WorldWideScience

Sample records for aeruginosa biofilm development

  1. Cell death in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Webb, J.S.; Thompson, L.S.; James, S.;

    2003-01-01

    Bacteria growing in biofilms often develop multicellular, three-dimensional structures known as microcolonies. Complex differentiation within biofilms of Pseudomonas aeruginosa occurs, leading to the creation of voids inside microcolonies and to the dispersal of cells from within these voids....... However, key developmental processes regulating these events are poorly understood. A normal component of multicellular development is cell death. Here we report that a repeatable pattern of cell death and lysis occurs in biofilms of P. aeruginosa during the normal course of development. Cell death...... occurred with temporal and spatial organization within biofilms, inside microcolonies, when the biofilms were allowed to develop in continuous-culture flow cells. A subpopulation of viable cells was always observed in these regions. During the onset of biofilm killing and during biofilm development...

  2. Assembly and development of the Pseudomonas aeruginosa biofilm matrix.

    OpenAIRE

    Luyan Ma; Matthew Conover; Haiping Lu; Parsek, Matthew R.; Kenneth Bayles; Wozniak, Daniel J.

    2009-01-01

    Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organis...

  3. Role of mutation in Pseudomonas aeruginosa biofilm development.

    Directory of Open Access Journals (Sweden)

    Tim C R Conibear

    Full Text Available The survival of bacteria in nature is greatly enhanced by their ability to grow within surface-associated communities called biofilms. Commonly, biofilms generate proliferations of bacterial cells, called microcolonies, which are highly recalcitrant, 3-dimensional foci of bacterial growth. Microcolony growth is initiated by only a subpopulation of bacteria within biofilms, but processes responsible for this differentiation remain poorly understood. Under conditions of crowding and intense competition between bacteria within biofilms, microevolutionary processes such as mutation selection may be important for growth; however their influence on microcolony-based biofilm growth and architecture have not previously been explored. To study mutation in-situ within biofilms, we transformed Pseudomonas aeruginosa cells with a green fluorescent protein gene containing a +1 frameshift mutation. Transformed P. aeruginosa cells were non-fluorescent until a mutation causing reversion to the wildtype sequence occurs. Fluorescence-inducing mutations were observed in microcolony structures, but not in other biofilm cells, or in planktonic cultures of P. aeruginosa cells. Thus microcolonies may represent important foci for mutation and evolution within biofilms. We calculated that microcolony-specific increases in mutation frequency were at least 100-fold compared with planktonically grown cultures. We also observed that mutator phenotypes can enhance microcolony-based growth of P. aeruginosa cells. For P. aeruginosa strains defective in DNA fidelity and error repair, we found that microcolony initiation and growth was enhanced with increased mutation frequency of the organism. We suggest that microcolony-based growth can involve mutation and subsequent selection of mutants better adapted to grow on surfaces within crowded-cell environments. This model for biofilm growth is analogous to mutation selection that occurs during neoplastic progression and tumor

  4. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  5. Assembly and development of the Pseudomonas aeruginosa biofilm matrix.

    Directory of Open Access Journals (Sweden)

    Luyan Ma

    2009-03-01

    Full Text Available Virtually all cells living in multicellular structures such as tissues and organs are encased in an extracellular matrix. One of the most important features of a biofilm is the extracellular polymeric substance that functions as a matrix, holding bacterial cells together. Yet very little is known about how the matrix forms or how matrix components encase bacteria during biofilm development. Pseudomonas aeruginosa forms environmentally and clinically relevant biofilms and is a paradigm organism for the study of biofilms. The extracellular polymeric substance of P. aeruginosa biofilms is an ill-defined mix of polysaccharides, nucleic acids, and proteins. Here, we directly visualize the product of the polysaccharide synthesis locus (Psl exopolysaccharide at different stages of biofilm development. During attachment, Psl is anchored on the cell surface in a helical pattern. This promotes cell-cell interactions and assembly of a matrix, which holds bacteria in the biofilm and on the surface. Chemical dissociation of Psl from the bacterial surface disrupted the Psl matrix as well as the biofilm structure. During biofilm maturation, Psl accumulates on the periphery of 3-D-structured microcolonies, resulting in a Psl matrix-free cavity in the microcolony center. At the dispersion stage, swimming cells appear in this matrix cavity. Dead cells and extracellular DNA (eDNA are also concentrated in the Psl matrix-free area. Deletion of genes that control cell death and autolysis affects the formation of the matrix cavity and microcolony dispersion. These data provide a mechanism for how P. aeruginosa builds a matrix and subsequently a cavity to free a portion of cells for seeding dispersal. Direct visualization reveals that Psl is a key scaffolding matrix component and opens up avenues for therapeutics of biofilm-related complications.

  6. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation

    DEFF Research Database (Denmark)

    Stapper, A.P.; Narasimhan, G.; Oman, D.E.;

    2004-01-01

    Extracellular polymers can facilitate the non-specific attachment of bacteria to surfaces and hold together developing biofilms. This study was undertaken to qualitatively and quantitatively compare the architecture of biofilms produced by Pseudomonas aeruginosa strain PAO1 and its alginate......-overproducing (mucA22) and alginate-defective (algD) variants in order to discern the role of alginate in biofilm formation. These strains, PAO1, Alg(+) PAOmucA22 and Alg(-) PAOalgD, tagged with green fluorescent protein, were grown in a continuous flow cell system to characterize the developmental cycles...... of their biofilm formation using confocal laser scanning microscopy. Biofilm Image Processing (BIP) and Community Statistics (COMSTAT) software programs were used to provide quantitative measurements of the two-dimensional biofilm images. All three strains formed distinguishable biofilm architectures, indicating...

  7. Pseudomonas aeruginosa biofilm infections

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2014-01-01

    Bacteria in natural, industrial and clinical settings predominantly live in biofilms, i.e., sessile structured microbial communities encased in self-produced extracellular matrix material. One of the most important characteristics of microbial biofilms is that the resident bacteria display...... a remarkable increased tolerance toward antimicrobial attack. Biofilms formed by opportunistic pathogenic bacteria are involved in devastating persistent medical device-associated infections, and chronic infections in individuals who are immune-compromised or otherwise impaired in the host defense. Because...... the use of conventional antimicrobial compounds in many cases cannot eradicate biofilms, there is an urgent need to develop alternative measures to combat biofilm infections. The present review is focussed on the important opportunistic pathogen and biofilm model organism Pseudomonas aeruginosa. Initially...

  8. Multiple roles of biosurfactants in structural biofilm development by Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Pamp, Sünje Johanna; Tolker-Nielsen, Tim

    2007-01-01

    Recent studies have indicated that biosurfactants produced by Pseudomonas aeruginosa play a role both in maintaining channels between multicellular structures in biofilms and in dispersal of cells from biofilms. Through the use of flow cell technology and enhanced confocal laser scanning microscopy......, we have obtained results which suggest that the biosurfactants produced by P. aeruginosa play additional roles in structural biofilm development. We present genetic evidence that during biofilm development by P. aeruginosa, biosurfactants promote microcolony formation in the initial phase....... aeruginosa rhl4 mutants were defective in migration-dependent development of mushroom-shaped multicellular structures in the later phase of biofilm formation. Experiments involving three-color-coded mixed-strain P. aeruginosa biofilms demonstrated that the wild-type and rhl4 and pil4 mutant strains formed...

  9. Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies.

    Science.gov (United States)

    Taylor, Patrick K; Yeung, Amy T Y; Hancock, Robert E W

    2014-12-10

    The growth of bacteria as structured aggregates termed biofilms leads to their protection from harsh environmental conditions such as physical and chemical stresses, shearing forces, and limited nutrient availability. Because of this highly adapted ability to survive adverse environmental conditions, bacterial biofilms are recalcitrant to antibiotic therapies and immune clearance. This is particularly problematic in hospital settings where biofilms are a frequent cause of chronic and device-related infections and constitute a significant burden on the health-care system. The major therapeutic strategy against infections is the use of antibiotics, which, due to adaptive resistance, are often insufficient to clear biofilm infections. Thus, novel biofilm-specific therapies are required. Specific features of biofilm development, such as surface adherence, extracellular matrix formation, quorum sensing, and highly regulated biofilm maturation and dispersal are currently being studied as targets to be exploited in the development of novel biofilm-specific treatments. Using Pseudomonas aeruginosa for illustrative purposes, this review highlights the antibiotic resistance mechanisms of biofilms, and discusses current research into novel biofilm-specific therapies.

  10. Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Klausen, Mikkel; Aaes-Jorgensen, A.; Molin, Søren;

    2003-01-01

    Detailed knowledge of the developmental process from single cells scattered on a surface to complex multicellular biofilm structures is essential in order to create strategies to control biofilm development. In order to study bacterial migration patterns during Pseudomonas aeruginosa biofilm...... development, we have performed an investigation with time-lapse confocal laser scanning microscopy of biofilms formed by various combinations of colour-coded P. aeruginosa wild type and motility mutants. We show that mushroom-shaped multicellular structures in P. aeruginosa biofilms can form in a sequential...... process involving a non-motile bacterial subpopulation and a migrating bacterial subpopulation. The non-motile bacteria form the mushroom stalks by growth in certain foci of the biofilm. The migrating bacteria form the mushroom caps by climbing the stalks and aggregating on the tops in a process which...

  11. Effects of Iron on DNA Release and Biofilm Development by Pseudomonas Aeruginosa

    DEFF Research Database (Denmark)

    Yang, Liang; Barken, Kim Bundvig; Skindersø, Mette Elena;

    2007-01-01

    -sensing systems has been previously presented. This paper provides evidence that DNA release in P. aeruginosa PAO1 biofilms is also under iron regulation. Experiments involving cultivation of P. aeruginosa in microtitre trays suggested that pqs expression, DNA release and biofilm formation were favoured in media...... with low iron concentrations (5 mu M FeCIA and decreased with increasing iron concentrations. Experiments involving cultivation of P. aeruginosa in a flow-chamber system suggested that a high level of iron (1100 mu M FeCl3) in the medium suppressed DNA release, structural biofilm development...

  12. Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles

    Directory of Open Access Journals (Sweden)

    Saqi Mansoor

    2006-06-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is a genetically complex bacterium which can adopt and switch between a free-living or biofilm lifestyle, a versatility that enables it to thrive in many different environments and contributes to its success as a human pathogen. Results Transcriptomes derived from growth states relevant to the lifestyle of P. aeruginosa were clustered using three different methods (K-means, K-means spectral and hierarchical clustering. The culture conditions used for this study were; biofilms incubated for 8, 14, 24 and 48 hrs, and planktonic culture (logarithmic and stationary phase. This cluster analysis revealed the existence and provided a clear illustration of distinct expression profiles present in the dataset. Moreover, it gave an insight into which genes are up-regulated in planktonic, developing biofilm and confluent biofilm states. In addition, this analysis confirmed the contribution of quorum sensing (QS and RpoS regulated genes to the biofilm mode of growth, and enabled the identification of a 60.69 Kbp region of the genome associated with stationary phase growth (stationary phase planktonic culture and confluent biofilms. Conclusion This is the first study to use clustering to separate a large P. aeruginosa microarray dataset consisting of transcriptomes obtained from diverse conditions relevant to its growth, into different expression profiles. These distinct expression profiles not only reveal novel aspects of P. aeruginosa gene expression but also provide a growth specific transcriptomic reference dataset for the research community.

  13. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development

    DEFF Research Database (Denmark)

    Yang, Liang; Hu, Yifan; Liu, Yang;

    2011-01-01

    distinguishable stages are observed during bacterial biofilm development. Biofilm formation is shown to be coordinated by EPS production, cell migration, subpopulation differentiation and interactions. However, the ways these different factors affect each other and contribute to community structural......Bacteria form surface attached biofilm communities as one of the most important survival strategies in nature. Biofilms consist of water, bacterial cells and a wide range of self‐generated extracellular polymeric substances (EPS). Biofilm formation is a dynamic self‐assembly process and several...... differentiation remain largely unknown. The distinct roles of different EPS have been addressed in the present report. Both Pel and Psl polysaccharides are required for type IV pilus‐independent microcolony formation in the initial stages of biofilm formation by Pseudomonas aeruginosa PAO1. Both Pel and Psl...

  14. Pseudomonas aeruginosa lipopolysaccharide inhibits Candida albicans hyphae formation and alters gene expression during biofilm development.

    Science.gov (United States)

    Bandara, H M H N; K Cheung, B P; Watt, R M; Jin, L J; Samaranayake, L P

    2013-02-01

    Elucidation of bacterial and fungal interactions in multispecies biofilms will have major impacts on understanding the pathophysiology of infections. The objectives of this study were to (i) evaluate the effect of Pseudomonas aeruginosa lipopolysaccharide (LPS) on Candida albicans hyphal development and transcriptional regulation, (ii) investigate protein expression during biofilm formation, and (iii) propose likely molecular mechanisms for these interactions. The effect of LPS on C. albicans biofilms was assessed by XTT-reduction and growth curve assays, light microscopy, scanning electron microscopy (SEM), and confocal laser scanning microscopy (CLSM). Changes in candidal hypha-specific genes (HSGs) and transcription factor EFG1 expression were assessed by real-time polymerase chain reaction and two-dimensional gel electrophoresis, respectively. Proteome changes were examined by mass spectrometry. Both metabolic activities and growth rates of LPS-treated C. albicans biofilms were significantly lower (P yeasts in test biofilms compared with the controls. SEM and CLSM further confirmed these data. Significantly upregulated HSGs (at 48 h) and EFG1 (up to 48 h) were noted in the test biofilms (P < 0.05) but cAMP levels remained unaffected. Proteomic analysis showed suppression of candidal septicolysin-like protein, potential reductase-flavodoxin fragment, serine hydroxymethyltransferase, hypothetical proteins Cao19.10301(ATP7), CaO19.4716(GDH1), CaO19.11135(PGK1), CaO19.9877(HNT1) by P. aeruginosa LPS. Our data imply that bacterial LPS inhibit C. albicans biofilm formation and hyphal development. The P. aeruginosa LPS likely target glycolysis-associated mechanisms during candidal filamentation. PMID:23194472

  15. Influence of O polysaccharides on biofilm development and outer membrane vesicle biogenesis in Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Murphy, Kathleen; Park, Amber J; Hao, Youai; Brewer, Dyanne; Lam, Joseph S; Khursigara, Cezar M

    2014-04-01

    Pseudomonas aeruginosa is a common opportunistic human pathogen known for its ability to adapt to changes in its environment during the course of infection. These adaptations include changes in the expression of cell surface lipopolysaccharide (LPS), biofilm development, and the production of a protective extracellular exopolysaccharide matrix. Outer membrane vesicles (OMVs) have been identified as an important component of the extracellular matrix of P. aeruginosa biofilms and are thought to contribute to the development and fitness of these bacterial communities. The goal of this study was to examine the relationships between changes in the cell surface expression of LPS O polysaccharides, biofilm development, and OMV biogenesis in P. aeruginosa. We compared wild-type P. aeruginosa PAO1 with three chromosomal knockouts. These knockouts have deletions in the rmd, wbpM, and wbpL genes that produce changes in the expression of common polysaccharide antigen (CPA), O-specific antigen (OSA), or both. Our results demonstrate that changes in O polysaccharide expression do not significantly influence OMV production but do affect the size and protein content of OMVs derived from both CPA(-) and OSA(-) cells; these mutant cells also exhibited different physical properties from wild-type cells. We further examined biofilm growth of the mutants and determined that CPA(-) cells could not develop into robust biofilms and exhibit changes in cell morphology and biofilm matrix production. Together these results demonstrate the importance of O polysaccharide expression on P. aeruginosa OMV composition and highlight the significance of CPA expression in biofilm development. PMID:24464462

  16. The catabolite repression control protein Crc plays a role in the development of antimicrobial-tolerant subpopulations in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Zhang, Lianbo; Chiang, Wen-Chi; Gao, Qingguo;

    2012-01-01

    . In the present study, we show that the catabolite repression control protein Crc regulates the metabolic state of Pseudomonas aeruginosa cells in biofilms, and plays an important role in the development of antimicrobial-tolerant subpopulations in P. aeruginosa biofilms.......Bacteria form complex surface-attached biofilm communities in nature. Biofilm cells differentiate into subpopulations which display tolerance towards antimicrobial agents. However, the signal transduction pathways regulating subpopulation differentiation in biofilms are largely unelucidated...

  17. Silver against Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Kirketerp-Møller, K.; Kristiansen, S.;

    2007-01-01

    bacteria in both the planktonic and biofilm modes of growth. The action of silver on mature in vitro biofilms of Pseudomonas aeruginosa, a primary pathogen of chronic infected wounds, was investigated. The results show that silver is very effective against mature biofilms of P. aeruginosa......, but that the silver concentration is important. A concentration of 5-10 ig/mL silver sulfadiazine eradicated the biofilm whereas a lower concentration (1 ig/mL) had no effect. The bactericidal concentration of silver required to eradicate the bacterial biofilm was 10-100 times higher than that used to eradicate...... planktonic bacteria. These observations strongly indicate that the concentration of silver in currently available wound dressings is much too low for treatment of chronic biofilm wounds. It is suggested that clinicians and manufacturers of the said wound dressings consider whether they are treating wounds...

  18. Rapid development in vitro and in vivo of resistance to ceftazidime in biofilm-growing Pseudomonas aeruginosa due to chromosomal beta-lactamase

    DEFF Research Database (Denmark)

    Bagge, N; Ciofu, O; Skovgaard, L T;

    2000-01-01

    The aim of this study was to examine the development of resistance of biofilm-growing P. aeruginosa during treatment with ceftazidime. Biofilms were established in vitro using a modified Robbins device (MRD) and in vivo in the rat model of chronic lung infection. Three P. aeruginosa strains...

  19. Pseudomonas aeruginosa Biofilm Infections

    DEFF Research Database (Denmark)

    Rybtke, Morten; Hultqvist, Louise Dahl; Givskov, Michael;

    2015-01-01

    Studies of biopsies from infectious sites, explanted tissue and medical devises have provided evidence that biofilms are the underlying cause of a variety of tissue-associated and implant-associated recalcitrant human infections. With a need for novel anti-biofilm treatment strategies, research...... in biofilm infection microbiology, biofilm formation mechanisms and biofilm-associated antimicrobial tolerance has become an important area in microbiology. Substantial knowledge about biofilm formation mechanisms, biofilm-associated antimicrobial tolerance and immune evasion mechanisms has been obtained...... through work with biofilms grown in in vitro experimental setups, and the relevance of this information in the context of chronic infections is being investigated by the use of animal models of infection. Because our current in vitro experimental setups and animal models have limitations, new advanced...

  20. Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles

    OpenAIRE

    Saqi Mansoor; Hurst Jacob M; Papakonstantinopoulou Anastasia; Paccanaro Alberto; Waite Richard D; Littler Eddie; Curtis Michael A

    2006-01-01

    Abstract Background Pseudomonas aeruginosa is a genetically complex bacterium which can adopt and switch between a free-living or biofilm lifestyle, a versatility that enables it to thrive in many different environments and contributes to its success as a human pathogen. Results Transcriptomes derived from growth states relevant to the lifestyle of P. aeruginosa were clustered using three different methods (K-means, K-means spectral and hierarchical clustering). The culture conditions used fo...

  1. Anthranilate deteriorates the structure of Pseudomonas aeruginosa biofilms and antagonizes the biofilm-enhancing indole effect.

    Science.gov (United States)

    Kim, Soo-Kyoung; Park, Ha-Young; Lee, Joon-Hee

    2015-04-01

    Anthranilate and indole are alternative degradation products of tryptophan, depending on the bacterial species. While indole enhances the biofilm formation of Pseudomonas aeruginosa, we found that anthranilate, the tryptophan degradation product of P. aeruginosa, had an opposite effect on P. aeruginosa biofilm formation, in which anthranilate deteriorated the mushroom structure of biofilm. The anthranilate effect on biofilm formation was differentially exerted depending on the developmental stage and the presence of shear force. Anthranilate slightly accelerated the initial attachment of P. aeruginosa at the early stage of biofilm development and appeared to build more biofilm without shear force. But anthranilate weakened the biofilm structure in the late stage, deteriorating the mushroom structure of biofilms with shear force to make a flat biofilm. To investigate the interplay of anthranilate with indole in biofilm formation, biofilms were cotreated with anthranilate and indole, and the results showed that anthranilate antagonized the biofilm-enhancing effect of indole. Anthranilate was able to deteriorate the preformed biofilm. The effect of anthranilate and indole on biofilm formation was quorum sensing independent. AntR, a regulator of anthranilate-degrading metabolism was synergistically activated by cotreatment with anthranilate and indole, suggesting that indole might enhance biofilm formation by facilitating the degradation of anthranilate. Anthranilate slightly but significantly affected the cyclic diguaniylate (c-di-GMP) level and transcription of major extracellular polysaccharide (Psl, Pel, and alginate) operons. These results suggest that anthranilate may be a promising antibiofilm agent and antagonize the effect of indole on P. aeruginosa biofilm formation.

  2. Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Alhede, Maria; Bjarnsholt, Thomas; Givskov, Michael;

    2014-01-01

    biofilms, which protect the aggregated, biopolymer-embedded bacteria from the detrimental actions of antibiotic treatments and host immunity. A key component in the protection against innate immunity is rhamnolipid, which is a quorum sensing (QS)-regulated virulence factor. QS is a cell-to-cell signaling...... mechanism used to coordinate expression of virulence and protection of aggregated biofilm cells. Rhamnolipids are known for their ability to cause hemolysis and have been shown to cause lysis of several cellular components of the human immune system, for example, macrophages and polymorphonuclear leukocytes...

  3. Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms

    DEFF Research Database (Denmark)

    Klausen, M.; Gjermansen, Morten; Kreft, J.-U.;

    2006-01-01

    Surface-associated microbial communities in many cases display dynamic developmental patterns. Model biofilms formed by Pseudomonas aeruginosa and Pseudomonas putida in laboratory flow-chamber setups represent examples of such behaviour. Dependent on the experimental conditions the bacteria in...... organisms do not possess comprehensive genetic programs for biofilm development. Instead the bacteria appear to have evolved a number of different mechanisms to optimize surface colonization, of which they express a subset in response to the prevailing environmental conditions. These mechanisms include the...... ability to regulate cellular adhesiveness and migration in response to micro-environmental signals including those secreted by the bacteria themselves....

  4. Effects of ginseng on Pseudomonas aeruginosa motility and biofilm formation

    DEFF Research Database (Denmark)

    Wu, Hong; Lee, Baoleri; Yang, Liang;

    2011-01-01

    of P. aeruginosa at concentrations as low as 0.25%. Oral administration of ginseng extracts in mice promoted phagocytosis of P. aeruginosa PAO1 by airway phagocytes, but did not affect phagocytosis of a PAO1-filM mutant. Our study suggests that ginseng treatment may help to eradicate the biofilm......Biofilm-associated chronic Pseudomonas aeruginosa lung infections in patients with cystic fibrosis are virtually impossible to eradicate with antibiotics because biofilm-growing bacteria are highly tolerant to antibiotics and host defense mechanisms. Previously, we found that ginseng treatments...... protected animal models from developing chronic lung infection by P. aeruginosa. In the present study, the effects of ginseng on the formation of P. aeruginosa biofilms were further investigated in vitro and in vivo. Ginseng aqueous extract at concentrations of 0.5-2.0% did not inhibit the growth of P...

  5. The action of Pseudomonas aeruginosa biofilms in intrinsic drug resistance

    Institute of Scientific and Technical Information of China (English)

    XIE Yi; JIA Wen-xiang; ZENG Wei; YANG Wei-qing; CHENG Xi; LI Xue-ru; WANG Lan-lan; KANG Mei; ZHANG Zai-rong

    2005-01-01

    Background There is a growing interest in studying the relationship between intrinsic resistance and biofilms resistance to drugs. However, the relationship still remains unclear in the macroscopic bacterial growth. Our study is to illuminate the change of bacterial drug resistance of gyrA mutant and active efflux pump during the development of Pseudomonas aeruginosa (P. aeruginosa) biofilms. Methods The strains of type Ⅱ topoisomerase gene mutant (gyrA mutant) and multidrug resistance (MDR) efflux pump were clinical isolates and detected by polymerase chain reaction (PCR). The process of bacterial biofilms development was observed by scanning electron microscope. Triparental mating experiments were performed to transfer report gene of green fluorescent protein (GFP) into P. aeruginosa biofilms strains and followed by analysis of bacterial survival rate between intrinsic resistance and biofilms resistance.Results The fluorescent strains with pGFPuv could develop mature biofilms on Teflon surface. Before a period of 72 hours, the survival rate of biofilms bacteria and intrinsic resistance strains in ciprofloxacin solution was significantly different (P0.05). The carbonyl cyanide m-chlorophenylhydrazone and azithromycin could significantly reduce the drug resistance of biofilm strains and efflux pump strains.Conclusions In the development of P. aeruginosa biofilms, the strains of gyrA mutation and MDR efflux could be conferred with new level of drug resistance. When co-cultured mutated strains with biofilm strains, biofilms may play a major role in bacterial resistance. But after 72 hours incubation (a mature biofilms had been developed), there was no clearly difference between the number of mutant strains and biofilm strains.

  6. Stratified growth in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Werner, E.; Roe, F.; Bugnicourt, A.;

    2004-01-01

    In this study, stratified patterns of protein synthesis and growth were demonstrated in Pseudomonas aeruginosa biofilms. Spatial patterns of protein synthetic activity inside biofilms were characterized by the use of two green fluorescent protein (GFP) reporter gene constructs. One construct...... synthesis was restricted to a narrow band in the part of the biofilm adjacent to the source of oxygen. The zone of active GFP expression was approximately 60 Am wide in colony biofilms and 30 Am wide in flow cell biofilms. The region of the biofilm in which cells were capable of elongation was mapped...... by treating colony biofilms with carbenicillin, which blocks cell division, and then measuring individual cell lengths by transmission electron microscopy. Cell elongation was localized at the air interface of the biofilm. The heterogeneous anabolic patterns measured inside these biofilms were likely a result...

  7. Pseudomonas aeruginosa biofilms in cystic fibrosis

    DEFF Research Database (Denmark)

    Høiby, Niels; Ciofu, Oana; Bjarnsholt, Thomas

    2010-01-01

    The persistence of chronic Pseudomonas aeruginosa lung infections in cystic fibrosis (CF) patients is due to biofilm-growing mucoid (alginate-producing) strains. A biofilm is a structured consortium of bacteria, embedded in a self-produced polymer matrix consisting of polysaccharide, protein...

  8. Validation of PqsD as an anti-biofilm target in Pseudomonas aeruginosa by development of small-molecule inhibitors.

    Science.gov (United States)

    Storz, Michael P; Maurer, Christine K; Zimmer, Christina; Wagner, Nathalie; Brengel, Christian; de Jong, Johannes C; Lucas, Simon; Müsken, Mathias; Häussler, Susanne; Steinbach, Anke; Hartmann, Rolf W

    2012-10-01

    2-Heptyl-4-hydroxyquinoline (HHQ) and Pseudomonas quinolone signal (PQS) are involved in the regulation of virulence factor production and biofilm formation in Pseudomonas aeruginosa. PqsD is a key enzyme in the biosynthesis of these signal molecules. Using a ligand-based approach, we have identified the first class of PqsD inhibitors. Simplification and rigidization led to fragments with high ligand efficiencies. These small molecules repress HHQ and PQS production and biofilm formation in P. aeruginosa. This validates PqsD as a target for the development of anti-infectives. PMID:22992202

  9. Pseudomonas aeruginosa facilitates Campylobacter jejuni growth in biofilms under oxic flow conditions.

    Science.gov (United States)

    Culotti, Alessandro; Packman, Aaron I

    2015-12-01

    We investigated the growth of Campylobacter jejuni in biofilms with Pseudomonas aeruginosa under oxic flow conditions. We observed the growth of C. jejuni in mono-culture, deposited on pre-established P. aeruginosa biofilms, and co-inoculated with P. aeruginosa. In mono-culture, C. jejuni was unable to form biofilms. However, deposited C. jejuni continuously grew on pre-established P. aeruginosa biofilms for a period of 3 days. The growth of scattered C. jejuni clusters was strictly limited to the P. aeruginosa biofilm surface, and no intergrowth was observed. Co-culturing of C. jejuni and P. aeruginosa also enabled the growth of both organisms in biofilms, with C. jejuni clusters developing on the surface of the P. aeruginosa biofilm. Dissolved oxygen (DO) measurements in the medium showed that P. aeruginosa biofilms depleted the effluent DO from 9.0 to 0.5 mg L(-1) 24 hours after inoculation. The localized microaerophilic environment generated by P. aeruginosa promoted the persistence and growth of C. jejuni. Our findings show that P. aeruginosa not only prolongs the survival of C. jejuni under oxic conditions, but also enables the growth of C. jejuni on the surface of P. aeruginosa biofilms.

  10. Glycopeptide dendrimers as Pseudomonas aeruginosa biofilm inhibitors.

    Science.gov (United States)

    Reymond, Jean-Louis; Bergmann, Myriam; Darbre, Tamis

    2013-06-01

    Synthetic glycopeptide dendrimers composed of a branched oligopeptide tree structure appended with glycosidic groups at its multiple N-termini were investigated for binding to the Pseudomonas aeruginosa lectins LecB and LecA. These lectins are partly responsible for the formation of antibiotic resistant biofilms in the human pathogenic bacterium P. aeruginosa, which causes lethal airway infections in immune-compromised and cystic fibrosis patients. Glycopeptide dendrimers with high affinity to the lectins were identified by screening of combinatorial libraries. Several of these dendrimers, in particular the LecB specific glycopeptide dendrimers FD2 and D-FD2 and the LecA specific glycopeptide dendrimers GalAG2 and GalBG2, also efficiently block P. aeruginosa biofilm formation and induce biofilm dispersal in vitro. Structure-activity relationship and structural studies are reviewed, in particular the observation that multivalency is essential to the anti-biofilm effect in these dendrimers.

  11. Targeting quorum sensing in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Jakobsen, Tim Holm; Bjarnsholt, Thomas; Jensen, Peter Østrup;

    2013-01-01

    Bacterial resistance to conventional antibiotics combined with an increasing acknowledgement of the role of biofilms in chronic infections has led to a growing interest in new antimicrobial strategies that target the biofilm mode of growth. In the aggregated biofilm mode, cell-to-cell communication...... alternative antibacterial strategies. Here, we review state of the art research of quorum sensing inhibitors against the opportunistic human pathogen Pseudomonas aeruginosa, which is found in a number of biofilm-associated infections and identified as the predominant organism infecting the lungs of cystic...

  12. Statistical Analysis of Pseudomonas aeruginosa Biofilm Development: Impact of Mutations in Genes Involved in Twitching Motility, Cell-to-Cell Signaling, and Stationary-Phase Sigma Factor Expression

    DEFF Research Database (Denmark)

    Heydorn, Arne; Ersbøll, Bjarne Kjær; Kato, Junichi;

    2002-01-01

    Four strains of Pseudomonas aeruginosa (wild type, DeltapilHIJK mutant, lasI mutant, and rpoS mutant) were genetically tagged with the green fluorescent protein, and the development of flow chamber-grown biofilms by each of them was investigated by confocal laser scanning microscopy. The structural...

  13. Complement activation by Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Jensen, E T; Kharazmi, A; Garred, P;

    1993-01-01

    In chronic infections, such as the bronchopulmonary Pseudomonas aeruginosa infection in cystic fibrosis (CF) patients, bacteria persist despite an intact host immune defense and frequent antibiotic treatment. An important reason for the persistence of the bacteria is their capacity for the biofilm...... mode of growth. In this study we investigated the role of biofilms in activation of complement, a major contributor to the inflammatory process. Complement activation by P. aeruginosa was examined in a complement consumption assay, production of C3 and factor B conversion products assessed by crossed...... immuno-electrophoresis, C5a generation tested by a PMN chemotactic assay, and terminal complement complex formation measured by ELISA. Two of the four assays showed that P. aeruginosa grown in biofilm activated complement less than planktonic bacteria, and all assays showed that activation by intact...

  14. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14.

    Science.gov (United States)

    Kim, Han-Shin; Park, Hee-Deung

    2013-01-01

    Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger's ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39-56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3'-5')-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor. PMID:24086697

  15. Ginger extract inhibits biofilm formation by Pseudomonas aeruginosa PA14.

    Directory of Open Access Journals (Sweden)

    Han-Shin Kim

    Full Text Available Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger's ability to inhibit Pseudomonas aeruginosa PA14 biofilm formation. A static biofilm assay demonstrated that biofilm development was reduced by 39-56% when ginger extract was added to the culture. In addition, various phenotypes were altered after ginger addition of PA14. Ginger extract decreased production of extracellular polymeric substances. This finding was confirmed by chemical analysis and confocal laser scanning microscopy. Furthermore, ginger extract formed noticeably less rugose colonies on agar plates containing Congo red and facilitated swarming motility on soft agar plates. The inhibition of biofilm formation and the altered phenotypes appear to be linked to a reduced level of a second messenger, bis-(3'-5'-cyclic dimeric guanosine monophosphate. Importantly, ginger extract inhibited biofilm formation in both Gram-positive and Gram-negative bacteria. Also, surface biofilm cells formed with ginger extract detached more easily with surfactant than did those without ginger extract. Taken together, these findings provide a foundation for the possible discovery of a broad spectrum biofilm inhibitor.

  16. Interference of Pseudomonas aeruginosa signalling and biofilm formation for infection control

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Tolker-Nielsen, Tim; Høiby, Niels;

    2010-01-01

    Pseudomonas aeruginosa is the best described bacterium with regards to quorum sensing (QS), in vitro biofilm formation and the development of antibiotic tolerance. Biofilms composed of P. aeruginosa are thought to be the underlying cause of many chronic infections, including those in wounds...... and in the lungs of patients with cystic fibrosis. In this review, we provide an overview of the molecular mechanisms involved in QS, QS-enabled virulence, biofilm formation and biofilm-enabled antibiotic tolerance. We now have substantial knowledge of the multicellular behaviour of P. aeruginosa in vitro. A major...

  17. A peptide from human β thymosin as a platform for the development of new anti-biofilm agents for Staphylococcus spp. and Pseudomonas aeruginosa.

    Science.gov (United States)

    Schillaci, Domenico; Spinello, Angelo; Cusimano, Maria Grazia; Cascioferro, Stella; Barone, Giampaolo; Vitale, Maria; Arizza, Vincenzo

    2016-08-01

    Conventional antibiotics might fail in the treatment of biofilm-associated infections causing infection recurrence and chronicity. The search for antimicrobial peptides has been performed with the aim to discover novel anti-infective agents active on pathogens in both planktonic and biofilm associated forms. The fragment 9-19 of human thymosin β4 was studied through 1 μs MD simulation. Two main conformations of the peptide were detected, both constituted by a central hydrophobic core and by the presence of peripheral charged residues suggesting a possible mechanism of interaction with two models of biological membranes, related to eukaryotic or bacterial membrane respectively. In addition, the peptide was chemically synthesized and its antimicrobial activity was tested in vitro against planktonic and biofilm form of a group of reference strains of Staphylococcus spp. and one P. aeruginosa strain. The human thymosin β4 fragment EIEKFDKSKLK showed antibacterial activity against staphylococcal strains and Pseudomonas aeruginosa ATCC 15442 at concentrations from 12.5 to 6.2 mg/ml and inhibited biofilm formation at sub-inhibitory concentrations (3.1-0.75 mg/ml). The activity of the fragment in inhibiting biofilm formation, could be due to the conformations highlighted by the MD simulations, suggesting its interaction with the bacterial membrane. Human thymosin β4 fragment can be considered a promising lead compound to develop novel synthetic or recombinant derivatives with improved pharmaceutical potential. PMID:27339305

  18. The implication of Pseudomonas aeruginosa biofilms in infections

    DEFF Research Database (Denmark)

    Rybtke, Morten Theil; Jensen, Peter Ø; Høiby, Niels;

    2011-01-01

    Biofilm formation by bacteria is recognized as a major problem in chronic infections due to their recalcitrance against the immune defense and available antibiotic treatment schemes. The opportunistic pathogen Pseudomonas aeruginosa has drawn special attention in this regard due to its severity...... of infection in the lungs of cystic fibrosis patients and in chronic wounds. In this review we address the molecular basis of biofilm development by P. aeruginosa as well as the mechanisms employed by this bacterium in the increased tolerance displayed against antimicrobials. The complex build......-up of the extracellular matrix encasing the biofilm-associated bacteria as well as the elaborate signaling mechanisms employed by the bacterium enables it to withstand the continuous stresses imposed by the immune defense and administered antibiotics resulting in a state of chronic inflammation that damages the host...

  19. The implication of Pseudomonas aeruginosa biofilms in infections

    DEFF Research Database (Denmark)

    Rybtke, Morten T; Jensen, Peter Østrup; Høiby, Niels;

    2011-01-01

    Biofilm formation by bacteria is recognized as a major problem in chronic infections due to their recalcitrance against the immune defense and available antibiotic treatment schemes. The opportunistic pathogen Pseudomonas aeruginosa has drawn special attention in this regard due to its severity o...... treatment strategies where the underlying targets are less prone for resistance development as bacteria, in retrospect, have a unique ability to evade the actions of classic antibiotics.......Biofilm formation by bacteria is recognized as a major problem in chronic infections due to their recalcitrance against the immune defense and available antibiotic treatment schemes. The opportunistic pathogen Pseudomonas aeruginosa has drawn special attention in this regard due to its severity......-up of the extracellular matrix encasing the biofilm-associated bacteria as well as the elaborate signaling mechanisms employed by the bacterium enables it to withstand the continuous stresses imposed by the immune defense and administered antibiotics resulting in a state of chronic inflammation that damages the host...

  20. Functionalized polyanilines disrupt Pseudomonas aeruginosa and Staphylococcus aureus biofilms.

    Science.gov (United States)

    Gizdavic-Nikolaidis, Marija R; Pagnon, Joanne C; Ali, Naseem; Sum, Reuben; Davies, Noel; Roddam, Louise F; Ambrose, Mark

    2015-12-01

    The purpose of the present study was to investigate the antimicrobial effects of functionalized polyanilines (fPANIs) against stationary phase cells and biofilms of Pseudomonas aeruginosa and Staphylococcus aureus using homopolymer of sulfanilic acid (poly-SO3H) as a model. The chemically synthesized poly-SO3H was characterized using Fourier Transform Infra-Red (FTIR) and Ultraviolet-Visible (UV-Vis) spectroscopies. The molecular weight (Mw) and elemental analysis of homopolymer poly-SO3H were also examined. We found that poly-SO3H was bactericidal against stationary phase cells of P. aeruginosa and S. aureus at a concentration of 20 mgml(-1). Surprisingly, we discovered that the same concentration (20 mgml(-1)) of poly-SO3H significantly disrupted and killed bacterial cells present in pre-established forty-eight hour static biofilms of these organisms, as shown by crystal violet and bacterial live/dead fluorescence staining assays. In support of these data, poly-SO3H extensively diminished the expression of bacterial genes related to biofilm formation in stationary phase cells of P. aeruginosa, and seemed to greatly reduce the amount of the quorum sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL) able to be recovered from biofilms of this organism. Furthermore, we found that poly-SO3H was able to effectively penetrate and kill cells in biofilms formed by the P. aeruginosa (AESIII) isolate derived from the sputum of a cystic fibrosis patient. Taken together, the results of the present study emphasise the broad antimicrobial activities of fPANI, and suggest that they could be developed further and used in some novel ways to construct medical devices and/or industrial equipment that are refractory to colonization by biofilm-forming bacteria.

  1. Functionalized polyanilines disrupt Pseudomonas aeruginosa and Staphylococcus aureus biofilms.

    Science.gov (United States)

    Gizdavic-Nikolaidis, Marija R; Pagnon, Joanne C; Ali, Naseem; Sum, Reuben; Davies, Noel; Roddam, Louise F; Ambrose, Mark

    2015-12-01

    The purpose of the present study was to investigate the antimicrobial effects of functionalized polyanilines (fPANIs) against stationary phase cells and biofilms of Pseudomonas aeruginosa and Staphylococcus aureus using homopolymer of sulfanilic acid (poly-SO3H) as a model. The chemically synthesized poly-SO3H was characterized using Fourier Transform Infra-Red (FTIR) and Ultraviolet-Visible (UV-Vis) spectroscopies. The molecular weight (Mw) and elemental analysis of homopolymer poly-SO3H were also examined. We found that poly-SO3H was bactericidal against stationary phase cells of P. aeruginosa and S. aureus at a concentration of 20 mgml(-1). Surprisingly, we discovered that the same concentration (20 mgml(-1)) of poly-SO3H significantly disrupted and killed bacterial cells present in pre-established forty-eight hour static biofilms of these organisms, as shown by crystal violet and bacterial live/dead fluorescence staining assays. In support of these data, poly-SO3H extensively diminished the expression of bacterial genes related to biofilm formation in stationary phase cells of P. aeruginosa, and seemed to greatly reduce the amount of the quorum sensing molecule N-(3-oxododecanoyl)-l-homoserine lactone (3OC12-HSL) able to be recovered from biofilms of this organism. Furthermore, we found that poly-SO3H was able to effectively penetrate and kill cells in biofilms formed by the P. aeruginosa (AESIII) isolate derived from the sputum of a cystic fibrosis patient. Taken together, the results of the present study emphasise the broad antimicrobial activities of fPANI, and suggest that they could be developed further and used in some novel ways to construct medical devices and/or industrial equipment that are refractory to colonization by biofilm-forming bacteria. PMID:26496473

  2. Cell surface physico chemistry alters biofilm development of Pseudomonas aeruginosa lipopolysaccharide mutants

    NARCIS (Netherlands)

    Flemming, CA; Palmer, RJ; Arrage, AA; Van der Mei, HC; White, DC

    1999-01-01

    The hydrophobic and electrostatic characteristics of bacterial cell surfaces were compared with attachment proclivity and biomass accumulation over time between wildtype Pseudomonas aeruginosa serotype O6 (possesses A and B band LPS), and three LPS-deficient mutants, vi;. A28 (A(+)B(-)), R5 (A(+)B(-

  3. Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators.

    Directory of Open Access Journals (Sweden)

    Adela M Luján

    Full Text Available Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS], play important roles in P. aeruginosa chronic infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition experiments we demonstrate for the first time that P. aeruginosa MRS-deficient mutators had enhanced adaptability over wild-type strains when grown in structured biofilms but not as planktonic cells. This advantage was associated with enhanced micro-colony development and increased rates of phenotypic diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution in the biofilm mode of growth. This work helps to understand the basis for the specific high proportion and role of mutators in chronic infections, where P. aeruginosa develops in biofilm communities.

  4. Evolution and adaptation in Pseudomonas aeruginosa biofilms driven by mismatch repair system-deficient mutators.

    Science.gov (United States)

    Luján, Adela M; Maciá, María D; Yang, Liang; Molin, Søren; Oliver, Antonio; Smania, Andrea M

    2011-01-01

    Pseudomonas aeruginosa is an important opportunistic pathogen causing chronic airway infections, especially in cystic fibrosis (CF) patients. The majority of the CF patients acquire P. aeruginosa during early childhood, and most of them develop chronic infections resulting in severe lung disease, which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS)], play important roles in P. aeruginosa chronic infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition experiments we demonstrate for the first time that P. aeruginosa MRS-deficient mutators had enhanced adaptability over wild-type strains when grown in structured biofilms but not as planktonic cells. This advantage was associated with enhanced micro-colony development and increased rates of phenotypic diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution in the biofilm mode of growth. This work helps to understand the basis for the specific high proportion and role of mutators in chronic infections, where P. aeruginosa develops in biofilm communities.

  5. Serratia Secondary Metabolite Prodigiosin Inhibits Pseudomonas aeruginosa Biofilm Development by Producing Reactive Oxygen Species that Damage Biological Molecules

    Science.gov (United States)

    Kimyon, Önder; Das, Theerthankar; Ibugo, Amaye I.; Kutty, Samuel K.; Ho, Kitty K.; Tebben, Jan; Kumar, Naresh; Manefield, Mike

    2016-01-01

    Prodigiosin is a heterocyclic bacterial secondary metabolite belonging to the class of tripyrrole compounds, synthesized by various types of bacteria including Serratia species. Prodigiosin has been the subject of intense research over the last decade for its ability to induce apoptosis in several cancer cell lines. Reports suggest that prodigiosin promotes oxidative damage to double-stranded DNA (dsDNA) in the presence of copper ions and consequently leads to inhibition of cell-cycle progression and cell death. However, prodigiosin has not been previously implicated in biofilm inhibition. In this study, the link between prodigiosin and biofilm inhibition through the production of redox active metabolites is presented. Our study showed that prodigiosin (500 μM) (extracted from Serratia marcescens culture) and a prodigiosin/copper(II) (100 μM each) complex have strong RNA and dsDNA cleaving properties while they have no pronounced effect on protein. Results support a role for oxidative damage to biomolecules by H2O2 and hydroxyl radical generation. Further, it was demonstrated that reactive oxygen species scavengers significantly reduced the DNA and RNA cleaving property of prodigiosin. P. aeruginosa cell surface hydrophobicity and biofilm integrity were significantly altered due to the cleavage of nucleic acids by prodigiosin or the prodigiosin/copper(II) complex. In addition, prodigiosin also facilitated the bactericidal activity. The ability of prodigiosinto cause nucleic acid degradation offers novel opportunities to interfere with extracellular DNA dependent bacterial biofilms. PMID:27446013

  6. Serratia secondary metabolite prodigiosin inhibit Pseudomonas aeruginosa biofilm development by producing reactive oxygen species that damage biological molecules.

    Directory of Open Access Journals (Sweden)

    Onder eKimyon

    2016-06-01

    Full Text Available Prodigiosin is a heterocyclic bacterial secondary metabolite belonging to the class of tripyrrole compounds, synthesized by various types of bacteria including Serratia species. Prodigiosin has been the subject of intense research over the last decade for its ability to induce apoptosis in several cancer cell lines. Reports suggest that prodigiosin promotes oxidative damage to double-stranded DNA (dsDNA in the presence of copper ions and consequently leads to inhibition of cell-cycle progression and cell death. However, prodigiosin has not been previously implicated in biofilm inhibition. In this study, the link between prodigiosin and biofilm inhibition through the production of redox active metabolites is presented. Our study showed that prodigiosin (500 µM (extracted from Serratia marcescens culture and a prodigiosin/copper(II (100 µM each complex have strong RNA and dsDNA cleaving properties while they have no pronounced effect on protein. Results support a role for oxidative damage to biomolecules by H2O2 and hydroxyl radical generation. Further, it was demonstrated that reactive oxygen species scavengers significantly reduced the DNA and RNA cleaving property of prodigiosin. P. aeruginosa cell surface hydrophobicity and biofilm integrity were significantly altered due to the cleavage of nucleic acids by prodigiosin or the prodigiosin/copper(II complex. In addition, prodigiosin also facilitated the bactericidal activity. The ability of prodigiosin to cause nucleic acid degradation offers novel opportunities to interfere with extracellular DNA dependent bacterial biofilms.

  7. Biofilm Development

    DEFF Research Database (Denmark)

    Tolker-Nielsen, Tim

    2015-01-01

    During the past decade we have gained much knowledge about the molecular mechanisms that are involved in initiation and termination of biofilm formation. In many bacteria, these processes appear to occur in response to specific environmental cues and result in, respectively, induction or terminat......During the past decade we have gained much knowledge about the molecular mechanisms that are involved in initiation and termination of biofilm formation. In many bacteria, these processes appear to occur in response to specific environmental cues and result in, respectively, induction...... or termination of biofilm matrix production via the second messenger molecule c-di-GMP. In between initiation and termination of biofilm formation we have defined specific biofilm stages, but the currently available evidence suggests that these transitions are mainly governed by adaptive responses......, and not by specific genetic programs. It appears that biofilm formation can occur through multiple pathways and that the spatial structure of the biofilms is species dependent as well as dependent on environmental conditions. Bacterial subpopulations, e.g., motile and nonmotile subpopulations, can develop...

  8. In Vitro Analysis of Tobramycin-Treated Pseudomonas aeruginosa Biofilms on Cystic Fibrosis-Derived Airway Epithelial Cells▿ †

    OpenAIRE

    Anderson, Gregory G.; Moreau-Marquis, Sophie; Stanton, Bruce A.; O'Toole, George A.

    2008-01-01

    P. aeruginosa forms biofilms in the lungs of individuals with cystic fibrosis (CF); however, there have been no effective model systems for studying biofilm formation in the CF lung. We have developed a tissue culture system for growth of P. aeruginosa biofilms on CF-derived human airway cells that promotes the formation of highly antibiotic-resistant microcolonies, which produce an extracellular polysaccharide matrix and require the known abiotic biofilm formation genes flgK and pilB. Treatm...

  9. Drosophila melanogaster as an animal model for the study of Pseudomonas aeruginosa biofilm infections in vivo.

    Directory of Open Access Journals (Sweden)

    Heidi Mulcahy

    2011-10-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic pathogen capable of causing both acute and chronic infections in susceptible hosts. Chronic P. aeruginosa infections are thought to be caused by bacterial biofilms. Biofilms are highly structured, multicellular, microbial communities encased in an extracellular matrix that enable long-term survival in the host. The aim of this research was to develop an animal model that would allow an in vivo study of P. aeruginosa biofilm infections in a Drosophila melanogaster host. At 24 h post oral infection of Drosophila, P. aeruginosa biofilms localized to and were visualized in dissected Drosophila crops. These biofilms had a characteristic aggregate structure and an extracellular matrix composed of DNA and exopolysaccharide. P. aeruginosa cells recovered from in vivo grown biofilms had increased antibiotic resistance relative to planktonically grown cells. In vivo, biofilm formation was dependent on expression of the pel exopolysaccharide genes, as a pelB::lux mutant failed to form biofilms. The pelB::lux mutant was significantly more virulent than PAO1, while a hyperbiofilm strain (PAZHI3 demonstrated significantly less virulence than PAO1, as indicated by survival of infected flies at day 14 postinfection. Biofilm formation, by strains PAO1 and PAZHI3, in the crop was associated with induction of diptericin, cecropin A1 and drosomycin antimicrobial peptide gene expression 24 h postinfection. In contrast, infection with the non-biofilm forming strain pelB::lux resulted in decreased AMP gene expression in the fly. In summary, these results provide novel insights into host-pathogen interactions during P. aeruginosa oral infection of Drosophila and highlight the use of Drosophila as an infection model that permits the study of P. aeruginosa biofilms in vivo.

  10. Induction of beta-lactamase production in Pseudomonas aeruginosa biofilm

    DEFF Research Database (Denmark)

    Giwercman, B; Jensen, E T; Høiby, N;

    1991-01-01

    Imipenem induced high levels of beta-lactamase production in Pseudomonas aeruginosa biofilms. Piperacillin also induced beta-lactamase production in these biofilms but to a lesser degree. The combination of beta-lactamase production with other protective properties of the biofilm mode of growth...

  11. Biofilm Formation Mechanisms of Pseudomonas aeruginosa Predicted via Genome-Scale Kinetic Models of Bacterial Metabolism.

    Science.gov (United States)

    Vital-Lopez, Francisco G; Reifman, Jaques; Wallqvist, Anders

    2015-10-01

    A hallmark of Pseudomonas aeruginosa is its ability to establish biofilm-based infections that are difficult to eradicate. Biofilms are less susceptible to host inflammatory and immune responses and have higher antibiotic tolerance than free-living planktonic cells. Developing treatments against biofilms requires an understanding of bacterial biofilm-specific physiological traits. Research efforts have started to elucidate the intricate mechanisms underlying biofilm development. However, many aspects of these mechanisms are still poorly understood. Here, we addressed questions regarding biofilm metabolism using a genome-scale kinetic model of the P. aeruginosa metabolic network and gene expression profiles. Specifically, we computed metabolite concentration differences between known mutants with altered biofilm formation and the wild-type strain to predict drug targets against P. aeruginosa biofilms. We also simulated the altered metabolism driven by gene expression changes between biofilm and stationary growth-phase planktonic cultures. Our analysis suggests that the synthesis of important biofilm-related molecules, such as the quorum-sensing molecule Pseudomonas quinolone signal and the exopolysaccharide Psl, is regulated not only through the expression of genes in their own synthesis pathway, but also through the biofilm-specific expression of genes in pathways competing for precursors to these molecules. Finally, we investigated why mutants defective in anthranilate degradation have an impaired ability to form biofilms. Alternative to a previous hypothesis that this biofilm reduction is caused by a decrease in energy production, we proposed that the dysregulation of the synthesis of secondary metabolites derived from anthranilate and chorismate is what impaired the biofilms of these mutants. Notably, these insights generated through our kinetic model-based approach are not accessible from previous constraint-based model analyses of P. aeruginosa biofilm

  12. Effects of norspermidine on Pseudomonas aeruginosa biofilm formation and eradication.

    Science.gov (United States)

    Qu, Lin; She, Pengfei; Wang, Yangxia; Liu, Fengxia; Zhang, Di; Chen, Lihua; Luo, Zhen; Xu, Huan; Qi, Yong; Wu, Yong

    2016-06-01

    Biofilms are defined as aggregation of single cell microorganisms and associated with over 80% of all the microbial infections. Pseudomonas aeruginosa is a Gram-negative opportunistic pathogen capable of leading to various infections in immunocompromised people. Recent studies showed that norspermidine, a kind of polyamine, prevented and disrupted biofilm formation by some Gram-negative bacterium. In this study, the effects of norspermidine on P. aeruginosa biofilm formation and eradication were tested. Microtiter plate combined with crystal violet staining was used to study the effects of norspermidine on P. aeruginosa initial attachment, then we employed SEM (scanning electron microscope), qRT-PCR, and QS-related virulence factor assays to investigate how norspermidine prevent biofilm formation by P. aeruginosa. We reported that high-dose norspermidine had bactericide effect on P. aeruginosa, and norspermidine began to inhibit biofilm formation and eradicate 24-h mature biofilm at concentration of 0.1 and 1 mmol/L, respectively, probably by preventing cell-surface attachment, inhibiting swimming motility, and downregulating QS-related genes expression. To investigate the potential utility of norspermidine in preventing device-related infections, we found that catheters immersed with norspermidine were effective in eradicating mature biofilm. These results suggest that norspermidine could be a potent antibiofilm agent for formulating strategies against P. aeruginosa biofilm. PMID:26817804

  13. Control of Candida albicans Metabolism and Biofilm Formation by Pseudomonas aeruginosa Phenazines

    OpenAIRE

    Morales, Diana K.; Grahl, Nora; Okegbe, Chinweike; Dietrich, Lars E. P.; Jacobs, Nicholas J.; Hogan, Deborah A.

    2013-01-01

    ABSTRACT Candida albicans has developmental programs that govern transitions between yeast and filamentous morphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm development were inhibited during interactions between Candida albicans and Pseudomonas aeruginosa through the action of P. aeruginosa-produced phenazines. While phenazines are toxic to C. albicans at millimolar concentrations, we found that lower concentra...

  14. The roles of biofilm matrix polysaccharide Psl in mucoid Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Ma, Luyan; Wang, Shiwei; Wang, Di; Parsek, Matthew R; Wozniak, Daniel J

    2012-07-01

    The opportunistic pathogen Pseudomonas aeruginosa causes life-threatening, persistent infections in patients with cystic fibrosis (CF). Persistence is attributed to the ability of these bacteria to form structured communities (biofilms). Biofilms rely on an extracellular polymeric substances matrix to maintain structure. Psl exopolysaccharide is a key matrix component of nonmucoid biofilms, yet the role of Psl in mucoid biofilms is unknown. In this report, using a variety of mutants in a mucoid P. aeruginosa background, we found that deletion of Psl-encoding genes dramatically decreased their biofilm formation ability, indicating that Psl is also a critical matrix component of mucoid biofilms. Our data also suggest that the overproduction of alginate leads to mucoid biofilms, which occupy more space, whereas Psl-dependent biofilms are densely packed. These data suggest that Psl polysaccharide may have significant contributions in biofilm persistence in patients with CF and may be helpful for designing therapies for P. aeruginosa CF infection.

  15. Extracellular DNA Shields against Aminoglycosides in Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Nilsson, Martin; Jensen, Peter Østrup;

    2013-01-01

    Within recent years, it has been established that extracellular DNA is a key constituent of the matrix of microbial biofilms. In addition, it has recently been demonstrated that DNA binds positively charged antimicrobials such as aminoglycosides and antimicrobial peptides. In the present study, we...... provide evidence that extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. We show that exogenously supplemented DNA integrates into P. aeruginosa biofilms and increases their tolerance toward aminoglycosides. We provide evidence that biofilms formed by a DNA release......, which are thought to be a source of extracellular DNA at sites of infections, increases the tolerance of P. aeruginosa biofilms toward aminoglycosides. Although biofilm-associated aminoglycoside tolerance recently has been linked to extracellular DNA-mediated activation of the pmr genes, we demonstrate...

  16. Novel Targets for Treatment of Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Alhede, Morten; Alhede, Maria; Bjarnsholt, Thomas

    2014-01-01

    Pseudomonas aeruginosa causes infection in all parts of the human body. The bacterium is naturally resistant to a wide range of antibiotics. In addition to resistance mechanisms such as efflux pumps, the ability to form aggregates, known as biofilm, further reduces Pseudomonas aeruginosa’s suscep......Pseudomonas aeruginosa causes infection in all parts of the human body. The bacterium is naturally resistant to a wide range of antibiotics. In addition to resistance mechanisms such as efflux pumps, the ability to form aggregates, known as biofilm, further reduces Pseudomonas aeruginosa......’s susceptibility to antibiotics. The presence of such biofilms is acknowledged to equal a persistent infection due to their inherent high tolerance to all antimicrobials and immune cells. In this chapter we discuss the mechanisms of biofilm tolerance. The latest biofilm research is reviewed and future treatment...... strategies such as quorum sensing inhibitors, silver, and antibodies are thoroughly evaluated....

  17. [Research advances on regulation of Pseudomonas aeruginosa biofilm formation and its therapeutic strategies].

    Science.gov (United States)

    Wang, Wen-min; Xu, Zhi-hao

    2010-01-01

    Pseudomonas aeruginosa is an important pathogenic bacterium of nosocomial infections. The microbe easily produce biofilm which brings us much difficulties in clinical treatment. The formation processes of biofilm, including the stages of early bacteria planting, mushroom-like structure forming and extracellular matrix producing, are regulated by a series of molecules and genes. And quorum sensing system of the microbe is responsible for regulation of the whole process of biofilm formation. According to the process of biofilm formation and the mimitat associated regulation mechanism, several anti-biofilm therapeutic strategies have been applied in clinical medicine, and some novel drugs and methods are developed. PMID:20175245

  18. Inhibition of Pseudomonas aeruginosa biofilm formation on wound dressings.

    Science.gov (United States)

    Brandenburg, Kenneth S; Calderon, Diego F; Kierski, Patricia R; Brown, Amanda L; Shah, Nihar M; Abbott, Nicholas L; Schurr, Michael J; Murphy, Christopher J; McAnulty, Jonathan F; Czuprynski, Charles J

    2015-01-01

    Chronic nonhealing skin wounds often contain bacterial biofilms that prevent normal wound healing and closure and present challenges to the use of conventional wound dressings. We investigated inhibition of Pseudomonas aeruginosa biofilm formation, a common pathogen of chronic skin wounds, on a commercially available biological wound dressing. Building on prior reports, we examined whether the amino acid tryptophan would inhibit P. aeruginosa biofilm formation on the three-dimensional surface of the biological dressing. Bacterial biomass and biofilm polysaccharides were quantified using crystal violet staining or an enzyme linked lectin, respectively. Bacterial cells and biofilm matrix adherent to the wound dressing were visualized through scanning electron microscopy. D-/L-tryptophan inhibited P. aeruginosa biofilm formation on the wound dressing in a dose dependent manner and was not directly cytotoxic to immortalized human keratinocytes although there was some reduction in cellular metabolism or enzymatic activity. More importantly, D-/L-tryptophan did not impair wound healing in a splinted skin wound murine model. Furthermore, wound closure was improved when D-/L-tryptophan treated wound dressing with P. aeruginosa biofilms were compared with untreated dressings. These findings indicate that tryptophan may prove useful for integration into wound dressings to inhibit biofilm formation and promote wound healing.

  19. Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Haagensen, Janus Anders Juul; Klausen, M; Ernst, RK;

    2007-01-01

    During Pseudomonas aeruginosa flow cell biofilm development, the cell population differentiates into a nonmotile subpopulation which forms microcolonies and a migrating subpopulation which eventually colonizes the top of the microcolonies, resulting in the development of mushroom-shaped multicell......During Pseudomonas aeruginosa flow cell biofilm development, the cell population differentiates into a nonmotile subpopulation which forms microcolonies and a migrating subpopulation which eventually colonizes the top of the microcolonies, resulting in the development of mushroom......-targeting antibacterial agents. All biofilm-associated cells were sensitive to the antibacterial agents when tested in standard plate assays. A mutation eliminating the production of type IV pili, and hence surface-associated motility, prevented the formation of regular mushroom-shaped structures in the flow cell...... that only the cap-forming subpopulation in biofilms treated with colistin expresses the pmr operon. These results suggest that increased antibiotic tolerance in biofilms may be a consequence of differentiation into distinct subpopulations with different phenotypic properties....

  20. Pseudomonas aeruginosa biofilm aggravates skin inflammatory response in BALB/c mice in a novel chronic wound model

    DEFF Research Database (Denmark)

    Trøstrup, Hannah; Thomsen, Kim; Christophersen, Lars J;

    2013-01-01

    Chronic wounds are presumed to persist in the inflammatory state, preventing healing. Emerging evidence indicates a clinical impact of bacterial biofilms in soft tissues, including Pseudomonas aeruginosa (PA) biofilms. To further investigate this, we developed a chronic PA biofilm wound infection...

  1. Effects of ambroxol on alginate of mature Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Li, Fang; Yu, Jialin; Yang, Hua; Wan, Zhenyan; Bai, Dan

    2008-07-01

    Biofilm-forming bacteria Pseudomonas aeruginosa is a common pathogen in mechanically ventilated newborns, which can cause life-threatening infections. Alginate of mucoid Pseudomonas aeruginosa biofilms is considered an important virulence factor which contributes to the resistance to antibiotics. Traditionally, ambroxol is widely used in newborns with lung problems as a mucolytic agent and antioxidant agent as well. And there are few studies that demonstrated the anti-biofilm activity of ambroxol. In this study, we found that ambroxol can affect the structure of mucoid Pseudomonas aeruginosa biofilms. Further, we found that ambroxol reduces the production of alginate, the expression of the important genes and the activity of key enzyme guanosine diphospho-D-mannose dehydrogenase (GDP-mannose dehydrogenase; GMD) which were involved in alginate biosynthesis.

  2. Improved Biofilm Antimicrobial Activity of Polyethylene Glycol Conjugated Tobramycin Compared to Tobramycin in Pseudomonas aeruginosa Biofilms.

    Science.gov (United States)

    Du, Ju; Bandara, H M H N; Du, Ping; Huang, Hui; Hoang, Khang; Nguyen, Dang; Mogarala, Sri Vasudha; Smyth, Hugh D C

    2015-05-01

    The objective of this study was to develop a functionally enhanced antibiotic that would improve the therapeutic activity against bacterial biofilms. Tobramycin was chemically conjugated with polyethylene glycol (PEG) via site-specific conjugation to form PEGylated-tobramycin (Tob-PEG). The antibacterial efficacy of Tob-PEG, as compared to tobramycin, was assessed on the planktonic phase and biofilms phase of Pseudomonas aeruginosa. The minimum inhibitory concentration (MIC80) of Tob-PEG was higher (13.9 μmol/L) than that of tobramycin (1.4 μmol/L) in the planktonic phases. In contrast, the Tob-PEG was approximately 3.2-fold more effective in eliminating bacterial biofilms than tobramycin. Specifically, Tob-PEG had a MIC80 lower than those exhibited by tobramycin (27.8 μmol/L vs 89.8 μmol/L). Both confocal laser scanning microscopy and scanning electron microscopy further confirmed these data. Thus, modification of antimicrobials by PEGylation appears to be a promising approach for overcoming the bacterial resistance in the established biofilms of Pseudomonas aeruginosa.

  3. Evolution and Adaptation in Pseudomonas aeruginosa Biofilms Driven by Mismatch Repair System-Deficient Mutators

    DEFF Research Database (Denmark)

    Luján, Adela M.; Maciá, María D.; Yang, Liang;

    2011-01-01

    , which are rarely eradicated despite intensive antibiotic therapy. Current knowledge indicates that three major adaptive strategies, biofilm development, phenotypic diversification, and mutator phenotypes [driven by a defective mismatch repair system (MRS)], play important roles in P. aeruginosa chronic...... infections, but the relationship between these strategies is still poorly understood. We have used the flow-cell biofilm model system to investigate the impact of the mutS associated mutator phenotype on development, dynamics, diversification and adaptation of P. aeruginosa biofilms. Through competition...... diversification, evidenced by biofilm architecture features and by a wider range and proportion of morphotypic colony variants, respectively. Additionally, morphotypic variants generated in mutator biofilms showed increased competitiveness, providing further evidence for mutator-driven adaptive evolution...

  4. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional

    DEFF Research Database (Denmark)

    Shrout, J.D.; Chopp, D.L.; Just, C.L.;

    2006-01-01

    The role of quorum sensing in Pseudomonas aeruginosa biofilm formation is unclear. Some researchers have shown that quorum sensing is important for biofilm development, while others have indicated it has little or no role. In this study, the contribution of quorum sensing to biofilm development...... was found to depend upon the nutritional environment. Depending upon the carbon source, quorum-sensing mutant strains (lasIrhlI and lasRrhlR) either exhibited a pronounced defect early in biofilm formation or formed biofilms identical to the wild-type strain. Quorum sensing was then shown to exert its...... nutritionally conditional control of biofilm development through regulation of swarming motility. Examination of pilA and fliM mutant strains further supported the role of swarming motility in biofilm formation. These data led to a model proposing that the prevailing nutritional conditions dictate...

  5. Selective labelling and eradication of antibiotic-tolerant bacterial populations in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Chua, Song Lin; Yam, Joey Kuok Hoong; Hao, Piliang;

    2016-01-01

    acids (pulsed-SILAC), to quantify newly expressed proteins in colistin-tolerant subpopulations of Pseudomonas aeruginosa biofilms (colistin is a 'last-resort' antibiotic against multidrug-resistant Gram-negative pathogens). Migration is essential for the formation of colistin-tolerant biofilm...... subpopulations, with colistin-tolerant cells using type IV pili to migrate onto the top of the colistin-killed biofilm. The colistin-tolerant cells employ quorum sensing (QS) to initiate the formation of new colistin-tolerant subpopulations, highlighting multicellular behaviour in antibiotic tolerance...... development. The macrolide erythromycin, which has been previously shown to inhibit the motility and QS of P. aeruginosa, boosts biofilm eradication by colistin. Our work provides insights on the mechanisms underlying the formation of antibiotic-tolerant populations in bacterial biofilms and indicates...

  6. Pseudomonas aeruginosa forms Biofilms in Acute InfectionIndependent of Cell-to-Cell Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Schaber, J. Andy; Triffo, W.J.; Suh, Sang J.; Oliver, Jeffrey W.; Hastert, Mary C.; Griswold, John A.; Auer, Manfred; Hamood, Abdul N.; Rumbaugh, Kendra P.

    2006-09-20

    Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 hours of infection in thermally-injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections. P. aeruginosa biofilms were visualized within burned tissue surrounding blood vessels and adipose cells. Although quorum sensing (QS), a bacterial signaling mechanism, coordinates differentiation of biofilms in vitro, wild type and QS-deficient P. aeruginosa formed similar biofilms in vivo. Our findings demonstrate that P. aeruginosa forms biofilms on specific host tissues independent of QS.

  7. Pseudomonas aeruginosa biofilm growth inhibition on medical plastic materials by immobilized esterases and acylase.

    Science.gov (United States)

    Kisch, Johannes Martin; Utpatel, Christian; Hilterhaus, Lutz; Streit, Wolfgang R; Liese, Andreas

    2014-09-01

    Biofilms are matrix-encapsulated cell aggregates that cause problems in technical and health-related areas; for example, 65 % of all human infections are biofilm associated. This is mainly due to their ameliorated resistance against antimicrobials and immune systems. Pseudomonas aeruginosa, a biofilm-forming organism, is commonly responsible for nosocomial infections. Biofilm development is partly mediated by signal molecules, such as acyl-homoserine lactones (AHLs) in Gram-negative bacteria. We applied horse liver esterase, porcine kidney acylase, and porcine liver esterase; these can hydrolyze AHLs, thereby inhibiting biofilm formation. As biofilm infections are often related to foreign material introduced into the human body, we immobilized the enzymes on medical plastic materials. Biofilm formation was quantified by Crystal Violet staining and confocal laser scanning microscopy, revealing up to 97 % (on silicone), 54 % (on polyvinyl chloride), and 77 % (on polyurethane) reduced biomass after 68 h growth.

  8. Synergistic effect of fosfomycin and fluoroquinolones against Pseudomonas aeruginosa growing in a biofilm.

    Directory of Open Access Journals (Sweden)

    Mikuniya,Takeshi

    2005-10-01

    Full Text Available

    Ulifloxacin is the active form of the prodrug prulifloxacin and shows a highly potent antipseudomonal activity. In this study, we examined the combined effect of fosfomycin and ulifloxacin against Pseudomonas aeruginosa (P. aeruginosa growing in a biofilm using a modified Robbins device with artificial urine, and compared it to that of the combination of fosfomycin and ciprofloxacin or levofloxacin. An ATP bioluminescence assay was used to evaluate the antibacterial activity of the agents against sessile cells in a mature biofilm developed on a silicon disk. The total bioactivity of P. aeruginosa growing in a biofilm that had not been fully eradicated by fosfomycin or any of the fluoroquinolones alone at 10 times the MIC decreased after combination treatment with fosfomycin and fluoroquinolones. Morphological changes occurred in a time-dependent fashion; namely, swollen and/or rounding cells emerged within a couple of hours after combination treatment, marking the initial stage in the process leading to the destruction of the biofilms. We could not find any difference among the 3 fluoroquinolones with regard to their synergistic effects when administered with fosfomycin. The combination treatment of fosfomycin and fluoroquinolones with highly potent antipseudomonal activities was effective in eradicating sessile cells of P. aeruginosa in the biofilm and promises to be beneficial against biofilm-associated infectious diseases.

  9. Incorporation of Farnesol Significantly Increases the Efficacy of Liposomal Ciprofloxacin against Pseudomonas aeruginosa Biofilms in Vitro.

    Science.gov (United States)

    Bandara, H M H N; Herpin, M J; Kolacny, D; Harb, A; Romanovicz, D; Smyth, H D C

    2016-08-01

    The challenge of eliminating Pseudomonas aeruginosa infections, such as in cystic fibrosis lungs, remains unchanged due to the rapid development of antibiotic resistance. Poor drug penetration into dense P. aeruginosa biofilms plays a vital role in ineffective clearance of the infection. Thus, the current antibiotic therapy against P. aeruginosa biofilms need to be revisited and alternative antibiofilm strategies need to be invented. Fungal quorum sensing molecule (QSM), farnesol, appears to have detrimental effects on P. aeruginosa. Thus, this study aimed to codeliver naturally occurring QSM farnesol, with the antibiotic ciprofloxacin as a liposomal formulation to eradicate P. aeruginosa biofilms. Four different liposomes (with ciprofloxacin and farnesol, Lcip+far; with ciprofloxacin, Lcip; with farnesol, Lfar; control, Lcon) were prepared using dehydration-rehydration method and characterized. Drug entrapment and release were evaluated by spectrometry and high performance liquid chromatography (HPLC). The efficacy of liposomes was assessed using standard biofilm assay. Liposome-treated 24 h P. aeruginosa biofilms were quantitatively assessed by XTT reduction assay and crystal violet assay, and qualitatively by confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). Ciprofloxacin release from liposomes was higher when encapsulated with farnesol (Lcip+far) compared to Lcip (3.06% vs 1.48%), whereas farnesol release was lower when encapsulated with ciprofloxacin (Lcip+far) compared to Lfar (1.81% vs 4.75%). The biofilm metabolism was significantly lower when treated with Lcip+far or Lcip compared to free ciprofloxacin (XTT, P < 0.05). When administered as Lcip+far, the ciprofloxacin concentration required to achieve similar biofilm inhibition was 125-fold or 10-fold lower compared to free ciprofloxacin or Lcip, respectively (P < 0.05). CLSM and TEM confirmed predominant biofilm disruption, greater dead cell ratio, and increased depth of

  10. Pattern formation in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Parsek, Matthew R.; Tolker-Nielsen, Tim

    2008-01-01

    Bacteria are capable of forming elaborate multicellular communities called biofilms. Pattern formation in biofilms depends on cell proliferation and cellular migration in response to the available nutrients and other external cues, as well as on self-generated intercellular signal molecules...... and the production of an extracellular matrix that serves as a structural 'scaffolding' for the biofilm cells. Pattern formation in biofilms allows cells to position themselves favorably within nutrient gradients and enables buildup and maintenance of physiologically distinct subpopulations, which facilitates...... survival of one or more subpopulations upon environmental insult, and therefore plays an important role in the innate tolerance displayed by biofilms toward adverse conditions....

  11. The immune system vs. Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Jensen, Peter Østrup; Givskov, Michael; Bjarnsholt, Thomas;

    2010-01-01

    in the planktonic state. Accordingly, much less is known about the immune responses to the presence of biofilm-based infections (which is probably also due to the relatively short period of time in which the immune response to biofilms has been studied). Nevertheless, more recent in vivo and in vitro studies have...... revealed both innate as well as adaptive immune responses to biofilms. On the other hand, measures launched by biofilm bacteria to achieve protection against the various immune responses have also been demonstrated. Whether particular immune responses to biofilm infections exist remains to be firmly...... established. However, because biofilm infections are often persistent (or chronic), an odd situation appears with the simultaneous activation of both arms of the host immune response, neither of which can eliminate the biofilm pathogen, but instead, in synergy, causes collateral tissue damage. Although...

  12. An update on Pseudomonas aeruginosa biofilm formation, tolerance, and dispersal

    DEFF Research Database (Denmark)

    Harmsen, Morten; Yang, Liang; Pamp, Sünje Johanna;

    2010-01-01

    We review the recent advances in the understanding of the Pseudomonas aeruginosa biofilm lifestyle from studies using in vitro laboratory setups such as flow chambers and microtiter trays. Recent work sheds light on the role of nutrients, motility, and quorum sensing in structure formation in P...

  13. Dynamics of Mutator and Antibiotic-Resistant Populations in a Pharmacokinetic/Pharmacodynamic Model of Pseudomonas aeruginosa Biofilm Treatment

    DEFF Research Database (Denmark)

    Macià, María D.; Pérez, José L.; Molin, Søren;

    2011-01-01

    Biofilm growth, antibiotic resistance, and mutator phenotypes are key components of chronic respiratory infections by Pseudomonas aeruginosa in cystic fibrosis patients. We examined the dynamics of mutator and antibiotic-resistant populations in P. aeruginosa flow-cell biofilms, using fluorescently...... monitored by confocal laser scanning microscopy (CLSM), and the numbers of viable cells and resistant mutants (4- and 16-fold MICs) were determined. Despite optimized pharmacokinetic/pharmacodynamic (PK/PD) parameters, CIP treatment did not suppress resistance development in P. aeruginosa biofilms. One.......01 proportion, took over the whole biofilm after only 2 days of CIP treatment outnumbering PAO1 by 3 log at t4. Our results show that mutational mechanisms play a major role in biofilm antibiotic resistance and that theoretically optimized PK/PD parameters fail to suppress resistance development, suggesting...

  14. Motility of Pseudomonas aeruginosa contributes to SOS-inducible biofilm formation.

    Science.gov (United States)

    Chellappa, Shakinah T; Maredia, Reshma; Phipps, Kara; Haskins, William E; Weitao, Tao

    2013-12-01

    DNA-damaging antibiotics such as ciprofloxacin induce biofilm formation and the SOS response through autocleavage of SOS-repressor LexA in Pseudomonas aeruginosa. However, the biofilm-SOS connection remains poorly understood. It was investigated with 96-well and lipid biofilm assays. The effects of ciprofloxacin were examined on biofilm stimulation of the SOS mutant and wild-type strains. The stimulation observed in the wild-type in which SOS was induced was reduced in the mutant in which LexA was made non-cleavable (LexAN) and thus SOS non-inducible. Therefore, the stimulation appeared to involve SOS. The possible mechanisms of inducible biofilm formation were explored by subproteomic analysis of outer membrane fractions extracted from biofilms. The data predicted an inhibitory role of LexA in flagellum function. This premise was tested first by functional and morphological analyses of flagellum-based motility. The flagellum swimming motility decreased in the LexAN strain treated with ciprofloxacin. Second, the motility-biofilm assay was performed, which tested cell migration and biofilm formation. The results showed that wild-type biofilm increased significantly over the LexAN. These results suggest that LexA repression of motility, which is the initial event in biofilm development, contributes to repression of SOS-inducible biofilm formation.

  15. Flagellum-Mediated Biofilm Defense Mechanisms of Pseudomonas aeruginosa against Host-Derived Lactoferrin ▿

    Science.gov (United States)

    Leid, Jeff G.; Kerr, Mathias; Selgado, Candice; Johnson, Chelsa; Moreno, Gabriel; Smith, Alyssa; Shirtliff, Mark E.; O'Toole, George A.; Cope, Emily K.

    2009-01-01

    Chronic infection with the gram-negative organism Pseudomonas aeruginosa is a leading cause of morbidity and mortality in human patients, despite high doses of antibiotics used to treat the various diseases this organism causes. These infections are chronic because P. aeruginosa readily forms biofilms, which are inherently resistant to antibiotics as well as the host's immune system. Our laboratory has been investigating specific mutations in P. aeruginosa that regulate biofilm bacterial susceptibility to the host. To continue our investigation of the role of genetics in bacterial biofilm host resistance, we examined P. aeruginosa biofilms that lack the flgK gene. This mutant lacks flagella, which results in defects in early biofilm development (up to 36 h). For these experiments, the flgK-disrupted strain and the parental strain (PA14) were used in a modified version of the 96-well plate microtiter assay. Biofilms were challenged with freshly isolated human leukocytes for 4 to 6 h and viable bacteria enumerated by CFU. Subsequent to the challenge, both mononuclear cells (monocytes and lymphocytes) and neutrophils, along with tumor necrosis factor alpha (TNF-α), were required for optimal killing of the flgK biofilm bacteria. We identified a cytokine cross talk network between mononuclear cells and neutrophils that was essential to the production of lactoferrin and bacterial killing. Our data suggest that TNF-α is secreted from mononuclear cells, causing neutrophil activation, resulting in the secretion of bactericidal concentrations of lactoferrin. These results extend previous studies of the importance of lactoferrin in the innate immune defense against bacterial biofilms. PMID:19651866

  16. Plasma-mediated inactivation of Pseudomonas aeruginosa biofilms grown on borosilicate surfaces under continuous culture system.

    Science.gov (United States)

    Vandervoort, Kurt G; Brelles-Mariño, Graciela

    2014-01-01

    Biofilms are microbial communities attached to a surface and embedded in a matrix composed of exopolysaccharides and excreted nucleic acids. Bacterial biofilms are responsible for undesirable effects such as disease, prostheses colonization, biofouling, equipment damage, and pipe plugging. Biofilms are also more resilient than free-living cells to regular sterilization methods and therefore it is indispensable to develop better ways to control and remove them. The use of gas discharge plasmas is a good alternative since plasmas contain a mixture of reactive agents well-known for their decontamination potential against free microorganisms. We have previously reported that Pseudomonas aeruginosa biofilms were inactivated after a 1-min plasma exposure. We determined that the adhesiveness and the thickness of Pseudomonas biofilms grown on borosilicate were reduced. We also reported sequential morphological changes and loss of viability upon plasma treatment. However, the studies were carried out in batch cultures. The use of a continuous culture results in a more homogenous environment ensuring reproducible biofilm growth. The aim of this work was to study plasma-mediated inactivation of P. aeruginosa biofilms grown on borosilicate in a continuous culture system. In this paper we show that biofilms grown on glass under continuous culture can be inactivated by using gas discharge plasma. Both biofilm architecture and cell culturability are impacted by the plasma treatment. The inactivation kinetics is similar to previously described ones and cells go through sequential changes ranging from minimal modification without loss of viability at short plasma exposure times, to major structure and viability loss at longer exposure times. We report that changes in biofilm structure leading to the loss of culturability and viability are related to a decrease of the biofilm matrix adhesiveness. To our knowledge, there has been no attempt to evaluate the inactivation

  17. Plasma-mediated inactivation of Pseudomonas aeruginosa biofilms grown on borosilicate surfaces under continuous culture system.

    Directory of Open Access Journals (Sweden)

    Kurt G Vandervoort

    Full Text Available Biofilms are microbial communities attached to a surface and embedded in a matrix composed of exopolysaccharides and excreted nucleic acids. Bacterial biofilms are responsible for undesirable effects such as disease, prostheses colonization, biofouling, equipment damage, and pipe plugging. Biofilms are also more resilient than free-living cells to regular sterilization methods and therefore it is indispensable to develop better ways to control and remove them. The use of gas discharge plasmas is a good alternative since plasmas contain a mixture of reactive agents well-known for their decontamination potential against free microorganisms. We have previously reported that Pseudomonas aeruginosa biofilms were inactivated after a 1-min plasma exposure. We determined that the adhesiveness and the thickness of Pseudomonas biofilms grown on borosilicate were reduced. We also reported sequential morphological changes and loss of viability upon plasma treatment. However, the studies were carried out in batch cultures. The use of a continuous culture results in a more homogenous environment ensuring reproducible biofilm growth. The aim of this work was to study plasma-mediated inactivation of P. aeruginosa biofilms grown on borosilicate in a continuous culture system. In this paper we show that biofilms grown on glass under continuous culture can be inactivated by using gas discharge plasma. Both biofilm architecture and cell culturability are impacted by the plasma treatment. The inactivation kinetics is similar to previously described ones and cells go through sequential changes ranging from minimal modification without loss of viability at short plasma exposure times, to major structure and viability loss at longer exposure times. We report that changes in biofilm structure leading to the loss of culturability and viability are related to a decrease of the biofilm matrix adhesiveness. To our knowledge, there has been no attempt to evaluate the

  18. Polysaccharides serve as scaffold of biofilms formed by mucoid Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Yang, Liang; Hengzhuang, Wang; Wu, Hong;

    2012-01-01

    from biofilms formed by mucoid P. aeruginosa were investigated. Alginate is not an essential structure component for mucoid P. aeruginosa biofilms. Genetic studies revealed that Pel and Psl polysaccharides serve as essential scaffold and mediate macrocolony formation in mucoid P. aeruginosa biofilms....... The Psl polysaccharide is more important than Pel polysaccharide in mucoid P. aeruginosa biofilm structure maintenance and phagocytosis resistance. The polysaccharides were further found to protect mucoid P. aeruginosa strain from host immune clearance in a mouse model of acute lung infection....

  19. Impairment of Pseudomonas aeruginosa Biofilm Resistance to Antibiotics by Combining the Drugs with a New Quorum-Sensing Inhibitor

    Science.gov (United States)

    Lajoie, Barbora; El Hage, Salome; Baziard, Genevieve; Roques, Christine

    2015-01-01

    Pseudomonas aeruginosa plays an important role in chronic lung infections among patients with cystic fibrosis (CF) through its ability to form antibiotic-resistant biofilms. In P. aeruginosa, biofilm development and the production of several virulence factors are mainly regulated by the rhl and las quorum-sensing (QS) systems, which are controlled by two N-acyl-homoserine lactone signal molecules. In a previous study, we discovered an original QS inhibitor, N-(2-pyrimidyl)butanamide, called C11, based on the structure of C4-homoserine lactone, and found that it is able to significantly inhibit P. aeruginosa biofilm formation. However, recent data indicate that P. aeruginosa grows under anaerobic conditions and forms biofilms in the lungs of CF patients that are denser and more robust than those formed under aerobic conditions. Our confocal microscopy observations of P. aeruginosa biofilms developed under aerobic and anaerobic conditions confirmed that the biofilms formed under these two conditions have radically different architectures. C11 showed significant dose-dependent antibiofilm activity on biofilms grown under both aerobic and anaerobic conditions, with a greater inhibitory effect being seen under conditions of anaerobiosis. Gene expression analyses performed by quantitative reverse transcriptase PCR showed that C11 led to the significant downregulation of rhl QS regulatory genes but also to the downregulation of both las QS regulatory genes and QS system-regulated virulence genes, rhlA and lasB. Furthermore, the activity of C11 in combination with antibiotics against P. aeruginosa biofilms was tested, and synergistic antibiofilm activity between C11 and ciprofloxacin, tobramycin, and colistin was obtained under both aerobic and anaerobic conditions. This study demonstrates that C11 may increase the efficacy of treatments for P. aeruginosa infections by increasing the susceptibility of biofilms to antibiotics and by attenuating the pathogenicity of the

  20. Impairment of Pseudomonas aeruginosa Biofilm Resistance to Antibiotics by Combining the Drugs with a New Quorum-Sensing Inhibitor.

    Science.gov (United States)

    Furiga, Aurelie; Lajoie, Barbora; El Hage, Salome; Baziard, Genevieve; Roques, Christine

    2016-03-01

    Pseudomonas aeruginosa plays an important role in chronic lung infections among patients with cystic fibrosis (CF) through its ability to form antibiotic-resistant biofilms. In P. aeruginosa, biofilm development and the production of several virulence factors are mainly regulated by the rhl and las quorum-sensing (QS) systems, which are controlled by two N-acyl-homoserine lactone signal molecules. In a previous study, we discovered an original QS inhibitor, N-(2-pyrimidyl)butanamide, called C11, based on the structure of C4-homoserine lactone, and found that it is able to significantly inhibit P. aeruginosa biofilm formation. However, recent data indicate that P. aeruginosa grows under anaerobic conditions and forms biofilms in the lungs of CF patients that are denser and more robust than those formed under aerobic conditions. Our confocal microscopy observations of P. aeruginosa biofilms developed under aerobic and anaerobic conditions confirmed that the biofilms formed under these two conditions have radically different architectures. C11 showed significant dose-dependent antibiofilm activity on biofilms grown under both aerobic and anaerobic conditions, with a greater inhibitory effect being seen under conditions of anaerobiosis. Gene expression analyses performed by quantitative reverse transcriptase PCR showed that C11 led to the significant downregulation of rhl QS regulatory genes but also to the downregulation of both las QS regulatory genes and QS system-regulated virulence genes, rhlA and lasB. Furthermore, the activity of C11 in combination with antibiotics against P. aeruginosa biofilms was tested, and synergistic antibiofilm activity between C11 and ciprofloxacin, tobramycin, and colistin was obtained under both aerobic and anaerobic conditions. This study demonstrates that C11 may increase the efficacy of treatments for P. aeruginosa infections by increasing the susceptibility of biofilms to antibiotics and by attenuating the pathogenicity of the

  1. Inactivation of Pseudomonas aeruginosa biofilm by dense phase carbon dioxide.

    Science.gov (United States)

    Mun, Sungmin; Jeong, Jin-Seong; Kim, Jaeeun; Lee, Youn-Woo; Yoon, Jeyong

    2009-01-01

    Dense phase carbon dioxide (DPCD) is one of the most promising techniques available to control microorganisms as a non-thermal disinfection method. However, no study on the efficiency of biofilm disinfection using DPCD has been reported. The efficiency of DPCD in inactivating Pseudomonas aeruginosa biofilm, which is known to have high antimicrobial resistance, was thus investigated. P. aeruginosa biofilm, which was not immersed in water but was completely wet, was found to be more effectively inactivated by DPCD treatment, achieving a 6-log reduction within 7 min. The inactivation efficiency increased modestly with increasing pressure and temperature. This study also reports that the water-unimmersed condition is one of the most important operating parameters in achieving efficient biofilm control by DPCD treatment. In addition, observations by confocal laser scanning microscopy revealed that DPCD treatment not only inactivated biofilm cells on the glass coupons but also caused detachment of the biofilm following weakening of its structure as a result of the DPCD treatment; this is an added benefit of DPCD treatment.

  2. Comparison of UVB and UVC irradiation disinfection efficacies on Pseudomonas Aeruginosa (P. aeruginosa) biofilm

    Science.gov (United States)

    Argyraki, A.; Markvart, M.; Nielsen, Anne; Bjarnsholt, T.; Bjørndal, L.; Petersen, P. M.

    2016-04-01

    Disinfection routines are important in all clinical applications. The uprising problem of antibiotic resistance has driven major research efforts towards alternative disinfection approaches, involving light-based solutions. Pseudomonas aeruginosa (P. aeruginosa) is a common bacterium that can cause skin, soft tissue, lungs, kidney and urinary tract infections. Moreover, it can be found on and in medical equipment causing often cross infections in hospitals. The objective of this study was to test the efficiency, of two different light-based disinfection treatments, namely UVB and UVC irradiation, on P. aeruginosa biofilms at different growth stages. In our experiments a new type of UV light emitting diodes (LEDs) were used to deliver UV irradiation on the biofilms, in the UVB (296nm) and UVC (266nm) region. The killing rate was studied as a function of dose for 24h grown biofilms. The dose was ramped from 72J/m2 to 10000J/m2. It was shown that UVB irradiation was more effective than UVC irradiation in inactivating P. aeruginosa biofilms. No colony forming units (CFU) were observed for the UVB treated biofilms when the dose was 10000 J/m2 (CFU in control sample: 7.5 x 104). UVB irradiation at a dose of 20000J/m2 on mature biofilms (72h grown) resulted in a 3.9 log killing efficacy. The fact that the wavelength of 296nm exists in daylight and has such disinfection ability on biofilms gives new perspectives for applications within disinfection at hospitals.

  3. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Garry Laverty

    2014-07-01

    Full Text Available Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl, pellicle Formation (Pel and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.

  4. Control of Candida albicans metabolism and biofilm formation by Pseudomonas aeruginosa phenazines.

    Science.gov (United States)

    Morales, Diana K; Grahl, Nora; Okegbe, Chinweike; Dietrich, Lars E P; Jacobs, Nicholas J; Hogan, Deborah A

    2013-01-01

    Candida albicans has developmental programs that govern transitions between yeast and filamentous morphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm development were inhibited during interactions between Candida albicans and Pseudomonas aeruginosa through the action of P. aeruginosa-produced phenazines. While phenazines are toxic to C. albicans at millimolar concentrations, we found that lower concentrations of any of three different phenazines (pyocyanin, phenazine methosulfate, and phenazine-1-carboxylate) allowed growth but affected the development of C. albicans wrinkled colony biofilms and inhibited the fungal yeast-to-filament transition. Phenazines impaired C. albicans growth on nonfermentable carbon sources and led to increased production of fermentation products (ethanol, glycerol, and acetate) in glucose-containing medium, leading us to propose that phenazines specifically inhibited respiration. Methylene blue, another inhibitor of respiration, also prevented the formation of structured colony biofilms. The inhibition of filamentation and colony wrinkling was not solely due to lowered extracellular pH induced by fermentation. Compared to smooth, unstructured colonies, wrinkled colony biofilms had higher oxygen concentrations within the colony, and wrinkled regions of these colonies had higher levels of respiration. Together, our data suggest that the structure of the fungal biofilm promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by bacterial molecules such as phenazines or compounds with similar activities disrupts these pathways. These findings may suggest new ways to limit fungal biofilms in the context of disease. IMPORTANCE Many of the infections caused by Candida albicans, a major human opportunistic fungal pathogen, involve both morphological transitions and the formation of surface-associated biofilms. Through the

  5. Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function

    DEFF Research Database (Denmark)

    Hentzer, Morten; Teitzel, G.M.; Balzer, G.J.;

    2001-01-01

    -resistant communities of microorganisms organized in biofilms. Although biofilm formation and the conversion to mucoidy are both important aspects of CF pathogenesis, the relationship between them is at the present unclear. In this study, we report that the overproduction of alginate affects biofilm development...... on an abiotic surface. Biofilms formed by an alginate- overproducing strain exhibit a highly structured architecture and are significantly more resistant to the antibiotic tobramycin than a biofilm formed by an isogenic nonmucoid strain. These results suggest that an important consequence of the conversion...... to mucoidy is an altered biofilm architecture that shows increasing resistance to antimicrobial treatments....

  6. Glucose starvation-induced dispersal of Pseudomonas aeruginosa biofilms is cAMP and energy dependent.

    Directory of Open Access Journals (Sweden)

    Tran T Huynh

    Full Text Available Carbon starvation has been shown to induce a massive dispersal event in biofilms of the opportunistic pathogen Pseudomonas aeruginosa; however, the molecular pathways controlling this dispersal response remain unknown. We quantified changes in the proteome of P. aeruginosa PAO1 biofilm and planktonic cells during glucose starvation by differential peptide-fingerprint mass-spectrometry (iTRAQ. In addition, we monitored dispersal photometrically, as a decrease in turbidity/opacity of biofilms pre-grown and starved in continuous flow-cells, in order to evaluate treatments (e.g. inhibitors CCCP, arsenate, chloramphenicol, L-serine hydroxamate and key mutants altered in biofilm development and dispersal (e.g. nirS, vfr, bdlA, rpoS, lasRrhlR, Pf4-bacteriophage and cyaA. In wild-type biofilms, dispersal started within five minutes of glucose starvation, was maximal after 2 h, and up to 60% of the original biomass had dispersed after 24 h of starvation. The changes in protein synthesis were generally not more than two fold and indicated that more than 100 proteins belonging to various classes, including carbon and energy metabolism, stress adaptation, and motility, were differentially expressed. For the different treatments, only the proton-ionophore CCCP or arsenate, an inhibitor of ATP synthesis, prevented dispersal of the biofilms. For the different mutants tested, only cyaA, the synthase of the intracellular second messenger cAMP, failed to disperse; complementation of the cyaA mutation restored the wild-type phenotype. Hence, the pathway for carbon starvation-induced biofilm dispersal in P. aeruginosa PAO1 involves ATP production via direct ATP synthesis and proton-motive force dependent step(s and is mediated through cAMP, which is likely to control the activity of proteins involved in remodeling biofilm cells in preparation for planktonic survival.

  7. Inhibitory activity of Iranian plant extracts on growth and biofilm formation by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Mansouri, S.

    2013-01-01

    Full Text Available Aims: Pseudomonas aeruginosa is a drug resistance opportunistic bacterium. Biofilm formation is key factor for survivalof P. aeruginosa in various environments. Polysaccharides may be involved in biofilm formation. The purpose of thisstudy was to evaluate antimicrobial and anti-biofilm activities of seven plant extracts with known alpha-glucosidaseinhibitory activities on different strains of P. aeruginosa.Methodology and results: Plants were extracted with methanol by the maceration method. Antimicrobial activities weredetermined by agar dilution and by growth yield as measured by OD560nm of the Luria Bertani broth (LB culture with orwithout extracts. In agar dilution method, extracts of Quercus infectoria inhibited the growth of all, while Myrtuscommunis extract inhibited the growth of 3 out of 8 bacterial strains with minimum inhibitory concentration (MIC of 1000μg/mL. All extracts significantly (p≤0.003 reduced growth rate of the bacteria in comparison with the control withoutextracts in LB broth at sub-MIC concentrations (500 μg/mL. All plant extracts significantly (p≤0.003 reduced biofilmformation compared to the controls. Glycyrrhiza glabra and Q. infectoria had the highest anti-biofilm activities. Nocorrelation between the alpha-glucosidase inhibitory activity with growth or the intensity of biofilm formation was found.Conclusion, significance and impact of study: Extracts of Q. infectoria and M. communis had the most antimicrobial,while Q. infectoria and G. glabra had the highest anti-biofilm activities. All plant extracts had anti-biofilm activities withmarginal effect on growth, suggesting that the mechanisms of these activities are unrelated to static or cidal effects.Further work to understand the relation between antimicrobial and biofilm formation is needed for development of newmeans to fight the infectious caused by this bacterium in future.

  8. Inhibitory activity of Iranian plant extracts on growth and biofilm formation by Pseudomonas aeruginosa

    OpenAIRE

    Mansouri, S.; Safa, A.; Najar, S. G.; Najar, A. G.

    2013-01-01

    Aims: Pseudomonas aeruginosa is a drug resistance opportunistic bacterium. Biofilm formation is key factor for survivalof P. aeruginosa in various environments. Polysaccharides may be involved in biofilm formation. The purpose of thisstudy was to evaluate antimicrobial and anti-biofilm activities of seven plant extracts with known alpha-glucosidaseinhibitory activities on different strains of P. aeruginosa.Methodology and results: Plants were extracted with methanol by the maceration method. ...

  9. Ginger Extract Inhibits Biofilm Formation by Pseudomonas aeruginosa PA14

    OpenAIRE

    Han-Shin Kim; Hee-Deung Park

    2013-01-01

    Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Some biofilm inhibitors have been screened from natural products or modified from natural compounds. Ginger has been used as a medicinal herb to treat infectious diseases for thousands of years, which leads to the hypothesis that it may contain chemicals inhibiting biofilm formation. To test this hypothesis, we evaluated ginger's ability ...

  10. The metabolically active subpopulation in Pseudomonas aeruginosa biofilms survives exposure to membrane-targeting antimicrobials via distinct molecular mechanisms

    DEFF Research Database (Denmark)

    Chiang, Wen-Chi; Pamp, Sünje Johanna; Nilsson, Martin;

    2012-01-01

    have found that membrane-targeting antimicrobials such as colistin, EDTA, SDS, and chlorhexidine specifically kill the inactive subpopulation in P. aeruginosa biofilms, whereas the active subpopulation survives exposure to these compounds. Because treatment of P. aeruginosa biofilms with the membrane......-targeting compounds colistin, EDTA, SDS, and chlorhexidine resulted in the same spatial distribution of live and dead bacteria, we investigated whether tolerance to these compounds originated from the same molecular mechanisms. Development of colistin-tolerant subpopulations was found to depend on the pmr genes......, but does not depend on the pmr, mexAB-oprM, mexPQ-opmE, or muxABC-opmB genes. Tolerance to SDS and EDTA in P. aeruginosa biofilms is linked to metabolically active cells, but does not depend on the pmr, mexAB, mexCD, mexPQ, or muxABC genes. Our data suggest that the active subpopulation in P. aeruginosa...

  11. Colistin-Tobramycin Combinations Are Superior to Monotherapy Concerning the Killing of Biofilm Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Herrmann, G.; Yang, Liang; Wu, H.;

    2010-01-01

    biofilms. Methods. P. aeruginosa biofilms were generated in vitro and in rat lungs. In a pilot study, 5 patients with cystic fibrosis inhaled colistin and then tobramycin for 4 weeks. The changes in P. aeruginosa counts and lung function were assessed before and after therapy. Results. Antibiotic...... combination therapy significantly reduced the number of P. aeruginosa cells in P. aeruginosa biofilm models in vitro. When rats were challenged with 1 x 10(7) cfu of P. aeruginosa, which was embedded in alginate beads, mortality rates, lung pathologic findings, and bacterial colony-forming unit counts were...

  12. Pseudomonas aeruginosa Forms Biofilms in Acute Infection Independent of Cell-to-Cell Signaling▿ †

    OpenAIRE

    Schaber, J. Andy; Triffo, W.J.; Suh, Sang J.; Oliver, Jeffrey W.; Hastert, Mary C.; Griswold, John A.; Auer, Manfred; Hamood, Abdul N; Rumbaugh, Kendra P.

    2007-01-01

    Biofilms are bacterial communities residing within a polysaccharide matrix that are associated with persistence and antibiotic resistance in chronic infections. We show that the opportunistic pathogen Pseudomonas aeruginosa forms biofilms within 8 h of infection in thermally injured mice, demonstrating that biofilms contribute to bacterial colonization in acute infections as well. Using light, electron, and confocal scanning laser microscopy, P. aeruginosa biofilms were visualized within burn...

  13. Anti-biofilm activities from marine cold adapted bacteria against staphylococci and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Rosanna ePapa

    2015-12-01

    Full Text Available Microbial biofilms have great negative impacts on the world’s economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the appearance of resistant mutants. Many bacteria secrete anti-biofilm molecules that function in regulating biofilm architecture or mediating the release of cells from it during the dispersal stage of biofilm life cycle. Cold-adapted marine bacteria represent an untapped reservoir of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules.The anti-biofilm activity of cell-free supernatants derived from sessile and planktonic cultures of cold-adapted bacteria belonging to Pseudoalteromonas, Psychrobacter and Psychromonas species were tested against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa strains. Reported results demonstrate that we have selected supernatants, from cold-adapted marine bacteria, containing non-biocidal agents able to destabilize biofilm matrix of all tested pathogens without killing cells. A preliminary physico-chemical characterization of supernatants was also performed, and these analyses highlighted the presence of molecules of different nature that act by inhibiting biofilm formation. Some of them are also able to impair the initial attachment of the bacterial cells to the surface, thus likely containing molecules acting as anti-biofilm surfactant molecules.The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules

  14. Anti-Biofilm Activities from Marine Cold Adapted Bacteria Against Staphylococci and Pseudomonas aeruginosa.

    Science.gov (United States)

    Papa, Rosanna; Selan, Laura; Parrilli, Ermenegilda; Tilotta, Marco; Sannino, Filomena; Feller, Georges; Tutino, Maria L; Artini, Marco

    2015-01-01

    Microbial biofilms have great negative impacts on the world's economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacterial vitality in order to avoid the appearance of resistant mutants. Many bacteria secrete anti-biofilm molecules that function in regulating biofilm architecture or mediating the release of cells from it during the dispersal stage of biofilm life cycle. Cold-adapted marine bacteria represent an untapped reservoir of biodiversity able to synthesize a broad range of bioactive compounds, including anti-biofilm molecules. The anti-biofilm activity of cell-free supernatants derived from sessile and planktonic cultures of cold-adapted bacteria belonging to Pseudoalteromonas, Psychrobacter, and Psychromonas species were tested against Staphylococcus aureus, Staphylococcus epidermidis, and Pseudomonas aeruginosa strains. Reported results demonstrate that we have selected supernatants, from cold-adapted marine bacteria, containing non-biocidal agents able to destabilize biofilm matrix of all tested pathogens without killing cells. A preliminary physico-chemical characterization of supernatants was also performed, and these analyses highlighted the presence of molecules of different nature that act by inhibiting biofilm formation. Some of them are also able to impair the initial attachment of the bacterial cells to the surface, thus likely containing molecules acting as anti-biofilm surfactant molecules. The described ability of cold-adapted bacteria to produce effective anti-biofilm molecules paves the way to further characterization of the most promising molecules and to test their

  15. In vitro antimicrobial activity of Pseudomonas aeruginosa by-products against single and mixed biofilms : the role of Gram- bacteria in the biofilm consortium

    OpenAIRE

    Pereira, Maria Olívia; Machado, Idalina; Lopes, Susana Patrícia

    2010-01-01

    Since bacteria are permanently acquiring resistance to chemicals, the development of novel strategies for biofilm control is needed. Certain microorganisms represent an important source of novel bioactive compounds with marked antibacterial activity, as the secondary metabolites. This work aimed to investigate the antimicrobial effect of P.aeruginosa by-products on planktonic and sessile growth of several pathogenic bacteria. Supernatants from P.aeruginosa planktonic cultures (iso...

  16. Pattern differentiation in co-culture biofilms formed by Staphylococcus aureus and Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Markussen, Trine;

    2011-01-01

    important for understanding of biofilm physiology and the treatment of biofilm-related infectious diseases. Here, we have investigated interactions of two of the major bacterial species of cystic fibrosis lung microbial communities -Pseudomonas aeruginosa and Staphylococcus aureus- when grown in co......-culture biofilms. By growing co-culture biofilms of S. aureus with P. aeruginosa mutants in a flow-chamber system and observing them using confocal laser scanning microscopy, we show that wild-type P. aeruginosa PAO1 facilitates S. aureus microcolony formation. In contrast, P. aeruginosa mucA and rpoN mutants do...... not facilitate S. aureus microcolony formation and tend to outcompete S. aureus in co-culture biofilms. Further investigations reveal that extracellular DNA (eDNA) plays an important role in S. aureus microcolony formation and that P. aeruginosa type IV pili are required for this process, probably through...

  17. Escherichia coli BdcA controls biofilm dispersal in Pseudomonas aeruginosa and Rhizobium meliloti

    Directory of Open Access Journals (Sweden)

    Wood Thomas K

    2011-10-01

    Full Text Available Abstract Background Previously we showed that BdcA controls Escherichia coli biofilm dispersal by binding the ubiquitous bacterial signal cyclic diguanylate (c-di-GMP; upon reducing the concentration of c-di-GMP, the cell shifts to the planktonic state by increasing motility, decreasing aggregation, and decreasing production of biofilm adhesins. Findings Here we report that BdcA also increases biofilm dispersal in other Gram-negative bacteria including Pseudomonas aeruginosa, Pseudomonas fluorescens, and Rhizobium meliloti. BdcA binds c-di-GMP in these strains and thereby reduces the effective c-di-GMP concentrations as demonstrated by increases in swimming motility and swarming motility as well as by a reduction in extracellular polysaccharide production. We also develop a method to displace existing biofilms by adding BdcA via conjugation from E. coli in mixed-species biofilms. Conclusion Since BdcA shows the ability to control biofilm dispersal in diverse bacteria, BdcA has the potential to be used as a tool to disperse biofilms for engineering and medical applications.

  18. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin and gentamicin

    OpenAIRE

    Das, Manash C.; Padmani Sandhu; Priya Gupta; Prasenjit Rudrapaul; Utpal C. De; Prosun Tribedi; Yusuf Akhter; Surajit Bhattacharjee

    2016-01-01

    Microbial biofilm are communities of surface-adhered cells enclosed in a matrix of extracellular polymeric substances. Extensive use of antibiotics to treat biofilm associated infections has led to the emergence of multiple drug resistant strains. Pseudomonas aeruginosa is recognised as a model biofilm forming pathogenic bacterium. Vitexin, a polyphenolic group of phytochemical with antimicrobial property, has been studied for its antibiofilm potential against Pseudomonas aeruginosa in combin...

  19. Photodynamic antibacterial and antibiofilm activity of RLP068/Cl against Staphylococcus aureus and Pseudomonas aeruginosa forming biofilms on prosthetic material.

    Science.gov (United States)

    Vassena, Christian; Fenu, Simone; Giuliani, Francesco; Fantetti, Lia; Roncucci, Gabrio; Simonutti, Giulio; Romanò, Carlo Luca; De Francesco, Raffaele; Drago, Lorenzo

    2014-07-01

    Prosthetic joint infections (PJIs) are becoming a growing public health concern in developed countries as more people undergo arthroplasty for bone fixation or joint replacement. Because a wide range of bacterial strains responsible for PJIs can produce biofilms on prosthetic implants and because the biofilm structure confers elevated bacterial resistance to antibiotic therapy, new drugs and therapies are needed to improve the clinical outcome of treatment of PJIs. Antimicrobial photodynamic therapy (APDT), a non-antibiotic broad-spectrum antimicrobial treatment, is also active against multidrug-resistant micro-organisms such as meticillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. APDT uses a photosensitiser that targets bacterial cells following exposure to visible light. APDT with RLP068/Cl, a novel photosensitiser, was studied by confocal laser scanning microscopy (CLSM) to evaluate the disruption of MRSA and P. aeruginosa biofilms on prosthetic material. Quantitative CLSM studies showed a reduction in biofilm biomass (biofilm disruption) and a decrease in viable cell numbers, as determined by standard plate counting, in the S. aureus and P. aeruginosa biofilms exposed to APDT with the photosensitiser RLP068/Cl. APDT with RLP068/Cl may be a useful approach to the treatment of PJI-associated biofilms.

  20. Comparison of UVB and UVC irradiation disinfection efficacies on Pseudomonas Aeruginosa biofilm

    DEFF Research Database (Denmark)

    Argyraki, Aikaterini; Markvart, M.; Nielsen, Anne;

    2016-01-01

    , on P. aeruginosa biofilms at different growth stages. In our experiments a new type of UV light emitting diodes (LEDs) were used to deliver UV irradiation on the biofilms, in the UVB (296nm) and UVC (266nm) region. The killing rate was studied as a function of dose for 24h grown biofilms. The dose...

  1. Phenolic compounds affect production of pyocyanin, swarming motility and biofilm formation of Pseudomonas aeruginosa

    OpenAIRE

    Aylin Ugurlu; Aysegul Karahasan Yagci; Seyhan Ulusoy; Burak Aksu; Gulgun Bosgelmez-Tinaz

    2016-01-01

    Objective: To investigate the effects of plant-derived phenolic compounds (i.e. caffeic acid, cinnamic acid, ferulic acid and vanillic acid) on the production of quorum sensing regulated virulence factors such as pyocyanin, biofilm formation and swarming motility of Pseudomonas aeruginosa (P. aeruginosa) isolates. Methods: Fourteen clinical P. aeruginosa isolates obtained from urine samples and P. aeruginosa PA01 strain were included in the study. The antibacterial effects of phenolic comp...

  2. In vivo pharmacokinetics/pharmacodynamics of colistin and imipenem in Pseudomonas aeruginosa biofilm infection

    DEFF Research Database (Denmark)

    Hengzhuang, Wang; Wu, Hong; Ciofu, Oana;

    2012-01-01

    Many Pseudomonas aeruginosa isolates from the airways of patients with cystic fibrosis (CF) are sensitive to antibiotics in susceptibility testing, but eradication of the infection is difficult. The main reason is the biofilm formation in the airways of patients with CF. The pharmacokinetics (PKs......) and pharmacodynamics (PDs) of antimicrobials can reliably be used to predict whether antimicrobial regimens will achieve the maximum bactericidal effect against infections. Unfortunately, however, most PK/PD studies of antimicrobials have been done on planktonic cells and very few PK/PD studies have been done...... on biofilms, partly due to the lack of suitable models in vivo. In the present study, a biofilm lung infection model was developed to provide an objective and quantitative evaluation of the PK/PD profile of antimicrobials. Killing curves were set up to detect the antimicrobial kinetics on planktonic...

  3. In vitro prevention of Pseudomonas aeruginosa early biofilm formation with antibiotics used in cystic fibrosis patients.

    Science.gov (United States)

    Fernández-Olmos, Ana; García-Castillo, María; Maiz, Luis; Lamas, Adelaida; Baquero, Fernando; Cantón, Rafael

    2012-08-01

    The ability of antibiotics used in bronchopulmonary infections in cystic fibrosis (CF) patients to prevent Pseudomonas aeruginosa early biofilm formation was studied using a biofilm microtitre assay with 57 non-mucoid P. aeruginosa isolates (44 first colonisers and 13 recovered during the initial intermittent colonisation stage) obtained from 35 CF patients. Minimum biofilm inhibitory concentrations (BICs) of levofloxacin, ciprofloxacin, imipenem, ceftazidime, tobramycin, colistin and azithromycin were determined by placing a peg lid with a formed biofilm onto microplates containing antibiotics. A modification of this protocol consisting of antibiotic challenge during biofilm formation was implemented in order to determine the biofilm prevention concentration (BPC), i.e. the minimum concentration able to prevent biofilm formation. The lowest BPCs were for fluoroquinolones, tobramycin and colistin and the highest for ceftazidime and imipenem. The former antibiotics had BPCs identical to or only slightly higher than their minimum inhibitory concentrations (MICs) determined by standard Clinical and Laboratory Standards Institute (CLSI) microdilution and were also active on formed biofilms as reflected by their low BIC values. In contrast, ceftazidime and imipenem were less effective for prevention of biofilm formation and on formed biofilms. In conclusion, the new BPC parameter determined in non-mucoid P. aeruginosa isolates recovered during early colonisation stages in CF patients supports early aggressive antimicrobial treatment guidelines in first P. aeruginosa-colonised CF patients. PMID:22727530

  4. Antipseudomonal agents exhibit differential pharmacodynamic interactions with human polymorphonuclear leukocytes against established biofilms of Pseudomonas aeruginosa.

    Science.gov (United States)

    Chatzimoschou, Athanasios; Simitsopoulou, Maria; Antachopoulos, Charalampos; Walsh, Thomas J; Roilides, Emmanuel

    2015-04-01

    Pseudomonas aeruginosa is the most common pathogen infecting the lower respiratory tract of cystic fibrosis (CF) patients, where it forms tracheobronchial biofilms. Pseudomonas biofilms are refractory to antibacterials and to phagocytic cells with innate immunity, leading to refractory infection. Little is known about the interaction between antipseudomonal agents and phagocytic cells in eradication of P. aeruginosa biofilms. Herein, we investigated the capacity of three antipseudomonal agents, amikacin (AMK), ceftazidime (CAZ), and ciprofloxacin (CIP), to interact with human polymorphonuclear leukocytes (PMNs) against biofilms and planktonic cells of P. aeruginosa isolates recovered from sputa of CF patients. Three of the isolates were resistant and three were susceptible to each of these antibiotics. The concentrations studied (2, 8, and 32 mg/liter) were subinhibitory for biofilms of resistant isolates, whereas for biofilms of susceptible isolates, they ranged between sub-MIC and 2 × MIC values. The activity of each antibiotic alone or in combination with human PMNs against 48-h mature biofilms or planktonic cells was determined by XTT [2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide] assay. All combinations of AMK with PMNs resulted in synergistic or additive effects against planktonic cells and biofilms of P. aeruginosa isolates compared to each component alone. More than 75% of CAZ combinations exhibited additive interactions against biofilms of P. aeruginosa isolates, whereas CIP had mostly antagonistic interaction or no interaction with PMNs against biofilms of P. aeruginosa. Our findings demonstrate a greater positive interaction between AMK with PMNs than that observed for CAZ and especially CIP against isolates of P. aeruginosa from the respiratory tract of CF patients.

  5. Antibacterial, anti-swarming and anti-biofilm formation activities of Chamaemelum nobile against Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Hossein Kazemian

    2015-08-01

    Full Text Available AbstractINTRODUCTION:Chamomile ( Chamaemelum nobile is widely used throughout the world, and has anti-inflammatory, deodorant, bacteriostatic, antimicrobial, carminative, sedative, antiseptic, anti-catarrhal, and spasmolytic properties. Because of the increasing incidence of drug-resistant bacteria, the development of natural antibacterial sources such as medical herbs for the treatment of infectious diseases is necessary. Extracts from different plant parts such as the leaves, flowers, fruit, and bark of Combretum albiflorum, Laurus nobilis , and Sonchus oleraceus were found to possess anti-quorum sensing (QS activities. In this study, we evaluated the effect of C. nobile against Pseudomonas aeruginosa biofilm formationMETHODS:The P. aeruginosa samples were isolated from patients with different types of infection, including wound infection, septicemia, and urinary tract infection. The flowers of C. nobile were dried and the extract was removed using a rotary device and then dissolved in dimethyl sulfoxide at pH 7.4. The microdilution method was used to evaluate the minimum inhibitory concentration (MIC of this extract on P. aeruginosa , and biofilm inhibition was assayed.RESULTS:Eighty percent of the isolated samples (16/20 could form a biofilm, and most of these were isolated from wound infections. The biofilm inhibitory concentration of the C. nobile extract was 6.25-25mg/ml, whereas the MIC was 12.5-50mg/ml.CONCLUSIONS:The anti-QS property of C. nobile may play an important role in its antibacterial activity, thus offering an additional strategy in the fight against bacterial infections. However, molecular investigation is required to explore the exact mechanisms of the antibacterial action and functions of this phytocompound.

  6. Identification of peptides derived from the human antimicrobial peptide LL-37 active against biofilms formed by Pseudomonas aeruginosa using a library of truncated fragments

    NARCIS (Netherlands)

    C. Nagant; B. Pitts; K. Nazmi; M. Vandenbranden; J.G. Bolscher; P.S. Stewart; J-P. Dehaye

    2012-01-01

    Persistent Pseudomonas aeruginosa infections are a major cause of morbidity and mortality in cystic fibrosis (CF) patients and are linked to the formation of a biofilm. The development of new biofilm inhibition strategies is thus a major challenge. LL-37 is the only human antimicrobial peptide deriv

  7. Pseudomonas aeruginosa extracellular products inhibit staphylococcal growth, and disrupt established biofilms produced by Staphylococcus epidermidis

    DEFF Research Database (Denmark)

    Qin, Zhiqiang; Yang, Liang; Qu, Di;

    2009-01-01

    Multiple bacterial species often coexist as communities, and compete for environmental resources. Here, we describe how an opportunistic pathogen, Pseudomonas aeruginosa, uses extracellular products to interact with the nosocomial pathogen Staphylococcus epidermidis. S. epidermidis biofilms...... and planktonic cultures were challenged with P. aeruginosa supernatant cultures overnight. Results indicated that quorum-sensing-controlled factors from P. aeruginosa supernatant inhibited S. epidermidis growth in planktonic cultures. We also found that P. aeruginosa extracellular products, mainly...... polysaccharides, disrupted established S. epidermidis biofilms. Cellulase-treated P. aeruginosa supernatant, and supernatant from pelA, ps/F and pe/Aps/BCD mutants, which are deficient in polysaccharide biosynthesis, diminished the disruption of S. epidermidis biofilms. In contrast, S. epidermidis supernatant...

  8. Sound waves effectively assist tobramycin in elimination of Pseudomonas aeruginosa biofilms in vitro.

    Science.gov (United States)

    Bandara, H M H N; Harb, A; Kolacny, D; Martins, P; Smyth, H D C

    2014-12-01

    Microbial biofilms are highly refractory to antimicrobials. The aim of this study was to investigate the use of low-frequency vibration therapy (20-20 kHz) on antibiotic-mediated Pseudomonas aeruginosa biofilm eradication. In screening studies, low-frequency vibrations were applied on model biofilm compositions to identify conditions in which surface standing waves were observed. Alginate surface tension and viscosity were also measured. The effect of vibration on P. aeruginosa biofilms was studied using a standard biofilm assay. Subminimal inhibitory concentrations (sub-MIC) of tobramycin (5 μg/ml) were added to biofilms 3 h prior, during, and immediately after vibration and quantitatively assessed by (2,3-bis-(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide) reduction assay (XTT) and, qualitatively, by confocal laser scanning microscopy (CLSM). The standing waves occurred at frequencies Biofilms vibrated without sub-MIC tobramycin showed a significantly reduced metabolism compared to untreated controls (p Biofilms treated with tobramycin and vibrated simultaneously (450, 530, 610, and 650 Hz), or vibrated (450 and 650 Hz) then treated with tobramycin subsequently, or vibrated (610 Hz, 650 Hz) after 3 h of tobramycin treatment showed significantly lower metabolism compared to P. aeruginosa biofilm treated with tobramycin alone (p biofilms at sub-MIC. Thus, sound waves together with antibiotics are a promising approach in eliminating pathogenic biofilms.

  9. Effect of biosurfactants on Pseudomonas aeruginosa and Staphylococcus aureus biofilms in a BioFlux channel.

    Science.gov (United States)

    Diaz De Rienzo, M A; Stevenson, P S; Marchant, R; Banat, I M

    2016-07-01

    Recent studies have indicated that biosurfactants play a role both in maintaining channels between multicellular structures in biofilms and in dispersal of cells from biofilms. A combination of caprylic acid (0.01 % v/v) together with rhamnolipids (0.04 % v/v) was applied to biofilms of Pseudomonas aeruginosa ATCC 15442, Staphylococcus aureus ATCC 9144 and a mixed culture under BioFlux flowthrough conditions and caused disruption of the biofilms. The biofilms were also treated with a combination of rhamnolipids (0.04 % v/v) and sophorolipids (0.01 %). Control treatments with PBS 1× had no apparent effect on biofilm disruption. The Gram-positive bacterium (S. aureus ATCC 9144) was more sensitive than P. aeruginosa ATCC 15442 in terms of disruption and viability as shown by Live/Dead staining. Disruption of biofilms of P. aeruginosa ATCC 15442 was minimal. Oxygen consumption by biofilms, after different treatments with biosurfactants, confirms that sophorolipid on its own is unable to kill/inhibit cells of P. aeruginosa ATCC 15442, and even when used in combination with rhamnolipids, under static conditions, no decrease in the cell viability was observed. Cells in biofilms exposed to mono-rhamnolipids (0.04 % v/v) showed behaviour typical of exposure to bacteriostatic compounds, but when exposed to di-rhamnolipids (0.04 % v/v), they displayed a pattern characteristic of bactericidal compounds. PMID:26825819

  10. The Pseudomonas aeruginosa Type III Translocon Is Required for Biofilm Formation at the Epithelial Barrier

    DEFF Research Database (Denmark)

    Tran, Cindy S; Rangel, Stephanie M; Almblad, Henrik;

    2014-01-01

    Clinical infections by Pseudomonas aeruginosa, a deadly Gram-negative, opportunistic pathogen of immunocompromised hosts, often involve the formation of antibiotic-resistant biofilms. Although biofilm formation has been extensively studied in vitro on glass or plastic surfaces, much less is known...... about biofilm formation at the epithelial barrier. We have previously shown that when added to the apical surface of polarized epithelial cells, P. aeruginosa rapidly forms cell-associated aggregates within 60 minutes of infection. By confocal microscopy we now show that cell-associated aggregates...... a previously unappreciated function for the type III translocon in the formation of P. aeruginosa biofilms at the epithelial barrier and demonstrate that biofilms may form at early time points of infection....

  11. Pseudomonas aeruginosa biofilm infections in cystic fibrosis: insights into pathogenic processes and treatment strategies

    DEFF Research Database (Denmark)

    Hassett, Daniel J; Korfhagen, Thomas R; Irvin, Randall T;

    2010-01-01

    CF airway mucus can be infected by opportunistic microorganisms, notably Pseudomonas aeruginosa. Once organisms are established as biofilms, even the most potent antibiotics have little effect on their viability, especially during late-stage chronic infections. Better understanding of the mechani...... of the mechanisms used by P. aeruginosa to circumvent host defenses and therapeutic intervention strategies is critical for advancing novel treatment strategies....

  12. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production

    DEFF Research Database (Denmark)

    Bagge, N.; Schuster, M.; Hentzer, Morten;

    2004-01-01

    The lungs of cystic fibrosis (CF) patients are commonly colonized with Pseudomonas aeruginosa biofilms. Chronic endobronchial P. aeruginosa infections are impossible to eradicate with antibiotics, but intensive suppressive antibiotic therapy is essential to maintain the lung function of CF patien...

  13. Effects of Chlorine Stress on Pseudomonas aeruginosa Biofilm and Analysis of Related Gene Expressions.

    Science.gov (United States)

    Kekeç, Özge; Gökalsın, Barış; Karaltı, İskender; Kayhan, Figen Esin; Sesal, Nüzhet Cenk

    2016-08-01

    Chlorine is deployed worldwide to clean waters and prevent water-originated illnesses. However, chlorine has a limited disinfection capacity against biofilms. Microorganisms form biofilms to protect themselves from biological threats such as disinfectant chemicals. Pseudomonas aeruginosa is an opportunistic pathogen and its biofilm form attaches to surfaces, living buried into exopolysaccharides, can be present in all watery environments including tap water and drinking water. This research aimed to study the biofilm trigger mechanism of the opportunistic pathogen P. aeruginosa PAO1 strain, which is known to form biofilm in water supply systems and human body, under chlorine stress levels. In addition to biofilm staining, certain genes that are relevant to the stress condition were selected for gene expression analysis. The bacteria cultures were grown under chlorine stress with concentrations of 0.5, 0.7 and 1 mg/l. Six gene regions were determined related to biofilm and stress response: rpoS, bifA, migA, katB, soxR, and algC. Biofilm formation was analyzed by basic fuchsin staining, and gene expressions were quantified by quantitative real-time PCR. According to the results, highest biofilm production was observed in P. aeruginosa PAO1 wild strain under no stress conditions. Higher biofilm amounts were observed for bacteria under 0.5 and 0.7 mg/l chlorine stress compared to 1 mg/l chlorine stress.

  14. Effects of Chlorine Stress on Pseudomonas aeruginosa Biofilm and Analysis of Related Gene Expressions.

    Science.gov (United States)

    Kekeç, Özge; Gökalsın, Barış; Karaltı, İskender; Kayhan, Figen Esin; Sesal, Nüzhet Cenk

    2016-08-01

    Chlorine is deployed worldwide to clean waters and prevent water-originated illnesses. However, chlorine has a limited disinfection capacity against biofilms. Microorganisms form biofilms to protect themselves from biological threats such as disinfectant chemicals. Pseudomonas aeruginosa is an opportunistic pathogen and its biofilm form attaches to surfaces, living buried into exopolysaccharides, can be present in all watery environments including tap water and drinking water. This research aimed to study the biofilm trigger mechanism of the opportunistic pathogen P. aeruginosa PAO1 strain, which is known to form biofilm in water supply systems and human body, under chlorine stress levels. In addition to biofilm staining, certain genes that are relevant to the stress condition were selected for gene expression analysis. The bacteria cultures were grown under chlorine stress with concentrations of 0.5, 0.7 and 1 mg/l. Six gene regions were determined related to biofilm and stress response: rpoS, bifA, migA, katB, soxR, and algC. Biofilm formation was analyzed by basic fuchsin staining, and gene expressions were quantified by quantitative real-time PCR. According to the results, highest biofilm production was observed in P. aeruginosa PAO1 wild strain under no stress conditions. Higher biofilm amounts were observed for bacteria under 0.5 and 0.7 mg/l chlorine stress compared to 1 mg/l chlorine stress. PMID:27146505

  15. The effects of D-Tyrosine combined with amikacin on the biofilms of Pseudomonas aeruginosa.

    Science.gov (United States)

    She, Pengfei; Chen, Lihua; Liu, Hongbo; Zou, Yaru; Luo, Zhen; Koronfel, Asmaa; Wu, Yong

    2015-09-01

    The biofilm formation of microorganisms causes persistent tissue infections resistant to treatment with antimicrobial agents. Pseudomonas aeruginosa is commonly isolated from the airways of patients with chronic fibrosis (CF) and often forms biofilms, which are extremely hard to eradicate and a major cause of mortality and morbidity. Recent studies have shown that D-amino acids (D-AAs) inhibited and disrupted biofilm formation by causing the release of the protein component of the polymeric matrix. However, the effects of D-AAs combined with common antibiotics on biofilms have rarely been studied. The current study first determined whether D-AAs disrupted the biofilms of PAO1 and the clinical airway isolates of P. aeruginosa. It was then determined whether combinations of D-Tyr (the most effective one) and the antibiotic amikacin (AMK) enhanced the activity against these biofilms. The results of the current study showed that D-Tyr is the most effective among those that disassemble the D-amino acids (D-leucine, D-methionine, D-Tyrptophan, and D-tryptophan), and D-Tyr at concentrations higher than 5 mM significantly reduced the biofilm biomass of P. aeruginosa (p < 0.05) without influencing bacterial growth. It was also revealed that D-Tyr improved the efficacy of AMK to combat P. aeruginosa biofilms, as indicated by a reduction in the minimal biofilm-inhibiting concentration (MBIC50 and MBIC90) without a change in the minimal inhibitory concentration (MIC) of planktonic bacteria. Thus, the findings indicated that D-Tyr supplementation overcame the resistance of P. aeruginosa biofilms to AMK, which might be helpful for preventing AMK overuse when this specific D-Tyr is recommended for combatting these biofilms. Also, toxicity of the liver and kidney from AMK could be potentially mitigated by co-delivery with D-Tyr. PMID:26188263

  16. Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model

    DEFF Research Database (Denmark)

    Christensen, Louise Dahl; Moser, Claus; Jensen, Peter Ø;

    2007-01-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that causes chronic biofilm-based infections in host organisms. P. aeruginosa employs quorum sensing (QS) to control expression of its virulence, and to establish and maintain chronic infections. Under such conditions, the biofilm mode...... that the efficiency of the mouse innate defence against biofilm-forming P. aeruginosa is improved when the bacteria are treated with QS drugs that induce QS deficiency....

  17. Pyoverdine and PQS Mediated Subpopulation Interactions Involved in Pseudomonas aeruginosa Biofilm Formation

    DEFF Research Database (Denmark)

    Yang, Liang; Nilsson, Martin; Gjermansen, Morten;

    2009-01-01

    Using flow chamber-grown Pseudomonas aeruginosa biofilms as model system, we show in the present study that formation of heterogeneous biofilms may occur through mechanisms that involve complex subpopulation interactions. One example of this phenomenon is expression of the iron...

  18. Increased bactericidal activity of colistin on Pseudomonas aeruginosa biofilms in anaerobic conditions

    DEFF Research Database (Denmark)

    Mette, Kolpen; Appeldorff, Cecilie F; Brandt, Sarah;

    2016-01-01

    that production of OH⋅ may not contribute significantly to the bactericidal activity of colistin on P. aeruginosa biofilm. Thus, we investigated the effect of colistin treatment on biofilm of wildtype PAO1, a catalase deficient mutant (ΔkatA) and a colistin resistant CF isolate cultured in microtiter plates...

  19. In vitro management of hospital Pseudomonas aeruginosa biofilm using indigenous T7-like lytic phage.

    Science.gov (United States)

    Ahiwale, Sangeeta; Tamboli, Nilofer; Thorat, Kiran; Kulkarni, Rajendra; Ackermann, Hans; Kapadnis, Balasaheb

    2011-02-01

    Pseudomonas aeruginosa, a human pathogen capable of forming biofilm and contaminating medical settings, is responsible for 65% mortality in the hospitals all over the world. This study was undertaken to isolate lytic phages against biofilm forming Ps. aeruginosa hospital isolates and to use them for in vitro management of biofilms in the microtiter plate. Multidrug resistant strains of Ps. aeruginosa were isolated from the hospital environment in and around Pimpri-Chinchwad, Maharashtra by standard microbiological methods. Lytic phages against these strains were isolated from the Pavana river water by double agar layer plaque assay method. A wide host range phage bacterial virus Ps. aeruginosa phage (BVPaP-3) was selected. Electron microscopy revealed that BVPaP-3 phage is a T7-like phage and is a relative of phage species gh-1. A phage at MOI-0.001 could prevent biofilm formation by Ps. aeruginosa hospital strain-6(HS6) on the pegs within 24 h. It could also disperse pre-formed biofilms of all hospital isolates (HS1-HS6) on the pegs within 24 h. Dispersion of biofilm was studied by monitoring log percent reduction in cfu and log percent increase in pfu of respective bacterium and phage on the peg as well as in the well. Scanning electron microscopy confirmed that phage BVPaP-3 indeed causes biofilm reduction and bacterial cell killing. Laboratory studies prove that BVPaP-3 is a highly efficient phage in preventing and dispersing biofilms of Ps. aeruginosa. Phage BVPaP-3 can be used as biological disinfectant to control biofilm problem in medical devices.

  20. Ambroxol inhibits mucoid conversion of Pseudomonas aeruginosa and contributes to the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms.

    Science.gov (United States)

    Wang, Wenlei; Yu, Jialin; He, Yu; Wang, Zhengli; Li, Fang

    2016-07-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that can cause severe infections in immunocompromised individuals. Because it forms biofilms, which protect against host immune attack and increase resistance to conventional antibiotics, mucoid P. aeruginosa is nearly impossible to eradicate. Moreover, mucoid conversion of P. aeruginosa in cystic fibrosis (CF) patients leads to poor outcomes. This conversion is mainly due to mucA gene mutation, which is thought to be induced by polymorphonuclear leukocytes (PMNs) and the reactive oxygen species they release. Ambroxol, a mucolytic agent with antioxidant characteristics, is used clinically, and this compound has recently been demonstrated to possess anti-biofilm properties. In this study, we found that ambroxol inhibits the H2 O2 -mediated conversion of P. aeruginosa from a non-mucoid to a mucoid phenotype, an effect that is due to its antioxidant property against H2 O2 . Furthermore, the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms was increased in vitro when used in combination with ambroxol.

  1. Ambroxol inhibits mucoid conversion of Pseudomonas aeruginosa and contributes to the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms.

    Science.gov (United States)

    Wang, Wenlei; Yu, Jialin; He, Yu; Wang, Zhengli; Li, Fang

    2016-07-01

    Pseudomonas aeruginosa is an opportunistic human pathogen that can cause severe infections in immunocompromised individuals. Because it forms biofilms, which protect against host immune attack and increase resistance to conventional antibiotics, mucoid P. aeruginosa is nearly impossible to eradicate. Moreover, mucoid conversion of P. aeruginosa in cystic fibrosis (CF) patients leads to poor outcomes. This conversion is mainly due to mucA gene mutation, which is thought to be induced by polymorphonuclear leukocytes (PMNs) and the reactive oxygen species they release. Ambroxol, a mucolytic agent with antioxidant characteristics, is used clinically, and this compound has recently been demonstrated to possess anti-biofilm properties. In this study, we found that ambroxol inhibits the H2 O2 -mediated conversion of P. aeruginosa from a non-mucoid to a mucoid phenotype, an effect that is due to its antioxidant property against H2 O2 . Furthermore, the bactericidal activity of ciprofloxacin against mucoid P. aeruginosa biofilms was increased in vitro when used in combination with ambroxol. PMID:27102839

  2. Phenolic compounds affect production of pyocyanin, swarming motility and biofilm formation of Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    Aylin Ugurlu; Aysegul Karahasan Yagci; Seyhan Ulusoy; Burak Aksu; Gulgun Bosgelmez-Tinaz

    2016-01-01

    Objective: To investigate the effects of plant-derived phenolic compounds (i.e. caffeic acid, cinnamic acid, ferulic acid and vanillic acid) on the production of quorum sensing regulated virulence factors such as pyocyanin, biofilm formation and swarming motility of Pseudomonas aeruginosa (P. aeruginosa) isolates. Methods: Fourteen clinical P. aeruginosa isolates obtained from urine samples and P. aeruginosa PA01 strain were included in the study. The antibacterial effects of phenolic compounds were screened by well diffusion assay. Pyocyanin and biofilm ac-tivity were measured from culture supernatants and the absorbance values were measured using a spectrophotometer. Swarming plates supplemented with phenolic acids were point inoculated with P. aeruginosa strains and the ability to swarm was determined by measuring the distance of swarming from the central inoculation site. Results: Tested phenolic compounds reduced the production of pyocyanin and biofilm formation without affecting growth compared to untreated cultures. Moreover, these compounds blocked about 50% of biofilm production and swarming motility in P. aeruginosa isolates. Conclusions: We may suggest that if swarming and consecutive biofilm formation could be inhibited by the natural products as shown in our study, the bacteria could not attach to the surfaces and produce chronic infections. Antimicrobials and natural products could be combined and the dosage of antimicrobials could be reduced to overcome antimicrobial resistance and drug side effects.

  3. Rhamnolipid but not motility is associated with the initiation of biofilm seeding dispersal of Pseudomonas aeruginosa strain PA17

    Indian Academy of Sciences (India)

    Jingjing Wang; Bing Yu; Deying Tian; Ming Ni

    2013-03-01

    Seeding dispersal is an active detachment exhibit in aging Pseudomonas aeruginosa biofilm. Yet, effect factors of this process in the biofilm of clinical isolated mucoid P. aeruginosa strain remain to be better characterized. In our previous work, one mucoid P. earuginosa strain PA17 was isolated from a patient with recurrent pulmonary infection. In this study, confocal scanning laser microscope combined with LIVE/DEAD viability staining revealed that PA17 biofilm exhibited earlier seeding dispersal than non-mucoid PAO1. We further compared the motility and the expression of motility-associated gene during biofilm development between PA17 and PAO1. PA17 was found to be impaired in all three kinds of motility compared to PAO1. Moreover, we investigated the expression of rhamnolipid-associated genes in PA17 and PAO1 biofilm. The expression of these genes was in accordance with the process of seeding dispersal. Our results indicated that rhamnolipid but not motility is associated with the initiation of seeding dispersal of PA17 biofilm.

  4. The effects of D-Tyrosine combined with amikacin on the biofilms of Pseudomonas aeruginosa.

    Science.gov (United States)

    She, Pengfei; Chen, Lihua; Liu, Hongbo; Zou, Yaru; Luo, Zhen; Koronfel, Asmaa; Wu, Yong

    2015-09-01

    The biofilm formation of microorganisms causes persistent tissue infections resistant to treatment with antimicrobial agents. Pseudomonas aeruginosa is commonly isolated from the airways of patients with chronic fibrosis (CF) and often forms biofilms, which are extremely hard to eradicate and a major cause of mortality and morbidity. Recent studies have shown that D-amino acids (D-AAs) inhibited and disrupted biofilm formation by causing the release of the protein component of the polymeric matrix. However, the effects of D-AAs combined with common antibiotics on biofilms have rarely been studied. The current study first determined whether D-AAs disrupted the biofilms of PAO1 and the clinical airway isolates of P. aeruginosa. It was then determined whether combinations of D-Tyr (the most effective one) and the antibiotic amikacin (AMK) enhanced the activity against these biofilms. The results of the current study showed that D-Tyr is the most effective among those that disassemble the D-amino acids (D-leucine, D-methionine, D-Tyrptophan, and D-tryptophan), and D-Tyr at concentrations higher than 5 mM significantly reduced the biofilm biomass of P. aeruginosa (p biofilms, as indicated by a reduction in the minimal biofilm-inhibiting concentration (MBIC50 and MBIC90) without a change in the minimal inhibitory concentration (MIC) of planktonic bacteria. Thus, the findings indicated that D-Tyr supplementation overcame the resistance of P. aeruginosa biofilms to AMK, which might be helpful for preventing AMK overuse when this specific D-Tyr is recommended for combatting these biofilms. Also, toxicity of the liver and kidney from AMK could be potentially mitigated by co-delivery with D-Tyr.

  5. Beneficial biofilms in marine aquaculture? Linking points of biofilm formation mechanisms in Pseudomonas aeruginosa and Pseudoalteromonas species

    Directory of Open Access Journals (Sweden)

    Wiebke Wesseling

    2015-07-01

    Full Text Available For marine aquaculture it is suggested that a specific substrate coated with a beneficial biofilm could prevent fish egg clutches from pathogenic infestations and improve the water quality and health of adult fish while, at the same time, minimising the need for the application of antibiotics. In marine biotopes, the habitat of Pseudoalteromonas species (a strain with suggested beneficial properties, biofilms are mostly discussed in the context of fouling processes. Hence research focuses on unravelling the mechanisms of biofilm formation aiming to prevent formation or to destroy existing biofilms. Initially in this review, particular components of biofilm formation in Pseudomonas aeruginosa, a gram-negative model organism that is responsible for nosocomial infections and considered as a food spoiling agent, are described (extracellular appendages, role of matrix components, cell-cell signalling to get an advanced understanding of biofilm formation. The aim of this treatise is to seek linking points for biofilm formation of P. aeruginosa and Pseudoalteromonas sp., respectively. Furthermore, approaches are discussed for how biofilm formation can be realized to improve fish (larvae rearing by species of the genus Pseudoalteromonas.

  6. Extracellular DNA Acidifies Biofilms and Induces Aminoglycoside Resistance in Pseudomonas aeruginosa.

    Science.gov (United States)

    Wilton, Mike; Charron-Mazenod, Laetitia; Moore, Richard; Lewenza, Shawn

    2015-11-09

    Biofilms consist of surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, exopolysaccharides, and proteins. Extracellular DNA (eDNA) has a structural role in the formation of biofilms, can bind and shield biofilms from aminoglycosides, and induces antimicrobial peptide resistance mechanisms. Here, we provide evidence that eDNA is responsible for the acidification of Pseudomonas aeruginosa planktonic cultures and biofilms. Further, we show that acidic pH and acidification via eDNA constitute a signal that is perceived by P. aeruginosa to induce the expression of genes regulated by the PhoPQ and PmrAB two-component regulatory systems. Planktonic P. aeruginosa cultured in exogenous 0.2% DNA or under acidic conditions demonstrates a 2- to 8-fold increase in aminoglycoside resistance. This resistance phenotype requires the aminoarabinose modification of lipid A and the production of spermidine on the bacterial outer membrane, which likely reduce the entry of aminoglycosides. Interestingly, the additions of the basic amino acid L-arginine and sodium bicarbonate neutralize the pH and restore P. aeruginosa susceptibility to aminoglycosides, even in the presence of eDNA. These data illustrate that the accumulation of eDNA in biofilms and infection sites can acidify the local environment and that acidic pH promotes the P. aeruginosa antibiotic resistance phenotype.

  7. Extracellular DNA Acidifies Biofilms and Induces Aminoglycoside Resistance in Pseudomonas aeruginosa.

    Science.gov (United States)

    Wilton, Mike; Charron-Mazenod, Laetitia; Moore, Richard; Lewenza, Shawn

    2016-01-01

    Biofilms consist of surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, exopolysaccharides, and proteins. Extracellular DNA (eDNA) has a structural role in the formation of biofilms, can bind and shield biofilms from aminoglycosides, and induces antimicrobial peptide resistance mechanisms. Here, we provide evidence that eDNA is responsible for the acidification of Pseudomonas aeruginosa planktonic cultures and biofilms. Further, we show that acidic pH and acidification via eDNA constitute a signal that is perceived by P. aeruginosa to induce the expression of genes regulated by the PhoPQ and PmrAB two-component regulatory systems. Planktonic P. aeruginosa cultured in exogenous 0.2% DNA or under acidic conditions demonstrates a 2- to 8-fold increase in aminoglycoside resistance. This resistance phenotype requires the aminoarabinose modification of lipid A and the production of spermidine on the bacterial outer membrane, which likely reduce the entry of aminoglycosides. Interestingly, the additions of the basic amino acid L-arginine and sodium bicarbonate neutralize the pH and restore P. aeruginosa susceptibility to aminoglycosides, even in the presence of eDNA. These data illustrate that the accumulation of eDNA in biofilms and infection sites can acidify the local environment and that acidic pH promotes the P. aeruginosa antibiotic resistance phenotype. PMID:26552982

  8. Effect of Cinnamomum burmannii Nees ex Bl. and Massoia aromatica Becc. Essential Oils on Planktonic Growth and Biofilm formation of Pseudomonas aeruginosa and Staphylococcus aureus In Vitro

    Directory of Open Access Journals (Sweden)

    Sylvia Utami Tunjung Pratiwi

    2015-03-01

    Full Text Available Summary. Biofilms are communities of microorganisms that can be found in almost every habitat. They can be attached to a surface and protected by an extracellular matrix of biomolecules that substantially protect microorganisms from environmental effects. The aim of this research is to explore the potency of essential oils from Cinnamomum burmannii Nees ex Bl. and Massoia aromatica Becc. against planktonic growth and biofilm formation of, two opportunistic pathogens, Pseudomonas aeruginosa PAO1 and Staphylococcus aureus Cowan I. Essential oil from C. burmannii  and M. aromatica showed a 50% inhibition of  P. aeruginosa and S. aureus planktonic growth (PMIC50 at concentration of 0.12 % v/v. Essential oil from C. burmannii and M.  aromatica showed capability to inhibit 50% (MBIC50 of P. aeruginosa and S. aureus biofilm formation at concentration of 0.03 % v/v, whereas higher concentration (0.12 % v/v was needed by C. burmannii and M. aromatica oil to disrupt 50% of P. aeruginosa and S. aureus established biofilm. The analysis by GC-MS showed cinnamic aldehyde (92.02 % to be the major component of C. burmannii essential oil, whereas Massoialactone (92.05 % was the main constituent of M. aromatica essential oil. The results obtained in this study have made the oil of C. burmannii and M. aromatica oil as an interesting source for antibiofilm agents in the development of new strategies to treat infections caused by P. aeruginosa and  S. aureus biofilm.Industrial Relevance. Instead of freely swimming in solution (planktonic, in nature microbial tends to adhere to surfaces, and develop microbial biofilms. Microbial biofilms are exhibits resistance to both antimicrobial drugs and the host defence systems, which often results in persistent and difficult-to-treat infections. This makes the discovery of anti-infective agents which are active against planktonic and biofilm microbial represents an important goal. Plant is an interesting source for finding

  9. Sputum containing zinc enhances carbapenem resistance, biofilm formation and virulence of Pseudomonas aeruginosa.

    Science.gov (United States)

    Marguerettaz, Mélanie; Dieppois, Guennaëlle; Que, Yok Ai; Ducret, Véréna; Zuchuat, Sandrine; Perron, Karl

    2014-12-01

    Pseudomonas aeruginosa chronic lung infections are the leading cause of mortality in cystic fibrosis patients, a serious problem which is notably due to the numerous P. aeruginosa virulence factors, to its ability to form biofilms and to resist the effects of most antibiotics. Production of virulence factors and biofilm formation by P. aeruginosa is highly coordinated through complex regulatory systems. We recently found that CzcRS, the zinc and cadmium-specific two-component system is not only involved in metal resistance, but also in virulence and carbapenem antibiotic resistance in P. aeruginosa. Interestingly, zinc has been shown to be enriched in the lung secretions of cystic fibrosis patients. In this study, we investigated whether zinc might favor P. aeruginosa pathogenicity using an artificial sputum medium to mimic the cystic fibrosis lung environment. Our results show that zinc supplementation triggers a dual P. aeruginosa response: (i) it exacerbates pathogenicity by a CzcRS two-component system-dependent mechanism and (ii) it stimulates biofilm formation by a CzcRS-independent mechanism. Furthermore, P. aeruginosa cells embedded in these biofilms exhibited increased resistance to carbapenems. We identified a novel Zn-sensitive regulatory circuit controlling the expression of the OprD porin and modifying the carbapenem resistance profile. Altogether our data demonstrated that zinc levels in the sputum of cystic fibrosis patients might aggravate P. aeruginosa infection. Targeting zinc levels in sputum would be a valuable strategy to curb the increasing burden of P. aeruginosa infections in cystic fibrosis patients. PMID:25448466

  10. Integration of Pseudomonas aeruginosa and Legionella pneumophila in drinking water biofilms grown on domestic plumbing materials.

    Science.gov (United States)

    Moritz, Miriam M; Flemming, Hans-Curt; Wingender, Jost

    2010-06-01

    Drinking water biofilms were grown on coupons of plumbing materials, including ethylene-propylene-diene-monomer (EPDM) rubber, silane cross-linked polyethylene (PE-X b), electron-ray cross-linked PE (PE-X c) and copper under constant flow-through of cold tap water. After 14 days, the biofilms were spiked with Pseudomonas aeruginosa, Legionella pneumophila and Enterobacter nimipressuralis (10(6) cells/mL each). The test bacteria were environmental isolates from contamination events in drinking water systems. After static incubation for 24 h, water flow was resumed and continued for 4 weeks. Total cell count and heterotrophic plate count (HPC) of biofilms were monitored, and P. aeruginosa, L. pneumophila and E. nimipressuralis were quantified, using standard culture-based methods or culture-independent fluorescence in situ hybridization (FISH). After 14 days total cell counts and HPC values were highest on EPDM followed by the plastic materials and copper. P. aeruginosa and L. pneumophila became incorporated into drinking water biofilms and were capable to persist in biofilms on EPDM and PE-X materials for several weeks, while copper biofilms were colonized only by L. pneumophila in low culturable numbers. E. nimipressuralis was not detected in any of the biofilms. Application of the FISH method often yielded orders of magnitude higher levels of P. aeruginosa and L. pneumophila than culture methods. These observations indicate that drinking water biofilms grown under cold water conditions on domestic plumbing materials, especially EPDM and PE-X in the present study, can be a reservoir for P. aeruginosa and L. pneumophila that persist in these habitats mostly in a viable but non-culturable state. PMID:20556878

  11. Development and maturation of Escherichia coli K-12 biofilms

    DEFF Research Database (Denmark)

    Reisner, A.; Haagensen, J.A.J.; Schembri, Mark;

    2003-01-01

    The development and maturation of E. coli biofilms in flow-chambers was investigated. We found that the presence of transfer constitutive IncF plasmids induced biofilm development forming structures resembling those reported for Pseudomonas aeruginosa . The development occurred in a step-wise pro......The development and maturation of E. coli biofilms in flow-chambers was investigated. We found that the presence of transfer constitutive IncF plasmids induced biofilm development forming structures resembling those reported for Pseudomonas aeruginosa . The development occurred in a step....... We further provide evidence that flagella, type 1 fimbriae, curli and Ag43 are all dispensable for the observed biofilm maturation. In addition, our results indicate that cell-to-cell signalling mediated by autoinducer 2 (AI-2) is not required for differentiation of E. coli within a biofilm community....... We suggest on the basis of these results that E. coli K-12 biofilm development and maturation is dependent on cell-cell adhesion factors, which may act as inducers of self-assembly processes that result in differently structured biofilms depending on the adhesive properties on the cell surface....

  12. Nitroxides as anti-biofilm compounds for the treatment of Pseudomonas aeruginosa and mixed-culture biofilms.

    Science.gov (United States)

    Alexander, Stefanie-Ann; Kyi, Caroline; Schiesser, Carl H

    2015-04-28

    A series of 23 nitroxides () was tested for biofilm modulatory activity using a crystal violet staining technique. 3-(Dodecane-1-thiyl)-4-(hydroxymethyl)-2,2,5,5-tetramethyl-1-pyrrolinoxyl () was found to significantly suppress biofilm formation and elicit dispersal events in both Pseudomonas aeruginosa and mixed-culture biofilms. Twitching and swarming motilities were enhanced by nitroxide , leaving the planktonic-specific swimming motility unaffected and suggesting that the mechanism of -mediated biofilm modulation is linked to the hyperactivation of surface-associated cell motilities. Preliminary structure-activity relationship studies identify the dodecanethiyl chain, hydroxymethyl substituent and the free radical moiety to be structural features pertinent to the anti-biofilm activity of .

  13. Inhibitory effect of zinc oxide nanoparticles on pseudomonas aeruginosa biofilm formation

    Directory of Open Access Journals (Sweden)

    Mohammad Hassani Sangani

    2015-04-01

    Full Text Available Objective(s: Bacterial biofilm formation causes many persistent and chronic infections. The matrix protects biofilm bacteria from exposure to innate immune defenses and antibiotic treatments. The purpose of this study was to evaluate the biofilm formation of clinical isolates of Pseudomonas aeruginosa and the activity of zinc oxide nanoparticles (ZnO NPs on biofilm. Materials and Methods: After collecting bacteria from clinical samples of hospitalized patients, the ability of organisms were evaluated to create biofilm by tissue culture plate (TCP assay. ZnO NPs were synthesized by sol gel method and the efficacy of different concentrations (50- 350 µg/ml of ZnO NPs was assessed on biofilm formation and also elimination of pre-formed biofilm by using TCP method. Results:The average diameter of synthesized ZnO NPs was 20 nm. The minimum inhibitory concentration of nanoparticles was 150- 158 μg/ml and the minimum bactericidal concentration was higher (325 µg/ml. All 15 clinical isolates of P. aeruginosa were able to produce biofilm. Treating the organisms with nanoparticles at concentrations of 350 μg/ml resulted in more than 94% inhibition in OD reduction%. Molecular analysis showed that the presence of mRNA of pslA gene after treating bacteria with ZnO NPs for 30 minutes. Conclusion: The results showed that ZnO NPs can inhibit the establishment of P. aeruginosa biofilms and have less effective in removing pre-formed biofilm. However the tested nanoparticles exhibited anti-biofilm effect, but mRNA of pslA gene could be still detected in the medium by RT-PCR technique after 30 minutes treatment with ZnO.

  14. Influence of glyphosate in planktonic and biofilm growth of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Ilana Schneider Lima

    2014-09-01

    Full Text Available This study evaluated the impact of different concentrations of glyphosate (Rondup® on planktonic and biofilm growth of P. aeruginosa. Aerobic and anaerobic cultures of P. aeruginosa ATCC®15442 inoculated in MHB + glyphosate (0.845 ppm, 1.690 ppm, 8.45 ppm, 16.90 ppm, 84.50 ppm, 169 ppm, 845 ppm, and 1690 ppm and cultured in normoxia and anoxia, following their OD560nm every hour for 24 h. Biofilms of adapted cells were formed in the presence of glyphosate (0.845 to 1690 ppm in normoxia and anoxia for 36 h. Glyphosate at concentrations higher than 84.5 ppm reduces the cell density of planktonic aerobic cultures (p 0.05, and more pronounced over 169 ppm. Anaerobic biofilms have their growth more readily favored (p < 0.05, regardless of concentration. In a concentration-dependent manner, glyphosate interferes with the growth ability of P. aeruginosa ATCC®15442.

  15. The Formation of Biofilms by Pseudomonas aeruginosa: A Review of the Natural and Synthetic Compounds Interfering with Control Mechanisms

    Directory of Open Access Journals (Sweden)

    Tsiry Rasamiravaka

    2015-01-01

    Full Text Available P. aeruginosa is an opportunistic pathogenic bacterium responsible for both acute and chronic infections. Beyond its natural resistance to many drugs, its ability to form biofilm, a complex biological system, renders ineffective the clearance by immune defense systems and antibiotherapy. The objective of this report is to provide an overview (i on P. aeruginosa biofilm lifestyle cycle, (ii on the main key actors relevant in the regulation of biofilm formation by P. aeruginosa including QS systems, GacS/GacA and RetS/LadS two-component systems and C-di-GMP-dependent polysaccharides biosynthesis, and (iii finally on reported natural and synthetic products that interfere with control mechanisms of biofilm formation by P. aeruginosa without affecting directly bacterial viability. Concluding remarks focus on perspectives to consider biofilm lifestyle as a target for eradication of resistant infections caused by P. aeruginosa.

  16. Glutathione-Disrupted Biofilms of Clinical Pseudomonas aeruginosa Strains Exhibit an Enhanced Antibiotic Effect and a Novel Biofilm Transcriptome.

    Science.gov (United States)

    Klare, William; Das, Theerthankar; Ibugo, Amaye; Buckle, Edwina; Manefield, Mike; Manos, Jim

    2016-08-01

    Pseudomonas aeruginosa infections result in high morbidity and mortality rates for individuals with cystic fibrosis (CF), with premature death often occurring. These infections are complicated by the formation of biofilms in the sputum. Antibiotic therapy is stymied by antibiotic resistance of the biofilm matrix, making novel antibiofilm strategies highly desirable. Within P. aeruginosa biofilms, the redox factor pyocyanin enhances biofilm integrity by intercalating with extracellular DNA. The antioxidant glutathione (GSH) reacts with pyocyanin, disrupting intercalation. This study investigated GSH disruption by assaying the physiological effects of GSH and DNase I on biofilms of clinical CF isolates grown in CF artificial sputum medium (ASMDM+). Confocal scanning laser microscopy showed that 2 mM GSH, alone or combined with DNase I, significantly disrupted immature (24-h) biofilms of Australian epidemic strain (AES) isogens AES-1R and AES-1M. GSH alone greatly disrupted mature (72-h) AES-1R biofilms, resulting in significant differential expression of 587 genes, as indicated by RNA-sequencing (RNA-seq) analysis. Upregulated systems included cyclic diguanylate and pyoverdine biosynthesis, the type VI secretion system, nitrate metabolism, and translational machinery. Biofilm disruption with GSH revealed a cellular physiology distinct from those of mature and dispersed biofilms. RNA-seq results were validated by biochemical and quantitative PCR assays. Biofilms of a range of CF isolates disrupted with GSH and DNase I were significantly more susceptible to ciprofloxacin, and increased antibiotic effectiveness was achieved by increasing the GSH concentration. This study demonstrated that GSH, alone or with DNase I, represents an effective antibiofilm treatment when combined with appropriate antibiotics, pending in vivo studies.

  17. Glutathione-Disrupted Biofilms of Clinical Pseudomonas aeruginosa Strains Exhibit an Enhanced Antibiotic Effect and a Novel Biofilm Transcriptome.

    Science.gov (United States)

    Klare, William; Das, Theerthankar; Ibugo, Amaye; Buckle, Edwina; Manefield, Mike; Manos, Jim

    2016-08-01

    Pseudomonas aeruginosa infections result in high morbidity and mortality rates for individuals with cystic fibrosis (CF), with premature death often occurring. These infections are complicated by the formation of biofilms in the sputum. Antibiotic therapy is stymied by antibiotic resistance of the biofilm matrix, making novel antibiofilm strategies highly desirable. Within P. aeruginosa biofilms, the redox factor pyocyanin enhances biofilm integrity by intercalating with extracellular DNA. The antioxidant glutathione (GSH) reacts with pyocyanin, disrupting intercalation. This study investigated GSH disruption by assaying the physiological effects of GSH and DNase I on biofilms of clinical CF isolates grown in CF artificial sputum medium (ASMDM+). Confocal scanning laser microscopy showed that 2 mM GSH, alone or combined with DNase I, significantly disrupted immature (24-h) biofilms of Australian epidemic strain (AES) isogens AES-1R and AES-1M. GSH alone greatly disrupted mature (72-h) AES-1R biofilms, resulting in significant differential expression of 587 genes, as indicated by RNA-sequencing (RNA-seq) analysis. Upregulated systems included cyclic diguanylate and pyoverdine biosynthesis, the type VI secretion system, nitrate metabolism, and translational machinery. Biofilm disruption with GSH revealed a cellular physiology distinct from those of mature and dispersed biofilms. RNA-seq results were validated by biochemical and quantitative PCR assays. Biofilms of a range of CF isolates disrupted with GSH and DNase I were significantly more susceptible to ciprofloxacin, and increased antibiotic effectiveness was achieved by increasing the GSH concentration. This study demonstrated that GSH, alone or with DNase I, represents an effective antibiofilm treatment when combined with appropriate antibiotics, pending in vivo studies. PMID:27161630

  18. Study on Hydro-Alcoholic Extract Effect of Pomegranate Peel on Pseudomonas aeruginosa Biofilm Formation

    Directory of Open Access Journals (Sweden)

    R. Habibipour

    2015-10-01

    Full Text Available Introduction & Objective: Microorganisms form biomass as biofilm in response to many factors, in order to adapt to hostile extracellular environments and biocides. Using different herbal compounds are of those strategies to deal with biofilm. It has been proved that plants extracts such as pomegranate, raspberry and chamomile essential oils have anti-biofilm effects. This study aimed to evaluate the effect of different concentrations of black peel pomegranate ex-tract on Pseudomonas aeruginosa biofilm formation. Materials & Methods: In this experimental research the anti-biofilm effect, reducing the amount of biofilm formation and growth kinetics of Pseudomonas aeruginosa in different treatments was measured by microtiter and plate colorimetric crystal violet method. Biofilm formation was also examined using a microscope. Statistical analysis of data obtained from the reading of the ELISA was performed using SPSS software, P value 0.05. Results: Findings of this study showed that bacteria cannot form any biofilm in first 6 hours of incubation, in all treatments. The amount of biofilm formation after 12 hours in 0.01 and 0.05 g/ mL treatments were medium. Among treatments, after 18 and 24 hours of incubation 0.001 g/ mL concentration of pomegranate peel extract had medium and strong inhibitory effect on biofilm formation, respectively. Conclusion: Results of this study showed that biofilm formation and biofilm reduction percent-age is directly related to the duration of exposure of bacteria that could be due to the different phases of growth. Growth kinetics study also revealed that in the majority of treatments the growth was incremental up to about 15 hours and decrement afterwards due to the effective-ness of different treatments. After 18 hours, treatments have greatest influence on biofilm formation. The foregoing has been fully confirmed by the results of microscopic slides. (Sci J Hamadan Univ Med Sci 2015; 22 (3: 195-202

  19. Synergistic effect of fosfomycin and fluoroquinolones against Pseudomonas aeruginosa growing in a biofilm.

    OpenAIRE

    Mikuniya, Takeshi; Kato, Yoshihisa; Kariyama, Reiko; Monden, Koichi; Hikida, Muneo; Kumon, Hiromi

    2005-01-01

    Ulifloxacin is the active form of the prodrug prulifloxacin and shows a highly potent antipseudomonal activity. In this study, we examined the combined effect of fosfomycin and ulifloxacin against Pseudomonas aeruginosa (P. aeruginosa) growing in a biofilm using a modified Robbins device with artificial urine, and compared it to that of the combination of fosfomycin and ciprofloxacin or levofloxacin. An ATP bioluminescence assay was used to evaluate the antibacterial activity of the agents ag...

  20. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation

    OpenAIRE

    O’Loughlin, Colleen T.; Miller, Laura C.; Siryaporn, Albert; Drescher, Knut; Semmelhack, Martin F.; Bassler, Bonnie L.

    2013-01-01

    In this study, we prepare synthetic molecules and analyze them for inhibition of the Pseudomonas quorum-sensing receptors LasR and RhlR. Our most effective compound, meta-bromo-thiolactone, not only prevents virulence factor expression and biofilm formation but also protects Caenorhabditis elegans and human A549 lung epithelial cells from quorum-sensing–mediated killing by Pseudomonas aeruginosa. This anti–quorum-sensing molecule is capable of influencing P. aeruginosa virulence in tissue cul...

  1. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms

    DEFF Research Database (Denmark)

    Allesen-Holm, Marie; Barken, Kim Bundvig; Yang, Liang;

    2006-01-01

    Pseudomonas aeruginosa produces extracellular DNA which functions as a cell-to-cell interconnecting matrix component in biofilms. Comparison of extracellular DNA and chromosomal DNA by the use of polymerase chain reaction and Southern analysis suggested that the extracellular DNA is similar......-type P. aeruginosa biofilms stained with different DNA stains suggested that the extracellular DNA is located primarily in the stalks of mushroom-shaped multicellular structures, with a high concentration especially in the outer part of the stalks forming a border between the stalk-forming bacteria...

  2. Biofilms

    OpenAIRE

    López, Daniel; Vlamakis, Hera; Kolter, Roberto

    2010-01-01

    The ability to form biofilms is a universal attribute of bacteria. Biofilms are multicellular communities held together by a self-produced extracellular matrix. The mechanisms that different bacteria employ to form biofilms vary, frequently depending on environmental conditions and specific strain attributes. In this review, we emphasize four well-studied model systems to give an overview of how several organisms form biofilms: Escherichia coli, Pseudomonas aeruginosa, Bacillus subtilis, and ...

  3. Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms.

    Directory of Open Access Journals (Sweden)

    Heidi Mulcahy

    2008-11-01

    Full Text Available Biofilms are surface-adhered bacterial communities encased in an extracellular matrix composed of DNA, bacterial polysaccharides and proteins, which are up to 1000-fold more antibiotic resistant than planktonic cultures. To date, extracellular DNA has been shown to function as a structural support to maintain Pseudomonas aeruginosa biofilm architecture. Here we show that DNA is a multifaceted component of P. aeruginosa biofilms. At physiologically relevant concentrations, extracellular DNA has antimicrobial activity, causing cell lysis by chelating cations that stabilize lipopolysaccharide (LPS and the outer membrane (OM. DNA-mediated killing occurred within minutes, as a result of perturbation of both the outer and inner membrane (IM and the release of cytoplasmic contents, including genomic DNA. Sub-inhibitory concentrations of DNA created a cation-limited environment that resulted in induction of the PhoPQ- and PmrAB-regulated cationic antimicrobial peptide resistance operon PA3552-PA3559 in P. aeruginosa. Furthermore, DNA-induced expression of this operon resulted in up to 2560-fold increased resistance to cationic antimicrobial peptides and 640-fold increased resistance to aminoglycosides, but had no effect on beta-lactam and fluoroquinolone resistance. Thus, the presence of extracellular DNA in the biofilm matrix contributes to cation gradients, genomic DNA release and inducible antibiotic resistance. DNA-rich environments, including biofilms and other infection sites like the CF lung, are likely the in vivo environments where extracellular pathogens such as P. aeruginosa encounter cation limitation.

  4. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin and gentamicin

    Science.gov (United States)

    Das, Manash C.; Sandhu, Padmani; Gupta, Priya; Rudrapaul, Prasenjit; de, Utpal C.; Tribedi, Prosun; Akhter, Yusuf; Bhattacharjee, Surajit

    2016-03-01

    Microbial biofilm are communities of surface-adhered cells enclosed in a matrix of extracellular polymeric substances. Extensive use of antibiotics to treat biofilm associated infections has led to the emergence of multiple drug resistant strains. Pseudomonas aeruginosa is recognised as a model biofilm forming pathogenic bacterium. Vitexin, a polyphenolic group of phytochemical with antimicrobial property, has been studied for its antibiofilm potential against Pseudomonas aeruginosa in combination with azithromycin and gentamicin. Vitexin shows minimum inhibitory concentration (MIC) at 260 μg/ml. It’s antibiofilm activity was evaluated by safranin staining, protein extraction, microscopy methods, quantification of EPS and in vivo models using several sub-MIC doses. Various quorum sensing (QS) mediated phenomenon such as swarming motility, azocasein degrading protease activity, pyoverdin and pyocyanin production, LasA and LasB activity of the bacteria were also evaluated. Results showed marked attenuation in biofilm formation and QS mediated phenotype of Pseudomonas aeruginosa in presence of 110 μg/ml vitexin in combination with azithromycin and gentamicin separately. Molecular docking of vitexin with QS associated LuxR, LasA, LasI and motility related proteins showed high and reasonable binding affinity respectively. The study explores the antibiofilm potential of vitexin against P. aeruginosa which can be used as a new antibiofilm agent against microbial biofilm associated pathogenesis.

  5. Attenuation of Pseudomonas aeruginosa biofilm formation by Vitexin: A combinatorial study with azithromycin and gentamicin.

    Science.gov (United States)

    Das, Manash C; Sandhu, Padmani; Gupta, Priya; Rudrapaul, Prasenjit; De, Utpal C; Tribedi, Prosun; Akhter, Yusuf; Bhattacharjee, Surajit

    2016-01-01

    Microbial biofilm are communities of surface-adhered cells enclosed in a matrix of extracellular polymeric substances. Extensive use of antibiotics to treat biofilm associated infections has led to the emergence of multiple drug resistant strains. Pseudomonas aeruginosa is recognised as a model biofilm forming pathogenic bacterium. Vitexin, a polyphenolic group of phytochemical with antimicrobial property, has been studied for its antibiofilm potential against Pseudomonas aeruginosa in combination with azithromycin and gentamicin. Vitexin shows minimum inhibitory concentration (MIC) at 260 μg/ml. It's antibiofilm activity was evaluated by safranin staining, protein extraction, microscopy methods, quantification of EPS and in vivo models using several sub-MIC doses. Various quorum sensing (QS) mediated phenomenon such as swarming motility, azocasein degrading protease activity, pyoverdin and pyocyanin production, LasA and LasB activity of the bacteria were also evaluated. Results showed marked attenuation in biofilm formation and QS mediated phenotype of Pseudomonas aeruginosa in presence of 110 μg/ml vitexin in combination with azithromycin and gentamicin separately. Molecular docking of vitexin with QS associated LuxR, LasA, LasI and motility related proteins showed high and reasonable binding affinity respectively. The study explores the antibiofilm potential of vitexin against P. aeruginosa which can be used as a new antibiofilm agent against microbial biofilm associated pathogenesis. PMID:27000525

  6. Disinfection of Pseudomonas aeruginosa biofilm contaminated tube lumens with ultraviolet C light emitting diodes

    DEFF Research Database (Denmark)

    Bak, Jimmy; Ladefoged, S.D.; Tvede, M.;

    2010-01-01

    , however, be applied to obtain 99.9% disinfection rates. The major reason was that besides cells the mature biofilm contained absorbing and scattering particulates, which made the biofilm opaque. The potential of UVC light emitting diodes ( LED) for disinfection purposes in catheter-like tubes contaminated...... with biofilm was investigated. It was shown that UVC light propagation was possible through both Teflon and catheter tubes ( silicone). The disinfection efficiency of the diodes was demonstrated on tubes contaminated artificially with a Pseudomonas aeruginosa biofilm. The tubes were connected to a flow system...... and biofilms were produced during a 3 day period. Tubes in lengths of 10 ( Teflon, silicone) and 20 cm ( Teflon) were contaminated. Tubes for control and for UVC treatment were contaminated in parallel. Biofilms were sampled from the total inner surface of the tubes. Colony counts on the control samples were...

  7. Metabolomics-Based Screening of Biofilm-Inhibitory Compounds against Pseudomonas aeruginosa from Burdock Leaf

    OpenAIRE

    Zaixiang Lou; Yuxia Tang; Xinyi Song; Hongxin Wang

    2015-01-01

    Screening of anti-biofilm compounds from the burdock leaf based on metabolomics is reported here. The crystal violet assay indicated 34% ethanol elution fraction of burdock leaf could completely inhibit biofilm formation of Pseudomonas aeruginosa at 1 mg·mL−1. Then, the chemical composition of burdock leaf fraction was analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and 11 active compounds (chlorogenic acid, caffeic acid, p-coumaric acid, quercetin, ursolic aci...

  8. Electrolytic Generation of Oxygen Partially Explains Electrical Enhancement of Tobramycin Efficacy against Pseudomonas aeruginosa Biofilm

    OpenAIRE

    Stewart, Philip S.; Wattanakaroon, Wanida; Goodrum, Lu; Fortun, Susana M.; McLeod, Bruce R.

    1999-01-01

    The role of electrolysis products, including protons, hydroxyl ions, reactive oxygen intermediates, oxygen, hydrogen, and heat, in mediating electrical enhancement of killing of Pseudomonas aeruginosa biofilms by tobramycin (the bioelectric effect) was investigated. The log reduction in biofilm viable cell numbers compared to the numbers for the untreated positive control effected by antibiotic increased from 2.88 in the absence of electric current to 5.58 in the presence of electric current....

  9. Pseudomonas aeruginosa uses type III secretion system to kill biofilm-associated amoebae

    DEFF Research Database (Denmark)

    Matz, Carsten; Moreno, Ana Maria; Alhede, Morten;

    2008-01-01

    should allow opportunistic pathogenic bacteria to utilize their eukaryote-targeting arsenal to attack and exploit protozoan host cells. Studying cocultures of the environmental pathogen Pseudomonas aeruginosa and the amoeba Acanthamoeba castellanii, we found that P. aeruginosa rapidly colonized...... and killed biofilm-associated amoebae by a quorum-sensing independent mechanism. Analysis of the amoeba-induced transcriptome indicated the involvement of the P. aeruginosa type III secretion system (T3SS) in this interaction. A comparison of mutants with specific defects in the T3SS demonstrated the use...

  10. A novel technique using potassium permanganate and reflectance confocal microscopy to image biofilm extracellular polymeric matrix reveals non-eDNA networks in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Swearingen, Matthew C; Mehta, Ajeet; Mehta, Amar; Nistico, Laura; Hill, Preston J; Falzarano, Anthony R; Wozniak, Daniel J; Hall-Stoodley, Luanne; Stoodley, Paul

    2016-02-01

    Biofilms are etiologically important in the development of chronic medical and dental infections. The biofilm extracellular polymeric substance (EPS) determines biofilm structure and allows bacteria in biofilms to adapt to changes in mechanical loads such as fluid shear. However, EPS components are difficult to visualize microscopically because of their low density and molecular complexity. Here, we tested potassium permanganate, KMnO4, for use as a non-specific EPS contrast-enhancing stain using confocal laser scanning microscopy in reflectance mode. We demonstrate that KMnO4 reacted with EPS components of various strains of Pseudomonas, Staphylococcus and Streptococcus, yielding brown MnO2 precipitate deposition on the EPS, which was quantifiable using data from the laser reflection detector. Furthermore, the MnO2 signal could be quantified in combination with fluorescent nucleic acid staining. COMSTAT image analysis indicated that KMnO4 staining increased the estimated biovolume over that determined by nucleic acid staining alone for all strains tested, and revealed non-eDNA EPS networks in Pseudomonas aeruginosa biofilm. In vitro and in vivo testing indicated that KMnO4 reacted with poly-N-acetylglucosamine and Pseudomonas Pel polysaccharide, but did not react strongly with DNA or alginate. KMnO4 staining may have application as a research tool and for diagnostic potential for biofilms in clinical samples.

  11. A novel technique using potassium permanganate and reflectance confocal microscopy to image biofilm extracellular polymeric matrix reveals non-eDNA networks in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Swearingen, Matthew C; Mehta, Ajeet; Mehta, Amar; Nistico, Laura; Hill, Preston J; Falzarano, Anthony R; Wozniak, Daniel J; Hall-Stoodley, Luanne; Stoodley, Paul

    2016-02-01

    Biofilms are etiologically important in the development of chronic medical and dental infections. The biofilm extracellular polymeric substance (EPS) determines biofilm structure and allows bacteria in biofilms to adapt to changes in mechanical loads such as fluid shear. However, EPS components are difficult to visualize microscopically because of their low density and molecular complexity. Here, we tested potassium permanganate, KMnO4, for use as a non-specific EPS contrast-enhancing stain using confocal laser scanning microscopy in reflectance mode. We demonstrate that KMnO4 reacted with EPS components of various strains of Pseudomonas, Staphylococcus and Streptococcus, yielding brown MnO2 precipitate deposition on the EPS, which was quantifiable using data from the laser reflection detector. Furthermore, the MnO2 signal could be quantified in combination with fluorescent nucleic acid staining. COMSTAT image analysis indicated that KMnO4 staining increased the estimated biovolume over that determined by nucleic acid staining alone for all strains tested, and revealed non-eDNA EPS networks in Pseudomonas aeruginosa biofilm. In vitro and in vivo testing indicated that KMnO4 reacted with poly-N-acetylglucosamine and Pseudomonas Pel polysaccharide, but did not react strongly with DNA or alginate. KMnO4 staining may have application as a research tool and for diagnostic potential for biofilms in clinical samples. PMID:26536894

  12. Roles of type IV pili, flagellum-mediated motility and extracellular DNA in the formation of mature multicellular structures in Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Barken, Kim B; Pamp, Sünje J; Yang, Liang;

    2008-01-01

    When grown as a biofilm in laboratory flow chambers Pseudomonas aeruginosa can develop mushroom-shaped multicellular structures consisting of distinct subpopulations in the cap and stalk portions. We have previously presented evidence that formation of the cap portion of the mushroom......-shaped structures in P. aeruginosa biofilms occurs via bacterial migration and depends on type IV pili (Mol Microbiol 50: 61-68). In the present study we examine additional factors involved in the formation of this multicellular substructure. While pilA mutants, lacking type IV pili, are deficient in mushroom cap...

  13. Inhibition of Pseudomonas aeruginosa biofilm formation by 2,2’-bipyridyl, lipoic, kojic and picolinic acids

    Directory of Open Access Journals (Sweden)

    Kübra Çevik

    2015-08-01

    Full Text Available Objective(s:The inhibitory effects of iron chelators, and FeCl3 chelation on biofilm formation and swarming motility were investigated against an opportunistic human pathogen Pseudomonas aeruginosa. Materials and Methods:The inhibitory activity of 2,2’-bipyridyl, lipoic acid, kojic acid and picolinic acidonbiofilm formation of P. aeruginosa strain PAO1 and three clinical isolates (P. aeruginosa  PAK01,P. aeruginosa PAK02 and P. aeruginosa PAK03 were investigated, based on crystal violet assay, and swarming motility test. Results:The kojic, lipoic and picolinic acid inhibited biofilm formation by 5-33% in all tested P. aeruginosa isolates. When chelated iron was added, biofilm inhibition rates were determined to be 39-57%. Among the tested chelators against P. aeruginosa, lipoic acid (84% and kojic acid (68% presented the highest inhibition of swarming motility. This is the first study to report the inhibitory effect of lipoic acid on biofilm formation and swarming motility of P. aeruginosa. Conclusion: It is considered that lipoic and picolinic acids can serve as alternatives for the treatment of the P. aeruginosa infections by inhibiting biofilm formation.

  14. Pseudomonas aeruginosa Biofilm Response and Resistance to Cold Atmospheric Pressure Plasma Is Linked to the Redox-Active Molecule Phenazine.

    Science.gov (United States)

    Mai-Prochnow, Anne; Bradbury, Mark; Ostrikov, Kostya; Murphy, Anthony B

    2015-01-01

    Pseudomonas aeruginosa is an important opportunistic pathogen displaying high antibiotic resistance. Its resistance is in part due to its outstanding ability to form biofilms on a range of biotic and abiotic surfaces leading to difficult-to-treat, often long-term infections. Cold atmospheric plasma (CAP) is a new, promising antibacterial treatment to combat antibiotic-resistant bacteria. Plasma is ionized gas that has antibacterial properties through the generation of a mix of reactive oxygen and nitrogen species (RONS), excited molecules, charged particles and UV photons. Our results show the efficient removal of P. aeruginosa biofilms using a plasma jet (kINPen med), with no viable cells detected after 5 min treatment and no attached biofilm cells visible with confocal microscopy after 10 min plasma treatment. Because of its multi-factorial action, it is widely presumed that the development of bacterial resistance to plasma is unlikely. However, our results indicate that a short plasma treatment (3 min) may lead to the emergence of a small number of surviving cells exhibiting enhanced resistance to subsequent plasma exposure. Interestingly, these cells also exhibited a higher degree of resistance to hydrogen peroxide. Whole genome comparison between surviving cells and control cells revealed 10 distinct polymorphic regions, including four belonging to the redox active, antibiotic pigment phenazine. Subsequently, the interaction between phenazine production and CAP resistance was demonstrated in biofilms of transposon mutants disrupted in different phenazine pathway genes which exhibited significantly altered sensitivity to CAP.

  15. Pseudomonas aeruginosa Biofilm Response and Resistance to Cold Atmospheric Pressure Plasma Is Linked to the Redox-Active Molecule Phenazine.

    Directory of Open Access Journals (Sweden)

    Anne Mai-Prochnow

    Full Text Available Pseudomonas aeruginosa is an important opportunistic pathogen displaying high antibiotic resistance. Its resistance is in part due to its outstanding ability to form biofilms on a range of biotic and abiotic surfaces leading to difficult-to-treat, often long-term infections. Cold atmospheric plasma (CAP is a new, promising antibacterial treatment to combat antibiotic-resistant bacteria. Plasma is ionized gas that has antibacterial properties through the generation of a mix of reactive oxygen and nitrogen species (RONS, excited molecules, charged particles and UV photons. Our results show the efficient removal of P. aeruginosa biofilms using a plasma jet (kINPen med, with no viable cells detected after 5 min treatment and no attached biofilm cells visible with confocal microscopy after 10 min plasma treatment. Because of its multi-factorial action, it is widely presumed that the development of bacterial resistance to plasma is unlikely. However, our results indicate that a short plasma treatment (3 min may lead to the emergence of a small number of surviving cells exhibiting enhanced resistance to subsequent plasma exposure. Interestingly, these cells also exhibited a higher degree of resistance to hydrogen peroxide. Whole genome comparison between surviving cells and control cells revealed 10 distinct polymorphic regions, including four belonging to the redox active, antibiotic pigment phenazine. Subsequently, the interaction between phenazine production and CAP resistance was demonstrated in biofilms of transposon mutants disrupted in different phenazine pathway genes which exhibited significantly altered sensitivity to CAP.

  16. Reinforcement of the bactericidal effect of ciprofloxacin on Pseudomonas aeruginosa biofilm by hyperbaric oxygen treatment

    DEFF Research Database (Denmark)

    Kolpen, Mette; Mousavi, Nabi; Sams, Thomas;

    2016-01-01

    Chronic Pseudomonas aeruginosa lung infection is the most severe complication in cystic fibrosis patients. It is characterised by antibiotic-tolerant biofilms in the endobronchial mucus with zones of oxygen (O2) depletion mainly due to polymorphonuclear leucocyte activity. Whilst the exact mechan...

  17. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms

    DEFF Research Database (Denmark)

    Riedel, K.; Hentzer, Morten; Geisenberger, O.;

    2001-01-01

    Pseudomonas aeruginosa and Burkholderia cepacia are capable of forming mixed biofilms in the lungs of cystic fibrosis patients. Both bacteria employ quorum-sensing systems, which rely on N-acylhomoserine lactone (AHL) signal molecules, to co- ordinate expression of virulence factors with the...

  18. Pharmacokinetics/pharmacodynamics of colistin and imipenem on mucoid and nonmucoid Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Hengzhuang, Wang; Wu, Hong; Ciofu, Oana;

    2011-01-01

    The time course of activity of colistin and imipenem against mucoid and nonmucoid Pseudomonas aeruginosa growing in a biofilm showed that compared with those for planktonic bacteria, the kinetics of colistin and imipenem retained the concentration- and time-dependent killing, respectively, but...

  19. Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants

    DEFF Research Database (Denmark)

    Klausen, M.; Heydorn, Arne; Ragas, Paula Cornelia;

    2003-01-01

    Biofilm formation by Gfp-tagged Pseudomonas aeruginosa PAO1 wild type, flagella and type IV pili mutants in flow chambers irrigated with citrate minimal medium was characterized by the use of confocal laser scanning microscopy and comstat image analysis. Flagella and type IV pili were not necessary...

  20. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm

    Science.gov (United States)

    Li, Huabing; Zhou, Enze; Zhang, Dawei; Xu, Dake; Xia, Jin; Yang, Chunguang; Feng, Hao; Jiang, Zhouhua; Li, Xiaogang; Gu, Tingyue; Yang, Ke

    2016-02-01

    Microbiologically Influenced Corrosion (MIC) is a serious problem in many industries because it causes huge economic losses. Due to its excellent resistance to chemical corrosion, 2707 hyper duplex stainless steel (2707 HDSS) has been used in the marine environment. However, its resistance to MIC was not experimentally proven. In this study, the MIC behavior of 2707 HDSS caused by the marine aerobe Pseudomonas aeruginosa was investigated. Electrochemical analyses demonstrated a positive shift in the corrosion potential and an increase in the corrosion current density in the presence of the P. aeruginosa biofilm in the 2216E medium. X-ray photoelectron spectroscopy (XPS) analysis results showed a decrease in Cr content on the coupon surface beneath the biofilm. The pit imaging analysis showed that the P. aeruginosa biofilm caused a largest pit depth of 0.69 μm in 14 days of incubation. Although this was quite small, it indicated that 2707 HDSS was not completely immune to MIC by the P. aeruginosa biofilm.

  1. Metabolomics-Based Screening of Biofilm-Inhibitory Compounds against Pseudomonas aeruginosa from Burdock Leaf

    Directory of Open Access Journals (Sweden)

    Zaixiang Lou

    2015-09-01

    Full Text Available Screening of anti-biofilm compounds from the burdock leaf based on metabolomics is reported here. The crystal violet assay indicated 34% ethanol elution fraction of burdock leaf could completely inhibit biofilm formation of Pseudomonas aeruginosa at 1 mg·mL−1. Then, the chemical composition of burdock leaf fraction was analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS and 11 active compounds (chlorogenic acid, caffeic acid, p-coumaric acid, quercetin, ursolic acid, rutin, cynarin, luteolin, crocin, benzoic acid, and Tenacissoside I were identified. Lastly, UPLC-MS analysis was employed to obtain the metabolic fingerprints of burdock leaf fractions before and after inhibiting the biofilm of Pseudomonas aeruginosa. The metabolic fingerprints were transformed to data, analyzed with PLS-DA (partial least squares discriminant analysis and the peaks whose area was significantly changed were found out. Thus, 81 compounds were screened as potential anti-biofilm ingredients. Among them, rutin, ursolic acid, caffeic acid, p-coumaric acid and quercetin were identified and confirmed as the main anti-biofilm compounds in burdock leaf. The study provided basic anti-biofilm profile data for the compounds in burdock leaf, as well as provided a convenient method for fast screening of anti-biofilm compounds from natural plants.

  2. Metabolomics-Based Screening of Biofilm-Inhibitory Compounds against Pseudomonas aeruginosa from Burdock Leaf.

    Science.gov (United States)

    Lou, Zaixiang; Tang, Yuxia; Song, Xinyi; Wang, Hongxin

    2015-01-01

    Screening of anti-biofilm compounds from the burdock leaf based on metabolomics is reported here. The crystal violet assay indicated 34% ethanol elution fraction of burdock leaf could completely inhibit biofilm formation of Pseudomonas aeruginosa at 1 mg·mL(-1). Then, the chemical composition of burdock leaf fraction was analyzed by ultra-performance liquid chromatography-mass spectrometry (UPLC-MS) and 11 active compounds (chlorogenic acid, caffeic acid, p-coumaric acid, quercetin, ursolic acid, rutin, cynarin, luteolin, crocin, benzoic acid, and Tenacissoside I) were identified. Lastly, UPLC-MS analysis was employed to obtain the metabolic fingerprints of burdock leaf fractions before and after inhibiting the biofilm of Pseudomonas aeruginosa. The metabolic fingerprints were transformed to data, analyzed with PLS-DA (partial least squares discriminant analysis) and the peaks whose area was significantly changed were found out. Thus, 81 compounds were screened as potential anti-biofilm ingredients. Among them, rutin, ursolic acid, caffeic acid, p-coumaric acid and quercetin were identified and confirmed as the main anti-biofilm compounds in burdock leaf. The study provided basic anti-biofilm profile data for the compounds in burdock leaf, as well as provided a convenient method for fast screening of anti-biofilm compounds from natural plants. PMID:26370951

  3. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound

    DEFF Research Database (Denmark)

    Hentzer, Morten; Riedel, Kathrin; Rasmussen, Thomas B;

    2002-01-01

    Novel molecular tools have been constructed which allow for in situ detection of N-acyl homoserine lactone (AHL)-mediated quorum sensing in Pseudomonas aeruginosa biofilms. The reporter responds to AHL activation of LasR by expression of an unstable version of the green-fluorescent protein (Gfp...... macroalga Delisea pulchra, is capable of interfering with AHL-mediated quorum sensing in P. aeruginosa. It is demonstrated that the furanone compound specifically represses expression of a PlasB-gfp reporter fusion without affecting growth or protein synthesis. In addition, it reduces the production......). Gfp-based reporter technology has been applied for non-destructive, single-cell-level detection of quorum sensing in laboratory-based P. aeruginosa biofilms. It is reported that a synthetic halogenated furanone compound, which is a derivative of the secondary metabolites produced by the Australian...

  4. Effect of plant phenolic compounds on biofilm formation by Pseudomonas aeruginosa.

    Science.gov (United States)

    Plyuta, Vladimir; Zaitseva, Julia; Lobakova, Elena; Zagoskina, Natalia; Kuznetsov, Alexander; Khmel, Inessa

    2013-11-01

    In the natural environment, bacteria predominantly exist in matrix-enclosed multicellular communities associated with various surfaces, referred to as biofilms. Bacteria in biofilms are extremely resistant to antibacterial agents thus causing serious problems for antimicrobial therapy. In this study, we showed that different plant phenolic compounds, at concentrations that did not or weakly suppressed bacterial growth, increased the capacity of Pseudomonas aeruginosa PAO1 to form biofilms. Biofilm formation of P. aeruginosa PAO1 was enhanced 3- to 7-fold under the action of vanillin and epicatechin, and 2- to 2.5-fold in the presence of 4-hydroxybenzoic, gallic, cinnamic, sinapic, ferulic, and chlorogenic acids. At higher concentrations, these compounds displayed an inhibiting effect. Similar experiments carried out for comparison with Agrobacterium tumefaciens C58 showed the same pattern. Vanillin, 4-hydroxybenzoic, and gallic acids at concentrations within the range of 40 to 400 μg/mL increased the production of N-3-oxo-dodecanoyl-homoserine lactone in P. aeruginosa PAO1 which suggests a possible relationship between stimulation of biofilm formation and Las Quorum Sensing system of this bacterium. Using biosensors to detect N-acyl-homoserine lactones (AHL), we demonstrated that the plant phenolics studied did not mimic AHLs. PMID:23594262

  5. In vitro production of biofilm in a flow cell system in a strain of Pseudomonas aeruginosa and Staphylococcus aureus and determination of efficiency of ciprofloxacin against them

    Directory of Open Access Journals (Sweden)

    Soham Gupta

    2011-01-01

    Full Text Available Background: Microorganisms develop biofilm on various medical devices. The process is particularly relevant in public health since biofilm associated organisms are much more resistant to antibiotics and have a potential to cause infections in patients with indwelling medical devices. Materials and Methods: To determine the efficiency of an antibiotic against the biofilm it is inappropriate to use traditional technique of determining Minimum Inhibitory Concentration (MIC on the free floating laboratory phenotype. Thus we have induced formation of biofilm in two strains (Pseudomonas aeruginosa and Staphylococcus aureus, which showed heavy growth of biofilm in screening by Tube method in a flow cell system and determined their antibiotic susceptibility against ciprofloxacin by agar dilution method in the range (0.25 mg/ml to 8 mg/ml. The MIC value of ciprofloxacin for the biofilm produced organism was compared with its free form and a standard strain as control on the same plates. Observations: Both the biofilm produced strains showed a higher resistance (MIC > 8 mg/ml than its free form, which were 2 μg/ml for Pseudomonas aeruginosa and 4 mg/ml for Staphylococcus aureus. Thus biofilm can pose a threat in the patient treatment.

  6. Mannitol enhances antibiotic sensitivity of persister bacteria in Pseudomonas aeruginosa biofilms.

    Directory of Open Access Journals (Sweden)

    Nicolas Barraud

    Full Text Available The failure of antibiotic therapies to clear Pseudomonas aeruginosa lung infection, the key mortality factor for cystic fibrosis (CF patients, is partly attributed to the high tolerance of P. aeruginosa biofilms. Mannitol has previously been found to restore aminoglycoside sensitivity in Escherichia coli by generating a proton-motive force (PMF, suggesting a potential new strategy to improve antibiotic therapy and reduce disease progression in CF. Here, we used the commonly prescribed aminoglycoside tobramycin to select for P. aeruginosa persister cells during biofilm growth. Incubation with mannitol (10-40 mM increased tobramycin sensitivity of persister cells up to 1,000-fold. Addition of mannitol to pre-grown biofilms was able to revert the persister phenotype and improve the efficacy of tobramycin. This effect was blocked by the addition of a PMF inhibitor or in a P. aeruginosa mutant strain unable to metabolise mannitol. Addition of glucose and NaCl at high osmolarity also improved the efficacy of tobramycin although to a lesser extent compared to mannitol. Therefore, the primary effect of mannitol in reverting biofilm associated persister cells appears to be an active, physiological response, associated with a minor contribution of osmotic stress. Mannitol was tested against clinically relevant strains, showing that biofilms containing a subpopulation of persister cells are better killed in the presence of mannitol, but a clinical strain with a high resistance to tobramycin was not affected by mannitol. Overall, these results suggest that in addition to improvements in lung function by facilitating mucus clearance in CF, mannitol also affects antibiotic sensitivity in biofilms and does so through an active, physiological response.

  7. Pseudomonas aeruginosa and Saccharomyces cerevisiae Biofilm in Flow Cells

    DEFF Research Database (Denmark)

    Weiss Nielsen, Martin; Sternberg, Claus; Molin, Søren;

    2011-01-01

    Many microbial cells have the ability to form sessile microbial communities defined as biofilms that have altered physiological and pathological properties compared to free living microorganisms. Biofilms in nature are often difficult to investigate and reside under poorly defined conditions(1). ...

  8. Potential of Ocimum basilicum L. and Salvia officinalis L. essential oils against biofilms of P. aeruginosa clinical isolates.

    Science.gov (United States)

    Stojanović-Radić, Z; Pejcić, M; Stojanović, N; Sharifi-Rad, J; Stanković, N

    2016-08-29

    Biofilms are complex communities of microorganisms, responsible for more than 60% of the chronic human infections and they represent one of the leading concerns in medicine. Pseudomonas aeruginosa is human pathogenic bacteria which causes numerous diseases and is known for its ability to produce biofilm. Ocimum basilicum L. (basil) and Salvia officinalis L. (sage) are widely used plants in traditional medicine for the treatment of different conditions. Therefore, the aim of this study was to investigate the potential of basil and sage essential oils against P. aeruginosa biofilm producing strains. The efficacy of two essential oils on P. aeruginosa biofilm forming ability was determined using crystal violet method. Out of 15 strains isolated from different clinical biological samples, two were strong, 11 moderate and one weak biofilm producer. Good efficacy of sage essential oil towards strong and weak biofilm producers, but not of basil essential oil, was observed. In the case of moderate biofilm producers, 81.8% showed lower biofilm production after incubation with the sage oil, while 63.6% showed the reduction of biofilm production after basil essential oil treatment. The obtained results showed high potential of both oils for the treatment of persistent infections caused by Pseudomonas aeruginosa biofilms.

  9. Potential of Ocimum basilicum L. and Salvia officinalis L. essential oils against biofilms of P. aeruginosa clinical isolates.

    Science.gov (United States)

    Stojanović-Radić, Z; Pejcić, M; Stojanović, N; Sharifi-Rad, J; Stanković, N

    2016-01-01

    Biofilms are complex communities of microorganisms, responsible for more than 60% of the chronic human infections and they represent one of the leading concerns in medicine. Pseudomonas aeruginosa is human pathogenic bacteria which causes numerous diseases and is known for its ability to produce biofilm. Ocimum basilicum L. (basil) and Salvia officinalis L. (sage) are widely used plants in traditional medicine for the treatment of different conditions. Therefore, the aim of this study was to investigate the potential of basil and sage essential oils against P. aeruginosa biofilm producing strains. The efficacy of two essential oils on P. aeruginosa biofilm forming ability was determined using crystal violet method. Out of 15 strains isolated from different clinical biological samples, two were strong, 11 moderate and one weak biofilm producer. Good efficacy of sage essential oil towards strong and weak biofilm producers, but not of basil essential oil, was observed. In the case of moderate biofilm producers, 81.8% showed lower biofilm production after incubation with the sage oil, while 63.6% showed the reduction of biofilm production after basil essential oil treatment. The obtained results showed high potential of both oils for the treatment of persistent infections caused by Pseudomonas aeruginosa biofilms. PMID:27585258

  10. In vitro activity of ceftolozane/tazobactam against clinical isolates of Pseudomonas aeruginosa in the planktonic and biofilm states.

    Science.gov (United States)

    Velez Perez, Antonio L; Schmidt-Malan, Suzannah M; Kohner, Peggy C; Karau, Melissa J; Greenwood-Quaintance, Kerryl E; Patel, Robin

    2016-07-01

    Pseudomonas aeruginosa causes a variety of life-threatening infections, some of which are associated with planktonic and others with biofilm states. Herein, we tested the combination of the novel cephalosporin, ceftolozane, with the β-lactamase inhibitor, tazobactam, against planktonic and biofilm forms of 54 clinical isolates of P. aeruginosa, using cefepime as a comparator. MIC values were determined following Clinical and Laboratory Standards Institute (CLSI) guidelines. Minimum biofilm inhibitory concentration (MBIC) values were determined using biofilm-laden pegged lids incubated in antimicrobial challenge plates containing varying concentrations of ceftolozane/tazobactam. Pegged lids were then incubated in growth recovery plates containing cation-adjusted Mueller-Hinton broth to determine the minimum biofilm bactericidal concentration (MBBC). Ceftolozane/tazobactam was highly active against planktonic P. aeruginosa, with all 54 isolates studied testing susceptible (MIC ≤4/4μg/mL). On the other hand, 51/54 biofilm P. aeruginosa had MBICs ≥16/4μg/mL, and all 54 isolates had MBBCs >32μg/mL. Of the 54 isolates, 45 (83.3%) tested susceptible to cefepime, with the MIC50/MIC90 being 4/16μg/mL, respectively, and the MBIC90 and MBBC90 both being >256μg/mL. Although ceftolozane/tazobactam is a promising antimicrobial agent for the treatment of P. aeruginosa infections, it is not highly active against P. aeruginosa biofilms. PMID:27130477

  11. Magnesium limitation is an environmental trigger of the Pseudomonas aeruginosa biofilm lifestyle.

    Directory of Open Access Journals (Sweden)

    Heidi Mulcahy

    Full Text Available Biofilm formation is a conserved strategy for long-term bacterial survival in nature and during infections. Biofilms are multicellular aggregates of cells enmeshed in an extracellular matrix. The RetS, GacS and LadS sensors control the switch from a planktonic to a biofilm mode of growth in Pseudomonas aeruginosa. Here we detail our approach to identify environmental triggers of biofilm formation by investigating environmental conditions that repress expression of the biofilm repressor RetS. Mg(2+ limitation repressed the expression of retS leading to increased aggregation, exopolysaccharide (EPS production and biofilm formation. Repression of retS expression under Mg(2+ limitation corresponded with induced expression of the GacA-controlled small regulatory RNAs rsmZ and rsmY and the EPS biosynthesis operons pel and psl. We recently demonstrated that extracellular DNA sequesters Mg(2+ cations and activates the cation-sensing PhoPQ two-component system, which leads to increased antimicrobial peptide resistance in biofilms. Here we show that exogenous DNA and EDTA, through their ability to chelate Mg(2+, promoted biofilm formation. The repression of retS in low Mg(2+ was directly controlled by PhoPQ. PhoP also directly controlled expression of rsmZ but not rsmY suggesting that PhoPQ controls the equilibrium of the small regulatory RNAs and thus fine-tunes the expression of genes in the RetS pathway. In summary, Mg(2+ limitation is a biologically relevant environmental condition and the first bonafide environmental signal identified that results in transcriptional repression of retS and promotes P. aeruginosa biofilm formation.

  12. Physiology of Pseudomonas aeruginosa in biofilms as revealed by transcriptome analysis

    Directory of Open Access Journals (Sweden)

    Parker Albert

    2010-11-01

    Full Text Available Abstract Background Transcriptome analysis was applied to characterize the physiological activities of Pseudomonas aeruginosa grown for three days in drip-flow biofilm reactors. Conventional applications of transcriptional profiling often compare two paired data sets that differ in a single experimentally controlled variable. In contrast this study obtained the transcriptome of a single biofilm state, ranked transcript signals to make the priorities of the population manifest, and compared ranki ngs for a priori identified physiological marker genes between the biofilm and published data sets. Results Biofilms tolerated exposure to antibiotics, harbored steep oxygen concentration gradients, and exhibited stratified and heterogeneous spatial patterns of protein synthetic activity. Transcriptional profiling was performed and the signal intensity of each transcript was ranked to gain insight into the physiological state of the biofilm population. Similar rankings were obtained from data sets published in the GEO database http://www.ncbi.nlm.nih.gov/geo. By comparing the rank of genes selected as markers for particular physiological activities between the biofilm and comparator data sets, it was possible to infer qualitative features of the physiological state of the biofilm bacteria. These biofilms appeared, from their transcriptome, to be glucose nourished, iron replete, oxygen limited, and growing slowly or exhibiting stationary phase character. Genes associated with elaboration of type IV pili were strongly expressed in the biofilm. The biofilm population did not indicate oxidative stress, homoserine lactone mediated quorum sensing, or activation of efflux pumps. Using correlations with transcript ranks, the average specific growth rate of biofilm cells was estimated to be 0.08 h-1. Conclusions Collectively these data underscore the oxygen-limited, slow-growing nature of the biofilm population and are consistent with antimicrobial tolerance due

  13. Biofilms: a developing microscopic community

    Directory of Open Access Journals (Sweden)

    Rivera Sandra Patricia

    2004-09-01

    Full Text Available Biofilms are microbial communities composed by different microbiota embebbed in a special adaptive environment. These communities show different characteristics such as heterogeneity, diversity in microenvironments, capacity to resist antimicrobial therapy and ability to allow bacterial communication. These characteristics convert them in complex organizations that are difficult to eradicate in their own environment. In the man, biofilms are associated to a great number of slow-development infectious processes which greatly difficulties their eradication. In the industry and environment, biofilms are centered in processes known as biofouling and bioremediation. The former is the contamination of a system due to the microbial activity of a biofilm. The latter uses biofilms to improve the conditions of a contaminated system. The study of biofilms is a new and exciting field which is constantly evolving and whose implications in medicine and industry would have important repercussions for the humankind.

  14. Activity of ozonated water and ozone against Staphylococcus aureus and Pseudomonas aeruginosa biofilms

    Science.gov (United States)

    Bialoszewski, Dariusz; Pietruczuk-Padzik, Anna; Kalicinska, Agnieszka; Bocian, Ewa; Czajkowska, Magdalena; Bukowska, Bozena; Tyski, Stefan

    2011-01-01

    Summary Background The known bactericidal properties of ozone have not been checked in relation to its action on bacterial biofilms. This is especially true of ozonated fluids. The aim of this study was to investigate the bactericidal activity of ozonated water and that of a mixture of ozone and oxygen against biofilms. Material/Methods Eighteen clinical strains of Staphylococcus aureus and Pseudomonas aeruginosa exhibiting various levels of antibiotic sensitivity were investigated. Bacteria were cultured in biofilm form on polystyrene titration plates for periods of 2 to 72 hours. The biofilms formed in this way were exposed to in statu nascendi ozonated water produced in a prototype device that had been tested in clinical conditions, or to a mixture of oxygen and ozone generated in the same device. Live cells in the biofilm were stained with a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium (MTT) bromide solution. The degree of reduction of viable bacteria following ozone exposure was determined. Results Ozonated water was found to be an effective bactericidal agent against biofilms after as little as 30 seconds of exposure, while the bactericidal activity of the ozone-oxygen solution was much lower. Prolongation of the duration of biofilm exposure to the gaseous disinfectant to 40 minutes led to a reduction in the viable cell count, which nevertheless remained high. Conclusions Unlike the ozone-oxygen mixture, ozonated water effectively destroys bacterial biofilms in vitro. PMID:22037737

  15. c-di-GMP and its Effects on Biofilm Formation and Dispersion: a Pseudomonas Aeruginosa Review.

    Science.gov (United States)

    Ha, Dae-Gon; O'Toole, George A

    2015-04-01

    Since its initial discovery as an allosteric factor regulating cellulose biosynthesis in Gluconacetobacter xylinus, the list of functional outputs regulated by c-di-GMP has grown. We have focused this article on one of these c-di-GMP-regulated processes, namely, biofilm formation in the organism Pseudomonas aeruginosa. The majority of diguanylate cyclases and phosphodiesterases encoded in the P. aeruginosa genome still remain uncharacterized; thus, there is still a great deal to be learned about the link between c-di-GMP and biofilm formation in this microbe. In particular, while a number of c-di-GMP metabolizing enzymes have been identified that participate in reversible and irreversible attachment and biofilm maturation, there is a still a significant knowledge gap regarding the c-di-GMP output systems in this organism. Even for the well-characterized Pel system, where c-di-GMP-mediated transcriptional regulation is now well documented, how binding of c-di-GMP by PelD stimulates Pel production is not understood in any detail. Similarly, c-di-GMP-mediated control of swimming, swarming and twitching also remains to be elucidated. Thus, despite terrific advances in our understanding of P. aeruginosa biofilm formation and the role of c-di-GMP in this process since the last version of this book (indeed there was no chapter on c-di-GMP!) there is still much to learn.

  16. c-di-GMP and its Effects on Biofilm Formation and Dispersion: a Pseudomonas Aeruginosa Review.

    Science.gov (United States)

    Ha, Dae-Gon; O'Toole, George A

    2015-04-01

    Since its initial discovery as an allosteric factor regulating cellulose biosynthesis in Gluconacetobacter xylinus, the list of functional outputs regulated by c-di-GMP has grown. We have focused this article on one of these c-di-GMP-regulated processes, namely, biofilm formation in the organism Pseudomonas aeruginosa. The majority of diguanylate cyclases and phosphodiesterases encoded in the P. aeruginosa genome still remain uncharacterized; thus, there is still a great deal to be learned about the link between c-di-GMP and biofilm formation in this microbe. In particular, while a number of c-di-GMP metabolizing enzymes have been identified that participate in reversible and irreversible attachment and biofilm maturation, there is a still a significant knowledge gap regarding the c-di-GMP output systems in this organism. Even for the well-characterized Pel system, where c-di-GMP-mediated transcriptional regulation is now well documented, how binding of c-di-GMP by PelD stimulates Pel production is not understood in any detail. Similarly, c-di-GMP-mediated control of swimming, swarming and twitching also remains to be elucidated. Thus, despite terrific advances in our understanding of P. aeruginosa biofilm formation and the role of c-di-GMP in this process since the last version of this book (indeed there was no chapter on c-di-GMP!) there is still much to learn. PMID:26104694

  17. Characterising novel anti-biofilm targets for the treatment of chronic Pseudomonas aeruginosa infection in the cystic fibrosis lung

    OpenAIRE

    McCarthy, Ronan

    2014-01-01

    The global rise in antibiotic resistance is a significant problem facing healthcare professionals. In particular within the cystic fibrosis (CF) lung, bacteria can establish chronic infection and resistance to a wide array of antibiotic therapies. One of the principle pathogens associated with chronic infection in the CF lung is Pseudomonas aeruginosa. P. aeruginosa can establish chronic infection in the CF lung partly through the use of the biofilm mode of growth. This biofilm mode of growth...

  18. Subinhibitory concentration of ciprofloxacin targets quorum sensing system of Pseudomonas aeruginosa causing inhibition of biofilm formation & reduction of virulence

    Directory of Open Access Journals (Sweden)

    Parul Gupta

    2016-01-01

    Results: Sub-minimum inhibitory concentration (sub-MIC of CIP significantly reduced the motility of P. aeruginosa stand and strain and clinical isolates and affected biofilm forming capacity. Production of protease, elastase, siderophore, alginate, and rhamnolipid was also significantly reduced by CIP. Interpretation & conclusions: Reduction in virulence factors and biofilm formation was due to inhibition of QS mechanism which was indicated by reduced production of QS signal molecules by P. aeruginosa in presence of subinhibitory concentration of CIP.

  19. Phenotypes of Non-Attached Pseudomonas aeruginosa Aggregates Resemble Surface Attached Biofilm

    DEFF Research Database (Denmark)

    Alhede, Morten; Kragh, Kasper Nørskov; Qvortrup, Klaus;

    2011-01-01

    of age, both aggregates and flow-cell biofilm had the same slow growth rate as a stationary phase shaking cultures. Internal structures of the aggregates matrix components and their capacity to survive otherwise lethal treatments with antibiotics (referred to as tolerance) and resistance to phagocytes......, RT-PCR as well as traditional culturing techniques to study the properties of Pseudomonas aeruginosa aggregates. We found that non-attached aggregates from stationary-phase cultures have comparable growth rates to surface attached biofilms. The growth rate estimations indicated that, independently...... were also found to be strikingly similar to flow-cell biofilms. Our data indicate that the tolerance of both biofilms and non-attached aggregates towards antibiotics is reversible by physical disruption. We provide evidence that the antibiotic tolerance is likely to be dependent on both...

  20. Effect of bacteriophage infection in combination with tobramycin on the emergence of resistance in Escherichia coli and Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Coulter, Lindsey B; McLean, Robert J C; Rohde, Rodney E; Aron, Gary M

    2014-10-03

    Bacteriophage infection and antibiotics used individually to reduce biofilm mass often result in the emergence of significant levels of phage and antibiotic resistant cells. In contrast, combination therapy in Escherichia coli biofilms employing T4 phage and tobramycin resulted in greater than 99% and 39% reduction in antibiotic and phage resistant cells, respectively. In P. aeruginosa biofilms, combination therapy resulted in a 60% and 99% reduction in antibiotic and PB-1 phage resistant cells, respectively. Although the combined treatment resulted in greater reduction of E. coli CFUs compared to the use of antibiotic alone, infection of P. aeruginosa biofilms with PB-1 in the presence of tobramycin was only as effective in the reduction of CFUs as the use of antibiotic alone. The study demonstrated phage infection in combination with tobramycin can significantly reduce the emergence of antibiotic and phage resistant cells in both E. coli and P. aeruginosa biofilms, however, a reduction in biomass was dependent on the phage-host system.

  1. Antimicrobial and anti-biofilm effect of a novel BODIPY photosensitizer against Pseudomonas aeruginosa PAO1

    DEFF Research Database (Denmark)

    Orlandi, Viviana Teresa; Rybtke, Morten; Caruso, Enrico;

    2014-01-01

    Photodynamic therapy (PDT) combines the use of organic dyes (photosensitizers, PSs) and visible light in order to elicit a photo-oxidative stress which causes bacterial death. GD11, a recently synthesized PS belonging to the boron-dipyrromethene (BODIPY) class, was demonstrated to be efficient...... against planktonic cultures of Pseudomonas aeruginosa, causing a 7 log unit reduction of viable cells when administered at 2.5 μM. The effectiveness of GD11 against P. aeruginosa biofilms grown in flow-cells and microtiter trays was also demonstrated. Confocal laser scanning microscopy of flow...

  2. Mannitol Does Not Enhance Tobramycin Killing of Pseudomonas aeruginosa in a Cystic Fibrosis Model System of Biofilm Formation.

    Directory of Open Access Journals (Sweden)

    Katherine E Price

    Full Text Available Cystic Fibrosis (CF is a human genetic disease that results in the accumulation of thick, sticky mucus in the airways, which results in chronic, life-long bacterial biofilm infections that are difficult to clear with antibiotics. Pseudomonas aeruginosa lung infection is correlated with worsening lung disease and P. aeruginosa transitions to an antibiotic tolerant state during chronic infections. Tobramycin is an aminoglycoside currently used to combat lung infections in individuals with CF. While tobramycin is effective at eradicating P. aeruginosa in the airways of young patients, it is unable to completely clear the chronic P. aeruginosa infections in older patients. A recent report showed that co-addition of tobramycin and mannitol enhanced killing of P. aeruginosa grown in vitro as a biofilm on an abiotic surface. Here we employed a model system of bacterial biofilms formed on the surface of CF-derived airway cells to determine if mannitol would enhance the antibacterial activity of tobramycin against P. aeruginosa grown on a more clinically relevant surface. Using this model system, which allows the growth of robust biofilms with high-level antibiotic tolerance analogous to in vivo biofilms, we were unable to find evidence for enhanced antibacterial activity of tobramycin with the addition of mannitol, supporting the observation that this type of co-treatment failed to reduce the P. aeruginosa bacterial load in a clinical setting.

  3. Inoculation density and nutrient level determine the formation of mushroom-shaped structures in Pseudomonas aeruginosa biofilms

    Science.gov (United States)

    Ghanbari, Azadeh; Dehghany, Jaber; Schwebs, Timo; Müsken, Mathias; Häussler, Susanne; Meyer-Hermann, Michael

    2016-01-01

    Pseudomonas aeruginosa often colonises immunocompromised patients and the lungs of cystic fibrosis patients. It exhibits resistance to many antibiotics by forming biofilms, which makes it hard to eliminate. P. aeruginosa biofilms form mushroom-shaped structures under certain circumstances. Bacterial motility and the environment affect the eventual mushroom morphology. This study provides an agent-based model for the bacterial dynamics and interactions influencing bacterial biofilm shape. Cell motility in the model relies on recently published experimental data. Our simulations show colony formation by immotile cells. Motile cells escape from a single colony by nutrient chemotaxis and hence no mushroom shape develops. A high number density of non-motile colonies leads to migration of motile cells onto the top of the colonies and formation of mushroom-shaped structures. This model proposes that the formation of mushroom-shaped structures can be predicted by parameters at the time of bacteria inoculation. Depending on nutrient levels and the initial number density of stalks, mushroom-shaped structures only form in a restricted regime. This opens the possibility of early manipulation of spatial pattern formation in bacterial colonies, using environmental factors. PMID:27611778

  4. Pseudomonas aeruginosa Exhibits Deficient Biofilm Formation in the Absence of Class II and III Ribonucleotide Reductases Due to Hindered Anaerobic Growth.

    Science.gov (United States)

    Crespo, Anna; Pedraz, Lucas; Astola, Josep; Torrents, Eduard

    2016-01-01

    Chronic lung infections by the ubiquitous and extremely adaptable opportunistic pathogen Pseudomonas aeruginosa correlate with the formation of a biofilm, where bacteria grow in association with an extracellular matrix and display a wide range of changes in gene expression and metabolism. This leads to increased resistance to physical stress and antibiotic therapies, while enhancing cell-to-cell communication. Oxygen diffusion through the complex biofilm structure generates an oxygen concentration gradient, leading to the appearance of anaerobic microenvironments. Ribonucleotide reductases (RNRs) are a family of highly sophisticated enzymes responsible for the synthesis of the deoxyribonucleotides, and they constitute the only de novo pathway for the formation of the building blocks needed for DNA synthesis and repair. P. aeruginosa is one of the few bacteria encoding all three known RNR classes (Ia, II, and III). Class Ia RNRs are oxygen dependent, class II are oxygen independent, and class III are oxygen sensitive. A tight control of RNR activity is essential for anaerobic growth and therefore for biofilm development. In this work we explored the role of the different RNR classes in biofilm formation under aerobic and anaerobic initial conditions and using static and continuous-flow biofilm models. We demonstrated the importance of class II and III RNR for proper cell division in biofilm development and maturation. We also determined that these classes are transcriptionally induced during biofilm formation and under anaerobic conditions. The molecular mechanism of their anaerobic regulation was also studied, finding that the Anr/Dnr system is responsible for class II RNR induction. These data can be integrated with previous knowledge about biofilms in a model where these structures are understood as a set of layers determined by oxygen concentration and contain cells with different RNR expression profiles, bringing us a step closer to the understanding of this

  5. Pseudomonas aeruginosa exhibits deficient biofilm formation in the absence of class II and III ribonucleotide reductases due to hindered anaerobic growth.

    Directory of Open Access Journals (Sweden)

    Anna eCrespo

    2016-05-01

    Full Text Available Chronic lung infections by the ubiquitous and extremely adaptable opportunistic pathogen Pseudomonas aeruginosa correlate with the formation of a biofilm, where bacteria grow in association with an extracellular matrix and display a wide range of changes in gene expression and metabolism. This leads to increased resistance to physical stress and antibiotic therapies, while enhancing cell-to-cell communication. Oxygen diffusion through the complex biofilm structure generates an oxygen concentration gradient, leading to the appearance of anaerobic microenvironments.Ribonucleotide reductases (RNRs are a family of highly sophisticated enzymes responsible for the synthesis of the deoxyribonucleotides, and they constitute the only de novo pathway for the formation of the building blocks needed for DNA synthesis and repair. P. aeruginosa is one of the few bacteria encoding all three known RNR classes (Ia, II and III. Class Ia RNRs are oxygen dependent, class II are oxygen independent, and class III are oxygen sensitive. A tight control of RNR activity is essential for anaerobic growth and therefore for biofilm development.In this work we explored the role of the different RNR classes in biofilm formation under aerobic and anaerobic initial conditions and using static and continuous-flow biofilm models. We demonstrated the importance of class II and III RNR for proper cell division in biofilm development and maturation. We also determined that these classes are transcriptionally induced during biofilm formation and under anaerobic conditions. The molecular mechanism of their anaerobic regulation was also studied, finding that the Anr/Dnr system is responsible for class II RNR induction. These data can be integrated with previous knowledge about biofilms in a model where these structures are understood as a set of layers determined by oxygen concentration and contain cells with different RNR expression profiles, bringing us a step closer to the

  6. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms

    OpenAIRE

    Wozniak, Daniel J.; Wyckoff, Timna J. O.; Starkey, Melissa; Keyser, Rebecca; Azadi, Parastoo; O'Toole, George A.; Parsek, Matthew R.

    2003-01-01

    The bacterium Pseudomonas aeruginosa causes chronic respiratory infections in cystic fibrosis (CF) patients. Such infections are extremely difficult to control because the bacteria exhibit a biofilm-mode of growth, rendering P. aeruginosa resistant to antibiotics and phagocytic cells. During the course of infection, P. aeruginosa usually undergoes a phenotypic switch to a mucoid colony, which is characterized by the overproduction of the exopolysaccharide alginate. Alginate overproducti...

  7. Predictive Computer Models for Biofilm Detachment Properties in Pseudomonas aeruginosa.

    Science.gov (United States)

    Cogan, Nick G; Harro, Janette M; Stoodley, Paul; Shirtliff, Mark E

    2016-01-01

    Microbial biofilm communities are protected against environmental extremes or clearance by antimicrobial agents or the host immune response. They also serve as a site from which microbial populations search for new niches by dispersion via single planktonic cells or by detachment by protected biofilm aggregates that, until recently, were thought to become single cells ready for attachment. Mathematically modeling these events has provided investigators with testable hypotheses for further study. Such was the case in the recent article by Kragh et al. (K. N. Kragh, J. B. Hutchison, G. Melaugh, C. Rodesney, A. E. Roberts, Y. Irie, P. Ø. Jensen, S. P. Diggle, R. J. Allen, V. Gordon, and T. Bjarnsholt, mBio 7:e00237-16, 2016, http://dx.doi.org/10.1128/mBio.00237-16), in which investigators were able to identify the differential competitive advantage of biofilm aggregates to directly attach to surfaces compared to the single-celled planktonic populations. Therefore, as we delve deeper into the properties of the biofilm mode of growth, not only do we need to understand the complexity of biofilms, but we must also account for the properties of the dispersed and detached populations and their effect on reseeding. PMID:27302761

  8. Biofilm Filtrates of Pseudomonas aeruginosa Strains Isolated from Cystic Fibrosis Patients Inhibit Preformed Aspergillus fumigatus Biofilms via Apoptosis.

    Science.gov (United States)

    Shirazi, Fazal; Ferreira, Jose A G; Stevens, David A; Clemons, Karl V; Kontoyiannis, Dimitrios P

    2016-01-01

    Pseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af) colonize cystic fibrosis (CF) patient airways. Pa culture filtrates inhibit Af biofilms, and Pa non-CF, mucoid (Muc-CF) and nonmucoid CF (NMuc-CF) isolates form an ascending inhibitory hierarchy. We hypothesized this activity is mediated through apoptosis induction. One Af and three Pa (non-CF, Muc-CF, NMuc-CF) reference isolates were studied. Af biofilm was formed in 96 well plates for 16 h ± Pa biofilm filtrates. After 24 h, apoptosis was characterized by viability dye DiBAc, reactive oxygen species (ROS) generation, mitochondrial membrane depolarization, DNA fragmentation and metacaspase activity. Muc-CF and NMuc-CF filtrates inhibited and damaged Af biofilm (pbiofilms (3.7- fold) compared to treatment with filtrates from Muc-CF- (2.5- fold) or non-CF Pa (1.7- fold). Depolarization of mitochondrial potential was greater upon exposure to NMuc-CF (2.4-fold) compared to Muc-CF (1.8-fold) or non-CF (1.25-fold) (pbiofilm, compared to control, mediated by metacaspase activation. In conclusion, filtrates from CF-Pa isolates were more inhibitory against Af biofilms than from non-CF. The apoptotic effect involves mitochondrial membrane damage associated with metacaspase activation.

  9. A three-phase in-vitro system for studying Pseudomonas aeruginosa adhesion and biofilm formation upon hydrogel contact lenses

    Directory of Open Access Journals (Sweden)

    Kohlmann Thomas

    2010-11-01

    Full Text Available Abstract Background Pseudomonas aeruginosa is commonly associated with contact lens (CL -related eye infections, for which bacterial adhesion and biofilm formation upon hydrogel CLs is a specific risk factor. Whilst P. aeruginosa has been widely used as a model organism for initial biofilm formation on CLs, in-vitro models that closely reproduce in-vivo conditions have rarely been presented. Results In the current investigation, a novel in-vitro biofilm model for studying the adherence of P. aeruginosa to hydrogel CLs was established. Nutritional and interfacial conditions similar to those in the eye of a CL wearer were created through the involvement of a solid:liquid and a solid:air interface, shear forces and a complex artificial tear fluid. Bioburdens varied depending on the CL material and biofilm maturation occurred after 72 h incubation. Whilst a range of biofilm morphologies were visualised including dispersed and adherent bacterial cells, aggregates and colonies embedded in extracellular polymer substances (EPS, EPS fibres, mushroom-like formations, and crystalline structures, a compact and heterogeneous biofilm morphology predominated on all CL materials. Conclusions In order to better understand the process of biofilm formation on CLs and to test the efficacy of CL care solutions, representative in-vitro biofilm models are required. Here, we present a three-phase biofilm model that simulates the environment in the eye of a CL wearer and thus generates biofilms which resemble those commonly observed in-situ.

  10. Characterization of membrane lipidome changes in Pseudomonas aeruginosa during biofilm growth on glass wool.

    Directory of Open Access Journals (Sweden)

    Hayette Benamara

    Full Text Available Bacteria cells within biofilms are physiologically distinct from their planktonic counterparts. In particular they are more resistant to detrimental environmental conditions. In this study, we monitored the evolution of the phospholipid composition of the inner and outer membranes of P. aeruginosa during the biofilm formation (i.e., from 1-, 2-, to 6-day-old biofilm. Lipidome analyses were performed by electrospray ionization mass spectrometry. In addition to the lipidomic analysis, the fatty acid composition was analysed by gas chromatography/mass spectrometry. We found that the lipidome alterations of the inner and the outer membranes varied with the biofilm age. These alterations in phospholipid compositions reflect a higher diversity in sessile organisms than in planktonic counterparts. The diversity is characterized by the presence of PE 30∶1, PE 31∶0 and PG 31∶0 for the lower masses as well as PE 38∶1, 38∶2, 39∶1, 39∶2 and PG 38∶0, 38∶1, 38∶2, 39∶1, 39∶2 for the higher masses. However, this lipidomic feature tends to disappear with the biofilm age, in particular the high mass phospholipids tend to disappear. The amount of branched chains phospholipids mainly located in the outer membrane decreased with the biofilm age, whereas the proportion of cyclopropylated phospholipids increased in both membranes. In bacteria present in oldest biofilms, i.e., 6-day-old, the phospholipid distribution moved closer to that of planktonic bacteria.

  11. Characterization of membrane lipidome changes in Pseudomonas aeruginosa during biofilm growth on glass wool.

    Science.gov (United States)

    Benamara, Hayette; Rihouey, Christophe; Abbes, Imen; Ben Mlouka, Mohamed Amine; Hardouin, Julie; Jouenne, Thierry; Alexandre, Stéphane

    2014-01-01

    Bacteria cells within biofilms are physiologically distinct from their planktonic counterparts. In particular they are more resistant to detrimental environmental conditions. In this study, we monitored the evolution of the phospholipid composition of the inner and outer membranes of P. aeruginosa during the biofilm formation (i.e., from 1-, 2-, to 6-day-old biofilm). Lipidome analyses were performed by electrospray ionization mass spectrometry. In addition to the lipidomic analysis, the fatty acid composition was analysed by gas chromatography/mass spectrometry. We found that the lipidome alterations of the inner and the outer membranes varied with the biofilm age. These alterations in phospholipid compositions reflect a higher diversity in sessile organisms than in planktonic counterparts. The diversity is characterized by the presence of PE 30∶1, PE 31∶0 and PG 31∶0 for the lower masses as well as PE 38∶1, 38∶2, 39∶1, 39∶2 and PG 38∶0, 38∶1, 38∶2, 39∶1, 39∶2 for the higher masses. However, this lipidomic feature tends to disappear with the biofilm age, in particular the high mass phospholipids tend to disappear. The amount of branched chains phospholipids mainly located in the outer membrane decreased with the biofilm age, whereas the proportion of cyclopropylated phospholipids increased in both membranes. In bacteria present in oldest biofilms, i.e., 6-day-old, the phospholipid distribution moved closer to that of planktonic bacteria. PMID:25265483

  12. An effective antibiofilm agent against Pseudomonas aeruginosa biofilm from traditional Thai herbal recipes used for wound treatments.

    Science.gov (United States)

    Chusri, Sasitorn; Jittanon, Wittaya; Maneenoon, Katesarin; Voravuthikunchai, Supayang Piyawan

    2013-10-01

    The presence of bacterial biofilm, particularly formed by Pseudomonas aeruginosa, has been considered an important factor responsible for wound chronicity. The objective of this study was to investigate the antibiofilm activity of water and ethanol extracts obtained from three traditional herbal recipes (THR-SK004, THR-SK010, and THR-SK011) on biofilm formation and on mature biofilm of a reference strain of P. aeruginosa. The effects of the extracts on the biofilm mass were evaluated by using crystal violet (CV) assay. The respiratory activity of preformed biofilm of P. aeruginosa after treatment with the extract was determined by MTT reduction assay. Scanning electron microscopy was used to furnish images of biofilm reduction after the recipe treatment. Tested ethanol extracts displayed antibiofilm activity, but the water extracts exhibited low biofilm inhibition activity at the tested concentrations. Remarkable reduction in biofilm formation of P. aeruginosa was found after treatment with the THR-SK010 ethanol extract (THR-SK010E). Treatments with this extract resulted in prevention of biofilm formation of P. aeruginosa on both polystyrene and glass surfaces. Almost 50% reduction in the bacterial metabolic activity in the preformed biofilm was seen after exposure to the extract-supplemented buffer for 12 hr. After a 24-hr treatment with THR-SK010E at 62.5 μg/ml, 97.3% of the preformed biofilms were destroyed. Promising antibiofilm activity was displayed by the THR-SK010 ethanol extract, suggesting further investigation to explore the possible utilization of the herbal recipe as an antibiofilm agent, especially for wound treatment. PMID:23600560

  13. Association of biofilm production with multidrug resistance among clinical isolates of Acinetobacter baumannii and Pseudomonas aeruginosa from intensive care unit

    Directory of Open Access Journals (Sweden)

    Jeetendra Gurung

    2013-01-01

    Full Text Available Background and Aims: Given choice, bacteria prefer a community-based, surface-bound colony to an individual existence. The inclination for bacteria to become surface bound is so ubiquitous in diverse ecosystems that it suggests a strong survival strategy and selective advantage for surface dwellers over their free-ranging counterparts. Virtually any surface, biotic or abiotic (animal, mineral, or vegetable is suitable for bacterial colonization and biofilm formation. Thus, a biofilm is "a functional consortium of microorganisms organized within an extensive exopolymeric matrix." Materials and Methods: The present study was undertaken to detect biofilm production from the repertoire stocks of Acinetobacter baumannii (A. baumannii and Pseudomonas aeruginosa (P. aeruginosa obtained from clinical specimens. The tube method was performed to qualitatively detect biofilm production. Results: A total of 109 isolates of both organisms were included in the study, out of which 42% (46/109 isolates showed biofilm detection. Among the biofilm producers, 57% of P. aeruginosa and 73% of A. baumannii showed multidrug resistance (MDR pattern which was statistically significant in comparison to nonbiofilm producers (P < 0.001. Conclusion: To the best of our knowledge, this is the only study to have tested the biofilm production in both P. aeruginosa and A. baumannii in a single study. Biofilm production and MDR pattern were found to be significantly higher in A. baumannii than P. aeruginosa. Antibiotic resistance was significantly higher among biofilm producing P. aeruginosa than non producers. Similarly, antibiotic resistance was significantly higher among biofilm producing A. baumannii than non producers.

  14. Inhibition of Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa biofilm formation with a class of TAGE-triazole conjugates.

    Science.gov (United States)

    Huigens, Robert W; Rogers, Steven A; Steinhauer, Andrew T; Melander, Christian

    2009-02-21

    A chemically diverse library of TAGE-triazole conjugates was synthesized utilizing click chemistry on the TAGE scaffold. This library of small molecules was screened for anti-biofilm activity and found to possess the ability of inhibiting biofilm formation against Acinetobacter baumannii, Staphylococcus aureus and Pseudomonas aeruginosa. One such compound in this library demonstrated the most potent inhibitory effect against Staphylococcus aureus biofilm formation that has been displayed by any 2-aminoimidazole derivative. PMID:19194596

  15. Bacteriophages as an alternative strategy for fighting biofilm development.

    Science.gov (United States)

    Parasion, Sylwia; Kwiatek, Magdalena; Gryko, Romuald; Mizak, Lidia; Malm, Anna

    2014-01-01

    The ability of microbes to form biofilms is an important element of their pathogenicity, and biofilm formation is a serious challenge for today's medicine. Fighting the clinical complications associated with biofilm formation is very difficult and linked to a high risk of failure, especially in a time of increasing bacterial resistance to antibiotics. Bacterial species most commonly isolated from biofilms include coagulase-negative staphylococci, Staphylococcus aureus, Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Proteus mirabilis, Klebsiella pneumoniae, Pseudomonas aeruginosa and Acinetobacter spp. The frequent failure of antibiotic therapy led researchers to look for alternative methods and experiment with the use of antibacterial factors with a mechanism of action different from that of antibiotics. Experimental studies with bacteriophages and mixtures thereof, expressing lytic properties against numerous biofilm-forming bacterial species showed that bacteriophages may both prevent biofilm formation and contribute to eradication of biofilm bacteria. A specific role is played here by phage depolymerases, which facilitate the degradation of extracellular polymeric substances (EPS) and thus the permeation of bacteriophages into deeper biofilm layers and lysis of the susceptible bacterial cells. Much hope is placed in genetic modifications of bacteriophages that would allow the equipping bacteriophages with the function of depolymerase synthesis. The use of phage cocktails prevents the development of phage-resistant bacteria.

  16. Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production

    DEFF Research Database (Denmark)

    Bagge, Niels; Schuster, Martin; Hentzer, Morten;

    2004-01-01

    expression in biofilm populations. Many genes showed small but statistically significant differential expression in response to imipenem. We identified 34 genes that were induced or repressed in biofilms exposed to imipenem more than fivefold compared to the levels of induction or repression for the controls......The lungs of cystic fibrosis (CF) patients are commonly colonized with Pseudomonas aeruginosa biofilms. Chronic endobronchial P. aeruginosa infections are impossible to eradicate with antibiotics, but intensive suppressive antibiotic therapy is essential to maintain the lung function of CF patients....... The treatment often includes beta-lactam antibiotics. How these antibiotics influence gene expression in the surviving biofilm population of P. aeruginosa is not clear. Thus, we used the microarray technology to study the effects of subinhibitory concentrations of a beta-lactam antibiotic, imipenem, on gene...

  17. The novel effect of cis-2-decenoic acid on biofilm producing Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Vahid Soheili

    2016-02-01

    Full Text Available Microbial biofilms are a main cause of many chronic infections and mortalities, such as dental caries, cystic fibrosis, osteoradionecrosis, urinary tract infections and native valve endocarditis. These polymeric matrices are sessile communities with different rules from those forms via known planktonic bacteria. One of the important biofilm-producing human pathogens is Pseudomonas aeruginosa, which causes death in the majority of people who suffer from cystic fibrosis, AIDS, burns and neutropenic cancer. To find a method for controlling the growth and resistance of P. aeruginosa biofilm, this study investigated the dispersion induction of this microorganism with a diffusible signal factor (DSF, cis-2-decenoic acid (CDA, in combination with Tobramycin as a useful antibiotic. Our findings confirmed that although CDA did not act as a dispersion inducer in this experiment, it did show an antimicrobial effect and decreased the MIC of Tobramycin. These results suggested that research on the probable new effects of DSF molecules will result in advances in the control of biofilm infections.

  18. Effects of Combined Treatment with Sansanmycin and Macrolides on Pseudomonas aeruginosa and Formation of Biofilm

    Institute of Scientific and Technical Information of China (English)

    YUE LI; YUN-YING XIE; RU-XIAN CHEN; HONG-ZHANG XU; GUO-JI ZHANG; JIN-ZHE LI; XIAO-MIAN LI

    2009-01-01

    Objective To observe the effects of combined treatment with sansanmycin and macrolides on Pseudomonas aeruginosa and formation of biofilm. Methods Micro-dilution method was used to determine the minimal inhibitory concentrations (MICs) of sansanmycin, gentamycin, carbenicillin, polymyxin B, roxithromycin, piperacillin, and tazobactam. PA1 and PA27853 biofilms were observed under optical microscope after staining and under SEM after treatment with sansanmycin at different dosages and combined treatment with sansanmycin and roxithromycin. Viable bacteria in PA1 and PA27853 biofilms were counted after treatment with sansanmycin at different dosages or combined treatment with sansanmycin and roxithromycin. Results The MIC of sansanmycin was lower than that of gentamycin and polymyxin B, but was higher than that of carbenicillin. Roxithromycin enhanced the penetration of sansanmycin to PA1 and PA27853 strains through biofilms. PA1 and PA27853 biofilms were gradually cleared with the increased dosages of sansanmycin or with the combined sansanmycin and roxithromycin. Conclusion Sub-MIC levels of roxithromycin and sansanmycin substantially inhibit the generation of biofilms and proliferation of bacteria. Therefore, combined antibiotics can be used in treatment of intractable bacterial infection.

  19. Prevalence of Pseudomonas aeruginosa and Acinetobacter spp. in subgingival biofilm and saliva of subjects with chronic periodontal infection

    Directory of Open Access Journals (Sweden)

    Renata Souto

    2014-06-01

    Full Text Available P. aeruginosa and Acinetobacter spp. are important pathogens associated with late nosocomial pneumonia in hospitalized and institutionalized individuals. The oral cavity may be a major source of these respiratory pathogens, particularly in the presence of poor oral hygiene and periodontal infection. This study investigated the prevalence of P. aeruginosa and Acinetobacter spp. in subgingival biofilm and saliva of subjects with periodontal disease or health. Samples were obtained from 55 periodontally healthy (PH and 169 chronic periodontitis (CP patients. DNA was obtained from the samples and detection of P. aeruginosa and Acinetobacter spp. was carried out by multiplex and nested PCR. P. aeruginosa and Acinetobacter spp. were detected in 40% and 45% of all samples, respectively. No significant differences in the distribution of these microorganisms between men and women, subgingival biofilm and saliva samples, patients 35 years of age, and smokers and non-smokers were observed regardless periodontal status (p > 0.05. In contrast, the frequencies of P. aeruginosa and Acinetobacter spp. in saliva and biofilm samples were significantly greater in CP than PH patients (p < 0.01. Smokers presenting P. aeruginosa and high frequencies of supragingival plaque were more likely to present CP than PH. P. aeruginosa and Acinetobacter spp. are frequently detected in the oral microbiota of CP. Poor oral hygiene, smoking and the presence of P. aeruginosa are strongly associated with periodontitis.

  20. Biofilm-forming Pseudomonas aeruginosa bacteria undergo lipopolysaccharide structural modifications and induce enhanced inflammatory cytokine response in human monocytes.

    Science.gov (United States)

    Ciornei, Cristina D; Novikov, Alexey; Beloin, Christophe; Fitting, Catherine; Caroff, Martine; Ghigo, Jean-Marc; Cavaillon, Jean-Marc; Adib-Conquy, Minou

    2010-10-01

    To determine whether growth of bacteria in biofilms triggers a specific immune response, we compared cytokine induction in human monocytes and mouse macrophages by planktonic and biofilm bacteria. We compared Pseudomonas aeruginosa and Staphylococcus aureus, two bacteria often colonizing the airways of cystic fibrosis patients. Planktonic and biofilm S. aureus induced equivalent amounts of cytokine in human monocytes. In contrast, biofilm-forming P. aeruginosa induced a higher production of tumor necrosis factor and interleukin-6 than their planktonic counterpart, both for clinical isolates and laboratory strains. This increased cytokine production was partly dependent on phagocytosis. In contrast, no difference in cytokine induction was observed with mouse macrophages. We investigated the structures of the lipopolysaccharides (LPSs) of these Gram-negative bacteria in biofilm and planktonic cultures of P. aeruginosa. Switch between the two life-styles was shown to cause several reversible LPS structure modifications affecting the lipid A and polysaccharide moieties of both clinical isolates and laboratory strains. In addition, LPS isolated from biofilm-grown bacteria induced slightly more inflammatory cytokines than that extracted from its planktonic counterpart. Our results, therefore, show that P. aeruginosa biofilm LPS undergoes structural modifications that only partially contribute to an increased inflammatory response from human monocytes. PMID:19710099

  1. Sequential Treatment of Biofilms with Aztreonam and Tobramycin Is a Novel Strategy for Combating Pseudomonas aeruginosa Chronic Respiratory Infections.

    Science.gov (United States)

    Rojo-Molinero, Estrella; Macià, María D; Rubio, Rosa; Moyà, Bartolomé; Cabot, Gabriel; López-Causapé, Carla; Pérez, José L; Cantón, Rafael; Oliver, Antonio

    2016-05-01

    Traditional therapeutic strategies to control chronic colonization in cystic fibrosis (CF) patients are based on the use of a single nebulized antibiotic. In this study, we evaluated the therapeutic efficacy and dynamics of antibiotic resistance in Pseudomonas aeruginosa biofilms under sequential therapy with inhaled aztreonam (ATM) and tobramycin (TOB). Laboratory strains PAO1, PAOMS (hypermutable), PAOMA (mucoid), and PAOMSA (mucoid and hypermutable) and two hypermutable CF strains, 146-HSE (Liverpool epidemic strain [LES-1]) and 1089-HSE (ST1089), were used. Biofilms were developed using the flow cell system. Mature biofilms were challenged with peak and 1/10-peak concentrations of ATM (700 mg/liter and 70 mg/liter), TOB (1,000 mg/liter and 100 mg/liter), and their alternations (ATM/TOB/ATM and TOB/ATM/TOB) for 2 (t = 2), 4 (t = 4), and 6 days (t = 6). The numbers of viable cells (CFU) and resistant mutants were determined. Biofilm structural dynamics were monitored by confocal laser scanning microscopy and processed with COMSTAT and IMARIS software programs. TOB monotherapy produced an intense decrease in CFU that was not always correlated with a reduction in biomass and/or a bactericidal effect on biofilms, particularly for the CF strains. The ATM monotherapy bactericidal effect was lower, but effects on biofilm biomass and/or structure, including intense filamentation, were documented. The alternation of TOB and ATM led to an enhancement of the antibiofilm activity against laboratory and CF strains compared to that with the individual regimens, potentiating the bactericidal effect and/or the reduction in biomass, particularly at peak concentrations. Resistant mutants were not documented in any of the regimens at the peak concentrations and only anecdotally at the 1/10-peak concentrations. These results support the clinical evaluation of sequential regimens with inhaled antibiotics in CF, as opposed to the current maintenance treatments with just one

  2. Regulation of biofilm formation in Pseudomonas aeruginosa by quorum sensing%群体感应对铜绿假单胞菌生物被膜形成的调控

    Institute of Scientific and Technical Information of China (English)

    黄媛媛; 宋水山

    2011-01-01

    生物被膜是一种与浮游细胞相对应的生长方式,由细菌和自身分泌的包外基质组成.铜绿假单胞菌是研究这一生长方式的模式生物.在过去十年,对铜绿假单胞菌生物被膜的研究已取得显著进展.群体感应(QS)的细胞沟通机制在铜绿假单胞菌生物被膜形成中发挥着重要作用.介绍生物被膜的特点,并重点讨论了QS和生物被膜之间的关系.%Compared with planktonic cells, bacterial biofilm is a kind of particular colonial life style which consists of bacteria and their extracellular matrix. Pseudomonas aeruginosa has become a model organism for studying biofilm formation. Over the past decade, significant strides have been made towards understanding biofilm development in Pseudomonas aeruginosa. Quorum sensing (QS)has been found to play a role in Pseudomonas aeruginosa biofilm formation. This paper introduced the biofilm characteristics,focusing on the relationship between QS and biofilm formation in Pseudomonas aeruginosa biofilm.

  3. An investigation of Pseudomonas aeruginosa biofilm growth on novel nanocellulose fibre dressings.

    Science.gov (United States)

    Powell, Lydia C; Khan, Saira; Chinga-Carrasco, Gary; Wright, Chris J; Hill, Katja E; Thomas, David W

    2016-02-10

    Nanocellulose from wood is a novel biomaterial, which is highly fibrillated at the nanoscale. This affords the material a number of advantages, including self-assembly, biodegradability and the ability to absorb and retain moisture, which highlights its potential usefulness in clinical wound-dressing applications. In these in vitro studies, the wound pathogen Pseudomonas aeruginosa PAO1 was used to assess the ability of two nanocellulose materials to impair bacterial growth (nanocelluloses had a relatively small fraction of residual fibres (nanocellulose films and increased cell death when compared to a commercial control wound dressing, Aquacel(®). Nanocellulose suspensions inhibited bacterial growth, whilst UV-vis spectrophotometry and laser profilometry also revealed the ability of nanocellulose to form smooth, translucent films. Atomic force microscopy studies of the surface properties of nanocellulose demonstrated that PAO1 exhibited markedly contrasting morphology when grown on the nanocellulose film surfaces compared to an Aquacel(®) control dressing (p<0.05). This study highlights the potential utility of these biodegradable materials, from a renewable source, for wound dressing applications in the prevention and treatment of biofilm development. PMID:26686120

  4. Presence of Pseudomonas aeruginosa influences biofilm formation and surface protein expression of Staphylococcus aureus.

    Science.gov (United States)

    Kumar, Amit; Ting, Yen Peng

    2015-11-01

    Although Staphylococcus aureus and Pseudomonas aeruginosa can individually colonize and infect their hosts, the commensalistic effect of the two is more tenacious and lethal. In this study, it was shown that in co-culture with P. aeruginosa, a sub-population of S. aureus exhibited improved resistance to kanamycin by selection of small colony variant (SCV) phenotype. Additionally, biofilm formation by the two bacteria was denser in the co-culture, compared with biofilm formed in individual pure cultures. Using Atomic Force Microscope (AFM) force spectroscopy for single cells, it was demonstrated that S. aureus cultured in the presence of P. aeruginosa bound more tenaciously to substrates. Surface-shaved peptides were isolated and identified using ultra-performance liquid chromatography-quadrupole-time of flight and a homology search program spider. Results indicated that serine-rich adhesin, extracellular matrix binding protein and other putative adhesion proteins could be responsible for the enhanced attachment of S. aureus in the co-culture. Besides, several other proteins were differentially expressed, indicating the occurrence of a range of other interactions. Of particular interest was a multidrug resistant protein named ABC transporter permease which is known to expel xenobiotics out of the cells. Positive regulation of this protein could be involved in the SCV selection of S. aureus in the co-culture. PMID:25925222

  5. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation.

    Science.gov (United States)

    O'Loughlin, Colleen T; Miller, Laura C; Siryaporn, Albert; Drescher, Knut; Semmelhack, Martin F; Bassler, Bonnie L

    2013-10-29

    Quorum sensing is a chemical communication process that bacteria use to regulate collective behaviors. Disabling quorum-sensing circuits with small molecules has been proposed as a potential strategy to prevent bacterial pathogenicity. The human pathogen Pseudomonas aeruginosa uses quorum sensing to control virulence and biofilm formation. Here, we analyze synthetic molecules for inhibition of the two P. aeruginosa quorum-sensing receptors, LasR and RhlR. Our most effective compound, meta-bromo-thiolactone (mBTL), inhibits both the production of the virulence factor pyocyanin and biofilm formation. mBTL also protects Caenorhabditis elegans and human lung epithelial cells from killing by P. aeruginosa. Both LasR and RhlR are partially inhibited by mBTL in vivo and in vitro; however, RhlR, not LasR, is the relevant in vivo target. More potent antagonists do not exhibit superior function in impeding virulence. Because LasR and RhlR reciprocally control crucial virulence factors, appropriately tuning rather than completely inhibiting their activities appears to hold the key to blocking pathogenesis in vivo.

  6. Identification of small molecules inhibiting diguanylate cyclases to control bacterial biofilm development.

    Science.gov (United States)

    Sambanthamoorthy, Karthik; Luo, Chunyuan; Pattabiraman, Nagarajan; Feng, Xiarong; Koestler, Benjamin; Waters, Christopher M; Palys, Thomas J

    2014-01-01

    Biofilm formation by pathogenic bacteria is an important virulence factor in the development of numerous chronic infections, thereby causing a severe health burden. Many of these infections cannot be resolved, as bacteria in biofilms are resistant to the host's immune defenses and antibiotic therapy. An urgent need for new strategies to treat biofilm-based infections is critically needed. Cyclic di-GMP (c-di-GMP) is a widely conserved second-messenger signal essential for biofilm formation. The absence of this signalling system in higher eukaryotes makes it an attractive target for the development of new anti-biofilm agents. In this study, the results of an in silico pharmacophore-based screen to identify small-molecule inhibitors of diguanylate cyclase (DGC) enzymes that synthesize c-di-GMP are described. Four small molecules, LP 3134, LP 3145, LP 4010 and LP 1062 that antagonize these enzymes and inhibit biofilm formation by Pseudomonas aeruginosa and Acinetobacter baumannii in a continuous-flow system are reported. All four molecules dispersed P. aeruginosa biofilms and inhibited biofilm development on urinary catheters. One molecule dispersed A. baumannii biofilms. Two molecules displayed no toxic effects on eukaryotic cells. These molecules represent the first compounds identified from an in silico screen that are able to inhibit DGC activity to prevent biofilm formation. PMID:24117391

  7. Effects of quorum sensing autoinducer degradation gene on virulence and biofilm formation of Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The aiiA gene from Bacillus thuringiensis was cloned into the Pseudomonas/E. coli shuttle vector and transformed into Pseudomonas aeruginosa strain PAO1. Western blotting showed that the AiiA protein was expressed in PAO1. After induction by IPTG for 6 h and 18 h, expression of the aiiA gene in PAO1 completely degraded the quorum sensing autoinducers N-acylhomoserine lactones (AHLs): N-oxododecanoyl-L-homoserine lactone (OdDHL) and N-butyryl-L-homoserine lactone (BHL). The re- duced amount of AHLs in PAO1 was also correlated with decreased expression and production of several virulence factors such as elastase and pyocyanin. AiiA expression also influenced bacterial swarming motility. Most importantly, our studies indicated that aiiA played significant roles in P. aeruginosa biofilm formation and dispersion, as observed by the differences of the biofilm formation on liquid and solid surfaces, and biofilm structures under a scanning electron microscope.

  8. Effects of quorum sensing autoinducer degradation gene on virulence and biofilm formation of Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    WANG Yao; DAI Yue; ZHANG Yong; HU YangBo; YANG BaoYu; CHEN ShiYun

    2007-01-01

    The aiiA gene from Bacillus thuringiensis was cloned into the Pseudomonas/E. coli shuttle vector and transformed into Pseudomonas aeruginosa strain PAO1. Western blotting showed that the AiiA protein was expressed in PAO1. After induction by IPTG for 6 h and 18 h, expression of the aiiA gene in PAO1completely degraded the quorum sensing autoinducers N-acylhomoserine lactones (AHLs):N-oxododecanoyI-L-homoserine lactone (OdDHL) and N-butyryI-L-homoserine lactone (BHL). The reduced amount of AHLs in PAO1 was also correlated with decreased expression and production of several virulence factors such as elastase and pyocyanin. AiiA expression also influenced bacterial swarming motility. Most importantly, our studies indicated that aiiA played significant roles in P.aeruginosa biofilm formation and dispersion, as observed by the differences of the biofilm formation on liquid and solid surfaces, and biofilm structures under a scanning electron microscope.

  9. Pathogenic effects of biofilm with chronic pseudomonas aeruginosa lung infection in rats

    Institute of Scientific and Technical Information of China (English)

    Ping Yan; Yiqiang Chen; Zhijun Song; Hong Wu; Jinliang Kong; Xuejun Qin

    2008-01-01

    Objective: To establish an animal model of P.aeruginosa biofilm associated with chronic pulmonary infection and investigate the pathogenic effects of biofilm. Methods: Experiments in vitro, measuring the MICS, MBCS of ievofloxacin(LFX), ceftazidime(CAZ) in PAO579 in alginate beads and planktonic PAO579. Rats were challenged with 0.1 ml of PAO579(109CFU/ml) in alginate beads or 0.1 ml of planktonic PAO579(109CFU/ml), 3,7,14 days after challenging, bacteriological, pathological features were observed. Results: The MICS, MBCS of LFX, CAZ in PAO579 in alginate beads were higher than those in planktonic PAO579 in vitro. CFU/lung in alginate beads group was significantly higher than that in planktonic bacteria group(P = 0.002, P =0.004, P = 0.002, respectively); macroscopic lung pathology and the inflammation in alginate beads group were significantly more severe compared to those in planktonic bacteria group in vivo. Conclusion: P.aeruginosa biofilm protected bacterium from killing of antibiotics and might mediate the host immune damage in the lung tissue and made bacterium evade the host immune defense.

  10. Pseudomonas aeruginosa Diversification during Infection Development in Cystic Fibrosis Lungs—A Review

    Science.gov (United States)

    Sousa, Ana Margarida; Pereira, Maria Olívia

    2014-01-01

    Pseudomonas aeruginosa is the most prevalent pathogen of cystic fibrosis (CF) lung disease. Its long persistence in CF airways is associated with sophisticated mechanisms of adaptation, including biofilm formation, resistance to antibiotics, hypermutability and customized pathogenicity in which virulence factors are expressed according the infection stage. CF adaptation is triggered by high selective pressure of inflamed CF lungs and by antibiotic treatments. Bacteria undergo genetic, phenotypic, and physiological variations that are fastened by the repeating interplay of mutation and selection. During CF infection development, P. aeruginosa gradually shifts from an acute virulent pathogen of early infection to a host-adapted pathogen of chronic infection. This paper reviews the most common changes undergone by P. aeruginosa at each stage of infection development in CF lungs. The comprehensive understanding of the adaptation process of P. aeruginosa may help to design more effective antimicrobial treatments and to identify new targets for future drugs to prevent the progression of infection to chronic stages. PMID:25438018

  11. Pseudomonas aeruginosa Diversification during Infection Development in Cystic Fibrosis Lungs—A Review

    Directory of Open Access Journals (Sweden)

    Ana Margarida Sousa

    2014-08-01

    Full Text Available Pseudomonas aeruginosa is the most prevalent pathogen of cystic fibrosis (CF lung disease. Its long persistence in CF airways is associated with sophisticated mechanisms of adaptation, including biofilm formation, resistance to antibiotics, hypermutability and customized pathogenicity in which virulence factors are expressed according the infection stage. CF adaptation is triggered by high selective pressure of inflamed CF lungs and by antibiotic treatments. Bacteria undergo genetic, phenotypic, and physiological variations that are fastened by the repeating interplay of mutation and selection. During CF infection development, P. aeruginosa gradually shifts from an acute virulent pathogen of early infection to a host-adapted pathogen of chronic infection. This paper reviews the most common changes undergone by P. aeruginosa at each stage of infection development in CF lungs. The comprehensive understanding of the adaptation process of P. aeruginosa may help to design more effective antimicrobial treatments and to identify new targets for future drugs to prevent the progression of infection to chronic stages.

  12. Anti-Biofilm Activities from Marine Cold Adapted Bacteria Against Staphylococci and Pseudomonas aeruginosa

    OpenAIRE

    Papa, Rosanna; Selan, Laura; Parrilli, Ermenegilda; Tilotta, Marco; Sannino, Filomena; Feller, Georges; Tutino, Maria L.; Artini, Marco

    2015-01-01

    Microbial biofilms have great negative impacts on the world’s economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacte...

  13. Anti-biofilm activities from marine cold adapted bacteria against staphylococci and Pseudomonas aeruginosa

    OpenAIRE

    Rosanna ePapa; Laura eSelan; Ermenegilda eParrilli; Marco eTilotta; Filomena eSannino; Georges eFeller; Maria Luisa eTutino; Marco eArtini

    2015-01-01

    Microbial biofilms have great negative impacts on the world’s economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacte...

  14. Microbial pathogenesis and biofilm development

    DEFF Research Database (Denmark)

    Reisner, A.; Høiby, N.; Tolker-Nielsen, Tim;

    2004-01-01

    cycles of different microorganisms will eventually lead to improved treatments. Several bacteria have evolved specific strategies for virulent colonization of humans in addition to their otherwise harmless establishment as environmental inhabitants. In many such cases biofilm development seems to play...... permit bacterial growth to occur. In laboratory model systems the growth of the surface-associated bacteria is supported by the nutrient supply in the moving or standing liquid. A benchmark of biofilm formation by several organisms in vitro is the development of three-dimensional structures that have...... been termed 'maturation', which is thought to be mediated by a differentiation process. Maturation into late stages of biofilm development resulting in stable and robust structures may require the formation of a matrix of extracellular polymeric substances (EPS), which are most often assumed to consist...

  15. Presence of exoY, exoS, exoU and exoT genes, antibiotic resistance and biofilm production among Pseudomonas aeruginosa isolates in Northwest Iran

    OpenAIRE

    Azimi, Somayeh; Kafil, Hossein Samadi; Baghi, Hossein Bannazadeh; Shokrian, Saeed; Najaf, Khadijeh; ASGHARZADEH, Mohammad; Yousefi, Mehdi; Shahrivar, Firooz; Aghazadeh, Mohammad

    2016-01-01

    Background: Pseudomonas aeruginosa, as Gram-negative rod bacilli, has an important role in human infection. In the present study we aimed to investigate the presence of exo genes and biofilm production among Pseudomonas aeruginosa isolates in Northwest Iran. Material and methods: 160 isolates of P. aeruginosa were collected and identified by biochemical tests and were characterized for antibiotic resistance. Biofilm production was evaluated by microtiter plate assay and the presence of exo ge...

  16. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms

    DEFF Research Database (Denmark)

    Riedel, K.; Hentzer, Morten; Geisenberger, O.;

    2001-01-01

    were used to visualize AHL-mediated communication in mixed biofilms, which were cultivated either in artificial flow chambers or in alginate beads in mouse lung tissue. In both model systems B. cepacia was capable of perceiving the AHL signals produced by A aeruginosa, while the latter strain did...... not respond to the molecules produced by B. cepacia. Measurements of extracellular proteolytic activities of defined quorum-sensing mutants grown in media complemented with AHL extracts prepared from culture supernatants of various wild-type and mutant strains supported the view of unidirectional signalling...

  17. N-acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms

    DEFF Research Database (Denmark)

    Riedel, K; Hentzer, Morten; Geisenberger, O;

    2001-01-01

    were used to visualize AHL-mediated communication in mixed biofilms, which were cultivated either in artificial flow chambers or in alginate beads in mouse lung tissue. In both model systems B. cepacia was capable of perceiving the AHL signals produced by P. aeruginosa, while the latter strain did...... not respond to the molecules produced by B. cepacia. Measurements of extracellular proteolytic activities of defined quorum-sensing mutants grown in media complemented with AHL extracts prepared from culture supernatants of various wild-type and mutant strains supported the view of unidirectional signalling...

  18. Effect of nitrofurans and NO generators on biofilm formation by Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370.

    Science.gov (United States)

    Zaitseva, Julia; Granik, Vladimir; Belik, Alexandr; Koksharova, Olga; Khmel, Inessa

    2009-06-01

    Antibacterial drugs in the nitrofuran series, such as nitrofurazone, furazidin, nitrofurantoin and nifuroxazide, as well as the nitric oxide generators sodium nitroprusside and isosorbide mononitrate in concentrations that do not suppress bacterial growth, were shown to increase the capacity of pathogenic bacteria Pseudomonas aeruginosa PAO1 and Burkholderia cenocepacia 370 to form biofilms. At 25-100microg/ml, nitrofurans 2-2.5-fold enhanced biofilm formation of P. aeruginosa PAO1, and NO donors 3-6-fold. For B. cenocepacia 370, the enhancement was 2-5-fold (nitrofurans) and 4.5-fold (sodium nitroprusside), respectively. PMID:19460431

  19. Phenotypes selected during chronic lung infection in cystic fibrosis patients: implications for the treatment of Pseudomonas aeruginosa biofilm infections.

    Science.gov (United States)

    Ciofu, Oana; Mandsberg, Lotte F; Wang, Hengzhuang; Høiby, Niels

    2012-07-01

    During chronic lung infection of patients with cystic fibrosis, Pseudomonas aeruginosa can survive for long periods of time under the challenging selective pressure imposed by the immune system and antibiotic treatment as a result of its biofilm mode of growth and adaptive evolution mediated by genetic variation. Mucoidy, hypermutability and acquirement of mutational antibiotic resistance are important adaptive phenotypes that are selected during chronic P. aeruginosa infection. This review dicsusses the role played by these phenotypes for the tolerance of biofilms to antibiotics and show that mucoidy and hypermutability change the architecture of in vitro formed biofilms and lead to increase tolerance to antibiotics. Production of high levels of beta-lactamase impairs penetration of beta-lactam antibiotics due to inactivation of the antibiotic. In conclusion, these data underline the importance of biofilm prevention strategies by early aggressive antibiotic prophylaxis or therapy before phenotypic diversification during chronic lung infection of patients with cystic fibrosis.

  20. Pseudomonas aeruginosa biofilm-associated homoserine lactone C12 rapidly activates apoptosis in airway epithelia.

    Science.gov (United States)

    Schwarzer, Christian; Fu, Zhu; Patanwala, Maria; Hum, Lauren; Lopez-Guzman, Mirielle; Illek, Beate; Kong, Weidong; Lynch, Susan V; Machen, Terry E

    2012-05-01

    Pseudomonas aeruginosa (PA) forms biofilms in lungs of cystic fibrosis (CF) patients, a process regulated by quorum-sensing molecules including N-(3-oxododecanoyl)-l-homoserine lactone (C12). C12 (10-100 µM) rapidly triggered events commonly associated with the intrinsic apoptotic pathway in JME (CF ΔF508CFTR, nasal surface) epithelial cells: depolarization of mitochondrial (mito) membrane potential (Δψ(mito)) and release of cytochrome C (cytoC) from mitos into cytosol and activation of caspases 3/7, 8 and 9. C12 also had novel effects on the endoplasmic reticulum (release of both Ca(2+) and ER-targeted GFP and oxidized contents into the cytosol). Effects began within 5 min and were complete in 1-2 h. C12 caused similar activation of caspases and release of cytoC from mitos in Calu-3 (wtCFTR, bronchial gland) cells, showing that C12-triggered responses occurred similarly in different airway epithelial types. C12 had nearly identical effects on three key aspects of the apoptosis response (caspase 3/7, depolarization of Δψ(mito) and reduction of redox potential in the ER) in JME and CFTR-corrected JME cells (adenoviral expression), showing that CFTR was likely not an important regulator of C12-triggered apoptosis in airway epithelia. Exposure of airway cultures to biofilms from PAO1wt caused depolarization of Δψ(mito) and increases in Ca(cyto) like 10-50 µM C12. In contrast, biofilms from PAO1ΔlasI (C12 deficient) had no effect, suggesting that C12 from P. aeruginosa biofilms may contribute to accumulation of apoptotic cells that cannot be cleared from CF lungs. A model to explain the effects of C12 is proposed.

  1. Phenotypes of non-attached Pseudomonas aeruginosa aggregates resemble surface attached biofilm.

    Directory of Open Access Journals (Sweden)

    Morten Alhede

    Full Text Available For a chronic infection to be established, bacteria must be able to cope with hostile conditions such as low iron levels, oxidative stress, and clearance by the host defense, as well as antibiotic treatment. It is generally accepted that biofilm formation facilitates tolerance to these adverse conditions. However, microscopic investigations of samples isolated from sites of chronic infections seem to suggest that some bacteria do not need to be attached to surfaces in order to establish chronic infections. In this study we employed scanning electron microscopy, confocal laser scanning microscopy, RT-PCR as well as traditional culturing techniques to study the properties of Pseudomonas aeruginosa aggregates. We found that non-attached aggregates from stationary-phase cultures have comparable growth rates to surface attached biofilms. The growth rate estimations indicated that, independently of age, both aggregates and flow-cell biofilm had the same slow growth rate as a stationary phase shaking cultures. Internal structures of the aggregates matrix components and their capacity to survive otherwise lethal treatments with antibiotics (referred to as tolerance and resistance to phagocytes were also found to be strikingly similar to flow-cell biofilms. Our data indicate that the tolerance of both biofilms and non-attached aggregates towards antibiotics is reversible by physical disruption. We provide evidence that the antibiotic tolerance is likely to be dependent on both the physiological states of the aggregates and particular matrix components. Bacterial surface-attachment and subsequent biofilm formation are considered hallmarks of the capacity of microbes to cause persistent infections. We have observed non-attached aggregates in the lungs of cystic fibrosis patients; otitis media; soft tissue fillers and non-healing wounds, and we propose that aggregated cells exhibit enhanced survival in the hostile host environment, compared with non

  2. Evolution of Ecological Diversity in Biofilms of Pseudomonas aeruginosa by Altered Cyclic Diguanylate Signaling

    Science.gov (United States)

    Flynn, Kenneth M.; Dowell, Gabrielle; Johnson, Thomas M.; Koestler, Benjamin J.; Waters, Christopher M.

    2016-01-01

    ABSTRACT The ecological and evolutionary forces that promote and maintain diversity in biofilms are not well understood. To quantify these forces, three Pseudomonas aeruginosa populations were experimentally evolved from strain PA14 in a daily cycle of attachment, assembly, and dispersal for 600 generations. Each biofilm population evolved diverse colony morphologies and mutator genotypes defective in DNA mismatch repair. This diversity enhanced population fitness and biofilm output, owing partly to rare, early colonizing mutants that enhanced attachment of others. Evolved mutants exhibited various levels of the intracellular signal cyclic-di-GMP, which associated with their timing of adherence. Manipulating cyclic-di-GMP levels within individual mutants revealed a network of interactions in the population that depended on various attachment strategies related to this signal. Diversification in biofilms may therefore arise and be reinforced by initial colonists that enable community assembly. IMPORTANCE How biofilm diversity assembles, evolves, and contributes to community function is largely unknown. This presents a major challenge for understanding evolution during chronic infections and during the growth of all surface-associated microbes. We used experimental evolution to probe these dynamics and found that diversity, partly related to altered cyclic-di-GMP levels, arose and persisted due to the emergence of ecological interdependencies related to attachment patterns. Clonal isolates failed to capture population attributes, which points to the need to account for diversity in infections. More broadly, this study offers an experimental framework for linking phenotypic variation to distinct ecological strategies in biofilms and for studying eco-evolutionary interactions. PMID:27021563

  3. Facultative control of matrix production optimizes competitive fitness in Pseudomonas aeruginosa PA14 biofilm models.

    Science.gov (United States)

    Madsen, Jonas S; Lin, Yu-Cheng; Squyres, Georgia R; Price-Whelan, Alexa; de Santiago Torio, Ana; Song, Angela; Cornell, William C; Sørensen, Søren J; Xavier, Joao B; Dietrich, Lars E P

    2015-12-01

    As biofilms grow, resident cells inevitably face the challenge of resource limitation. In the opportunistic pathogen Pseudomonas aeruginosa PA14, electron acceptor availability affects matrix production and, as a result, biofilm morphogenesis. The secreted matrix polysaccharide Pel is required for pellicle formation and for colony wrinkling, two activities that promote access to O2. We examined the exploitability and evolvability of Pel production at the air-liquid interface (during pellicle formation) and on solid surfaces (during colony formation). Although Pel contributes to the developmental response to electron acceptor limitation in both biofilm formation regimes, we found variation in the exploitability of its production and necessity for competitive fitness between the two systems. The wild type showed a competitive advantage against a non-Pel-producing mutant in pellicles but no advantage in colonies. Adaptation to the pellicle environment selected for mutants with a competitive advantage against the wild type in pellicles but also caused a severe disadvantage in colonies, even in wrinkled colony centers. Evolution in the colony center produced divergent phenotypes, while adaptation to the colony edge produced mutants with clear competitive advantages against the wild type in this O2-replete niche. In general, the structurally heterogeneous colony environment promoted more diversification than the more homogeneous pellicle. These results suggest that the role of Pel in community structure formation in response to electron acceptor limitation is unique to specific biofilm models and that the facultative control of Pel production is required for PA14 to maintain optimum benefit in different types of communities.

  4. Single-cell twitching chemotaxis in developing biofilms.

    Science.gov (United States)

    Oliveira, Nuno M; Foster, Kevin R; Durham, William M

    2016-06-01

    Bacteria form surface-attached communities, known as biofilms, which are central to bacterial biology and how they affect us. Although surface-attached bacteria often experience strong chemical gradients, it remains unclear whether single cells can effectively perform chemotaxis on surfaces. Here we use microfluidic chemical gradients and massively parallel automated tracking to study the behavior of the pathogen Pseudomonas aeruginosa during early biofilm development. We show that individual cells can efficiently move toward chemoattractants using pili-based "twitching" motility and the Chp chemosensory system. Moreover, we discovered the behavioral mechanism underlying this surface chemotaxis: Cells reverse direction more frequently when moving away from chemoattractant sources. These corrective maneuvers are triggered rapidly, typically before a wayward cell has ventured a fraction of a micron. Our work shows that single bacteria can direct their motion with submicron precision and reveals the hidden potential for chemotaxis within bacterial biofilms. PMID:27222583

  5. Characterization of the Newly Isolated Lytic Bacteriophages KTN6 and KT28 and Their Efficacy against Pseudomonas aeruginosa Biofilm.

    Directory of Open Access Journals (Sweden)

    Katarzyna Danis-Wlodarczyk

    Full Text Available We here describe two novel lytic phages, KT28 and KTN6, infecting Pseudomonas aeruginosa, isolated from a sewage sample from an irrigated field near Wroclaw, in Poland. Both viruses show characteristic features of Pbunalikevirus genus within the Myoviridae family with respect to shape and size of head/tail, as well as LPS host receptor recognition. Genome analysis confirmed the similarity to other PB1-related phages, ranging between 48 and 96%. Pseudomonas phage KT28 has a genome size of 66,381 bp and KTN6 of 65,994 bp. The latent period, burst size, stability and host range was determined for both viruses under standard laboratory conditions. Biofilm eradication efficacy was tested on peg-lid plate assay and PET membrane surface. Significant reduction of colony forming units was observed (70-90% in 24 h to 72 h old Pseudomonas aeruginosa PAO1 biofilm cultures for both phages. Furthermore, a pyocyanin and pyoverdin reduction tests reveal that tested phages lowers the amount of both secreted dyes in 48-72 h old biofilms. Diffusion and goniometry experiments revealed the increase of diffusion rate through the biofilm matrix after phage application. These characteristics indicate these phages could be used to prevent Pseudomonas aeruginosa infections and biofilm formation. It was also shown, that PB1-related phage treatment of biofilm caused the emergence of stable phage-resistant mutants growing as small colony variants.

  6. Multivalency effects on Pseudomonas aeruginosa biofilm inhibition and dispersal by glycopeptide dendrimers targeting lectin LecA.

    Science.gov (United States)

    Bergmann, Myriam; Michaud, Gaëlle; Visini, Ricardo; Jin, Xian; Gillon, Emilie; Stocker, Achim; Imberty, Anne; Darbre, Tamis; Reymond, Jean-Louis

    2016-01-01

    The galactose specific lectin LecA partly mediates the formation of antibiotic resistant biofilms by Pseudomonas aeruginosa, an opportunistic pathogen causing lethal airways infections in immunocompromised and cystic fibrosis patients, suggesting that preventing LecA binding to natural saccharides might provide new opportunities for treatment. Here 8-fold (G3) and 16-fold (G4) galactosylated analogs of GalAG2, a tetravalent G2 glycopeptide dendrimer LecA ligand and P. aeruginosa biofilm inhibitor, were obtained by convergent chloroacetyl thioether (ClAc) ligation between 4-fold or 8-fold chloroacetylated dendrimer cores and digalactosylated dendritic arms. Hemagglutination inhibition, isothermal titration calorimetry and biofilm inhibition assays showed that G3 dendrimers bind LecA slightly better than their parent G2 dendrimers and induce complete biofilm inhibition and dispersal of P. aeruginosa biofilms, while G4 dendrimers show reduced binding and no biofilm inhibition. A binding model accounting for the observed saturation of glycopeptide dendrimer galactosyl groups and LecA binding sites is proposed based on the crystal structure of a G3 dendrimer LecA complex.

  7. A phytoanticipin derivative, sodium houttuyfonate, induces in vitro synergistic effects with levofloxacin against biofilm formation by Pseudomonas aeruginosa.

    Science.gov (United States)

    Shao, Jing; Cheng, Huijuan; Wang, Changzhong; Wang, Yan

    2012-01-01

    Antibiotic resistance has become the main deadly factor in infections, as bacteria can protect themselves by hiding in a self-constructed biofilm. Consequently, more attention is being paid to the search for "non-antibiotic drugs" to solve this problem. Phytoanticipins, the natural antibiotics from plants, could be a suitable alternative, but few works on this aspect have been reported. In this study, a preliminary study on the synergy between sodium houttuyfonate (SH) and levofloxacin (LFX) against the biofilm formation of Pseudomonas aeruginosa was performed. The minimal inhibitory concentrations (MIC) of LFX and SH, anti-biofilm formation and synergistic effect on Pseudomonas aeruginosa, and quantification of alginate were determined by the microdilution method, crystal violet (CV) assay, checkerboard method, and hydroxybiphenyl colorimetry. The biofilm morphology of Pseudomonas aeruginosa was observed by fluorescence microscope and scanning electric microscope (SEM). The results showed that: (i) LFX and SH had an obvious synergistic effect against Pseudomonas aeruginosa with MIC values of 0.25 μg/mL and 128 μg/mL, respectively; (ii) ½ × MIC SH combined with 2 × MIC LFX could suppress the biofilm formation of Pseudomonas aeruginosa effectively, with up to 73% inhibition; (iii) the concentration of alginate decreased dramatically by a maximum of 92% after treatment with the combination of antibiotics; and (iv) more dead cells by fluorescence microscope and more removal of extracellular polymeric structure (EPS) by SEM were observed after the combined treatment of LFX and SH. Our experiments demonstrate the promising future of this potent antimicrobial agent against biofilm-associated infections. PMID:22996347

  8. A Phytoanticipin Derivative, Sodium Houttuyfonate, Induces in Vitro Synergistic Effects with Levofloxacin against Biofilm Formation by Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Jing Shao

    2012-09-01

    Full Text Available Antibiotic resistance has become the main deadly factor in infections, as bacteria can protect themselves by hiding in a self-constructed biofilm. Consequently, more attention is being paid to the search for “non-antibiotic drugs” to solve this problem. Phytoanticipins, the natural antibiotics from plants, could be a suitable alternative, but few works on this aspect have been reported. In this study, a preliminary study on the synergy between sodium houttuyfonate (SH and levofloxacin (LFX against the biofilm formation of Pseudomonas aeruginosa was performed. The minimal inhibitory concentrations (MIC of LFX and SH, anti-biofilm formation and synergistic effect on Pseudomonas aeruginosa, and quantification of alginate were determined by the microdilution method, crystal violet (CV assay, checkerboard method, and hydroxybiphenyl colorimetry. The biofilm morphology of Pseudomonas aeruginosa was observed by fluorescence microscope and scanning electric microscope (SEM. The results showed that: (i LFX and SH had an obvious synergistic effect against Pseudomonas aeruginosa with MIC values of 0.25 μg/mL and 128 μg/mL, respectively; (ii ½ × MIC SH combined with 2 × MIC LFX could suppress the biofilm formation of Pseudomonas aeruginosa effectively, with up to 73% inhibition; (iii the concentration of alginate decreased dramatically by a maximum of 92% after treatment with the combination of antibiotics; and (iv more dead cells by fluorescence microscope and more removal of extracellular polymeric structure (EPS by SEM were observed after the combined treatment of LFX and SH. Our experiments demonstrate the promising future of this potent antimicrobial agent against biofilm-associated infections.

  9. The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Liao, Julie; Schurr, Michael J; Sauer, Karin

    2013-08-01

    A defining characteristic of biofilms is antibiotic tolerance that can be up to 1,000-fold greater than that of planktonic cells. In Pseudomonas aeruginosa, biofilm tolerance to antimicrobial agents requires the biofilm-specific MerR-type transcriptional regulator BrlR. However, the mechanism by which BrlR mediates biofilm tolerance has not been elucidated. Genome-wide transcriptional profiling indicated that brlR was required for maximal expression of genes associated with antibiotic resistance, in particular those encoding the multidrug efflux pumps MexAB-OprM and MexEF-OprN. Chromatin immunoprecipitation (ChIP) analysis revealed a direct regulation of these genes by BrlR, with DNA binding assays confirming BrlR binding to the promoter regions of the mexAB-oprM and mexEF-oprN operons. Quantitative reverse transcriptase PCR (qRT-PCR) analysis further indicated BrlR to be an activator of mexAB-oprM and mexEF-oprN gene expression. Moreover, immunoblot analysis confirmed increased MexA abundance in cells overexpressing brlR. Inactivation of both efflux pumps rendered biofilms significantly more susceptible to five different classes of antibiotics by affecting MIC but not the recalcitrance of biofilms to killing by bactericidal agents. Overexpression of either efflux pump in a ΔbrlR strain partly restored tolerance of ΔbrlR biofilms to antibiotics. Expression of brlR in mutant biofilms lacking both efflux pumps partly restored antimicrobial tolerance of biofilms to wild-type levels. Our results indicate that BrlR acts as an activator of multidrug efflux pumps to confer tolerance to P. aeruginosa biofilms and to resist the action of antimicrobial agents.

  10. Candida Biofilms: Development, Architecture, and Resistance.

    Science.gov (United States)

    Chandra, Jyotsna; Mukherjee, Pranab K

    2015-08-01

    Intravascular device-related infections are often associated with biofilms (microbial communities encased within a polysaccharide-rich extracellular matrix) formed by pathogens on the surfaces of these devices. Candida species are the most common fungi isolated from catheter-, denture-, and voice prosthesis-associated infections and also are commonly isolated from contact lens-related infections (e.g., fungal keratitis). These biofilms exhibit decreased susceptibility to most antimicrobial agents, which contributes to the persistence of infection. Recent technological advances have facilitated the development of novel approaches to investigate the formation of biofilms and identify specific markers for biofilms. These studies have provided extensive knowledge of the effect of different variables, including growth time, nutrients, and physiological conditions, on biofilm formation, morphology, and architecture. In this article, we will focus on fungal biofilms (mainly Candida biofilms) and provide an update on the development, architecture, and resistance mechanisms of biofilms.

  11. Synergistic Activities of an Efflux Pump Inhibitor and Iron Chelators against Pseudomonas aeruginosa Growth and Biofilm Formation

    DEFF Research Database (Denmark)

    Liu, Yang; Yang, Liang; Molin, Søren

    2010-01-01

    The efflux pump inhibitor phenyl-arginine-beta-naphthylamide (PA beta N) was paired with iron chelators 2,2'-dipyridyl, acetohydroxamic acid, and EDTA to assess synergistic activities against Pseudomonas aeruginosa growth and biofilm formation. All of the tested iron chelators synergistically...

  12. Formation of hydroxyl radicals contributes to the bactericidal activity of ciprofloxacin against Pseudomonas aeruginosa biofilms

    DEFF Research Database (Denmark)

    Jensen, Peter Ø.; Briales, Alejandra; Brochmann, Rikke Prejh;

    2014-01-01

    induction of cytotoxic hydroxyl radicals (OH˙) during antibiotic treatment of planktonically grown cells may contribute to action of the commonly used antibiotic ciprofloxacin on P. aeruginosa biofilms. For this purpose, WT PAO1, a catalase deficient ΔkatA and a ciprofloxacin resistant mutant of PAO1 (gyr...

  13. The biofilm-specific antibiotic resistance gene ndvB is important for expression of ethanol oxidation genes in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Beaudoin, Trevor; Zhang, Li; Hinz, Aaron J; Parr, Christopher J; Mah, Thien-Fah

    2012-06-01

    Bacteria growing in biofilms are responsible for a large number of persistent infections and are often more resistant to antibiotics than are free-floating bacteria. In a previous study, we identified a Pseudomonas aeruginosa gene, ndvB, which is important for the formation of periplasmic glucans. We established that these glucans function in biofilm-specific antibiotic resistance by sequestering antibiotic molecules away from their cellular targets. In this study, we investigate another function of ndvB in biofilm-specific antibiotic resistance. DNA microarray analysis identified 24 genes that were responsive to the presence of ndvB. A subset of 20 genes, including 8 ethanol oxidation genes (ercS', erbR, exaA, exaB, eraR, pqqB, pqqC, and pqqE), was highly expressed in wild-type biofilm cells but not in ΔndvB biofilms, while 4 genes displayed the reciprocal expression pattern. Using quantitative real-time PCR, we confirmed the ndvB-dependent expression of the ethanol oxidation genes and additionally demonstrated that these genes were more highly expressed in biofilms than in planktonic cultures. Expression of erbR in ΔndvB biofilms was restored after the treatment of the biofilm with periplasmic extracts derived from wild-type biofilm cells. Inactivation of ethanol oxidation genes increased the sensitivity of biofilms to tobramycin. Together, these results reveal that ndvB affects the expression of multiple genes in biofilms and that ethanol oxidation genes are linked to biofilm-specific antibiotic resistance.

  14. Next Generation Biofilm Inhibitors for Pseudomonas aeruginosa: Synthesis and Rational Design Approaches

    Digital Repository Service at National Institute of Oceanography (India)

    Majik, M.S.; Parvatkar, P.T.

    The bacterial biofilms and the emergence of multiple drug resistance have become a major threat for current medical treatment of nosocomial infections. It has been estimated that about 65-80% of microbial infections in the developed countries...

  15. Effects of crude plant extracts of Senecio calvus on biofilm formation of Pseudomonas aeruginosa and Escherichia coli

    Directory of Open Access Journals (Sweden)

    Christian FLORIAN-CARRILLO

    2015-06-01

    Full Text Available Senecio calvus, a traditional medicinal plant native of Peruvian Andes was used to evaluate its activity against biofilm formation. Crude extracts were tested against cultures of Pseudomonas aeruginosa and Escherichia coli, two bacteria that use different signals of QS. Briefly, cultures in growth phase were mixed with crude extracts of aerial parts of S. calvus to determine the degree of inhibition of biofilms, subinhibitory concentrations were used where corresponded as previously established by a minimum inhibitory concentration test (MIC by microtitration method. Results indicate a mean inhibition of 92.9% and 76.4% in two of the extracts for Pseudomonas aeruginosa and 55.5% as maximum mean inhibition percentage for Escherichia coli which indicates that Senecio calvus is a candidate for isolation of inhibitory molecules of biofilms.

  16. 铜绿假单胞菌QS系统对大鼠皮肤溃疡面生物被膜形成的影响%The involvement of quorum sensing in the development of biofilm in rat wound infected with pseudomoas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    张连波; 馆正弘; 菅野惠美; 高庆国; 张广

    2008-01-01

    paraffin. The biopsies of wounds were stained with haematoxylin and eosin or Rhodamine-conjugated ConA were observed by light microscope and fluorescence microscope, the formation of epithelization and biofilm were detected. Results The results showed that the mutant biofilm are thin and much more uniform compared to wild-type counterpart. On day7 post-infection evidence re-epithelialization at the double mutant wound bed ;On day1,3,10 bacterial number are minor in the double mutant wounds tissue except on day 7. Condnsion The conclusion of this study is that functional lasl and rhlI genes of P. Aeruginosa play a important roles in the development of biofilms.

  17. Flagellin FliC Phosphorylation Affects Type 2 Protease Secretion and Biofilm Dispersal in Pseudomonas aeruginosa PAO1

    Science.gov (United States)

    Suriyanarayanan, Tanujaa; Periasamy, Saravanan; Lin, Miao-Hsia; Ishihama, Yasushi; Swarup, Sanjay

    2016-01-01

    Protein phosphorylation has a major role in controlling the life-cycle and infection stages of bacteria. Proteome-wide occurrence of S/T/Y phosphorylation has been reported for many prokaryotic systems. Previously, we reported the phosphoproteome of Pseudomonas aeruginosa and Pseudomonas putida. In this study, we show the role of S/T phosphorylation of one motility protein, FliC, in regulating multiple surface-associated phenomena of P. aeruginosa PAO1. This is the first report of occurrence of phosphorylation in the flagellar protein, flagellin FliC in its highly conserved N-terminal NDO domain across several Gram negative bacteria. This phosphorylation is likely a well-regulated phenomenon as it is growth phase dependent in planktonic cells. The absence of phosphorylation in the conserved T27 and S28 residues of FliC, interestingly, did not affect swimming motility, but affected the secretome of type 2 secretion system (T2SS) and biofilm formation of PAO1. FliC phosphomutants had increased levels and activities of type 2 secretome proteins. The secretion efficiency of T2SS machinery is associated with flagellin phosphorylation. FliC phosphomutants also formed reduced biofilms at 24 h under static conditions and had delayed biofilm dispersal under dynamic flow conditions, respectively. The levels of type 2 secretome and biofilm formation under static conditions had an inverse correlation. Hence, increase in type 2 secretome levels was accompanied by reduced biofilm formation in the FliC phosphomutants. As T2SS is involved in nutrient acquisition and biofilm dispersal during survival and spread of P. aeruginosa, we propose that FliC phosphorylation has a role in ecological adaptation of this opportunistic environmental pathogen. Altogether, we found a system of phosphorylation that affects key surface related processes such as proteases secretion by T2SS, biofilm formation and dispersal. PMID:27701473

  18. Molecular Basis for Saccharomyces cerevisiae Biofilm Development

    DEFF Research Database (Denmark)

    Andersen, Kaj Scherz

    In this study, I sought to identify genes regulating the global molecular program for development of sessile multicellular communities, also known as biofilm, of the eukaryotic microorganism, Saccharomyces cerevisiae (yeast). Yeast biofilm has a clinical interest, as biofilms can cause chronic...... infections in humans. Biofilm is also interesting from an evolutionary standpoint, as an example of primitive multicellularity. By using a genome-wide screen of yeast deletion mutants, I show that 71 genes are essential for biofilm formation. Two-thirds of these genes are required for transcription of FLO11......, but only a small subset is previously described as regulators of FLO11. These results reveal that the regulation of biofilm formation and FLO11 is even more complex than what has previously been described. I find that the molecular program for biofilm formation shares many essential components with two...

  19. A Microfluidic Approach to Investigating a Synergistic Effect of Tobramycin and Sodium Dodecyl Sulfate on Pseudomonas aeruginosa Biofilms.

    Science.gov (United States)

    Shin, Soojeong; Ahmed, Ishtiaq; Hwang, Jangsun; Seo, Youngmin; Lee, Eunwon; Choi, Jonghoon; Moon, Sangjun; Hong, Jong Wook

    2016-01-01

    In recent years, a microfluidic technology has contributed a significant role in biological research, specifically for the study of biofilms. Bacterial biofilms are a source of infections and contamination in the environment due to an extra polymeric matrix. Inadequate uses of antibiotics make the bacterial biofilms antibiotic resistant. Therefore, it is important to determine the effective concentration of antibiotics in order to eliminate bacterial biofilms. The present microfluidic study was carried out to analyze the activities of tobramycin and sodium dodecyl sulfate (SDS) against Pseudomonas aeruginosa biofilms with a continuous flow in order to achieve a greater delivery of the agents. The results show that a co-treatment of tobramycin and SDS significantly reduced the biomass of biofilms (by more than 99%) after 24 h. Tobramycin and SDS killed and detached bacteria in the cores of biofilms. Evidently, our data suggest that a microchannel would be effective for both quantitative and qualitative evaluations in order to test combinatorial effect of drugs and chemicals on a complexed biological system including biofilm.

  20. C-di-GMP regulates Pseudomonas aeruginosa stress response to tellurite during both planktonic and biofilm modes of growth.

    Science.gov (United States)

    Chua, Song Lin; Sivakumar, Krishnakumar; Rybtke, Morten; Yuan, Mingjun; Andersen, Jens Bo; Nielsen, Thomas E; Givskov, Michael; Tolker-Nielsen, Tim; Cao, Bin; Kjelleberg, Staffan; Yang, Liang

    2015-01-01

    Stress response plays an important role on microbial adaptation under hostile environmental conditions. It is generally unclear how the signaling transduction pathway mediates a stress response in planktonic and biofilm modes of microbial communities simultaneously. Here, we showed that metalloid tellurite (TeO3(2-)) exposure induced the intracellular content of the secondary messenger cyclic di-GMP (c-di-GMP) of Pseudomonas aeruginosa. Two diguanylate cyclases (DGCs), SadC and SiaD, were responsible for the increased intracellular content of c-di-GMP. Enhanced c-di-GMP levels by TeO3(2-) further increased P. aeruginosa biofilm formation and resistance to TeO3(2-). P. aeruginosa ΔsadCΔsiaD and PAO1/p(lac)-yhjH mutants with low intracellular c-di-GMP content were more sensitive to TeO3(2-) exposure and had low relative fitness compared to the wild-type PAO1 planktonic and biofilm cultures exposed to TeO3(2-). Our study provided evidence that c-di-GMP level can play an important role in mediating stress response in microbial communities during both planktonic and biofilm modes of growth.

  1. Biofilm formation by Staphylococcus epidermidis on peritoneal dialysis catheters and the effects of extracellular products from Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Pihl, Maria; Arvidsson, Anna; Skepö, Marie;

    2013-01-01

    Biofilm formation by Staphylococcus epidermidis is a cause of infections related to peritoneal dialysis (PD). We have used a PD catheter flow-cell model in combination with confocal scanning laser microscopy and atomic force microscopy to study biofilm formation by S. epidermidis. Adherence...... to serum-coated catheters was four times greater than to uncoated ones, suggesting that S. epidermidis binds to serum proteins on the catheter surface. Pseudomonas aeruginosa biofilm supernatant interfered with the formation of a serum protein coat thereby reducing the capacity for biofilm formation in S. epidermidis....... Supernatants from ΔpelA, ΔpslBCD and ΔrhlAB strains of P. aeruginosa showed no differences from the wild-type supernatant indicating that the effect on serum coat formation was not due to rhamnolipids or the PelA and PslBCD polysaccharides. Supernatant from P. aeruginosa also dispersed established S. epidermidis...

  2. Decreased Pseudomonas aeruginosa biofilm formation on nanomodified endotracheal tubes: a dynamic lung model.

    Science.gov (United States)

    Machado, Mary C; Webster, Thomas J

    2016-01-01

    Ventilator-associated pneumonia (VAP) is a serious complication of mechanical ventilation that has been shown to be associated with increased mortality rates and medical costs in the pediatric intensive care unit. Currently, there is no cost-effective solution to the problems posed by VAP. Endotracheal tubes (ETTs) that are resistant to bacterial colonization and that inhibit biofilm formation could provide a novel solution to the problems posed by VAP. The objective of this in vitro study was to evaluate differences in the growth of Pseudomonas aeruginosa on unmodified polyvinyl chloride (PVC) ETTs and on ETTs etched with a fungal lipase, Rhizopus arrhizus, to create nanoscale surface features. These differences were evaluated using an in vitro model of the pediatric airway to simulate a ventilated patient in the pediatric intensive care unit. Each experiment was run for 24 hours and was supported by computational models of the ETT. Dynamic conditions within the ETT had an impact on the location of bacterial growth within the tube. These conditions also quantitatively affected bacterial growth especially within the areas of tube curvature. Most importantly, experiments in the in vitro model revealed a 2.7 log reduction in the number (colony forming units/mL) of P. aeruginosa on the nanoroughened ETTs compared to the untreated PVC ETTs after 24 hours. This reduction in total colony forming units/mL along the x-axis of the tube was similar to previous studies completed for Staphylococcus aureus. Thus, this dynamic study showed that lipase etching can create surface features of nanoscale roughness on PVC ETTs that decrease bacterial attachment of P. aeruginosa without the use of antibiotics and may provide clinicians with an effective and inexpensive tool to combat VAP. PMID:27563242

  3. Decreased Pseudomonas aeruginosa biofilm formation on nanomodified endotracheal tubes: a dynamic lung model

    Science.gov (United States)

    Machado, Mary C; Webster, Thomas J

    2016-01-01

    Ventilator-associated pneumonia (VAP) is a serious complication of mechanical ventilation that has been shown to be associated with increased mortality rates and medical costs in the pediatric intensive care unit. Currently, there is no cost-effective solution to the problems posed by VAP. Endotracheal tubes (ETTs) that are resistant to bacterial colonization and that inhibit biofilm formation could provide a novel solution to the problems posed by VAP. The objective of this in vitro study was to evaluate differences in the growth of Pseudomonas aeruginosa on unmodified polyvinyl chloride (PVC) ETTs and on ETTs etched with a fungal lipase, Rhizopus arrhizus, to create nanoscale surface features. These differences were evaluated using an in vitro model of the pediatric airway to simulate a ventilated patient in the pediatric intensive care unit. Each experiment was run for 24 hours and was supported by computational models of the ETT. Dynamic conditions within the ETT had an impact on the location of bacterial growth within the tube. These conditions also quantitatively affected bacterial growth especially within the areas of tube curvature. Most importantly, experiments in the in vitro model revealed a 2.7 log reduction in the number (colony forming units/mL) of P. aeruginosa on the nanoroughened ETTs compared to the untreated PVC ETTs after 24 hours. This reduction in total colony forming units/mL along the x-axis of the tube was similar to previous studies completed for Staphylococcus aureus. Thus, this dynamic study showed that lipase etching can create surface features of nanoscale roughness on PVC ETTs that decrease bacterial attachment of P. aeruginosa without the use of antibiotics and may provide clinicians with an effective and inexpensive tool to combat VAP. PMID:27563242

  4. Biofilms and Cyclic di-GMP (c-di-GMP) Signaling: Lessons from Pseudomonas aeruginosa and Other Bacteria.

    Science.gov (United States)

    Valentini, Martina; Filloux, Alain

    2016-06-10

    The cyclic di-GMP (c-di-GMP) second messenger represents a signaling system that regulates many bacterial behaviors and is of key importance for driving the lifestyle switch between motile loner cells and biofilm formers. This review provides an up-to-date compendium of c-di-GMP pathways connected to biofilm formation, biofilm-associated motilities, and other functionalities in the ubiquitous and opportunistic human pathogen Pseudomonas aeruginosa This bacterium is frequently adopted as a model organism to study bacterial biofilm formation. Importantly, its versatility and adaptation capabilities are linked with a broad range of complex regulatory networks, including a large set of genes involved in c-di-GMP biosynthesis, degradation, and transmission.

  5. High beta-Lactamase Levels Change the Pharmacodynamics of beta-Lactam Antibiotics in Pseudomonas aeruginosa Biofilms

    DEFF Research Database (Denmark)

    Wang, Hengzhuang; Ciofu, Oana; Yang, Liang;

    2013-01-01

    Resistance to beta-lactam antibiotics is a frequent problem in Pseudomonas aeruginosa lung infection of cystic fibrosis (CF) patients. This resistance is mainly due to the hyperproduction of chromosomally encoded beta-lactamase and biofilm formation. The purpose of this study was to investigate......, microtiter plates, and on alginate beads were treated with different concentrations of ceftazidime and imipenem. The kinetics of antibiotics on the biofilms was investigated in vitro by time-kill methods. Time-dependent killing of ceftazidime was observed in PAO1 biofilms, but concentration-dependent killing......-lactamase, which can hydrolyze the beta-lactam antibiotics. The PK/PD indices of the AUC/MBIC and C-max/MBIC (AUC is the area under concentration-time curve, MBIC is the minimal biofilm-inhibitory concentration, and C-max is the maximum concentration of drug in serum) are probably the best parameters to describe...

  6. Bifunctional silica nanoparticles for the exploration of biofilms of Pseudomonas aeruginosa.

    Science.gov (United States)

    Mauline, L; Gressier, M; Roques, C; Hammer, P; Ribeiro, S J L; Caiut, J M A; Menu, M-J

    2013-01-01

    Luminescent silica nanoparticles are frequently employed for biotechnology applications mainly because of their easy functionalization, photo-stability, and biocompatibility. Bifunctional silica nanoparticles (BSNPs) are described here as new efficient tools for investigating complex biological systems such as biofilms. Photoluminescence is brought about by the incorporation of a silylated ruthenium(II) complex. The surface properties of the silica particles were designed by reaction with amino-organosilanes, quaternary ammonium-organosilanes, carboxylate-organosilanes and hexamethyldisilazane. BSNPs were characterized extensively by DRIFT, (13)C and (29)Si solid state NMR, XPS, and photoluminescence. Zeta potential and contact angle measurements exhibited various surface properties (hydrophilic/hydrophobic balance and electric charge) according to the functional groups. Confocal laser scanning microscopy (CLSM) measurements showed that the spatial distribution of these nanoparticles inside a biofilm of Pseudomonas aeruginosa PAO1 depends more on their hydrophilic/hydrophobic characteristics than on their size. CLSM observations using two nanosized particles (25 and 68 nm) suggest that narrow diffusion paths exist through the extracellular polymeric substances matrix. PMID:23805884

  7. Pseudomonas aeruginosa outcompetes other bacteria in the manifestation and maintenance of a biofilm in polyvinylchloride tubing as used in dental devices.

    Science.gov (United States)

    Ammann, Christoph Gert; Nagl, Markus; Nogler, Michael; Coraça-Huber, Débora Cristina

    2016-05-01

    In a PVC tube as a model system for dental devices, Pseudomonas aeruginosa outcompetes Staphylococcus aureus and Klebsiella pneumoniae for the biofilm formation. P. aeruginosa has advantage over the other strains due to higher tolerance for low-nutrient situations or direct killing by the production of soluble factors like pyocyanin.

  8. Macrolides decrease the minimal inhibitory concentration of anti-pseudomonal agents against Pseudomonas aeruginosa from cystic fibrosis patients in biofilm

    Directory of Open Access Journals (Sweden)

    Lutz Larissa

    2012-09-01

    Full Text Available Abstract Background Biofilm production is an important mechanism for bacterial survival and its association with antimicrobial resistance represents a challenge for the patient treatment. In this study we evaluated the in vitro action of macrolides in combination with anti-pseudomonal agents on biofilm-grown Pseudomonas aeruginosa recovered from cystic fibrosis (CF patients. Results A total of 64 isolates were analysed. The biofilm inhibitory concentration (BIC results were consistently higher than those obtained by the conventional method, minimal inhibitory concentration, (MIC for most anti-pseudomonal agents tested (ceftazidime: P = 0.001, tobramycin: P = 0.001, imipenem: P P = 0.005. When macrolides were associated with the anti-pseudomonal agents, the BIC values were reduced significantly for ceftazidime (P  0.001 and tobramycin (P  0.001, regardless the concentration of macrolides. Strong inhibitory quotient was observed when azithromycin at 8 mg/L was associated with all anti-pseudomonal agents tested in biofilm conditions. Conclusions P. aeruginosa from CF patients within biofilms are highly resistant to antibiotics but macrolides proved to augment the in vitro activity of anti-pseudomonal agents.

  9. Synergistic antibiofilm efficacy of various commercial antiseptics, enzymes and EDTA: a study of Pseudomonas aeruginosa and Staphylococcus aureus biofilms.

    Science.gov (United States)

    Lefebvre, Elodie; Vighetto, Christophe; Di Martino, Patrick; Larreta Garde, Véronique; Seyer, Damien

    2016-08-01

    A multistep strategy was used to generate a combined antibiofilm treatment that could efficiently decrease the biomass of dense biofilms (≥6 × 10(7) CFU/cm(2)). Several compounds that exhibited activity against various targets were tested individually and in combination to search for possible synergistic effects. First, the antibiofilm activity of various commercially available antiseptics was tested on Pseudomonas aeruginosa and Staphylococcus aureus. Second, antiseptics were mixed with ethylene diamine tetra-acetic acid (EDTA), which is an ion chelator that can disturb biofilm organisation, and additive effects on biofilm biomass degradation were found for both strains. Then, enzymes with the ability to destabilise the biofilm matrix by hydrolysing either its proteins or its polysaccharides were used; as expected, they did not decrease bacterial viability but were revealed as efficient biomass reducers. The combination of antiseptics, EDTA and proteases, all at low concentrations, revealed a synergistic effect leading to total eradication of dense biofilms both of P. aeruginosa and S. aureus. PMID:27424598

  10. Potential novel therapeutic strategies in cystic fibrosis: antimicrobial and anti-biofilm activity of natural and designed α-helical peptides against Staphylococcus aureus, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia

    Directory of Open Access Journals (Sweden)

    Pompilio Arianna

    2012-07-01

    Full Text Available Abstract Background Treatment of cystic fibrosis-associated lung infections is hampered by the presence of multi-drug resistant pathogens, many of which are also strong biofilm producers. Antimicrobial peptides, essential components of innate immunity in humans and animals, exhibit relevant in vitro antimicrobial activity although they tend not to select for resistant strains. Results Three α-helical antimicrobial peptides, BMAP-27 and BMAP-28 of bovine origin, and the artificial P19(9/B peptide were tested, comparatively to Tobramycin, for their in vitro antibacterial and anti-biofilm activity against 15 Staphylococcus aureus, 25 Pseudomonas aeruginosa, and 27 Stenotrophomonas maltophilia strains from cystic fibrosis patients. All assays were carried out in physical-chemical experimental conditions simulating a cystic fibrosis lung. All peptides showed a potent and rapid bactericidal activity against most P. aeruginosa, S. maltophilia and S. aureus strains tested, at levels generally higher than those exhibited by Tobramycin and significantly reduced biofilm formation of all the bacterial species tested, although less effectively than Tobramycin did. On the contrary, the viability-reducing activity of antimicrobial peptides against preformed P. aeruginosa biofilms was comparable to and, in some cases, higher than that showed by Tobramycin. Conclusions The activity shown by α-helical peptides against planktonic and biofilm cells makes them promising “lead compounds” for future development of novel drugs for therapeutic treatment of cystic fibrosis lung disease.

  11. D-amino acids enhance the activity of antimicrobials against biofilms of clinical wound isolates of Staphylococcus aureus and Pseudomonas aeruginosa.

    Science.gov (United States)

    Sanchez, Carlos J; Akers, Kevin S; Romano, Desiree R; Woodbury, Ronald L; Hardy, Sharanda K; Murray, Clinton K; Wenke, Joseph C

    2014-08-01

    Within wounds, microorganisms predominantly exist as biofilms. Biofilms are associated with chronic infections and represent a tremendous clinical challenge. As antibiotics are often ineffective against biofilms, use of dispersal agents as adjunctive, topical therapies for the treatment of wound infections involving biofilms has gained interest. We evaluated in vitro the dispersive activity of D-amino acids (D-AAs) on biofilms from clinical wound isolates of Staphylococcus aureus and Pseudomonas aeruginosa; moreover, we determined whether combinations of D-AAs and antibiotics (clindamycin, cefazolin, oxacillin, rifampin, and vancomycin for S. aureus and amikacin, colistin, ciprofloxacin, imipenem, and ceftazidime for P. aeruginosa) enhance activity against biofilms. D-Met, D-Phe, and D-Trp at concentrations of ≥ 5 mM effectively dispersed preformed biofilms of S. aureus and P. aeruginosa clinical isolates, an effect that was enhanced when they were combined as an equimolar mixture (D-Met/D-Phe/D-Trp). When combined with D-AAs, the activity of rifampin was significantly enhanced against biofilms of clinical isolates of S. aureus, as indicated by a reduction in the minimum biofilm inhibitory concentration (MBIC) (from 32 to 8 μg/ml) and a >2-log reduction of viable biofilm bacteria compared to treatment with antibiotic alone. The addition of D-AAs was also observed to enhance the activity of colistin and ciprofloxacin against biofilms of P. aeruginosa, reducing the observed MBIC and the number of viable bacteria by >2 logs and 1 log at 64 and 32 μg/ml in contrast to antibiotics alone. These findings indicate that the biofilm dispersal activity of D-AAs may represent an effective strategy, in combination with antimicrobials, to release bacteria from biofilms, subsequently enhancing antimicrobial activity.

  12. Assessment of the working range and effect of sodium dichloroisocyanurate on Pseudomonas aeruginosa biofilms and planktonic cells.

    Science.gov (United States)

    Morgenthau, Ari; Nicolae, Alexandru M; Laursen, Andrew E; Foucher, Daniel A; Wolfaardt, Gideon M; Hausner, Martina

    2012-01-01

    Sodium dichloroisocyanurate (NaDCC) is a chemical agent that acts against microorganisms in a manner similar to that of sodium hypochlorite by releasing free available chlorine. NaDCC has been approved by the WHO for the emergency treatment of water and by the US EPA for routine treatment of water. Previous studies assessing the effectiveness of NaDCC for the treatment of water implied that NaDCC should have a wide array of disinfecting effects beyond the treatment of planktonic cells in potable water. In this study the biocidal effects of NaDCC against Pseudomonas aeruginosa cells in different growth modes including planktonic cells and biofilms were explored. The data showed that a 60% dilution of the standard NaDCC solution was effective in the treatment of both P. aeruginosa planktonic cells and biofilms.

  13. Assessment of the working range and effect of sodium dichloroisocyanurate on Pseudomonas aeruginosa biofilms and planktonic cells.

    Science.gov (United States)

    Morgenthau, Ari; Nicolae, Alexandru M; Laursen, Andrew E; Foucher, Daniel A; Wolfaardt, Gideon M; Hausner, Martina

    2012-01-01

    Sodium dichloroisocyanurate (NaDCC) is a chemical agent that acts against microorganisms in a manner similar to that of sodium hypochlorite by releasing free available chlorine. NaDCC has been approved by the WHO for the emergency treatment of water and by the US EPA for routine treatment of water. Previous studies assessing the effectiveness of NaDCC for the treatment of water implied that NaDCC should have a wide array of disinfecting effects beyond the treatment of planktonic cells in potable water. In this study the biocidal effects of NaDCC against Pseudomonas aeruginosa cells in different growth modes including planktonic cells and biofilms were explored. The data showed that a 60% dilution of the standard NaDCC solution was effective in the treatment of both P. aeruginosa planktonic cells and biofilms. PMID:22263660

  14. Development of a simplified biofilm model

    Science.gov (United States)

    Sarkar, Sushovan; Mazumder, Debabrata

    2015-11-01

    A simplified approach for analyzing the biofilm process in deriving an easy model has been presented. This simplified biofilm model formulated correlations between substrate concentration in the influent/effluent and at biofilm-liquid interface along with substrate flux and biofilm thickness. The model essentially considered the external mass transport according to Fick's Law, steady state substrate as well as biomass balance for attached growth microorganisms. In substrate utilization, Monod growth kinetics has been followed incorporating relevant boundary conditions at the liquid-biofilm interface and at the attachment surface. The numerical solution of equations was accomplished using Runge-Kutta method and accordingly an integrated computer program was developed. The model has been successfully applied in a distinct set of trials with varying range of representative input variables. The model performance was compared with available existing methods and it was found an easy, accurate method that can be used for process design of biofilm reactor.

  15. C-di-GMP regulates Pseudomonas aeruginosa stress response to tellurite during both planktonic and biofilm modes of growth

    DEFF Research Database (Denmark)

    Chua, Song Lin; Sivakumar, Krishnakumar; Rybtke, Morten Levin;

    2015-01-01

    tellurite (TeO3(2-)) exposure induced the intracellular content of the secondary messenger cyclic di-GMP (c-di-GMP) of Pseudomonas aeruginosa. Two diguanylate cyclases (DGCs), SadC and SiaD, were responsible for the increased intracellular content of c-di-GMP. Enhanced c-di-GMP levels by TeO3(2-) further...... increased P. aeruginosa biofilm formation and resistance to TeO3(2-). P. aeruginosa ΔsadCΔsiaD and PAO1/p(lac)-yhjH mutants with low intracellular c-di-GMP content were more sensitive to TeO3(2-) exposure and had low relative fitness compared to the wild-type PAO1 planktonic and biofilm cultures exposed...... to TeO3(2-). Our study provided evidence that c-di-GMP level can play an important role in mediating stress response in microbial communities during both planktonic and biofilm modes of growth....

  16. Influence of clove oil on certain quorum-sensing-regulated functions and biofilm of Pseudomonas aeruginosa and Aeromonas hydrophila

    Indian Academy of Sciences (India)

    Fohad Mabood Husain; Iqbal Ahmad; Mohammad Asif; Qudsia Tahseen

    2013-12-01

    Quorum sensing (QS) plays an important role in virulence, biofilm formation and survival of many pathogenic bacteria including Pseudomonas aeruginosa. This signalling pathway is considered as novel and promising target for anti-infective agents. In the present investigation, effect of the Sub-MICs of clove oil on QS regulated virulence factors and biofilm formation was evaluated against P. aeruginosa PAO1 and Aeromonas hydrophila WAF-38 strain. Sub-inhibitory concentrations of the clove oil demonstrated statistically significant reduction of las- and rhl-regulated virulence factors such as LasB, total protease, chitinase and pyocyanin production, swimming motility and exopolysaccharide production. The biofilm forming capability of PAO1 and A. hydrophila WAF-38 was also reduced in a concentration-dependent manner at all tested sub-MIC values. Further, the PAO1-preinfected Caenorhabditis elegans displayed an enhanced survival when treated with 1.6% v/v of clove oil. The above findings highlight the promising anti-QS-dependent therapeutic function of clove oil against P. aeruginosa.

  17. Delivery of tobramycin coupled to iron oxide nanoparticles across the biofilm of mucoidal Pseudonomas aeruginosa and investigation of its efficacy

    Science.gov (United States)

    Armijo, Leisha M.; Kopciuch, Michael; Olszá½¹wka, Zuzia; Wawrzyniec, Stephen J.; Rivera, Antonio C.; Plumley, John B.; Cook, Nathaniel C.; Brandt, Yekaterina I.; Huber, Dale L.; Smolyakov, Gennady A.; Adolphi, Natalie L.; Smyth, Hugh D. C.; Osiński, Marek

    2014-03-01

    Pseudomonas aeruginosa bacterium is a deadly pathogen, leading to respiratory failure in cystic fibrosis and nosocomial pneumonia, and responsible for high mortality rates in these diseases. P. aeruginosa has inherent as well as acquired resistance to many drug classes. In this paper, we investigate the effectiveness of two classes; aminoglycoside (tobramycin) and fluoroquinolone (ciprofloxacin) administered alone, as well as conjugated to iron oxide (magnetite) nanoparticles. P. aeruginosa possesses the ability to quickly alter its genetics to impart resistance to the presence of new, unrecognized treatments. As a response to this impending public health threat, we have synthesized and characterized magnetite nanoparticles capped with biodegradable short-chain carboxylic acid derivatives conjugated to common antibiotic drugs. The functionalized nanoparticles may carry the drug past the mucus and biofilm layers to target the bacterial colonies via magnetic gradient-guided transport. Additionally, the magnetic ferrofluid may be used under application of an oscillating magnetic field to raise the local temperature, causing biofilm disruption, slowed growth, and mechanical disruption. These abilities of the ferrofluid would also treat multi-drug resistant strains, which appear to be increasing in many nosocomial as well as acquired opportunistic infections. In this in vitro model, we show that the iron oxide alone can also inhibit bacterial growth and biofilm formation.

  18. Structural and Biochemical Analysis of Tyrosine Phosphatase Related to Biofilm Formation A (TpbA) from the Opportunistic Pathogen Pseudomonas aeruginosa PAO1

    OpenAIRE

    Kun Xu; Shanshan Li; Wen Yang; Kan Li; Yuwei Bai; Yueyang Xu; Jin Jin; Yingying Wang; Mark Bartlam

    2015-01-01

    Biofilms are important for cell communication and growth in most bacteria, and are responsible for a number of human clinical infections and diseases. TpbA (PA3885) is a dual specific tyrosine phosphatase (DUSP) that negatively regulates biofilm formation in the opportunistic pathogen Pseudomonas aeruginosa PAO1 by converting extracellular quorum sensing signals into internal gene cascade reactions that result in reduced biofilm formation. We have determined the three-dimensional crystal stru...

  19. Candida albicans ethanol stimulates Pseudomonas aeruginosa WspR-controlled biofilm formation as part of a cyclic relationship involving phenazines.

    Directory of Open Access Journals (Sweden)

    Annie I Chen

    2014-10-01

    Full Text Available In chronic infections, pathogens are often in the presence of other microbial species. For example, Pseudomonas aeruginosa is a common and detrimental lung pathogen in individuals with cystic fibrosis (CF and co-infections with Candida albicans are common. Here, we show that P. aeruginosa biofilm formation and phenazine production were strongly influenced by ethanol produced by the fungus C. albicans. Ethanol stimulated phenotypes that are indicative of increased levels of cyclic-di-GMP (c-di-GMP, and levels of c-di-GMP were 2-fold higher in the presence of ethanol. Through a genetic screen, we found that the diguanylate cyclase WspR was required for ethanol stimulation of c-di-GMP. Multiple lines of evidence indicate that ethanol stimulates WspR signaling through its cognate sensor WspA, and promotes WspR-dependent activation of Pel exopolysaccharide production, which contributes to biofilm maturation. We also found that ethanol stimulation of WspR promoted P. aeruginosa colonization of CF airway epithelial cells. P. aeruginosa production of phenazines occurs both in the CF lung and in culture, and phenazines enhance ethanol production by C. albicans. Using a C. albicans adh1/adh1 mutant with decreased ethanol production, we found that fungal ethanol strongly altered the spectrum of P. aeruginosa phenazines in favor of those that are most effective against fungi. Thus, a feedback cycle comprised of ethanol and phenazines drives this polymicrobial interaction, and these relationships may provide insight into why co-infection with both P. aeruginosa and C. albicans has been associated with worse outcomes in cystic fibrosis.

  20. The antimicrobial action of Pseudomonas aeruginosa byproducts in the control of single and mixed biofilms

    OpenAIRE

    Lopes, Susana Patrícia; Machado, Idalina; Pereira, Maria Olívia

    2010-01-01

    Since bacteria are continuously acquiring resistance to conventional chemical agents, it is urgently needed the development of new strategies for biofilm control. It is well recognised that certain microorganisms represent an important source of novel biologically active compounds, with pronounced antibacterial activity, as secondary metabolites. Such substances are accepted to be essential for their producers, inhibiting other bacteria that compete for common resource...

  1. Quorum quenching activity in cell-free lysate of endophytic bacteria isolated from Pterocarpus santalinus Linn., and its effect on quorum sensing regulated biofilm in Pseudomonas aeruginosa PAO1.

    Science.gov (United States)

    Rajesh, P S; Ravishankar Rai, V

    2014-01-01

    Quorum sensing mechanism allows the microorganisms to resist the antibiotic treatment by forming biofilms. Quorum quenching is one of the mechanisms to control the development of drug resistance in microbes. Endophyte bacteria are beneficial to plant growth as they support the immune system against the pathogen attack. The endophytic bacteria present in Pterocarpus santalinus were screened for the presence of N-acyl homoserine lactones (AHLs) degrading bacteria using biosensor strains and further confirmed by quantifying the violacein production. Cell-free lysate of endophytic bacteria, Bacillus firmus PT18 and Enterobacter asburiae PT39 exhibited potent AHL degrading ability by inhibiting about 80% violacein production in biosensor strain. Furthermore, when the cell-free lysate was applied to Pseudomonas aeruginosa PAO1 and PAO1-JP2 biofilm it resulted in significant (p<0.01) inhibition of biofilm formation. The biofilm inhibition was confirmed by visualization of biofilm slides under fluorescence microscopy, which showed decrease in total biomass formation in treated slides. Isolation and amplification of the gene (aiiA) indicated that the presence of AHL lactonase in cell-free lysate and sequence alignment indicated that AiiA contains a "HXHXDH" zinc-binding motif that is being conserved in several groups of metallohydrolases. Therefore, the study shows the potential of AHLs degradation by AHL lactonase present in cell-free lysate of isolated endophytic bacteria and inhibition of quorum sensing regulated biofilm formation in P. aeruginosa PAO1. PMID:24268182

  2. The Study of Synergistic Effects of n.butanolic Cyclamen coum Extract and Ciprofloxacin on inhibition of Pseudomonas aeruginosa biofilm formation

    Directory of Open Access Journals (Sweden)

    ahya abdi ali

    2015-02-01

    Full Text Available   Introduction : Infections caused by Pseudomonas aeruginosa biofilm are the major causes of death in patients with cystic fibrosis (CF. Some studies revealed that biofilms are resistant to several antibiotics because of their impermeable structures. In order to re-sensitize bacteria to different antibiotics, biofilm formation should be inhibited. In this research, evaluation of antibiofilm activity of n-butanolic Cyclamen coum extract as a medici­nal plant from Myrsinaceae family, in combination with ciprofloxacin was carried out.   Materials and method s: The biofilm formation ability by P. aeruginosa PAO1 and one clinically isolated P. aeruginosa (PA214 was confirmed by microtiter plate method. Extraction of the tubers of Cyclamen coum was done by fractionation method . The antibiofilm and antibacterial properties of n-butanolic C. coum extract (which includes saponin compounds alone and in combination with ciprofloxacin by using microdilution and crystal violet methods were examined. The cytotoxicity effect of the n-butanolic extract on HT-29 cells was assayed by MTT (3- (4,5-dimethylthiazol-2-yl -2,5-diphenyl-tetrazolium bromide test.   Results : The biofilm formation ability by P. aeruginosa strains was quantitatively confirmed. Saponin content of the n-butanolic C.coum extract was 156 µg/mL. The extract revealed antibacterial activity against the growth of planktonic P. aeruginosa strains. The combination of n-butanolic C.coum extract and ciprofloxacin significantly inhibited P.aeruginosa biofilm formation (ΣFBIC = 0.5. The n-butanolic C.coum extract showed insignificant cytotoxic effect against HT-29 human cancer cell line after 48 hours and 72 hours incubation .   Discussion and conclusion : It can be concluded that n-butanolic C.coum extract in combination with ciprofloxacin significantly revealed antibiofilm activity against P. aeruginosa biofilm however, further clinical investigations are required.

  3. Facultative control of matrix production optimizes competitive fitness in Pseudomonas aeruginosa PA14 biofilm models

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenløkke; Lin, Yu Cheng; Squyres, Georgia R.;

    2015-01-01

    to the colony edge produced mutants with clear competitive advantages against the wild type in this O2-replete niche. In general, the structurally heterogeneous colony environment promoted more diversification than the more homogeneous pellicle. These results suggest that the role of Pel in community structure......As biofilms grow, resident cells inevitably face the challenge of resource limitation. In the opportunistic pathogen Pseudomonas aeruginosa PA14, electron acceptor availability affects matrix production and, as a result, biofilm morphogenesis. The secreted matrix polysaccharide Pel is required...... response to electron acceptor limitation in both biofilm formation regimes, we found variation in the exploitability of its production and necessity for competitive fitness between the two systems. The wild type showed a competitive advantage against a non-Pel-producing mutant in pellicles but no advantage...

  4. Development of resistance to chemical disinfection by Pseudomonas aeruginosa during long-term space flight

    Science.gov (United States)

    Marchin, George L.

    1999-01-01

    Two long-term experiments have been conducted aboard the Mir Space Station to evaluate the development of resistance by Pseudomonas aeruginosa to chemical disinfection by polyiodide quaternary ammonium strong base resin disinfectants. The first preliminary experiment was launched aboard STS 79 and a second more extensive experiment aboard STS 86. During both experiments, after two months in a microgravity environment, aqueous suspensions of P. aeruginosa contained viable bacteria after having the iodinated resin added to them. In the second experiment identical ground based controls did not exhibit a similar phenomenon. Also in the second experiment, individual colonies from the surviving bacteria were evaluated for resistance to aqueous iodine disinfection. Compared to individual colonies from the original inoculum no resistance was observed. The data are consistent with slow development of a resistant biofilm in the bacterial suspensions flown aboard the Mir Space Station.

  5. In vitro and in vivo generation and characterization of Pseudomonas aeruginosa biofilm-dispersed cells via c-di-GMP manipulation.

    Science.gov (United States)

    Chua, Song Lin; Hultqvist, Louise D; Yuan, Mingjun; Rybtke, Morten; Nielsen, Thomas E; Givskov, Michael; Tolker-Nielsen, Tim; Yang, Liang

    2015-08-01

    Bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) is a global secondary bacterial messenger that controls the formation of drug-resistant multicellular biofilms. Lowering the intracellular c-di-GMP content can disperse biofilms, and it is proposed as a biofilm eradication strategy. However, freshly dispersed biofilm cells exhibit a physiology distinct from biofilm and planktonic cells, and they might have a clinically relevant role in infections. Here we present in vitro and in vivo protocols for the generation and characterization of dispersed cells from Pseudomonas aeruginosa biofilms by reducing the intracellular c-di-GMP content through modulation of phosphodiesterases (PDEs). Unlike conventional protocols that demonstrate biofilm dispersal by biomass quantification, our protocols enable physiological characterization of the dispersed cells. Biomarkers of dispersed cells are identified and quantified, serving as potential targets for treating the dispersed cells. The in vitro protocol can be completed within 4 d, whereas the in vivo protocol requires 7 d.

  6. Optimal dosing regimen of nitric oxide donor compounds for the reduction of Pseudomonas aeruginosa biofilm and isolates from wastewater membranes.

    Science.gov (United States)

    Barnes, Robert J; Bandi, Ratnaharika R; Wong, Wee Seng; Barraud, Nicolas; McDougald, Diane; Fane, Anthony; Kjelleberg, Staffan; Rice, Scott A

    2013-01-01

    Membrane fouling by bacterial biofilms remains a key challenge for membrane-based water purification systems. Here, the optimal biofilm dispersal potential of three nitric oxide (NO) donor compounds, viz. sodium nitroprusside, 6-(2-hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-hexanamine (MAHMA NONOate) and 1-(hydroxy-NNO-azoxy)-L-proline, disodium salt, was investigated using Pseudomonas aeruginosa PAO1 as a model organism. Dispersal was quantitatively assessed by confocal microscopy [bacterial cells and the components of the extracellular polymeric substances (EPS) (polysaccharides and extracellular DNA)] and colony-forming unit counts. The three NO donor compounds had different optimal exposure times and concentrations, with MAHMA NONOate being the optimal NO donor compound. Biofilm dispersal correlated with a reduction in both bacterial cells and EPS. MAHMA NONOate also reduced single species biofilms formed by bacteria isolated from industrial membrane bioreactor and reverse osmosis membranes, as well as in isolates combined to generate mixed species biofilms. The data present strong evidence for the application of these NO donor compounds for prevention of biofouling in an industrial setting.

  7. Phage ΦPan70, a Putative Temperate Phage, Controls Pseudomonas aeruginosa in Planktonic, Biofilm and Burn Mouse Model Assays

    Science.gov (United States)

    Holguín, Angela V.; Rangel, Guillermo; Clavijo, Viviana; Prada, Catalina; Mantilla, Marcela; Gomez, María Catalina; Kutter, Elizabeth; Taylor, Corinda; Fineran, Peter C.; Barrios, Andrés Fernando González; Vives, Martha J.

    2015-01-01

    Pseudomonas aeruginosa is one of the Multi-Drug-Resistant organisms most frequently isolated worldwide and, because of a shortage of new antibiotics, bacteriophages are considered an alternative for its treatment. Previously, P. aeruginosa phages were isolated and best candidates were chosen based on their ability to form clear plaques and their host range. This work aimed to characterize one of those phages, ΦPan70, preliminarily identified as a good candidate for phage-therapy. We performed infection curves, biofilm removal assays, transmission-electron-microscopy, pulsed-field-gel-electrophoresis, and studied the in vivo ΦPan70 biological activity in the burned mouse model. ΦPan70 was classified as a member of the Myoviridae family and, in both planktonic cells and biofilms, was responsible for a significant reduction in the bacterial population. The burned mouse model showed an animal survival between 80% and 100%, significantly different from the control animals (0%). However, analysis of the ΦPan70 genome revealed that it was 64% identical to F10, a temperate P. aeruginosa phage. Gene annotation indicated ΦPan70 as a new, but possible temperate phage, therefore not ideal for phage-therapy. Based on this, we recommend genome sequence analysis as an early step to select candidate phages for potential application in phage-therapy, before entering into a more intensive characterization. PMID:26274971

  8. Phage ΦPan70, a Putative Temperate Phage, Controls Pseudomonas aeruginosa in Planktonic, Biofilm and Burn Mouse Model Assays

    Directory of Open Access Journals (Sweden)

    Angela V. Holguín

    2015-08-01

    Full Text Available Pseudomonas aeruginosa is one of the Multi-Drug-Resistant organisms most frequently isolated worldwide and, because of a shortage of new antibiotics, bacteriophages are considered an alternative for its treatment. Previously, P. aeruginosa phages were isolated and best candidates were chosen based on their ability to form clear plaques and their host range. This work aimed to characterize one of those phages, ΦPan70, preliminarily identified as a good candidate for phage-therapy. We performed infection curves, biofilm removal assays, transmission-electron-microscopy, pulsed-field-gel-electrophoresis, and studied the in vivo ΦPan70 biological activity in the burned mouse model. ΦPan70 was classified as a member of the Myoviridae family and, in both planktonic cells and biofilms, was responsible for a significant reduction in the bacterial population. The burned mouse model showed an animal survival between 80% and 100%, significantly different from the control animals (0%. However, analysis of the ΦPan70 genome revealed that it was 64% identical to F10, a temperate P. aeruginosa phage. Gene annotation indicated ΦPan70 as a new, but possible temperate phage, therefore not ideal for phage-therapy. Based on this, we recommend genome sequence analysis as an early step to select candidate phages for potential application in phage-therapy, before entering into a more intensive characterization.

  9. 黄芩苷对铜绿假单胞菌生物膜的影响%Effect of Baicalin on Pseudomonas Aeruginosa Biofilms

    Institute of Scientific and Technical Information of China (English)

    王贵年; 范莹; 王龙梓; 吴娟

    2011-01-01

    Objective To investigate the effect of baicalin on Pseudomonas aeruginosa biofilms in vitro. Methods Clinical isolates of Pseudomonas aeruginosa were cuhured in Luria - Bertani medium - aspirate sputum pipe system to establish biofilm formation. Biofilm was observed in AgNO3 staining. Viable bacterial counts were determined by serial dilution. MICs were measured by doubling dilution.Results The biofilm was inhibited and destructed by 15. 65mg/L of baicalin. Conclusion Baicalin displayed potent activity against Pseudomonas aeruginosa biofilms.%目的 研究黄芩苷对体外铜绿假单胞菌(pseudomonas aeruginosa,Pa)生物膜(biofilm,BF)的影响.方法 选取临床分离呼吸道Pa,采用LB肉汤-吸痰管系统培养BF,建立体外BF模型,银染法观察BF变化.将黄芩苷作用于BF,连续稀释法进行活菌计数,微量稀释法测定最低抑菌浓度(MIC).结果 15.65mg/L的黄芩苷即可抑制和破坏BF.结论 黄芩苷对体外铜绿假单胞菌生物膜有较强的抑制作用.

  10. Evaluation of antibiotic efficacy against infections caused by planktonic or biofilm cultures of Pseudomonas aeruginosa and Klebsiella pneumoniae in Galleria mellonella.

    Science.gov (United States)

    Benthall, Gabriel; Touzel, Rebecca E; Hind, Charlotte K; Titball, Richard W; Sutton, J Mark; Thomas, Rachael J; Wand, Matthew E

    2015-11-01

    The lack of novel antibiotics for more than a decade has placed increased pressure on existing therapies to combat the emergence of multidrug-resistant (MDR) bacterial pathogens. This study evaluated the Galleria mellonella insect model in determining the efficacy of available antibiotics against planktonic and biofilm infections of MDR Pseudomonas aeruginosa and Klebsiella pneumoniae strains in comparison with in vitro minimum inhibitory concentration (MIC) determination. In general, in vitro analysis agreed with the G. mellonella studies, and susceptibility in Galleria identified different drug resistance mechanisms. However, the carbapenems tested appeared to perform better in vivo than in vitro, with meropenem and imipenem able to clear K. pneumoniae and P. aeruginosa infections with strains that had bla(NDM-1) and bla(VIM) carbapenemases. This study also established an implant model in G. mellonella to allow testing of antibiotic efficacy against biofilm-derived infections. A reduction in antibiotic efficacy of amikacin against K. pneumoniae and P. aeruginosa biofilms was observed compared with a planktonic infection. Ciprofloxacin was found to be less effective at clearing a P. aeruginosa biofilm infection compared with a planktonic infection, but no statistical difference was seen between K. pneumoniae biofilm and planktonic infections treated with this antibiotic (P>0.05). This study provides important information regarding the suitability of Galleria as a model for antibiotic efficacy testing both against planktonic and biofilm-derived MDR infections.

  11. Evaluation of antibiotic efficacy against infections caused by planktonic or biofilm cultures of Pseudomonas aeruginosa and Klebsiella pneumoniae in Galleria mellonella.

    Science.gov (United States)

    Benthall, Gabriel; Touzel, Rebecca E; Hind, Charlotte K; Titball, Richard W; Sutton, J Mark; Thomas, Rachael J; Wand, Matthew E

    2015-11-01

    The lack of novel antibiotics for more than a decade has placed increased pressure on existing therapies to combat the emergence of multidrug-resistant (MDR) bacterial pathogens. This study evaluated the Galleria mellonella insect model in determining the efficacy of available antibiotics against planktonic and biofilm infections of MDR Pseudomonas aeruginosa and Klebsiella pneumoniae strains in comparison with in vitro minimum inhibitory concentration (MIC) determination. In general, in vitro analysis agreed with the G. mellonella studies, and susceptibility in Galleria identified different drug resistance mechanisms. However, the carbapenems tested appeared to perform better in vivo than in vitro, with meropenem and imipenem able to clear K. pneumoniae and P. aeruginosa infections with strains that had bla(NDM-1) and bla(VIM) carbapenemases. This study also established an implant model in G. mellonella to allow testing of antibiotic efficacy against biofilm-derived infections. A reduction in antibiotic efficacy of amikacin against K. pneumoniae and P. aeruginosa biofilms was observed compared with a planktonic infection. Ciprofloxacin was found to be less effective at clearing a P. aeruginosa biofilm infection compared with a planktonic infection, but no statistical difference was seen between K. pneumoniae biofilm and planktonic infections treated with this antibiotic (P>0.05). This study provides important information regarding the suitability of Galleria as a model for antibiotic efficacy testing both against planktonic and biofilm-derived MDR infections. PMID:26364845

  12. Anti-biofilm activities from marine cold adapted bacteria against Staphylococci and Pseudomonas aeruginosa

    OpenAIRE

    Papa, R.; Selan, L.; Parrilli, E.; Tilotta, M.; Sannino, F.; Feller, G.; Tutino, M; Artini, M

    2015-01-01

    Microbial biofilms have great negative impacts on the world’s economy and pose serious problems to industry, public health and medicine. The interest in the development of new approaches for the prevention and treatment of bacterial adhesion and biofilm formation has increased. Since, bacterial pathogens living in biofilm induce persistent chronic infections due to the resistance to antibiotics and host immune system. A viable approach should target adhesive properties without affecting bacte...

  13. Impact of Pseudomonas aeruginosa quorum sensing on biofilm persistence in an in vivo intraperitoneal foreign-body infection model

    DEFF Research Database (Denmark)

    Christensen, Louise D; Moser, Claus; Jensen, Peter Ø;

    2007-01-01

    of growth contributes significantly to P. aeruginosa tolerance to the action of the innate and adaptive defence system and numerous antibiotics. In the present study, an in vivo foreign-body infection model was established in the peritoneal cavity of mice. Experimental data showed that QS-deficient P...... to the placebo-treated group. These results were obtained with both an inbred (BALB/c) and an outbred (NMRI) mouse strain. The present results support a model by which functional QS systems play a pivotal role in the ability of bacteria to resist clearing by the innate immune system and strongly suggest...... that the efficiency of the mouse innate defence against biofilm-forming P. aeruginosa is improved when the bacteria are treated with QS drugs that induce QS deficiency....

  14. Mycobacterium biofilms: factors involved in development, dispersal, and therapeutic strategies against biofilm-relevant pathogens.

    Science.gov (United States)

    Xiang, Xiaohong; Deng, Wanyan; Liu, Minqiang; Xie, Jianping

    2014-01-01

    Many bacteria can develop biofilm (BF), a multicellular structure largely combining bacteria and their extracellular polymeric substances (EPS). The formation of biofilm results in an alternative existence in which microbes ensure their survival in adverse environments. Biofilm-relevant infections are more persistent, resistant to most antibiotics, and more recalcitrant to host immunity. Mycobacterium tuberculosis, the causative agent of tuberculosis, can develop biofilm, though whether M. tuberculosis can form biofilm within tuberculosis patients has yet to be determined. Here, we summarize the factors involved in the development and dispersal of mycobacterial biofilms, as well as underlying regulatory factors and inhibitors against biofilm to deepen our understanding of their development and to elucidate potential novel modes of action for future antibiotics. Key factors in biofilm formation identified as drug targets represent a novel and promising avenue for developing better antibiotics.

  15. Pharmacokinetics and pharmacodynamics of antibiotics in biofilm infections of Pseudomonas aeruginosa in vitro and in vivo

    DEFF Research Database (Denmark)

    Hengzhuang, Wang; Høiby, Niels; Ciofu, Oana

    2014-01-01

    Although progress on biofilm research has been obtained during the past decades, the treatment of biofilm infections with antibiotics remains a riddle. The pharmacokinetic (PK) and pharmacodynamic (PD) profiles of an antimicrobial agent provide important information helping to establish an effici......Although progress on biofilm research has been obtained during the past decades, the treatment of biofilm infections with antibiotics remains a riddle. The pharmacokinetic (PK) and pharmacodynamic (PD) profiles of an antimicrobial agent provide important information helping to establish...

  16. Bioguided Fractionation Shows Cassia alata Extract to Inhibit Staphylococcus epidermidis and Pseudomonas aeruginosa Growth and Biofilm Formation

    Directory of Open Access Journals (Sweden)

    Samuel Takashi Saito

    2012-01-01

    Full Text Available Plant extracts have a long history to be used in folk medicine. Cassia alata extracts are known to exert antibacterial activity but details on compounds and mechanism of action remain poorly explored. We purified and concentrated the aqueous leaf extract of C. alata by reverse phase-solid phase extraction and screened the resulting CaRP extract for antimicrobial activity. CaRP extract exhibited antimicrobial activity for Pseudomonas aeruginosa, Staphylococcus epidermidis, S. aureus, and Bacillus subtilis. CaRP also inhibited biofilm formation of S. epidermidis and P. aeruginosa. Several bacterial growth-inhibiting compounds were detected when CaRP extract was fractionated by TLC chromatography coupled to bioautography agar overlay technique. HPLC chromatography of CaRP extract yielded 20 subfractions that were tested by bioautography for antimicrobial activity against S. aureus and S. epidermidis. Five bioactive fractions were detected and chemically characterized, using high-resolution mass spectrometry (qTOF-MS/MS. Six compounds from four fractions could be characterized as kaempferol, kaempferol-O-diglucoside, kaempferol-O-glucoside, quercetin-O-glucoside, rhein, and danthron. In the Salmonella/microsome assay CaRP showed weak mutagenicity (MI<3 only in strain TA98, pointing to a frameshift mutation activity. These results indicate that C. alata leaf extract contains a minimum of 7 compounds with antimicrobial activity and that these together or as single substance are active in preventing formation of bacterial biofilm, indicating potential for therapeutic applications.

  17. Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Jensen, Peter Østrup; Fiandaca, Mark J;

    2009-01-01

    The present study was undertaken to investigate the appearance and location of Pseudomonas aeruginosa in the cystic fibrosis (CF) lung and in sputum. Samples include preserved tissues of CF patients who died due to chronic P. aeruginosa lung infection prior to the advent of intensive antibiotic...

  18. The LapG protein plays a role in Pseudomonas aeruginosa biofilm formation by controlling the presence of the CdrA adhesin on the cell surface

    DEFF Research Database (Denmark)

    Rybtke, Morten; Berthelsen, Jens; Yang, Liang;

    2015-01-01

    Pseudomonas aeruginosa is a clinically relevant species involved in biofilm-based chronic infections. We provide evidence that the P. aeruginosa LapG protein functions as a periplasmic protease that can cleave the protein adhesin CdrA off the cell surface, and thereby plays a role in biofilm...... formation and biofilm dispersal. The P. aeruginosa LapG protein is shown to be a functional homolog of the Pseudomonas putida LapG protein which has previously been shown to function as a periplasmic protease that targets the surface adhesin LapA. Transposon mutagenesis and characterization of defined...... knockout mutants provided evidence that the CdrA adhesin is a target of LapG in P. aeruginosa. A wspF lapG double mutant was hyper-aggregating and hyper biofilm forming, whereas a wspF lapG cdrA triple mutant lost these phenotypes. In addition, western blot detection of CdrA in culture supernatants...

  19. Clearance of Pseudomonas aeruginosa Foreign-Body Biofilm Infections through Reduction of the Cyclic Di-GMP Level in the Bacteria

    DEFF Research Database (Denmark)

    Christensen, Louise D.; van Gennip, Maria; Rybtke, Morten Theil;

    2013-01-01

    be used for biofilm control in vivo. We constructed a Pseudomonas aeruginosa strain in which a reduction in the c-di-GMP level can be achieved via induction of the Escherichia coli YhjH c-di-GMP phosphodiesterase. Initial experiments showed that induction of yhjH expression led to dispersal...

  20. Backbone and sidechain 1H, 15N and 13C assignments of Tyrosine Phosphatase related to Biofilm formation A (TpbA) of Pseudomonas aeruginosa

    OpenAIRE

    Koveal, Dorothy; Jayasundera, Thusitha B.; Wood, Thomas K.; Peti, Wolfgang; Page, Rebecca

    2012-01-01

    The backbone and side chain resonance assignments of the Tyrosine Phosphatase related to Biofilm formation A (TpbA) of Pseudomonas aeruginosa have been determined based on triple-resonance experiments using uniformly [13C,15N]-labeled protein. This assignment is the first step towards the determination of the 3-dimensional structure of TpbA.

  1. The effects of hyperosmosis or high pH on a dual-species biofilm of Enterococcus faecalis and Pseudomonas aeruginosa : an in vitro study

    NARCIS (Netherlands)

    van der Waal, S. V.; van der Sluis, L. W. M.; Ozok, A. R.; Exterkate, R. A. M.; van Marle, J.; Wesselink, P. R.; de Soet, J. J.

    2011-01-01

    van der Waal SV, van der Sluis LWM, Ozok AR, Exterkate RAM, van Marle J, Wesselink PR, de Soet JJ. The effects of hyperosmosis or high pH on a dual-species biofilm of Enterococcus faecalis and Pseudomonas aeruginosa: an in vitro study. International Endodontic Journal, 44, 11101117, 2011. Aim To inv

  2. [The biological kinetics of biofilms of clinical strains of Staphylococcus aureus and Pseudomonas aeruginosa separated from patients with bronchopulmonary complications under traumatic disease of spinal cord].

    Science.gov (United States)

    Ul'ianov, V Iu; Opredelentseva, S V; Shvidenko, I G; Norkin, I A; Korshunov, G V; Gladkova, E V

    2014-08-01

    The capacity and intensity of formation of microbial biofilms was analyzed in 24 strains of Staphylococcus aureus and Pseudomonas aeruginosa in static conditions of cultivation during 24, 48, 72 and 96 yours. The microorganisms were separated from patients with bronchopulmonary infectious complications in acute and early periods of traumatic disease of spinal cord.

  3. Adsorption to metal oxides of the Pseudomonas aeruginosa siderophore pyoverdine and implications for bacterial biofilm formation on metals.

    Science.gov (United States)

    Upritchard, Hamish G; Yang, Jing; Bremer, Philip J; Lamont, Iain L; McQuillan, A James

    2007-06-19

    The initiation of biofilm formation is poorly understood, and in particular, the contribution of chemical bond formation between bacterial cells and metal surfaces has received little attention. We have previously used in situ infrared spectroscopy to show, during the initial stages of Pseudomonas aeruginosa biofilm formation, the formation of coordinate covalent bonds between titanium dioxide particle films and pyoverdine, a mixed catecholate and hydroxamate siderophore. Here we show using infrared spectroscopy that pyoverdine can also form covalent bonds with particle films of Fe2O3, CrOOH, and AlOOH. Adsorption to the metal oxides through the catechol-like 2,3-diamino-6,7-dihydroxyquinoline part of pyoverdine was most evident in the infrared spectrum of the adsorbed pyoverdine molecule. Weaker infrared absorption bands that are consistent with the hydroxamic acids of pyoverdine binding covalently to TiO2, Fe2O3, and AlOOH surfaces were also observed. The adsorption of pyoverdine to TiO2 and Fe2O3 surfaces showed a pH dependence that is indicative of the dominance of the catechol-like ligand of pyoverdine. Infrared absorption bands were also evident for pyoverdine associated with the cells of P. aeruginosa on TiO2 and Fe2O3 surfaces and were notably absent for genetically modified cells unable to synthesize or bind pyoverdine at the cell surface. These studies confirm the generality of pyoverdine-metal bond formation and suggest a wider involvement of siderophores in bacterial biofilm initiation on metals.

  4. The composition and compression of biofilms developed on ultrafiltration membranes determine hydraulic biofilm resistance.

    Science.gov (United States)

    Derlon, Nicolas; Grütter, Alexander; Brandenberger, Fabienne; Sutter, Anja; Kuhlicke, Ute; Neu, Thomas R; Morgenroth, Eberhard

    2016-10-01

    This study aimed at identifying how to improve the level of permeate flux stabilisation during gravity-driven membrane filtration without control of biofilm formation. The focus was therefore on understanding (i) how the different fractions of the biofilms (inorganics particles, bacterial cells, EPS matrix) influence its hydraulic resistance and (ii) how the compression of biofilms impacts its hydraulic resistance, i.e., can water head be increased to increase the level of permeate flux stabilisation. Biofilms were developed on ultrafiltration membranes at 88 and 284 cm water heads with dead-end filtration for around 50 days. A larger water head resulted in a smaller biofilm permeability (150 and 50 L m(-2) h(-1) bar(-1) for biofilms grown at 88 cm and 284 cm water head, respectively). Biofilms were mainly composed of EPS (>90% in volume). The comparison of the hydraulic resistances of biofilms to model fouling layers indicated that most of the hydraulic resistance is due to the EPS matrix. The compressibility of the biofilm was also evaluated by subjecting the biofilms to short-term (few minutes) and long-term variations of transmembrane pressures (TMP). A sudden change of TMP resulted in an instantaneous and reversible change of biofilm hydraulic resistance. A long-term change of TMP induced a slow change in the biofilm hydraulic resistance. Our results demonstrate that the response of biofilms to a TMP change has two components: an immediate variation of resistance (due to compression/relaxation) and a long-term response (linked to biofilm adaptation/growth). Our results provide relevant information about the relationship between the operating conditions in terms of TMP, the biofilm structure and composition and the resulting biofilm hydraulic resistance. These findings have practical implications for a broad range of membrane systems. PMID:27318448

  5. The composition and compression of biofilms developed on ultrafiltration membranes determine hydraulic biofilm resistance.

    Science.gov (United States)

    Derlon, Nicolas; Grütter, Alexander; Brandenberger, Fabienne; Sutter, Anja; Kuhlicke, Ute; Neu, Thomas R; Morgenroth, Eberhard

    2016-10-01

    This study aimed at identifying how to improve the level of permeate flux stabilisation during gravity-driven membrane filtration without control of biofilm formation. The focus was therefore on understanding (i) how the different fractions of the biofilms (inorganics particles, bacterial cells, EPS matrix) influence its hydraulic resistance and (ii) how the compression of biofilms impacts its hydraulic resistance, i.e., can water head be increased to increase the level of permeate flux stabilisation. Biofilms were developed on ultrafiltration membranes at 88 and 284 cm water heads with dead-end filtration for around 50 days. A larger water head resulted in a smaller biofilm permeability (150 and 50 L m(-2) h(-1) bar(-1) for biofilms grown at 88 cm and 284 cm water head, respectively). Biofilms were mainly composed of EPS (>90% in volume). The comparison of the hydraulic resistances of biofilms to model fouling layers indicated that most of the hydraulic resistance is due to the EPS matrix. The compressibility of the biofilm was also evaluated by subjecting the biofilms to short-term (few minutes) and long-term variations of transmembrane pressures (TMP). A sudden change of TMP resulted in an instantaneous and reversible change of biofilm hydraulic resistance. A long-term change of TMP induced a slow change in the biofilm hydraulic resistance. Our results demonstrate that the response of biofilms to a TMP change has two components: an immediate variation of resistance (due to compression/relaxation) and a long-term response (linked to biofilm adaptation/growth). Our results provide relevant information about the relationship between the operating conditions in terms of TMP, the biofilm structure and composition and the resulting biofilm hydraulic resistance. These findings have practical implications for a broad range of membrane systems.

  6. Synergistic effect of membrane-active peptides polymyxin B and gramicidin S on multidrug-resistant strains and biofilms of Pseudomonas aeruginosa.

    Science.gov (United States)

    Berditsch, Marina; Jäger, Thomas; Strempel, Nikola; Schwartz, Thomas; Overhage, Jörg; Ulrich, Anne S

    2015-09-01

    Multidrug-resistant Pseudomonas aeruginosa is a major cause of severe hospital-acquired infections. Currently, polymyxin B (PMB) is a last-resort antibiotic for the treatment of infections caused by Gram-negative bacteria, despite its undesirable side effects. The delivery of drug combinations has been shown to reduce the required therapeutic doses of antibacterial agents and thereby their toxicity if a synergistic effect is present. In this study, we investigated the synergy between two cyclic antimicrobial peptides, PMB and gramicidin S (GS), against different P. aeruginosa isolates, using a quantitative checkerboard assay with resazurin as a growth indicator. Among the 28 strains that we studied, 20 strains showed a distinct synergistic effect, represented by a fractional inhibitory concentration index (FICI) of ≤0.5. Remarkably, several clinical P. aeruginosa isolates that grew as small-colony variants revealed a nonsynergistic effect, as indicated by FICIs between >0.5 and ≤0.70. In addition to inhibiting the growth of planktonic bacteria, the peptide combinations significantly decreased static biofilm growth compared with treatment with the individual peptides. There was also a faster and more prolonged effect when the combination of PMB and GS was used compared with single-peptide treatments on the metabolic activity of pregrown biofilms. The results of the present study define a synergistic interaction between two cyclic membrane-active peptides toward 17 multidrug-resistant P. aeruginosa and biofilms of P. aeruginosa strain PAO1. Thus, the application of PMB and GS in combination is a promising option for a topical medication and in the prevention of acute and chronic infections caused by multidrug-resistant or biofilm-forming P. aeruginosa. PMID:26077259

  7. The Pseudomonas aeruginosa CreBC two-component system plays a major role in the response to β-lactams, fitness, biofilm growth, and global regulation.

    Science.gov (United States)

    Zamorano, Laura; Moyà, Bartolomé; Juan, Carlos; Mulet, Xavier; Blázquez, Jesús; Oliver, Antonio

    2014-09-01

    Pseudomonas aeruginosa is a ubiquitous versatile environmental microorganism with a remarkable ability to grow under diverse environmental conditions. Moreover, P. aeruginosa is responsible for life-threatening infections in immunocompromised and cystic fibrosis patients, as the extraordinary capacity of this pathogen to develop antimicrobial resistance dramatically limits our therapeutic arsenal. Its large genome carries an outstanding number of genes belonging to regulatory systems, including multiple two-component sensor-regulator systems that modulate the response to the different environmental stimuli. Here, we show that one of two systems, designated CreBC (carbon source responsive) and BlrAB (β-lactam resistance), might be of particular relevance. We first identified the stimuli triggering the activation of the CreBC system, which specifically responds to penicillin-binding protein 4 (PBP4) inhibition by certain β-lactam antibiotics. Second, through an analysis of a large comprehensive collection of mutants, we demonstrate an intricate interconnection between the CreBC system, the peptidoglycan recycling pathway, and the expression of the concerning chromosomal β-lactamase AmpC. Third, we show that the CreBC system, and particularly its effector inner membrane protein CreD, plays a major role in bacterial fitness and biofilm development, especially in the presence of subinhibitory concentrations of β-lactams. Finally, global transcriptomics reveals broad regulatory functions of CreBC in basic physiological aspects, particularly anaerobic respiration, in both the presence and absence of antibiotics. Therefore, the CreBC system is envisaged as a potentially interesting target for improving the efficacy of β-lactams against P. aeruginosa infections. PMID:24936599

  8. Development of biofilm-targeted antimicrobial wound dressing for the treatment of chronic wound infections.

    Science.gov (United States)

    Ng, Shiow-Fern; Leow, Hon-Lunn

    2015-01-01

    It has been established that microbial biofilms are largely responsible for the recalcitrance of many wound infections to conventional antibiotics. It was proposed that the efficacy of antibiotics could be optimized via the inhibition of bacterial biofilm growth in wounds. The combination of antibiofilm agent and antibiotics into a wound dressing may be a plausible strategy in wound infection management. Xylitol is an antibiofilm agent that has been shown to inhibit the biofilm formation. The purpose of this study was to develop an alginate film containing xylitol and gentamicin for the treatment of wound infection. Three films, i.e. blank alginate film (SA), alginate film with xylitol (F5) and alginate film with xylitol and gentamicin (AG), were prepared. The films were studied for their physical properties, swelling ratio, moisture absorption, moisture vapor transmission rate (MVTR), mechanical and rheology properties, drug content uniformity as well as in vitro drug release properties. Antimicrobial and antibiofilm in vitro studies on Staphylococcus aureus and Pseudomonas aeruginosa were also performed. The results showed that AG demonstrates superior mechanical properties, rheological properties and a higher MVTR compared with SA and F5. The drug flux of AG was higher than that of commercial gentamicin cream. Furthermore, antimicrobial studies showed that AG is effective against both S. aureus and P. aeruginosa, and the antibiofilm assays demonstrated that the combination was effective against biofilm bacteria. In summary, alginate films containing xylitol and gentamicin may potentially be used as new dressings for the treatment of wound infection. PMID:25758412

  9. Biofilms and type III secretion are not mutually exclusive in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Mikkelsen, H; Bond, N J; Skindersoe, M E;

    2009-01-01

    and fast growth. Conversely, chronic infections are often associated with the biofilm mode of growth, low virulence and slow growth that resembles that of planktonic cells in stationary phase. Biofilm formation and type III secretion have been shown to be reciprocally regulated, and it has been suggested...

  10. Staphylococcus aureus biofilms: recent developments in biofilm dispersal.

    Science.gov (United States)

    Lister, Jessica L; Horswill, Alexander R

    2014-01-01

    Staphylococcus aureus is a major cause of nosocomial and community-acquired infections and represents a significant burden on the healthcare system. S. aureus attachment to medical implants and host tissue, and the establishment of a mature biofilm, play an important role in the persistence of chronic infections. The formation of a biofilm, and encasement of cells in a polymer-based matrix, decreases the susceptibility to antimicrobials and immune defenses, making these infections difficult to eradicate. During infection, dispersal of cells from the biofilm can result in spread to secondary sites and worsening of the infection. In this review, we discuss the current understanding of the pathways behind biofilm dispersal in S. aureus, with a focus on enzymatic and newly described broad-spectrum dispersal mechanisms. Additionally, we explore potential applications of dispersal in the treatment of biofilm-mediated infections.

  11. HD-GYP domain proteins regulate biofilm formation and virulence in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Ryan, Robert P.; Lucey, Jean; O'Donovan, Karen;

    2009-01-01

    HD-GYP is a protein domain involved in the hydrolysis of the bacterial second messenger cyclic-di-GMP. The genome of the human pathogen Pseudomonas aeruginosa PAO1 encodes two proteins (PA4108, PA4781) with an HD-GYP domain and a third protein, PA2572, which contains a domain with variant key res....... aeruginosa to larvae of the Greater Wax moth Galleria mellonella....

  12. The inhibition of Pseudomonas aeruginosa biofilm formation by micafungin and the enhancement of antimicrobial agent effectiveness in BALB/c mice.

    Science.gov (United States)

    Kissoyan, Kohar Annie B; Bazzi, Wael; Hadi, Usamah; Matar, Ghassan M

    2016-08-01

    Micafungin inhibits biofilm formation by impeding 1,3-β-D-glucan synthesis in Candida albicans. Since Pseudomonas aeruginosa also has 1,3-β-D-glucan in its cell wall, this study assessed the effects of antibacterial agents in vitro and in vivo on micafungin-treated biofilm-forming P. aeruginosa isolates. After treatment with micafungin as well as with a panel of four antibacterial agents, biofilm production was significantly reduced as measured by spectrophotometry. The relative mRNA transcription levels for the genes encoding pellicles (pelC) and cell wall 1,3-β-D-glucan (ndvB), which were measured by quantitative reverse transcription PCR (qRT-PCR), significantly decreased with micafungin treatment. In vivo, the survival rates of P. aeruginosa-infected BALB/c mice significantly increased after combined treatment with micafungin and each of the antibacterial agents. Of these treatments, the combination of micafungin with levofloxacin had the highest survival rate; this combination was the most effective treatment against P. aeruginosa-induced infection. PMID:27347641

  13. Visualization of Microbiological Processes Underlying Stress Relaxation in Pseudomonas aeruginosa Biofilms

    NARCIS (Netherlands)

    Peterson, Brandon W.; Busscher, Henk J.; Sharma, Prashant K.; van der Mei, Henny C.

    2014-01-01

    Bacterial biofilms relieve themselves from external stresses through internal rearrangement, as mathematically modeled in many studies, but never microscopically visualized for their underlying microbiological processes. The aim of this study was to visualize rearrangement processes occurring in mec

  14. Efflux as a Glutaraldehyde Resistance Mechanism in Pseudomonas fluorescens and Pseudomonas aeruginosa Biofilms

    OpenAIRE

    Vikram, Amit; Jennifer M Bomberger; Kyle J Bibby

    2015-01-01

    A major challenge in microbial biofilm control is biocide resistance. Phenotypic adaptations and physical protective effects have been historically thought to be the primary mechanisms for glutaraldehyde resistance in bacterial biofilms. Recent studies indicate the presence of genetic mechanisms for glutaraldehyde resistance, but very little is known about the contributory genetic factors. Here, we demonstrate that efflux pumps contribute to glutaraldehyde resistance in Pseudomonas fluorescen...

  15. Evaluating the use of Spectral Induced Conductivity to Detect Biofilm Development within Porous Media

    Science.gov (United States)

    Rosier, C. L.; Atekwana, E. A.; Price, A.; Sharma, S.; Patrauchan, M.

    2015-12-01

    Microbial biomass accumulation in subsurface sediments dynamically alters porosity/permeability; factors critical to contaminant transport and management of bioremediation efforts. Current methodologies (i.e. plate counts, tracer/slug tests) offer some understanding of biofilm effect on subsurface hydrology, yet do not provide real-time information regarding biofilm development. Due to these limitations there is interest in assessing the near surface geophysical technique Spectral Induced Polarization (SIP), to measure biofilm formation. Our study assesses the influence of cell density and biofilm production on SIP response. Laboratory experiments monitored changes in SIP, measured colony forming units (CFU), and cellular protein levels on sand packed columns inoculated with either Pseudomonas aeruginosa PAO1 (non-mucoid strain) or Pseudomonas aeruginosa FRD1 (biofilm-overproducing mucoid strain) cells over one month. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were used to confirm the presence of biofilm. Our results indicate that phase and imaginary conductivity remained stable in PAO1 treatments as cell densities and cellular protein levels remained low (1.7x105 CFUml-1; 111 μg ml-1). However, we observed a significant decrease in both phase (0.5 to -0.20 mrad) and imaginary conductivity (0.0 to -3.0x10-5 S m-1) when both cell densities and cellular protein levels increased. In FRD1 treatments we observed an immediate decrease in phase (0.1 mrad) and imaginary conductivity (-2.0x10-6 S m-1) as cell densities were an order of magnitude greater then PAO1 treatments and cellular protein levels surpassed 500 μg ml-1. CLSM and SEM analysis confirmed the presence of biofilm and cells within both PAO1 and FRD1 treatments. Our findings suggest that the ratio of cells to cellular protein production is an important factor influencing both phase and imaginary conductivity response. However, our results are not in agreement with

  16. 铜绿假单胞菌细菌生物膜形成及耐药性分析%Formation of pseudomonas aeruginosa biofilm and antibiotic resistance

    Institute of Scientific and Technical Information of China (English)

    袁晨燕; 韩勍; 陈建明; 芦慧霞

    2011-01-01

    目的 建立铜绿假单胞菌细菌生物膜模型,比较浮游状态和生物膜中铜绿假单胞菌对临床常用抗菌药物的耐药性.方法 用临床分离的铜绿假单胞菌孵育医用硅胶材料(硅胶导尿管)建立细菌生物膜,经银染法和扫描电镜观察生物膜的形成情况,测定 6种抗菌药物对分离菌在浮游状态的最低抑菌浓度(MIC)、最小杀菌浓度(MBC)及生物膜形成以后最小生物膜清除浓度(MBEc).结果 经银染法和扫描电镜观察,导尿管表面形成了细菌生物膜;抗菌药物对生物膜的MBEC为浮游状态下MIC和MBC的100~1000倍.结论 体外建立细菌生物膜,并经银染法观察生物膜的形成是方便可行的;铜绿假单胞菌形成细菌生物膜以后对常用抗菌药物的耐药性远远高于浮游菌.%OBJECTIVE To establish the models of Pseudomonas aeruginosa, to compare the antibiotic susceptibility of P. aeruginosa in biofilms versus its counterparts in planctonic culture. METHODS Incubated isolates from clinic with the silicon catheters and observed the formation of biofilm on catheters by silver staining and scanning electron microscopy (SEM). Assay of determination the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of the planctonic cells and the minimal biofilm eradication concentration (MBEC) of the cells in biofilm were undertaken. RESULTS P. aeruginosa biofilms were observed on the surface of catheters. The MBEC was 100 - 1000 times than MIC and MBC. CONCLUSION The assay of establishing P. aeruginosa biofilm and observed by silver staining is convenient and feasible. P. aeruginosa in biofilm exhibits far more resistance to antimicrobial than its planctonic counterparts does.

  17. Expression of Fap amyloids in Pseudomonas aeruginosa, P. fluorescens, and P. putida results in aggregation and increased biofilm formation

    DEFF Research Database (Denmark)

    Dueholm, Morten S.; Søndergaard, Mads T; Nilsson, Martin;

    2013-01-01

    The fap operon, encoding functional amyloids in Pseudomonas (Fap), is present in most pseudomonads, but so far the expression and importance for biofilm formation has only been investigated for P. fluorescens strain UK4. In this study, we demonstrate the capacity of P. aeruginosa PAO1, P. fluorescens...... Pf-5, and P. putida F1 to express Fap fibrils, and investigated the effect of Fap expression on aggregation and biofilm formation. The fap operon in all three Pseudomonas species conferred the ability to express Fap fibrils as shown using a recombinant approach. This Fap overexpression consistently...

  18. Pseudomonas aeruginosa biofilm formation and slime excretion on antibiotic-loaded bone cement

    NARCIS (Netherlands)

    Neut, D; Hendriks, JGE; van Horn, [No Value; van der Mei, HC; Busscher, HJ

    2005-01-01

    Background Infection is an infrequent but serious complication of prosthetic joint surgery. These infections will usually not clear until the implant is removed and re-implantation has a high failure rate, especially when Pseudomonas aeruginosa is involved. Material and methods We examined Pseudomon

  19. Inhibition of quorum sensing in Pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound

    DEFF Research Database (Denmark)

    Hentzer, Morten; Riedel, K.; Rasmussen, Thomas Bovbjerg;

    2002-01-01

    macroalga Delisea pulchra, is capable of interfering with AHL-mediated quorum sensing in P. aeruginosa. It is demonstrated that the furanone compound specifically represses expression of a PlasB-gfp reporter fusion without affecting growth or protein synthesis. In addition, it reduces the production...

  20. Successional development of biofilms in moving bed biofilm reactor (MBBR) systems treating municipal wastewater.

    Science.gov (United States)

    Biswas, Kristi; Taylor, Michael W; Turner, Susan J

    2014-02-01

    Biofilm-based technologies, such as moving bed biofilm reactor (MBBR) systems, are widely used to treat wastewater. Biofilm development is important for MBBR systems as much of the microbial biomass is retained within reactors as biofilm on suspended carriers. Little is known about this process of biofilm development and the microorganisms upon which MBBRs rely. We documented successional changes in microbial communities as biofilms established in two full-scale MBBR systems treating municipal wastewater over two seasons. 16S rRNA gene-targeted pyrosequencing and clone libraries were used to describe microbial communities. These data indicate a successional process that commences with the establishment of an aerobic community dominated by Gammaproteobacteria (up to 52 % of sequences). Over time, this community shifts towards dominance by putatively anaerobic organisms including Deltaproteobacteria and Clostridiales. Significant differences were observed between the two wastewater treatment plants (WWTPs), mostly due to a large number of sequences (up to 55 %) representing Epsilonproteobacteria (mostly Arcobacter) at one site. Archaea in young biofilms included several lineages of Euryarchaeota and Crenarchaeota. In contrast, the mature biofilm consisted entirely of Methanosarcinaceae (Euryarchaeota). This study provides new insights into the community structure of developing biofilms at full-scale WWTPs and provides the basis for optimizing MBBR start-up and operational parameters.

  1. The chemical digestion of Ti6Al7Nb scaffolds produced by Selective Laser Melting reduces significantly ability of Pseudomonas aeruginosa to form biofilm.

    Science.gov (United States)

    Junka, Adam F; Szymczyk, Patrycja; Secewicz, Anna; Pawlak, Andrzej; Smutnicka, Danuta; Ziółkowski, Grzegorz; Bartoszewicz, Marzenna; Chlebus, Edward

    2016-01-01

    In our previous work we reported the impact of hydrofluoric and nitric acid used for chemical polishing of Ti-6Al-7Nb scaffolds on decrease of the number of Staphylococcus aureus biofilm forming cells. Herein, we tested impact of the aforementioned substances on biofilm of Gram-negative microorganism, Pseudomonas aeruginosa, dangerous pathogen responsible for plethora of implant-related infections. The Ti-6Al-7Nb scaffolds were manufactured using Selective Laser Melting method. Scaffolds were subjected to chemical polishing using a mixture of nitric acid and fluoride or left intact (control group). Pseudomonal biofilm was allowed to form on scaffolds for 24 hours and was removed by mechanical vortex shaking. The number of pseudomonal cells was estimated by means of quantitative culture and Scanning Electron Microscopy. The presence of nitric acid and fluoride on scaffold surfaces was assessed by means of IR and rentgen spetorscopy. Quantitative data were analysed using the Mann-Whitney test (P ≤ 0.05). Our results indicate that application of chemical polishing correlates with significant drop of biofilm-forming pseudomonal cells on the manufactured Ti-6Al-7Nb scaffolds ( p = 0.0133, Mann-Whitney test) compared to the number of biofilm-forming cells on non-polished scaffolds. As X-ray photoelectron spectroscopy revealed the presence of fluoride and nitrogen on the surface of scaffold, we speculate that drop of biofilm forming cells may be caused by biofilm-supressing activity of these two elements.

  2. The chemical digestion of Ti6Al7Nb scaffolds produced by Selective Laser Melting reduces significantly ability of Pseudomonas aeruginosa to form biofilm.

    Science.gov (United States)

    Junka, Adam F; Szymczyk, Patrycja; Secewicz, Anna; Pawlak, Andrzej; Smutnicka, Danuta; Ziółkowski, Grzegorz; Bartoszewicz, Marzenna; Chlebus, Edward

    2016-01-01

    In our previous work we reported the impact of hydrofluoric and nitric acid used for chemical polishing of Ti-6Al-7Nb scaffolds on decrease of the number of Staphylococcus aureus biofilm forming cells. Herein, we tested impact of the aforementioned substances on biofilm of Gram-negative microorganism, Pseudomonas aeruginosa, dangerous pathogen responsible for plethora of implant-related infections. The Ti-6Al-7Nb scaffolds were manufactured using Selective Laser Melting method. Scaffolds were subjected to chemical polishing using a mixture of nitric acid and fluoride or left intact (control group). Pseudomonal biofilm was allowed to form on scaffolds for 24 hours and was removed by mechanical vortex shaking. The number of pseudomonal cells was estimated by means of quantitative culture and Scanning Electron Microscopy. The presence of nitric acid and fluoride on scaffold surfaces was assessed by means of IR and rentgen spetorscopy. Quantitative data were analysed using the Mann-Whitney test (P ≤ 0.05). Our results indicate that application of chemical polishing correlates with significant drop of biofilm-forming pseudomonal cells on the manufactured Ti-6Al-7Nb scaffolds ( p = 0.0133, Mann-Whitney test) compared to the number of biofilm-forming cells on non-polished scaffolds. As X-ray photoelectron spectroscopy revealed the presence of fluoride and nitrogen on the surface of scaffold, we speculate that drop of biofilm forming cells may be caused by biofilm-supressing activity of these two elements. PMID:27150429

  3. Inhibition of Aspergillus fumigatus and Its Biofilm by Pseudomonas aeruginosa Is Dependent on the Source, Phenotype and Growth Conditions of the Bacterium.

    Science.gov (United States)

    Ferreira, Jose A G; Penner, John C; Moss, Richard B; Haagensen, Janus A J; Clemons, Karl V; Spormann, Alfred M; Nazik, Hasan; Cohen, Kevin; Banaei, Niaz; Carolino, Elisabete; Stevens, David A

    2015-01-01

    Aspergillus fumigatus (Af) and Pseudomonas aeruginosa (Pa) are leading fungal and bacterial pathogens, respectively, in many clinical situations. Relevant to this, their interface and co-existence has been studied. In some experiments in vitro, Pa products have been defined that are inhibitory to Af. In some clinical situations, both can be biofilm producers, and biofilm could alter their physiology and affect their interaction. That may be most relevant to airways in cystic fibrosis (CF), where both are often prominent residents. We have studied clinical Pa isolates from several sources for their effects on Af, including testing involving their biofilms. We show that the described inhibition of Af is related to the source and phenotype of the Pa isolate. Pa cells inhibited the growth and formation of Af biofilm from conidia, with CF isolates more inhibitory than non-CF isolates, and non-mucoid CF isolates most inhibitory. Inhibition did not require live Pa contact, as culture filtrates were also inhibitory, and again non-mucoid>mucoid CF>non-CF. Preformed Af biofilm was more resistant to Pa, and inhibition that occurred could be reproduced with filtrates. Inhibition of Af biofilm appears also dependent on bacterial growth conditions; filtrates from Pa grown as biofilm were more inhibitory than from Pa grown planktonically. The differences in Pa shown from these different sources are consistent with the extensive evolutionary Pa changes that have been described in association with chronic residence in CF airways, and may reflect adaptive changes to life in a polymicrobial environment.

  4. Ligand Binding Reduces Conformational Flexibility in the Active Site of Tyrosine Phosphatase Related to Biofilm Formation A (TpbA) from Pseudomonas aeruginosa

    OpenAIRE

    Koveal, Dorothy; Clarkson, Michael W.; Wood, Thomas K.; Page, Rebecca; Peti, Wolfgang

    2013-01-01

    TpbA is a periplasmic dual specificity phosphatase (DUSP) that controls biofilm formation in the pathogenic bacterium, Pseudomonas aeruginosa. While DUSPs are known to regulate important cellular functions in both prokaryotes and eukaryotes, very few structures of bacterial DUSPs are available. Here, we present the solution structure of TpbA in the ligand-free open conformation, along with an analysis of the structural and dynamic changes that accompany ligand/phosphate binding. While TpbA ad...

  5. Development of potent inhibitors of pyocyanin production in Pseudomonas aeruginosa

    OpenAIRE

    Miller, Laura C.; O’Loughlin, Colleen T.; Zhang, Zinan; Siryaporn, Albert; Silpe, Justin E.; Bassler, Bonnie L.; Semmelhack, Martin F.

    2015-01-01

    The development of new approaches for the treatment of antimicrobial-resistant infections is an urgent public health priority. The Pseudomonas aeruginosa pathogen, in particular, is a leading source of infection in hospital settings, with few available treatment options. In the context of an effort to develop antivirulence strategies to combat bacterial infection, we identified a series of highly effective small molecules that inhibit the production of pyocyanin, a redox-active virulence fact...

  6. Initial development and structure of biofilms on microbial fuel cell anodes

    Directory of Open Access Journals (Sweden)

    Keller Jürg

    2010-04-01

    Full Text Available Abstract Background Microbial fuel cells (MFCs rely on electrochemically active bacteria to capture the chemical energy contained in organics and convert it to electrical energy. Bacteria develop biofilms on the MFC electrodes, allowing considerable conversion capacity and opportunities for extracellular electron transfer (EET. The present knowledge on EET is centred around two Gram-negative models, i.e. Shewanella and Geobacter species, as it is believed that Gram-positives cannot perform EET by themselves as the Gram-negatives can. To understand how bacteria form biofilms within MFCs and how their development, structure and viability affects electron transfer, we performed pure and co-culture experiments. Results Biofilm viability was maintained highest nearer the anode during closed circuit operation (current flowing, in contrast to when the anode was in open circuit (soluble electron acceptor where viability was highest on top of the biofilm, furthest from the anode. Closed circuit anode Pseudomonas aeruginosa biofilms were considerably thinner compared to the open circuit anode (30 ± 3 μm and 42 ± 3 μm respectively, which is likely due to the higher energetic gain of soluble electron acceptors used. The two Gram-positive bacteria used only provided a fraction of current produced by the Gram-negative organisms. Power output of co-cultures Gram-positive Enterococcus faecium and either Gram-negative organisms, increased by 30-70% relative to the single cultures. Over time the co-culture biofilms segregated, in particular, Pseudomonas aeruginosa creating towers piercing through a thin, uniform layer of Enterococcus faecium. P. aeruginosa and E. faecium together generated a current of 1.8 ± 0.4 mA while alone they produced 0.9 ± 0.01 and 0.2 ± 0.05 mA respectively. Conclusion We postulate that this segregation may be an essential difference in strategy for electron transfer and substrate capture between the Gram-negative and the Gram

  7. Effects of Photoactivated Titanium Dioxide Nanopowders and Coating on Planktonic and Biofilm Growth of Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Polo, Andrea; Diamanti, Maria Vittoria; Bjarnsholt, Thomas;

    2011-01-01

    We exploited the ability of photocatalytic titanium dioxide (TiO(2) ) as an agent for the biofilm control. Two photocatalytic systems were investigated: a 3g/l suspension of TiO(2) nanopowder in demineralised water and glass slides coated with a TiO(2) thin film, achieved by sol-gel deposition...

  8. Phenolic compounds affect production of pyocyanin, swarming motility and biofilm formation of Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Aylin Ugurlu

    2016-08-01

    Conclusions: We may suggest that if swarming and consecutive biofilm formation could be inhibited by the natural products as shown in our study, the bacteria could not attach to the surfaces and produce chronic infections. Antimicrobials and natural products could be combined and the dosage of antimicrobials could be reduced to overcome antimicrobial resistance and drug side effects.

  9. Disinfection of Pseudomonas aeruginosa biofilm contaminated tube lumens with ultraviolet C light emitting diodes

    DEFF Research Database (Denmark)

    Bak, Jimmy; Ladefoged, Søren D; Tvede, Michael;

    2010-01-01

    Bacterial biofilms on long-term catheters are a major source of infection. Exposure to ultraviolet C (UVC - 265 nm) light was shown in an earlier study to reduce the number of bacteria substantially on ex vivo treated urinary patient catheters. Very large doses (long treatment times) should, howe...

  10. Microbiologically Influenced Corrosion of 2707 Hyper-Duplex Stainless Steel by Marine Pseudomonas aeruginosa Biofilm

    OpenAIRE

    Huabing Li; Enze Zhou; Dawei Zhang; Dake Xu; Jin Xia; Chunguang Yang; Hao Feng; Zhouhua Jiang; Xiaogang Li; Tingyue Gu; Ke Yang

    2016-01-01

    Microbiologically Influenced Corrosion (MIC) is a serious problem in many industries because it causes huge economic losses. Due to its excellent resistance to chemical corrosion, 2707 hyper duplex stainless steel (2707 HDSS) has been used in the marine environment. However, its resistance to MIC was not experimentally proven. In this study, the MIC behavior of 2707 HDSS caused by the marine aerobe Pseudomonas aeruginosa was investigated. Electrochemical analyses demonstrated a positive shift...

  11. Biofilm initiation and growth of Pseudomonas aeruginosa on 316L stainless steel in low gravity in orbital space flight

    Science.gov (United States)

    Todd, Paul; Pierson, Duane L.; Allen, Britt; Silverstein, JoAnn

    The formation of biofilms by water microorganisms such as Pseudomonas aeruginosa in spacecraft water systems has been a matter of concern for long-duration space flight. Crewed spacecraft plumbing includes internal surfaces made of 316L stainless steel. Experiments were therefore undertaken to compare the ability of P. aeruginosa to grow in suspension, attach to stainless steel and to grow on stainless steel in low gravity on the space shuttle. Four categories of cultures were studied during two space shuttle flights (STS-69 and STS-77). Cultures on the ground were held in static horizontal or vertical cylindrical containers or were tumbled on a clinostat and activated under conditions identical to those for the flown cultures. The containers used on the ground and in flight were BioServe Space Technologies’ Fluid Processing Apparatus (FPA), an open-ended test tube with rubber septa that allows robotic addition of bacteria to culture media to initiate experiments and the addition of fixative to conclude experiments. Planktonic growth was monitored by spectrophotometry, and biofilms were characterized quantitatively by epifluorescence and scanning electron microscopy. In these experiments it was found that: (1) Planktonic growth in flown cultures was more extensive than in static cultures, as seen repeatedly in the history of space microbiology, and closely resembled the growth of tumbled cultures. (2) Conversely, the attachment of cells in flown cultures was as much as 8 times that in tumbled cultures but not significantly different from that in static horizontal and vertical cultures, consistent with the notion that flowing fluid reduces microbial attachment. (3) The final surface coverage in 8 days was the same for flown and static cultures but less by a factor of 15 in tumbled cultures, where coverage declined during the preceding 4 days. It is concluded that cell attachment to 316L stainless steel in the low gravity of orbital space flight is similar to that

  12. Mechanistic insights into c-di-GMP-dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa.

    Science.gov (United States)

    Matsuyama, Bruno Y; Krasteva, Petya V; Baraquet, Claudine; Harwood, Caroline S; Sondermann, Holger; Navarro, Marcos V A S

    2016-01-12

    Bacterial biofilm formation during chronic infections confers increased fitness, antibiotic tolerance, and cytotoxicity. In many pathogens, the transition from a planktonic lifestyle to collaborative, sessile biofilms represents a regulated process orchestrated by the intracellular second-messenger c-di-GMP. A main effector for c-di-GMP signaling in the opportunistic pathogen Pseudomonas aeruginosa is the transcription regulator FleQ. FleQ is a bacterial enhancer-binding protein (bEBP) with a central AAA+ ATPase σ(54)-interaction domain, flanked by a C-terminal helix-turn-helix DNA-binding motif and a divergent N-terminal receiver domain. Together with a second ATPase, FleN, FleQ regulates the expression of flagellar and exopolysaccharide biosynthesis genes in response to cellular c-di-GMP. Here we report structural and functional data that reveal an unexpected mode of c-di-GMP recognition that is associated with major conformational rearrangements in FleQ. Crystal structures of FleQ's AAA+ ATPase domain in its apo-state or bound to ADP or ATP-γ-S show conformations reminiscent of the activated ring-shaped assemblies of other bEBPs. As revealed by the structure of c-di-GMP-complexed FleQ, the second messenger interacts with the AAA+ ATPase domain at a site distinct from the ATP binding pocket. c-di-GMP interaction leads to active site obstruction, hexameric ring destabilization, and discrete quaternary structure transitions. Solution and cell-based studies confirm coupling of the ATPase active site and c-di-GMP binding, as well as the functional significance of crystallographic interprotomer interfaces. Taken together, our data offer unprecedented insight into conserved regulatory mechanisms of gene expression under direct c-di-GMP control via FleQ and FleQ-like bEBPs.

  13. Controlling Biofilm Formation by Inhibiting the Quorum-Sensing Activity of Pseudomonas aeruginosa using the Ethanolic Extracts of Piper nigrum (Piperaceae Fruit, Punica granatum (Lythraceae Pericarp, and Pisum sativum (Fabaceae Seed

    Directory of Open Access Journals (Sweden)

    M.V. Dazal

    2015-07-01

    Full Text Available Bacterial biofilm formation can cause serious problems in clinical and industrial settings, which drives the development or screening of biofilm inhibitors. Pseudomonas aeruginosa is a well-known pathogen that exhibit biofilm formation through quorum-sensing, which is a bacterial cell-to-cell communication that regulates the production of many virulence factors. The inhibition of biofilm formation is a viable option for bacterial eradication. The antibacterial effect of Piper nigrum is related to the presence of phenolic and flavonoid components. Punica granatum has been reported to possess a wide range of biological actions, with tannins and alkaloids stated to be the reason of its antibacterial property. Pisum sativum, on the other hand, contains various constituents, but the tannins and phenolic compounds stated as responsible for its antibacterial property. The minimum inhibitory concentration using the susceptibility testing of P. nigrum, P. granatum, P. sativum ethanolic extracts were 6.67×10-4 g/mL, 2.1978×10-5 g/mL, and 6.25×10-4 g/mL, respectively. On the swarming assay, P. granatum and P. sativum inhibits swarming motility at concentrations of 2.1978×10-2 up to 2.1978×10-4 g/mL, and 6.25×10-2 to 6.25×10-3 g/mL, respectively. The P. nigrum extract did not inhibit the motility.

  14. Bifunctional silica nanoparticles for the exploration of biofilms of Pseudomonas aeruginosa

    OpenAIRE

    Mauline, Léïla; Gressier, Marie; Roques, Christine; Hammer, Peter,; Ribeiro, Sidney J. L.; Caiut, José Maurício A.; Menu, Marie-Joëlle

    2013-01-01

    Luminescent silica nanoparticles are frequently employed for biotechnology applications mainly because of their easy functionalization, photo-stability, and biocompatibility. Bifunctional silica nanoparticles (BSNPs) are described here as new efficient tools for investigating complex biological systems such as biofilms. Photoluminescence is brought about by the incorporation of a silylated ruthenium (II) complex. The surface properties of the silica particles were designed by reaction with am...

  15. The Pseudomonas aeruginosa CreBC Two-Component System Plays a Major Role in the Response to β-Lactams, Fitness, Biofilm Growth, and Global Regulation

    OpenAIRE

    Zamorano, Laura; Moyà, Bartolomé; Juan, Carlos; Mulet, Xavier; Blázquez, Jesús; Oliver, Antonio

    2014-01-01

    Pseudomonas aeruginosa is a ubiquitous versatile environmental microorganism with a remarkable ability to grow under diverse environmental conditions. Moreover, P. aeruginosa is responsible for life-threatening infections in immunocompromised and cystic fibrosis patients, as the extraordinary capacity of this pathogen to develop antimicrobial resistance dramatically limits our therapeutic arsenal. Its large genome carries an outstanding number of genes belonging to regulatory systems, includi...

  16. Antibiotic penetration and bacterial killing in a Pseudomonas aeruginosa biofilm model

    DEFF Research Database (Denmark)

    Cao, Bao; Christophersen, Lars; Thomsen, Kim;

    2015-01-01

    in the solution of homogenized beads was measured. Finally, beads were examined for live cells by Syto9 staining and for dead cells by propidium iodide staining using a confocal laser scanning microscope. RESULTS: The antibiotic level in each bead was relatively stable (range 30-42 mg/L; MIC = 1.5 mg...... by confocal laser scanning microscopy. More dead cells (measured by propidium iodide staining) were observed in the treated group of beads, which supports the results obtained by culture. CONCLUSIONS: The present study, simulating the clinical pharmacokinetics of tobramycin, demonstrates fast absorption...... model. METHODS: Seaweed alginate beads containing Pseudomonas aeruginosa were cultured in LB medium, sampled at day 1, 3, 5 or 7 and examined for the effect of treatment with tobramycin for 30 min. Treated beads were homogenized and the number of cfu was determined. The antibiotic concentration...

  17. Development of a high-throughput Candida albicans biofilm chip.

    Directory of Open Access Journals (Sweden)

    Anand Srinivasan

    Full Text Available We have developed a high-density microarray platform consisting of nano-biofilms of Candida albicans. A robotic microarrayer was used to print yeast cells of C. albicans encapsulated in a collagen matrix at a volume as low as 50 nL onto surface-modified microscope slides. Upon incubation, the cells grow into fully formed "nano-biofilms". The morphological and architectural complexity of these biofilms were evaluated by scanning electron and confocal scanning laser microscopy. The extent of biofilm formation was determined using a microarray scanner from changes in fluorescence intensities due to FUN 1 metabolic processing. This staining technique was also adapted for antifungal susceptibility testing, which demonstrated that, similar to regular biofilms, cells within the on-chip biofilms displayed elevated levels of resistance against antifungal agents (fluconazole and amphotericin B. Thus, results from structural analyses and antifungal susceptibility testing indicated that despite miniaturization, these biofilms display the typical phenotypic properties associated with the biofilm mode of growth. In its final format, the C. albicans biofilm chip (CaBChip is composed of 768 equivalent and spatially distinct nano-biofilms on a single slide; multiple chips can be printed and processed simultaneously. Compared to current methods for the formation of microbial biofilms, namely the 96-well microtiter plate model, this fungal biofilm chip has advantages in terms of miniaturization and automation, which combine to cut reagent use and analysis time, minimize labor intensive steps, and dramatically reduce assay costs. Such a chip should accelerate the antifungal drug discovery process by enabling rapid, convenient and inexpensive screening of hundreds-to-thousands of compounds simultaneously.

  18. Inhibition of Aspergillus fumigatus and Its Biofilm by Pseudomonas aeruginosa Is Dependent on the Source, Phenotype and Growth Conditions of the Bacterium.

    Directory of Open Access Journals (Sweden)

    Jose A G Ferreira

    Full Text Available Aspergillus fumigatus (Af and Pseudomonas aeruginosa (Pa are leading fungal and bacterial pathogens, respectively, in many clinical situations. Relevant to this, their interface and co-existence has been studied. In some experiments in vitro, Pa products have been defined that are inhibitory to Af. In some clinical situations, both can be biofilm producers, and biofilm could alter their physiology and affect their interaction. That may be most relevant to airways in cystic fibrosis (CF, where both are often prominent residents. We have studied clinical Pa isolates from several sources for their effects on Af, including testing involving their biofilms. We show that the described inhibition of Af is related to the source and phenotype of the Pa isolate. Pa cells inhibited the growth and formation of Af biofilm from conidia, with CF isolates more inhibitory than non-CF isolates, and non-mucoid CF isolates most inhibitory. Inhibition did not require live Pa contact, as culture filtrates were also inhibitory, and again non-mucoid>mucoid CF>non-CF. Preformed Af biofilm was more resistant to Pa, and inhibition that occurred could be reproduced with filtrates. Inhibition of Af biofilm appears also dependent on bacterial growth conditions; filtrates from Pa grown as biofilm were more inhibitory than from Pa grown planktonically. The differences in Pa shown from these different sources are consistent with the extensive evolutionary Pa changes that have been described in association with chronic residence in CF airways, and may reflect adaptive changes to life in a polymicrobial environment.

  19. The impact of manganese on biofilm development of Bacillus subtilis

    NARCIS (Netherlands)

    Mhatre, Eisha; Troszok, Agnieszka; Gallegos-Monterrosa, Ramses; Lindstädt, Stefanie; Hölscher, Theresa; Kuipers, Oscar P.; Kovács, Ákos T.

    2016-01-01

    Bacterial biofilms are dynamic and structurally complex communities, involving cell-to-cell interactions. In recent years, various environmental signals were identified that induce the complex biofilm development of the Gram-positive bacterium Bacillus subtilis. These signaling molecules are often m

  20. 铜绿假单胞菌生物膜抑制药研究进展%Research progress on Pseudomonas aeruginosa biofilm inhibitor

    Institute of Scientific and Technical Information of China (English)

    王龙梓

    2011-01-01

    @@ 铜绿假单胞菌(Pseudomonas aeruginosa,PA)是常见的医院感染致病菌,其严重的耐药性与产生细菌生物膜(bacterial biofilm,BF)密切相关.藻酸盐是PA生物膜的主要组成成分.研究发现,抗菌药物等可对BF及其主要成分藻酸盐产生抑制作用.本文综述了近年来PA生物膜及其抑制药物的研究进展.

  1. Nitritation performance and biofilm development of co- and counter-diffusion biofilm reactors: Modeling and experimental comparison

    DEFF Research Database (Denmark)

    Wang, Rongchang; Terada, Akihiko; Lackner, Susanne;

    2009-01-01

    results showed that the counter-diffusion biofilms developed faster and attained a larger maximum biofilm thickness than the co-diffusion biofilms. Under oxygen limited condition (DO L-1) and high pH (8.0-8.3), nitrite accumulation was triggered more significantly in co-diffusion than counter......-diffusion biofilms by increasing the applied ammonia loading from 0.21 to 0.78 g NH4+-N L-1 d(-1). The co- and counter-diffusion biofilms displayed very different spatial structures and population distributions after 120 days of operation. AOB were dominant throughout the biofilm depth in co-diffusion biofilms......-diffused in one geometry, they counter-diffused in the other. Mathematical simulations of these two geometries were implemented in two 1-D multispecies biofilm models using the AQUASIM software. Sensitivity analysis results showed that the oxygen mass transfer coefficient (K-i) and maximum specific growth rate...

  2. Effect of ceftazidime of formation of biofilm of Pseudomonas aeruginosa and mechanism%头孢他啶对铜绿假单胞菌生物膜形成的影响与机制的探讨

    Institute of Scientific and Technical Information of China (English)

    李琬琛; 宋林; 李立艳; 孙续国; 魏爱琳; 魏殿军

    2016-01-01

    目的 探讨头孢他啶在铜绿假单胞菌(PAE)生物膜形成过程中的抑制 、清除作用与机制,更好的指导临床用药.方法 通过96孔板结晶紫染色方法,定量分析头孢他啶对PAE标准菌株生物膜的抑制 、清除作用,通过real time-PCR方法对生物膜形成相关基因的表达进行相对定量分析,探讨头孢他啶对PAE生物膜的作用机制.结果 未形成成熟生物膜时,头孢他啶对PAE生长的抑制效果较好,而在有成熟生物膜形成时,头孢他啶不能有效抑制PAE的生长;头孢他啶与PAE生物膜形成相关基因的增多表达相关.结论 头孢他啶能够促进PAE生物膜形成相关基因的表达,临床对慢性PAE感染患者的治疗应避免使用头孢他啶.%OBJECTIVE To observe the effect of ceftazidime on inhibition of formation and clearance of Pseudomonas aeruginosa biofilm and analyze the mechanisms so as to provide guidance for clinical use of antibiotics .METHODS The 96 well plate crystal violet staining method was used to quantitatively analyze the effect of ceftazidime on inhi-bition and clearance of the P .aeruginosa biofilm ,and the real-time PCR method was employed to perform the rela-tive quantitative analysis of the expression of biofilm formation-related genes so as to observe the effect of ceftazi-dime on the formation of P .aeruginosa biofilm .RESULTS Ceftazidime had better effect on inhibition of growth of P .aeruginosa when the mature biofilms were not formed ,however ,ceftazidime could not effectively inhibit the growth of P .aeruginosa when the mature biofilms were formed .Ceftazidime was associated with the increased ex-pression of the biofilm formation-related genes of P .aeruginosa .CONCLUSION Ceftazidime can promote the ex-pression of the biofilm formation-related genes of P .aeruginosa .It is necessary for the hospital to avoid the use of ceftazidime for the treatment of the patients with chronic P .aeruginosa infection .

  3. Development and optimization of a competitive binding assay for the galactophilic low affinity lectin LecA from Pseudomonas aeruginosa.

    Science.gov (United States)

    Joachim, Ines; Rikker, Sebastian; Hauck, Dirk; Ponader, Daniela; Boden, Sophia; Sommer, Roman; Hartmann, Laura; Titz, Alexander

    2016-08-16

    Infections with the Gram-negative bacterium Pseudomonas aeruginosa result in a high mortality among immunocompromised patients and those with cystic fibrosis. The pathogen can switch from planktonic life to biofilms, and thereby shields itself against antibiotic treatment and host immune defense to establish chronic infections. The bacterial protein LecA, a C-type lectin, is a virulence factor and an integral component for biofilm formation. Inhibition of LecA with its carbohydrate ligands results in reduced biofilm mass, a potential Achilles heel for treatment. Here, we report the development and optimization of a fluorescence polarization-based competitive binding assay with LecA for application in screening of potential inhibitors. As a consequence of the low affinity of d-galactose for LecA, the fluorescent ligand was optimized to reduce protein consumption in the assay. The assay was validated using a set of known inhibitors of LecA and IC50 values in good agreement with the known Kd values were obtained. Finally, we employed the optimized assay to screen sets of synthetic thio-galactosides and natural blood group antigens and report their structure-activity relationship. In addition, we evaluated a multivalent fluorescent assay probe for LecA and report its applicability in an inhibition assay. PMID:27488655

  4. Effects of seawater ozonation on biofilm development in aquaculture tanks.

    Science.gov (United States)

    Wietz, Matthias; Hall, Michael R; Høj, Lone

    2009-07-01

    Microbial biofilms developing in aquaculture tanks represent a reservoir for opportunistic bacterial pathogens, and procedures to control formation and bacterial composition of biofilms are important for the development of commercially viable aquaculture industries. This study investigated the effects of seawater ozonation on biofilm development on microscope glass slides placed in small-scale aquaculture tanks containing the live feed organism Artemia. Fluorescence in situ hybridization (FISH) demonstrated that ozonation accelerated the biofilm formation cycle, while it delayed the establishment of filamentous bacteria. Gammaproteobacteria and Alphaproteobacteria were the most abundant bacterial groups in the biofilm for both water types, but ozonation influenced their dynamics. With ozonation, the bacterial community structure was relatively stable and dominated by Gammaproteobacteria throughout the experiment (21-66% of total bacteria). Without ozonation, the community showed larger fluctuations, and Alphaproteobacteria emerged as dominant after 18 days (up to 54% of total bacteria). Ozonation of seawater also affected the dynamics of less abundant populations in the biofilm such as Betaproteobacteria, Planctomycetales and the Cytophaga/Flavobacterium branch of phylum Bacteroidetes. The abundance of Thiothrix, a bacterial genus capable of filamentous growth and fouling of larvae, increased with time for both water types, while no temporal trend could be detected for the genus Vibrio. Denaturing gradient gel electrophoresis (DGGE) demonstrated temporal changes in the dominant bacterial populations for both water types. Sequencing of DGGE bands confirmed the FISH data, and sequences were related to bacterial groups commonly found in biofilms of aquaculture systems. Several populations were closely related to organisms involved in sulfur cycling. Improved Artemia survival rates in tanks receiving ozonated water suggested a positive effect of ozonation on animal

  5. The efficacy of immediate versus delayed antibiotic administration on bacterial growth and biofilm production of selected strains of uropathogenic Escherichia coli and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Leah Gandee

    2015-02-01

    Full Text Available Purpose The treatment of urinary tract infections (UTI with antibiotics is commonly used, but recurrence and antibiotic resistance have been growing and concerning clinicians. We studied whether the rapid onset of a protective biofilm may be responsible for the lack of effectiveness of antibiotics against selected bacteria. Materials and Methods Two established uropathogenic Escherichia coli strains, UTI89 and CFT073, and two Pseudomonas aeruginosa strains, PA01 and Boston-41501, were studied to establish a reliable biofilm formation process. Bacterial growth (BG was determined by optical density at 600 nm (OD 600 using a spectrophotometer, while biofilm formation (BF using crystal violet staining was measured at OD 550. Next, these bacterial strains were treated with clinically relevant antibiotics, ciprofloxacin HCl (200 ng/mL and 2 μg/mL, nitrofurantoin (20 μg/mL and 40 μg/mL and ampicillin (50 μg/mL at time points of 0 (T0 or after 6 hours of culture (T6. All measurements, including controls (bacteria -1% DMSO, were done in triplicates and repeated three times for consistency. Results The tested antibiotics effectively inhibited both BG and BF when administered at T0 for UPEC strains, but not when the antibiotic administration started 6 hours later. For Pseudomonas strains, only Ciprofloxacin was able to significantly inhibit bacterial growth at T0 but only at the higher concentration of 2 μg/mL for T6. Conclusion When established UPEC and Pseudomonas bacteria were allowed to culture for 6 hours before initialization of treatment, the therapeutic effect of selected antibiotics was greatly suppressed when compared to immediate treatment, probably as a result of the protective nature of the biofilm.

  6. The absence of the Pseudomonas aeruginosa OprF protein leads to increased biofilm formation through variation in c-di-GMP level.

    Science.gov (United States)

    Bouffartigues, Emeline; Moscoso, Joana A; Duchesne, Rachel; Rosay, Thibaut; Fito-Boncompte, Laurène; Gicquel, Gwendoline; Maillot, Olivier; Bénard, Magalie; Bazire, Alexis; Brenner-Weiss, Gerald; Lesouhaitier, Olivier; Lerouge, Patrice; Dufour, Alain; Orange, Nicole; Feuilloley, Marc G J; Overhage, Joerg; Filloux, Alain; Chevalier, Sylvie

    2015-01-01

    OprF is the major outer membrane porin in bacteria belonging to the Pseudomonas genus. In previous studies, we have shown that OprF is required for full virulence expression of the opportunistic pathogen Pseudomonas aeruginosa. Here, we describe molecular insights on the nature of this relationship and report that the absence of OprF leads to increased biofilm formation and production of the Pel exopolysaccharide. Accordingly, the level of c-di-GMP, a key second messenger in biofilm control, is elevated in an oprF mutant. By decreasing c-di-GMP levels in this mutant, both biofilm formation and pel gene expression phenotypes were restored to wild-type levels. We further investigated the impact on two small RNAs, which are associated with the biofilm lifestyle, and found that expression of rsmZ but not of rsmY was increased in the oprF mutant and this occurs in a c-di-GMP-dependent manner. Finally, the extracytoplasmic function (ECF) sigma factors AlgU and SigX displayed higher activity levels in the oprF mutant. Two genes of the SigX regulon involved in c-di-GMP metabolism, PA1181 and adcA (PA4843), were up-regulated in the oprF mutant, partly explaining the increased c-di-GMP level. We hypothesized that the absence of OprF leads to a cell envelope stress that activates SigX and results in a c-di-GMP elevated level due to higher expression of adcA and PA1181. The c-di-GMP level can in turn stimulate Pel synthesis via increased rsmZ sRNA levels and pel mRNA, thus affecting Pel-dependent phenotypes such as cell aggregation and biofilm formation. This work highlights the connection between OprF and c-di-GMP regulatory networks, likely via SigX (ECF), on the regulation of biofilm phenotypes.

  7. The absence of the Pseudomonas aeruginosa OprF protein leads to increased biofilm formation through variation in c-di-GMP level

    Directory of Open Access Journals (Sweden)

    Emeline eBouffartigues

    2015-06-01

    Full Text Available OprF is the major outer membrane porin in bacteria belonging to the Pseudomonas genus. In previous studies, we have shown that OprF is required for full virulence expression of the opportunistic pathogen Pseudomonas aeruginosa. Here, we describe molecular insights on the nature of this relationship and report that the absence of OprF leads to increased biofilm formation and production of the Pel exopolysaccharide. Accordingly, the level of c-di-GMP, a key second messenger in biofilm control, is elevated in an oprF mutant. By decreasing c-di-GMP levels in this mutant, both biofilm formation and pel gene expression phenotypes were restored to wild-type levels. We further investigated the impact on two small RNAs, which are associated with the biofilm lifestyle, and found that expression of rsmZ but not of rsmY was increased in the oprF mutant and this occurs in a c-di-GMP-dependent manner. Finally, the extracytoplasmic function (ECF sigma factors AlgU and SigX displayed higher activity levels in the oprF mutant. Two genes of the SigX regulon involved in c-di-GMP metabolism, PA1181 and adcA (PA4843, were up-regulated in the oprF mutant, partly explaining the increased c-di-GMP level. We hypothesized that the absence of OprF leads to a cell envelope stress that activates SigX and results in a c-di-GMP elevated level due to higher expression of adcA and PA1181. The c-di-GMP level can in turn stimulate Pel synthesis via increased rsmZ sRNA levels and pel mRNA, thus affecting Pel-dependent phenotypes such as cell aggregation and biofilm formation. This work highlights the connection between OprF and c-di-GMP regulatory networks, likely via SigX (ECF, on the regulation of biofilm phenotypes.

  8. Calcium transcriptionally regulates the biofilm machinery of Xylella fastidiosa to promote continued biofilm development in batch cultures.

    Science.gov (United States)

    Parker, Jennifer K; Chen, Hongyu; McCarty, Sara E; Liu, Lawrence Y; De La Fuente, Leonardo

    2016-05-01

    The functions of calcium (Ca) in bacteria are less characterized than in eukaryotes, where its role has been studied extensively. The plant-pathogenic bacterium Xylella fastidiosa has several virulence features that are enhanced by increased Ca concentrations, including biofilm formation. However, the specific mechanisms driving modulation of this feature are unclear. Characterization of biofilm formation over time showed that 4 mM Ca supplementation produced denser biofilms that were still developing at 96 h, while biofilm in non-supplemented media had reached the dispersal stage by 72 h. To identify changes in global gene expression in X. fastidiosa grown in supplemental Ca, RNA-Seq of batch culture biofilm cells was conducted at three 24-h time intervals. Results indicate that a variety of genes are differentially expressed in response to Ca, including genes related to attachment, motility, exopolysaccharide synthesis, biofilm formation, peptidoglycan synthesis, regulatory functions, iron homeostasis, and phages. Collectively, results demonstrate that Ca supplementation induces a transcriptional response that promotes continued biofilm development, while biofilm cells in nonsupplemented media are driven towards dispersion of cells from the biofilm structure. These results have important implications for disease progression in planta, where xylem sap is the source of Ca and other nutrients for X. fastidiosa. PMID:26913481

  9. Investigating biofilm structure developing on carriers from lab-scale moving bed biofilm reactors based on light microscopy and optical coherence tomography.

    Science.gov (United States)

    Li, Chunyan; Felz, Simon; Wagner, Michael; Lackner, Susanne; Horn, Harald

    2016-01-01

    This study focused on characterizing the structure of biofilms developed on carriers used in lab-scale moving bed biofilm reactors. Both light microscopy (2D) and optical coherence tomography (OCT) were employed to track the biofilm development on carriers of different geometry and under different aeration rates. Biofilm structure was further characterized with respect to average biofilm thickness, biofilm growth velocity, biomass volume, compartment filling degree, surface area, etc. The results showed that carriers with a smaller compartment size stimulated a quick establishment of biofilms. Low aeration rates favored fast development of biofilms. Comparison between the results derived from 2D and 3D images revealed comparable results with respect to average biofilm thickness and compartment filling degree before the carrier compartments were fully willed with biomass. However, 3D imaging with OCT was capable of visualizing and quantifying the heterogeneous structure of biofilms, which cannot be achieved using 2D imaging.

  10. Mechanistic insights into c-di-GMP–dependent control of the biofilm regulator FleQ from Pseudomonas aeruginosa

    Energy Technology Data Exchange (ETDEWEB)

    Matsuyama, Bruno Y.; Krasteva, Petya V.; Baraquet, Claudine; Harwood, Caroline S.; Sondermann, Holger; Navarro, Marcos V.A. S. (UWASH); (U. Sao Paulo); (Cornell); (CNRS-UMR)

    2016-07-05

    Pseudomonas aeruginosa, an opportunistic pathogen that can cause fatal chronic infections, relies on the intracellular second-messenger c-di-GMP to form robust multicellular biofilms during host tissue colonization. c-di-GMP is sensed directly by the transcription regulator FleQ, which inversely regulates flagellar motility and exopolysaccharide secretion to secure a planktonic to sessile life-form transition. FleQ belongs to the diverse family of AAA+ ATPase enhancer-binding proteins, but how its noncanonical function on transcriptional regulation is controlled by c-di-GMP remains enigmatic. Here, we report structural and functional data that identify an unusual mode of c-di-GMP recognition accompanied by a major quaternary structure reorganization. Our analyses offer a consensus to previous studies and unique insights into the mechanism of action of FleQ and FleQ-like proteins.

  11. Miconazole activity against Candida biofilms developed on acrylic discs.

    Science.gov (United States)

    Gebremedhin, S; Dorocka-Bobkowska, B; Prylinski, M; Konopka, K; Duzgunes, N

    2014-08-01

    Oral candidiasis in the form of Candida-associated denture stomatitis (CaDS) is associated with Candida adhesion and biofilm formation on the fitting surface of poly (methyl methacrylate) (PMMA) dentures. Candida biofilms show considerable resistance to most conventional antifungal agents, a phenomenon that is considered a developmental-phase-specific event that may help explain the high recurrence rates associated with CaDS. The aim of this study was to examine the activity of miconazole towards in vitro-grown mature Candida biofilms formed on heat-cured PMMA discs as a standardized model. The effect of miconazole nitrate on Candida biofilms developed on acrylic discs was determined for C. albicans MYA-2732 (ATCC), C. glabrata MYA-275 (ATCC), and clinical isolates, C. albicans 6122/06, C. glabrata 7531/06, C. tropicalis 8122/06, and C. parapsilosis 11375/07. Candida biofilms were developed on heat-cured poly(methyl methacrylate) discs and treated with miconazole (0.5 - 96 μg/ml). The metabolic activity of the biofilms was measured by the XTT reduction assay. The minimum inhibitory concentrations (MICs) of miconazole against Candida species were determined by the microdilution method. The MICs for miconazole for the investigated strains ranged from 0.016-32 μg/ml. Treatment with miconazole resulted in a significant reduction of biofilm metabolic activity for all strains. The highest inhibition was observed at 96 μg/ml miconazole. In the case of C. glabrata MYA-275 and C. tropicalis 8122/06 this corresponded to 83.7% and 75.4% inhibition, respectively. The lowest reduction was observed for C. parapsilosis 11375/07-46.1%. For all Candida strains there was a strong correlation between MIC values and miconazole concentrations corresponding to a reduction of metabolic activity of the biofilm by 50%. Miconazole exhibits high antifungal activity against Candida biofilms developed on the surface of PMMA discs. The study provides support for the use of miconazole as an

  12. Candida albicans biofilm development in vitro for photodynamic therapy study

    International Nuclear Information System (INIS)

    Photodynamic therapy (PDT) is a phototherapy based on the use of a photo sensitizer (PS) in the presence of low intensity light with resonant wavelength of absorption of the PS and biological systems that can raise awareness, generating reactive oxygen species. Studies show that PDT has a lethal effect on Candida albicans. The biofilm formed by C. albicans is the cause of infections associated with medical devices such as catheters, with a proven resistance to antifungal agents, and the removal of the catheter colonized almost always is necessary. However, few studies in literature report the behavior and response of biofilm organized by C. albicans against PDT. The aims of this study were to develop a methodology for in vitro biofilm formation of C. albicans, evaluate the sensitivity of the biofilm of C. albicans to antimicrobial photodynamic therapy using PS as the methylene blue (MB) and hypocrellin B: La+3 (HBLa+3) and analyze the biofilm by Optical Coherence Tomography (OCT). For biofilm formation, discs were made from elastomeric silicone catheters. The PS were dissolved in solution of PBS, and the MB had two different concentrations tested in the biofilm: 100μM and 1mM; HBLa+3 only one of 10μM. The irradiation of both dyes with the microorganism was done by two different LEDs, one with red emission at λ = 630nm ± 20nm and the other one blue emission at λ = 460nm ± 30nm. We performed a curve of survival fraction versus time of irradiation of each sample with biofilm and suspension of the microorganism in the yeast form to verify the susceptibility of the front PDT. The yeast showed 100% reduction using both PS, but at different times of irradiation (30s to HBLa+3 and 6 min for the MB at 100μM). When the therapy was applied in biofilm, the MB 100μM did not show any significant reduction, while at concentration of 1mM was reduced by 100% after 6 min of irradiation. The HBLa+3 biofilm group showed a lower reduction in the concentration of 10μM in

  13. Effect of Cinnamon Oil on Quorum Sensing-Controlled Virulence Factors and Biofilm Formation in Pseudomonas aeruginosa

    OpenAIRE

    Manmohit Kalia; Vivek Kumar Yadav; Pradeep Kumar Singh; Deepmala Sharma; Himanshu Pandey; Shahid Suhail Narvi; Vishnu Agarwal

    2015-01-01

    Quorum sensing (QS) is a system of stimuli and responses in bacterial cells governed by their population density, through which they regulate genes that control virulence factors and biofilm formation. Despite considerable research on QS and the discovery of new antibiotics, QS-controlled biofilm formation by microorganisms in clinical settings has remained a problem because of nascent drug resistance, which requires screening of diverse compounds for anti-QS activities. Cinnamon is a dietary...

  14. Acoustic Wave Monitoring of Biofilm Development in Porous Media

    Science.gov (United States)

    Biofilm development in porous media can result in significant changes to the hydrogeological properties of subsurface systems with implications for fluid flow and contaminant transport. As such, a number of numerical models and simulations have been developed in an attempt to qua...

  15. Trigonella foenum-graceum (Seed) Extract Interferes with Quorum Sensing Regulated Traits and Biofilm Formation in the Strains of Pseudomonas aeruginosa and Aeromonas hydrophila.

    Science.gov (United States)

    Husain, Fohad Mabood; Ahmad, Iqbal; Khan, Mohd Shahnawaz; Al-Shabib, Nasser Abdulatif

    2015-01-01

    Trigonella foenum-graecum L. (Fenugreek) is an important plant of the Leguminosae family known to have medicinal properties. However, fraction based antiquorum sensing and antibiofilm activities have not been reported from this plant. In the present study T. foenum-graecum seed extract was sequentially fractionated and sub-MICs were tested for above activities. The methanol fraction of the extract demonstrated significant inhibition of AHL regulated virulence factors: protease, LasB elastase, pyocyanin production, chitinase, EPS, and swarming motility in Pseudomonas aeruginosa PAO1 and PAF79. Further, QS dependent virulence factor in the aquatic pathogen Aeromonas hydrophila WAF38 was also reduced. Application of T. foenum-graecum seed extract to PAO1, PAF79, and WAF38 decreased the biofilm forming abilities of the pathogens by significant levels. The extract also exhibited reduced AHL levels and subsequent downregulation of lasB gene. In vivo study showed an enhanced survival of PAO1-preinfected C. elegans after treatment with extract at 1 mg/mL. Further, the major compound detected by GC-MS, caffeine, reduced the production of QS regulated virulence factors and biofilm at 200 µg/mL concentration indicating its role in the activity of the methanol extract. The results of the present study reveal the potential anti-QS and antibiofilm property of T. foenum-graceum extract and caffeine. PMID:26000026

  16. Trigonella foenum-graceum (Seed Extract Interferes with Quorum Sensing Regulated Traits and Biofilm Formation in the Strains of Pseudomonas aeruginosa and Aeromonas hydrophila

    Directory of Open Access Journals (Sweden)

    Fohad Mabood Husain

    2015-01-01

    Full Text Available Trigonella foenum-graecum L. (Fenugreek is an important plant of the Leguminosae family known to have medicinal properties. However, fraction based antiquorum sensing and antibiofilm activities have not been reported from this plant. In the present study T. foenum-graecum seed extract was sequentially fractionated and sub-MICs were tested for above activities. The methanol fraction of the extract demonstrated significant inhibition of AHL regulated virulence factors: protease, LasB elastase, pyocyanin production, chitinase, EPS, and swarming motility in Pseudomonas aeruginosa PAO1 and PAF79. Further, QS dependent virulence factor in the aquatic pathogen Aeromonas hydrophila WAF38 was also reduced. Application of T. foenum-graecum seed extract to PAO1, PAF79, and WAF38 decreased the biofilm forming abilities of the pathogens by significant levels. The extract also exhibited reduced AHL levels and subsequent downregulation of lasB gene. In vivo study showed an enhanced survival of PAO1-preinfected C. elegans after treatment with extract at 1 mg/mL. Further, the major compound detected by GC-MS, caffeine, reduced the production of QS regulated virulence factors and biofilm at 200 µg/mL concentration indicating its role in the activity of the methanol extract. The results of the present study reveal the potential anti-QS and antibiofilm property of T. foenum-graceum extract and caffeine.

  17. Interspecies signalling via the Stenotrophomonas maltophilia diffusible signal factor influences biofilm formation and polymyxin tolerance in Pseudomonas aeruginosa

    DEFF Research Database (Denmark)

    Ryan, R.P.; Fouhy, Y.; Garcia, B.F.;

    2008-01-01

    Interspecies signalling through the action of diffusible signal molecules can influence the behaviour of organisms growing in polymicrobial communities. Stenotrophomonas maltophilia and Pseudomonas aeruginosa occur ubiquitously in the environment and can be found together in diverse niches...... or addition of DSF to P. aeruginosa led to increased levels of a number of proteins with roles in bacterial stress tolerance, including those implicated in resistance to cationic antimicrobial peptides. This effect was associated with increased tolerance to polymyxins. Homologues of PA1396 occur in a number...

  18. Combating biofilms

    DEFF Research Database (Denmark)

    Yang, Liang; Liu, Yang; Wu, Hong;

    2012-01-01

    Biofilms are complex microbial communities consisting of microcolonies embedded in a matrix of self-produced polymer substances. Biofilm cells show much greater resistance to environmental challenges including antimicrobial agents than their free-living counterparts. The biofilm mode of life...... is believed to significantly contribute to successful microbial survival in hostile environments. Conventional treatment, disinfection and cleaning strategies do not proficiently deal with biofilm-related problems, such as persistent infections and contamination of food production facilities. In this review......, strategies to control biofilms are discussed, including those of inhibition of microbial attachment, interference of biofilm structure development and differentiation, killing of biofilm cells and induction of biofilm dispersion....

  19. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms.

    Science.gov (United States)

    Dashper, Stuart G; Catmull, Deanne V; Liu, Sze-Wei; Myroforidis, Helen; Zalizniak, Ilya; Palamara, Joseph E A; Huq, N Laila; Reynolds, Eric C

    2016-01-01

    Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge.

  20. Casein Phosphopeptide-Amorphous Calcium Phosphate Reduces Streptococcus mutans Biofilm Development on Glass Ionomer Cement and Disrupts Established Biofilms

    Science.gov (United States)

    Liu, Sze-Wei; Myroforidis, Helen; Zalizniak, Ilya; Palamara, Joseph E. A.; Huq, N. Laila; Reynolds, Eric C.

    2016-01-01

    Glass ionomer cements (GIC) are dental restorative materials that are suitable for modification to help prevent dental plaque (biofilm) formation. The aim of this study was to determine the effects of incorporating casein phosphopeptide-amorphous calcium phosphate (CPP-ACP) into a GIC on the colonisation and establishment of Streptococcus mutans biofilms and the effects of aqueous CPP-ACP on established S mutans biofilms. S. mutans biofilms were either established in flow cells before a single ten min exposure to 1% w/v CPP-ACP treatment or cultured in static wells or flow cells with either GIC or GIC containing 3% w/w CPP-ACP as the substratum. The biofilms were then visualised using confocal laser scanning microscopy after BacLight LIVE/DEAD staining. A significant decrease in biovolume and average thickness of S. mutans biofilms was observed in both static and flow cell assays when 3% CPP-ACP was incorporated into the GIC substratum. A single ten min treatment with aqueous 1% CPP-ACP resulted in a 58% decrease in biofilm biomass and thickness of established S. mutans biofilms grown in a flow cell. The treatment also significantly altered the structure of these biofilms compared with controls. The incorporation of 3% CPP-ACP into GIC significantly reduced S. mutans biofilm development indicating another potential anticariogenic mechanism of this material. Additionally aqueous CPP-ACP disrupted established S. mutans biofilms. The use of CPP-ACP containing GIC combined with regular CPP-ACP treatment may lower S. mutans challenge. PMID:27589264

  1. Confocal laser scanning microscopy for assessment of pseudomonas aeruginosa biofilm formation%激光共聚焦显微镜观察铜绿假单胞菌生物膜的形成

    Institute of Scientific and Technical Information of China (English)

    王忠; 季文; 张瑞琴

    2013-01-01

    Objective To investigate the Pseudomonas aeruginosa biofilm by using confocal laser scanning microscopy (CLSM), thus revealing the formation of biofilm. Methods The cover slide biofilm culture approach was employed for induction of Pseudomonas aeruginosa biofilm formation. Following the culture for 2, 4, 8, 12, 16, 24, 48 and 72 hours, the cover slide was removed for subsequent staining with the fluoreseein isothiocyanate-labeled con-eanavalin A (FTTC-ConA) and iodidepyrtdine (PI)- This was followed by determination of the formation and characteristics of Pseudomonas aeruginosa biofilm by using CXSM. Results The CLSM images of biofilm formation at different time points were captured, suggesting that the biofilm formed at hour 24 and grew robustly at hour 72. Conclusion The double immunofluorescence staining and CLSM are effective means for assessment of Pseudomonas aeruginosa biofilm formation.%目的 采用激光共聚焦显微镜技术观察铜绿假单胞菌形成生物膜,进一步揭示了铜绿假单胞菌生物膜形成过程.方法 使用盖玻片生物膜培养法,培养铜绿假单胞菌的生物膜,在培养2、4、8、12、16、24、48和72 h后取出盖玻片,用异硫氰酸荧光素(FTTC)标记的刀豆蛋白A(FTTC-ConA)和碘化吡啶(PI)双重免疫荧光技术染色,用激光共聚焦显微镜(CLSM)观察铜绿假单胞菌生物膜形成过程与特点.结果 获得生物膜形成过程不同时间点的CLSM图像,观察到铜绿假单胞菌一般在24h后开始逐渐形成生物膜,在72 h形成稳定的生物膜.结论 双重免疫荧光染色技术和CLSM是观察细菌生物膜形成过程的有效手段.

  2. Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes

    DEFF Research Database (Denmark)

    Pamp, Sünje Johanna; Gjermansen, Morten; Johansen, Helle Krogh;

    2008-01-01

    antimicrobial peptide colistin. On the contrary, biofilm cells exhibiting low metabolic activity were killed by colistin. We demonstrate that the subpopulation of metabolically active cells is able to adapt to colistin by inducing a specific adaptation mechanism mediated by the pmr operon, as well as an...... unspecific adaptation mechanism mediated by the mexAB-oprM genes. Mutants defective in either pmr-mediated lipopolysaccharide modification or in mexAB-oprM-mediated antimicrobial efflux were not able to develop a tolerant subpopulation in biofilms. In contrast to the observed pattern of colistin...... physiologically distinct subpopulations by combined antimicrobial treatment with either ciprofloxacin and colistin or tetracycline and colistin almost completely eradicated all biofilm cells....

  3. Laboratory investigation of the microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel in the presence of an aerobic marine Pseudomonas aeruginosa biofilm.

    Science.gov (United States)

    Xia, Jin; Yang, Chunguang; Xu, Dake; Sun, Da; Nan, Li; Sun, Ziqing; Li, Qi; Gu, Tingyue; Yang, Ke

    2015-01-01

    The microbiologically influenced corrosion (MIC) resistance of a novel Cu-bearing 2205 duplex stainless steel (2205 Cu-DSS) against an aerobic marine Pseudomonas aeruginosa biofilm was investigated. The electrochemical test results showed that Rp increased and icorr decreased sharply after long-term immersion in the inoculation medium, suggesting that 2205 Cu-DSS possessed excellent MIC resistance to the P. aeruginosa biofilm. Fluorescence microscope images showed that 2205 Cu-DSS possessed a strong antibacterial ability, and its antibacterial efficiency after one and seven days was 7.75% and 96.92%, respectively. The pit morphology comparison after 14 days between 2205 DSS and 2205 Cu-DSS demonstrated that the latter showed a considerably reduced maximum MIC pit depth compared with the former (1.44 μm vs 9.50 μm). The experimental results suggest that inhibition of the biofilm was caused by the copper ions released from the 2205 Cu-DSS, leading to its effective mitigation of MIC by P. aeruginosa. PMID:26194639

  4. Dynamic remodeling of microbial biofilms by functionally distinct exopolysaccharides.

    Science.gov (United States)

    Chew, Su Chuen; Kundukad, Binu; Seviour, Thomas; van der Maarel, Johan R C; Yang, Liang; Rice, Scott A; Doyle, Patrick; Kjelleberg, Staffan

    2014-08-05

    Biofilms are densely populated communities of microbial cells protected and held together by a matrix of extracellular polymeric substances. The structure and rheological properties of the matrix at the microscale influence the retention and transport of molecules and cells in the biofilm, thereby dictating population and community behavior. Despite its importance, quantitative descriptions of the matrix microstructure and microrheology are limited. Here, particle-tracking microrheology in combination with genetic approaches was used to spatially and temporally study the rheological contributions of the major exopolysaccharides Pel and Psl in Pseudomonas aeruginosa biofilms. Psl increased the elasticity and effective cross-linking within the matrix, which strengthened its scaffold and appeared to facilitate the formation of microcolonies. Conversely, Pel reduced effective cross-linking within the matrix. Without Psl, the matrix becomes more viscous, which facilitates biofilm spreading. The wild-type biofilm decreased in effective cross-linking over time, which would be advantageous for the spreading and colonization of new surfaces. This suggests that there are regulatory mechanisms to control production of the exopolysaccharides that serve to remodel the matrix of developing biofilms. The exopolysaccharides were also found to have profound effects on the spatial organization and integration of P. aeruginosa in a mixed-species biofilm model of P. aeruginosa-Staphylococcus aureus. Pel was required for close association of the two species in mixed-species microcolonies. In contrast, Psl was important for P. aeruginosa to form single-species biofilms on top of S. aureus biofilms. Our results demonstrate that Pel and Psl have distinct physical properties and functional roles during biofilm formation. Importance: Most bacteria grow as biofilms in the environment or in association with eukaryotic hosts. Removal of biofilms that form on surfaces is a challenge in clinical

  5. In Vitro Efficacy of Nonantibiotic Treatments on Biofilm Disruption of Gram-Negative Pathogens and an In Vivo Model of Infectious Endometritis Utilizing Isolates from the Equine Uterus.

    Science.gov (United States)

    Ferris, Ryan A; McCue, Patrick M; Borlee, Grace I; Loncar, Kristen D; Hennet, Margo L; Borlee, Bradley R

    2016-03-01

    In this study, we evaluated the ability of the equine clinical treatments N-acetylcysteine, EDTA, and hydrogen peroxide to disrupt in vitro biofilms and kill equine reproductive pathogens (Escherichia coli, Pseudomonas aeruginosa, or Klebsiella pneumoniae) isolated from clinical cases. N-acetylcysteine (3.3%) decreased biofilm biomass and killed bacteria within the biofilms of E. coli isolates. The CFU of recoverable P. aeruginosa and K. pneumoniae isolates were decreased, but the biofilm biomass was unchanged. Exposure to hydrogen peroxide (1%) decreased the biofilm biomass and reduced the CFU of E. coli isolates, K. pneumoniae isolates were observed to have a reduction in CFU, and minimal effects were observed for P. aeruginosa isolates. Chelating agents (EDTA formulations) reduced E. coli CFU but were ineffective at disrupting preformed biofilms or decreasing the CFU of P. aeruginosa and K. pneumoniae within a biofilm. No single nonantibiotic treatment commonly used in equine veterinary practice was able to reduce the CFU and biofilm biomass of all three Gram-negative species of bacteria evaluated. An in vivo equine model of infectious endometritis was also developed to monitor biofilm formation, utilizing bioluminescence imaging with equine P. aeruginosa isolates from this study. Following infection, the endometrial surface contained focal areas of bacterial growth encased in a strongly adherent "biofilm-like" matrix, suggesting that biofilms are present during clinical cases of infectious equine endometritis. Our results indicate that Gram-negative bacteria isolated from the equine uterus are capable of producing a biofilm in vitro, and P. aeruginosa is capable of producing biofilm-like material in vivo. PMID:26719448

  6. Antimicrobial susceptibility testing in biofilm-growing bacteria.

    Science.gov (United States)

    Macià, M D; Rojo-Molinero, E; Oliver, A

    2014-10-01

    Biofilms are organized bacterial communities embedded in an extracellular polymeric matrix attached to living or abiotic surfaces. The development of biofilms is currently recognized as one of the most relevant drivers of persistent infections. Among them, chronic respiratory infection by Pseudomonas aeruginosa in cystic fibrosis patients is probably the most intensively studied. The lack of correlation between conventional susceptibility test results and therapeutic success in chronic infections is probably a consequence of the use of planktonically growing instead of biofilm-growing bacteria. Therefore, several in vitro models to evaluate antimicrobial activity on biofilms have been implemented over the last decade. Microtitre plate-based assays, the Calgary device, substratum suspending reactors and the flow cell system are some of the most used in vitro biofilm models for susceptibility studies. Likewise, new pharmacodynamic parameters, including minimal biofilm inhibitory concentration, minimal biofilm-eradication concentration, biofilm bactericidal concentration, and biofilm-prevention concentration, have been defined in recent years to quantify antibiotic activity in biofilms. Using these parameters, several studies have shown very significant quantitative and qualitative differences for the effects of most antibiotics when acting on planktonic or biofilm bacteria. Nevertheless, standardization of the procedures, parameters and breakpoints, by official agencies, is needed before they are implemented in clinical microbiology laboratories for routine susceptibility testing. Research efforts should also be directed to obtaining a deeper understanding of biofilm resistance mechanisms, the evaluation of optimal pharmacokinetic/pharmacodynamic models for biofilm growth, and correlation with clinical outcome.

  7. [Methods for prevention of mass development of the cyanobacterium Microcystis aeruginosa Kutz emend. Elenk. in aquatic ecosystems].

    Science.gov (United States)

    Kolmakov, V I

    2006-01-01

    Methods for prevention of mass development of the cyanobacterium Microcystis aeruginosa Kutz emend. Elenk. in continental water bodies and industrial water supply systems are reviewed. The physicochemical, chemical, and biological methods for prevention of M. aeruginosa development in water bodies and water supply systems are considered; examples of successful inhibition of M. aeruginosa growth in laboratory experiments are demonstrated. The scientific problems are outlined that are to be solved for perfecting techniques for prevention of M. aeruginosa mass development in open water bodies and in closed water supply systems. PMID:16758860

  8. The contribution of cell-cell signaling and motility to bacterial biofilm formation

    DEFF Research Database (Denmark)

    Shrout, Joshua D; Tolker-Nielsen, Tim; Givskov, Michael;

    2011-01-01

    Many bacteria grow attached to a surface as biofilms. Several factors dictate biofilm formation, including responses by the colonizing bacteria to their environment. Here we review how bacteria use cell-cell signaling (also called quorum sensing) and motility during biofilm formation. Specifically...... gene expression important to the production of polysaccharides, rhamnolipid, and other virulence factors. Surface motility affects the assembly and architecture of biofilms, and some aspects of motility are also influenced by quorum sensing. While some genes and their function are specific to P....... aeruginosa, many aspects of biofilm development can be used as a model system to understand how bacteria differentially colonize surfaces....

  9. Development of a Standard Test to Assess the Resistance of Staphylococcus aureus Biofilm Cells to Disinfectants

    NARCIS (Netherlands)

    Luppens, S.B.I.; Reij, M.W.; Heijden, van der R.W.; Rombouts, F.M.; Abee, T.

    2002-01-01

    A standardized disinfectant test for Staphylococcus aureus cells in biofilms was developed. Two disinfectants, the membrane-active compound benzalkonium chloride (BAC) and the oxidizing agent sodium hypochlorite, were used to evaluate the biofilm test. S. aureus formed biofilms on glass, stainless s

  10. Effect of pH on biologic degradation of Microcystis aeruginosa by alga-lysing bacteria in sequencing batch biofilm reactors

    Institute of Scientific and Technical Information of China (English)

    Hongjing LI; Mengli HAO; Jingxian LIU; Chen CHEN1; Zhengqiu FAN; Xiangrong WANG

    2012-01-01

    In this paper, the effect of pH on biological degradation of Microcystis aeruginosa by alga-lysing bacteria in laboratory-scale sequencing batch biofilm reactors (SBBRs) was investigated. After 10 d filming with waste activated sludge, the biological film could be formed, and the bioreactors in which laid polyolefin resin filler were used to treat algal culture. By comparing the removal efficiency of chlorophyll a at different aerobic time, the optimum time was determined as 5 h. Under pH 6.5, 7.5, and 8.5 conditions, the removal rates of Microcystis aeruginosa were respectively 75.9%, 83.6%, and 78.3% (in term of chlorophyll a), and that of Chemical Oxygen Demand (CODMn) were 30.6%, 35.8%, and 33.5%. While the removal efficiencies of ammonia nitrogen (NH+ -N) were all 100%. It was observed that the sequence of the removal efficiencies of algae, NH+ -N and organic matter were pH 7.5 〉 pH 8.5 〉 pH 6.5. The results showed that the dominant alga-lysing bacteria in the SBBRs was strain HM-01, which was identified as Bacillus sp. by Polymerase Chain Reaction (PCR) amplification of the 16S rRNA gene, Basic Local Alignment Search Tool (BLAST) analysis, and compar- ison with sequences in the GenBank nucleotide database. The algicidal activated substance which HM-01 strain excreted could withstand high temperature and pressure, also had better hydrophily and stronger polarity.

  11. Bacterial community of biofilms developed under different water supply conditions in a distribution system.

    Science.gov (United States)

    Sun, Huifang; Shi, Baoyou; Bai, Yaohui; Wang, Dongsheng

    2014-02-15

    In order to understand the bacterial community characteristics of biofilms developed under different finished water supply histories in drinking water distribution systems (DWDS), biofilm samples on different type of iron corrosion scales in a real DWDS were collected and systematically investigated using 454 pyrosequencing of 16S rRNA gene. The richness and diversity estimators showed that biofilms formed in DWDS transporting finished groundwater (GW) had the lowest level of bacterial diversity. From phylum to genus level, the dominant bacterial groups found in the biofilms under finished surface water (SW) and GW conditions were distinct. Proteobacteria was the dominant group in all biofilm samples (in the range of 40%-97%), but was relatively higher in biofilms with GW. The relative abundance of Firmicutes in biofilms with SW (28%-35%) was significantly higher (psupply condition. Several potential opportunistic pathogens, such as Burkholderia fungorum, Mycobacterium neoaurum, Mycobacterium frederiksbergense were detected in the biofilms.

  12. Pseudomonas aeruginosa: targeting cell-wall metabolism for new antibacterial discovery and development.

    Science.gov (United States)

    Lamers, Ryan P; Burrows, Lori L

    2016-06-01

    Pseudomonas aeruginosa is a leading cause of hospital-acquired infections and is resistant to most antibiotics. With therapeutic options against P. aeruginosa dwindling, and the lack of new antibiotics in advanced developmental stages, strategies for preserving the effectiveness of current antibiotics are urgently required. β-Lactam antibiotics are important agents for treating P. aeruginosa infections, thus, adjuvants that potentiate the activity of these compounds are desirable for extending their lifespan while new antibiotics - or antibiotic classes - are discovered and developed. In this review, we discuss recent research that has identified exploitable targets of cell-wall metabolism for the design and development of compounds that hinder resistance and potentiate the activity of antipseudomonal β-lactams. PMID:27228070

  13. Experimental study on effect of mesna on Pseudomonas aeruginosa biofilm%巯乙磺酸钠对铜绿假单胞菌生物被膜作用的实验研究

    Institute of Scientific and Technical Information of China (English)

    陈盛; 余加林; 罗则佳; 何念海; 孙凤军

    2013-01-01

    OBJECTIVE To investigate the effect of mesna on the formation of Pseudomonas aeruginosa biofilm, and study the effect of mesna on P. aeruginosa biofilm. METHODS The broth microdilution method was performed to determine the minimal inhibitory concentration of mesna to PAO1, then a biofilm model of Pseudo-monas aeruginosa in vitro was established , the appearance of biofilm was detected by scanning electron microscope (SEM ) to assess the effect of mesna on the formation of P. aeruginosa biofilm; the bacteria colony counts in biofilm was measured by agar plate after the biofilm was treated by mesna, biofilm structure was observed under confocal laser scanning microscope (CLSM), and the parameters of biofilm structure were analyzed through pictures from CLSM with image structure analyzer (ISA) software. RESULTS The MIC value against PAO1 was 10mg/mL for mesna. In the process of Pseudomonas aeruginosa biofilm formation, scanning electron microscope showed that the mucoid materials among bacteria was significantly reduced and the thickness of biofilm was decreased in mesna group. In comparison with normal saline group, viable counts in biofilms in the mesna treatment group were less than those in the saline group, and the high-dose group (4. 06 ± 0. 12) had less positive effect than did the low-dose group(5. 84 ± 0. 24)(P<0. 05). Confocal laser scanning microscope showed that the biofilm was thinner and more scattered than the saline control group. The results of ISA showed that with the treatment of mesna, biofilm was decreased in thickness, average diffusion distance (ADD) and textual entropy (TE) in comparison with the saline control group(P<0. 05),however areal porosity(AP) was increased (P< 0. 05) , and the high-doses group was more significant than the low-doses group (P<0. 05). CONCLUSION Mesna can inhibit the formation of P. aeruginosa biofilm and disrupt the structure of P. aeruginosa biofilm.%目的 研究巯乙磺酸钠(Mesna)对铜绿假单胞菌生物被

  14. APPLICATIONS OF BIOTECHNOLOGY IN DEVELOPMENT OF BIOMATERIALS: NANOTECHNOLOGY AND BIOFILMS

    Energy Technology Data Exchange (ETDEWEB)

    Brigmon, R.; Berry, T.; Narayan, R.

    2010-11-29

    Biotechnology is the application of biological techniques to develop new tools and products for medicine and industry. Due to various properties including chemical stability, biocompatibility, and specific activity, e.g. antimicrobial properties, many new and novel materials are being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. Many of these materials are less than 100 nanometers in size. Nanotechnology is the engineering discipline encompassing designing, producing, testing, and using structures and devices less than 100 nanometers. One of the challenges associated with biomaterials is microbial contamination that can lead to infections. In recent work we have examined the functionalization of nanoporous biomaterials and antimicrobial activities of nanocrystalline diamond materials. In vitro testing has revealed little antimicrobial activity against Pseudomonas fluorescens bacteria and associated biofilm formation that enhances recalcitrance to antimicrobial agents including disinfectants and antibiotics. Laser scanning confocal microscopy studies further demonstrated properties and characteristics of the material with regard to biofilm formation.

  15. NANOTECHNOLOGICAL SOLUTION FOR IMPROVING THE ANTIBIOTIC EFFICIENCY AGAINST BIOFILMS DEVELOPED BY GRAM-NEGATIVE BACTERIAL STRAINS

    Directory of Open Access Journals (Sweden)

    Keng-Shiang Huang

    2013-03-01

    Full Text Available At present bacteria involved in biofilm associated infections display the highest rates of antibiotic resistance among pathogenic bacteria, which made that treatment options to be limited, and determined the researchers to find out alternative treatments to antibiotics. In the recent years nanomaterials gained much attention in medicine, particularly in the fight to bacteria resistant to antibiotics by acting as drug delivery devices. Magnetic iron oxide nanoparticles (MNPs have raised much interest during the recent years due to their potential applications in medicine. In the present study we synthesized MNPd functionalized with antibiotics for the study of their antimicrobial and anti-biofilm properties against Escherichia coli and Pseudomonas aeruginosa, two Gram-negative bacteria, frequently resistant to antibiotics, involved in biofilm infections in order to investigate their capacity to serve as potential drug delivery systems in the fight to these important opportunist pathogens.

  16. Formação de biofilme por Pseudomonas aeruginosa sobre aço inoxidável em contato com leite e seu controle por óleos essenciais

    Directory of Open Access Journals (Sweden)

    Nádia Nara BATISTA

    2014-01-01

    Full Text Available Objetivo: Avaliar a ação bacteriostática e bactericida de diferentes óleos essenciais sobre células planctônicas de Pseudomonas aeruginosa ATCC 27853, bem como verificar a ação sanitizante, dos óleos essenciais que apresentarem a menor Concentração Mínima Inibitória (CMI, sobre o biofilme formado por esta espécie, Material e Métodos: A ação bacteriostática foi realizada por meio da determinação das CMIs dos óleos de Zingiber officinale, Eugenia caryophyllus, Elettaria cardamomum, Citrus limon e Citrus reticulata v, tangerine, O tempo de morte bacteriana foi determinado utilizando-se as CMIs de cada óleo essencial submetidos a diferentes tempos de contato, O biofilme de P, aeruginosa foi desenvolvido em cupons de aço inoxidável AISI 304 dispostos em placa de Petri contendo leite tratado por Ultra Alta Temperatura (UAT, sendo incubado sob agitação de 70 rpm, a 37 °C/96 horas, Células aderidas foram removidas através de swabs e enumeradas por contagem em placas após submissão a diferentes tratamentos, Resultados: Todos os óleos essenciais apresentaram efeito bacteriostático, se destacando Z, officinale, E, caryophyllus e E, cardamomum, por apresentarem menor CMI, O tempo de morte de P, aeruginosa foi de 10 minutos quando utilizadas soluções a base de E, cardamomum e E, caryophyllus, No entanto, quando testados em biofilme, apenas E, caryophyllus eliminou as células bacterianas viáveis de P, aeruginosa, Conclusão: E, caryophyllus é uma nova alternativa para o controle do biofilme de P, aeruginosa na indústria de alimentos, pois, além de sua alta atividade antimicrobiana, é um composto natural, o que atende as exigências do mercado consumidor.

  17. Effects of Iron Chelators on the Formation and Development of Aspergillus fumigatus Biofilm.

    Science.gov (United States)

    Nazik, Hasan; Penner, John C; Ferreira, Jose A; Haagensen, Janus A J; Cohen, Kevin; Spormann, Alfred M; Martinez, Marife; Chen, Vicky; Hsu, Joe L; Clemons, Karl V; Stevens, David A

    2015-10-01

    Iron acquisition is crucial for the growth of Aspergillus fumigatus. A. fumigatus biofilm formation occurs in vitro and in vivo and is associated with physiological changes. In this study, we assessed the effects of Fe chelators on biofilm formation and development. Deferiprone (DFP), deferasirox (DFS), and deferoxamine (DFM) were tested for MIC against a reference isolate via a broth macrodilution method. The metabolic effects (assessed by XTT [2,3-bis[2-methoxy-4-nitro-5-sulfophenyl]-2H-tetrazolium-5-carboxanilide inner salt]) on biofilm formation by conidia were studied upon exposure to DFP, DFM, DFP plus FeCl3, or FeCl3 alone. A preformed biofilm was exposed to DFP with or without FeCl3. The DFP and DFS MIC50 against planktonic A. fumigatus was 1,250 μM, and XTT gave the same result. DFM showed no planktonic inhibition at concentrations of ≤2,500 μM. By XTT testing, DFM concentrations of biofilms forming in A. fumigatus or preformed biofilms (P biofilm formation (P Biofilm formation with 625 μM DFP plus any concentration of FeCl3 was lower than that in the controls (P biofilms, DFP in the range of ≥625 to 1,250 μM was inhibitory compared to the controls (P biofilm formation (P biofilm increased with 2,500 μM FeCl3 only (P biofilms of A. fumigatus clinical isolates to DFP were noted. In conclusion, iron stimulates biofilm formation and preformed biofilms. Chelators can inhibit or enhance biofilms. Chelation may be a potential therapy for A. fumigatus, but we show here that chelators must be chosen carefully. Individual isolate susceptibility assessments may be needed.

  18. Quantitative Evaluation of Bacteria Adherent and in Biofilm on Single-Wall Carbon Nanotube-Coated Surfaces

    Directory of Open Access Journals (Sweden)

    Fabrizio Pantanella

    2011-01-01

    Full Text Available Biofilm is a common bacterial lifestyle, and it plays a crucial role in human health, causing biofilm-mediated infections. Recently, to counteract biofilm development, new nano-structured biomaterials have been proposed. However, data about the antibacterial properties of nano-structured surfaces are fragmentary and controversial, and, in particular, the susceptibility of nano-structured materials to colonization and biofilm formation by bacterial pathogens has not been yet thoroughly considered. Here, the ability of the pathogenic Streptococcus mutans and Pseudomonas aeruginosa to adhere and form biofilm on surfaces coated with single-wall carbon nanotubes (SWCNTs was analyzed. Our results showed that the surfaces of SWCNTs-coated glass beads (SWCNTs-GBs were colonized at the same extent of uncoated GBs both by S. mutans and P. aeruginosa. In conclusion, our results demonstrate that single wall SWCNTs-coated surfaces are not suitable to counteract bacterial adhesion and biofilm development.

  19. Influence of sub-inhibitory antibiotics and flow condition on Staphylococcus aureus ATCC 6538 biofilm development and biofilm growth rate: BioTimer assay as a study model.

    Science.gov (United States)

    Berlutti, Francesca; Frioni, Alessandra; Natalizi, Tiziana; Pantanella, Fabrizio; Valenti, Piera

    2014-11-01

    Staphylococcus biofilm exhibits high antibiotic resistance and therapeutic doses of antibiotics are often sub-inhibitory. Whereas data are available on the effect of sub-inhibitory antibiotics on matrix formation, little is known on their influence on biofilm population. Here, using BioTimer Assay (BTA), a method developed to quantify biofilm population, the influence of sub-inhibitory gentamicin, ofloxacin and azithromycin on Staphylococcus aureus ATCC 6538 biofilm population in flow with respect to static condition was assessed. Antibiotics and flow condition increased biofilm population even if at different extent, depending on the antibiotic molecule. The greatest bacterial population was found in biofilm developed under flow condition in the presence of azithromycin. A significant increase in biofilm matrix was recorded for biofilm developed in the presence of antibiotics in flow with respect to static condition. The growth rates (GRs) of 24-h biofilm developed under the influence of antibiotics and flow condition were also evaluated using BTA and a specific mathematical model. Antibiotics and flow condition affected the GRs of 24-h biofilm even if at different extent. The lowest GR value was recorded for biofilm developed under flow condition in the presence of ofloxacin. Although further studies are needed, our data indicate that antibiotics and flow condition influenced biofilm development by increasing both bacterial population and matrix formation and affected the GRs of the developed biofilm. To the best of our knowledge, BTA is unique in allowing the calculation of the GRs of biofilm and it may be considered to be a useful study model to evaluate the activity of antibiofilm molecules. PMID:24865865

  20. Continuous Drip Flow System to Develop Biofilm of E. faecalis under Anaerobic Conditions

    Directory of Open Access Journals (Sweden)

    Ana Maria Gonzalez

    2014-01-01

    Full Text Available Purpose. To evaluate a structurally mature E. faecalis biofilm developed under anaerobic/dynamic conditions in an in vitro system. Methods. An experimental device was developed using a continuous drip flow system designed to develop biofilm under anaerobic conditions. The inoculum was replaced every 24 hours with a fresh growth medium for up to 10 days to feed the system. Gram staining was done every 24 hours to control the microorganism purity. Biofilms developed under the system were evaluated under the scanning electron microscope (SEM. Results. SEM micrographs demonstrated mushroom-shaped structures, corresponding to a mature E. faecalis biofilm. In the mature biofilm bacterial cells are totally encased in a polymeric extracellular matrix. Conclusions. The proposed in vitro system model provides an additional useful tool to study the biofilm concept in endodontic microbiology, allowing for a better understanding of persistent root canal infections.

  1. Developed Fungal-Bacterial Biofilms as A Novel Tool for Bioremoval of Hexavelant Chromium from Wastewater

    DEFF Research Database (Denmark)

    Herath, Lasantha; Rajapaksha, R. M. A. U.; Vithanage, M.;

    2014-01-01

    Remediation measures for hexavalent Chromium [Cr(VI)] are required for a safe environment. As a recent development in microbiology, bacterial biofilms are being studied as effective bioremediation agents. When bacteria are in fungal surface-attached biofilm mode, they are called fungal-bacterial ......Remediation measures for hexavalent Chromium [Cr(VI)] are required for a safe environment. As a recent development in microbiology, bacterial biofilms are being studied as effective bioremediation agents. When bacteria are in fungal surface-attached biofilm mode, they are called fungal......-bacterial biofilms (FBBs). They have not been tested for bioremediation so far. Hence, this study was conducted to develop FBBs and glass wool attached bacterial biofilms (BBs), and to evaluate Cr(VI) tolerability and removal of bacterial mono cultures, BBs and FBBs. FBBs showed a significantly high level of Cr...

  2. The c-di-GMP phosphodiesterase BifA regulates biofilm development in Pseudomonas putida.

    Science.gov (United States)

    Jiménez-Fernández, Alicia; López-Sánchez, Aroa; Calero, Patricia; Govantes, Fernando

    2015-02-01

    We previously showed the isolation of biofilmpersistent Pseudomonas putida mutants that fail to undergo biofilm dispersal upon entry in stationary phase. Two such mutants were found to bear insertions in PP0914, encoding a GGDEF/EAL domain protein with high similarity to Pseudomon asaeruginosa BifA. Here we show the phenotypic characterization of a ΔbifA mutant in P. putida KT2442.This mutant displayed increased biofilm and pellicle formation, cell aggregation in liquid medium and decreased starvation-induced biofilm dispersal relative to the wild type. Unlike its P. aeruginosa counterpart, P. putida BifA did not affect swarming motility. The hyperadherent phenotype of the ΔbifA mutant correlates with a general increase in cyclic diguanylate (c-di-GMP) levels, Congo Red-binding exopolyaccharide production and transcription of the adhesin-encoding lapA gene. Integrity of the EAL motif and a modified GGDEF motif (altered to GGDQF)were crucial for BifA activity, and c-di-GMP depletion by overexpression of a heterologous c-di-GMP phosphodiesterase in the ΔbifA mutant restored wild-type biofilm dispersal and lapA expression.Our results indicate that BifA is a phosphodiesterase involved in the regulation of the c-di-GMP pool and required for the generation of the low c-di-GMP signal that triggers starvation-induced biofilm dispersal.

  3. QUORUM SENSING AND ITS ROLE IN ORAL BIOFILMS DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Boy M. Bachtiar

    2006-04-01

    Full Text Available Quorum sensing systems has been identified as one of mechanism carried out by numerous Gram-positive and Gram-negative bacteria to coordinate virulence and biofilm development. Using quorum sensing bacterial colonies synchronize gene expression and phenotype change allowing them to protect their niche. The purpose of this review is to present a synopsis of the literature on bacterial quorum sensing and we highlight the role of specific signaling molecules that might be used as a target of inhibitor agent in dental preventive perspective.

  4. α-Mangostin disrupts the development of Streptococcus mutans biofilms and facilitates its mechanical removal.

    Science.gov (United States)

    Nguyen, Phuong Thi Mai; Falsetta, Megan L; Hwang, Geelsu; Gonzalez-Begne, Mireya; Koo, Hyun

    2014-01-01

    α-Mangostin (αMG) has been reported to be an effective antimicrobial agent against planktonic cells of Streptococcus mutans, a biofilm-forming and acid-producing cariogenic organism. However, its anti-biofilm activity remains to be determined. We examined whether αMG, a xanthone purified from Garcinia mangostana L grown in Vietnam, disrupts the development, acidogenicity, and/or the mechanical stability of S. mutans biofilms. Treatment regimens simulating those experienced clinically (twice-daily, 60 s exposure each) were used to assess the bioactivity of αMG using a saliva-coated hydroxyapatite (sHA) biofilm model. Topical applications of early-formed biofilms with αMG (150 µM) effectively reduced further biomass accumulation and disrupted the 3D architecture of S. mutans biofilms. Biofilms treated with αMG had lower amounts of extracellular insoluble and intracellular iodophilic polysaccharides (30-45%) than those treated with vehicle control (Pbiofilm, facilitating its removal from the sHA surface when subjected to a constant shear stress of 0.809 N/m2 (>3-fold biofilm detachment from sHA vs. vehicle-treated biofilms; Pbiofilms was disrupted following αMG treatments (vs. vehicle-control, Pbiofilms, at least in part via inhibition of key enzymatic systems associated with exopolysaccharide synthesis and acidogenicity. αMG could be an effective anti-virulence additive for the control and/or removal of cariogenic biofilms.

  5. Chemoinformatics-assisted development of new anti-biofilm compounds

    DEFF Research Database (Denmark)

    Dürig, Anna; Kouskoumvekaki, Irene; Vejborg, Rebecca Munk;

    2010-01-01

    to identify new and efficient anti-biofilm drugs. We found that ellagic acid (present in green tea) significantly inhibited biofilm formation of Streptococcus dysgalactiae. Based on ellagic acid, we performed in silico screening of the Chinese Natural Product Database to predict a 2nd-generation list...... of compounds with similar characteristics. One of these, esculetin, proved to be more efficient in preventing biofilm formation by Staphylococcus aureus. From esculetin a 3rd-generation list of compounds was predicted. One of them, fisetin, was even better to abolish biofilm formation than the two parent...... compounds. Fisetin dramatically inhibited biofilm formation of both S. aureus and S. dysgalactiae. The compounds did not affect planktonic growth in concentrations where they affected biofilm formation and appeared to be specific antagonists of biofilms. Arguably, since all three compounds are natural...

  6. I. Development of Metal-Mediated SPOT-Synthesis Methods for the Efficient Construction of Small-Molecule Macroarrays. II. Design and Synthesis of Novel Bacterial Biofilm Inhibitors

    Science.gov (United States)

    Frei, Reto

    I. The use of small molecule probes to explore biological phenomena has become a valuable tool in chemical biology. As a result, methods that permit the rapid synthesis and biological evaluation of such compounds are highly sought-after. The small molecule macroarray represents one such approach for the synthesis and identification of novel bioactive agents. Macroarrays are readily constructed via the SPOT-synthesis technique on planar cellulose membranes, yielding spatially addressed libraries of ˜10-1000 unique compounds. We sought to expand the arsenal of chemical reactions compatible with this solid-phase platform, and developed highly efficient SPOT-synthesis protocols for the Mizoroki-Heck, Suzuki-Miyaura, and copper-catalyzed azide-alkyne cycloaddition reaction. We demonstrated that these metal-mediated reactions can be implemented, either individually or sequentially, for the efficient construction of small molecules in high purity on rapid time scales. Utilizing these powerful C-C and C-N bond forming coupling reactions, we constructed a series of macroarrays based on novel stilbene, phenyl-naphthalene, and triazole scaliblds. Subsequent biological testing of the stilbene and phenyl-naphthalene libraries revealed several potent antagonists and agonists, respectively, of the quorum sensing (QS) receptor LuxR in Vibrio fischeri. II. Bacteria living within biofilms are notorious for their resistance to known antibiotic agents, and constitute a major human health threat. Methods to attenuate biofilm growth would have a significant impact on the management of bacterial infections. Despite intense research efforts, small molecules capable of either inhibiting or dispersing biolilms remain scarce. We utilized natural products with purported anti-biofilm or QS inhibitory activity as sources of structural insight to guide the synthesis of novel biofilm modulators with improved activities. These studies revealed 2-aminobenzimidazole derivatives as highly potent

  7. A simple and low-cost biofilm quantification method using LED and CMOS image sensor.

    Science.gov (United States)

    Kwak, Yeon Hwa; Lee, Junhee; Lee, Junghoon; Kwak, Soo Hwan; Oh, Sangwoo; Paek, Se-Hwan; Ha, Un-Hwan; Seo, Sungkyu

    2014-12-01

    A novel biofilm detection platform, which consists of a cost-effective red, green, and blue light-emitting diode (RGB LED) as a light source and a lens-free CMOS image sensor as a detector, is designed. This system can measure the diffraction patterns of cells from their shadow images, and gather light absorbance information according to the concentration of biofilms through a simple image processing procedure. Compared to a bulky and expensive commercial spectrophotometer, this platform can provide accurate and reproducible biofilm concentration detection and is simple, compact, and inexpensive. Biofilms originating from various bacterial strains, including Pseudomonas aeruginosa (P. aeruginosa), were tested to demonstrate the efficacy of this new biofilm detection approach. The results were compared with the results obtained from a commercial spectrophotometer. To utilize a cost-effective light source (i.e., an LED) for biofilm detection, the illumination conditions were optimized. For accurate and reproducible biofilm detection, a simple, custom-coded image processing algorithm was developed and applied to a five-megapixel CMOS image sensor, which is a cost-effective detector. The concentration of biofilms formed by P. aeruginosa was detected and quantified by varying the indole concentration, and the results were compared with the results obtained from a commercial spectrophotometer. The correlation value of the results from those two systems was 0.981 (N = 9, P CMOS image-sensor platform. PMID:25455019

  8. A simple and low-cost biofilm quantification method using LED and CMOS image sensor.

    Science.gov (United States)

    Kwak, Yeon Hwa; Lee, Junhee; Lee, Junghoon; Kwak, Soo Hwan; Oh, Sangwoo; Paek, Se-Hwan; Ha, Un-Hwan; Seo, Sungkyu

    2014-12-01

    A novel biofilm detection platform, which consists of a cost-effective red, green, and blue light-emitting diode (RGB LED) as a light source and a lens-free CMOS image sensor as a detector, is designed. This system can measure the diffraction patterns of cells from their shadow images, and gather light absorbance information according to the concentration of biofilms through a simple image processing procedure. Compared to a bulky and expensive commercial spectrophotometer, this platform can provide accurate and reproducible biofilm concentration detection and is simple, compact, and inexpensive. Biofilms originating from various bacterial strains, including Pseudomonas aeruginosa (P. aeruginosa), were tested to demonstrate the efficacy of this new biofilm detection approach. The results were compared with the results obtained from a commercial spectrophotometer. To utilize a cost-effective light source (i.e., an LED) for biofilm detection, the illumination conditions were optimized. For accurate and reproducible biofilm detection, a simple, custom-coded image processing algorithm was developed and applied to a five-megapixel CMOS image sensor, which is a cost-effective detector. The concentration of biofilms formed by P. aeruginosa was detected and quantified by varying the indole concentration, and the results were compared with the results obtained from a commercial spectrophotometer. The correlation value of the results from those two systems was 0.981 (N = 9, P < 0.01) and the coefficients of variation (CVs) were approximately threefold lower at the CMOS image-sensor platform.

  9. Small secreted proteins enable biofilm development in the cyanobacterium Synechococcus elongatus

    Science.gov (United States)

    Parnasa, Rami; Nagar, Elad; Sendersky, Eleonora; Reich, Ziv; Simkovsky, Ryan; Golden, Susan; Schwarz, Rakefet

    2016-01-01

    Small proteins characterized by a double-glycine (GG) secretion motif, typical of secreted bacterial antibiotics, are encoded by the genomes of diverse cyanobacteria, but their functions have not been investigated to date. Using a biofilm-forming mutant of Synechococcus elongatus PCC 7942 and a mutational approach, we demonstrate the involvement of four small secreted proteins and their GG-secretion motifs in biofilm development. These proteins are denoted EbfG1-4 (enable biofilm formation with a GG-motif). Furthermore, the conserved cysteine of the peptidase domain of the Synpcc7942_1133 gene product (dubbed PteB for peptidase transporter essential for biofilm) is crucial for biofilm development and is required for efficient secretion of the GG-motif containing proteins. Transcriptional profiling of ebfG1-4 indicated elevated transcript levels in the biofilm-forming mutant compared to wild type (WT). However, these transcripts decreased, acutely but transiently, when the mutant was cultured in extracellular fluids from a WT culture, and biofilm formation was inhibited. We propose that WT cells secrete inhibitor(s) that suppress transcription of ebfG1-4, whereas secretion of the inhibitor(s) is impaired in the biofilm-forming mutant, leading to synthesis and secretion of EbfG1-4 and supporting the formation of biofilms. PMID:27558743

  10. Mucoid Pseudomonas aeruginosa isolates maintain the biofilm formation capacity and the gene expression profiles during the chronic lung infection of CF patients

    DEFF Research Database (Denmark)

    Lee, Bao le ri; Schjerling, Charlotte K.; Kirkby, Nikolai;

    2011-01-01

    Phenotypic and genotypic diversifications of Pseudomonas aeruginosa in the airways of patients with cystic fibrosis (CF) promote long-term survival of bacteria during chronic lung infection. Twelve clonally related, sequential mucoid and non-mucoid paired P. aeruginosa isolates obtained from three......-mucoid isolates observed in this particular P. aeruginosa clone reflects different adaptation strategies used by these two phenotypes in the different niches of the CF lung environment....

  11. Development of antibiotic resistance in Pseudomonas aeruginosa during two decades of antipseudomonal treatment at the Danish CF Center

    DEFF Research Database (Denmark)

    Ciofu, O; Giwercman, B; Pedersen, S S;

    1994-01-01

    was found between the MIC and the number of antipseudomonal courses of antibiotics. The proportion of resistant in vivo selected P. aeruginosa strains, presumed to be stably derepressed producers of chromosomal beta-lactamase, also increased significantly during the period studied. Our results confirm...... that the beta-lactamase production is an important mechanism of antibiotic resistance in P. aeruginosa.......At the Danish CF Center patients with chronic Pseudomonas aeruginosa lung infection were treated 3-4 times a year (from 1976) with a 2-week intravenous antipseudomonal course which included preferentially an aminoglycoside and a beta-lactam antibiotic. We investigated the development of antibiotic...

  12. Strain-specific colonization patterns and serum modulation of multi-species oral biofilm development.

    Science.gov (United States)

    Biyikoğlu, Basak; Ricker, Austin; Diaz, Patricia I

    2012-08-01

    Periodontitis results from an ecological shift in the composition of subgingival biofilms. Subgingival community maturation is modulated by inter-organismal interactions and the relationship of communities with the host. In an effort to better understand this process, we evaluated biofilm formation, with oral commensal species, by three strains of the subgingivally prevalent microorganism Fusobacterium nucleatum and four strains of the periodontopathogen Porphyromonas gingivalis. We also tested the effect of serum, which resembles gingival exudates, on subgingival biofilms. Biofilms were allowed to develop in flow cells using salivary medium. We found that although not all strains of F. nucleatum were able to grow in mono-species biofilms, forming a community with health-associated partners Actinomyces oris and Veillonella parvula promoted biofilm growth of all F. nucleatum strains. Strains of P. gingivalis also showed variable ability to form mono-species biofilms. P. gingivalis W50 and W83 did not form biofilms, while ATCC 33277 and 381 formed biofilm structures, but only strain ATCC 33277 grew over time. Unlike the enhanced growth of F. nucleatum with the two health-associated species, no strain of P. gingivalis grew in three-species communities with A. oris and V. parvula. However, addition of F. nucleatum facilitated growth of P. gingivalis ATCC 33277 with health-associated partners. Importantly, serum negatively affected the adhesion of F. nucleatum, while it favored biofilm growth by P. gingivalis. This work highlights strain specificity in subgingival biofilm formation. Environmental factors such as serum alter the colonization patterns of oral microorganisms and could impact subgingival biofilms by selectively promoting pathogenic species.

  13. Wound biofilms: lessons learned from oral biofilms

    OpenAIRE

    Mancl, Kimberly A.; Kirsner, Robert S.; Ajdic, Dragana

    2013-01-01

    Biofilms play an important role in the development and pathogenesis of many chronic infections. Oral biofilms, more commonly known as dental plaque,are a primary cause of oral diseases including caries, gingivitis and periodontitis. Oral biofilms are commonly studied as model biofilm systems as they are easily accessible, thus biofilm research in oral diseases is advanced with details of biofilm formation and bacterial interactions being well-elucidated. In contrast, wound research has relati...

  14. Co-occurence of filamentation defects and impaired biofilms in Candida albicans protein kinase mutants.

    Science.gov (United States)

    Konstantinidou, Nina; Morrissey, John Patrick

    2015-12-01

    Pathogenicity of Candida albicans is linked with its developmental stages, notably the capacity switch from yeast-like to hyphal growth, and to form biofilms on surfaces. To better understand the cellular processes involved in C. albicans development, a collection of 63 C. albicans protein kinase mutants was screened for biofilm formation in a microtitre plate assay. Thirty-eight mutants displayed some degree of biofilm impairment, with 20 categorised as poor biofilm formers. All the poor biofilm formers were also defective in the switch from yeast to hyphae, establishing it as a primary defect. Five genes, VPS15, IME2, PKH3, PGA43 and CEX1, encode proteins not previously reported to influence hyphal development or biofilm formation. Network analysis established that individual components of some processes, most interestingly MAP kinase pathways, are not required for biofilm formation, most likely indicating functional redundancy. Mutants were also screened for their response to bacterial supernatants and it was found that Pseudomonas aeruginosa supernatants inhibited biofilm formation in all mutants, regardless of the presence of homoserine lactones (HSLs). In contrast, Candida morphology was only affected by supernatant containing HSLs. This confirms the distinct HSL-dependent inhibition of filamentation and the HSL-independent impairment of biofilm development by P. aeruginosa.

  15. Evidence for icaADBC-Independent Biofilm Development Mechanism in Methicillin-Resistant Staphylococcus aureus Clinical Isolates

    OpenAIRE

    Fitzpatrick, Fidelma; Humphreys, Hilary; O'Gara, James P.

    2005-01-01

    Synthesis of a polysaccharide adhesin by icaADBC-encoded enzymes is currently the best-understood mechanism of staphylococcal biofilm development. In four methicillin-resistant Staphylococcus aureus isolates, environmental activation of icaADBC did not always correlate with increased biofilm production. Moreover, glucose-mediated biofilm development in these isolates was icaADBC independent. Apparently, an environmentally regulated, ica-independent mechanism(s) of biofilm development exists i...

  16. Quorum sensing-controlled biofilm development in Serratia liquefaciens MG1

    DEFF Research Database (Denmark)

    Labbate, M.; Queek, S.Y.; Koh, K.S.;

    2004-01-01

    Serratia liquefaciens MG1 contains an N-acylhomoserine lactone-mediated quorum-sensing system that is known to regulate swarming motility colonization. In this study, we describe for S. liquefaciens MG1 the development of a novel biofilm consisting of cell aggregates and differentiated cell types......, such as cell chains and long filamentous cells. Furthermore, quorum sensing is shown to be crucial for normal biofilm development and for elaborate differentiation. A mutant of S. liquefaciens MG1 that was incapable of synthesizing extracellular signal formed a thin and nonmature biofilm lacking cell...... aggregates and differentiated cell chains. Signal-based complementation of this mutant resulted in a biofilm with the wild-type architecture. Two quorum-sensing-regulated genes (bsmA and bsmB) involved in biofilm development were identified, and we propose that these genes are engaged in fine...

  17. Antibacterial Effect of Dental Adhesive Containing Dimethylaminododecyl Methacrylate on the Development of Streptococcus mutans Biofilm

    Directory of Open Access Journals (Sweden)

    Suping Wang

    2014-07-01

    Full Text Available Antibacterial bonding agents and composites containing dimethylaminododecyl methacrylate (DMADDM have been recently developed. The objectives of this study were to investigate the antibacterial effect of novel adhesives containing different mass fractions of DMADDM on Streptococcus mutans (S. mutans biofilm at different developmental stages. Different mass fractions of DMADDM were incorporated into adhesives and S. mutans biofilm at different developmetal stages were analyzed by MTT assays, lactic acid measurement, confocal laser scanning microscopy and scanning electron microscopy observations. Exopolysaccharides (EPS staining was used to analyze the inhibitory effect of DMADDM on the biofilm extracellular matrix. Dentin microtensile strengths were also measured. Cured adhesives containing DMADDM could greatly reduce metabolic activity and lactic acid production during the development of S. mutans biofilms (p < 0.05. In earlier stages of biofilm development, there were no significant differences of inhibitory effects between the 2.5% DMADDM and 5% DMADDM group. However, after 72 h, the anti-biofilm effects of adhesives containing 5% DMADDM were significantly stronger than any other group. Incorporation of DMADDM into adhesive did not adversely affect dentin bond strength. In conclusion, adhesives containing DMADDM inhibited the growth, lactic acid production and EPS metabolism of S. mutans biofilm at different stages, with no adverse effect on its dentin adhesive bond strength. The bonding agents have the potential to control dental biofilms and combat tooth decay, and DMADDM is promising for use in a wide range of dental adhesive systems and restoratives.

  18. Antibacterial effect of dental adhesive containing dimethylaminododecyl methacrylate on the development of Streptococcus mutans biofilm.

    Science.gov (United States)

    Wang, Suping; Zhang, Keke; Zhou, Xuedong; Xu, Ning; Xu, Hockin H K; Weir, Michael D; Ge, Yang; Wang, Shida; Li, Mingyun; Li, Yuqing; Xu, Xin; Cheng, Lei

    2014-07-18

    Antibacterial bonding agents and composites containing dimethylaminododecyl methacrylate (DMADDM) have been recently developed. The objectives of this study were to investigate the antibacterial effect of novel adhesives containing different mass fractions of DMADDM on Streptococcus mutans (S. mutans) biofilm at different developmental stages. Different mass fractions of DMADDM were incorporated into adhesives and S. mutans biofilm at different developmetal stages were analyzed by MTT assays, lactic acid measurement, confocal laser scanning microscopy and scanning electron microscopy observations. Exopolysaccharides (EPS) staining was used to analyze the inhibitory effect of DMADDM on the biofilm extracellular matrix. Dentin microtensile strengths were also measured. Cured adhesives containing DMADDM could greatly reduce metabolic activity and lactic acid production during the development of S. mutans biofilms (p biofilm development, there were no significant differences of inhibitory effects between the 2.5% DMADDM and 5% DMADDM group. However, after 72 h, the anti-biofilm effects of adhesives containing 5% DMADDM were significantly stronger than any other group. Incorporation of DMADDM into adhesive did not adversely affect dentin bond strength. In conclusion, adhesives containing DMADDM inhibited the growth, lactic acid production and EPS metabolism of S. mutans biofilm at different stages, with no adverse effect on its dentin adhesive bond strength. The bonding agents have the potential to control dental biofilms and combat tooth decay, and DMADDM is promising for use in a wide range of dental adhesive systems and restoratives.

  19. Pseudomonas Aeruginosa: interactions with organisms in the environment and cells of the immune defence

    DEFF Research Database (Denmark)

    Skindersø, Mette Elena

    2008-01-01

    Pseudomonas aeruginosa is an increasingly prevalent opportunistic pathogen which causes chronic pneumonia in cystic fibrosis patients and severe life-threatening infections in immunocompromised persons. This pathogen produces a range of malicious virulence factors such as toxins, tissue degrading......, which emphasises the urgent need for development of novel strategies that will help us to defeat this pathogen. P. aeruginosa biofilm cells display a multicellular-like coordinated behaviour and control expression of virulence factors, elements involved in biofilm development and immunomodulating...... factors by means of signal molecule mediated communication, known as quorum sensing. This thesis explores a strategy which aims to counteract P. aeruginosa virulence and pathogenicity by impeding its cell-to-cell communication. A treatment regime, which focuses on targeting bacterial communication instead...

  20. Experimental Models of Oral Biofilms Developed on Inert Substrates: A Review of the Literature

    Science.gov (United States)

    Darrene, Lopez-Nguyen

    2016-01-01

    The oral ecosystem is a very complex environment where more than 700 different bacterial species can be found. Most of them are organized in biofilm on dental and mucosal surfaces. Studying this community is important because a rupture in stability can lead to the preeminence of pathogenic microorganisms, causing dental decay, gingivitis, or periodontitis. The multitude of species complicates biofilm analysis so its reproduction, collection, and counting are very delicate. The development of experimental models of dental biofilms was therefore essential and multiple in vitro designs have emerged, each of them especially adapted to observing biofilm formation of specific bacteria within specific environments. The aim of this review is to analyze oral biofilm models. PMID:27699173

  1. Experimental Models of Oral Biofilms Developed on Inert Substrates: A Review of the Literature

    Directory of Open Access Journals (Sweden)

    Lopez-Nguyen Darrene

    2016-01-01

    Full Text Available The oral ecosystem is a very complex environment where more than 700 different bacterial species can be found. Most of them are organized in biofilm on dental and mucosal surfaces. Studying this community is important because a rupture in stability can lead to the preeminence of pathogenic microorganisms, causing dental decay, gingivitis, or periodontitis. The multitude of species complicates biofilm analysis so its reproduction, collection, and counting are very delicate. The development of experimental models of dental biofilms was therefore essential and multiple in vitro designs have emerged, each of them especially adapted to observing biofilm formation of specific bacteria within specific environments. The aim of this review is to analyze oral biofilm models.

  2. In vitro screening of antifungal compounds able to counteract biofilm development.

    Science.gov (United States)

    Girardot, Marion; Imbert, Christine

    2014-01-01

    Fungi are able to grow as a single-species or a more complex biofilm attached to inert surfaces (catheters…) or tissues (lung…). This last form is a microbial niche which must be considered as a major risk factor of developing a human fungal infection. Nowadays, only a few therapeutic agents have been shown to be active against fungal biofilms in vitro and/or in vivo. So there is a real need to find new anti-biofilm molecules. Here we describe in detail some rapid, 96-well microtiter plate-based methods, for the screening of compounds with anti-biofilm activity against Candida spp. yeasts. Two approaches will be considered: prophylactic or curative effects of the tested compounds by producing biofilms on two supports - polystyrene well surfaces and catheter sections. PMID:24664834

  3. Building spatially-structured biofilms with single-cell control using laser trapping

    Science.gov (United States)

    Rodesney, Christopher; Hutchison, Jaime; Kaushik, Karishma; Le, Henry; Hurwitz, Daniel; Irie, Yasuhiko; Gordon, Vernita

    2015-03-01

    Biofilms are sessile communities of microbes adhered to each other and to an interface. Biofilm infections are notoriously difficult to eradicate, and this arises in part from phenotypic changes due to the spatial structure of the biofilm. Spatial structure controls the microenvironment and intercellular associations, which in turn controls gene expression, virulence, and antibiotic resistance. There are few tools available for elucidating the role of spatial structure in biofilms. We present a method for controlling the positions of bacteria on a surface using optical trapping without impinging cell viability. Initial positions propagate into the developing biofilm, creating spatial structure. The native growth, motility, and surface adhesion of positioned cells are preserved, as shown for model organisms Pseudomonas aeruginosa and Staphylococcus aureus. We demonstrate statistically-significant effects of spatial structure on the growth of monoculture P. aeruginosa biofilms and for co-culture biofilms of P. aeruginosa and S. aureus. Because the laser trap we use is very basic and the other equipment required is inexpensive and standard, we believe that our technique will be a widely-usable tool for biological and physical collaborators at many types of institutions.

  4. Enteric Gram-negative bacilli suppress Candida biofilms on Foley urinary catheters.

    Science.gov (United States)

    Samaranayake, Y H; Bandara, H M H N; Cheung, B P K; Yau, J Y Y; Yeung, S K W; Samaranayake, L P

    2014-01-01

    Mixed Candida-bacterial biofilms in urinary catheters are common in hospitalized patients. (i) The aims of this study were to evaluate, quantitatively and qualitatively, the in vitro development of mono- and dual-species biofilms (MSBs and DSBs) of Candida albicans and two enteric gram-negative bacilli (EGNB; Pseudomonas aeruginosa or Escherichia coli) on Foley catheter (FC) discs, (ii) to determine the biofilm growth in tryptic soy broth or glucose supplemented artificial urine (AU) and (iii) to assess the inhibitory effects of EGNB and their lipopolysaccharides (LPS) on Candida biofilm growth. The growth of MSBs and DSBs on FC discs was monitored by cell counts and SEM. The metabolic activity of LPS-treated Candida biofilms was determined by the XTT reduction assay. Candida albicans and EGNB demonstrated significant inter- and intra-species differences in biofilm growth on FC discs (p Candida albicans significantly (p Candida biofilm growth, compared with Pseudomonas aeruginosa and its LPS (p Candida albicans and EGNB colonization in FC is significantly increased in AU with glucose, and variably modified by Escherichia coli, Pseudomonas aeruginosa and their corresponding LPS.

  5. L-arginine destabilizes oral multi-species biofilm communities developed in human saliva.

    Science.gov (United States)

    Kolderman, Ethan; Bettampadi, Deepti; Samarian, Derek; Dowd, Scot E; Foxman, Betsy; Jakubovics, Nicholas S; Rickard, Alexander H

    2015-01-01

    The amino acid L-arginine inhibits bacterial coaggregation, is involved in cell-cell signaling, and alters bacterial metabolism in a broad range of species present in the human oral cavity. Given the range of effects of L-arginine on bacteria, we hypothesized that L-arginine might alter multi-species oral biofilm development and cause developed multi-species biofilms to disassemble. Because of these potential biofilm-destabilizing effects, we also hypothesized that L-arginine might enhance the efficacy of antimicrobials that normally cannot rapidly penetrate biofilms. A static microplate biofilm system and a controlled-flow microfluidic system were used to develop multi-species oral biofilms derived from pooled unfiltered cell-containing saliva (CCS) in pooled filter-sterilized cell-free saliva (CFS) at 37° C. The addition of pH neutral L-arginine monohydrochloride (LAHCl) to CFS was found to exert negligible antimicrobial effects but significantly altered biofilm architecture in a concentration-dependent manner. Under controlled flow, the biovolume of biofilms (μm(3)/μm(2)) developed in saliva containing 100-500 mM LAHCl were up to two orders of magnitude less than when developed without LAHCI. Culture-independent community analysis demonstrated that 500 mM LAHCl substantially altered biofilm species composition: the proportion of Streptococcus and Veillonella species increased and the proportion of Gram-negative bacteria such as Neisseria and Aggregatibacter species was reduced. Adding LAHCl to pre-formed biofilms also reduced biovolume, presumably by altering cell-cell interactions and causing cell detachment. Furthermore, supplementing 0.01% cetylpyridinium chloride (CPC), an antimicrobial commonly used for the treatment of dental plaque, with 500 mM LAHCl resulted in greater penetration of CPC into the biofilms and significantly greater killing compared to a non-supplemented 0.01% CPC solution. Collectively, this work demonstrates that LAHCl moderates multi

  6. The cabABC Operon Essential for Biofilm and Rugose Colony Development in Vibrio vulnificus.

    Directory of Open Access Journals (Sweden)

    Jin Hwan Park

    2015-09-01

    Full Text Available A transcriptome analysis identified Vibrio vulnificus cabABC genes which were preferentially expressed in biofilms. The cabABC genes were transcribed as a single operon. The cabA gene was induced by elevated 3',5'-cyclic diguanylic acid (c-di-GMP and encoded a calcium-binding protein CabA. Comparison of the biofilms produced by the cabA mutant and its parent strain JN111 in microtiter plates using crystal-violet staining demonstrated that CabA contributed to biofilm formation in a calcium-dependent manner under elevated c-di-GMP conditions. Genetic and biochemical analyses revealed that CabA was secreted to the cell exterior through functional CabB and CabC, distributed throughout the biofilm matrix, and produced as the biofilm matured. These results, together with the observation that CabA also contributes to the development of rugose colony morphology, indicated that CabA is a matrix-associated protein required for maturation, rather than adhesion involved in the initial attachment, of biofilms. Microscopic comparison of the structure of biofilms produced by JN111 and the cabA mutant demonstrated that CabA is an extracellular matrix component essential for the development of the mature biofilm structures in flow cells and on oyster shells. Exogenously providing purified CabA restored the biofilm- and rugose colony-forming abilities of the cabA mutant when calcium was available. Circular dichroism and size exclusion analyses revealed that calcium binding induces CabA conformational changes which may lead to multimerization. Extracellular complementation experiments revealed that CabA can assemble a functional matrix only when exopolysaccharides coexist. Consequently, the combined results suggested that CabA is a structural protein of the extracellular matrix and multimerizes to a conformation functional in building robust biofilms, which may render V. vulnificus to survive in hostile environments and reach a concentrated infective dose.

  7. Species and material considerations in the formation and development of microalgal biofilms.

    Science.gov (United States)

    Irving, Tyler E; Allen, D Grant

    2011-10-01

    The development of microalgal biofilms has received very limited study despite its relevance in the design of photobioreactors where film growth may be advantageous for biomass separation or disadvantageous in fouling surfaces. Here, the effects of species selection, species control, and substrate properties on biofilms of Scenedesmus obliquus and Chlorella vulgaris were investigated. Experiments were conducted in batch culture and in continuous culture modes in a flow cell. Cell growth was monitored using confocal laser scanning microscopy and gravimetrically. Species selection and species control had significant effects on biofilm development. On non-sterile wastewater, C. vulgaris shifted from primarily planktonic (23.7% attachment) to primarily sessile (79.8% attachment) growth. The biofilms that developed in non-sterile conditions were thicker (52 ± 19 μm) than those grown in sterile conditions (7 ± 6 μm). By contrast, S. obliquus attained similar thicknesses (54 ± 31 and 53 ± 38 μm) in both sterile and non-sterile conditions. Neither species was able to dominate a non-sterile biofilm. The effect of substrate surface properties was minimal. Both species grew films of similar thickness (approximately 30 μm for S. obliquus, materials ranging from hydrophilic (glass) to hydrophobic (polytetrafluoroethylene). Surface roughness created by micropatterning the surface with 10 μm grooves did not translate into long-term increases in biofilm thickness. The results indicate that species selection and control are more important than surface properties in the development of microalgal biofilms.

  8. Design of a Simple Model of Candida albicans Biofilms Formed under Conditions of Flow: Development, Architecture and Drug Resistance

    OpenAIRE

    Uppuluri, Priya; Chaturvedi, Ashok K.; Ribot, Jose Lopez

    2009-01-01

    Candida albicans biofilms on most medical devices are exposed to a flow of body fluids that provide water and nutrients to the fungal cells. While C. albicans biofilms grown in vitro under static conditions have been exhaustively studied, the same is not true for biofilms developed under continuous flow of replenishing nutrients. Here, we describe a simple flow biofilm (FB) model that can be built easily with materials commonly available in most microbiological laboratories. We demonstrate th...

  9. Wound biofilms: lessons learned from oral biofilms.

    Science.gov (United States)

    Mancl, Kimberly A; Kirsner, Robert S; Ajdic, Dragana

    2013-01-01

    Biofilms play an important role in the development and pathogenesis of many chronic infections. Oral biofilms, more commonly known as dental plaque, are a primary cause of oral diseases including caries, gingivitis, and periodontitis. Oral biofilms are commonly studied as model biofilm systems as they are easily accessible; thus, biofilm research in oral diseases is advanced with details of biofilm formation and bacterial interactions being well elucidated. In contrast, wound research has relatively recently directed attention to the role biofilms have in chronic wounds. This review discusses the biofilms in periodontal disease and chronic wounds with comparisons focusing on biofilm detection, biofilm formation, the immune response to biofilms, bacterial interaction, and quorum sensing. Current treatment modalities used by both fields and future therapies are also discussed.

  10. Rock physics models for constraining quantitative interpretation of ultrasonic data for biofilm growth and development

    Science.gov (United States)

    Alhadhrami, Fathiya Mohammed

    This study examines the use of rock physics modeling for quantitative interpretation of seismic data in the context of microbial growth and biofilm formation in unconsolidated sediment. The impetus for this research comes from geophysical experiments by Davis et al. (2010) and Kwon and Ajo-Franklin et al. (2012). These studies observed that microbial growth has a small effect on P-wave velocities (VP) but a large effect on seismic amplitudes. Davis et al. (2010) and Kwon and Ajo-Franklin et al. (2012) speculated that the amplitude variations were due to a combination of rock mechanical changes from accumulation of microbial growth related features such as biofilms. A more definite conclusion can be drawn by developing rock physics models that connect rock properties to seismic amplitudes. The primary objective of this work is to provide an explanation for high amplitude attenuation due to biofilm growth. The results suggest that biofilm formation in the Davis et al. (2010) experiment exhibit two growth styles: a loadbearing style where biofilm behaves like an additional mineral grain and a non-loadbearing mode where the biofilm grows into the pore spaces. In the loadbearing mode, the biofilms contribute to the stiffness of the sediments. We refer to this style as "filler." In the non-loadbearing mode, the biofilms contribute only to change in density of sediments without affecting their strength. We refer to this style of microbial growth as "mushroom." Both growth styles appear to be changing permeability more than the moduli or the density. As the result, while the VP velocity remains relatively unchanged, the amplitudes can change significantly depending on biofilm saturation. Interpreting seismic data from biofilm growths in term of rock physics models provide a greater insight into the sediment-fluid interaction. The models in turn can be used to understand microbial enhanced oil recovery and in assisting in solving environmental issues such as creating bio

  11. Escherichia coli adhesion, biofilm development and antibiotic susceptibility on biomedical materials.

    Science.gov (United States)

    Gomes, L C; Silva, L N; Simões, M; Melo, L F; Mergulhão, F J

    2015-04-01

    The aim of this work was to test materials typically used in the construction of medical devices regarding their influence in the initial adhesion, biofilm development and antibiotic susceptibility of Escherichia coli biofilms. Adhesion and biofilm development was monitored in 12-well microtiter plates containing coupons of different biomedical materials--silicone (SIL), stainless steel (SS) and polyvinyl chloride (PVC)--and glass (GLA) as control. The susceptibility of biofilms to ciprofloxacin and ampicillin was assessed, and the antibiotic effect in cell morphology was observed by scanning electron microscopy. The surface hydrophobicity of the bacterial strain and materials was also evaluated from contact angle measurements. Surface hydrophobicity was related with initial E. coli adhesion and subsequent biofilm development. Hydrophobic materials, such as SIL, SS, and PVC, showed higher bacterial colonization than the hydrophilic GLA. Silicone was the surface with the greatest number of adhered cells and the biofilms formed on this material were also less susceptible to both antibiotics. It was found that different antibiotics induced different levels of elongation on E. coli sessile cells. Results revealed that, by affecting the initial adhesion, the surface properties of a given material can modulate biofilm buildup and interfere with the outcome of antimicrobial therapy. These findings raise the possibility of fine-tuning surface properties as a strategy to reach higher therapeutic efficacy.

  12. Impact of Chloramination on the Development of Laboratory-Grown Biofilms Fed with Filter-Pretreated Groundwater

    KAUST Repository

    Ling, Fangqiong

    2013-01-01

    This study evaluated the continuous impact of monochloramine disinfection on laboratory-grown biofilms through the characterization of biofilm architecture and microbial community structure. Biofilm development and disinfection were achieved using CDC (Centers for Disease Control and Prevention) biofilm reactor systems with polyvinyl chloride (PVC) coupons as the substratum and sand filter-pretreated groundwater as the source of microbial seeding and growth nutrient. After 2 weeks of growth, the biofilms were subjected to chloramination for 8 more weeks at concentrations of 7.5±1.4 to 9.1±0.4 mg Cl2 L-1. Control reactors received no disinfection during the development of biofilms. Confocal laser scanning microscopy and image analysis indicated that chloramination could lead to 81.4-83.5% and 86.3-95.6% reduction in biofilm biomass and thickness, respectively, but could not eliminate biofilm growth. 16S rRNA gene terminal restriction fragment length polymorphism analysis indicated that microbial community structures between chloraminated and non-chloraminated biofilms exhibited different successional trends. 16S rRNA gene pyrosequencing analysis further revealed that chloramination could select members of Actinobacteria and Acidobacteria as the dominant populations, whereas natural development leads to the selection of members of Nitrospira and Bacteroidetes as dominant biofilm populations. Overall, chloramination treatment could alter the growth of multi-species biofilms on the PVC surface, shape the biofilm architecture, and select a certain microbial community that can survive or proliferate under chloramination.

  13. A modular reactor to simulate biofilm development in orthopedic materials.

    Science.gov (United States)

    Barros, Joana; Grenho, Liliana; Manuel, Cândida M; Ferreira, Carla; Melo, Luís F; Nunes, Olga C; Monteiro, Fernando J; Ferraz, Maria P

    2013-09-01

    Surfaces of medical implants are generally designed to encourage soft- and/or hard-tissue adherence, eventually leading to tissue- or osseo-integration. Unfortunately, this feature may also encourage bacterial adhesion and biofilm formation. To understand the mechanisms of bone tissue infection associated with contaminated biomaterials, a detailed understanding of bacterial adhesion and subsequent biofilm formation on biomaterial surfaces is needed. In this study, a continuous-flow modular reactor composed of several modular units placed in parallel was designed to evaluate the activity of circulating bacterial suspensions and thus their predilection for biofilm formation during 72 h of incubation. Hydroxyapatite discs were placed in each modular unit and then removed at fixed times to quantify biofilm accumulation. Biofilm formation on each replicate of material, unchanged in structure, morphology, or cell density, was reproducibly observed. The modular reactor therefore proved to be a useful tool for following mature biofilm formation on different surfaces and under conditions similar to those prevailing near human-bone implants.

  14. Xanthomonas citri subsp. citri type IV Pilus is required for twitching motility, biofilm development, and adherence.

    Science.gov (United States)

    Dunger, German; Guzzo, Cristiane R; Andrade, Maxuel O; Jones, Jeffrey B; Farah, Chuck S

    2014-10-01

    Bacterial type IV pili (T4P) are long, flexible surface filaments that consist of helical polymers of mostly pilin subunits. Cycles of polymerization, attachment, and depolymerization mediate several pilus-dependent bacterial behaviors, including twitching motility, surface adhesion, pathogenicity, natural transformation, escape from immune system defense mechanisms, and biofilm formation. The Xanthomonas citri subsp. citri strain 306 genome codes for a large set of genes involved in T4P biogenesis and regulation and includes several pilin homologs. We show that X. citri subsp. citri can exhibit twitching motility in a manner similar to that observed in other bacteria such as Pseudomonas aeruginosa and Xylella fastidiosa and that this motility is abolished in Xanthomonas citri subsp. citri knockout strains in the genes coding for the major pilin subunit PilAXAC3241, the ATPases PilBXAC3239 and PilTXAC2924, and the T4P biogenesis regulators PilZXAC1133 and FimXXAC2398. Microscopy analyses were performed to compare patterns of bacterial migration in the wild-type and knockout strains and we observed that the formation of mushroom-like structures in X. citri subsp. citri biofilm requires a functional T4P. Finally, infection of X. citri subsp. citri cells by the bacteriophage (ΦXacm4-11 is T4P dependent. The results of this study improve our understanding of how T4P influence Xanthomonas motility, biofilm formation, and susceptibility to phage infection. PMID:25180689

  15. A new approach for development of kinetics of wastewater treatment in aerobic biofilm reactor

    Science.gov (United States)

    Goswami, S.; Sarkar, S.; Mazumder, D.

    2016-02-01

    Biofilm process is widely used for the treatment of a variety of wastewater especially containing slowly biodegradable substances. It provides resistance against toxic environment and is capable of retaining biomass under continuous operation. Development of kinetics is very much pertinent for rational design of a biofilm process for the treatment of wastewater with or without inhibitory substances. A simple approach for development of such kinetics for an aerobic biofilm reactor has been presented using a novel biofilm model. The said biofilm model is formulated from the correlations between substrate concentrations in the influent/effluent and at biofilm liquid interface along with substrate flux and biofilm thickness complying Monod's growth kinetics. The methodology for determining the kinetic coefficients for substrate removal and biomass growth has been demonstrated stepwise along with graphical representations. Kinetic coefficients like K, k, Y, b t, b s, and b d are determined either from the intercepts of X- and Y-axis or from the slope of the graphical plots.

  16. Management of dental unit waterline biofilms in the 21st century.

    LENUS (Irish Health Repository)

    O'Donnell, Mary J

    2011-10-01

    Dental chair units (DCUs) use water to cool and irrigate DCU-supplied instruments and tooth surfaces, and provide rinsewater during dental treatment. A complex network of interconnected plastic dental unit waterlines (DUWLs) supply water to these instruments. DUWLs are universally prone to microbial biofilm contamination seeded predominantly from microorganisms in supply water. Consequently, DUWL output water invariably becomes contaminated by high densities of microorganisms, principally Gram-negative environmental bacteria including Pseudomonas aeruginosa and Legionella species, but sometimes contain human-derived pathogens such as Staphylococcus aureus. Patients and staff are exposed to microorganisms from DUWL output water and to contaminated aerosols generated by DCU instruments. A wide variety of approaches, many unsuccessful, have been proposed to control DUWL biofilm. More recently, advances in biofilm science, chemical DUWL biofilm treatment agents, DCU design, supply water treatment and development of automated DUWL biofilm control systems have provided effective long-term solutions to DUWL biofilm control.

  17. Anti-virulence approaches and novel peptidomimetics for combating resistant and biofilm associated bacteria

    DEFF Research Database (Denmark)

    Liu, Yang

    .aeruginosa is a gram - negative opportunistic pathogen which causes a variety of severe human infections and diseases, including colonization of the lungs of cystic fibrosis (CF) patients and infection of burns and immunecompromised patients. S.epidermidis is a gram -positive nosocomial pathogen which frequently....... There are multiple mechanisms leading to antibiotic resistance such as expression of cell membrane efflux pumps and antibiotic-degrading enzymes. Moreover, bacterial biofilm communities are widely accepted as a major resistance mechanism in infection sites. Biofilms are surface-associated microbial communities...... could not eradicate biofilm-related infections, such as biofilm infections related to medical implants and chronic wounds. There is a need for developing anti-biofilm therapeutics. Biofilm formation is a dynamic and complicated process which requires cell surface structures (e.g. type IV pili), motility...

  18. Streptococcus mutans protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics.

    Science.gov (United States)

    Klein, Marlise I; Xiao, Jin; Lu, Bingwen; Delahunty, Claire M; Yates, John R; Koo, Hyun

    2012-01-01

    Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v) was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT) approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA) and glucan-binding (gbpB) during this transition (P<0.05). Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism), and molecular chaperones (GroEL). Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms) demonstrating fundamental differences in the matrix assembly, survival and biofilm maintenance in the

  19. Streptococcus mutans protein synthesis during mixed-species biofilm development by high-throughput quantitative proteomics.

    Directory of Open Access Journals (Sweden)

    Marlise I Klein

    Full Text Available Biofilms formed on tooth surfaces are comprised of mixed microbiota enmeshed in an extracellular matrix. Oral biofilms are constantly exposed to environmental changes, which influence the microbial composition, matrix formation and expression of virulence. Streptococcus mutans and sucrose are key modulators associated with the evolution of virulent-cariogenic biofilms. In this study, we used a high-throughput quantitative proteomics approach to examine how S. mutans produces relevant proteins that facilitate its establishment and optimal survival during mixed-species biofilms development induced by sucrose. Biofilms of S. mutans, alone or mixed with Actinomyces naeslundii and Streptococcus oralis, were initially formed onto saliva-coated hydroxyapatite surface under carbohydrate-limiting condition. Sucrose (1%, w/v was then introduced to cause environmental changes, and to induce biofilm accumulation. Multidimensional protein identification technology (MudPIT approach detected up to 60% of proteins encoded by S. mutans within biofilms. Specific proteins associated with exopolysaccharide matrix assembly, metabolic and stress adaptation processes were highly abundant as the biofilm transit from earlier to later developmental stages following sucrose introduction. Our results indicate that S. mutans within a mixed-species biofilm community increases the expression of specific genes associated with glucan synthesis and remodeling (gtfBC, dexA and glucan-binding (gbpB during this transition (P<0.05. Furthermore, S. mutans up-regulates specific adaptation mechanisms to cope with acidic environments (F1F0-ATPase system, fatty acid biosynthesis, branched chain amino acids metabolism, and molecular chaperones (GroEL. Interestingly, the protein levels and gene expression are in general augmented when S. mutans form mixed-species biofilms (vs. single-species biofilms demonstrating fundamental differences in the matrix assembly, survival and biofilm

  20. 铜绿假单胞菌生物膜与亚抑菌浓度抗菌药物的相关研究%Effect of subinhibitory concentrations on formation of biofilm of Pseudomonas aeruginosa

    Institute of Scientific and Technical Information of China (English)

    李俊娟; 王强; 孙开宇; 蒋捍东

    2012-01-01

    OBJECTIVE To study the effects of the subinhibitory concentrations on the biofilm formation of Pseudomonas aeruginosa (PAE).- METHODS We first determined the minimal inhibitory concentration of azithromycin, amikacin, ciprofloxacin and ceftazidime of the PAE cultured in MHB and LB. We made the static biofilm model of P. aeruginosa in 96-well microtiter plates with the four antibiotics and medical silica gel with the azithromycin concentration, the OD value was determined with crystal violet staining microplate reader, and the biofilm was observed with silver staining microscope. RESULTS The MIC of azithromycin of PAE in MHB and LB were 512 mg/L and 16 mg/L, respectively; the MIC of amikacin, ciprofloxacin and ceftazidime of the PAE were 4 mg/L, 0. 125 mg/L and 4 mg/L, respectively; the results of the static-made biofilm were as follows: in the MHB and LB media, azithromycin could induce the biofilm formation of PAE at the subinhibitory concentration. Ciprofloxacin and ceftazidime could inhibit the biofilm formation at these concentrations. Amikacin could inhibit the biofilm formation at the concentration of 0. 25 to 4 mg/L (1/16MIC-MIC) , but could induce biofilm formation at the concentration of 0. 125 mg/L (1/16 MIC)in MHB; and when PAE was cultured in LB, amikacin could inhibit the biofilm formation at the concentration of 1 to 4 mg/L (1/4MIC-MIC) , and induce the biofilm formation at 0.25 mg/L(l/16MIC). All the results above had statistical differences compared with the control group. Silverstaining results: when the concentration of azithromycin was 8mg/L,the formation of the biofilm was the most, the second was the blank group and it was the least as the concentration was 256 mg/L. CONCLUSION The sensitivity of PAE planktonic bacteria to azithromycin varies in different culture condition; and the azithromycin may induce the biofilm formation at the subinhibitory concentration; ciprofloxacin and ceftazidime can inhibit the biofilm formation; the inhibitory of

  1. Presence of exoY, exoS, exoU and exoT genes, antibiotic resistance and biofilm production among Pseudomonas aeruginosa isolates in Northwest Iran

    Directory of Open Access Journals (Sweden)

    Azimi, Somayeh

    2016-02-01

    Full Text Available Background: , as Gram-negative rod bacilli, has an important role in human infection. In the present study we aimed to investigate the presence of genes and biofilm production among isolates in Northwest Iran.Material and methods: 160 isolates of were collected and identified by biochemical tests and were characterized for antibiotic resistance. Biofilm production was evaluated by microtiter plate assay and the presence of genes was evaluated by allele-specific PCR (polymerase chain reaction. Chi-square test was used for statistical analysis.Results: The most effective antibiotics against isolates were colistin and polymyxin B. 87% of the isolates were biofilm producers of which 69% were strongly biofilm producers. 55% of the isolates carried , 52% of the isolates carried , and 26.3% and 5% carried and , respectively.Conclusion: Our findings showed different distribution of genes in clinical isolates of in Northwest Iran. and were more prevalent in non-biofilm producers and was more prevalent in biofilm producer isolates. These results might indicate the importance of in biofilm production of .

  2. Environmental switching during biofilm development in a cold seep system and functional determinants of species sorting

    KAUST Repository

    Zhang, Weipeng

    2015-11-28

    The functional basis for species sorting theory remains elusive, especially for microbial community assembly in deep sea environments. Using artificial surface-based biofilm models, our recent work revealed taxonomic succession during biofilm development in a newly defined cold seep system, the Thuwal cold seeps II, which comprises a brine pool and the adjacent normal bottom water (NBW) to form a metacommunity via the potential immigration of organisms from one patch to another. Here, we designed an experiment to investigate the effects of environmental switching between the brine pool and the NBW on biofilm assembly, which could reflect environmental filtering effects during bacterial immigration to new environments. Analyses of 16S rRNA genes of 71 biofilm samples suggested that the microbial composition of biofilms established in new environments was determined by both the source community and the incubation conditions. Moreover, a comparison of 18 metagenomes provided evidence for biofilm community assembly that was based primarily on functional features rather than taxonomic identities; metal ion resistance and amino acid metabolism were the major species sorting determinants for the succession of biofilm communities. Genome binning and pathway reconstruction of two bacterial species (Marinobacter sp. and Oleispira sp.) further demonstrated metal ion resistance and amino acid metabolism as functional traits conferring the survival of habitat generalists in both the brine pool and NBW. The results of the present study sheds new light on microbial community assembly in special habitats and bridges a gap in species sorting theory.

  3. Dynamics of Streptococcus mutans transcriptome in response to starch and sucrose during biofilm development.

    Directory of Open Access Journals (Sweden)

    Marlise I Klein

    Full Text Available The combination of sucrose and starch in the presence of surface-adsorbed salivary α-amylase and bacterial glucosyltransferases increase the formation of a structurally and metabolically distinctive biofilm by Streptococcus mutans. This host-pathogen-diet interaction may modulate the formation of pathogenic biofilms related to dental caries disease. We conducted a comprehensive study to further investigate the influence of the dietary carbohydrates on S. mutans-transcriptome at distinct stages of biofilm development using whole genomic profiling with a new computational tool (MDV for data mining. S. mutans UA159 biofilms were formed on amylase-active saliva coated hydroxyapatite discs in the presence of various concentrations of sucrose alone (ranging from 0.25 to 5% w/v or in combination with starch (0.5 to 1% w/v. Overall, the presence of sucrose and starch (suc+st influenced the dynamics of S. mutans transcriptome (vs. sucrose alone, which may be associated with gradual digestion of starch by surface-adsorbed amylase. At 21 h of biofilm formation, most of the differentially expressed genes were related to sugar metabolism, such as upregulation of genes involved in maltose/maltotriose uptake and glycogen synthesis. In addition, the groEL/groES chaperones were induced in the suc+st-biofilm, indicating that presence of starch hydrolysates may cause environmental stress. In contrast, at 30 h of biofilm development, multiple genes associated with sugar uptake/transport (e.g. maltose, two-component systems, fermentation/glycolysis and iron transport were differentially expressed in suc+st-biofilms (vs. sucrose-biofilms. Interestingly, lytT (bacteria autolysis was upregulated, which was correlated with presence of extracellular DNA in the matrix of suc+st-biofilms. Specific genes related to carbohydrate uptake and glycogen metabolism were detected in suc+st-biofilms in more than one time point, indicating an association between presence of starch

  4. Efficacy of dental unit waterlines disinfectants on a polymicrobial biofilm.

    Science.gov (United States)

    Costa, Damien; Girardot, Marion; Bertaux, Joanne; Verdon, Julien; Imbert, Christine

    2016-03-15

    Due to their high surface-volume ratio, their laminar flow and frequent stagnation periods, dental unit waterlines (DUWL) foster the attachment of microorganisms and the development of biofilm, resulting in the continuous contamination of the outlet water from dental units; this contamination may be responsible for a potential risk of infection due to the exposure of patients and medical staff to droplet inhalation or splashed water. In this study, the anti-biofilm activity of three disinfectants recommended by dental unit manufacturers -Calbenium(©), Oxygenal 6(©) and Sterispray(©) - was evaluated. A dynamic model simulating DUWL conditions was developed and polymicrobial biofilms containing bacteria (Pseudomonas aeruginosa), fungi (Candida albicans) and Free Living Amoeba (FLA: Vermamoeba vermiformis) were allowed to form. The ability of disinfectants to reduce biofilm formation or to eradicate an already formed biofilm was evaluated. Results showed the various effects of the tested disinfectants according to their composition, concentration and the targeted species. V. vermiformis was resistant to disinfectants, regardless of the tested concentrations and the concentrations recommended by manufacturers were not the most appropriate. Results also showed that Calbenium(©) was the most effective disinfectant to reduce already formed biofilms; its maximum efficiency was observed from 0.5% on both P. aeruginosa and C. albicans compared to 2 and 3% respectively for Sterispray(©). The maximum efficiency of Oxygenal(©) was observed from 3% on P. aeruginosa but Oxygenal(©) was unable to totally eliminate C. albicans in the tested conditions, contrary to other disinfectants. Calbenium(©) was able to prevent biofilm formation efficiently even if it displayed no prophylactic activity against V. vermiformis. Overall, the FLA survival may contribute to maintaining other species. Finally the tested disinfectants were partially active against sessile microorganisms

  5. Inhibition of biofilm development of uropathogens by curcumin - an anti-quorum sensing agent from Curcuma longa.

    Science.gov (United States)

    Packiavathy, Issac Abraham Sybiya Vasantha; Priya, Selvam; Pandian, Shunmugiah Karutha; Ravi, Arumugam Veera

    2014-04-01

    Urinary tract infection is caused primarily by the quorum sensing (QS)-dependent biofilm forming ability of uropathogens. In the present investigation, an anti-quorum sensing (anti-QS) agent curcumin from Curcuma longa (turmeric) was shown to inhibit the biofilm formation of uropathogens, such as Escherichia coli, Pseudomonas aeruginosa PAO1, Proteus mirabilis and Serratia marcescens, possibly by interfering with their QS systems. The antibiofilm potential of curcumin on uropathogens as well as its efficacy in disturbing the mature biofilms was examined under light microscope and confocal laser scanning microscope. The treatment with curcumin was also found to attenuate the QS-dependent factors, such as exopolysaccharide production, alginate production, swimming and swarming motility of uropathogens. Furthermore, it was documented that curcumin enhanced the susceptibility of a marker strain and uropathogens to conventional antibiotics. PMID:24262582

  6. Investigation of natural biofilms formed during the production of drinking water from surface water embankment filtration.

    Science.gov (United States)

    Emtiazi, Farahnaz; Schwartz, Thomas; Marten, Silke Mareike; Krolla-Sidenstein, Peter; Obst, Ursula

    2004-03-01

    Populations of bacteria in biofilms from different sites of a drinking water production system were analysed. Polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) analyses revealed changing DNA band patterns, suggesting a population shift during bank filtration and processing at the waterworks. In addition, common DNA bands that were attributed to ubiquitous bacteria were found. Biofilms even developed directly after UV disinfection (1-2m distance). Their DNA band patterns only partly agreed with those of the biofilms from the downstream distribution system. Opportunistic pathogenic bacteria in biofilms were analysed using PCR and Southern blot hybridisation (SBH). Surface water appeared to have a direct influence on the composition of biofilms in the drinking water distribution system. In spite of preceding filtration and UV disinfection, opportunistic pathogens such as atypical mycobacteria and Legionella spp. were found in biofilms of drinking water, and Pseudomonas aeruginosa was detected sporadically. Enterococci were not found in any biofilm. Bacterial cell counts in the biofilms from surface water to drinking water dropped significantly, and esterase and alanine-aminopeptidase activity decreased. beta-glucosidase activity was not found in the biofilms. Contrary to the results for planktonic bacteria, inhibitory effects were not observed in biofilms. This suggested an increased tolerance of biofilm bacteria against toxic compounds.

  7. Mycoalgae biofilm: development of a novel platform technology using algae and fungal cultures

    OpenAIRE

    Rajendran, Aravindan; Hu, Bo

    2016-01-01

    Background Microalgae is considered a promising source for biofuel and bioenergy production, bio-remediation and production of high-value bioactive compounds, but harvesting microalgae is a major bottleneck in the algae based processes. The objective of this research is to mimic the growth of natural lichen and develop a novel biofilm platform technology using filamentous fungi and microalgae to form a lichen type of biofilm “mycoalgae” in a supporting polymer matrix. Results The possibility ...

  8. Development of In Vitro Denture Biofilm Models for Studying Denture-related Halitosis and Stomatitis

    OpenAIRE

    Wu, Tingxi

    2012-01-01

    Denture stomatitis and denture-related halitosis are two of the most prevalent denture related infectious diseases. The establishment of denture biofilm models for disease-associated pathogens is essential in further investigating the pathogenesis of these diseases. Chapter I and II of this thesis reported the successful development of denture biofilm model for Candida albican, the main pathogen of denterun stomatitis; as well as the denture models for halitosis-related bacteria, including Kl...

  9. Biofilm removal technique using sands as a research tool for accessing microbial attachment on surface

    Directory of Open Access Journals (Sweden)

    Nathanon Trachoo

    2004-01-01

    Full Text Available Biofilms have profound impacts on improved survival of the constituent microorganisms in nature. Biofilms were believed to protect constituent microorganisms from sanitizer treatment, provide a more suitable habitat for microorganisms, and become a site for genetic material exchanges between microorganisms. As we realize more about the significance of biofilm, methods used for biofilm study should be consistently developed and evaluated. To determine microbial attachment on surfaces, usually biofilms are grown on substratum surfaces and removed by vortexing with glass beads or scraping. However, scraping is not as effective as vortexing with glass beads. Another approach is direct-agar overlaying which cannot be used with high density biofilm. In this experiment, we compared effectiveness of glass beads (298±28 μm in diameter and sands (width: 221±55 μm and length: 329±118 μm in removing biofilm of Pseudomonas aeruginosa by vortexing method. The results suggested that acid-washed sands, which are significantly less inexpensive than glass beads, were as effective as (P>0.05 analytical grade glass beads in Pseudomonas aeruginosa biofilm removal without inhibiting growth of the organism.

  10. Lysogenic Conversion and Phage Resistance Development in Phage Exposed Escherichia coli Biofilms

    Directory of Open Access Journals (Sweden)

    Abram Aertsen

    2013-01-01

    Full Text Available In this study, three-day old mature biofilms of Escherichia coli were exposed once to either a temperate Shiga-toxin encoding phage (H-19B or an obligatory lytic phage (T7, after which further dynamics in the biofilm were monitored. As such, it was found that a single dose of H-19B could rapidly lead to a near complete lysogenization of the biofilm, with a subsequent continuous release of infectious H-19B particles. On the other hand, a single dose of T7 rapidly led to resistance development in the biofilm population. Together, our data indicates a profound impact of phages on the dynamics within structured bacterial populations.

  11. Subaerial biofilms on granitic historic buildings: microbial diversity and development of phototrophic multi-species cultures.

    Science.gov (United States)

    Vázquez-Nion, D; Rodríguez-Castro, J; López-Rodríguez, M C; Fernández-Silva, I; Prieto, B

    2016-07-01

    Microbial communities of natural subaerial biofilms developed on granitic historic buildings of a World Heritage Site (Santiago de Compostela, NW Spain) were characterized and cultured in liquid BG11 medium. Environmental barcoding through next-generation sequencing (Pacific Biosciences) revealed that the biofilms were mainly composed of species of Chlorophyta (green algae) and Ascomycota (fungi) commonly associated with rock substrata. Richness and diversity were higher for the fungal than for the algal assemblages and fungi showed higher heterogeneity among samples. Cultures derived from natural biofilms showed the establishment of stable microbial communities mainly composed of Chlorophyta and Cyanobacteria. Although most taxa found in these cultures were not common in the original biofilms, they are likely common pioneer colonizers of building stone surfaces, including granite. Stable phototrophic multi-species cultures of known microbial diversity were thus obtained and their reliability to emulate natural colonization on granite should be confirmed in further experiments. PMID:27192622

  12. Lysogenic conversion and phage resistance development in phage exposed Escherichia coli biofilms.

    Science.gov (United States)

    Moons, Pieter; Faster, David; Aertsen, Abram

    2013-01-01

    In this study, three-day old mature biofilms of Escherichia coli were exposed once to either a temperate Shiga-toxin encoding phage (H-19B) or an obligatory lytic phage (T7), after which further dynamics in the biofilm were monitored. As such, it was found that a single dose of H-19B could rapidly lead to a near complete lysogenization of the biofilm, with a subsequent continuous release of infectious H-19B particles. On the other hand, a single dose of T7 rapidly led to resistance development in the biofilm population. Together, our data indicates a profound impact of phages on the dynamics within structured bacterial populations. PMID:23344561

  13. Multi-channel microfluidic biosensor platform applied for online monitoring and screening of biofilm formation and activity.

    Science.gov (United States)

    Bruchmann, Julia; Sachsenheimer, Kai; Rapp, Bastian E; Schwartz, Thomas

    2015-01-01

    Bacterial colonization of surfaces and interfaces has a major impact on various areas including biotechnology, medicine, food industries, and water technologies. In most of these areas biofilm development has a strong impact on hygiene situations, product quality, and process efficacies. In consequence, biofilm manipulation and prevention is a fundamental issue to avoid adverse impacts. For such scenario online, non-destructive biofilm monitoring systems become important in many technical and industrial applications. This study reports such a system in form of a microfluidic sensor platform based on the combination of electrical impedance spectroscopy and amperometric current measurement, which allows sensitive online measurement of biofilm formation and activity. A total number of 12 parallel fluidic channels enable real-time online screening of various biofilms formed by different Pseudomonas aeruginosa and Stenotrophomonas maltophilia strains and complex mixed population biofilms. Experiments using disinfectant and antibiofilm reagents demonstrate that the biofilm sensor is able to discriminate between inactivation/killing of bacteria and destabilization of biofilm structures. The impedance and amperometric sensor data demonstrated the high dynamics of biofilms as a consequence of distinct responses to chemical treatment strategies. Gene expression of flagellar and fimbrial genes of biofilms grown inside the microfluidic system supported the detected biofilm growth kinetics. Thus, the presented biosensor platform is a qualified tool for assessing biofilm formation in specific environments and for evaluating the effectiveness of antibiofilm treatment strategies. PMID:25706987

  14. Multi-channel microfluidic biosensor platform applied for online monitoring and screening of biofilm formation and activity.

    Directory of Open Access Journals (Sweden)

    Julia Bruchmann

    Full Text Available Bacterial colonization of surfaces and interfaces has a major impact on various areas including biotechnology, medicine, food industries, and water technologies. In most of these areas biofilm development has a strong impact on hygiene situations, product quality, and process efficacies. In consequence, biofilm manipulation and prevention is a fundamental issue to avoid adverse impacts. For such scenario online, non-destructive biofilm monitoring systems become important in many technical and industrial applications. This study reports such a system in form of a microfluidic sensor platform based on the combination of electrical impedance spectroscopy and amperometric current measurement, which allows sensitive online measurement of biofilm formation and activity. A total number of 12 parallel fluidic channels enable real-time online screening of various biofilms formed by different Pseudomonas aeruginosa and Stenotrophomonas maltophilia strains and complex mixed population biofilms. Experiments using disinfectant and antibiofilm reagents demonstrate that the biofilm sensor is able to discriminate between inactivation/killing of bacteria and destabilization of biofilm structures. The impedance and amperometric sensor data demonstrated the high dynamics of biofilms as a consequence of distinct responses to chemical treatment strategies. Gene expression of flagellar and fimbrial genes of biofilms grown inside the microfluidic system supported the detected biofilm growth kinetics. Thus, the presented biosensor platform is a qualified tool for assessing biofilm formation in specific environments and for evaluating the effectiveness of antibiofilm treatment strategies.

  15. Extracellular DNA formation during biofilm development by freshwater bacteria

    DEFF Research Database (Denmark)

    Tang, Lone; Schramm, Andreas; Revsbech, Niels Peter;

    2011-01-01

    a transient peak at 6 hours, and in Rheinheimera the concentration peaked at 12 hours and remained high. Interestingly, the Rheinheimera biofilm dispersed immediately after the eDNA concentration peaked. The antimicrobial effect of eDNA was tested in growth experiments, and Rheinheimera was strongly affected...

  16. Sulfur-based denitrification: Effect of biofilm development on denitrification fluxes.

    Science.gov (United States)

    Wang, Yue; Bott, Charles; Nerenberg, Robert

    2016-09-01

    Elemental sulfur (S(o)) can serve as an electron donor for denitrification. However, the mechanisms and rates of S(o)-based denitrification, which depend on a biofilm development on a solid S(o) surface, are not well understood. We used completely-mixed reactors packed with S(o) chips to systematically explore the behavior of S(o)-based denitrification as a function of the bulk nitrate (NO3(-)) concentration and biofilm development. High-purity (99.5%) and agricultural-grade (90% purity) S(o) chips were tested to explore differences in performance. NO3(-) fluxes followed a Monod-type relationship with the bulk NO3(-) concentration. For high-purity S(o), the maximum NO3(-) flux increased from 0.4 gN/m(2)-d at 21 days to 0.9 g N/m(2)-d at around 100 days, but then decreased to 0.65 gN/m(2)-d at 161 days. The apparent (extant) half-saturation constant for NO3(-) KSapp, based on the bulk NO3(-) concentration and NO3(-) fluxes into the biofilm, increased from 0.1 mgN/L at 21 days to 0.8 mgN/L at 161 days, reflecting the increasing mass transfer resistance as the biofilm thickness increased. Nitrite (NO2(-)) accumulation became significant at bulk NO3(-) concentration above 0.2 mgN/L. The behavior of the agricultural-grade S(o) was very similar to the high-purity S(o). The kinetic behavior of S(o)-based denitrification was consistent with substrate counter-diffusion, where the soluble sulfur species diffuse from the S(o) particle into the base of the biofilm, while NO3(-) diffuses into the biofilm from the bulk. Initially, the fluxes were low due to biomass limitation (thin biofilms). As the biofilm thickness increased with time, the fluxes first increased, stabilized, and then decreased. The decrease was probably due to increasing diffusional resistance in the thick biofilm. Results suggest that fluxes comparable to heterotrophic biofilm processes can be achieved, but careful management of biofilm accumulation is important to maintain high fluxes. PMID:27187050

  17. Comparison of quantification methods illustrates reduced Pseudomonas aeruginosa activity on nanorough polyvinyl chloride.

    Science.gov (United States)

    Seil, Justin T; Rubien, Nathan M; Webster, Thomas J; Tarquinio, Keiko M

    2011-07-01

    Patients on mechanical ventilators for extended periods of time are faced with a high probability of developing ventilator associated pneumonia. Although this has been mostly addressed through the re-engineering of endotracheal tubes (ETTs) with antimicrobial materials, such material coatings may easily delaminate during use. However, the potential exists to apply nanotechnology to the ETT to avoid delamination but implement antibacterial properties. Selecting a protocol to evaluate in vitro material for anti-infection is difficult, partially due to the existence of conflicting reported methods of analysis. In this study, the susceptibility of conventional and nanorough polymeric materials to bacterial biofilm growth were evaluated. After creating nanorough polyvinyl chloride (PVC) ETTs, Pseudomonas aeruginosa biofilms were then grown on sample surfaces during a 24-h culture. Biofilms were then removed and assayed from sample surfaces using a variety of techniques. Comparisons between the different techniques used for biofilm removal indicated that vortexing provided adequate removal of the biofilm from sample surfaces. Most importantly, a protocol following the vortexing method of biofilm and bacteria removal provided an ∼40% lower yield of colony forming units from nanorough PVC compared to conventional PVC. This suggests that Pseudomonas aeruginosa are less adherent on nanorough PVC than conventional PVC.

  18. Raman spectroscopic differentiation of planktonic bacteria and biofilms.

    Science.gov (United States)

    Kusić, Dragana; Kampe, Bernd; Ramoji, Anuradha; Neugebauer, Ute; Rösch, Petra; Popp, Jürgen

    2015-09-01

    Both biofilm formations as well as planktonic cells of water bacteria such as diverse species of the Legionella genus as well as Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli were examined in detail by Raman microspectroscopy. Production of various molecules involved in biofilm formation of tested species in nutrient-deficient media such as tap water was observed and was particularly evident in the biofilms formed by six Legionella species. Biofilms of selected species of the Legionella genus differ significantly from the planktonic cells of the same organisms in their lipid amount. Also, all Legionella species have formed biofilms that differ significantly from the biofilms of the other tested genera in the amount of lipids they produced. We believe that the significant increase in the synthesis of this molecular species may be associated with the ability of Legionella species to form biofilms. In addition, a combination of Raman microspectroscopy with chemometric approaches can distinguish between both planktonic form and biofilms of diverse bacteria and could be used to identify samples which were unknown to the identification model. Our results provide valuable data for the development of fast and reliable analytic methods based on Raman microspectroscopy, which can be applied to the analysis of tap water-adapted microorganisms without any cultivation step.

  19. Contamination potential of drinking water distribution network biofilms.

    Science.gov (United States)

    Wingender, J; Flemming, H C

    2004-01-01

    Drinking water distribution system biofilms were investigated for the presence of hygienically relevant microorganisms. Early biofilm formation was evaluated in biofilm reactors on stainless steel, copper, polyvinyl chloride (PVC) and polyethylene coupons exposed to unchlorinated drinking water. After 12 to 18 months, a plateau phase of biofilm development was reached. Surface colonization on the materials ranged between 4 x 10(6) and 3 x 10(7) cells/cm2, with heterotrophic plate count (HPC) bacteria between 9 x 10(3) and 7 x 10(5) colony-forming units (cfu)/cm2. Established biofilms were investigated in 18 pipe sections (2 to 99 years old) cut out from distribution pipelines. Materials included cast iron, galvanized steel, cement and PVC. Colonization ranged from 4 x 10(5) to 2 x 10(8) cells/cm2, HPC levels varied between 1 and 2 x 10(5) cfu/cm2. No correlation was found between extent of colonization and age of the pipes. Using cultural detection methods, coliform bacteria were rarely found, while Escherichia coli, Pseudomonas aeruginosa and Legionella spp. were not detected in the biofilms. In regular operation, distribution system biofilms do not seem to be common habitats for pathogens. However, nutrient-leaching materials like rubber-coated valves were observed with massive biofilms which harboured coliform bacteria contaminating drinking water. PMID:15303752

  20. Synthesis of 2(5H)-pyrrinones and the inhibitory effects on the Biofilms of P.aeruginosa in vitro%2(5H)-吡咯酮衍生物的合成及对铜绿假单胞菌生物膜的体外作用

    Institute of Scientific and Technical Information of China (English)

    郭嘉亮; 刘兆祥; 巢伟; 孙平华

    2013-01-01

    以乙酰乙酸乙酯为原料,设计合成2(5H)-吡咯酮及其衍生物,所得化合物经1H NMR、13C NMR、MS和元素分析等确证.通过扫描电镜观察2(5H)-吡咯酮对黏液型铜绿假单胞菌P.aeruginosa(PA)体外生物被膜(biofilms,BF)的影响,可见BF被破坏,基质样物变稀疏,细菌群聚大为降低.活性实验结果表明,2(5H)-吡咯酮类化合物具有一定的抑制细菌群体感应的能力.%A series of pyrroles and 2 (5H) -pyrrinones were successfully synthesized from ethyl aceto-acetate, and characterized by 'H NMR, 13C NMR, MS spectra and elemental analysis. Scanning electron microscope (SEM) was used to evaluate the effects of the 2 (5H) -pyrrolones on the quorum sensing (QS) system and the bacterial biofilm (BF) formation biofilm formation. The biofilms of P. aeruginosa were inhibited, the base became sparseness, and the swarming was decreased. The results of biological activity tests indicated that 2 (5H) -pyrrinones showed potent ability to inhibit the formation of bacterial biofilms.

  1. 铜绿假单胞菌群体感应lasI/rhlI基因对其生物被膜形成的影响%Effects of lasI/rhlI genes of Pseudomonas aeruginosa quorum-sensing system on biofilm formation

    Institute of Scientific and Technical Information of China (English)

    胡昌俊; 李德辉; 朱艮苗

    2013-01-01

    目的 分析铜绿假单胞菌群体感应系统lasI/rhlI基因对生物被膜形成的影响,探讨群体感应系统对生物被膜形成的调控机制.方法 采用结晶紫染色法分析铜绿假单胞菌标准株PAO1及其群体感应系统lasI/rhlI基因缺陷株PA210(△rhlI)、PA214(△lasI)及PA216(△lasI/rhlI)生物被膜的形成能力.结果 铜绿假单胞菌标准株PAO1能形成成熟的生物被膜,基因缺陷株PA214(△lasI)可形成较薄的生物被膜,而PA210(△rhlI)及PA216(△lasI/rhlI)则不能形成生物被膜.结论 lasI/rhlI基因缺陷可影响铜绿假单胞菌生物被膜形成,但rhlI基因对生物被膜形成的影响更为显著.%Objective To analyze the influence of Pseudomonas aeruginosa quorum-sensing system genes lasI/rhlI on bacterial biofilm formation,in order to explore the control mechanism of quorum-sensing system on the biofilm formation.Methods The formation ability of Pseudomonas aeruginosa standard strains PAO1 and quorum-sensing system lasI/rhlI genetic defect strains PA210(ΔrhlI),PA214(/lasI) and PA216(/lasI/rhlI) biofilm was analyzed by using crystal violet dyeing method.Results Pseudomonas aeruginosa standard strains PAO1 formed the mature biofilm,genetic defect strains PA214(/lasl) formed the thin biofilm,and PA210(/rhlI) and PA216(/lasI/rhlI) could not form biofilm.Conclusion lasI/rhlI genetic defects can affect the formation of Pseudomonas aeruginosa biofilm,but rhll gene influence more significant on the formation of biofilm.

  2. Modeling bacterial attachment to surfaces as an early stage of biofilm development.

    Science.gov (United States)

    El Moustaid, Fadoua; Eladdadi, Amina; Uys, Lafras

    2013-06-01

    Biofilms are present in all natural, medical and industrial surroundings where bacteria live. Biofilm formation is a key factor in the growth and transport of both beneficial and harmful bacteria. While much is known about the later stages of biofilm formation, less is known about its initiation which is an important first step in the biofilm formation. In this paper, we develop a non-linear system of partial differential equations of Keller-Segel type model in one-dimensional space, which couples the dynamics of bacterial movement to that of the sensing molecules. In this case, bacteria perform a biased random walk towards the sensing molecules. We derive the boundary conditions of the adhesion of bacteria to a surface using zero-Dirichlet boundary conditions, while the equation describing sensing molecules at the interface needed particular conditions to be set. The numerical results show the profile of bacteria within the space and the time evolution of the density within the free-space and on the surface. Testing different parameter values indicate that significant amount of sensing molecules present on the surface leads to a faster bacterial movement toward the surface which is the first step of biofilm initiation. Our work gives rise to results that agree with the biological description of the early stages of biofilm formation. PMID:23906151

  3. Modeling the development of biofilm density including active bacteria, inert biomass, and extracellular polymeric substances.

    Science.gov (United States)

    Laspidou, Chrysi S; Rittmann, Bruce E

    2004-01-01

    We present the unified multi-component cellular automaton (UMCCA) model, which predicts quantitatively the development of the biofilm's composite density for three biofilm components: active bacteria, inert or dead biomass, and extracellular polymeric substances. The model also describes the concentrations of three soluble organic components (soluble substrate and two types of soluble microbial products) and oxygen. The UMCCA model is a hybrid discrete-differential mathematical model and introduces the novel feature of biofilm consolidation. Our hypothesis is that the fluid over the biofilm creates pressures and vibrations that cause the biofilm to consolidate, or pack itself to a higher density over time. Each biofilm compartment in the model output consolidates to a different degree that depends on the age of its biomass. The UMCCA model also adds a cellular automaton algorithm that identifies the path of least resistance and directly moves excess biomass along that path, thereby ensuring that the excess biomass is distributed efficiently. A companion paper illustrates the trends that the UMCCA model is able to represent and shows a comparison with experimental results. PMID:15276752

  4. Effect of Particulate Contaminants on the Development of Biofilms at Air/Water Interfaces.

    Science.gov (United States)

    Zhang, Zhenhuan; Christopher, Gordon

    2016-03-22

    The development of biofilms at air/water or oil/water interfaces has important ramifications on several applications, but it has received less attention than biofilm formation on solid surfaces. A key difference between the growth of biofilms on solid surfaces versus liquid interfaces is the range of complicated boundary conditions the liquid interface can create that may affect bacteria, as they adsorb onto and grow on the interface. This situation is exacerbated by the existence of complex interfaces in which interfacially adsorbed components can even more greatly affect interfacial boundary conditions. In this work, we present evidence as to how particle-laden interfaces impact biofilm growth at an air/water interface. We find that particles can enhance the rate of growth and final strength of biofilms at liquid interfaces by providing sites of increased adhesive strength for bacteria. The increased adhesion stems from creating localized areas of hydrophobicity that protrude in the water phase and provide sites where bacteria preferentially adhere. This mechanism is found to be primarily controlled by particle composition, with particle size providing a secondary effect. This increased adhesion through interfacial conditions creates biofilms with properties similar to those observed when adhesion is increased through biological means. Because of the generally understood ubiquity of increased bacteria attachment to hydrophobic surfaces, this result has general applicability to pellicle formation for many pellicle-forming bacteria. PMID:26943272

  5. Inhibitory effect of N-acetylcysteine combined with ciprofloxacin on biofilms produced by Pseudomonas aeruginosa%N-乙酰半胱氨酸与环丙沙星联合对铜绿假单胞菌生物被膜的抑制作用

    Institute of Scientific and Technical Information of China (English)

    赵铁梅; 刘又宁

    2011-01-01

    目的 研究N-乙酰半胱氨酸(NAC)、环丙沙星(CIP)单用及二者联合对铜绿假单胞菌生物被膜的抑制作用.方法 扫描电镜(SEM)观察NAC、CIP单用及二者联合对铜绿假单胞菌PAO1生物被膜形态的影响;结晶紫染色法定量分析二者单用及联合对铜绿假单胞菌生物被膜的影响;噻唑兰法(MTT)法测定二者联用的活菌数.结果 SEM观察到NAC对铜绿假单胞菌PAO1生物被膜有破坏解离作用,与CIP有协同作用;结晶紫染色法定量分析显示铜绿假单胞菌生物被膜的OD值随NAC剂量增大而减小;CIP(8MIC)作用后铜绿假单胞菌生物被膜的OD值下降至对照的69.1%~97.9%;CIP合用0.5、5 mg/ml NAC后OD值分别下降至CIP单用的(54.7±7.7)%、(48.9±11.4)%;NAC和CIP单用,分别在2.5 mg/ml和2 MIC时对成熟被膜下细菌的杀菌作用差异有统计学意义(P<0.01),联合作用后NAC和CIP在0.5 mg/ml和1/2 MIC时即对被膜下细菌的杀菌作用差异有统计学意义(P<0.01).结论 NAC对铜绿假单胞菌生物被膜有破坏解离作用、对被膜下细菌有杀菌作用,并与CIP存在一定的协同作用.%OBJECTIVE To investigate the inhibitory effect of N-acetylcysteine (NAC), ciprofloxacin (CIP) and combination of the two on biofilms produced by Pseudomonas aeruginosa. METHODS The morphology of biofilms after treatment with NAC, CIP and NAC combined with CIP was observed by scanning electron microscope (SEM).' Quantitative analysis of effects of NAC, CIP, NAC+CIP on performed biofilms of P. Aeruginosa were assayed by the optical densities stained by crystal violet. Viable counts of bacteria in biofilms were determined by methylthiazolyldiphenyltetrazolium(MTT) assay. RESULTS When observed by using SEM, NAC detached mature P. Aeruginosa biofilms, and was' synergistic with ciprofloxacin. Assayed by the optical densities stained with crystal violet showed P, aeruginosa biofilms reduced when NAC used and proportional to NAC

  6. In Vitro Antibiofilm Efficacies of Different Antibiotic Combinations with Zinc Sulfate against Pseudomonas aeruginosa Recovered from Hospitalized Patients with Urinary Tract Infection

    Directory of Open Access Journals (Sweden)

    Walid Elkhatib

    2014-02-01

    Full Text Available Urinary tract infections (UTIs are a serious healthcare dilemma influencing millions of patients every year and represent the second most frequent type of body infection. Pseudomonas aeruginosa is a multidrug-resistant pathogen causing numerous chronic biofilm-associated infections including urinary tract, nosocomial, and medical devices-related infections. In the present study, the biofilm of P. aeruginosa CCIN34519, recovered from inpatients with UTIs, was established on polystyrene substratum and scanning electron microscopy (SEM and was utilized for visualization of the biofilm. A previously described in vitro system for real-time monitoring of biofilm growth/inhibition was utilized to assess the antimicrobial effects of ciprofloxacin, levofloxacin, moxifloxacin, norfloxacin, ertapenem, ceftriaxone, gentamicin, and tobramycin as single antibiotics as well as in combinations with zinc sulfate (2.5 mM against P. aeruginosa CCIN34519 biofilm. Meanwhile, minimum inhibitory concentrations (MICs at 24 h and mutant prevention concentrations (MPCs at 96 h were determined for the aforementioned antibiotics. The real-time monitoring data revealed diverse responses of P. aeruginosa CCIN34519 biofilm to the tested antibiotic-zinc sulfate combinations with potential synergisms in cases of fluoroquinolones (ciprofloxacin, levofloxacin, moxifloxacin, and norfloxacin and carbapenem (ertapenem as demonstrated by reduced MIC and MPC values. Conversely, considerable antagonisms were observed with cephalosporin (ceftriaxone and aminoglycosides (gentamicin, and tobramycin as shown by substantially increased MICs and MPCs values. Further deliberate in vivo investigations for the promising synergisms are required to evaluate their therapeutic potentials for treatment of UTIs caused by P. aeruginosa biofilms as well as for developing preventive strategies.

  7. Studies of protein adsorption on implant materials in relation to biofilm formation I. Activity of Pseudomonas aeruginosa on Polypropylene and High density Polyethylene in presence of serum albumin

    CERN Document Server

    Sinha, S Dutta; Maity, P K; Tarafdar, S; Moulik, S P

    2014-01-01

    The surface of biomaterials used as implants are highly susceptible to bacterial colonization and subsequent infection. The amount of protein adsorption on biomaterials, among other factors, can affect the nature and quality of biofilms formed on them. The variation in the adsorption time of the protein on the biomaterial surface produces a phenotypic change in the bacteria by alteration of the production of EPS (exoplysaccharide) matrix. Knowledge of the effects of protein adsorption on implant infection will be very useful in understanding the chemistry of the biomaterial surfaces, which can deter the formation of biofilms. It is observed that the adsorption of BSA on the biomaterial surfaces increases with time and concentration, irrespective of their type and the nature of the EPS matrix of the bacterial biofilm is dependent on the amount of protein adsorbed on the biomaterial surface. The adsorption of protein (BSA) on the biomaterials, polypropylene (PP) and high density polyethylene (HDPE) has been stu...

  8. Development and Validation of a PCR Assay To Detect the Prairie Epidemic Strain of Pseudomonas aeruginosa from Patients with Cystic Fibrosis.

    Science.gov (United States)

    Workentine, M; Poonja, A; Waddell, B; Duong, J; Storey, D G; Gregson, D; Somayaji, R; Rabin, H R; Surette, M G; Parkins, M D

    2016-02-01

    The monitoring of epidemic Pseudomonas aeruginosa is important for cystic fibrosis (CF) infection control. The prairie epidemic strain (PES) is common in western Canadian CF clinics. Using whole-genome sequencing, we identified a novel genomic island and developed a PCR assay for PES. Against a collection of 186 P. aeruginosa isolates, the assay had 98% sensitivity and 100% specificity.

  9. Anti-biofilm and anti-adherence activity of Glm-U inhibitors

    Directory of Open Access Journals (Sweden)

    Ethel Suman

    2011-01-01

    Full Text Available Background: Intravascular catheters and urinary catheters are an important source of hospital-acquired infections. Many microorganisms colonize indwelling catheters, including central venous catheters (CVCs forming biofilms and cause infections that are difficult to treat. Although various methods have been employed to reduce biofilms, enzymes involved in bacterial cell wall synthesis could provide novel targets for the development of anti-biofilm agents. N-Acetylglucosamine-1-phosphate uridyltransferase (GlmU is an essential enzyme in aminosugars metabolism and catalyzes the formation of uridine-diphospho-N-acetylglucosamine (UDP-GlcNAc, an important precursor in the peptidoglycan and lipopolysaccharide biosynthesis of Gram-positive and Gram-negative bacteria. Previous study has been conducted on the anti-biofilm effect of GlmU inhibitors such as N-ethyl maleimide (NEM and NEM analogs along with a cationic polypeptide protamine sulfate (PS, which enhanced its anti-biofilm activity. AIM: The present study aimed at finding the effect of sub-inhibitory concentrations of N-ethyl maleimide (NEM and protamine sulfate (PS on the biofilms produced by Pseudomonas aeruginosa and Enterococcus spp. isolated from cases of catheter-associated UTI as well as Klebsiella pneumoniae and Staphylococcus aureus isolated from cases of catheter-related bloodstream infections (CRBSI. Materials and Methods: In order to enhance the activity of NEM and to develop a broad-spectrum anti-microbial composition, NEM (50 μg/ml was combined with protamine sulfate (50 μg/ml and tested for anti-biofilm activity using a standard quantitative biofilm assay method. Results and Conclusion: It was observed that NEM had no effect on the biofilm produced by Pseudomonas aeruginosa as well as by Enterococcus spp. NEM also caused a significant decrease in biofilm production by Staphylococcus aureus while it had no effect on the biofilm produced by Klebsiella pneumoniae. There was a

  10. Study on resistance of pseudomonas aeruginosa biofilm to different disinfectants%铜绿假单胞菌生物膜对不同消毒因子的抗力研究

    Institute of Scientific and Technical Information of China (English)

    陆龙喜; 陆烨; 林军明; 许激; 朱一凡

    2011-01-01

    OBJECTIVE To study the resistance of Psedomonas aeruginosa biofilm to different disinfectants.METHODS The resistance of artificially cultured biofilm to different disinfectants were tested by improved Brown plate method, continuous perfusion culture, quantitative germicidal test and scanning electron microscopy.RESULTS After cultured for 5 ~ 7 days, PAE biofilm adhered to teflon tube-wall stably and the bacterial concentration was up to 105~106 CFU/cm2 approximately. This biofilm could not be washed by water easily. The endure time of PAE biofilm to 0. 55% ortho-phthalaldehyde was 3min, and its killing time was 5min, The endure time of PAE biofilm to 200mg/L available chlorine was 5min, and its killing time was 7min, The endure time of PAE biofilm to 500mg/L available iodine was 10min, and its killing time was 20min, There were quite amount PAE alive after 30min contact with 1000mg/L PHMB. CONCLUSION The PAE lm to 0.55% orthophthalaldehyde, 200mg/L available chlorine, 500mg/L available iodine, 1000mg/L PHMB all show different degree resistance, It should be attached importance in hospital disinfection.%目的 研究铜绿假单胞菌生物膜对不同消毒因子的抗力.方法采用Brown平板改良法、持续灌流培养技术、载体定量杀菌试验以及扫描电镜技术进行人工培养生物膜对不同消毒因子的抗力研究.结果体外连续培养5~7 d的聚四氟乙烯管内壁的铜绿假单胞菌生物膜形成稳定,不易冲洗脱落,膜中细菌浓度达105~106 CFU/cm2,生物膜对0.55%邻苯二甲醛(OPA)耐受时间为3 min,作用5 min可达到完全杀灭;对200 mg/L有效氯耐受时间为5 min,作用7 min可达到完全杀灭;500 mg/L有效碘耐受时间为10 min,作用20 min可达到完全杀灭;对1000 mg/L聚六亚甲基双胍盐酸盐(PHMB)作用30 min仍然有大量细菌存活.结论体外培养生物膜对0.55%邻苯二甲醛、200 mg/L有效氯、500 mg/L有效碘、1000 mg/L PHMB均有不同程度的抵抗力,

  11. A combination of cis-2-decenoic acid and antibiotics eradicates pre-established catheter-associated biofilms.

    Science.gov (United States)

    Rahmani-Badi, Azadeh; Sepehr, Shayesteh; Mohammadi, Parisa; Soudi, Mohammad Reza; Babaie-Naiej, Hamta; Fallahi, Hossein

    2014-11-01

    The catheterized urinary tract provides ideal conditions for the development of biofilm populations. Catheter-associated urinary tract infections (CAUTIs) are recalcitrant to existing antimicrobial treatments; therefore, established biofilms are not eradicated completely after treatment and surviving biofilm cells will carry on the infection. Cis-2-decenoic acid (CDA), an unsaturated fatty acid, is capable of inhibiting biofilm formation by Pseudomonas aeruginosa and of inducing the dispersion of established biofilms by multiple types of micro-organisms. Here, the ability of CDA to induce dispersal in pre-established single- and dual-species biofilms formed by Escherichia coli and Klebsiella pneumoniae was measured by using both semi-batch and continuous cultures bioassays. Removal of the biofilms by combined CDA and antibiotics (ciprofloxacin or ampicillin) was evaluated using microtitre plate assays (crystal violet staining). The c.f.u. counts were determined to assess the potential of combined CDA treatments to kill and eradicate pre-established biofilms formed on catheters. The effects of combined CDA treatments on biofilm surface area and bacteria viability were evaluated using fluorescence microscopy, digital image analysis and live/dead staining. To investigate the ability of CDA to prevent biofilm formation, single and mixed cultures were grown in the presence and absence of CDA. Treatment of pre-established biofilms with only 310 nM CDA resulted in at least threefold increase in the number of planktonic cells in all cultures tested. Whilst none of the antibiotics alone exerted a significant effect on c.f.u. counts and percentage of surface area covered by the biofilms, combined CDA treatments led to at least a 78% reduction in biofilm biomass in all cases. Moreover, most of the biofilm cells remaining on the surface were killed by antibiotics. The addition of 310 nM CDA significantly prevented biofilm formation by the tested micro-organisms, even within

  12. The in vivo biofilm

    DEFF Research Database (Denmark)

    Bjarnsholt, Thomas; Alhede, Maria; Alhede, Morten;

    2013-01-01

    Bacteria can grow and proliferate either as single, independent cells or organized in aggregates commonly referred to as biofilms. When bacteria succeed in forming a biofilm within the human host, the infection often becomes very resistant to treatment and can develop into a chronic state. Biofilms...... have been studied for decades using various in vitro models, but it remains debatable whether such in vitro biofilms actually resemble in vivo biofilms in chronic infections. In vivo biofilms share several structural characteristics that differ from most in vitro biofilms. Additionally, the in vivo...... experimental time span and presence of host defenses differ from chronic infections and the chemical microenvironment of both in vivo and in vitro biofilms is seldom taken into account. In this review, we discuss why the current in vitro models of biofilms might be limited for describing infectious biofilms...

  13. Selective reactivity of monochloramine with extracellular matrix components affects the disinfection of biofilm and detached clusters.

    Science.gov (United States)

    Xue, Zheng; Lee, Woo Hyoung; Coburn, Kimberly M; Seo, Youngwoo

    2014-04-01

    The efficiency of monochloramine disinfection was dependent on the quantity and composition of extracellular polymeric substances (EPS) in biofilms, as monochloramine has a selective reactivity with proteins over polysaccharides. Biofilms with protein-based (Pseudomonas putida) and polysaccharide based EPS (Pseudomonas aeruginosa), as well as biofilms with varied amount of polysaccharide EPS (wild-type and mutant P. aeruginosa), were compared. The different reactivity of EPS components with monochloramine influenced disinfectant penetration, biofilm inactivation, as well as the viability of detached clusters. Monochloramine transport profiling measured by a chloramine-sensitive microelectrode revealed a broader diffusion boundary layer between bulk and biofilm surface in the P. putida biofilm compared to those of P. aeruginosa biofilms. The reaction with proteins in P. putida EPS multiplied both the time and the monochloramine mass required to achieve a full biofilm penetration. Cell viability in biofilms was also spatially influenced by monochloramine diffusion and reaction within biofilms, showing a lower survival in the surface section and a higher persistence in the middle section of the P. putida biofilm compared to the P. aeruginosa biofilms. While polysaccharide EPS promoted biofilm cell viability by obstructing monochloramine reactive sites on bacterial cells, protein EPS hindered monochloramine penetration by reacting with monochloramine and reduced its concentration within biofilms. Furthermore, the persistence of bacterial cells detached from biofilm (over 70% for P. putida and ∼40% for polysaccharide producing P. aeruginosa) suggested that currently recommended monochloramine residual levels may underestimate the risk of water quality deterioration caused by biofilm detachment.

  14. Membrane biofilm development improves COD removal in anaerobic membrane bioreactor wastewater treatment.

    Science.gov (United States)

    Smith, Adam L; Skerlos, Steven J; Raskin, Lutgarde

    2015-09-01

    Membrane biofilm development was evaluated to improve psychrophilic (15°C) anaerobic membrane bioreactor (AnMBR) treatment of domestic wastewater. An AnMBR containing three replicate submerged membrane housings with separate permeate collection was operated at three levels of membrane fouling by independently controlling biogas sparging for each membrane unit. High membrane fouling significantly improved permeate quality, but resulted in dissolved methane in the permeate at a concentration two to three times the equilibrium concentration predicted by Henry's law. Illumina sequencing of 16S rRNA targeting Bacteria and Archaea and reverse transcription-quantitative polymerase chain reaction targeting the methyl coenzyme-M reductase (mcrA) gene in methanogens indicated that the membrane biofilm was enriched in highly active methanogens and syntrophic bacteria. Restoring fouled membranes to a transmembrane pressure (TMP) near zero by increasing biogas sparging did not disrupt the biofilm's treatment performance, suggesting that microbes in the foulant layer were tightly adhered and did not significantly contribute to TMP. Dissolved methane oversaturation persisted without high TMP, implying that methanogenesis in the biofilm, rather than high TMP, was the primary driving force in methane oversaturation. The results describe an attractive operational strategy to improve treatment performance in low-temperature AnMBR by supporting syntrophy and methanogenesis in the membrane biofilm through controlled membrane fouling.

  15. Membrane biofilm development improves COD removal in anaerobic membrane bioreactor wastewater treatment.

    Science.gov (United States)

    Smith, Adam L; Skerlos, Steven J; Raskin, Lutgarde

    2015-09-01

    Membrane biofilm development was evaluated to improve psychrophilic (15°C) anaerobic membrane bioreactor (AnMBR) treatment of domestic wastewater. An AnMBR containing three replicate submerged membrane housings with separate permeate collection was operated at three levels of membrane fouling by independently controlling biogas sparging for each membrane unit. High membrane fouling significantly improved permeate quality, but resulted in dissolved methane in the permeate at a concentration two to three times the equilibrium concentration predicted by Henry's law. Illumina sequencing of 16S rRNA targeting Bacteria and Archaea and reverse transcription-quantitative polymerase chain reaction targeting the methyl coenzyme-M reductase (mcrA) gene in methanogens indicated that the membrane biofilm was enriched in highly active methanogens and syntrophic bacteria. Restoring fouled membranes to a transmembrane pressure (TMP) near zero by increasing biogas sparging did not disrupt the biofilm's treatment performance, suggesting that microbes in the foulant layer were tightly adhered and did not significantly contribute to TMP. Dissolved methane oversaturation persisted without high TMP, implying that methanogenesis in the biofilm, rather than high TMP, was the primary driving force in methane oversaturation. The results describe an attractive operational strategy to improve treatment performance in low-temperature AnMBR by supporting syntrophy and methanogenesis in the membrane biofilm through controlled membrane fouling. PMID:26238293

  16. Biofilms and the survival of opportunistic pathogens in recycled water

    Science.gov (United States)

    Boyle, M.; Ford, T.; Maki, J. S.; Mitchell, R.

    1991-01-01

    Microorganisms are likely to develop an organic film on pipes, water reservoirs and filters used for waste water reclamation during extended missions in space. These biofilms can serve to protect and concentrate potentially pathogenic microorganisms. Our investigation has emphasized the survival strategy of opportunistic pathogenic bacteria in distilled water. Pseudomonas aeruginosa and Staphylococcus aureus were used as test organisms. Cultures were incubated at 10 degrees, 25 degrees, and 37 degrees C. No viable Staphylococcus cells were detected after the first week of incubation. P. aeruginosa, however, survived in distilled water up to 5 months at all three temperatures tested. The starved cells were able to form a biofilm layer on stainless steel. The cells exhibited a negative surface charge. The charge may be involved in the adhesion of this bacterium to metal substrata. We are currently investigating the importance of adhesion in the survival of this and other potential human pathogens found in water recycling systems.

  17. Anti-biofilm efficacy of low temperature processed AgCl–TiO2 nanocomposite coating

    International Nuclear Information System (INIS)

    Biofilms are a major concern in the medical settings and food industries due to their high tolerance to antibiotics, biocides and mechanical stress. Currently, the development of novel methods to control biofilm formation is being actively pursued. In the present study, sol–gel coatings of AgCl–TiO2 nanoparticles are presented as potential anti-biofilm agents, wherein TiO2 acts as a good supporting matrix to prevent aggregation of silver and facilitates its controlled release. Low-temperature processed AgCl–TiO2 nanocomposite coatings inhibit biofilm formation by Escherichia coli, Staphylococcus epidermidis and Pseudomonas aeruginosa. In vitro biofilm assay experiments demonstrated that AgCl–TiO2 nanocomposite coated surfaces, inhibited the development of biofilms over a period of 10 days as confirmed by scanning electron microscopy. The silver release kinetics exhibited an initial high release, followed by a slow and sustained release. The anti-biofilm efficacy of the coatings could be attributed to the release of silver, which prevents the initial bacterial adhesion required for biofilm formation. - Highlights: • Potential of AgCl–TiO2 nanocomposite coating to inhibit biofilm formation is exhibited. • Initial rapid release followed by later slow and sustained release of silver obtained. • TiO2 being porous and inorganic in nature acts as a good supporting matrix

  18. Studies of protein adsorption on implant materials in relation to biofilm formation I. Activity of Pseudomonas aeruginosa on Polypropylene and High density Polyethylene in presence of serum albumin

    OpenAIRE

    Sinha, S Dutta; Chatterjee, Susmita; Maity, P. K.; Tarafdar, S; Moulik, S. P.

    2014-01-01

    The surface of biomaterials used as implants are highly susceptible to bacterial colonization and subsequent infection. The amount of protein adsorption on biomaterials, among other factors, can affect the nature and quality of biofilms formed on them. The variation in the adsorption time of the protein on the biomaterial surface produces a phenotypic change in the bacteria by alteration of the production of EPS (exoplysaccharide) matrix. Knowledge of the effects of protein adsorption on impl...

  19. Residual structure of Streptococcus mutans biofilm following complete disinfection favors secondary bacterial adhesion and biofilm re-development.

    Directory of Open Access Journals (Sweden)

    Tatsuya Ohsumi

    Full Text Available Chemical disinfection of oral biofilms often leaves biofilm structures intact. This study aimed to examine whether the residual structure promotes secondary bacterial adhesion. Streptococcus mutans biofilms generated on resin-composite disks in a rotating disc reactor were disinfected completely with 70% isopropyl alcohol, and were again cultured in the same reactor after resupplying with the same bacterial solution. Specimens were subjected to fluorescence confocal laser scanning microscopy, viable cell counts and PCR-Invader assay in order to observe and quantify secondarily adhered cells. Fluorescence microscopic analysis, particularly after longitudinal cryosectioning, demonstrated stratified patterns of viable cells on the disinfected biofilm structure. Viable cell counts of test specimens were significantly higher than those of controls, and increased according to the amount of residual structure and culture period. Linear regression analysis exhibited a high correlation between viable and total cell counts. It was concluded that disinfected biofilm structures favored secondary bacterial adhesion.

  20. Efficient surface functionalization of wound dressings by a phytoactive nanocoating refractory to Candida albicans biofilm development.

    Science.gov (United States)

    Anghel, Ion; Holban, Alina Maria; Andronescu, Ecaterina; Grumezescu, Alexandru Mihai; Chifiriuc, Mariana Carmen

    2013-12-01

    The present study reports the fabrication and characterization of a novel nanostructured phyto-bioactive coated rayon/polyester wound dressing (WD) surface refractory to Candida albicans adhesion, colonization and biofilm formation, based on functionalized magnetite nanoparticles and Anethum graveolens (AG) and Salvia officinalis (SO) essential oils (EOs). TEM, XRD, TGA, FT-IR were used for the characterization of the fabricated nanobiocoated WDs. Using magnetic nanoparticles for the stabilization and controlled release of EOs, the activity of natural volatile compounds is significantly enhanced and their effect is stable during time. For this reason the nanobiocoated surfaces exhibited a longer term anti-biofilm effect, maintained for at least 72 h. Besides their excellent anti- adherence properties, the proposed solutions exhibit the advantage of using vegetal natural compounds, which are less toxic and easily biodegradable in comparison with synthetic antifungal drugs, representing thus promising approaches for the development of successful ways to control and prevent fungal biofilms associated infections. PMID:24706124

  1. Development of tolerance against toxic Microcystis aeruginosa in three cladocerans and the ecological implications

    Energy Technology Data Exchange (ETDEWEB)

    Guo Nichun [Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072 (China); Xie Ping [Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Donghu South Road 7, Wuhan 430072 (China)]. E-mail: xieping@ihb.ac.cn

    2006-10-15

    This is the first experimental study to compare difference in the development of tolerance against toxic Microcystis among multi-species of cladocerans (Daphnia, Moina and Ceriodaphnia) pre-exposed to two M. aeruginosa PCC7820 strains (MC-containing and MC-free). Zooplankton were divided into S population (fed Scenedesmus), M-F population (fed Scenedesmus + MC-free Microcystis), and M-C population (fed Scenedesmus + MC-containing Microcystis). M-F and M-C populations were pre-exposed to Microcystis strains for 4 weeks, and their newborns were collected for experiments. A pre-exposure to MC-containing or MC-free Microcystis increased tolerance against toxic Microcystis. The marked increases in survival rate and median lethal time (LT{sub 5}, 100-194% increase) in the M-C population of Ceriodaphnia suggest that small-sized cladocerans may develop stronger tolerance against Microcystis than large-sized ones when both groups are exposed to toxic Microcystis. This may explain why dominant Daphnia is usually replaced by small-sized cladocerans when cyanobacteria bloomed in summer in eutrophic lakes. - Three cladocerans pre-exposed to Microcystis developed different tolerance against toxic Microcystis, explaining zooplankton succession with blooms.

  2. Chemically Specific Cellular Imaging of Biofilm Formation

    Energy Technology Data Exchange (ETDEWEB)

    Herberg, J L; Schaldach, C; Horn, J; Gjersing, E; Maxwell, R

    2006-02-09

    complicated organism, we needed to first turn our attention to a well understood organism. Pseudomonas aeruginosa (PA) is a well-studied organism and will be used to compare our results with others. Then, we will turn our attention to TD. It is expected that the research performed will provide key data to validate biochemical studies of TD and result in high profile publications in leading journals. For this project, our ultimate goal was to combine both Magnetic Resonance Imaging (MRI) and Nuclear Magnetic Resonance (NMR) experimental analysis with computer simulations to provide unique 3D molecular structural, dynamics, and functional information on the order of microns for this DOE mission relevant microorganism, T. denitrificans. For FY05, our goals were to: (1) Determine proper media for optimal growth of PA; growth rate measurements in that media and characterization of metabolite signatures during growth via {sup 1}H and {sup 13}C NMR, (2) Determine and build mineral, metal, and implant material surfaces to support growth of PA, (3) Implementing new MRI sequences to image biofilms more efficiently and increase resolution with new hardware design, (4) Develop further diffusion and flow MRI measurements of biofilms and biofilm formation with different MRI pulse sequences and different hardware design, and (5) Develop a zero dimension model of the rate of growth and the metabolite profiles of PA. Our major accomplishments are discussed in the following text. However, the bulk of this work is described in the attached manuscript entitled, ''NMR Metabolomics of Planktonic and Biofilm Modes of Growth in Pseudomonas aeruginosa''. This paper will be submitted to the Journal of Bacteriology in coming weeks. In addition, this one-year effort has lead to our incorporation into the Enhanced Surveillance Campaign during FY05 for some proof-of-principle MRI measurements on polymers. We are currently using similar methods to evaluate these polymers. In addition

  3. Biofilm development by potentially pathogenic non-pigmented rapidly growing mycobacteria

    Directory of Open Access Journals (Sweden)

    Fernández-Roblas Ricardo

    2008-10-01

    Full Text Available Abstract Background A study to evaluate the biofilm-development ability in three different media (Middlebrook 7H9, sterile tap water and PBS-5% glucose was performed with 19 collection strains from 15 different species on non-pigmented rapidly growing mycobacteria (NPRGM. A microtiter plate assay was developed to evaluate the percentage of covered surface of the microtiter plate wells in different days from day 1 to day 69. Results All strains were able to develop biofilm in all the tested media. Middlebrook 7H9 showed the fastest growth, followed by sterile tap water and PBS-5% glucose. A sigmoid growth curve was detected in all the strains both in Middlebrook 7H9 and in sterile tap water. A difference could be detected for Mycobacterium abscessus in tap water, where it showed faster growth than all the other strains. Conclusion Biofilm development seems to be a property of all the species of NPRGM and it depends on the nutrients present in the medium. The microtiter plate assay described here is a useful tool to evaluate differences in biofilm development among the different species of rapidly growing mycobacteria.

  4. The Pseudomonas aeruginosa chemotaxis methyltransferase CheR1 impacts on bacterial surface sampling.

    Directory of Open Access Journals (Sweden)

    Juliane Schmidt

    Full Text Available The characterization of factors contributing to the formation and development of surface-associated bacterial communities known as biofilms has become an area of intense interest since biofilms have a major impact on human health, the environment and industry. Various studies have demonstrated that motility, including swimming, swarming and twitching, seems to play an important role in the surface colonization and establishment of structured biofilms. Thereby, the impact of chemotaxis on biofilm formation has been less intensively studied. Pseudomonas aeruginosa has a very complex chemosensory system with two Che systems implicated in flagella-mediated motility. In this study, we demonstrate that the chemotaxis protein CheR1 is a methyltransferase that binds S-adenosylmethionine and transfers a methyl group from this methyl donor to the chemoreceptor PctA, an activity which can be stimulated by the attractant serine but not by glutamine. We furthermore demonstrate that CheR1 does not only play a role in flagella-mediated chemotaxis but that its activity is essential for the formation and maintenance of bacterial biofilm structures. We propose a model in which motility and chemotaxis impact on initial attachment processes, dispersion and reattachment and increase the efficiency and frequency of surface sampling in P. aeruginosa.

  5. The effect of biyuanshu oral liquid on the formation of pseudomonas aeruginosa biofilms in vitro%鼻渊舒口服液对铜绿假单胞菌生物膜体外形成的抑制作用

    Institute of Scientific and Technical Information of China (English)

    刘向; 陈海红; 汪审清

    2012-01-01

    目的:观察鼻渊舒口服液对铜绿假单胞菌生物膜体外形成的抑制作用.方法:平板法建立铜绿假单胞菌细菌生物膜体外模型,银染法及扫描电子显微镜鉴定.不同浓度的鼻渊舒口服液及红霉素作用于成熟前阶段的及已形成的铜绿假单胞菌生物膜,银染法及连续稀释法菌落计数观察其对生物膜的抑制作用.结果:扫描电镜观察铜绿假单胞菌在硅胶片上7d形成生物膜,与银染结果一致.红霉素及鼻渊舒体外能抑制铜绿假单胞菌生物膜的形成,且抑制作用随药物浓度的增加而加强,但对已形成的细菌生物膜清除作用不明显.连续稀释法菌落计数结果表明,不同浓度红霉素及鼻渊舒能抑制成熟前的生物膜膜内细菌生长,与对照组比较差异有统计学意义(P<0.05).结论:鼻渊舒口服液及红霉素体外对铜绿假单胞菌生物膜的形成有抑制作用.%Objective:To observe the effect of biyuanshu oral liquid on the formation of pseudomonas aeruginosa biofilms in vitro. Method: Pseudomonas aeruginosa biofilm was established by plate culture and detected by Scanning electron microscopy and AgNO3 stainning . After treated with different dosages of biyuanshu oral liquid and erythromycin, the pseudomonas aeruginosa biofilms were observed by AgNO3 stainning and the number of viable bacteria were measured by serial dilution. Result; The pseudomonas aeruginosa biofilms could be detected by SEM at the seventh culture day and it was consistent with the detetion of AgNO3 stainning. The biyuanshu oral liquid and erythromycin have the effect on inhibiting the formation of pseudomonas aeruginosa biofilms. But with the already formed pseudomonas aeruginosa biofilms the inhibition was not significant. The serial dilution method showed that the viable counts of bacteria of biyuanshu oral liquid and erythromycin treated groups were significantly lower than those untreated groups(P<0. 05). Conclusion

  6. O-mannosylation in Candida albicans enables development of interkingdom biofilm communities.

    Science.gov (United States)

    Dutton, Lindsay C; Nobbs, Angela H; Jepson, Katy; Jepson, Mark A; Vickerman, M Margaret; Aqeel Alawfi, Sami; Munro, Carol A; Lamont, Richard J; Jenkinson, Howard F

    2014-04-15

    Candida albicans is a fungus that colonizes oral cavity surfaces, the gut, and the genital tract. Streptococcus gordonii is a ubiquitous oral bacterium that has been shown to form biofilm communities with C. albicans. Formation of dual-species S. gordonii-C. albicans biofilm communities involves interaction of the S. gordonii SspB protein with the Als3 protein on the hyphal filament surface of C. albicans. Mannoproteins comprise a major component of the C. albicans cell wall, and in this study we sought to determine if mannosylation in cell wall biogenesis of C. albicans was necessary for hyphal adhesin functions associated with interkingdom biofilm development. A C. albicans mnt1Δ mnt2Δ mutant, with deleted α-1,2-mannosyltransferase genes and thus defective in O-mannosylation, was abrogated in biofilm formation under various growth conditions and produced hyphal filaments that were not recognized by S. gordonii. Cell wall proteomes of hypha-forming mnt1Δ mnt2Δ mutant cells showed growth medium-dependent alterations, compared to findings for the wild type, in a range of protein components, including Als1, Als3, Rbt1, Scw1, and Sap9. Hyphal filaments formed by mnt1Δ mnt2Δ mutant cells, unlike wild-type hyphae, did not interact with C. albicans Als3 or Hwp1 partner cell wall proteins or with S. gordonii SspB partner adhesin, suggesting defective functionality of adhesins on the mnt1Δ mnt2Δ mutant. These observations imply that early stage O-mannosylation is critical for activation of hyphal adhesin functions required for biofilm formation, recognition by bacteria such as S. gordonii, and microbial community development. IMPORTANCE In the human mouth, microorganisms form communities known as biofilms that adhere to the surfaces present. Candida albicans is a fungus that is often found within these biofilms. We have focused on the mechanisms by which C. albicans becomes incorporated into communities containing bacteria, such as Streptococcus. We find that

  7. Pf Filamentous Phage Requires UvrD for Replication in Pseudomonas aeruginosa

    OpenAIRE

    Martínez, Eriel; Campos-Gómez, Javier

    2016-01-01

    ABSTRACT Pf is a lysogenic filamentous phage that promotes biofilm development in Pseudomonas aeruginosa. Pf replicates by a rolling circle replication system which depends on a phage-encoded initiator protein and host factors usually involved in chromosome replication. Rep, an accessory replicative DNA helicase, is crucial for replication of filamentous phages in Escherichia coli. In contrast, here we show that, instead of depending on Rep, Pf replication depends on UvrD, an accessory helica...

  8. Unravelling the interactions among microbial populations found in activated sludge during biofilm formation.

    Science.gov (United States)

    Liébana, Raquel; Arregui, Lucía; Santos, Antonio; Murciano, Antonio; Marquina, Domingo; Serrano, Susana

    2016-09-01

    Microorganisms colonize surfaces and develop biofilms through interactions that are not yet thoroughly understood, with important implications for water and wastewater systems. This study investigated the interactions between N-acyl homoserine lactone (AHL)-producing bacteria, yeasts and protists, and their contribution to biofilm development. Sixty-one bacterial strains were isolated from activated sludge and screened for AHL production, with Aeromonas sp. found to be the dominant AHL producer. Shewanella xiamenensis, Aeromonas allosaccharophila, Acinetobacter junii and Pseudomonas aeruginosa recorded the highest adherence capabilities, with S. xiamenensis being the most effective in surface colonization. Additionally, highly significant interactions (i.e. synergic or antagonistic) were described for dual and multistrain mixtures of bacterial strains (P. aeruginosa, S. xiamenensis, A. junii and Pseudomonas stutzeri), as well as for strongly adherent bacteria co-cultured with yeasts. In this last case, the adhered biomass in co-cultures was lower than the monospecific biofilms of bacteria and yeast, with biofilm observations by microscopy suggesting that bacteria had an antagonist effect on the whole or part of the yeast population. Finally, protist predation by Euplotes sp. and Paramecium sp. on Aeromonas hydrophila biofilms not only failed to reduce biofilm formation, but also recorded unexpected results leading to the development of aggregates of high density and complexity. PMID:27306553

  9. Development of equipment for in situ studies of biofilm in hot water systems

    DEFF Research Database (Denmark)

    Bagh, Lene Karen; Albrechtsen, Hans-Jørgen; Arvin, Erik;

    1999-01-01

    New equipment was developed for in situ studies of biofilms in hot water tanks and hot water pipes under normal operation and pressure. Sampling ports were installed in the wall of a hot water tank and through these operating shafts were inserted with a test plug in the end. The surface of the te...

  10. Synergistic antibacterial efficacy of early combination treatment with tobramycin and quorum-sensing inhibitors against Pseudomonas aeruginosa in an intraperitoneal foreign-body infection mouse model

    DEFF Research Database (Denmark)

    Christensen, Louise; van Gennip, Maria; Jakobsen, Tim H;

    2012-01-01

    Quorum sensing (QS)-deficient Pseudomonas aeruginosa biofilms formed in vitro are more susceptible to tobramycin than QS-proficient P. aeruginosa biofilms, and combination treatment with a QS inhibitor (QSI) and tobramycin shows synergistic effects on the killing of in vitro biofilms. We extended...

  11. Recent advances in natural product-based anti-biofilm approaches to control infections.

    Science.gov (United States)

    Buommino, Elisabetta; Scognamiglio, Monica; Donnarumma, Giovanna; Fiorentino, Antonio; D'Abrosca, Brigida

    2014-01-01

    Bacterial biofilms are highly organized surface-associated communities of bacteria encased within an extracellular matrix produced by themselves, capable of growing in connection with different biological or inert surfaces such as artificial joints or catheters. Biofilms are commonly associated with many health problems, such as endocarditis, otitis media, periodontitis, prostatitis, and urinary tract infections. Several bacteria, such as Escherichia coli, Staphylococcus aureus, Streptococcus mutans, and Pseudomonas aeruginosa, or fungal pathogen as Candida albicans, can form biofilms in the body tissues, leading to different infections. The inherently defensive character of the biofilm is demonstrated by enhanced persistence of bacteria grown in the sessile mode respect to bacteria grown planktonically. This makes most biofilm- associated infections difficult to eradicate, thus contributing to disease chronicity. Since natural products provide a diverse array of chemical structures and possess a wide variety of biological properties, natural resources are worldwide exploited in the search of new pharmaceuticals. In this context bioactive secondary metabolites from natural sources, useful for the new antimicrobial and anti-biofilm drugs, are of interest. In this review, the role of small molecules from plants and marine organisms in inhibiting and/or dispersing bacterial biofilms is discussed, as well as the approaches that have been applied to the discovery of lead small molecules that mediate biofilm development. Molecules inhibiting the formation of biofilm may have therapeutic potential. Several candidates, as halogenated furanones, 2-amminoimidazole alkaloids and flavonoids have been already isolated and characterized from many plants and from marine organisms. PMID:25553429

  12. A study on the long term effect of biofilm produced by biosurfactant producing microbe on medical implant

    Energy Technology Data Exchange (ETDEWEB)

    Prabhawathi, Veluchamy; Thirunavukarasu, Kathirvel; Doble, Mukesh, E-mail: mukeshd@iitm.ac.in

    2014-07-01

    Low density polyethylene (LDPE) is used as a long term medical implant. Biofilm forming ability of two pathogenic microorganisms, namely, Bacillus subtilis (B. subtilis) and Pseudomonas aeruginosa (P. aeruginosa) on this polymer and the differences in the properties of these matrices are studied for a year. There are very few long term studies on biofilms formed on medical implants. After three months, colonies of B. subtilis were two times higher when compared to those of P. aeruginosa. And at the end of one year, they were two orders of magnitude higher than the later. The exopolysaccharide (EPS) and biosurfactant recovered from the polymer surface after three months were 21 and 10.4 μg/cm{sup 2} for B. subtilis and 13 and 8.6 μg/cm{sup 2} for P. aeruginosa. After one year, these were higher in B. subtilis (50 and 37.1 μg/cm{sup 2}, respectively) than in P. aeruginosa (34.1 and 31.8 μg/cm{sup 2}, respectively). B. subtilis consisted of protein controlling the community and sporulation development, while P. aeruginosa had either housekeeping or metabolic proteins. The EPS in the respective biofilm consisted of biosurfactants produced by B. subtilis (surfactins, m/z = 1029 to 1134) and P. aeruginosa (rhamnolipids, m/z = 568 to 705). Thermogravimetric analysis indicated that LDPE incubated with these organisms underwent a weight loss of 4 and 3% after three months and 11.1 and 9.2% after one year, respectively at 435 °C. Laccase and manganese peroxidase were detected in the biofilm which could be involved in the degradation. The biosurfactant of these microorganisms altered the hydrophobicity of the surface, favoring their attachment and proliferation. - Highlights: • Early P.aeru biofilm had genes needed for motility but later for housekeeping. • Early B. sub biofilm had genes needed for its formation but later for maturity. • Cells and matrix components in B. sub biofilm are higher than in P.aeru. • Compositions of these two biofilms are different.

  13. A study on the long term effect of biofilm produced by biosurfactant producing microbe on medical implant

    International Nuclear Information System (INIS)

    Low density polyethylene (LDPE) is used as a long term medical implant. Biofilm forming ability of two pathogenic microorganisms, namely, Bacillus subtilis (B. subtilis) and Pseudomonas aeruginosa (P. aeruginosa) on this polymer and the differences in the properties of these matrices are studied for a year. There are very few long term studies on biofilms formed on medical implants. After three months, colonies of B. subtilis were two times higher when compared to those of P. aeruginosa. And at the end of one year, they were two orders of magnitude higher than the later. The exopolysaccharide (EPS) and biosurfactant recovered from the polymer surface after three months were 21 and 10.4 μg/cm2 for B. subtilis and 13 and 8.6 μg/cm2 for P. aeruginosa. After one year, these were higher in B. subtilis (50 and 37.1 μg/cm2, respectively) than in P. aeruginosa (34.1 and 31.8 μg/cm2, respectively). B. subtilis consisted of protein controlling the community and sporulation development, while P. aeruginosa had either housekeeping or metabolic proteins. The EPS in the respective biofilm consisted of biosurfactants produced by B. subtilis (surfactins, m/z = 1029 to 1134) and P. aeruginosa (rhamnolipids, m/z = 568 to 705). Thermogravimetric analysis indicated that LDPE incubated with these organisms underwent a weight loss of 4 and 3% after three months and 11.1 and 9.2% after one year, respectively at 435 °C. Laccase and manganese peroxidase were detected in the biofilm which could be involved in the degradation. The biosurfactant of these microorganisms altered the hydrophobicity of the surface, favoring their attachment and proliferation. - Highlights: • Early P.aeru biofilm had genes needed for motility but later for housekeeping. • Early B. sub biofilm had genes needed for its formation but later for maturity. • Cells and matrix components in B. sub biofilm are higher than in P.aeru. • Compositions of these two biofilms are different. • So they need diverse

  14. Structure Guided Development of Novel Thymidine Mimetics targeting Pseudomonas aeruginosa Thymidylate Kinase: from Hit to Lead Generation

    OpenAIRE

    Choi, Jun Yong; Plummer, Mark S.; Starr, Jeremy; Desbonnet, Charlene R.; Soutter, Holly; Chang, Jeanne; Miller, J. Richard; Dillman, Keith; Miller, Alita A.; Roush, William R.

    2012-01-01

    Thymidylate kinase (TMK) is a potential chemotherapeutic target because it is directly involved in the synthesis of an essential component, thymidine triphosphate, in DNA replication. All reported TMK inhibitors are thymidine analogs, which might retard their development as potent therapeutics due to cell permeability and off-target activity against human TMK. A small molecule hit (1, IC50 = 58 μM), which has reasonable inhibition potency against Pseudomonas aeruginosa TMK (PaTMK), was identi...

  15. Development and evaluation of a new PCR assay for detection of Pseudomonas aeruginosa D genotype.

    Science.gov (United States)

    Lødeng, A G G; Ahlén, C; Lysvand, H; Mandal, L H; Iversen, O J

    2006-08-01

    This report describes a new PCR-based assay for the detection of Pseudomonas aeruginosa genotype D in occupational saturation diving systems in the North Sea. This genotype has persisted in these systems for 11 years (1993-2003) and represents 18% of isolates from infections analysed during this period. The new PCR assay was based on sequences obtained after randomly amplified polymorphic DNA (RAPD)-PCR analysis of a group of isolates related to diving that had been identified previously by pulsed-field gel electrophoresis (PFGE). The primer set for the D genotype targets a gene that codes for a hypothetical class 4 protein in the P. aeruginosa PAO1 genome. A primer set able to detect P. aeruginosa at the species level was also designed, based on the 23S-5S rDNA spacer region. The two assays produced 382-bp and 192-bp amplicons, respectively. The PCR assay was evaluated by analysing 100 P. aeruginosa isolates related to diving, representing 28 PFGE genotypes, and 38 clinical and community P. aeruginosa isolates and strains from other species. The assay identified all of the genotype D isolates tested. Two additional diving-relevant genotypes (TP2 and TP27) were also identified, as well as three isolates of non-diving origin. It was concluded that the new PCR assay is a useful tool for early detection and prevention of infections with the D genotype. PMID:16842571

  16. Biofilm attachment reduction on bioinspired, dynamic, micro-wrinkling surfaces

    Science.gov (United States)

    Epstein, Alexander K.; Hong, Donggyoon; Kim, Philseok; Aizenberg, Joanna

    2013-09-01

    Most bacteria live in multicellular communities known as biofilms that are adherent to surfaces in our environment, from sea beds to plumbing systems. Biofilms are often associated with clinical infections, nosocomial deaths and industrial damage such as bio-corrosion and clogging of pipes. As mature biofilms are extremely challenging to eradicate once formed, prevention is advantageous over treatment. However, conventional surface chemistry strategies are either generally transient, due to chemical masking, or toxic, as in the case of leaching marine antifouling paints. Inspired by the nonfouling skins of echinoderms and other marine organisms, which possess highly dynamic surface structures that mechanically frustrate bio-attachment, we have developed and tested a synthetic platform based on both uniaxial mechanical strain and buckling-induced elastomer microtopography. Bacterial biofilm attachment to the dynamic substrates was studied under an array of parameters, including strain amplitude and timescale (1-100 mm s-1), surface wrinkle length scale, bacterial species and cell geometry, and growth time. The optimal conditions for achieving up to ˜ 80% Pseudomonas aeruginosa biofilm reduction after 24 h growth and ˜ 60% reduction after 48 h were combinatorially elucidated to occur at 20% strain amplitude, a timescale of less than ˜ 5 min between strain cycles and a topography length scale corresponding to the cell dimension of ˜ 1 μm. Divergent effects on the attachment of P. aeruginosa, Staphylococcus aureus and Escherichia coli biofilms showed that the dynamic substrate also provides a new means of species-specific biofilm inhibition, or inversely, selection for a desired type of bacteria, without reliance on any toxic or transient surface chemical treatments.

  17. 铜绿假单胞菌生物膜形成机制及耐药相关性%A study on the mechanism of biofilm formation of Pseudomonas aeruginosa and its relationship with drug resistance

    Institute of Scientific and Technical Information of China (English)

    沈健; 冯晨; 林允照; 郑文华; 顾华; 蒋锦琴; 冯磊

    2015-01-01

    目的:探究铜绿假单胞菌在生物膜状态与浮游状态时对常见抗菌药物的耐药性差异,为临床合理用药提供依据。方法在体外培养基中对铜绿假单胞菌进行孵育处理,并分为浮游液对照培养组(A组)、放置生物膜培养后的培养液组(B组)和生物膜培养硅胶片粘附组(C组)。取浮游培养(培养液)、生物膜培养(培养液)以及生物膜培养(硅胶片粘附)铜绿假单胞菌进行银染色、胞外糖染色并且扫描电镜鉴定。向3组培养基中加入不同抗菌药物,利用K-B方法观察细菌耐药性情况。结果 B组与A组药物耐药率和最低抑菌浓度(MIC)值差异均无统计学意义(p>0.05);C组菌株与A组比较,对美洛培南(50.00%vs 26.47%)、头孢吡肟(53.52%vs 25.00%)、头孢他啶(60.94% vs 20.59%)、头孢曲松(70.31% vs 61.76%)、左氧氟沙星(39.84%vs 2.94%)及哌拉西林(48.05%vs 8.82%)的耐药性差异均有统计学意义( p0. 01). Compared with group A, group C showed that their drug resistance on meropenem,cefepime,ceftazidime,ceftriaxone,amoxicillin and levofloxacin were much higher(p<0. 01). The minimal biofilm eradication concentration(MBEC)of group C was about 100 times than that of group A and group B. Conclusion The assay of establishment of pseudomonas aeruginosa biofilm and the methods observed by silver stainingin vitro is convenient and feasible. At the same time,pseudomonas aeruginosa in biofilm exhibits far more resistance to antimicrobial than its planctonic counterparts does.

  18. Antibacterial activity of Espand (Peganum harmala alcoholic extracts against six pathogenic bacteria in planktonic and biofilm forms

    Directory of Open Access Journals (Sweden)

    Zinab Mohsenipour

    2016-03-01

    Full Text Available Introduction: Microbial biofilms have attracted interest in recent years because they have become the most important cause of nosocomial infections. This study was aimed to examine the antibacterial activities of Peganum harmala extracts on the development of microbial biofilms and planktonic form of six pathogenic bacteria which include Staphylococcus aureus, Bacillus cereus, Streptococcus pneumoniae, Pseudomonas aeruginosa, Escherichia coli and Klebsiella pneumoniae. Materials and methods: Antimicrobial activities of the crude extracts against the planktonic form of bacteria were evaluated by using disc diffusion method, minimum inhibitory concentration (MIC and the minimum bactericidal concentration (MBC values were determined by a macrobroth dilution technique. Anti- biofilm effects of the extracts were assessed by microtiter plate method. Results: According to the results, P. harmala extracts could inhibit test bacteria in planktonic form. To inhibit biofilm formation, biofilm metabolic activity and eradication of established biofilms, efficiency of the extracts depended on concentration. The highest inhibitory effects of P. harmala extracts were observed on biofilm formation of S. aureus (90.28% also, the greatest demolish were observed on S. pneumonia biofilm (77.76%. These extracts cause dramatically decrease the metabolic activity of bacteria in biofilm structures, in this case the decrement of B. cereus were highest (69.98% compared to other tested bacteria. Discussion and conclusion: Therefore, it can be suggested that P.harmala extracts applied as antimicrobial agents against testing bacteria particularly in biofilm forms. 

  19. Magnetite nanoparticles for functionalized textile dressing to prevent fungal biofilms development

    Science.gov (United States)

    Anghel, Ion; Grumezescu, Alexandru Mihai; Andronescu, Ecaterina; Anghel, Alina Georgiana; Ficai, Anton; Saviuc, Crina; Grumezescu, Valentina; Vasile, Bogdan Stefan; Chifiriuc, Mariana Carmen

    2012-09-01

    The purpose of this work was to investigate the potential of functionalized magnetite nanoparticles to improve the antibiofilm properties of textile dressing, tested in vitro against monospecific Candida albicans biofilms. Functionalized magnetite (Fe3O4/C18), with an average size not exceeding 20 nm, has been synthesized by precipitation of ferric and ferrous salts in aqueous solution of oleic acid (C18) and NaOH. Transmission electron microscopy, X-ray diffraction analysis, and differential thermal analysis coupled with thermo gravimetric analysis were used as characterization methods for the synthesized Fe3O4/C18. Scanning electron microscopy was used to study the architecture of the fungal biofilm developed on the functionalized textile dressing samples and culture-based methods for the quantitative assay of the biofilm-embedded yeast cells. The optimized textile dressing samples proved to be more resistant to C. albicans colonization, as compared to the uncoated ones; these functionalized surfaces-based approaches are very useful in the prevention of wound microbial contamination and subsequent biofilm development on viable tissues or implanted devices.

  20. Biofilm and siderophore effects on secondary waste water disinfection.

    Science.gov (United States)

    Saidi, N; Kouki, S; Mehri, I; Ben Rejeb, A; Belila, A; Hassen, A; Ouzari, H

    2011-10-01

    The efficiency of ultraviolet (UV) light disinfection of wastewater effluent using a large-scale pilot system was studied. The relationship between biofilm and siderophore production and UV doses received by Pseudomonas aeruginosa strain ATCC 15442 was determined. UV decreased pyoverdine production and enhanced biofilm production. Consequently external factors conditioned by both pyoverdine and biofilm may affect the UV effect on bacterial disinfection.

  1. Use of a high-throughput in vitro microfluidic system to develop oral multi-species biofilms.

    Science.gov (United States)

    Samarian, Derek S; Jakubovics, Nicholas S; Luo, Ting L; Rickard, Alexander H

    2014-12-01

    There are few high-throughput in vitro systems which facilitate the development of multi-species biofilms that contain numerous species commonly detected within in vivo oral biofilms. Furthermore, a system that uses natural human saliva as the nutrient source, instead of artificial media, is particularly desirable in order to support the expression of cellular and biofilm-specific properties that mimic the in vivo communities. We describe a method for the development of multi-species oral biofilms that are comparable, with respect to species composition, to supragingival dental plaque, under conditions similar to the human oral cavity. Specifically, this methods article will describe how a commercially available microfluidic system can be adapted to facilitate the development of multi-species oral biofilms derived from and grown within pooled saliva. Furthermore, a description of how the system can be used in conjunction with a confocal laser scanning microscope to generate 3-D biofilm reconstructions for architectural and viability analyses will be presented. Given the broad diversity of microorganisms that grow within biofilms in the microfluidic system (including Streptococcus, Neisseria, Veillonella, Gemella, and Porphyromonas), a protocol will also be presented describing how to harvest the biofilm cells for further subculture or DNA extraction and analysis. The limits of both the microfluidic biofilm system and the current state-of-the-art data analyses will be addressed. Ultimately, it is envisioned that this article will provide a baseline technique that will improve the study of oral biofilms and aid in the development of additional technologies that can be integrated with the microfluidic platform.

  2. Multispecies Biofilm Development on Space Station Heat Exhanger Core Material

    Science.gov (United States)

    Pyle, B. H.; Roth, S. R.; Vega, L. M.; Pickering, K. D.; Alvarez, Pedro J. J.; Roman, M. C.

    2007-01-01

    Investigations of microbial contamination of the cooling system aboard the International Space Station (ISS) suggested that there may be a relationship between heat exchanger (HX) materials and the degree of microbial colonization and biofilm formation. Experiments were undertaken to test the hypothesis that biofilm formation is influenced by the type and previous exposure of HX surfaces. Acidovorax delafieldii, Comamonas acidovorans, Hydrogenophaga pseudoflava, Pseudomonas stutzeri, Sphingomonas paucimobilis, and Stenotrophomonas maltophilia, originally isolated from ISS cooling system fluid, were cultured on R2A agar and suspended separately in fresh filter-sterilized ISS cooling fluid, pH 8.3. Initial numbers in each suspension ranged from 10(exp 6)-10(exp 7) CFU/ml, and a mixture contained greater than 10(exp 7) CFU/ml. Coupons of ISS HX material, previously used on orbit (HXOO) or unused (HXUU), polycarbonate (PC) and 316L polished stainless steel (SS) were autoclaved, covered with multispecies suspension in sterile tubes and incubated in the dark at ambient (22-25 C). Original HX material contained greater than 90% Ni, 4.5% Si, and 3.2% B, with a borate buffer. For approximately 10 weeks, samples of fluid were plated on R2A agar, and surface colonization assessed by SYBR green or BacLight staining and microscopy. Suspension counts for the PC and SC samples remained steady at around 10(exp 7) CFU/ml. HXUU counts declined about 1 log in 21 d then remained steady, and HXOO counts declined 2 logs in 28 d, fluctuated and stabilized about 10(exp 3) CFU/ml from 47-54 d. Predominantly yellow S. paucimobilis predominated on plates from HXOO samples up to 26 d, then white or translucent colonies of other species appeared. All colony types were seen on plates from other samples throughout the trial. Epifluorescence microscopy indicated microbial growth on all surfaces by 21 d, followed by variable colonization. After 54 d, all but the HXOO samples had well

  3. Effect of Antibiotics and Antibiofilm Agents in the Ultrastructure and Development of Biofilms Developed by Nonpigmented Rapidly Growing Mycobacteria.

    Science.gov (United States)

    Muñoz-Egea, María-Carmen; García-Pedrazuela, María; Mahillo-Fernandez, Ignacio; Esteban, Jaime

    2016-01-01

    We analyze the effect of amikacin, ciprofloxacin, and clarithromycin, alone and associated with N-acetylcysteine (NAC) and Tween 80, at different times and concentrations in nonpigmented rapidly growing mycobacteria (NPRGM) biofilms. For this purpose, confocal laser scanning microscopy and image analysis were used to study the development and behavior of intrinsic autofluorescence, covered area, thickness, and cell viability in NPRGM biofilms after adding antibiotics alone and associated with antibiofilm agents. In this study, ciprofloxacin is the most active antibiotic against this type of biofilm and thickness is the most affected parameter. NAC and Tween 80 combined with antibiotics exert a synergistic effect in increasing the percentage of dead bacteria and also reducing the percentage of covered surface and thickness of NPRGM biofilms. Tween 80 seems to be an antibiofilm agent more effective than NAC due to its higher reduction in the percentage of cover surface and thickness. In conclusion, the results obtained in this work show that phenotypic parameters (thickness, percentage of covered surface, autofluorescence, percentage of live/dead bacteria) are affected by combining antibiotics and antibiofilm agents, ciprofloxacin and Tween 80 being the most active agents against NPRGM biofilms.

  4. Biofilm susceptibility to metal toxicity.

    Science.gov (United States)

    Harrison, Joe J; Ceri, Howard; Stremick, Carol A; Turner, Raymond J

    2004-12-01

    This study compared bacterial biofilm and planktonic cell susceptibility to metal toxicity by evaluating the minimum inhibitory concentration (MIC), the planktonic minimum bactericidal concentration (MBC), and minimum biofilm eradication concentration (MBEC) using the MBEC device. In total, 17 metal cations and oxyanions, chosen to represent groups VIB to VIA of the periodic table, were each tested on biofilm and planktonic cultures of Escherichia coli JM109, Staphylococcus aureus ATCC 29213, and Pseudomonas aeruginosa ATCC 27853. In contrast to control antibiotic assays, where biofilm cultures were 2 to 64 times less susceptible to killing than logarithmically growing planktonic bacteria, metal compounds killed planktonic and biofilm cultures at the same concentration in the vast majority of combinations. Our data indicate that, under the conditions reported, growth in a biofilm does not provide resistance to bacteria against killing by metal cations or oxyanions.

  5. Development of mixed microbial granular biofilms for denitrification of concentrated wastes

    International Nuclear Information System (INIS)

    Nitrate containing wastes are generated at various stages of the nuclear fuel cycle; fuel fabrication and reprocessing. A treatment process for removing nitrate from such concentrated nitrate bearing effluents is needed. Among other available options, biological denitrification is an economical and technically feasible method for nitrate removal. Granular biofilm based sequencing batch reactors (SBRs) may allow designing a compact and high rate processes suitable for the treatment of concentrated effluents. Hence, experiments were carried out in laboratory scale sequencing batch reactors (SBRs) to develop granular biofilms (composed of mixed microbes) for removing nitrate from the concentrated nitrate containing-media. Microbial granular biofilms, capable of consuming nitrate up to 2710 mg/l nitrate-N, were developed under anaerobic conditions in a 6-litre volume sequencing batch reactor (SBR). The SBR was inoculated with activated sludge flocs and operated with 24-h cycle and 50% volumetric exchange ratio. Synthetic media containing acetate as the energy source and electron donor, at carbon to nitrogen molar ratio of 2:1 and 3:1 was fed into the SBRs. Nitrate-N concentration in the SBR was increased in a step-wise manner starting from 677 to 2710 mg/l (1355 to 5420 mg/l in the feed). Complete removal of influent nitrate occurred within the first few hours of SBR cycle period. Effluent nitrate and nitrite levels (∼3 mg/l nitrate-N or nitrite-N) at the end of SBR cycle period (24 h) were found to be below the discharge limits. Under these conditions biomass predominantly consisted of granular biofilms. Results show the potential of granular biofilm based SBR for converting nitrate to nitrogen gas from concentrated nitrate bearing industrial effluents. (author)

  6. Experimental biofilms within drinking water treatment plant origin; evaluation of nutrient concentration and temperature influences upon their development

    Directory of Open Access Journals (Sweden)

    Anca FARKAS

    2009-11-01

    Full Text Available From the planktonic free-floating state, microorganisms pass to the solid state, the biofilm, cells being strongly attached to each other and usually to the interface. This changing in cells’ behavior induces surface colonization and complex interactions development within the biofilm. If the biofilm’s role into the natural aquatic habitats is, undoubtedly, a positive one, consisting in water self-purification, drinking water pipe networks biofouling can be responsible for a wide range of water quality and operational problems. This exploratory experiment was performed in order to investigate, in a time interval of 7 days, the influence of certain environmental factors such as nutrient concentration and temperature upon in vitro biofilm’s development, origin in the biofilm of water treatment plant. The method used for in vitro biofilm growth monitoring is the colorimetric measurement of the biomass. Descriptive analyses, including the mean value, variability, trends, correlations and graphic displays were performed. The correlation analysis shown that the biofilm development in the discussed experiment was influenced as by the origin source as by the temperature, time and nutrients concentration. The biomass increment was significantly different for the biofilms with clarifier and sand filter sites origin, grown at 22 oC, while at 8 oC, the differences were not significant from a statistical point of view. For all the dilutions, moments and temperatures considered, the biofilm’s development with clarifier origin registered was significantly higher than the biofilm with sand filter origin.

  7. Phosphate limitation induces the intergeneric inhibition of Pseudomonas aeruginosa by Serratia marcescens isolated from paper machines.

    Science.gov (United States)

    Kuo, Pei-An; Kuo, Chih-Horng; Lai, Yiu-Kay; Graumann, Peter L; Tu, Jenn

    2013-06-01

    Phosphate is an essential nutrient for heterotrophic bacteria, affecting bacterioplankton in aquatic ecosystems and bacteria in biofilms. However, the influence of phosphate limitation on bacterial competition and biofilm development in multispecies populations has received limited attention in existing studies. To address this issue, we isolated 13 adhesive bacteria from paper machine aggregates. Intergeneric inhibition of Pseudomonas aeruginosa WW5 by Serratia marcescens WW4 was identified under phosphate-limited conditions, but not in Luria-Bertani medium or M9 minimal medium. The viable numbers of the pure S. marcescens WW4 culture decreased over 3 days in the phosphate-limited medium; however, the mortality of S. marcescens WW4 was significantly reduced when it was co-cultured with P. aeruginosa WW5, which appeared to sustain the S. marcescens WW4 biofilm. In contrast, viable P. aeruginosa WW5 cells immediately declined in the phosphate-limited co-culture. To identify the genetic/inhibitory element(s) involved in this process, we inserted a mini-Tn5 mutant of S. marcescens WW4 that lacked inhibitory effect. The results showed that an endonuclease bacteriocin was involved in this intergeneric inhibition by S. marcescens WW4 under phosphate limitation. In conclusion, this study highlights the importance of nutrient limitation in bacterial interactions and provides a strong candidate gene for future functional characterisation.

  8. Surface physicochemical properties at the micro and nano length scales: role on bacterial adhesion and Xylella fastidiosa biofilm development.

    Directory of Open Access Journals (Sweden)

    Gabriela S Lorite

    Full Text Available The phytopathogen Xylella fastidiosa grows as a biofilm causing vascular occlusion and consequently nutrient and water stress in different plant hosts by adhesion on xylem vessel surfaces composed of cellulose, hemicellulose, pectin and proteins. Understanding the factors which influence bacterial adhesion and biofilm development is a key issue in identifying mechanisms for preventing biofilm formation in infected plants. In this study, we show that X. fastidiosa biofilm development and architecture correlate well with physicochemical surface properties after interaction with the culture medium. Different biotic and abiotic substrates such as silicon (Si and derivatized cellulose films were studied. Both biofilms and substrates were characterized at the micro- and nanoscale, which corresponds to the actual bacterial cell and membrane/ protein length scales, respectively. Our experimental results clearly indicate that the presence of surfaces with different chemical composition affect X. fastidiosa behavior from the point of view of gene expression and adhesion functionality. Bacterial adhesion is facilitated on more hydrophilic surfaces with higher surface potentials; XadA1 adhesin reveals different strengths of interaction on these surfaces. Nonetheless, despite different architectural biofilm geometries and rates of development, the colonization process occurs on all investigated surfaces. Our results univocally support the hypothesis that different adhesion mechanisms are active along the biofilm life cycle representing an adaptation mechanism for variations on the specific xylem vessel composition, which the bacterium encounters within the infected plant.

  9. Anti-biofilm efficacy of low temperature processed AgCl–TiO{sub 2} nanocomposite coating

    Energy Technology Data Exchange (ETDEWEB)

    Naik, Kshipra, E-mail: kshipra_naik21@yahoo.co.in; Kowshik, Meenal, E-mail: meenal@goa.bits-pilani.ac.in

    2014-01-01

    Biofilms are a major concern in the medical settings and food industries due to their high tolerance to antibiotics, biocides and mechanical stress. Currently, the development of novel methods to control biofilm formation is being actively pursued. In the present study, sol–gel coatings of AgCl–TiO{sub 2} nanoparticles are presented as potential anti-biofilm agents, wherein TiO{sub 2} acts as a good supporting matrix to prevent aggregation of silver and facilitates its controlled release. Low-temperature processed AgCl–TiO{sub 2} nanocomposite coatings inhibit biofilm formation by Escherichia coli, Staphylococcus epidermidis and Pseudomonas aeruginosa. In vitro biofilm assay experiments demonstrated that AgCl–TiO{sub 2} nanocomposite coated surfaces, inhibited the development of biofilms over a period of 10 days as confirmed by scanning electron microscopy. The silver release kinetics exhibited an initial high release, followed by a slow and sustained release. The anti-biofilm efficacy of the coatings could be attributed to the release of silver, which prevents the initial bacterial adhesion required for biofilm formation. - Highlights: • Potential of AgCl–TiO{sub 2} nanocomposite coating to inhibit biofilm formation is exhibited. • Initial rapid release followed by later slow and sustained release of silver obtained. • TiO{sub 2} being porous and inorganic in nature acts as a good supporting matrix.

  10. D-amino acids trigger biofilm disassembly.

    Science.gov (United States)

    Kolodkin-Gal, Ilana; Romero, Diego; Cao, Shugeng; Clardy, Jon; Kolter, Roberto; Losick, Richard

    2010-04-30

    Bacteria form communities known as biofilms, which disassemble over time. In our studies outlined here, we found that, before biofilm disassembly, Bacillus subtilis produced a factor that prevented biofilm formation and could break down existing biofilms. The factor was shown to be a mixture of D-leucine, D-methionine, D-tyrosine, and D-tryptophan that could act at nanomolar concentrations. D-amino acid treatment caused the release of amyloid fibers that linked cells in the biofilm together. Mutants able to form biofilms in the presence of D-amino acids contained alterations in a protein (YqxM) required for the formation and anchoring of the fibers to the cell. D-amino acids also prevented biofilm formation by Staphylococcus aureus and Pseudomonas aeruginosa. D-amino acids are produced by many bacteria and, thus, may be a widespread signal for biofilm disassembly. PMID:20431016

  11. Synchronized dynamics of bacterial niche-specific functions during biofilm development in a cold seep brine pool

    KAUST Repository

    Zhang, Weipeng

    2015-07-14

    The biology of biofilm in deep-sea environments is barely being explored. Here, biofilms were developed at the brine pool (characterized by limited carbon sources) and the normal bottom water adjacent to Thuwal cold seeps. Comparative metagenomics based on 50 Gb datasets identified polysaccharide degradation, nitrate reduction, and proteolysis as enriched functional categories for brine biofilms. The genomes of two dominant species: a novel deltaproteobacterium and a novel epsilonproteobacterium in the brine biofilms were reconstructed. Despite rather small genome sizes, the deltaproteobacterium possessed enhanced polysaccharide fermentation pathways, whereas the epsilonproteobacterium was a versatile nitrogen reactor possessing nar, nap and nif gene clusters. These metabolic functions, together with specific regulatory and hypersaline-tolerant genes, made the two bacteria unique compared with their close relatives including those from hydrothermal vents. Moreover, these functions were regulated by biofilm development, as both the abundance and the expression level of key functional genes were higher in later-stage biofilms, and co-occurrences between the two dominant bacteria were demonstrated. Collectively, unique mechanisms were revealed: i) polysaccharides fermentation, proteolysis interacted with nitrogen cycling to form a complex chain for energy generation; ii) remarkably, exploiting and organizing niche-specific functions would be an important strategy for biofilm-dependent adaptation to the extreme conditions.

  12. Impact of Irgarol 1051 on the larval development and metamorphosis of Balanus amphitirite Darwin, diatom, Amphora coffeaformis and natural biofilm

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, D.V.

    (Daley and Hobbie 1975). Development of diatom biofilm A. coffeaformis was cultured in f/2 medium (Guillard 1975). When visible diatom films had formed in the culture flask, the biofilm was removed by brushing the culture flask with a sterile..., 2 ml aliquots of the diatom suspension was inoculated into the 24 well multiwells which were gently shaken for a period of 24 hours. The multiwell plates were then rinsed three times using autoclaved filtered seawater. The films developed without...

  13. Development of a web-based platform for the systematic and large-scale study of microbial adhesionand biofilms

    OpenAIRE

    Azevedo, N. F.; Lourenço, Anália; Pereira, Maria Olívia; Veiga, Nuno; Machado, Idalina

    2010-01-01

    High-throughput biofilm studies are rapidly accumulating a large amount of omics-scale data. In other biological areas that deal with large datasets, such as genomics or proteomics, ways for simplifying the visualization and understanding of the obtained results have already been developed. As such, we have started the development of a Web-based platform for analogous management, visualization and exploration of biofilm data. This platform, named Biofomics, is comprised of three m...

  14. Membrane biofilm development improves COD removal in anaerobic membrane bioreactor wastewater treatment

    OpenAIRE

    Smith, Adam L; Skerlos, Steven J; Raskin, Lutgarde

    2015-01-01

    Membrane biofilm development was evaluated to improve psychrophilic (15°C) anaerobic membrane bioreactor (AnMBR) treatment of domestic wastewater. An AnMBR containing three replicate submerged membrane housings with separate permeate collection was operated at three levels of membrane fouling by independently controlling biogas sparging for each membrane unit. High membrane fouling significantly improved permeate quality, but resulted in dissolved methane in the permeate at a concentration tw...

  15. Comparative studies on biofilm development by Aspergillus niger on polyester sheet and muslin cloth

    OpenAIRE

    Nitin Verma; Mukesh C.Bansal; Vivek kumar

    2010-01-01

    Filamentous fungi are naturally adapted to adhere on the surfaces in submerged cultures. Cell adhesion plays a vital role in biofilm development in submerged cultures. The objective of the present study is to evaluate the growth rate of Aspergillus on the polyester sheet and muslin cloth with and without solid support in submerged cultures. The growth of A. niger was observed to be high in polyester sheet when compared with muslin cloth.

  16. Deciphering the Contribution of Biofilm to the Pathogenesis of Peritoneal Dialysis Infections: Characterization and Microbial Behaviour on Dialysis Fluids

    Science.gov (United States)

    Sampaio, Joana; Machado, Diana; Gomes, Ana Marta; Machado, Idalina; Santos, Cledir; Lima, Nelson; Carvalho, Maria João; Cabrita, António

    2016-01-01

    Infections are major complications in peritoneal dialysis (PD) with a multifactorial etiology that comprises patient, microbial and dialytic factors. This study aimed at investigating the contribution of microbial biofilms on PD catheters to recalcitrant infections and their interplay with PD related-factors. A prospective observational study was performed on 47 patients attending Centro Hospitalar of Porto and Vila Nova de Gaia/Espinho to whom the catheter was removed due to infectious (n = 16) and non-infectious causes (n = 31). Microbial density on the catheter was assessed by culture methods and the isolated microorganisms identified by matrix-assisted laser desorption/ionization time-of-flight intact cell mass spectrometry. The effect of conventional and three biocompatible PD solutions on 16 Coagulase Negative Staphylococci (CNS) and 10 Pseudomonas aeruginosa strains planktonic growth and biofilm formation was evaluated. Cultures were positive in 87.5% of the catheters removed due infectious and 90.3% removed due to non-infectious causes. However, microbial yields were higher on the cuffs of catheters removed due to infection vs. non-infection. Staphylococci (CNS and Staphylococcus aureus) and P. aeruginosa were the predominant species: 32% and 20% in the infection and 43.3% and 22.7% in the non-infection group, respectively. In general, PD solutions had a detrimental effect on planktonic CNS and P. aeruginosa strains growth. All strains formed biofilms in the presence of PD solutions. The solutions had a more detrimental effect on P. aeruginosa than CNS strains. No major differences were observed between conventional and biocompatible solutions, although in icodextrin solution biofilm biomass was lower than in bicarbonate/lactate solution. Overall, we show that microbial biofilm is universal in PD catheters with the subclinical menace of Staphylococci and P. aeruginosa. Cuffs colonization may significantly contribute to infection. PD solutions differentially

  17. Deciphering the Contribution of Biofilm to the Pathogenesis of Peritoneal Dialysis Infections: Characterization and Microbial Behaviour on Dialysis Fluids.

    Directory of Open Access Journals (Sweden)

    Joana Sampaio

    Full Text Available Infections are major complications in peritoneal dialysis (PD with a multifactorial etiology that comprises patient, microbial and dialytic factors. This study aimed at investigating the contribution of microbial biofilms on PD catheters to recalcitrant infections and their interplay with PD related-factors. A prospective observational study was performed on 47 patients attending Centro Hospitalar of Porto and Vila Nova de Gaia/Espinho to whom the catheter was removed due to infectious (n = 16 and non-infectious causes (n = 31. Microbial density on the catheter was assessed by culture methods and the isolated microorganisms identified by matrix-assisted laser desorption/ionization time-of-flight intact cell mass spectrometry. The effect of conventional and three biocompatible PD solutions on 16 Coagulase Negative Staphylococci (CNS and 10 Pseudomonas aeruginosa strains planktonic growth and biofilm formation was evaluated. Cultures were positive in 87.5% of the catheters removed due infectious and 90.3% removed due to non-infectious causes. However, microbial yields were higher on the cuffs of catheters removed due to infection vs. non-infection. Staphylococci (CNS and Staphylococcus aureus and P. aeruginosa were the predominant species: 32% and 20% in the infection and 43.3% and 22.7% in the non-infection group, respectively. In general, PD solutions had a detrimental effect on planktonic CNS and P. aeruginosa strains growth. All strains formed biofilms in the presence of PD solutions. The solutions had a more detrimental effect on P. aeruginosa than CNS strains. No major differences were observed between conventional and biocompatible solutions, although in icodextrin solution biofilm biomass was lower than in bicarbonate/lactate solution. Overall, we show that microbial biofilm is universal in PD catheters with the subclinical menace of Staphylococci and P. aeruginosa. Cuffs colonization may significantly contribute to infection. PD solutions

  18. Analysis of biofilm formation and antibiotic susceptibility pattern of uropathogens in patients admitted in a tertiary care hospital in India

    Directory of Open Access Journals (Sweden)

    Ruchi A Tayal

    2015-01-01

    Full Text Available Background: Microorganisms attach to surfaces and produce polysaccharides resulting in the formation of biofilms and providing an ideal niche for the exchange of genetic material leading to the emergence of drug-resistant pathogens. Biofilms can develop on anatomical surfaces and implants producing chronic and intractable infections. Aims: Detection of biofilm formation and comparison of antibiotic resistance between biofilm producers and nonproducers. Study Design: Prospective study in which urine specimens from adult patients with urinary tract infection (UTI during the period of the study were analyzed (1 year. Materials and Methods: Mid-stream clean catch urine from noncatheterized and urine aspirated from in-dwelling urinary catheter in catheterized patients were taken for microbiological processing. Wet mounts, Gram-staining, and urine culture were done. Biofilm formation was detected by tissue culture plate method (TCPM. Statistical Analysis: Chi-square test and mid "P" test were used to analyze the data. A value ofP<0.05 was taken as significant. Results: Gram-negative organisms predominated (89%. Biofilm production was detected in 27% isolates. Maximum biofilm production was seen in Enterococcus spp. (71%, followed by Escherichia coli (26%. Biofilm-producing isolates demonstrated higher antibiotic resistance. All the biofilm-producing Enterococcus spp. showed high-level aminoglycoside resistance. The biofilm-producing isolates of Pseudomonas aeruginosa and Klebsiella pneumoniae demonstrated multi-drug resistance. Conclusions: TCPM is an economical phenotypic method which can be used routinely to detect biofilm formation. Biofilms contribute to an increased resistance to antibiotics used for the treatment of UTIs. Therefore, detection of biofilms is recommended for all patients presenting with chronic or recurrent disease.

  19. Antibacterial activity of a newly developed peptide-modified lysin against Acinetobacter baumannii and Pseudomonas aeruginosa

    Directory of Open Access Journals (Sweden)

    Hang eYang

    2015-12-01

    Full Text Available The global emergence of multidrug-resistant (MDR bacteria is a growing threat to public health worldwide. Natural bacteriophage lysins are promising alternatives in the treatment of infections caused by Gram-positive pathogens, but not Gram-negative ones, like Acinetobacter baumannii and Pseudomonas aeruginosa, due to the barriers posed by their outer membranes. Recently, modifying a natural lysin with an antimicrobial peptide was found able to break the barriers, and to kill Gram-negative pathogens. Herein, a new peptide-modified lysin (PlyA was constructed by fusing the cecropin A peptide residues 1–8 (KWKLFKKI with the OBPgp279 lysin and its antibacterial activity was studied. PlyA showed good and broad antibacterial activities against logarithmic phase A. baumannii and P. aeruginosa, but much reduced activities against the cells in stationary phase. Addition of outer membrane permeabilizers (EDTA and citric acid could enhance the antibacterial activity of PlyA against stationary phase cells. Finally, no antibacterial activity of PlyA could be observed in some bio-matrices, such as culture media, milk, and sera. In conclusion, we reported here a novel peptide-modified lysin with significant antibacterial activity against both logarithmic (without OMPs and stationary phase (with OMPs A. baumannii and P. aeruginosa cells in buffer, but further optimization is needed to achieve broad activity in diverse bio-matrices.

  20. Anti-Biofilm and Immunomodulatory Activities of Peptides That Inhibit Biofilms Formed by Pathogens Isolated from Cystic Fibrosis Patients

    OpenAIRE

    César de la Fuente-Núñez; Sarah C. Mansour; Zhejun Wang; Lucy Jiang; Breidenstein, Elena B. M.; Melissa Elliott; Fany Reffuveille; Speert, David P.; Reckseidler-Zenteno, Shauna L.; Ya Shen; Markus Haapasalo; Robert E W Hancock

    2014-01-01

    Cystic fibrosis (CF) patients often acquire chronic respiratory tract infections due to Pseudomonas aeruginosa and Burkholderia cepacia complex (Bcc) species. In the CF lung, these bacteria grow as multicellular aggregates termed biofilms. Biofilms demonstrate increased (adaptive) resistance to conventional antibiotics, and there are currently no available biofilm-specific therapies. Using plastic adherent, hydroxyapatite and flow cell biofilm models coupled with confocal and scanning electro...

  1. Antibiotic resistance of bacterial biofilms

    DEFF Research Database (Denmark)

    Hoiby, N.; Bjarnsholt, T.; Givskov, M.;

    2010-01-01

    A biofilm is a structured consortium of bacteria embedded in a self-produced polymer matrix consisting of polysaccharide, protein and DNA. Bacterial biofilms cause chronic infections because they show increased tolerance to antibiotics and disinfectant chemicals as well as resisting phagocytosis...... and other components of the body's defence system. The persistence of, for example, staphylococcal infections related to foreign bodies is due to biofilm formation. Likewise, chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is caused by biofilm-growing mucoid strains....... Characteristically, gradients of nutrients and oxygen exist from the top to the bottom of biofilms and these gradients are associated with decreased bacterial metabolic activity and increased doubling times of the bacterial cells; it is these more or less dormant cells that are responsible for some of the tolerance...

  2. Antibiotic tolerance and microbial biofilms

    DEFF Research Database (Denmark)

    Folkesson, Anders

    Increased tolerance to antimicrobial agents is thought to be an important feature of microbes growing in biofilms. We study the dynamics of antibiotic action within hydrodynamic flow chamber biofilms of Escherichia coli and Pseudomonas aeruginosa using isogenic mutants and fluorescent gene...... expression reporters and we address the question of how biofilm organization affects antibiotic susceptibility. The dynamics of microbial killing is monitored by viable count determination, and confocal laser microscopy. Our work shows that the apparent increased antibiotic tolerance is due to the formation...... of antibiotic tolerant subpopulations within the biofilm. The formation of these subpopulations is highly variable and dependent on the antibiotic used, the biofilm structural organization and the induction of specific tolerance mechanism