p both prevented vessel formation and induced involution of nascent vessels. CXCR3 neutralizing antibody was able to block the inhibitory effects of the IP-10p, demonstrating specificity of the peptide. Inhibition of endothelial function by IP-10p was similar to that described for IP-10, secondary to CXCR3-mediated increase in cAMP production, activation of PKA inhibiting cell migration, and inhibition of VEGF-mediated m-calpain activation. IP-10p provides a novel therapeutic agent that inhibits endothelial cell function thus, allowing for the modulation of angiogenesis.

  7. Targeted inhibition of tumor growth and angiogenesis

    NARCIS (Netherlands)

    van der Meel, R.

    2013-01-01

    Two main strategies have been pursued for the development of an effective and targeted anti-cancer treatment. The first strategy comprised the generation of a targeted nanomedicine for the inhibition of tumor cell proliferation by blocking growth factor receptor pathways. The epidermal growth factor

  8. Lonidamine Causes Inhibition of Angiogenesis-Related Endothelial Cell Functions

    OpenAIRE

    Donatella Del Bufalo; Daniela Trisciuoglio; Marco Scarsella; Giulia D'Amati; Antonio Candiloro; Angela Iervolino; Carlo Leonetti; Gabriella Zupi

    2004-01-01

    The aim of this study was to assess whether lonidamine (LND) interferes with some steps in angiogenesis progression. We report here, for the first time, that LND inhibited angiogenic-related endothelial cell functions in a dose-dependent manner (1-50 μg/ml). In particular, LND decreased proliferation, migration, invasion, and morphogenesis on matrigel of different endothelial cell lines. Zymographic and Western blot analysis assays showed that LND treatment produced a reduction in the secreti...

  9. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Boram; Kim, Ki Hyun; Jung, Hye Jin [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of); Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr [Chemical Genomics National Research Laboratory, Department of Biotechnology, Translational Research Center for Protein Function Control, College of Life Science and Biotechnology, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2012-04-27

    Highlights: Black-Right-Pointing-Pointer Matairesinol suppresses mitochondrial ROS generation during hypoxia. Black-Right-Pointing-Pointer Matairesinol exhibits potent anti-angiogenic activity both in vitro and in vivo. Black-Right-Pointing-Pointer Matairesinol could be a basis for the development of novel anti-angiogenic agents. -- Abstract: Mitochondrial reactive oxygen species (mROS) are involved in cancer initiation and progression and function as signaling molecules in many aspects of hypoxia and growth factor-mediated signaling. Here we report that matairesinol, a natural small molecule identified from the cell-based screening of 200 natural plants, suppresses mROS generation resulting in anti-angiogenic activity. A non-toxic concentration of matairesinol inhibited the proliferation of human umbilical vein endothelial cells. The compound also suppressed in vitro angiogenesis of tube formation and chemoinvasion, as well as in vivo angiogenesis of the chorioallantoic membrane at non-toxic doses. Furthermore, matairesinol decreased hypoxia-inducible factor-1{alpha} in hypoxic HeLa cells. These results demonstrate that matairesinol could function as a novel angiogenesis inhibitor by suppressing mROS signaling.

  10. Matairesinol inhibits angiogenesis via suppression of mitochondrial reactive oxygen species

    International Nuclear Information System (INIS)

    Highlights: ► Matairesinol suppresses mitochondrial ROS generation during hypoxia. ► Matairesinol exhibits potent anti-angiogenic activity both in vitro and in vivo. ► Matairesinol could be a basis for the development of novel anti-angiogenic agents. -- Abstract: Mitochondrial reactive oxygen species (mROS) are involved in cancer initiation and progression and function as signaling molecules in many aspects of hypoxia and growth factor-mediated signaling. Here we report that matairesinol, a natural small molecule identified from the cell-based screening of 200 natural plants, suppresses mROS generation resulting in anti-angiogenic activity. A non-toxic concentration of matairesinol inhibited the proliferation of human umbilical vein endothelial cells. The compound also suppressed in vitro angiogenesis of tube formation and chemoinvasion, as well as in vivo angiogenesis of the chorioallantoic membrane at non-toxic doses. Furthermore, matairesinol decreased hypoxia-inducible factor-1α in hypoxic HeLa cells. These results demonstrate that matairesinol could function as a novel angiogenesis inhibitor by suppressing mROS signaling.

  11. INHIBITION OF VIRULENCE FACTORS OF PSEUDOMONAS AERUGINOSA BY DICLOFENAC SODIUM.

    Science.gov (United States)

    Abbas, Hisham A

    2015-01-01

    Resistance of Pseudomonas aeruginosa to antibiotics is a major problem. Targeting virulence factors is an alternative option to avoid the emergence of resistance to antibiotics. The effect of sub-inhibitory concentration of diclofenac sodium on the production of virulence factors of P. aeruginosa was investigated. The virulence factors included protease, haemolysin, pyocyanin and pyoverdin, in addition to pathogenic behaviors such as swimming and twitching motilities and biofilm formation. Diclofenac sodium showed significant inhibition of virulence factors as compared to the control. Diclofenac sodium decreased twitching and swimming motilities by 29.27% and 45.36%, respectively. The percentage of inhibition of pyocyanin by diclofenac sodium was 42.32%. On the other hand, pyoverdin was inhibited to a lesser extent (36.72%). Diclofenac sodium reduced protease by 52.58% and biofilm formation by 58.37%. Moreover, haemolytic activity in the presence of diclofenac sodium was 15.64% as compared to the control (100% haemolytic activity). The inhibitory activities may be due to inhibition of quorum sensing that regulates the expression of virulence factors. This study suggests the potential for the use of diclofenac sodium as an anti-virulence agent in the treatment of Pseudomonas aeruginosa infections. PMID:27328521

  12. Selective PKCalpha inhibition uncouples platelet angiogenesis promotion from collagen-induced aggregation

    OpenAIRE

    Radomski, Marek

    2013-01-01

    Platelets promote angiogenesis by releasing angiogenesis-regulating factors from their α-granules upon aggregation. This effect has both physiologic and pathologic significance as it may contribute to carcinogenesis. Platelet α-granule release and aggregation are regulated, in part, via protein kinase C (PKC) α and β signaling. Our study investigated the effects of PKC inhibition on aggregation, angiogenesis-regulator secretion from α-granules, and platelet-stimulated angiogenesis. We hypothe...

  13. Erythropoietin blockade inhibits the induction of tumor angiogenesis and progression.

    Directory of Open Access Journals (Sweden)

    Matthew E Hardee

    Full Text Available BACKGROUND: The induction of tumor angiogenesis, a pathologic process critical for tumor progression, is mediated by multiple regulatory factors released by tumor and host cells. We investigated the role of the hematopoietic cytokine erythropoietin as an angiogenic factor that modulates tumor progression. METHODOLOGY/PRINCIPAL FINDINGS: Fluorescently-labeled rodent mammary carcinoma cells were injected into dorsal skin-fold window chambers in mice, an angiogenesis model that allows direct, non-invasive, serial visualization and real-time assessment of tumor cells and neovascularization simultaneously using intravital microscopy and computerized image analysis during the initial stages of tumorigenesis. Erythropoietin or its antagonist proteins were co-injected with tumor cells into window chambers. In vivo growth of cells engineered to stably express a constitutively active erythropoietin receptor EPOR-R129C or the erythropoietin antagonist R103A-EPO were analyzed in window chambers and in the mammary fat pads of athymic nude mice. Co-injection of erythropoietin with tumor cells or expression of EPOR-R129C in tumor cells significantly stimulated tumor neovascularization and growth in window chambers. Co-injection of erythropoietin antagonist proteins (soluble EPOR or anti-EPO antibody with tumor cells or stable expression of antagonist R103A-EPO protein secreted from tumor cells inhibited angiogenesis and impaired tumor growth. In orthotopic tumor xenograft studies, EPOR-R129C expression significantly promoted tumor growth associated with increased expression of Ki67 proliferation antigen, enhanced microvessel density, decreased tumor hypoxia, and increased phosphorylation of extracellular-regulated kinases ERK1/2. R103A-EPO antagonist expression in mammary carcinoma cells was associated with near-complete disruption of primary tumor formation in the mammary fat pad. CONCLUSIONS/SIGNIFICANCE: These data indicate that erythropoietin is an

  14. Synergistic inhibition of angiogenesis and glioma cell-induced angiogenesis by the combination of temozolomide and enediyne antibiotic lidamycin.

    Science.gov (United States)

    Li, Xing-Qi; Ouyang, Zhi-Gang; Zhang, Sheng-Hua; Liu, Hong; Shang, Yue; Li, Yi; Zhen, Yong-Su

    2014-04-01

    Present work mainly evaluated the inhibitory effects of lidamycin (LDM), an enediyne antibiotic, on angiogenesis or glioma-induced angiogenesis in vitro and in vivo, especially its synergistic anti-angiogenesis with temozolomide (TMZ). LDM alone efficiently inhibited proliferations and induced apoptosis of rat brain microvessel endothelial cells (rBMEC). LDM also interrupted the tube formation of rat brain microvessel endothelial cells (rBMEC) and rat aortic ring spreading. The blockade of rBMEC invasion and C6 cell-induced rBMEC migration by LDM was associated with decrease of VEGF secretion in a co-culture system. TMZ dramatically potentiated the effects of LDM on anti-proliferation, apoptosis induction, and synergistically inhibited angiogenesis events. As determined by western blot and ELISA, the interaction of tumor cells and the rBMEC was markedly interrupted by LDM plus TMZ with synergistic regulations of VEGF induced angiogenesis signal pathway, tumor cell invasion/migration, and apoptosis signal pathway. Immunofluorohistochemistry of CD31 and VEGF showed that LDM plus TMZ resulted in synergistic decrease of microvessel density (MVD) and VEGF expression in human glioma U87 cell subcutaneous xenograft. This study indicates that the high efficacy of LDM and the synergistic effects of LDM plus TMZ against glioma are mediated, at least in part, by the potentiated anti-angiogenesis. PMID:24424202

  15. Inhibition of endothelial cell apoptosis by netrin-1 during angiogenesis.

    Science.gov (United States)

    Castets, Marie; Coissieux, Marie-May; Delloye-Bourgeois, Céline; Bernard, Laure; Delcros, Jean-Guy; Bernet, Agnès; Laudet, Vincent; Mehlen, Patrick

    2009-04-01

    Netrin-1 was recently proposed to play an important role in embryonic and pathological angiogenesis. However, data reported led to the apparently contradictory conclusions that netrin-1 is either a pro- or an antiangiogenic factor. Here, we reconcile these opposing observations by demonstrating that netrin-1 acts as a survival factor for endothelial cells, blocking the proapoptotic effect of the dependence receptor UNC5B and its downstream death signaling effector, the serine/threonine kinase DAPK. The netrin-1 effect on blood vessel development is mimicked by caspase inhibitors in ex vivo assays, and the inhibition of caspase activity, the silencing of the UNC5B receptor, and the silencing of DAPK are each sufficient to rescue the vascular sprouting defects induced by netrin-1 silencing in zebrafish. Thus, the proapoptotic effect of unbound UNC5B and the survival effect of netrin-1 on endothelial cells finely tune the angiogenic process. PMID:19386270

  16. Diaminothiazoles inhibit angiogenesis efficiently by suppressing Akt phosphorylation.

    Science.gov (United States)

    Thomas, Sannu A; Thamkachy, Reshma; Ashokan, Bindu; Komalam, Reena J; Sreerekha, Keerthi V; Bharathan, Asha; Santhoshkumar, Thankayyan R; Rajasekharan, Kallikat N; Sengupta, Suparna

    2012-06-01

    The prevention of neovessel formation or angiogenesis is a recent popular strategy for limiting and curing cancer. Diaminothiazoles are a class of compounds that have been reported to show promise in the treatment of cancer by inhibiting cancer cell proliferation and inducing apoptosis, because of their effects on microtubules and as inhibitors of cyclin-dependent kinases. Many microtubule-targeting agents are being studied for their antiangiogenic activity, and a few have shown promising activity in the treatment of cancer. Here, we report that diaminothiazoles can be highly effective as antiangiogenic agents, as observed in the chick membrane assay. The lead compound, 4-amino-5-benzoyl-2-(4-methoxyphenylamino)thiazole (DAT1), inhibits endothelial cell processes such as invasion, migration, and tubule formation, which require a functional cytoskeleton. DAT1 also decreases the expression of cell adhesion markers. The antiangiogenic activities of DAT1 occur at concentrations that are not cytotoxic to the normal endothelium. Analysis of intracellular signaling pathways shows that DAT1 inhibits Akt phosphorylation, which is actively involved in the angiogenic process. The antiangiogenic properties of diaminothiazoles, in addition to their promising antimitotic and cytotoxic properties in cancer cell lines, give them an extra advantage in the treatment of cancer. PMID:22414853

  17. Antisense angiopoietin-1 inhibits tumorigenesis and angiogenesis of gastric cancer

    Institute of Scientific and Technical Information of China (English)

    Jun Wang; Kai-Chun Wu; De-Xin Zhang; Dai-Ming Fan

    2006-01-01

    AIM: To investigate the effect of angiopoietin-1 (Ang-1)on biological behaviors in vitro and tumorigenesis and angiogenesis in vitro of human gastric cancer cells.METHODS: Human full-length Ang-1 gene was cloned from human placental tissues by RT-PCR method.Recombinant human Ang-1 antisense eukaryotic expression vector was constructed by directional cloning,and transfected by lipofectin method into human gastric cancer line SGC7901 with high Ang-1 expression level.Inhibition efficiency was confirmed by semi- quantitive PCR and Western blot method. Cell growth curve and cell cycle were observed with MTT assays and flow cytometry, respectively. Nude mice tumorigenicity test was employed to compare in vitro tumorigenesis of cells with Ang-1 suppression. Microvessel density (MVD) of implanted tumor tissues was analyzed by immunohistochemistry for factor Ⅷ staining.RESULTS: Full-length Ang-1 gene was successfully cloned and stable transfectants were established,namely 7Ang1- for antisense, and 7901P for empty vector transfected. 7Ang1- cells showed down-regulated Ang-1 expression, while its in vitro proliferation and cell cycle distribution were not significantly changed.In contrast, xenograft of 7Ang1- cells in nude mice had lower volume and weight than those of 7901P after 30 days' implantation (P<0.01, 293.00±95.54 mg vs. 624.00±77.78 mg) accompanied with less vessel formation with MVD 6.00±1.73 compared to 7901P group 8.44±1.33 (P<0.01).CONCLUSION: Ang-1 may play an important role in tumorigenesis and angiogenesis of gastric cancer, and targeting its expression may be beneficial for the therapy of gastric cancer.

  18. Lonidamine Causes Inhibition of Angiogenesis-Related Endothelial Cell Functions

    Directory of Open Access Journals (Sweden)

    Donatella Del Bufalo

    2004-09-01

    Full Text Available The aim of this study was to assess whether lonidamine (LND interferes with some steps in angiogenesis progression. We report here, for the first time, that LND inhibited angiogenic-related endothelial cell functions in a dose-dependent manner (1-50 μg/ml. In particular, LND decreased proliferation, migration, invasion, and morphogenesis on matrigel of different endothelial cell lines. Zymographic and Western blot analysis assays showed that LND treatment produced a reduction in the secretion of matrix metalloproteinase-2 and metalloproteinase-9 by endothelial cells. Vessel formation in a matrigel plug was also reduced by LND. The viability, migration, invasion, and matrix metalloproteinase production of different tumor cell lines were not affected by low doses of LND (1-10 μg/ml, whereas 50 μg/ml LND, which corresponds to the dose used in clinical management of tumors, triggered apoptosis both in endothelial and tumor cells. Together, these data demonstrate that LND is a compound that interferes with endothelial cell functions, both at low and high doses. Thus, the effect of LND on endothelial cell functions, previously undescribed, may be a significant contributor to the antitumor effect of LND observed for clinical management of solid tumors.

  19. In vitro inhibition of Pseudomonas aeruginosa adhesion by Xylitol

    Directory of Open Access Journals (Sweden)

    Letícia Pinheiro de Sousa

    2011-10-01

    Full Text Available This study evaluated, in vitro, the antimicrobial activity and the anti-adherent property of xylitol (0.5, 2.5 and 5.0%, w/v on two Pseudomonas aeruginosa strains (ATCC 9027 and clinical. The assay of antimicrobial activity was performed to determine a minimum inhibitory concentration (MIC and the adhesion test was performed, by which the parameters regarding, growth in the culture medium, number of colony forming units (CFUs released and slide evaluation by scanning electron microscopy (SEM were analyzed. The Statistical Package for the Social Sciences (SPSS was employed for statistical analysis. Results showed that xylitol had no antimicrobial activity on these strains; however, the inhibition of bacterial adherence was observed in microphotographs obtained by SEM. These results indicated that xylitol could be a future alternative to combat bacterial colonization.

  20. Glipizide, an antidiabetic drug, suppresses tumor growth and metastasis by inhibiting angiogenesis

    OpenAIRE

    Qi, Cuiling; Zhou, Qin; Li, Bin; Yang, Yang; Cao, Liu; Ye, Yuxiang; Li, Jiangchao; Ding, Yi; Wang, Huiping; Wang, Jintao; He, Xiaodong; Zhang, Qianqian; Lan, Tian; Kenneth Ka Ho, Lee; Li, Weidong

    2014-01-01

    Angiogenesis is involved in the development, progression and metastasis of various human cancers. Herein, we report the discovery of glipizide, a widely used drug for type 2 diabetes mellitus, as a promising anticancer agent through the inhibition of tumor angiogenesis. By high-throughput screening (HTS) of an FDA approved drug library utilizing our in vivo chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models, glipizide has been identified to significantly inhibit bl...

  1. Characterization of antibody-mediated inhibition of Pseudomonas aeruginosa adhesion to epithelial cells.

    OpenAIRE

    Sexton, M; Reen, D J

    1992-01-01

    An enzyme-linked immunosorbent assay system was developed and used to study adhesion of Pseudomonas aeruginosa to human epithelial cells and the abilities of specific antibodies to inhibit this process. Human buccal epithelial cells coated onto microtiter plates were incubated with P. aeruginosa suspensions, and adherent bacteria were detected by using anti-P. aeruginosa serum and a horseradish peroxidase-conjugated secondary antiserum. Adhesion, quantitated as an increase in A405, varied lin...

  2. Erythropoietin Blockade Inhibits the Induction of Tumor Angiogenesis and Progression

    OpenAIRE

    Hardee, Matthew E.; Cao, Yiting; Fu, Ping; Jiang, Xiaohong; Zhao, Yulin; Rabbani, Zahid N.; Vujaskovic, Zeljko; Dewhirst, Mark W; Arcasoy, Murat O.

    2007-01-01

    Background The induction of tumor angiogenesis, a pathologic process critical for tumor progression, is mediated by multiple regulatory factors released by tumor and host cells. We investigated the role of the hematopoietic cytokine erythropoietin as an angiogenic factor that modulates tumor progression. Methodology/Principal Findings Fluorescently-labeled rodent mammary carcinoma cells were injected into dorsal skin-fold window chambers in mice, an angiogenesis model that allows direct, non-...

  3. VEGF blockade inhibits angiogenesis and reepithelialization of endometrium

    OpenAIRE

    Fan, Xiujun; Krieg, Sacha; Kuo, Calvin J.; Wiegand, Stanley J; Rabinovitch, Marlene; Druzin, Maurice L.; Brenner, Robert M.; Giudice, Linda C.; Nayak, Nihar R.

    2008-01-01

    Despite extensive literature on vascular endothelial growth factor (VEGF) expression and regulation by steroid hormones, the lack of clear understanding of the mechanisms of angiogenesis in the endometrium is a major limitation for use of antiangiogenic therapy targeting endometrial vessels. In the current work, we used the rhesus macaque as a primate model and the decidualized mouse uterus as a murine model to examine angiogenesis during endometrial breakdown and regeneration. We found that ...

  4. N-acetylcysteine inhibit biofilms produced by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Liu Youning

    2010-05-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is a common pathogen in chronic respiratory tract infections. It typically makes a biofilm, which makes treatment of these infections difficult. In this study, we investigated the inhibitory effects of N-acetylcysteine (NAC on biofilms produced by P. aeruginosa. Results We found that minimum inhibitory concentrations (MICs of NAC for most isolates of P. aeruginosa were 10 to 40 mg/ml, the combination of NAC and ciprofloxacin (CIP demonstrated either synergy (50% or no interaction (50% against the P. aeruginosa strains. NAC at 0.5 mg/ml could detach mature P. aeruginosa biofilms. Disruption was proportional to NAC concentrations, and biofilms were completely disrupted at 10 mg/ml NAC. Analysis using COMSTAT software also showed that PAO1 biofilm biomass decreased and its heterogeneity increased as NAC concentration increased. NAC and ciprofloxacin showed significant killing of P. aeruginosa in biofilms at 2.5 mg/ml and > 2 MIC, respectively (p p P. aeruginosa also decreased by 27.64% and 44.59% at NAC concentrations of 0.5 mg/ml and 1 mg/ml. Conclusions NAC has anti-bacterial properties against P. aeruginosa and may detach P. aeruginosa biofilms. Use of NAC may be a new strategy for the treatment of biofilm-associated chronic respiratory infections due to P. aeruginosa, although it would be appropriate to conduct clinical studies to confirm this.

  5. Ambroxol inhibits mucoid conversion of Pseudomonas aeruginosa and contributes to the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms.

    Science.gov (United States)

    Wang, Wenlei; Yu, Jialin; He, Yu; Wang, Zhengli; Li, Fang

    2016-07-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that can cause severe infections in immunocompromised individuals. Because it forms biofilms, which protect against host immune attack and increase resistance to conventional antibiotics, mucoid P. aeruginosa is nearly impossible to eradicate. Moreover, mucoid conversion of P. aeruginosa in cystic fibrosis (CF) patients leads to poor outcomes. This conversion is mainly due to mucA gene mutation, which is thought to be induced by polymorphonuclear leukocytes (PMNs) and the reactive oxygen species they release. Ambroxol, a mucolytic agent with antioxidant characteristics, is used clinically, and this compound has recently been demonstrated to possess anti-biofilm properties. In this study, we found that ambroxol inhibits the H2 O2 -mediated conversion of P. aeruginosa from a non-mucoid to a mucoid phenotype, an effect that is due to its antioxidant property against H2 O2 . Furthermore, the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms was increased in vitro when used in combination with ambroxol. PMID:27102839

  6. Pseudomonas aeruginosa alkaline protease degrades human gamma interferon and inhibits its bioactivity.

    OpenAIRE

    Horvat, R T; Parmely, M J

    1988-01-01

    This study was performed to determine the effect of Pseudomonas aeruginosa on gamma interferon (IFN-gamma) production by antigen-stimulated human T-cell clones. Crude bacterial filtrates prepared from certain strains of P. aeruginosa inhibited IFN-gamma production by T cells and reduced the antiviral activity of preformed IFN-gamma. Bacterial filtrates prepared from mutant strains that did not produce the exoenzyme alkaline protease (AP) did not inhibit IFN-gamma activity. The inhibitory acti...

  7. The tetrapeptide Arg-Leu-Tyr-Glu inhibits VEGF-induced angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Baek, Yi-Yong; Lee, Dong-Keon [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); So, Ju-Hoon; Kim, Cheol-Hee [Department of Biology, Chungnam National University, Daejeon, 305-764 (Korea, Republic of); Jeoung, Dooil [Department of Biochemistry, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Lee, Hansoo [Department of Life Sciences, College of Natural Sciences, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Choe, Jongseon [Department of Immunology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Won, Moo-Ho [Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Ha, Kwon-Soo [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of); Kwon, Young-Guen [Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-752 (Korea, Republic of); Kim, Young-Myeong, E-mail: ymkim@kangwon.ac.kr [Department of Molecular and Cellular Biochemistry, School of Medicine, Kangwon National University, Chuncheon, Gangwon-do, 200-702 (Korea, Republic of)

    2015-08-07

    Kringle 5, derived from plasminogen, is highly capable of inhibiting angiogenesis. Here, we have designed and synthesized 10 tetrapeptides, based on the amino acid properties of the core tetrapeptide Lys-Leu-Tyr-Asp (KLYD) originating from anti-angiogenic kringle 5 of human plasminogen. Of these, Arg-Leu-Tyr-Glu (RLYE) effectively inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation, migration and tube formation, with an IC{sub 50} of 0.06–0.08 nM, which was about ten-fold lower than that of the control peptide KLYD (0.79 nM), as well as suppressed developmental angiogenesis in a zebrafish model. Furthermore, this peptide effectively inhibited the cellular events that precede angiogenesis, such as ERK and eNOS phosphorylation and nitric oxide production, in endothelial cells stimulated with VEGF. Collectively, these data demonstrate that RLYE is a potent anti-angiogenic peptide that targets the VEGF signaling pathway. - Highlights: • The tetrapeptide RLYE inhibited VEGF-induced angiogenesis in vitro. • RLYE also suppressed neovascularization in a zebrafish model. • Its effect was correlated with inhibition of VEGF-induced ERK and eNOS activation. • RLYE may be used as a therapeutic drug for angiogenesis-related diseases.

  8. The tetrapeptide Arg-Leu-Tyr-Glu inhibits VEGF-induced angiogenesis

    International Nuclear Information System (INIS)

    Kringle 5, derived from plasminogen, is highly capable of inhibiting angiogenesis. Here, we have designed and synthesized 10 tetrapeptides, based on the amino acid properties of the core tetrapeptide Lys-Leu-Tyr-Asp (KLYD) originating from anti-angiogenic kringle 5 of human plasminogen. Of these, Arg-Leu-Tyr-Glu (RLYE) effectively inhibited vascular endothelial growth factor (VEGF)-induced endothelial cell proliferation, migration and tube formation, with an IC50 of 0.06–0.08 nM, which was about ten-fold lower than that of the control peptide KLYD (0.79 nM), as well as suppressed developmental angiogenesis in a zebrafish model. Furthermore, this peptide effectively inhibited the cellular events that precede angiogenesis, such as ERK and eNOS phosphorylation and nitric oxide production, in endothelial cells stimulated with VEGF. Collectively, these data demonstrate that RLYE is a potent anti-angiogenic peptide that targets the VEGF signaling pathway. - Highlights: • The tetrapeptide RLYE inhibited VEGF-induced angiogenesis in vitro. • RLYE also suppressed neovascularization in a zebrafish model. • Its effect was correlated with inhibition of VEGF-induced ERK and eNOS activation. • RLYE may be used as a therapeutic drug for angiogenesis-related diseases

  9. ELK3 suppresses angiogenesis by inhibiting the transcriptional activity of ETS-1 on MT1-MMP.

    Science.gov (United States)

    Heo, Sun-Hee; Cho, Je-Yoel

    2014-01-01

    Ets transcription factors play important roles in vasculogenesis and angiogenesis. Knockout of the Ets gene family members in mice resulted in disrupted angiogenesis and malformed vascular systems. In this study, the role and mechanism of ELK3, an Ets factor, in angiogenesis was investigated using ELK3-specific siRNA in human vascular endothelial cells (HUVECs) and in vivo implantation assay. The suppression of ELK3 expression resulted in the reinforcement of VEGF-induced tube formation in HUVECs. The in vivo Matrigel plug assay also showed that ELK3 knockdown resulted in increased angiogenesis. Luciferase activity of the MT1-MMP promoter induced by ETS-1 factor was attenuated ELK3 co-transfection. CHIP assay showed the binding of ELK3 on the MT1-MMP promoter. MT1-MMP knockdown in the ELK3 knockdowned cells resulted in the decrease of tube formation suggesting that MT1-MMP transcriptional repression is required for ELK3-mediated anti-angiogenesis effect. Our data also showed that the suppressive effect of ELK3 on the angiogenesis was partly due to the inhibitory effect of ELK3 to the ETS-1 transcriptional activity on the MT1-MMP promoter rather than direct suppression of ELK3 on the target gene, since the expression level of co-repressor Sin3A is low in endothelial cells. Our results suggest that ELK3 plays a negative role of VEGF-induced angiogenesis through indirectly inhibiting ETS-1 function. PMID:24719561

  10. Oridonin inhibits tumor growth and metastasis through anti-angiogenesis by blocking the Notch signaling.

    Directory of Open Access Journals (Sweden)

    Yanmin Dong

    Full Text Available While significant progress has been made in understanding the anti-inflammatory and anti-proliferative effects of the natural diterpenoid component Oridonin on tumor cells, little is known about its effect on tumor angiogenesis or metastasis and on the underlying molecular mechanisms. In this study, Oridonin significantly suppressed human umbilical vascular endothelial cells (HUVECs proliferation, migration, and apillary-like structure formation in vitro. Using aortic ring assay and mouse corneal angiogenesis model, we found that Oridonin inhibited angiogenesis ex vivo and in vivo. In our animal experiments, Oridonin impeded tumor growth and metastasis. Immunohistochemistry analysis further revealed that the expression of CD31 and vWF protein in xenografts was remarkably decreased by the Oridonin. Furthermore, Oridonin reinforced endothelial cell-cell junction and impaired breast cancer cell transendothelial migration. Mechanistically, Oridonin not only down-regulated Jagged2 expression and Notch1 activity but also decreased the expression of their target genes. In conclusion, our results demonstrated an original role of Oridonin in inhibiting tumor angiogenesis and propose a mechanism. This study also provides new evidence supporting the central role of Notch in tumor angiogenesis and suggests that Oridonin could be a potential drug candidate for angiogenesis related diseases.

  11. Toluhydroquinone, the secondary metabolite of marine algae symbiotic microorganism, inhibits angiogenesis in HUVECs.

    Science.gov (United States)

    Kim, Nan-Hee; Jung, Hyun-Il; Choi, Woo-Suk; Son, Byeng-Wha; Seo, Yong-Bae; Choi, Jae Sue; Kim, Gun-Do

    2015-03-01

    Angiogenesis, the growth of new blood vessels from the existing ones, occurs during embryo development and wound healing. However, most malignant tumors require angiogenesis for their growth and metastasis as well. Therefore, inhibition of angiogenesis has been focused as a new strategy of cancer therapies. To treat cancer, there are marine microorganism-derived secondary metabolites developed as chemotherapeutic agents. In this study, we used toluhydroquinone (2-methyl-1,4-hydroquinone), one of the secondary metabolites isolated from marine algae symbiotic fungus, Aspergillus sp. We examined the effects of toluhydroquinone on angiogenesis using HUVECs. We identified that toluhydroquinone inhibited the activity of β-catenin and down-regulated Ras/Raf/MEK/ERK signaling which are crucial components during angiogenesis. In addition, the expression and activity of MMPs are reduced by the treatment of toluhydroquinone. In conclusion, we confirmed that toluhydroquinone has inhibitory effects on angiogenic behaviors of human endothelial cells, HUVECs. Our findings suggest that toluhydroquinone can be proposed as a potent anti-angiogenesis drug candidate to treat cancers. PMID:25776491

  12. Brassinosteroids inhibit in vitro angiogenesis in human endothelial cells

    Czech Academy of Sciences Publication Activity Database

    Rárová, L.; Zahler, S.; Liebl, J.; Kryštof, Vladimír; Sedlák, David; Bartůněk, Petr; Kohout, Ladislav; Strnad, Miroslav

    2012-01-01

    Roč. 77, č. 13 (2012), s. 1502-1509. ISSN 0039-128X R&D Projects: GA MŠk(CZ) LC06077 Grant ostatní: GA MŠk(CZ) ED0007/01/01 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50520514; CEZ:AV0Z40550506 Keywords : Angiogenesis * Human umbilical vein endothelial cells * Migration Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.803, year: 2012

  13. A natural small molecule voacangine inhibits angiogenesis both in vitro and in vivo

    International Nuclear Information System (INIS)

    Highlights: ► Voacangine exhibits potent anti-angiogenic activity both in vitro and in vivo. ► Voacangine inhibits tumor-induced angiogenesis by suppressing HIF-1α. ► Voacangine could be the basis for the development of novel anti-angiogenic agents. -- Abstract: Angiogenesis, the formation of new blood vessels from pre-existing ones, plays a critical role in normal and pathological phenotypes, including solid tumor growth and metastasis. Accordingly, the development of new anti-angiogenic agents is considered an efficient strategy for the treatment of cancer and other human diseases linked with angiogenesis. We have identified voacangine, isolated from Voacanga africana, as a novel anti-angiogenic agent. Voacangine inhibits the proliferation of HUVECs at an IC50 of 18 μM with no cytotoxic effects. Voacangine significantly suppressed in vitro angiogenesis, such as VEGF-induced tube formation and chemoinvasion. Moreover, the compound inhibits in vivo angiogenesis in the chorioallantoic membrane at non-toxic doses. In addition, voacangine decreased the expression levels of hypoxia inducible factor-1α and its target gene, VEGF, in a dose-dependent manner. Taken together, these results suggest that the naturally occurring compound, voacangine, is a novel anti-angiogenic compound.

  14. Mo polyoxometalate nanoparticles inhibit tumor growth and vascular endothelial growth factor induced angiogenesis

    International Nuclear Information System (INIS)

    Tumor growth depends on angiogenesis, which can furnish the oxygen and nutrients that proliferate tumor cells. Thus, blocking angiogenesis can be an effective strategy to inhibit tumor growth. In this work, three typical nanoparticles based on polyoxometalates (POMs) have been prepared; we investigated their capability as antitumor and anti-angiogenesis agents. We found that Mo POM nanoparticles, especially complex 3, inhibited the growth of human hepatocellular liver carcinoma cells (HepG2) through cellular reactive oxygen species levels’ elevation and mitochondrial membrane potential damage. Complex 3 also suppressed the proliferation, migration, and tube formation of endothelial cells in vitro and chicken chorioallantoic membrane development ex vivo. Furthermore, western blot analysis of cell signaling molecules indicated that Mo POMs blocked the vascular endothelial growth factor receptor 2-mediated ERK1/2 and AKT signaling pathways in endothelial cells. Using transmission electron microscopy, we demonstrated their cellular uptake and localization within the cytoplasm of HepG2 cells. These results indicate that, owing to the extraordinary physical and chemical properties, Mo POM nanoparticles can significantly inhibit tumor growth and angiogenesis, which makes them potential drug candidates in anticancer and anti-angiogenesis therapies. (paper)

  15. Mo polyoxometalate nanoparticles inhibit tumor growth and vascular endothelial growth factor induced angiogenesis

    Science.gov (United States)

    Zheng, Wenjing; Yang, Licong; Liu, Ying; Qin, Xiuying; Zhou, Yanhui; Zhou, Yunshan; Liu, Jie

    2014-06-01

    Tumor growth depends on angiogenesis, which can furnish the oxygen and nutrients that proliferate tumor cells. Thus, blocking angiogenesis can be an effective strategy to inhibit tumor growth. In this work, three typical nanoparticles based on polyoxometalates (POMs) have been prepared; we investigated their capability as antitumor and anti-angiogenesis agents. We found that Mo POM nanoparticles, especially complex 3, inhibited the growth of human hepatocellular liver carcinoma cells (HepG2) through cellular reactive oxygen species levels’ elevation and mitochondrial membrane potential damage. Complex 3 also suppressed the proliferation, migration, and tube formation of endothelial cells in vitro and chicken chorioallantoic membrane development ex vivo. Furthermore, western blot analysis of cell signaling molecules indicated that Mo POMs blocked the vascular endothelial growth factor receptor 2-mediated ERK1/2 and AKT signaling pathways in endothelial cells. Using transmission electron microscopy, we demonstrated their cellular uptake and localization within the cytoplasm of HepG2 cells. These results indicate that, owing to the extraordinary physical and chemical properties, Mo POM nanoparticles can significantly inhibit tumor growth and angiogenesis, which makes them potential drug candidates in anticancer and anti-angiogenesis therapies.

  16. Dimethyl phenyl piperazine iodide (DMPP) induces glioma regression by inhibiting angiogenesis

    International Nuclear Information System (INIS)

    1,1-Dimethyl-4-phenyl piperazine iodide (DMPP) is a synthetic nicotinic acetylcholine receptor (nAChR) agonist that could reduce airway inflammation. In this study, we demonstrated that DMPP could dramatically inhibit glioma size maintained on the chick embryonic chorioallantoic membrane (CAM). We first performed MTT and BrdU incorporation experiments on U87 glioma cells in vitro to understand the mechanism involved. We established that DMPP did not significantly affect U87 cell proliferation and survival. We speculated that DMPP directly caused the tumor to regress by affecting the vasculature in and around the implanted tumor on our chick CAM model. Hence, we conducted detailed analysis of DMPP's inhibitory effects on angiogenesis. Three vasculogenesis and angiogenesis in vivo models were used in the study which included (1) early chick blood islands formation, (2) chick yolk-sac membrane (YSW) and (3) CAM models. The results revealed that DMPP directly suppressed all developmental stages involved in vasculogenesis and angiogenesis – possibly by acting through Ang-1 and HIF-2α signaling. In sum, our results show that DMPP could induce glioma regression grown on CAM by inhibiting vasculogenesis and angiogenesis. - Highlights: ●We demonstrated that DMPP inhibited the growth of glioma cells on chick CAM. ●DMPP did not significantly affect the proliferation and survival of U87 cells. ●We revealed that DMPP suppressed vasculogenesis and angiogenesis in chick embryo. ●Angiogenesis in chick CAM was inhibited by DMPP via most probably Ang-1 and HIF-2α. ●DMPP could be potentially developed as an anti-tumor drug in the future

  17. Dimethyl phenyl piperazine iodide (DMPP) induces glioma regression by inhibiting angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    He, Yan-qing; Li, Yan; Wang, Xiao-yu [Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632 (China); He, Xiao-dong [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Jun, Li [Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Chuai, Manli [Division of Cell and Developmental Biology, University of Dundee, Dundee, DD1 5EH (United Kingdom); Lee, Kenneth Ka Ho [Key Laboratory for Regenerative Medicine of the Ministry of Education, School of Biomedical Sciences, Chinese University of Hong Kong, Shatin (Hong Kong); Wang, Ju [Guangdong Provincial Key Laboratory of Bioengineering Medicine, National Engineering Research Centre of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou 510632 (China); Wang, Li-jing, E-mail: wanglijing62@163.com [Institute of Vascular Biological Sciences, Guangdong Pharmaceutical University, Guangzhou 510006 (China); Yang, Xuesong, E-mail: yang_xuesong@126.com [Key Laboratory for Regenerative Medicine of the Ministry of Education, Division of Histology and Embryology, Medical College, Jinan University, Guangzhou 510632 (China)

    2014-01-15

    1,1-Dimethyl-4-phenyl piperazine iodide (DMPP) is a synthetic nicotinic acetylcholine receptor (nAChR) agonist that could reduce airway inflammation. In this study, we demonstrated that DMPP could dramatically inhibit glioma size maintained on the chick embryonic chorioallantoic membrane (CAM). We first performed MTT and BrdU incorporation experiments on U87 glioma cells in vitro to understand the mechanism involved. We established that DMPP did not significantly affect U87 cell proliferation and survival. We speculated that DMPP directly caused the tumor to regress by affecting the vasculature in and around the implanted tumor on our chick CAM model. Hence, we conducted detailed analysis of DMPP's inhibitory effects on angiogenesis. Three vasculogenesis and angiogenesis in vivo models were used in the study which included (1) early chick blood islands formation, (2) chick yolk-sac membrane (YSW) and (3) CAM models. The results revealed that DMPP directly suppressed all developmental stages involved in vasculogenesis and angiogenesis – possibly by acting through Ang-1 and HIF-2α signaling. In sum, our results show that DMPP could induce glioma regression grown on CAM by inhibiting vasculogenesis and angiogenesis. - Highlights: ●We demonstrated that DMPP inhibited the growth of glioma cells on chick CAM. ●DMPP did not significantly affect the proliferation and survival of U87 cells. ●We revealed that DMPP suppressed vasculogenesis and angiogenesis in chick embryo. ●Angiogenesis in chick CAM was inhibited by DMPP via most probably Ang-1 and HIF-2α. ●DMPP could be potentially developed as an anti-tumor drug in the future.

  18. MicroRNA-17~92 inhibits colorectal cancer progression by targeting angiogenesis.

    Science.gov (United States)

    Ma, Huabin; Pan, Jin-Shui; Jin, Li-Xin; Wu, Jianfeng; Ren, Yan-Dan; Chen, Pengda; Xiao, Changchun; Han, Jiahuai

    2016-07-01

    The miR-17~92 microRNA (miRNA) cluster host gene is upregulated in a broad spectrum of human cancers including colorectal cancer (CRC). Previous studies have shown that miR-17~92 promotes tumorigenesis and cancer angiogenesis in some tumor models. However, its role in the initiation and progression of CRC remains unknown. In this study, we found that transgenic mice overexpressing miR-17~92 specifically in epithelial cells of the small and large intestines exhibited decreased tumor size and tumor angiogenesis in azoxymethane and dextran sulfate sodium salt (AOM-DSS)-induced CRC model as compared to their littermates control. Further study showed that miR-17~92 inhibited the progression of CRC via suppressing tumor angiogenesis through targeting multiple tumor angiogenesis-inducing genes, TGFBR2, HIF1α, and VEGFA in vivo and in vitro. Collectively, we demonstrated that miR-17~92 suppressed tumor progression by inhibiting tumor angiogenesis in a genetically engineered mouse model, indicating the presence of cellular context-dependent pro- and anti-cancer effects of miR-17~92. PMID:27080303

  19. Hedyotis diffusa Willd extract suppresses Sonic hedgehog signaling leading to the inhibition of colorectal cancer angiogenesis.

    Science.gov (United States)

    Lin, Jiumao; Wei, Lihui; Shen, Aling; Cai, Qiaoyan; Xu, Wei; Li, Huang; Zhan, Youzhi; Hong, Zhenfeng; Peng, Jun

    2013-02-01

    Sonic hedgehog (SHH) signaling pathway promotes the process of angiogenesis, contributing to the growth and progression of many human malignancies including colorectal cancer (CRC), which therefore has become a promising target for cancer chemotherapy. Hedyotis diffusa Willd (HDW), as a well-known traditional Chinese herbal medicine, has long been used in China for the clinic treatment of various cancers. Recently, we reported that HDW can inhibit colorectal cancer growth in vivo and in vitro via suppression of the STAT3 pathway. In addition, we demonstrated the anti-angiogenic activity of HDW in vitro. To further elucidate the mechanism of the tumoricidal activity of HDW, by using a CRC mouse xenograft model we evaluated the in vivo effect of the ethanol extract of HDW (EEHDW) on tumor angiogenesis, and investigated the underlying molecular mechanisms. We found that EEHDW could significantly reduce intratumoral microvessel density (MVD), indicating its activity of antitumor angiogenesis in vivo. EEHDW suppressed the activation of SHH signaling in CRC xenograft tumors since it significantly decreased the expression of key mediators of SHH pathway. EEHDW treatment inhibited the expression of the critical SHH signaling target gene VEGF-A as well as its specific receptor VEGFR2. Taken together, we propose for the first time that Hedyotis diffusa Willd inhibits colorectal cancer growth in vivo via inhibition of SHH-mediated tumor angiogenesis. PMID:23291612

  20. Downregulation of Focal Adhesion Kinase (FAK) by cord blood stem cells inhibits angiogenesis in glioblastoma

    OpenAIRE

    Dasari, Venkata Ramesh; Kaur, Kiranpreet; Velpula, Kiran Kumar; Dinh, Dzung H.; Andrew J Tsung; Mohanam, Sanjeeva; Rao, Jasti S.

    2010-01-01

    Angiogenesis involves the formation of new blood vessels by rerouting or remodeling existing ones and is believed to be the primary method of vessel formation in gliomas. To study the mechanisms by which angiogenesis of glioma cells can be inhibited by human umbilical cord blood stem cells (hUCBSC), we studied two glioma cell lines (SNB19, U251) and a glioma xenograft cell line (5310) alone and in co-culture with hUCBSC. Conditioned media from co-cultures of glioma cells with hUCBSC showed re...

  1. Angiogenesis inhibition causes hypertension and placental dysfunction in a rat model of preeclampsia

    DEFF Research Database (Denmark)

    Carlström, Mattias; Wentzel, Parri; Skøtt, Ole; Persson, A Erik G; Eriksson, Ulf J

    2009-01-01

    and fetal outcome exerted by the angiogenesis inhibitor Suramin (100 mg/kg i.p.) during early placentation. Blood pressure and heart rate were measured continuously with telemetry in Sprague-Dawley rats of four experimental groups: nonpregnant controls, Suramin-treated nonpregnant rats, pregnant...... the mesometrial triangle was smaller in the pregnant Suramin-treated rats group than in the pregnant control rats group. CONCLUSION: The inhibition of uterine angiogenesis increases maternal blood pressure and compromises fetal and placental development. Placental hypoxia and subsequent activation of...

  2. Photodynamic antimicrobial therapy to inhibit pseudomonas aeruginosa of corneal isolates (Conference Presentation)

    Science.gov (United States)

    Durkee, Heather A.; Relhan, Nidhi; Arboleda, Alejandro; Halili, Francisco; De Freitas, Carolina; Alawa, Karam; Aguilar, Mariela C.; Amescua, Guillermo; Miller, Darlene; Parel, Jean-Marie

    2016-03-01

    Keratitis associated with Pseudomonas aeruginosa is difficult to manage. Treatment includes antibiotic eye drops, however, some strains of Pseudomonas aeruginosa are resistant. Current research efforts are focused on finding alternative and adjunct therapies to treat multi-drug resistant bacteria. One promising alternate technique is photodynamic therapy (PDT). The purpose of this study was to evaluate the effect of riboflavin- and rose bengal-mediated PDT on Pseudomonas aeruginosa keratitis isolates in vitro. Two isolates (S+U- and S-U+) of Pseudomonas aeruginosa were derived from keratitis patients and exposed to five experimental groups: (1) Control (dark, UV-A irradiation, 525nm irradiation); (2) 0.1% riboflavin (dark, UV-A irradiation); and (3) 0.1% rose bengal, (4) 0.05% rose bengal and (5) 0.01% rose bengal (dark, 525nm irradiation). Three days after treatment, in dark conditions of all concentration of riboflavin and rose bengal showed no inhibition in both S+U- and S-U+ strains of Pseudomonas aeruginosa. In 0.1% and 0.05% rose bengal irradiated groups, for both S+U- and S-U+ strains, there was complete inhibition of bacterial growth in the central 50mm zone corresponding to the diameter of the green light source. These in vitro results suggest that rose bengal photodynamic therapy may be an effective adjunct treatment for Pseudomonas aeruginosa keratitis.

  3. Growth inhibition and oxidative damage of Microcystis aeruginosa induced by crude extract of Sagittaria trifolia tubers.

    Science.gov (United States)

    Li, Jiang; Liu, Yunguo; Zhang, Pingyang; Zeng, Guangming; Cai, Xiaoxi; Liu, Shaobo; Yin, Yicheng; Hu, Xinjiang; Hu, Xi; Tan, Xiaofei

    2016-05-01

    Aquatic macrophytes are considered to be promising in controlling harmful cyanobacterial blooms. In this research, an aqueous extract of Sagittaria trifolia tubers was prepared to study its inhibitory effect on Microcystis aeruginosa in the laboratory. Several physiological indices of M. aeruginosa, in response to the environmental stress, were analyzed. Results showed that S. trifolia tuber aqueous extract significantly inhibited the growth of M. aeruginosa in a concentration-dependent way. The highest inhibition rate reached 90% after 6 day treatment. The Chlorophyll-a concentration of M. aeruginosa cells decreased from 343.1 to 314.2μg/L in the treatment group. The activities of superoxide dismutase and peroxidase and the content of reduced glutathione in M. aeruginosa cells initially increased as a response to the oxidative stress posed by S. trifolia tuber aqueous extract, but then decreased as time prolonged. The lipid peroxidation damage of the cyanobacterial cell membranes was reflected by the malondialdehyde level, which was notably higher in the treatment group compared with the controls. It was concluded that the oxidative damage of M. aeruginosa induced by S. trifolia tuber aqueous extract might be one of the mechanisms for the inhibitory effects. PMID:27155407

  4. Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo

    Directory of Open Access Journals (Sweden)

    Grodzik M

    2011-11-01

    Full Text Available Marta Grodzik1, Ewa Sawosz1, Mateusz Wierzbicki1, Piotr Orlowski1, Anna Hotowy2, Tomasz Niemiec1, Maciej Szmidt3, Katarzyna Mitura4, André Chwalibog21Division of Biotechnology and Biochemistry of Nutrition, Warsaw University of Life Sciences, Warsaw, Poland; 2Department of Basic Animal and Veterinary Science, University of Copenhagen, Copenhagen, Denmark; 3Division of Histology and Embryology, Warsaw University of Life Sciences, Warsaw, Poland; 4Department of Biomedical Engineering, Koszalin University of Technology, Koszalin, PolandAbstract: The objective of the study was to determine the effect of carbon nanoparticles produced by different methods on the growth of brain tumor and the development of blood vessels. Glioblastoma multiforme cells were cultured on the chorioallantoic membrane of chicken embryo and after 7 days of incubation, were treated with carbon nanoparticles administered in ovo to the tumor. Both types of nanoparticles significantly decreased tumor mass and volume, and vessel area. Quantitative real-time polymerase chain reaction analysis showed downregulated fibroblast growth factor-2 and vascular endothelial growth factor expression at the messenger ribonucleic acid level. The present results demonstrate antiangiogenic activity of carbon nanoparticles, making them potential factors for anticancer therapy.Keywords: cancer, nanoparticle, embryo, angiogenesis, FGF-2, VEGF

  5. Chemical Inhibition of Kynureninase Reduces Pseudomonas aeruginosa Quorum Sensing and Virulence Factor Expression.

    Science.gov (United States)

    Kasper, Stephen H; Bonocora, Richard P; Wade, Joseph T; Musah, Rabi Ann; Cady, Nathaniel C

    2016-04-15

    The opportunistic pathogen Pseudomonas aeruginosa utilizes multiple quorum sensing (QS) pathways to coordinate an arsenal of virulence factors. We previously identified several cysteine-based compounds inspired by natural products from the plant Petiveria alliacea which are capable of antagonizing multiple QS circuits as well as reducing P. aeruginosa biofilm formation. To understand the global effects of such compounds on virulence factor production and elucidate their mechanism of action, RNA-seq transcriptomic analysis was performed on P. aeruginosa PAO1 exposed to S-phenyl-l-cysteine sulfoxide, the most potent inhibitor from the prior study. Exposure to this inhibitor down-regulated expression of several QS-regulated virulence operons (e.g., phenazine biosynthesis, type VI secretion systems). Interestingly, many genes that were differentially regulated pertain to the related metabolic pathways that yield precursors of pyochelin, tricarboxylic acid cycle intermediates, phenazines, and Pseudomonas quinolone signal (PQS). Activation of the MexT-regulon was also indicated, including the multidrug efflux pump encoded by mexEF-oprN, which has previously been shown to inhibit QS and pathogenicity. Deeper investigation of the metabolites involved in these systems revealed that S-phenyl-l-cysteine sulfoxide has structural similarity to kynurenine, a precursor of anthranilate, which is critical for P. aeruginosa virulence. By supplementing exogenous anthranilate, the QS-inhibitory effect was reversed. Finally, it was shown that S-phenyl-l-cysteine sulfoxide competitively inhibits P. aeruginosa kynureninase (KynU) activity in vitro and reduces PQS production in vivo. The kynurenine pathway has been implicated in P. aeruginosa QS and virulence factor expression; however, this is the first study to show that targeted inhibition of KynU affects P. aeruginosa gene expression and QS, suggesting a potential antivirulence strategy. PMID:26785289

  6. In vitro inhibition of Pseudomonas aeruginosa adhesion by Xylitol

    OpenAIRE

    Letícia Pinheiro de Sousa; Annelisa Farah da Silva; Natalia Oliveira Calil; Murilo Gomes Oliveira; Silvio Silvério da Silva; Nádia Rezende Barbosa Raposo

    2011-01-01

    This study evaluated, in vitro, the antimicrobial activity and the anti-adherent property of xylitol (0.5, 2.5 and 5.0%, w/v) on two Pseudomonas aeruginosa strains (ATCC 9027 and clinical). The assay of antimicrobial activity was performed to determine a minimum inhibitory concentration (MIC) and the adhesion test was performed, by which the parameters regarding, growth in the culture medium, number of colony forming units (CFUs) released and slide evaluation by scanning electron microscopy (...

  7. Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2’-bipyridyl, lipoic, kojic and picolinic acids

    Directory of Open Access Journals (Sweden)

    Kübra Çevik

    2015-08-01

    Full Text Available Objective(s:The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. Materials and Methods:The inhibitory activity of 2,2’-bipyridyl, lipoic acid, kojic acid and picolinic acidonbiofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginosa  PAK01,P. aeruginosa PAK02 and P. aeruginosa PAK03 were investigated, based on crystal violet assay, and swarming motility test. Results:The kojic, lipoic and picolinic acid inhibited biofilm formation by 5-33% in all tested P. aeruginosa isolates. When chelated iron was added, biofilm inhibition rates were determined to be 39-57%. Among the tested chelators against P. aeruginosa, lipoic acid (84% and kojic acid (68% presented the highest inhibition of swarming motility. This is the first study to report the inhibitory effect of lipoic acid on biofilm formation and swarming motility of P. aeruginosa. Conclusion: It is considered that lipoic and picolinic acids can serve as alternatives for the treatment of the P. aeruginosa infections by inhibiting biofilm formation.

  8. Glipizide suppresses prostate cancer progression in the TRAMP model by inhibiting angiogenesis.

    Science.gov (United States)

    Qi, Cuiling; Bin Li; Yang, Yang; Yang, Yongxia; Li, Jialin; Zhou, Qin; Wen, Yinxin; Zeng, Cuiling; Zheng, Lingyun; Zhang, Qianqian; Li, Jiangchao; He, Xiaodong; Zhou, Jia; Shao, Chunkui; Wang, Lijing

    2016-01-01

    Drug repurposing of non-cancer drugs represents an attractive approach to develop new cancer therapy. Using the TRAMP transgenic mouse model, glipizide, a widely used drug for type 2 diabetes mellitus, has been identified to suppress prostate cancer (PC) growth and metastasis. Angiogenesis is intimately associated with various human cancer developments. Intriguingly, glipizide significantly reduces microvessel density in PC tumor tissues, while not inhibiting prostate cancer cell proliferation from the MTT assay and flow cytometry investigation. Moreover, glipizide inhibits the tubular structure formation of human umbilical vein endothelial cells by regulating the HMGIY/Angiopoietin-1 signaling pathway. Taken together, these results demonstrate that glipizide has the potential to be repurposed as an effective therapeutic for the treatment of PC by targeting tumor-induced angiogenesis. PMID:27292155

  9. Blockade of Wnt signaling inhibits angiogenesis and tumor growth in hepatocellular carcinoma

    OpenAIRE

    J. Hu; Dong, A.; Fernandez-Ruiz, V. (Verónica); Shan, J.; Kawa, M. (Milosz); Martinez-Anso, E. (Eduardo); J. Prieto; Qian, C

    2009-01-01

    Aberrant activation of Wnt signaling plays an important role in hepatocarcinogenesis. In addition to direct effects on tumor cells, Wnt signaling might be involved in the organization of tumor microenvironment. In this study, we have explored whether Wnt signaling blockade by exogenous expression of Wnt antagonists could inhibit tumor angiogenesis and control tumor growth. Human Wnt inhibitory factor 1 (WIF1) and secreted frizzled-related protein 1 (sFRP1) were each fused with Fc fragment of ...

  10. Glipizide suppresses prostate cancer progression in the TRAMP model by inhibiting angiogenesis

    OpenAIRE

    Cuiling Qi; Bin Li; Yang Yang; Yongxia Yang; Jialin Li; Qin Zhou; Yinxin Wen; Cuiling Zeng; Lingyun Zheng; Qianqian Zhang; Jiangchao Li; Xiaodong He; Jia Zhou; Chunkui Shao; Lijing Wang

    2016-01-01

    Drug repurposing of non-cancer drugs represents an attractive approach to develop new cancer therapy. Using the TRAMP transgenic mouse model, glipizide, a widely used drug for type 2 diabetes mellitus, has been identified to suppress prostate cancer (PC) growth and metastasis. Angiogenesis is intimately associated with various human cancer developments. Intriguingly, glipizide significantly reduces microvessel density in PC tumor tissues, while not inhibiting prostate cancer cell proliferatio...

  11. Lonidamine Causes Inhibition of Angiogenesis-Related Endothelial Cell Functions1

    OpenAIRE

    Del Bufalo, Donatella; Trisciuoglio, Daniela; Scarsella, Marco; d'Amati, Giulia; Candiloro, Antonio; Iervolino, Angela; Leonetti, Carlo; Zupi, Gabriella

    2004-01-01

    The aim of this study was to assess whether lonidamine (LND) interferes with some steps in angiogenesis progression. We report here, for the first time, that LND inhibited angiogenic-related endothelial cell functions in a dose-dependent manner (1–50 µg/ml). In particular, LND decreased proliferation, migration, invasion, and morphogenesis on matrigel of different endothelial cell lines. Zymographic and Western blot analysis assays showed that LND treatment produced a reduction in the secreti...

  12. SNS-032 Prevents Tumor Cell-Induced Angiogenesis By Inhibiting Vascular Endothelial Growth Factor

    Directory of Open Access Journals (Sweden)

    M. Aktar Ali

    2007-05-01

    Full Text Available Cell proliferation, migration, and capillary network formation of endothelial cells are the fundamental steps for angiogenesis, which involves the formation of new blood vessels. The purpose of this study is to investigate the effect of a novel aminothiazole SNS-032 on these critical steps for in vitro angiogenesis using a coculture system consisting of human umbilical vein endothelial cells (HUVECs and human glioblastoma cells (U87MG. SNS-032 is a potent selective inhibitor of cyclin-dependent kinases 2, 7, and 9, and inhibits both transcription and cell cycle. In this study, we examined the proliferation and viability of HUVECs and U87MG cells in the presence of SNS-032 and observed a dose-dependent inhibition of cellular proliferation in both cell lines. SNS-032 inhibited threedimensional capillary network formations of endothelial cells. In a coculture study, SNS-032 completely prevented U87MG cell-mediated capillary formation of HUVECs. This inhibitor also prevented the migration of HUVECs when cultured alone or cocultured with U87MG cells. In addition, SNS-032 significantly prevented the production of vascular endothelial growth factor (VEGF in both cell lines, whereas SNS-032 was less effective in preventing capillary network formation and migration of endothelial cells when an active recombinant VEGF was added to the medium. In conclusion, SNS-032 prevents in vitro angiogenesis, and this action is attributable to blocking of VEGF.

  13. Inhibition of PAI-1 Limits Tumor Angiogenesis Regardless of Angiogenic Stimuli in Malignant Pleural Mesothelioma.

    Science.gov (United States)

    Takayama, Yusuke; Hattori, Noboru; Hamada, Hironobu; Masuda, Takeshi; Omori, Keitaro; Akita, Shin; Iwamoto, Hiroshi; Fujitaka, Kazunori; Kohno, Nobuoki

    2016-06-01

    Malignant pleural mesothelioma (MPM) is an aggressive malignant tumor that secretes various angiogenic factors. The main inhibitor of plasminogen activators, PAI-1 (SERPINE1), has been implicated in tumor progression and angiogenesis, and high PAI-1 expression has been associated with poor prognosis in MPM patients. In this study, we examined the antiangiogenic effects of PAI-1 inhibition in MPM. We administered the PAI-1 inhibitor, SK-216, to orthotopic mouse models in which MPM cells expressing high levels of VEGF (VEGFA) or bFGF (FGF2) were intrapleurally transplanted. SK-216 administration reduced tumor weights and the degree of angiogenesis in intrapleural tumors, irrespective of their angiogenic expression profiles. In addition, a combination of SK-216 and the chemotherapeutic agent cisplatin significantly reduced tumor weights compared with monotherapy, prolonging the survival of animals compared with cisplatin treatment alone. Furthermore, SK-216 inhibited migration and tube formation of cultured human umbilical vein endothelial cells induced by various angiogenic factors known to be secreted by MPM. These findings suggest that PAI-1 inactivation by SK-216 may represent a general strategy for inhibiting angiogenesis, including for the treatment of MPM. Cancer Res; 76(11); 3285-94. ©2016 AACR. PMID:27197170

  14. Microbial Growth Inhibition by Alternating Electric Fields in Mice with Pseudomonas aeruginosa Lung Infection▿ †

    OpenAIRE

    Giladi, Moshe; Porat, Yaara; Blatt, Alexandra; Shmueli, Esther; Wasserman, Yoram; Kirson, Eilon D; Palti, Yoram

    2010-01-01

    High-frequency, low-intensity electric fields generated by insulated electrodes have previously been shown to inhibit bacterial growth in vitro. In the present study, we tested the effect of these antimicrobial fields (AMFields) on the development of lung infection caused by Pseudomonas aeruginosa in mice. We demonstrate that AMFields (10 MHz) significantly inhibit bacterial growth in vivo, both as a stand-alone treatment and in combination with ceftazidime. In addition, we show that peripher...

  15. Expeditive synthesis of trithiotriazine-cored glycoclusters and inhibition of Pseudomonas aeruginosa biofilm formation

    Directory of Open Access Journals (Sweden)

    Meriem Smadhi

    2014-08-01

    Full Text Available Readily accessible, low-valency glycoclusters based on a triazine core bearing D-galactose and L-fucose epitopes are able to inhibit biofilm formation by Pseudomonas aeruginosa. These multivalent ligands are simple to synthesize, are highly soluble, and can be either homofunctional or heterofunctional. The galactose-decorated cluster shows good affinity for Pseudomonas aeruginosa lectin lecA. They are convenient biological probes for investigating the roles of lecA and lecB in biofilm formation.

  16. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Fang; Li, Xiuli [Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing (China); Kong, Jian [Department of Hepatobiliary Surgery, Beijing Chaoyang Hospital, Capital Medical University, Beijing (China); Pan, Bing [The Institute of Cardiovascular Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Sun, Min [Department of Obstetrics and Gynecology, Tangdu Hospital, Fourth Military Medical University, Xian (China); Zheng, Lemin, E-mail: zhengl@bjmu.edu.cn [The Institute of Cardiovascular Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing (China); Yao, Yuanqing, E-mail: yqyao@126.com [Department of Obstetrics and Gynecology, Chinese PLA General Hospital, Beijing (China)

    2013-11-08

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA{sub 3.1} empty vector, pcDNA{sub 3.1}-VEGF111b or pcDNA{sub 3.1}-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth.

  17. VEGF111b, a new member of VEGFxxxb isoforms and induced by mitomycin C, inhibits angiogenesis

    International Nuclear Information System (INIS)

    Highlights: •We discovered a new member of VEGFxxxb family-VEGF111b. •We found VEGF111b mRNA and protein can be induced by mitomycin C. •We confirmed VEGF111b over-expression inhibits angiogenesis. •VEGF111b inhibits angiogenesis through inhibiting VEGF-R2/PI3K/Akt and VEGF-R2/ERK1/2 phosphorylation. -- Abstract: Vascular endothelial growth factor (VEGF-A) stimulating angiogenesis is required for tumor growth and progression. The conventional VEGF-A isoforms have been considered as pro-angiogenic factors. Another family of VEGF-A isoforms generated by alternative splicing, termed VEGFxxxb isoforms, has anti-angiogenic property, exemplified by VEGF165b. Here, we identify a new number of VEGFxxx family-VEGF111b induced by mitomycin C, although not detected in mitomycin C-unexposed ovarian cancer cells. SKOV3 cells were transfected with pcDNA3.1 empty vector, pcDNA3.1-VEGF111b or pcDNA3.1-VEGF165b to collect conditioned mediums respectively. VEGF111b overexpression inhibits proliferation, migration and tube formation of endothelial cell by inhibiting VEGF-R2 phosphorylation and its downstream signaling, similar to VEGF165b but slightly lower than VEGF165b. The anti-angiogenic property depends on the six amino acids of exon 8b of the VEGFxxxb isoforms. Our results show that VEGF111b is a novel potent anti-angiogenic agent that can target the VEGF-R2 and its signaling pathway to inhibit ovarian tumor growth

  18. Glipizide, an antidiabetic drug, suppresses tumor growth and metastasis by inhibiting angiogenesis.

    Science.gov (United States)

    Qi, Cuiling; Zhou, Qin; Li, Bin; Yang, Yang; Cao, Liu; Ye, Yuxiang; Li, Jiangchao; Ding, Yi; Wang, Huiping; Wang, Jintao; He, Xiaodong; Zhang, Qianqian; Lan, Tian; Lee, Kenneth Ka Ho; Li, Weidong; Song, Xiaoyu; Zhou, Jia; Yang, Xuesong; Wang, Lijing

    2014-10-30

    Angiogenesis is involved in the development, progression and metastasis of various human cancers. Herein, we report the discovery of glipizide, a widely used drug for type 2 diabetes mellitus, as a promising anticancer agent through the inhibition of tumor angiogenesis. By high-throughput screening (HTS) of an FDA approved drug library utilizing our in vivo chick embryo chorioallantoic membrane (CAM) and yolk sac membrane (YSM) models, glipizide has been identified to significantly inhibit blood vessel formation and development. Moreover, glipizide was found to suppress tumor angiogenesis, tumor growth and metastasis using xenograft tumor and MMTV-PyMT transgenic mouse models. We further revealed that the anticancer capability of glipizide is not attributed to its antiproliferative effects, which are not significant against various human cancer cell lines. To investigate whether its anticancer efficacy is associated with the glucose level alteration induced by glipizide application, glimepiride, another medium to long-acting sulfonylurea antidiabetic drug in the same class, was employed for the comparison studies in the same fashion. Interestingly, glimepiride has demonstrated no significant impact on the tumor growth and metastasis, indicating that the anticancer effects of glipizide is not ascribed to its antidiabetic properties. Furthermore, glipizide suppresses endothelial cell migration and the formation of tubular structures, thereby inhibiting angiogenesis by up-regulating the expression of natriuretic peptide receptor A. These findings uncover a novel mechanism of glipizide as a potential cancer therapy, and also for the first time, provide direct evidence to support that treatment with glipizide may reduce the cancer risk for diabetic patients. PMID:25294818

  19. Silencing cathepsin S gene expression inhibits growth, invasion and angiogenesis of human hepatocellular carcinoma in vitro

    International Nuclear Information System (INIS)

    Highlights: ► Cat S is highly expressed in HCC cells with high metastatic potential. ► Knockdown of Cat S inhibits growth and invasion of HCC cells. ► Knockdown of Cat S inhibits HCC-associated angiogenesis. ► Cat S might be a potential target for HCC therapy. -- Abstract: Cathepsin S (Cat S) plays an important role in tumor invasion and metastasis by its ability to degrade extracellular matrix (ECM). Our previous study suggested there could be a potential association between Cat S and hepatocellular carcinoma (HCC) metastasis. The present study was designed to determine the role of Cat S in HCC cell growth, invasion and angiogenesis, using RNA interference technology. Small interfering RNA (siRNA) sequences for the Cat S gene were synthesized and transfected into human HCC cell line MHCC97-H. The Cat S gene targeted siRNA-mediated knockdown of Cat S expression, leading to potent suppression of MHCC97-H cell proliferation, invasion and angiogenesis. These data suggest that Cat S might be a potential target for HCC therapy.

  20. Silencing cathepsin S gene expression inhibits growth, invasion and angiogenesis of human hepatocellular carcinoma in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Qi; Wang, Xuedi; Zhang, Hanguang; Li, Chuanwei [Department of Hepatobiliary and Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021 (China); Fan, Junhua [Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021 (China); Xu, Jing, E-mail: jxuapr@yahoo.com.cn [Department of Hepatobiliary and Vascular Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021 (China)

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Cat S is highly expressed in HCC cells with high metastatic potential. Black-Right-Pointing-Pointer Knockdown of Cat S inhibits growth and invasion of HCC cells. Black-Right-Pointing-Pointer Knockdown of Cat S inhibits HCC-associated angiogenesis. Black-Right-Pointing-Pointer Cat S might be a potential target for HCC therapy. -- Abstract: Cathepsin S (Cat S) plays an important role in tumor invasion and metastasis by its ability to degrade extracellular matrix (ECM). Our previous study suggested there could be a potential association between Cat S and hepatocellular carcinoma (HCC) metastasis. The present study was designed to determine the role of Cat S in HCC cell growth, invasion and angiogenesis, using RNA interference technology. Small interfering RNA (siRNA) sequences for the Cat S gene were synthesized and transfected into human HCC cell line MHCC97-H. The Cat S gene targeted siRNA-mediated knockdown of Cat S expression, leading to potent suppression of MHCC97-H cell proliferation, invasion and angiogenesis. These data suggest that Cat S might be a potential target for HCC therapy.

  1. Low Molecular Weight Fucoidan Inhibits Tumor Angiogenesis through Downregulation of HIF-1/VEGF Signaling under Hypoxia

    Directory of Open Access Journals (Sweden)

    Meng-Chuan Chen

    2015-07-01

    Full Text Available Activation of hypoxia-induced hypoxia-inducible factors-1 (HIF-1 plays a critical role in promoting tumor angiogenesis, growth and metastasis. Low molecular weight fucoidan (LMWF is prepared from brown algae, and exhibits anticancer activity. However, whether LMWF attenuates hypoxia-induced angiogenesis in bladder cancer cells and the molecular mechanisms involved remain unclear. This is the first study to demonstrate that LMWF can inhibit hypoxia-stimulated H2O2 formation, HIF-1 accumulation and transcriptional activity vascular endothelial growth factor (VEGF secretion, and the migration and invasion in hypoxic human bladder cancer cells (T24 cells. LMWF also downregulated hypoxia-activated phosphorylation of PI3K/AKT/mTOR/p70S6K/4EBP-1 signaling in T24 cells. Blocking PI3K/AKT or mTOR activity strongly diminished hypoxia-induced HIF-1α expression and VEGF secretion in T24 cells, supporting the involvement of PI3K/AKT/mTOR in the induction of HIF-1α and VEGF. Additionally, LMWF significantly attenuated angiogenesis in vitro and in vivo evidenced by reduction of tube formation of hypoxic human umbilical vascular endothelial cells and blood capillary generation in the tumor. Similarly, administration of LMWF also inhibited the HIF-1α and VEGF expression in vivo, accompanied by a reduction of tumor growth. In summary, under hypoxia conditions, the antiangiogenic activity of LMWF in bladder cancer may be associated with suppressing HIF-1/VEGF-regulated signaling pathway.

  2. A Novel Potent Oral Series of VEGFR2 Inhibitors Abrogate Tumor Growth by Inhibiting Angiogenesis.

    Science.gov (United States)

    Bold, Guido; Schnell, Christian; Furet, Pascal; McSheehy, Paul; Brüggen, Josef; Mestan, Jürgen; Manley, Paul W; Drückes, Peter; Burglin, Marion; Dürler, Ursula; Loretan, Jacqueline; Reuter, Robert; Wartmann, Markus; Theuer, Andreas; Bauer-Probst, Beatrice; Martiny-Baron, Georg; Allegrini, Peter; Goepfert, Arnaud; Wood, Jeanette; Littlewood-Evans, Amanda

    2016-01-14

    This paper describes the identification of 6-(pyrimidin-4-yloxy)-naphthalene-1-carboxamides as a new class of potent and selective human vascular endothelial growth factor receptor 2 (VEGFR2) tyrosine kinase inhibitors. In biochemical and cellular assays, the compounds exhibit single-digit nanomolar potency toward VEGFR2. Compounds of this series show good exposure in rodents when dosed orally. They potently inhibit VEGF-driven angiogenesis in a chamber model and rodent tumor models at daily doses of less than 3 mg/kg by targeting the tumor vasculature as demonstrated by ELISA for TIE-2 in lysates or by immunohistochemical analysis. This novel series of compounds shows a potential for the treatment of solid tumors and other diseases where angiogenesis plays an important role. PMID:26629594

  3. Quercetin inhibits angiogenesis by targeting calcineurin in the xenograft model of human breast cancer.

    Science.gov (United States)

    Zhao, Xin; Wang, Qiuting; Yang, Shijun; Chen, Chen; Li, Xiaoya; Liu, Jinyu; Zou, Zhongmei; Cai, Dayong

    2016-06-15

    Vascular endothelial growth factor receptor 2 (VEGFR2) mediated calcineurin/nuclear factor of activated T-cells (NFAT) pathway is crucial in the angiogenesis of human breast cancer. Quercetin (Qu), a flavonoid known to possess anti-angiogenesis and antitumor properties, inhibited calcineurin activity in vitro. Herein, we performed a study in vivo to evaluate the effects of Qu on the angiogenesis in breast cancer. Female BALB/c nude mice were injected with MCF-7 cells into the mammary fat and were randomly divided into four groups. The animals were treated with vehicle solution, tamoxifen (TAM, 5.6mg/kg), tacrolimus (FK506, 3mg/kg), or Qu (34mg/kg) for 21 days, respectively. The results showed that, similar to TAM and FK506, Qu decreased tumor growth, limited oncocyte proliferation and promoted tumor necrosis. Anti-angiogenic actions of Qu were demonstrated as decreased serum VEGF (P0.05). Effects of Qu on calcineurin/NFAT pathway were confirmed as decreased subcellular located levels of VEGF (Pangiogenesis of human breast cancer xenograft in nude mice, which was associated with suppressing calcineurin activity and its regulated pathway activation. PMID:27041643

  4. Flavonoids from the leaves of Carya cathayensis Sarg. inhibit vascular endothelial growth factor-induced angiogenesis.

    Science.gov (United States)

    Tian, Sha-Sha; Jiang, Fu-Sheng; Zhang, Kun; Zhu, Xue-Xin; Jin, Bo; Lu, Jin-Jian; Ding, Zhi-Shan

    2014-01-01

    The total flavonoids (TFs) were isolated from the leaves of Carya cathayensis Sarg. (LCC), a well-known Chinese medicinal herb commercially cultivated in Tianmu Mountain district, a cross area of Zhejiang and Anhui provinces in China. Five flavonoids, i.e. cardamonin, pinostrobin chalcone (PC), wogonin, chrysin, and pinocembrin were the main components of the TFs. The TFs and these pure compounds suppressed vascular endothelial growth factor (VEGF)-induced angiogenesis as detected in the mouse aortic ring assay, and cardamonin showed the best effect among them. To further elucidate the mechanisms for suppressing angiogenesis of these flavonoids, assays of VEGF-induced proliferation and migration in human umbilical vein endothelial cells (HUVECs) were performed. The TFs, cardamonin, pinocembrin, and chrysin obviously suppressed both VEGF-induced HUVEC proliferation and migration. However, PC and wogonin not only slightly inhibited VEGF-induced proliferation but also remarkably suppressed those of migration in HUVECs. Our further study showed that cardamonin decreased the phosphorylation of ERK and AKT induced by VEGF with a dose-dependent manner in HUVECs. Our findings indicate that the TFs and these pure flavonoids may become potential preventive and/or therapeutic agents against angiogenesis-related diseases. PMID:24096161

  5. Butein Inhibits Angiogenesis of Human Endothelial Progenitor Cells via the Translation Dependent Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Ching-Hu Chung

    2013-01-01

    Full Text Available Compelling evidence indicates that bone marrow-derived endothelial progenitor cells (EPCs can contribute to postnatal neovascularization and tumor angiogenesis. EPCs have been shown to play a “catalytic” role in metastatic progression by mediating the angiogenic switch. Understanding the pharmacological functions and molecular targets of natural products is critical for drug development. Butein, a natural chalcone derivative, has been reported to exert potent anticancer activity. However, the antiangiogenic activity of butein has not been addressed. In this study, we found that butein inhibited serum- and vascular endothelial growth factor- (VEGF- induced cell proliferation, migration, and tube formation of human EPCs in a concentration dependent manner without cytotoxic effect. Furthermore, butein markedly abrogated VEGF-induced vessels sprouting from aortic rings and suppressed microvessel formation in the Matrigel implant assay in vivo. In addition, butein concentration-dependently repressed the phosphorylation of Akt, mTOR, and the major downstream effectors, p70S6K, 4E-BP1, and eIF4E in EPCs. Taken together, our results demonstrate for the first time that butein exhibits the antiangiogenic effect both in vitro and in vivo by targeting the translational machinery. Butein is a promising angiogenesis inhibitor with the potential for treatment of cancer and other angiogenesis-related diseases.

  6. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer—Part 1

    OpenAIRE

    Sagar, S.M.; Yance, D.; Wong, R.K.

    2006-01-01

    An integrative approach for managing a patient with cancer should target the multiple biochemical and physiologic pathways that support tumour development and minimize normal-tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also manifest other anticancer activities. The present article focuses on products that have a high degree of anti-angiogenic activity, but it also describes some of the many other actions of ...

  7. Efficient inhibition of tumor angiogenesis and growth by a synthetic peptide blocking S100A4-methionine aminopeptidase 2 interaction

    OpenAIRE

    Ochiya, Takahiro; Takenaga, Keizo; Asagiri, Masataka; Nakano, Kazumi; Satoh, Hitoshi; Watanabe, Toshiki; Imajoh-Ohmi, Shinobu; Endo, Hideya

    2015-01-01

    The prometastatic calcium-binding protein, S100A4, is expressed in endothelial cells, and its downregulation markedly suppresses tumor angiogenesis in a xenograft cancer model. Given that endothelial S100A4 can be a molecular target for inhibiting tumor angiogenesis, we addressed here whether synthetic peptide capable of blocking S100A4-effector protein interaction could be a novel antiangiogenic agent. To examine this hypothesis, we focused on the S100A4-binding domain of methionine aminopep...

  8. [6]-Gingerol, a pungent ingredient of ginger, inhibits angiogenesis in vitro and in vivo

    International Nuclear Information System (INIS)

    [6]-Gingerol, a pungent ingredient of ginger (Zingiber officinale Roscoe, Zingiberaceae), has anti-bacterial, anti-inflammatory, and anti-tumor-promoting activities. Here, we describe its novel anti-angiogenic activity in vitro and in vivo. In vitro, [6]-gingerol inhibited both the VEGF- and bFGF-induced proliferation of human endothelial cells and caused cell cycle arrest in the G1 phase. It also blocked capillary-like tube formation by endothelial cells in response to VEGF, and strongly inhibited sprouting of endothelial cells in the rat aorta and formation of new blood vessel in the mouse cornea in response to VEGF. Moreover, i.p. administration, without reaching tumor cytotoxic blood levels, to mice receiving i.v. injection of B16F10 melanoma cells, reduced the number of lung metastasis, with preservation of apparently healthy behavior. Taken together, these results demonstrate that [6]-gingerol inhibits angiogenesis and may be useful in the treatment of tumors and other angiogenesis-dependent diseases

  9. Aquatic environmental safety assessment and inhibition mechanism of chemicals for targeting Microcystis aeruginosa.

    Science.gov (United States)

    Yu, Xiao-Bo; Hao, Kai; Ling, Fei; Wang, Gao-Xue

    2014-11-01

    Cyanobacteria are a diverse group of Gram-negative bacteria that produce an array of secondary compounds with selective bioactivity against vertebrates, invertebrates, fungi, bacteria and cell lines. Recently the main methods of controlling cyanobacteria are using chemicals, medicinal plants and microorganism but fewer involved the safety research in hydrophytic ecosystems. In search of an environmentally safe compound, 53 chemicals were screened against the developed heavy cyanobacteria bloom Microcystis aeruginosa using coexistence culture system assay. The results of the coexistence assay showed that 9 chemicals inhibited M. aeruginosa effectively at 20 mg L(-1) after 7 days of exposure. Among them dimethomorph, propineb, and paraquat were identified that they are safe for Chlorella vulgaris, Scenedesmus obliquus, Carassius auratus (Goldfish) and Bacillus subtilis within half maximal effective concentration (EC50) values 5.2, 4.2 and 0.06 mg L(-1) after 7 days, respectively. Paraquat as the positive control observed to be more efficient than the other compounds with the inhibitory rate (IR) of 92% at 0.5 mg L(-1). For the potential inhibition mechanism, the chemicals could destroy the cell ultrastructure in different speed. The safety assay proved dimethomorph, propineb and paraquat as harmless formulations or products having potential value in M. aeruginosa controlling, with the advantage of its cell morphology degrading ability. PMID:25139029

  10. Halofuginone Inhibits Angiogenesis and Growth in Implanted Metastatic Rat Brain Tumor Model-an MRI Study

    Directory of Open Access Journals (Sweden)

    Rinat Abramovitch

    2004-09-01

    Full Text Available Tumor growth and metastasis depend on angiogenesis; therefore, efforts are made to develop specific angiogenic inhibitors. Halofuginone (HF is a potent inhibitor of collagen type α1(I. In solid tumor models, HF has a potent antitumor and antiangiogenic effect in vivo, but its effect on brain tumors has not yet been evaluated. By employing magnetic resonance imaging (MRI, we monitored the effect of HF on tumor progression and vascularization by utilizing an implanted malignant fibrous histiocytoma metastatic rat brain tumor model. Here we demonstrate that treatment with HF effectively and dose-dependently reduced tumor growth and angiogenesis. On day 13, HF-treated tumors were fivefold smaller than control (P < .001. Treatment with HF significantly prolonged survival of treated animals (142%; P = .001. In HF-treated rats, tumor vascularization was inhibited by 30% on day 13 and by 37% on day 19 (P < .05. Additionally, HF treatment inhibited vessel maturation (P = .03. Finally, in HF-treated rats, we noticed the appearance of a few clusters of satellite tumors, which were distinct from the primary tumor and usually contained vessel cores. This phenomenon was relatively moderate when compared to previous reports of other antiangiogenic agents used to treat brain tumors. We therefore conclude that HF is effective for treatment of metastatic brain tumors.

  11. Combretastatin A-4 efficiently inhibits angiogenesis and induces neuronal apoptosis in zebrafish

    Science.gov (United States)

    Shi, Yun-Wei; Yuan, Wei; Wang, Xin; Gong, Jie; Zhu, Shun-Xing; Chai, Lin-Lin; Qi, Jia-Ling; Qin, Yin-Yin; Gao, Yu; Zhou, Yu-Ling; Fan, Xiao-Le; Ji, Chun-Ya; Wu, Jia-Yi; Wang, Zhi-Wei; Liu, Dong

    2016-01-01

    Cis-stilbene combretastatin A-4 (CA-4) and a large group of its derivant compounds have been shown significant anti-angiogenesis activity. However the side effects even the toxicities of these chemicals were not evaluated adequately. The zebrafish model has become an important vertebrate model for evaluating drug effects. The testing of CA-4 on zebrafish is so far lacking and assessment of CA-4 on this model will provide with new insights of understanding the function of CA-4 on angiogenesis, the toxicities and side effects of CA-4. We discovered that 7–9 ng/ml CA-4 treatments resulted in developmental retardation and morphological malformation, and led to potent angiogenic defects in zebrafish embryos. Next, we demonstrated that intraperitoneal injection of 5, 10 and 20 mg/kg CA-4 obviously inhibited vessel plexus formation in regenerated pectoral fins of adult zebrafish. Interestingly, we proved that CA-4 treatment induced significant cell apoptosis in central nervous system of zebrafish embryos and adults. Furthermore, it was demonstrated that the neuronal apoptosis induced by CA-4 treatment was alleviated in p53 mutants. In addition, notch1a was up-regulated in CA-4 treated embryos, and inhibition of Notch signaling by DAPT partially rescued the apoptosis in zebrafish central nervous system caused by CA-4. PMID:27452835

  12. Capecitabine metronomic chemotherapy inhibits the proliferation of gastric cancer cells through anti-angiogenesis.

    Science.gov (United States)

    Yuan, Fei; Shi, Hailong; Ji, Jun; Cai, Qu; Chen, Xuehua; Yu, Yingyan; Liu, Bingya; Zhu, Zhenggang; Zhang, Jun

    2015-04-01

    To evaluate the inhibitory effect and mechanism of capecitabine metronomic chemotherapy on gastric cancer cells. In vitro, the effects of 5-fluorouracil (Fu) metronomic chemotherapy on proliferation, apoptosis, tube formation ability, and angiogenesis were detected. In vivo, Ki-67, CD34 and VEGF were detected by immunohistochemical staining (IHC). Flow cytometry was used to detect the percentage of circulating endothelial progenitors (CEPs), and VEGF and PDGF were detected by ELISA in the peripheral blood of nude mice. The proliferation of the SGC-7901 and AGS gastric cancer cell lines in the metronomic 5-Fu group was decreased compared with the control group in vitro. The total length of the small tubes and tubular junction numbers were significantly lower in the metronomic group than the control group. The VEGF and PDGF levels in the cell culture supernatants were lower in the metronomic group than the control group. Compared with the control group, the CEP percentage was decreased in the peripheral blood of tumor-bearing nude mice following treatment with metronomic 5-Fu or capecitabine chemotherapy. No significant changes were found in the conventional or control group. In the peripheral blood of tumor-bearing nude mice, the VEGF and PDGF levels were decreased in the metronomic groups. Metronomic 5-Fu inhibited the proliferation of gastric cancer cells in vitro and in vivo, and their antitumor effects were non-inferior to those of conventional dose chemotherapy, with mild side effects. Thus, tumor inhibition may be attributed to anti-angiogenesis. PMID:25634241

  13. Isolation of the Autoinducer-Quenching Strain that Inhibits LasR in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Lixing Weng

    2014-04-01

    Full Text Available Quorum sensing (QS has been recognized as a general phenomenon in microorganisms and plays an important role in many pathogenic bacteria. In this report, we used the Agrobacterium tumefaciens biosensor strain NT1 to rapidly screen for autoinducer-quenching inhibitors from bacteria. After initial screening 5389 isolates obtained from land and beach soil, 53 putative positive strains were identified. A confirmatory bioassay was carried out after concentrating the putative positive culture supernatant, and 22 strains were confirmed to have anti-LasR activity. Finally, we determined the strain JM2, which could completely inhibit biofilm formation of Pseudomonas aeruginosa PAO1, belonged to the genus Pseudomonas by analysis of 16S rDNA. Partially purified inhibitor factor(s F5 derived from culture supernatants specifically inhibited LasR-controlled elastase and protease in wild type P. aeruginosa PAO1 by 68% and 73%, respectively, without significantly affecting growth; the rhl-controlled pyocyanin and rhamnolipids were inhibited by 54% and 52% in the presence of 100 µg/mL of F5. The swarming motility and biofilm of PAO1 were also inhibited by F5. Real time RT-PCR on samples from 100 µg/mL F5-treated P. aeruginosa showed downregulation of autoinducer synthase (LasRI and rhlI and cognate receptor (lasR and rhlR genes by 50%, 28%, 48%, and 29%, respectively. These results provide compelling evidence that the F5 inhibitor(s interferes with the las system and significantly inhibits biofilm formation.

  14. Wogonin inhibits tumor angiogenesis via degradation of HIF-1α protein

    International Nuclear Information System (INIS)

    Wogonin, a plant-derived flavone, has been shown recently to have antitumor effects. However, the mechanisms that wogonin inhibits tumor angiogenesis are not well known. In this study, we investigated the effects of wogonin on expression of hypoxia-inducible factor-1α (HIF-1α) and secretion of vascular endothelial growth factor (VEGF) in tumor cells. We found that wogonin decreased the expression of HIF-1α by affecting its stability and reduced the secretion of VEGF, which suppressed angiogenesis in cancer. Wogonin promoted the degradation of HIF-1α by increasing its prolyl hydroxylation, which depended on prolyl hydroxylase (PHD) and the von Hippel–Lindau tumor suppressor (VHL). Intriguingly, wogonin impeded the binding between heat-shock protein 90 (Hsp90) and HIF-1α. In addition, wogonin down-regulated the Hsp90 client proteins EGFR, Cdk4 and survivin, but did not affect the level of Hsp90. Wogonin also increased ubiquitination of HIF-1α and promoted its degradation in proteasome. We also found that wogonin could inhibit nuclear translocation of HIF-1α. Electrophoresis mobility shift assay (EMSA) showed that wogonin decreased the binding activity of exogenous consensus DNA oligonucleotide with HIF-1α in nuclear extracts from MCF-7 cells. Chromatin immunoprecipitation (ChIP) assay also revealed that HIF-1α directly binded to endogenous hypoxia-responsive element (HRE) and this binding was significantly decreased in MCF-7 cells treated with wogonin. Preliminary results indicated in vivo activity of wogonin against xenograft-induced angiogenesis in nude mice. Taken together, the results suggested that wogonin was a potent inhibitor of HIF-1α and provided a new insight into the mechanisms of wogonin against cancers. - Highlights: • Wogonin is an all around inhibitor of VEGF signaling. • We firstly demonstrate that wogonin inhibits secretion of VEGF by decreasing HIF-1α. • Wogonin enhances PDH and VHL expression and inhibits Hsp90 function.

  15. sFlt Multivalent Conjugates Inhibit Angiogenesis and Improve Half-Life In Vivo

    Science.gov (United States)

    Altiok, Eda I.; Browne, Shane; Khuc, Emily; Moran, Elizabeth P.; Qiu, Fangfang; Zhou, Kelu; Santiago-Ortiz, Jorge L.; Ma, Jian-xing; Chan, Matilda F.; Healy, Kevin E.

    2016-01-01

    Current anti-VEGF drugs for patients with diabetic retinopathy suffer from short residence time in the vitreous of the eye. In order to maintain biologically effective doses of drug for inhibiting retinal neovascularization, patients are required to receive regular monthly injections of drug, which often results in low patient compliance and progression of the disease. To improve the intravitreal residence time of anti-VEGF drugs, we have synthesized multivalent bioconjugates of an anti-VEGF protein, soluble fms-like tyrosine kinase-1 (sFlt) that is covalently grafted to chains of hyaluronic acid (HyA), conjugates that are termed mvsFlt. Using a mouse corneal angiogenesis assay, we demonstrate that covalent conjugation to HyA chains does not decrease the bioactivity of sFlt and that mvsFlt is equivalent to sFlt at inhibiting corneal angiogenesis. In a rat vitreous model, we observed that mvsFlt had significantly increased intravitreal residence time compared to the unconjugated sFlt after 2 days. The calculated intravitreal half-lives for sFlt and mvsFlt were 3.3 and 35 hours, respectively. Furthermore, we show that mvsFlt is more effective than the unconjugated form at inhibiting retinal neovascularization in an oxygen-induced retinopathy model, an effect that is most likely due to the longer half-life of mvsFlt in the vitreous. Taken together, our results indicate that conjugation of sFlt to HyA does not affect its affinity for VEGF and this conjugation significantly improves drug half-life. These in vivo results suggest that our strategy of multivalent conjugation could substantially improve upon drug half-life, and thus the efficacy of currently available drugs that are used in diseases such as diabetic retinopathy, thereby improving patient quality of life. PMID:27257918

  16. Inhibition of tumor angiogenesis by TTF1 from extract of herbal medicine

    Directory of Open Access Journals (Sweden)

    Chao Liu

    2011-01-01

    Full Text Available AIM: To study the inhibition of tumor angiogenesis by 5,2,4´-trihydroxy-6,7,5´-trimethoxyflavone (TTF1 isolated from an extract of herbal medicine Sorbaria sorbifolia. METHODS: Angiogenic activity was assayed using the chick embryo chorioallantoic membrane (CAM method. Microvessel density (MVD was determined by staining tissue sections immunohistochemically for CD34 using the Weidner capillary counting method. The mRNA and protein levels of vascular endothelial growth factor (VEGF, vascular endothelialgrowth factor receptor 2 (VEGFR2, Flk-1/KDR, basic fibroblast growth factor (bFGF, cyclo-oxygenase (COX-2 and hypoxia-inducible factor (HIF-1α were detected by quantitative real-time polymerase chain reaction and Western blotting analysis. RESULTS: The TTF1 inhibition rates for CAM were 30.8%, 38.2% and 47.5% with treatment concentrations of 25, 50 and 100 μg/embryo × 5 d, respectively. The inhibitory rates for tumor size were 43.8%, 49.4% and 59.6% at TTF1 treatment concentrations of 5, 10, and 20 μmol/kg, respectively. The average MVD was 14.2, 11.2 and 8.5 at treatment concentrations of 5 μmol/kg, 10 μmol/kg and 20 μmol/kg TTF1, respectively. The mRNA and protein levels of VEGF, KDR, bFGF, COX-2 and HIF-1α in mice treated with TTF1 were significantly decreased. CONCLUSION: TTF1 can inhibit tumor angiogenesis, and the mechanism may be associated with the down-regulation of VEGF, KDR, bFGF, HIF-1α and COX-2.

  17. Pseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation.

    Science.gov (United States)

    Cott, Catherine; Thuenauer, Roland; Landi, Alessia; Kühn, Katja; Juillot, Samuel; Imberty, Anne; Madl, Josef; Eierhoff, Thorsten; Römer, Winfried

    2016-06-01

    Pseudomonas aeruginosa is an opportunistic pathogen that induces severe lung infections such as ventilator-associated pneumonia and acute lung injury. Under these conditions, the bacterium diminishes epithelial integrity and inhibits tissue repair mechanisms, leading to persistent infections. Understanding the involved bacterial virulence factors and their mode of action is essential for the development of new therapeutic approaches. In our study we discovered a so far unknown effect of the P. aeruginosa lectin LecB on host cell physiology. LecB alone was sufficient to attenuate migration and proliferation of human lung epithelial cells and to induce transcriptional activity of NF-κB. These effects are characteristic of impaired tissue repair. Moreover, we found a strong degradation of β-catenin, which was partially recovered by the proteasome inhibitor lactacystin. In addition, LecB induced loss of cell-cell contacts and reduced expression of the β-catenin targets c-myc and cyclin D1. Blocking of LecB binding to host cell plasma membrane receptors by soluble l-fucose prevented these changes in host cell behavior and signaling, and thereby provides a powerful strategy to suppress LecB function. Our findings suggest that P. aeruginosa employs LecB as a virulence factor to induce β-catenin degradation, which then represses processes that are directly linked to tissue recovery. PMID:26862060

  18. Pseudomonas aeruginosa lectin LecB inhibits tissue repair processes by triggering β-catenin degradation

    Science.gov (United States)

    Cott, Catherine; Thuenauer, Roland; Landi, Alessia; Kühn, Katja; Juillot, Samuel; Imberty, Anne; Madl, Josef; Eierhoff, Thorsten; Römer, Winfried

    2016-01-01

    Pseudomonas aeruginosa is an opportunistic pathogen that induces severe lung infections such as ventilator-associated pneumonia and acute lung injury. Under these conditions, the bacterium diminishes epithelial integrity and inhibits tissue repair mechanisms, leading to persistent infections. Understanding the involved bacterial virulence factors and their mode of action is essential for the development of new therapeutic approaches. In our study we discovered a so far unknown effect of the P. aeruginosa lectin LecB on host cell physiology. LecB alone was sufficient to attenuate migration and proliferation of human lung epithelial cells and to induce transcriptional activity of NF-κB. These effects are characteristic of impaired tissue repair. Moreover, we found a strong degradation of β-catenin, which was partially recovered by the proteasome inhibitor lactacystin. In addition, LecB induced loss of cell–cell contacts and reduced expression of the β-catenin targets c-myc and cyclin D1. Blocking of LecB binding to host cell plasma membrane receptors by soluble l-fucose prevented these changes in host cell behavior and signaling, and thereby provides a powerful strategy to suppress LecB function. Our findings suggest that P. aeruginosa employs LecB as a virulence factor to induce β-catenin degradation, which then represses processes that are directly linked to tissue recovery. PMID:26862060

  19. Squalamine inhibits angiogenesis and solid tumor growth in vivo and perturbs embryonic vasculature.

    Science.gov (United States)

    Sills, A K; Williams, J I; Tyler, B M; Epstein, D S; Sipos, E P; Davis, J D; McLane, M P; Pitchford, S; Cheshire, K; Gannon, F H; Kinney, W A; Chao, T L; Donowitz, M; Laterra, J; Zasloff, M; Brem, H

    1998-07-01

    The novel aminosterol, squalamine, inhibits angiogenesis and tumor growth in multiple animal models. This effect is mediated, at least in part, by blocking mitogen-induced proliferation and migration of endothelial cells, thus preventing neovascularization of the tumor. Squalamine has no observable effect on unstimulated endothelial cells, is not directly cytotoxic to tumor cells, does not alter mitogen production by tumor cells, and has no obvious effects on the growth of newborn vertebrates. Squalamine was also found to have remarkable effects on the primitive vascular bed of the chick chorioallantoic membrane, which has striking similarities to tumor capillaries. Squalamine may thus be well suited for treatment of tumors and other diseases characterized by neovascularization in humans. PMID:9661892

  20. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    International Nuclear Information System (INIS)

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice

  1. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling

    Energy Technology Data Exchange (ETDEWEB)

    Zhengfu, He; Hu, Zhang; Huiwen, Miao; Zhijun, Li [Department of Thoracic Surgery, Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China); Jiaojie, Zhou [Zhejiang University School of Medicine, Hangzhou (China); Xiaoyi, Yan, E-mail: xiaoyiyan163@163.com [Zhejiang University School of Medicine, Hangzhou (China); Xiujun, Cai, E-mail: xiujuncaomaj@163.com [Sir Run Run Shaw Hospital of Zhejiang University School of Medicine, Hangzhou (China)

    2015-08-21

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. - Highlights: • 1-o-acetylbritannilactone (ABL) inhibits VEGF-induced angiogenesis in vivo. • ABL inhibits VEGF-induced HUVEC migration, proliferation, capillary tube formation. • ABL inhibits VEGF-mediated activation of Src and FAK in HUVECs. • ABL inhibits growth and Src-FAK activation in A549 cells. • ABL administration inhibits A549 tumor angiogenesis and growth in nude mice.

  2. Inhibition of Hyaluronic Acid Synthesis Suppresses Angiogenesis in Developing Endometriotic Lesions

    Science.gov (United States)

    Olivares, Carla N.; Alaniz, Laura D.; Menger, Michael D.; Barañao, Rosa I.; Laschke, Matthias W.; Meresman, Gabriela F.

    2016-01-01

    Background The development and long-term survival of endometriotic lesions is crucially dependent on an adequate vascularization. Hyaluronic acid (HA) through its receptor CD44 has been described to be involved in the process of angiogenesis. Objective To study the effect of HA synthesis inhibition using non-toxic doses of 4-methylumbelliferone (4-MU) on endometriosis-related angiogenesis. Materials and Methods The cytotoxicity of different in vitro doses of 4-MU on endothelial cells was firstly tested by means of a lactate dehydrogenase assay. The anti-angiogenic action of non-cytotoxic doses of 4-MU was then assessed by a rat aortic ring assay. In addition, endometriotic lesions were induced in dorsal skinfold chambers of female BALB/c mice, which were daily treated with an intraperitoneal injection of 0.9% NaCl (vehicle group; n = 6), 20mg/kg 4-MU (n = 8) or 80mg/kg 4-MU (n = 7) throughout an observation period of 14 days. The effect of 4-MU on their vascularization, survival and growth were studied by intravital fluorescence microscopy, histology and immunohistochemistry. Main Results Non-cytotoxic doses of 4-MU effectively inhibited vascular sprout formation in the rat aortic ring assay. Endometriotic lesions in dorsal skinfold chambers of 4-MU-treated mice dose-dependently exhibited a significantly smaller vascularized area and lower functional microvessel density when compared to vehicle-treated controls. Histological analyses revealed a downregulation of HA expression in 4-MU-treated lesions. This was associated with a reduced density of CD31-positive microvessels within the lesions. In contrast, numbers of PCNA-positive proliferating and cleaved caspase-3-positive apoptotic cells did not differ between 4-MU-treated and control lesions. Conclusions The present study demonstrates for the first time that targeting the synthesis of HA suppresses angiogenesis in developing endometriotic lesions. Further studies have to clarify now whether in the future this

  3. Inhibition of Hyaluronic Acid Synthesis Suppresses Angiogenesis in Developing Endometriotic Lesions.

    Directory of Open Access Journals (Sweden)

    Carla N Olivares

    Full Text Available The development and long-term survival of endometriotic lesions is crucially dependent on an adequate vascularization. Hyaluronic acid (HA through its receptor CD44 has been described to be involved in the process of angiogenesis.To study the effect of HA synthesis inhibition using non-toxic doses of 4-methylumbelliferone (4-MU on endometriosis-related angiogenesis.The cytotoxicity of different in vitro doses of 4-MU on endothelial cells was firstly tested by means of a lactate dehydrogenase assay. The anti-angiogenic action of non-cytotoxic doses of 4-MU was then assessed by a rat aortic ring assay. In addition, endometriotic lesions were induced in dorsal skinfold chambers of female BALB/c mice, which were daily treated with an intraperitoneal injection of 0.9% NaCl (vehicle group; n = 6, 20 mg/kg 4-MU (n = 8 or 80 mg/kg 4-MU (n = 7 throughout an observation period of 14 days. The effect of 4-MU on their vascularization, survival and growth were studied by intravital fluorescence microscopy, histology and immunohistochemistry.Non-cytotoxic doses of 4-MU effectively inhibited vascular sprout formation in the rat aortic ring assay. Endometriotic lesions in dorsal skinfold chambers of 4-MU-treated mice dose-dependently exhibited a significantly smaller vascularized area and lower functional microvessel density when compared to vehicle-treated controls. Histological analyses revealed a downregulation of HA expression in 4-MU-treated lesions. This was associated with a reduced density of CD31-positive microvessels within the lesions. In contrast, numbers of PCNA-positive proliferating and cleaved caspase-3-positive apoptotic cells did not differ between 4-MU-treated and control lesions.The present study demonstrates for the first time that targeting the synthesis of HA suppresses angiogenesis in developing endometriotic lesions. Further studies have to clarify now whether in the future this anti-angiogenic effect can be used beneficially for the

  4. Kalkitoxin Inhibits Angiogenesis, Disrupts Cellular Hypoxic Signaling, and Blocks Mitochondrial Electron Transport in Tumor Cells

    Directory of Open Access Journals (Sweden)

    J. Brian Morgan

    2015-03-01

    Full Text Available The biologically active lipopeptide kalkitoxin was previously isolated from the marine cyanobacterium Moorea producens (Lyngbya majuscula. Kalkitoxin exhibited N-methyl-d-aspartate (NMDA-mediated neurotoxicity and acted as an inhibitory ligand for voltage-sensitive sodium channels in cultured rat cerebellar granule neurons. Subsequent studies revealed that kalkitoxin generated a delayed form of colon tumor cell cytotoxicity in 7-day clonogenic cell survival assays. Cell line- and exposure time-dependent cytostatic/cytotoxic effects were previously observed with mitochondria-targeted inhibitors of hypoxia-inducible factor-1 (HIF-1. The transcription factor HIF-1 functions as a key regulator of oxygen homeostasis. Therefore, we investigated the ability of kalkitoxin to inhibit hypoxic signaling in human tumor cell lines. Kalkitoxin potently and selectively inhibited hypoxia-induced activation of HIF-1 in T47D breast tumor cells (IC50 5.6 nM. Mechanistic studies revealed that kalkitoxin inhibits HIF-1 activation by suppressing mitochondrial oxygen consumption at electron transport chain (ETC complex I (NADH-ubiquinone oxidoreductase. Further studies indicate that kalkitoxin targets tumor angiogenesis by blocking the induction of angiogenic factors (i.e., VEGF in tumor cells.

  5. miR-101 inhibits cholangiocarcinoma angiogenesis through targeting vascular endothelial growth factor (VEGF).

    Science.gov (United States)

    Zhang, Jinqiang; Han, Chang; Zhu, Hanqing; Song, Kyoungsub; Wu, Tong

    2013-05-01

    Recent evidence has suggested an important role of miRNAs in liver biology and diseases, although the implication of miRNAs in cholangiocarcinoma remains to be defined further. This study was designed to examine the biological function and molecular mechanism of miR-101 in cholangiocarcinogenesis and tumor progression. In situ hybridization and quantitative RT-PCR were performed to determine the expression of miR-101 in human cholangiocarcinoma tissues and cell lines. Compared with noncancerous biliary epithelial cells, the expression of miR-101 is decreased in 43.5% of human cholangiocarcinoma specimens and in all three cholangiocarcinoma cell lines used in this study. Forced overexpression of miR-101 significantly inhibited cholangiocarcinoma growth in severe combined immunodeficiency mice. miR-101-overexpressed xenograft tumor tissues showed decreased capillary densities and decreased levels of vascular endothelial growth factor (VEGF) and cyclooxygenase-2 (COX-2). The VEGF and COX-2 mRNAs were identified as the bona fide targets of miR-101 in cholangiocarcinoma cells by both computational analysis and experimental assays. miR-101 inhibits cholangiocarcinoma angiogenesis by direct targeting of VEGF mRNA 3'untranslated region and by repression of VEGF gene transcription through inhibition of COX-2. This study established a novel tumor-suppressor role of miR-101 in cholangiocarcinoma and it suggests the possibility of targeting miR-101 and related signaling pathways for future therapy. PMID:23608225

  6. Inhibition of arachidonic acid metabolism and its implication on cell proliferation and tumour-angiogenesis.

    Science.gov (United States)

    Hyde, C A C; Missailidis, S

    2009-06-01

    Arachidonic acid (AA) and its metabolites have recently generated a heightened interest due to growing evidence of their significant role in cancer biology. Thus, inhibitors of the AA cascade, first and foremost COX inhibitors, which have originally been of interest in the treatment of inflammatory conditions and certain types of cardiovascular disease, are now attracting attention as an arsenal against cancer. An increasing number of investigations support their role in cancer chemoprevention, although the precise molecular mechanisms that link levels of AA, and its metabolites, with cancer progression have still to be elucidated. This article provides an overview of the AA cascade and focuses on the roles of its inhibitors and their implication in cancer treatment. In particular, emphasis is placed on the inhibition of cell proliferation and neo-angiogenesis through inhibition of the enzymes COX-2, 5-LOX and CYP450. Downstream effects of inhibition of AA metabolites are analysed and the molecular mechanisms of action of a selected number of inhibitors of catalytic pathways reviewed. Lastly, the benefits of dietary omega-3 fatty acids and their mechanisms of action leading to reduced cancer risk and impeded cancer cell growth are mentioned. Finally, a proposal is put forward, suggesting a novel and integrated approach in viewing the molecular mechanisms and complex interactions responsible for the involvement of AA metabolites in carcinogenesis and the protective effects of omega-3 fatty acids in inflammation and tumour prevention. PMID:19239926

  7. Inhibited growth of Pseudomonas aeruginosa by dextran- and polyacrylic acid-coated ceria nanoparticles

    Directory of Open Access Journals (Sweden)

    Wang Q

    2013-08-01

    Full Text Available Qi Wang,1 J Manuel Perez,2 Thomas J Webster1,3 1Bioengineering Program, College of Engineering, Northeastern University, Boston, MA, USA; 2Nanoscience Technology Center, University of Central Florida, Orlando, FL, USA; 3Department of Chemical Engineering, College of Engineering, Northeastern University, Boston, MA, USA Abstract: Ceria (CeO2 nanoparticles have been widely studied for numerous applications, but only a few recent studies have investigated their potential applications in medicine. Moreover, there have been almost no studies focusing on their possible antibacterial properties, despite the fact that such nanoparticles may reduce reactive oxygen species. In this study, we coated CeO2 nanoparticles with dextran or polyacrylic acid (PAA because of their enhanced biocompatibility properties, minimized toxicity, and reduced clearance by the immune system. For the first time, the coated CeO2 nanoparticles were tested in bacterial assays involving Pseudomonas aeruginosa, one of the most significant bacteria responsible for infecting numerous medical devices. The results showed that CeO2 nanoparticles with either coating significantly inhibited the growth of Pseudomonas aeruginosa, by up to 55.14%, after 24 hours compared with controls (no particles. The inhibition of bacterial growth was concentration dependent. In summary, this study revealed, for the first time, that the characterized dextran- and PAA-coated CeO2 nanoparticles could be potential novel materials for numerous antibacterial applications. Keywords: antibacterial, biomedical applications

  8. R-(-)-β-O-methylsynephrine, a natural product, inhibits VEGF-induced angiogenesis in vitro and in vivo

    International Nuclear Information System (INIS)

    Research highlights: → R-(-)-β-O-methylsynephrine (OMe-Syn) is a natural compound isolated from a plant of the Rutaceae family. → OMe-Syn possesses lead-like physicochemical properties, conferring good solubility. → OMe-Syn effectively inhibited VEGF-induced angiogenesis in vitro and in vivo. → OMe-Syn could be a novel basis for a small molecule targeting angiogenesis. -- Abstract: R-(-)-β-O-methylsynephrine (OMe-Syn) is an active compound isolated from a plant of the Rutaceae family. We conducted cell proliferation assays on various cell lines and found that OMe-Syn more strongly inhibited the growth of human umbilical vein endothelial cells (HUVECs) than that of other normal and cancer cell lines tested. In angiogenesis assays, it inhibited vascular endothelial growth factor (VEGF)-induced invasion and tube formation of HUVECs with no toxicity. The anti-angiogenic activity of OMe-Syn was also validated in vivo using the chorioallantonic membrane (CAM) assay in growing chick embryos. Expression of the growth factors VEGF, hepatocyte growth factor, and basic fibroblast growth factor was suppressed by OMe-Syn in a dose-dependent manner. Taken together, our results indicate that this compound could be a novel basis for a small molecule targeting angiogenesis.

  9. Evidence that tumor necrosis factor-related apoptosis inducing ligand (TRAIL) inhibits angiogenesis by inducing vascular endothelial cell apoptosis

    International Nuclear Information System (INIS)

    Tumor necrosis factor (TNF) and its related ligands TNF-related apoptosis inducing ligand (TRAIL) and Fas ligand (FasL) play roles in the regulation of vascular responses, but their effect on the formation of new blood vessels (angiogenesis) is unclear. Therefore, we have examined the effects of these ligands on angiogenesis modeled with primary cultures of human umbilical vein endothelial cells (HUVEC). To examine angiogenesis in the context of the central nervous system, we have also modeled cerebral angiogenesis with the human brain endothelial cell line hCMEC/D3. Parameters studied were bromodeoxyuridine (BrdU) incorporation and cell number (MTT) assay (to assess endothelial proliferation), scratch assay (migration) and networks on Matrigel (tube formation). In our hands, neither TRAIL nor FasL (1, 10, and 100 ng/ml) had an effect on parameters of angiogenesis in the HUVEC model. In hCMEC/D3 cells by contrast, TRAIL inhibited all parameters (10-100 ng/ml, 24 h). This was due to apoptosis, since its action was blocked by the pan-caspase inhibitor zVADfmk (5 x 10-5 mol/l) and TRAIL increased caspase-3 activity 1 h after application. However FasL (100 ng/ml) increased BrdU uptake without other effects. We conclude that TRAIL has different effects on in vitro angiogenesis depending on which model is used, but that FasL is generally ineffective when applied in vitro. The data suggest that TRAIL primarily influences angiogenesis by the induction of vascular endothelial apoptosis, leading to vessel regression.

  10. Curcumin Inhibits Tumor Growth and Angiogenesis in an Orthotopic Mouse Model of Human Pancreatic Cancer

    Directory of Open Access Journals (Sweden)

    Sabrina Bimonte

    2013-01-01

    Full Text Available Pancreatic cancer is a malignant neoplasm originating from transformed cells arising in tissues forming the pancreas. The best chemotherapeutic agent used to treat pancreatic cancer is the gemcitabine. However, gemcitabine treatment is associated with many side effects. Thus novel strategies involving less toxic agents for treatment of pancreatic cancer are necessary. Curcumin is one such agent that inhibits the proliferation and angiogenesis of a wide variety of tumor cells, through the modulation of many cell signalling pathways. In this study, we investigated whether curcumin plays antitumor effects in MIA PaCa-2 cells. In vitro studies showed that curcumin inhibits the proliferation and enhances apoptosis of MIA PaCa-2 cells. To test whether the antitumor activity of curcumin is also observed in vivo, we generated an orthotopic mouse model of pancreatic cancer by injection of MIA PaCa-2 cells in nude mice. We placed mice on diet containing curcumin at 0.6% for 6 weeks. In these treated mice tumors were smaller with respect to controls and showed a downregulation of the transcription nuclear factor NF-κB and NF-κB-regulated gene products. Overall, our data indicate that curcumin has a great potential in treatment of human pancreatic cancer through the modulation of NF-κB pathway.

  11. Ganoderma lucidum suppresses angiogenesis through the inhibition of secretion of VEGF and TGF-β1 from prostate cancer cells

    International Nuclear Information System (INIS)

    Ganoderma lucidum (G. lucidum) is a popular medicinal mushroom that has been used as a home remedy for the general promotion of health and longevity in East Asia. The dried powder of G. lucidum, which was recommended as a cancer chemotherapy agent in traditional Chinese medicine, is currently popularly used worldwide in the form of dietary supplements. We have previously demonstrated that G. lucidum induces apoptosis, inhibits cell proliferation, and suppresses cell migration of highly invasive human prostate cancer cells PC-3. However, the molecular mechanism(s) responsible for the inhibitory effects of G. lucidum on the prostate cancer cells has not been fully elucidated. In the present study, we examined the effect of G. lucidum on angiogenesis related to prostate cancer. We found that G. lucidum inhibits the early event in angiogenesis, capillary morphogenesis of the human aortic endothelial cells. These effects are caused by the inhibition of constitutively active AP-1 in prostate cancer cells, resulting in the down-regulation of secretion of VEGF and TGF-β1 from PC-3 cells. Thus, G. lucidum modulates the phosphorylation of Erk1/2 and Akt kinases in PC-3 cells, which in turn inhibits the activity of AP-1. In summary, our results suggest that G. lucidum inhibits prostate cancer-dependent angiogenesis by modulating MAPK and Akt signaling and could have potential therapeutic use for the treatment of prostate cancer

  12. Inhibition of quorum sensing-controlled virulence factors in Pseudomonas aeruginosa by human serum paraoxonase.

    Science.gov (United States)

    Aybey, Aynur; Demirkan, Elif

    2016-02-01

    The role of quorum sensing (QS) in the regulation of virulence factor production in Pseudomonas aeruginosa is well established. Increased antibiotic resistance in this bacterium has led to the search for new treatment options, and inhibition of the QS system has been explored for potential therapeutic benefits. If the use of QS inhibitory agents were to lead to a reduction in bacterial virulence, new approaches in the treatment of P. aeruginosa infections could be further developed. Accordingly, we examined whether human serum paraoxonase 1 (hPON1), which uses lactonase activity to hydrolyse N-acyl homoserine lactones, could cleave P. aeruginosa-derived signalling molecules. hPON1 was purified using ammonium sulfate precipitation and hydrophobic interaction chromatography (Sepharose 4B-L-tyrosine-1-naphthylamine). Different concentrations of hPON1 were found to reduce various virulence factors including pyocyanin, rhamnolipid, elastase, staphylolytic LasA protease and alkaline protease. Although treatment with 0.1-10 mg hPON1 ml(-1) did not show a highly inhibitory effect on elastase and staphylolytic LasA protease production, it resulted in good inhibitory effects on alkaline protease production at concentrations as low as 0.1 mg ml(-1). hPON1 also reduced the production of pyocyanin and rhamnolipid at a concentration of 1.25 mg ml(-1 )(within a range of 0.312-5 mg ml(-1)). In addition, rhamnolipid, an effective biosurfactant reported to stimulate the biodegradation of hydrocarbons, was able to degrade oil only in the absence of hPON1. PMID:26654051

  13. Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development.

    Science.gov (United States)

    Bandara, H M H N; K Cheung, B P; Watt, R M; Jin, L J; Samaranayake, L P

    2013-02-01

    Elucidation of bacterial and fungal interactions in multispecies biofilms will have major impacts on understanding the pathophysiology of infections. The objectives of this study were to (i) evaluate the effect of Pseudomonas aeruginosa lipopolysaccharide (LPS) on Candida albicans hyphal development and transcriptional regulation, (ii) investigate protein expression during biofilm formation, and (iii) propose likely molecular mechanisms for these interactions. The effect of LPS on C. albicans biofilms was assessed by XTT-reduction and growth curve assays, light microscopy, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). Changes in candidal hypha-specific genes (HSGs) and transcription factor EFG1 expression were assessed by real-time polymerase chain reaction and two-dimensional gel electrophoresis, respectively. Proteome changes were examined by mass spectrometry. Both metabolic activities and growth rates of LPS-treated C. albicans biofilms were significantly lower (P yeasts in test biofilms compared with the controls. SEM and CLSM further confirmed these data. Significantly upregulated HSGs (at 48 h) and EFG1 (up to 48 h) were noted in the test biofilms (P < 0.05) but cAMP levels remained unaffected. Proteomic analysis showed suppression of candidal septicolysin-like protein, potential reductase-flavodoxin fragment, serine hydroxymethyltransferase, hypothetical proteins Cao19.10301(ATP7), CaO19.4716(GDH1), CaO19.11135(PGK1), CaO19.9877(HNT1) by P. aeruginosa LPS. Our data imply that bacterial LPS inhibit C. albicans biofilm formation and hyphal development. The P. aeruginosa LPS likely target glycolysis-associated mechanisms during candidal filamentation. PMID:23194472

  14. Albendazole inhibits endothelial cell migration, tube formation, vasopermeability, VEGF receptor-2 expression and suppresses retinal neovascularization in ROP model of angiogenesis

    International Nuclear Information System (INIS)

    The angiogenic process begins with the cell proliferation and migration into the primary vascular network, and leads to vascularization of previously avascular tissues and organs as well to growth and remodeling of the initially homogeneous capillary plexus to form a new microcirculation. Additionally, an increase in microvascular permeability is a crucial step in angiogenesis. Vascular endothelial growth factor (VEGF) plays a central role in angiogenesis. We have previously reported that albendazole suppresses VEGF levels and inhibits malignant ascites formation, suggesting a possible effect on angiogenesis. This study was therefore designed to investigate the antiangiogenic effect of albendazole in non-cancerous models of angiogenesis. In vitro, treatment of human umbilical vein endothelial cells (HUVECs) with albendazole led to inhibition of tube formation, migration, permeability and down-regulation of the VEGF type 2 receptor (VEGFR-2). In vivo albendazole profoundly inhibited hyperoxia-induced retinal angiogenesis in mice. These results provide new insights into the antiangiogenic effects of albendazole.

  15. ELK3 Suppresses Angiogenesis by Inhibiting the Transcriptional Activity of ETS-1 on MT1-MMP

    OpenAIRE

    Heo, Sun-Hee; Cho, Je-Yoel

    2014-01-01

    Ets transcription factors play important roles in vasculogenesis and angiogenesis. Knockout of the Ets gene family members in mice resulted in disrupted angiogenesis and malformed vascular systems. In this study, the role and mechanism of ELK3, an Ets factor, in angiogenesis was investigated using ELK3-specific siRNA in human vascular endothelial cells (HUVECs) and in vivo implantation assay. The suppression of ELK3 expression resulted in the reinforcement of VEGF-induced tube formation in HU...

  16. Suppression of pancreatic carcinoma growth by activating peroxisome proliferator-activated receptor γ involves angiogenesis inhibition

    Institute of Scientific and Technical Information of China (English)

    Yu-Wei Dong; Xing-Peng Wang; Kai Wu

    2009-01-01

    AIM: To study the possible actions and mechanisms of peroxisome proliferator-activated receptor γ (PPARγ), a ligand-activated transcription factor, in pancreatic carcinogenesis,especially in angiogenesis.METHODS: Expressions of PPARγ and retinoid acid receptor (RXRα) were examined by reverse-transcription polymerase chain reaction (RT-PCR) with immunocytochemical staining. Pancreatic carcinoma cells, PANC-1,were treated either with 9-cis-RA, a ligand of RXRα,or with 15-deoxy-Δ12,14 prostaglandin J2(15d-PGJ2), a ligand of PPARγ, or both. Antiproliferative effect was evaluated by cell viability using methyltetrazolium (MTT) assay. A pancreatic carcinoma xenograft tumor model of nude mice was established by inoculating PANC-1 cells subcutaneously. Rosiglitazone, a specific ligand of PPARγ, was administered via water drinking in experimental group of nude mice. After 75 d, all mice were sacrificed. Expression of proliferating cell nuclear antigen (PCNA) in tumor tissue was examined with immunohistochemical staining. Expression of vascular endothelial growth factor (VEGF) mRNA in PANC-1 cells, which were treated with 15d-PGJ2 or 9-cis-RA at variousconcentrations or different duration, was detected by semi-quantitative RT-PCR. Effects of Rosiglitazone on changes of microvascular density (MVD) and VEGF expression were investigated in xenograft tumor tissue. Neovasculature was detected with immunohistochemistry staining labeled with anti-Ⅳ collagen antibody, and indicated by MVD.RESULTS: RT-PCR and immunocytochemical staining showed that PPARγ and RXRα were expressed in PANC-1 cells at both transcription level and translation level. MTT assay demonstrated that 15d-PGJ2, 9-cis-RA and their combination inhibited the growth of PANC-1 cells in a dose-dependent manner. 9-cis-RA had a combined inhibiting action with 15d-PGJ2 on the growth of pancreatic carcinoma. In vivo studies revealed that Rosiglitazone significantly suppressed the growth of pancreatic carcinoma

  17. The isoflavone metabolite 6-methoxyequol inhibits angiogenesis and suppresses tumor growth

    Directory of Open Access Journals (Sweden)

    Bellou Sofia

    2012-05-01

    Full Text Available Abstract Background Increased consumption of plant-based diets has been linked to the presence of certain phytochemicals, including polyphenols such as flavonoids. Several of these compounds exert their protective effect via inhibition of tumor angiogenesis. Identification of additional phytochemicals with potential antiangiogenic activity is important not only for understanding the mechanism of the preventive effect, but also for developing novel therapeutic interventions. Results In an attempt to identify phytochemicals contributing to the well-documented preventive effect of plant-based diets on cancer incidence and mortality, we have screened a set of hitherto untested phytoestrogen metabolites concerning their anti-angiogenic effect, using endothelial cell proliferation as an end point. Here, we show that a novel phytoestrogen, 6-methoxyequol (6-ME, inhibited VEGF-induced proliferation of human umbilical vein endothelial cells (HUVE cells, whereas VEGF-induced migration and survival of HUVE cells remained unaffected. In addition, 6-ME inhibited FGF-2-induced proliferation of bovine brain capillary endothelial (BBCE cells. In line with its role in cell proliferation, 6-ME inhibited VEGF-induced phosphorylation of ERK1/2 MAPK, the key cascade responsible for VEGF-induced proliferation of endothelial cells. In this context, 6-ME inhibited in a dose dependent manner the phosphorylation of MEK1/2, the only known upstream activator of ERK1/2. 6-ME did not alter VEGF-induced phosphorylation of p38 MAPK or AKT, compatible with the lack of effect on VEGF-induced migration and survival of endothelial cells. Peri-tumor injection of 6-ME in A-431 xenograft tumors resulted in reduced tumor growth with suppressed neovasularization compared to vehicle controls (P  Conclusions 6-ME inhibits VEGF- and FGF2-induced proliferation of ECs by targeting the phosphorylation of MEK1/2 and it downstream substrate ERK1/2, both key components of the mitogenic MAPK

  18. Oleanolic acid inhibits colorectal cancer angiogenesis in vivo and in vitro via suppression of STAT3 and Hedgehog pathways.

    Science.gov (United States)

    Li, Li; Lin, Jiumao; Sun, Guodong; Wei, Lihui; Shen, Aling; Zhang, Mingyue; Peng, Jun

    2016-06-01

    Angiogenesis is an essential process of cancer progression and is regulated by multiple intracellular signaling pathways, including signal transducer and activator of transcription 3 (STAT3) and sonic hedgehog (SHH). Thus, these pathways have become a promising target for anti‑cancer therapeutic strategies. Oleanolic acid (OA) is an active compound present in various herbal medicines, which have been used historically for the clinical treatment of various types of human malignancies, including colorectal cancer (CRC). The present study used a CRC mouse xenograft model and human umbilical vein endothelial cells (HUVECs) to evaluate the effect of OA on tumor angiogenesis and on the activation of the STAT3 and SHH signaling pathways. It was determined that OA treatment significantly inhibited tumor growth and reduced intratumoral microvessel density (MVD) in CRC mice. In addition, OA treatment inhibited the proliferation, migration and tube formation in HUVECs, in a dose and time-dependent manner. Furthermore, OA markedly suppressed the activation of the STAT3 and SHH signaling pathways and inhibited the expression of the pro‑angiogenic vascular endothelial growth factor A and basic fibroblast growth factor, two important target genes of the aforementioned signaling pathways. Therefore it is suggested that inhibition of tumor angiogenesis via the suppression of multiple signaling pathways may be one of the underlying mechanisms by which OA exerts its anti-cancer effect. PMID:27108756

  19. Inhibition of human lymphocyte proliferation and cleavage of interleukin-2 by Pseudomonas aeruginosa proteases

    DEFF Research Database (Denmark)

    Theander, T G; Kharazmi, A; Pedersen, B K;

    1988-01-01

    This study was undertaken to determine the effect of Pseudomonas aeruginosa alkaline protease (AP) and elastase (ELA) on human lymphocyte function. AP at 50 micrograms/ml and ELA at 12 micrograms/ml caused a 50% inhibition of phytohemagglutinin-induced proliferation. There was no difference in th...... cleavage of IL-2....

  20. Curcumin Inhibits Angiogenesis and Adipogenesis in Cell Culture System and in Mice Fed High Fat Diet

    Science.gov (United States)

    Angiogenesis is necessary for the growth of adipose tissue. Dietary polyphenols may suppress growth of adipose tissue through their antiangiogenic activity and by modulating adipocyte metabolism. In the present study, we examined the effect of curcumin on angiogenesis and adipocyte development in a ...

  1. In vitro inhibition of angiogenesis by heat and low pH stable hydroalcoholic extract of Peganum harmala seeds via inhibition of cell proliferation and suppression of VEGF secretion

    DEFF Research Database (Denmark)

    2015-01-01

    Context: Progression of cancer cells is completely dependent on its angiogenesis. Inhibition of tumor angiogenesis has shed new light on cancer treatment. As a result, anti-angiogenesis therapy represents one of the most significant advances in clinical oncology. Peganum harmala L. (Zygophyllaceae...... angiogenesis with an ID50 of ∼85 μg/ml. VEGF secretion was (inhibited) decreased by the extracts at concentrations higher than 10 μg/ml. Discussion and conclusion: Herbal plant extracts still attract attention owing to their fewer side effects comparing to synthetic drug agents. Current study indicated that...

  2. Total Saponin from Root of Actinidia valvata Dunn Inhibits Hepatoma 22 Growth and Metastasis In Vivo by Suppression Angiogenesis

    Directory of Open Access Journals (Sweden)

    Guo-Yin Zheng

    2012-01-01

    Full Text Available The root of Actinidia valvata dunn has been widely used in the treatment of hepatocellular carcinoma (HCC, proved to be beneficial for a longer and better life in China. In present work, total saponin from root of Actinidia valvata Dunn (TSAVD was extracted, and its effects on hepatoma H22-based mouse in vivo were observed. Primarily transplanted hypodermal hepatoma H22-based mice were used to observe TSAVD effect on tumor growth. The microvessel density (MVD, vascular endothelial growth factor (VEGF, basic fibroblast growth factor (bFGF are characterized factors of angiogenesis, which were compared between TSAVD-treated and control groups. Antimetastasis effect on experimental pulmonary metastasis hepatoma mice was also observed in the study. The results demonstrated that TSAVD can effectively inhibit HCC growth and metastasis in vivo, inhibit the formation of microvessel, downregulate expressions of VEGF and bFGF, and retrain angiogenesis of hepatoma 22 which could be one of the reasons.

  3. Lonidamine Causes Inhibition of Angiogenesis-Related Endothelial Cell Functions1

    Science.gov (United States)

    Del Bufalo, Donatella; Trisciuoglio, Daniela; Scarsella, Marco; D'Amati, Giulia; Candiloro, Antonio; Iervolino, Angela; Leonetti, Carlo; Zupi, Gabriella

    2004-01-01

    Abstract The aim of this study was to assess whether lonidamine (LND) interferes with some steps in angiogenesis progression. We report here, for the first time, that LND inhibited angiogenic-related endothelial cell functions in a dose-dependent manner (1–50 µg/ml). In particular, LND decreased proliferation, migration, invasion, and morphogenesis on matrigel of different endothelial cell lines. Zymographic and Western blot analysis assays showed that LND treatment produced a reduction in the secretion of matrix metalloproteinase- 2 and metalloproteinase-9 by endothelial cells. Vessel formation in a matrigel plug was also reduced by LND. The viability, migration, invasion, and matrix metalloproteinase production of different tumor cell lines were not affected by low doses of LND (1–10 µg/ml), whereas 50 µg/ml LND, which corresponds to the dose used in clinical management of tumors, triggered apoptosis both in endothelial and tumor cells. Together, these data demonstrate that LND is a compound that interferes with endothelial cell functions, both at low and high doses. Thus, the effect of LND on endothelial cell functions, previously undescribed, may be a significant contributor to the antitumor effect of LND observed for clinical management of solid tumors. PMID:15548359

  4. Cucurbitacin B inhibits breast cancer metastasis and angiogenesis through VEGF-mediated suppression of FAK/MMP-9 signaling axis.

    Science.gov (United States)

    Sinha, Sonam; Khan, Sajid; Shukla, Samriddhi; Lakra, Amar Deep; Kumar, Sudhir; Das, Gunjan; Maurya, Rakesh; Meeran, Syed Musthapa

    2016-08-01

    Available breast cancer therapeutic strategies largely target the primary tumor but are ineffective against tumor metastasis and angiogenesis. In our current study, we determined the effect of Cucurbitacin B (CuB), a plant triterpenoid, on the metastatic and angiogenic potential of breast cancer cells. CuB was found to inhibit cellular proliferation and induce apoptosis in breast cancer cells in a time- and dose-dependent manner. Further, CuB-treatment significantly inhibited the migratory and invasive potential of highly metastatic breast cancer MDA-MB-231 and 4T1 cells at sub-IC50 concentrations, where no significant apoptosis was observed. CuB was also found to inhibit migratory, invasive and tube-forming capacities of HUVECs in vitro. In addition, inhibition of pre-existing vasculature in chick embryo chorioallantoic membrane ex vivo further supports the anti-angiogenic effect of CuB. CuB-mediated anti-metastatic and anti-angiogenic effects were associated with the downregulation of VEGF/FAK/MMP-9 signaling, which has been validated by using FAK-inhibitor (FI-14). CuB-treatment resulted in a significant inhibition of VEGF-induced phosphorylation of FAK and MMP-9 expressions similar to the action of FI-14. CuB was also found to decrease the micro-vessel density as evidenced by the decreased expression of CD31, a marker for neovasculature. Further, CuB-treatment inhibited tumor growth, lung metastasis and angiogenesis in a highly metastatic 4T1-syngeneic mouse mammary cancer. Collectively, our findings suggest that CuB inhibited breast cancer metastasis and angiogenesis, at least in part, through the downregulation of VEGF/FAK/MMP-9 signaling. PMID:27210504

  5. Inhibition of angiogenesis: a novel antitumor mechanism of the herbal compound arctigenin.

    Science.gov (United States)

    Gu, Yuan; Scheuer, Claudia; Feng, Dilu; Menger, Michael D; Laschke, Matthias W

    2013-09-01

    Arctigenin, a functional ingredient of several traditional Chinese herbs, has been reported to have potential antitumor activity. However, its mechanisms of action are still not well elucidated. Because the establishment and metastatic spread of tumors is crucially dependent on angiogenesis, here we investigated whether arctigenin inhibits tumor growth by disturbing blood vessel formation. For this purpose, human dermal microvascular endothelial cells were exposed to different arctigenin doses to study their viability, proliferation, protein expression, migration, and tube formation compared with vehicle-treated controls. In addition, arctigenin action on vascular sprouting was analyzed in an aortic ring assay. Furthermore, we studied direct arctigenin effects on CT26.WT colon carcinoma cells. Spheroids of these tumor cells were transplanted into the dorsal skinfold chamber of arctigenin-treated and vehicle-treated BALB/c mice for the in-vivo analysis of tumor vascularization and growth by intravital fluorescence microscopy, histology, and immunohistochemistry. We found that noncytotoxic doses of arctigenin dose dependently reduced the proliferation of human dermal microvascular endothelial cells without affecting their migratory and tube-forming capacity. Arctigenin treatment also resulted in a decreased cellular expression of phosphorylated serine/threonine protein kinase AKT, vascular endothelial growth factor receptor 2, and proliferating cell nuclear antigen and inhibited vascular sprouting from aortic rings. In addition, proliferation, but not secretion of vascular endothelial growth factor, was decreased in arctigenin-treated tumor cells. Finally, arctigenin suppressed the vascularization and growth of engrafting CT26.WT tumors in the dorsal skinfold chamber model. Taken together, these results show for the first time an antiangiogenic action of arctigenin, which may contribute considerably toward its antitumor activity. PMID:23744558

  6. Platelet factor-4 and its p17-70 peptide inhibit myeloma proliferation and angiogenesis in vivo

    International Nuclear Information System (INIS)

    Angiogenesis plays an important role in the development of multiple myeloma (MM). The interaction between MM cells and the bone marrow microenvironment stimulates the proliferation and migration of endothelial progenitor cells (EPCs). Vascular endothelial growth factor (VEGF) contributes to the formation of new blood vessels by actively recruiting circulating EPCs. The production of proangiogenic and antiangiogenic factors is also dysregulated in MM. Platelet factor 4 (PF4) is a potent angiostatic cytokine that inhibits angiogenesis and tumor growth in several animal models. In this study, we stably transfected human myeloma cell lines with the PF4 gene or the sequence encoding its more potent p17-70 peptide and investigated the effects of PF4 and p17-70 on angiogenesis and tumor growth in vitro and in a SCID-rab myeloma model. PF4 and p17-70 significantly attenuated VEGF production, both in vitro and in vivo. In a migration study using a Transwell system, PF4 or p17-70 markedly suppressed the migration of co-cultured human endothelial progenitor cells. PF4 or p17-70 also caused a significant reduction in microvessel densities in myeloma xenografts and markedly reduced the tumor volume in the SCID mice. Kaplan-Meier analysis demonstrated that PF4 and p17-70 significantly extended the overall survival of SCID mice bearing human myeloma xenografts. Our findings indicate that PF4 or p17-70 could be valuable in combating multiple myeloma by disrupting tumor angiogenesis

  7. Tobramycin at subinhibitory concentration inhibits the RhlI/R quorum sensing system in a Pseudomonas aeruginosa environmental isolate

    Directory of Open Access Journals (Sweden)

    Venturi Vittorio

    2010-06-01

    Full Text Available Abstract Background Antibiotics are not only small molecules with therapeutic activity in killing or inhibiting microbial growth, but can also act as signaling molecules affecting gene expression in bacterial communities. A few studies have demonstrated the effect of tobramycin as a signal molecule on gene expression at the transcriptional level and its effect on bacterial physiology and virulence. These have shown that subinhibitory concentrations (SICs of tobramycin induce biofilm formation and enhance the capabilities of P. aeruginosa to colonize specific environments. Methods Environmental P. aeruginosa strain PUPa3 was grown in the presence of different concentrations of tobramycin and it was determined at which highest concentration SIC, growth, total protein levels and translation efficiency were not affected. At SIC it was then established if phenotypes related to cell-cell signaling known as quorum sensing were altered. Results In this study it was determined whether tobramycin sensing/response at SICs was affecting the two independent AHL QS systems in an environmental P. aeruginosa strain. It is reasonable to assume that P. aeruginosa encounters tobramycin in nature since it is produced by niche mate Streptomyces tenebrarius. It was established that SICs of tobramycin inhibited the RhlI/R system by reducing levels of C4-HSL production. This effect was not due to a decrease of rhlI transcription and required tobramycin-ribosome interaction. Conclusions Tobramycin signaling in P. aeruginosa occurs and different strains can have a different response. Understanding the tobramycin response by an environmental P. aeruginosa will highlight possible inter-species signalling taking place in nature and can possible also have important implications in the mode of utilization for human use of this very important antibiotic.

  8. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Qingyi [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Qing, Yong, E-mail: qingyongxy@yahoo.co.jp [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Yang [State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China); Hu, Xiaojuan; Jiang, Lei [Department of Pharmacology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan 610041 (China); Wu, Xiaohua, E-mail: wuxh@scu.edu.cn [Regenerative Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 (China)

    2014-12-01

    Dioscin has shown cytotoxicity against cancer cells, but its in vivo effects and the mechanisms have not elucidated yet. The purpose of the current study was to assess the antitumor effects and the molecular mechanisms of dioscin. We showed that dioscin could inhibit tumor growth in vivo and has no toxicity at the test condition. The growth suppression was accompanied by obvious blood vessel decrease within solid tumors. We also found dioscin treatment inhibited the proliferation of cancer and endothelial cell lines, and most sensitive to primary cultured human umbilical vein endothelial cells (HUVECs). What's more, analysis of HUVECs migration, invasion, and tube formation exhibited that dioscin has significantly inhibitive effects to these actions. Further analysis of blood vessel formation in the matrigel plugs indicated that dioscin could inhibit VEGF-induced blood vessel formation in vivo. We also identified that dioscin could suppress the downstream protein kinases of VEGFR2, including Src, FAK, AKT and Erk1/2, accompanied by the increase of phosphorylated P38MAPK. The results potently suggest that dioscin may be a potential anticancer drug, which efficiently inhibits angiogenesis induced by VEGFR2 signaling pathway as well as AKT/MAPK pathways. - Highlights: • Dioscin inhibits tumor growth in vivo and does not exhibit any toxicity. • Dioscin inhibits angiogenesis within solid tumors. • Dioscin inhibits the proliferation, migration, invasion, and tube formation of HUVECs. • Dioscin inhibits VEGF–induced blood vessel formation in vivo. • Dioscin inhibits VEGFR2 signaling pathway as well as AKT/MAPK pathway.

  9. Dioscin inhibits colon tumor growth and tumor angiogenesis through regulating VEGFR2 and AKT/MAPK signaling pathways

    International Nuclear Information System (INIS)

    Dioscin has shown cytotoxicity against cancer cells, but its in vivo effects and the mechanisms have not elucidated yet. The purpose of the current study was to assess the antitumor effects and the molecular mechanisms of dioscin. We showed that dioscin could inhibit tumor growth in vivo and has no toxicity at the test condition. The growth suppression was accompanied by obvious blood vessel decrease within solid tumors. We also found dioscin treatment inhibited the proliferation of cancer and endothelial cell lines, and most sensitive to primary cultured human umbilical vein endothelial cells (HUVECs). What's more, analysis of HUVECs migration, invasion, and tube formation exhibited that dioscin has significantly inhibitive effects to these actions. Further analysis of blood vessel formation in the matrigel plugs indicated that dioscin could inhibit VEGF-induced blood vessel formation in vivo. We also identified that dioscin could suppress the downstream protein kinases of VEGFR2, including Src, FAK, AKT and Erk1/2, accompanied by the increase of phosphorylated P38MAPK. The results potently suggest that dioscin may be a potential anticancer drug, which efficiently inhibits angiogenesis induced by VEGFR2 signaling pathway as well as AKT/MAPK pathways. - Highlights: • Dioscin inhibits tumor growth in vivo and does not exhibit any toxicity. • Dioscin inhibits angiogenesis within solid tumors. • Dioscin inhibits the proliferation, migration, invasion, and tube formation of HUVECs. • Dioscin inhibits VEGF–induced blood vessel formation in vivo. • Dioscin inhibits VEGFR2 signaling pathway as well as AKT/MAPK pathway

  10. Forkhead Transcription Factor FOXO1 Inhibits Angiogenesis in Gastric Cancer in Relation to SIRT1

    OpenAIRE

    Kim, Sue Youn; Ko, Young San; Park, Jinju; Choi, Yiseul; Park, Jong-Wan; Kim, Younghoon; Pyo, Jung-Soo; Yoo, Young Bok; Lee, Jae-Seon; Lee, Byung Lan

    2015-01-01

    Purpose We previously reported that forkhead transcription factors of the O class 1 (FOXO1) expression in gastric cancer (GC) was associated with angiogenesis-related molecules. However, there is little experimental evidence for the direct role of FOXO1 in GC. In the present study, we investigated the effect of FOXO1 on the tumorigenesis and angiogenesis in GC and its relationship with SIRT1. Materials and Methods Stable GC cell lines (SNU-638 and SNU-601) infected with a lentivirus containin...

  11. Two-chain high molecular weight kininogen induces endothelial cell apoptosis and inhibits angiogenesis: partial activity within domain 5.

    Science.gov (United States)

    Zhang, J C; Claffey, K; Sakthivel, R; Darzynkiewicz, Z; Shaw, D E; Leal, J; Wang, Y C; Lu, F M; McCrae, K R

    2000-12-01

    We previously reported that the binding of two-chain high molecular weight kininogen (HKa) to endothelial cells may occur through interactions with endothelial urokinase receptors. Since the binding of urokinase to urokinase receptors activates signaling responses and may stimulate mitogenesis, we assessed the effect of HKa binding on endothelial cell proliferation. Unexpectedly, HKa inhibited proliferation in response to several growth factors, with 50% inhibition caused by approximately 10 nM HKa. This activity was Zn(2+) dependent and not shared by either single-chain high molecular weight kininogen (HK) or low molecular weight kininogen. HKa selectively inhibited the proliferation of human umbilical vein and dermal microvascular endothelial cells, but did not affect that of umbilical vein or human aortic smooth muscle cells, trophoblasts, fibroblasts, or carcinoma cells. Inhibition of endothelial proliferation by HKa was associated with endothelial cell apoptosis and unaffected by antibodies that block the binding of HK or HKa to any of their known endothelial receptors. Recombinant HK domain 5 displayed activity similar to that of HKa. In vivo, HKa inhibited neovascularization of subcutaneously implanted Matrigel plugs, as well as rat corneal angiogenesis. These results demonstrate that HKa is a novel inhibitor of angiogenesis, whose activity is dependent on the unique conformation of the two-chain molecule. PMID:11099478

  12. D-Amino acid oxidase-induced oxidative stress, 3-bromopyruvate and citrate inhibit angiogenesis, exhibiting potent anticancer effects.

    Science.gov (United States)

    El Sayed, S M; El-Magd, R M Abou; Shishido, Y; Yorita, K; Chung, S P; Tran, D H; Sakai, T; Watanabe, H; Kagami, S; Fukui, K

    2012-10-01

    Angiogenesis is critical for cancer growth and metastasis. Steps of angiogenesis are energy consuming, while vascular endothelial cells are highly glycolytic. Glioblastoma multiforme (GBM) is a highly vascular tumor and this enhances its aggressiveness. D-amino acid oxidase (DAO) is a promising therapeutic protein that induces oxidative stress upon acting on its substrates. Oxidative stress-energy depletion (OSED) therapy was recently reported (El Sayed et al., Cancer Gene Ther, 19, 1-18, 2012). OSED combines DAO-induced oxidative stress with energy depletion caused by glycolytic inhibitors such as 3-bromopyruvate (3BP), a hexokinase II inhibitor that depleted ATP in cancer cells and induced production of hydrogen peroxide. 3BP disturbs the Warburg effect and antagonizes effects of lactate and pyruvate (El Sayed et al., J Bioenerg Biomembr, 44, 61-79, 2012). Citrate is a natural organic acid capable of inhibiting glycolysis by targeting phosphofructokinase. Here, we report that DAO, 3BP and citrate significantly inhibited angiogenesis, decreased the number of vascular branching points and shortened the length of vascular tubules. OSED delayed the growth of C6/DAO glioma cells. 3BP combined with citrate delayed the growth of C6 glioma cells and decreased significantly the number and size of C6 glioma colonies in soft agar. Human GBM cells (U373MG) were resistant to chemotherapy e.g. cisplatin and cytosine arabinoside, while 3BP was effective in decreasing the viability and disturbing the morphology of U373MG cells. PMID:22802136

  13. Efficient inhibition of tumor angiogenesis and growth by a synthetic peptide blocking S100A4-methionine aminopeptidase 2 interaction.

    Science.gov (United States)

    Ochiya, Takahiro; Takenaga, Keizo; Asagiri, Masataka; Nakano, Kazumi; Satoh, Hitoshi; Watanabe, Toshiki; Imajoh-Ohmi, Shinobu; Endo, Hideya

    2015-01-01

    The prometastatic calcium-binding protein, S100A4, is expressed in endothelial cells, and its downregulation markedly suppresses tumor angiogenesis in a xenograft cancer model. Given that endothelial S100A4 can be a molecular target for inhibiting tumor angiogenesis, we addressed here whether synthetic peptide capable of blocking S100A4-effector protein interaction could be a novel antiangiogenic agent. To examine this hypothesis, we focused on the S100A4-binding domain of methionine aminopeptidase 2, an effector protein, which plays a role in endothelial cell growth. Overexpression of the domain in mouse endothelial MSS31 cells reduced DNA synthesis, and the corresponding synthetic peptide (named NBD) indeed interacted with S100A4 and inhibited capillary formation in vitro and new blood vessel formation in vivo. Intriguingly, a single intra-tumor administration of the NBD peptide in human prostate cancer xenografts significantly reduced vascularity, resulting in tumor regression. Mechanistically, the NBD peptide enhanced assembly of nonmuscle myosin IIA filaments along with Ser1943 phosphorylation, stimulated formation of focal adhesions without phosphorylation of focal adhesion kinase, and provoked G1/S arrest of the cell cycle. Altogether, the NBD peptide is a potent inhibitor for tumor angiogenesis, and is the first example of an anticancer peptide drug developed on the basis of an endothelial S100A4-targeted strategy. PMID:26029719

  14. Local inhibition of angiogenesis results in an atrophic non-union in a rat osteotomy model

    Directory of Open Access Journals (Sweden)

    M Fassbender

    2011-07-01

    Full Text Available Long bone and in particular tibia fractures frequently fail to heal. A disturbed revascularisation is supposed to be a major cause for impaired bone healing or the development of non-unions. We aim to establish an animal model, which reliably mimics the clinical situation. Human microvascular endothelial cells (HMEC-1 and primary human osteoblast like cells (POBs were cultured with different angiogenesis-inhibitors (Fumagillin, SU5416, Artesunate and 3,5,4’-Trimethoxystilbene released out of poly(D,L-Lactide (PDLLA coated k-wires and cell activity was determined. Discs containing PDLLA or PDLLA + Fumagillin/Artesunate were placed at the chorionallantoic membrane of hen eggs and the effect on vessel formation and egg vitality was observed. Tibia osteotomy was performed in rats and stabilised with K-wires coated with PDLLA + Fumagillin or with PDLLA only (control group. The healing was compared at different time points to the PDLLA control. Fumagillin and Artesunate inhibited the activity of HMEC-1 with minor effect on POBs. Artesunate caused embryonic death, whereas Fumagillin had no effects on egg vitality, but reduced the blood vessels. In the animal study all rats showed an impaired healing with reduced biomechanical stability. The Fumagillin treated tibiae had a significantly decreased callus size at day 42 and 84, less blood vessels in the early callus, a reduced histological callus size at day 10, 28 and 84, as well as an altered callus composition. This study presents a less vascularised, atrophic, tibia non-union and can be used in further investigations to analyse the pathology of atrophic non-union and to test new interventions.

  15. Inhibition of Pseudomonas aeruginosa elastase and Pseudomonas keratitis using a thiol-based peptide.

    OpenAIRE

    Burns, F R; Paterson, C. A.; Gray, R. D.; Wells, J T

    1990-01-01

    Pseudomonas aeruginosa elastase is a zinc metalloproteinase which is released during P. aeruginosa infections. Pseudomonas keratitis, which occurs following contact lens-induced corneal trauma, can lead to rapid, liquefactive necrosis of the cornea. This destruction has been attributed to the release of both host-derived enzymes and the bacterial products P. aeruginosa elastase, alkaline protease, exotoxin A, and lipopolysaccharide endotoxin. A synthetic metalloproteinase inhibitor, HSCH2 (DL...

  16. Reexpression of ARHI inhibits tumor growth and angiogenesis and impairs the mTOR/VEGF pathway in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Research highlights: → Reconstitution of ARHI suppresses the growth of HCC xenografts. → ARHI reexpression impairs tumor angiogenesis in vivo. → Inhibition of the mTOR/VEGF signaling by forced expression of ARHI. → Manipulating ARHI may be of therapeutic benefit in treatment of ARHI-negative HCCs. -- Abstract: The Ras-related tumor suppressor gene aplasia Ras homolog member I (ARHI) is frequently downregulated in many types of cancer, including hepatocellular carcinoma (HCC). In this study, we sought to explore the therapeutic implications of ARHI reconstitution in the treatment of HCC. We generated stable cell lines overexpressing ARHI in Hep3B and SK-Hep1 cells, both of which lack endogenous ARHI. The effects of ARHI reexpression on tumor growth and angiogenesis were assessed. Given the key role of mammalian target of rapamycin (mTOR) signaling in HCC progression, we also tested whether ARHI overexpression affected the mTOR pathway. Forced expression of ARHI resulted in a significant inhibition of the proliferation of both Hep3B and SK-Hep1 cells compared to control cells (P < 0.01). Cell cycle analysis revealed a G0-G1 arrest induced by ARHI reexpression. Moreover, ARHI reexpression significantly retarded Hep3B xenograft growth in vivo, and caused a marked reduction in tumor angiogenesis assessed by CD31-stained microvessel count. Western blot analysis of the xenografts showed that ARHI overexpression substantially reduced the phosphorylation of two mTOR substrates, S6K1 and 4E-BP1, indicative of an inactivation of the mTOR pathway. Accompanying with the mTOR inactivation, the angiogenic factors, hypoxia-inducible factor 1 alpha and vascular endothelial growth factor, were significantly downregulated. These data highlighted an important role for ARHI in controlling HCC growth and angiogenesis, therefore offering a possible therapeutic strategy against this malignancy.

  17. Inhibition of miR-7 promotes angiogenesis in human umbilical vein endothelial cells by upregulating VEGF via KLF4.

    Science.gov (United States)

    Li, Yi-Ze; Wen, Lei; Wei, Xu; Wang, Qian-Rong; Xu, Long-Wen; Zhang, Hong-Mei; Liu, Wen-Chao

    2016-09-01

    Recent lentiviral-based microRNA (miRNA) library screening has identified miRNA-7 (miR-7) as an anti‑angiogenic miRNA in human umbilical vein endothelial cells (HUVECs). However, the underlying mechanism of miR-7 in the suppression of angiogenesis remains largely unknown. In the present study, we report that miR-7 inhibition promoted angiogenesis by upregulating vascular endothelial growth factor (VEGF) and directly targeting Krüppel-like factor 4 (KLF4). Downregulation of miR-7 promoted tube formation of HUVECs, accompanied by upregulation of mRNA and protein levels of both VEGF and KLF4. miR-7 directly targeted KLF4 as demonstrated by luciferase reporter assay and miR-7 mimics decreased KLF4. Furthermore, bioinformatic analysis revealed the presence of multiple DNA-binding elements of KLF4 in the VEGF promoter. Chromatin immunoprecipitation (ChIP) demonstrated that the KLF4 antibody specifically pulled down the VEGF promoter in the HUVECs. Furthermore, ectopic overexpression of KLF4 induced VEGF mRNA and protein levels. In addition, KLF4 silencing inhibited the angiogenesis induced by the miR-7 inhibitor in the HUVECs. Our results demonstrated that KLF4 is a direct target of miR-7 and a transcription activator of VEGF. These findings indicate that the miR-7-KLF4-VEGF signaling axis plays an important role in the regulation of angiogenesis in HUVECs, suggesting that miR-7 is a potential agent for the development of anti-angiogenic therapeutics in vascular diseases and solid tumors. PMID:27431648

  18. VEGF Silencing Inhibits Human Osteosarcoma Angiogenesis and Promotes Cell Apoptosis via PI3K/AKT Signaling Pathway.

    Science.gov (United States)

    Zhao, Jian; Zhang, Zi-Ru; Zhao, Na; Ma, Bao-An; Fan, Qing-Yu

    2015-11-01

    Vascular endothelial growth factor (VEGF) is one of the most effective angiogenic factors that promote generation of tumor vasculature. VEGF is usually up-regulated in multiple cancers including osteosarcoma and glioma. To further explore the potential molecular mechanism that inhibits tumor growth induced by interference of VEGF expression, we constructed a Lv-shVEGF vector and assessed the efficiency of VEGF silencing and its influence in U2OS cells. The data demonstrate that Lv-shVEGF has high inhibition efficiency on VEGF expression, which inhibits proliferation and promotes apoptosis of U2OS cells in vitro. Our results also indicate that inhibition of VEGF expression suppresses osteosarcoma tumor growth in vivo and reduces osteosarcoma angiogenesis. We also found that the activations of phosphoinositide 3-kinase (PI3K) and protein kinase B (AKT) were considerably reduced after osteosarcoma cells were treated with Lv-shVEGF. Taken together, our data demonstrate that VEGF silencing suppresses cell proliferation, promotes cell apoptosis, and reduces osteosarcoma angiogenesis through inactivation of PI3K/AKT signaling pathway. PMID:27352347

  19. 1-o-acetylbritannilactone (ABL) inhibits angiogenesis and lung cancer cell growth through regulating VEGF-Src-FAK signaling.

    Science.gov (United States)

    Zhengfu, He; Hu, Zhang; Huiwen, Miao; Zhijun, Li; Jiaojie, Zhou; Xiaoyi, Yan; Xiujun, Cai

    2015-08-21

    The search for safe, effective and affordable therapeutics against non-small cell lung cancer (NSCLC) and other lung cancers is important. Here we explored the potential effect of 1-o-acetylbritannilactone (ABL), a novel extract from Inula britannica-F, on angiogenesis and lung cancer cell growth. We demonstrated that ABL dose-dependently inhibited vascular endothelial growth factor (VEGF)-induced proliferation, migration, and capillary structure formation of cultured human umbilical vascular endothelial cells (HUVECs). In vivo, ABL administration suppressed VEGF-induced new vasculature formation in Matrigel plugs. For the mechanism investigations, we found that ABL largely inhibited VEGF-mediated activation of Src kinase and focal adhesion kinase (FAK) in HUVECs. Furthermore, treatment of A549 NSCLC cells with ABL resulted in cell growth inhibition and Src-FAK in-activation. Significantly, administration of a single dose of ABL (12 mg/kg/day) remarkably suppressed growth of A549 xenografts in nude mice. In vivo microvessels formation and Src activation were also significantly inhibited in ABL-treated xenograft tumors. Taken together, our findings suggest that ABL suppresses angiogenesis and lung cancer cell growth possibly via regulating the VEGFR-Src-FAK signaling. PMID:26102035

  20. Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis

    DEFF Research Database (Denmark)

    Qin, Zhiqiang; Yang, Liang; Qu, Di;

    2009-01-01

    in overnight cultures had no effect on established P. aeruginosa biofilms and planktonic growth. These findings reveal that P. aeruginosa extracellular products are important microbial competition factors that overcome competition with S. epidermidis, and the results may provide clues for the development...

  1. Role of EC-SOD Overexpression in Preserving Pulmonary Angiogenesis Inhibited by Oxidative Stress

    Science.gov (United States)

    Perveen, Shahana; Patel, Hardik; Arif, Arslan; Younis, Sharif; Codipilly, Champa N.; Ahmed, Mohamed

    2012-01-01

    Angiogenesis is one of the most important processes for normal lung development. Oxidative stress can impair the pulmonary angiogenesis, leading to chronic lung disease or Bronchopulmonary dysplasia (BPD). Objective To investigate the protective effects of EC-SOD overexpression on pulmonary angiogenesis on neonates following exposure to acute hyperoxia. Design/Methods Transgenic (TG) and wild-type (WT) neonatal mice (10 mice per group) were exposed either to air (control group) or 95% O2 for 7 days starting at birth. After exposure, all animals were sacrificed. ROS concentration was measured in lung homogenates using OxiSelect ROS assay kit. Mean vascular density (MVD) was measured using anti CD34 staining. RNA was extracted and the angiogenesis markers, VEGF, VEGFR1 and VEGFR2 and PECAM-1 were analyzed by RT-q PCR. VGEF protein was measured using Western blots. Endothelial progenitor cells (EPCs) was assayed by flow cytometer. Results There was a significant reduction of ROS in TG hyperoxic neonate group (156±14.2) compared to WT hyperoxic animals (255±35.1). Evaluation of MVD, using anti-CD34, showed marked significant increase of MVD in the TG group following hyperoxic exposure (85±12) in comparison to the WT hyperoxic group (62±8.4), (P0.05). PECAM expression was significantly reduced in both hyperoxic compared to normoxic groups (P0.05). Conclusions EC-SOD plays a key role in preserving angiogenesis by scavenging free radicals which has an inhibitory effect on angiogenesis process in neonatal mice lung following exposure to hyperoxia. PMID:23284826

  2. PPAR-γ Activation Inhibits Angiogenesis by Blocking ELR+CXC Chemokine Production in Non-small Cell Lung Cancer

    Directory of Open Access Journals (Sweden)

    Venkateshwar G. Keshamouni

    2005-03-01

    Full Text Available Activation of peroxisome proliferator-activated receptor-γ (PPAR-γ results in inhibition of tumor growth in various types of cancers, but the mechanism(s by which PPAR-γ induces growth arrest has not been completely defined. In a recent study, we demonstrated that treatment of A549 (human non small cell lung cancer cell line tumor-bearing SCID mice with PPAR-γ ligands troglitazone (Tro and pioglitazone significantly inhibits primary tumor growth. In this study, immunohistochemical analysis of Tro-treated and Pio-treated tumors with factor VIII antibody revealed a significant reduction in blood vessel density compared to tumors in control animals, suggesting inhibition of angiogenesis. Further analysis showed that treatment of A549 cells in vitro with Tro or transient transfection of A549 cells with constitutively active PPAR-γ (VP16-PPAR-γ construct blocked the production of the angiogenic ELR +CXC chemokines IL-8 (CXCL8, ENA-78 (CXCL5, Gro-α (CXCL1. Similarly, an inhibitor of NF-ΚB activation (PDTC also blocked CXCL8, CXCL5, CXCL1 production, consistent with their NF-ΚB-dependent regulation. Conditioned media from A549 cells induce human microvascular endothelial cell (HMVEC chemotaxis. However, conditioned media from Tro-treated A549 cells induced significantly less HMVEC chemotaxis compared to untreated A549 cells. Furthermore, PPAR-γ activation inhibited NF-ΚB transcriptional activity, as assessed by TransAM reporter gene assay. Collectively, our data suggest that PPAR-γ ligands can inhibit tumor-associated angiogenesis by blocking the production of ELR+CXC chemokines, which is mediated through antagonizing NF-ΚB activation. These antiangiogenic effects likely contribute to the inhibition of primary tumor growth by PPAR-γ ligands.

  3. Kruppel-like factor 2 inhibit the angiogenesis of cultured human liver sinusoidal endothelial cells through the ERK1/2 signaling pathway

    International Nuclear Information System (INIS)

    Kruppel-like factor 2 (KLF2) is a crucial anti-angiogenic factor. However, its precise role in hepatic angiogenesis induced by liver sinusoidal endothelial cells (LSECs) remain unclear. This study was aimed to evaluate the effect of KLF2 on angiogenesis of LSECs and to explore the corresponding mechanism. Cultured human LSECs were infected with different lentiviruses to overexpress or suppress KLF2 expression. The CCK-8 assay, transwell migration assay and tube formation test, were used to investigate the roles of KLF2 in the proliferation, migration and vessel tube formation of LSECs, respectively. The expression and phosphorylation of ERK1/2 were detected by western blot. We discovered that the up-regulation of KLF2 expression dramatically inhibited proliferation, migration and tube formation in treated LSECs. Correspondingly, down-regulation of KLF2 expression significantly promoted proliferation, migration and tube formation in treated LSECs. Additionally, KLF2 inhibited the phosphorylation of ERK1/2 pathway, followed by the function of KLF2 in the angiogenesis of LSECs disrupted. In conclusion, KLF2 suppressed the angiogenesis of LSECs through inhibition of cell proliferation, migration, and vessel tube formation. These functions of KLF2 may be mediated through the ERK1/2 signaling pathway. - Highlights: • Overexpression of KLF2 inhibits the proliferation and migration of LSECs. • Overexpression of KLF2 inhibits the angiogenesis of LSECs. • ERK1/2 signaling pathway involved in the anti-angiogenic process of KLF2 on LSECs

  4. Quercetin inhibits angiogenesis mediated human prostate tumor growth by targeting VEGFR- 2 regulated AKT/mTOR/P70S6K signaling pathways.

    Directory of Open Access Journals (Sweden)

    Poyil Pratheeshkumar

    Full Text Available Angiogenesis is a crucial step in the growth and metastasis of cancers, since it enables the growing tumor to receive oxygen and nutrients. Cancer prevention using natural products has become an integral part of cancer control. We studied the antiangiogenic activity of quercetin using ex vivo, in vivo and in vitro models. Rat aortic ring assay showed that quercetin at non-toxic concentrations significantly inhibited microvessel sprouting and exhibited a significant inhibition in the proliferation, migration, invasion and tube formation of endothelial cells, which are key events in the process of angiogenesis. Most importantly, quercetin treatment inhibited ex vivo angiogenesis as revealed by chicken egg chorioallantoic membrane assay (CAM and matrigel plug assay. Western blot analysis showed that quercetin suppressed VEGF induced phosphorylation of VEGF receptor 2 and their downstream protein kinases AKT, mTOR, and ribosomal protein S6 kinase in HUVECs. Quercetin (20 mg/kg/d significantly reduced the volume and the weight of solid tumors in prostate xenograft mouse model, indicating that quercetin inhibited tumorigenesis by targeting angiogenesis. Furthermore, quercetin reduced the cell viability and induced apoptosis in prostate cancer cells, which were correlated with the downregulation of AKT, mTOR and P70S6K expressions. Collectively the findings in the present study suggest that quercetin inhibits tumor growth and angiogenesis by targeting VEGF-R2 regulated AKT/mTOR/P70S6K signaling pathway, and could be used as a potential drug candidate for cancer therapy.

  5. Kruppel-like factor 2 inhibit the angiogenesis of cultured human liver sinusoidal endothelial cells through the ERK1/2 signaling pathway

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xiao-Qing, E-mail: zeng.xiaoqing@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Na, E-mail: Linala.2009@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Pan, Du-Yi, E-mail: lasikesmi@hotmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Miao, Qing, E-mail: sadsadvenus@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Ma, Gui-Fen, E-mail: ma.guifen@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Liu, Yi-Mei, E-mail: liuyimei1988@163.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Tseng, Yu-Jen, E-mail: dianatseng14@gmail.com [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Li, Feng, E-mail: li.feng2@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Xu, Li-Li, E-mail: xu.lili3@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Chen, Shi-Yao, E-mail: chen.shiyao@zs-hospital.sh.cn [Department of Gastroenterology of Zhongshan Hospital, Fudan University, Shanghai (China); Institute of Endoscopic Research of Zhongshan Hospital, Fudan University, Shanghai (China)

    2015-09-04

    Kruppel-like factor 2 (KLF2) is a crucial anti-angiogenic factor. However, its precise role in hepatic angiogenesis induced by liver sinusoidal endothelial cells (LSECs) remain unclear. This study was aimed to evaluate the effect of KLF2 on angiogenesis of LSECs and to explore the corresponding mechanism. Cultured human LSECs were infected with different lentiviruses to overexpress or suppress KLF2 expression. The CCK-8 assay, transwell migration assay and tube formation test, were used to investigate the roles of KLF2 in the proliferation, migration and vessel tube formation of LSECs, respectively. The expression and phosphorylation of ERK1/2 were detected by western blot. We discovered that the up-regulation of KLF2 expression dramatically inhibited proliferation, migration and tube formation in treated LSECs. Correspondingly, down-regulation of KLF2 expression significantly promoted proliferation, migration and tube formation in treated LSECs. Additionally, KLF2 inhibited the phosphorylation of ERK1/2 pathway, followed by the function of KLF2 in the angiogenesis of LSECs disrupted. In conclusion, KLF2 suppressed the angiogenesis of LSECs through inhibition of cell proliferation, migration, and vessel tube formation. These functions of KLF2 may be mediated through the ERK1/2 signaling pathway. - Highlights: • Overexpression of KLF2 inhibits the proliferation and migration of LSECs. • Overexpression of KLF2 inhibits the angiogenesis of LSECs. • ERK1/2 signaling pathway involved in the anti-angiogenic process of KLF2 on LSECs.

  6. A function blocking anti-mouse integrin α5β1 antibody inhibits angiogenesis and impedes tumor growth in vivo

    Directory of Open Access Journals (Sweden)

    Powers David

    2007-11-01

    Full Text Available Abstract Background Integrins are important adhesion molecules that regulate tumor and endothelial cell survival, proliferation and migration. The integrin α5β1 has been shown to play a critical role during angiogenesis. An inhibitor of this integrin, volociximab (M200, inhibits endothelial cell growth and movement in vitro, independent of the growth factor milieu, and inhibits tumor growth in vivo in the rabbit VX2 carcinoma model. Although volociximab has already been tested in open label, pilot phase II clinical trials in melanoma, pancreatic and renal cell cancer, evaluation of the mechanism of action of volociximab has been limited because this antibody does not cross-react with murine α5β1, precluding its use in standard mouse xenograft models. Methods We generated a panel of rat-anti-mouse α5β1 antibodies, with the intent of identifying an antibody that recapitulated the properties of volociximab. Hybridoma clones were screened for analogous function to volociximab, including specificity for α5β1 heterodimer and blocking of integrin binding to fibronectin. A subset of antibodies that met these criteria were further characterized for their capacities to bind to mouse endothelial cells, inhibit cell migration and block angiogenesis in vitro. One antibody that encompassed all of these attributes, 339.1, was selected from this panel and tested in xenograft models. Results A panel of antibodies was characterized for specificity and potency. The affinity of antibody 339.1 for mouse integrin α5β1 was determined to be 0.59 nM, as measured by BIAcore. This antibody does not significantly cross-react with human integrin, however 339.1 inhibits murine endothelial cell migration and tube formation and elicits cell death in these cells (EC50 = 5.3 nM. In multiple xenograft models, 339.1 inhibited the growth of established tumors by 40–60% (p Conclusion The results herein demonstrate that 339.1, like volociximab, exhibits potent anti-α5β1

  7. Scopolin isolated from Erycibe obtusifolia Benth stems suppresses adjuvant-induced rat arthritis by inhibiting inflammation and angiogenesis

    Institute of Scientific and Technical Information of China (English)

    PAN Rong; DAI Yue; GAO Xing-hua; XIA Yu-feng

    2008-01-01

    Objective To study the effects and mechanisms of scopolin isolated from the stems of Erycibe obtusifolia Benth in arthritis-associated inflammation and angiogenesis. Methods Adjuvant-induced arthritic rat, an animal model for human RA was used in this study for examining the potential remedial effect of scopolin. The swelling in both inoculated and non-inoculated paws, body weights and articular index (AI) scores were detected to evaluate the severity of the arthritis. Histologic assessment of tissue sections from rat ankles was also performed. Furthermore, the blood vessel density in the synovial tissues was quantitatively evaluated. In addition, expressions of VEGF, FGF-2, TNF-α, IL-1β and IL-6 in rat synovial tissues were determined by immunohistochemistry assay in an attempt to explain the mechanisms of scopolin for suppressing arthritis. Results Scopolin dose-dependently inhibited both inoculated and non-inoculated paw swelling in rat AIA. The mean AI scores of scopolin treated groups were also dose-dependently lower than that of model group. In addition, compared with the weights of model group, the mean body weights of rats treated with scopolin (50,100 mg·kg-1) were higher from day 13 to 22, perhaps indicative of healthier animals. The histologic architecture of the joint was highly abnormal in the model group rats, while high dose of scopolin treated rats preserved a nearly normal histologic architecture of the joint. Moreover, the new blood vessels were reduced dose-dependently in the synovial tissue of rat AIA treated with scopolin. Further, scopolin reduced the overexpression of IL-6,VEGF and FGF-2 in rat synovial tissues. Conclusions Scopolin is capable of reducing clinical symptoms of rat AIA by inhibiting inflammation and angiogenesis, and this compound may be a potent therapeutic agent for angiogenesis related diseases and can serve as structural base for screening for more potent synthetic analogs.

  8. Targeting the lactate transporter MCT1 in endothelial cells inhibits lactate-induced HIF-1 activation and tumor angiogenesis.

    Directory of Open Access Journals (Sweden)

    Pierre Sonveaux

    Full Text Available Switching to a glycolytic metabolism is a rapid adaptation of tumor cells to hypoxia. Although this metabolic conversion may primarily represent a rescue pathway to meet the bioenergetic and biosynthetic demands of proliferating tumor cells, it also creates a gradient of lactate that mirrors the gradient of oxygen in tumors. More than a metabolic waste, the lactate anion is known to participate to cancer aggressiveness, in part through activation of the hypoxia-inducible factor-1 (HIF-1 pathway in tumor cells. Whether lactate may also directly favor HIF-1 activation in endothelial cells (ECs thereby offering a new druggable option to block angiogenesis is however an unanswered question. In this study, we therefore focused on the role in ECs of monocarboxylate transporter 1 (MCT1 that we previously identified to be the main facilitator of lactate uptake in cancer cells. We found that blockade of lactate influx into ECs led to inhibition of HIF-1-dependent angiogenesis. Our demonstration is based on the unprecedented characterization of lactate-induced HIF-1 activation in normoxic ECs and the consecutive increase in vascular endothelial growth factor receptor 2 (VEGFR2 and basic fibroblast growth factor (bFGF expression. Furthermore, using a variety of functional assays including endothelial cell migration and tubulogenesis together with in vivo imaging of tumor angiogenesis through intravital microscopy and immunohistochemistry, we documented that MCT1 blockers could act as bona fide HIF-1 inhibitors leading to anti-angiogenic effects. Together with the previous demonstration of MCT1 being a key regulator of lactate exchange between tumor cells, the current study identifies MCT1 inhibition as a therapeutic modality combining antimetabolic and anti-angiogenic activities.

  9. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer-Part 1.

    Science.gov (United States)

    Sagar, S M; Yance, D; Wong, R K

    2006-02-01

    An integrative approach for managing a patient with cancer should target the multiple biochemical and physiologic pathways that support tumour development and minimize normal-tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also manifest other anticancer activities. The present article focuses on products that have a high degree of anti-angiogenic activity, but it also describes some of the many other actions of these agents that can inhibit tumour progression and reduce the risk of metastasis. Natural health products target molecular pathways other than angiogenesis, including epidermal growth factor receptor, the HER2/neu gene, the cyclooxygenase-2 enzyme, the nuclear factor kappa-B transcription factor, the protein kinases, the Bcl-2 protein, and coagulation pathways. The herbs that are traditionally used for anticancer treatment and that are anti-angiogenic through multiple interdependent processes (including effects on gene expression, signal processing, and enzyme activities) include Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (curcumin), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinalis (ginger), Panax ginseng, Rabdosia rubescens hora (Rabdosia), and Chinese destagnation herbs. Quality assurance of appropriate extracts is essential prior to embarking upon clinical trials. More data are required on dose-response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations. During active cancer therapy, they should generally be evaluated in combination with chemotherapy and radiation. In this role, they act as modifiers of biologic response or as

  10. Inhibition of human monocyte chemotaxis and chemiluminescence by Pseudomonas aeruginosa elastase

    DEFF Research Database (Denmark)

    Kharazmi, A; Nielsen, H

    1991-01-01

    The in vitro effect of Pseudomonas aeruginosa elastase on human monocyte function was examined. Mononuclear cells isolated from the peripheral blood of healthy individuals were incubated with various concentrations of elastase, and the chemotactic activity and chemiluminescence response of these ...

  11. Angiogenesis inhibition and cell cycle arrest induced by treatment with Pseudolarix acid B alone or combined with 5-fluorouracil

    Institute of Scientific and Technical Information of China (English)

    Jingtao Liu; Wei Guo; Bo Xu; Fuxiang Ran; Mingming Chu; Hongzheng Fu; Jingrong Cui

    2012-01-01

    Angiogenesis inhibitors combined with chemotherapeutic drugs have significant efficacy in the treatment of a variety of cancers.Pseudolarix acid B (PAB) is a traditional pregnancy-terminating agent,which has previously been shown to reduce tumor growth and angiogenesis.In this study,we used the high content screening assay to examine the effects of PAB on human umbilical vein endothelial cells (HUVECs).Two hepatocarcinoma 22-transplanted mouse models were used to determine PAB efficacy in combination with 5-fluorouracil (5-Fu).Our results suggested that PAB (0.156-1.250 μM) inhibited HUVECs motility in a concentration-dependent manner without obvious cytotoxicity in vitro.In vivo,PAB (25 mg/kg/day) promoted the anti-tumor efficacy of 5-Fu (5 mg/kg/2 days) in combination therapy,resulting in significantly higher tumor inhibition rates,lower microvessel density values,and prolonged survival times.It was also demonstrated that PAB acted by blocking the cell cycle at both the G1/S boundary and M phase,down-regulation of vascular endothelial growth factor,hypoxia-inducible factor 1α and cyclin E expression,and up-regulation of cdc2 expression.These observations provide the first evidence that PAB in combination with 5-Fu may be useful in cancer treatment.

  12. Epidermal growth factor receptor inhibition reduces angiogenesis via hypoxia-inducible factor-1α and Notch1 in head neck squamous cell carcinoma.

    Directory of Open Access Journals (Sweden)

    Wei-Ming Wang

    Full Text Available Angiogenesis, a marker of cancer development, affects response to radiotherapy sensibility. This preclinical study aims to understand the receptor tyrosine kinase-mediated angiogenesis in head neck squamous cell carcinoma (HNSCC. The receptor tyrosine kinase activity in a transgenic mouse model of HNSCC was assessed. The anti-tumorigenetic and anti-angiogenetic effects of cetuximab-induced epidermal growth factor receptor (EGFR inhibition were investigated in xenograft and transgenic mouse models of HNSCC. The signaling transduction of Notch1 and hypoxia-inducible factor-1α (HIF-1α was also analyzed. EGFR was overexpressed and activated in the Tgfbr1/Pten deletion (2cKO mouse model of HNSCC. Cetuximab significantly delayed tumor onset by reducing tumor angiogenesis. This drug exerted similar effects on heterotopic xenograft tumors. In the human HNSCC tissue array, increased EGFR expression correlated with increased HIF-1α and micro vessel density. Cetuximab inhibited tumor-induced angiogenesis in vitro and in vivo by significantly downregulating HIF-1α and Notch1. EGFR is involved in the tumor angiogenesis of HNSCC via the HIF-1α and Notch1 pathways. Therefore, targeting EGFR by suppressing hypoxia- and Notch-induced angiogenesis may benefit HNSCC therapy.

  13. Asparagus polysaccharide and gum with hepatic artery embolization induces tumor growth and inhibits angiogenesis in an orthotopic hepatocellular carcinoma model.

    Science.gov (United States)

    Weng, Ling-Ling; Xiang, Jian-Feng; Lin, Jin-Bo; Yi, Shang-Hui; Yang, Li-Tao; Li, Yi-Sheng; Zeng, Hao-Tao; Lin, Sheng-Ming; Xin, Dong-Wei; Zhao, Hai-Liang; Qiu, Shu-Qi; Chen, Tao; Zhang, Min-Guang

    2014-01-01

    Liver cancer is one of leading digestive malignancies with high morbidity and mortality. There is an urgent need for the development of novel therapies for this deadly disease. It has been proven that asparagus polysaccharide, one of the most active derivates from the traditional medicine asparagus, possesses notable antitumor properties. However, little is known about the efficacy of asparagus polysaccharide as an adjuvant for liver cancer chemotherapy. Herein, we reported that asparagus polysaccharide and its embolic agent form, asparagus gum, significantly inhibited liver tumor growth with transcatheter arterial chemoembolization (TACE) therapy in an orthotopic hepatocellular carcinoma (HCC) tumor model, while significantly inhibiting angiogenesis and promoting tumor cell apoptosis. Moreover, asparagine gelatinous possessed immunomodulatory functions and showed little toxicity to the host. These results highlight the chemotherapeutic potential of asparagus polysaccharide and warrant a future focus on development as novel chemotherapeutic agent for liver cancer TACE therapy. PMID:25605207

  14. Interleukin-12 Inhibits Tumor Growth in a Novel Angiogenesis Canine Hemangiosarcoma Xenograft Model1

    OpenAIRE

    Akhtar, Nasim; Padilla, Marcia L.; Dickerson, Erin B; Steinberg, Howard; Breen, Matthew; Auerbach, Robert; Helfand, Stuart C

    2004-01-01

    We established a canine hemangiosarcoma cell line derived from malignant endothelial cells comprising a spontaneous tumor in a dog to provide a renewable source of endothelial cells for studies of angiogenesis in malignancy. Pieces of the hemangiosarcoma biopsy were engrafted subcutaneously in a bg/nu/XID mouse allowing the tumor cells to expand in vivo. A cell line, SB-HSA, was derived from the xenograft. SB-HSA cells expressed vascular endothelial growth factor (VEGF) receptors 1 and 2, CD3...

  15. Interleukin-12 Inhibits Tumor Growth in a Novel Angiogenesis Canine Hemangiosarcoma Xenograft Model

    OpenAIRE

    Nasim Akhtar; Padilla, Marcia L.; Dickerson, Erin B; Howard Steinberg; Matthew Breent; Robert Auerbach; Helfand, Stuart C

    2004-01-01

    We established a canine hemangiosarcoma cell line derived from malignant endothelial cells comprising a spontaneous tumor in a dog to provide a renewable source of endothelial cells for studies of angiogenesis in malignancy. Pieces of the hemangiosarcoma biopsy were engrafted subcutaneously in a bg/nu/XID mouse allowing the tumor cells to expand in vivo. A cell line, SB-HSA, was derived from the xenograft. SB-HSA cells expressed vascular endothelial growth factor (VEGF) receptors 1 and 2, CD3...

  16. Yiguanjian decoction and its ingredients inhibit angiogenesis in carbon tetrachloride-induced cirrhosis mice

    OpenAIRE

    Zhou, Ya-Ning; Mu, Yong-Ping; Fu, Wen-Wei; Ning, Bing-Bing; Du, Guang-Li; Chen, Jia-Mei; Sun, Ming-yu; Zhang, Hua; Hu, Yi-yang; Liu, Cheng-Hai; Xu, Lie-Ming; Liu, Ping

    2015-01-01

    Background Cirrhosis is associated with angiogenesis and disruption of hepatic vascular architecture. Yiguanjian (YGJ) decoction, a prescription from traditional Chinese medicine, is widely used for treating liver diseases. We studied whether YGJ or its ingredients (iYGJ) had an anti-angiogenic effect and explored possible mechanisms underlying this process. Methods Cirrhosis was induced with carbon tetrachloride (CCl4) (ip) in C57BL/6 mice for 6 weeks. From week 4 to week 6, cirrhotic mice w...

  17. Nitric Oxide Synthase Inhibition by NG-Nitro-l-Arginine Methyl Ester Inhibits Tumor-Induced Angiogenesis in Mammary Tumors

    OpenAIRE

    Jadeski, Lorraine C.; Lala, Peeyush K.

    1999-01-01

    Using a murine breast cancer model, we earlier found a positive correlation between the expression of nitric oxide synthase (NOS) and tumor progression; treatment with inhibitors of NOS, NG-methyl-l-arginine (NMMA) and NG-nitro-l-arginine methyl ester (L-NAME), had antitumor and antimetastatic effects that were partly attributed to reduced tumor cell invasiveness. In the present study, we used a novel in vivo model of tumor angiogenesis using subcutaneous implants of tumor cells suspended in ...

  18. Blocking CLEC14A-MMRN2 binding inhibits sprouting angiogenesis and tumour growth

    Science.gov (United States)

    PJ, Noy; P, Lodhia; K, Khan; X, Zhuang; DG, Ward; AR, Verissimo; A, Bacon; R, Bicknell

    2015-01-01

    We previously identified CLEC14A as a tumour endothelial marker. Here we show CLEC14A is a regulator of sprouting angiogenesis in vitro and in vivo. Using a HUVEC spheroid sprouting assay we found CLEC14A to be a regulator of sprout initiation. Analysis of endothelial sprouting in aortic ring and in vivo subcutaneous sponge assays from clec14a+/+ and clec14a−/− mice revealed defects in sprouting angiogenesis in CLEC14A deficient animals. Tumour growth was retarded and vascularity reduced in clec14a−/− mice. Pulldown and co-immunoprecipitation experiments confirmed MMRN2 binds to the extracellular region of CLEC14A. The CLEC14A-MMRN2 interaction was interrogated using mouse monoclonal antibodies. Monoclonal antibodies were screened for their ability to block this interaction. Clone C4 but not C2 blocked CLEC14A-MMRN2 binding. C4 antibody perturbed tube formation and endothelial sprouting in vitro and in vivo, with a similar phenotype to loss of CLEC14A. Significantly, tumour growth was impaired in C4 treated animals and vascular density was also reduced in the C4 treated group. We conclude that CLEC14A-MMRN2 binding has a role in inducing sprouting angiogenesis during tumour growth, that has the potential to be manipulated in future anti-angiogenic therapy design. PMID:25745997

  19. Nitric Oxide Synthase Inhibition by NG-Nitro-l-Arginine Methyl Ester Inhibits Tumor-Induced Angiogenesis in Mammary Tumors

    Science.gov (United States)

    Jadeski, Lorraine C.; Lala, Peeyush K.

    1999-01-01

    Using a murine breast cancer model, we earlier found a positive correlation between the expression of nitric oxide synthase (NOS) and tumor progression; treatment with inhibitors of NOS, NG-methyl-l-arginine (NMMA) and NG-nitro-l-arginine methyl ester (L-NAME), had antitumor and antimetastatic effects that were partly attributed to reduced tumor cell invasiveness. In the present study, we used a novel in vivo model of tumor angiogenesis using subcutaneous implants of tumor cells suspended in growth factor-reduced Matrigel to examine the angiogenic role of NO in a highly metastatic murine mammary adenocarcinoma cell line. This cell line, C3L5, expresses endothelial (e) NOS in vitro and in vivo, and inducible (i) NOS in vitro on stimulation with lipopolysaccharide and interferon-γ. Female C3H/HeJ mice received subcutaneous implants of growth factor-reduced Matrigel inclusive of C3L5 cells on one side, and on the contralateral side, Matrigel alone; L-NAME and D-NAME (inactive enantiomer) were subsequently administered for 14 days using osmotic minipumps. Immediately after sacrifice, implants were removed and processed for immunolocalization of eNOS and iNOS proteins, and measurement of angiogenesis. Neovascularization was quantified in sections stained with Masson’s trichrome or immunostained for the endothelial cell specific CD31 antigen. While most tumor cells and endothelial cells expressed immunoreactive eNOS protein, iNOS was localized in endothelial cells and some macrophages within the tumor-inclusive implants. Measurable angiogenesis occurred only in implants containing tumor cells. Irrespective of the method of quantification used, tumor-induced neovascularization was significantly reduced in L-NAME-treated mice relative to those treated with D-NAME. The quantity of stromal tissue was lower, but the quantity of necrotic tissue higher in L-NAME relative to D-NAME-treated animals. The total mass of viable tissue (ie, stroma and tumor cells) was lower in L

  20. Y-tocotrienol inhibits angiogenesis-dependent growth of human hepatocellular carcinoma through abrogation of AKT/mTOR pathway in an orthotopic mouse model.

    Science.gov (United States)

    Siveen, Kodappully Sivaraman; Ahn, Kwang Seok; Ong, Tina H; Shanmugam, Muthu K; Li, Feng; Yap, Wei Ney; Kumar, Alan Prem; Fong, Chee Wai; Tergaonkar, Vinay; Hui, Kam M; Sethi, Gautam

    2014-04-15

    Angiogenesis is one of the key hallmarks of cancer. In this study, we investigated whether γ-tocotrienol can abrogate angiogenesis-mediated tumor growth in hepatocellular carcinoma (HCC) and if so, through what molecular mechanisms. We observed that γ-tocotrienol inhibited vascular endothelial growth factor (VEGF)-induced migration, invasion, tube formation and viability of HUVECs in vitro. Moreover, γ-tocotrienol reduced the number of capillary sprouts from matrigel embedded rat thoracic aortic ring in a dose-dependent manner. Also, in chick chorioallantoic membrane assay, γ-tocotrienol significantly reduced the blood vessels formation. We further noticed that γ-tocotrienol blocked angiogenesis in an in vivo matrigel plug assay. Furthermore, γ-tocotrienol inhibited VEGF-induced autophosphorylation of VEGFR2 in HUVECs and also suppressed the constitutive activation of AKT/mammalian target of rapamycin (mTOR) signal transduction cascades in HUVECs as well as in HCC cells. Interestingly, γ-tocotrienol was also found to significantly reduce the tumor growth in an orthotopic HCC mouse model and inhibit tumor-induced angiogenesis in HCC patient xenografts through the suppression of various biomarkers of proliferation and angiogenesis. Taken together, our findings strongly suggest that γ-tocotrienol might be a promising anti-angiogenic drug with significant antitumor activity in HCC. PMID:24722367

  1. Surface-retained organic matter of Microcystis aeruginosa inhibiting coagulation with polyaluminum chloride in drinking water treatment.

    Science.gov (United States)

    Takaara, Tomoko; Sano, Daisuke; Masago, Yoshifumi; Omura, Tatsuo

    2010-07-01

    Algogenic organic matter produced by the excess growth of cyanobacteria in semi-closed water areas causes coagulation inhibition in drinking water production. In this study, hydrophilic substances of Microcystis aeruginosa, which were mainly composed of lipopolysaccharide (LPS) and RNA, were prepared, and the involvement of these cyanobacterial hydrophilic substances in coagulation inhibition was investigated. As a result, it was found that the negatively charged hydrophilic substances with a molecular weight higher than 10 kDa have a significant role in coagulation inhibition. Further fractionation of cyanobacterial hydrophilic substances revealed that surface-retained organic matter (SOM), including LPS, could exhibit a potent inhibitory effect on the coagulation using polyaluminum chloride (PACl), presumably because of the direct interaction of hydrophilic SOM with cations originated from PACl, which could impede the hydrolysis of the coagulant. PMID:20570314

  2. Diet-derived polyphenols inhibit angiogenesis by modulating the interleukin-6/STAT3 pathway

    International Nuclear Information System (INIS)

    Several epidemiological studies have indicated that abundant consumption of foods from plant origin is associated with a reduced risk of developing several types of cancers. This chemopreventive effect is related to the high content of these foods in phytochemicals, such as polyphenols, that interfere with several processes involved in cancer progression including tumor cell growth, survival and angiogenesis. In addition to the low intake of plant-based foods, increased body mass and physical inactivity have recently emerged as other important lifestyle factors influencing cancer risk, leading to the generation of low-grade chronic inflammatory conditions which are a key process involved in tumor progression. The objectives of the current study are to investigate the inhibitory effects of these polyphenols on angiogenesis triggered by an inflammatory cytokine (IL-6) and to determine the mechanisms underlying this action. We found that, among the tested polyphenols, apigenin and luteolin were the most potent angiogenesis inhibitors through their inhibitory effect on the inflammatory cytokine IL-6/STAT3 pathway. These effects resulted in modulation of the activation of extracellular signal-regulated kinase-1/2 signaling triggered by IL-6, as well as in a marked reduction in the proliferation, migration and morphogenic differentiation of endothelial cells. Interestingly, these polyphenols also modulated the expression of IL-6 signal transducing receptor (IL-6Rα) and the secretion of the extracellular matrix degrading enzyme MMP-2 as well as the expression of suppressor of cytokine signaling (SOCS3) protein. Overall, these results may provide important new information on the role of diet in cancer prevention.

  3. Diet-derived polyphenols inhibit angiogenesis by modulating the interleukin-6/STAT3 pathway

    Energy Technology Data Exchange (ETDEWEB)

    Lamy, Sylvie; Akla, Naoufal; Ouanouki, Amira; Lord-Dufour, Simon; Beliveau, Richard, E-mail: oncomol@nobel.si.uqam.ca

    2012-08-01

    Several epidemiological studies have indicated that abundant consumption of foods from plant origin is associated with a reduced risk of developing several types of cancers. This chemopreventive effect is related to the high content of these foods in phytochemicals, such as polyphenols, that interfere with several processes involved in cancer progression including tumor cell growth, survival and angiogenesis. In addition to the low intake of plant-based foods, increased body mass and physical inactivity have recently emerged as other important lifestyle factors influencing cancer risk, leading to the generation of low-grade chronic inflammatory conditions which are a key process involved in tumor progression. The objectives of the current study are to investigate the inhibitory effects of these polyphenols on angiogenesis triggered by an inflammatory cytokine (IL-6) and to determine the mechanisms underlying this action. We found that, among the tested polyphenols, apigenin and luteolin were the most potent angiogenesis inhibitors through their inhibitory effect on the inflammatory cytokine IL-6/STAT3 pathway. These effects resulted in modulation of the activation of extracellular signal-regulated kinase-1/2 signaling triggered by IL-6, as well as in a marked reduction in the proliferation, migration and morphogenic differentiation of endothelial cells. Interestingly, these polyphenols also modulated the expression of IL-6 signal transducing receptor (IL-6R{alpha}) and the secretion of the extracellular matrix degrading enzyme MMP-2 as well as the expression of suppressor of cytokine signaling (SOCS3) protein. Overall, these results may provide important new information on the role of diet in cancer prevention.

  4. Inhibition of tumor angiogenesis by angiostatin: from recombinant protein to gene therapy.

    Science.gov (United States)

    Dell'Eva, Raffaella; Pfeffer, Ulrich; Indraccolo, S; Albini, Adriana; Noonan, Douglas

    2002-01-01

    Tumor growth, local invasion, and metastatic dissemination are dependent on the formation of new microvessels. The process of angiogenesis is regulated by a balance between pro-angiogenic and anti-angiogenic factors, and the shift to an angiogenic phenotype (the "angiogenic switch") is a key event in tumor progression. The use of anti-angiogenic agents to restore this balance represents a promising approach to cancer treatment. Known physiological inhibitors include trombospondin, several interleukins, and the proteolytic break-down products of several proteins. Angiostatin, an internal fragment of plasminogen, is one of the more potent of this latter class of angiogenesis inhibitors. Like endostatin, another anti-angiogenic peptide derived from collagen XVIII, angiostatin can induce tumor vasculature regression, leading to a complete cessation of tumor growth. Inhibitors of angiogenesis target normal endothelial cells, therefore the development of resistance to these drugs is unlikely. The efficacy of angiostatin has been demonstrated in animal models for many different types of solid tumors. Anti-angiogenic cancer therapy with angiostatin requires prolonged administration of the peptide. The production of the functional polypeptides is expensive and technical problems related to physical properties and purity are frequently encountered. Gene transfer represents an alternative method to deliver angiostatin. Gene therapy has the potential to produce the therapeutic agent in high concentrations in a local area for a sustained period, thereby avoiding the problems encountered with long-term administration of recombinant proteins, monoclonal antibodies, or anti-angiogenic drugs. In this review we compare the different gene therapy strategies that have been applied to angiostatin, with special regard to their ability to provide sufficient angiostatin at the target site. PMID:12901356

  5. MRI monitoring of tumor response following angiogenesis inhibition in an experimental human breast cancer model

    International Nuclear Information System (INIS)

    The aim of this study was to evaluate the potential of dynamic magnetic resonance imaging (MRI) enhanced by macromolecular contrast agents to monitor noninvasively the therapeutic effect of an anti-angiogenesis VEGF receptor kinase inhibitor in an experimental cancer model. MDA-MB-435, a poorly differentiated human breast cancer cell line, was implanted into the mammary fat pad in 20 female homozygous athymic rats. Animals were assigned randomly to a control (n=10) or drug treatment group (n=10). Baseline dynamic MRI was performed on sequential days using albumin-(GdDTPA)30 (6.0 nm diameter) and ultrasmall superparamagnetic iron oxide (USPIO) particles (30 nm diameter). Subjects were treated either with PTK787/ZK 222584, a VEGF receptor tyrosine kinase inhibitor, or saline given orally twice daily for 1 week followed by repeat MRI examinations serially using each contrast agent. Employing a unidirectional kinetic model comprising the plasma and interstitial water compartments, tumor microvessel characteristics including fractional plasma volume and transendothelial permeability (KPS) were estimated for each contrast medium. Tumor growth and the microvascular density, a histologic surrogate of angiogenesis, were also measured. Control tumors significantly increased (PPS) based on MRI assays using both macromolecular contrast media. In contrast, tumor growth was significantly reduced (PPS values declined slightly. Estimated values for the fractional plasma volume did not differ significantly between treatment groups or contrast agents. Microvascular density counts correlated fairly with the tumor growth rate (r=0.64) and were statistically significant higher (PPS), using either of two macromolecular contrast media, were able to detect effects of treatment with a VEGF receptor tyrosine kinase inhibitor on tumor vascular permeability. In a clinical setting such quantitative MRI measurements could be used to monitor tumor anti-angiogenesis therapy. (orig.)

  6. Anti-adjuvant arthritis of recombinant human endostatin in rats via inhibition of angiogenesis and proinflammatory factors

    Institute of Scientific and Technical Information of China (English)

    Li YUE; Hua WANG; Li-hua LIU; Yu-xian SHEN; Wei WEI

    2004-01-01

    AIM: To investigate the profile of endostatin on adjuvant arthritis (AA) and angiogenesis blockade in synovitis.METHODS: The model of rat AA was induced by injection of intradermal complete Freund's adjuvant (CFA). Hind paw volume of rat was measured by volume meter and the activities of interleukin- 1 (IL- 1) and IL-2 Were measured by the assay of thymocytes proliferation. IL-1 β and tumor necrosis factor-α (TNF-α) produced by synoviocytes was estimated with radioimmunoassay. The number of new blood vessels in knee joint synovium was counted under microscope by hematoxylin and eosin (HE) staining. RESULTS: The secondary inflammation of AA rats appeared on the 10th day after injection of CFA. The therapeutic administration of endostatin (0.1, 0.5, and 2.5secondary paw swelling and the number of new blood vessels in the synovium of AA rats. Endostatin significantly decreased the production of IL-1 derived from both peritoneal macrophages and synoviocytes and IL-2 from splenocytes, especially at the dose of 2.5 mg/kg. This effect of endostatin also was seen on TNF-α produced by synoviocytes. CONCLUSION: The recombinant human endostatin had an inhibitory effect on rat AA, which was related to its anti-angiogenesis and inhibition of proinflammatory cytokines.

  7. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound

    DEFF Research Database (Denmark)

    Hentzer, Morten; Riedel, Kathrin; Rasmussen, Thomas B;

    2002-01-01

    Novel molecular tools have been constructed which allow for in situ detection of N-acyl homoserine lactone (AHL)-mediated quorum sensing in Pseudomonas aeruginosa biofilms. The reporter responds to AHL activation of LasR by expression of an unstable version of the green-fluorescent protein (Gfp...... macroalga Delisea pulchra, is capable of interfering with AHL-mediated quorum sensing in P. aeruginosa. It is demonstrated that the furanone compound specifically represses expression of a PlasB-gfp reporter fusion without affecting growth or protein synthesis. In addition, it reduces the production of...

  8. NSK-01105, a Novel Sorafenib Derivative, Inhibits Human Prostate Tumor Growth via Suppression of VEGFR2/EGFR-Mediated Angiogenesis

    Science.gov (United States)

    Yu, Pengfei; Ye, Liang; Wang, Hongbo; Du, Guangying; Zhang, Jianzhao; Zuo, Yanhua; Zhang, Jinghai; Tian, Jingwei

    2014-01-01

    The purpose of this study is to investigate the anti-angiogenic activities of NSK-01105, a novel sorafenib derivative, in in vitro, ex vivo and in vivo models, and explore the potential mechanisms. NSK-01105 significantly inhibited vascular endothelial growth factor (VEGF)-induced migration and tube formation of human umbilical vein endothelial cells at non-cytotoxic concentrations as shown by wound-healing, transwell migration and endothelial cell tube formation assays, respectively. Cell viability and invasion of LNCaP and PC-3 cells were significantly inhibited by cytotoxicity assay and matrigel invasion assay. Furthermore, NSK-01105 also inhibited ex vivo angiogenesis in matrigel plug assay. Western blot analysis showed that NSK-01105 down-regulated VEGF-induced phosphorylation of VEGF receptor 2 (VEGFR2) and the activation of epidermal growth factor receptor (EGFR). Tumor volumes were significantly reduced by NSK-01105 at 60 mg/kg/day in both xenograft models. Immunohistochemical staining demonstrated a close association between inhibition of tumor growth and neovascularization. Collectively, our results suggest a role of NSK-01105 in treatment for human prostate tumors, and one of the potential mechanisms may be attributed to anti-angiogenic activities. PMID:25551444

  9. Interleukin-12 Inhibits Tumor Growth in a Novel Angiogenesis Canine Hemangiosarcoma Xenograft Model

    Directory of Open Access Journals (Sweden)

    Nasim Akhtar

    2004-03-01

    Full Text Available We established a canine hemangiosarcoma cell line derived from malignant endothelial cells comprising a spontaneous tumor in a dog to provide a renewable source of endothelial cells for studies of angiogenesis in malignancy. Pieces of the hemangiosarcoma biopsy were engrafted subcutaneously in a bg/nu/XID mouse allowing the tumor cells to expand in vivo. A cell line, SB-HSA, was derived from the xenograft. SB-HSA cells expressed vascular endothelial growth factor (VEGF receptors 1 and 2, CD31, CD146, and αvβ3 integrin, and produced several growth factors and cytokines, including VEGF, basic fibroblast growth factor, and interleukin (IL-8 that are stimulatory to endothelial cell growth. These results indicated that the cells recapitulated features of mitotically activated endothelia. In vivo, SB-HSA cells stimulated robust angiogenic responses in mice and formed tumor masses composed of aberrant vascular channels in immunocompromised mice providing novel opportunities for investigating the effectiveness of antiangiogenic agents. Using this model, we determined that IL-12, a cytokine with both immunostimulatory and antiangiogenic effects, suppressed angiogenesis induced by, and tumor growth of, SB-HSA cells. The endothelial cell model we have described offers unique opportunities to pursue further investigations with IL-12, as well as other antiangiogenic approaches in cancer therapy.

  10. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound

    DEFF Research Database (Denmark)

    Hentzer, Morten; Riedel, K.; Rasmussen, Thomas Bovbjerg;

    2002-01-01

    of important virulence factors, indicating a general effect on target genes of the las quorum sensing circuit. The furanone was applied to P. aeruginosa biofilms established in biofilm flow chambers. The Gfp-based analysis reveals that the compound penetrates microcolonies and blocks cell signalling and quorum...

  11. Growth inhibition and colony formation in the cyanobacterium Microcystis aeruginosa induced by the cyanobacterium Cylindrospermopsis raciborskii

    NARCIS (Netherlands)

    Mello, M.M.; Soares, M.C.S.; Roland, F.; Lürling, M.F.L.L.W.

    2012-01-01

    In a tropical reservoir, the cyanobacteria Microcystis aeruginosa and Cylindrospermopsis raciborskii are the dominant species, with changes in dominance throughout the year. Since allelopathy has been suggested as a factor that could promote or stabilize harmful algal blooms, we investigated potenti

  12. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound

    DEFF Research Database (Denmark)

    Hentzer, Morten; Riedel, K.; Rasmussen, Thomas Bovbjerg; Heydorn, Arne; Andersen, Jens Bo; Parsek, M.R.; Rice, S.A.; Eberl, L.; Molin, Søren; Høiby, N.; Kjelleberg, S.; Givskov, Michael Christian

    2002-01-01

    ). Gfp-based reporter technology has been applied for non-destructive, single-cell-level detection of quorum sensing in laboratory-based P. aeruginosa biofilms. It is reported that a synthetic halogenated furanone compound, which is a derivative of the secondary metabolites produced by the Australian...

  13. Insulin-like growth factor-binding protein-3 inhibition of prostate cancer growth involves suppression of angiogenesis.

    Science.gov (United States)

    Liu, B; Lee, K-W; Anzo, M; Zhang, B; Zi, X; Tao, Y; Shiry, L; Pollak, M; Lin, S; Cohen, P

    2007-03-15

    Insulin-like growth factor-binding protein-3 (IGFBP-3) is a multifunctional protein that induces apoptosis utilizing both insulin-like growth factor receptor (IGF)-dependent and -independent mechanisms. We investigated the effects of IGFBP-3 on tumor growth and angiogenesis utilizing a human CaP xenograft model in severe-combined immunodeficiency mice. A 16-day course of IGFBP-3 injections reduced tumor size and increased apoptosis and also led to a reduction in the number of vessels stained with CD31. In vitro, IGFBP-3 inhibited both vascular endothelial growth factor- and IGF-stimulated human umbilical vein endothelial cells vascular network formation in a matrigel assay. This action is primarily IGF independent as shown by studies utilizing the non-IGFBP-binding IGF-1 analog Long-R3. Additionally, we used a fibroblast growth factor-enriched matrigel-plug assay and chick allantoic membrane assays to show that IGFBP-3 has potent antiangiogenic actions in vivo. Finally, overexpression of IGFBP-3 or the non-IGF-binding GGG-IGFBP-3 mutant in Zebrafish embryos confirmed that both IGFBP-3 and the non-IGF-binding mutant inhibited vessel formation in vivo, indicating that the antiangiogenic effect of IGFBP-3 is an IGF-independent phenomenon. Together, these studies provide the first evidence that IGFBP-3 has direct, IGF-independent inhibitory effects on angiogenesis providing an additional mechanism by which it exerts its tumor suppressive effects and further supporting its development for clinical use in the therapy of patients with prostate cancer. PMID:16983336

  14. Bioguided Fractionation Shows Cassia alata Extract to Inhibit Staphylococcus epidermidis and Pseudomonas aeruginosa Growth and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Samuel Takashi Saito

    2012-01-01

    Full Text Available Plant extracts have a long history to be used in folk medicine. Cassia alata extracts are known to exert antibacterial activity but details on compounds and mechanism of action remain poorly explored. We purified and concentrated the aqueous leaf extract of C. alata by reverse phase-solid phase extraction and screened the resulting CaRP extract for antimicrobial activity. CaRP extract exhibited antimicrobial activity for Pseudomonas aeruginosa, Staphylococcus epidermidis, S. aureus, and Bacillus subtilis. CaRP also inhibited biofilm formation of S. epidermidis and P. aeruginosa. Several bacterial growth-inhibiting compounds were detected when CaRP extract was fractionated by TLC chromatography coupled to bioautography agar overlay technique. HPLC chromatography of CaRP extract yielded 20 subfractions that were tested by bioautography for antimicrobial activity against S. aureus and S. epidermidis. Five bioactive fractions were detected and chemically characterized, using high-resolution mass spectrometry (qTOF-MS/MS. Six compounds from four fractions could be characterized as kaempferol, kaempferol-O-diglucoside, kaempferol-O-glucoside, quercetin-O-glucoside, rhein, and danthron. In the Salmonella/microsome assay CaRP showed weak mutagenicity (MI<3 only in strain TA98, pointing to a frameshift mutation activity. These results indicate that C. alata leaf extract contains a minimum of 7 compounds with antimicrobial activity and that these together or as single substance are active in preventing formation of bacterial biofilm, indicating potential for therapeutic applications.

  15. Human plasminogen kringle 1-5 inhibits angiogenesis and induces thrombomodulin degradation in a protein kinase A-dependent manner.

    Science.gov (United States)

    Cho, Chia-Fong; Chen, Po-Ku; Chang, Po-Chiao; Wu, Hau-Lin; Shi, Guey-Yueh

    2013-10-01

    Kringle 1-5 (K1-5), an endogenous proteolytic fragment of human plasminogen (Plg), is an angiostatin-related protein that inhibits angiogenesis. Many angiostatin-related proteins have been identified, but the detailed molecular mechanisms underlying their antiangiogenic effects remain unclear. Thrombomodulin (TM) is a transmembrane glycoprotein that plays a major role in the anticoagulation process in endothelial cells. Previously, we demonstrated that recombinant TM could interact with Plg to enhance Plg activation. In the present study, we investigated the interaction between TM and K1-5, and their functions in endothelial cells. We found that K1-5 colocalized with TM and directly interacted with TM through the TM lectin-like domain. After K1-5 interacted with TM, it induced TM internalization and degradation. In addition, the K1-5-induced TM internalization and degradation in proteasomes after ubiquitin modification were dependent on protein kinase A (PKA). Moreover, a PKA-specific inhibitor reversed the effects of K1-5 on cell migration and tube formation. Consistent with these findings, TM overexpression resulted in increased cell migration; moreover, K1-5 inhibited the increase of TM-mediated cell migration in a PKA-dependent manner. We determined that TM acts as a K1-5 receptor and that K1-5 induces TM internalization, ubiquitination, and degradation through the PKA pathway, by which K1-5 may inhibit endothelial cell migration and tube formation. PMID:23880609

  16. Capacity of wild-type and chemokine-armed parvovirus H-1PV for inhibiting neo-angiogenesis

    International Nuclear Information System (INIS)

    Anti-angiogenic therapy has been recognized as a powerful potential strategy for impeding the growth of various tumors. However no major therapeutic effects have been observed to date, mainly because of the emergence of several resistance mechanisms. Among novel strategies to target tumor vasculature, some oncolytic viruses open up new prospects. In this context, we addressed the question whether the rodent parvovirus H-1PV can target endothelial cells. We show that cultures of human normal (HUVEC) and immortalized (KS-IMM) endothelial cells sustain an abortive viral cycle upon infection with H-1PV and are sensitive to H-1PV cytotoxicity. H-1PV significantly inhibits infected KS-IMM tumor growth. This effect may be traced back by the virus ability to both kill proliferating endothelial cells and inhibit VEGF production Recombinant H-1PV vectors can also transduce tumor cells with chemokines endowed with anti-angiogenesis properties, and warrant further validation for the treatment of highly vascularized tumors. - Highlights: • The oncolytic parvovirus H-1PV can target endothelial cells. • Abortive viral cycle upon infection of endothelial cells with H-1PV. • Inhibition of VEGF expression and KS-IMM tumor growth by H-1PV

  17. Capacity of wild-type and chemokine-armed parvovirus H-1PV for inhibiting neo-angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Lavie, Muriel [Tumor Virology Division, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany); Struyf, Sofie [Laboratory of Molecular Immunology, Rega Institute for Medical Research, K.U. Leuven, Leuven (Belgium); Stroh-Dege, Alexandra; Rommelaere, Jean [Tumor Virology Division, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany); Van Damme, Jo [Laboratory of Molecular Immunology, Rega Institute for Medical Research, K.U. Leuven, Leuven (Belgium); Dinsart, Christiane, E-mail: c.dinsart@dkfz.de [Tumor Virology Division, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg (Germany)

    2013-12-15

    Anti-angiogenic therapy has been recognized as a powerful potential strategy for impeding the growth of various tumors. However no major therapeutic effects have been observed to date, mainly because of the emergence of several resistance mechanisms. Among novel strategies to target tumor vasculature, some oncolytic viruses open up new prospects. In this context, we addressed the question whether the rodent parvovirus H-1PV can target endothelial cells. We show that cultures of human normal (HUVEC) and immortalized (KS-IMM) endothelial cells sustain an abortive viral cycle upon infection with H-1PV and are sensitive to H-1PV cytotoxicity. H-1PV significantly inhibits infected KS-IMM tumor growth. This effect may be traced back by the virus ability to both kill proliferating endothelial cells and inhibit VEGF production Recombinant H-1PV vectors can also transduce tumor cells with chemokines endowed with anti-angiogenesis properties, and warrant further validation for the treatment of highly vascularized tumors. - Highlights: • The oncolytic parvovirus H-1PV can target endothelial cells. • Abortive viral cycle upon infection of endothelial cells with H-1PV. • Inhibition of VEGF expression and KS-IMM tumor growth by H-1PV.

  18. Potent inhibition of angiogenesis and liver tumor growth by administration of an aerosol containing a transferrin-liposome-endostatin complex

    Institute of Scientific and Technical Information of China (English)

    Xi Li; Geng-Feng Fu; Yan-Rong Fan; Chan-Fu Shi; Xin-Juan Liu; Gen-Xing Xu; Jian-Jun Wang

    2003-01-01

    AIM: To obtain an efficient delivery system for transportingendostatin gene to mouse liver tumor xenografts byadministration of aerosol.METHODS: Recombinant plasmid pcDNA3.0/endostatincontaining human endostatin gene together with signalpeptide from alkaline phosphatase were transferred intohuman umbilical vein endothelial cell (HUVEC) by transfenin(TF)-liposome-endostatin complex. Western blot was usedto detect the expression of human endostatin in transfectedHUVEC cells and its medium. After the tumor-bearing micewere administrated with TF-liposome-endostatin complex,the lung tissue was analyzed by immunohistochemicalmethod for expression of endostatin and the tumors weretreated with CD-31 antibody to detect the density ofmicrovesseles in tumor tissues. The inhibition of tumorgrowth was estimated by the weight of tumors from groupstreated with different dos es of TF-liposome-endostatincomplex. DNA fragmentation assay was used to detect theapoptosis of the cells from primary liver tumor.RESULTS: Western blot analysis and immunohistochemicalmethod confirmed the expression of endostatin proteininvitro and in vivo. After the tumor sections were treated withCD-31 antibody, the positive reaction cells appeared brownwhile the negative cells were colorless. The positively stainedarea of the TF-liposome-endostatin treated group wassignificantly smaller (P<0.01, 645.8+55.2 μm2) than that ofthe control group (1325.4+198.5 μm2). The data showed asignificant inhibition of angiogenesis. After administrationof TF-liposome-endostatin, comparing with the control groupadministrated with TF-liposome-pcDNA3.0, liver tumorgrowth in the mice treated with 50, 250 and 500 mg DNA/kg was inhibited by 36.6 %, 40.8 %, and 72.8 %, respectively(P<0.01). And a typical DNA fragmentation of apoptosis wasfound in the cells from tumor tissues of the mice treatedwith TF-liposome-endostatin but none in the control group.CONCLUSION: Endostatin gene could be efficientlytransported into the mice

  19. Antithrombin controls tumor migration, invasion and angiogenesis by inhibition of enteropeptidase

    Science.gov (United States)

    Luengo-Gil, Ginés; Calvo, María Inmaculada; Martín-Villar, Ester; Águila, Sonia; Bohdan, Nataliya; Antón, Ana I.; Espín, Salvador; Ayala de la Peña, Francisco; Vicente, Vicente; Corral, Javier; Quintanilla, Miguel; Martínez-Martínez, Irene

    2016-01-01

    Antithrombin is a key inhibitor of the coagulation cascade, but it may also function as an anti-inflammatory, anti-angiogenic, anti-viral and anti-apoptotic protein. Here, we report a novel function of antithrombin as a modulator of tumor cell migration and invasion. Antithrombin inhibited enteropeptidase on the membrane surface of HT-29, A549 and U-87 MG cells. The inhibitory process required the activation of antithrombin by heparin, and the reactive center loop and the heparin binding domain were essential. Surprisingly, antithrombin non-covalently inhibited enteropeptidase, revealing a novel mechanism of inhibition for this serpin. Moreover, as a consequence of this inhibition, antithrombin was cleaved, resulting in a molecule with anti-angiogenic properties that reduced vessel-like formation of endothelial cells. The addition of antithrombin and heparin to U-87 MG and A549 cells reduced motility in wound healing assays, inhibited the invasion in transwell assays and the degradation of a gelatin matrix mediated by invadopodia. These processes were controlled by enteropeptidase, as demonstrated by RNA interference experiments. Carcinoma cell xenografts in nude mice showed in vivo co-localization of enteropeptidase and antithrombin. Finally, treatment with heparin reduced experimental metastasis induced by HT29 cells in vivo. In conclusion, the inhibition of enteropeptidase by antithrombin may have a double anti-tumor effect through inhibiting a protease involved in metastasis and generating an anti-angiogenic molecule. PMID:27270881

  20. A new anti-angiogenic small molecule, G0811, inhibits angiogenesis via targeting hypoxia inducible factor (HIF)-1α signal transduction

    International Nuclear Information System (INIS)

    Highlights: •G0811 suppresses HIF-1α expression without cell toxicity. •G0811 exhibits anti-angiogenic activity both in vitro and in vivo. •G0811 provides a new molecular scaffold for the development of therapeutics targeting angiogenesis. -- Abstract: Regulation of hypoxia inducible factor (HIF)-1α stabilization, which in turn contributes to adaptation of tumor cells to hypoxia has been highlighted as a promising therapeutic target in angiogenesis-related diseases. We have identified a new small molecule, G0811, as a potent angiogenesis inhibitor that targets HIF-1α signal transduction. G0811 suppressed HIF-1α stability in cancer cells and inhibited in vitro and in vivo angiogenesis, as validated by tube formation, chemoinvasion, and chorioallantoic membrane (CAM) assays. In addition, G0811 effectively decreased the expression of vascular endothelial growth factor (VEGF), which is one of target genes of HIF-1α. However, G0811 did not exhibit anti-proliferative activities or toxicity in human umbilical vein endothelial cells (HUVECs) at effective doses. These results demonstrate that G0811 could be a new angiogenesis inhibitor that acts by targeting HIF-1α signal transduction pathway

  1. A new anti-angiogenic small molecule, G0811, inhibits angiogenesis via targeting hypoxia inducible factor (HIF)-1α signal transduction

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ki Hyun; Jung, Hye Jin; Kwon, Ho Jeong, E-mail: kwonhj@yonsei.ac.kr

    2013-11-15

    Highlights: •G0811 suppresses HIF-1α expression without cell toxicity. •G0811 exhibits anti-angiogenic activity both in vitro and in vivo. •G0811 provides a new molecular scaffold for the development of therapeutics targeting angiogenesis. -- Abstract: Regulation of hypoxia inducible factor (HIF)-1α stabilization, which in turn contributes to adaptation of tumor cells to hypoxia has been highlighted as a promising therapeutic target in angiogenesis-related diseases. We have identified a new small molecule, G0811, as a potent angiogenesis inhibitor that targets HIF-1α signal transduction. G0811 suppressed HIF-1α stability in cancer cells and inhibited in vitro and in vivo angiogenesis, as validated by tube formation, chemoinvasion, and chorioallantoic membrane (CAM) assays. In addition, G0811 effectively decreased the expression of vascular endothelial growth factor (VEGF), which is one of target genes of HIF-1α. However, G0811 did not exhibit anti-proliferative activities or toxicity in human umbilical vein endothelial cells (HUVECs) at effective doses. These results demonstrate that G0811 could be a new angiogenesis inhibitor that acts by targeting HIF-1α signal transduction pathway.

  2. Multimodal therapy for synergic inhibition of tumour cell invasion and tumour-induced angiogenesis

    International Nuclear Information System (INIS)

    Squamous cell carcinoma of the head and neck (SCCHN) are highly invasive tumours with frequent local and distant recurrence. Metastasis formation requires degradation of the extracellular matrix, which is fulfilled by membrane-associated proteases such as the urokinase plasminogen activator (uPA). WX-UK1 is a competitive active site inhibitor of the protease function of uPA that impairs on the capacity of tumour cells to invade in vitro. In the present study, effects of combinations of WX-UK1 with matrix metalloprotease inhibitors (MMP, galardin®) and cyclooxygenase-2 (COX-2, celecoxib®) inhibitors on tumour cell proliferation, invasion, and angiogenesis induction were evaluated. Matrigel invasion chambers and a spheroid co-cultivation model with human fibroblast served to determine the invasive potential of both FaDu (SCCHN) and HeLa (cervical carcinoma) cells, each treated with combinations of Celecoxib®, Galardin®, and WX-UK1. Blocking of single protease systems resulted in a significant 50% reduction of tumour cell invasion using WX-UK1, while the triple combination was even more effective with 80% reduction of invasion. Additionally, a sprouting assay with HUVEC was used to test the anti-angiogenetic potential of the triple combination, resulting in a 40% decrease in the sprouting rate. A combined approach targeting different families of proteases and cyclooxygenases represents a promising adjuvant therapy

  3. OSU-A9 inhibits angiogenesis in human umbilical vein endothelial cells via disrupting Akt–NF-κB and MAPK signaling pathways

    International Nuclear Information System (INIS)

    Since the introduction of angiogenesis as a useful target for cancer therapy, few agents have been approved for clinical use due to the rapid development of resistance. This problem can be minimized by simultaneous targeting of multiple angiogenesis signaling pathways, a potential strategy in cancer management known as polypharmacology. The current study aimed at exploring the anti-angiogenic activity of OSU-A9, an indole-3-carbinol-derived pleotropic agent that targets mainly Akt–nuclear factor-kappa B (NF-κB) signaling which regulates many key players of angiogenesis such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Human umbilical vein endothelial cells (HUVECs) were used to study the in vitro anti-angiogenic effect of OSU-A9 on several key steps of angiogenesis. Results showed that OSU-A9 effectively inhibited cell proliferation and induced apoptosis and cell cycle arrest in HUVECs. Besides, OSU-A9 inhibited angiogenesis as evidenced by abrogation of migration/invasion and Matrigel tube formation in HUVECs and attenuation of the in vivo neovascularization in the chicken chorioallantoic membrane assay. Mechanistically, Western blot, RT-PCR and ELISA analyses showed the ability of OSU-A9 to inhibit MMP-2 production and VEGF expression induced by hypoxia or phorbol-12-myristyl-13-acetate. Furthermore, dual inhibition of Akt–NF-κB and mitogen-activated protein kinase (MAPK) signaling, the key regulators of angiogenesis, was observed. Together, the current study highlights evidences for the promising anti-angiogenic activity of OSU-A9, at least in part through the inhibition of Akt–NF-κB and MAPK signaling and their consequent inhibition of VEGF and MMP-2. These findings support OSU-A9's clinical promise as a component of anticancer therapy. - Highlights: • The antiangiogenic activity of OSU-A9 in HUVECs was explored. • OSU-A9 inhibited HUVECs proliferation, migration, invasion and tube formation. • OSU-A9

  4. OSU-A9 inhibits angiogenesis in human umbilical vein endothelial cells via disrupting Akt–NF-κB and MAPK signaling pathways

    Energy Technology Data Exchange (ETDEWEB)

    Omar, Hany A. [Division of Medicinal Chemistry, College of Pharmacy, The Ohio State University, Columbus, OH 43210 (United States); Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Arafa, El-Shaimaa A. [Department of Pharmacology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514 (Egypt); Salama, Samir A. [Department of Biochemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11511 (Egypt); Arab, Hany H. [Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562 (Egypt); Wu, Chieh-Hsi, E-mail: chhswu@mail.cmu.edu.tw [School of Pharmacy, China Medical University, Taichung 40402, Taiwan (China); Weng, Jing-Ru, E-mail: columnster@gmail.com [Department of Biological Science and Technology, China Medical University, Taichung 40402, Taiwan (China)

    2013-11-01

    Since the introduction of angiogenesis as a useful target for cancer therapy, few agents have been approved for clinical use due to the rapid development of resistance. This problem can be minimized by simultaneous targeting of multiple angiogenesis signaling pathways, a potential strategy in cancer management known as polypharmacology. The current study aimed at exploring the anti-angiogenic activity of OSU-A9, an indole-3-carbinol-derived pleotropic agent that targets mainly Akt–nuclear factor-kappa B (NF-κB) signaling which regulates many key players of angiogenesis such as vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs). Human umbilical vein endothelial cells (HUVECs) were used to study the in vitro anti-angiogenic effect of OSU-A9 on several key steps of angiogenesis. Results showed that OSU-A9 effectively inhibited cell proliferation and induced apoptosis and cell cycle arrest in HUVECs. Besides, OSU-A9 inhibited angiogenesis as evidenced by abrogation of migration/invasion and Matrigel tube formation in HUVECs and attenuation of the in vivo neovascularization in the chicken chorioallantoic membrane assay. Mechanistically, Western blot, RT-PCR and ELISA analyses showed the ability of OSU-A9 to inhibit MMP-2 production and VEGF expression induced by hypoxia or phorbol-12-myristyl-13-acetate. Furthermore, dual inhibition of Akt–NF-κB and mitogen-activated protein kinase (MAPK) signaling, the key regulators of angiogenesis, was observed. Together, the current study highlights evidences for the promising anti-angiogenic activity of OSU-A9, at least in part through the inhibition of Akt–NF-κB and MAPK signaling and their consequent inhibition of VEGF and MMP-2. These findings support OSU-A9's clinical promise as a component of anticancer therapy. - Highlights: • The antiangiogenic activity of OSU-A9 in HUVECs was explored. • OSU-A9 inhibited HUVECs proliferation, migration, invasion and tube formation. • OSU-A9

  5. STAT5b as Molecular Target in Pancreatic Cancer—Inhibition of Tumor Growth, Angiogenesis, and Metastases

    Directory of Open Access Journals (Sweden)

    Christian Moser

    2012-10-01

    Full Text Available The prognosis of patients suffering from pancreatic cancer is still poor and novel therapeutic options are urgently needed. Recently, the transcription factor signal transducer and activator of transcription 5b (STAT5b was associated with tumor progression in human solid cancer. Hence, we assessed whether STAT5b might serve as an anticancer target in ductal pancreatic adenocarcinoma (DPAC. We found that nuclear expression of STAT5b can be detected in approximately 50% of DPAC. Blockade of STAT5b by stable shRNA-mediated knockdown showed no effects on tumor cell growth in vitro. However, inhibition of tumor cell motility was found even in response to stimulation with epidermal growth factor or interleukin-6. These findings were paralleled by a reduction of prometastatic and proangiogenic factors in vitro. Subsequent in vivo experiments revealed a strong growth inhibition on STAT5b blockade in subcutaneous and orthotopic models. These findings were paralleled by impaired tumor angiogenesis in vivo. In contrast to the subcutaneous model, the orthotopic model revealed a strong reduction of tumor cell proliferation that emphasizes the meaning of assessing targets in an appropriate microenvironment. Taken together, our results suggest that STAT5b might be a potential novel target for human DPAC.

  6. The Study of Synergistic Effects of n.butanolic Cyclamen coum Extract and Ciprofloxacin on inhibition of Pseudomonas aeruginosa biofilm formation

    Directory of Open Access Journals (Sweden)

    ahya abdi ali

    2015-02-01

    Full Text Available   Introduction : Infections caused by Pseudomonas aeruginosa biofilm are the major causes of death in patients with cystic fibrosis (CF. Some studies revealed that biofilms are resistant to several antibiotics because of their impermeable structures. In order to re-sensitize bacteria to different antibiotics, biofilm formation should be inhibited. In this research, evaluation of antibiofilm activity of n-butanolic Cyclamen coum extract as a medici­nal plant from Myrsinaceae family, in combination with ciprofloxacin was carried out.   Materials and method s: The biofilm formation ability by P. aeruginosa PAO1 and one clinically isolated P. aeruginosa (PA214 was confirmed by microtiter plate method. Extraction of the tubers of Cyclamen coum was done by fractionation method . The antibiofilm and antibacterial properties of n-butanolic C. coum extract (which includes saponin compounds alone and in combination with ciprofloxacin by using microdilution and crystal violet methods were examined. The cytotoxicity effect of the n-butanolic extract on HT-29 cells was assayed by MTT (3- (4,5-dimethylthiazol-2-yl -2,5-diphenyl-tetrazolium bromide test.   Results : The biofilm formation ability by P. aeruginosa strains was quantitatively confirmed. Saponin content of the n-butanolic C.coum extract was 156 µg/mL. The extract revealed antibacterial activity against the growth of planktonic P. aeruginosa strains. The combination of n-butanolic C.coum extract and ciprofloxacin significantly inhibited P.aeruginosa biofilm formation (ΣFBIC = 0.5. The n-butanolic C.coum extract showed insignificant cytotoxic effect against HT-29 human cancer cell line after 48 hours and 72 hours incubation .   Discussion and conclusion : It can be concluded that n-butanolic C.coum extract in combination with ciprofloxacin significantly revealed antibiofilm activity against P. aeruginosa biofilm however, further clinical investigations are required.

  7. Betaine inhibits in vitro and in vivo angiogenesis through suppression of the NF-κB and Akt signaling pathways.

    Science.gov (United States)

    Yi, Eui-Yeun; Kim, Yung-Jin

    2012-11-01

    Angiogenesis is defined as the formation of new blood vessels form existing vessels surrounding a tumor. The process of angiogenesis is an important step for tumor growth and metastasis, as is inflammation. Thus, angiogenesis inhibitors that suppress inflammation have been studied as an anticancer treatment. Recently, many research groups have investigated the anti-angiogenic activity of natural compounds since some have been demonstrated to have anticancer properties. Among many natural compounds, we focused on betaine, which is known to suppress inflammation. Betaine, trimethylglycine (TMG), was first discovered in the juice of sugar beets and was later shown to be present in wheat, shellfish and spinach. In Southeast Asia, betaine is used in traditional oriental medicine for the treatment of hepatic disorders. Here, we report the anti-angiogenic action of betaine. Betaine inhibited in vitro angiogenic cascade, tube formation, migration and invasion of human umbilical vein endothelial cells (HUVECs). Betaine also inhibited in vivo angiogenesis in the mouse Matrigel plug assay. The mRNA expression levels of basic fibroblast growth factor (bFGF), matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) in HUVECs were decreased by betaine treatment. In addition, betaine suppressed NF-κB and Akt activation. PMID:22940742

  8. IL-4 regulates specific Arg-1(+) macrophage sFlt-1-mediated inhibition of angiogenesis.

    Science.gov (United States)

    Wu, Wei-Kang; Georgiadis, Anastasios; Copland, David A; Liyanage, Sidath; Luhmann, Ulrich F O; Robbie, Scott J; Liu, Jian; Wu, Jiahui; Bainbridge, James W; Bates, David O; Ali, Robin R; Nicholson, Lindsay B; Dick, Andrew D

    2015-08-01

    One of the main drivers for neovascularization in age-related macular degeneration is activation of innate immunity in the presence of macrophages. Here, we demonstrate that T helper cell type 2 cytokines and, in particular, IL-4 condition human and murine monocyte phenotype toward Arg-1(+), and their subsequent behavior limits angiogenesis by increasing soluble fms-like tyrosine kinase 1 (sFlt-1) gene expression. We document that T helper cell type 2 cytokine-conditioned murine macrophages neutralize vascular endothelial growth factor-mediated endothelial cell proliferation (human umbilical vein endothelial cell and choroidal vasculature) in a sFlt-1-dependent manner. We demonstrate that in vivo intravitreal administration of IL-4 attenuates laser-induced choroidal neovascularization (L-CNV) due to specific IL-4 conditioning of macrophages. IL-4 induces the expression of sFlt-1 by resident CD11b(+) retinal microglia and infiltrating myeloid cells but not from retinal pigment epithelium. IL-4-induced suppression of L-CNV is not prevented when sFlt-1 expression is attenuated in retinal pigment epithelium. IL-4-mediated suppression of L-CNV was abrogated in IL-4R-deficient mice and in bone marrow chimeras reconstituted with myeloid cells that had undergone lentiviral-mediated shRNA silencing of sFlt-1, demonstrating the critical role of this cell population. Together, these data establish how lL-4 directly drives macrophage sFlt-1 production expressing an Arg-1(+) phenotype and support the therapeutic potential of targeted IL-4 conditioning within the tissue to regulate disease conditions such as neovascular age-related macular degeneration. PMID:26079814

  9. Red Raspberry Phenols Inhibit Angiogenesis: A Morphological and Subcellular Analysis Upon Human Endothelial Cells.

    Science.gov (United States)

    Sousa, M; Machado, V; Costa, R; Figueira, M E; Sepodes, B; Barata, P; Ribeiro, L; Soares, R

    2016-07-01

    Polyphenols are a class of natural compounds whose potential as antioxidant, anti-inflammatory, and anti-angiogenesis has been reported in many pathological conditions. Red raspberry extract, rich in polyphenols, has been reported to exert anti-inflammatory effects and prevent cell proliferation in distinct animal models. However, the signaling pathways involved remain unknown. Herein, we used human microvascular endothelial cells (HMVECs) to determine the influence of red raspberry phenolic compound extract concentrations, ranging from 10 to 250 µg gallic acid equivalents (GAE)/mL, on endothelium viability (MTS assay), proliferation (BrdU incorporation), migration (injury assay), and capillary-like structures formation (Matrigel assay). Protein expression in cell lysates was determined by Western blot analysis. We showed that red raspberry extracts reduced cell viability (GI50  = 87,64 ± 6,59 μg GAE/mL) and proliferation in a dose-dependent manner. A significant abrogation of cells ability to migrate to injured areas, even at low concentrations, was observed by injury assay. Cell assembly into capillary-like structures on Matrigel also decreased in a dose dependent-manner for higher extract concentrations, as well as the number of branching points per unit of area. Protein expression analysis showed a dose-dependent decrease in Phospho-VEGFR2 expression, implying abrogation of VEGF signaling activity. We also showed for the first time that red raspberry phenolic compounds induce the rearrangement of filamentous actin cytoskeleton, with an isotropy increase found for higher testing concentrations. Taken together, our findings corroborate the anti-angiogenic potential of red raspberry phenolic compounds and provide new insights into their mode of action upon endothelium. J. Cell. Biochem. 117: 1604-1612, 2016. © 2015 Wiley Periodicals, Inc. PMID:26590362

  10. Clove bud oil reduces kynurenine and inhibits pqs A gene expression in P. aeruginosa.

    Science.gov (United States)

    H, Jayalekshmi; Omanakuttan, Athira; Pandurangan, N; S Vargis, Vidhu; Maneesh, M; G Nair, Bipin; B Kumar, Geetha

    2016-04-01

    Quorum sensing (QS), a communication system involved in virulence of pathogenic bacteria like Pseudomonas aeruginosa is a promising target to combat multiple drug resistance. In vitro studies using clove bud oil (CBO) in P. aeruginosa revealed a concentration dependent attenuation of a variety of virulence factors including motility, extracellular DNA, exopolysaccharides and pigment production. Furthermore, treatment with CBO demonstrated a distinct dose-dependent reduction in biofilm formation as well as promoting dispersion of already formed biofilm, observations that were also supported by porcine skin ex vivo studies. Expression studies of genes involved in signalling systems of P. aeruginosa indicated a specific decrease in transcription of pqsA, but not in the lasI or rhlI levels. Additionally, the expression of vfr and gacA genes, involved in regulation, was also not affected by CBO treatment. CBO also influenced the PQS signalling pathway by decreasing the levels of kynurenine, an effect which was reversed by the addition of exogenous kynurenine. Though the synthesis of the signalling molecules of the Las and Rhl pathways was not affected by CBO, their activity was significantly affected, as observed by decrease in levels of their various effectors. Molecular modelling studies demonstrated that eugenol, the major component of CBO, favourably binds to the QS receptor by hydrophobic interactions as well as by hydrogen bonding with Arg61 and Tyr41 which are key amino acid residues of the LasR receptor. These results thus elucidate the molecular mechanism underlying the action of CBO and provide the basis for the identification of an attractive QS inhibitor. PMID:26821927

  11. A mathematical model of systemic inhibition of angiogenesis in metastatic development

    OpenAIRE

    Benzekry, Sebastien; Gandolfi, Alberto; Hahnfeldt, Philip

    2013-01-01

    Nous pr\\'{e}sentons un mod\\'{e}le math\\'{e}matique d\\'{e}crivant le d\\'{e}veloppement temporel d'une population de tumeurs en interactions mutuelles \\textit{via} des signaux d'inhibition de l'angiog\\'{e}n\\'{e}se. Bas\\'{e} sur une d\\'{e}rivation biophysique, il d\\'{e}crit la dynamique, \\'{a} l'\\'{e}chelle de l'organisme, qui r\\'{e}sulte de l'influence relative de trois processus: naissance (diss\\'{e}mination de tumeurs secondaires), croissance et inhibition (de l'angiog\\'{e}n\\'{e}se). Le mod\\'...

  12. Inhibition of Breast Cancer Metastasis and Angiogenesis by Antiosteopontin Single-Chain Fv-Fc Fusion Protein

    Directory of Open Access Journals (Sweden)

    Ling Peng

    2009-05-01

    Full Text Available Osteopontin (OPN is associated with many diseases, and its role in tumor growth and metastasis has been studied in breast cancers. Previous studies have described anti-OPN antibodies that could inhibit tumor cell adhesion and invasion in vitro, but until now, there are no systematic studies on antitumor effects of anti-OPN antibodies in vivo. In the present study, we have raised several anti-OPN single-chain variable fragments from phage antibody library and expressed them as single-chain variable fragment-constant region fragment fusion proteins in Chinese hamster ovary cells. Of them, two antibodies (1A12 and 2H8 were able to inhibit MDA-MB-435s breast cancer cell attachment, invasion, migration, and colony formation in soft agar. Furthermore, 1A12 and 2H8 inhibited the anti-apoptotic and prosurvival functions of OPN in human umbilical vein endothelial cell. In human umbilical vein endothelial cell capillary tube formation, chicken chorioallantoic membrane assay, and rabbit corneal micropocket assay, the two antibodies showed markedly inhibitory effects toward angiogenesis. We investigated antitumor effects of anti-OPN antibodies in nude mice by assessing xenograft tumor growth and lung metastasis potential. The results showed that the two antibodies were capable of delaying primary tumor growth and reducing spontaneous lung metastasis. Epitope mappings of these two anti-OPN antibodies were performed, and a new binding site of 1A12 was revealed. In summary, the present study has demonstrated the roles of anti-OPN antibodies in blocking the function of OPN, suggesting that they may have the potential to be developed for future clinical use.

  13. Inhibition of metabotropic glutamate receptor 1 suppresses tumor growth and angiogenesis in experimental non-small cell lung cancer.

    Science.gov (United States)

    Xia, Hui; Zhao, Ying-Nan; Yu, Chang-Hai; Zhao, Yun-Long; Liu, Yang

    2016-07-15

    Metabotropic glutamate receptor 1 (mGlu1 receptor) is expressed in many cancer cell types as compared to normal counterparts underscoring its potential role in tumor behavior. The aim of present study was to test the role of mGlu1 receptor in experimental non-small cell lung cancer (NSCLC). First, protein expression of mGlu1 receptor was higher in human NSCLC cell lines, including both adenocarcinoma and squamous carcinoma subtypes, when compared to normal bronchial epithelial cells. Inhibition of mGlu1 receptor by BAY36-7620 (an mGlu1 receptor-specific inhibitor) inhibited tumor growth and prolonged survival of mice with tumors of A549 or H1299. Treatment with BAY36-7620 suppressed AKT phosphorylation in A549 tumors and pre-treatment with BAY36-7620 blocked the L-quisqualate (a potent mGlu1 receptor agonist)-induced AKT phosphorylation in A549 cells. Treatment with BAY36-7620 reduced cellular proliferation of A549 cells. Treatment with BAY36-7620 enhanced cleaved PARP levels and reduced protein expression of bcl-2, HIF-1α, and VEGF. In contrast, treatment with L-quisqualate reduced cleaved PARP levels and enhanced protein expression of bcl-2, HIF-1α, VEGF, and IL-8, which was reversed by co-incubation with MK2206 (an AKT inhibitor). Pre-treatment with BAY36-7620 blocked the VEGF-induced AKT phosphorylation in HUVECs. Treatment of HUVECs with L-quisqualate resulted in enhancement of capillary tube formation, which was reversed by co-incubation with MK2206. Furthermore, mGlu1 receptor knockdown suppressed tumor growth and prolonged survival of mice with tumors of A549 or H1299. Collectively, inhibition of mGlu1 receptor suppressed tumor growth and angiogenesis in experimental NSCLC. PMID:27132814

  14. Raffinose, a plant galactoside, inhibits Pseudomonas aeruginosa biofilm formation via binding to LecA and decreasing cellular cyclic diguanylate levels.

    Science.gov (United States)

    Kim, Han-Shin; Cha, Eunji; Kim, YunHye; Jeon, Young Ho; Olson, Betty H; Byun, Youngjoo; Park, Hee-Deung

    2016-01-01

    Biofilm formation on biotic or abiotic surfaces has unwanted consequences in medical, clinical, and industrial settings. Treatments with antibiotics or biocides are often ineffective in eradicating biofilms. Promising alternatives to conventional agents are biofilm-inhibiting compounds regulating biofilm development without toxicity to growth. Here, we screened a biofilm inhibitor, raffinose, derived from ginger. Raffinose, a galactotrisaccharide, showed efficient biofilm inhibition of Pseudomonas aeruginosa without impairing its growth. Raffinose also affected various phenotypes such as colony morphology, matrix formation, and swarming motility. Binding of raffinose to a carbohydrate-binding protein called LecA was the cause of biofilm inhibition and altered phenotypes. Furthermore, raffinose reduced the concentration of the second messenger, cyclic diguanylate (c-di-GMP), by increased activity of a c-di-GMP specific phosphodiesterase. The ability of raffinose to inhibit P. aeruginosa biofilm formation and its molecular mechanism opens new possibilities for pharmacological and industrial applications. PMID:27141909

  15. Serratia secondary metabolite prodigiosin inhibit Pseudomonas aeruginosa biofilm development by producing reactive oxygen species that damage biological molecules.

    Directory of Open Access Journals (Sweden)

    Onder eKimyon

    2016-06-01

    Full Text Available Prodigiosin is a heterocyclic bacterial secondary metabolite belonging to the class of tripyrrole compounds, synthesized by various types of bacteria including Serratia species. Prodigiosin has been the subject of intense research over the last decade for its ability to induce apoptosis in several cancer cell lines. Reports suggest that prodigiosin promotes oxidative damage to double-stranded DNA (dsDNA in the presence of copper ions and consequently leads to inhibition of cell-cycle progression and cell death. However, prodigiosin has not been previously implicated in biofilm inhibition. In this study, the link between prodigiosin and biofilm inhibition through the production of redox active metabolites is presented. Our study showed that prodigiosin (500 µM (extracted from Serratia marcescens culture and a prodigiosin/copper(II (100 µM each complex have strong RNA and dsDNA cleaving properties while they have no pronounced effect on protein. Results support a role for oxidative damage to biomolecules by H2O2 and hydroxyl radical generation. Further, it was demonstrated that reactive oxygen species scavengers significantly reduced the DNA and RNA cleaving property of prodigiosin. P. aeruginosa cell surface hydrophobicity and biofilm integrity were significantly altered due to the cleavage of nucleic acids by prodigiosin or the prodigiosin/copper(II complex. In addition, prodigiosin also facilitated the bactericidal activity. The ability of prodigiosin to cause nucleic acid degradation offers novel opportunities to interfere with extracellular DNA dependent bacterial biofilms.

  16. ADENOVIRUS-MEDIATED EXPRESSION OF PEX, A NONCATALYTIC FRAGMENT OF MATRIX METALLOPROTEINASE-2, AND IT'S INHIBITION ON ANGIOGENESIS AND TUMOR GROWTH

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Objective: To develop an adenovirus system to deliver biologically active peptides or proteins such as angiogenesis inhibitors in vivo for the treatment of cancer. Methods: DNA recombination techniques were employed to construct adenovirus shuttle vector, in which angiogenesis inhibitor was put downstream of rat growth hormone signal peptide, and the C-terminal was the myc-epitope 10-amino-acid peptide for the following up of the protein. Adenovirus was made using the bacteria recombination method. We tested this system using an angiogenesis inhibitor chick MMP-2 C-terminal hemopexin-like fragment (PEX) in Sarcoma 180 (S-180) bearing Kunming mice. The anti-angiogenic effect was performed by chick chorioallantoic membrane assay. Results: PEX was readily secreted outside human stomach carcinoma BGC823 cells as demonstrated by immunofluorescent staining and western blot infected by adenovirus with rat growth hormone signal peptide (E-T-rGH-PEX). However, without signal peptide (E-T-PEX), PEX was expressed and localized in the cytoplasm of the infected cells, and formed large aggregates, which suggested that PEX was insoluble. The adenovirus E-T-rGH-PEX could inhibit angiogenesis, while E-T-rGH-PEX not. The adenoviruses of E-T-rGH-PEX inhibited the growth of S-180 tumor significantly compared with the empty virus control group E-T (P=0.026) and without signal peptide group E-T-PEX (P=0.006) respectively, while E-T-PEX had little effect. Conclusion: These results suggest that this adenoviral system is likely to be used in the gene therapy of cancer to deliver angiogenesis inhibitors.

  17. MVL-PLA2, a Snake Venom Phospholipase A2, Inhibits Angiogenesis through an Increase in Microtubule Dynamics and Disorganization of Focal Adhesions

    OpenAIRE

    Bazaa, Amine,; Pasquier, Eddy; Defilles, Céline; Limam, Ines; Kessentini-Zouari, Raoudha; Kallech-Ziri, Olfa; Battari, Assou El; Braguer, Diane; Ayeb, Mohamed El; Marrakchi, Naziha; Luis, José

    2010-01-01

    Integrins are essential protagonists of the complex multi-step process of angiogenesis that has now become a major target for the development of anticancer therapies. We recently reported and characterized that MVL-PLA2, a novel phospholipase A2 from Macrovipera lebetina venom, exhibited anti-integrin activity. In this study, we show that MVL-PLA2 also displays potent anti-angiogenic properties. This phospholipase A2 inhibited adhesion and migration of human microvascular-endothelial cells (H...

  18. Inhibition of HMGB1-induced angiogenesis by cilostazol via SIRT1 activation in synovial fibroblasts from rheumatoid arthritis.

    Directory of Open Access Journals (Sweden)

    Hye Young Kim

    Full Text Available High mobility group box chromosomal protein 1 (HMGB-1 released from injured cells plays an important role in the development of arthritis. This study investigated the anti-angiogenic effects of cilostazol in collagen-induced arthritis (CIA of mice, and the underlying mechanisms involved. The expressions of HIF-1α, VEGF, NF-κB p65 and SIRT1 in synovial fibroblasts obtained from rheumatoid arthritis (RA patients were assessed by Western blotting, and in vitro and in vivo angiogenesis were analyzed. Tube formations by human microvascular endothelial cells (HMVECs were significantly increased by direct exposure to HMGB1 or to conditioned medium derived from HMGB1-stimulated RA fibroblasts, and these increases were attenuated by cilostazol, the latter of which was blocked by sirtinol. HMGB1 increased the expression of HIF-1α and VEGF and concomitantly increased nuclear NF-κB p65 and DNA binding activity, but these effects of HMGB1 were inhibited by cilostazol. SIRT1 protein expression was time-dependently decreased (3-24 hr by HMGB1, which was recovered by pretreatment with cilostazol (1-30 µM or resveratrol, accompanying with increased SIRT1 deacetylase activity. In the tibiotarsal joint tissues of CIA mice treated with vehicle, HIF-1α- and VEGF-positive spots and CD31 staining were markedly exaggerated, whereas SIRT1 immunofluorescence was diminished. These variables were wholly reversed in cilostazol (30 mg/kg/day-treated mice. Furthermore, number of blood vessels stained by von Willebrand factor antibody was significantly lower in cilostazol-treated CIA mice. Summarizing, cilostazol activated SIRT1 and inhibited NF-κB-mediated transcription, thereby suppressing the expression of HIF-1α and VEGF. In addition, cilostazol caused HIF-1α deacetylation by enhancing SIRT1 activity and reduced VEGF production, thereby had an anti-angiogenic effect in vitro studies and in CIA murine model.

  19. Direct binding of recombinant plasminogen kringle 1-3 to angiogenin inhibits angiogenin-induced angiogenesis in the chick embryo CAM.

    Science.gov (United States)

    Youn, Mi-Ran; Park, Mee-Hee; Choi, Chang-Ki; Ahn, Byung-Cheol; Kim, Hak Yong; Kang, Sang Sun; Hong, Yong-Kil; Joe, Young Ae; Kim, Jong-Soo; You, Weon-Kyoo; Lee, Hyo-Sil; Chung, Soo-Il; Chang, Soo-Ik

    2006-05-12

    Angiogenin is one of the most potent angiogenesis-inducing proteins. Angiostatin is one of the most potent angiogenesis inhibitors, and it contains the first four kringle domains of plasminogen (K1-4). Recombinant human plasminogen kringle 1-3 (rK1-3) was expressed in Escherichia coli and purified to homogeneity. The binding of t-4-aminomethylcyclohexanecarboxylic acid with the purified kringle 1-3 was determined by changes in intrinsic fluorescence. rK1-3 exhibits comparable ligand-binding properties as native human plasminogen kringle 1-3. The purified rK1-3 inhibits neovascularization in the chick embryo chorioallantoic membrane (CAM) assay. Interaction of angiogenin with rK1-3 was examined by immunological binding assay and surface plasmon resonance kinetic analysis, and the equilibrium dissociation constants for the complex, Kd, are 0.89 and 0.18 microM, respectively. rK1-3 inhibits angiogenin-induced angiogenesis in the chick embryo CAM in a concentration-dependent manner. These results indicate that rK1-3 directly binds to angiogenin and thus rK1-3 inhibits the angiogenic activity of angiogenin. PMID:16564503

  20. Blocking S1P interaction with S1P1 receptor by a novel competitive S1P1-selective antagonist inhibits angiogenesis

    International Nuclear Information System (INIS)

    Highlights: ► The effect of a newly developed S1P1-selective antagonist on angiogenic responses. ► S1P1 is a critical component of VEGF-related angiogenic responses. ► S1P1-selective antagonist showed in vitro activity to inhibit angiogenesis. ► S1P1-selective antagonist showed in vivo activity to inhibit angiogenesis. ► The efficacy of S1P1-selective antagonist for anti-cancer therapies. -- Abstract: Sphingosine 1-phosphate receptor type 1 (S1P1) was shown to be essential for vascular maturation during embryonic development and it has been demonstrated that substantial crosstalk exists between S1P1 and other pro-angiogenic growth factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor. We developed a novel S1P1-selective antagonist, TASP0277308, which is structurally unrelated to S1P as well as previously described S1P1 antagonists. TASP0277308 inhibited S1P- as well as VEGF-induced cellular responses, including migration and proliferation of human umbilical vein endothelial cells. Furthermore, TASP0277308 effectively blocked a VEGF-induced tube formation in vitro and significantly suppressed tumor cell-induced angiogenesis in vivo. These findings revealed that S1P1 is a critical component of VEGF-related angiogenic responses and also provide evidence for the efficacy of TASP0277308 for anti-cancer therapies.

  1. Selenium Induces an Anti-tumor Effect Via Inhibiting Intratumoral Angiogenesis in a Mouse Model of Transplanted Canine Mammary Tumor Cells.

    Science.gov (United States)

    Li, Wenyu; Guo, Mengyao; Liu, Yuzhu; Mu, Weiwei; Deng, Ganzhen; Li, Chengye; Qiu, Changwei

    2016-06-01

    Selenium (Se) has been widely reported to possess anti-tumor effects. Angiogenesis is the formation of new blood vessels and is required to supply oxygen, nutrients, and growth factors for tumor growth, progression, and metastasis. To explore whether the anti-tumor effect of Se was associated with angiogenesis in vivo, we studied the effects of sodium selenite (Sel) and methylseleninic acid (MSA) on tumors induced by canine mammary tumor cells (CMT1211) in mice; cyclophosphamide (CTX) served as a positive control. The results showed that the Se content was significantly increased in the Sel and MSA groups. Se significantly inhibited the tumor weights and volumes. Large necrotic areas and scattered and abnormal small necrotic areas were observed in the Se treatment group. Immunofluorescence double staining showed a reduction in the microvessel density (MVD) and increment in the vessel maturation index (VMI) compared with the untreated control group. As expected, the protein and mRNA levels of the angiogenesis factors angiopoietin-2 (Ang-2), platelet-derived growth factor (PDGF), and vascular endothelial growth factor (VEGF) were decreased in the Se-treated tumors by IHC, as shown by western blotting and RT-QPCR. We also found that organic Se MSA provided stronger inhibition of tumor growth compared with inorganic sodium selenite (Sel). Altogether, our results indicated that Se exerted anti-tumor effects in vivo at least partially by inhibiting angiogenic factors. PMID:26507439

  2. MVL-PLA2, a snake venom phospholipase A2, inhibits angiogenesis through an increase in microtubule dynamics and disorganization of focal adhesions.

    Science.gov (United States)

    Bazaa, Amine; Pasquier, Eddy; Defilles, Céline; Limam, Ines; Kessentini-Zouari, Raoudha; Kallech-Ziri, Olfa; El Battari, Assou; Braguer, Diane; El Ayeb, Mohamed; Marrakchi, Naziha; Luis, José

    2010-01-01

    Integrins are essential protagonists of the complex multi-step process of angiogenesis that has now become a major target for the development of anticancer therapies. We recently reported and characterized that MVL-PLA2, a novel phospholipase A2 from Macrovipera lebetina venom, exhibited anti-integrin activity. In this study, we show that MVL-PLA2 also displays potent anti-angiogenic properties. This phospholipase A2 inhibited adhesion and migration of human microvascular-endothelial cells (HMEC-1) in a dose-dependent manner without being cytotoxic. Using Matrigel and chick chorioallantoic membrane assays, we demonstrated that MVL-PLA2, as well as its catalytically inactivated form, significantly inhibited angiogenesis both in vitro and in vivo. We have also found that the actin cytoskeleton and the distribution of alphav beta3 integrin, a critical regulator of angiogenesis and a major component of focal adhesions, were disturbed after MVL-PLA2 treatment. In order to further investigate the mechanism of action of this protein on endothelial cells, we analyzed the dynamic instability behavior of microtubules in living endothelial cells. Interestingly, we showed that MVL-PLA2 significantly increased microtubule dynamicity in HMEC-1 cells by 40%. We propose that the enhancement of microtubule dynamics may explain the alterations in the formation of focal adhesions, leading to inhibition of cell adhesion and migration. PMID:20405031

  3. Inhibition of metastasis, angiogenesis, and tumor growth by Chinese herbal cocktail Tien-Hsien Liquid

    Directory of Open Access Journals (Sweden)

    Sun Andy

    2010-04-01

    Full Text Available Abstract Background Advanced cancer is a multifactorial disease that demands treatments targeting multiple cellular pathways. Chinese herbal cocktail which contains various phytochemicals may target multiple dys-regulated pathways in cancer cells and thus may provide an alternative/complementary way to treat cancers. Previously we reported that the Chinese herbal cocktail Tien-Hsien Liguid (THL can specifically induce apoptosis in various cancer cells and have immuno-modulating activity. In this study, we further evaluated the anti-metastatic, anti-angiogenic and anti-tumor activities of THL with a series of in vitro and in vivo experiments. Methods The migration and invasion of cancer cells and endothelial cells was determined by Boyden chamber transwell assays. The effect of THL on pulmonary metastasis was done by injecting CT-26 colon cancer cells intravenously to syngenic mice. The in vitro and in vivo microvessel formation was determined by the tube formation assay and the Matrigel plug assay, respectively. The in vivo anti-tumor effect of THL was determined by a human MDA-MB-231 breast cancer xenograft model. The expression of metalloproteinase (MMP-2, MMP-9, and urokinase plasminogen activator (uPA was measured by gelatin zymography. The expression of HIF-1α and the phosphorylation of ERK1/2 were determined by Western blot. Results THL inhibited the migration and invasion ability of various cancer cells in vitro, decreased the secretion of MMP-2, MMP-9, and uPA and the activity of ERK1/2 in cancer cells, and suppressed pulmonary metastasis of CT-26 cancer cells in syngenic mice. Moreover, THL inhibited the migration, invasion, and tube formation of endothelial cells in vitro, decreased the secretion of MMP-2 and uPA in endothelial cells, and suppressed neovascularization in Matrigel plugs in mice. Besides its inhibitory effect on endothelial cells, THL inhibited hypoxia-induced HIF-1α and vascular endothelial growth factor-A expression

  4. Inhibition of metastasis, angiogenesis, and tumor growth by Chinese herbal cocktail Tien-Hsien Liquid

    International Nuclear Information System (INIS)

    Advanced cancer is a multifactorial disease that demands treatments targeting multiple cellular pathways. Chinese herbal cocktail which contains various phytochemicals may target multiple dys-regulated pathways in cancer cells and thus may provide an alternative/complementary way to treat cancers. Previously we reported that the Chinese herbal cocktail Tien-Hsien Liguid (THL) can specifically induce apoptosis in various cancer cells and have immuno-modulating activity. In this study, we further evaluated the anti-metastatic, anti-angiogenic and anti-tumor activities of THL with a series of in vitro and in vivo experiments. The migration and invasion of cancer cells and endothelial cells was determined by Boyden chamber transwell assays. The effect of THL on pulmonary metastasis was done by injecting CT-26 colon cancer cells intravenously to syngenic mice. The in vitro and in vivo microvessel formation was determined by the tube formation assay and the Matrigel plug assay, respectively. The in vivo anti-tumor effect of THL was determined by a human MDA-MB-231 breast cancer xenograft model. The expression of metalloproteinase (MMP)-2, MMP-9, and urokinase plasminogen activator (uPA) was measured by gelatin zymography. The expression of HIF-1α and the phosphorylation of ERK1/2 were determined by Western blot. THL inhibited the migration and invasion ability of various cancer cells in vitro, decreased the secretion of MMP-2, MMP-9, and uPA and the activity of ERK1/2 in cancer cells, and suppressed pulmonary metastasis of CT-26 cancer cells in syngenic mice. Moreover, THL inhibited the migration, invasion, and tube formation of endothelial cells in vitro, decreased the secretion of MMP-2 and uPA in endothelial cells, and suppressed neovascularization in Matrigel plugs in mice. Besides its inhibitory effect on endothelial cells, THL inhibited hypoxia-induced HIF-1α and vascular endothelial growth factor-A expression in cancer cells. Finally, our results show that THL

  5. The Pseudomonas aeruginosa autoinducer dodecanoyl-homoserine lactone inhibits the putrescine synthesis in human cells

    DEFF Research Database (Denmark)

    Kristiansen, S.; Bjarnsholt, Thomas; Adeltoft, D.;

    2008-01-01

    Pseudomonas aeruginosa uses acyl-homoserine lactones to coordinate gene transcription in a process called quorum sensing (QS). The QS molecules C-4-HSL and C-12-oxo-HSL are synthesized from the universal precursor S-adenosyl methionine, which is also a precursor of polyamines in human cells....... Polyamines are required for mitotic cell division and peak during this phase. The polyamine putrescine is synthesized by ornithine decarboxylase (ODC) as a rate-limiting step. The ODC enzyme concentration also peaks during the mitotic phase. This peak is mediated by translation of ODC mRNA by the ITAF45...... protein, which translocates from the nuclear compartment to the cytoplasm in a phosphorylation-dependent manner. We observed that C-12-HSL-treated human epidermal cells had a higher cytoplasm-to-nuclear ITAF45 protein concentration and this translocation was dependent on the dephosphorylation of ITAF45...

  6. Angiogenesis and tumor

    Directory of Open Access Journals (Sweden)

    Kamran Mansouri

    2010-12-01

    Full Text Available Angiogenesis, the process of new blood vessel formation from existing ones, plays an important role in the physiologic circumstances such as embryonic development, placenta formation, and wound healing. It is also crucial to progress of pathogenic processes of a variety of disorders, including tumor growth and metastasis. In general, angiogenesis process is a multi-factorial and highly structured sequence of cellular events comprising migration, proliferation and differentiation of endothelial cells and finally vascular formation, maturation and remodeling.Thereby, angiogenesis inhibition as a helping agent to conventional therapies such as chemotherapy and radiation has attracted the scientists’ attentions studying in this field.

  7. Polysaccharides from Korean Citrus hallabong peels inhibit angiogenesis and breast cancer cell migration.

    Science.gov (United States)

    Park, J Y; Shin, M S; Kim, S N; Kim, H Y; Kim, K H; Shin, K S; Kang, K S

    2016-04-01

    Although the peel of the hallabong (Citrus sphaerocarpa) fruit is rich in polysaccharides, which are valuable dietary ingredients for human health, it is normally wasted. The present study aimed to utilize the peel waste and identify properties it may have against breast cancer metastasis. Hallabong peel extract containing crude polysaccharides was fractionated by gel permeation chromatography to produce four different polysaccharide fractions (HBE-I, -II, -III, and -IV). The HBE polysaccharides significantly blocked tube formation of human umbilical vein vascular endothelial cells (HUVECs), at a concentration of 12.5 or 25 μg/mL. Tube formation appeared to be more sensitive to HBE-II than to other HBE polysaccharides. HBE-II also inhibited breast cancer cell migration, through downregulation of matrix metalloproteinase-9 (MMP-9) in MDA-MB-231 triple-negative breast cancer cells. Therefore, inhibition of tube formation and MMP-9-mediated migration observed in HUVEC and MDA-MB-231 cells, respectively, are likely to be important therapeutic targets in triple-negative breast cancer metastasis. PMID:26778161

  8. Inactivated Pseudomonas aeruginosa inhibits hypoxia-induced pulmonary hypertension by preventing TGF-β1/Smad signaling.

    Science.gov (United States)

    Chai, S D; Liu, T; Dong, M F; Li, Z K; Tang, P Z; Wang, J T; Ma, S J

    2016-01-01

    Pseudomonas aeruginosa is one of the common colonizing bacteria of the human body and is an opportunistic pathogen frequently associated with respiratory infections. Inactivated P. aeruginosa (IPA) have a variety of biological effects against inflammation and allergy. Transforming growth factor-β (TGF-β) signaling plays a critical role in the regulation of cell growth, differentiation, and development in a wide range of biological systems. The present study was designed to investigate the effects of IPA on TGF-β/Smad signaling in vivo, using a hypoxia-induced pulmonary hypertension (PH) rat model. Sprague Dawley rats (n=40) were exposed to 10% oxygen for 21 days to induce PH. At the same time, IPA was administered intravenously from day 1 to day 14. Mean pulmonary artery pressure (mPAP) and the right ventricle (RV) to left ventricle plus the interventricular septum (LV+S) mass ratio were used to evaluate the development of PH. Vessel thickness and density were measured using immunohistochemistry. Primary arterial smooth muscle cells (PASMCs) were isolated and the proliferation of PASMCs was assayed by flow cytometry. The production of TGF-β1 in cultured supernatant of PASMCs was assayed by ELISA. The expression levels of α-smooth muscle actin (α-SMA), TGF-β1 and phospho-Smad 2/3 in PASMCs were assayed by western blot. Our data indicated that IPA attenuated PH, RV hypertrophy and pulmonary vascular remodeling in rats, which was probably mediated by restraining the hypoxia-induced overactive TGF-β1/Smad signaling. In conclusion, IPA is a promising protective treatment in PH due to the inhibiting effects on TGF-β1/Smad 2/3 signaling. PMID:27580007

  9. Cathepsin B and uPAR Knockdown Inhibits Tumor-induced Angiogenesis by Modulating VEGF Expression in Glioma

    OpenAIRE

    MALLA, RAMA RAO; Gopinath, Sreelatha; Christopher S Gondi; Alapati, Kiranmai; Dinh, Dzung H.; Gujrati, Meena; Rao, Jasti S.

    2011-01-01

    Angiogenesis, which is the process of sprouting of new blood vessels from pre-existing vessels, is vital for tumor progression. Proteolytic remodeling of extracellular matrix is a key event in vessel sprouting during angiogenesis. Urokinase plasminogen activator receptor (uPAR) and cathepsin B are both known to be overexpressed and implicated in tumor angiogenesis. In the present study, we observed that knockdown of uPAR and cathepsin B using puPAR (pU), pCathepsin B (pC), and a bicistronic c...

  10. Nanotherapy silencing the interleukin-8 gene produces regression of prostate cancer by inhibition of angiogenesis.

    Science.gov (United States)

    Aalinkeel, Ravikumar; Nair, Bindukumar; Chen, Chih-Kuang; Mahajan, Supriya D; Reynolds, Jessica L; Zhang, Hanguang; Sun, Haotian; Sykes, Donald E; Chadha, Kailash C; Turowski, Steven G; Bothwell, Katelyn D; Seshadri, Mukund; Cheng, Chong; Schwartz, Stanley A

    2016-08-01

    Interleukin-8 (IL-8) is a pro-angiogenic cytokine associated with aggressive prostate cancer (CaP). We detected high levels of IL-8 in sera from patients with CaP compared with healthy controls and patients with benign prostatic hypertrophy. This study examines the role of IL-8 in the pathogenesis of metastatic prostate cancer. We developed a biocompatible, cationic polylactide (CPLA) nanocarrier to complex with and efficiently deliver IL-8 small interfering RNA (siRNA) to CaP cells in vitro and in vivo. CPLA IL-8 siRNA nanocomplexes (nanoplexes) protect siRNA from rapid degradation, are non-toxic, have a prolonged lifetime in circulation, and their net positive charge facilitates penetration of cell membranes and subsequent intracellular trafficking. Administration of CPLA IL-8 siRNA nanoplexes to immunodeficient mice bearing human CaP tumours produced significant antitumour activities with no adverse effects. Systemic (intravenous) or local intra-tumour administration of IL-8 siRNA nanoplexes resulted in significant inhibition of CaP growth. Magnetic resonance imaging and ultrasonography of experimental animals demonstrated reduction of tumour perfusion in vivo following nanoplex treatment. Staining of tumour sections for CD31 confirmed significant damage to tumour neovasculature after nanoplex therapy. These studies demonstrate the efficacy of IL-8 siRNA nanotherapy for advanced, treatment-resistant human CaP. PMID:27159450

  11. CS5931, a Novel Polypeptide in Ciona savignyi, Represses Angiogenesis via Inhibiting Vascular Endothelial Growth Factor (VEGF and Matrix Metalloproteinases (MMPs

    Directory of Open Access Journals (Sweden)

    Ge Liu

    2014-03-01

    Full Text Available CS5931 is a novel polypeptide from Ciona savignyi with anticancer activities. Previous study in our laboratory has shown that CS5931 can induce cell death via mitochondrial apoptotic pathway. In the present study, we found that the polypeptide could inhibit angiogenesis both in vitro and in vivo. CS5931 inhibited the proliferation, migration and formation of capillary-like structures of HUVECs (Human Umbilical Vein Endothelial Cell in a dose-dependent manner. Additionally, CS5931 repressed spontaneous angiogenesis of the zebrafish vessels. Further studies showed that CS5931 also blocked vascular endothelial growth factor (VEGF production but without any effect on its mRNA expression. Moreover, CS5931 reduced the expression of matrix metalloproteinases (MMP-2 and MMP-9 both on protein and mRNA levels in HUVEC cells. We demonstrated that CS5931 possessed strong anti-angiogenic activity both in vitro and in vivo, possible via VEGF and MMPs. This study indicates that CS5931 has the potential to be developed as a novel therapeutic agent as an inhibitor of angiogenesis for the treatment of cancer.

  12. Mediterranean diet polyphenols reduce inflammatory angiogenesis through MMP-9 and COX-2 inhibition in human vascular endothelial cells: a potentially protective mechanism in atherosclerotic vascular disease and cancer.

    Science.gov (United States)

    Scoditti, Egeria; Calabriso, Nadia; Massaro, Marika; Pellegrino, Mariangela; Storelli, Carlo; Martines, Giuseppe; De Caterina, Raffaele; Carluccio, Maria Annunziata

    2012-11-15

    Diets with high content of antioxidant polyphenols are associated with low prevalence of cardiovascular diseases and cancer. Inflammatory angiogenesis is a key pathogenic process both in cancer and atherosclerosis, and is tightly regulated by the proinflammatory enzyme cyclooxygenase (COX)-2 and the matrix degrading enzymes matrix metalloproteinases (MMPs). We studied the effects of antioxidant polyphenols from virgin olive oil (oleuropein and hydroxytyrosol) and red wine (resveratrol and quercetin) on endothelial cell angiogenic response in vitro, and explored underlying mechanisms. Cultured endothelial cells were pre-incubated with 0.1-50 μmol/L polyphenols before stimulation with phorbol myristate acetate (PMA). All tested polyphenols reduced endothelial cell tube formation on matrigel and migration in wound healing assays. The reduced angiogenesis was associated with the inhibition of PMA-induced COX-2 protein expression and prostanoid production, as well as MMP-9 protein release and gelatinolytic activity. These effects were accompanied by a significant reduction in the stimulated intracellular reactive oxygen species levels and in the activation of the redox-sensitive transcription factor nuclear factor (NF)-κB. Our findings reveal that olive oil and red wine polyphenols reduce inflammatory angiogenesis in cultured endothelial cells, through MMP-9 and COX-2 inhibition, supporting a potential protective role for dietary polyphenols in atherosclerotic vascular disease and cancer. PMID:22595400

  13. Inhibition of marine Vibrio sp. by pyoverdine from Pseudomonas aeruginosa PA1.

    Science.gov (United States)

    Zhang, Weiwei; Liang, Weikang; Li, Chenghua

    2016-01-25

    Siderophores are low-molecular-weight chemicals that are secreted by many microorganisms to chelate iron from the external environment in order to facilitate their growth and diverse metabolisms. In this study, a fluorescent siderophore, pyoverdine, secreted by Pseudomonas aeruginosa PA1 was purified by affinity chromatography using Cu-sepharose. Pyoverdine was determined to have a molecular mass of 1333.54 Da, as determined by MALDI-TOF/TOF, and belong to type I pyoverdine, as determined by PCR analysis of its corresponding outer membrane ferri-pyoverdine receptor. Pyoverdine showed different degrees of inhibitory effects on the growth of marine Vibrio sp. strains. It was also shown that the biofilm developed by Vibrio parahaemolyticus WzW1 and Wz2121 and Vibrio cyclitrophicus HS12 was significantly reduced, alone with the repressed growth in the presence of pyoverdine. Siderophore production was determined in the strains of Vibrio sp. in response to the pyoverdine-induced iron-limited conditions. The siderophore production of most Vibrio sp. was up-regulated, with the exception of the bacteria that produced little siderophore. Furthermore, Apostichopus japonicus cultured in pyoverdine pretreated seawater showed a relative percent of survival of 89% when they were challenged by Vibrio splendidus. Our results demonstrated that pyoverdine may be a promising agent that could be potentially applied to treat vibriosis. PMID:26476308

  14. Triamcinolone Acetonide Selectively Inhibits Angiogenesis in Small Blood Vessels and Decreases Vessel Diameter within the Vascular Tree

    Science.gov (United States)

    McKay, Terri L.; Gredeon, Dan J.; Vickerman, Mary B.; Hylton, alan G.; Ribita, Daniela; Olar, Harry H.; Kaiser, Peter K.; Parsons-Wingerter, Patricia

    2007-01-01

    The steroid triamcinolone acetonide (TA) is a potent anti-angiogenesis drug used to treat retinal vascular diseases that include diabetic retinopathy, vascular occlusions and choroidal neovascularization. To quantify the effects of TA on branching morphology within the angiogenic microvascular tree of the chorioallantoic membrane (CAM) of quail embryos. Increasing concentrations of TA (0-16 ng/ml) were applied topically on embryonic day 7 (E7) to the chorioallantoic membrane (CAM) of quail embryos cultured in Petri dishes, and incubated for an additional 24 or 48 hours until fixation. Binary (black/white) microscopic images of arterial end points were quantified by VESGEN software (for Generational Analysis of Vessel Branching) to obtain major vascular parameters that include vessel diameter (Dv), fractal dimension (Df), tortuosity (Tv) and densities of vessel area, length, number and branch point (Av, Lv, Nv and Brv). For assessment of specific changes in vascular morphology induced by TA, the VESGEN software automatically segmented the vascular tree into branching generations (G1...G10) according to changes in vessel diameter and branching. Vessel density decreased significantly up to 34% as the function of increasing concentration of TA according to Av, Lv, Brv, Nv and Df. TA selectively inhibited the growth of new, small vessels, because Lv decreased from 13.14plus or minus 0.61 cm/cm2 for controls to 8.012 plus or minus 0.82 cm/cm2 at 16 ng TA/ml in smaller branching generations (G7-G10), and for Nv from 473.83 plus or minus 29.85 cm(-)2 to 302.32 plus or minus 33.09 cm-()2. In contrast, vessel diameter (Dv) decreased throughout the vascular tree (G1-G10).

  15. Inhibition of Tumor Angiogenesis and Tumor Growth by the DSL Domain of Human Delta-Like 1 Targeted to Vascular Endothelial Cells

    Directory of Open Access Journals (Sweden)

    Xing-Cheng Zhao

    2013-07-01

    Full Text Available The growth of solid tumors depends on neovascularization. Several therapies targeting tumor angiogenesis have been developed. However, poor response in some tumors and emerging resistance necessitate further investigations of newdrug targets. Notch signal pathway plays a pivotal role in vascular development and tumor angiogenesis. Either blockade or forced activation of this pathway can inhibit angiogenesis. As blocking Notch pathway results in the formation of vascular neoplasm, activation of Notch pathway to prevent tumor angiogenesis might be an alternative choice. However, an in vivo deliverable reagent with highly efficient Notch-activating capacity has not been developed. Here, we generated a polypeptide, hD1R, which consists of the Delta-Serrate-Lag-2 fragment of the human Notch ligand Delta-like 1 and an arginine-glycine-aspartate (RGD motif targeting endothelial cells (ECs. We showed that hD1R could bind to ECs specifically through its RGD motif and effectively triggered Notch signaling in ECs. We demonstrated both in vitro and in vivo that hD1R inhibited angiogenic sprouting and EC proliferation. In tumor-bearing mice, the injection of hD1R effectively repressed tumor growth, most likely through increasing tumor hypoxia and tissue necrosis. The amount and width of vessels reduced remarkably in tumors of mice treated with hD1R. Moreover, vessels in tumors of mice treated with hD1R recruited more NG2+ perivascular cells and were better perfused. Combined application of hD1R and chemotherapy with cisplatin and teniposide revealed that these two treatments had additive antitumor effects. Our study provided a new strategy for antiangiogenic tumor therapy.

  16. Application of Dual Inhibition Concept within Looped Autoregulatory Systems toward Antivirulence Agents against Pseudomonas aeruginosa Infections.

    Science.gov (United States)

    Thomann, Andreas; de Mello Martins, Antonio G G; Brengel, Christian; Empting, Martin; Hartmann, Rolf W

    2016-05-20

    Pseudomonas aeruginosa quorum-sensing (QS) is a sophisticated network of genome-wide regulation triggered in response to population density. A major component is the self-inducing pseudomonas quinolone signal (PQS) QS system that regulates the production of several nonvital virulence- and biofilm-related determinants. Hence, QS circuitry is an attractive target for antivirulence agents with lowered resistance development potential and a good model to study the concept of polypharmacology in autoloop-regulated systems per se. Based on the finding that a combination of PqsR antagonist and PqsD inhibitor synergistically lowers pyocyanin, we have developed a dual-inhibitor compound of low molecular weight and high solubility that targets PQS transcriptional regulator (PqsR) and PqsD, a key enzyme in the biosynthesis of PQS-QS signal molecules (HHQ and PQS). In vitro, this compound markedly reduced virulence factor production and biofilm formation accompanied by a diminished content of extracellular DNA (eDNA). Additionally, coadministration with ciprofloxacin increased susceptibility of PA14 to antibiotic treatment under biofilm conditions. Finally, disruption of pathogenicity mechanisms was also assessed in vivo, with significantly increased survival of challenged larvae in a Galleria mellonella infection model. Favorable physicochemical properties and effects on virulence/biofilm establish a promising starting point for further optimization. In particular, the ability to address two targets of the PQS autoinduction cycle at the same time with a single compound holds great promise in achieving enhanced synergistic cellular effects while potentially lowering rates of resistance development. PMID:26882081

  17. The inhibition of angiogenesis and tumor growth by denbinobin is associated with the blocking of insulin-like growth factor-1 receptor signaling.

    Science.gov (United States)

    Tsai, An-Chi; Pan, Shiow-Lin; Lai, Chin-Yu; Wang, Chih-Ya; Chen, Chien-Chih; Shen, Chien-Chang; Teng, Che-Ming

    2011-07-01

    Denbinobin, which is a phenanthraquinone derivative present in the stems of Ephemerantha lonchophylla, has been demonstrated to display antitumor activity. Recent reports suggest that the enhanced activity of insulin-like growth factor-1 receptor (IGF-1R) is closely associated with tumor angiogenesis and growth. This study aims at investigating the roles of denbinobin in suppressing these effects and at further elucidating the underlying molecular mechanisms. In the present study, we used an in vivo xenograft model antitumor and the Matrigel implant assays to show that denbinobin suppresses lung adenocarcinoma A549 growth and microvessel formation. Additionally, crystal violet and capillary-like tube formation assays indicated that denbinobin selectively inhibits insulin-like growth factor-1 (IGF-1)-induced proliferation (GI50=1.3×10⁻⁸ M) and tube formation of human umbilical vascular endothelial cells (HUVECs) without influencing the effect of epidermal growth factor; vascular endothelial growth factor and basic fibroblast growth factor. Furthermore, denbinobin inhibited the IGF-1-induced migration of HUVECs in a concentration-dependent fashion. Western blotting and immunoprecipitation demonstrated that denbinobin causes more efficient inhibition of IGF-1-induced activation of IGF-1R and its downstream signaling targets, including , extracellular signal-regulated kinase, Akt, mTOR, p70S6K, 4EBP and cyclin D1. All of our results provide evidences that denbinobin suppresses the activation of IGF-1R and its downstream signaling pathway, which leads to the inhibition of angiogenesis. Our findings suggest that denbinobin may be a novel IGF-1R kinase inhibitor and has potential therapeutic abilities for angiogenesis-related diseases such as cancer. PMID:20951021

  18. Screening of BADH Activity of Borreria articularies (Linn. for the Inhibition of P. aeruginosa

    Directory of Open Access Journals (Sweden)

    Md Shamsuddin Sultan Khan

    2014-08-01

    Full Text Available Purposes: The present study was designed to investigate the antibacterial activities of the Ethanol and methanol extracts of the leaves of the plant Borreria articularies (Linn. effects on microbial growth inhibition in vitro, microbial cells in vivo and molecular enzyme (BADH targets in vitro.Methods: The preliminary phytochemicals of the extracts was determined by the standard methods and aliquoted with Thin Layer Chromatography (TLC and stored at 2-4oC. fluorescein diacetate (FDA and ethidium bromide (EB live-dead cell viability test for distinguishing the membrane active phytochemicals of the plant extract.  Betaine aldehyde dehydrogenase (BADH activity was assessed by spectrophotometer. Alkaloids, glycosides, steroids, gums, saponin and reducing sugar were found in extracts.Results: The results of the disc diffusion indicated that the crude extracts were able to inhibit the growth of bacteria within a concentration range of 0.5 to 2.0 mg/mL. At a similar concentration range (0.5 to 2.0 mg/mL the extract inhibited the growth of 90.12% of the tested microorganisms. Bacterial cell viability was found minor in the phytochemicals of crude extract. Also, constituents of crude extract inhibited the BADH activity to protect the adaptation in stress environment of the bacteria.Conclusion: Results of the present study showed the possible use of the studied plants extracts in the control of bacterial infections.   

  19. The inhibition of Pseudomonas aeruginosa biofilm formation by micafungin and the enhancement of antimicrobial agent effectiveness in BALB/c mice.

    Science.gov (United States)

    Kissoyan, Kohar Annie B; Bazzi, Wael; Hadi, Usamah; Matar, Ghassan M

    2016-08-01

    Micafungin inhibits biofilm formation by impeding 1,3-β-D-glucan synthesis in Candida albicans. Since Pseudomonas aeruginosa also has 1,3-β-D-glucan in its cell wall, this study assessed the effects of antibacterial agents in vitro and in vivo on micafungin-treated biofilm-forming P. aeruginosa isolates. After treatment with micafungin as well as with a panel of four antibacterial agents, biofilm production was significantly reduced as measured by spectrophotometry. The relative mRNA transcription levels for the genes encoding pellicles (pelC) and cell wall 1,3-β-D-glucan (ndvB), which were measured by quantitative reverse transcription PCR (qRT-PCR), significantly decreased with micafungin treatment. In vivo, the survival rates of P. aeruginosa-infected BALB/c mice significantly increased after combined treatment with micafungin and each of the antibacterial agents. Of these treatments, the combination of micafungin with levofloxacin had the highest survival rate; this combination was the most effective treatment against P. aeruginosa-induced infection. PMID:27347641

  20. Bevacizumab Inhibits Breast Cancer-Induced Osteolysis, Surrounding Soft Tissue Metastasis, and Angiogenesis in Rats as Visualized by VCT and MRI

    Directory of Open Access Journals (Sweden)

    Tobias Bäuerle

    2008-05-01

    Full Text Available The aim of this study was to evaluate the effect of an antiangiogenic treatment with the vascular endothelial growth factor antibody bevacizumab in an experimental model of breast cancer bone metastasis and to monitor osteolysis, soft tissue tumor, and angiogenesis in bone metastasis noninvasively by volumetric computed tomography (VCT and magnetic resonance imaging (MRI. After inoculation of MDA-MB-231 human breast cancer cells into nude rats, bone metastasis was monitored with contrast-enhanced VCT and MRI from day 30 to day 70 after tumor cell inoculation, respectively. Thereby, animals of the treatment group (10 mg/kg bevacizumab IV weekly, n = 15 were compared with sham-treated animals (n = 17. Treatment with bevacizumab resulted in a significant difference versus control in osteolytic as well as soft tissue lesion sizes (days 50 to 70 and 40 to 70 after tumor cell inoculation, respectively; P < .05. This observation was paralleled with significantly reduced vascularization in the treatment group as shown by reduced increase in relative signal intensity in dynamic contrast-enhanced MRI from days 40 to 70 (P < .05. Contrast-enhanced VCT and histology confirmed decreased angiogenesis as well as new bone formation after application of bevacizumab. In conclusion, bevacizumab significantly inhibited osteolysis, surrounding soft tissue tumor growth, and angiogenesis in an experimental model of breast cancer bone metastasis as visualized by VCT and MRI.

  1. Antagonizing the αv β3 integrin inhibits angiogenesis and impairs woven but not lamellar bone formation induced by mechanical loading.

    Science.gov (United States)

    Tomlinson, Ryan E; Schmieder, Anne H; Quirk, James D; Lanza, Gregory M; Silva, Matthew J

    2014-09-01

    Angiogenesis and osteogenesis are critically linked, although the role of angiogenesis is not well understood in osteogenic mechanical loading. In this study, either damaging or non-damaging cyclic axial compression was used to generate woven bone formation (WBF) or lamellar bone formation (LBF), respectively, at the mid-diaphysis of the adult rat forelimb. αv β3 integrin-targeted nanoparticles or vehicle was injected intravenously after mechanical loading. β3 integrin subunit expression on vasculature was maximal 7 days after damaging mechanical loading, but was still robustly expressed 14 days after loading. Accordingly, targeted nanoparticle delivery in WBF-loaded limbs was increased compared with non-loaded limbs. Vascularity was dramatically increased after WBF loading (+700% on day 14) and modestly increased after LBF loading (+50% on day 14). This increase in vascularity was inhibited by nanoparticle treatment in both WBF- and LBF-loaded limbs at days 7 and 14 after loading. Decreased vascularity led to diminished woven, but not lamellar, bone formation. Decreased woven bone formation resulted in impaired structural properties of the skeletal repair, particularly in post-yield behavior. These results demonstrate that αv β3 integrin-mediated angiogenesis is critical for recovering fracture resistance after bone injury but is not required for bone modeling after modest mechanical strain. © 2014 American Society for Bone and Mineral Research. PMID:24644077

  2. Blocking S1P interaction with S1P{sub 1} receptor by a novel competitive S1P{sub 1}-selective antagonist inhibits angiogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Fujii, Yasuyuki, E-mail: y.fujii@po.rd.taisho.co.jp [Department of Molecular Function and Pharmacology Laboratories, Taisho Pharmaceutical Co. Ltd., 1-403 Saitama, Saitama 331-9530 (Japan); Ueda, Yasuji; Ohtake, Hidenori; Ono, Naoya; Takayama, Tetsuo; Nakazawa, Kiyoshi [Department of Molecular Function and Pharmacology Laboratories, Taisho Pharmaceutical Co. Ltd., 1-403 Saitama, Saitama 331-9530 (Japan); Igarashi, Yasuyuki [Laboratory of Biomembrane and Biofunctional Chemistry, Hokkaido University, Sapporo, Hokkaido 060-0812 (Japan); Goitsuka, Ryo [Division of Development and Aging, Research Institute for Biological Sciences, Tokyo University of Science, Noda, Chiba 278-0022 (Japan)

    2012-03-23

    Highlights: Black-Right-Pointing-Pointer The effect of a newly developed S1P{sub 1}-selective antagonist on angiogenic responses. Black-Right-Pointing-Pointer S1P{sub 1} is a critical component of VEGF-related angiogenic responses. Black-Right-Pointing-Pointer S1P{sub 1}-selective antagonist showed in vitro activity to inhibit angiogenesis. Black-Right-Pointing-Pointer S1P{sub 1}-selective antagonist showed in vivo activity to inhibit angiogenesis. Black-Right-Pointing-Pointer The efficacy of S1P{sub 1}-selective antagonist for anti-cancer therapies. -- Abstract: Sphingosine 1-phosphate receptor type 1 (S1P{sub 1}) was shown to be essential for vascular maturation during embryonic development and it has been demonstrated that substantial crosstalk exists between S1P{sub 1} and other pro-angiogenic growth factors, such as vascular endothelial growth factor (VEGF) and basic fibroblast growth factor. We developed a novel S1P{sub 1}-selective antagonist, TASP0277308, which is structurally unrelated to S1P as well as previously described S1P{sub 1} antagonists. TASP0277308 inhibited S1P- as well as VEGF-induced cellular responses, including migration and proliferation of human umbilical vein endothelial cells. Furthermore, TASP0277308 effectively blocked a VEGF-induced tube formation in vitro and significantly suppressed tumor cell-induced angiogenesis in vivo. These findings revealed that S1P{sub 1} is a critical component of VEGF-related angiogenic responses and also provide evidence for the efficacy of TASP0277308 for anti-cancer therapies.

  3. Cancer gene therapy targeting angiogenesis: An updated review

    OpenAIRE

    Liu, Ching-Chiu; Shen, Zan; Kung, Hsiang-Fu; Lin, Marie CM

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971, scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of anti-angiogenesis therapy. Transfer of anti-angiogenesis genes has received attention recently not only because of the advancement of recombinant vectors, but also because of the localized an...

  4. Down-regulation of MTA1 protein leads to the inhibition of migration, invasion, and angiogenesis of non-small-cell lung cancer cell line

    Institute of Scientific and Technical Information of China (English)

    Shuhai Li; Hui Tian; Weiming Yue; Lin Li; Cun Gao; Libo Si; Wenjun Li

    2013-01-01

    Metastasis-associated protein 1 (MTA1) high expression has been detected in a wide variety of human aggressive tumors and plays important roles in the malignant biological behaviors such as invasion,metastasis,and angiogenesis.However,the specific roles and mechanisms of MTA1 protein in regulating the malignant behaviors of non-small-cell lung cancer (NSCLC) cells still remain unclear.To elucidate the detailed functions of MTA1 protein,we down-regulated the MTA1 protein expression in NSCLC cell line by RNA interference (RNAi) in vitro,and found that down-regulation of MTA1 protein significantly inhibited the migration and invasion potentials of 95D cells.Further research revealed that down-reguiation of MTA1 protein significantly decreased the activity of matrix metalloproteinase-9,which could be the mechanism responsible for the inhibition of 95D cells migration and invasion.In addition,the tube formation assay demonstrated that the number of complete tubes induced by the conditioned medium of MTA1-siRNA 95D cells was significantly smaller than that of 95D cells.These findings demonstrate that MTA1 protein plays important roles in regulating the migration,invasion,and angiogenesis potentials of 95D cells,suggesting that MTA1 protein down-regulation by RNAi might be a novel therapeutic approach to inhibit the progression of NSCLC.

  5. Thiodigalactoside inhibits murine cancers by concurrently blocking effects of galectin-1 on immune dysregulation, angiogenesis and protection against oxidative stress

    Czech Academy of Sciences Publication Activity Database

    Ito, K.; Scott, S.A.; Cutler, S.; Dong, L.-F.; Neužil, Jiří; Blanchard, H.; Ralph, S.J.

    2011-01-01

    Roč. 14, č. 3 (2011), s. 293-307. ISSN 0969-6970 Institutional research plan: CEZ:AV0Z50520701 Keywords : Galectin-1 inhibitor * oxidative stress * angiogenesis Subject RIV: FD - Oncology ; Hematology Impact factor: 6.063, year: 2011

  6. ANG II type 1 receptor antagonist irbesartan inhibits coronary angiogenesis stimulated by chronic intermittent hypoxia in neonatal rats

    Czech Academy of Sciences Publication Activity Database

    Rakusan, K.; Chvojková, Zuzana; Oliviero, P.; Ošťádalová, Ivana; Kolář, František; Chassagne, C.; Samuel, J. L.; Ošťádal, Bohuslav

    2007-01-01

    Roč. 292, č. 3 (2007), H1237-H1244. ISSN 0363-6135 R&D Projects: GA MŠk 1M0510 Institutional research plan: CEZ:AV0Z50110509 Keywords : angiogenesis neonatal rat * ANG II type 1 receptor antagonist heart * ischemic tolerance Subject RIV: ED - Physiology Impact factor: 3.973, year: 2007

  7. Curcumin inhibits adipogenesis in 3T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice

    Science.gov (United States)

    The growth of new blood vessels or angiogenesis is necessary for the growth of adipose tissue. Dietary polyphenols may suppress growth of adipose tissue through their antiangiogenic activity and by modulating adipocyte metabolism. In the present study, we examined the effect of curcumin, a polyphen...

  8. Tumor Angiogenesis: Insights and Innovations

    Directory of Open Access Journals (Sweden)

    Fernando Nussenbaum

    2010-01-01

    Full Text Available Angiogenesis is a vital process resulting in the formation of new blood vessels. It is normally a highly regulated process that occurs during human development, reproduction, and wound repair. However, angiogenesis can also become a fundamental pathogenic process found in cancer and several other diseases. To date, the inhibition of angiogenesis has been researched at both the bench and the bedside. While several studies have found moderate improvements when treating with angiogenesis inhibitors, greater success is being seen when the inhibition of angiogenesis is combined with other traditional forms of available therapy. This review summarizes several important angiogenic factors, examines new research and ongoing clinical trials for such factors, and attempts to explain how this new knowledge may be applied in the fight against cancer and other angiogenic-related diseases.

  9. Inhibition of Quorum Sensing-Controlled Virulence Factor Production in Pseudomonas aeruginosa PAO1 by Ayurveda Spice Clove (Syzygium Aromaticum Bud Extract

    Directory of Open Access Journals (Sweden)

    Kok-Gan Chan

    2012-03-01

    Full Text Available Quorum sensing controls the virulence determinants in most proteobacteria. In this work, the hexane, chloroform and methanol extracts of an Ayurveda spice, namely clove (Syzygium aromaticum, shown anti-quorum sensing activity. Hexane and methanol extracts of clove inhibited the response of C. violaceum CV026 to exogenously supplied N‑hexanoylhomoserine lactone, in turn preventing violacein production. Chloroform and methanol extracts of clove significantly reduced bioluminescence production by E. coli [pSB1075] grown in the presence of N-(3-oxododecanoyl-L-homoserine lactone. We demonstrated that clove extract inhibited quorum sensing-regulated phenotypes in Pseudomonas aeruginosa PA01, including expression of lecA::lux (by hexane extract, swarming (maximum inhibition by methanol extract, pyocyanin (maximum inhibition by hexane extract. This study shows that the presence of natural compounds that exhibit anti-quorum sensing activity in the clove extracts may be useful as the lead of anti-infective drugs.

  10. Inhibitors of Angiogenesis.

    Science.gov (United States)

    Büning, H; Hacker, U T

    2016-01-01

    Angiogenesis plays a pivotal role in malignant, ischemic, inflammatory, infectious and immune disorders. The increasing molecular understanding of angiogenic processes fostered the development of strategies to induce or inhibit angiogenesis for therapeutic purposes. Here, we focus on anti-angiogenic therapies, which represent a standard of care in the treatment of different cancer types and in neovascular age-related macular degeneration. Specifically, strategies related to the blockade of angiogenic proteins and receptors will be outlined covering both preclinical and clinical aspects. Finally, examples of gene therapy based anti-angiogenic approaches are presented. PMID:27236560

  11. Inhibition of angiogenesis, tumour growth and experimental metastasis of human fibrosarcoma cells HT1080 by a multimeric form of the laminin sequence Tyr-Ile-Gly-Ser-Arg (YIGSR).

    OpenAIRE

    Iwamoto, Y; Nomizu, M; Yamada, Y.; Ito, Y.; K.Tanaka; Sugioka, Y.

    1996-01-01

    A multimeric peptide, Ac-Y16, consisting of 16 YIGSR sequences from laminin was evaluated for its effect on experimental metastasis, angiogenesis and tumour growth of HT1080 human fibrosarcoma cells. Co-injection of 0.5 mg per mouse of Ac-Y16 i.v. with HT 1080 cells inhibited lung colonisation by 100%, whereas 0.5 mg per mouse of monomeric Ac-YIGSR-NH2(AcY1) inhibited by 94%. Ac-Y16 did not show any direct cytotoxicity in tumour cells in vivo. The effect of the peptides on angiogenesis and tu...

  12. EGCG, a major green tea catechin suppresses breast tumor angiogenesis and growth via inhibiting the activation of HIF-1α and NFκB, and VEGF expression.

    Science.gov (United States)

    Gu, Jian-Wei; Makey, Kristina L; Tucker, Kevan B; Chinchar, Edmund; Mao, Xiaowen; Pei, Ivy; Thomas, Emily Y; Miele, Lucio

    2013-01-01

    The role of EGCG, a major green tea catechin in breast cancer therapy is poorly understood. The present study tests the hypothesis that EGCG can inhibit the activation of HIF-1α and NFκB, and VEGF expression, thereby suppressing tumor angiogenesis and breast cancer progression. Sixteen eight-wk-old female mice (C57BL/6 J) were inoculated with 10^6 E0771 (mouse breast cancer) cells in the left fourth mammary gland fat pad. Eight mice received EGCG at 50-100 mg/kg/d in drinking water for 4 weeks. 8 control mice received drinking water only. Tumor size was monitored using dial calipers. At the end of the experiment, blood samples, tumors, heart and limb muscles were collected for measuring VEGF expression using ELISA and capillary density (CD) using CD31 immunohistochemistry. EGCG treatment significantly reduced tumor weight over the control (0.37 ± 0.15 vs. 1.16 ± 0.30 g; P < 0.01), tumor CD (109 ± 20 vs. 156 ± 12 capillary #/mm^2; P < 0.01), tumor VEGF expression (45.72 ± 1.4 vs. 59.03 ± 3.8 pg/mg; P < 0.01), respectively. But, it has no effects on the body weight, heart weight, angiogenesis and VEGF expression in the heart and skeletal muscle of mice. EGCG at 50 μg/ml significantly inhibited the activation of HIF-1α and NFκB as well as VEGF expression in cultured E0771 cells, compared to the control, respectively. These findings support the hypothesis that EGCG, a major green tea catechin, directly targets both tumor cells and tumor vasculature, thereby inhibiting tumor growth, proliferation, migration, and angiogenesis of breast cancer, which is mediated by the inhibition of HIF-1α and NFκB activation as well as VEGF expression. PMID:23638734

  13. Murine epidermal growth factor (EGF) fragment (33-42) inhibits both EGF- and laminin-dependent endothelial cell motility and angiogenesis.

    Science.gov (United States)

    Nelson, J; Allen, W E; Scott, W N; Bailie, J R; Walker, B; McFerran, N V; Wilson, D J

    1995-09-01

    Laminin, murine epidermal growth factor (mEGF), and the synthetic laminin peptide Lam.B1(925-933) (a linear peptide from the B1 chain of murine laminin, CDPGY1GSR-amide) all stimulate endothelial cell motility above basal rates, whereas a synthetic mEGF fragment, mEGF33-42 (a linear peptide from the C-loop of mEGF, acetyl-C-[S-Acm]-VIGYSGDR-C-[S-Acm]-amide), inhibits motility. In both human SK HEP-1 and embryonic chick endothelial cells, mEGF33-42 blocks both EGF- and laminin-stimulated locomotion of endothelial cells. In vivo, mEGF33-42 also blocks both laminin- and mEGF-induced angiogenesis in the chick. In the human cell line. Lam.B1(925-933) has an additive effect in coincubation with either laminin or mEGF, but it blocks their effects in the chick cells. Lam.B1(925-933) alone stimulates angiogenesis in the chick but blocks laminin-induced angiogenesis. Thus, mEGF33-42 acts as a general laminin antagonist, whereas Lam.B1(925-933) acts as a laminin agonist in human cells, but in chick cells it acts as a partial antagonist. We propose that the presence of an anionic group at the eighth residue of mEGF33-42 may be the source of the antagonistic effects seen with this peptide as compared with the laminin fragment. These findings have important implications in the design of human antiangiogenic agents, and also in the use of chick models in the study of human disease. PMID:7543818

  14. Surface-Mediated Release of a Small-Molecule Modulator of Bacterial Biofilm Formation: A Non-Bactericidal Approach to Inhibiting Biofilm Formation in Pseudomonas aeruginosa

    OpenAIRE

    Broderick, Adam H.; Breitbach, Anthony S.; Frei, Reto; Blackwell, Helen E.; Lynn, David M.

    2013-01-01

    We report an approach to preventing bacterial biofilm formation that is based on the surface-mediated release of 5,6-dimethyl-2-aminobenzimidazole (DMABI), a potent and non-bactericidal small-molecule inhibitor of bacterial biofilm growth. Our results demonstrate that DMABI can be encapsulated in thin films of a model biocompatible polymer [poly(lactide-co-glycolide), PLG] and be released in quantities that inhibit the formation of Pseudomonas aeruginosa biofilms by up to 75–90% on surfaces t...

  15. The CXCR3 targeting chemokine CXCL11 has potent antitumor activity in vivo involving attraction of CD8+ T lymphocytes but not inhibition of angiogenesis.

    Science.gov (United States)

    Hensbergen, Paul J; Wijnands, Pepijn G J T B; Schreurs, Marco W J; Scheper, Rik J; Willemze, Rein; Tensen, Cornelis P

    2005-01-01

    The IFN-gamma-inducible and CXCR3-targeting human CXC chemokines CXCL9 (Mig) and CXCL10 (IP10) have potent antitumor activity through attraction of cytotoxic T lymphocytes and inhibition of angiogenesis. The more recently identified CXCR3-targeting chemokine CXCL11 (I-TAC/IP9) proved to be a more potent chemokine than CXCL9 and CXCL10 in vitro, both in chemotaxis assays with CXCR3+ T lymphocytes and in calcium mobilization experiments. However, its antitumor activity in vivo has not been shown so far. To investigate this, mice were challenged with EL4 T-cell lymphoma cells, genetically modified to produce murine CXCL11. Tumor growth curves showed complete rejection of CXCL11-producing tumors but not of control tumors. Tumor infiltrate analysis by flow cytometry showed a clear correlation between rejection of CXCL11-producing tumors and an increase of tumor-infiltrating CD8+CXCR3+ as well as CD8+CXCR3- T lymphocytes. In vivo CD8 T-cell depletion completely abrogated the antitumor effect. No difference in angiogenesis between control and CXCL11-producing tumors was observed. In survivors, rechallenge experiments with wild-type tumor cells suggested development of protective antitumor immunity involving tumor-specific IFN-gamma production by CD8+ T lymphocytes. These experiments show, for the first time, antitumor activity of CXCL11 in vivo, which warrants exploration for its potential role in anticancer immunotherapy. PMID:16000952

  16. How phototherapy affects angiogenesis

    Science.gov (United States)

    Dyson, Mary

    2007-02-01

    Angiogenesis is essential for normal growth, tissue repair and regeneration. Its stimulation accelerates repair and regeneration including wound healing where these processes are delayed. Its inhibition can reduce the rate of growth of solid tumors. Phototherapy can accelerate the resolution of acute inflammation with the result that the proliferative phase of tissue repair, when angiogenesis occurs, begins earlier than in sham-irradiated controls. Evidence that angiogenesis is enhanced in dermal repair, tendon repair and bone regeneration in rodents is presented. The cellular mechanisms that control angiogenesis involve the interaction of endothelial cells, macrophages, pericytes and other cells in response, for example, to changes in the availability of oxygen in the local environment. Pericytes and macrophages modulate endothelial cell proliferation; pericytes guide endothelial cell migration. The stimulation of endothelial cell proliferation in vitro following exposure to red (660 nm) and infrared (820 nm) radiation, 15 mW, at 2-8 J/cm2 is presented. 1J/cm2 was ineffective. 820 nm irradiation, 15 mW, at 8 J/cm2 was observed to inhibit pericyte proliferation in vitro. Indirect effects on endothelial cell and pericyte proliferation followed stimulation of soluble mediator production by macrophages following exposure to red and infrared radiation. The potential clinical significance of the results obtained is discussed and the necessity of clinical trials emphasized.

  17. Discovery and characterization of a novel cyclic peptide that effectively inhibits ephrin binding to the EphA4 receptor and displays anti-angiogenesis activity.

    Directory of Open Access Journals (Sweden)

    Xiaofeng Han

    Full Text Available The EphA4 receptor tyrosine kinase regulates a variety of physiological and pathological processes during neural development and the formation of tumor blood vessels; thus, it represents a new and promising therapeutic target. We used a combination of phage peptide display and computer modeling/docking approaches and discovered a novel cyclic nonapeptide, now designated TYY. This peptide selectively inhibits the binding of the ephrinA5 ligand with EphA4 and significantly blocks angiogenesis in a 3D matrigel culture system. Molecular docking reveals that TYY recognizes the same binding pocket on EphA4 that the natural ephrin ligand binds to and that the Tyr3 and Tyr4 side chains of TYY are both critical for the TYY/EphA4 interaction. The discovery of TYY introduces a valuable probe of EphA4 function and a new lead for EphA4-targeted therapeutic development.

  18. Angiogenesis and Anti-Angiogenic Treatments

    Directory of Open Access Journals (Sweden)

    Ersin Demirer

    2013-10-01

    Full Text Available Blood vessels in our body is developed by vasculogenesis and angiogenesis. There have been new advances in molecular pathology and tumor biology areas in recent years. Angiogenesis is modulated by the balance between angiogenic and anti-angiogenic factors. Angiogenesis plays a key role in tumor growth. Drugs inhibiting angiogenesis have been in use in various malign or non-malign diseases. Inhibition of angiogenesis in malign diseases is a very attractive subject in medicine and studies are going on about long term affects and toxicities. Inhibition of angiogenesis is not an only treatment choice alone. It is a supplemental treatment option applied with conventional chemotherapy, radiotherapy, surgery, immunotherapy and hormonal therapy. It has been used in colorectal carcinoma, renal cell carcinoma, non-small cell lung cancer, glioblastoma, heoatocellular carcinoma, pancreatic neuroendocrine tumor, tyroid medullary cancer.

  19. PF573,228 inhibits vascular tumor cell growth, migration as well as angiogenesis, induces apoptosis and abrogates PRAS40 and S6RP phosphorylation.

    Science.gov (United States)

    Mabeta, Peace

    2016-09-01

    PF573,228 is a compound that targets focal adhesion kinase (FAK), a non-receptor protein kinase, which is over-expressed in various tumors. The aim of this study was to evaluate the effects of PF573,228 on the cells derived from mouse vascular tumors, namely, endothelioma cells. The treatment of endothelioma cells with PF573,228 reduced their growth with an IC50 of approximately 4.6 μmol L-1 and inhibited cell migration with an IC50 of about 0.01 μmol L-1. Microscopic studies revealed morphological attributes of apoptosis. These observations were confirmed by ELISA, which showed increased caspase-3 activity. PF573,228 also inhibited angiogenesis in a dose-dependent manner, with an IC50 of approximately 3.7 μmol L-1, and abrogated the phosphorylation of cell survival proteins, proline-rich Akt substrate (PRAS40) and S6 ribosomal protein (S6RP). Array data further revealed that PF573,228 induced caspase-3 activation, thus promoting apoptosis. Since all the processes inhibited by PF573,228 provide important support to tumor survival and progression, the drug may have a potential role in the treatment of vascular tumors. PMID:27383888

  20. Melittin inhibits tumor angiogenesis modulated by endothelial progenitor cells associated with the SDF-1α/CXCR4 signaling pathway in a UMR-106 osteosarcoma xenograft mouse model.

    Science.gov (United States)

    Qin, Gang; Chen, Yongqiang; Li, Haidong; Xu, Suyang; Li, Yumei; Sun, Jian; Rao, Wu; Chen, Chaowei; Du, Mindong; He, Kaiyi; Ye, Yong

    2016-07-01

    Endothelial progenitor cells (EPCs) are important in tumor angiogenesis. Stromal cell-derived factor-1α (SDF-1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4) are key in stem cell homing. Melittin, a component of bee venom, exerts antitumor activity, however, the underlying mechanisms remain to be elucidated. The present study aimed to assess the effects of melittin on EPCs and angiogenesis in a mouse model of osteosarcoma. UMR‑106 cells and EPCs were treated with various concentrations of melittin and cell viability was determined using the MTT assay. EPC adherence, migration and tube forming ability were assessed. Furthermore, SDF‑1α, AKT and extracellular signal‑regulated kinase (ERK)1/2 expression levels were detected by western blotting. Nude mice were inoculated with UMR‑106 cells to establish an osteosarcoma mouse model. The tumors were injected with melittin, and its effects were assessed by immunohistochemistry and immunofluorescence. Melittin decreased the viability of UMR‑106 cells and EPCs. In addition, it decreased EPC adhesion, migration and tube formation when compared with control and SDF‑1α‑treated cells. Melittin decreased the expression of phosphorylated (p)‑AKT, p‑ERK1/2, SDF‑1α and CXCR4 in UMR‑106 cells and EPCs when compared with the control. The proportions of cluster of differentiation (CD)34/CD133 double‑positive cells were 16.4±10.4% in the control, and 7.0±4.4, 2.9±1.2 and 1.3±0.3% in tumors treated with 160, 320 and 640 µg/kg melittin per day, respectively (P<0.05). At 11 days, melittin reduced the tumor size when compared with that of the control (control, 4.8±1.3 cm3; melittin, 3.2±0.6, 2.6±0.5, and 2.0±0.2 cm3 for 160, 320 and 640 µg/kg, respectively; all P<0.05). Melittin decreased the microvessel density, and SDF‑1α and CXCR4 protein expression levels in the tumors. Melittin may decrease the effect of osteosarcoma on EPC‑mediated angiogenesis, possibly via inhibition

  1. Vasa vasorum anti-angiogenesis through H2O2, HIF-1α, NF-κB, and iNOS inhibition by mangosteen pericarp ethanolic extract (Garcinia mangostana Linn in hypercholesterol-diet-given Rattus norvegicus Wistar strain

    Directory of Open Access Journals (Sweden)

    Wihastuti TA

    2014-08-01

    Full Text Available Titin Andri Wihastuti,1 Djanggan Sargowo,2 Askandar Tjokroprawiro,3 Nur Permatasari,4 Mohammad Aris Widodo,4 Setyowati Soeharto4 1Department of Biomedical, Medical Faculty, Brawijaya University, Malang, Indonesia; 2Department of Cardiology, Medical Faculty, Brawijaya University, Malang, Indonesia; 3Department of Endocrinology, Medical Faculty, Airlangga University, Surabaya, Indonesia; 4Department of Pharmacology, Medical Faculty, Brawijaya University, Malang, Indonesia Background: Oxidative stress in atherosclerosis produces H2O2 and triggers the activation of nuclear factor kappa beta (NF-κB and increase of inducible nitric oxide synthase (iNOS. The formation of vasa vasorum occurs in atherosclerosis. Vasa vasorum angiogenesis is mediated by VEGFR-1 and upregulated by hypoxia-inducible factor-1α (HIF-1α. The newly formed vasa vasorum are fragile and immature and thus increase plaque instability. It is necessary to control vasa vasorum angiogenesis by using mangosteen pericarp antioxidant. This study aims to demonstrate that mangosteen pericarp ethanolic extract can act as vasa vasorum anti-angiogenesis through H2O2, HIF-1α, NF-κB, and iNOS inhibition in rats given a hypercholesterol diet. Methods: This was a true experimental laboratory, in vivo posttest with control group design, with 20 Rattus norvegicus Wistar strain rats divided into five groups (normal group, hypercholesterol group, and hypercholesterol groups with certain doses of mangosteen pericarp ethanolic extract: 200, 400, and 800 mg/kg body weight. The parameters of this study were H2O2 measured by using colorimetric analysis, as well as NF-κB, iNOS, and HIF-1α, which were measured by using immunofluorescence double staining and observed with a confocal laser scanning microscope in aortic smooth muscle cell. The angiogenesis of vasa vasorum was quantified from VEGFR-1 level in aortic tissue and confirmed with hematoxylin and eosin staining. Results: Analysis of variance

  2. The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid inhibits growth of Erwinia amylovora and acts as a seed germination-arrest factor.

    Science.gov (United States)

    Lee, Xiaoyun; Azevedo, Mark D; Armstrong, Donald J; Banowetz, Gary M; Reimmann, Cornelia

    2013-02-01

    The Pseudomonas aeruginosa antimetabolite L-2-amino-4-methoxy-trans-3-butenoic acid (AMB) shares biological activities with 4-formylaminooxyvinylglycine, a related molecule produced by Pseudomonas fluorescens WH6. We found that culture filtrates of a P. aeruginosa strain overproducing AMB weakly interfered with seed germination of the grassy weed Poa annua and strongly inhibited growth of Erwinia amylovora, the causal agent of the devastating orchard crop disease known as fire blight. AMB was active against a 4-formylaminooxyvinylglycine-resistant isolate of E. amylovora, suggesting that the molecular targets of the two oxyvinylglycines in Erwinia do not, or not entirely, overlap. The AMB biosynthesis and transport genes were shown to be organized in two separate transcriptional units, ambA and ambBCDE, which were successfully expressed from IPTG-inducible tac promoters in the heterologous host P. fluorescens CHA0. Engineered AMB production enabled this model biocontrol strain to become inhibitory against E. amylovora and to weakly interfere with the germination of several graminaceous seeds. We conclude that AMB production requires no additional genes besides ambABCDE and we speculate that their expression in marketed fire blight biocontrol strains could potentially contribute to disease control. PMID:23757135

  3. Protein-bound polysaccharide from Phellinus linteus inhibits tumor growth, invasion, and angiogenesis and alters Wnt/β-catenin in SW480 human colon cancer cells

    International Nuclear Information System (INIS)

    Polysaccharides extracted from the Phellinus linteus (PL) mushroom are known to possess anti-tumor effects. However, the molecular mechanisms responsible for the anti-tumor properties of PL remain to be explored. Experiments were carried out to unravel the anticancer effects of PL. The anti-cancer effects of PL were examined in SW480 colon cancer cells by evaluating cell proliferation, invasion and matrix metallo-proteinase (MMP) activity. The anti-angiogenic effects of PL were examined by assessing human umbilical vein endothelial cell (HUVEC) proliferation and capillary tube formation. The in vivo effect of PL was evaluated in an athymic nude mouse SW480 tumor engraft model. PL (125-1000 μg/mL) significantly inhibited cell proliferation and decreased β-catenin expression in SW480 cells. Expression of cyclin D1, one of the downstream-regulated genes of β-catenin, and T-cell factor/lymphocyte enhancer binding factor (TCF/LEF) transcription activity were also significantly reduced by PL treatment. PL inhibited in vitro invasion and motility as well as the activity of MMP-9. In addition, PL treatment inhibited HUVEC proliferation and capillary tube formation. Tumor growth of SW480 cells implanted into nude mice was significantly decreased as a consequence of PL treatment, and tumor tissues from treated animals showed an increase in the apoptotic index and a decrease in β-catenin expression. Moreover, the proliferation index and microvessel density were significantly decreased. These data suggest that PL suppresses tumor growth, invasion, and angiogenesis through the inhibition of Wnt/β-catenin signaling in certain colon cancer cells

  4. Protein-bound polysaccharide from Phellinus linteus inhibits tumor growth, invasion, and angiogenesis and alters Wnt/β-catenin in SW480 human colon cancer cells

    Directory of Open Access Journals (Sweden)

    Park Hae-Duck

    2011-07-01

    Full Text Available Abstract Background Polysaccharides extracted from the Phellinus linteus (PL mushroom are known to possess anti-tumor effects. However, the molecular mechanisms responsible for the anti-tumor properties of PL remain to be explored. Experiments were carried out to unravel the anticancer effects of PL. Methods The anti-cancer effects of PL were examined in SW480 colon cancer cells by evaluating cell proliferation, invasion and matrix metallo-proteinase (MMP activity. The anti-angiogenic effects of PL were examined by assessing human umbilical vein endothelial cell (HUVEC proliferation and capillary tube formation. The in vivo effect of PL was evaluated in an athymic nude mouse SW480 tumor engraft model. Results PL (125-1000 μg/mL significantly inhibited cell proliferation and decreased β-catenin expression in SW480 cells. Expression of cyclin D1, one of the downstream-regulated genes of β-catenin, and T-cell factor/lymphocyte enhancer binding factor (TCF/LEF transcription activity were also significantly reduced by PL treatment. PL inhibited in vitro invasion and motility as well as the activity of MMP-9. In addition, PL treatment inhibited HUVEC proliferation and capillary tube formation. Tumor growth of SW480 cells implanted into nude mice was significantly decreased as a consequence of PL treatment, and tumor tissues from treated animals showed an increase in the apoptotic index and a decrease in β-catenin expression. Moreover, the proliferation index and microvessel density were significantly decreased. Conclusions These data suggest that PL suppresses tumor growth, invasion, and angiogenesis through the inhibition of Wnt/β-catenin signaling in certain colon cancer cells.

  5. Phellinus linteus suppresses growth, angiogenesis and invasive behaviour of breast cancer cells through the inhibition of AKT signalling

    OpenAIRE

    Sliva, D; Jedinak, A; Kawasaki, J.; Harvey, K; Slivova, V

    2008-01-01

    The antitumour activity of a medicinal mushroom Phellinus linteus (PL), through the stimulation of immune system or the induction of apoptosis, has been recently described. However, the molecular mechanisms responsible for the inhibition of invasive behaviour of cancer cells remain to be addressed. In the present study, we demonstrate that PL inhibits proliferation (anchorage-dependent growth) as well as colony formation (anchorage-independent growth) of highly invasive human breast cancer ce...

  6. Lycopene Enriched Tomato Extract Inhibits Hypoxia, Angiogenesis, and Metastatic Markers in early Stage N-Nitrosodiethylamine Induced Hepatocellular Carcinoma.

    Science.gov (United States)

    Bhatia, Nisha; Gupta, Prachi; Singh, Baljinder; Koul, Ashwani

    2015-01-01

    Targeting altered pathways during initial stage of hepatocellular carcinoma (HCC) development is viewed as an effective and promising strategy to control this disease. Present study investigated the potential effect of lycopene-enriched tomato extract (LycT) on hypoxia-induced factor (HIF)-1α, HOX, VEGF, CD31, matrix metalloproteinase (MMP)-2, MMP-9, and alpha fetoprotein (AFP)expression during initial stages of N-nitrosodiethylamine (NDEA) induced HCC. Female Balb/c mice (8-10 wk) were assigned to 4 groups: control, NDEA (200 mg NDEA i.p./kg body weight, cumulative), LycT (5 mg lycopene orally/kg body weight; 3 times a week), and LycT + NDEA. LycT treatment began 2 wk before NDEA administration and continued until the end of the 10 wk study. The onset of HCC by NDEA was associated with significant alteration in serum biochemical markers [alanine transaminases (ALT), aspartate transaminases (AST), and alkaline phosphatases (ALP), lactate dehydrogenase (LDH), urea, A/G ratio, and bilirubin] and in liver histopathology. LycT treatment significantly reduced the levels of these markers. LycT treatment to NDEA mice also led to significant reduction in protein levels of AFP, HIF-1α, VEGF, CD31, MMP-2, and MMP-9 in comparison with NDEA group alone. These parameters are important biomarkers of hypoxia, angiogenesis, and metastasis, which reflect the advanced disease stage. The study provides evidence that prophylactic dietary supplementation with LycT may counteract HCC progression and/or protect against disease onset. PMID:26474105

  7. Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer-Part 2.

    Science.gov (United States)

    Sagar, S M; Yance, D; Wong, R K

    2006-06-01

    The herbalist has access to hundreds of years of observational data on the anticancer activity of many herbs. Laboratory studies are expanding the clinical knowledge that is already documented in traditional texts. The herbs that are traditionally used for anti-cancer treatment and that are anti-angiogenic through multiple interdependent processes (including effects on gene expression, signal processing, and enzyme activities) include Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (curcumin), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinalis (ginger), Panax ginseng, Rabdosia rubescens hora (Rabdosia), and Chinese destagnation herbs. Natural health products target molecular pathways other than angiogenesis, including epidermal growth factor receptor, the HER2/neu gene, the cyclo-oxygenase-2 enzyme, the nuclear factor kappa-B transcription factor, the protein kinases, the Bcl-2 protein, and coagulation pathways. Quality assurance of appropriate extracts is essential prior to embarking upon clinical trials. More data are required on dose-response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations. During active cancer therapy they should generally be evaluated in combination with chemotherapy and radiation. In this role, they act as modifiers of biologic response or as adaptogens, potentially enhancing the efficacy of the conventional therapies or reducing toxicity. Their effectiveness may be increased when multiple agents are used in optimal combinations. New designs for trials to demonstrate activity in human subjects are required. Although controlled trials may be preferable, smaller studies with appropriate endpoints and

  8. Fe-MIL-101 exhibits selective cytotoxicity and inhibition of angiogenesis in ovarian cancer cells via downregulation of MMP.

    Science.gov (United States)

    Wang, Jiaqiang; Chen, Daomei; Li, Bin; He, Jiao; Duan, Deliang; Shao, Dandan; Nie, Minfang

    2016-01-01

    Though metal-organic frameworks (MOFs) have inspired potential applications in biomedicine, cytotoxicity studies of MOFs have been relatively rare. Here we demonstrate for the first time that an easily available MOF, Fe-MIL-101, possesses intrinsic activity against human SKOV3 ovarian cancer cells and suppress the proliferation of SKOV3 cells (IC50 = 23.6 μg mL(-1)) and normal mouse embryonic fibroblasts (BABL-3T3, IC50 = 78.3 μg mL(-1)) cells. It was more effective against SKOV3 cells than typical anticancer drugs such as artesunate (ART, IC50 = 96.9 μg mL(-1)) and oxaliplatin (OXA, IC50 = 64.4 μg mL(-1)), but had less effect on normal BABL-3T3 cells compared with ART (IC50 = 36.6 μg mL(-1)) and OXA (IC50 = 13.8 μg mL(-1)). Fe-MIL-101 induced apoptosis of human umbilical vein endothelial cells (HUVECs) via G0/G1 cell cycle arrest and decreased the mitochondrial membrane potential in HUVECs and induced apoptosis. Furthermore, Fe-MIL-101 exhibited stronger antiangiogenic effects in HUVEC cells than antiangiogenic inhibitor (SU5416) via downregulation the expression of MMP-2/9. Our results reveal a new role of Fe-MIL-101 as a novel, non-toxic anti-angiogenic agent that restricted ovarian tumour growth. These findings could open a new avenue of using MOFs as potential therapeutics in angiogenesis-dependent diseases, including ovarian cancer. PMID:27188337

  9. Angiogenesis Assays.

    Science.gov (United States)

    Nambiar, Dhanya K; Kujur, Praveen K; Singh, Rana P

    2016-01-01

    Neoangiogenesis constitutes one of the first steps of tumor progression beyond a critical size of tumor growth, which supplies a dormant mass of cancerous cells with the required nutrient supply and gaseous exchange through blood vessels essentially needed for their sustained and aggressive growth. In order to understand any biological process, it becomes imperative that we use models, which could mimic the actual biological system as closely as possible. Hence, finding the most appropriate model is always a vital part of any experimental design. Angiogenesis research has also been much affected due to lack of simple, reliable, and relevant models which could be easily quantitated. The angiogenesis models have been used extensively for studying the action of various molecules for agonist or antagonistic behaviour and associated mechanisms. Here, we have described two protocols or models which have been popularly utilized for studying angiogenic parameters. Rat aortic ring assay tends to bridge the gap between in vitro and in vivo models. The chorioallantoic membrane (CAM) assay is one of the most utilized in vivo model system for angiogenesis-related studies. The CAM is highly vascularized tissue of the avian embryo and serves as a good model to study the effects of various test compounds on neoangiogenesis. PMID:26608294

  10. Dietary phenethyl isothiocyanate inhibition of androgen-responsive LNCaP prostate cancer cell tumor growth correlates with decreased angiogenesis

    Science.gov (United States)

    Phenethyl isothiocyanate (PEITC), found in certain cruciferous vegetables, has antitumor activity in several cancer models, including prostate cancer. In our xenograft model, dietary administration of PEITC (100-150 mg/kg/d) inhibited androgen-responsive LNCaP human prostate cancer cell tumor growth...

  11. Inhibition of Aspergillus fumigatus and Its Biofilm by Pseudomonas aeruginosa Is Dependent on the Source, Phenotype and Growth Conditions of the Bacterium.

    Directory of Open Access Journals (Sweden)

    Jose A G Ferreira

    Full Text Available Aspergillus fumigatus (Af and Pseudomonas aeruginosa (Pa are leading fungal and bacterial pathogens, respectively, in many clinical situations. Relevant to this, their interface and co-existence has been studied. In some experiments in vitro, Pa products have been defined that are inhibitory to Af. In some clinical situations, both can be biofilm producers, and biofilm could alter their physiology and affect their interaction. That may be most relevant to airways in cystic fibrosis (CF, where both are often prominent residents. We have studied clinical Pa isolates from several sources for their effects on Af, including testing involving their biofilms. We show that the described inhibition of Af is related to the source and phenotype of the Pa isolate. Pa cells inhibited the growth and formation of Af biofilm from conidia, with CF isolates more inhibitory than non-CF isolates, and non-mucoid CF isolates most inhibitory. Inhibition did not require live Pa contact, as culture filtrates were also inhibitory, and again non-mucoid>mucoid CF>non-CF. Preformed Af biofilm was more resistant to Pa, and inhibition that occurred could be reproduced with filtrates. Inhibition of Af biofilm appears also dependent on bacterial growth conditions; filtrates from Pa grown as biofilm were more inhibitory than from Pa grown planktonically. The differences in Pa shown from these different sources are consistent with the extensive evolutionary Pa changes that have been described in association with chronic residence in CF airways, and may reflect adaptive changes to life in a polymicrobial environment.

  12. Cancer gene therapy targeting angiogenesis: An updated review

    Institute of Scientific and Technical Information of China (English)

    Ching-Chiu Liu; Zan Shen; Hsiang-Fu Kung; Marie CM Lin

    2006-01-01

    Since the relationship between angiogenesis and tumor growth was established by Folkman in 1971,scientists have made efforts exploring the possibilities in treating cancer by targeting angiogenesis. Inhibition of angiogenesis growth factors and administration of angiogenesis inhibitors are the basics of antiangiogenesis therapy. Transfer of anti-angiogenesis genes has Received attention recently not only because of the advancement of recombinant vectors, but also because of the localized and sustained expression of therapeutic gene product inside the tumor after gene transfer. This review provides the up-to-date information about the strategies and the vectors studied in the field of anti-angiogenesis cancer gene therapy.

  13. A novel peptide (GX1 homing to gastric cancer vasculature inhibits angiogenesis and cooperates with TNF alpha in anti-tumor therapy

    Directory of Open Access Journals (Sweden)

    Wang Li

    2009-09-01

    Full Text Available Abstract Background The discovery of the importance of angiogenesis in tumor growth has emphasized the need to find specific vascular targets for tumor-targeted therapies. Previously, using phage display technology, we identified the peptide GX1 as having the ability to target the gastric cancer vasculature. The present study investigated the bioactivities of GX1, as well as its potential ability to cooperate with recombinant mutant human tumor necrosis factor alpha (rmhTNFα, in gastric cancer therapy. Results Tetrazolium salt (MTT assay showed that GX1 could inhibit cell proliferation of both human umbilical vein endothelial cells (HUVEC (44% and HUVEC with tumor endothelium characteristics, generated by culturing in tumor-conditioned medium (co-HUVEC (62%. Flow-cytometry (FCM and western blot assays showed that GX1 increased the rate of apoptosis from 11% to 31% (p in vivo, with the microvessel count decreasing from 21 to 11 (p In vitro MTT and FCM assays showed that, compared to rmhTNFα alone, GX1-rmhTNFα was more effective at suppressing co-HUVEC proliferation (45% vs. 61%, p p 3 vs. 134 mm3, p p Conclusion GX1 had both homing activity and the ability to inhibit vascular endothelial cell proliferation in vitro and neovascularization in vivo. Furthermore, when GX1 was conjugated to rmhTNFα, the fusion protein was selectively delivered to targeted tumor sites, significantly improving the anti-tumor activity of rmhTNFα and decreasing systemic toxicity. These results demonstrate the potential of GX1 as a homing peptide in vascular targeted therapy for gastric cancer.

  14. Inhibition of angiogenesis, fibrosis and thrombosis by tetramethylpyrazine: mechanisms contributing to the SDF-1/CXCR4 axis.

    Directory of Open Access Journals (Sweden)

    Xiaoxiao Cai

    Full Text Available BACKGROUND: Tetramethylpyrazine (TMP is one of the active ingredients extracted from the Chinese herb Chuanxiong, which has been used to treat cerebrovascular and cardiovascular diseases, pulmonary diseases and cancer. However, the molecular mechanisms underlying the actions of TMP have not been fully elucidated. In a previous study we showed that TMP-mediated glioma suppression and neural protection involves the inhibition of CXCR4 expression. The SDF-1/CXCR4 axis plays a fundamental role in many physiological and pathological processes. In this study, we further investigated whether the regulation of the SDF-1/CXCR4 pathway is also involved in the TMP-mediated inhibition of neovascularization or fibrosis and improvement of microcirculation. METHODOLOGY/PRINCIPAL FINDINGS: Using a scratch-wound assay, we demonstrated that TMP significantly suppressed the migration and tubule formation of the human umbilical vein endothelial cell line ECV304 in vitro. The expression of CXCR4 in ECV304 cells is notably down-regulated after TMP treatment. In addition, TMP significantly suppresses corneal neovascularization in a rat model of corneal alkali burn injury. The expression of CXCR4 on days 1, 3 and 7 post-injury was determined through RT-PCR analysis. Consistent with our hypotheses, the expression of CXCR4 in the rat cornea is significantly increased with alkali burn and dramatically down-regulated with TMP treatment. Moreover, TMP treatment significantly attenuates bleomycin-induced rat pulmonary fibrosis, while immunofluorescence shows a notably decreased amount of CXCR4-positive cells in the TMP-treated group. Furthermore, TMP significantly down-regulates the expression of CXCR4 in platelets, lymphocytes and red blood cells. Whole-blood viscosity and platelet aggregation in rats are significantly decreased by TMP treatment. CONCLUSIONS: These results show that TMP exerts potent effects in inhibiting neovascularization, fibrosis and thrombosis under

  15. Mammalian Target of Rapamycin Inhibitors Induce Tumor Cell Apoptosis In Vivo Primarily by Inhibiting VEGF Expression and Angiogenesis

    Directory of Open Access Journals (Sweden)

    Patrick Frost

    2013-01-01

    Full Text Available We found that rapalog mTOR inhibitors induce G1 arrest in the PTEN-null HS Sultan B-cell lymphoma line in vitro, but that administration of rapalogs in a HS Sultan xenograft model resulted in significant apoptosis, and that this correlated with induction of hypoxia and inhibition of neoangiogenesis and VEGF expression. Mechanistically, rapalogs prevent cap-dependent translation, but studies have shown that cap-independent, internal ribosome entry site (IRES-mediated translation of genes, such as c-myc and cyclin D, can provide a fail-safe mechanism that regulates tumor survival. Therefore, we tested if IRES-dependent expression of VEGF could likewise regulate sensitivity of tumor cells in vivo. To achieve this, we developed isogenic HS Sultan cell lines that ectopically express the VEGF ORF fused to the p27 IRES, an IRES sequence that is insensitive to AKT-mediated inhibition of IRES activity and effective in PTEN-null tumors. Mice challenged with p27-VEGF transfected tumor cells were more resistant to the antiangiogenic and apoptotic effects of the rapalog, temsirolimus, and active site mTOR inhibitor, pp242. Our results confirm the critical role of VEGF expression in tumors during treatment with mTOR inhibitors and underscore the importance of IRES activity as a resistance mechanism to such targeted therapy.

  16. A novel snake venom disintegrin that inhibits human ovarian cancer dissemination and angiogenesis in an orthotopic nude mouse model.

    Science.gov (United States)

    Markland, F S; Shieh, K; Zhou, Q; Golubkov, V; Sherwin, R P; Richters, V; Sposto, R

    2001-01-01

    OVCAR-5 is a human epithelial carcinoma cell line of the ovary, established from the ascitic fluid of a patient with progressive ovarian adenocarcinoma without prior cytotoxic treatment. The unique growth pattern of ovarian carcinoma makes it an ideal model for examining the anticancer activity of contortrostatin (CN), a homodimeric disintegrin from southern copperhead venom. FACS analysis revealed that OVCAR-5 is integrin alphavbeta3 negative, but alphavbeta5 positive. CN effectively blocks the adhesion of OVCAR-5 cells to several extracellular matrix proteins and inhibits tumor cell invasion through an artificial basement membrane. In a xenograft nude mouse model with intraperitoneal introduction of OVCAR-5 cells, intraperitoneal injection of CN was used for therapy. Tumor dissemination in CN-treated versus control groups was studied by gross examination, and antiangiogenic potential was examined by factor VIII immunohistochemistry and image analysis. CN not only significantly inhibited ovarian cancer dissemination in the nude mouse model, but it also dramatically prevented the recruitment of blood vessels to tumors at secondary sites. PMID:11910184

  17. Adding sodium dodecyl sulfate and Pseudomonas aeruginosa UG2 biosurfactants inhibits polycyclic aromatic hydrocarbon biodegradation in a weathered creosote-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Deschenes, L. [Univ. of Quebec, PQ (Canada). INRS-Eau]|[National Research Council of Canada, Montreal, PQ (Canada). Biotechnology Research Inst.; Lafrance, P. [Univ. of Quebec, PQ (Canada). INRS-Eau; Villeneuve, J.P. [Univ. of Quebec, PQ (Canada). INRS-Eau; Samson, R. [National Research Council of Canada, Montreal, PQ (Canada). Biotechnology Research Inst.

    1996-12-31

    The effect of two anionic surfactants was assessed during biodegradation of 13 of the 16 USEPA priority polycyclic aromatic hydrocarbons (PAH) in a wood-preserving soil contaminated with creosote and pentacholorophenol for a period of at least 20 years. Sodium dodecyl sulfate (SDS) and biosurfactants from Pseudomonas aeruginosa UG2 were utilized at concentrations of 10, 100 and 500 {mu}g/g soil. Because both surfactants are readily biodegradable, the microcosms received a fresh spike of surfactant every 2 weeks. Biodegradation of aged PAH residues was monitored by GC/MS for a period of 45 weeks. Results indicated that the biodegradation of the three-ring PAH was rapid and almost complete but was slowed by the addition of 100 {mu}g/g and 500 {mu}g/g chemical surfactant. Similarly, at the same concentrations, the two surfactants significantly decreased the biodegradation rate of the four-ring PAH. In this case, the inhibition was more pronounced with SDS. High-molecular-mass PAH (more than four rings) were not biodegraded under the test conditions. It was suggested that the preferential utilization of surfactants by PAH degraders was responsible for the inhibition observed in the biodegradation of the hydrocarbons. The high biodegradability and the inhibitory effect of these two surfactants would have a significant impact on the development of both above-ground and in situ site reclamation processes. (orig.)

  18. Vitamin D Binding Protein-Macrophage Activating Factor (DBP-maf Inhibits Angiogenesis and Tumor Growth in Mice

    Directory of Open Access Journals (Sweden)

    Oliver Kisker

    2003-01-01

    Full Text Available We have isolated a selectively deglycosylated form of vitamin D binding protein (DBP-maf generated from systemically available DBP by a human pancreatic cancer cell line. DBP-maf is anti proliferative for endothelial cells and antiangiogenic in the chorioallantoic membrane assay. DBP-maf administered daily was able to potently inhibit the growth of human pancreatic cancer in immune compromised mice (T/C=0.09. At higher doses, DBP-maf caused tumor regression. Histological examination revealed that treated tumors had a higher number of infiltrating macrophages as well as reduced microvessel density, and increased levels of apoptosis relative to untreated tumors. Taken together, these data suggest that DBP-maf is an antiangiogenic molecule that can act directly on endothelium as well as stimulate macrophages to attack both the endothelial and tumor cell compartment of a growing malignancy.

  19. Garcinol inhibits tumour cell proliferation, angiogenesis, cell cycle progression and induces apoptosis via NF-κB inhibition in oral cancer.

    Science.gov (United States)

    Aggarwal, Sadhna; Das, Satya N

    2016-06-01

    Garcinol, a polyisoprenylated benzophenone is extracted from the rind of the fruit of Garcinia indica, a plant found extensively in tropical regions. Its ability to inhibit tumour growth has been demonstrated in certain cancers. In this study, we evaluated the potential anti-tumour effects of garcinol on oral squamous cell carcinoma (OSCC) cells. Three OSCC cell lines (SCC-4, SCC-9 and SCC-25) were treated with garcinol for 48 h and its effect on growth and proliferation, clonogenic survival, cell cycle and apoptosis was studied by MTT, clonogenic assay, propidium iodide (PI) staining and annexin-V binding assay, respectively. The alteration in expression of NF-κB and COX-2 was studied by western blot analysis and that of VEGF by ELISA. Garcinol treatment significantly (p < 0.001) inhibited the growth and proliferation and colony formation of OSCC cells with a concomitant induction of apoptosis and cell cycle arrest. It did not show toxic effect on normal cells. It significantly (p < 0.05) reduced the expression of NK-κB and COX-2 expression in treated cells as compared to untreated controls besides inhibiting VEGF expression. It appears that garcinol exerts anti-proliferative, pro-apoptotic, cell-cycle regulatory and anti-angiogenic effects on oral cancer cells through inhibition of NF-κB and COX-2. Thus, garcinol may be developed as a potential chemopreventive and/or chemotherapeutic agent for treatment of oral squamous cell carcinoma. PMID:26662963

  20. Cinnamon extract inhibits angiogenesis in zebrafish and human endothelial cells by suppressing VEGFR1, VEGFR2, and PKC-mediated MAP kinase

    OpenAIRE

    Bansode, R. R.; Leung, T; Randolph, P.; L. L. Williams; Ahmedna, M.

    2013-01-01

    Angiogenesis is a process of new blood vessel generation and under pathological conditions, lead to tumor development, progression, and metastasis. Many bioactive components have been studied for its antiangiogenic properties as a preventive strategy against tumor development. This study is focused on the effects of cinnamon extract in modulating the pathway involved in angiogenesis. Human umbilical vein endothelial cells (HUVEC) were treated with cinnamon extract at a concentration of 25 μg/...

  1. Complex role of matrix metalloproteinases in angiogenesis

    Institute of Scientific and Technical Information of China (English)

    SANGQINGXIANGAMY

    1998-01-01

    Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) play a significant role in regulating angiogenesis,the process of new blood vessel formation.Interstitial collagenase (MMP-1),72kDa gelatinase A/type IV collagenase (MMP-2),and 92 kDA gelatinase B/type IV collagenase (MMP-9) dissolve extracellular matrix (ECM) and may initiate and promote angiogenesis.TIMP-1,TIMP-2,TIMP-3,and possibly,TIMP-4 inhibit neovascularization.A new paradign is emerging that matrilysin (MMP-7),MMP-9,and metalloelastase (MMP-12) may block angiogenesis by converting plasminogen to angiostatin,which is one of the most potent angiogenesis antagonists.MMPs and TIMPs play a complex role in regulating angiogenesis.An understanding of the biochemical and cellular pathways and mechanisms of angiogenesis will provide important information to allow the control of angiogenesis,e.g.the stimulation of angiogenesis for coronary collateral circulation formation;while the inhibition for treating arthritis and cancer.

  2. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.; Hentzer, Morten;

    2004-01-01

    Introduction: Antibiotics are used to treat bacterial infections by killing the bacteria or inhibiting their growth, but resistance to antibiotics can develop readily. The discovery that bacterial quorum-sensing regulates bacterial virulence as well as the formation of biofilms opens up new ways to...... control certain bacterial infections. Furanone compounds capable of inhibiting bacterial quorum-sensing systems have been isolated from the marine macro alga Delisea pulchra. Objectives: Two synthetic furanones were tested for their ability to attenuate bacterial virulence in the mouse models of chronic...... lung infection by targeting bacterial quorum-sensing without directly killing bacteria or inhibiting their growth. Methods: Study I. Mice with Escherichia coli MT102 [luxR-PluxI-gfp(ASV)] lung infection were injected intravenously with N-acyl homoserine lactones with or without furanones to test the...

  3. Inhibition of a Putative Dihydropyrimidinase from Pseudomonas aeruginosa PAO1 by Flavonoids and Substrates of Cyclic Amidohydrolases.

    Directory of Open Access Journals (Sweden)

    Cheng-Yang Huang

    Full Text Available Dihydropyrimidinase is a member of the cyclic amidohydrolase family, which also includes allantoinase, dihydroorotase, hydantoinase, and imidase. These metalloenzymes possess very similar active sites and may use a similar mechanism for catalysis. However, whether the substrates and inhibitors of other cyclic amidohydrolases can inhibit dihydropyrimidinase remains unclear. This study investigated the inhibition of dihydropyrimidinase by flavonoids and substrates of other cyclic amidohydrolases. Allantoin, dihydroorotate, 5-hydantoin acetic acid, acetohydroxamate, orotic acid, and 3-amino-1,2,4-triazole could slightly inhibit dihydropyrimidinase, and the IC50 values of these compounds were within the millimolar range. The inhibition of dihydropyrimidinase by flavonoids, such as myricetin, quercetin, kaempferol, galangin, dihydromyricetin, and myricitrin, was also investigated. Some of these compounds are known as inhibitors of allantoinase and dihydroorotase. Although the inhibitory effects of these flavonoids on dihydropyrimidinase were substrate-dependent, dihydromyricetin significantly inhibited dihydropyrimidinase with IC50 values of 48 and 40 μM for the substrates dihydrouracil and 5-propyl-hydantoin, respectively. The results from the Lineweaver-Burk plot indicated that dihydromyricetin was a competitive inhibitor. Results from fluorescence quenching analysis indicated that dihydromyricetin could form a stable complex with dihydropyrimidinase with the K(d value of 22.6 μM. A structural study using PatchDock showed that dihydromyricetin was docked in the active site pocket of dihydropyrimidinase, which was consistent with the findings from kinetic and fluorescence studies. This study was the first to demonstrate that naturally occurring product dihydromyricetin inhibited dihydropyrimidinase, even more than the substrate analogs (>3 orders of magnitude. These flavonols, particularly myricetin, may serve as drug leads and dirty drugs (for

  4. Synthetic furanones inhibit quorum-sensing and enhance bacterial clearance in Pseudomonas aeruginosa lung infection in mice

    DEFF Research Database (Denmark)

    Wu, H.; Song, Z.; Hentzer, Morten; Andersen, Jens Bo; Molin, Søren; Givskov, Michael Christian; Høiby, N.

    2004-01-01

    Introduction: Antibiotics are used to treat bacterial infections by killing the bacteria or inhibiting their growth, but resistance to antibiotics can develop readily. The discovery that bacterial quorum-sensing regulates bacterial virulence as well as the formation of biofilms opens up new ways to...... lung infection by targeting bacterial quorum-sensing without directly killing bacteria or inhibiting their growth. Methods: Study I. Mice with Escherichia coli MT102 [luxR-PluxI-gfp(ASV)] lung infection were injected intravenously with N-acyl homoserine lactones with or without furanones to test the...

  5. The effect of macrophage and angiogenesis inhibition on the drug release and absorption from an intramuscular sustained-release paliperidone palmitate suspension.

    Science.gov (United States)

    Darville, Nicolas; van Heerden, Marjolein; Mariën, Dirk; De Meulder, Marc; Rossenu, Stefaan; Vermeulen, An; Vynckier, An; De Jonghe, Sandra; Sterkens, Patrick; Annaert, Pieter; Van den Mooter, Guy

    2016-05-28

    The intramuscular (IM) administration of long-acting injectable (LAI) aqueous nano-/microsuspensions elicits a chronic granulomatous injection site reaction, which recently has been hypothesized to drive the (pro)drug dissolution and systemic absorption resulting in flip-flop pharmacokinetics. The goal of this mechanistic study was to investigate the effects of the local macrophage infiltration and angiogenesis on the systemic drug exposure following a single IM administration of a paliperidone palmitate (PP) LAI nano-/microsuspension in the rat. Liposomal clodronate (CLO) and sunitinib (SNT) were co-administered to inhibit the depot infiltration and nano-/microparticle phagocytosis by macrophages, and the neovascularization of the depot, respectively. Semi-quantitative histopathology of the IM administration sites at day 1, 3, 7, 14, 21 and 28 after dosing with PP-LAI illustrated that CLO significantly decreased the rate and extent of the granulomatous inflammatory reaction. The macrophage infiltration was slowed down, but only partially suppressed by CLO and this translated in paliperidone (PAL) plasma concentration-time profiles that resembled those observed upon injection of PP-LAI only, albeit with a lower PAL input rate and delayed maximum plasma concentration (CMAX). Conversely, SNT treatment completely suppressed the granulomatous reaction, besides effectively inhibiting the neovascularization of the PP-LAI depot. This resulted in an even slower systemic PAL input with delayed and lower maximum PAL CMAX. The reduced PP-LAI lymph node retention after CLO and SNT treatment, as well as pharmacokinetic drug-drug interactions were rejected as possible sources of the observed pharmacokinetic differences. The biphasic PAL plasma concentration-time profiles could best be described by an open first-order disposition model with parallel fast (first-order) and slow (sequential zero-first-order) absorption. The correlation of the pharmacokinetic data with the

  6. Inhibition of Tumor Growth, Angiogenesis, and Microcirculation by the Novel Flk-1 Inhibitor SU5416 as Assessed by Intravital Multi-fluorescence Videomicroscopy

    Directory of Open Access Journals (Sweden)

    Peter Vajkoczy

    1999-04-01

    Full Text Available Vascular endothelial growth factor (VEGF plays a fundamental role in mediating tumor angiogenesis and tumor growth. Here we investigate the direct effect of a novel small molecule inhibitor of the Flk-1-mediated signal transduction pathway of VEGF, SU5416, on tumor angiogenesis and microhemodynamics of an experimental glioblastoma by using intravital multifluorescence videomicroscopy. SU5416 treatment significantly suppressed tumor growth. In parallel, SU5416 demonstrated a potent antiangiogenic activity, resulting in a significant reduction of both the total and functional vascular density of the tumor microvasculature, which indicates an impaired vascularization as well as significant perfusion failure in treated tumors. This malperfusion was not compensated for by changes in vessel diameter or recruitment of nonperfused vessels. Analyses of the tumor microcirculation revealed significant microhemodynamic changes after angiogenesis blockage such as a higher red blood cell velocity and blood flow in remnant tumor vessels when compared with controls. Our results demonstrate that the novel antiangiogenic concept of targeting the tyrosine kinase of Flk-1/KDR by means of a small molecule inhibitor represents an efficient strategy to control growth and progression of angiogenesis-dependent tumors. This study provides insight into microvascular consequences of Flk-1/KDR targeting in vivo and may have important implications for the future treatment of angiogenesis-dependent neoplasms.

  7. Melittin inhibits tumor angiogenesis modulated by endothelial progenitor cells associated with the SDF-1α/CXCR4 signaling pathway in a UMR-106 osteosarcoma xenograft mouse model

    OpenAIRE

    Qin, Gang; Chen, Yongqiang; Li, Haidong; Xu, Suyang; Li, Yumei; Sun, Jian; RAO, WU; CHEN, CHAOWEI; DU, MINDONG; HE, KAIYI; Ye, Yong

    2016-01-01

    Endothelial progenitor cells (EPCs) are important in tumor angiogenesis. Stromal cell-derived factor-1α (SDF-1α) and its receptor C-X-C chemokine receptor type 4 (CXCR4) are key in stem cell homing. Melittin, a component of bee venom, exerts antitumor activity, however, the underlying mechanisms remain to be elucidated. The present study aimed to assess the effects of melittin on EPCs and angiogenesis in a mouse model of osteosarcoma. UMR-106 cells and EPCs were treated with various concentra...

  8. 强力霉素抑制角膜移植后的新生血管%Doxycycline inhibits corneal angiogenesis after keratoplasty

    Institute of Scientific and Technical Information of China (English)

    黎韦华; 徐建刚; 张雪菲; 凌士奇

    2009-01-01

    能抑制角膜移植后角膜新生血管的生长,延长植片的生存时间.%BACKROUND:Corneal hemangiogenesis occurs in 40%-60%patients after keratoplasty.Blood vessel is one of the high risk factors for corneal immunological rejection.To inhibit corneal hemangiogenesis would prolong the survival time of the grafts and promote the successful rate of the keratoplasty.OBJECTIVE:To explore the inhibitive effects of doxycycline on corneal angiogenesis after keratoplasty.DESIGN,TIME AND SETTING:A randomized controlled animal experiment was performed at the State Key Laboratory of Ophthalmology(No.2006DA105054),Zhongshan Ophthalmic Center,Sun Yat-sen University from March to August 2007.MATERIALS:A total of 48 healthy dean Sprague Dawley rats served as recipients(right eye)and 24 Wistar rats as donors(both eyes).CD31-PEfluorescent antibody was obtained from Sigma,USA.Sandwich enzyme-linked immunosorbent assay(ELISA)kit for vascular endothelial growth factor(VEGF)was brought from RapidBio,USA.METHODS:Corneal allogenic transplantation models were established in rats.Recipients were equally and randomly divided into 2 groups:saline control group and doxycycline group.Twenty minutes prior to surgery,mydriasis was performed using 1%atropine,with a diameter of 2.75 mm of implant and 2.5 mm of implant bed.In the saline control group,conjunctiva of the right eye received saline,three times a day,following surgery.In the doxycycline group,conjunctiva of the right eye received 1%doxycycline,three times a day,till 30 days following surgery.MAIN OUTCOME MEASURES:The following parameters were measured:corneal angiogenesis using immunofluorescence,expression of VEGF protein by using ELISA.RESULTS:Compared with the survival time of saline control group[(9.67±2.73)days],the mean survival time of doxycycline group[(20.67±3.01)days]was significantly prolonged(P<0.01).The mean percentages of neovascularized corneal area in the saline control group were(4.00±1.00)%,(14.33±4

  9. Cytotoxicity of VEGF121/rGel on vascular endothelial cells resulting in inhibition of angiogenesis is mediated via VEGFR-2

    Directory of Open Access Journals (Sweden)

    Hittelman Walter N

    2011-08-01

    Full Text Available Abstract Background The fusion protein VEGF121/rGel composed of the growth factor VEGF121 and the plant toxin gelonin targets the tumor neovasculature and exerts impressive anti-vascular effects. We have previously shown that VEGF121/rGel is cytotoxic to endothelial cells overexpressing VEGFR-2 but not to endothelial cells overexpressing VEGFR-1. In this study, we examined the basis for the specific toxicity of this construct and assessed its intracellular effects in vitro and in vivo. Methods We investigated the binding, cytotoxicity and internalization profile of VEGF121/rGel on endothelial cells expressing VEGFR-1 or VEGFR-2, identified its effects on angiogenesis models in vitro and ex vivo, and explored its intracellular effects on a number of molecular pathways using microarray analysis. Results Incubation of PAE/VEGFR-2 and PAE/VEGFR-1 cells with 125I-VEGF121/rGel demonstrated binding specificity that was competed with unlabeled VEGF121/rGel but not with unlabeled gelonin. Assessment of the effect of VEGF121/rGel on blocking tube formation in vitro revealed a 100-fold difference in IC50 levels between PAE/VEGFR-2 (1 nM and PAE/VEGFR-1 (100 nM cells. VEGF121/rGel entered PAE/VEGFR-2 cells within one hour of treatment but was not detected in PAE/VEGFR-1 cells up to 24 hours after treatment. In vascularization studies using chicken chorioallantoic membranes, 1 nM VEGF121/rGel completely inhibited bFGF-stimulated neovascular growth. The cytotoxic effects of VEGF121/rGel were not apoptotic since treated cells were TUNEL-negative with no evidence of PARP cleavage or alteration in the protein levels of select apoptotic markers. Microarray analysis of VEGF121/rGel-treated HUVECs revealed the upregulation of a unique "fingerprint" profile of 22 genes that control cell adhesion, apoptosis, transcription regulation, chemotaxis, and inflammatory response. Conclusions Taken together, these data confirm the selectivity of VEGF121/rGel for VEGFR-2

  10. Gc protein-derived macrophage-activating factor (GcMAF) stimulates cAMP formation in human mononuclear cells and inhibits angiogenesis in chick embryo chorionallantoic membrane assay

    OpenAIRE

    S. Pacini; G.Morucci; T.Punzi; Gulisano, M; Ruggiero, M

    2010-01-01

    Abstract: The effects of Gc protein-derived macrophage-activating factor (GcMAF) have been studied in cancer and other conditions where angiogenesis is deregulated. In this study, we demonstrate for the first time that the mitogenic response of human peripheral blood mononuclear cells (PBMCs) to GcMAF was associated with 3'-5'-cyclic adenosine monophosphate (cAMP) formation. The effect was dose dependent, and maximal stimulation was achieved using 0.1 ng/ml. Heparin inhibited the stimulatory ...

  11. Inhibition of K562 cell growth and tumor angiogenesis in nude mice by transfection of anti-VEGF hairpin ribozyme gene into the cells

    Institute of Scientific and Technical Information of China (English)

    许文林

    2006-01-01

    Objective To explore the effect of anti-VEGF hairpin ribozyme gene on the tumor cell growth and tumor angiogenesis in nude mice. Methods The recombinant eukaryotic expression plasmid pcDNA-RZ containing anti-VEGF hairpin ribozyme gene and the empty vector plasmid pcDNA were introduced separately into K562 cells

  12. Panax ginseng has anti-infective activity against opportunistic pathogen Pseudomonas aeruginosa by inhibiting quorum sensing, a bacterial communication process critical for establishing infection

    OpenAIRE

    Song, Z.; Kong, K.F; Wu, H; Maricic, N.; Ramalingam, B.; Priestap, H.; Quirke, J.M.E.; Høiby, N.; Mathee, K

    2010-01-01

    Virulent factors produced by pathogens play an important role in the infectious process, which is regulated by a cell-to-cell communication mechanism called quorum sensing (QS). Pseudomonas aeruginosa is an important opportunistic human pathogen, which causes infections in patients with compromised immune systems and cystic fibrosis. The QS systems of P. aeruginosa use N-acylated homoserine lactone (AHL) as signal molecules. Previously we have demonstrated that Panax ginseng treatment allowed...

  13. Growth Inhibition Effect of Immobilized Pectinase on Microcystis aeruginosa%固定化果胶酶抑制铜绿微囊藻生长研究

    Institute of Scientific and Technical Information of China (English)

    沈清清; 彭谦; 赖泳红; 纪开燕; 韩秀林

    2012-01-01

    为证实固定化果胶酶抑制蓝藻生长的作用,在实验室条件下,以铜绿微囊藻(Microcystis aeruginosa)为受试藻种,用共培养法观察了固定化果胶酶对藻细胞群体的作用、用电镜观察了共培养后藻细胞的损伤状况,测定了对其生理生化特征的影响.结果表明固定化果胶酶与藻共培养液第3 d明显黄化,且黄化程度与固定化果胶酶的用量和培养时间呈正相关系;电镜照片显示固定化果胶酶对藻细胞有损伤作用,轻微损伤的藻细胞出现质壁分离,表面粗糙、凸凹不平,形状不规则,严重损伤的藻细胞表面发生深度皱缩或细胞结构完全解体;随着固定化果胶酶与铜绿微囊藻共培养时间的延长,藻细胞生长量、叶绿素a含量显著降低,表明藻细胞受到胁迫和伤害,藻细胞正常的光合作用受到严重影响.丙二醛(MDA)值显示藻细胞抗氧化防御体系被破坏,细胞内发生严重膜脂过氧化.固定化果胶酶能有效抑制铜绿微囊藻细胞的生长,铜绿微囊藻生长抑制率可高达96%.%To confirm the growth inhibition effect of immobilized pectinase on algae,co-cultivation method was used to investigate the effect of immobilized pectinase on the growth of Microcystis aeruginosa.After co-cultivation,the damage status of the algae was observed through electron microscope,and the effect of immobilized pectase on the physiological and biochemical characteristics of the algae was also measured.The results showed that the algae and immobilized pectase co-cultivated solution etiolated distinctly on the third day and there was a significantly positive correlation between the extent of etiolation and the dosage as well as the treating time of the immobilized pectinase.Under electron microscope,plasmolysis was found in the slightly damaged cells,and the cell surface of these cells was rough,uneven and irregular;the severely damaged cells were collapsed or disintegrated completely

  14. Inhibition of Hydrogen Sulfide-induced Angiogenesis and Inflammation in Vascular Endothelial Cells: Potential Mechanisms of Gastric Cancer Prevention by Korean Red Ginseng.

    Science.gov (United States)

    Choi, Ki-Seok; Song, Heup; Kim, Eun-Hee; Choi, Jae Hyung; Hong, Hua; Han, Young-Min; Hahm, Ki Baik

    2012-04-01

    Previously, we reported that Helicobacter pylori-associated gastritis and gastric cancer are closely associated with increased levels of hydrogen sulfide (H2S) and that Korean red ginseng significantly reduced the severity of H. pylori-associated gastric diseases by attenuating H2S generation. Because the incubation of endothelial cells with H2S has been known to enhance their angiogenic activities, we hypothesized that the amelioration of H2S-induced gastric inflammation or angiogenesis in human umbilical vascular endothelial cells (HUVECs) might explain the preventive effect of Korean red ginseng on H. pylori-associated carcinogenesis. The expression of inflammatory mediators, angiogenic growth factors, and angiogenic activities in the absence or presence of Korean red ginseng extracts (KRGE) were evaluated in HUVECs stimulated with the H2S generator sodium hydrogen sulfide (NaHS). KRGE efficiently decreased the expression of cystathionine β-synthase and cystathionine γ-lyase, enzymes that are essential for H2S synthesis. Concomitantly, a significant decrease in the expression of inflammatory mediators, including cyclooxygenase-2 and inducible nitric oxide synthase, and several angiogenic factors, including interleukin (IL)-8, hypoxia inducible factor-1a, vascular endothelial growth factor, IL-6, and matrix metalloproteinases, was observed; all of these factors are normally induced after NaHS. An in vitro angiogenesis assay demonstrated that NaHS significantly increased tube formation in endothelial cells, whereas KRGE pretreatment significantly attenuated tube formation. NaHS activated p38 and Akt, increasing the expression of angiogenic factors and the proliferation of HUVECs, whereas KRGE effectively abrogated this H2S-activated angiogenesis and the increase in inflammatory mediators in vascular endothelial cells. In conclusion, KRGE was able to mitigate H2S-induced angiogenesis, implying that antagonistic action against H2S-induced angiogenesis may be the

  15. Gc protein-derived macrophage-activating factor (GcMAF) stimulates cAMP formation in human mononuclear cells and inhibits angiogenesis in chick embryo chorionallantoic membrane assay.

    Science.gov (United States)

    Pacini, Stefania; Morucci, Gabriele; Punzi, Tiziana; Gulisano, Massimo; Ruggiero, Marco

    2011-04-01

    The effects of Gc protein-derived macrophage-activating factor (GcMAF) have been studied in cancer and other conditions where angiogenesis is deregulated. In this study, we demonstrate for the first time that the mitogenic response of human peripheral blood mononuclear cells (PBMCs) to GcMAF was associated with 3'-5'-cyclic adenosine monophosphate (cAMP) formation. The effect was dose dependent, and maximal stimulation was achieved using 0.1 ng/ml. Heparin inhibited the stimulatory effect of GcMAF on PBMCs. In addition, we demonstrate that GcMAF (1 ng/ml) inhibited prostaglandin E(1)- and human breast cancer cell-stimulated angiogenesis in chick embryo chorionallantoic membrane (CAM) assay. Finally, we tested different GcMAF preparations on CAM, and the assay proved to be a reliable, reproducible and inexpensive method to determine the relative potencies of different preparations and their stability; we observed that storage at room temperature for 15 days decreased GcMAF potency by about 50%. These data could prove useful for upcoming clinical trials on GcMAF. PMID:21170647

  16. A novel microtubule-modulating agent EM011 inhibits angiogenesis by repressing the HIF-1α axis and disrupting cell polarity and migration

    OpenAIRE

    Karna, Prasanthi; Rida, Padmashree C. G.; Turaga, Ravi Chakra; Gao, Jinmin; Gupta, Meenakshi; Fritz, Andreas; Werner, Erica; Yates, Clayton; Zhou, Jun; Aneja, Ritu

    2012-01-01

    Endothelial tubular morphogenesis relies on an exquisite interplay of microtubule dynamics and actin remodeling to propel directed cell migration. Recently, the dynamicity and integrity of microtubules have been implicated in the trafficking and efficient translation of the mRNA for HIF-1α (hypoxia-inducible factor), the master regulator of tumor angiogenesis. Thus, microtubule-disrupting agents that perturb the HIF-1α axis and neovascularization cascade are attractive anticancer drug candida...

  17. Enzyme-digested Fucoidan Extracts Derived from Seaweed Mozuku of Cladosiphon novae-caledoniaekylin Inhibit Invasion and Angiogenesis of Tumor Cells

    OpenAIRE

    Ye, Jun; Li, Yuping; Teruya, Kiichiro; Katakura, Yoshinori; Ichikawa, Akira; Eto, Hiroshi; Hosoi, Mutsutaka; Hosoi, Masako; Nishimoto, Shinji; Shirahata, Sanetaka

    2005-01-01

    Fucoidan is a uniquely-structured sulfated polysaccharide found in the cell walls of several types of brown seaweed that has recently, especially as enzyme-digested fucoidan extract, attracted a lot attention due to its anti-tumor potential. In this study, we evaluated the effects of enzyme-digested fucoidan extracts prepared from seaweed Mozuku of Cladosiphon novae-caledoniae kylin on in vitro invasion and angiogenesis abilities of human tumor cells. First, we evaluated the effect of the fuc...

  18. In ovo leptin administration inhibits chorioallantoic membrane angiogenesis in female chicken embryos through the STAT3-mediated vascular endothelial growth factor (VEGF) pathway.

    Science.gov (United States)

    Su, L; Rao, K; Guo, F; Li, X; Ahmed, A A; Ni, Y; Grossmann, R; Zhao, R

    2012-07-01

    Previous studies indicate that leptin regulates placental angiogenesis and fetal growth in mammals and that in ovo leptin administration affects embryonic development and hatch weight in the chicken. To test the hypothesis that leptin affects embryonic growth through modifying chorioallantoic membrane (CAM) angiogenesis, we injected 0.5 μg of recombinant murine leptin into the albumen of fertilized eggs before incubation. On embryonic day 12 (E12), the number and the total area of blood vessels on CAM were measured, and expression of genes involved in angiogenesis was quantitated to show the possible mechanisms. Leptin in ovo administration decreased (P < 0.05) both the total area of blood vessels and the number of small-sized capillaries on CAM of E12 female chicken embryos, which coincided with significantly decreased (P < 0.05) embryo weight on E12 and BW at hatching. Vascular endothelial growth factor (VEGF) and inducible and endothelial nitric oxide synthases (iNOS and eNOS) were all downregulated (P < 0.05) in CAM both at the mRNA and protein/activity levels with reduced (P < 0.05) nitric oxide (NO) concentration in chorioallantoic fluid of female embryos. Furthermore, signal transducer and activator of transcription-3 (STAT3) was found to be diminished (P < 0.05) both at the mRNA and protein levels and associated with decreased (P < 0.05) binding of STAT3 to VEGF promotor in the CAM of leptin-treated E12 female embryos. These data suggest that in ovo leptin administration affects CAM angiogenesis and embryo growth in female chicken embryos, probably through STAT3-mediated VEGF/NO pathways. PMID:22417645

  19. Panax ginseng has anti-infective activity against opportunistic pathogen Pseudomonas aeruginosa by inhibiting quorum sensing, a bacterial communication process critical for establishing infection

    DEFF Research Database (Denmark)

    Song, Z; Kong, K F; Wu, H;

    2010-01-01

    ginseng are mutually exclusive as it is a complex mixture, as shown with the HPLC analysis of the hot water extract. Though ginseng is a promising natural synergetic remedy, it is important to isolate and evaluate the ginseng compounds associated with the anti-QS activity....... immune systems and cystic fibrosis. The QS systems of P. aeruginosa use N-acylated homoserine lactone (AHL) as signal molecules. Previously we have demonstrated that Panax ginseng treatment allowed the animals with P. aeruginosa pneumonia to effectively clear the bacterial infection. We postulated that...... the ability to impact the outcome of infections is partly due to ginseng having direct effect on the production of P. aeruginosa virulence factors. The study explores the effect of ginseng on alginate, protease and AHL production. The effect of ginseng extracts on growth and expression of QS...

  20. The Hemostatic System and Angiogenesis in Malignancy

    Directory of Open Access Journals (Sweden)

    Marek Z. Wojtukiewicz

    2001-01-01

    Full Text Available Coagulopathy and angiogenesis are among the most consistent host responses associated with cancer. These two respective processes, hitherto viewed as distinct, may in fact be functionally inseparable as blood coagulation and fibrinolysis, in their own right, influence tumor angiogenesis and thereby contribute to malignant growth. In addition, tumor angiogenesis appears to be controlled through both standard and non-standard functions of such elements of the hemostatic system as tissue factor, thrombin, fibrin, plasminogen activators, plasminogen, and platelets. “Cryptic” domains can be released from hemostatic proteins through proteolytic cleavage, and act systemically as angiogenesis inhibitors (e.g., angiostatin, antiangiogenic antithrombin III aaATIII. Various components of the hemostatic system either promote or inhibit angiogenesis and likely act by changing the net angiogenic balance. However, their complex influences are far from being fully understood. Targeted pharmacological and/ or genetic inhibition of pro-angiogenic activities of the hemostatic system and exploitation of endogenous angiogenesis inhibitors of the angiostatin and aaATIII variety are under study as prospective anti-cancer treatments.

  1. Angiogenesis and vascular targeting: Relevance for hyperthermia

    DEFF Research Database (Denmark)

    Horsman, Michael R

    2008-01-01

    The creation of a functional blood supply from the normal tissue vasculature via the process of angiogenesis is critical for the continued growth and development of solid tumours. This importance has led to the concept of targeting the tumour vasculature as a therapeutic strategy, and two major...... types of vascular targeting agents (VTAs) have developed; those that inhibit the angiogenic process-angiogenesis inhibiting agents (AIAs)-and those that specifically damage the already established neovasculature-vascular disrupting agents (VDAs). The tumour vasculature also plays a critical role in...

  2. Mediators of ocular angiogenesis

    Indian Academy of Sciences (India)

    Yureeda Qazi; Surekha Maddula; Balamurali K. Ambati

    2009-12-01

    Angiogenesis is the formation of new blood vessels from pre-existing vasculature. Pathologic angiogenesis in the eye can lead to severe visual impairment. In our review, we discuss the roles of both pro-angiogenic and anti-angiogenic molecular players in corneal angiogenesis, proliferative diabetic retinopathy, exudative macular degeneration and retinopathy of prematurity, highlighting novel targets that have emerged over the past decade.

  3. Methotrexate Locally Released from Poly(e-Caprolactone) Implants: Inhibition of the Inflammatory Angiogenesis Response in a Murine Sponge Model and the Absence of Systemic Toxicity.

    Science.gov (United States)

    De Oliveira, Leandro Gonzaga; Figueiredo, Letîcia Aparecida; Fernandes-Cunha, Gabriella Maria; Marina Barcelos, De Miranda; Machado, Laser Antonio; Dasilva, Gisele Rodrigues; Sandra Aparecida Lima, De Moura

    2015-11-01

    In this study, the methotrexate (MTX) was incorporated into the poly(e-caprolactone) (PCL) to design implants (MTX PCL implants) aiming the local treatment of inflammatory angiogenesis diseases without causing systemic side effects. Sponges were inserted into the subcutaneous tissue of mice as a framework for fibrovascular tissue growth. After 4days, MTX PCL implants were also introduced, and anti-inflammatory, antiangiogenic, and antifibrogenic activities of the MTX were determined. MTX reduced the vascularization (hemoglobin content), the neutrophil, and monocyte/macrophage infiltration (MPO and NAG activities, respectively), and the collagen deposition in sponges. MTX reduced tumor necrosis factor-a and IL-6 levels, demonstrating its local antiangiogenic and anti-inflammatory effects. Furthermore, hepatotoxicity, nephrotoxicity, and myelotoxicity, which could be induced by the drug, were evaluated. However, MTX did not promote toxicity to these organs, as the levels of AST and ALT (hepatic markers) and creatinine and urea (renal markers) were not increased, and the complete blood count was not decreased. In conclusion, MTX PCL implants demonstrated to be effective in regulating the components of the inflammatory angiogenesis locally established, and presented an acceptable safety profile. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3731-3742, 2015. PMID:27524686

  4. The role of VEGF pathways in human physiologic and pathologic angiogenesis.

    Science.gov (United States)

    In pre-clinical models VEGF is a potent stimulant of both physiologic and pathologic angiogenesis. Conversely, anti-VEGF regimens have successfully inhibited angiogenesis both in vitro and in vivo. We hypothesized that VEGF would stimulate both physiologic and pathologic angiogenesis in a human-ba...

  5. Modulation of angiogenesis by tissue inhibitor of metalloproteinase-4

    International Nuclear Information System (INIS)

    Despite the importance of MMP activity in the regulation of angiogenesis, relatively little is known about the role of TIMP-4, the most recently discovered endogenous MMP inhibitor, in modulating neovascularization. It has largely been assumed that all TIMPs are capable of inhibiting angiogenesis in vivo. However, it is now widely appreciated that TIMPs-1, -2, and -3 differ significantly in their ability to modulate angiogenic processes in vitro and angiogenesis in vivo. In order to study the effect of TIMP-4 in controlling angiogenesis, we have cloned and expressed TIMP-4 in a Pichia pastoris expression system, purified it to homogeneity, and tested its ability to regulate angiogenesis in vivo and in vitro. Our studies demonstrate that TIMP-4 is an inhibitor of capillary endothelial cell migration, but not of proliferation or of angiogenesis in vivo

  6. Soliton driven angiogenesis

    Science.gov (United States)

    Bonilla, L. L.; Carretero, M.; Terragni, F.; Birnir, B.

    2016-08-01

    Angiogenesis is a multiscale process by which blood vessels grow from existing ones and carry oxygen to distant organs. Angiogenesis is essential for normal organ growth and wounded tissue repair but it may also be induced by tumours to amplify their own growth. Mathematical and computational models contribute to understanding angiogenesis and developing anti-angiogenic drugs, but most work only involves numerical simulations and analysis has lagged. A recent stochastic model of tumour-induced angiogenesis including blood vessel branching, elongation, and anastomosis captures some of its intrinsic multiscale structures, yet allows one to extract a deterministic integropartial differential description of the vessel tip density. Here we find that the latter advances chemotactically towards the tumour driven by a soliton (similar to the famous Korteweg-de Vries soliton) whose shape and velocity change slowly. Analysing these collective coordinates paves the way for controlling angiogenesis through the soliton, the engine that drives this process.

  7. Angiogenesis and liver fibrosis

    Institute of Scientific and Technical Information of China (English)

    Gülsüm ?zlem Elpek

    2015-01-01

    Recent data indicate that hepatic angiogenesis,regardless of the etiology, takes place in chronic liverdiseases (CLDs) that are characterized by inflammationand progressive fibrosis. Because antiangiogenictherapy has been found to be efficient inthe prevention of fibrosis in experimental models ofCLDs, it is suggested that blocking angiogenesis couldbe a promising therapeutic option in patients withadvanced fibrosis. Consequently, efforts are beingdirected to revealing the mechanisms involved inangiogenesis during the progression of liver fibrosis.Literature evidences indicate that hepatic angiogenesisand fibrosis are closely related in both clinical andexperimental conditions. Hypoxia is a major inducer ofangiogenesis together with inflammation and hepaticstellate cells. These profibrogenic cells stand at theintersection between inflammation, angiogenesis andfibrosis and play also a pivotal role in angiogenesis.This review mainly focuses to give a clear view on therelevant features that communicate angiogenesis withprogression of fibrosis in CLDs towards the-end point ofcirrhosis that may be translated into future therapies.The pathogenesis of hepatic angiogenesis associatedwith portal hypertension, viral hepatitis, non-alcoholicfatty liver disease and alcoholic liver disease are alsodiscussed to emphasize the various mechanisms involvedin angiogenesis during liver fibrogenesis.

  8. Angiogenesis and Melanoma

    International Nuclear Information System (INIS)

    Angiogenesis occurs in pathological conditions, such as tumors, where a specific critical point in tumor progression is the transition from the avascular to the vascular phase. Tumor angiogenesis depends mainly on the release by neoplastic cells of growth factors specific for endothelial cells, which are able to stimulate the growth of the host’s blood vessels. This article summarizes the literature concerning the relationship between angiogenesis and human melanoma progression. The recent applications of antiangiogenic agents which interfere with melanoma progression are also described

  9. A New Group of Phage Anti-CRISPR Genes Inhibits the Type I-E CRISPR-Cas System of Pseudomonas aeruginosa

    OpenAIRE

    Pawluk, April; Bondy-Denomy, Joseph; Cheung, Vivian H. W.; Maxwell, Karen L.; Davidson, Alan R.

    2014-01-01

    ABSTRACT CRISPR-Cas systems are one of the most widespread phage resistance mechanisms in prokaryotes. Our lab recently identified the first examples of phage-borne anti-CRISPR genes that encode protein inhibitors of the type I-F CRISPR-Cas system of Pseudomonas aeruginosa. A key question arising from this work was whether there are other types of anti-CRISPR genes. In the current work, we address this question by demonstrating that some of the same phages carrying type I-F anti-CRISPR genes ...

  10. Endogenous Matrix-Derived Inhibitors of Angiogenesis

    Directory of Open Access Journals (Sweden)

    Hans Petter Eikesdal

    2010-09-01

    Full Text Available Endogenous inhibitors of angiogenesis are proteins or fragments of proteins that are formed in the body, which can inhibit the angiogenic process. These molecules can be found both in the circulation and sequestered in the extracellular matrix (ECM surrounding cells. Many matrix-derived inhibitors of angiogenesis, such as endostatin, tumstatin, canstatin and arresten, are bioactive fragments of larger ECM molecules. These substances become released upon proteolysis of the ECM and the vascular basement membrane (VBM by enzymes of the tumor microenvironment. Although the role of matrix-derived angiogenesis inhibitors is well studied in animal models of cancer, their role in human cancers is less established. In this review we discuss the current knowledge about these molecules and their potential use as cancer therapeutics and biomarkers.

  11. Decoy oligodeoxyribonucleotides and peptide nucleic acids-DNA chimeras targeting nuclear factor kappa-B: inhibition of IL-8 gene expression in cystic fibrosis cells infected with Pseudomonas aeruginosa.

    Science.gov (United States)

    Gambari, Roberto; Borgatti, Monica; Bezzerri, Valentino; Nicolis, Elena; Lampronti, Ilaria; Dechecchi, Maria Cristina; Mancini, Irene; Tamanini, Anna; Cabrini, Giulio

    2010-12-15

    Cystic fibrosis (CF) is characterized by a deep inflammatory process, with production and release of cytokines and chemokines, among which interleukin 8 (IL-8) represents one of the most important. Accordingly, there is a growing interest in developing therapies against IL-8, with the aim of reducing the excessive inflammatory response in the airways of CF patients. Since transcription factor NF-kappaB plays a critical role in IL-8 expression, the transcription factor decoy (TFD) strategy might be of interest. TFD is based on biomolecules mimicking the target sites of transcription factors (TFs) and able to interfere with TF activity when delivered to target cells. Here, we review the inhibitory effects of decoy oligodeoxyribonucleotides (ODNs) on expression of IL-8 gene and secretion of IL-8 by cystic fibrosis cells infected by Pseudomonas aeruginosa. In addition, the effects of decoy molecules based on peptide nucleic acids (PNAs) are discussed. In this respect PNA-DNA-PNA (PDP) chimeras are interesting: (a) unlike PNAs, they can be complexed with liposomes and microspheres; (b) unlike oligodeoxyribonucleotides (ODNs), they are resistant to DNAses, serum and cytoplasmic extracts; (c) unlike PNA/PNA and PNA/DNA hybrids, they are potent decoy molecules. Interestingly, PDP/PDP NF-kappaB decoy chimeras inhibit accumulation of pro-inflammatory mRNAs (including IL-8 mRNA) in P. aeruginosa infected IB3-1, cells reproducing the effects of decoy oligonucleotides. The effects of PDP/PDP chimeras, unlike ODN-based decoys, are observed even in absence of protection with lipofectamine. Since IL-8 is pivotal in pro-inflammatory processes affecting cystic fibrosis, inhibition of its functions might have a clinical relevance. PMID:20615393

  12. Angiogenesis in vestibular schwannomas

    DEFF Research Database (Denmark)

    Møller, Martin Nue; Werther, Kim; Nalla, Amarnadh;

    2010-01-01

    Vascular endothelial growth factor (VEGF) and matrix metalloproteinases (MMPs) are potent mediators of tumor angiogenesis. It has been demonstrated that vestibular schwannoma VEGF expression correlates with tumor growth pattern, whereas knowledge on the expression of MMPs is lacking. This study...

  13. Ionizing radiation and inhibition of angiogenesis in a spontaneous mammary carcinoma and in a syngenic heterotopic allograft tumor model: a comparative study

    International Nuclear Information System (INIS)

    The combined treatment modality of ionizing radiation (IR) with inhibitors of angiogenesis (IoA) is a promising treatment modality based on preclinical in vivo studies using heterotopic xeno- and allograft tumor models. Nevertheless reservations still exist to translate this combined treatment modality into clinical trials, and more advanced, spontaneous orthotopic tumor models are required for validation to study the efficacy and safety of this treatment modality. We therefore investigated the combined treatment modality of IR in combination with the clinically relevant VEGF receptor (VEGFR) tyrosine kinase inhibitor PTK787 in the MMTV/c-neu induced mammary carcinoma model and a syngenic allograft tumor model using athymic nude mice. Mice were treated with fractionated IR, the VEGFR-inhibitor PTK787/ZK222584 (PTK787), or in combination, and efficacy and mechanistic-related endpoints were probed in both tumor models. Overall the treatment response to the IoA was comparable in both tumor models, demonstrating minimal tumor growth delay in response to PTK787 and PTK787-induced tumor hypoxia. Interestingly spontaneously growing tumors were more radiosensitive than the allograft tumors. More important combined treatment of irradiation with PTK787 resulted in a supraadditive tumor response in both tumor models with a comparable enhancement factor, namely 1.5 and 1.4 in the allograft and in the spontaneous tumor model, respectively. These results demonstrate that IR in combination with VEGF-receptor tyrosine kinase inhibitors is a valid, promising treatment modality, and that the treatment responses in spontaneous mammary carcinomas and syngenic allografts tumor models are comparable

  14. Controlling Biofilm Formation by Inhibiting the Quorum-Sensing Activity of Pseudomonas aeruginosa using the Ethanolic Extracts of Piper nigrum (Piperaceae Fruit, Punica granatum (Lythraceae Pericarp, and Pisum sativum (Fabaceae Seed

    Directory of Open Access Journals (Sweden)

    M.V. Dazal

    2015-07-01

    Full Text Available Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Pseudomonas aeruginosa is a well-known pathogen that exhibit biofilm formation through quorum-sensing, which is a bacterial cell-to-cell communication that regulates the production of many virulence factors. The inhibition of biofilm formation is a viable option for bacterial eradication. The antibacterial effect of Piper nigrum is related to the presence of phenolic and flavonoid components. Punica granatum has been reported to possess a wide range of biological actions, with tannins and alkaloids stated to be the reason of its antibacterial property. Pisum sativum, on the other hand, contains various constituents, but the tannins and phenolic compounds stated as responsible for its antibacterial property. The minimum inhibitory concentration using the susceptibility testing of P. nigrum, P. granatum, P. sativum ethanolic extracts were 6.67×10-4 g/mL, 2.1978×10-5 g/mL, and 6.25×10-4 g/mL, respectively. On the swarming assay, P. granatum and P. sativum inhibits swarming motility at concentrations of 2.1978×10-2 up to 2.1978×10-4 g/mL, and 6.25×10-2 to 6.25×10-3 g/mL, respectively. The P. nigrum extract did not inhibit the motility.

  15. Trisubstituted pyrazolopyrimidines as novel angiogenesis inhibitors.

    Directory of Open Access Journals (Sweden)

    Sabine B Weitensteiner

    Full Text Available Current inhibitors of angiogenesis comprise either therapeutic antibodies (e.g. bevacicumab binding to VEGF-A or small molecular inhibitors of receptor tyrosin kinases like e.g. sunitinib, which inhibits PDGFR and VEGFR. We have recently identified cyclin-dependent kinase 5 (Cdk5 as novel alternative and pharmacologically accessible target in the context of angiogenesis. In the present work we demonstrate that trisubstituted pyrazolo[4,3-d]pyrimidines constitute a novel class of compounds which potently inhibit angiogenesis. All seven tested compounds inhibited endothelial cell proliferation with IC(50 values between 1 and 18 µM. Interestingly, this seems not to be due to cytotoxicity, since none of them showed acute cytotoxic effects on endothelial cells at a concentration of 10 µM,. The three most potent compounds (LGR1404, LGR1406 and LGR1407 also inhibited cell migration (by 27, 51 and 31%, resp., chemotaxis (by 50, 70 and 60% in accumulative distance, resp., and tube formation (by 25, 60 and 30% of total tube length, resp. at the non-toxic concentration of 10 µM. Furthermore, angiogenesis was reduced in vivo in the CAM assay by these three compounds. A kinase selectivity profiling revealed that the compounds prevalently inhibit Cdk2, Cdk5 and Cdk9. The phenotype of the migrating cells (reduced formation of lamellipodia, loss of Rac-1 translocation to the membrane resembles the previously described effects of silencing of Cdk5 in endothelial cells. We conclude that especially LGR1406 and LGR1407 are highly attractive anti-angiogenic compounds, whose effects seem to largely depend on their Cdk5 inhibiting properties.

  16. Sorafenib blocks tumour growth, angiogenesis and metastatic potential in preclinical models of osteosarcoma through a mechanism potentially involving the inhibition of ERK1/2, MCL-1 and ezrin pathways

    Directory of Open Access Journals (Sweden)

    Ferrari Stefano

    2009-12-01

    Full Text Available Abstract Background Osteosarcoma (OS is the most common primary bone tumour in children and young adults. Despite improved prognosis, metastatic or relapsed OS remains largely incurable and no significant improvement has been observed in the last 20 years. Therefore, the search for alternative agents in OS is mandatory. Results We investigated phospho-ERK 1/2, MCL-1, and phospho-Ezrin/Radixin/Moesin (P-ERM as potential therapeutic targets in OS. Activation of these pathways was shown by immunohistochemistry in about 70% of cases and in all OS cell lines analyzed. Mutational analysis revealed no activating mutations in KRAS whereas BRAF gene was found to be mutated in 4/30 OS samples from patients. Based on these results we tested the multi-kinase inhibitor sorafenib (BAY 43-9006 in preclinical models of OS. Sorafenib inhibited OS cell line proliferation, induced apoptosis and downregulated P-ERK1/2, MCL-1, and P-ERM in a dose-dependent manner. The dephosphorylation of ERM was not due to ERK inhibition. The downregulation of MCL-1 led to an increase in apoptosis in OS cell lines. In chick embryo chorioallantoic membranes, OS supernatants induced angiogenesis, which was blocked by sorafenib and it was also shown that sorafenib reduced VEGF and MMP2 production. In addition, sorafenib treatment dramatically reduced tumour volume of OS xenografts and lung metastasis in SCID mice. Conclusion In conclusion, ERK1/2, MCL-1 and ERM pathways are shown to be active in OS. Sorafenib is able to inhibit their signal transduction, both in vitro and in vivo, displaying anti-tumoural activity, anti-angiogenic effects, and reducing metastatic colony formation in lungs. These data support the testing of sorafenib as a potential therapeutic option in metastatic or relapsed OS patients unresponsive to standard treatments.

  17. Targeting angiogenesis: a review of angiogenesis inhibitors in the treatment of lung cancer.

    Science.gov (United States)

    Sridhar, Srikala S; Shepherd, Frances A

    2003-12-01

    It has now been almost 30 years since Dr J. Folkman first proposed that inhibition of angiogenesis could play a key role in treating cancer; however, it is only recently that anti-angiogenesis agents have entered the clinical setting. The search for novel therapies is particularly important in lung cancer, where the majority of patients succumb to their disease despite aggressive treatments. Several classes of agents now exist that target the different steps involved in angiogenesis. These include drugs inhibiting matrix breakdown, the matrix metalloproteinase inhibitors (MMPIs), such as marimastat, prinomastat, BMS275291, BAY12-9566, and neovastat drugs that block endothelial cell signaling via vascular endothelial growth factor (VEGF) and its receptor (VEGFR) including rhuMAb VEGF, SU5416, SU6668, ZD6474, CP-547,632 and ZD4190. Drugs that are similar to endogenous inhibitors of angiogenesis including endostatin, angiostatin and interferons. There has also been renewed interest in thalidomide. Drugs such as squalamine, celecoxib, ZD6126, TNP-470 and those targeting the integrins are also being evaluated in lung cancer. Despite early enthusiasm for many of these agents, Phase III trials have not yet demonstrated significant increases in overall survival and toxicity remains an issue. It is hoped that as our understanding of the complex process of angiogenesis increases, so will our ability to design more effective targeted therapies. PMID:14611919

  18. 重组表达人载脂蛋白(a)羧基末端kringle结构域抑制新生血管%Recombinant human apolipoprotein (a)carboxyl terminal kringles inhibites angiogenesis

    Institute of Scientific and Technical Information of China (English)

    申乐; 陈保生; 薛红

    2013-01-01

    Objective To characterize some purified recombinant Apo (a) kringles expressed by Pichia pastoris and to illustrate their antiangiogenic and antitumorogenic capacities.Methods Two recombinant proteins RHAKA (kringle Ⅴ) and RHAKB (kringle Ⅳ type 10 and kringle Ⅴ) were expressed by Pichia pastoris.Both RHAKA and RHAKB,recombined into pPICZαA,were secreted by Pichia pastoris X-33.Recombinant proteins were concentrated and dialyzed before His · Tag affinity chromatography.Six amido terminal amino acids of RHAKB were analyzed through sequencing the purified protein from reverse-phase high performance liquid chromatography.We've also illustrated several important characters of recombinant proteins,such as glycosylation and disulfide bonds formation.Finally,recombinant proteins' influence on in vitro cellular proliferation and in vivo angiogenesis of chick embryo chorioallantoic membrane (CAM) were tested.Results Pichia pastoris as an expression host may not only express recombinant proteins at a high level but modify them well.Both RHAKA and RHAKB could inhibit angiogenesis in vitro or in vivo,but no such inhibitory effect was found in cultured carcinoma cells.Conclusions Recombinant Apo(a) carboxyl terminal kringles expressed by Pichia pastoris may inhibit angiogenesis significantly.%目的 利用毕赤酵母重组表达人载脂蛋白(a)[Apo(a)]羧基末端kringle结构域,明确其抑制新生血管和肿瘤细胞增殖的能力.方法 分别构建重组表达Apo(a)羧基末端kringle Ⅴ结构域(RHAKA)与kringleⅣ10型-krin-gle Ⅴ结构域(RHAKB)的pPICZαA质粒;转染毕赤酵母X-33分泌表达RHAKA与RHAKB,RHAKs利用His· Tag亲和层析纯化,以及反相高效液相色谱与氨基酸残基测序鉴定;明确RHAKs的糖基化及二硫键形成情况后,利用细胞增殖实验与鸡胚绒毛尿囊膜(C AM)实验检测RHAKs对新生血管和肿瘤细胞增殖的影响.结果 毕赤酵母可以大量表达RHAKs,并对RHAKs进行翻译后修饰

  19. Astaxanthin Inhibits JAK/STAT-3 Signaling to Abrogate Cell Proliferation, Invasion and Angiogenesis in a Hamster Model of Oral Cancer

    OpenAIRE

    Kowshik, J.; Baba, Abdul Basit; Giri, Hemant; Deepak Reddy, G.; Dixit, Madhulika; Nagini, Siddavaram

    2014-01-01

    Identifying agents that inhibit STAT-3, a cytosolic transcription factor involved in the activation of various genes implicated in tumour progression is a promising strategy for cancer chemoprevention. In the present study, we investigated the effect of dietary astaxanthin on JAK-2/STAT-3 signaling in the 7,12-dimethylbenz[a]anthracene (DMBA)-induced hamster buccal pouch (HBP) carcinogenesis model by examining the mRNA and protein expression of JAK/STAT-3 and its target genes. Quantitative RT...

  20. Metronomic Ceramide Analogs Inhibit Angiogenesis in Pancreatic Cancer through Up-regulation of Caveolin-1 and Thrombospondin-1 and Down-regulation of Cyclin D1

    Directory of Open Access Journals (Sweden)

    Guido Bocci

    2012-09-01

    Full Text Available AIMS: To evaluate the antitumor and antiangiogenic activity of metronomic ceramide analogs and their relevant molecular mechanisms. METHODS: Human endothelial cells [human dermal microvascular endothelial cells and human umbilical vascular endothelial cell (HUVEC] and pancreatic cancer cells (Capan-1 and MIA PaCa-2 were treated with the ceramide analogs (C2, AL6, C6, and C8, at low concentrations for 144 hours to evaluate any antiproliferative and proapoptotic effects and inhibition of migration and to measure the expression of caveolin-1 (CAV-1 and thrombospondin-1 (TSP-1 mRNAs by real-time reverse transcription-polymerase chain reaction. Assessment of extracellular signal-regulated kinases 1 and 2 (ERK1/2 and Akt phosphorylation and of CAV-1 and cyclin D1 protein expression was performed by ELISA. Maximum tolerated dose (MTD gemcitabine was compared against metronomic doses of the ceramide analogs by evaluating the inhibition of MIA PaCa-2 subcutaneous tumor growth in nude mice. RESULTS: Metronomic ceramide analogs preferentially inhibited cell proliferation and enhanced apoptosis in endothelial cells. Low concentrations of AL6 and C2 caused a significant inhibition of HUVEC migration. ERK1/2 and Akt phosphorylation were significantly decreased after metronomic ceramide analog treatment. Such treatment caused the overexpression of CAV-1 and TSP-1 mRNAs and proteins in endothelial cells, whereas cyclin D1 protein levels were reduced. The antiangiogenic and antitumor impact in vivo of metronomic C2 and AL6 regimens was similar to that caused by MTD gemcitabine. CONCLUSIONS: Metronomic C2 and AL6 analogs have antitumor and antiangiogenic activity, determining the up-regulation of CAV-1 and TSP-1 and the suppression of cyclin D1.

  1. Angiogenesis is repressed by ethanol exposure during chick embryonic development.

    Science.gov (United States)

    Wang, Guang; Zhong, Shan; Zhang, Shi-Yao; Ma, Zheng-Lai; Chen, Jian-Long; Lu, Wen-Hui; Cheng, Xin; Chuai, Manli; Lee, Kenneth Ka Ho; Lu, Da-Xiang; Yang, Xuesong

    2016-05-01

    It is now known that excess alcohol consumption during pregnancy can cause fetal alcohol syndrome to develop. However, it is not known whether excess ethanol exposure could directly affect angiogenesis in the embryo or angiogenesis being indirectly affected because of ethanol-induced fetal alcohol syndrome. Using the chick yolk sac membrane (YSM) model, we demonstrated that ethanol exposure dramatically inhibited angiogenesis in the YSM of 9-day-old chick embryos, in a dose-dependent manner. Likewise, the anti-angiogenesis effect of ethanol could be seen in the developing vessel plexus (at the same extra-embryonic regions) during earlier stages of embryo development. The anti-angiogenic effect of ethanol was found associated with excess reactive oxygen species (ROS) production; as glutathione peroxidase activity increased while superoxide dismutase 1 and 2 activities decreased in the YSMs. We further validated this observation by exposing chick embryos to 2,2'-azobis-amidinopropane dihydrochloride (a ROS inducer) and obtained a similar anti-angiogenesis effect as ethanol treatment. Semiquantitative reverse transcription-polymerase chain reaction analysis of the experimental YSMs revealed that expression of angiogenesis-related genes, vascular endothelial growth factor and its receptor, fibroblast growth factor 2 and hypoxia-inducible factor, were all repressed following ethanol and 2,2'-azobis-amidinopropane dihydrochloride treatment. In summary, our results suggest that excess ethanol exposure inhibits embryonic angiogenesis through promoting superfluous ROS production during embryo development. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26177723

  2. Vascular grading of angiogenesis

    DEFF Research Database (Denmark)

    Hansen, S; Grabau, D A; Sørensen, Flemming Brandt; Bak, M; Vach, W; Rose, C

    2000-01-01

    The study aimed to evaluate the prognostic value of angiogenesis by vascular grading of primary breast tumours, and to evaluate the prognostic impact of adding the vascular grade to the Nottingham Prognostic Index (NPI). The investigation included 836 patients. The median follow-up time was 11...... years and 4 months. The microvessels were immunohistochemically stained by antibodies against CD34. Angiogenesis was graded semiquantitatively by subjective scoring into three groups according to the expected number of microvessels in the most vascular tumour area. The vascular grading between observers...... had clinical impact for 24% of the patients, who had a shift in prognostic group, as compared to NPI, and implied a better prognostic dissemination. We concluded that the angiogenesis determined by vascular grading has independent prognostic value of clinical relevance for patients with breast cancer....

  3. REGULATION OF VASCULOGENESIS AND ANGIOGENESIS

    Science.gov (United States)

    Regulation of vasculogenesis and angiogenesis.B.D. AbbottReproductive Toxicology Division, Environmental Protection Agency, Research Triangle Park, North Carolina, USA Vasculogenesis and angiogenesis are regulated by a complex, interactive family of receptors and lig...

  4. From angiogenesis to neuropathology

    Science.gov (United States)

    Greenberg, David A.; Jin, Kunlin

    2005-12-01

    Angiogenesis - the growth of new blood vessels - is a crucial force for shaping the nervous system and protecting it from disease. Recent advances have improved our understanding of how the brain and other tissues grow new blood vessels under normal and pathological conditions. Angiogenesis factors, especially vascular endothelial growth factor, are now known to have roles in the birth of new neurons (neurogenesis), the prevention or mitigation of neuronal injury (neuroprotection), and the pathogenesis of stroke, Alzheimer's disease and motor neuron disease. As our understanding of pathophysiology grows, these developments may point the way towards new molecular and cell-based therapies.

  5. Cancer Immunotherapy of Targeting Angiogenesis

    Institute of Scientific and Technical Information of China (English)

    JianmeiHou; LingTian; YuquanWei

    2004-01-01

    Tumor growth and metastasis are angiogenesis-dependent. Anti-angiogenic therapy may be a useful approach to cancer therapy. This review discussed tumor angiogenesis and immunotherapy of targeting tumor angiogenesis from two main aspects: (1) active vaccination to induce effective anti-angiogenesis immunity; (2) passive immunotherapy with anti-pro-angiogenic molecules relevant antibody. Evidence from the recent years suggested that anti-angiogenic therapy should be one of the most promising approaches to cancer therapy.

  6. Marine bromophenol bis(2,3-dibromo-4,5-dihydroxybenzyl) ether, represses angiogenesis in HUVEC cells and in zebrafish embryos via inhibiting the VEGF signal systems.

    Science.gov (United States)

    Qi, Xin; Liu, Ge; Qiu, Lin; Lin, Xiukun; Liu, Ming

    2015-10-01

    Bis(2,3-dibromo-4,5-dihydroxybenzyl) ether (BDDE) is a bromophenol compound derived from marine algae. Our previous reports have shown that BDDE possessed anticancer activity in vitro. However, its antiangiogenesis activity and possible mechanisms remain unclear. The present study demonstrated that BDDE displayed in vitro antiangiogenesis capabilities by significantly inhibiting HUVEC cells proliferation, migration, and tube formation, without any effect on the preformed vascular tube. Western blot analysis revealed that BDDE decreased the protein level of VEGF and VEGFR but not that of EGFR, FGFR, and IGFR. In addition, BDDE inactivated the VEGF downstream signaling molecules including mTOR and Src, whereas activated Akt and ERK. Moreover, BDDE blocked subintestinal vessel formation in zebrafish embryos in vivo and showed toxicity under high concentrations of BDDE. The results of this present study indicated that BDDE, which has unique chemical structure different from current antiangiogenesis agents, could be used as a potential drug candidate for cancer prevention and therapy. PMID:26463632

  7. Angiogenesis: Future of pharmacological modulation

    Directory of Open Access Journals (Sweden)

    Bisht Manisha

    2010-01-01

    Full Text Available Angiogenesis is a fundamental biological process that is regulated by a fine balance between pro- and antiangiogenic molecules, and is deranged in various diseases. Historically, angiogenesis was only implicated in few diseases, such as, cancer, arthritis, and psoriasis. However, in recent years, it has been increasingly evident that excessive, insufficient or abnormal angiogenesis contributes to the pathogenesis of many more disorders. Research in angiogenesis offers a potential to cure a variety of diseases such as Alzheimer′s and AIDS. Modulation of angiogenesis may have an impact on diseases in the twenty-first century similar to that which the discovery of antibiotics had in the twentieth century.

  8. Acquisition and role of molybdate in Pseudomonas aeruginosa.

    Science.gov (United States)

    Pederick, Victoria G; Eijkelkamp, Bart A; Ween, Miranda P; Begg, Stephanie L; Paton, James C; McDevitt, Christopher A

    2014-11-01

    In microaerophilic or anaerobic environments, Pseudomonas aeruginosa utilizes nitrate reduction for energy production, a process dependent on the availability of the oxyanionic form of molybdenum, molybdate (MoO4 (2-)). Here, we show that molybdate acquisition in P. aeruginosa occurs via a high-affinity ATP-binding cassette permease (ModABC). ModA is a cluster D-III solute binding protein capable of interacting with molybdate or tungstate oxyanions. Deletion of the modA gene reduces cellular molybdate concentrations and results in inhibition of anaerobic growth and nitrate reduction. Further, we show that conditions that permit nitrate reduction also cause inhibition of biofilm formation and an alteration in fatty acid composition of P. aeruginosa. Collectively, these data highlight the importance of molybdate for anaerobic growth of P. aeruginosa and reveal novel consequences of nitrate reduction on biofilm formation and cell membrane composition. PMID:25172858

  9. The effects of ethanol on angiogenesis after myocardial infarction, and preservation of angiogenesis with rosuvastatin after heavy drinking.

    Science.gov (United States)

    Zhang, Yuying; Yuan, Haitao; Sun, Yongle; Wang, Yong; Wang, Aihong

    2016-08-01

    The cardioprotective effects of moderate alcohol consumption and statins have been known for years. However, heavy or binge drinking confers a high risk of cardiovascular disease. This study aimed to investigate the effects of different levels of alcohol consumption on acute myocardial infarction that was induced experimentally in rats, with a focus on the potential mechanism of angiogenesis and the effects of statins on heavy drinking. The experimental rats were fed low-dose ethanol (0.5 g/kg/day), high-dose ethanol (5 g/kg/day), and high-dose ethanol with rosuvastatin (10 mg/kg/day) during the entire experiment. Acute myocardial infarctions were induced 4 weeks after the beginning of the experiment. We assessed the capillary density in the myocardium via immunohistochemistry and quantified the expression of vascular endothelial growth factor (VEGF) and endostatin via enzyme-linked immunosorbent assay kits on the 4th day after myocardial infarction. The results revealed that low ethanol consumption promoted angiogenesis in association with higher VEGF and lower endostatin. High ethanol intake suppressed angiogenesis with unchanged VEGF and elevated endostatin. Treatment with rosuvastatin preserved angiogenesis following high ethanol intake, with an upregulation of VEGF. This study highlights that low ethanol consumption obviously promotes angiogenesis in myocardial-infarction rats while increasing the expression of VEGF, whereas high ethanol consumption inhibits ischemia-induced angiogenesis. This study also provides evidence that rosuvastatin alleviates the inhibitory effects of heavy drinking on angiogenesis. PMID:27565753

  10. Angiogenesis and Multiple Myeloma

    OpenAIRE

    Giuliani, Nicola; Storti, Paola; Bolzoni, Marina; Palma, Benedetta Dalla; Bonomini, Sabrina

    2011-01-01

    The bone marrow microenvironment in multiple myeloma is characterized by an increased microvessel density. The production of pro-angiogenic molecules is increased and the production of angiogenic inhibitors is suppressed, leading to an “angiogenic switch”. Here we present an overview of the role of angiogenesis in multiple myeloma, the pro-angiogenic factors produced by myeloma cells and the microenvironment, and the mechanisms involved in the myeloma-induced angiogenic switch. Current data s...

  11. Inhibition of virulence gene expression in Rhodococcus fascians and Pseudomonas aeruginosa by flavonoïds isolated from the genera Dalbergia and Combretum

    OpenAIRE

    Rajaonson, Sanda

    2011-01-01

    Plants are continuously confronted with a multitude attack either abiotic but also biotic in nature. Interestingly, despite the abundance of bacteria that plant has to face, only few are able to induce death or disease in the host plant. It is therefore likely that, in addition to secondary metabolites with antimicrobial properties, plants also synthesize secondary metabolites which are able to inhibit the expression of virulence genes in bacteria without affecting either growth or viability,...

  12. Airway epithelial cell tolerance to Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Verghese Margrith W

    2005-04-01

    Full Text Available Abstract Background The respiratory tract epithelium is a critical environmental interface that regulates inflammation. In chronic infectious airway diseases, pathogens may permanently colonize normally sterile luminal environments. Host-pathogen interactions determine the intensity of inflammation and thus, rates of tissue injury. Although many cells become refractory to stimulation by pathogen products, it is unknown whether the airway epithelium becomes either tolerant or hypersensitive in the setting of chronic infection. Our goals were to characterize the response of well-differentiated primary human tracheobronchial epithelial cells to Pseudomonas aeruginosa, to understand whether repeated exposure induced tolerance and, if so, to explore the mechanism(s. Methods The apical surface of well-differentiated primary human tracheobronchial epithelial cell cultures was repetitively challenged with Pseudomonas aeruginosa culture filtrates or the bacterial media control. Toxicity, cytokine production, signal transduction events and specific effects of dominant negative forms of signaling molecules were examined. Additional experiments included using IL-1β and TNFα as challenge agents, and performing comparative studies with a novel airway epithelial cell line. Results An initial challenge of the apical surface of polarized human airway epithelial cells with Pseudomonas aeruginosa culture filtrates induced phosphorylation of IRAK1, JNK, p38, and ERK, caused degradation of IκBα, generation of NF-κB and AP-1 transcription factor activity, and resulted in IL-8 secretion, consistent with activation of the Toll-like receptor signal transduction pathway. These responses were strongly attenuated following a second Pseudomonas aeruginosa, or IL-1β, but not TNFα, challenge. Tolerance was associated with decreased IRAK1 protein content and kinase activity and dominant negative IRAK1 inhibited Pseudomonas aeruginosa -stimulated NF-κB transcriptional

  13. Endostatin derivative angiogenesis inhibitors

    Institute of Scientific and Technical Information of China (English)

    ZHENG Meng-jie

    2009-01-01

    Objective To throw light on the superiority of the anti-angiogenesis activity of endostatin (ES) derivatives by reviewing the recent progress in the field of ES molecular structure modification.Data sources The data used in this article were mainly from PubMed with relevant English articles published from 1971 to May 2008.The search terms were "endostatin" and "angiothesis".Study selection Articles involved in the ES molecular structure modification and the original milestone articles were selected.Results A number of ES derivatives were designed and studied to improve its clinical relevance.The modified ES with polyethylene glycol (PEG),low molecular weight heparin (LMWH) and IgG Fc domain extended the circulation half-life.Meanwhile the recombinant ESs showed more potent anti-tumor activity than native ES in mouse xenografts.Mutated ES also changed its anti-angiogenesis activity.Conclusions The anti-angiogenesis treatment remains a promising tumor therapeutic strategy.New ES derivatives would be a good choice to meet the future challenge on clinical application of ES.

  14. 牛蒡子苷元对肿瘤血管生成抑制作用的观察%Inhibition effect of arctigenin on the angiogenesis of hepatocarcinoma

    Institute of Scientific and Technical Information of China (English)

    郑国灿; 王兵; 黄聪华; 李国明; 李叔强; 袁家天

    2013-01-01

    . 82±0. 26. The luminance ratio of VEGF gene in the experimental group was lower than that in the control group (44. 16% vs 82. 13%). MVD in the experimental group (19. 29 + 2. 06) was lower than that in the blank control group (39. 43±3. 31) and 5-FU group (21. 57 + 2. 82,P<0. 01). CONCLUSION:Arctigenin can inhibit the expression of VEGF gene and protein in hepatocarcinoma cell and the angiogenesis of hepatocarcinoma in nude mice.

  15. Platelets actively sequester angiogenesis regulators

    OpenAIRE

    Lakka Klement, Giannoula; Yip, Tai-Tung; Cassiola, Flavia; Kikuchi, Lena; Cervi, David; Podust, Vladimir; Italiano, Joseph E.; Wheatley, Erin; Abou-Slaybi, Abdo; Bender, Elise; Almog, Nava; Kieran, Mark W.; Folkman, Judah

    2009-01-01

    Clinical trials with antiangiogenic agents have not been able to validate plasma or serum levels of angiogenesis regulators as reliable markers of cancer presence or therapeutic response. We recently reported that platelets contain numerous proteins that regulate angiogenesis. We now show that accumulation of angiogenesis regulators in platelets of animals bearing malignant tumors exceeds significantly their concentration in plasma or serum, as well as their levels in platelets from non–tumor...

  16. Cystic Fibrosis Transmembrane Conductance Regulator is an Epithelial Cell Receptor for Clearance of Pseudomonas aeruginosa from the Lung

    Science.gov (United States)

    Pier, Gerald B.; Grout, Martha; Zaidi, Tanweer S.

    1997-10-01

    The cystic fibrosis transmembrane conductance regulator (CFTR) is a chloride ion channel, but its relationship to the primary clinical manifestation of CF, chronic Pseudomonas aeruginosa pulmonary infection, is unclear. We report that CFTR is a cellular receptor for binding, endocytosing, and clearing P. aeruginosa from the normal lung. Murine cells expressing recombinant human wild-type CFTR ingested 30-100 times as many P. aeruginosa as cells lacking CFTR or expressing mutant Δ F508 CFTR protein. Purified CFTR inhibited ingestion of P. aeruginosa by human airway epithelial cells. The first extracellular domain of CFTR specifically bound to P. aeruginosa and a synthetic peptide of this region inhibited P. aeruginosa internalization in vivo, leading to increased bacterial lung burdens. CFTR clears P. aeruginosa from the lung, indicating a direct connection between mutations in CFTR and the clinical consequences of CF.

  17. Role of tumour angiogenesis in haematological malignancies.

    Science.gov (United States)

    Medinger, Michael; Passweg, Jakob

    2014-01-01

    Tumour angiogenesis plays a key role in the pathogenesis and progression of haematological malignancies. Thereby, pro- and anti-angiogenic growth factors and cytokines regulate the angiogenic process. The most important growth factor, vascular endothelial growth factor (VEGF) and its signaling through its receptors 1 and 2, is not only involved in solid tumours, but there is also emerging evidence that tumour progression in haematological malignancies also depends on the induction of new blood vessel formation. The evidence supporting this theory includes the finding of increased bone marrow microvessel density and increased levels of plasma pro-angiogenic cytokines. Leukaemia cells interact with surrounding host cells and extracellular matrix, this crosstalk affecting the most important aspects of the malignant phenotype. The pathophysiology of leukaemia induced angiogenesis involves both direct production of angiogenic cytokines by leukaemia cells and their interaction with bone marrow microenvironment. The inhibition of VEGF signalling by monoclonal antibodies or small molecules (kinase inhibitors) has already been successfully used for the treatment of different cancer entities, and multiple new drugs are being tested. This review summarises recent advances in the basic understanding of the role of angiogenesis in haematological malignancies and the translation of such basic findings into clinical studies. PMID:25375891

  18. Depletion of Serotonin and Selective Inhibition of 2B Receptor Suppressed Tumor Angiogenesis by Inhibiting Endothelial Nitric Oxide Synthase and Extracellular Signal-Regulated Kinase 1/2 Phosphorylation

    Directory of Open Access Journals (Sweden)

    Masanori Asada

    2009-04-01

    Full Text Available The effects of serotonin (5-HT on tumor growth are inconsistent. We investigated whether a decreased level of 5-HT affected tumor growth using 5-HT transporter knockout (5-HTT-/- mice, which showed 5-HT depletion. When cancer cells were injected subcutaneously into both 5-HTT-/- and 5-HTT+/+ mice, the tumor growth was markedly attenuated in 5-HTT-/- mice. Serotonin levels in the blood, forebrain, and tumors of 5-HTT-/- mice bearing tumors were significantly smaller than those of their 5-HTT+/+ littermates. However, 5-HT did not increase cancer cells' proliferation in vitro. When we applied 5-HTT inhibitors to the wild mice bearing tumors, they did not inhibit tumor growth. The endothelial nitric oxide synthase (eNOS expressions in tumors were reduced in 5-HTT-/- mice compared with 5-HTT+/+ mice. Stimulations with 5-HT (1–50 µM induced eNOS expressions in human umbilical vein endothelial cell (HUVEC in a concentration-dependent manner. When we measured activations of multiple signaling pathways by using a high-throughput phosphospecific antibodies platform, 5-HT stimulated the extracellular signal-regulated kinase 1/2 (ERK1/2 in HUVEC. Moreover, we found that the physiological level of 5-HT induced phosphorylation of both ERK1/2 and eNOS in HUVEC. Human umbilical vein endothelial cell expressed both 5-HT2B and 5-HT2C receptors. SB204741, a specific 5-HT2B receptor inhibitor, blocked 5-HT-induced ERK1/2 and eNOS phosphorylations, whereas RS102221, a specific 5-HT2C receptor inhibitor, did not in HUVEC. SB204741 reduced microvessel density in tumors and inhibited the proliferation of HUVEC in vitro. These results suggest that regulation of 5-HT and 5-HT receptors, especially the 5-HT2B receptor, may serve as a therapeutic strategy in cancer therapy.

  19. Rapid Necrotic Killing of Polymorphonuclear Leukocytes Is Caused by Quorum-Sensing-Controlled Production of Rhamnolipid by Pseudomonas Aeruginosa

    DEFF Research Database (Denmark)

    Jensen, P. Ø.; Bjarnsholt, Thomas; Phipps, Richard Kerry;

    2007-01-01

    . aeruginosa induced rapid necrosis of the PMNs. This mechanism was also observed in mouse lungs infected with P. aeruginosa, and in sputum obtained from P.-aeruginosa-infected patients with cystic fibrosis. Evidence is presented that the necrotic effect was caused by rhamnolipids, production of which is QS...... controlled. The results demonstrate the potential of the QS system to facilitate infections with P. aeruginosa by disabling the PMNs, which are a major first line of defence of the host. Furthermore, the study emphasizes the inhibition of QS as a target for the treatment of infections with P. aeruginosa....

  20. Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet α granules and differentially released

    OpenAIRE

    Italiano, Joseph E.; Richardson, Jennifer L.; Patel-Hett, Sunita; Battinelli, Elisabeth; Zaslavsky, Alexander; Short, Sarah; Ryeom, Sandra; Folkman, Judah; Klement, Giannoula L.

    2008-01-01

    Platelets, in addition to their function in hemostasis, play an important role in wound healing and tumor growth. Because platelets contain angiogenesis stimulators and inhibitors, the mechanisms by which platelets regulate angiogenesis remain unclear. As platelets adhere to activated endothelium, their action can enhance or inhibit local angiogenesis. We therefore suspected a higher organization of angiogenesis regulators in platelets. Using double immunofluorescence and immunoelectron micro...

  1. Anti-angiogenesis therapies: their potential in cancer management

    Directory of Open Access Journals (Sweden)

    Andrew Eichholz

    2010-05-01

    Full Text Available Andrew Eichholz, Shairoz Merchant, Andrew M GayaDepartment of Clinical Oncology, Guy’s and St. Thomas’ NHS Foundation Trust, London, United KingdomAbstract: Angiogenesis plays an important role in normal animal growth and development. This process is also vital for the growth of tumors. Angiogenesis inhibitors have a different mechanism of action to traditional chemotherapy agents and radiation therapy. The angiogenesis inhibitors can act synergistically with conventional treatments and tend to have non-overlapping toxicities. There are four drugs which have a proven role in treating cancer patients. Bevacizumab is a humanized monoclonal antibody that binds to and neutralizes vascular endothelial growth factor (VEGF. Sunitinib and sorafenib inhibit multiple tyrosine kinase receptors that are important for angiogenesis. Thalidomide inhibits the activity of basic fibroblast growth factor-2 (bFGF. The licensed indications and the supporting evidence are discussed. Other drugs are currently being tested in clinical trials and the most promising of these drugs are discussed. Aflibercept, also known as VEGF-trap, is a recombinant fusion protein that binds to circulating VEGF. The vascular disrupting agents act by targeting established blood vessels. These exciting new treatments have the potential to transform the management of cancer.Keywords: angiogenesis, bevacizumab, tyrosine kinase inhibitors, thalidomide, aflibercept, vascular disrupting agents

  2. Glutathione exhibits antibacterial activity and increases tetracycline efficacy against Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    ZHANG YaNi; DUAN KangMin

    2009-01-01

    Glutathione (GSH) plays important roles in pulmonary diseases, and inhaled GSH therapy has been used to treat cystic fibrosis (CF) patients in clinical trials. The results in this report revealed that GSH altered the sensitivity of Pseudomonas aeruginosa to different antibiotics through pathways unrelated to the oxidative stress as generally perceived. In addition, GSH and its oxidized form inhibited the growth of P. Aeruginosa.

  3. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  4. Recent advances in angiogenesis, anti-angiogenesis and vascular targeting.

    Science.gov (United States)

    Bikfalvi, Andreas; Bicknell, Roy

    2002-12-01

    Angiogenesis, the development of new blood vessels, has become a major focus of research. This has been stimulated by the therapeutic opportunities offered by the ability to manipulate the vasculature in pathologies such as cancer. Here, we present an overview of recent advances in angiogenesis. Especially noteworthy is the large volume of information from developmental studies, particularly those that involve transgenic and gene knockout mice. We also discuss the increasing repertoire of drugs with which to manipulate angiogenesis and new endothelial-specific genes with which to target the vasculature. PMID:12457776

  5. Inhibitory effects of sanguinarine against the cyanobacterium Microcystis aeruginosa NIES-843 and possible mechanisms of action

    Energy Technology Data Exchange (ETDEWEB)

    Shao, Jihai [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Agricultural University, Changsha 410128 (China); Liu, Deming [State Key Laboratory Breeding Base of Crop Germplasm Innovation and Resource Utilization, Hunan Agricultural University, Changsha 410128 (China); Gong, Daoxin; Zeng, Qingru; Yan, Zhiyong [College of Resources and Environment, Hunan Agricultural University, Changsha 410128 (China); Gu, Ji-Dong, E-mail: jdgu@hku.hk [Hunan Provincial Key Laboratory of Farmland Pollution Control and Agricultural Resources Use, Hunan Agricultural University, Changsha 410128 (China); Laboratory of Environmental Microbiology and Toxicology, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR (China)

    2013-10-15

    Highlights: •Sanguinarine was found as a strong algicidal biologically derived substance. •Sanguinarine can induce oxidative stress in the cells of Microcystis aeruginosa. •Photosystem is a target of toxicity of sanguinarine on M. aeruginosa. •Sanguinarine can induce DNA damage and inhibit cell division. -- Abstract: Sanguinarine showed strong inhibitory effect against Microcystis aeruginosa, a typical water bloom-forming and microcystins-producing cyanobacterium. The EC50 of sanguinarine against the growth of M. aeruginosa NIES-843 was 34.54 ± 1.17 μg/L. Results of chlorophyll fluorescence transient analysis indicated that all the electron donating side, accepting side, and the reaction center of the Photosystem II (PS II) were the targets of sanguinarine against M. aeruginosa NIES-843. The elevation of reactive oxygen species (ROS) level in the cells of M. aeruginosa NIES-843 upon exposure indicated that sanguinarine induced oxidative stress in the active growing cells of M. aeruginosa NIES-843. Further results of gene expression analysis indicated that DNA damage and cell division inhibition were also involved in the inhibitory action mechanism of sanguinarine against M. aeruginosa NIES-843. The inhibitory characteristics of sanguinarine against M. aeruginosa suggest that the ecological- and public health-risks need to be evaluated before its application in cyanobacterial bloom control to avoid devastating events irreversibly.

  6. Circulating fibrocytes stabilize blood vessels during angiogenesis in a paracrine manner.

    Science.gov (United States)

    Li, Jinqing; Tan, Hong; Wang, Xiaolin; Li, Yuejun; Samuelson, Lisa; Li, Xueyong; Cui, Caibin; Gerber, David A

    2014-02-01

    Accumulating evidence supports that circulating fibrocytes play important roles in angiogenesis. However, the specific role of fibrocytes in angiogenesis and the underlying mechanisms remain unclear. In this study, we found that fibrocytes stabilized newly formed blood vessels in a mouse wound-healing model by inhibiting angiogenesis during the proliferative phase and inhibiting blood vessel regression during the remodeling phase. Fibrocytes also inhibited angiogenesis in a Matrigel mouse model. In vitro study showed that fibrocytes inhibited both the apoptosis and proliferation of vascular endothelial cells (VECs) in a permeable support (Transwell) co-culture system. In a three-dimensional collagen gel, fibrocytes stabilized the VEC tubes by decreasing VEC tube density on stimulation with growth factors and preventing VEC tube regression on withdrawal of growth factors. Further mechanistic investigation revealed that fibrocytes expressed many prosurvival factors that are responsible for the prosurvival effect of fibrocytes on VECs and blood vessels. Fibrocytes also expressed angiogenesis inhibitors, including thrombospondin-1 (THBS1). THBS1 knockdown partially blocked the fibrocyte-induced inhibition of VEC proliferation in the Transwell co-culture system and recovered the fibrocyte-induced decrease of VEC tube density in collagen gel. Purified fibrocytes transfected with THBS1 siRNA partially recovered the fibrocyte-induced inhibition of angiogenesis in both the wound-healing and Matrigel models. In conclusion, our findings reveal that fibrocytes stabilize blood vessels via prosurvival factors and anti-angiogenic factors, including THBS1. PMID:24300950

  7. Luteal angiogenesis and its control.

    Science.gov (United States)

    Woad, Kathryn J; Robinson, Robert S

    2016-07-01

    Angiogenesis, the formation of new blood vessels from preexisting ones, is critical to luteal structure and function. In addition, it is a complex and tightly regulated process. Not only does rapid and extensive angiogenesis occur to provide the corpus luteum with an unusually high blood flow and support its high metabolic rate, but in the absence of pregnancy, the luteal vasculature must rapidly regress to enable the next cycle of ovarian activity. This review describes a number of key endogenous stimulatory and inhibitory factors, which act in a delicate balance to regulate luteal angiogenesis and ultimately luteal function. In vitro luteal angiogenesis cultures have demonstrated critical roles for fibroblast growth factor 2 (FGF2) in endothelial cell proliferation and sprouting, although other factors such as vascular endothelial growth factor A (VEGFA) and platelet-derived growth factor were important modulators in the control of luteal angiogenesis. Post-transcriptional regulation by small non-coding microRNAs is also likely to play a central role in the regulation of luteal angiogenesis. Appropriate luteal angiogenesis requires the coordinated activity of numerous factors expressed by several cell types at different times, and this review will also describe the role of perivascular pericytes and the importance of vascular maturation and stability. It is hoped that a better understanding of the critical processes underlying the transition from follicle to corpus luteum and subsequent luteal development will benefit the management of luteal function in the future. PMID:27177965

  8. Modelling approaches for angiogenesis.

    Science.gov (United States)

    Taraboletti, G; Giavazzi, R

    2004-04-01

    The development of a functional vasculature within a tumour is a requisite for its growth and progression. This fact has led to the design of therapies directed toward the tumour vasculature, aiming either to prevent the formation of new vessels (anti-angiogenic) or to damage existing vessels (vascular targeting). The development of agents with different mechanisms of action requires powerful preclinical models for the analysis and optimization of these therapies. This review concerns 'classical' assays of angiogenesis in vitro and in vivo, recent approaches to target identification (analysis of gene and protein expression), and the study of morphological and functional changes in the vasculature in vivo (imaging techniques). It mainly describes assays designed for anti-angiogenic compounds, indicating, where possible, their application to the study of vascular-targeting agents. PMID:15120043

  9. Pancreatic cancer cell inhibition and anti-angiogenesis by angiostatin in vivo and in vitro%血管抑素对胰腺癌血管生成的抑制作用

    Institute of Scientific and Technical Information of China (English)

    石磊; 岳媛; 王作仁

    2011-01-01

    Objective To observe the inhibition of pancreatic cancer cells with anti-angiogenesis by angiostatin in vitro and in vivo. Methods The recombinant vector pcDNA3. 1 (+ )-angiostatin was transfected into human pancreatic cancer cells PC-3 with lipofectamine 2000. Angiostatin protein expression was determined by Western blot. The supernatant was collected to treat endothelial cells and cell proliferation in vitro was observed under microscope. The size of tumors was measured, and microvessel density count (MVD) in tumor tissues was assessed by immunohistochemistry with primary anti-CD34 antibody. Results After transfected into PC-3 with lipofectamine 2000 and selected by G418, macroscopic resistant cell clones were formed in the experiment group transfected with pcDNA 3. L( + )-angiostatin and vector control group. After treatment with the supernatant, the endothelial cell (ECV-304) proliferation was inhibited. In nude mice model, markedly inhibited tumorigenesis and slowed tumor expansion were observed in the experiment group as compared to those in the control group. The microvessel density was obviously smaller in the experiment group (19. 6 + 3. 6) than in the blank control group (48.5±4.7) and the liposome control group (51.1±5.4). Conclusion Angiostatin inhibits the proliferation of endothelial cell growth in vitro and further exerts an anti-tumor function through antiangiogenesis in a paracrine way in vivo.%目的 观察血管抑素在胰腺癌血管生成中的作用.方法 采用Lipofectamine 2000基因转染技术将真核表达载体pcDNA3.1(+)-angiostatin导入人胰腺癌PC-3细胞,筛选阳性克隆并扩大培养.PC-3细胞分为血管抑素转染组、空白对照组及脂质体对照组,分别检测各组血管抑素蛋白表达;利用显微镜下细胞计数法测定转染前后PC-3细胞的体外生长曲线;检测各组PC-3细胞培养上清所分泌的血管抑素对血管内皮细胞ECV-304增殖的影响.进一步

  10. Integrated in silico and experimental methods revealed that Arctigenin inhibited angiogenesis and HCT116 cell migration and invasion through regulating the H1F4A and Wnt/β-catenin pathway.

    Science.gov (United States)

    Zhang, Shouyue; Li, Jie; Song, Sicheng; Li, Jing; Tong, Rongsheng; Zang, Zhihe; Jiang, Qinglin; Cai, Lulu

    2015-11-01

    Arctigenin (ARG) has been previously reported to exert diverse biological activities including anti-proliferation, anti-inflammatory, and antiviral, etc. In the current study, the anti-metastasis and anti-angiogenesis activities of ARG were investigated. To further understand how ARG played these bioactivities, proteomic approaches were used to profile the proteome changes in response to ARG treatment using 2DE-MS/MS. Using these approaches, a total of 50 differentially expressed proteins were identified and clustered. Bioinformatics analysis suggested that multiple signalling pathways were involved. Moreover, ARG induced anti-metastatic and anti-angiogenesis activities were mainly accompanied by a deactivation of the Wnt/β-catenin pathway in HCT116 cells. PMID:26267229

  11. Influence of Levamisole and Other Angiogenesis Inhibitors on Angiogenesis and Endothelial Cell Morphology in Vitro

    Energy Technology Data Exchange (ETDEWEB)

    Friis, Tina; Engel, Anne-Marie; Bendiksen, Christine D.; Larsen, Line S.; Houen, Gunnar, E-mail: gh@ssi.dk [Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen (Denmark)

    2013-06-24

    Angiogenesis, the formation of new blood vessels from existing vessels is required for many physiological processes and for growth of solid tumors. Initiated by hypoxia, angiogenesis involves binding of angiogenic factors to endothelial cell (EC) receptors and activation of cellular signaling, differentiation, migration, proliferation, interconnection and canalization of ECs, remodeling of the extracellular matrix and stabilization of newly formed vessels. Experimentally, these processes can be studied by several in vitro and in vivo assays focusing on different steps in the process. In vitro, ECs form networks of capillary-like tubes when propagated for three days in coculture with fibroblasts. The tube formation is dependent on vascular endothelial growth factor (VEGF) and omission of VEGF from the culture medium results in the formation of clusters of undifferentiated ECs. Addition of angiogenesis inhibitors to the coculture system disrupts endothelial network formation and influences EC morphology in two distinct ways. Treatment with antibodies to VEGF, soluble VEGF receptor, the VEGF receptor tyrosine kinase inhibitor SU5614, protein tyrosine phosphatase inhibitor (PTPI) IV or levamisole results in the formation of EC clusters of variable size. This cluster morphology is a result of inhibited EC differentiation and levamisole can be inferred to influence and block VEGF signaling. Treatment with platelet factor 4, thrombospondin, rapamycin, suramin, TNP-470, salubrinal, PTPI I, PTPI II, clodronate, NSC87877 or non-steriodal anti-inflammatory drugs (NSAIDs) results in the formation of short cords of ECs, which suggests that these inhibitors have an influence on later steps in the angiogenic process, such as EC proliferation and migration. A humanized antibody to VEGF is one of a few angiogenesis inhibitors used clinically for treatment of cancer. Levamisole is approved for clinical treatment of cancer and is interesting with respect to anti-angiogenic activity

  12. Influence of Levamisole and Other Angiogenesis Inhibitors on Angiogenesis and Endothelial Cell Morphology in Vitro

    International Nuclear Information System (INIS)

    Angiogenesis, the formation of new blood vessels from existing vessels is required for many physiological processes and for growth of solid tumors. Initiated by hypoxia, angiogenesis involves binding of angiogenic factors to endothelial cell (EC) receptors and activation of cellular signaling, differentiation, migration, proliferation, interconnection and canalization of ECs, remodeling of the extracellular matrix and stabilization of newly formed vessels. Experimentally, these processes can be studied by several in vitro and in vivo assays focusing on different steps in the process. In vitro, ECs form networks of capillary-like tubes when propagated for three days in coculture with fibroblasts. The tube formation is dependent on vascular endothelial growth factor (VEGF) and omission of VEGF from the culture medium results in the formation of clusters of undifferentiated ECs. Addition of angiogenesis inhibitors to the coculture system disrupts endothelial network formation and influences EC morphology in two distinct ways. Treatment with antibodies to VEGF, soluble VEGF receptor, the VEGF receptor tyrosine kinase inhibitor SU5614, protein tyrosine phosphatase inhibitor (PTPI) IV or levamisole results in the formation of EC clusters of variable size. This cluster morphology is a result of inhibited EC differentiation and levamisole can be inferred to influence and block VEGF signaling. Treatment with platelet factor 4, thrombospondin, rapamycin, suramin, TNP-470, salubrinal, PTPI I, PTPI II, clodronate, NSC87877 or non-steriodal anti-inflammatory drugs (NSAIDs) results in the formation of short cords of ECs, which suggests that these inhibitors have an influence on later steps in the angiogenic process, such as EC proliferation and migration. A humanized antibody to VEGF is one of a few angiogenesis inhibitors used clinically for treatment of cancer. Levamisole is approved for clinical treatment of cancer and is interesting with respect to anti-angiogenic activity

  13. Bidirectional regulation of angiogenesis by phytoestrogens through estrogen receptor-mediated signaling networks.

    Science.gov (United States)

    Liu, Hai-Xin; Wang, Yu; Lu, Qing; Yang, Ming-Zhu; Fan, Guan-Wei; Karas, Richard H; Gao, Xiu-Mei; Zhu, Yan

    2016-04-01

    Sex hormone estrogen is one of the most active intrinsic angiogenesis regulators; its therapeutic use has been limited due to its carcinogenic potential. Plant-derived phytoestrogens are attractive alternatives, but reports on their angiogenic activities often lack in-depth analysis and sometimes are controversial. Herein, we report a data-mining study with the existing literature, using IPA system to classify and characterize phytoestrogens based on their angiogenic properties and pharmacological consequences. We found that pro-angiogenic phytoestrogens functioned predominantly as cardiovascular protectors whereas anti-angiogenic phytoestrogens played a role in cancer prevention and therapy. This bidirectional regulation were shown to be target-selective and, for the most part, estrogen-receptor-dependent. The transactivation properties of ERα and ERβ by phytoestrogens were examined in the context of angiogenesis-related gene transcription. ERα and ERβ were shown to signal in opposite ways when complexed with the phytoestrogen for bidirectional regulation of angiogenesis. With ERα, phytoestrogen activated or inhibited transcription of some angiogenesis-related genes, resulting in the promotion of angiogenesis, whereas, with ERβ, phytoestrogen regulated transcription of angiogenesis-related genes, resulting in inhibition of angiogenesis. Therefore, the selectivity of phytoestrogen to ERα and ERβ may be critical in the balance of pro- or anti-angiogenesis process. PMID:27114311

  14. Effects of sulfate on microcystin production, photosynthesis, and oxidative stress in Microcystis aeruginosa.

    Science.gov (United States)

    Chen, Lei; Gin, Karina Y H; He, Yiliang

    2016-02-01

    Increasing sulfate in freshwater systems, caused by human activities and climate change, may have negative effects on aquatic organisms. Microcystis aeruginosa (M. aeruginosa) is both a major primary producer and a common toxic cyanobacterium, playing an important role in the aquatic environment. This study first investigated the effects of sulfate on M. aeruginosa. The experiment presented here aims at analyzing the effects of sulfate on physiological indices, molecular levels, and its influencing mechanism. The results of our experiment showed that sulfate (at 40, 80, and 300 mg L(-1)) inhibited M. aeruginosa growth, increased both intracellular and extracellular toxin contents, and enhanced the mcyD transcript level. Sulfate inhibited the photosynthesis of M. aeruginosa, based on the decrease in pigment content and the down-regulation of photosynthesis-related genes after sulfate exposure. Furthermore, sulfate decreased the maximum electron transport rate, causing the cell to accumulate surplus electrons and form reactive oxygen species (ROS). Sulfate also increased the malondialdehyde (MDA) content, which showed that sulfate damaged the cytomembrane. This damage contributed to the release of intracellular toxin to the culture medium. Although sulfate increased superoxide dismutase (SOD) activities, expression of sod, and total antioxidant capacity in M. aeruginosa, it still overwhelmed the antioxidant system since the ROS level simultaneously increased, and finally caused oxidative stress. Our results indicate that sulfate has direct effects on M. aeruginosa, inhibits photosynthesis, causes oxidative stress, increases toxin production, and affects the related genes expression in M. aeruginosa. PMID:26490939

  15. CANSTATIN, A ENDOGENOUS INHIBITOR OF ANGIOGENESIS AND TUMOR GROWTH

    Institute of Scientific and Technical Information of China (English)

    苏影; 朱建思

    2004-01-01

    Canstatin is a novel inhibitor of angiogenesis and tumor growth, derived from the C-terminal globular non-collageneous (NCl) domain of the (2 chain of type IV collagen. It inhibits endothelial cell proliferation and migration in a dose-dependent manner, and induces endothelial cell apoptosis. In vivo experiments show that canstatin significantly inhibits solid tumor growth. The canstatin mediated inhibition of tumor is related to apoptosis. Canstatin- induced apoptosis is associated with phosphatidylinositol 3-kinase/Akt inhibition and is dependend upon signaling events transduced trough membrane death receptor.

  16. CXCRl/CXCR2受体拮抗剂-G31P抑制前列腺癌血管新生的体内实验%Inhibition of G31P : Chemokine Receptor CXCR1/CXCR2 Antagonist, in Angiogenesis of Human Prostate Cancer Cells in vivo

    Institute of Scientific and Technical Information of China (English)

    刘欣; 戴晓冬; 李星云; 王晓丽; 李芳

    2012-01-01

    Objective To investigate the inhibition of G31P on the angiogenesis of the prostate cancer PC-3 cell in vivo. Methods The effect of G31P on angiogenesis of human prostate tumor of nude mice were observed in nude mice by building a human androgen-independent prostate cancer PC-3 (GFP-labeled) or-thotopic transplantation tumor cells model. Results The tumor angiogenesis of G31P treated group (1. 26 ±0.46)was significantly reduced (0. 49±0. 12,P<0. 05) compared with the control group. VEGF(P< 0. 01) and NF-KB(P<0. 01) expression of G31P treated groupwas significantly reduced (immunohisto-chemistry) compared with the control group. Conclusion G31P could inhibit the angiogenesis of the prostate cancer PC-3 cell in vivo.%目的 探讨G31P(CXCR1/CXCR2受体拮抗剂)对人前列腺癌PC-3细胞的体内血管新生的抑制作用.方法 建立体内绿色荧光蛋白(GFP)标记的人雄激素非依赖性前列腺癌细胞PC-3的裸鼠原位移植瘤模型,观察G31P对裸鼠前列腺原位移植瘤血管新生的影响.结果 与对照组(1.26±0.46)相比,G31P处理组明显抑制前列腺肿瘤的血管新生(0.49±0.12,P<0.05),与对照组相比,G31P处理组VEGF(P<0.01)和NF-kB(P<0.01)的表达具有统计学意义(免疫组织化学法).结论 在裸鼠原位移植瘤模型中G31P对人雄激素非依赖性前列腺癌的血管新生有明显抑制作用.

  17. Morphine Promotes Tumor Angiogenesis and Increases Breast Cancer Progression

    Directory of Open Access Journals (Sweden)

    Sabrina Bimonte

    2015-01-01

    Full Text Available Morphine is considered a highly potent analgesic agent used to relieve suffering of patients with cancer. Several in vitro and in vivo studies showed that morphine also modulates angiogenesis and regulates tumour cell growth. Unfortunately, the results obtained by these studies are still contradictory. In order to better dissect the role of morphine in cancer cell growth and angiogenesis we performed in vitro studies on ER-negative human breast carcinoma cells, MDA.MB231 and in vivo studies on heterotopic mouse model of human triple negative breast cancer, TNBC. We demonstrated that morphine in vitro enhanced the proliferation and inhibited the apoptosis of MDA.MB231 cells. In vivo studies performed on xenograft mouse model of TNBC revealed that tumours of mice treated with morphine were larger than those observed in other groups. Moreover, morphine was able to enhance the neoangiogenesis. Our data showed that morphine at clinical relevant doses promotes angiogenesis and increases breast cancer progression.

  18. Angiogenesis and Its Therapeutic Opportunities

    Directory of Open Access Journals (Sweden)

    So Young Yoo

    2013-01-01

    Full Text Available Angiogenesis plays critical roles in human physiology that range from reproduction and fetal growth to wound healing and tissue repair. The sophisticated multistep process is tightly regulated in a spatial and temporal manner by “on-off switch signals” between angiogenic factors, extracellular matrix components, and endothelial cells. Uncontrolled angiogenesis may lead to several angiogenic disorders, including vascular insufficiency (myocardial or critical limb ischemia and vascular overgrowth (hemangiomas, vascularized tumors, and retinopathies. Thus, numerous therapeutic opportunities can be envisaged through the successful understanding and subsequent manipulation of angiogenesis. Here, we review the clinical implications of angiogenesis and discuss pro- and antiangiogenic agents that offer potential therapy for cancer and other angiogenic diseases.

  19. Targeting Angiogenesis for Controlling Neuroblastoma

    OpenAIRE

    Subhasree Roy Choudhury; Surajit Karmakar; Banik, Naren L.; Ray, Swapan K.

    2011-01-01

    Neuroblastoma, a progressive solid tumor in childhood, continues to be a clinical challenge. It is highly vascular, heterogeneous, and extracranial tumor that originates from neural crest. Angiogenesis, genetic abnormalities, and oncogene amplification are mainly responsible for malignant phenotype of this tumor. Survivability of malignant neuroblastoma patients remains poor despite the use of traditional therapeutic strategies. Angiogenesis is a very common and necessary pre-requisite for tu...

  20. Angiogenesis in female reproductive system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    @@Neovascularization, i.e. new blood vessels formation, can be divided into two different processes: vasculogenesis, whereby a primitive vascular network is established during embryogenesis from multipotential mesenchymal progenitors; and angiogenesis, which refers to the new blood vessels formation from pre-existing vessels[1,2]. Angiogenesis contributes to the most process throughout the whole life span from embryonic development to adult growth[2]. In this meaning, neovascularization is usually used to imply angiogenesis. Under physiological condi-tions, angiogenesis is a strictly regulated event and rarely happens in most adult tissues except for fracture or heal-ing of wounds[2,3]. However, a notable phenomenon is that the tissues of ovary and uterine endometrium are unique in the cycle-specific changes in vascularity that occur in each estrous/menstrual cycle. Active angiogenesis occurs in placenta to satisfy the needs of embryonic implantation and development. Defects in angiogenesis are associated with some gynecopathies including luteal phase defect, endometriosis, pregnancy loss and preeclampsia[4].

  1. Phagocytosis of Pseudomonas aeruginosa by polymorphonuclear leukocytes and monocytes: effect of cystic fibrosis serum.

    OpenAIRE

    Thomassen, M J; Demko, C A; Wood, R E; Sherman, J. M.

    1982-01-01

    It has been shown previously that serum from chronically infected patients with cystic fibrosis inhibits the phagocytosis of Pseudomonas aeruginosa by both normal and cystic fibrosis alveolar macrophages. In the present study, the ability of peripheral monocytes and polymorphonuclear leukocytes from normal volunteers and cystic fibrosis patients to phagocytize P. aeruginosa was shown not to be inhibited in the presence of serum from cystic fibrosis patients.

  2. [Angiogenesis in patients with hematologic malignancies].

    Science.gov (United States)

    Mesters, R M; Padró, T; Steins, M; Bieker, R; Retzlaff, S; Kessler, T; Kienast, J; Berdel, W E

    2001-09-01

    Angiogenesis in Patients with Hematologic Malignancies The importance of angiogenesis for the progressive growth and viability of solid tumors is well established. Emerging data suggest an involvement of angiogenesis in the pathophysiology of hematologic malignancies as well. Recently, we and others have reported increased angiogenesis in the bone marrow of patients with acute myeloid leukemia (AML) and normalization of bone marrow microvessel density when patients achieved a complete remission (CR) after induction chemotherapy. Tumor angiogenesis depends on the expression of specific mediators that initiate a cascade of events leading to the formation of new microvessels. Among these, VEGF (vascular endothelial growth factor), FGF (fibroblast growth factor) and angiopoietins play a pivotal role in the induction of neovascularization in solid tumors. These cytokines stimulate migration and proliferation of endothelial cells and induce angiogenesis in vivo. Recent data suggest an important role for these mediators in hematologic malignancies as well. Isolated AML blasts overexpress VEGF and VEGF receptor 2. Thus, the VEGF/VEGFR-2 pathway can promote the growth of leukemic blasts in an autocrine and paracrine manner. Therefore, neovascularization and angiogenic mediators/receptors may be promising targets for anti-angiogenic and anti-leukemic treatment strategies. The immunomodulatory drug thalidomide inhibits angiogenesis in animal models. Moreover, it has significant activity in refractory multiple myeloma. In a current phase II study for patients with primary refractory or relapsed multiple myeloma using a combination of thalidomide with hyperfractionated cyclophosphamide and dexamethasone (Hyper-CDT), we observed a partial remission in 12 of 14 evaluable patients (86%). Thus, this combination seems to be very potent. Furthermore, we evaluated the safety and efficacy of thalidomide in patients with AML not qualifying for intensive cytotoxic chemotherapy. 20

  3. Antivirulence activity of azithromycin in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Francesco eImperi

    2014-04-01

    Full Text Available Antibiotics represent our bulwark to combat bacterial infections, but the spread of antibiotic resistance compromises their clinical efficacy. Alternatives to conventional antibiotics are urgently needed in order to complement the existing antibacterial arsenal. The macrolide antibiotic azithromycin (AZM provides a paradigmatic example of an unconventional antibacterial drug. Besides its growth-inhibiting activity, AZM displays potent anti-inflammatory properties, as well as antivirulence activity on some intrinsically resistant bacteria, such as Pseudomonas aeruginosa. In this bacterium, the antivirulence activity of AZM mainly relies on its ability to interact with the ribosome, resulting in direct and/or indirect repression of specific subsets of genes involved in virulence, quorum sensing, biofilm formation and intrinsic antibiotic resistance. Both clinical experience and clinical trials have shown the efficacy of AZM in the treatment of chronic pulmonary infections caused by P. aeruginosa. The aim of this review is to combine results from laboratory studies with evidence from clinical trials in order to unify the information on the in vivo mode of action of AZM in P. aeruginosa infection.

  4. Manuka honey treatment of biofilms of Pseudomonas aeruginosa results in the emergence of isolates with increased honey resistance

    OpenAIRE

    Camplin, Aimee L; Maddocks, Sarah E.

    2014-01-01

    Background Medical grade manuka honeys are well known to be efficacious against Pseudomonas aeruginosa being bactericidal and inhibiting the development of biofilms; moreover manuka honey effectively kills P. aeruginosa embedded within an established biofilm. Sustained honey resistance has not been previously documented for planktonic or biofilm P. aeruginosa. Methods Minimum inhibitory concentrations for manuka honey and antibiotics were determined using broth micro-dilution methods. Minimum...

  5. Aloe emodin inhibits colon cancer cell migration/angiogenesis by downregulating MMP-2/9, RhoB and VEGF via reduced DNA binding activity of NF-κB.

    Science.gov (United States)

    Suboj, Priya; Babykutty, Suboj; Valiyaparambil Gopi, Deepak Roshan; Nair, Rakesh S; Srinivas, Priya; Gopala, Srinivas

    2012-04-11

    Aloe emodin (AE), a natural anthraquinone, is reported to have antiproliferative activity in various cancer cell lines. In this study we analyzed molecular mechanisms involved in the antimigratory and antiangiogenic activity of this hydroxy anthraquinone in colon cancer cell, WiDr. Our results show that a relatively non toxic concentration of AE suppressed the phorbol-12-myristyl-13-acetate (PMA) induced migration and invasion of tumor cells. On analysis for the molecules involved in the migration/invasion, we found AE downregulated mRNA expression and promoter/gelatinolytic activity of Matrix Metalloproteinase (MMP)-2/9, as well as the RhoB expression at gene and protein level. It was also a strong inhibitor of Vascular Endothelial Growth Factor (VEGF) expression, promoter activity and endothelial cell migration/invasion and in vitro angiogenesis. AE suppressed the nuclear translocation and DNA binding of NF-κB, which is an important transcription factor for controlling MMP-2/9 and VEGF gene expression. Taken together these data indicate that AE target multiple molecules responsible for cellular invasion, migration and angiogenesis. Inhibitory effect on angiogenic and metastatic regulatory processes make AE a sensible candidate as a specific blocker of tumor associated events. PMID:22227305

  6. Effect of Hedyotis Diffusa Willd extract on tumor angiogenesis.

    Science.gov (United States)

    Lin, Jiumao; Wei, Lihui; Xu, Wei; Hong, Zhenfeng; Liu, Xianxiang; Peng, Jun

    2011-01-01

    Inhibition of tumor angiogenesis has become an attractive target of anticancer chemotherapy. However, drug resistance and cytotoxicity against non-tumor associated endothelial cells limit the long-term use and the therapeutic effectiveness of angiogenesis inhibitors, thus increasing the necessity for the development of multi-target agents with minimal side effects. Traditional Chinese medicine (TCM) formulas, which have relatively fewer side effects and have been used clinically to treat various types of diseases, including cancer, for thousands of years, are considered to be multi-component and multi-target agents exerting their therapeutic function in a more holistic way. Hedyotis Diffusa Willd (EEHDW) has long been used as an important component in several TCM formulas to treat various types of cancer. Although recently we reported that EEHDW promotes cancer cell apoptosis via activation of the mitochondrial-dependent pathway, the precise mechanism of its tumoricidalactivity still remains to be clarified. In the present study, we investigated the angiogenic effects of the ethanol extract of EEHDW. Cell cycle analysis was perfomed using flow cytometry. Cell viability was analyzed using MTT assay. We found that EEHDW inhibited angiogenesis in vivo in chick embryo chorioallantoic membrane (CAM). In addition, we observed that EEHDW dose- and time-dependently inhibited the prolife-ration of human umbilical vein endothelial cells (HUVEC) by blocking the cell cycle G1 to S progression. Moreover, EEHDW inhibited the migration and tube formation of HUVECs. Furthermore, EEHDW treatment down-regulated the mRNA and protein expression levels of VEGF-A in HT-29 human colon carcinoma cells and HUVECs. Our findings suggest that inhibiting tumor angiogenesis is one of the mechanisms by which EEHDW is involved in cancer therapy. PMID:21887465

  7. Enhanced Clearance of Pseudomonas aeruginosa by Peroxisome Proliferator-Activated Receptor Gamma.

    Science.gov (United States)

    Bedi, Brahmchetna; Yuan, Zhihong; Joo, Myungsoo; Zughaier, Susu M; Goldberg, Joanna B; Arbiser, Jack L; Hart, C Michael; Sadikot, Ruxana T

    2016-07-01

    The pathogenic profile of Pseudomonas aeruginosa is related to its ability to secrete a variety of virulence factors. Quorum sensing (QS) is a mechanism wherein small diffusible molecules, specifically acyl-homoserine lactones, are produced by P. aeruginosa to promote virulence. We show here that macrophage clearance of P. aeruginosa (PAO1) is enhanced by activation of the nuclear hormone receptor peroxisome proliferator-activated receptor gamma (PPARγ). Macrophages treated with a PPARγ agonist (pioglitazone) showed enhanced phagocytosis and bacterial killing of PAO1. It is known that PAO1 QS molecules are inactivated by PON-2. QS molecules are also known to inhibit activation of PPARγ by competitively binding PPARγ receptors. In accord with this observation, we found that infection of macrophages with PAO1 inhibited expression of PPARγ and PON-2. Mechanistically, we show that PPARγ induces macrophage paraoxonase 2 (PON-2), an enzyme that degrades QS molecules produced by P. aeruginosa Gene silencing studies confirmed that enhanced clearance of PAO1 in macrophages by PPARγ is PON-2 dependent. Further, we show that PPARγ agonists also enhance clearance of P. aeruginosa from lungs of mice infected with PAO1. Together, these data demonstrate that P. aeruginosa impairs the ability of host cells to mount an immune response by inhibiting PPARγ through secretion of QS molecules. These studies define a novel mechanism by which PPARγ contributes to the host immunoprotective effects during bacterial infection and suggest a role for PPARγ immunotherapy for P. aeruginosa infections. PMID:27091928

  8. Functional role of inorganic trace elements in angiogenesis part III: (Ti, Li, Ce, As, Hg, Va, Nb and Pb).

    Science.gov (United States)

    Saghiri, Mohammad Ali; Orangi, Jafar; Asatourian, Armen; Sorenson, Christine M; Sheibani, Nader

    2016-02-01

    Many essential elements exist in nature with significant influence on human health. Angiogenesis is vital in developmental, repair, and regenerative processes, and its aberrant regulation contributes to pathogenesis of many diseases including cancer. Thus, it is of great importance to explore the role of these elements in such a vital process. This is third in a series of reviews that serve as an overview of the role of inorganic elements in regulation of angiogenesis and vascular function. Here we will review the roles of titanium, lithium, cerium, arsenic, mercury, vanadium, niobium, and lead in these processes. The roles of other inorganic elements in angiogenesis were discussed in part I (N, Fe, Se, P, Au, and Ca) and part II (Cr, Si, Zn, Cu, and S) of these series. The methods of exposure, structure, mechanisms, and potential activities of these elements are briefly discussed. An electronic search was performed on the role of these elements in angiogenesis from January 2005 to April 2014. These elements can promote and/or inhibit angiogenesis through different mechanisms. The anti-angiogenic effect of titanium dioxide nanoparticles comes from the inhibition of angiogenic processes, and not from its toxicity. Lithium affects vasculogenesis but not angiogenesis. Nanoceria treatment inhibited tumor growth by inhibiting angiogenesis. Vanadium treatment inhibited cell proliferation and induced cytotoxic effects through interactions with DNA. The negative impact of mercury on endothelial cell migration and tube formation activities was dose and time dependent. Lead induced IL-8 production, which is known to promote tumor angiogenesis. Thus, understanding the impact of these elements on angiogenesis will help in development of new modalities to modulate angiogenesis under various conditions. PMID:26638864

  9. Effects of antibiotics on quorum sensing in pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Skindersø, Mette Elena; Alhede, Morten; Phipps, Richard Kerry;

    2008-01-01

    impeding QS, thereby reducing the pathogenicity of P. aeruginosa. This led us to investigate whether QS inhibition is a common feature of antibiotics. We present the results of a screening of 12 antibiotics for their QS-inhibitory activities using a previously described QS inhibitor selector 1 strain...... animal infection models. Treatment of cystic fibrosis (CF) patients chronically infected with P. aeruginosa with the macrolide antibiotic azithromycin (AZM) has been demonstrated to improve the clinical outcome. Several studies indicate that AZM may accomplish its beneficial action in CF patients by....... Three of the antibiotics tested, AZM, ceftazidime (CFT), and ciprofloxacin (CPR), were very active in the assay and were further examined for their effects on QS-regulated virulence factor production in P. aeruginosa. The effects of the three antibiotics administered at subinhibitory concentrations were...

  10. Zebrafish as an Emerging Model Organism to Study Angiogenesis in Development and Regeneration

    OpenAIRE

    Myra N Chávez; Aedo, Geraldine; Fierro, Fernando A.; Allende, Miguel L; Egaña, José T.

    2016-01-01

    Angiogenesis is the process through which new blood vessels are formed from preexisting ones and plays a critical role in several conditions including embryonic development, tissue repair and disease. Moreover, enhanced therapeutic angiogenesis is a major goal in the field of regenerative medicine and efficient vascularization of artificial tissues and organs is one of the main hindrances in the implementation of tissue engineering approaches, while, on the other hand, inhibition of angiogene...

  11. Molecular Basis for the Regulation of Angiogenesis by Thrombospondin-1 and -2

    OpenAIRE

    Lawler, Patrick R.; Lawler, Jack

    2012-01-01

    Thrombospondins TSP-1 and TSP-2 are potent endogenous inhibitors of angiogenesis. They inhibit angiogenesis through direct effects on endothelial cell migration, proliferation, survival, and apoptosis and by antagonizing the activity of VEGF. Several of the membrane receptor systems and signal transduction molecules that mediate the effects of TSP-1 and TSP-2 have been elucidated. TSP-1 and TSP-2 exert their direct effects through CD36, CD47, and integrins. Recent data indicate that CD36 and ...

  12. Bone Marrow-Derived Endothelial Progenitors Expressing Delta-Like 4 (Dll4) Regulate Tumor Angiogenesis

    OpenAIRE

    Real, Carla; Remédio, Leonor; Caiado, Francisco; Igreja, Cátia; Borges, Cristina; Trindade, Alexandre; Pinto-do-Ó, Perpétua; Yagita, Hideo; Duarte, Antonio; Dias, Sérgio

    2011-01-01

    Neo-blood vessel growth (angiogenesis), which may involve the activation of pre-existing endothelial cells (EC) and/or the recruitment of bone marrow-derived vascular precursor cells (BM-VPC), is essential for tumor growth. Molecularly, besides the well established roles for Vascular endothelial growth factor (VEGF), recent findings show the Notch signalling pathway, in particular the ligand Delta-like 4 (Dll4), is also essential for adequate tumor angiogenesis; Dll4 inhibition results in imp...

  13. Stilbene glycosides are natural product inhibitors of FGF-2-induced angiogenesis

    Directory of Open Access Journals (Sweden)

    Naz Humera

    2009-04-01

    Full Text Available Abstract Background Angiogenesis, the growth of new blood vessels from the pre-existing vasculature is associated with pathological processes, in particular tumour development, and is a target for the development of new therapies. We have investigated the anti-angiogenic potential of two naturally occurring stilbene glycosides (compounds 1 and 2 isolated from the medicinal plant Boswellia papyriferai using large and smallvessel-derived endothelial cells. Compound 1 (trans-4',5'-dihydroxy-3-methoxystilbene-5-O-{α-L-rhamnopyranosyl-(1→2-[α-L-rhamnopyranosyl-(1→6}-β-D-glucopyranoside was the more hydrophilic and inhibited FGF-2-induced proliferation, wound healing, invasion in Matrigel, tube formation and angiogenesis in large and small vessel-derived endothelial cells and also in the chick chorioallantoic membrane assay. Using a binding assay we were able to show compound 1 reduced binding of FGF-2 to fibroblast growth factor receptors-1 and -2. In all cases the concentration of compound 1 which caused 50% inhibition (IC50 was determined. The effect of compound 1 on EGF and VEGF-induced proliferation was also investigated. Results Compound 1 inhibited all stages of FGF-2 induced angiogenesis with IC50 values in the range 5.8 ± 0.18 – 48.90 ± 0.40 μM but did not inhibit EGF or VEGF-induced angiogenesis. It also inhibited FGF-2 binding to FGF receptor-1 and -2 with IC50 values of 5.37 ± 1.04 and 9.32 ± 0.082 μM respectively and with concommotant down-regulation of phosphorylated-ERK-1/-2 expression. Compound 2 was an ineffective inhibitor of angiogenesis despite its structural homology to compound 1. Conclusion Compound 1 inhibited FGF-2 induced angiogenesis by binding to its cognate receptors and is an addition to the small number of natural product inhibitors of angiogenesis

  14. Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis

    OpenAIRE

    Battinelli, Elisabeth M.; Markens, Beth A.; Italiano, Joseph E.

    2011-01-01

    An association between platelets, angiogenesis, and cancer has long been recognized, but the mechanisms linking them remains unclear. Platelets regulate new blood vessel growth through numerous stimulators and inhibitors of angiogenesis by several pathways, including differential exocytosis of angiogenesis regulators. Herein, we investigated the differential release of angiogenesis stimulators and inhibitors from platelets. Activation of human platelets with adenosine diphosphate (ADP) stimul...

  15. The role of angiomotin in angiogenesis

    OpenAIRE

    Levchenko, Tanya

    2004-01-01

    Angiogenesis plays key roles during embryonic development, female reproduction and wound repair. Angiogenesis, the formation of new blood vessels from of pre-existing capillaries, is a process tightly regulated by a balance between positive and negative regulators. Unregulated angiogenesis may lead to several angiogenic diseases, and is thought to be crucial for tumor growth and metastasis. The initial recognition of tumor angiogenesis as a therapeutic target began in the 19...

  16. Inhibition of subcutaneous growth of Ehrlich Ascites Carcinoma (EAC) tumor by post-immunization with EAC-cell gangliosides and its anti-idiotype antibody in relation to tumor angiogenesis, apoptosis, cell cycle and infiltration of CD4+, CD8+ lymphocytes, NK cells, suppressor cells and APC-cells in tumor

    International Nuclear Information System (INIS)

    Both EAC-tumor associated gangliosides and its anti-idiotype antibody inhibited growth of this tumor significantly. Immuno-histological studies with von Willebrand Factor (vWF) antibody indicated that tumor angiogenesis as determined by expression of vWF decreased in tumors of mice, post-immunized with EAC-cell gangliosides as well as its anti-idiotype antibody. Infiltration of various immune cells of the host in the tumor correlated to some extent with tumor-growth inhibition. Apoptosis study using AnnexinV-FITC and propidium iodide indicated that tumor growth inhibition in mice post-immunized with EAC-gangliosides and its anti-idiotype antibody were due to enhanced apoptosis and cell death. Cell cycle analysis by FACS indicated that EAC-cell associated gangliosides and its anti-idiotype antibody were acting both at the M2 i.e. S and M3 i.e. G2/M phases of the cell cycle to arrest tumor growth. (author)

  17. Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors

    DEFF Research Database (Denmark)

    Hentzer, Morten; Wu, H.; Andersen, Jens Bo;

    2003-01-01

    afforded a novel opportunity to control infectious bacteria without interfering with growth. Compounds that can override communication signals have been found in the marine environment. Using Pseudomonas aeruginosa PAO1 as an example of an opportunistic human pathogen, we show that a synthetic derivate of...... systems and inhibited virulence factor expression. Application of the drug to P.aeruginosa biofilms increased bacterial susceptibility to tobramycin and SDS. In a mouse pulmonary infection model, the drug inhibited quorum sensing of the infecting bacteria and promoted their clearance by the mouse immune......Traditional treatment of infectious diseases is based on compounds that kill or inhibit growth of bacteria. A major concern with this approach is the frequent development of resistance to antibiotics. The discovery of communication systems (quorum sensing systems) regulating bacterial virulence has...

  18. Targeting angiogenesis with integrative cancer therapies.

    Science.gov (United States)

    Yance, Donald R; Sagar, Stephen M

    2006-03-01

    An integrative approach for managing a patient with cancer should target the multiple biochemical and physiological pathways that support tumor development while minimizing normal tissue toxicity. Angiogenesis is a key process in the promotion of cancer. Many natural health products that inhibit angiogenesis also manifest other anticancer activities. The authors will focus on natural health products (NHPs) that have a high degree of antiangiogenic activity but also describe some of their many other interactions that can inhibit tumor progression and reduce the risk of metastasis. NHPs target various molecular pathways besides angiogenesis, including epidermal growth factor receptor (EGFR), the HER-2/neu gene, the cyclooxygenase-2 enzyme, the NF-kB transcription factor, the protein kinases, Bcl-2 protein, and coagulation pathways. The herbalist has access to hundreds of years of observational data on the anticancer activity of many herbs. Laboratory studies are confirming the knowledge that is already documented in traditional texts. The following herbs are traditionally used for anticancer treatment and are antiangiogenic through multiple interdependent processes that include effects on gene expression, signal processing, and enzyme activities: Artemisia annua (Chinese wormwood), Viscum album (European mistletoe), Curcuma longa (turmeric), Scutellaria baicalensis (Chinese skullcap), resveratrol and proanthocyanidin (grape seed extract), Magnolia officinalis (Chinese magnolia tree), Camellia sinensis (green tea), Ginkgo biloba, quercetin, Poria cocos, Zingiber officinale (ginger), Panax ginseng, Rabdosia rubescens (rabdosia), and Chinese destagnation herbs. Quality assurance of appropriate extracts is essential prior to embarking on clinical trials. More data are required on dose response, appropriate combinations, and potential toxicities. Given the multiple effects of these agents, their future use for cancer therapy probably lies in synergistic combinations

  19. Study on the release routes of allelochemicals from Pistia stratiotes Linn., and its anti-cyanobacteria mechanisms on Microcystis aeruginosa.

    Science.gov (United States)

    Wu, Xiang; Wu, Hao; Ye, Jinyun; Zhong, Bin

    2015-12-01

    Allelochemicals in Pistia stratiotes Linn. have a strong anti-cyanobacteria effect on Microcystis aeruginosa. To further determine the release routes of allelochemicals in P. stratiotes and understand their anti-cyanobacteria mechanisms, we aimed to systematically investigate the allelopathic effects of leaf leachates, leaf volatilization, root exudates, and residue decomposition of P. stratiotes on M. aeruginosa. The influences of P. stratiotes allelochemicals on the physiological properties of M. aeruginosa were also studied. Root exudates of P. stratiotes exhibited the strongest inhibitory effect on M. aeruginosa growth. The residue decomposition and leaf leachates exhibited a relatively strong inhibitory effect on M. aeruginosa growth. By contrast, the leaf volatilization stimulated M. aeruginosa growth. Therefore, root exudation was determined to be the main release route of allelochemicals from P. stratiotes. The mixed culture experiment of P. stratiotes root exudates and M. aeruginosa showed that the allelochemicals released from root exudation had no effect on the electron transfer of M. aeruginosa photosynthetic system II. However, it reduced the phycocyanin (PC) content and phycocyanin to allophycocyanin (PC/APC) ratio in the photosynthetic system. As the root exudates concentration increased, the electrical conductivity (EC) and superoxide anion radical (O2(*-)) values in the M. aeruginosa culture fluid increased significantly, indicating that the allelochemicals released from the root of P. stratiotes inhibited algae growth by affecting the PC and PC/APC levels in photosynthesis, destroying the cell membrane, and increasing O2(*-) content to result in oxidative damage of M. aeruginosa. PMID:26233747

  20. Staphylococcus aureus Alters Growth Activity, Autolysis, and Antibiotic Tolerance in a Human Host-Adapted Pseudomonas aeruginosa Lineage

    DEFF Research Database (Denmark)

    Frydenlund Michelsen, Charlotte; Christensen, Anne-Mette; Bojer, Martin Saxtorph;

    2014-01-01

    Interactions among members of polymicrobial infections or between pathogens and the commensal flora may determine disease outcomes. Pseudomonas aeruginosa and Staphylococcus aureus are important opportunistic human pathogens and are both part of the polymicrobial infection communities in human...... hosts. In this study, we analyzed the in vitro interaction between S. aureus and a collection of P. aeruginosa isolates representing different evolutionary steps of a dominant lineage, DK2, that have evolved through decades of growth in chronically infected patients. While the early adapted P....... aeruginosa DK2 strains outcompeted S. aureus during coculture on agar plates, we found that later P. aeruginosa DK2 strains showed a commensal-like interaction, where S. aureus was not inhibited by P. aeruginosa and the growth activity of P. aeruginosa was enhanced in the presence of S. aureus. This effect...

  1. Effects of Microcystis aeruginosa on life history of water flea Daphnia magna

    Science.gov (United States)

    Liu, Liping; Li, Kang; Chen, Taoying; Dai, Xilin; Jiang, Min; Diana, James S.

    2011-07-01

    Cyanobacterial blooms in eutrophic freshwater systems are a worldwide problem, creating adverse effects for many aquatic organisms by producing toxic microcystins and deteriorating water quality. In this study, microcystins (MCs) in Microcystis aeruginosa, and Daphnia magna exposed to M. aeruginosa, were analyzed by HPLC-MS, and the effects of M. aeruginosa on D. magna were investigated. When D. magna was exposed to M. aeruginosa for more than 2 h, Microcystin-LR (MC-LR) was detected. When exposed to 1.5 × 106, 3 × 106, 0.75 × 107, and 1.5 × 107 cell/mL of M. aeruginosa for 96 h, average survival of D. magna for treatments were 23.33%, 33.33%, 13.33%, 16.67%, respectively, which were significantly lower than the average 100% survival in the control group ( P < 0.05). The adverse effects of M. aeruginosa on body length, time for the first brood, brood numbers, gross fecundity, lifespan, and population growth of D. magna were density-dependent. These results suggest that the occurrence of M. aeruginosa blooms could strongly inhibit the population growth of D. magna through depression of survival, individual growth and gross fecundity. In the most serious situations, M. aeruginosa blooms could undermine the food web by eliminating filter-feeding zooplankton, which would destroy the ecological balance of aquaculture water bodies.

  2. Evaluation of a FRET-peptide substrate to predict virulence in Pseudomonas aeruginosa.

    Directory of Open Access Journals (Sweden)

    Wendy E Kaman

    Full Text Available Pseudomonas aeruginosa produces a number of proteases that are associated with virulence and disease progression. A substrate able to detect P. aeruginosa-specific proteolytic activity could help to rapidly alert clinicians to the virulence potential of individual P. aeruginosa strains. For this purpose we designed a set of P. aeruginosa-specific fluorogenic substrates, comprising fluorescence resonance energy transfer (FRET-labeled peptides, and evaluated their applicability to P. aeruginosa virulence in a range of clinical isolates. A FRET-peptide comprising three glycines (3xGly was found to be specific for the detection of P. aeruginosa proteases. Further screening of 97 P. aeruginosa clinical isolates showed a wide variation in 3xGly cleavage activity. The absence of 3xGly degradation by a lasI knock out strain indicated that 3xGly cleavage by P. aeruginosa could be quorum sensing (QS-related, a hypothesis strengthened by the observation of a strong correlation between 3xGly cleavage, LasA staphylolytic activity and pyocyanin production. Additionally, isolates able to cleave 3xGly were more susceptible to the QS inhibiting antibiotic azithromycin (AZM. In conclusion, we designed and evaluated a 3xGly substrate possibly useful as a simple tool to predict virulence and AZM susceptibility.

  3. Experimental hypoxia and embryonic angiogenesis

    Czech Academy of Sciences Publication Activity Database

    Nanka, O.; Valášek, P.; Dvořáková, Marta; Grim, M.

    2006-01-01

    Roč. 235, č. 3 (2006), s. 723-733. ISSN 1058-8388 Institutional research plan: CEZ:AV0Z50520514 Keywords : Experimental hypoxia * Embryonic angiogenesis Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.169, year: 2006

  4. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    Bacteria in natural, industrial and clinical settings predominantly live in biofilms, i.e., sessile structured microbial communities encased in self-produced extracellular matrix material. One of the most important characteristics of microbial biofilms is that the resident bacteria display a...... remarkable increased tolerance toward antimicrobial attack. Biofilms formed by opportunistic pathogenic bacteria are involved in devastating persistent medical device-associated infections, and chronic infections in individuals who are immune-compromised or otherwise impaired in the host defense. Because the...... use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  5. Reduction of PCN biosynthesis by NO in Pseudomonas aeruginosa.

    Science.gov (United States)

    Gao, Lei; Zhang, Yuying; Wang, Yan; Qiao, Xinhua; Zi, Jing; Chen, Chang; Wan, Yi

    2016-08-01

    Pyocyanin (PCN), a virulence factor synthesized by Pseudomonas aeruginosa, plays an important role during clinical infections. There is no study of the effect of nitric oxide (NO) on PCN biosynthesis. Here, the effect of NO on PCN levels in Pseudomonas aeruginosa strain PAO1, a common reference strain, was tested. The results showed that the NO donor sodium nitroprusside (SNP) can significantly reduce PCN levels (82.5% reduction at 60μM SNP). Furthermore, the effect of endogenous NO on PCN was tested by constructing PAO1 nor (NO reductase gene) knockout mutants. Compared to the wild-type strain, the Δnor strain had a lower PCN (86% reduction in Δnor). To examine whether the results were universal with other P. aeruginosa strains, we collected 4 clinical strains from a hospital, tested their PCN levels after SNP treatment, and obtained similar results, i.e., PCN biosynthesis was inhibited by NO. These results suggest that NO treatment may be a new strategy to inhibit PCN biosynthesis and could provide novel insights into eliminating P. aeruginosa virulence as a clinical goal. PMID:26874276

  6. Reduction of PCN biosynthesis by NO in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Lei Gao

    2016-08-01

    Full Text Available Pyocyanin (PCN, a virulence factor synthesized by Pseudomonas aeruginosa, plays an important role during clinical infections. There is no study of the effect of nitric oxide (NO on PCN biosynthesis. Here, the effect of NO on PCN levels in Pseudomonas aeruginosa strain PAO1, a common reference strain, was tested. The results showed that the NO donor sodium nitroprusside (SNP can significantly reduce PCN levels (82.5% reduction at 60 μM SNP. Furthermore, the effect of endogenous NO on PCN was tested by constructing PAO1 nor (NO reductase gene knockout mutants. Compared to the wild-type strain, the Δnor strain had a lower PCN (86% reduction in Δnor. To examine whether the results were universal with other P. aeruginosa strains, we collected 4 clinical strains from a hospital, tested their PCN levels after SNP treatment, and obtained similar results, i.e., PCN biosynthesis was inhibited by NO. These results suggest that NO treatment may be a new strategy to inhibit PCN biosynthesis and could provide novel insights into eliminating P. aeruginosa virulence as a clinical goal.

  7. Pseudomonas aeruginosa in Healthcare Settings

    Science.gov (United States)

    ... CDC.gov . Healthcare-associated Infections (HAIs) Share Compartir Pseudomonas aeruginosa in Healthcare Settings On this Page What ... and/or help treat infections? What is a Pseudomonas infection? Pseudomonas infection is caused by strains of ...

  8. Intra-laboratory validation of a human cell based in vitro angiogenesis assay for testing angiogenesis modulators

    Directory of Open Access Journals (Sweden)

    Jertta-Riina Sarkanen

    2011-01-01

    Full Text Available The developed standardized human cell based in vitro angiogenesis assay was intra-laboratory validated to verify that the method is reliable and relevant for routine testing of modulators of angiogenesis e.g. pharmaceuticals and industrial chemicals. This assay is based on the earlier published method but it was improved and shown to be more sensitive and rapid than the previous assay. The performance of the assay was assessed by using 6 reference chemicals, which are widely used pharmaceuticals that inhibit angiogenesis: acetyl salicylic acid, erlotinib, 2-methoxyestradiol, levamisole, thalidomide, and anti-vascular endothelial growth factor. In the intra-laboratory validation, the sensitivity of the assay (upper and lower limits of detection and linearity of response in tubule formation, batch to batch variation in tubule formation between different Master cell bank batches, and precision as well as the reliability of the assay (reproducibility and repeatability were tested. The pre-set acceptance criteria for the intra-laboratory validation study were met. The relevance of the assay in man was investigated by comparing the effects of reference chemicals and their concentrations to the published human data. The comparison showed a good concordance, which indicates that this human cell based angiogenesis model predicts well the effects in man and has the potential to be used to supplement and/or replace of animal tests.

  9. Characterization of a novel extended-spectrum beta-lactamase from Pseudomonas aeruginosa.

    OpenAIRE

    Nordmann, P.; Ronco, E; Naas, T.; Duport, C; Michel-Briand, Y.; Labia, R

    1993-01-01

    A clinical isolate of Pseudomonas aeruginosa RNL-1 showed resistance to extended-spectrum cephalosporins which was inhibited by clavulanic acid. Although this strain contained three plasmids ca. 80, 20, and 4 kb long, the resistance could not be transferred by mating-out assays with P. aeruginosa or Escherichia coli. Cloning of a 2.1-kb Sau3A fragment from P. aeruginosa RNL-1 into plasmid pACYC184 produced pPZ1, a recombinant plasmid that encodes a beta-lactamase. This beta-lactamase (PER-1) ...

  10. Glycan involvement in the adhesion of Pseudomonas aeruginosa to tears.

    Science.gov (United States)

    Kautto, Liisa; Nguyen-Khuong, Terry; Everest-Dass, Arun; Leong, Andrea; Zhao, Zhenjun; Willcox, Mark D P; Packer, Nicolle H; Peterson, Robyn

    2016-04-01

    The human eye is constantly bathed by tears, which protect the ocular surface via a variety of mechanisms. The O-linked glycans of tear mucins have long been considered to play a role in binding to pathogens and facilitating their removal in the tear flow. Other conjugated glycans in tears could similarly contribute to pathogen binding and removal but have received less attention. In the work presented here we assessed the contribution of glycan moieties, in particular the protein attached N-glycans, presented by the broad complement of tear proteins to the adhesion of the opportunistic pathogen Pseudomonas aeruginosa, a leading cause of microbial keratitis and ulceration of the cornea. Our adhesion assay involved immobilising the macromolecular components of tears into the wells of a polyvinyl difluoride (PVDF) microtitre filter plate and probing the binding of fluorescently labelled bacteria. Three P. aeruginosa strains were studied: a cytotoxic strain (6206) and an invasive strain (6294) from eye infections, and an invasive strain (320) from a urinary tract infection (UTI). The ocular isolates adhered two to three times more to human tears than to human saliva or porcine gastric mucin, suggesting ocular niche-specific adaptation. Support for the role of the N-glycans carried by human tear proteins in the binding and removal of P. aeruginosa from the eye was shown by: 1) pre-incubation of the bacteria with free component sugars, galactose, mannose, fucose and sialyl lactose (or combination thereof) inhibiting adhesion of all the P. aeruginosa strains to the immobilised tear proteins, with the greatest inhibition of binding of the ocular cytotoxic 6206 and least for the invasive 6294 strain; 2) pre-incubation of the bacteria with N-glycans released from the commercially available human milk lactoferrin, an abundant protein that carries N-linked glycans in tears, inhibiting the adhesion to tears of the ocular bacteria by up to 70%, which was significantly more

  11. Glutathione exhibits antibacterial activity and increases tetracycline efficacy against Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    Glutathione(GSH) plays important roles in pulmonary diseases,and inhaled GSH therapy has been used to treat cystic fibrosis(CF) patients in clinical trials.The results in this report revealed that GSH altered the sensitivity of Pseudomonas aeruginosa to different antibiotics through pathways unrelated to the oxidative stress as generally perceived.In addition,GSH and its oxidized form inhibited the growth of P.aeruginosa.

  12. Control of Candida albicans Metabolism and Biofilm Formation by Pseudomonas aeruginosa Phenazines

    OpenAIRE

    Morales, Diana K.; Grahl, Nora; Okegbe, Chinweike; Dietrich, Lars E. P.; Jacobs, Nicholas J.; Hogan, Deborah A.

    2013-01-01

    ABSTRACT Candida albicans has developmental programs that govern transitions between yeast and filamentous morphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm development were inhibited during interactions between Candida albicans and Pseudomonas aeruginosa through the action of P. aeruginosa-produced phenazines. While phenazines are toxic to C. albicans at millimolar concentrations, we found that lower concentra...

  13. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation

    OpenAIRE

    O’Loughlin, Colleen T.; Miller, Laura C.; Siryaporn, Albert; Drescher, Knut; Semmelhack, Martin F.; Bassler, Bonnie L.

    2013-01-01

    In this study, we prepare synthetic molecules and analyze them for inhibition of the Pseudomonas quorum-sensing receptors LasR and RhlR. Our most effective compound, meta-bromo-thiolactone, not only prevents virulence factor expression and biofilm formation but also protects Caenorhabditis elegans and human A549 lung epithelial cells from quorum-sensing–mediated killing by Pseudomonas aeruginosa. This anti–quorum-sensing molecule is capable of influencing P. aeruginosa virulence in tissue cul...

  14. [Evaluation of intensity of angiogenesis in granulation tissue in chronic otitis media--preliminary report].

    Science.gov (United States)

    Pajor, Anna; Jankowski, Andrzej; Danilewicz, Marian; Durko, Tomasz

    2006-01-01

    In chronic otitis media molecular pathogenetic mechanisms are still unknown, however, angiogenesis may play a role. The aim of the study was to determine the intensity of angiogenesis in granulation tissue in chronic otitis media of different clinical course. Twenty six granulation tissue specimens (twenty two--from chronic otitis media, four--from prolongated otitis externa) taken during surgery were analyzed. The angiogenesis (microvessel density) was measured in paraffin-embedded tissue by an immunohistochemical method, by staining for endothelial cells with a monoclonal antibody against CD 34. The presence of CD 34 was found in all specimens. The expression was more intense in tissue samples from the group with good clinical course (good healing and without recurrence) than those in the group with poor healing and recurrence (mean number of dots for mm2 589,2 vs 533,3, respectively) and from the group without bacterial infection by Pseudomonas aeruginosa than those with this infection (mean number of dots for mm2 645,5 vs 440,8, respectively), but differences were not significant. In conclusion it is suggested that angiogenesis may contribute to different clinical course of chronic otitis media. PMID:17152811

  15. Silencing of hypoxia inducible factor-1α by RNA interference inhibits growth of SK-NEP-1 Wilms tumour cells in vitro, and suppresses tumourigenesis and angiogenesis in vivo.

    Science.gov (United States)

    Shi, Bo; Li, Ying; Wang, Xiuli; Yang, Yi; Li, Dan; Liu, Xin; Yang, Xianghong

    2016-06-01

    Wilms tumour is the most common tumour of the pediatric kidney. Elevation of hypoxia-inducible factor 1α (HIF-1α) has been detected in 93% to 100% of human Wilms tumour specimens, suggesting a potential value of HIF-1α as a therapeutic target for Wilms tumour. In the present study, a stable HIF-1α-silenced Wilms tumour cell strain was established by introducing HIF-1α short-hairpin RNA (shRNA) into SK-NEP-1 cells. Silencing of HIF-1α significantly reduced single-cell growth capacity, suppressed proliferation and arrested cell cycle of SK-NEP-1 cells. In addition, reduction of HIF-1α expression induced apoptosis in SK-NEP-1 cells, which was accompanied by increased levels of cleaved caspase-3, cleaved poly (ADP-ribose) polymerase (PARP) and Bax as well as downregulation of Bcl-2 in the cells. Furthermore, when inoculated subcutaneously in nude mice, HIF-1α-silenced SK-NEP-1 cells displayed retarded tumour growth and impaired tumour angiogenesis. In summary, the findings of this study suggest that HIF-1α plays a critical role in the development of Wilms tumour, and it may serve as a candidate target of gene therapy for Wilms tumour. PMID:27015631

  16. Ursolic acid-loaded chitosan nanoparticles induce potent anti-angiogenesis in tumor.

    Science.gov (United States)

    Jin, Hua; Pi, Jiang; Yang, Fen; Wu, Chaomin; Cheng, Xueli; Bai, Haihua; Huang, Dan; Jiang, Jinhuan; Cai, Jiye; Chen, Zheng W

    2016-08-01

    Angiogenesis provides necessary nutrients and oxygen for tumor growth and metastasis; thus, every stage of angiogenesis process is the potential target for cancer therapies. Ursolic acid (UA) is reported to decrease tumor burden through anti-angiogenesis pathway, but its poor water solubility greatly limits its efficiency and clinical application. Here, a simple method for preparing UA-loaded chitosan nanoparticles (CH-UA-NPs) with anti-angiogenesis and anti-tumor activity was demonstrated. In vitro, CH-UA-NPs could significantly inhibit the proliferation, migration, and tube formation of human umbilical vascular endothelial cells (HUVECs). After uptake by HUVECs, CH-UA-NPs were mainly localized in lysosomes and mitochondria, but not nuclei. CH-UA-NPs induced the destruction of lysosome membrane integrity, collapse of mitochondrial membrane potential, and reorganization of cell cytoskeleton. All these changes led to the apoptosis or necrosis in HUVECs. In vivo, CH-UA-NPs could inhibit the angiogenesis in chicken chorioallantoic membrane (CAM) model and H22 xenograft model. Notably, comparing with free UA, such synthesized CH-UA-NPs could save about tenfold of UA doses, implying that this could significantly decrease the side effects induced by high doses of UA in biological organism. Our data showed that CH-UA-NPs and this nanoparticle-based drug delivery system could be as a potential drug candidate for anti-angiogenesis treatment. PMID:26883344

  17. Targeting vascular NADPH oxidase 1 blocks tumor angiogenesis through a PPARα mediated mechanism.

    Directory of Open Access Journals (Sweden)

    Sarah Garrido-Urbani

    Full Text Available Reactive oxygen species, ROS, are regulators of endothelial cell migration, proliferation and survival, events critically involved in angiogenesis. Different isoforms of ROS-generating NOX enzymes are expressed in the vasculature and provide distinct signaling cues through differential localization and activation. We show that mice deficient in NOX1, but not NOX2 or NOX4, have impaired angiogenesis. NOX1 expression and activity is increased in primary mouse and human endothelial cells upon angiogenic stimulation. NOX1 silencing decreases endothelial cell migration and tube-like structure formation, through the inhibition of PPARα, a regulator of NF-κB. Administration of a novel NOX-specific inhibitor reduced angiogenesis and tumor growth in vivo in a PPARα dependent manner. In conclusion, vascular NOX1 is a critical mediator of angiogenesis and an attractive target for anti-angiogenic therapies.

  18. Gold and silver nanoparticles conjugated with heparin derivative possess anti-angiogenesis properties

    International Nuclear Information System (INIS)

    Silver and gold nanoparticles display unique physical and biological properties that have been extensively studied for biological and medical applications. Typically, gold and silver nanoparticles are prepared by chemical reductants that utilize excess toxic reactants, which need to be removed for biological purposes. We utilized a clean method involving a single synthetic step to prepare metal nanoparticles for evaluating potential effects on angiogenesis modulation. These nanoparticles were prepared by reducing silver nitrate and gold chloride with diaminopyridinyl (DAP)-derivatized heparin (HP) polysaccharides. Both gold and silver nanoparticles reduced with DAPHP exhibited effective inhibition of basic fibroblast growth factor (FGF-2)-induced angiogenesis, with an enhanced anti-angiogenesis efficacy with the conjugation to DAPHP (P<0.01) as compared to glucose conjugation. These results suggest that DAPHP-reduced silver nanoparticles and gold nanoparticles have potential in pathological angiogenesis accelerated disorders such as cancer and inflammatory diseases.

  19. Methionine AminoPeptidase Type-2 Inhibitors Targeting Angiogenesis.

    Science.gov (United States)

    Ehlers, Tedman; Furness, Scott; Robinson, Thomas Philip; Zhong, Haizhen A; Goldsmith, David; Aribser, Jack; Bowen, J Phillip

    2016-01-01

    Angiogenesis has been identified as a crucial process in the development and spread of cancers. There are many regulators of angiogenesis which are not yet fully understood. Methionine aminiopeptidase is a metalloenzyme with two structurally distinct forms in humans, Type-1 (MetAP-1) and Type-2 (MetAP-2). It has been shown that small molecule inhibitors of MetAP-2 suppress endothelial cell proliferation. The initial discovery by Donald Ingber of MetAP-2 inhibition as a potential target in angiogenesis began with a fortuitous observation similar to the discovery of penicillin activity by Sir Alexander Fleming. From a drug design perspective, MetAP-2 is an attractive target. Fumagillin and ovalicin, known natural products, bind with IC50 values in low nanomolar concentrations. Crystal structures of the bound complexes provide 3-dimensional coordinates for advanced computational studies. More recent discoveries have shown other biological activities for MetAP-2 inhibition, which has generated new interests in the design of novel inhibitors. Semisynthetic fumagillin derivatives such as AGM-1470 (TNP-470) have been shown to have better drug properties, but have not been very successful in clinical trials. The rationale and development of novel multicyclic analogs of fumagillin are reviewed. PMID:26369821

  20. Proinflammatory mediators stimulate neutrophil-directed angiogenesis.

    LENUS (Irish Health Repository)

    McCourt, M

    2012-02-03

    BACKGROUND: Vascular endothelial growth factor (VEGF; vascular permeability factor) is one of the most potent proangiogenic cytokines, and it plays a central role in mediating the process of angiogenesis or new blood vessel formation. Neutrophils (PMNs) recently have been shown to produce VEGF. HYPOTHESIS: The acute inflammatory response is a potent stimulus for PMN-directed angiogenesis. METHODS: Neutrophils were isolated from healthy volunteers and stimulated with lipopolysaccharide (LPS), tumor necrosis factor alpha (TNF-alpha), interleukin 6 (IL-6), and anti-human Fas monoclonal antibody. Culture supernatants were assayed for VEGF using enzyme-linked immunosorbent assays. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs were then added to human umbilical vein endothelial cells and human microvessel endothelial cells and assessed for endothelial cell proliferation using 5-bromodeoxyuridine labeling. Tubule formation was also assessed on MATRIGEL basement membrane matrix. Neutrophils were lysed to measure total VEGF release, and VEGF expression was detected using Western blot analysis. RESULTS: Lipopolysaccharide and TNF-alpha stimulation resulted in significantly increased release of PMN VEGF (532+\\/-49 and 484+\\/-80 pg\\/mL, respectively; for all, presented as mean +\\/- SEM) compared with control experiments (32+\\/-4 pg\\/mL). Interleukin 6 and Fas had no effect. Culture supernatants from LPS- and TNF-alpha-stimulated PMNs also resulted in significant increases (P<.005) in macrovascular and microvascular endothelial cell proliferation and tubule formation. Adding anti-human VEGF-neutralizing polyclonal antibody to stimulated PMN supernatant inhibited these effects. Total VEGF release following cell lysis and Western blot analysis suggests that the VEGF is released from an intracellular store. CONCLUSION: Activated human PMNs are directly angiogenic by releasing VEGF, and this has important implications for inflammation, capillary leak syndrome

  1. Angiogenesis in obesity and cancer

    OpenAIRE

    Bråkenhielm, Ebba

    2003-01-01

    Angiogenesis is the process of blood vessel growth from pre-existing vasculatures. In the adult, it is involved in certain physiological processes, such as in organ and tissue regeneration, wound healing, and in female reproductive cycles. Like during embryonic development, the growth and expansion of adult tissues is dependent on neovascularization. The adipose tissue has a unique capacity to substantially increase or decrease in size throughout adult life. This indicates t...

  2. Recent Progress in Therapeutic Angiogenesis

    OpenAIRE

    Nakagami, Hironori; Morishita, Ryuichi

    2007-01-01

    Coronary artery disease and peripheral arterial disease are devastating status of acute vessel occlusion in diseased vessels that are already narrowed enough by atherosclerotic process. People are now focused on therapeutic angiogenesis against the ischemic diseases, to supply and growth of new vessels into the ischemic tissue. Recently, we and others performed autologous transplantation of bone marrow mononuclear cell or endothelial progenitor cell and gene therapy using hepatocyte growth fa...

  3. Molecular and hormonal regulation of angiogenesis in proliferative endometrium

    Directory of Open Access Journals (Sweden)

    Yousef Rezaei Chianeh

    2014-02-01

    Full Text Available Angiogenesis is a hallmark of wound healing, the menstrual cycle, cancer, and various ischemic and inflammatory diseases. A rich variety of pro and anti-angiogenic molecules have already been identified. Vascular endothelial growth factor (VEGF is an interesting inducer of angiogenesis and lymphangiogenesis, because it is a highly specific mitogen for endothelial cells. Signal transduction involves binding to tyrosine kinase receptors and results in endothelial cell proliferation, migration, and new vessel formation. In this article, the role of VEGF and other growth factors in the pathology of dysfunctional uterine bleeding is reviewed. We also discuss the role of VEGF expression and interaction with extracellular matrix that lead to possible inhibition or stimulation of Angiogenic factor on endometrium of dysfunctional uterine bleeding patients. [Int J Res Med Sci 2014; 2(1.000: 1-9

  4. Newly discovered angiogenesis inhibitors and their mechanisms of action

    Institute of Scientific and Technical Information of China (English)

    Ze-hong MIAO; Jian-ming FENG; Jian DING

    2012-01-01

    In the past decade,the success of angiogenesis inhibitors in clinical contexts has established the antiangiogenic strategy as an important part of cancer therapy,During that time period,we have discovered and reported 17 compounds that exert potent inhibition on angiogenesis.These compounds exhibit tremendous diversity in their sources,structures,targets and mechanisms.These studies have generated new models for further modification and optimization of inhibitory compounds,new information for mechanistic studies and a new drug candidate for clinical development.In particular,through studies on the antiangiogenic mechanism of pseudolaric acid B,we discovered a novel mechanism by which the stability of hypoxia-irducible factor 1α is regulated by the transcription factor c-Jun.We also completed a preclinical study of AL3810,a compound with the potential to circumvent tumor drug resistance to a certain extent.All of these findings will be briefly reviewed in this article.

  5. Angiostatin and endostatin: endothelial cell-specific endogenous inhibitors of angiogenesis and tumor growth.

    Science.gov (United States)

    Sim, B K

    1998-01-01

    Angiostatin and Endostatin are potent inhibitors of angiogenesis. These proteins are endogenously produced and specifically target endothelial cells resulting in angiogenesis inhibition. Recombinant preparations of these proteins inhibit the growth of metastases and regress primary tumors to dormant microscopic lesions. A variety of murine tumors as well as human breast, prostate and colon tumors in human xenograft models regress when treated with Angiostatin or Endostatin. Regression of tumors upon systemic treatment with these proteins is in part due to increased tumor cell apoptosis. Repeated cycles of Endostatin therapy lead to prolonged tumor dormancy without further treatment and are not associated with any apparent toxicity or acquired drug resistance. PMID:14517374

  6. Fosfomycin Enhances the Active Transport of Tobramycin in Pseudomonas aeruginosa

    OpenAIRE

    MacLeod, David L.; Velayudhan, Jyoti; Kenney, Thomas F.; Therrien, Joseph H.; Sutherland, Jennifer L.; Barker, Lynn M.; Baker, William R.

    2012-01-01

    Elevated levels of mucins present in bronchiectatic airways predispose patients to bacterial infections and reduce the effectiveness of antibiotic therapies by directly inactivating antibiotics. Consequently, new antibiotics that are not inhibited by mucins are needed to treat chronic respiratory infections caused by Pseudomonas aeruginosa and Staphylococcus aureus. In these studies, we demonstrate that fosfomycin synergistically enhances the activity of tobramycin in the presence of mucin. T...

  7. Development of potent inhibitors of pyocyanin production in Pseudomonas aeruginosa

    OpenAIRE

    Miller, Laura C.; O’Loughlin, Colleen T.; Zhang, Zinan; Siryaporn, Albert; Silpe, Justin E.; Bassler, Bonnie L.; Semmelhack, Martin F.

    2015-01-01

    The development of new approaches for the treatment of antimicrobial-resistant infections is an urgent public health priority. The Pseudomonas aeruginosa pathogen, in particular, is a leading source of infection in hospital settings, with few available treatment options. In the context of an effort to develop antivirulence strategies to combat bacterial infection, we identified a series of highly effective small molecules that inhibit the production of pyocyanin, a redox-active virulence fact...

  8. Monitoring angiogenesis using magnetic resonance methods

    DEFF Research Database (Denmark)

    Holm, David Alberg

    2008-01-01

    When a tumor reaches a certain size it can no longer rely on passive perfusion for nutrition. The tumor therefore emits signaling molecules which stimulating surrounding vessels to divide and grow towards the tumor, a process known as angiogenesis. Very little angiogenesis is present in healthy...... adults where it is primaily found in wound healing, pregnancy and during the menstrual cycle. This thesis focus on the negative consequences of angiogenesis in cancer. It consists of a an initial overview followed by four manuscripts. The overview gives a short introduction to the process of angiogenesis...... and the involved signaling molecules. Subsequently, a short review of contrast agents and perfusion measurements is given. Finally, methods for monitoring angiogenesis using magnetic resonance imaging are reviewed. A method for monitoring early stages of angiogenesis as well as the effect of anti...

  9. Zebrafish as an Emerging Model Organism to Study Angiogenesis in Development and Regeneration.

    Science.gov (United States)

    Chávez, Myra N; Aedo, Geraldine; Fierro, Fernando A; Allende, Miguel L; Egaña, José T

    2016-01-01

    Angiogenesis is the process through which new blood vessels are formed from preexisting ones and plays a critical role in several conditions including embryonic development, tissue repair and disease. Moreover, enhanced therapeutic angiogenesis is a major goal in the field of regenerative medicine and efficient vascularization of artificial tissues and organs is one of the main hindrances in the implementation of tissue engineering approaches, while, on the other hand, inhibition of angiogenesis is a key therapeutic target to inhibit for instance tumor growth. During the last decades, the understanding of cellular and molecular mechanisms involved in this process has been matter of intense research. In this regard, several in vitro and in vivo models have been established to visualize and study migration of endothelial progenitor cells, formation of endothelial tubules and the generation of new vascular networks, while assessing the conditions and treatments that either promote or inhibit such processes. In this review, we address and compare the most commonly used experimental models to study angiogenesis in vitro and in vivo. In particular, we focus on the implementation of the zebrafish (Danio rerio) as a model to study angiogenesis and discuss the advantages and not yet explored possibilities of its use as model organism. PMID:27014075

  10. Zebrafish as an emerging model organism to study angiogenesis in development and regeneration

    Directory of Open Access Journals (Sweden)

    Myra Noemi Chavez

    2016-03-01

    Full Text Available Angiogenesis is the process through which new blood vessels are formed from preexisting ones and plays a critical role in several conditions including embryonic development, tissue repair and disease. Moreover, enhanced therapeutic angiogenesis is a major goal in the field of regenerative medicine and efficient vascularization of artificial tissues and organs is one of the main hindrances in the implementation of tissue engineering approaches, while, on the other hand, inhibition of angiogenesis is a key therapeutic target to inhibit for instance tumor growth. During the last decades, the understanding of cellular and molecular mechanisms involved in this process has been matter of intense research. In this regard, several in vitro and in vivo models have been established to visualize and study migration of endothelial progenitor cells, formation of endothelial tubules and the generation of new vascular networks, while assessing the conditions and treatments that either promote or inhibit such processes. In this review, we address and compare the most commonly used experimental models to study angiogenesis in vitro and in vivo. In particular, we focus on the implementation of the zebrafish (Danio rerio as a model to study angiogenesis and discuss the advantages and not yet explored possibilities of its use as model organism.

  11. Chemokine Regulation of Angiogenesis During Wound Healing

    OpenAIRE

    Bodnar, Richard J.

    2015-01-01

    Significance: Angiogenesis plays a critical role in wound healing. A defect in the formation of a neovasculature induces ulcer formation. One of the challenges faced by the clinician when devising strategies to promote healing of chronic wounds is the initiation of angiogenesis and the formation of a stable vasculature to support tissue regeneration. Understanding the molecular factors regulating angiogenesis during wound healing will lead to better therapies for healing chronic wounds.

  12. Interactions between the antimicrobial agent triclosan and the bloom-forming cyanobacteria Microcystis aeruginosa.

    Science.gov (United States)

    Huang, Xiaolong; Tu, Yenan; Song, Chaofeng; Li, Tiancui; Lin, Juan; Wu, Yonghong; Liu, Jiantong; Wu, Chenxi

    2016-03-01

    Cyanobacteria can co-exist in eutrophic waters with chemicals or other substances derived from personal care products discharged in wastewater. In this work, we investigate the interactions between the antimicrobial agent triclosan (TCS) and the bloom-forming cyanobacteria Microcystis aeruginosa. M. aeruginosa was very sensitive to TCS with the 96h lowest observed effect concentration of 1.0 and 10μg/L for inhibition of growth and photosynthetic activity, respectively. Exposure to TCS at environmentally relevant levels (0.1-2.0μg/L) also affected the activities of superoxide dismutase (SOD) and the generation of reduced glutathione (GSH), while microcystin production was not affected. Transmission electron microscope (TEM) examination showed the destruction of M. aeruginosa cell ultrastructure during TCS exposure. TCS however, can be biotransformed by M. aeruginosa with methylation as a major biotransformation pathway. Furthermore, the presence of M. aeruginosa in solution promoted the photodegradation of TCS. Overall, our results demonstrate that M. aeruginosa plays an important role in the dissipation of TCS in aquatic environments but high residual TCS can exert toxic effects on M. aeruginosa. PMID:26800489

  13. PET imaging for evaluating tumor angiogenesis

    International Nuclear Information System (INIS)

    Angiogenesis, a main characteristic in tumors, plays an important role in tumor growth and metastasis, which provides a new strategy for tumor treatment. By marking angiogenesis-related receptors, polypeptides, kinases or extracellular matrix proteins as high affinity molecular probes, PET imaging can noninvasively display integrin, VEGF/VEGFR, matrix metalloproteinases (MMPs) and closely monitor tumor angiogenesis and vascular-targeted treatments on the molecular level. In this paper, research progress and future development of PET imaging for evaluating tumor angiogenesis are reviewed. (authors)

  14. Tpl2 Inhibitors Thwart Endothelial Cell Function in Angiogenesis and Peritoneal Dissemination

    Directory of Open Access Journals (Sweden)

    Wen-Jane Lee

    2013-09-01

    Full Text Available Angiogenesis is critical in the development of cancer, which involves several angiogenic factors in its peritoneal dissemination. The role of protein tumor progression locus 2 (Tpl2 in angiogenic factor-related endothelial cell angiogenesis is still unclear. To understand the precise mechanism(s of Tpl2 inhibition in endothelial cells, this study investigated the role of Tpl2 in mediating angiogenic signals using in vitro, in vivo, and ex vivo models. Results showed that inhibition of Tpl2 inhibitor significantly reduced peritoneal dissemination in a mouse model by positron emission tomography/computed tomography imaging. Simultaneously, inhibiting Tpl2 blocked angiogenesis in tumor nodules and prevented angiogenic factor-induced proliferating cell nuclear antigen (PCNA in endothelial cells. Vascular endothelial growth factor (VEGF or chemokine (C-X-C motif ligand 1 (CXCL1 increased Tpl2 kinase activity and phosphorylation in a dose- and time-dependent manner. Furthermore, Tpl2 inhibition or ablation by siRNA prevented the angiogenic signal-induced tube formation in Matrigel plug assay or aortic ring assay. Inhibiting Tpl2 also prevented the angiogenic factor-induced chemotactic motility and migration of endothelial cells. Tpl2 inhibition by CXCL1 or epidermal growth factor in endothelial cells was associated with inactivation of CCAAT/enhancer binding protein β, nuclear factor κ light-chain enhancer of activated B cells, and activating protein 1 and suppression of VEGF expression. Thus, Tpl2 inhibitors thwart Tpl2-regulated VEGF by inactivating transcription factors involved in angiogenic factor-triggered endothelial cell angiogenesis. These results suggest that the therapeutic inhibition of Tpl2 may extend beyond cancer and include the treatment of other diseases involving pathologic angiogenesis.

  15. Effective removal of Microcystis aeruginosa and microcystin-LR using nanosilicate platelets.

    Science.gov (United States)

    Chang, Shu-Chi; Li, Cheng-Hao; Lin, Jiang-Jen; Li, Yen-Hsien; Lee, Maw-Rong

    2014-03-01

    Drinking water safety has been threatened by increasing harmful algal blooms (HABs) in water sources. HABs are closely associated with eutrophication in freshwater lakes, e.g. Lake Tai in China, and marine environments as well, e.g. Baltic Sea in Europe. Among all HABs, Microcystis aeruginosa attracted much attention due to its easy proliferation and potent toxins, microcystins. Most of the current control technologies can result in immediate release of microcystins which are hard to remove by drinking water treatment processes. Here we propose to simultaneously remove M. aeruginosa and its toxin, microcystin-LR (MC-LR), using nanosilicate platelet (NSP) derived from natural clay mineral. In this study, NSP showed strong selective growth inhibition and good settling enhancing effects on M. aeruginosa and highly efficient removal of MC-LR. NSP can inhibit the growth of M. aeruginosa (initial cell concentration at 3.00×10(6)cellmL(-1)) with a LC50 at 0.28ppm after 12h exposure. At the dosage of 100ppm, NSP can enhance settling of suspended M. aeruginosa. Bacterial growth inhibition tests showed NSP had very mild growth inhibition effects on Escherichia coli at high dosage but promoted the growth of Pseudomonas aeruginosa and Bacillus halodurans. For MC-LR removal, at an initial concentration of 100μgL(-1), NSP achieved higher than 99% removal. Thus, the results suggest that NSP could be an excellent candidate for controlling M. aeruginosa-related HABs in water bodies. PMID:24268348

  16. NF-YA promotes invasion and angiogenesis by upregulating EZH2-STAT3 signaling in human melanoma cells.

    Science.gov (United States)

    Xu, Zihan; Sun, Yaowen; Guo, Yadong; Qin, Gaoping; Mu, Shengzhi; Fan, Ronghui; Wang, Benfeng; Gao, Wenjie; Wu, Hangli; Wang, Guodong; Zhang, Zhenxin

    2016-06-01

    The process of angiogenesis is essential for tumor development and metastasis. Vascular endothelial growth factor (VEGF), which is overexpressed in most human cancers, has been demonstrated to be a major modulator of angiogenesis. Thus, inhibition of VEGF signaling has the potential for tumor anti-angiogenic therapy. Signal transducer and activator of transcription-3 (STAT3) is a key regulator for angiogenesis by directly binding to the VEGF promoter to upregulate its transcription. Several factors can enhance STAT3 activity to affect angiogenesis. Here, we found that overexpression of nuclear transcription factor-Y alpha (NF-YA) gene could promote cell invasion and angiogenesis accompanying the increase of STAT3 signaling in human melanoma cells. Moreover, the expression and secretion of VEGF was also found to be upregulated by the overexpression of NF-YA gene in melanoma cells. The STAT3 inhibitor was able to attenuate the upregulation of VEGF induced by NF-YA overexpression. Enhancer of zeste homolog 2 (EZH2), the catalytic subunit of the Polycomb repressive complex 2, enhances STAT3 activity by mediating its lysine methylation. We also showed that NF-YA upregulated the expression of EZH2 and NF-YA‑induced angiogenesis could be inhibited by EZH2 knockdown. Taken together, these findings indicate that overexpression of NF-YA contributes to tumor angiogenesis through EZH2-STAT3 signaling in human melanoma cells, highlighting NF-YA as a potential therapeutic target in human melanoma. PMID:27109360

  17. Towards structural understanding of feedback control of arginine biosynthesis: cloning and expression of the gene for the arginine-inhibited N-acetyl-L-glutamate kinase from Pseudomonas aeruginosa, purification and crystallization of the recombinant enzyme and preliminary X-ray studies.

    Science.gov (United States)

    Fernández-Murga, M Leonor; Ramón-Maiques, Santiago; Gil-Ortiz, Fernando; Fita, Ignacio; Rubio, Vicente

    2002-06-01

    N-Acetyl-L-glutamate kinase (NAGK) catalyzes the second step in the pathway of arginine biosynthesis in microorganisms and plants. In many species, it is the pathway-controlling enzyme and is subject to feedback inhibition by arginine. The gene for the best characterized arginine-inhibitable NAGK, that from Pseudomonas aeruginosa, has been cloned in a pET22 plasmid and overexpressed in Escherichia coli. The enzyme was purified in three steps to 95% purity and was shown by cross-linking to form dimers. It was crystallized by the hanging-drop vapour-diffusion method at 277 K in the presence of ADP, Mg and N-acetyl-L-glutamate. The crystallization solution contained 0.1 M sodium cacodylate pH 6.5, 150-170 mM magnesium acetate and 13% polyethylene glycol 8000. Prismatic crystals of maximum dimension approximately 0.5 mm diffract to 2.75 A resolution and belong to space group P1 (unit-cell parameters a = 71.86, b = 98.78, c = 162.9 A, alpha = 91.49, beta = 92.03, gamma = 107.56 degrees ). Packing density considerations agree with 6-18 NAGK monomers in the asymmetric unit, with a corresponding solvent content of 79-36%. Self-rotation function calculations confirm the space group and suggest the presence of 3-7 dimers in the unit cell. PMID:12037312

  18. New molecular connections in angiogenesis

    Institute of Scientific and Technical Information of China (English)

    Qiling Xu; David Wilkinson

    2010-01-01

    @@ In vertebrates, oxygen and nutrients are delivered to tissues by the circula-tion of blood through vessels, comprised of a branched network of endothelial tubes termed the vasculature. Crucial for the formation of blood vessels during development is the process of angiogenesis, in which new sprouts form from pre-existing vessels in a complex cascade of cellular events. This involves the activation of an endothelial cell in the vessel to become a highly exploratory 'tip' cell that migrates to invade the surrounding tissues, while remaining tightly connected to the fol-lowing cells that subsequently generate the tubular structures of a new vessel.

  19. 蜂毒素(Mel)对裸鼠骨肉瘤的抑制作用与影响肿瘤血管生成、细胞增殖和凋亡的关系%The relation of inhibiting angiogenesis and inducing cell apoptosis of melittin ( Mel) on xenotransplanted models of nude mice

    Institute of Scientific and Technical Information of China (English)

    高启龙; 李寒冰; 姚亚民; 陈永强; 杨峰

    2012-01-01

    目的 探讨蜂毒素(melittin,Mel)抑制骨肉瘤裸鼠移植瘤的作用机制.方法 用SD大鼠成骨肉瘤UMR- 106细胞株建立骨肉瘤原位移植瘤裸鼠模型,将18只裸鼠随机等分为3组,生理盐水组、Mel组和顺铂组.观察各组裸鼠骨肉瘤的体积和体质量抑制率;应用免疫组织化学法检测各组裸鼠瘤体CD31、CD105、PCNA蛋白表达;应用TUNEL法检测肿瘤细胞凋亡;运用相关性分析法研究Mel抑制骨肉瘤血管生成与细胞增殖、凋亡的关系.结果 Mel组肿瘤体积和体质量抑制率分别为42.98%和39.03%,Mel能明显抑制CD31、CD105标记的血管生成密度,能明显抑制肿瘤细胞增殖,促进细胞凋亡,且Mel抑制肿瘤血管生成与细胞增殖呈正相关及与细胞凋亡呈负相关.结论 Mel具有抑制骨肉瘤裸鼠移植瘤生长的作用,其作用机制可能与其能够抑制肿瘤血管生成、诱导肿瘤细胞凋亡及抑制细胞增殖有关.%Objective To study the antitumor effects and mechanism of melittin (Mel) on xenotransplanted models of nude mice. Methods Xenotransplanted models of SD rat osteosarcoma (OS) cell UMR-106 in the laevo-hind tibia of nude mice were established. Eighteen inoculated mice were randomly divided into normal saline group, positive control group and Mel group. All the nude mice were sacrificed after treatment. The size and weight of tumor were measured and the tumor volumes, and the inhibition rates of tumor were calculated. The expressions of CD31.CD1D5 and PCNA were deteced by immunohistochemical method. TUNEL semi-quantitative assay was used to study the melittin-induced apoptosis in OS cell line. The relation of inhibiting angiogenesis and inducing cell apoptosis was analyzed by correlation test . Results The mice treated with Mel showed significantly smaller in tumor volume and weight than those of NS group after treatment. Microvessel densities and the protein expressions of CD31 ,CD1()5 and PCNA in Mel group were

  20. Nitrosoglutathione generating nitric oxide nanoparticles as an improved strategy for combating Pseudomonas aeruginosa-infected wounds.

    Science.gov (United States)

    Chouake, Jason; Schairer, David; Kutner, Allison; Sanchez, David A; Makdisi, Joy; Blecher-Paz, Karin; Nacharaju, Parimala; Tuckman-Vernon, Chaim; Gialanella, Phil; Friedman, Joel M; Nosanchuk, Joshua D; Friedman, Adam J

    2012-12-01

    Pseudomonas aeruginosa is a community-acquired, nosocomial pathogen that is an important cause of human morbidity and mortality; it is intrinsically resistant to several antibiotics and is capable of developing resistance to newly developed drugs via a variety of mechanisms. P aeruginosa's ubiquity and multidrug resistance (MDR) warrants the development of innovative methods that overcome its ability to develop resistance. We have previously described a nitric oxide-releasing nanoparticle (NO-np) platform that effectively kills gram-positive and gram-negative organisms in vitro and accelerates clinical recovery in vivo in murine wound and abscess infection models. We have also demonstrated that when glutathione (GSH) is added to NO-np, the nitroso intermediate S-nitrosoglutathione (GSNO) is formed, which has greater activity against P aeruginosa and other gram-negative organisms compared with NO-np alone. In the current study, we evaluate the potential of NO-np to generate GSNO both in vitro and in vivo in a murine excisional wound model infected with an MDR clinical isolate of P aeruginosa. Whereas NO-np alone inhibited P aeruginosa growth in vitro for up to 8 hours, NO-np+GSH completely inhibited P aeruginosa growth for 24 hours. Percent survival in the NO-np+GSH-treated isolates was significantly lower than in the NO-np (36.1% vs 8.3%; P=.004). In addition, NO-np+GSH accelerated wound closure in P aeruginosa-infected wounds, and NO-np+GSH-treated wounds had significantly lower bacterial burden when compared to NO-np-treated wounds (P<.001). We conclude that GSNO is easily generated from our NO-np platform and has the potential to be used as an antimicrobial agent against MDR organisms such as P aeruginosa. PMID:23377518

  1. Angiogenesis inhibitors under study for the treatment of lung cancer.

    Science.gov (United States)

    Shepherd, Frances A; Sridhar, Srikala S

    2003-08-01

    Several classes of agents now exist that target the different steps involved in angiogenesis. These include drugs inhibiting matrix breakdown, the matrix metalloproteinase inhibitors (MMPIs), such as marimastat, prinomastat, BMS275291, BAY12-9566, and neovastat. Trials of this class of agents have all been negative to date. Drugs that block endothelial cell signaling via vascular endothelial growth factor (VEGF) and its receptor (VEGFR) including rhuMAb VEGF, SU5416, SU6668, ZD6474, CP-547,632 and ZD4190 are all in earlier stages of clinical trial. Drugs that are similar to endogenous inhibitors of angiogenesis including interferons have also been evaluated without success. Endostatin has been shown to have an acceptable toxicity profile, but clinical evidence of activity has not yet been demonstrated. There has also been renewed interest in thalidomide. Drugs such as squalamine, celecoxib, ZD6126, TNP-470 and those targeting the integrins are also being evaluated in lung cancer. Despite early enthusiasm for many of these agents, Phase III trials have not yet demonstrated significant increases in overall survival and toxicity remains an issue. It is hoped that as our understanding of the complex process of angiogenesis increases, so will our ability to design more effective targeted therapies. PMID:12867064

  2. Anti-angiogenesis in prostate cancer: knocked down but not out

    Directory of Open Access Journals (Sweden)

    Marijo Bilusic

    2014-06-01

    Full Text Available Angiogenesis is a very complex physiological process, which involves multiple pathways that are dependent on the homeostatic balance between the growth factors (stimulators and inhibitors. This tightly controlled process is stimulated by angiogenic factors, which are present within the tumor and surrounding tumor-associated stromal cells. The dependence of tumor propagation, invasion and metastasis on angiogenesis makes the inhibitors of new blood vessel formation attractive drugs for treating the malignancies. Angiogenesis can be disrupted by several distinct mechanisms: by inhibiting endothelial cells, by interrupting the signaling pathways or by inhibiting other activators of angiogenesis. This strategy has shown therapeutic benefit in several types of solid tumors, leading to Food and Drug Administration (FDA approval of anti-angiogenic agents in the treatment of kidney, non-small cell lung, colon and brain cancers. Although no angiogenesis inhibitors have been approved for patients with metastatic prostate cancer, therapies that target new blood vessel formation are still an emerging and promising area of prostate cancer research.

  3. Bach1 Represses Wnt/β-Catenin Signaling and Angiogenesis

    Science.gov (United States)

    Liu, Junxu; Wang, Xinhong; Niu, Cong; Kang, Xueling; Xu, Jie; Zhou, Zhongwei; Sun, Shaoyang; Wang, Xu; Zheng, Xiaojun; Duan, Shengzhong; Yao, Kang; Qian, Ruizhe; Sun, Ning; Chen, Alex; Wang, Rui; Zhang, Jianyi; Chen, Sifeng; Meng, Dan

    2015-01-01

    Rationale Wnt/β-catenin signaling has an important role in the angiogenic activity of endothelial cells (ECs). Bach1 is a transcription factor and is expressed in ECs, but whether Bach1 regulates angiogenesis is unknown. Objective This study evaluated the role of Bach1 in angiogenesis and Wnt/β-catenin signaling. Methods and Results Hind-limb ischemia was surgically induced in Bach1−/− mice and their wild-type littermates and in C57BL/6J mice treated with adenoviruses coding for Bach1 or GFP. Lack of Bach1 expression was associated with significant increases in perfusion and vascular density and in the expression of proangiogenic cytokines in the ischemic hindlimb of mice, with enhancement of the angiogenic activity of ECs (eg, tube formation, migration, and proliferation). Bach1 overexpression impaired angiogenesis in mice with hind-limb ischemia and inhibited Wnt3a-stimulated angiogenic response and the expression of Wnt/β-catenin target genes, such as interleukin-8 and vascular endothelial growth factor, in human umbilical vein ECs. Interleukin-8 and vascular endothelial growth factor were responsible for the antiangiogenic response of Bach1. Immunoprecipitation and GST pull-down assessments indicated that Bach1 binds directly to TCF4 and reduces the interaction of β-catenin with TCF4. Bach1 overexpression reduces the interaction between p300/CBP and β-catenin, as well as β-catenin acetylation, and chromatin immunoprecipitation experiments confirmed that Bach1 occupies the TCF4-binding site of the interleukin-8 promoter and recruits histone deacetylase 1 to the interleukin-8 promoter in human umbilical vein ECs. Conclusions Bach1 suppresses angiogenesis after ischemic injury and impairs Wnt/β-catenin signaling by disrupting the interaction between β-catenin and TCF4 and by recruiting histone deacetylase 1 to the promoter of TCF4-targeted genes. PMID:26123998

  4. Inhibition of Corneal Neovascularization with the Combination of Bevacizumab and Plasmid Pigment Epithelium-Derived Factor-Synthetic Amphiphile INTeraction-18 (p-PEDF-SAINT-18 Vector in a Rat Corneal Experimental Angiogenesis Model

    Directory of Open Access Journals (Sweden)

    Ching-Hsein Chen

    2013-04-01

    Full Text Available Bevacizumab, a 149-kDa protein, is a recombinant humanized monoclonal antibody to VEGF. PEDF, a 50-kDa glycoprotein, has demonstrated anti-vasopermeability properties. In this study, we demonstrated that the combination of bevacizumab and plasmid pigment epithelium-derived factor-synthetic amphiphile INTeraction-18 (p-PEDF-SAINT-18 has a favorable antiangiogenic effect on corneal NV. Four groups (Group A: 0 μg + 0 μg, B: 0.1 μg + 0.1 μg, C: 1 μg + 1 μg, and D: 10 μg + 10 μg of bevacizumab + p-PEDF-SAINT-18 were prepared and implanted into the rat subconjunctival substantia propria 1.5 mm from the limbus on the temporal side. Then, 1 μg of p-bFGF-SAINT-18 was prepared and implanted into the rat corneal stroma 1.5 mm from the limbus on the same side. The inhibition of NV was observed and quantified from days 1 to 60. Biomicroscopic examination, western blot analysis and immunohistochemistry were used to analyze the 18-kDa bFGF, 50-kDa PEDF and VEGF protein expression. No inhibition activity for normal limbal vessels was noted. Subconjunctival injection with the combination of bevacizumab and p-PEDF-SAINT-18 successfully inhibited corneal NV. The bFGF and PEDF genes were successfully expressed as shown by western blot analysis, and a mild immune response to HLA-DR was shown by immunohistochemistry. We concluded that the combination of bevacizumab and p-PEDF-SAINT-18 may have more potent and prolonged antiangiogenic effects, making it possible to reduce the frequency of subconjunctival.Bevacizumab, a 149-kDa protein, is a recombinant humanized monoclonalantibody to VEGF. PEDF, a 50-kDa glycoprotein, has demonstrated anti-vasopermeabilityproperties. In this study, we demonstrated that the combination of bevacizumaband plasmid pigment epithelium-derived factor-synthetic amphiphile INTeraction-18(p-PEDF-SAINT-18 has a favorable antiangiogenic effect on corneal NV. Four groups(Group A: 0 μg + 0 μg, B: 0.1 μg + 0.1 μg, C: 1 μg + 1 μg, and

  5. The implication of Pseudomonas aeruginosa biofilms in infections

    DEFF Research Database (Denmark)

    Rybtke, Morten Theil; Jensen, Peter Ø; Høiby, Niels; Givskov, Michael Christian; Tolker-Nielsen, Tim; Bjarnsholt, Thomas

    2011-01-01

    Biofilm formation by bacteria is recognized as a major problem in chronic infections due to their recalcitrance against the immune defense and available antibiotic treatment schemes. The opportunistic pathogen Pseudomonas aeruginosa has drawn special attention in this regard due to its severity of...... extracellular matrix encasing the biofilm-associated bacteria as well as the elaborate signaling mechanisms employed by the bacterium enables it to withstand the continuous stresses imposed by the immune defense and administered antibiotics resulting in a state of chronic inflammation that damages the host. The...... immune response leading to this chronic inflammation is described. Finally, novel treatment strategies againstP. aeruginosa are described including, quorum-sensing inhibition and induced biofilm-dispersion. The tolerance towards currently available antimicrobials calls for development of alternative...

  6. Cis-2-dodecenoic acid signal modulates virulence of Pseudomonas aeruginosa through interference with quorum sensing systems and T3SS

    Science.gov (United States)

    2013-01-01

    Background Cis-2-dodecenoic acid (BDSF) is well known for its important functions in intraspecies signaling in Burkholderia cenocepacia. Previous work has also established an important role of BDSF in interspecies and inter-kingdom communications. It was identified that BDSF modulates virulence of Pseudomonas aeruginosa. However, how BDSF interferes with virulence of P. aeruginosa is still not clear. Results We report here that BDSF mediates the cross-talk between B. cenocepacia and P. aeruginosa through interference with quorum sensing (QS) systems and type III secretion system (T3SS) of P. aeruginosa. Bioassay results revealed that exogenous addition of BDSF not only reduced the transcriptional expression of the regulator encoding gene of QS systems, i.e., lasR, pqsR, and rhlR, but also simultaneously decreased the production of QS signals including 3-oxo-C12-HSL, Pseudomonas quinolone signal (PQS) and C4-HSL, consequently resulting in the down-regulation of biofilm formation and virulence factor production of P. aeruginosa. Furthermore, BDSF and some of its derivatives are also capable of inhibiting T3SS of P. aeruginosa at a micromolar level. Treatment with BDSF obviously reduced the virulence of P. aeruginosa in both HeLa cell and zebrafish infection models. Conclusions These results depict that BDSF modulates virulence of P. aeruginosa through interference with QS systems and T3SS. PMID:24134835

  7. The SH3BGR/STAT3 Pathway Regulates Cell Migration and Angiogenesis Induced by a Gammaherpesvirus MicroRNA

    Science.gov (United States)

    Ding, Xiangya; Shen, Chenyou; Hu, Minmin; Zhu, Ying; Qin, Di; Lu, Hongmei; Krueger, Brian J.; Renne, Rolf; Gao, Shou-Jiang; Lu, Chun

    2016-01-01

    Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) is a gammaherpesvirus etiologically associated with KS, a highly disseminated angiogenic tumor of hyperproliferative spindle endothelial cells. KSHV encodes 25 mature microRNAs but their roles in KSHV-induced tumor dissemination and angiogenesis remain unknown. Here, we investigated KSHV-encoded miR-K12-6-3p (miR-K6-3p) promotion of endothelial cell migration and angiogenesis, which are the underlying mechanisms of tumor dissemination and angiogenesis. We found that ectopic expression of miR-K6-3p promoted endothelial cell migration and angiogenesis. Mass spectrometry, bioinformatics and luciferase reporter analyses revealed that miR-K6-3p directly targeted sequence in the 3’ untranslated region (UTR) of SH3 domain binding glutamate-rich protein (SH3BGR). Overexpression of SH3BGR reversed miR-K6-3p induction of cell migration and angiogenesis. Mechanistically, miR-K6-3p downregulated SH3BGR, hence relieved STAT3 from SH3BGR direct binding and inhibition, which was required for miR-K6-3p maximum activation of STAT3 and induction of cell migration and angiogenesis. Finally, deletion of miR-K6 from the KSHV genome abrogated its effect on the SH3BGR/STAT3 pathway, and KSHV-induced migration and angiogenesis. Our results illustrated that, by inhibiting SH3BGR, miR-K6-3p enhances cell migration and angiogenesis by activating the STAT3 pathway, and thus contributes to the dissemination and angiogenesis of KSHV-induced malignancies. PMID:27128969

  8. Inhibition effect of aquaculture water of Salvinia natans (L.)All.on Microcystis aeruginosa PCC7806%槐叶萍养殖水对铜绿微囊藻的抑制效应

    Institute of Scientific and Technical Information of China (English)

    张胜娟; 夏文彤; 杨晓辉; 张庭廷

    2016-01-01

    目的 研究槐叶萍[Salvinia natans(L.)All.]养殖水的抑藻效应及抑制机制.方法 将不同浓度5%、10%、20%和40%槐叶萍养殖水作用于7.5×105cells/mL的铜绿微囊藻(Microcystis aeruginosa),测定其对藻细胞的溶藻率、电导率、藻液核酸和蛋白含量、丙二醛(MDA)含量以及超氧化物歧化酶(SOD)活性等的影响.结果 40%处理组第4d的抑制率达100%,5%处理组第7d的抑制率达65%,藻细胞溶藻率、电导率、藻液中核酸含量,蛋白含量,以及藻细胞MDA含量均随养殖水浓度的增大而升高,SOD酶活性随着槐叶萍养殖水浓度增大先上升,然后又下降.结论 槐叶萍养殖水通过改变藻细胞结构和胞内酶活性等抑制铜绿微囊藻的生长.

  9. Inhibitory Effect of Endostar on Specific Angiogenesis Induced by Human Hepatocellular Carcinoma

    Directory of Open Access Journals (Sweden)

    Qing Ye

    2015-01-01

    Full Text Available To investigate the effect of endostar on specific angiogenesis induced by human hepatocellular carcinoma, this research systematically elucidated the inhibitory effect on HepG2-induced angiogenesis by endostar from 50 ng/mL to 50000 ng/mL. We employed fluorescence quantitative Boyden chamber analysis, wound-healing assay, flow cytometry examination using a coculture system, quantitative analysis of tube formation, and in vivo Matrigel plug assay induced by HCC conditioned media (HCM and HepG2 compared with normal hepatocyte conditioned media (NCM and L02. Then, we found that endostar as a tumor angiogenesis inhibitor could potently inhibit human umbilical vein endothelial cell (HUVEC migration in response to HCM after four- to six-hour action, inhibit HCM-induced HUVEC migration to the lesion part in a dose-dependent manner between 50 ng/mL and 5000 ng/mL at 24 hours, and reduce HUVEC proliferation in a dose-dependent fashion. Endostar inhibited HepG2-induced tube formation of HUVECs which peaked at 50 ng/mL. In vivo Matrigel plug formation was also significantly reduced by endostar in HepG2 inducing system rather than in L02 inducing system. It could be concluded that, at cell level, endostar inhibited the angiogenesis-related biological behaviors of HUVEC in response to HCC, including migration, adhesion proliferation, and tube formation. At animal level, endostar inhibited the angiogenesis in response to HCC in Matrigel matrix.

  10. Anti-Angiogenesis and Anti-Tumor Effect of Shark Cartilage Extract

    Institute of Scientific and Technical Information of China (English)

    王锋; 王漪涛; 谢莉萍; 张荣庆

    2001-01-01

    The effect of shark cartilage extract (SCE), purified in this laboratory, on angiogenesis in chick chorioallantoic membrane (CAM), on the activity of collagenase IV and on human umbilical vein endothelial cell (ECV-304) proliferation and apoptosis was investigated in vitro. The results showed that SCE caused a decline in CAM blood vessels and significantly prevented collagenase-induced collagenolysis. Moreover, SCE produced a dose-dependent decline in ECV-304 proliferation and altered its normal cell cycle. These results suggest that the anti-angiogenesis and anti-tumor effects of shark cartilage may be due to inhibition of endothelial cells as well as collagenolysis.

  11. Welcome to Journal of Angiogenesis Research

    Directory of Open Access Journals (Sweden)

    Slevin Mark

    2009-09-01

    Full Text Available Abstract Angiogenesis is the growth of new blood vessels and is a key process which occurs during both physiological and pathological disease processes. Knowledge of the mechanisms through which this process is initiated and maintained will have a significant impact on the treatment of these diseases. Pathological angiogenesis occurs in major diseases such as cancer, diabetic retinopathies, age-related macular degeneration and atherosclerosis. In other diseases such as stroke and myocardial infarction, insufficient or improper angiogenesis results in tissue loss and ultimately higher morbidity and mortality.

  12. Advances of molecular imaging in tumor angiogenesis

    International Nuclear Information System (INIS)

    Tumor angiogenesis has a close relationship with tumor growth, progression, metastasis and the prognosis of tumor patients. Therefore, tumor anti-angiogenic treatment arouses great public interest. Molecular imaging can characteristically display and measure the biochemical process of organisms at cellular and molecular level in vivo,which is based on the specific binding of molecular probe with high affinity and target molecules. In recent years, molecular imaging has a certain progress on visual and quantitative research of tumor angiogenesis and it is expected to become an important technique in the efficacy evaluation and prognostic assessment. This article summarizes the new advances of molecular imaging technology in tumor angiogenesis. (authors)

  13. Mechanical and Chemical Signaling in Angiogenesis

    CERN Document Server

    2013-01-01

    This volume of Studies in Mechanobiology, Tissue Engineering and Biomaterials describes the most recent advances in angiogenesis research at all biological length scales: molecular, cellular and tissue, in both in vivo and in vitro settings.  Angiogenesis experts from diverse fields including engineering, cell and developmental biology, and chemistry have contributed chapters which focus on the mechanical and chemical signals which affect and promote blood vessel growth. Specific emphasis is given to novel methodologies and biomaterials that have been developed and applied to angiogenesis research. 

  14. Silver against Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Kirketerp-Møller, K.; Kristiansen, S.;

    2007-01-01

    bacteria in both the planktonic and biofilm modes of growth. The action of silver on mature in vitro biofilms of Pseudomonas aeruginosa, a primary pathogen of chronic infected wounds, was investigated. The results show that silver is very effective against mature biofilms of P. aeruginosa, but that the...... silver concentration is important. A concentration of 5-10 ig/mL silver sulfadiazine eradicated the biofilm whereas a lower concentration (1 ig/mL) had no effect. The bactericidal concentration of silver required to eradicate the bacterial biofilm was 10-100 times higher than that used to eradicate...... planktonic bacteria. These observations strongly indicate that the concentration of silver in currently available wound dressings is much too low for treatment of chronic biofilm wounds. It is suggested that clinicians and manufacturers of the said wound dressings consider whether they are treating wounds...

  15. Targeting p35/Cdk5 Signalling via CIP-Peptide Promotes Angiogenesis in Hypoxia

    Science.gov (United States)

    Bosutti, Alessandra; Qi, Jie; Pennucci, Roberta; Bolton, David; Matou, Sabine; Ali, Kamela; Tsai, Li-Huei; Krupinski, Jerzy; Petcu, Eugene B.; Montaner, Joan; Al Baradie, Raid; Caccuri, Francesca; Caruso, Arnaldo; Alessandri, Giulio; Kumar, Shant; Rodriguez, Cristina; Martinez-Gonzalez, Jose; Slevin, Mark

    2013-01-01

    Cyclin-dependent kinase-5 (Cdk5) is over-expressed in both neurons and microvessels in hypoxic regions of stroke tissue and has a significant pathological role following hyper-phosphorylation leading to calpain-induced cell death. Here, we have identified a critical role of Cdk5 in cytoskeleton/focal dynamics, wherein its activator, p35, redistributes along actin microfilaments of spreading cells co-localising with p(Tyr15)Cdk5, talin/integrin beta-1 at the lamellipodia in polarising cells. Cdk5 inhibition (roscovitine) resulted in actin-cytoskeleton disorganisation, prevention of protein co-localization and inhibition of movement. Cells expressing Cdk5 (D144N) kinase mutant, were unable to spread, migrate and form tube-like structures or sprouts, while Cdk5 wild-type over-expression showed enhanced motility and angiogenesis in vitro, which was maintained during hypoxia. Gene microarray studies demonstrated myocyte enhancer factor (MEF2C) as a substrate for Cdk5-mediated angiogenesis in vitro. MEF2C showed nuclear co-immunoprecipitation with Cdk5 and almost complete inhibition of differentiation and sprout formation following siRNA knock-down. In hypoxia, insertion of Cdk5/p25-inhibitory peptide (CIP) vector preserved and enhanced in vitro angiogenesis. These results demonstrate the existence of critical and complementary signalling pathways through Cdk5 and p35, and through which coordination is a required factor for successful angiogenesis in sustained hypoxic condition. PMID:24098701

  16. Targeting p35/Cdk5 signalling via CIP-peptide promotes angiogenesis in hypoxia.

    Directory of Open Access Journals (Sweden)

    Alessandra Bosutti

    Full Text Available Cyclin-dependent kinase-5 (Cdk5 is over-expressed in both neurons and microvessels in hypoxic regions of stroke tissue and has a significant pathological role following hyper-phosphorylation leading to calpain-induced cell death. Here, we have identified a critical role of Cdk5 in cytoskeleton/focal dynamics, wherein its activator, p35, redistributes along actin microfilaments of spreading cells co-localising with p(Tyr15Cdk5, talin/integrin beta-1 at the lamellipodia in polarising cells. Cdk5 inhibition (roscovitine resulted in actin-cytoskeleton disorganisation, prevention of protein co-localization and inhibition of movement. Cells expressing Cdk5 (D144N kinase mutant, were unable to spread, migrate and form tube-like structures or sprouts, while Cdk5 wild-type over-expression showed enhanced motility and angiogenesis in vitro, which was maintained during hypoxia. Gene microarray studies demonstrated myocyte enhancer factor (MEF2C as a substrate for Cdk5-mediated angiogenesis in vitro. MEF2C showed nuclear co-immunoprecipitation with Cdk5 and almost complete inhibition of differentiation and sprout formation following siRNA knock-down. In hypoxia, insertion of Cdk5/p25-inhibitory peptide (CIP vector preserved and enhanced in vitro angiogenesis. These results demonstrate the existence of critical and complementary signalling pathways through Cdk5 and p35, and through which coordination is a required factor for successful angiogenesis in sustained hypoxic condition.

  17. A peptide fusion protein in hibits angiogenesis and tumorgrowth by blocking VEGF binding to KDR

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Vascular endothelial growth factor (VEGF) binding to its tyrosine kinase receptors (KDR/FLK1, Flt-1) induces angiogenesis. In search of the peptides blocking VEGF binding to its receptor KDR/FLK1 to inhibit tumor- angiogenesis and growth, we screened a phage display peptide library with KDR as target protein, and some candidate peptides were isolated. In this study, we cloned the DNA fragment coding the peptide K237 from the library, into a vector pQE42 to express fusion protein DHFR-K237 in E. coli M15. The affection of fusion protein DHFR-K237 on endothelial cell proliferation and angiogenesis was investigated. In vitro, DHFR-K237 could completely block VEGF binding to KDR and significantly inhibit the VEGF-medi- ated proliferation of the human vascular endothelial cells. In vivo, DHFR-K237 inhibited angiogenesis in chick embryo chorioa- llantoric membrane and tumor growth in nude mice. These results suggest that K237 is an effective antagonist of VEGF binding to KDR, and could be a potential agent for cancer biotherapy.

  18. Phosphate taxis in Pseudomonas aeruginosa.

    OpenAIRE

    Kato, J.; Ito, A.; Nikata, T; Ohtake, H

    1992-01-01

    Pseudomonas aeruginosa was shown to be attracted to phosphate. The chemotactic response was induced by phosphate starvation. The specificity of chemoreceptors for phosphate was high so that no other tested phosphorus compounds elicited a chemotactic response as strong as that elicited by phosphate. Competition experiments showed that the chemoreceptors for phosphate appeared to be different from those for the common amino acids. Mutants constitutive for alkaline phosphatase showed the chemota...

  19. A novel peptide derived from human apolipoprotein E is an inhibitor of tumor growth and ocular angiogenesis.

    Directory of Open Access Journals (Sweden)

    Partha S Bhattacharjee

    Full Text Available Angiogenesis is a hallmark of tumor development and metastasis and now a validated target for cancer treatment. We previously reported that a novel dimer peptide (apoEdp derived from the receptor binding region of human apolipoprotein E (apoE inhibits virus-induced angiogenesis. However, its role in tumor anti-angiogenesis is unknown. This study demonstrates that apoEdp has anti-angiogenic property in vivo through reduction of tumor growth in a mouse model and ocular angiogenesis in a rabbit eye model. Our in vitro studies show that apoEdp inhibits human umbilical vein endothelial cell proliferation, migration, invasion and capillary tube formation. We document that apoEdp inhibits vascular endothelial growth factor-induced Flk-1 activation as well as downstream signaling pathways that involve c-Src, Akt, eNOS, FAK, and ERK1/2. These in vitro data suggest potential sites of the apoE dipeptide inhibition that could occur in vivo.This is the first evidence that a synthetic dimer peptide mimicking human apoE has anti-angiogenesis functions and could be an anti-tumor drug candidate.

  20. HIF-2alpha-dependent PAI-1 induction contributes to angiogenesis in hepatocellular carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Geis, Theresa, E-mail: geis@biochem.uni-frankfurt.de [Institute of Biochemistry I—Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Döring, Claudia, E-mail: C.Doering@em.uni-frankfurt.de [Dr. Senckenberg Institute of Pathology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Popp, Rüdiger, E-mail: popp@vrc.uni-frankfurt.de [Institute for Vascular Signalling, Centre for Molecular Medicine, Faculty of Medicine Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main (Germany); Grossmann, Nina, E-mail: grossmann@biochem.uni-frankfurt.de [Institute of Biochemistry I—Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Fleming, Ingrid, E-mail: fleming@vrc.uni-frankfurt.de [Institute for Vascular Signalling, Centre for Molecular Medicine, Faculty of Medicine Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60596 Frankfurt am Main (Germany); Hansmann, Martin-Leo, E-mail: m.l.hansmann@em.uni-frankfurt.de [Dr. Senckenberg Institute of Pathology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Dehne, Nathalie, E-mail: dehne@biochem.uni-frankfurt.de [Institute of Biochemistry I—Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany); Brüne, Bernhard, E-mail: b.bruene@biochem.uni-frankfurt.de [Institute of Biochemistry I—Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt am Main (Germany)

    2015-02-01

    Hypoxia promotes progression of hepatocellular carcinoma (HCC), not only affecting tumor cell proliferation and invasion, but also angiogenesis and thus, increasing the risk of metastasis. Hypoxia inducible factors (HIF)-1α and -2α cause adaptation of tumors to hypoxia, still with uncertainties towards the angiogenic switch. We created a stable knockdown of HIF-1α and HIF-2α in HepG2 cells and generated cocultures of HepG2 spheroids with embryonic bodies as an in vitro tumor model mimicking the cancer microenvironment. The naturally occuring oxygen and nutrient gradients within the cocultures allow us to question the role of distinct HIF isoforms in regulating HCC angiogenesis. In cocultures with a HIF-2α knockdown, angiogenesis was attenuated, while the knockdown of HIF-1α was without effect. Microarray analysis identified plasminogen activator inhibitor 1 (PAI-1) as a HIF-2α target gene in HepG2 cells. The knockdown of PAI-1 in HepG2 cells also lowered angiogenesis. Blocking plasmin, the downstream target of PAI-1, with aprotinin in HIF-2α knockdown (k/d) cells proved a cause–effect relation and restored angiogenesis, with no effect on control cocultures. Suggestively, HIF-2α increases PAI-1 to lower concentrations of active plasmin, thereby supporting angiogenesis. We conclude that the HIF-2α target gene PAI-1 favors the angiogenic switch in HCC. - Highlights: • HepG2 were cocultured with stem cells to mimic a cancer microenvironment in vitro. • A knockdown of HIF-2α reduces angiogenesis. • PAI-1 was identified as a HIF-2α target gene in HCC by microarray analysis. • HIF-2α induces the angiogenic switch via inhibition of plasmin.

  1. HIF-2alpha-dependent PAI-1 induction contributes to angiogenesis in hepatocellular carcinoma

    International Nuclear Information System (INIS)

    Hypoxia promotes progression of hepatocellular carcinoma (HCC), not only affecting tumor cell proliferation and invasion, but also angiogenesis and thus, increasing the risk of metastasis. Hypoxia inducible factors (HIF)-1α and -2α cause adaptation of tumors to hypoxia, still with uncertainties towards the angiogenic switch. We created a stable knockdown of HIF-1α and HIF-2α in HepG2 cells and generated cocultures of HepG2 spheroids with embryonic bodies as an in vitro tumor model mimicking the cancer microenvironment. The naturally occuring oxygen and nutrient gradients within the cocultures allow us to question the role of distinct HIF isoforms in regulating HCC angiogenesis. In cocultures with a HIF-2α knockdown, angiogenesis was attenuated, while the knockdown of HIF-1α was without effect. Microarray analysis identified plasminogen activator inhibitor 1 (PAI-1) as a HIF-2α target gene in HepG2 cells. The knockdown of PAI-1 in HepG2 cells also lowered angiogenesis. Blocking plasmin, the downstream target of PAI-1, with aprotinin in HIF-2α knockdown (k/d) cells proved a cause–effect relation and restored angiogenesis, with no effect on control cocultures. Suggestively, HIF-2α increases PAI-1 to lower concentrations of active plasmin, thereby supporting angiogenesis. We conclude that the HIF-2α target gene PAI-1 favors the angiogenic switch in HCC. - Highlights: • HepG2 were cocultured with stem cells to mimic a cancer microenvironment in vitro. • A knockdown of HIF-2α reduces angiogenesis. • PAI-1 was identified as a HIF-2α target gene in HCC by microarray analysis. • HIF-2α induces the angiogenic switch via inhibition of plasmin

  2. Basis of Arginine Sensitivity of Microbial N-Acetyl-l-Glutamate Kinases: Mutagenesis and Protein Engineering Study with the Pseudomonas aeruginosa and Escherichia coli Enzymes▿

    OpenAIRE

    Fernández-Murga, M. Leonor; Rubio, Vicente

    2008-01-01

    N-Acetylglutamate kinase (NAGK) catalyzes the second step of arginine biosynthesis. In Pseudomonas aeruginosa, but not in Escherichia coli, this step is rate limiting and feedback and sigmoidally inhibited by arginine. Crystal structures revealed that arginine-insensitive E. coli NAGK (EcNAGK) is homodimeric, whereas arginine-inhibitable NAGKs, including P. aeruginosa NAGK (PaNAGK), are hexamers in which an extra N-terminal kinked helix (N-helix) interlinks three dimers. By introducing single...

  3. Potent Antibacterial Antisense Peptide-Peptide Nucleic Acid Conjugates Against Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Ghosal, Anubrata; Nielsen, Peter E

    2012-01-01

    inhibition of P. aeruginosa strains PA01, PA14, and LESB58 at 1-2¿µM concentrations without any indication of bacterial membrane disruption (even at 20¿µM), and resulted in specific reduction of the targeted mRNA levels. One of the four compounds showed clear bactericidal activity while the other...

  4. The ubiquitin-proteasome system meets angiogenesis.

    Science.gov (United States)

    Rahimi, Nader

    2012-03-01

    A strict physiological balance between endogenous proangiogenic and antiangiogenic factors controls endothelial cell functions, such that endothelial cell growth is normally restrained. However, in pathologic angiogenesis, a shift occurs in the balance of regulators, favoring endothelial growth. Much of the control of angiogenic events is instigated through hypoxia-induced VEGF expression. The ubiquitin-proteasome system (UPS) plays a central role in fine-tuning the functions of core proangiogenic proteins, including VEGF, VEGFR-2, angiogenic signaling proteins (e.g., the PLCγ1 and PI3 kinase/AKT pathways), and other non-VEGF angiogenic pathways. The emerging mechanisms by which ubiquitin modification of angiogenic proteins control angiogenesis involve both proteolytic and nonproteolytic functions. Here, I review recent advances that link the UPS to regulation of angiogenesis and highlight the potential therapeutic value of the UPS in angiogenesis-associated diseases. PMID:22357635

  5. Semaphorin signaling in angiogenesis, lymphangiogenesis and cancer

    Institute of Scientific and Technical Information of China (English)

    Atsuko Sakurai; Colleen Doci; J Silvio Gutkind

    2012-01-01

    Angiogenesis,the formation of new blood vessels from preexisting vasculature,is essential for many physiological processes,and aberrant angiogenesis contributes to some of the most prevalent human diseases,including cancer.Angiogenesis is controlled by delicate balance between pro- and anti-angiogenic signals.While pro-angiogenic signaling has been extensively investigated,how developmentally regulated,naturally occurring anti-angiogenic molecules prevent the excessive growth of vascular and lymphatic vessels is still poorly understood.In this review,we summarize the current knowledge on how semaphorins and their receptors,plexins and neuropilins,control normal and pathological angiogenesis,with an emphasis on semaphorin-regulated anti-angiogenic signaling circuitries in vascular and lymphatic endothelial cells.This emerging body of information may afford the opportunity to develop novel anti-angiogenic therapeutic strategies.

  6. Aberrant angiogenesis: The gateway to diabetic complications

    Directory of Open Access Journals (Sweden)

    Sunil K Kota

    2012-01-01

    Full Text Available Diabetes Mellitus is a metabolic cum vascular syndrome with resultant abnormalities in both micro- and macrovasculature. The adverse long-term effects of diabetes mellitus have been described to involve many organ systems. Apart from hyperglycemia, abnormalities of angiogenesis may cause or contribute toward many of the clinical manifestations of diabetes. These are implicated in the pathogenesis of vascular abnormalities of the retina, kidneys, and fetus, impaired wound healing, increased risk of rejection of transplanted organs, and impaired formation of coronary collaterals. A perplexing feature of the aberrant angiogenesis is that excessive and insufficient angiogenesis can occur in different organs in the same individual. The current article hereby reviews the molecular mechanisms including abnormalities in growth factors, cytokines, and metabolic derangements, clinical implications, and therapeutic options of dealing with abnormal angiogenesis in diabetes.

  7. 电穿孔介导免疫调节因子及血管生成抑制因子转移治疗脉络膜黑色素瘤%Inhibition of choroidal melanoma cell growth by electroporation-mediated transfer of immunologic cytokines or anti-angiogenesis genes

    Institute of Scientific and Technical Information of China (English)

    韦芳; 王丰; 刘新建; 李惠明; 田毓华; 黄倩

    2011-01-01

    μμg antiVEGF121 + sFLK-1 +ExTek and 30 μg mIL2+mIL12 respectively by electroporation. Seven, 14, 21, 28, 35 and 42 days after treatment, the tumor volumes were measured to calculate the tumor inhibition rate. Results ELISA and Western blot showed that mIL2, mIL12, sFLK-1 and ExTek were expressed after electroporation, VEGF expression was decreased remarkably. After treatment, the tumors of mIL2 + mIL12 group were greatly inhibited with a tumor inhibition rate of 97.33%, while the tumors of antiVEGF121 + sFLK-1 + ExTek and pNGVL group were partially inhibited with tumor inhibition rates of 53. 33% and 36. 33% respectively.Conclusions Immunologic cytokines transfer mediated by electroporation can inhibit the growth of melanoma,but anti-angiogenesis only have a mild effects.

  8. Biomarkers of Angiogenesis in Colorectal Cancer

    OpenAIRE

    Luay Mousa; Salem, Mohamed E.; Sameh Mikhail

    2015-01-01

    Colorectal cancer (CRC) is the third most common cancer worldwide and accounts for 10% of all new cancer diagnoses. Angiogenesis is a tightly regulated process that is mediated by a group of angiogenic factors such as vascular endothelial growth factor and its receptors. Given the widespread use of antiangiogenic agents in CRC, there has been considerable interest in the development of methods to identify novel markers that can predict outcome in the treatment of this disease with angiogenesi...

  9. Endogenous ribosomal protein L29 (RPL29: a newly identified regulator of angiogenesis in mice

    Directory of Open Access Journals (Sweden)

    Dylan T. Jones

    2013-01-01

    Cellular ribosomal protein L29 (RPL29 is known to be important in protein synthesis, but its function during angiogenesis has never been described before. We have shown previously that mice lacking β3-integrins support enhanced tumour angiogenesis and, therefore, deletion of endothelial αvβ3 can provide a method for discovery of novel regulators of tumour angiogenesis. Here, we describe significant upregulation of RPL29 in β3-null endothelial cells at both the mRNA and protein level. Ex vivo, we show that VEGF-stimulated microvessel sprouting was reduced significantly in Rpl29-heterozygous and Rpl29-null aortic ring assays compared with wild-type controls. Moreover, we provide in vivo evidence that RPL29 can regulate tumour angiogenesis. Tumour blood vessel density in subcutaneously grown Lewis lung carcinomas was reduced significantly in Rpl29-mutant mice. Additionally, depletion of Rpl29 using RNA interference inhibited VEGF-induced aortic ring sprouting, suggesting that anti-RPL29 strategies might have anti-angiogenic potential. Overall, our results identify that loss or depletion of RPL29 can reduce angiogenesis in vivo and ex vivo.

  10. Development of collateral vessels: A new paradigm in CAM angiogenesis model.

    Science.gov (United States)

    Gatne, Dipti P; Mungekar, Snehal; Addepalli, Veeranjaneyulu; Mohanraj, Krishnapriya; Ghone, Sanjeevani A; Rege, Nirmala N

    2016-01-01

    The chorioallantoic membrane (CAM) assay is one of the most widely used models to study angiogenesis. In this study, collateral vessel development is reported in CAM assay useful in analysis of angiogenesis. Four days old white Leghorn fertilized chicken eggs were inoculated with vehicle, standard or test angiogenesis inhibitor using standard protocol. Central vessel growth was seen tapering down and collateral vessels were developed from the lower side of the chorioallantoic membrane moving upward in 12 days old standard or test treated CAMs. In the absence of the central vessel, collateral blood supply helped in survival of embryos. Hence, development of collateral vessels was used for ranking of blood vessels and angiogenesis in addition to well-known standard parameters related to central vessel. The finding could differentiate molecules inhibiting angiogenesis with or without collateralization which is crucial in anti-angiogenic therapy used for cardiovascular diseases and cancer. This study proposes a new avenue to distinguish pro-angiogenic molecules from anti-angiogenic ones as well as anti-angiogenic molecules which may or may not support alternative vascularization pathway that would have great impact on future angiogenic and anti-angiogenic therapy. PMID:26390964

  11. Antibiofilm activities of certain biocides in Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    S Gharavi

    2009-12-01

    Full Text Available Background and objectives: Pseudomonas aeruginosa is an opportunistic pathogen that can produce biofilm. Biofilm is a complex, three dimensional structure in which microorganisms are attached to a surface and embedded in a matrix made of extracellular polymers. Due to high resistance to antimicrobial agents, biofilms create difficulties in various situations in healthcare. In this study, antibiofilm activities of some biocides in P. aeruginosa were studied."nMaterials and methods: The biofilm production ability of P. aeruginosa strain 214 (a clinical isolate was determined in the presence of six biocides including of ethylene diamine tetra acetic acid (EDTA, silver nitrate (AgNO3, bismuth ethanedithiol (BisEDT, bismuth dimercaprol (BisBAL, bismuth-2-mercaptoethanol (BisMEO and bismuth propanedithiol (BisPDT using the modified microtiter plate method. Bactericidal activity of the biocides against biofilm and planktonic cells was investigated. In this study, permeation of biocides through alginate layer was evaluated with a sandwich cup method."nResults: The results demonstrated that in the presence of bismuth thiols, biofilm production in MIC and sub MIC concentrations was considerably inhibited. Bismuththiols had lower antibiofilm bactericidal activity than EDTA and silver nitrate. One possible mechanism of biofilm resistance is exopolysaccharide production which prevents the access of antimicrobial agents to cells inside the biofilm. Bismuth thiols could not penetrate, while EDTA and silver nitrate had high penetration rate."nConclusions: Due to the frequent use of silver nitrate and EDTA in various applications, low efficacy in the inhibition of biofilm production, unstudied toxicity of BTs for humans and high efficacy in the inhibition of biofilm production, it is suggested that combinatory effect of BTs with silver nitrate or EDTA on biofilms and biofilm production be investigated.

  12. Biosynthesis of pyocyanin pigment by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    M.Z. El-Fouly

    2015-01-01

    Full Text Available Sixty-three isolates belonging to the genus Pseudomonas were isolated from different environmental sources including; soil, water and clinical specimens. Twenty out of them were identified as Pseudomonas aeruginosa and individually screened for pyocyanin production. P. aeruginosa R1; isolated from rice-cultivated soil and P. aeruginosa U3 selected from clinical specimen (Urinary tract infection were the highest pyocyanin producers; pyocyanin production reached 9.3 and 5.9 μg/ml, respectively on synthetic glucose supplemented nutrient medium (GSNB. The identification of both selected strains (P. aeruginosa R1 and P. aeruginosa U3 was confirmed by 16S rRNA, the similarity with other strains available in database was 97% (with P. aeruginosa FPVC 14 and 94% (with P. aeruginosa 13.A, respectively. P. aeruginosa R1 and P. aeruginosa U3 are accessed at gene bank with accession numbers KM924432 and KM603511, in the same order. Pyocyanin was extracted by standard methods, purified by column chromatography and characterized by UV-Vis absorption, mass spectrometry and nuclear magnetic resonance. The antimicrobial activity of purified pyocyanin against multi-drug resistant microbes was investigated; the efficiency of pyocyanin was more obvious in Gram +ve bacteria than Gram−ve bacteria and yeast. To reduce the cost of pyocyanin production, a new conventional medium based on cotton seed meal supplemented with peptone was designed. The pyocyanin production of both selected strains P. aeruginosa R1 and P. aeruginosa U3 using the new medium is increased by 30.1% and 17.2%, respectively in comparison with synthetic GSNB medium, while the cost of production process is reduced by 56.7%.

  13. Antimicrobial activity of green tea extract against isolates of methicillin-resistant Staphylococcus aureus and multi-drug resistant Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    Maksum Radji; Rafael Adi Agustama; Berna Elya; Conny Riana Tjampakasari

    2013-01-01

    Objective: To evaluate antibacterial activity of the Indonesian water soluble green tea extract,Camellia sinensis, against clinical isolates of methicillin-resistant Staphylococcus aureus (S. aureus) (MRSA) and multi-drug resistant Pseudomonas aeruginosa (MDR-P. aeruginosa). Methods:Antimicrobial activity of green tea extract was determined by the disc diffusion method and the minimum inhibitory concentration (MIC) was determined by the twofold serial broth dilutions method. The tested bacteria using in this study were the standard strains and multi-drug resistant clinical isolates of S. aureus and P. aeruginosa, obtained from Laboratory of Clinical Microbiology, Faculty of Medicine, University of Indonesia. Results:The results showed that the inhibition zone diameter of green tea extracts for S. aureus ATCC 25923 and MRSA were (18.970±0.287) mm, and (19.130±0.250) mm respectively. While the inhibition zone diameter for P. aeruginosa ATCC 27853 and MDR-P. aeruginosa were (17.550±0.393) mm and (17.670±0.398) mm respectively. The MIC of green tea extracts against S. aureus ATCC 25923 and MRSA were 400 µg/mL and 400 µg/mL, respectively, whereas the MIC for P. aeruginosa ATCC 27853 and MDR-P. aeruginosa were 800 µg/mL, and 800 µg/mL, respectively. Conclusions: Camellia sinensis leaves extract could be useful in combating emerging drug-resistance caused by MRSA and P. aeruginosa.

  14. Broad targeting of angiogenesis for cancer prevention and therapy.

    Science.gov (United States)

    Wang, Zongwei; Dabrosin, Charlotta; Yin, Xin; Fuster, Mark M; Arreola, Alexandra; Rathmell, W Kimryn; Generali, Daniele; Nagaraju, Ganji P; El-Rayes, Bassel; Ribatti, Domenico; Chen, Yi Charlie; Honoki, Kanya; Fujii, Hiromasa; Georgakilas, Alexandros G; Nowsheen, Somaira; Amedei, Amedeo; Niccolai, Elena; Amin, Amr; Ashraf, S Salman; Helferich, Bill; Yang, Xujuan; Guha, Gunjan; Bhakta, Dipita; Ciriolo, Maria Rosa; Aquilano, Katia; Chen, Sophie; Halicka, Dorota; Mohammed, Sulma I; Azmi, Asfar S; Bilsland, Alan; Keith, W Nicol; Jensen, Lasse D

    2015-12-01

    Deregulation of angiogenesis--the growth of new blood vessels from an existing vasculature--is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding "the most important target" may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the "Halifax Project" within the "Getting to know cancer" framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the

  15. Innate immune responses to Pseudomonas aeruginosa infection

    OpenAIRE

    Lavoie, Elise G.; Wangdi, Tamding; Kazmierczak, Barbara I.

    2011-01-01

    Innate immune responses play a critical role in controlling acute infections due to Pseudomonas aeruginosa in both mice and in humans. In this review we focus on innate immune recognition and clearance mechanisms that are important for controlling P. aeruginosa in the mammalian lung, with particular attention to those that influence the outcome of in vivo infection in murine models.

  16. In vitro efficacy of octenidine and polihexanide against biofilms composed of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Siebert, Jörg

    2007-12-01

    Full Text Available The removal and inactivation of biofilms through wound cleansing solutions with and without antimicrobial supplements (octenidine dihydrochloride, polihexanide have been investigated in a laboratory model with Pseudomonas aeruginosa. Plastic slides of polycarbonate grown over with P. aeruginosa for 1 week were incubated with the cleansing solutions for 60 min. Removal and inactivation of the biofilm were determined by staining with crystal violet and by plating, respectively. No inhibition occurred by supplementing the cleansing solutions with octenidine or polyhexanide. By using octenidine and polihexanide a pronounced decrease in colony numbers of the biofilm was achieved compared to pure salt solutions (NaCl, Ringer.

  17. Tumor-host interactions in the gallbladder suppress distal angiogenesis and tumor growth: involvement of transforming growth factor beta1.

    Science.gov (United States)

    Gohongi, T; Fukumura, D; Boucher, Y; Yun, C O; Soff, G A; Compton, C; Todoroki, T; Jain, R K

    1999-10-01

    Angiogenesis inhibitors produced by a primary tumor can create a systemic anti-angiogenic environment and maintain metastatic tumor cells in a state of dormancy. We show here that the gallbladder microenvironment modulates the production of transforming growth factor (TGF)-beta1, a multifunctional cytokine that functions as an endogenous anti-angiogenic and anti-tumor factor in a cranial window preparation. We found that a wide variety of human gallbladder tumors express TGF-beta1 irrespective of histologic type. We implanted a gel impregnated with basic fibroblast growth factor or Mz-ChA-2 tumor in the cranial windows of mice without tumors or mice with subcutaneous or gallbladder tumors to study angiogenesis and tumor growth at a secondary site. Angiogenesis, leukocyte-endothelial interaction in vessels and tumor growth in the cranial window were substantially inhibited in mice with gallbladder tumors. The concentration of TGF-beta1 in the plasma of mice with gallbladder tumors was 300% higher than that in the plasma of mice without tumors or with subcutaneous tumors. In contrast, there was no difference in the plasma levels of other anti- and pro-angiogenic factors. Treatment with neutralizing antibody against TGF-beta1 reversed both angiogenesis suppression and inhibition of leukocyte rolling induced by gallbladder tumors. TGF-beta1 also inhibited Mz-ChA-2 tumor cell proliferation. Our results indicate that the production of anti-angiogenesis/proliferation factors is regulated by tumor-host interactions. PMID:10502827

  18. Peptide-coated gold nanoparticles for modulation of angiogenesis in vivo

    Science.gov (United States)

    Roma-Rodrigues, Catarina; Heuer-Jungemann, Amelie; Fernandes, Alexandra R; Kanaras, Antonios G; Baptista, Pedro V

    2016-01-01

    In this work, peptides designed to selectively interact with cellular receptors involved in the regulation of angiogenesis were anchored to oligo-ethylene glycol-capped gold nanoparticles (AuNPs) and used to evaluate the modulation of vascular development using an ex ovo chick chorioallantoic membrane assay. These nanoparticles alter the balance between naturally secreted pro- and antiangiogenic factors, under various biological conditions, without causing toxicity. Exposure of chorioallantoic membranes to AuNP–peptide activators of angiogenesis accelerated the formation of new arterioles when compared to scrambled peptide-coated nanoparticles. On the other hand, antiangiogenic AuNP–peptide conjugates were able to selectively inhibit angiogenesis in vivo. We demonstrated that AuNP vectorization is crucial for enhancing the effect of active peptides. Our data showed for the first time the effective control of activation or inhibition of blood vessel formation in chick embryo via AuNP-based formulations suitable for the selective modulation of angiogenesis, which is of paramount importance in applications where promotion of vascular growth is desirable (eg, wound healing) or ought to be contravened, as in cancer development. PMID:27354794

  19. Angiogenesis is induced by airway smooth muscle strain.

    Science.gov (United States)

    Hasaneen, Nadia A; Zucker, Stanley; Lin, Richard Z; Vaday, Gayle G; Panettieri, Reynold A; Foda, Hussein D

    2007-10-01

    Angiogenesis is an important feature of airway remodeling in both chronic asthma and chronic obstructive pulmonary disease (COPD). Airways in those conditions are exposed to excessive mechanical strain during periods of acute exacerbations. We recently reported that mechanical strain of human airway smooth muscle (HASM) led to an increase in their proliferation and migration. Sustained growth in airway smooth muscle in vivo requires an increase in the nutritional supply to these muscles, hence angiogenesis. In this study, we examined the hypothesis that cyclic mechanical strain of HASM produces factors promoting angiogenic events in the surrounding vascular endothelial cells. Our results show: 1) a significant increase in human lung microvascular endothelial cell (HMVEC-L) proliferation, migration, and tube formation following incubation in conditioned media (CM) from HASM cells exposed to mechanical strain; 2) mechanical strain of HASM cells induced VEGF expression and release; 3) VEGF neutralizing antibodies inhibited the proliferation, migration, and tube formations of HMVEC-L induced by the strained airway smooth muscle CM; 4) mechanical strain of HASM induced a significant increase in hypoxia-inducible factor-1alpha (HIF-1alpha) mRNA and protein, a transcription factor required for VEGF gene transcription; and 5) mechanical strain of HASM induced HIF-1alpha/VEGF through dual phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) and ERK pathways. In conclusion, exposing HASM cells to mechanical strain induces signal transduction pathway through PI3K/Akt/mTOR and ERK pathways that lead to an increase in HIF-1alpha, a transcription factor required for VEGF expression. VEGF release by mechanical strain of HASM may contribute to the angiogenesis seen with repeated exacerbation of asthma and COPD. PMID:17693481

  20. Frondoside a suppressive effects on lung cancer survival, tumor growth, angiogenesis, invasion, and metastasis.

    Science.gov (United States)

    Attoub, Samir; Arafat, Kholoud; Gélaude, An; Al Sultan, Mahmood Ahmed; Bracke, Marc; Collin, Peter; Takahashi, Takashi; Adrian, Thomas E; De Wever, Olivier

    2013-01-01

    A major challenge for oncologists and pharmacologists is to develop less toxic drugs that will improve the survival of lung cancer patients. Frondoside A is a triterpenoid glycoside isolated from the sea cucumber, Cucumaria frondosa and was shown to be a highly safe compound. We investigated the impact of Frondoside A on survival, migration and invasion in vitro, and on tumor growth, metastasis and angiogenesis in vivo alone and in combination with cisplatin. Frondoside A caused concentration-dependent reduction in viability of LNM35, A549, NCI-H460-Luc2, MDA-MB-435, MCF-7, and HepG2 over 24 hours through a caspase 3/7-dependent cell death pathway. The IC50 concentrations (producing half-maximal inhibition) at 24 h were between 1.7 and 2.5 µM of Frondoside A. In addition, Frondoside A induced a time- and concentration-dependent inhibition of cell migration, invasion and angiogenesis in vitro. Frondoside A (0.01 and 1 mg/kg/day i.p. for 25 days) significantly decreased the growth, the angiogenesis and lymph node metastasis of LNM35 tumor xenografts in athymic mice, without obvious toxic side-effects. Frondoside A (0.1-0.5 µM) also significantly prevented basal and bFGF induced angiogenesis in the CAM angiogenesis assay. Moreover, Frondoside A enhanced the inhibition of lung tumor growth induced by the chemotherapeutic agent cisplatin. These findings identify Frondoside A as a promising novel therapeutic agent for lung cancer. PMID:23308143

  1. Frondoside a suppressive effects on lung cancer survival, tumor growth, angiogenesis, invasion, and metastasis.

    Directory of Open Access Journals (Sweden)

    Samir Attoub

    Full Text Available A major challenge for oncologists and pharmacologists is to develop less toxic drugs that will improve the survival of lung cancer patients. Frondoside A is a triterpenoid glycoside isolated from the sea cucumber, Cucumaria frondosa and was shown to be a highly safe compound. We investigated the impact of Frondoside A on survival, migration and invasion in vitro, and on tumor growth, metastasis and angiogenesis in vivo alone and in combination with cisplatin. Frondoside A caused concentration-dependent reduction in viability of LNM35, A549, NCI-H460-Luc2, MDA-MB-435, MCF-7, and HepG2 over 24 hours through a caspase 3/7-dependent cell death pathway. The IC50 concentrations (producing half-maximal inhibition at 24 h were between 1.7 and 2.5 µM of Frondoside A. In addition, Frondoside A induced a time- and concentration-dependent inhibition of cell migration, invasion and angiogenesis in vitro. Frondoside A (0.01 and 1 mg/kg/day i.p. for 25 days significantly decreased the growth, the angiogenesis and lymph node metastasis of LNM35 tumor xenografts in athymic mice, without obvious toxic side-effects. Frondoside A (0.1-0.5 µM also significantly prevented basal and bFGF induced angiogenesis in the CAM angiogenesis assay. Moreover, Frondoside A enhanced the inhibition of lung tumor growth induced by the chemotherapeutic agent cisplatin. These findings identify Frondoside A as a promising novel therapeutic agent for lung cancer.

  2. Lichen secondary metabolite evernic acid as potential quorum sensing inhibitor against Pseudomonas aeruginosa.

    Science.gov (United States)

    Gökalsın, Barış; Sesal, Nüzhet Cenk

    2016-09-01

    Cystic Fibrosis is a genetic disease and it affects the respiratory and digestive systems. Pseudomonas aeruginosa infections in Cystic Fibrosis are presented as the main cause for high mortality and morbidity rates. Pseudomonas aeruginosa populations can regulate their virulence gene expressions via the bacterial communication system: quorum sensing. Inhibition of quorum sensing by employing quorum sensing inhibitors can leave the bacteria vulnerable. Therefore, determining natural sources to obtain potential quorum sensing inhibitors is essential. Lichens have ethnobotanical value for their medicinal properties and it is possible that their secondary metabolites have quorum sensing inhibitor properties. This study aims to investigate an alternative treatment approach by utilizing lichen secondary metabolite evernic acid to reduce the expressions of Pseudomonas aeruginosa virulence factors by inhibiting quorum sensing. For this purpose, fluorescent monitor strains were utilized for quorum sensing inhibitor screens and quantitative reverse-transcriptase PCR analyses were conducted for comparison. Results indicate that evernic acid is capable of inhibiting Pseudomonas aeruginosa quorum sensing systems. PMID:27465850

  3. Changes in metabolites, antioxidant system, and gene expression in Microcystis aeruginosa under sodium chloride stress.

    Science.gov (United States)

    Chen, Lei; Mao, Feijian; Kirumba, George Chira; Jiang, Cheng; Manefield, Mike; He, Yiliang

    2015-12-01

    Microcystis (M.) aeruginosa, one of the most common bloom-forming cyanobacteria, occurs worldwide. The Qingcaosha (QCS) Reservoir is undergoing eutrophication and faces the problem of saltwater intrusion. The aim of this study was to investigate the effects of sudden salinity changes on physiological parameters and related gene transcription in M. aeruginosa under controlled laboratory conditions. The results showed that sodium chloride (50, 200 and 500 mg L(-1) NaCl) inhibited the algal growth and decreased pigment concentrations (chlorophyll a, carotenoid and phycocyanin). Sodium chloride increased both the intracellular and extracellular microcystin contents and elevated the mcyD transcript level in M. aeruginosa. It also increased the malondialdehyde (MDA) content and caused cytomembrane damage. This damage caused the release of intracellular toxins into the culture medium. In addition, NaCl decreased the maximum electron transport rate, increased the levels of reactive oxygen species (ROS) and changed the cellular redox status. Consequently, NaCl inhibited the expression of cpcB, psbA and rbcL. Furthermore, NaCl increased the activities of superoxide dismutases (SOD), catalase (CAT), glutathione reductase (GR), and total glutathione peroxidase (GPx). The transcript levels of sod and reduced glutathione (gsh) were also increased after exposure to NaCl. Our results indicate that a sudden increase in salinity increases the production and excretion of microcystin, changes the cellular redox status, enhances the activities of antioxidant enzymes, inhibits photosynthesis, and affects transcript levels of related genes in M. aeruginosa. PMID:26232039

  4. Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo

    DEFF Research Database (Denmark)

    Grodzik, Marta; Sawosz, Ewa; Wierzbicki, Mateusz; Orlowski, Piotr; Hotowy, Anna Malgorzata; Niemiec, Tomasz; Szmidt, Maciej; Mitura, Katarzyna; Chwalibog, André

    2011-01-01

    The objective of the study was to determine the effect of carbon nanoparticles produced by different methods on the growth of brain tumor and the development of blood vessels. Glioblastoma multiforme cells were cultured on the chrioallantoic membrane of chicken embryo and after 7 days of incubati...

  5. Nanoparticles of carbon allotropes inhibit glioblastoma multiforme angiogenesis in ovo

    OpenAIRE

    Grodzik M; Sawosz E; Wierzbicki M; Orlowski P; Hotowy A; Niemiec T; Szmidt M; Mitura K; Chwalibog A

    2011-01-01

    Marta Grodzik1, Ewa Sawosz1, Mateusz Wierzbicki1, Piotr Orlowski1, Anna Hotowy2, Tomasz Niemiec1, Maciej Szmidt3, Katarzyna Mitura4, André Chwalibog21Division of Biotechnology and Biochemistry of Nutrition, Warsaw University of Life Sciences, Warsaw, Poland; 2Department of Basic Animal and Veterinary Science, University of Copenhagen, Copenhagen, Denmark; 3Division of Histology and Embryology, Warsaw University of Life Sciences, Warsaw, Poland; 4Department of Biomedical Engineering...

  6. Inhibition of angiogenesis by platelets in systemic sclerosis patients

    OpenAIRE

    Hirigoyen, Daniela; Burgos, Paula I.; Mezzano, Veronica; Duran, Josefina; Barrientos, Magaly; Saez, Claudia G.; Panes, Olga; Mezzano, Diego; Iruretagoyena, Mirentxu

    2015-01-01

    Introduction Systemic sclerosis (SSc) is a chronic autoimmune disease characterized by microvascular damage, inflammation, and fibrosis. It has become increasingly evident that platelets, beyond regulating hemostasis, are important in inflammation and innate immunity. Platelets may be an important source of proinflammatory and profibrotic cytokines in the vascular microenvironment. In this study, we sought to assess the contribution of platelet-derived factors in patients with SSc to the angi...

  7. Inorganic nanomaterials for tumor angiogenesis imaging

    International Nuclear Information System (INIS)

    Tumor angiogenesis plays an important role in cancer development and metastasis. Noninvasive detection of angiogenic activities is thus of great importance in cancer diagnosis as well as evaluation of cancer therapeutic responses. Various angiogenesis-related molecular targets have been identified and used in tumor vasculature targeting and imaging. Recently, inorganic nanomaterials with various unique intrinsic physical properties have attracted growing interest in biomedical imaging applications. This article will review current progresses in the applications of inorganic nanoprobes in molecular angiogenesis imaging. Several types of nanomaterials with various optical properties, including semiconductor quantum dots (QDs), single-walled carbon nanotubes (SWNTs), upconversion nanoparticles (UCNPs), and surface-enhanced Raman scattering (SERS) nanoparticles, have been used as novel optical probes to image angiogenic events. Besides optical imaging, magnetic resonance imaging (MRI) of angiogenesis using magnetic nanoparticles has also been intensively investigated. Moreover, nanomaterials provide unique platforms for the integration of various imaging modalities together with therapeutic functionalities for multi-modality imaging and therapy. Although the application of inorganic nanomaterials in clinical imaging and diagnosis is still facing many challenges, the unique properties and functions of these novel nanoprobes make them very promising agents in angiogenesis imaging and could bring great opportunities to this fast-growing field. (orig.)

  8. Automated angiogenesis quantification through advanced image processing techniques.

    Science.gov (United States)

    Doukas, Charlampos N; Maglogiannis, Ilias; Chatziioannou, Aristotle; Papapetropoulos, Andreas

    2006-01-01

    Angiogenesis, the formation of blood vessels in tumors, is an interactive process between tumor, endothelial and stromal cells in order to create a network for oxygen and nutrients supply, necessary for tumor growth. According to this, angiogenic activity is considered a suitable method for both tumor growth or inhibition detection. The angiogenic potential is usually estimated by counting the number of blood vessels in particular sections. One of the most popular assay tissues to study the angiogenesis phenomenon is the developing chick embryo and its chorioallantoic membrane (CAM), which is a highly vascular structure lining the inner surface of the egg shell. The aim of this study was to develop and validate an automated image analysis method that would give an unbiased quantification of the micro-vessel density and growth in angiogenic CAM images. The presented method has been validated by comparing automated results to manual counts over a series of digital chick embryo photos. The results indicate the high accuracy of the tool, which has been thus extensively used for tumor growth detection at different stages of embryonic development. PMID:17946107

  9. 抗癌防移片抑制4T1乳腺癌血管生成的机制研究%Mechanism Study of Kang’ai Fangyi Tablets in Inhibiting Angiogenesis of 4T1 Breast Cancer

    Institute of Scientific and Technical Information of China (English)

    侯超; 胡志希

    2015-01-01

    【目的】探讨抗癌防移片抑制4T1乳腺癌血管生成的机理。【方法】选用BALB/c小鼠建立4T1乳腺癌模型,随机分成空白对照组、模型组、环磷酰胺(CTX,剂量为0.04 g·kg-1·d-1)组和抗癌防移片组(剂量为5.2 g·kg-1·d-1),分别给予药物或生理盐水,给药4周后处死小鼠,测量剥离瘤质量,计算剥离瘤质量抑制率以及计数肺转移结节数,并通过免疫组织化学染色法测定肿瘤微血管数与血管内皮细胞生长因子(vascular endothelial growth factor, VEGF)表达。【结果】与模型组比较,抗癌防移片组剥离瘤质量显著减轻(P<0.05),肺转移结节数目显著减少(P<0.05),且剥离瘤微血管数与VEGF表达有降低趋势。【结论】抗癌防移片可能通过下调VEGF、抑制肿瘤微血管生成从而抑制4T1小鼠乳腺癌生长与转移。%Objective To study the angiogenesis-inhibitory mechanism of Kang’ai Fangyi Tablets ( KFT) , a Chinese compound recipe with the action of inhibiting cancer metastasis, for 4T1 breast cancer. Methods BALB/c mice were divided into blank control group, model group, Cytoxan ( CTX, 0.04 g·kg-1·d-1) group, and KFT ( 5.2 g·kg-1·d-1) group. Mice model of 4T1 breast cancer was established. Except that the blank control group and model group were given the saline, the mice in the medication groups were given the corresponding medicine. After medication for 4 weeks, the mice were executed, and then we calculated the mass of tumor, the inhibition rate of tumor mass, and the number of lung metastatic nodules. The number of microvessel and expression of vascular endothelial growth factor (VEGF) were measured by immunohistochemical method. Results Compared with the model group, mice tumor mass was decreased ( P<0.05) , the number of pulmonary metastatic nodules was reduced ( P<0.05) , and the number of tumor microvessel and VEGF expression in the isolated tumor mass showed the decreasing trend in

  10. Marine Cyclotripeptide X-13 Promotes Angiogenesis in Zebrafish and Human Endothelial Cells via PI3K/Akt/eNOS Signaling Pathways

    Directory of Open Access Journals (Sweden)

    Zhong Pei

    2012-06-01

    Full Text Available Cyclotripeptide X-13 is a core of novel marine compound xyloallenoide A isolated from mangrove fungus Xylaria sp. (no. 2508. We found that X-13 dose-dependently induced angiogenesis in zebrafish embryos and in human endothelial cells, which was accompanied by increased phosphorylation of eNOS and Akt and NO release. Inhibition of PI3K/Akt/eNOS by LY294002 or l-NAME suppressed X-13-induced angiogenesis. The present work demonstrates that X-13 promotes angiogenesis via PI3K/Akt/eNOS pathways.

  11. Targeting CD9 produces stimulus-independent antiangiogenic effects predominantly in activated endothelial cells during angiogenesis: A novel antiangiogenic therapy

    International Nuclear Information System (INIS)

    Highlights: → CD9 plays stimulus-independent roles in angiogenesis in vitro and in vivo. → Targeting CD9 expression is effective in an angiogenic disease model. → Targeting CD9 expression predominantly affects activated endothelial cells. → CD9 is involved in endothelial cell proliferation, but not survival. → CD9 is part of angiogenic machinery in endothelial cells during angiogenesis. -- Abstract: The precise roles of tetraspanin CD9 are unclear. Here we show that CD9 plays a stimulus-independent role in angiogenesis and that inhibiting CD9 expression or function is a potential antiangiogenic therapy. Knocking down CD9 expression significantly inhibited in vitro endothelial cell migration and invasion induced by vascular endothelial growth factor (VEGF) or hepatocyte growth factor (HGF). Injecting CD9-specific small interfering RNA (siRNA-CD9) markedly inhibited HGF- or VEGF-induced subconjunctival angiogenesis in vivo. Both results revealed potent and stimulus-independent antiangiogenic effects of targeting CD9. Furthermore, intravitreous injections of siRNA-CD9 or anti-CD9 antibodies were therapeutically effective for laser-induced retinal and choroidal neovascularization in mice, a representative ocular angiogenic disease model. In terms of the mechanism, growth factor receptor and downstream signaling activation were not affected, whereas abnormal localization of integrins and membrane type-1 matrix metalloproteinase was observed during angiogenesis, by knocking down CD9 expression. Notably, knocking down CD9 expression did not induce death and mildly inhibited proliferation of quiescent endothelial cells under conditions without an angiogenic stimulus. Thus, CD9 does not directly affect growth factor-induced signal transduction, which is required in angiogenesis and normal vasculature, but is part of the angiogenesis machinery in endothelial cells during angiogenesis. In conclusion, targeting CD9 produced stimulus-independent antiangiogenic effects

  12. Community-based interference against integration of Pseudomonas aeruginosa into human salivary microbial biofilm.

    Science.gov (United States)

    He, X; Hu, W; He, J; Guo, L; Lux, R; Shi, W

    2011-12-01

    As part of the human gastrointestinal tract, the oral cavity represents a complex biological system and harbors diverse bacterial species. Unlike the gut microbiota, which is often considered a health asset, studies of the oral commensal microbiota have been largely limited to their implication in oral conditions such as dental caries and periodontal disease. Less emphasis has been given to their potential beneficial roles, especially the protective effects against oral colonization by foreign or pathogenic bacteria. In this study, we used salivary microbiota derived from healthy human subjects to investigate protective effects against colonization and integration of Pseudomonas aeruginosa, an opportunistic bacterial pathogen, into developing or pre-formed salivary biofilms. When co-cultivated in saliva medium, P. aeruginosa persisted in the planktonic phase, but failed to integrate into the salivary microbial community during biofilm formation. Furthermore, in saliva medium supplemented with sucrose, the oral microbiota inhibited the growth of P. aeruginosa by producing lactic acid. More interestingly, while pre-formed salivary biofilms were able to prevent P. aeruginosa colonization, the same biofilms recovered from mild chlorhexidine gluconate treatment displayed a shift in microbial composition and showed a drastic reduction in protection. Our study indicates that normal oral communities with balanced microbial compositions could be important in effectively preventing the integration of foreign or pathogenic bacterial species, such as P. aeruginosa. PMID:22053962

  13. Prostate specific membrane antigen (PSMA regulates angiogenesis independently of VEGF during ocular neovascularization.

    Directory of Open Access Journals (Sweden)

    Christina L Grant

    Full Text Available BACKGROUND: Aberrant growth of blood vessels in the eye forms the basis of many incapacitating diseases and currently the majority of patients respond to anti-angiogenic therapies based on blocking the principal angiogenic growth factor, vascular endothelial growth factor (VEGF. While highly successful, new therapeutic targets are critical for the increasing number of individuals susceptible to retina-related pathologies in our increasingly aging population. Prostate specific membrane antigen (PSMA is a cell surface peptidase that is absent on normal tissue vasculature but is highly expressed on the neovasculature of most solid tumors, where we have previously shown to regulate angiogenic endothelial cell invasion. Because pathologic angiogenic responses are often triggered by distinct signals, we sought to determine if PSMA also contributes to the pathologic angiogenesis provoked by hypoxia of the retina, which underlies many debilitating retinopathies. METHODOLOGY/PRINCIPAL FINDINGS: Using a mouse model of oxygen-induced retinopathy, we found that while developmental angiogenesis is normal in PSMA null mice, hypoxic challenge resulted in decreased retinal vascular pathology when compared to wild type mice as assessed by avascular area and numbers of vascular tufts/glomeruli. The vessels formed in the PSMA null mice were more organized and highly perfused, suggesting a more 'normal' phenotype. Importantly, the decrease in angiogenesis was not due to an impaired hypoxic response as levels of pro-angiogenic factors are comparable; indicating that PSMA regulation of angiogenesis is independent of VEGF. Furthermore, both systemic and intravitreal administration of a PSMA inhibitor in wild type mice undergoing OIR mimicked the PSMA null phenotype resulting in improved retinal vasculature. CONCLUSIONS/SIGNIFICANCE: Our data indicate that PSMA plays a VEGF-independent role in retinal angiogenesis and that the lack of or inhibition of PSMA may

  14. Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles.

    Science.gov (United States)

    Xue, Yuan; Xu, Xiaoyang; Zhang, Xue-Qing; Farokhzad, Omid C; Langer, Robert

    2016-05-17

    The incidence of obesity, which is recognized by the American Medical Association as a disease, has nearly doubled since 1980, and obesity-related comorbidities have become a major threat to human health. Given that adipose tissue expansion and transformation require active growth of new blood vasculature, angiogenesis offers a potential target for the treatment of obesity-associated disorders. Here we construct two peptide-functionalized nanoparticle (NP) platforms to deliver either Peroxisome Proliferator-Activated Receptor gamma (PPARgamma) activator rosiglitazone (Rosi) or prostaglandin E2 analog (16,16-dimethyl PGE2) to adipose tissue vasculature. These NPs were engineered through self-assembly of a biodegradable triblock polymer composed of end-to-end linkages between poly(lactic-coglycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) and an endothelial-targeted peptide. In this system, released Rosi promotes both transformation of white adipose tissue (WAT) into brown-like adipose tissue and angiogenesis, which facilitates the homing of targeted NPs to adipose angiogenic vessels, thereby amplifying their delivery. We show that i.v. administration of these NPs can target WAT vasculature, stimulate the angiogenesis that is required for the transformation of adipose tissue, and transform WAT into brown-like adipose tissue, by the up-regulation of angiogenesis and brown adipose tissue markers. In a diet-induced obese mouse model, these angiogenesis-targeted NPs have inhibited body weight gain and modulated several serological markers including cholesterol, triglyceride, and insulin, compared with the control group. These findings suggest that angiogenesis-targeting moieties with angiogenic stimulator-loaded NPs could be incorporated into effective therapeutic regimens for clinical treatment of obesity and other metabolic diseases. PMID:27140638

  15. COX-2, VEGF and tumour angiogenesis.

    LENUS (Irish Health Repository)

    Toomey, D P

    2009-06-01

    Epidemiological evidence suggests a protective effective of regular NSAID use against developing cancer. Cyclooxygenase-2, a target of NSAIDs, is upregulated in many cancers and has been associated with increased VEGF production and angiogenesis. Angiogenesis is the formation of new vessels from existing vasculature and as an essential process for tumour development represents an important therapeutic target. Following an extensive review of the literature this article details the current knowledge on the role of COX-2 in tumorigenesis focusing on its relationship to angiogenesis and VEGF production by tumour cells. While COX-2 is clearly detrimental to prognosis and NSAIDs have a beneficial effect, the possibility of COX-2 independent effects being partly or wholly responsible for this benefit cannot be excluded.

  16. Mesoscopic and continuum modelling of angiogenesis

    KAUST Repository

    Spill, F.

    2014-03-11

    Angiogenesis is the formation of new blood vessels from pre-existing ones in response to chemical signals secreted by, for example, a wound or a tumour. In this paper, we propose a mesoscopic lattice-based model of angiogenesis, in which processes that include proliferation and cell movement are considered as stochastic events. By studying the dependence of the model on the lattice spacing and the number of cells involved, we are able to derive the deterministic continuum limit of our equations and compare it to similar existing models of angiogenesis. We further identify conditions under which the use of continuum models is justified, and others for which stochastic or discrete effects dominate. We also compare different stochastic models for the movement of endothelial tip cells which have the same macroscopic, deterministic behaviour, but lead to markedly different behaviour in terms of production of new vessel cells. © 2014 Springer-Verlag Berlin Heidelberg.

  17. IGF binding protein-6 expression in vascular endothelial cells is induced by hypoxia and plays a negative role in tumor angiogenesis

    OpenAIRE

    ZHANG, CHUNYANG; Lu, Ling; Li, Yun; Wang, Xianlei; Zhou, Jianfeng; Liu, Yunzhang; Fu, Ping; Gallicchio, Marisa A; Bach, Leon A.; Duan, Cunming

    2011-01-01

    Hypoxia stimulates tumor angiogenesis by inducing the expression of angiogenic molecules. The negative regulators of this process, however, are not well understood. Here we report that hypoxia induced the expression of insulin-like growth factor binding protein-6 (IGFBP-6), a tumor repressor, in human and rodent vascular endothelial cells (VECs) via a HIF-mediated mechanism. Addition of human IGFBP-6 to cultured human VECs inhibited angiogenesis in vitro. An IGFBP-6 mutant with at least 10,00...

  18. KSHV-Mediated Angiogenesis in Tumor Progression

    Science.gov (United States)

    Purushothaman, Pravinkumar; Uppal, Timsy; Sarkar, Roni; Verma, Subhash C.

    2016-01-01

    Human herpesvirus 8 (HHV-8), also known as Kaposi’s sarcoma-associated herpesvirus (KSHV), is a malignant human oncovirus belonging to the gamma herpesvirus family. HHV-8 is closely linked to the pathogenesis of Kaposi’s sarcoma (KS) and two other B-cell lymphoproliferative diseases: primary effusion lymphoma (PEL) and a plasmablastic variant of multicentric Castleman’s disease (MCD). KS is an invasive tumor of endothelial cells most commonly found in untreated HIV-AIDS or immuno-compromised individuals. KS tumors are highly vascularized and have abnormal, excessive neo-angiogenesis, inflammation, and proliferation of infected endothelial cells. KSHV directly induces angiogenesis in an autocrine and paracrine fashion through a complex interplay of various viral and cellular pro-angiogenic and inflammatory factors. KS is believed to originate due to a combination of KSHV’s efficient strategies for evading host immune systems and several pro-angiogenic and pro-inflammatory stimuli. In addition, KSHV infection of endothelial cells produces a wide array of viral oncoproteins with transforming capabilities that regulate multiple host-signaling pathways involved in the activation of angiogenesis. It is likely that the cellular-signaling pathways of angiogenesis and lymph-angiogenesis modulate the rate of tumorigenesis induction by KSHV. This review summarizes the current knowledge on regulating KSHV-mediated angiogenesis by integrating the findings reported thus far on the roles of host and viral genes in oncogenesis, recent developments in cell-culture/animal-model systems, and various anti-angiogenic therapies for treating KSHV-related lymphoproliferative disorders. PMID:27447661

  19. KSHV-Mediated Angiogenesis in Tumor Progression.

    Science.gov (United States)

    Purushothaman, Pravinkumar; Uppal, Timsy; Sarkar, Roni; Verma, Subhash C

    2016-01-01

    Human herpesvirus 8 (HHV-8), also known as Kaposi's sarcoma-associated herpesvirus (KSHV), is a malignant human oncovirus belonging to the gamma herpesvirus family. HHV-8 is closely linked to the pathogenesis of Kaposi's sarcoma (KS) and two other B-cell lymphoproliferative diseases: primary effusion lymphoma (PEL) and a plasmablastic variant of multicentric Castleman's disease (MCD). KS is an invasive tumor of endothelial cells most commonly found in untreated HIV-AIDS or immuno-compromised individuals. KS tumors are highly vascularized and have abnormal, excessive neo-angiogenesis, inflammation, and proliferation of infected endothelial cells. KSHV directly induces angiogenesis in an autocrine and paracrine fashion through a complex interplay of various viral and cellular pro-angiogenic and inflammatory factors. KS is believed to originate due to a combination of KSHV's efficient strategies for evading host immune systems and several pro-angiogenic and pro-inflammatory stimuli. In addition, KSHV infection of endothelial cells produces a wide array of viral oncoproteins with transforming capabilities that regulate multiple host-signaling pathways involved in the activation of angiogenesis. It is likely that the cellular-signaling pathways of angiogenesis and lymph-angiogenesis modulate the rate of tumorigenesis induction by KSHV. This review summarizes the current knowledge on regulating KSHV-mediated angiogenesis by integrating the findings reported thus far on the roles of host and viral genes in oncogenesis, recent developments in cell-culture/animal-model systems, and various anti-angiogenic therapies for treating KSHV-related lymphoproliferative disorders. PMID:27447661

  20. Versatile cloning vector for Pseudomonas aeruginosa.

    OpenAIRE

    Wood, D O; Hollinger, M F; Tindol, M B

    1981-01-01

    A pBR322:RSF1010 composite plasmid, constructed in vitro, was used as a cloning vector in Pseudomonas aeruginosa. This nonamplifiable plasmid, pMW79, has a molecular weight of 8.4 X 10(6) and exists as a multicopy plasmid in both P. aeruginosa and Escherichia coli. In P. aeruginosa strain PAO2003, pMW79 conferred resistance to carbenicillin and tetracycline. Characterization of pMW79 with restriction enzymes revealed that four enzymes (BamHI, SalI, HindIII, and HpaI) cleaved the plasmid at un...

  1. Suppression of Aspergillus by Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Jensen, Britt Guillaume; Jelsbak, Lars; Søndergaard, Ib;

    suppressed growth of A. fumigatus, A. niger, A. flavus, A. oryzae, A. terreus and E. nidulans. HPLC and LC-DAD-MS results showed an increase in phenazine-1-carboxylic acid and phenazine-1-carboxamide production by P. aeruginosa in the contact area of Aspergillus. Different quinolones were also identified......, here among 2-heptyl-3-hydroxy-4-quinolone (PQS). An unidentified green pseudomonas compound was also observed. Interestingly the P. aeruginosa mutant rpoN was unable to suppress A. fumigatus, but suppressed A. flavus, A. oryzae and A. niger. However several other P. aeruginosa mutants suppressed A...

  2. Arsenic-induced anti-angiogenesis via miR-425-5p-regulated CCM3.

    Science.gov (United States)

    Gao, Yanfang; Yin, Yuzhu; Xing, Xiumei; Zhao, Zhiqiang; Lu, Yao; Sun, Yi; Zhuang, Zhixiong; Wang, Min; Ji, Weidong; He, Yun

    2016-07-01

    Human exposure to drinking water contaminated with arsenic is a serious global health concern and it predisposes people to cardiovascular diseases, such as hypertension, atherosclerosis, and microvascular diseases. Although accumulating evidence supports a role for angiogenesis responses to arsenic in the pathogenesis of the cardiovascular disease, the detailed molecular mechanism is not well understood. We aimed to determine the role and mechanism of microRNA (miRNA) in arsenic-induced angiogenesis. In our present study, sodium arsenite (NaAsO2) inhibited angiogenesis by decreasing cells proliferation, migration and tube formation in HUVECs. After NaAsO2 treatment, we found the expression of microRNA-425-5p (miR-425-5p) was reduced in vitro and in vivo and over-expression of miR-425-5p reversed the NaAsO2-induced anti-angiogenesis through its direct target cerebral cavernous malformation 3 (CCM3). Furthermore, we showed that NaAsO2 up-regulated CCM3 expression in vitro and in vivo. In addition, we demonstrated that inhibition of Notch and activation of VEGF/p38 signaling were involved in miR-425-5p blocking NaAsO2-induced anti-angiogenesis. PMID:27132035

  3. Suppression of Angiogenesis and Tumor Growth by the Inhibitor K1-5 Generated by Plasmin-Mediated Proteolysis

    Science.gov (United States)

    Cao, Renhai; Wu, Hua-Lin; Veitonmaki, Niina; Linden, Philip; Farnebo, Jacob; Shi, Guey-Yueh; Cao, Yihai

    1999-05-01

    Proteolytic enzymes are involved in generation of a number of endogenous angiogenesis inhibitors. Previously, we reported that angiostatin, a potent angiogenesis inhibitor, is a protcolytic fragment containing the first four kringle modules of plasminogen. In this report, we demonstrate that urokinase-activated plasmin can process plasminogen to release an angiogenesis inhibitor, K1-5 (protease-activated kringles 1-5). K1-5 inhibits endothelial-cell proliferation with a half-maximal concentration of approximately 50 pM. This inhibitory effect is endothelial-cell-specific and appears to be at least approximately 50-fold greater than that of angiostatin. A synergistic efficacy of endothelial inhibition was observed when angiostatin and kringle 5 (K5) were coincubated with capillary endothelial cells. The synergistic effect is comparable to that produced by K1-5 alone. Systemic treatment of mice with K1-5 at a low dose significantly blocked the fibroblast growth factor-induced corneal neovascularization, whereas angiostatin had no effect at the same dose. K1-5 also suppressed angiogenesis in chicken embryos. Systemic administration of K1-5 at a low dose at which angiostatin was ineffective significantly suppressed the growth of a murine T241 fibrosarcoma in mice. The antitumor effect correlates with the reduced neovascularization. These findings suggest that the plasmin-mediated proteolysis may be involved in the negative switch of angiogenesis.

  4. Impact of KITENIN on tumor angiogenesis and lymphangiogenesis in colorectal cancer.

    Science.gov (United States)

    Oh, Hyung-Hoon; Park, Kang-Jin; Kim, Nuri; Park, Sun-Young; Park, Young-Lan; Oak, Chan-Young; Myung, Dae-Seong; Cho, Sung-Bum; Lee, Wan-Sik; Kim, Kyung-Keun; Joo, Young-Eun

    2016-01-01

    Angiogenesis and lymphangiogenesis are involved in the dissemination of tumor cells from solid tumors to regional lymph nodes and various distant sites. KAI1 COOH-terminal interacting tetraspanin (KITENIN) contributes to tumor progression and poor clinical outcomes in various cancers including colorectal cancer. The aim of the present study was to evaluate whether KITENIN affects tumor angiogenesis and lymphangiogenesis in colorectal cancer. A KITENIN small interfering RNA vector was used to silence KITENIN expression in colorectal cancer cell lines including DLD1 and SW480 cells. To evaluate the ability of KITENIN to induce angiogenesis and lymphangiogenesis in human umbilical vein endothelial cells (HUVECs) and lymphatic endothelial cells (HLECs), we performed Matrigel invasion and tube formation assays. Immunohistochemistry was used to determine the expression of KITENIN in colorectal cancer tissues. Angiogenesis and lymphangiogenesis were evaluated by immunostaining with CD34 and D2-40 antibodies. KITENIN silencing inhibited both HUVEC invasion and tube formation in the DLD1 and SW480 cells. KITENIN silencing led to decreased expression of the angiogenic inducers vascular endothelial growth factor (VEGF)-A and hypoxia-inducible factor-1α and increased expression of the angiogenic inhibitor angiostatin. KITENIN silencing did not inhibit either HLEC invasion or tube formation in all tested cells, but it resulted in decreased expression of the lymphangiogenic inducer VEGF-C. KITENIN expression was significantly associated with tumor stage, depth of invasion, lymph node and distant metastases and poor survival. The mean microvessel density was significantly higher in the KITENIN-positive tumors than that in the KITENIN-negative tumors. However, the mean lymphatic vessel density of KITENIN-positive tumors was not significantly higher than that of the KITENIN-negative tumors. These results suggest that KITENIN promotes tumor progression by enhancing angiogenesis in

  5. Lipo-chitin oligosaccharides, plant symbiosis signalling molecules that modulate mammalian angiogenesis in vitro.

    Directory of Open Access Journals (Sweden)

    Michael A Djordjevic

    Full Text Available Lipochitin oligosaccharides (LCOs are signaling molecules required by ecologically and agronomically important bacteria and fungi to establish symbioses with diverse land plants. In plants, oligo-chitins and LCOs can differentially interact with different lysin motif (LysM receptors and affect innate immunity responses or symbiosis-related pathways. In animals, oligo-chitins also induce innate immunity and other physiological responses but LCO recognition has not been demonstrated. Here LCO and LCO-like compounds are shown to be biologically active in mammals in a structure dependent way through the modulation of angiogenesis, a tightly-regulated process involving the induction and growth of new blood vessels from existing vessels. The testing of 24 LCO, LCO-like or oligo-chitin compounds resulted in structure-dependent effects on angiogenesis in vitro leading to promotion, or inhibition or nil effects. Like plants, the mammalian LCO biological activity depended upon the presence and type of terminal substitutions. Un-substituted oligo-chitins of similar chain lengths were unable to modulate angiogenesis indicating that mammalian cells, like plant cells, can distinguish between LCOs and un-substituted oligo-chitins. The cellular mode-of-action of the biologically active LCOs in mammals was determined. The stimulation or inhibition of endothelial cell adhesion to vitronectin or fibronectin correlated with their pro- or anti-angiogenic activity. Importantly, novel and more easily synthesised LCO-like disaccharide molecules were also biologically active and de-acetylated chitobiose was shown to be the primary structural basis of recognition. Given this, simpler chitin disaccharides derivatives based on the structure of biologically active LCOs were synthesised and purified and these showed biological activity in mammalian cells. Since important chronic disease states are linked to either insufficient or excessive angiogenesis, LCO and LCO

  6. P61CATHEPSIN K IN AN IN VITRO MODEL OF GLIOMA ANGIOGENESIS

    Science.gov (United States)

    Briggs, S.; Stevenson, K.; Verbovšek, U.; Yin, L.H.; Pilkington, G.; Lah, T.; Fillmore, H.L.

    2014-01-01

    INTRODUCTION: Cathepsin K, a cysteine protease expressed in osteoclasts, involved in bone resorption is expressed in other cells including brain cells. Reports suggest that cathepsin K may be involved in cancers associated with bone metastasis. Little is known about its expression in brain tumours. There is evidence of a potential interaction of cathepsin K with stromal cell derived factor 1 (SDF-1) in haemapoietic stem cell motility. Because of the importance of SDF-1 in brain tumour angiogenesis and recruitment of glioma like stem cells to vascular niches, we investigated cathepsin K in an in vitro model of angiogenesis. METHOD: Brain endothelial cells (hCMEC) and glioma cell lines (SNB-19 and UP-007) cultured under normoxic and hypoxic conditions were analysed using flow cytometry and western blotting. Angiogenesis was assessed using an in vitro model of brain endothelial cell tube formation. Brain endothelial tube length, number of tube projections and number of branch points were measured. RESULTS: Under hypoxic conditions, there is a significant decrease in cathepsin K expression in brain endothelial cells when compared to normoxic conditions (P ≤ 0.05). Addition of Odanacatib, a cathepsin K inhibitor, to the angiogenesis assay revealed that inhibition of cathepsin K resulted in a significant increase in endothelial tube length in normoxic conditions (p < 0.05). CONCLUSION: The decrease in cathepsin K expression in endothelial cells under hypoxia, coupled with the increase in tube length following inhibition of cathepsin K, suggests an involvement of cathepsin K with angiogenesis. These data provide rationale and basis for further study into the function of cathepsin K and its relationship with SDF-1 in gliomas.

  7. Over-expression of p53 mutants in LNCaP cells alters tumor growth and angiogenesis in vivo

    DEFF Research Database (Denmark)

    Perryman, L A; Blair, J M; Kingsley, E A;

    2006-01-01

    significant. Angiogenesis was decreased in tumors expressing F134L and R273H compared with M237L, or controls. Conditioned medium from F134L tumors inhibited growth of normal human umbilical-vein endothelial cells but not telomerase-immortalized bone marrow endothelial cells. F134L tumor supernatants showed...

  8. Study of capillary network directionality and irrigation of hypoxic tissue in an angiogenesis lattice model

    Science.gov (United States)

    Moglia, Belén; Guisoni, Nara; Albano, Ezequiel V.

    2013-12-01

    To shed light on the understanding of the angiogenesis process, we study a simplified lattice model for the capillary network formation between an existing blood vessel and an initially hypoxic tissue. We consider that the cells of the tissue surface can release growth factors that will diffuse, leading to the formation of new capillaries that ultimately arrive at the tissue. Additionally, we consider the local production of growth factors by the growing capillary network. We also propose the existence of an inhibition mechanism at the hypoxic surface, i.e., a fixed number of neighboring sites of an already irrigated site of the hypoxic tissue stop releasing growth factors due to the arrival of nutrients. Particularly, the goal of this work is to study the effect of the release of local growth factors and the inhibition mechanism on properties such as the directionality of the growing network and the irrigation of the hypoxic tissue. Therefore we propose the quantification of these two relevant features for angiogenesis modeling. We establish a relationship between the model behavior without the release of local growth factors in the presence of the inhibition mechanism and a normal angiogenesis process. In this situation, the model gives a directional capillary network and a good irrigation of the hypoxic tissue. On the other hand, for a large number of released local growth factors in the absence of the inhibition mechanism, the model could be appropriate for the description of tumor angiogenesis. In this case, the model provides a rather small directionality for the growing structure, with a worse degree of irrigation of the hypoxic tissue, as well as a more tortuous capillary network with many closed branches and loops.

  9. Differential effect of non-thermal atmospheric-pressure plasma on angiogenesis

    Directory of Open Access Journals (Sweden)

    Beate Haertel

    2014-06-01

    Full Text Available Angiogenesis is a special feature in wound healing and carcinogenesis. For improving wound healing angiogenesis should be promoted, whereas in treating tumors it should be inhibited.Depending on several factors physical non-thermal plasmas can stimulate or inhibit cellular processes and can, thereby, influence angiogenesis. This study focused on effects of plasma on angiogenesis in the chick embryo chorioallantoic membrane (CAM assay and rat aortic ring (AOR test, in which plasma-treated PBS or medium was applied. ImageJ was used to analyze vessel area and branching of vessels of CAM’s. Aortic rings (LEW.1W, WOK.W rats embedded in Matrigel were analyzed by a newly-developed semi-quantitative method to quantify vessel sprouting from aortic rings. In both models spontaneous vessel formation was detected. Vessel area and branching in CAM’s were significantly enhanced by 120-s-plasma-treated PBS compared to untreated controls. This result was comparable with the effect of the growth factor VEGF. No effect of plasma on vessel sprouting from AOR prepared from LEW.1W rats was detected, while it was significantly inhibited in rings of WOK.W rats. Dexamethasone inhibited vessel sprouting from AOR of both rat strains. In conclusion, angiogenic response to plasma was found to be differentially influenced, depending on the models used and on the rat strain in the AOR test. It will now be of importance to learn how plasma has to be designed for either pro- or anti-angiogenic responses.

  10. Involvement of Heme Oxygenase-1 in Orexin-A-induced Angiogenesis in Vascular Endothelial Cells

    OpenAIRE

    Kim, Mi-Kyoung; Park, Hyun-Joo; Kim, Su-Ryun; Choi, Yoon Kyung; Bae, Soo-Kyung; Bae, Moon-Kyoung

    2015-01-01

    The cytoprotective enzyme heme oxygenase-1 (HO-1) influences endothelial cell survival, proliferation, inflammatory response, and angiogenesis in response to various angiogenic stimuli. In this study, we investigate the involvement of HO-1 in the angiogenic activity of orexin-A. We showed that orexin-A stimulates expression and activity of HO-1 in human umbilical vein endothelial cells (HUVECs). Furthermore, we showed that inhibition of HO-1 by tin (Sn) protoporphryin-IX (SnPP) reduced orexin...

  11. High shear stress induces atherosclerotic vulnerable plaque formation through angiogenesis.

    Science.gov (United States)

    Wang, Yi; Qiu, Juhui; Luo, Shisui; Xie, Xiang; Zheng, Yiming; Zhang, Kang; Ye, Zhiyi; Liu, Wanqian; Gregersen, Hans; Wang, Guixue

    2016-12-01

    Rupture of atherosclerotic plaques causing thrombosis is the main cause of acute coronary syndrome and ischemic strokes. Inhibition of thrombosis is one of the important tasks developing biomedical materials such as intravascular stents and vascular grafts. Shear stress (SS) influences the formation and development of atherosclerosis. The current review focuses on the vulnerable plaques observed in the high shear stress (HSS) regions, which localizes at the proximal region of the plaque intruding into the lumen. The vascular outward remodelling occurs in the HSS region for vascular compensation and that angiogenesis is a critical factor for HSS which induces atherosclerotic vulnerable plaque formation. These results greatly challenge the established belief that low shear stress is important for expansive remodelling, which provides a new perspective for preventing the transition of stable plaques to high-risk atherosclerotic lesions. PMID:27482467

  12. microRNA-218 Inhibits Oxygen-induced Retinal Neovascularization via Reducing the Expression of Roundabout 1

    Directory of Open Access Journals (Sweden)

    Shuang Han

    2016-01-01

    Conclusions: Our experiments showed that restoration of miR-218 inhibited retinal angiogenesis via targeting Robo1. MiR-218 contributed to the inhibition of retinal angiogenesis and miR-218 might be a new therapeutic target for preventing RNV.

  13. Effects of Dracontomelon duperreanum defoliation extract on Microcystis aeruginosa: physiological and morphological aspects.

    Science.gov (United States)

    Wang, Xiaoxiong; Jiang, Chenchun; Szeto, Yim-Tong; Li, Ho-Kin; Yam, Kwei-Lam; Wang, Xiaojun

    2016-05-01

    Harmful cyanobacteria bloom contributes to economic loss as well as the threat to human health. Agricultural waste products, particularly straw, have been used to control bloom while arbor plant is the potential candidate for limiting antialgal activity. This study investigated the use of Dracontomelon duperreanum defoliation extract (DDDE) to inhibit the activity of Microcystis aeruginosa. The primary goal of the research was to explore the solution to control cyanobacterial bloom. The photosynthetic activity, cell morphology, membrane integrity, and esterase activity of M. aeruginosa were determined using phytoplankton analyzer pulse amplitude modulation (Phyto-PAM) and flow cytometry before and after exposure to DDDE. The inhibitory rate of M. aeruginosa was about 99.6 % on day 15 when exposed to 2.0 g L(-1). A reduction of chlorophyll a (Chl-a) activity and changes in cell membrane suggested the algistatic property of DDDE. Inhibition of photosynthetic activity was reflected by changing mean Chl-a fluorescence intensity (MFI) which was about 52.5 % on day 15 when exposed to 2.0 g L(-1) DDDE as well as relative electron transport rates (rETRs) of algal cell. These changes might contribute to the suppression of M. aeruginosa. Algal cell exposed to DDDE may lead to cell volume reduction or slow growth. This resulted in a decreased proportion of normal or swollen granular cells after DDDE treatment. PMID:26803752

  14. Hydnophytum formicarum Jack ethanol extract modulates quorum sensing-controlled pathogenicity in Pseudomonas aeruginosa.

    Science.gov (United States)

    Hertiani, Triana; Pratiwi, Sylvia Utami Tunjung

    2015-09-01

    The discovery of new mechanism to control microbial pathogenicity by quorum sensing modulation has generated the search for quorum sensing inhibitor from natural resources. The objective of this research was to evaluate the ability of Hydnophytum formicarum Jack (Rubiaceae) ethanol extract to antagonize cell-to cell communication. Pulverized H. formicarum tuber was macerated in ethyl alcohol 96% and evaporated to yield ethanol extract. A dillution technique using Luria-Bertani (LB) medium was used to observe the capability of the extract to reduce the violacein production in Chromobacterium violaceum. Samples in two-fold dilution were prepared to obtain 2 - 0.0625 mg/mL concentration. The effects on swimming, swarming and twitching motility as well as the formation of biofilm towards Pseudomonas aeruginosa PAO1 were recorded over control. All experiments were done in triplicate. The architecture of Ps. aeruginosa biofilm treated with samples was examined by CLSM (Confocal Laser Scanning Microscopy) . Our results suggested that the ethanol extract of H. formicarum caused violacein production inhibition. Furthermore, inhibition of Ps. aeruginosa motility and biofilm formation were recorded to be significant over control in a concentration dependent manner. H. formicarum serves as a potential source for new QS-based antibacterial drugs towards Ps. aeruginosa. PMID:26408889

  15. Gold nanoparticles induce nanostructural reorganization of VEGFR2 to repress angiogenesis.

    Science.gov (United States)

    Pan, Yunlong; Ding, Hui; Qin, Li; Zhao, Xiaoxu; Cai, Jiye; Du, Bin

    2013-10-01

    The inhibition of the binding between VEGFs and their receptors reduces angiogenesis and retards tumor growth. Owing to the large amount of antibodies required, the antibody-based anti-angiogenic drug remains limited. Gold nanoparticles (AuNPs) displayed excellent biocompatibility, low toxicity and anti-angiogenic effect, but the mechanism of anti-angiogenesis was unknown. Here, the antitumor effects of a well-dispersed AuNPs, specifically regarding its influence on VEGF signaling, were examined mechanistically. The effects of AuNPs on the interaction of VEGF with its receptor, VEGFR2 were observed using near-field scanning optical microscopy/quantum dot (NSOM/QD) imaging. We found AuNPs can reduce VEGF165-induced VEGFR2 and AKT phosphorylation. Furthermore, the antitumor effects of AuNPs were determined using xenograft and ascites model. AuNPs inhibited VEGF165-VEGFR2 interaction and suppressed the formation of nanodomains of VEGFR2 on the HUVEC. As determined by CD34 immunhistochemistry, AuNPs reduced angiogenesis in a liver tumor nude mice model, as observed by a decreased microvascular density in liver tumor sections and reduced the tumor weight and volume. In addition, AuNPs inhibited ascites formation in mice. Taken together, this study provides new insights into nanomaterial-based antitumor drug development. PMID:24015504

  16. Activation of the endothelin system mediates pathological angiogenesis during ischemic retinopathy.

    Science.gov (United States)

    Patel, Chintan; Narayanan, S Priya; Zhang, Wenbo; Xu, Zhimin; Sukumari-Ramesh, Sangeetha; Dhandapani, Krishnan M; Caldwell, R William; Caldwell, Ruth B

    2014-11-01

    Retinopathy of prematurity adversely affects premature infants because of oxygen-induced damage of the immature retinal vasculature, resulting in pathological neovascularization (NV). Our pilot studies using the mouse model of oxygen-induced retinopathy (OIR) showed marked increases in angiogenic mediators, including endothelins and endothelin receptor (EDNR) A. We hypothesized that activation of the endothelin system via EDNRA plays a causal role in pathological angiogenesis and up-regulation of angiogenic mediators, including vascular endothelial growth factor A (VEGFA) in OIR. Mice were exposed to 75% oxygen from post-natal day P7 to P12, treated with either vehicle or EDNRA antagonist BQ-123 or EDNRB antagonist BQ-788 on P12, and kept at room air from P12 to P17 (ischemic phase). RT-PCR analysis revealed increased levels of EDN2 and EDNRA mRNA, and Western blot analysis revealed increased EDN2 expression during the ischemic phase. EDNRA inhibition significantly increased vessel sprouting, resulting in enhanced physiological angiogenesis and decreased pathological NV, whereas EDNRB inhibition modestly improved vascular repair. OIR triggered significant increases in VEGFA protein and mRNA for delta-like ligand 4, apelin, angiopoietin-2, and monocyte chemoattractant protein-1. BQ-123 treatment significantly reduced these alterations. EDN2 expression was localized to retinal glia and pathological NV tufts of the OIR retinas. EDN2 also induced VEGFA protein expression in cultured astrocytes. In conclusion, inhibition of the EDNRA during OIR suppresses pathological NV and promotes physiological angiogenesis. PMID:25203536

  17. Targeting angiogenesis-dependent calcified neoplasms using combined polymer therapeutics.

    Directory of Open Access Journals (Sweden)

    Ehud Segal

    Full Text Available BACKGROUND: There is an immense clinical need for novel therapeutics for the treatment of angiogenesis-dependent calcified neoplasms such as osteosarcomas and bone metastases. We developed a new therapeutic strategy to target bone metastases and calcified neoplasms using combined polymer-bound angiogenesis inhibitors. Using an advanced "living polymerization" technique, the reversible addition-fragmentation chain transfer (RAFT, we conjugated the aminobisphosphonate alendronate (ALN, and the potent anti-angiogenic agent TNP-470 with N-(2-hydroxypropylmethacrylamide (HPMA copolymer through a Glycine-Glycine-Proline-Norleucine linker, cleaved by cathepsin K, a cysteine protease overexpressed at resorption sites in bone tissues. In this approach, dual targeting is achieved. Passive accumulation is possible due to the increase in molecular weight following polymer conjugation of the drugs, thus extravasating from the tumor leaky vessels and not from normal healthy vessels. Active targeting to the calcified tissues is achieved by ALN's affinity to bone mineral. METHODS AND FINDING: The anti-angiogenic and antitumor potency of HPMA copolymer-ALN-TNP-470 conjugate was evaluated both in vitro and in vivo. We show that free and conjugated ALN-TNP-470 have synergistic anti-angiogenic and antitumor activity by inhibiting proliferation, migration and capillary-like tube formation of endothelial and human osteosarcoma cells in vitro. Evaluation of anti-angiogenic, antitumor activity and body distribution of HPMA copolymer-ALN-TNP-470 conjugate was performed on severe combined immunodeficiency (SCID male mice inoculated with mCherry-labeled MG-63-Ras human osteosarcoma and by modified Miles permeability assay. Our targeted bi-specific conjugate reduced VEGF-induced vascular hyperpermeability by 92% and remarkably inhibited osteosarcoma growth in mice by 96%. CONCLUSIONS: This is the first report to describe a new concept of a narrowly-dispersed combined

  18. Antibiotic Conditioned Growth Medium of Pseudomonas Aeruginosa

    Science.gov (United States)

    Benathen, Isaiah A.; Cazeau, Barbara; Joseph, Njeri

    2004-01-01

    A simple method to study the consequences of bacterial antibiosis after interspecific competition between microorganisms is presented. Common microorganisms are used as the test organisms and Pseudomonas aeruginosa are used as the source of the inhibitor agents.

  19. MicroRNA-493 regulates angiogenesis in a rat model of ischemic stroke by targeting MIF.

    Science.gov (United States)

    Li, Qian; He, Quanwei; Baral, Suraj; Mao, Ling; Li, Yanan; Jin, Huijuan; Chen, Shengcai; An, Tianhui; Xia, Yuanpeng; Hu, Bo

    2016-05-01

    MicroRNA-493 (miR-493) is known to suppress tumour metastasis and angiogenesis and its expression is decreased in stroke patients. In the present study, we investigated a role for miR-493 in regulating post-stroke angiogenesis. We found decreased expression of miR-493 in the ischemic boundary zone (IBZ) of rats subjected to middle cerebral artery occlusion (MCAO), and in rat brain microvascular endothelial cells (RBMECs) exposed to oxygen glucose deprivation. Down-regulating miR-493 with a lateral ventricular injection of antagomir-493, a synthetic miR-493 inhibitor, increased capillary density in the IBZ, decreased focal infarct volume and ameliorated neurologic deficits in rats subjected to MCAO. Intriguingly, MCAO also increased the expression of macrophage migration inhibitory factor (MIF) in the IBZ of rats; MIF expression was also increased in RBMECs exposed to oxygen glucose deprivation. We found that miR-493 directly targeted MIF, and that the protective effect of miR-493 inhibition in angiogenesis was attenuated by knocking down MIF. This effect could then be rescued by administration of recombinant MIF. Our findings highlight the importance of miR-493 in regulating angiogenesis after MCAO, and indicate that miR-493 is a potential therapeutic target in the treatment of stroke. PMID:26929185

  20. Synthesis of specific nanoparticles for targeting tumor angiogenesis using electron-beam irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Deshayes, Stephanie, E-mail: stephanie.deshayes@u-bordeaux2.f [Universite de Bordeaux, UMR CNRS 5084, CNAB, Chimie Bio-Organique, 33076 Bordeaux (France); Ecole Polytechnique, CEA, UMR CNRS 7642, Laboratoire des Solides Irradies, 91128 Palaiseau (France); Maurizot, Victor [Universite de Bordeaux, UMR CNRS 5084, CNAB, Chimie Bio-Organique, 33076 Bordeaux (France); Clochard, Marie-Claude; Berthelot, Thomas; Baudin, Cecile [Ecole Polytechnique, CEA, UMR CNRS 7642, Laboratoire des Solides Irradies, 91128 Palaiseau (France); Deleris, Gerard [Universite de Bordeaux, UMR CNRS 5084, CNAB, Chimie Bio-Organique, 33076 Bordeaux (France)

    2010-03-15

    Angiogenesis plays a critical role in both growth and metastasis of tumors. Vascular endothelial growth factor (VEGF) is an endogenous mediator of tumor angiogenesis. Blocking associations of the VEGF with its corresponding receptors (KDR) have become critical for anti-tumor therapy. A cyclo-peptide (CBO-P11), derived from VEGF, able to inhibit the interaction between the growth factor and its receptor, was synthesized in our laboratory to provide a target for angiogenesis. We have prepared biocompatible poly(vinylidene fluoride) (PVDF) nanoparticles in order to obtain long blood circulating systems. Electron-beam (EB) irradiation was used to activate the PVDF nanoparticles. From electron paramagnetic resonance (EPR) measurements, we studied the radical stability in order to optimize the radio-grafting of acrylic acid (AA). Further functionalization of PVDF-g-PAA nanoparticles with the cyclo-peptide via a spacer arm was also possible by performing coupling reactions. High resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) and MALDI mass spectrometry allowed us to follow each chemical step of this peptide immobilization. We designed a new nanodevice suggesting a great potential for targeting angiogenesis. 7727-21-1

  1. Endothelial precursor cell-based therapy to target the pathologic angiogenesis and compensate tumor hypoxia.

    Science.gov (United States)

    Collet, Guillaume; Szade, Krzysztof; Nowak, Witold; Klimkiewicz, Krzysztof; El Hafny-Rahbi, Bouchra; Szczepanek, Karol; Sugiyama, Daisuke; Weglarczyk, Kazimierz; Foucault-Collet, Alexandra; Guichard, Alan; Mazan, Andrzej; Nadim, Mahdi; Fasani, Fabienne; Lamerant-Fayel, Nathalie; Grillon, Catherine; Petoud, Stéphane; Beloeil, Jean-Claude; Jozkowicz, Alicja; Dulak, Jozef; Kieda, Claudine

    2016-01-28

    Hypoxia-inducing pathologies as cancer develop pathologic and inefficient angiogenesis which rules tumor facilitating microenvironment, a key target for therapy. As such, the putative ability of endothelial precursor cells (EPCs) to specifically home to hypoxic sites of neovascularization prompted to design optimized, site-specific, cell-mediated, drug-/gene-targeting approach. Thus, EPC lines were established from aorta-gonad-mesonephros (AGM) of murine 10.5 dpc and 11.5 dpc embryo when endothelial repertoire is completed. Lines representing early endothelial differentiation steps were selected: MAgEC10.5 and MagEC11.5. Distinct in maturation, they differently express VEGF receptors, VE-cadherin and chemokine/receptors. MAgEC11.5, more differentiated than MAgEC 10.5, displayed faster angiogenesis in vitro, different response to hypoxia and chemokines. Both MAgEC lines cooperated to tube-like formation with mature endothelial cells and invaded tumor spheroids through a vasculogenesis-like process. In vivo, both MAgEC-formed vessels established blood flow. Intravenously injected, both MAgECs invaded Matrigel(TM)-plugs and targeted tumors. Here we show that EPCs (MAgEC11.5) target tumor angiogenesis and allow local overexpression of hypoxia-driven soluble VEGF-receptor2 enabling drastic tumor growth reduction. We propose that such EPCs, able to target tumor angiogenesis, could act as therapeutic gene vehicles to inhibit tumor growth by vessel normalization resulting from tumor hypoxia alleviation. PMID:26577811

  2. Acetylbritannilactone Modulates Vascular Endothelial Growth Factor Signaling and Regulates Angiogenesis in Endothelial Cells.

    Science.gov (United States)

    Zhao, Jingshan; Niu, Honglin; Li, Aiying; Nie, Lei

    2016-01-01

    The present study was conducted to determine the effects of 1-O-acetylbritannilactone (ABL), a compound extracted from Inula britannica L., on vascular endothelial growth factor (VEGF) signaling and angiogenesis in endothelial cells (ECs). We showed that ABL promotes VEGF-induced cell proliferation, growth, migration, and tube formation in cultured human ECs. Furthermore, the modulatory effect of ABL on VEGF-induced Akt, MAPK p42/44, and p38 phosphorylation, as well as on upstream VEGFR-2 phosphorylation, were associated with VEGF-dependent Matrigel angiogenesis in vivo. In addition, animals treated with ABL (26 mg/kg/day) recovered blood flow significantly earlier than control animals, suggesting that ABL affects ischemia-mediated angiogenesis and arteriogenesis in vivo. Finally, we demonstrated that ABL strongly reduced the levels of VEGFR-2 on the cell surface, enhanced VEGFR-2 endocytosis, which consistent with inhibited VE-cadherin, a negative regulator of VEGF signaling associated with VEGFR-2 complex formation, but did not alter VE-cadherin or VEGFR-2 expression in ECs. Our results suggest that ABL may serve as a novel therapeutic intervention for various cardiovascular diseases, including chronic ischemia, by regulating VEGF signaling and modulating angiogenesis. PMID:26863518

  3. VEGF-mediated angiogenesis stimulates neural stem cell proliferation and differentiation in the premature brain

    International Nuclear Information System (INIS)

    This study investigated the effects of angiogenesis on the proliferation and differentiation of neural stem cells in the premature brain. We observed the changes in neurogenesis that followed the stimulation and inhibition of angiogenesis by altering vascular endothelial growth factor (VEGF) expression in a 3-day-old rat model. VEGF expression was overexpressed by adenovirus transfection and down-regulated by siRNA interference. Using immunofluorescence assays, Western blot analysis, and real-time PCR methods, we observed angiogenesis and the proliferation and differentiation of neural stem cells. Immunofluorescence assays showed that the number of vWF-positive areas peaked at day 7, and they were highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at every time point. The number of neural stem cells, neurons, astrocytes, and oligodendrocytes in the subventricular zone gradually increased over time in the VEGF up-regulation group. Among the three groups, the number of these cells was highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at the same time point. Western blot analysis and real-time PCR confirmed these results. These data suggest that angiogenesis may stimulate the proliferation of neural stem cells and differentiation into neurons, astrocytes, and oligodendrocytes in the premature brain.

  4. Synthesis of specific nanoparticles for targeting tumor angiogenesis using electron-beam irradiation

    International Nuclear Information System (INIS)

    Angiogenesis plays a critical role in both growth and metastasis of tumors. Vascular endothelial growth factor (VEGF) is an endogenous mediator of tumor angiogenesis. Blocking associations of the VEGF with its corresponding receptors (KDR) have become critical for anti-tumor therapy. A cyclo-peptide (CBO-P11), derived from VEGF, able to inhibit the interaction between the growth factor and its receptor, was synthesized in our laboratory to provide a target for angiogenesis. We have prepared biocompatible poly(vinylidene fluoride) (PVDF) nanoparticles in order to obtain long blood circulating systems. Electron-beam (EB) irradiation was used to activate the PVDF nanoparticles. From electron paramagnetic resonance (EPR) measurements, we studied the radical stability in order to optimize the radio-grafting of acrylic acid (AA). Further functionalization of PVDF-g-PAA nanoparticles with the cyclo-peptide via a spacer arm was also possible by performing coupling reactions. High resolution magic angle spinning nuclear magnetic resonance (HRMAS NMR) and MALDI mass spectrometry allowed us to follow each chemical step of this peptide immobilization. We designed a new nanodevice suggesting a great potential for targeting angiogenesis. 7727-21-1

  5. In vivo evidence for platelet-induced physiological angiogenesis by a COX driven mechanism.

    Science.gov (United States)

    Packham, Ian M; Watson, Steve P; Bicknell, Roy; Egginton, Stuart

    2014-01-01

    We sought to determine a role for platelets in in vivo angiogenesis, quantified by changes in the capillary to fibre ratio (C:F) of mouse skeletal muscle, utilising two distinct forms of capillary growth to identify differential effects. Capillary sprouting was induced by muscle overload, and longitudinal splitting by chronic hyperaemia. Platelet depletion was achieved by anti-GPIbα antibody treatment. Sprouting induced a significant increase in C:F (1.42±0.02 vs. contralateral 1.29±0.02, Pplatelet depletion, while the significant C:F increase caused by splitting (1.40±0.03 vs. control 1.28±0.03, PVEGF overexpression failed to rescue angiogenesis following platelet depletion, suggesting the mechanism is not simply reliant on growth factor release. Sprouting occurred normally following antibody-induced GPVI shedding, suggesting platelet activation via collagen is not involved. BrdU pulse-labelling showed no change in the proliferative potential of cells associated with capillaries after platelet depletion. Inhibition of platelet activation by acetylsalicylic acid abolished sprouting, but not splitting angiogenesis, paralleling the response to platelet depletion. We conclude that platelets differentially regulate mechanisms of angiogenesis in vivo, likely via COX signalling. Since endothelial proliferation is not impaired, we propose a link between COX1 and induction of endothelial migration. PMID:25238071

  6. In vivo evidence for platelet-induced physiological angiogenesis by a COX driven mechanism.

    Directory of Open Access Journals (Sweden)

    Ian M Packham

    Full Text Available We sought to determine a role for platelets in in vivo angiogenesis, quantified by changes in the capillary to fibre ratio (C:F of mouse skeletal muscle, utilising two distinct forms of capillary growth to identify differential effects. Capillary sprouting was induced by muscle overload, and longitudinal splitting by chronic hyperaemia. Platelet depletion was achieved by anti-GPIbα antibody treatment. Sprouting induced a significant increase in C:F (1.42±0.02 vs. contralateral 1.29±0.02, P<0.001 that was abolished by platelet depletion, while the significant C:F increase caused by splitting (1.40±0.03 vs. control 1.28±0.03, P<0.01 was unaffected. Granulocyte/monocyte depletion showed this response was not immune-regulated. VEGF overexpression failed to rescue angiogenesis following platelet depletion, suggesting the mechanism is not simply reliant on growth factor release. Sprouting occurred normally following antibody-induced GPVI shedding, suggesting platelet activation via collagen is not involved. BrdU pulse-labelling showed no change in the proliferative potential of cells associated with capillaries after platelet depletion. Inhibition of platelet activation by acetylsalicylic acid abolished sprouting, but not splitting angiogenesis, paralleling the response to platelet depletion. We conclude that platelets differentially regulate mechanisms of angiogenesis in vivo, likely via COX signalling. Since endothelial proliferation is not impaired, we propose a link between COX1 and induction of endothelial migration.

  7. VEGF-mediated angiogenesis stimulates neural stem cell proliferation and differentiation in the premature brain

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Jinqiao, E-mail: jinqiao1977@163.com [Institute of Pediatrics, Children' s Hospital of Fudan University (China); Sha, Bin [Department of Neonatology, Children' s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102 (China); Zhou, Wenhao, E-mail: zhou_wenhao@yahoo.com.cn [Department of Neonatology, Children' s Hospital of Fudan University, 399 Wanyuan Road, Shanghai 201102 (China); Yang, Yi [Institute of Pediatrics, Children' s Hospital of Fudan University (China)

    2010-03-26

    This study investigated the effects of angiogenesis on the proliferation and differentiation of neural stem cells in the premature brain. We observed the changes in neurogenesis that followed the stimulation and inhibition of angiogenesis by altering vascular endothelial growth factor (VEGF) expression in a 3-day-old rat model. VEGF expression was overexpressed by adenovirus transfection and down-regulated by siRNA interference. Using immunofluorescence assays, Western blot analysis, and real-time PCR methods, we observed angiogenesis and the proliferation and differentiation of neural stem cells. Immunofluorescence assays showed that the number of vWF-positive areas peaked at day 7, and they were highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at every time point. The number of neural stem cells, neurons, astrocytes, and oligodendrocytes in the subventricular zone gradually increased over time in the VEGF up-regulation group. Among the three groups, the number of these cells was highest in the VEGF up-regulation group and lowest in the VEGF down-regulation group at the same time point. Western blot analysis and real-time PCR confirmed these results. These data suggest that angiogenesis may stimulate the proliferation of neural stem cells and differentiation into neurons, astrocytes, and oligodendrocytes in the premature brain.

  8. Monitoring angiogenesis using magnetic resonance methods

    DEFF Research Database (Denmark)

    Holm, David Alberg

    2008-01-01

    When a tumor reaches a certain size it can no longer rely on passive perfusion for nutrition. The tumor therefore emits signaling molecules which stimulating surrounding vessels to divide and grow towards the tumor, a process known as angiogenesis. Very little angiogenesis is present in healthy a...... in a transgenic mouse model. The last manuscript presents a new method for in vivo cell labeling. This method could find use in studying the metastatic spread of cancer cells throughout the body....... and the involved signaling molecules. Subsequently, a short review of contrast agents and perfusion measurements is given. Finally, methods for monitoring angiogenesis using magnetic resonance imaging are reviewed. A method for monitoring early stages of angiogenesis as well as the effect of anti......-angiogenic treatment is presented in the first manuscript. In the second and third manuscript, two separate methods of quantifying perfusion, blood volume and vessel permeability are presented. The methods are used to show that drug delivery to a xenografted tumor is plausible and to show possible vascular maturation...

  9. Fibromodulin Enhances Angiogenesis during Cutaneous Wound Healing

    Directory of Open Access Journals (Sweden)

    Zhong Zheng, PhD

    2014-12-01

    Conclusions: Altogether, we demonstrated that in addition to reducing scar formation, FMOD also promotes angiogenesis. As blood vessels organize and regulate wound healing, its potent angiogenic properties will further expand the clinical application of FMOD for cutaneous healing of poorly vascularized wounds.

  10. Ceasing down Pseudomonas aeruginosa Invasiveness in A Mouse Burn Wound Sepsis Model by Recombinant OprF

    Directory of Open Access Journals (Sweden)

    Zohreh Rasooli

    2015-10-01

    Full Text Available Background: Bacterial infections in burn and wound patients are common and difficult to control. The aim of the current study was to evaluate the ability of full length OprF to elicit the production of protective IgG in mice burn wound sepsis model against P. aeruginosa infection.Methods: OprF protein was expressed and purified by Ni-NTA. The purified protein as used to immunize BALB/c mice. The antibody raised against OprF was confirmed by ELISA and evaluated by immunoblot analysis. After burn and bacterial challenge, mortality rate was monitored in the control and immunized mice groups. Bacterial quantity in skin, blood, spleenand liver was evaluated to study spread or inhibition of the infection.Results: Immunization of mice with OprF brought about a significant rise in anti-OprF sera titer. Protection was imparted in the immunized group resulting in 100% survival against 1000 fold LD50 challenge with P. aeruginosa. The antiserum against OprF was able to significantlyinhibit the systemic spread of P. aeruginosa infection from the infection site to internal organs.Conclusions: The results suggest that anti-P. aeruginosa OprF antibodies elicited in burn wound sepsis model by active immunization are protective against infection with P. aeruginosa, and provide a rational for further development of the vaccine for prevention against P. aeruginosa infection in burn patients.

  11. Negative pressure wound therapy decreases mortality in a murine model of burn-wound sepsis involving Pseudomonas aeruginosa infection.

    Directory of Open Access Journals (Sweden)

    Yang Liu

    Full Text Available BACKGROUND: The colonization of burn wounds by Pseudomonas aeruginosa can lead to septic shock, organ injuries, and high mortality rates. We hypothesized that negative pressure wound therapy (NPWT would decrease invasion and proliferation of P. aeruginosa within the burn wound and reduce mortality. METHODS: Thermal injuries were induced in anesthetized mice, and P. aeruginosa was applied to the wound surface for 24 h. After removing the burn eschar and debridement, the animals were subjected to either NPWT or wet-to-dry (WTD treatment protocols. The bacterial loads on the wound surface were assessed during 7 d of treatment, as were the concentrations of inflammatory cytokines in the peripheral blood samples. Survival was monitored daily for 14 d after burn induction. Finally, samples of wounded skin, lung, liver, and kidney were collected and subjected to histopathological examination. RESULTS: Applying P. aeruginosa to the burn wound surface led to sepsis. During early stages of treatment, NPWT reduced the mortality of the septic animals and levels of P. aeruginosa within the burn wound compared with WTD-treated animals. Circulating levels of cytokines and cytoarchitectural abnormalities were also significantly reduced via NPWT. CONCLUSIONS: Our data indicate that NPWT inhibits the invasion and proliferation of P. aeruginosa in burn-wounded tissue and decreases early mortality in a murine model of burn-wound sepsis. These therapeutic benefits likely result from the ability of NPWT to decrease bacterial proliferation on the wound surface, reduce cytokine serum concentrations, and prevent damage to internal organs.

  12. MEDICINAL PLANTS FROM BRAZILIAN CAATINGA: ANTIBIOFILM AND ANTIBACTERIAL ACTIVITIES AGAINST Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    DANIELLE SILVA TRENTIN

    2014-01-01

    Full Text Available The Caatinga biome covers a vast area in northeastern Brazil and presents a high level of biodiversity. It is known that about 400 plant species are used by semi-arid local communities for medical purposes. Based on ethnopharmacological reports, this study aims to screen 24 species from Caatinga regarding the ability to prevent biofilm formation and to inhibit the growth of Pseudomonas aeruginosa - a major opportunistic human pathogen and an important causative agent of morbidity and mortality. The effects of aqueous extracts, at 0.4 and 4.0 mg mL-1, on biofilm formation and on growth of P. aeruginosa ATCC 27853 were studied using the crystal violet assay and the OD600 absorbance, respectively. The most active extracts were analyzed by thinlayer chromatography and high performance liquid chromatography. Our investigation pointed extracts of four species with potential application for the control of P. aeruginosa: Anadenanthera colubrina (Vell. Brenan, Commiphora leptophloeos (Mart. J.B. Gillett, Myracrodruoun urundeuva Allemão, whose antibiofilm effects (89%, 56% and 79% inhibition of biofilm, respectively were associated with complete inhibition of bacterial growth, and Pityrocarpa moniliformis (Benth. Luckow & R.W. Jobson, which were able avoid 68% of biofilm formation and inhibited 30% bacterial growth. The qualitative phytochemical analyses reveal the complexity of the samples as well as the presence of compounds with high molecular weight.

  13. Endogenous angiogenesis inhibitors and their therapeutic implications.

    Science.gov (United States)

    Cao, Y

    2001-04-01

    A number of endogenous inhibitors targeting the tumor vasculature have recently been identified using in vitro and in vivo antiangiogenesis models. While many of these angiogenesis inhibitors display a broad spectrum of biological actions on several systems in the body, several inhibitors including angiostatin, endostatin, and serpin antithrombin seem to act specifically on the proliferating endothelial cell compartment of the newly formed blood vessels. The discovery of these specific endothelial inhibitors not only increases our understanding of the functions of these molecules in the regulation of physiological and pathological angiogenesis, but may also provide an important therapeutic strategy for the treatment of cancer and other angiogenesis dependent diseases, including diabetic retinopathy and chronic inflammations. Systemic administration of these angiogenesis inhibitors in animals significantly suppresses the growth of a variety of tumors and their metastases. However, their production as functional recombinant proteins has been proven to be difficult. In addition, high dosages of these inhibitors are required to suppress tumor growth in animal studies. Other disadvantages of the antiangiogenic protein therapy include repeated injections, prolonged treatment, transmission of toxins and infectious particles, and high cost for manufacturing large amounts of protein molecules. Thus, alternative strategies need to be developed in order to improve the clinical settings of antiangiogenic therapy. Developments of these strategies are ongoing and they include identification of more potent inhibitors, antiangiogenic gene therapy, improvement of protein/compound half-lives in the circulation, increase of their concentrations at the disease location, and combinatorial therapies with approaches including chemotherapy, radiotherapy, and immunotherapy. Despite the above-mentioned disadvantages, a few inhibitors have entered into the early stages of clinical trials and

  14. Insufficient radiofrequency ablation promotes angiogenesis of residual hepatocellular carcinoma via HIF-1α/VEGFA.

    Directory of Open Access Journals (Sweden)

    Jian Kong

    Full Text Available BACKGROUND: The mechanism of rapid growth of the residual tumor after radiofrequency (RF ablation is poorly understood. In this study, we investigated the effect of hyperthermia on HepG2 cells and generated a subline with enhanced viability and dys-regulated angiogenesis in vivo, which was used as a model to further determine the molecular mechanism of the rapid growth of residual HCC after RF ablation. METHODOLOGY/PRINCIPAL FINDINGS: Heat treatment was used to establish sublines of HepG2 cells. A subline (HepG2 k with a relatively higher viability and significant heat tolerance was selected. The cellular protein levels of VEGFA, HIF-1α and p-Akt, VEGFA mRNA and secreted VEGFA were measured, and all of these were up-regulated in this subline compared to parental HepG2 cells. HIF-1α inhibitor YC-1 and VEGFA siRNA inhibited the high viability of the subline. The conditioned media from the subline exerted stronger pro-angiogenic effects. Bevacizumab, VEGFA siRNA and YC-1 inhibited proangiogenic effects of the conditioned media of HepG2 k cells and abolished the difference between parental HepG2 cells and HepG2 k cells. For in vivo studies, a nude mouse model was used, and the efficacy of bavacizumab was determined. HepG2 k tumor had stronger pro-angiogenic effects than parental HepG2 tumor. Bevacizumab could inhibit the tumor growth and angiogenesis, and also eliminate the difference in tumor growth and angiogenesis between parental HepG2 tumor and HepG2 k tumor in vivo. CONCLUSIONS/SIGNIFICANCE: The angiogenesis induced by HIF1α/VEGFA produced by altered cells after hyperthermia treatment may play an important role in the rapid growth of residual HCC after RF ablation. Bevacizumab may be a good candidate drug for preventing and treating the process.

  15. P70S6K 1 regulation of angiogenesis through VEGF and HIF-1α expression

    International Nuclear Information System (INIS)

    Research highlights: → P70S6K1 regulates VEGF expression; → P70S6K1 induces transcriptional activation through HIF-1α binding site; → P70S6K1 regulates HIF-1α, but not HIF-1β protein expression; → P70S6K1 mediates tumor growth and angiogenesis through HIF-1α and VEGF expression. -- Abstract: The 70 kDa ribosomal S6 kinase 1 (p70S6K1), a downstream target of phosphoinositide 3-kinase (PI3K) and ERK mitogen-activated protein kinase (MAPK), is an important regulator of cell cycle progression, and cell proliferation. Recent studies indicated an important role of p70S6K1 in PTEN-negative and AKT-overexpressing tumors. However, the mechanism of p70S6K1 in tumor angiogenesis remains to be elucidated. In this study, we specifically inhibited p70S6K1 activity in ovarian cancer cells using vector-based small interfering RNA (siRNA) against p70S6K1. We found that knockdown of p70S6K1 significantly decreased VEGF protein expression and VEGF transcriptional activation through the HIF-1α binding site at its enhancer region. The expression of p70S6K1 siRNA specifically inhibited HIF-1α, but not HIF-1β protein expression. We also found that p70S6K1 down-regulation inhibited ovarian tumor growth and angiogenesis, and decreased cell proliferation and levels of VEGF and HIF-1α expression in tumor tissues. Our results suggest that p70S6K1 is required for tumor growth and angiogenesis through HIF-1α and VEGF expression, providing a molecular mechanism of human ovarian cancer mediated by p70S6K1 signaling.

  16. Involvement of nitric oxide in the mechanism of biochemical alterations induced by simulated microgravity in Microcystis aeruginosa

    Science.gov (United States)

    Xiao, Yuan; Liu, Yongding; Wang, Gaohong

    2012-03-01

    Simulated microgravity (SMG) can inhibit proliferation and enhance microcystin production of Microcystis aeruginosa. We investigated the role of nitric oxide (NO) in regulating the SMG induced changes of proliferation, photochemical system II photochemical activity, pigment, soluble protein and microcystin production in M. aeruginosa. M. aeruginosa was exposed to 0.1 mM sodium nitroprusside (SNP, NO donor) or 0.02 mM 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3-oxide (c-PTIO, NO scavenger) alone or in combination with SMG for 48 h. SMG and SNP inhibited the growth of M. aeruginosa while c-PTIO had no effect on cell number. As to yield, the negative effect of SMG was augmented by SNP and suppressed by c-PTIO. The intracellular concentrations of chlorophyll a, carotenoid, phycocyanin, soluble protein and microcystin were increased by SMG after 48 h. The effects of SMG on these metabolic processes could be enhanced by SNP and be partly eliminated by c-PTIO. Moreover, SNP and c-PTIO only functioned in these biochemical processes under SMG, unlike in the regulation of cell proliferation and yield. These results showed that the effects of SMG could be enhanced by adding exogenous NO and be mitigated by scavenging endogenous NO, revealing the involvement of NO in the changes in biochemistry processes induced by SMG in M. aeruginosa.

  17. Aloe vera Gel: Effective Therapeutic Agent against Multidrug-Resistant Pseudomonas aeruginosa Isolates Recovered from Burn Wound Infections

    Directory of Open Access Journals (Sweden)

    Mehdi Goudarzi

    2015-01-01

    Full Text Available Objective. Aloe vera is an herbal medicinal plant with biological activities, such as antimicrobial, anticancer, anti-inflammatory, and antidiabetic ones, and immunomodulatory properties. The purpose of this study was investigation of in vitro antimicrobial activity of A. vera gel against multidrug-resistant (MDR Pseudomonas aeruginosa isolated from patients with burn wound infections. Methods. During a 6-month study, 140 clinical isolates of P. aeruginosa were collected from patients admitted to the burn wards of a hospital in Tehran, Iran. Antimicrobial susceptibility test was carried out against the pathogens using the A. vera gel and antibiotics (imipenem, gentamicin, and ciprofloxacin. Results. The antibiogram revealed that 47 (33.6% of all isolates were MDR P. aeruginosa. The extract isolated from A. vera has antibacterial activity against all of isolates. Also, 42 (89.4% isolates were inhibited by A. vera gel extract at minimum inhibitory concentration (MIC ≤ 200 µg/mL. MIC value of A. vera gel for other isolates (10.6% was 800 µg/mL. All of MDR P. aeruginosa strains were inhibited by A. vera at similar MIC50 and MIC90 200 µg/mL. Conclusion. Based on our results, A. vera gel at various concentrations can be used as an effective antibacterial agent in order to prevent wound infection caused by P. aeruginosa.

  18. Effects of cloned tumstatin-related and angiogenesis-inhibitory peptides on proliferation and apoptosis of endothelial ceils

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guang-mei; ZHANG Ying-mei; FU Song-bin; LIU Xing-han; FU Xue; YU Yan; ZHANG Zhi-yi

    2008-01-01

    Background Tumstatin is a recently developed endogenous vascular endothelial growth inhibitor that can be applied as an anti-angiogenesis and antineoplastic agent.The study aimed to design and synthesize the small molecular angiogenesis inhibition-related peptide (peptide 21),to replicate the structural and functional features of the active zone of angiogenesis inhibition using tumstatin and to prove that synthesized peptide 21 has a similar activity:specifically inhibiting tumor angiogenesis like tumstatin.Methods Peptide 21 was designed and synthesized using biological engineering technology.To determine its biological action,the human umbilical vein endothelial cell line ECV304,the human ovarian cancer cell line SKOV-3 and the mouse embryo-derived NIH3T3 fibroblasts were used in in vitro experiments to determine the effect of peptide 21 on proliferation of the three cell lines using the MTT test and growth curves.Transmission electron microscopy (TEM) and flow cytometry (FCM) were applied to analyze the peptide 21-induced apoptosis of the three cell lines qualitatively and quantitatively.In animal experiments,tumor models in nude mice subcutaneously grafted with SKOV-3 were used to observe the effects of peptide 21 on tumor weight,size and microvessel density (MVD).To initially investigate the role of peptide 21,the effect of peptide 21 on the expression of vascular endothelial growth factors (VEGFs) by tumor tissue was semi-quantitatively analyzed.Results The in vitro MTT test and growth curves all indicated that cloned peptide 21 could specifically inhibit ECV304 proliferation in a dose-dependent manner (P <0.01);TEM and FCM showed that peptide 21 could specifically induce ECV304 apoptosis (P <0.01).Results of in vivo experiments showed that tumors in the peptide 21 group grew more slowly.The weight and size of the tumors after 21 days of treatment were smaller than those in the control group (P <0.05),with a mean tumor inhibition rate of 67.86%;MVD of

  19. Anticandidal activity of medicinal plants and Pseudomonas aeruginosa strains of clinical specimens.

    Science.gov (United States)

    Bora, Limpon

    2016-04-01

    This study was designed to investigate the in vitro anticandidal activity of some medicinal plants and Pseudomonas aeruginosa strains against Candida species. The antifungal activity of methanolic extracts of five medicinal plants, namely, Cinnamomum porrectum, Lippia nudiflora, Cestrum nocturnum, Trachyspermum ammi, and Sida carpinifolia were studied. The medicinal characteristics of these plants were compared with commercially used antibiotics. The antimicrobial assay was done by agar well diffusion and the broth dilution method. Among the plants used, T. ammi and C. nocturnum were found to be more potent than the others. Twenty P. aeruginosa strains were isolated from various clinical specimens. The total inhibitions obtained were found to be 47%, 38%, and 36% in blood agar, whereas in Sabouraud dextrose agar (SDA) the inhibitions were 57%, 48%, and 37%, respectively. PMID:25592881

  20. Measurement of Pseudomonas aeruginosa phenazine pigments in sputum and assessment of their contribution to sputum sol toxicity for respiratory epithelium.

    OpenAIRE

    Wilson, R.; Sykes, D A; Watson, D.; Rutman, A.; Taylor, G.W.; Cole, P J

    1988-01-01

    The phenazine pigments pyocyanin and 1-hydroxyphenazine were resolved by high-pressure liquid chromatography from the sputum sol phase from 9 of 13 patients with cystic fibrosis or bronchiectasis colonized by Pseudomonas aeruginosa. The concentrations measured were each sufficient to inhibit ciliary beating in vitro and contributed a significant proportion of sol phase toxicity for respiratory epithelium.

  1. Effect of methylglyoxal on multidrug-resistant Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    KunihikoNishino

    2014-04-01

    Full Text Available Honey has a complex chemistry, and its broad-spectrum antimicrobial activity varies with floral source, climate, and harvesting conditions. Methylglyoxal was identified as the dominant antibacterial component of manuka honey. Although it has been known that methylglyoxal has antibacterial activity against gram-positive bacteria, including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus, there is not much information describing its activity against gram-negative bacteria. In this study, we report the effect of methylglyoxal against multidrug-resistant Pseudomonas aeruginosa (MDRP using 53 clinically isolated strains. We also assessed the effect of deleting the five multidrug efflux systems in P. aeruginosa, as well as the efflux systems in Escherichia coli and Salmonella enterica serovar Typhimurium, on MICs of methylglyoxal. Our results indicate that methylglyoxal inhibits the growth of MDRP at concentrations of 128–512 µg/ml (1.7–7.1 mM and is not recognized by drug efflux systems.

  2. Cathepsin L in tumor angiogenesis and its therapeutic intervention by the small molecule inhibitor KGP94.

    Science.gov (United States)

    Sudhan, Dhivya R; Rabaglino, Maria B; Wood, Charles E; Siemann, Dietmar W

    2016-06-01

    A significant proportion of breast cancer patients harbor clinically undetectable micrometastases at the time of diagnosis. If left untreated, these micro-metastases may lead to disease relapse and possibly death. Hence, there is significant interest in the development of novel anti-metastatic agents that could also curb the growth of pre-established micrometastases. Like primary tumor, the growth of metastases also is driven by angiogenesis. Although the role of cysteine protease Cathepsin L (CTSL) in metastasis associated tumor cell functions such as migration and invasion is well recognized, its role in tumor angiogenesis remains less explored. The present study examines the contribution of CTSL to breast cancer angiogenesis and evaluates the anti-angiogenic efficacy of CTSL inhibitor KGP94. CTSL semi-quantitative RT-PCR analysis on breast tissue panels revealed significant upregulation of CTSL in breast cancer patients which strongly correlated with increased relapse and metastatic incidence and poor overall survival. Preclinically, CTSL ablation using shRNA or KGP94 treatment led to a significant reduction in MDA-MB-231 tumor cell induced angiogenesis in vivo. In-vitro assessments demonstrated a significant decrease in various angiogenic properties such as endothelial cell sprouting, migration, invasion, tube formation and proliferation in the presence of KGP94. Microarray analyses revealed a significant upregulation of cell cycle related genes by CTSL. Western blot analyses further confirmed upregulation of members of the cyclin family by CTSL. Collectively, these data indicate that CTSL is an important contributor to tumor angiogenesis and that the CTSL inhibition may have therapeutic utility in the treatment of breast cancer patients. PMID:27055649

  3. The effects of D-Tyrosine combined with amikacin on the biofilms of Pseudomonas aeruginosa.

    Science.gov (United States)

    She, Pengfei; Chen, Lihua; Liu, Hongbo; Zou, Yaru; Luo, Zhen; Koronfel, Asmaa; Wu, Yong

    2015-09-01

    The biofilm formation of microorganisms causes persistent tissue infections resistant to treatment with antimicrobial agents. Pseudomonas aeruginosa is commonly isolated from the airways of patients with chronic fibrosis (CF) and often forms biofilms, which are extremely hard to eradicate and a major cause of mortality and morbidity. Recent studies have shown that D-amino acids (D-AAs) inhibited and disrupted biofilm formation by causing the release of the protein component of the polymeric matrix. However, the effects of D-AAs combined with common antibiotics on biofilms have rarely been studied. The current study first determined whether D-AAs disrupted the biofilms of PAO1 and the clinical airway isolates of P. aeruginosa. It was then determined whether combinations of D-Tyr (the most effective one) and the antibiotic amikacin (AMK) enhanced the activity against these biofilms. The results of the current study showed that D-Tyr is the most effective among those that disassemble the D-amino acids (D-leucine, D-methionine, D-Tyrptophan, and D-tryptophan), and D-Tyr at concentrations higher than 5 mM significantly reduced the biofilm biomass of P. aeruginosa (p < 0.05) without influencing bacterial growth. It was also revealed that D-Tyr improved the efficacy of AMK to combat P. aeruginosa biofilms, as indicated by a reduction in the minimal biofilm-inhibiting concentration (MBIC50 and MBIC90) without a change in the minimal inhibitory concentration (MIC) of planktonic bacteria. Thus, the findings indicated that D-Tyr supplementation overcame the resistance of P. aeruginosa biofilms to AMK, which might be helpful for preventing AMK overuse when this specific D-Tyr is recommended for combatting these biofilms. Also, toxicity of the liver and kidney from AMK could be potentially mitigated by co-delivery with D-Tyr. PMID:26188263

  4. Biofilm dispersion in Pseudomonas aeruginosa.

    Science.gov (United States)

    Kim, Soo-Kyoung; Lee, Joon-Hee

    2016-02-01

    In recent decades, many researchers have written numerous articles about microbial biofilms. Biofilm is a complex community of microorganisms and an example of bacterial group behavior. Biofilm is usually considered a sessile mode of life derived from the attached growth of microbes to surfaces, and most biofilms are embedded in self-produced extracellular matrix composed of extracellular polymeric substances (EPSs), such as polysaccharides, extracellular DNAs (eDNA), and proteins. Dispersal, a mode of biofilm detachment indicates active mechanisms that cause individual cells to separate from the biofilm and return to planktonic life. Since biofilm cells are cemented and surrounded by EPSs, dispersal is not simple to do and many researchers are now paying more attention to this active detachment process. Unlike other modes of biofilm detachment such as erosion or sloughing, which are generally considered passive processes, dispersal occurs as a result of complex spatial differentiation and molecular events in biofilm cells in response to various environmental cues, and there are many biological reasons that force bacterial cells to disperse from the biofilms. In this review, we mainly focus on the spatial differentiation of biofilm that is a prerequisite for dispersal, as well as environmental cues and molecular events related to the biofilm dispersal. More specifically, we discuss the dispersal-related phenomena and mechanisms observed in Pseudomonas aeruginosa, an important opportunistic human pathogen and representative model organism for biofilm study. PMID:26832663

  5. The selective Cox-2 inhibitor Celecoxib suppresses angiogenesis and growth of secondary bone tumors: An intravital microscopy study in mice

    International Nuclear Information System (INIS)

    The inhibition of angiogenesis is a promising strategy for the treatment of malignant primary and secondary tumors in addition to established therapies such as surgery, chemotherapy, and radiation. There is strong experimental evidence in primary tumors that Cyclooxygenase-2 (Cox-2) inhibition is a potent mechanism to reduce angiogenesis. For bone metastases which occur in up to 85% of the most frequent malignant primary tumors, the effects of Cox-2 inhibition on angiogenesis and tumor growth remain still unclear. Therefore, the aim of this study was to investigate the effects of Celecoxib, a selective Cox-2 inhibitor, on angiogenesis, microcirculation and growth of secondary bone tumors. In 10 male severe combined immunodeficient (SCID) mice, pieces of A549 lung carcinomas were implanted into a newly developed cranial window preparation where the calvaria serves as the site for orthotopic implantation of the tumors. From day 8 after tumor implantation, five animals (Celecoxib) were treated daily with Celecoxib (30 mg/kg body weight, s.c.), and five animals (Control) with the equivalent amount of the CMC-based vehicle. Angiogenesis, microcirculation, and growth of A549 tumors were analyzed by means of intravital microscopy. Apoptosis was quantified using the TUNEL assay. Treatment with Celecoxib reduced both microvessel density and tumor growth. TUNEL reaction showed an increase in apoptotic cell death of tumor cells after treatment with Celecoxib as compared to Controls. Celecoxib is a potent inhibitor of tumor growth of secondary bone tumors in vivo which can be explained by its anti-angiogenic and pro-apoptotic effects. The results indicate that a combination of established therapy regimes with Cox-2 inhibition represents a possible application for the treatment of bone metastases

  6. Inhibitory effect of tocotrienol on eukaryotic DNA polymerase λ and angiogenesis

    International Nuclear Information System (INIS)

    Tocotrienols, vitamin E compounds that have an unsaturated side chain with three double bonds, selectively inhibited the activity of mammalian DNA polymerase λ (pol λ) in vitro. These compounds did not influence the activities of replicative pols such as α, δ, and ε, or even the activity of pol β which is thought to have a very similar three-dimensional structure to the pol β-like region of pol λ. Since δ-tocotrienol had the strongest inhibitory effect among the four (α- to δ-) tocotrienols, the isomer's structure might be an important factor in the inhibition of pol λ. The inhibitory effect of δ-tocotrienol on both intact pol λ (residues 1-575) and a truncated pol λ lacking the N-terminal BRCA1 C-terminus (BRCT) domain (residues 133-575, del-1 pol λ) was dose-dependent, with 50% inhibition observed at a concentration of 18.4 and 90.1 μM, respectively. However, del-2 pol λ (residues 245-575) containing the C-terminal pol β-like region was unaffected. Tocotrienols also inhibited the proliferation of and formation of tubes by bovine aortic endothelial cells, with δ-tocotrienol having the greatest effect. These results indicated that tocotrienols targeted both pol λ and angiogenesis as anti-cancer agents. The relationship between the inhibition of pol λ and anti-angiogenesis by δ-tocotrienol was discussed

  7. Metabolomics-Based Screening of Biofilm-Inhibitory Compounds against Pseudomonas aeruginosa from Burdock Leaf

    OpenAIRE

    Zaixiang Lou; Yuxia Tang; Xinyi Song; Hongxin Wang

    2015-01-01

    Screening of anti-biofilm compounds from the burdock leaf based on metabolomics is reported here. The crystal violet assay indicated 34% ethanol elution fraction of burdock leaf could completely inhibit biofilm formation of Pseudomonas aeruginosa at 1 mg·mL−1. Then, the chemical composition of burdock leaf fraction was analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and 11 active compounds (chlorogenic acid, caffeic acid, p-coumaric acid, quercetin, ursolic aci...

  8. Downregulation of microRNA-206 promotes invasion and angiogenesis of triple negative breast cancer.

    Science.gov (United States)

    Liang, Zhongxing; Bian, Xuehai; Shim, Hyunsuk

    2016-08-26

    Triple negative breast tumors don't respond to Tamoxifen and Herceptin, two of the most effective medications for treating breast cancer. Additionally, triple negative breast cancer (TNBC) intrinsically resists or will eventually acquire resistance to chemotherapy. The purpose of this study is to understand better the molecular basis of TNBC as well as develop new therapeutic strategies against it. Here, we analyzed miRNA-206 expression levels in breast cancer cell lines and tissues. In addition, we investigated whether miR-206 mimics inhibited TNBC tumor invasion and angiogenesis. The results showed that miR-206 was downregulated in TNBC compared to non-TNBC cell lines and tissues. Additionally, the decreased levels of miR-206 were inversely consistent with expression levels of VEGF. Furthermore, the forced expression of miR-206 in the mimic-transfected TNBC cells downregulated VEGF, MAPK3, and SOX9 expression levels. The miR-206 mimics inhibited TNBC breast cell invasion and angiogenesis. These findings demonstrate for the first time the involvement of miRNA-206 in TNBC invasion and angiogenesis and suggest that miR-206 may be an efficient agent for therapy of TNBC. PMID:27318091

  9. Tumor Angiogenesis Therapy Using Targeted Delivery of Paclitaxel to the Vasculature of Breast Cancer Metastases

    Directory of Open Access Journals (Sweden)

    Shijun Zhu

    2014-01-01

    Full Text Available Breast cancer aberrantly expresses tissue factor (TF in cancer tissues and cancer vascular endothelial cells (VECs. TF plays a central role in cancer angiogenesis, growth, and metastasis and, as such, is a target for therapy and drug delivery. TF is the cognate receptor of factor VIIa (fVIIa. We have coupled PTX (paclitaxel, also named Taxol with a tripeptide, phenylalanine-phenylalanine-arginine chloromethyl ketone (FFRck and conjugated it with fVIIa. The key aim of the work is to evaluate the antiangiogenic effects of PTX-FFRck-fVIIa against a PTX-resistant breast cancer cell line. Matrigel mixed with VEGF and MDA-231 was injected subcutaneously into the flank of athymic nude mice. Animals were treated by tail vein injection of the PTX-FFRck-fVIIa conjugate, unconjugated PTX, or PBS. The PTX-FFRck-fVIIa conjugate significantly reduces microvessel density in matrigel (p<0.01–0.05 compared to PBS and unconjugated PTX. The breast cancer lung metastasis model in athymic nude mice was developed by intravenous injection of MDA-231 cells expressing luciferase. Animals were similarly treated intravenously with the PTX-FFRck-fVIIa conjugate or PBS. The conjugate significantly inhibits lung metastasis as compared to the control, highlighting its potential to antagonize angiogenesis in metastatic carcinoma. In conclusion, PTX conjugated to fVIIa is a promising therapeutic approach for improving selective drug delivery and inhibiting angiogenesis.

  10. Monomeric C-reactive protein and Notch-3 co-operatively increase angiogenesis through PI3K signalling pathway.

    Science.gov (United States)

    Boras, Emhamed; Slevin, Mark; Alexander, M Yvonne; Aljohi, Ali; Gilmore, William; Ashworth, Jason; Krupinski, Jerzy; Potempa, Lawrence A; Al Abdulkareem, Ibrahim; Elobeid, Adila; Matou-Nasri, Sabine

    2014-10-01

    C-reactive protein (CRP) is the most acute-phase reactant serum protein of inflammation and a strong predictor of cardiovascular disease. Its expression is associated with atherosclerotic plaque instability and the formation of immature micro-vessels. We have previously shown that CRP upregulates endothelial-derived Notch-3, a key receptor involved in vascular development, remodelling and maturation. In this study, we investigated the links between the bioactive monomeric CRP (mCRP) and Notch-3 signalling in angiogenesis. We used in vitro (cell counting, wound-healing and tubulogenesis assays) and in vivo (chorioallantoic membrane) angiogenic assays and Western blotting to study the angiogenic signalling pathways induced by mCRP and Notch-3 activator chimera protein (Notch-3/Fc). Our results showed an additive effect on angiogenesis of mCRP stimulatory effect combined with Notch-3/Fc promoting bovine aortic endothelial cell (BAEC) proliferation, migration, tube formation in Matrigel(TM) with up-regulation of phospho-Akt expression. The pharmacological blockade of PI3K/Akt survival pathway by LY294002 fully inhibited in vitro and in vivo angiogenesis induced by mCRP/Notch-3/Fc combination while blocking Notch signalling by gamma-secretase inhibitor (DAPT) partially inhibited mCRP/Notch-3/Fc-induced angiogenesis. Using a BAEC vascular smooth muscle cell co-culture sprouting angiogenesis assay and transmission electron microscopy, we showed that activation of both mCRP and Notch-3 signalling induced the formation of thicker sprouts which were shown later by Western blotting to be associated with an up-regulation of N-cadherin expression and a down-regulation of VE-cadherin expression. Thus, mCRP combined with Notch-3 activator promote angiogenesis through the PI3K/Akt pathway and their therapeutic combination has potential to promote and stabilize vessel formation whilst reducing the risk of haemorrhage from unstable plaques. PMID:24972386

  11. Ionizing radiation modulates the exposure of the HUIV26 cryptic epitope within collagen type IV during angiogenesis

    International Nuclear Information System (INIS)

    Purpose: The majority of the research on the biologic effects of ionizing radiation has focused on the impact of radiation on cells in terms of gene expression, DNA damage, and cytotoxicity. In comparison, little information is available concerning the direct effects of radiation on the extracellular microenvironment, specifically the extracellular matrix and its main component, collagen. We have developed a series of monoclonal antibodies that bind to cryptic epitopes of collagen Type IV that are differentially exposed during matrix remodeling and are key mediators of angiogenesis. We have hypothesized that ionizing radiation might affect the process of angiogenesis through a direct effect on the extracellular matrix and specifically on collagen Type IV. Methods and Materials: Angiogenesis was induced in a chick chorioallantoic membrane (CAM) model; 24 h later, a single-dose treatment with ionizing radiation (0.5, 5, and 20 cGy) was administered. Angiogenesis was assessed, and the exposure of two cryptic regulatory epitopes within collagen Type IV (HUI77 and HUIV26) was studied in vitro by solid-phase ELISA and in vivo by immunofluorescence staining. Results: A dose-dependent reduction of angiogenesis with maximum inhibition (85%-90%) occurring at 20 cGy was demonstrated in the CAM model. Exposure of the cryptic HUIV26 site, an angiogenesis control element, was inhibited both in vitro and in vivo by the same radiation dose, whereas little if any change was observed for the HUI77 cryptic epitope. Conclusions: A dose-dependent alteration of the functional exposure of the HUIV26 cryptic epitope is induced by radiation in vitro and in the CAM model in vivo. This radiation-induced change in protein structure and function may contribute to the inhibitory effects of ionizing radiation on new blood vessel growth and warrants further studies in other models