WorldWideScience

Sample records for aerospace materials aluminum-lithium

  1. Fatigue-crack propagation in advanced aerospace materials: Aluminum-lithium alloys

    Energy Technology Data Exchange (ETDEWEB)

    Venkateswara Rao, K.T.; Ritchie, R.O.

    1988-10-01

    Characteristics of fatigue-crack propagation behavior are reviewed for recently developed commercial aluminum-lithium alloys, with emphasis on the underlying micromechanisms associated with crack advance and their implications to damage-tolerant design. Specifically, crack-growth kinetics in Alcoa 2090-T8E41, Alcan 8090 and 8091, and Pechiney 2091 alloys, and in certain powder-metallurgy alloys, are examined as a function of microstructure, plate orientation, temperature, crack size, load ratio and loading sequence. In general, it is found that growth rates for long (> 10 mm) cracks are nearly 2--3 orders of magnitude slower than in traditional 2000 and 7000 series alloys at comparable stress-intensity levels. In additions, Al-Li alloys shown enhanced crack-growth retardations following the application of tensile overloads and retain superior fatigue properties even after prolonged exposure at overaging temperatures; however, they are less impressive in the presence of compression overloads and further show accelerated crack-growth behavior for microstructurally-small (2--1000 {mu}m) cracks (some three orders of magnitude faster than long cracks). These contrasting observations are attributed to a very prominent role of crack-tip shielding during fatigue-crack growth in Al-Li alloys, promoted largely by the tortuous and zig-zag nature of the crack-path morphologies. Such crack paths result in locally reduced crack-tip stress intensities, due to crack deflection and consequent crack wedging from fracture-surface asperities (roughness-induced crack closure); however, such mechanisms are far less potent in the presence of compressive loads, which act to crush the asperities, and for small cracks, where the limited crack wake severely restricts the shielding effect. 50 refs., 21 figs.

  2. Investigation of Methods for Selectively Reinforcing Aluminum and Aluminum-Lithium Materials

    Science.gov (United States)

    Bird, R. Keith; Alexa, Joel A.; Messick, Peter L.; Domack, Marcia S.; Wagner, John A.

    2013-01-01

    Several studies have indicated that selective reinforcement offers the potential to significantly improve the performance of metallic structures for aerospace applications. Applying high-strength, high-stiffness fibers to the high-stress regions of aluminum-based structures can increase the structural load-carrying capability and inhibit fatigue crack initiation and growth. This paper discusses an investigation into potential methods for applying reinforcing fibers onto the surface of aluminum and aluminum-lithium plate. Commercially-available alumina-fiber reinforced aluminum alloy tapes were used as the reinforcing material. Vacuum hot pressing was used to bond the reinforcing tape to aluminum alloy 2219 and aluminum-lithium alloy 2195 base plates. Static and cyclic three-point bend testing and metallurgical analysis were used to evaluate the enhancement of mechanical performance and the integrity of the bond between the tape and the base plate. The tests demonstrated an increase in specific bending stiffness. In addition, no issues with debonding of the reinforcing tape from the base plate during bend testing were observed. The increase in specific stiffness indicates that selectively-reinforced structures could be designed with the same performance capabilities as a conventional unreinforced structure but with lower mass.

  3. Role of the micro/macro structure of welds in crack nucleation and propagation in aerospace aluminum-lithium alloy

    Science.gov (United States)

    Talia, George E.

    1996-01-01

    Al-Li alloys offer the benefits of increased strength, elastic modulus and lower densities as compared to conventional aluminum alloys. Martin Marietta Laboratories has developed an Al-Li alloy designated 2195 which is designated for use in the cryogenic tanks of the space shuttle. The Variable Polarity Plasma Arc (VPPA) welding process is currently being used to produce these welds [1]. VPPA welding utilizes high temperature ionized gas (plasma) to transfer heat to the workpiece. An inert gas, such as Helium, is used to shield the active welding zone to prevent contamination of the molten base metal with surrounding reactive atmospheric gases. [1] In the Space Shuttle application, two passes of the arc are used to complete a butt-type weld. The pressure of the plasma stream is increased during the first pass to force the arc entirely through the material, a practice commonly referred to as keyholing. Molten metal forms on either side of the arc and surface tension draws this liquid together as the arc passes. 2319 Al alloy filler material may also be fed into the weld zone during this pass. During the second pass, the plasma stream pressure is reduced such that only partial penetration of the base material is obtained. Al 2319 filler material is added during this pass to yield a uniform, fully filled welded joint. This additional pass also acts to alter the grain structure of the weld zone to yield a higher strength joint.

  4. Aluminum-lithium target behavior

    Energy Technology Data Exchange (ETDEWEB)

    McDonell, W.R.

    1989-10-01

    Information on physical properties and irradiation behavior of aluminum-lithium target alloys employed for the production of tritium in Savannah River reactors has been reviewed to support development of technology for the New Production Reactor (NPR). Phase compositions and microstructures, thermal conductivity, mechanical properties, and constituent diffusion phenomena of the alloys, established in prior site studies, are presented. Irradiation behavior, including distributions of product tritium and helium and related exposure limits due to swelling and cracking of the target alloys is discussed, along with gas release processes occurring during subsequent product recovery operations. The property review supports designation of the aluminum-lithium alloys as ideally well-suited target materials for low-temperature, tritium-producing reactors, demonstrated over 35 years of Savannah River reactor operation. Low temperature irradiation and reaction with lithium in the alloy promotes tritium retention during reactor exposure, and the aluminum provides a matrix from which the product is readily recovered on heating following irradiation. 33 refs., 26 figs., 8 tabs.

  5. Determination of Stress-Corrosion Cracking in Aluminum-Lithium Alloy ML377

    Science.gov (United States)

    Valek, Bryan C.

    1995-01-01

    The use of aluminum-lithium alloys for aerospace applications is currently being studied at NASA Langley Research Center's Metallic Materials Branch. The alloys in question will operate under stress in a corrosive environment. These conditions are ideal for the phenomena of Stress-Corrosion Cracking (SCC) to occur. The test procedure for SCC calls for alternate immersion and breaking load tests. These tests were optimized for the lab equipment and materials available in the Light Alloy lab. Al-Li alloy ML377 specimens were then subjected to alternate immersion and breaking load tests to determine residual strength and resistance to SCC. Corrosion morphology and microstructure were examined under magnification. Data shows that ML377 is highly resistant to stress-corrosion cracking.

  6. Materials Selection for Aerospace Systems

    Science.gov (United States)

    Arnold, Steven M.; Cebon, David; Ashby, Mike

    2012-01-01

    A systematic design-oriented, five-step approach to material selection is described: 1) establishing design requirements, 2) material screening, 3) ranking, 4) researching specific candidates and 5) applying specific cultural constraints to the selection process. At the core of this approach is the definition performance indices (i.e., particular combinations of material properties that embody the performance of a given component) in conjunction with material property charts. These material selection charts, which plot one property against another, are introduced and shown to provide a powerful graphical environment wherein one can apply and analyze quantitative selection criteria, such as those captured in performance indices, and make trade-offs between conflicting objectives. Finding a material with a high value of these indices maximizes the performance of the component. Two specific examples pertaining to aerospace (engine blades and pressure vessels) are examined, both at room temperature and elevated temperature (where time-dependent effects are important) to demonstrate the methodology. The discussion then turns to engineered/hybrid materials and how these can be effectively tailored to fill in holes in the material property space, so as to enable innovation and increases in performance as compared to monolithic materials. Finally, a brief discussion is presented on managing the data needed for materials selection, including collection, analysis, deployment, and maintenance issues.

  7. Advanced Ceramic Materials for Future Aerospace Applications

    Science.gov (United States)

    Misra, Ajay

    2015-01-01

    With growing trend toward higher temperature capabilities, lightweight, and multifunctionality, significant advances in ceramic matrix composites (CMCs) will be required for future aerospace applications. The presentation will provide an overview of material requirements for future aerospace missions, and the role of ceramics and CMCs in meeting those requirements. Aerospace applications will include gas turbine engines, aircraft structure, hypersonic and access to space vehicles, space power and propulsion, and space communication.

  8. 5th Conference on Aerospace Materials, Processes, and Environmental Technology

    Science.gov (United States)

    Cook, M. B. (Editor); Stanley, D. Cross (Editor)

    2003-01-01

    Records are presented from the 5th Conference on Aerospace Materials, Processes, and Environmental Technology. Topics included pollution prevention, inspection methods, advanced materials, aerospace materials and technical standards,materials testing and evaluation, advanced manufacturing,development in metallic processes, synthesis of nanomaterials, composite cryotank processing, environmentally friendly cleaning, and poster sessions.

  9. The feasibility of producing aluminum-lithium structures for cryogenic tankage applications by laser beam welding

    Science.gov (United States)

    Martukanitz, R. P.; Lysher, K. G.

    1993-01-01

    Aluminum-lithium alloys exhibit high strength, high elastic modulus, and low density as well as excellent cryogenic mechanical properties making them ideal material candidates for cryogenic tanks. NASA has proposed the use of 'built-up' structure for panels fabricated into cryogenic tanks replacing current conventional machining. Superplastically formed stiffeners would be joined to sheet (tank skin) that had been roll formed to the radius of the tank in order to produce panels. Aluminum-lithium alloys of interest for producing the built-up structure include alloy 2095-T6 stiffeners to 2095-T8 sheet and alloy 8090-T6 stiffeners to 2090-T83 sheet. Laser welding, with comparable joint properties, offers the following advantages over conventional welding: higher production rates, minimal degradation within the heat affected zones, and full process automation. This study established process parameters for laser beam welding, mechanical property determinations, metallographic characterization, and fabrication of prototype panels. Tensile tests representing partial penetration of the skin alloys provided joint efficiencies between 65 and 77 percent, depending upon alloy and degree of penetration. Results of tension shear tests of lap welds indicated that the combination of 2095-T6 to 2090-T8 exhibited significantly higher weld shear strength at the interface in comparison to welds of 8090-T6 to 2090-T83. The increased shear strength associated with 2095 is believed to be due to the alloy's ability to precipitation strengthening (naturally age) after welding.

  10. Optical Characterization of Window Materials for Aerospace Applications

    Science.gov (United States)

    Tedjojuwono, Ken K.; Clark, Natalie; Humphreys, William M., Jr.

    2013-01-01

    An optical metrology laboratory has been developed to characterize the optical properties of optical window materials to be used for aerospace applications. Several optical measurement systems have been selected and developed to measure spectral transmittance, haze, clarity, birefringence, striae, wavefront quality, and wedge. In addition to silica based glasses, several optical lightweight polymer materials and transparent ceramics have been investigated in the laboratory. The measurement systems and selected empirical results for non-silica materials are described. These measurements will be used to form the basis of acceptance criteria for selection of window materials for future aerospace vehicle and habitat designs.

  11. Nanocomposites as Advanced Materials for Aerospace Industry

    Directory of Open Access Journals (Sweden)

    George PELIN

    2012-12-01

    Full Text Available Polymer nanocomposites, consisting of nanoparticles dispersed in polymer matrix, have gained interest due to the attractive properties of nanostructured fillers, as carbon nanotubes and layered silicates. Low volume additions (1- 5% of nanoparticles provide properties enhancements comparable to those achieved by conventional loadings (15- 40% of traditional fillers.Structural nanocomposites represent reinforcement structures based on carbon or glass fibers embedded into polymeric matrix modified with nanofillers.Structural composites are the most important application of nanaocomposites, in aerospace field, as, laminates and sandwich structures. Also, they can by used as anti-lightning, anti-radar protectors and paints. The paper presents the effects of sonic dispersion of carbon nanotubes and montmorrilonite on the mechanical, electrical, rheological and trybological properties of epoxy polymers and laminated composites, with carbon or glass fiber reinforcement, with nanoadditivated epoxy matrix. One significant observation is that nanoclay contents higher than 2% wt generate an increase of the resin viscosity, from 1500 to 50000- 100000 cP, making the matrix impossible to use in high performance composites.Also, carbon nanotubes provide the resin important electrical properties, passing from dielectric to semi- conductive class. These effects have also been observed for fiber reinforced composites.Contrarily to some opinions in literature, the results of carbon nanotubes or nanoclays addition on the mechanical characteristics of glass or carbon fiber composites seem to be rather low.

  12. Strain characterization of embedded aerospace smart materials using shearography

    NARCIS (Netherlands)

    Anisimov, A.; Muller, B.; Sinke, J.; Groves, R.M.

    2015-01-01

    The development of smart materials for embedding in aerospace composites provides enhanced functionality for future aircraft structures. Critical flight conditions like icing of the leading edges can affect the aircraft functionality and controllability. Hence, anti-icing and de-icing capabilities a

  13. Aluminum-Lithium Alloy 2050 for Reduced-Weight, Increased-Stiffness Space Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Touchstone Research Laboratory, along with Alcan Rolled Products ? Ravenswood WV, has identified the Aluminum-Lithium Alloy 2050 as a potentially game-changing...

  14. Aerospace Fuels From Nonpetroleum Raw Materials

    Science.gov (United States)

    Palaszewski, Bryan A.; Hepp, Aloysius F.; Kulis, Michael J.; Jaworske, Donald A.

    2013-01-01

    Recycling human metabolic and plastic wastes minimizes cost and increases efficiency by reducing the need to transport consumables and return trash, respectively, from orbit to support a space station crew. If the much larger costs of transporting consumables to the Moon and beyond are taken into account, developing waste recycling technologies becomes imperative and possibly mission enabling. Reduction of terrestrial waste streams while producing energy and/or valuable raw materials is an opportunity being realized by a new generation of visionary entrepreneurs; several relevant technologies are briefly compared, contrasted and assessed for space applications. A two-step approach to nonpetroleum raw materials utilization is presented; the first step involves production of supply or producer gas. This is akin to synthesis gas containing carbon oxides, hydrogen, and simple hydrocarbons. The second step involves production of fuel via the Sabatier process, a methanation reaction, or another gas-to-liquid technology, typically Fischer-Tropsch processing. Optimization to enhance the fraction of product stream relevant to transportation fuels via catalytic (process) development at NASA Glenn Research Center is described. Energy utilization is a concern for production of fuels whether for operation on the lunar or Martian surface, or beyond. The term green relates to not only mitigating excess carbon release but also to the efficiency of energy usage. For space, energy usage can be an essential concern. Another issue of great concern is minimizing impurities in the product stream(s), especially those that are potential health risks and/or could degrade operations through catalyst poisoning or equipment damage; technologies being developed to remove heteroatom impurities are discussed. Alternative technologies to utilize waste fluids, such as a propulsion option called the resistojet, are discussed. The resistojet is an electric propulsion technology with a powered

  15. Test and Analysis of Sub-Components of Aluminum-Lithium Alloy Cylinders

    Science.gov (United States)

    Haynie, Waddy T.; Chunchu, Prasad B.; Satyanarayana, Arunkumar; Hilburger, Mark W.; Smith, Russell W.

    2012-01-01

    Integrally machined blade-stiffened panels subjected to an axial compressive load were tested and analyzed to observe the buckling, crippling, and postcrippling response of the panels. The panels were fabricated from aluminum-lithium alloys 2195 and 2050, and both alloys have reduced material properties in the short transverse material direction. The tests were designed to capture a failure mode characterized by the stiffener separating from the panel in the postbuckling range. This failure mode is attributed to the reduced properties in the short transverse direction. Full-field measurements of displacements and strains using three-dimensional digital image correlation systems and local measurements using strain gages were used to capture the deformation of the panel leading up to the failure of the panel for specimens fabricated from 2195. High-speed cameras were used to capture the initiation of the failure. Finite element models were developed using an isotropic strain-hardening material model. Good agreement was observed between the measured and predicted responses for both alloys.

  16. Micro-Mechanical Modeling of Ductile Fracture in Welded Aluminum-Lithium Alloys

    Science.gov (United States)

    Ibrahim, Ahmed

    2002-01-01

    This computation model for microscopic crack growth in welded aluminum-lithium alloys consists of a cavity with initial volume specified by the fraction f(sub 0), i.e. the void volume relative to the cell volume. Thus, cell size D and initial porosity f(sub 0) defines the key parameters in this model. The choice of cell size requires: 1) D must be representative of the large inclusion spacing. 2) Predicted R-curves scale almost proportionally with D for fixed f(sub 0). 3) mapping of one finite element per cell must provide adequate resolution of the stress-strain fields in the active layer and the adjacent material. For the ferritic steels studied thus far with this model, calibrated cell sizes range from 50-200 microns with f(sub 0) in the 0.0001 to 0.004 micron range. This range of values for D and f (sub 0) satisfies issues 1) and 3). This computational model employs the Gurson and Tvergaard constitutive model for porous plastic materials to describe the progressive damage of cells due to the growth of pre-existing voids. The model derives from a rigid-plastic limit analysis of a solid having a volume fraction (f) of voids approximated by a homogenous spherical body containing a spherical void.

  17. Mishap risk control for advanced aerospace/composite materials

    Science.gov (United States)

    Olson, John M.

    1994-01-01

    Although advanced aerospace materials and advanced composites provide outstanding performance, they also present several unique post-mishap environmental, safety, and health concerns. The purpose of this paper is to provide information on some of the unique hazards and concerns associated with these materials when damaged by fire, explosion, or high-energy impact. Additionally, recommended procedures and precautions are addressed as they pertain to all phases of a composite aircraft mishap response, including fire-fighting, investigation, recovery, clean-up, and guidelines are general in nature and not application-specific. The goal of this project is to provide factual and realistic information which can be used to develop consistent and effective procedures and policies to minimize the potential environmental, safety, and health impacts of a composite aircraft mishap response effort.

  18. Nondestructive materials characterization with applications to aerospace materials

    CERN Document Server

    Nagy, Peter; Rokhlin, Stanislav

    2004-01-01

    With an emphasis on aircraft materials, this book describes techniques for the material characterization to detect and quantify degradation processes such as corrosion and fatigue. It introduces readers to these techniques based on x-ray, ultrasonic, optical and thermal principles and demonstrates the potential of the techniques for a wide variety of applications concerning aircraft materials, especially aluminum and titanium alloys. The advantages and disadvantages of various techniques are evaluated. An introductory chapter describes the typical degradation mechanisms that must be considered and the microstructure features that have to be detected by NDE methods. Finally, some approaches for making lifetime predictions are discussed. It is suitable as a textbook in special training courses in advanced NDE and aircraft materials characterization.

  19. Methods for integrating optical fibers with advanced aerospace materials

    Science.gov (United States)

    Poland, Stephen H.; May, Russell G.; Murphy, Kent A.; Claus, Richard O.; Tran, Tuan A.; Miller, Mark S.

    1993-07-01

    Optical fibers are attractive candidates for sensing applications in near-term smart materials and structures, due to their inherent immunity to electromagnetic interference and ground loops, their capability for distributed and multiplexed operation, and their high sensitivity and dynamic range. These same attributes also render optical fibers attractive for avionics busses for fly-by-light systems in advanced aircraft. The integration of such optical fibers with metal and composite aircraft and aerospace materials, however, remains a limiting factor in their successful use in such applications. This paper first details methods for the practical integration of optical fiber waveguides and cable assemblies onto and into materials and structures. Physical properties of the optical fiber and coatings which affect the survivability of the fiber are then considered. Mechanisms for the transfer of the strain from matrix to fiber for sensor and data bus fibers integrated with composite structural elements are evaluated for their influence on fiber survivability, in applications where strain or impact is imparted to the assembly.

  20. Finite element analysis of composites materials for aerospace applications

    Science.gov (United States)

    Nurhaniza, M.; Ariffin, M. K. A.; Ali, Aidy; Mustapha, F.; Noraini, A. W.

    2010-05-01

    Composites materials are intended to be used more extensively as an alternative of aluminum structure in aircraft and aerospace applications. This is due to their attractive properties as high strength-to-weight ratio and stiffness-to-weight ratio. Besides that it clarifies the growing interest for composites materials due to advantages of lightweight, high strength, high stiffness, superior fatigue life, tremendous corrosion resistance and low cost manufacturing. In this study, a finite element analysis (FEA) of fiberglass unidirectional E-type was analyzed in the framework of ABAQUS finite element commercial software. The analysis was done to quantify the mechanical properties and response of unidirectional E-glass in term of tensile, compression and thermal responses. From the analysis, the maximum and minimum values of stress and strain for E-glass 21xK43 Gevetex and Silenka E-glass 1200tex were obtained and stress-strain curve is presented. The ultimate load of failure, elastic behavior, tensile strength and other properties for each laminated plates under tensile and thermal-stress are determined from stress-strain curves. The simulation will run twice for each material where the first simulation based on orientation angles of 45° for ply-1, -45° for ply-2 and 90° for ply-3 while the second simulation, the orientation angles is 0° for all plies. The simulation is successfully conducted and verified by experimental data.

  1. Proceedings of the 4th Conference on Aerospace Materials, Processes, and Environmental Technology

    Science.gov (United States)

    Griffin, D. E. (Editor); Stanley, D. C. (Editor)

    2001-01-01

    The next millennium challenges us to produce innovative materials, processes, manufacturing, and environmental technologies that meet low-cost aerospace transportation needs while maintaining US leadership. The pursuit of advanced aerospace materials, manufacturing processes, and environmental technologies supports the development of safer, operational, next-generation, reusable, and expendable aeronautical and space vehicle systems. The Aerospace Materials, Processes, and Environmental Technology Conference (AMPET) provided a forum for manufacturing, environmental, materials, and processes engineers, scientists, and managers to describe, review, and critically assess advances in these key technology areas.

  2. Development of Aluminum-Lithium 2195 Gores by the Stretch Forming Process

    Science.gov (United States)

    Volz, M. P.; Chen, P. S.; Gorti, S.; Salvail, P.

    2014-01-01

    Aluminum-Lithium alloy 2195 exhibits higher mechanical properties and lower density than aluminum alloy 2219, which is the current baseline material for Space Launch System (SLS) cryogenic tank components. Replacement of Al 2219 with Al-Li 2195 would result in substantial weight savings, as was the case when this replacement was made on the shuttle external tank. A key component of cryogenic tanks are the gores, which are welded together to make the rounded ends of the tanks. The required thicknesses of these gores depend on the specific SLS configuration and may exceed the current experience base in the manufacture of such gores by the stretch forming process. Here we describe the steps taken to enhance the formability of Al-Li 2195 by optimizing the heat treatment and stretch forming processes for gore thicknesses up to 0.75", which envelopes the maximum expected gore thicknesses for SLS tanks. An annealing treatment, developed at Marshall Space Flight Center, increased the forming range and strain hardening exponent of Al-Li 2195 plates. Using this annealing treatment, one 0.525" thick and two 0.75" thick gores were manufactured by the stretch forming process. The annealing treatment enabled the stretch forming of the largest ever cross sectional area (thickness x width) of an Al-Li 2195 plate achieved by the manufacturer. Mechanical testing of the gores showed greater than expected ultimate tensile strength, yield strength, modulus, and elongation values. The gores also exhibited acceptable fracture toughness at room and LN2 temperatures. All of the measured data indicate that the stretch formed gores have sufficient material properties to be used in flight domes.

  3. Characterization of Catalyst Materials for Production of Aerospace Fuels

    Science.gov (United States)

    Best, Lauren M.; De La Ree, Ana B.; Hepp, Aloysius F.

    2012-01-01

    Due to environmental, economic, and security issues, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to non-petroleum sources as a feedstock for aviation (and other transportation) fuels. Additionally, efforts are concentrated on reducing costs coupled with fuel production from non-conventional sources. One solution to this issue is Fischer-Tropsch gas-to-liquid technology. Fischer-Tropsch processing of synthesis gas (CO/H2) produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fisher-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur or aromatic compounds. This process is most commonly catalyzed by heterogeneous (in this case, silver and platinum) catalysts composed of cobalt supported on alumina or unsupported alloyed iron powders. Physisorption, chemisorptions, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) are described to better understand the potential performance of Fischer-Tropsch cobalt on alumina catalysts promoted with silver and platinum. The overall goal is to preferentially produce C8 to C18 paraffin compounds for use as aerospace fuels. Progress towards this goal will eventually be updated and achieved by a more thorough understanding of the characterization of catalyst materials. This work was supported by NASA s Subsonic Fixed Wing and In-situ Resource Utilization projects.

  4. Current Trends on the Applicability of Ground Aerospace Materials Test Data to Space System Environments

    Science.gov (United States)

    Hirsch, David B.

    2010-01-01

    This slide presentation discusses the application of testing aerospace materials to the environment of space for flammability. Test environments include use of drop towers, and the parabolic flight to simulate the low gravity environment of space.

  5. Probabilistic material degradation model for aerospace materials subjected to high temperature, mechanical and thermal fatigue, and creep

    Science.gov (United States)

    Boyce, L.

    1992-01-01

    A probabilistic general material strength degradation model has been developed for structural components of aerospace propulsion systems subjected to diverse random effects. The model has been implemented in two FORTRAN programs, PROMISS (Probabilistic Material Strength Simulator) and PROMISC (Probabilistic Material Strength Calibrator). PROMISS calculates the random lifetime strength of an aerospace propulsion component due to as many as eighteen diverse random effects. Results are presented in the form of probability density functions and cumulative distribution functions of lifetime strength. PROMISC calibrates the model by calculating the values of empirical material constants.

  6. Method of Heat Treating Aluminum-Lithium Alloy to Improve Formability

    Science.gov (United States)

    Chen, Po-Shou (Inventor); Russell, Carolyn Kurgan (Inventor)

    2016-01-01

    A method is provided for heat treating aluminum-lithium alloys to improve their formability. The alloy is heated to a first temperature, maintained at the first temperature for a first time period, heated at the conclusion of the first time period to a second temperature, maintained at the second temperature for a second time period, actively cooled at the conclusion of the second time period to a third temperature, maintained at the third temperature for a third time period, and then passively cooled at the conclusion of the third time period to room temperature.

  7. POROSITY DEVELOPMENT DURING HEAT TREATMENT OF ALUMINUM-LITHIUM ALLOYS

    OpenAIRE

    Papazian, J.; J. Wagner; Rooney, W.

    1987-01-01

    The development of a sub-surface layer of porosity during heat treatment has been studied in a variety of Al-Li alloys. Pure binary Al-Li alloys and three commercial materials were heat treated in air, vacuum and hydrogen for various lengths of time. Subsequent metallographic sectioning and polishing revealed the presence of a band of pores in the near-surface region extending approximately 300 µm into the sample after a 16 h heat treatment. This band of porosity is thought to arise from a Ki...

  8. Fiber glass reinforced structural materials for aerospace application

    Science.gov (United States)

    Bartlett, D. H.

    1968-01-01

    Evaluation of fiber glass reinforced plastic materials concludes that fiber glass construction is lighter than aluminum alloy construction. Low thermal conductivity and strength makes the fiber glass material useful in cryogenic tank supports.

  9. Mechanically Strong Lightweight Materials for Aerospace Applications (x-aerogels)

    Science.gov (United States)

    Leventis, Nicholas

    2005-01-01

    The X-Aerogel is a new NASA-developed strong lightweight material made by reacting the mesoporous surfaces of 3-D networks of inorganic nanoparticles with polymeric crosslinkers. Since the relative amount of the crosslinker and the backbone are comparable, X-Aerogels can be viewed either as aerogels modified by templated accumulation of polymer on the skeletal nanoparticles, or as nanoporous polymers made by templated casting of polymeric precursors on a nanostructured framework. The most striking feature of X-Aerogels is that for a nominal 3-fold increase in density (still a ultralightweight material), the mechanical strength can be up to 300 times higher than the strength of the underlying native aerogel. Thus, X-Aerogels combine a multiple of the specific compressive strength of steel, with the thermal conductivity of styrofoam. XAerogels have been demonstrated with several polymers such as polyurethanes/polyureas, epoxies and polyolefins, while crosslinking of approximately 35 different oxide aerogels yields a wide variety of dimensionally stable, porous lightweight materials with interesting structural, magnetic and optical properties. X-Aerogels are evaluated for cryogenic rocket fuel storage tanks and for Advanced EVA suits, where they will play the dual role of the thermal insulator/structural material. Along the same lines, major impact is also expected by the use of X-Aerogels in structural components/thermal protection for small satellites, spacecrafts, planetary vehicles and habitats.

  10. An Approach to the Flammability Testing of Aerospace Materials

    Science.gov (United States)

    Hirsch, David B.

    2012-01-01

    Presentation reviews: (1) Current approach to evaluation of spacecraft materials flammability (2) The need for and the approach to alternative routes (3) Examples of applications of the approach recommended a) Crew Module splash down b) Crew Module depressurization c) Applicability of NASA's flammability test data to other sample configurations d) Applicability of NASA's ground flammability test data to spacecraft environments

  11. Enabling materials and processes for large aerospace mirrors

    Science.gov (United States)

    Matson, Lawrence E.; Chen, Ming Y.

    2008-07-01

    The use of monolithic glass to produce large, rigid segmented members for lightweight space-based mirror systems appears to have reached its limits due to the long production lead times, high processing costs, and launch load/weight requirements. New material solutions and processes are required to meet the US Air Force's optical needs for directed energy, reconnaissance/surveillance, and communications. Mirror structural substrates made out of advanced materials (metal, ceramic, and polymer), composites, foams, and microsphere arrays should allow for CTE and modulus tailorability, low-density, and high values in strength, stiffness, thermal conductivity and toughness. Conventional mechanical polishing to visual specifications for figure and surface finish roughness requirements will be difficult, due to the multi-phase complexities of these new systems. Advances in surface removal technologies as well as replication processes will be required to produce the required optical finishes with reduced schedule and cost. In this paper selected material and process solutions being considered will be discussed.

  12. Fatigue crack propagation of new aluminum lithium alloy bonded with titanium alloy strap

    Institute of Scientific and Technical Information of China (English)

    Sun Zhenqi; Huang Minghui

    2013-01-01

    A new type of aluminum lithium alloy (A1-Li alloy) Al-Li-S-4 was investigated by test in this paper.Alloy plate of 400 mm × 140 mm × 6 mm with single edge notch was made into samples bonded with Ti-6Al-4V alloy (Ti alloy) strap by FM 94 film adhesive after the surface was treated.Fatigue crack growth of samples was investigated under cyclic loading with stress ratio (R) of 0.1 and load amplitude constant.The results show that Al-Li alloy plate bonded with Ti alloy strap could retard fatigue crack propagation.Retardation effect is related with width and thickness of strap.Flaws have an observable effect on crack propagation direction.

  13. Improved Fatigue and Damage Tolerant Material Design for Aerospace Industry

    Institute of Scientific and Technical Information of China (English)

    Yigeng XU; Jiang CHEN; Jianmin LI; Zefei ZHU

    2005-01-01

    Various micro-mechanical and micro-structural influences on fatigue crack growth resistance of the material have been investigated over the years. It is widely recognized that resistance to fatigue crack growth can be differentiated into ‘intrinsic’and ‘extrinsic’.The separation of intrinsic and extrinsic crack growth resistance has constituted a major theme of fatigue research in the last 30 years, with the concept of crack closure or crack tip shielding being used to rationalize a wide range of micro-structural and mechanical influences on fatigue crack growth behavior. An accurately quantitative understanding of intrinsic and extrinsic effects on crack growth is essential to directed alloy design for improved fatigue resistance, and/or improved structural service life. This paper presents a compliance-basedcrack closure measurement method and a multi-mechanism based analytical model for the separation of intrinsic and extrinsic material fatigue resistance, with application in characterizing the fatigue performance of two high strength damage tolerant aidrame Al alloys.

  14. Applications of inductively coupled plasma mass spectrometry to the production control of aerospace and nuclear materials

    International Nuclear Information System (INIS)

    Inductively coupled plasma source mass spectrometry (ICP-MS) has proved to be a useful practical tool in a high-volume quality control laboratory. The application of this technique to materials produced for the aerospace and nuclear industries is discussed. Techniques employed for uranium isotope ratio determination and elemental determination of gadolinium, samarium and thorium in hafnium and zirconium alloys are described. Strategies employed for a semi-quantitative survey analysis for a wide range of elements are also presented. (author)

  15. Fiber Optic Thermal Health Monitoring of Aerospace Structures and Materials

    Science.gov (United States)

    Wu, Meng-Chou; Winfree, William P.; Allison, Sidney G.

    2009-01-01

    A new technique is presented for thermographic detection of flaws in materials and structures by performing temperature measurements with fiber Bragg gratings. Individual optical fibers with multiple Bragg gratings employed as surface temperature sensors were bonded to the surfaces of structures with subsurface defects or thickness variations. Both during and following the application of a thermal heat flux to the surface, the individual Bragg grating sensors measured the temporal and spatial temperature variations. The investigated structures included a 10-ply composite specimen with subsurface delaminations of various sizes and depths. The data obtained from grating sensors were further analyzed with thermal modeling to reveal particular characteristics of the interested areas. These results were found to be consistent with those from conventional thermography techniques. Limitations of the technique were investigated using both experimental and numerical simulation techniques. Methods for performing in-situ structural health monitoring are discussed.

  16. Advanced bearing materials for cryogenic aerospace engine turbopump requirements

    Science.gov (United States)

    Friedman, G.; Bhat, B. N.

    1986-01-01

    The properties of eleven alloys were investigated to select an improved bearing material for the High Pressure Oxygen Turbo Pump which delivers liquid oxygen to the Space Shuttle Main Engine. The alloys, selected through detailed literature analysis, X 405, MRC-2001, T440V, 14-4/6V, D-5, V-M Pyromet 350, Stellite 3, FerroTic CS-40, Tribaloy 800, WD-65, and CBS-600. The alloys were tested in hardness, corrosion resistance, wear resistance, fatigue resistance, and fracture toughness tests, and their performance was compared with the baseline 440C test alloy. As a result, five alloys were eliminated, leaving the remaining six (X 405, MRC-2001, T440V, 14-4/6V, D-5, and WD-65 to be evaluated in the next phase of NASA tests which will include fracture toughness, rolling contact fatigue, wear resistance, and corrosion resistance. From these, three alloys will be selected, which will be made into ninety bearings for subsequent testing.

  17. Proficiency Testing for Evaluating Aerospace Materials Test Anomalies

    Science.gov (United States)

    Hirsch, D.; Motto, S.; Peyton, S.; Beeson, H.

    2006-01-01

    ASTM G 86 and ASTM G 74 are commonly used to evaluate materials susceptibility to ignition in liquid and gaseous oxygen systems. However, the methods have been known for their lack of repeatability. The inherent problems identified with the test logic would either not allow precise identification or the magnitude of problems related to running the tests, such as lack of consistency of systems performance, lack of adherence to procedures, etc. Excessive variability leads to increasing instances of accepting the null hypothesis erroneously, and so to the false logical deduction that problems are nonexistent when they really do exist. This paper attempts to develop and recommend an approach that could lead to increased accuracy in problem diagnostics by using the 50% reactivity point, which has been shown to be more repeatable. The initial tests conducted indicate that PTFE and Viton A (for pneumatic impact) and Buna S (for mechanical impact) would be good choices for additional testing and consideration for inter-laboratory evaluations. The approach presented could also be used to evaluate variable effects with increased confidence and tolerance optimization.

  18. The JPL Cryogenic Dilatometer: Measuring the Thermal Expansion Coefficient of Aerospace Materials

    Science.gov (United States)

    Halverson, Peter G.; Dudick, Matthew J.; Karlmann, Paul; Klein, Kerry J.; Levine, Marie; Marcin, Martin; Parker, Tyler J.; Peters, Robert D.; Shaklan, Stuart; VanBuren, David

    2007-01-01

    This slide presentation details the cryogenic dilatometer, which is used by JPL to measure the thermal expansion coefficient of materials used in Aerospace. Included is a system diagram, a picture of the dilatometer chamber and the laser source, a description of the laser source, pictures of the interferometer, block diagrams of the electronics and software and a picture of the electronics, and software. Also there is a brief review of the accurace.error budget. The materials tested are also described, and the results are shown in strain curves, JPL measured strain fits are described, and the coefficient of thermal expansion (CTE) is also shown for the materials tested.

  19. Optimal Composite Materials using NASA Resins or POSS Nanoparticle Modifications for Low Cost Fabrication of Large Composite Aerospace Structures Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Reduced mass composite materials are crucial to the success of aerospace systems, but their adoption is inhibited because they require autoclave consolidation, a...

  20. Analysis of the influence of advanced materials for aerospace products R&D and manufacturing cost

    Science.gov (United States)

    Shen, A. W.; Guo, J. L.; Wang, Z. J.

    2015-12-01

    In this paper, we pointed out the deficiency of traditional cost estimation model about aerospace products Research & Development (R&D) and manufacturing based on analyzing the widely use of advanced materials in aviation products. Then we put up with the estimating formulas of cost factor, which representing the influences of advanced materials on the labor cost rate and manufacturing materials cost rate. The values ranges of the common advanced materials such as composite materials, titanium alloy are present in the labor and materials two aspects. Finally, we estimate the R&D and manufacturing cost of F/A-18, F/A- 22, B-1B and B-2 aircraft based on the common DAPCA IV model and the modified model proposed by this paper. The calculation results show that the calculation precision improved greatly by the proposed method which considering advanced materials. So we can know the proposed method is scientific and reasonable.

  1. Temperature restrictions for materials used in aerospace industry for the near-sun orbits

    CERN Document Server

    Ancona, Elena

    2016-01-01

    For near-Sun missions, the spacecraft approaches very close to the Sun and space environmental effects become relevant. Strong restrictions on how much close it can get derive from the maximum temperature that the used materials can stand, in order not to compromise the spacecraft's activity and functionalities. In other words, the minimum perihelion distance of a given mission can be determined based on the materials' temperature restrictions. The temperature of an object in space depends on its optical properties: reflectivity, absorptivity, transmissivity, and emissivity. Usually, it is considered as an approximation that the optical properties of materials are constant. However, emissivity depends on temperature. The consideration of the temperature dependence of emissivity and conductivity of materials used in the aerospace industry leads to the conclusion that the temperature dependence on the heliocentric distance is different from the case of constant optical properties [1]. Particularly, taking into ...

  2. A Fundamental Study of Laser Beam Welding Aluminum-Lithium Alloy 2195 for Cryogenic Tank Applications

    Science.gov (United States)

    Martukanitz, R. P.; Jan. R.

    1996-01-01

    Based on the potential for decreasing costs of joining stiffeners to skin by laser beam welding, a fundamental research program was conducted to address the impediments identified during an initial study involving laser beam welding of aluminum-lithium alloys. Initial objectives of the program were the identification of governing mechanism responsible for process related porosity while establishing a multivariant relationship between process parameters and fusion zone geometry for laser beam welds of alloy 2195. A three-level fractional factorial experiment was conducted to establish quantitative relationships between primary laser beam processing parameters and critical weld attributes. Although process consistency appeared high for welds produced during partial completion of this study, numerous cracks on the top-surface of the welds were discovered during visual inspection and necessitated additional investigations concerning weld cracking. Two experiments were conducted to assess the effect of filler alloy additions on crack sensitivity: the first experiment was used to ascertain the effects of various filler alloys on cracking and the second experiment involved modification to process parameters for increasing filler metal dilution. Results indicated that filler alloys 4047 and 4145 showed promise for eliminating cracking.

  3. Removing hydrochloric acid exhaust products from high performance solid rocket propellant using aluminum-lithium alloy.

    Science.gov (United States)

    Terry, Brandon C; Sippel, Travis R; Pfeil, Mark A; Gunduz, I Emre; Son, Steven F

    2016-11-01

    Hydrochloric acid (HCl) pollution from perchlorate based propellants is well known for both launch site contamination, as well as the possible ozone layer depletion effects. Past efforts in developing environmentally cleaner solid propellants by scavenging the chlorine ion have focused on replacing a portion of the chorine-containing oxidant (i.e., ammonium perchlorate) with an alkali metal nitrate. The alkali metal (e.g., Li or Na) in the nitrate reacts with the chlorine ion to form an alkali metal chloride (i.e., a salt instead of HCl). While this technique can potentially reduce HCl formation, it also results in reduced ideal specific impulse (ISP). Here, we show using thermochemical calculations that using aluminum-lithium (Al-Li) alloy can reduce HCl formation by more than 95% (with lithium contents ≥15 mass%) and increase the ideal ISP by ∼7s compared to neat aluminum (using 80/20 mass% Al-Li alloy). Two solid propellants were formulated using 80/20 Al-Li alloy or neat aluminum as fuel additives. The halide scavenging effect of Al-Li propellants was verified using wet bomb combustion experiments (75.5±4.8% reduction in pH, ∝ [HCl], when compared to neat aluminum). Additionally, no measurable HCl evolution was detected using differential scanning calorimetry coupled with thermogravimetric analysis, mass spectrometry, and Fourier transform infrared absorption. PMID:27289269

  4. Carbon Nanotube Enhanced Aerospace Composite Materials A New Generation of Multifunctional Hybrid Structural Composites

    CERN Document Server

    Kostopoulos, V

    2013-01-01

    The well documented increase in the use of high performance composites as structural materials in aerospace components is continuously raising the demands in terms of dynamic performance, structural integrity, reliable life monitoring systems and adaptive actuating abilities. Current technologies address the above issues separately; material property tailoring and custom design practices aim to the enhancement of dynamic and damage tolerance characteristics, whereas life monitoring and actuation is performed with embedded sensors that may be detrimental to the structural integrity of the component. This publication explores the unique properties of carbon nanotubes (CNT) as an additive in the matrix of Fibre Reinforced Plastics (FRP), for producing structural composites with improved mechanical performance as well as sensing/actuating capabilities. The successful combination of the CNT properties and existing sensing actuating technologies leads to the realization of a multifunctional FRP structure. The curre...

  5. Collection, processing, and reporting of damage tolerant design data for non-aerospace structural materials

    Science.gov (United States)

    Huber, P. D.; Gallagher, J. P.

    1994-01-01

    This report describes the organization, format and content of the NASA Johnson damage tolerant database which was created to store damage tolerant property data for non aerospace structural materials. The database is designed to store fracture toughness data (K(sub IC), K(sub c), J(sub IC) and CTOD(sub IC)), resistance curve data (K(sub R) VS. delta a (sub eff) and JR VS. delta a (sub eff)), as well as subcritical crack growth data (a vs. N and da/dN vs. delta K). The database contains complementary material property data for both stainless and alloy steels, as well as for aluminum, nickel, and titanium alloys which were not incorporated into the Damage Tolerant Design Handbook database.

  6. Modeling the Behaviour of an Advanced Material Based Smart Landing Gear System for Aerospace Vehicles

    International Nuclear Information System (INIS)

    The last two decades have seen a substantial rise in the use of advanced materials such as polymer composites for aerospace structural applications. In more recent years there has been a concerted effort to integrate materials, which mimic biological functions (referred to as smart materials) with polymeric composites. Prominent among smart materials are shape memory alloys, which possess both actuating and sensory functions that can be realized simultaneously. The proper characterization and modeling of advanced and smart materials holds the key to the design and development of efficient smart devices/systems. This paper focuses on the material characterization; modeling and validation of the model in relation to the development of a Shape Memory Alloy (SMA) based smart landing gear (with high energy dissipation features) for a semi rigid radio controlled airship (RC-blimp). The Super Elastic (SE) SMA element is configured in such a way that it is forced into a tensile mode of high elastic deformation. The smart landing gear comprises of a landing beam, an arch and a super elastic Nickel-Titanium (Ni-Ti) SMA element. The landing gear is primarily made of polymer carbon composites, which possess high specific stiffness and high specific strength compared to conventional materials, and are therefore ideally suited for the design and development of an efficient skid landing gear system with good energy dissipation characteristics. The development of the smart landing gear in relation to a conventional metal landing gear design is also dealt with

  7. Compilation and development of K-6 aerospace materials for implementation in NASA spacelink electronic information system

    Science.gov (United States)

    Blake, Jean A.

    1987-01-01

    Spacelink is an electronic information service to be operated by the Marshall Space Flight Center. It will provide NASA news and educational resources including software programs that can be accessed by anyone with a computer and modem. Spacelink is currently being installed and will soon begin service. It will provide daily updates of NASA programs, information about NASA educational services, manned space flight, unmanned space flight, aeronautics, NASA itself, lesson plans and activities, and space program spinoffs. Lesson plans and activities were extracted from existing NASA publications on aerospace activities for the elementary school. These materials were arranged into 206 documents which have been entered into the Spacelink program for use in grades K-6.

  8. Novel Catalysts and Processing Technologies for Production of Aerospace Fuels from Non-Petroleum Raw Materials

    Science.gov (United States)

    Hepp, Aloysius F.; Kulis, Michael J.; Psarras, Peter C.; Ball, David W.; Timko, Michael T.; Wong, Hsi-Wu; Peck, Jay; Chianelli, Russell R.

    2014-01-01

    Transportation fuels production (including aerospace propellants) from non-traditional sources (gases, waste materials, and biomass) has been an active area of research and development for decades. Reducing terrestrial waste streams simultaneous with energy conversion, plentiful biomass, new low-cost methane sources, and/or extra-terrestrial resource harvesting and utilization present significant technological and business opportunities being realized by a new generation of visionary entrepreneurs. We examine several new approaches to catalyst fabrication and new processing technologies to enable utilization of these nontraditional raw materials. Two basic processing architectures are considered: a single-stage pyrolysis approach that seeks to basically re-cycle hydrocarbons with minimal net chemistry or a two-step paradigm that involves production of supply or synthesis gas (mainly carbon oxides and H2) followed by production of fuel(s) via Sabatier or methanation reactions and/or Fischer-Tröpsch synthesis. Optimizing the fraction of product stream relevant to targeted aerospace (and other transportation) fuels via modeling, catalyst fabrication and novel reactor design are described. Energy utilization is a concern for production of fuels for either terrestrial or space operations; renewable sources based on solar energy and/or energy efficient processes may be mission enabling. Another important issue is minimizing impurities in the product stream(s), especially those potentially posing risks to personnel or operations through (catalyst) poisoning or (equipment) damage. Technologies being developed to remove (and/or recycle) heteroatom impurities are briefly discussed as well as the development of chemically robust catalysts whose activities are not diminished during operation. The potential impacts on future missions by such new approaches as well as balance of system issues are addressed.

  9. Advanced Aircraft Material

    Directory of Open Access Journals (Sweden)

    Vivek Kumar Prince

    2013-06-01

    Full Text Available There has been long debate on “advanced aircraft material” from past decades & researchers too came out with lots of new advanced material like composites and different aluminum alloys. Now days a new advancement that is in great talk is third generation Aluminum-lithium alloy. Newest Aluminum-lithium alloys are found out to have low density, higher elastic modulus, greater stiffness, greater cryogenic toughness, high resistance to fatigue cracking and improved corrosion resistance properties over the earlier used aircraft material as mentioned in Table 3 [1-5]. Comparison had been made with nowadays used composite material and is found out to be more superior then that

  10. Influence Mechanism of Cerium on the Threshold of Short Fatigue Crack for Aluminum-lithium Alloy 2090

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The thresholds of short fatigue cracks for aluminum-lithium alloys 2090 and 2090+Ce are quantitatively evaluated. The essential reason resulting in stronger short crack effect has been ascertained. Influence of cerium on the threshold of short fatigue cracks for aluminum-lithium alloy 2090 was investigated. The results show that, by adding Ce into this alloy,△Ki and △KCL-th are increased. The influence mechanism of Ce on the threshold of short fatigue crack for alloy 2090 was explored from the bound energy, T1 phase, the energy of anti-phase boundary, the energy of super-lattice intrinsic stacking fault and the electron bonds. By adding Ce into alloy 2090, the bound energy of Cu atom in this alloy is increased; the effect of thinning and dispersing T1 phase is obtained; the effect of increasing the energy of anti-phase boundary and decreasing the energy of super-lattice intrinsic stacking fault for δ'phase can be achieved.

  11. Computational simulation of probabilistic lifetime strength for aerospace materials subjected to high temperature, mechanical fatigue, creep and thermal fatigue

    Science.gov (United States)

    Boyce, Lola; Bast, Callie C.; Trimble, Greg A.

    1992-01-01

    This report presents the results of a fourth year effort of a research program, conducted for NASA-LeRC by the University of Texas at San Antonio (UTSA). The research included on-going development of methodology that provides probabilistic lifetime strength of aerospace materials via computational simulation. A probabilistic material strength degradation model, in the form of a randomized multifactor interaction equation, is postulated for strength degradation of structural components of aerospace propulsion systems subject to a number of effects or primitive variables. These primitive variables may include high temperature, fatigue or creep. In most cases, strength is reduced as a result of the action of a variable. This multifactor interaction strength degradation equation has been randomized and is included in the computer program, PROMISS. Also included in the research is the development of methodology to calibrate the above-described constitutive equation using actual experimental materials data together with regression analysis of that data, thereby predicting values for the empirical material constants for each effect or primitive variable. This regression methodology is included in the computer program, PROMISC. Actual experimental materials data were obtained from industry and the open literature for materials typically for applications in aerospace propulsion system components. Material data for Inconel 718 has been analyzed using the developed methodology.

  12. Ultra high molecular weight polyethylene as a base material for shielding cosmic radiation in aerospace applications

    International Nuclear Information System (INIS)

    Materials with high content of hydrogen have good properties of shielding against the effects of cosmic rays (CR) because are less effective than materials with high nuclear masses in the generation of secondary radiation. Beside the Aluminum, Polyethylene has been used as a reference and as a base material for composites applied in structures and in shielding of ionizing radiation for aerospace applications. Ultra high molecular weight polyethylene (UHMWPE), pure and doped 10% by mass with cadmium chloride, had its shielding properties for CR evaluated in this paper. Methodology used was based in conventional radioactive sources employed on simple geometries experiments and then computational simulation for isotropic fluxes of cosmic-ray high energy particles. Transmission experiments were performed with a3.7GBq (100 mCi)241Am-Be neutron source and a set of conventional calibration gamma radiation sources. Samples were characterized according to their gamma total attenuation coefficients from 59 to 1,408 keV, dose deposition curve for 60Co gamma-rays, fast neutron transmission coefficient, generation and self-absorption of thermal neutrons as well as their generation of internal cascades of secondary electrons and gamma-rays by nuclear interactions of fast neutrons with shielding material. Main effects of the additive in the polyethylene base were the most effective removal of gamma radiation and of secondary electrons with energies below 200 keV, the reduction of the albedo as well as the thermal neutrons transmission. Dose reduction due to primary CR were not significant, since the largest contribution to the doses due to high energy ionizing particles transmitted and, also, due to secondary radiation with energy above 1 MeV produced in shielding. (author)

  13. Ultra high molecular weight polyethylene as a base material for shielding cosmic radiation in aerospace applications

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Marlon A., E-mail: marlon@ieav.cta.br [Instituto de Estudos Avancados (IEAv), Sao Jose dos Campos, SP (Brazil). Divisao de Fisica Aplicada; Goncalez, Odair L. [Instituto Tecnologico de Aeronautica (PG/CTE/ITA), Sao Jose dos Campos, SP (Brazil). Programa de Pos-Graduacao em Ciencias e Tecnologias Espaciais

    2013-07-01

    Materials with high content of hydrogen have good properties of shielding against the effects of cosmic rays (CR) because are less effective than materials with high nuclear masses in the generation of secondary radiation. Beside the Aluminum, Polyethylene has been used as a reference and as a base material for composites applied in structures and in shielding of ionizing radiation for aerospace applications. Ultra high molecular weight polyethylene (UHMWPE), pure and doped 10% by mass with cadmium chloride, had its shielding properties for CR evaluated in this paper. Methodology used was based in conventional radioactive sources employed on simple geometries experiments and then computational simulation for isotropic fluxes of cosmic-ray high energy particles. Transmission experiments were performed with a3.7GBq (100 mCi){sup 241}Am-Be neutron source and a set of conventional calibration gamma radiation sources. Samples were characterized according to their gamma total attenuation coefficients from 59 to 1,408 keV, dose deposition curve for {sup 60}Co gamma-rays, fast neutron transmission coefficient, generation and self-absorption of thermal neutrons as well as their generation of internal cascades of secondary electrons and gamma-rays by nuclear interactions of fast neutrons with shielding material. Main effects of the additive in the polyethylene base were the most effective removal of gamma radiation and of secondary electrons with energies below 200 keV, the reduction of the albedo as well as the thermal neutrons transmission. Dose reduction due to primary CR were not significant, since the largest contribution to the doses due to high energy ionizing particles transmitted and, also, due to secondary radiation with energy above 1 MeV produced in shielding. (author)

  14. Design and Analysis of Crankshaft Used in Aerospace Applications and Comparision Using Different Materials.

    Directory of Open Access Journals (Sweden)

    Satya Narayana Gupta,

    2015-09-01

    Full Text Available The overall objective of this project was to evaluate and compare the fatigue performance of two competing manufacturing technologies for aerospace crankshafts, namely forged steel and ductile cast iron. In this project a dynamic simulation was conducted on two crankshafts, forged steel and ductile cast iron, from similar four cylinder four stroke engines. Finite element analysis was performed to obtain the variation of stress magnitude at critical locations. The pressure-volume diagram was used to calculate the load boundary condition in dynamic simulation model, and other simulation inputs were taken from the engine specification chart. The dynamic analysis was done analytically and was verified by simulations in ANSYS. Results achieved from aforementioned analysis were used in optimization of the forged steel crankshaft. Geometry, material, and manufacturing processes were optimized considering different constraints, manufacturing feasibility, and cost. The optimization Process included geometry changes compatible with the current engine, fillet rolling, and the use of micro alloyed steel, resulting in increased fatigue strength and reduced cost of the crankshaft, without changing connecting rod and or engine block.

  15. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 1, Part 1

    Science.gov (United States)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 1 - Volume I: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries, Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries, and Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop).

  16. Aerospace Medicine

    Science.gov (United States)

    Michaud, Vince

    2015-01-01

    NASA Aerospace Medicine overview - Aerospace Medicine is that specialty area of medicine concerned with the determination and maintenance of the health, safety, and performance of those who fly in the air or in space.

  17. Surface treatment of new type aluminum lithium alloy and fatigue crack behaviors of this alloy plate bonded with Ti–6Al–4V alloy strap

    International Nuclear Information System (INIS)

    Highlights: ► A new generation aluminum lithium alloy which special made for Chinese commercial plane was investigated. ► Pattern of aluminum lithium alloy and Ti alloy were shown after anodization. ► Crack propagation of samples bonded with different wide Ti straps were studied in this paper. -- Abstract: Samples consisting of new aluminum lithium alloy (Al–Li alloy) plate developed by the Aluminum Company of America and Ti–6Al–4V alloy (Ti alloy) plate were investigated. Plate of 400 mm × 140 mm × 2 mm with single edge notch was anodized in phosphoric solution and Ti alloy plate of 200 mm × 20 (40) mm × 2 mm was anodized in alkali solution. Patterns of two alloys were studied at original/anodized condition. And then, aluminum alloy and Ti alloy plates were assembled into a sample with FM 94 film adhesive. Fatigue crack behaviors of the sample were investigated under condition of nominal stress σ = 36 MPa and 54 MPa, stress ratio of 0.1. Testing results show that anodization treatment modifies alloys surface topography. Ti alloy bonding to Al–Li alloy plate effectively retards crack growth than that of Al–Li alloy plate. Fatigue life of sample bonded with Ti alloy strap improves about 62.5% than that of non-strap plate.

  18. A Review of State-of-the-Art Separator Materials for Advanced Lithium-Based Batteries for Future Aerospace Missions

    Science.gov (United States)

    Bladwin, Richard S.

    2009-01-01

    As NASA embarks on a renewed human presence in space, safe, human-rated, electrical energy storage and power generation technologies, which will be capable of demonstrating reliable performance in a variety of unique mission environments, will be required. To address the future performance and safety requirements for the energy storage technologies that will enhance and enable future NASA Constellation Program elements and other future aerospace missions, advanced rechargeable, lithium-ion battery technology development is being pursued with an emphasis on addressing performance technology gaps between state-of-the-art capabilities and critical future mission requirements. The material attributes and related performance of a lithium-ion cell's internal separator component are critical for achieving overall optimal performance, safety and reliability. This review provides an overview of the general types, material properties and the performance and safety characteristics of current separator materials employed in lithium-ion batteries, such as those materials that are being assessed and developed for future aerospace missions.

  19. An Approach to Evaluate Precision and Inter-Laboratory Variability of Flammability Test Methods for Aerospace Materials

    Science.gov (United States)

    Hirsch, David; Beeson, Harold D.

    2005-01-01

    Materials selection for spacecraft is based on conventional flammability or ignition sensitivity acceptance tests. Current procedures for determining the inter-laboratory repeatability and reproducibility of aerospace materials flammability tests are not considering the dependence of data variability on test conditions and consequently attempts to characterize the precision of these methods were not successful. The inter-laboratory data variability is determined with tests conducted under arbitrary conditions, which consequently may not provide sufficient information to enable adequate determination of a method's precision. For evaluating the precision of NASA's flammability test methods, the protocol recommended includes selecting critical parameters and determining the 50% failure point by considering the specific failure criteria of each method using the critical parameter as a variable. Upon performing inter-laboratory round robin testing using this approach, the laboratories' performance could be evaluated by comparing the repeatability of the 50% failure point and/or the repeatability of critical conditions where the probabilities of passing and failing are unity, i.e., the transition zone repeatability. When a sufficient amount of data has been acquired with this method, an adequate estimation of precision of aerospace materials flammability test methods will be possible.

  20. 60NiTi Intermetallic Material Evaluation for Lightweight and Corrosion Resistant Spherical Sliding Bearings for Aerospace Applications

    Science.gov (United States)

    DellaCorte, Christopher; Jefferson, Michael

    2015-01-01

    NASA Glenn Research Center and the Kamatics subsidiary of the Kaman Corporation conducted the experimental evaluation of spherical sliding bearings made with 60NiTi inner races. The goal of the project was to assess the feasibility of manufacturing lightweight, corrosion resistant bearings utilizing 60NiTi for aerospace and industrial applications. NASA produced the bearings in collaboration with Abbott Ball Corporation and Kamatics fabricated bearing assemblies utilizing their standard reinforced polymer liner material. The assembled bearings were tested in oscillatory motion at a load of 4.54kN (10,000 lb), according to the requirements of the plain bearing specification SAE AS81820. Several test bearings were exposed to hydraulic fluid or aircraft deicing fluid prior to and during testing. The results show that the 60NiTi bearings exhibit tribological performance comparable to conventional stainless steel (440C) bearings. Further, exposure of 60NiTi bearings to the contaminant fluids had no apparent performance effect. It is concluded that 60NiTi is a feasible bearing material for aerospace and industrial spherical bearing applications.

  1. NASA-UVa light aerospace alloy and structures technology program supplement: Aluminum-based materials for high speed aircraft

    Science.gov (United States)

    Starke, E. A., Jr. (Editor)

    1995-01-01

    This report on the NASA-UVa light aerospace alloy and structure technology program supplement: Aluminum-Based Materials for High Speed Aircraft covers the period from July 1, 1992. The objective of the research is to develop aluminum alloys and aluminum matrix composites for the airframe which can efficiently perform in the HSCT environment for periods as long as 60,000 hours (certification for 120,000 hours) and, at the same time, meet the cost and weight requirements for an economically viable aircraft. Current industry baselines focus on flight at Mach 2.4. The research covers four major materials systems: (1) Ingot metallurgy 2XXX, 6XXX, and 8XXX alloys, (2) Powder metallurgy 2XXX alloys, (3) Rapidly solidified, dispersion strengthened Al-Fe-X alloys, and (4) Discontinuously reinforced metal matrix composites. There are ten major tasks in the program which also include evaluation and trade-off studies by Boeing and Douglas aircraft companies.

  2. Aerospace Environmental Technology Conference

    Science.gov (United States)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The Executive Summary of this Conference is published as NASA CP-3297.

  3. Investigation into the stress corrosion cracking properties of AA2099, an aluminum-lithium-copper alloy

    Science.gov (United States)

    Padgett, Barbara Nicole

    Recently developed Al-Li-Cu alloys show great potential for implementation in the aerospace industry because of the attractive mix of good mechanical properties and low density. AA2099 is an Al-Li-Cu alloy with the following composition Al-2.69wt%Cu-1.8wt%Li-0.6wt%Zn-0.3wt%Mg-0.3wt%Mn-0.08wt%Zr. The environmental assisted cracking and localized corrosion behavior of the AA2099 was investigated in this thesis. The consequences of uncontrolled grain boundary precipitation via friction stir welding on the stress corrosion cracking (SCC) behavior of AA2099 was investigated first. Using constant extension rate testing, intergranular corrosion immersion experiments, and potentiodynamic scans, the heat-affected zone on the trailing edge of the weld (HTS) was determined to be most susceptible of the weld zones. The observed SCC behavior for the HTS was linked to the dissolution of an active phase (Al2CuLi, T1) populating the grain boundary. It should be stated that the SCC properties of AA2099 in the as-received condition were determined to be good. Focus was then given to the electrochemical behavior of precipitate phases that may occupy grain and sub-grain boundaries in AA2099. The grain boundary micro-chemistry and micro-electrochemistry have been alluded to within the literature as having significant influence on the SCC behavior of Al-Li-Cu alloys. Major precipitates found in this alloy system are T1 (Al 2CuLi), T2 (Al7.5Cu4Li), T B (Al6CuLi3), and theta (Al2 Cu). These phases were produced in bulk form so that the electrochemical nature of each phase could be characterized. It was determined T1 was most active electrochemically and theta was least. When present on grain boundaries in the alloy, electrochemical behavior of the individual precipitates aligned with the observed corrosion behavior of the alloy (e.g. TB was accompanied by general pitting corrosion and T 1 was accompanied by intergranular corrosion attack). In addition to the electrochemical behavior of

  4. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST). Research on Materials for the High Speed Civil Transport

    Science.gov (United States)

    Gangloff, Richard P.; Starke, Edgar A., Jr.; Kelly, Robert G.; Scully, John R.; Stoner, Glenn E.; Wert, John A.

    1997-01-01

    Since 1986, the NASA-Langley Research Center has sponsored the NASA-UVa Light Alloy and Structures Technology (LA2ST) Program at the University of Virginia (UVa). The fundamental objective of the LA2ST program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures. The LA2ST program has aimed to product relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. The scope of the LA2ST Program is broad. Research areas include: (1) Mechanical and Environmental Degradation Mechanisms in Advanced Light Metals and Composites, (2) Aerospace Materials Science, (3) Mechanics of materials for Aerospace Structures, and (4) Thermal Gradient Structures. A substantial series of semi-annual progress reports issued since 1987 documents the technical objectives, experimental or analytical procedures, and detailed results of graduate student research in these topical areas.

  5. Environmentally regulated aerospace coatings

    Science.gov (United States)

    Morris, Virginia L.

    1995-01-01

    Aerospace coatings represent a complex technology which must meet stringent performance requirements in the protection of aerospace vehicles. Topcoats and primers are used, primarily, to protect the structural elements of the air vehicle from exposure to and subsequent degradation by environmental elements. There are also many coatings which perform special functions, i.e., chafing resistance, rain erosion resistance, radiation and electric effects, fuel tank coatings, maskants, wire and fastener coatings. The scheduled promulgation of federal environmental regulations for aerospace manufacture and rework materials and processes will regulate the emissions of photochemically reactive precursors to smog and air toxics. Aerospace organizations will be required to identify, qualify and implement less polluting materials. The elimination of ozone depleting chemicals (ODC's) and implementation of pollution prevention requirements are added constraints which must be addressed concurrently. The broad categories of operations affected are the manufacture, operation, maintenance, and repair of military, commercial, general aviation, and space vehicles. The federal aerospace regulations were developed around the precept that technology had to be available to support the reduction of organic and air toxic emissions, i.e., the regulations cannot be technology forcing. In many cases, the regulations which are currently in effect in the South Coast Air Quality Management District (SCAQMD), located in Southern California, were used as the baseline for the federal regulations. This paper addresses strategies used by Southern California aerospace organizations to cope with these regulatory impacts on aerospace productions programs. All of these regulatory changes are scheduled for implementation in 1993 and 1994, with varying compliance dates established.

  6. Advanced Thermal Protection Systems (ATPS), Aerospace Grade Carbon Bonded Carbon Fiber Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon bonded carbon fiber (CBCF) insulating material is the basis for several highly successful NASA developed thermal protection systems (TPS). Among the...

  7. Advanced Thermal Protection Systems (ATPS), Aerospace Grade Carbon Bonded Carbon Fiber Material Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Carbon bonded carbon fiber (CBCF) insulating material is the basis for several highly successful NASA developed thermal protection systems (TPS). Included among...

  8. On the cyclic stress-strain behavior and low cycle fatigue of aerospace materials

    Science.gov (United States)

    Burbach, J.

    1972-01-01

    The elastic-plastic deformation behavior under cyclic stress of a number of different engineering materials was experimentally investigated with the aid of high-precision methods of measuring, some of which had been newly developed. Experiments made with a variety of steels, the titanium alloy Ti-A16-V4, a cobalt (tungsten) alloy, the high-temperature material Nimonic 90 and Dural (A1-Cu) are reported. The theory given in an attempt to explain these experiments is aimed at finding general formulas for the cyclic stress-strain behavior materials.

  9. Applicability of Aerospace Materials Ground Flammability Test Data to Spacecraft Environments Theory and Applied Technologies

    Science.gov (United States)

    Hirsch, David; Williams, Jim; Beeson, Harold

    2009-01-01

    This slide presentation reviews the use of ground test data in reference to flammability to spacecraft environments. It reviews the current approach to spacecraft fire safety, the challenges to fire safety that the Constellation program poses, the current trends in the evaluation of the Constellation materials flammability, and the correlation of test data from ground flammability tests with the spacecraft environment. Included is a proposal for testing and the design of experiments to test the flammability of materials under similar spacecraft conditions.

  10. New Effective Material Couple--Oxide Ceramic and Carbon Nanotube-- Developed for Aerospace Microsystem and Micromachine Technologies

    Science.gov (United States)

    Miyoshi, Kazuhisa; VanderWal, Randall L.; Tomasek, Aaron J.; Sayir, Ali; Farmer, Serene C.

    2004-01-01

    The prime driving force for using microsystem and micromachine technologies in transport vehicles, such as spacecraft, aircraft, and automobiles, is to reduce the weight, power consumption, and volume of components and systems to lower costs and increase affordability and reliability. However, a number of specific issues need to be addressed with respect to using microsystems and micromachines in aerospace applications--such as the lack of understanding of material characteristics; methods for producing and testing the materials in small batches; the limited proven durability and lifetime of current microcomponents, packaging, and interconnections; a cultural change with respect to system designs; and the use of embedded software, which will require new product assurance guidelines. In regards to material characteristics, there are significant adhesion, friction, and wear issues in using microdevices. Because these issues are directly related to surface phenomena, they cannot be scaled down linearly and they become increasingly important as the devices become smaller. When microsystems have contacting surfaces in relative motion, the adhesion and friction affect performance, energy consumption, wear damage, maintenance, lifetime and catastrophic failure, and reliability. Ceramics, for the most part, do not have inherently good friction and wear properties. For example, coefficients of friction in excess of 0.7 have been reported for ceramics and ceramic composite materials. Under Alternate Fuels Foundation Technologies funding, two-phase oxide ceramics developed for superior high-temperature wear resistance in NASA's High Operating Temperature Propulsion Components (HOTPC) project and new two-layered carbon nanotube (CNT) coatings (CNT topcoat/iron bondcoat/quartz substrate) developed in NASA's Revolutionary Aeropropulsion Concepts (RAC) project have been chosen as a materials couple for aerospace applications, including micromachines, in the nanotechnology

  11. Study of low-cost fabrication methods for aerospace composite materials

    Science.gov (United States)

    Chung, H. H.

    1978-01-01

    Flat and hat section specimens of graphite/epoxy composite materials have been fabricated by the resin bath or wet pultrusion process. This demonstrated the feasibility of incorporating crossplied graphite fiber reinforcements in conjunction with epoxy resin systems in the wet pultrusion process. However, the thickness constraints of the pultrusion process, the lack of dimensional stability of the crossply materials and equipment limitations affect the quality of the hat section pultrusions. The wet pultrusion process shows promise of being a low cost method for producing composite parts with constant cross section along the length. A cost analysis showed at least 80 percent cost reduction for the hat section and 40 percent for flat panel by pultrusion over the conventional manual and automated lay-up.

  12. Studies of mixed materials at the University of Toronto Institute for Aerospace Studies

    International Nuclear Information System (INIS)

    Chemical erosion and radiation-enhanced sublimation (RES) are considered to be major drawbacks for the use of carbon as a plasma-facing material in fusion reactors. The effect of doping on both chemical erosion and RES of specially fabricated samples provided by a Canadian company, Ceramics Kingston (CKC), was studied. The thermal diffusivity and conductivity of the CKC doped specimens were measured and found to be anisotropic. It was found that with increasing D+ fluence, doped graphites retain relatively higher levels of D than pure carbon. XPS surface analysis confirmed the formation of WC for the low C+ fluence case, and graphitic carbon at high C+ fluences. The spectroscopic measurements of boron in/on graphite samples from DIIID were done

  13. Aerospace Systems Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Proposal Title: Aerospace Systems Monitor PHASE 1 Technical Abstract: This Phase II STTR project will continue development and commercialization of the Aerospace...

  14. Second Aerospace Environmental Technology Conference

    Science.gov (United States)

    Whitaker, A. F. (Editor); Clark-Ingram, M. (Editor)

    1997-01-01

    The mandated elimination of CFC'S, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application, verification, compliant coatings including corrosion protection system and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards.

  15. 60NiTi Intermetallic Material Evaluation for Lightweight and Corrosion Resistant Spherical Sliding Bearings for Aerospace Applications, Report on NASA-Kamatics SAA3-1288

    Science.gov (United States)

    Dellacorte, Christopher; Jefferson, Michael

    2015-01-01

    Under NASA Space Act Agreement (SAA3-1288), NASA Glenn Research Center and the Kamatics subsidiary of the Kaman Corporation conducted the experimental evaluation of spherical sliding bearings made with 60NiTi inner races. The goal of the project was to assess the feasibility of manufacturing lightweight, corrosion resistant bearings utilizing 60NiTi for aerospace and industrial applications. NASA produced the bearings in collaboration with Abbott Ball Corporation and Kamatics fabricated bearing assemblies utilizing their standard reinforced polymer liner material. The assembled bearings were tested in oscillatory motion at a load of 4.54 kN (10,000 lb), according to the requirements of the plain bearing specification SAE AS81820. Several test bearings were exposed to hydraulic fluid or aircraft deicing fluid prior to and during testing. The results show that the 60NiTi bearings exhibit tribological performance comparable to conventional stainless steel (440C) bearings. Further, exposure of 60NiTi bearings to the contaminant fluids had no apparent performance effect. It is concluded that 60NiTi is a feasible bearing material for aerospace and industrial spherical bearing applications.

  16. Aerospace Grade Carbon Felt Preform Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fiber Materials, Inc. (FMI) will develop an aerospace-grade carbon felt preform by employing application specific materials with effective processes and fabrication...

  17. Prepsolv (TM): The optimum alternative to 1,1,1-trichloroethane and methyl ethyl ketone for hand-wipe cleaning of aerospace materials

    Science.gov (United States)

    Gallagher, R. Scott; Purvis, John A.; Moran, Wade W.

    1995-01-01

    Engineers at Hercules Aerospace, a rocket motor manufacturer in Utah, have worked closely with chemists at Glidco Organics to study the feasibility of using terpenes for zero-residue wipe cleaning. The result of this work is a technological breakthrough, in which the barrier to ultra-low non-volatile residue formation has been broken. After 2 years of development and testing, SCM Glidco Organics has announced the availability of Glidsafe(registered trademark) Prepsolv(TM): a state-of-the-art ultra-low residue terpene wipe cleaning agent that does not require rinsing. Prepsolv(TM) can successfully be used in simple hand-wipe cleaning processes without fear of leaving surface residues. Industry testing has confirmed that Prepsolv(TM) is not only highly effective, but can even be less expensive to use than traditional cleaning solvents like methyl chloroform. This paper addresses the features and benefits of Prepsolv(TM), and presents performance and material compatibility data that characterizes this unique cleaning agent. Since its commercialization, Hercules Aerospace has chosen Prepsolv(TM) as the optimum cleaning agent to replace ozone-depleting solvents in their weapons factory in Magna, UT. Likewise, Boeing has approved Prepsolv(TM) for cleaning components in the manufacture of commercial aircraft at their facilities in Seattle, WA and Wichita, KS. Additional approvals are forthcoming for this uniquely safe and effective solvent.

  18. NASA-UVa Light Aerospace Alloy and Structures Technology Program: Aluminum-Based Materials for High Speed Aircraft

    Science.gov (United States)

    Starke, E. A., Jr. (Editor)

    1996-01-01

    This report is concerned with 'Aluminum-Based Materials for High Speed Aircraft' which was initiated to identify the technology needs associated with advanced, low-cost aluminum base materials for use as primary structural materials. Using a reference baseline aircraft, these materials concept will be further developed and evaluated both technically and economically to determine the most attractive combinations of designs, materials, and manufacturing techniques for major structural sections of an HSCT. Once this has been accomplished, the baseline aircraft will be resized, if applicable, and performance objectives and economic evaluations made to determine aircraft operating costs. The two primary objectives of this study are: (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials, and (2) to assess these materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT.

  19. Third Aerospace Environmental Technology Conference

    Science.gov (United States)

    Whitaker, A. F. (Editor); Cross, D. R. (Editor); Caruso, S. V. (Editor); Clark-Ingram, M. (Editor)

    1999-01-01

    The elimination of CFC's, Halons, TCA, other ozone depleting chemicals, and specific hazardous materials is well underway. The phaseout of these chemicals has mandated changes and new developments in aerospace materials and processes. We are beyond discovery and initiation of these new developments and are now in the implementation phase. This conference provided a forum for materials and processes engineers, scientists, and managers to describe, review, and critically assess the evolving replacement and clean propulsion technologies from the standpoint of their significance, application, impact on aerospace systems, and utilization by the research and development community. The use of these new technologies, their selection and qualification, their implementation, and the needs and plans for further developments are presented.

  20. Standard practice for radiologic examination of flat panel composites and sandwich core materials used in aerospace applications

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice is intended to be used as a supplement to Practices E 1742, E 1255, and E 2033. 1.2 This practice describes procedures for radiologic examination of flat panel composites and sandwich core materials made entirely or in part from fiber-reinforced polymer matrix composites. Radiologic examination is: a) radiographic (RT) with film, b) Computed Radiography (CR) with Imaging Plate, c) Digital Radiology (DR) with Digital Detector Array’s (DDA), and d) Radioscopic (RTR) Real Time Radiology with a detection system such as an Image Intensifier. The composite materials under consideration typically contain continuous high modulus fibers (> 20 GPa), such as those listed in 1.4. 1.3 This practice describes established radiological examination methods that are currently used by industry that have demonstrated utility in quality assurance of flat panel composites and sandwich core materials during product process design and optimization, process control, after manufacture inspection, in service exami...

  1. Damage growth in aerospace composites

    CERN Document Server

    2015-01-01

    This book presents novel methods for the simulation of damage evolution in aerospace composites that will assist in predicting damage onset and growth and thus foster less conservative designs which realize the promised economic benefits of composite materials. The presented integrated numerical/experimental methodologies are capable of taking into account the presence of damage and its evolution in composite structures from the early phases of the design (conceptual design) through to the detailed finite element method analysis and verification phase. The book is based on the GARTEUR Research Project AG-32, which ran from 2007 to 2012, and documents the main results of that project. In addition, the state of the art in European projects on damage evolution in composites is reviewed. While the high specific strength and stiffness of composite materials make them suitable for aerospace structures, their sensitivity to damage means that designing with composites is a challenging task. The new approaches describ...

  2. Sol-gel hybrid materials for aerospace applications: Chemical characterization and comparative investigation of the magnetic properties

    Science.gov (United States)

    Catauro, Michelina; Mozzati, Maria Cristina; Bollino, Flavia

    2015-12-01

    In the material science field, weightless conditions can be successfully used to understand the relationship between manufacturing process, structure and properties of the obtained materials. Aerogels with controlled microstructure could be obtained by sol-gel methods in microgravity environment, simulated using magnetic levitation if they are diamagnetic. In the present work, a sol-gel route was used to synthesize class I, organic-inorganic nanocomposite materials. Two different formulations were prepared: the former consisted in a SiO2 matrix in which different percentages of polyethylene glycol (PEG) were incorporated, the latter was a ZrO2 matrix entrapping different amounts of poly (ε-caprolactone) (PCL). Fourier Transform Infrared Spectroscopy (FT-IR) detected that the organic and the inorganic components in both the formulation interact by means of hydrogen bonds. X-ray diffraction (XRD) analysis highlighted the amorphous nature of the synthesized materials and Scanning Electron Microscope (SEM) showed that they have homogeneous morphology and are nanocomposites. Superconducting Quantum Interference Device (SQUID) magnetometry confirmed the expected diamagnetic character of those hybrid systems. The obtained results were compared to those achieved in previous studies regarding the influence of the polymer amount on the magnetic properties of SiO2/PCL and ZiO2/PEG hybrids, in order to understand how the diamagnetic susceptibility is influenced by variation of both the inorganic matrix and organic component.

  3. NASA-UVA Light Aerospace Alloy and Structure Technology Program Supplement: Aluminum-Based Materials for High Speed Aircraft

    Science.gov (United States)

    Starke, E. A., Jr.

    1997-01-01

    This is the final report of the study "Aluminum-Based Materials for High Speed Aircraft" which had the objectives (1) to identify the most promising aluminum-based materials with respect to major structural use on the HSCT and to further develop those materials and (2) to assess the materials through detailed trade and evaluation studies with respect to their structural efficiency on the HSCT. The research team consisted of ALCOA, Allied-Signal, Boeing, McDonnell Douglas, Reynolds Metals and the University of Virginia. Four classes of aluminum alloys were investigated: (1) I/M 2XXX containing Li and I/M 2XXX without Li, (2) I/M 6XXX, (3) two P/M 2XXX alloys, and (4) two different aluminum-based metal matrix composites (MMC). The I/M alloys were targeted for a Mach 2.0 aircraft and the P/M and MMC alloys were targeted for a Mach 2.4 aircraft. Design studies were conducted using several different concepts including skin/stiffener (baseline), honeycomb sandwich, integrally stiffened and hybrid adaptations (conventionally stiffened thin-sandwich skins). Alloy development included fundamental studies of coarsening behavior, the effect of stress on nucleation and growth of precipitates, and fracture toughness as a function of temperature were an integral part of this program. The details of all phases of the research are described in this final report.

  4. Soft impacts on aerospace structures

    Science.gov (United States)

    Abrate, Serge

    2016-02-01

    This article provides an overview of the literature dealing with three types of soft impacts of concern for the aerospace applications, namely impacts of rain drops, hailstones and birds against aircraft. It describes the physics of the problem as it has become better understood through experiments, analyses, and numerical simulations. Some emphasis has been placed on the material models and the numerical approaches used in modeling these three types of projectiles.

  5. Carbon nanotechnology for future aerospace

    OpenAIRE

    Inam, Fawad

    2014-01-01

    Carbon nanotubes (CNTs) and graphene are being widely investigated for their addition in polymer, ceramic and metal matrices to prepare nanocomposites owing to the combination of the superlative mechanical, thermal, and electronic properties attributed to them. These materials are subject of significant research interest for their utilisation in an increasing number of applications including energy, transportation, defence, automotive, aerospace, sporting goods, and infrastructure sectors. Pa...

  6. Novel Wiring Technologies for Aerospace Applications

    Science.gov (United States)

    Gibson, Tracy L.; Parrish, Lewis M.

    2014-01-01

    Because wire failure in aerospace vehicles could be catastrophic, smart wiring capabilities have been critical for NASA. Through the years, researchers at Kennedy Space Center (KSC) have developed technologies, expertise, and research facilities to meet this need. In addition to aerospace applications, NASA has applied its knowledge of smart wiring, including self-healing materials, to serve the aviation industry. This webinar will discuss the development efforts of several wiring technologies at KSC and provide insight into both current and future research objectives.

  7. 1981 advances in aerospace structures and materials; Proceedings of the Winter Annual Meeting, Washington, DC, November 15-20, 1981

    Science.gov (United States)

    Wang, S. S.; Renton, W. J.

    Among the topics discussed are the viscoelastic deformation and failure behavior of composite materials with distributed flaws, failure mechanisms in metal matrix composite laminates, the fatigue behavior of adhesively bonded joints, the effects of moisture on the mechanical properties of glass/epoxy composites, the vibration and buckling of thick cylindrical shells of bimodulus composite materials, and the turbulence-excited flapping motion of a rotor blade in hovering flight. Also considered are the creep postbuckling of plates, a variational formulation and incremental solution of elastoplastic torsion, a nonlinear theory of general solid-section beams, macro- and micro-mechanical aspects of creep fracture, and the interface crack in a shear and bending field.

  8. Optimal Composite Material for Low Cost Fabrication of Large Composite Aerospace Structures using NASA Resins or POSS Nanoparticle Modifications

    Science.gov (United States)

    Lamontia, Mark A.; Gruber, Mark B.; Jensen, Brian J.

    2006-01-01

    Thermoplastic laminates in situ consolidated via tape or tow placement require full mechanical properties. Realizing full properties requires resin crystallinity to be controlled - partial crystallinity leads to unacceptably low laminate compression properties. There are two approaches: utilize an amorphous matrix resin; or place material made from a semi-crystalline resin featuring kinetics faster than the process. In this paper, a matrix resin evaluation and trade study was completed with commercial and NASA amorphous polyimides on the one hand, and with PEKK mixed with POSS nanoparticles for accelerated crystallinity growth on the other. A new thermoplastic impregnated material, 6 mm wide (0.25-in) AS-4 carbon/LaRC(TradeMark)8515 dry polyimide tow, was fabricated. Since LaRC(TradeMark)8515 is fully amorphous, it attains full properties following in situ consolidation, with no post processing required to build crystallinity. The tow in situ processing was demonstrated via in situ thermoplastic filament winding it into rings.

  9. NASA Aerospace Flight Battery Program: Generic Safety, Handling and Qualification Guidelines for Lithium-Ion (Li-Ion) Batteries; Availability of Source Materials for Lithium-Ion (Li-Ion) Batteries; Maintaining Technical Communications Related to Aerospace Batteries (NASA Aerospace Battery Workshop). Volume 2, Part 1

    Science.gov (United States)

    Manzo, Michelle A.; Brewer, Jeffrey C.; Bugga, Ratnakumar V.; Darcy, Eric C.; Jeevarajan, Judith A.; McKissock, Barbara I.; Schmitz, Paul C.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This report contains the Appendices to the findings from the first year of the program's operations.

  10. High-precision Non-Contact Measurement of Creep of Ultra-High Temperature Materials for Aerospace

    Science.gov (United States)

    Rogers, Jan R.; Hyers, Robert

    2008-01-01

    For high-temperature applications (greater than 2,000 C) such as solid rocket motors, hypersonic aircraft, nuclear electric/thermal propulsion for spacecraft, and more efficient jet engines, creep becomes one of the most important design factors to be considered. Conventional creep-testing methods, where the specimen and test apparatus are in contact with each other, are limited to temperatures approximately 1,700 C. Development of alloys for higher-temperature applications is limited by the availability of testing methods at temperatures above 2000 C. Development of alloys for applications requiring a long service life at temperatures as low as 1500 C, such as the next generation of jet turbine superalloys, is limited by the difficulty of accelerated testing at temperatures above 1700 C. For these reasons, a new, non-contact creep-measurement technique is needed for higher temperature applications. A new non-contact method for creep measurements of ultra-high-temperature metals and ceramics has been developed and validated. Using the electrostatic levitation (ESL) facility at NASA Marshall Space Flight Center, a spherical sample is rotated quickly enough to cause creep deformation due to centrifugal acceleration. Very accurate measurement of the deformed shape through digital image analysis allows the stress exponent n to be determined very precisely from a single test, rather than from numerous conventional tests. Validation tests on single-crystal niobium spheres showed excellent agreement with conventional tests at 1985 C; however the non-contact method provides much greater precision while using only about 40 milligrams of material. This method is being applied to materials including metals and ceramics for non-eroding throats in solid rockets and next-generation superalloys for turbine engines. Recent advances in the method and the current state of these new measurements will be presented.

  11. Aerospace Environmental Technology Conference: Exectutive summary

    Science.gov (United States)

    Whitaker, A. F. (Editor)

    1995-01-01

    The mandated elimination of CFC's, Halons, TCA, and other ozone depleting chemicals and specific hazardous materials has required changes and new developments in aerospace materials and processes. The aerospace industry has been involved for several years in providing product substitutions, redesigning entire production processes, and developing new materials that minimize or eliminate damage to the environment. These activities emphasize replacement cleaning solvents and their application verifications, compliant coatings including corrosion protection systems, and removal techniques, chemical propulsion effects on the environment, and the initiation of modifications to relevant processing and manufacturing specifications and standards. The papers from this conference are being published in a separate volume as NASA CP-3298.

  12. Aerospace Systems Monitor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This Phase I STTR project will demonstrate the Aerospace System Monitor (ASM). This technology transforms the power distribution network in a spacecraft or aircraft...

  13. Structural Efficiency of Composite Struts for Aerospace Applications

    Science.gov (United States)

    Jegley, Dawn C.; Wu, K. Chauncey; McKenney, Martin J.; Oremont, Leonard

    2011-01-01

    The structural efficiency of carbon-epoxy tapered struts is considered through trade studies, detailed analysis, manufacturing and experimentation. Since some of the lunar lander struts are more highly loaded than struts used in applications such as satellites and telescopes, the primary focus of the effort is on these highly loaded struts. Lunar lander requirements include that the strut has to be tapered on both ends, complicating the design and limiting the manufacturing process. Optimal stacking sequences, geometries, and materials are determined and the sensitivity of the strut weight to each parameter is evaluated. The trade study results indicate that the most efficient carbon-epoxy struts are 30 percent lighter than the most efficient aluminum-lithium struts. Structurally efficient, highly loaded struts were fabricated and loaded in tension and compression to determine if they met the design requirements and to verify the accuracy of the analyses. Experimental evaluation of some of these struts demonstrated that they could meet the greatest Altair loading requirements in both tension and compression. These results could be applied to other vehicles requiring struts with high loading and light weight.

  14. Ultrasonic Characterization of Aerospace Composites

    Science.gov (United States)

    Leckey, Cara; Johnston, Patrick; Haldren, Harold; Perey, Daniel

    2015-01-01

    Composite materials have seen an increased use in aerospace in recent years and it is expected that this trend will continue due to the benefits of reduced weight, increased strength, and other factors. Ongoing work at NASA involves the investigation of the large-scale use of composites for spacecraft structures (SLS components, Orion Composite Crew Module, etc). NASA is also involved in work to enable the use of composites in advanced aircraft structures through the Advanced Composites Project (ACP). In both areas (space and aeronautics) there is a need for new nondestructive evaluation and materials characterization techniques that are appropriate for characterizing composite materials. This paper will present an overview of NASA's needs for characterizing aerospace composites, including a description of planned and ongoing work under ACP for the detection of composite defects such as fiber waviness, reduced bond strength, delamination damage, and microcracking. The research approaches include investigation of angle array, guided wave, and phase sensitive ultrasonic methods. The use of ultrasonic simulation tools for optimizing and developing methods will also be discussed.

  15. Frontier Aerospace Opportunities

    Science.gov (United States)

    Bushnell, Dennis M.

    2014-01-01

    Discussion and suggested applications of the many ongoing technology opportunities for aerospace products and missions, resulting in often revolutionary capabilities. The, at this point largely unexamined, plethora of possibilities going forward, a subset of which is discussed, could literally reinvent aerospace but requires triage of many possibilities. Such initial upfront homework would lengthen the Research and Development (R&D) time frame but could greatly enhance the affordability and performance of the evolved products and capabilities. Structural nanotubes and exotic energetics along with some unique systems approaches are particularly compelling.

  16. The mechanochemical processing of aerospace metals

    OpenAIRE

    Froes, F. H.; Trindade, B

    2004-01-01

    The status of mechanochemical processing of aerospace metals (aluminum and titanium) is reviewed. It is demonstrated that the activation of chemical reactions by mechanical energy can lead to many interesting applications including production of advanced materials with novel constitutional and microstructural effects leading to enhanced mechanical properties.

  17. Aerospace Education. NSTA Position Statement

    Science.gov (United States)

    National Science Teachers Association (NJ1), 2008

    2008-01-01

    National Science Teachers Association (NSTA) has developed a new position statement, "Aerospace Education." NSTA believes that aerospace education is an important component of comprehensive preK-12 science education programs. This statement highlights key considerations that should be addressed when implementing a high quality aerospace education…

  18. Challenges for Insertion of Structural Nanomaterials in Aerospace Applications

    Science.gov (United States)

    Sochi, Emilie J.

    2012-01-01

    In the two decades since Iijima's report on carbon nanotubes (CNT), there has been great interest in realizing the benefits of mechanical properties observed at the nanoscale in large-scale structures. The weight savings possible due to dramatic improvements in mechanical properties relative to state-of-the-art material systems can be game changing for applications like aerospace vehicles. While there has been significant progress in commercial production of CNTs, major aerospace applications that take advantage of properties offered by this material have yet to be realized. This paper provides a perspective on the technical challenges and barriers for insertion of CNTs as an emerging material technology in aerospace applications and proposes approaches that may reduce the typical timeframe for technology maturation and insertion into aerospace structures.

  19. Titanium production for aerospace applications

    OpenAIRE

    Vinicius A. R. Henriques

    2009-01-01

    Titanium parts are ideally suited for advanced aerospace systems because of their unique combination of high specific strength at both room temperature and moderately elevated temperature, in addition to excellent general corrosion resistance. The objective of this work is to present a review of titanium metallurgy focused on aerospace applications, including developments in the Brazilian production of titanium aimed at aerospace applications. The article includes an account of the evolution ...

  20. Aerospace engineering training: universities experience

    OpenAIRE

    Mertins Kseniya; Ivanova Veronica; Natalinova Natalya; Alexandrova Maria

    2016-01-01

    Contemporary professional working in aerospace engineering must have a set of soft and hard skills. The experience gained in universities shows that training of a competent professional is impossible without an employer involved in this process. The paper provides an analysis of missions, tasks and experience of aerospace professionals and identifies the present and future roles, missions and required skills of a highly qualified specialist in aerospace engineering. This analysis can be used ...

  1. Integrated Manufacturing of Aerospace Components by Superplastic Forming Technology

    OpenAIRE

    Ju Min Kyung; Lee Ho-Sung

    2015-01-01

    Aerospace vehicle requires lightweight structures to obtain weight saving and fuel efficiency. It is known that superplastic characteristics of some materials provide significant opportunity for forming complicated, lightweight components of aerospace structure. One of the most important advantages of using superplastic forming process is its simplicity to form integral parts and economy in tooling[1]. For instance, it can be applied to blow-forming, in which a metal sheet is deformed due to ...

  2. Smart antennas in aerospace applications

    OpenAIRE

    Verpoorte, Jaco; Schippers, Harmen; Roeloffzen, Chris G.H.; Marpaung, David A.I.

    2010-01-01

    The interest in Smart Antennas for aerospace applications is growing. This paper describes smart antennas which can be used on aircraft. Two aerospace applications are discussed in more detail: a phased array antenna with optical beam forming and a large vibrating phased array antenna with electronic compensation techniques.

  3. NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST). Supplement: Research on Materials for the High Speed Civil Transport

    Science.gov (United States)

    Gangloff, Richard P.; Starke, Edgar A., Jr.

    1997-01-01

    This report documents the progress achieved over the past 6 to 12 months on four graduate student projects conducted within the NASA-UVA Light Aerospace Alloy and Structures Technology Program. These studies were aimed specifically at light metallic alloy issues relevant to the High Speed Civil Transport. Research on Hydrogen-Enhanced Fracture of High-Strength Titanium Alloy Sheet refined successfully the high resolution R-curve method necessary to characterize initiation and growth fracture toughnesses. For solution treated and aged Low Cost Beta without hydrogen precharging, fracture is by ductile transgranular processes at 25 C, but standardized initiation toughnesses are somewhat low and crack extension is resolved at still lower K-levels. This fracture resistance is degraded substantially, by between 700 and 1000 wppm of dissolved hydrogen, and a fracture mode change is affected. The surface oxide on P-titanium alloys hinders hydrogen uptake and complicates the electrochemical introduction of low hydrogen concentrations that are critical to applications of these alloys. Ti-15-3 sheet was obtained for study during the next reporting period. Research on Mechanisms of deformation and Fracture in High-Strength Titanium Alloys is examining the microstructure and fatigue resistance of very thin sheet. Aging experiments on 0. 14 mm thick (0.0055 inch) foil show microstructural agility that may be used to enhance fatigue performance. Fatigue testing of Ti-15-3 sheet has begun. The effects of various thermo-mechanical processing regimens on mechanical properties will be examined and deformation modes identified. Research on the Effect of Texture and Precipitates on Mechanical Property Anisotropy of Al-Cu-Mg-X and Al-Cu alloys demonstrated that models predict a minor influence of stress-induced alignment of Phi, caused by the application of a tensile stress during aging, on the yield stress anisotropy of both modified AA2519 and a model Al-Cu binary alloy. This project

  4. Aerospace engineering training: universities experience

    Directory of Open Access Journals (Sweden)

    Mertins Kseniya

    2016-01-01

    Full Text Available Contemporary professional working in aerospace engineering must have a set of soft and hard skills. The experience gained in universities shows that training of a competent professional is impossible without an employer involved in this process. The paper provides an analysis of missions, tasks and experience of aerospace professionals and identifies the present and future roles, missions and required skills of a highly qualified specialist in aerospace engineering. This analysis can be used to design a master’s program aiming at providing students with the required knowledge, know-how and attitudes needed to succeed as professionals in industrial companies.

  5. Research on materials for advanced electronic and aerospace application. [including optical and magnetic data processing, stress corrosion and H2 interaction, and polymeric systems

    Science.gov (United States)

    1975-01-01

    Development and understanding of materials most suitable for use in compact magnetic and optical memory systems are discussed. Suppression of metal deterioration by hydrogen is studied. Improvement of mechanical properties of polymers is considered, emphasizing low temperature ductility and compatibility with high modulus fiber materials.

  6. Refining, revising, augmenting, compiling and developing computer assisted instruction K-12 aerospace materials for implementation in NASA spacelink electronic information system

    Science.gov (United States)

    Blake, Jean A.

    1988-01-01

    The NASA Spacelink is an electronic information service operated by the Marshall Space Flight Center. The Spacelink contains extensive NASA news and educational resources that can be accessed by a computer and modem. Updates and information are provided on: current NASA news; aeronautics; space exploration: before the Shuttle; space exploration: the Shuttle and beyond; NASA installations; NASA educational services; materials for classroom use; and space program spinoffs.

  7. An Overview of Performance Characteristics, Experiences and Trends of Aerospace Engine Bearings Technologies

    Institute of Scientific and Technical Information of China (English)

    Ebert Franz-Josef

    2007-01-01

    In this paper, the operating conditions, technical requirements, performance characteristics, design ideas, application experiences and development trends of aerospace engine bearings, including material technology, integration design and reliability, are reviewed. The development history of aerospace engine bearing is recalled briefly at first. Then today's material technologies and the high bearing performances of the bearings obtained through the new materials are introduced, which play important rolls in the aeroengine bearing developments. The integration design ideas and practices are explained to indicate its significant advantages and importance to the aerospace engine bearings. And the reliability of the shaft-bearing system is pointed out and treated as the key requirement with goals for both engine and bearing. Finally, as it is believed that the correct design comes from practice, the pre-qualification rig testing conducted by FAG Aerospace GmbH & Co. KG is briefly illustrated as an example. All these lead to the development trends of aerospace engine bearings from different aspects.

  8. Chemical Microsensor Development for Aerospace Applications

    Science.gov (United States)

    Xu, Jennifer C.; Hunter, Gary W.; Lukco, Dorothy; Chen, Liangyu; Biaggi-Labiosa, Azlin M.

    2013-01-01

    Numerous aerospace applications, including low-false-alarm fire detection, environmental monitoring, fuel leak detection, and engine emission monitoring, would benefit greatly from robust and low weight, cost, and power consumption chemical microsensors. NASA Glenn Research Center has been working to develop a variety of chemical microsensors with these attributes to address the aforementioned applications. Chemical microsensors using different material platforms and sensing mechanisms have been produced. Approaches using electrochemical cells, resistors, and Schottky diode platforms, combined with nano-based materials, high temperature solid electrolytes, and room temperature polymer electrolytes have been realized to enable different types of microsensors. By understanding the application needs and chemical gas species to be detected, sensing materials and unique microfabrication processes were selected and applied. The chemical microsensors were designed utilizing simple structures and the least number of microfabrication processes possible, while maintaining high yield and low cost. In this presentation, an overview of carbon dioxide (CO2), oxygen (O2), and hydrogen/hydrocarbons (H2/CxHy) microsensors and their fabrication, testing results, and applications will be described. Particular challenges associated with improving the H2/CxHy microsensor contact wire-bonding pad will be discussed. These microsensors represent our research approach and serve as major tools as we expand our sensor development toolbox. Our ultimate goal is to develop robust chemical microsensor systems for aerospace and commercial applications.

  9. Hydrogen interactions in aluminum-lithium alloys

    Science.gov (United States)

    Smith, S. W.; Scully, J. R.

    1991-01-01

    A program is described which seeks to develop an understanding of the effects of dissolved and trapped hydrogen on the mechanical properties of selected Al-Li-Cu-X alloys. A proposal is made to distinguish hydrogen (H2) induced EAC from aqueous dissolution controlled EAC, to correlate H2 induced EAC with mobile and trapped concentrations, and to identify significant trap sites and hydride phases (if any) through use of model alloys and phases. A literature review shows three experimental factors which have impeded progress in the area of H2 EAC for this class of alloys. These are as listed: (1) inter-subgranular fracture in Al-Li alloys when tested in the S-T orientation in air or vacuum make it difficult to readily detect H2 induced fracture based on straight forward changes in fractography; (2) the inherently low H2 diffusivity and solubility in Al alloys is further compounded by a native oxide which acts as a H2 permeation barrier; and (3) H2 effects are masked by dissolution assisted processes when mechanical testing is performed in aqueous solutions.

  10. Aerospace Training. Washington's Community and Technical Colleges

    Science.gov (United States)

    Washington State Board for Community and Technical Colleges, 2014

    2014-01-01

    Aerospace is an economic powerhouse that generates jobs and fuels our economy. Washington's community and technical colleges produce the world-class employees needed to keep it that way. With about 1,250 aerospace-related firms employing more than 94,000 workers, Washington has the largest concentration of aerospace expertise in the nation. To…

  11. Non-traditional Machining Techniques for Fabricating Metal Aerospace Filters

    Institute of Scientific and Technical Information of China (English)

    Wang Wei; Zhu Di; D.M.Allen; H.J.A.Almondb

    2008-01-01

    Thanks to recent advances in manufacturing technology, aerospace system designers have many more options to fabricate high-quality, low-weight, high-capacity, cost-effective filters. Aside from traditional methods such as stamping, drilling and milling,many new approaches have been widely used in filter-manufacturing practices on account of their increased processing abilities. However, the restrictions on costs, the need for studying under stricter conditions such as in aggressive fluids, the complicity in design, the workability of materials, and others have made it difficult to choose a satisfactory method from the newly developed processes, such as,photochemical machining (PCM), photo electroforming (PEF) and laser beam machining (LBM) to produce small, inexpensive, lightweight aerospace filters. This article appraises the technical and economical viability of PCM, PEF, and LBM to help engineers choose the fittest approach to turn out aerospace filters.

  12. 41st Aerospace Mechanisms Symposium

    Science.gov (United States)

    Boesiger, Edward A. (Editor)

    2012-01-01

    The proceedings of the 41st Aerospace Mechanisms Symposium are reported. JPL hosted the conference, which was held in Pasadena Hilton, Pasadena, California on May 16-18, 2012. Lockheed Martin Space Systems cosponsored the symposium. Technology areas covered include gimbals and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and Mars Science Laboratory mechanisms.

  13. Aerospace for the Very Young.

    Science.gov (United States)

    2003

    This packet includes games and activities concerning aerospace education for the very young. It is designed to develop and strengthen basic concepts and skills in a non-threatening atmosphere of fun. Activities include: (1) "The Sun, Our Nearest Star"; (2) "Twinkle, Twinkle, Little Star, How I Wonder Where You Are"; (3) "Shadows"; (4) "The Earth…

  14. Polymer composites for aerospace

    International Nuclear Information System (INIS)

    Composites may be defined as macroscopic combinations of two or more distinct materials having a recognizable interface between the two. Polymer composites are defined as reinforcement fibers supported by a polymer binder known as a matrix. In structural polymer composites, the fiber is stiffer and stronger than the continuous matrix phase. Almost all high strength/high stiffness materials fail because of the propagation of flaws. A fiber of such material is inherently stronger than the bulk form because the size of a flaw is limited by the small diameter of the fiber. Even if a flaw does produce failure in a fiber, it does not propagate to fail the entire assemblage, which would happen in a bulk material. Fiber advantages can be converted to practical applications when the fibers are embedded in a matrix that binds them together, transfers load to and between the fibers, and protects them from hazardous environments and handling. The high strengths and moduli can be tailored to the high load direction, with little material wasted on needless reinforcement

  15. Remarks on Flammability Testing of Aerospace Materials

    Science.gov (United States)

    Hirsch, David B.; Beeson, Harold D.

    2013-01-01

    Agenda for the presentation: (1) Brief background of ISO 16697 (a) Reasons for the approach (b) Stated intent for this International Technical Specification (2) Evolution of initial considerations for the ISO approach (3) Discussion and recommendation

  16. 39th Aerospace Mechanisms Symposium

    Science.gov (United States)

    Boesiger, E. A. (Compiler)

    2008-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, NASA Marshall Space Flight Center (MSFC) and Lockheed Martin Space Systems Company (LMSSC) share the responsibility for hosting the AMS. Now in its 39th symposium, the AMS continues to be well attended, attracting participants from both the United States and abroad. The 39th AMS was held in Huntsville, Alabama, May 7-9, 2008. During these 3 days, 34 papers were presented. Topics included gimbals and positioning mechanisms, tribology, actuators, deployment mechanisms, release mechanisms, and sensors. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components.

  17. Nanomaterials and future aerospace technologies: opportunities and challenges

    Science.gov (United States)

    Vaia, Richard A.

    2012-06-01

    Two decades of extensive investment in nanomaterials, nanofabrication and nanometrology have provided the global engineering community a vast array of new technologies. These technologies not only promise radical change to traditional industries, such as transportation, information and aerospace, but may create whole new industries, such as personalized medicine and personalized energy harvesting and storage. The challenge today for the defense aerospace community is determining how to accelerate the conversion of these technical opportunities into concrete benefits with quantifiable impact, in conjunction with identifying the most important outstanding scientific questions that are limiting their utilization. For example, nanomaterial fabrication delivers substantial tailorablity beyond a traditional material data sheet. How can we integrate this tailorability into agile manufacturing and design methods to further optimize the performance, cost and durability of future resilient aerospace systems? The intersection of nano-based metamaterials and nanostructured devices with biotechnology epitomizes the technological promise of autonomous systems and enhanced human-machine interfaces. What then are the key materials and processes challenges that are inhibiting current lab-scale innovation from being integrated into functioning systems to increase effectiveness and productivity of our human resources? Where innovation is global, accelerating the use of breakthroughs, both for commercial and defense, is essential. Exploitation of these opportunities and finding solutions to the associated challenges for defense aerospace will rely on highly effective partnerships between commercial development, scientific innovation, systems engineering, design and manufacturing.

  18. Magnetic Gearboxes for Aerospace Applications

    Science.gov (United States)

    Perez-Diaz, Jose Luis; Diez-Jimenez, Efren; Alvarez-Valenzuela, Marco A.; Sanchez-Garcia-Casarrubios, Juan; Cristache, Christian; Valiente-Blanco, Ignacio

    2014-01-01

    Magnetic gearboxes are contactless mechanisms for torque-speed conversion. They present no wear, no friction and no fatigue. They need no lubricant and can be customized for other mechanical properties as stiffness or damping. Additionally, they can protect structures and mechanisms against overloads, limitting the transmitted torque. In this work, spur, planetary and "magdrive" or "harmonic drive" configurations are compared considering their use in aerospace applications. The most recent test data are summarized to provide some useful help for the design engineer.

  19. Aerospace Medicine Talk

    Science.gov (United States)

    Williams, Richard S.

    2015-01-01

    The presentation is next Sunday, May 10th. It will be to the Civil Aviation Medical Association, for 2 hours at Disney World in Orlando. It is a high level talk on space medicine, including history, the role of my office, human health risks of space flight, general aspects of space medicine practice, human health risk management (including integrated activities of medical operations and the Human Research Program, and thoughts concerning health risks for long duration exploration class space missions. No proprietary data or material will be used, all is readily available in the public sector. There is also a short (30 min) talk on Monday at the CAMA lunch. There we will describe the Visual Impairment and Intracranial Pressure syndrome, with possible etiologies and plans for research (already selected studies). Again, nothing proprietary will be discussed.

  20. KIBO Industry, innovates in aerospace

    Science.gov (United States)

    Paillard, Jean-Philippe

    2016-07-01

    The conquest of space is a true inspiration. Imagine a long-duration mission to a distant destination. What shall we take to produce our food? A cow, fish, chicken, or just eggs. In the current state of the animal production technologies are complicated and expensive to implement, except perhaps one: the breeding of edible insects. Based on this postulate KIBO in partnership with Space Agriculture Task Force and the university's department of Nutrition Nagoya most innovative research program is created in modern nutrition. This program is called Pegasus. Pegasus research program aims to develop food productions and modules applicable to the aerospace conquest. Kibo industry is the first entomocole production company creat in Europe to human food; it aims to become the world leader by 2020. Kibo industry is particularly specialized in producing entomosource (products with insects). The first phase of the program is to achieve an outcome cereal bar edible insect to aerospace. So we will present the issues and objectives of the project, for aerospace and us. Jean-Philippe Paillard is the KIBO industry CEO and Vice President of the FFPIDI insects farms federation. He is also the co computer alone authorization dossier on the market in Europe and therefore the privileged interlocutor of the General Directorate for Health and Customer Review on this topic. He intervened at the last conference on the insect organized by FAO in Wageningen and various universities in France.

  1. 金属材料增材制造技术在航天领域的应用前景分析%Potential Applications of Additive Manufacture in Melal Material for Aerospace Applications

    Institute of Scientific and Technical Information of China (English)

    陈济轮; 董鹏; 张昆; 何京文; 梁晓康

    2014-01-01

    Additive manufacture has been recognized as an advantaged process for manufacturing structural components for aerospace applications,because of its own advantages like ability to fabricate complex shapes,no requirement of mould,high processing efficiency. The characteristic of additive manufacture and the potential applications for aerospace applications were analysed.%增材制造技术具有无需模具、加工周期短、成形构件力学性能优良、使用材料范围广等特点,特别适合于多品种、小批量、周期短、研制阶段设计更迭频繁的航天产品制造。结合金属材料增材制造技术的特点,对该技术在航天领域的应用进行了分析。

  2. Cybersecurity for aerospace autonomous systems

    Science.gov (United States)

    Straub, Jeremy

    2015-05-01

    High profile breaches have occurred across numerous information systems. One area where attacks are particularly problematic is autonomous control systems. This paper considers the aerospace information system, focusing on elements that interact with autonomous control systems (e.g., onboard UAVs). It discusses the trust placed in the autonomous systems and supporting systems (e.g., navigational aids) and how this trust can be validated. Approaches to remotely detect the UAV compromise, without relying on the onboard software (on a potentially compromised system) as part of the process are discussed. How different levels of autonomy (task-based, goal-based, mission-based) impact this remote characterization is considered.

  3. Aerospace Medical Support in Russia

    Science.gov (United States)

    Castleberry, Tara; Chamberlin, Blake; Cole, Richard; Dowell, Gene; Savage, Scott

    2011-01-01

    This slide presentation reviews the role of the flight surgeon in support of aerospace medical support operations at the Gagarin Cosmonaut Training Center (GCTC), also known as Star City, in Russia. The flight surgeon in this role is the medical advocate for non-russian astronauts, and also provides medical care for illness and injury for astronauts, family members, and guests as well as civil servants and contractors. The flight surgeon also provides support for hazardous training. There are various photos of the area, and the office, and some of the equipment that is used.

  4. Ultrahigh temperature ceramics for aerospace and solar energy applications

    OpenAIRE

    Sciti, Diletta; Silvestroni, Laura; Guicciardi, Stefano; Bellosi, Alida

    2011-01-01

    Borides and carbides of early transition metals are considered a class of promising materials for several applications, the most appealing ones being in the aerospace and energy sectors. Beside the well known characteristics that make UHTCs attractive as TPS, there is a strong interest in their applications as sunlight absorbers for solar concentrating systems that can operate in the high temperature regime. The first part of this work is focused on toughening of UHTCs, which is a crucial iss...

  5. Nanotechnology research for aerospace applications

    Science.gov (United States)

    Agee, Forrest J.; Lozano, Karen; Gutierrez, Jose M.; Chipara, Mircea; Thapa, Ram; Chow, Alice

    2009-04-01

    Nanotechnology is impacting the future of the military and aerospace. The increasing demands for high performance and property-specific applications are forcing the scientific world to take novel approaches in developing programs and accelerating output. CONTACT or Consortium for Nanomaterials for Aerospace Commerce and Technology is a cooperative nanotechnology research program in Texas building on an infrastructure that promotes collaboration between universities and transitioning to industry. The participants of the program include the US Air Force Research Laboratory (AFRL), five campuses of the University of Texas (Brownsville, Pan American, Arlington, Austin, and Dallas), the University of Houston, and Rice University. Through the various partnerships between the intellectual centers and the interactions with AFRL and CONTACT's industrial associates, the program represents a model that addresses the needs of the changing and competitive technological world. Into the second year, CONTACT has expanded to twelve projects that cover four areas of research: Adaptive Coatings and Surface Engineering, Nano Energetics, Electromagnetic Sensors, and Power Generation and Storage. This paper provides an overview of the CONTACT program and its projects including the research and development of new electrorheological fluids with nanoladen suspensions and composites and the potential applications.

  6. Henkel Technologies and Products for China Aerospace

    Institute of Scientific and Technical Information of China (English)

    Michael Cichon; Helen Wei Li; Alex Wong; Stan Lehmann; Raymond Wong

    2006-01-01

    Epoxy structural adhesives and composites have been in use for many years for the construction of aerospace vehicles. Henkel provides many epoxy products. Many other resin systems have been evaluated and several, such as imide,phenolic and cyanate ester, have also achieved significant use. Henkel's newly developed "Epsilon" chemistry demonstrates unique features that benefit application in aerospace structure that use adhesives and composites.

  7. The 42nd Aerospace Mechanism Symposium

    Science.gov (United States)

    Boesiger, Edward A. (Editor); Hakun, Claef (Editor)

    2014-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production, and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development, and flight certification of new mechanisms.

  8. Aerospace Power Technology for Potential Terrestrial Applications

    Science.gov (United States)

    Lyons, Valerie J.

    2012-01-01

    Aerospace technology that is being developed for space and aeronautical applications has great potential for providing technical advances for terrestrial power systems. Some recent accomplishments arising from activities being pursued at the National Aeronautics and Space Administration (NASA) Centers is described in this paper. Possible terrestrial applications of the new aerospace technology are also discussed.

  9. iSTEM: The Aerospace Engineering Challenge

    Science.gov (United States)

    English, Lyn D.; King, Donna T.; Hudson, Peter; Dawes, Les

    2014-01-01

    The authors developed The Paper Plane Challenge as one of a three-part response to The Aerospace Engineering Challenge. The Aerospace Engineering Challenge was the second of three multi-part activities that they had developed with the teachers during the year. Their aim was to introduce students to the exciting world of engineering, where they…

  10. PREFACE: Trends in Aerospace Manufacturing 2009 International Conference

    Science.gov (United States)

    Ridgway, Keith; Gault, Rosemary; Allen, Adrian

    2011-12-01

    The aerospace industry is rapidly changing. New aircraft structures are being developed and aero-engines are becoming lighter and more environmentally friendly. In both areas, innovative materials and manufacturing methods are used in an attempt to get maximum performance for minimum cost. At the same time, the structure of the industry has changed and there has been a move from large companies designing, manufacturing components and assembling aircraft to one of large global supply chains headed by large system integrators. All these changes have forced engineers and managers to bring in innovations in design, materials, manufacturing technologies and supply chain management. In September 2009, the Advanced Manufacturing Research Centre (AMRC) at the University of Sheffield held the inaugural Trends in Aerospace Manufacturing conference (TRAM09). This brought together 28 speakers over two days, who presented in sessions on advanced manufacturing trends for the aerospace sector. Areas covered included new materials, including composites, advanced machining, state of the art additive manufacturing techniques, assembly and supply chain issues.

  11. Powered Flight The Engineering of Aerospace Propulsion

    CERN Document Server

    Greatrix, David R

    2012-01-01

    Whilst most contemporary books in the aerospace propulsion field are dedicated primarily to gas turbine engines, there is often little or no coverage of other propulsion systems and devices such as propeller and helicopter rotors or detailed attention to rocket engines. By taking a wider viewpoint, Powered Flight - The Engineering of Aerospace Propulsion aims to provide a broader context, allowing observations and comparisons to be made across systems that are overlooked by focusing on a single aspect alone. The physics and history of aerospace propulsion are built on step-by-step, coupled with the development of an appreciation for the mathematics involved in the science and engineering of propulsion. Combining the author’s experience as a researcher, an industry professional and a lecturer in graduate and undergraduate aerospace engineering, Powered Flight - The Engineering of Aerospace Propulsion covers its subject matter both theoretically and with an awareness of the practicalities of the industry. To ...

  12. Aerogels in Aerospace: An Overview

    Directory of Open Access Journals (Sweden)

    Nadiir Bheekhun

    2013-01-01

    Full Text Available Aerogels are highly porous structures prepared via a sol-gel process and supercritical drying technology. Among the classes of aerogels, silica aerogel exhibits the most remarkable physical properties, possessing lower density, thermal conductivity, refractive index, and dielectric constant than any solids. Its acoustical property is such that it can absorb the sound waves reducing speed to 100 m/s compared to 332 m/s for air. However, when it comes to commercialization, the result is not as expected. It seems that mass production, particularly in the aerospace industry, has dawdled behind. This paper highlights the evolution of aerogels in general and discusses the functions and significances of silica aerogel in previous astronautical applications. Future outer-space applications have been proposed as per the current research trend. Finally, the implementation of conventional silica aerogel in aeronautics is argued with an alternative known as Maerogel.

  13. Energy Storage for Aerospace Applications

    Science.gov (United States)

    Perez-Davis, Marla E.; Loyselle, Patricia L.; Hoberecht, Mark A.; Manzo, Michelle A.; Kohout, Lisa L.; Burke, Kenneth A.; Cabrera, Carlos R.

    2001-01-01

    The NASA Glenn Research Center (GRC) has long been a major contributor to the development and application of energy storage technologies for NASAs missions and programs. NASA GRC has supported technology efforts for the advancement of batteries and fuel cells. The Electrochemistry Branch at NASA GRC continues to play a critical role in the development and application of energy storage technologies, in collaboration with other NASA centers, government agencies, industry and academia. This paper describes the work in batteries and fuel cell technologies at the NASA Glenn Research Center. It covers a number of systems required to ensure that NASAs needs for a wide variety of systems are met. Some of the topics covered are lithium-based batteries, proton exchange membrane (PEM) fuel cells, and nanotechnology activities. With the advances of the past years, we begin the 21st century with new technical challenges and opportunities as we develop enabling technologies for batteries and fuel cells for aerospace applications.

  14. 43rd Aerospace Mechanisms Symposium

    Science.gov (United States)

    Boesiger, Edward A.

    2016-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Sponsored and organized by the Mechanisms Education Association, responsibility for hosting the AMS is shared by the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC). Now in its 43rd symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 43rd AMS was held in Santa Clara, California on May 4, 5 and 6, 2016. During these three days, 42 papers were presented. Topics included payload and positioning mechanisms, components such as hinges and motors, CubeSats, tribology, and mechanism testing. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components. The high quality of this symposium is a result of the work of many people, and their efforts are gratefully acknowledged. This extends to the voluntary members of the symposium organizing committee representing the eight NASA field centers, LMSSC, and the European Space Agency. Appreciation is also extended to the session chairs, the authors, and particularly the personnel at ARC responsible for the symposium arrangements and the publication of these proceedings. A sincere thank you also goes to the symposium executive committee who is responsible for the year-to-year management of the AMS, including paper processing and preparation of the program. The use of trade names of manufacturers in this publication does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration.

  15. Characterization of 2024-T3: An aerospace aluminum alloy

    International Nuclear Information System (INIS)

    The 2024-T3 aerospace aluminum alloy, reported in this investigation, was acquired from a local aerospace industry: Royal Malaysian Air Force (RMAF). The heat treatable 2024-T3 aluminum alloy has been characterized by use of modern metallographic and material characterization techniques (e.g. EPMA, SEM). The microstructural characterization of the metallographic specimen involved use of an optical microscope linked with a computerized imaging system using MSQ software. The use of EPMA and electron microprobe elemental maps enabled us to detect three types of inclusions: Al-Cu, Al-Cu-Fe-Mn, and Al-Cu-Fe-Si-Mn enriched regions. In particular, the presence of Al2CuMg (S-phase) and the CuAl2 (θ') phases indicated precipitation strengthening in the aluminum alloy

  16. 7th International symposium on NDT in aerospace 2015

    International Nuclear Information System (INIS)

    Non-Destructive Testing and Evaluation is one of the major requirements in aerospace structural design. Hardly any of the components manufactured is not allowed to pass quality assurance without having gone through any of the various NDT procedures being around. For damage tolerant design as used in aviation NDT is a prerequisite. Appropriate use of NDT guarantees safety in aerospace and is thus a subject of highest attention. Major topics to be discussed among others at this event will include the physics of NDT, sensors and material interaction, design of complete inspection systems and data evaluation such as for automated image processing. A special focus will also be towards improvement in inspection speed and transfer of laboratory NDT into production and manufacturing process integrated testing for in-line inspection.

  17. Titanium alloys Russian aircraft and aerospace applications

    CERN Document Server

    Moiseyev, Valentin N

    2005-01-01

    This text offers previously elusive information on state-of-the-art Russian metallurgic technology of titanium alloys. It details their physical, mechanical, and technological properties, as well as treatments and applications in various branches of modern industry, particularly aircraft and aerospace construction. Titanium Alloys: Russian Aircraft and Aerospace Applications addresses all facets of titanium alloys in aerospace and aviation technology, including specific applications, fundamentals, composition, and properties of commercial alloys. It is useful for all students and researchers interested in the investigation and applications of titanium.

  18. Additive Manufacturing of Aerospace Propulsion Components

    Science.gov (United States)

    Misra, Ajay K.; Grady, Joseph E.; Carter, Robert

    2015-01-01

    The presentation will provide an overview of ongoing activities on additive manufacturing of aerospace propulsion components, which included rocket propulsion and gas turbine engines. Future opportunities on additive manufacturing of hybrid electric propulsion components will be discussed.

  19. Integrated Manufacturing of Aerospace Components by Superplastic Forming Technology

    Directory of Open Access Journals (Sweden)

    Ju Min Kyung

    2015-01-01

    Full Text Available Aerospace vehicle requires lightweight structures to obtain weight saving and fuel efficiency. It is known that superplastic characteristics of some materials provide significant opportunity for forming complicated, lightweight components of aerospace structure. One of the most important advantages of using superplastic forming process is its simplicity to form integral parts and economy in tooling[1]. For instance, it can be applied to blow-forming, in which a metal sheet is deformed due to the pressure difference of hydrostatic gas on both sides of the sheet. Since the loading medium is gas pressure difference, this forming is different from conventional sheet metal forming technique in that this is stress-controlled rather than strain and strain rate controlled. This method is especially advantageous when several sheet metals are formed into complex shapes. In this study, it is demonstrated that superplastic forming process with titanium and steel alloy can be applied to manufacturing lightweight integral structures of aerospace structural parts and rocket propulsion components. The result shows that the technology to design and develop the forming process of superplastic forming can be applied for near net shape forming of a complex contour of a thrust chamber and a toroidal fuel tank.

  20. Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    Science.gov (United States)

    Hunter, Gary W.

    2005-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors; 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity; 3) The development of high temperature semiconductors, especially silicon carbide. This presentation discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  1. Probability and Statistics in Aerospace Engineering

    Science.gov (United States)

    Rheinfurth, M. H.; Howell, L. W.

    1998-01-01

    This monograph was prepared to give the practicing engineer a clear understanding of probability and statistics with special consideration to problems frequently encountered in aerospace engineering. It is conceived to be both a desktop reference and a refresher for aerospace engineers in government and industry. It could also be used as a supplement to standard texts for in-house training courses on the subject.

  2. The aerospace technology serving to the environment

    OpenAIRE

    Roman-Gonzalez, Avid

    2012-01-01

    Biodiversity is an issue that is now the focus of many social debates linked to the man-environment interaction and its direct impact on environmental management. In that sense, aerospace technology plays an important role. This article presents a general review of environmental factors to be taken into account and should be monitored for take the better decision in the interest of preserving our ecosystem. We also discuss how the aerospace technology through different satellites, help effect...

  3. Rhythm Disturbances in the Aerospace Medicine

    OpenAIRE

    Yıldız, Mustafa

    2013-01-01

    A number of rhythm disorders such as sinus arrhythmia, premature ventricular contractions, premature atrial contractions and sinus bradycardia and heart rate alterations may be seen under +Gz. The shift in autonomic balance may lead to alterations in cardiac rhythm and heart rate. The significance of these rhythm disturbances is not yet fully understood. In this manuscript the rhythm disturbances in the aerospace medicine were reviewed.Key Words: Aerospace medicine; rhythm disturbances; gravity

  4. Robust and Adaptive Control With Aerospace Applications

    CERN Document Server

    Lavretsky, Eugene

    2013-01-01

    Robust and Adaptive Control shows the reader how to produce consistent and accurate controllers that operate in the presence of uncertainties and unforeseen events. Driven by aerospace applications the focus of the book is primarily on continuous-dynamical systems.  The text is a three-part treatment, beginning with robust and optimal linear control methods and moving on to a self-contained presentation of the design and analysis of model reference adaptive control (MRAC) for nonlinear uncertain dynamical systems. Recent extensions and modifications to MRAC design are included, as are guidelines for combining robust optimal and MRAC controllers. Features of the text include: ·         case studies that demonstrate the benefits of robust and adaptive control for piloted, autonomous and experimental aerial platforms; ·         detailed background material for each chapter to motivate theoretical developments; ·         realistic examples and simulation data illustrating key features ...

  5. Smart electronics and MEMS for aerospace structures

    Science.gov (United States)

    Varadan, Vijay K.; Varadan, Vasundara V.

    1995-09-01

    In this paper, smart electronics and MEMS are employed to sense and control the drag in aircraft structures. The sensors are fabricated with interdigital transducers printed on a piezoelectric polymer. They in turn are mounted onto an ultra thin Penn State's novel RF antenna (Patent field). The sensor are designed to measure both pressure and shear of the fluid flow on aerospace structures. The wave form measurements may be monitored at a remote location either at the cockpit or elsewhere via the antennas in the sensors and an outside antenna. The integrated MEMS actuators which comprise of cantilever-, diaphram- and microbridge-based MEMS with suitable smart electronics etched onto the structure are controlled by the built-in antennas through feedback and feedforward control architecture. The integration of such materials and smart electronics into the skin of airfoil is ideal for sensing and controlling drag. The basic idea of this concept involves detection of the point of transition from laminar to turbulent flow and transmitting acoustical energy into the boundary layer so that the low energy fluid particles accelerate in the transverse direction and mix with the high energy flow outside of the boundary layer. 3D microriblets can be fabricated using stereo lithography and UV curable conducting polymers. The control of drag using these active microriblets are outlined.

  6. Aerospace Avionics and Allied Technologies

    Directory of Open Access Journals (Sweden)

    Jitendra R. Raol

    2011-07-01

    Full Text Available Avionics is a very crucial and important technology, not only for civil/military aircraft but also for missiles, spacecraft, micro air vehicles (MAVs and unmanned aerial vehicles (UAVs. Even for ground-based vehicles and underwater vehicles (UWVs, avionics is a very important segment of their successful operation and mission accomplishment. The advances in many related and supporting technologies, especially digital electronics, embedded systems, embedded algorithms/software, mobile technology, sensors and instrumentation, computer (network-communication, and realtime operations and simulation, have given a great impetus to the field of avionics. Here, for the sake of encompassing many other applications as mentioned above, the term is used in an expanded sense: Aerospace Avionics (AA, although it is popularly known as Aviation Electronics (or Avionics. However, use of this technology is not limited to aircraft, and hence, we  can incorporate all the three types-ground, land, and underwater vehicles-under the term avionics.Defence Science Journal, 2011, 61(4, pp.287-288, DOI:http://dx.doi.org/10.14429/dsj.61.1122

  7. Optimal control with aerospace applications

    CERN Document Server

    Longuski, James M; Prussing, John E

    2014-01-01

    Want to know not just what makes rockets go up but how to do it optimally? Optimal control theory has become such an important field in aerospace engineering that no graduate student or practicing engineer can afford to be without a working knowledge of it. This is the first book that begins from scratch to teach the reader the basic principles of the calculus of variations, develop the necessary conditions step-by-step, and introduce the elementary computational techniques of optimal control. This book, with problems and an online solution manual, provides the graduate-level reader with enough introductory knowledge so that he or she can not only read the literature and study the next level textbook but can also apply the theory to find optimal solutions in practice. No more is needed than the usual background of an undergraduate engineering, science, or mathematics program: namely calculus, differential equations, and numerical integration. Although finding optimal solutions for these problems is a...

  8. Aerospace Technology Innovation. Volume 10

    Science.gov (United States)

    Turner, Janelle (Editor); Cousins, Liz (Editor); Bennett, Evonne (Editor); Vendette, Joel (Editor); West, Kenyon (Editor)

    2002-01-01

    Whether finding new applications for existing NASA technologies or developing unique marketing strategies to demonstrate them, NASA's offices are committed to identifying unique partnering opportunities. Through their efforts NASA leverages resources through joint research and development, and gains new insight into the core areas relevant to all NASA field centers. One of the most satisfying aspects of my job comes when I learn of a mission-driven technology that can be spun-off to touch the lives of everyday people. NASA's New Partnerships in Medical Diagnostic Imaging is one such initiative. Not only does it promise to provide greater dividends for the country's investment in aerospace research, but also to enhance the American quality of life. This issue of Innovation highlights the new NASA-sponsored initiative in medical imaging. Early in 2001, NASA announced the launch of the New Partnerships in Medical Diagnostic Imaging initiative to promote the partnership and commercialization of NASA technologies in the medical imaging industry. NASA and the medical imaging industry share a number of crosscutting technologies in areas such as high-performance detectors and image-processing tools. Many of the opportunities for joint development and technology transfer to the medical imaging market also hold the promise for future spin back to NASA.

  9. Lightweight acoustic treatments for aerospace applications

    Science.gov (United States)

    Naify, Christina Jeanne

    2011-12-01

    Increase in the use of composites for aerospace applications has the benefit of decreased structural weight, but at the cost of decreased acoustic performance. Stiff, lightweight structures (such as composites) are traditionally not ideal for acoustic insulation applications because of high transmission loss at low frequencies. A need has thus arisen for effective sound insulation materials for aerospace and automotive applications with low weight addition. Current approaches, such as the addition of mass law dominated materials (foams) also perform poorly when scaled to small thickness and low density. In this dissertation, methods which reduce sound transmission without adding significant weight are investigated. The methods presented are intended to be integrated into currently used lightweight structures such as honeycomb sandwich panels and to cover a wide range of frequencies. Layering gasses of differing acoustic impedances on a panel substantially reduced the amount of sound energy transmitted through the panel with respect to the panel alone or an equivalent-thickness single species gas layer. The additional transmission loss derives from successive impedance mismatches at the interfaces between gas layers and the resulting inefficient energy transfer. Attachment of additional gas layers increased the transmission loss (TL) by as much as 17 dB at high (>1 kHz) frequencies. The location and ordering of the gasses with respect to the panel were important factors in determining the magnitude of the total TL. Theoretical analysis using a transfer matrix method was used to calculate the frequency dependence of sound transmission for the different configurations tested. The method accurately predicted the relative increases in TL observed with the addition of different gas layer configurations. To address low-frequency sound insulation, membrane-type locally resonant acoustic materials (LRAM) were fabricated, characterized, and analyzed to understand their

  10. Mobile Computing for Aerospace Applications

    Science.gov (United States)

    Alena, Richard; Swietek, Gregory E. (Technical Monitor)

    1994-01-01

    The use of commercial computer technology in specific aerospace mission applications can reduce the cost and project cycle time required for the development of special-purpose computer systems. Additionally, the pace of technological innovation in the commercial market has made new computer capabilities available for demonstrations and flight tests. Three areas of research and development being explored by the Portable Computer Technology Project at NASA Ames Research Center are the application of commercial client/server network computing solutions to crew support and payload operations, the analysis of requirements for portable computing devices, and testing of wireless data communication links as extensions to the wired network. This paper will present computer architectural solutions to portable workstation design including the use of standard interfaces, advanced flat-panel displays and network configurations incorporating both wired and wireless transmission media. It will describe the design tradeoffs used in selecting high-performance processors and memories, interfaces for communication and peripheral control, and high resolution displays. The packaging issues for safe and reliable operation aboard spacecraft and aircraft are presented. The current status of wireless data links for portable computers is discussed from a system design perspective. An end-to-end data flow model for payload science operations from the experiment flight rack to the principal investigator is analyzed using capabilities provided by the new generation of computer products. A future flight experiment on-board the Russian MIR space station will be described in detail including system configuration and function, the characteristics of the spacecraft operating environment, the flight qualification measures needed for safety review, and the specifications of the computing devices to be used in the experiment. The software architecture chosen shall be presented. An analysis of the

  11. Thickness-Independent Ultrasonic Imaging Applied to Abrasive Cut-Off Wheels: An Advanced Aerospace Materials Characterization Method for the Abrasives Industry. A NASA Lewis Research Center Technology Transfer Case History

    Science.gov (United States)

    Roth, Don J.; Farmer, Donald A.

    1998-01-01

    Abrasive cut-off wheels are at times unintentionally manufactured with nonuniformity that is difficult to identify and sufficiently characterize without time-consuming, destructive examination. One particular nonuniformity is a density variation condition occurring around the wheel circumference or along the radius, or both. This density variation, depending on its severity, can cause wheel warpage and wheel vibration resulting in unacceptable performance and perhaps premature failure of the wheel. Conventional nondestructive evaluation methods such as ultrasonic c-scan imaging and film radiography are inaccurate in their attempts at characterizing the density variation because a superimposing thickness variation exists as well in the wheel. In this article, the single transducer thickness-independent ultrasonic imaging method, developed specifically to allow more accurate characterization of aerospace components, is shown to precisely characterize the extent of the density variation in a cut-off wheel having a superimposing thickness variation. The method thereby has potential as an effective quality control tool in the abrasives industry for the wheel manufacturer.

  12. Graphite fiber reinforced glass matrix composites for aerospace applications

    Science.gov (United States)

    Prewo, K. M.; Bacon, J. F.; Dicus, D. L.

    1979-01-01

    The graphite fiber reinforced glass matrix composite system is described. Although this composite is not yet a mature material, it possesses low density, attractive mechanical properties at elevated temperatures, and good environmental stability. Properties are reported for a borosilicate glass matrix unidirectionally reinforced with 60 volume percent HMS graphite fiber. The flexural strength and fatigue characteristics at room and elevated temperature, resistance to thermal cycling and continuous high temperature oxidation, and thermal expansion characteristics of the composite are reported. The properties of this new composite are compared to those of advanced resin and metal matrix composites showing that graphite fiber reinforced glass matrix composites are attractive for aerospace applications.

  13. Machine intelligence and autonomy for aerospace systems

    Science.gov (United States)

    Heer, Ewald (Editor); Lum, Henry (Editor)

    1988-01-01

    The present volume discusses progress toward intelligent robot systems in aerospace applications, NASA Space Program automation and robotics efforts, the supervisory control of telerobotics in space, machine intelligence and crew/vehicle interfaces, expert-system terms and building tools, and knowledge-acquisition for autonomous systems. Also discussed are methods for validation of knowledge-based systems, a design methodology for knowledge-based management systems, knowledge-based simulation for aerospace systems, knowledge-based diagnosis, planning and scheduling methods in AI, the treatment of uncertainty in AI, vision-sensing techniques in aerospace applications, image-understanding techniques, tactile sensing for robots, distributed sensor integration, and the control of articulated and deformable space structures.

  14. The comprehensive aerospace index (CASI): Tracking the economic performance of the aerospace industry

    Science.gov (United States)

    Mattedi, Adriana Prest; Mantegna, Rosario Nunzio; Ramos, Fernando Manuel; Rosa, Reinaldo Roberto

    2008-12-01

    In this paper, we described the Comprehensive AeroSpace Index (CASI), a financial index aimed at representing the economic performance of the aerospace industry. CASI is build upon a data set of approximately 20 years of daily close prices set, from January 1987 to June 2007, from a comprehensive sample of leading aerospace-related companies with stocks negotiated on the New York Exchange (NYSE) and on the over-the-counter (OTC) markets. We also introduced the sub-indices CASI-AERO, for aeronautical segment, and CASI-SAT, for satellite segment, and considered the relation between them. These three indices are compared to others aerospace indices and to more traditional general financial indices like DJIA, S&P500 and Nasdaq. Our results have shown that the CASI is an index that describes very well the aerospace sector behavior, since it is able to reflect the aeronautical segment comportment as well as the satellite one. Therefore, in this sense, it can be considered as a representative index of the aerospace sector. Moreover, the creation of two sub-indices, the CASI-AERO and the CASI-SAT, allows to elucidate capital movements within the aerospace sector, particularly those of speculative nature, like the dot.com bubble and crash of 1998-2001.

  15. MEMS for automotive and aerospace applications

    CERN Document Server

    Kraft, Michael

    2013-01-01

    MEMS for automotive and aerospace applications reviews the use of Micro-Electro-Mechanical-Systems (MEMS) in developing solutions to the unique challenges presented by the automotive and aerospace industries.Part one explores MEMS for a variety of automotive applications. The role of MEMS in passenger safety and comfort, sensors for automotive vehicle stability control applications and automotive tire pressure monitoring systems are considered, along with pressure and flow sensors for engine management, and RF MEMS for automotive radar sensors. Part two then goes on to explore MEMS for

  16. Aerospace Applications Of High Temperature Superconductivity

    Science.gov (United States)

    Anderson, W. W.

    1988-05-01

    The existence of superconductors with TcOOK (which implies device operating temper-atures the order of Top ≍45K) opens up a variety of potential applications within the aerospace/defense industry. This is partly due to the existence of well developed cooler technologies to reach this temperature regime and partly due to the present operation of some specialized components at cryogenic temperatures. In particular, LWIR focal planes may operate at 10K with some of the signal processing electronics at an intermediate temperature of 40K. Addition of high Tc superconducting components in the latter system may be "free" in the sense of additional system complexity required. The established techniques for cooling in the 20K to 50K temperature regime are either open cycle, expendable material (stored gas with Joule-Thomson expansion, liquid cryogen or solid cryogen) or mechanical refrigerators (Stirling cycle, Brayton cycle or closed cycle Joule-Thomson). The high Tc materials may also contribute to the development of coolers through magnetically levitated bearings or providing the field for a stage of magnetic refrigeration. The discovery of materials with Tc, 90K has generated a veritable shopping list of applications. The superconductor properties which are of interest for applications are (1) zero resistance, (2) Meissner effect, (3) phase coherence and (4) existence of an energy gap. The zero resistance property is significant in the development of high field magnets requiring neglible power to maintain the field. In addition to the publicized applications to rail guns and electromagnetic launcher, we can think of space born magnets for charged particle shielding or whistler mode propagation through a plasma sheath. Conductor losses dominate attenuation and dispersion in microstrip transmission lines. While the surface impedance of a superconductor is non vanishing, significant improvements in signal transmission may be obtained. The Meissner effect may be utilized

  17. Former Virginia Tech Aerospace and Ocean Engineering Department Head Dies

    OpenAIRE

    Gilbert, Karen

    2003-01-01

    James B. Eades, Jr., retired aerospace research scientist from Bluefield, W. Wa., and former professor and department head of aerospace and ocean engineering at Virginia Tech, died Dec. 14 at Veteran's Hospital in Washington, D.C. He was 80.

  18. Fundamentals of Aerospace Engineering: An introductory course to aeronautical engineering

    OpenAIRE

    Soler, Manuel

    2014-01-01

    Fundamentals of Aerospace Engineering is a text book that provides an introductory, thorough overview of aeronautical engineering, and it is aimed at serving as reference for an undergraduate course on aerospace engineering.

  19. Effectiveness and resolution of tests for evaluating the performance of cutting fluids in machining aerospace alloys

    DEFF Research Database (Denmark)

    De Chiffre, Leonardo; Axinte, Dragos A.

    2008-01-01

    The paper discusses effectiveness and resolution of five cutting tests (turning, milling, drilling, tapping, VIPER grinding) and their quality output measures used in a multi-task procedure for evaluating the performance of cutting fluids when machining aerospace materials. The evaluation takes...

  20. 78 FR 36793 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2013-06-19

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel (ASAP). DATES: Friday, July 12, 2013, 09:00-10:00 a.m.... Harmony Myers, Aerospace Safety Advisory Panel Executive Director, National Aeronautics and...

  1. 75 FR 61219 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2010-10-04

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, October 22, 2010, 12:30 p.m. to 2 p.m... 77058. FOR FURTHER INFORMATION CONTACT: Ms. Kathy Dakon, Aerospace Safety Advisory Panel...

  2. 77 FR 38090 - Aerospace Safety Advisory Panel; Meeting.

    Science.gov (United States)

    2012-06-26

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting. AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, July 20, 2012, 11:30 a.m. to 12:30 p.m. EDT... FURTHER INFORMATION CONTACT: Ms. Harmony Myers, Aerospace Safety Advisory Panel Executive...

  3. 76 FR 2923 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2011-01-18

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, February 4, 2011, 11:30 a.m. to 1:30 p.m... CONTACT: Ms. Kathy Dakon, Aerospace Safety Advisory Panel Executive Director, National Aeronautics...

  4. 77 FR 58413 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2012-09-20

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, October 12, 2012, 12:00 p.m. to 1:00 p.m.... FOR FURTHER INFORMATION CONTACT: Ms. Harmony Myers, Aerospace Safety Advisory Panel Executive...

  5. 76 FR 65750 - Aerospace Safety Advisory Panel; Charter Renewal

    Science.gov (United States)

    2011-10-24

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Charter Renewal AGENCY: National Aeronautics and... Aerospace Safety Advisory Panel. SUMMARY: Pursuant to sections 14(b)(1) and 9(c) of the Federal Advisory... of the NASA Aerospace Safety Advisory Panel is in the public interest in connection with...

  6. 75 FR 36697 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2010-06-28

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, July 16, 2010, 1 p.m. to 3 p.m. ADDRESSES... CONTACT: Ms. Kathy Dakon, Aerospace Safety Advisory Panel Executive Director, National Aeronautics...

  7. 77 FR 1955 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2012-01-12

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, January 27, 2012, Time 11 a.m.-12:30 p.m... CONTACT: Ms. Susan Burch, Aerospace Safety Advisory Panel Administrative Officer, National Aeronautics...

  8. 76 FR 62455 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2011-10-07

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, October 21, 2011, 12:30 to 2 p.m. Central.... FOR FURTHER INFORMATION CONTACT: Ms. Susan Burch, Aerospace Safety Advisory Panel...

  9. 76 FR 36937 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2011-06-23

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, July 15, 2011, 10 a.m. to 12 p.m. ADDRESSES... INFORMATION CONTACT: Ms. Kathy Dakon, Aerospace Safety Advisory Panel Executive Director, National...

  10. 75 FR 19662 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2010-04-15

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, April 30, 2010, 12:30 p.m. to 2:30 p.m... CONTACT: Ms. Kathy Dakon, Aerospace Safety Advisory Panel Executive Director, National Aeronautics...

  11. 78 FR 57903 - Aerospace Safety Advisory Panel; Charter Renewal

    Science.gov (United States)

    2013-09-20

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Charter Renewal AGENCY: National Aeronautics and Space Administration (NASA). ACTION: Notice of renewal and amendment of the charter of the Aerospace... the Aerospace Safety Advisory Panel is in the public interest in connection with the performance...

  12. 76 FR 19147 - Aerospace Safety Advisory Panel; Meeting.

    Science.gov (United States)

    2011-04-06

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting. AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, April 29, 2011, from 11 p.m. to 1 p.m..., FL 32899. FOR FURTHER INFORMATION CONTACT: Ms. Kathy Dakon, Aerospace Safety Advisory Panel...

  13. 78 FR 15976 - Aerospace Safety Advisory Panel; Meeting.

    Science.gov (United States)

    2013-03-13

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting. AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Wednesday April 3, 2013, 11:00 a.m. to 12:00 p.m..., Greenbelt, MD 20771-0001. FOR FURTHER INFORMATION CONTACT: Ms. Harmony Myers, Aerospace Safety...

  14. 78 FR 1265 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2013-01-08

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. ] DATES: Friday, January 25, 2013, 10:00 a.m. to 11:00 a.m... CONTACT: Ms. Harmony Myers, Aerospace Safety Advisory Panel Executive Director, National Aeronautics...

  15. Advanced Engineering Environments: Implications for Aerospace Manufacturing

    Science.gov (United States)

    Thomas, D.

    2001-01-01

    There are significant challenges facing today's aerospace industry. Global competition, more complex products, geographically-distributed design teams, demands for lower cost, higher reliability and safer vehicles, and the need to incorporate the latest technologies quicker all face the developer of aerospace systems. New information technologies offer promising opportunities to develop advanced engineering environments (AEEs) to meet these challenges. Significant advances in the state-of-the-art of aerospace engineering practice are envisioned in the areas of engineering design and analytical tools, cost and risk tools, collaborative engineering, and high-fidelity simulations early in the development cycle. These advances will enable modeling and simulation of manufacturing methods, which will in turn allow manufacturing considerations to be included much earlier in the system development cycle. Significant cost savings, increased quality, and decreased manufacturing cycle time are expected to result. This paper will give an overview of the NASA's Intelligent Synthesis Environment, the agency initiative to develop an AEE, with a focus on the anticipated benefits in aerospace manufacturing.

  16. Aerospace Competitiveness: UK, US and Europe

    OpenAIRE

    Derek Braddon; Keith Hartley

    2005-01-01

    This paper assesses the UK aerospace industry’s competitiveness. Various statistical indicators are used to measure competitiveness, based on published data at the industry and firm level. The indicators include productivity, output, firm size, development time-scales, labour hoarding, exports and profitability.

  17. Spacecraft and their Boosters. Aerospace Education I.

    Science.gov (United States)

    Coard, E. A.

    This book, one in the series on Aerospace Education I, provides a description of some of the discoveries that spacecraft have made possible and of the experience that American astronauts have had in piloting spacecraft. The basic principles behind the operation of spacecraft and their boosters are explained. Descriptions are also included on…

  18. Aerospace Meteorology Lessons Learned Relative to Aerospace Vehicle Design and Operations

    Science.gov (United States)

    Vaughan, William W.; Anderson, B. Jeffrey

    2004-01-01

    Aerospace Meteorology came into being in the 1950s as the development of rockets for military and civilian usage grew in the United States. The term was coined to identify those involved in the development of natural environment models, design/operational requirements, and environment measurement systems to support the needs of aerospace vehicles, both launch vehicles and spacecraft. It encompassed the atmospheric environment of the Earth, including Earth orbit environments. Several groups within the United States were active in this area, including the Department of Defense, National Aeronautics and Space Administration, and a few of the aerospace industry groups. Some aerospace meteorology efforts were similar to those being undertaken relative to aviation interests. As part of the aerospace meteorology activities a number of lessons learned resulted that produced follow on efforts which benefited from these experiences, thus leading to the rather efficient and technologically current descriptions of terrestrial environment design requirements, prelaunch monitoring systems, and forecast capabilities available to support the development and operations of aerospace vehicles.

  19. Advances in control system technology for aerospace applications

    CERN Document Server

    2016-01-01

    This book is devoted to Control System Technology applied to aerospace and covers the four disciplines Cognitive Engineering, Computer Science, Operations Research, and Servo-Mechanisms. This edited book follows a workshop held at the Georgia Institute of Technology in June 2012, where the today's most important aerospace challenges, including aerospace autonomy, safety-critical embedded software engineering, and modern air transportation were discussed over the course of two days of intense interactions among leading aerospace engineers and scientists. Its content provide a snapshot of today's aerospace control research and its future, including Autonomy in space applications, Control in space applications, Autonomy in aeronautical applications, Air transportation, and Safety-critical software engineering.

  20. Active wireless temperature sensors for aerospace thermal protection systems

    Science.gov (United States)

    Milos, Frank S.; Karunaratne, K. S. G.

    2003-07-01

    Vehicle system health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life-cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to advance inspection and health management technologies for thermal protection systems. This paper summarizes a joint effort by NASA Ames and Korteks to develop active "wireless" sensors that can be embedded in the thermal protection system to monitor subsurface temperature histories. These devices are thermocouples integrated with radio-frequency identification circuits to enable non-contact communication of temperature data through aerospace thermal protection materials. Two generations of prototype sensors are discussed. The advanced prototype collects data from three type-k thermocouples attached to a 25-mm square integrated circuit and can communicate through 7 to 10 cm thickness of thermal protection materials.

  1. Intercalated graphite fiber composites as EMI shields in aerospace structures

    Science.gov (United States)

    Gaier, James R.

    1992-01-01

    The requirements for electromagnetic interference (EMI) shielding in aerospace structures are more complicated than those for ground structures because of their weight limitations. As a result, the best EMI shielding materials must combine low density, high strength, and high elastic modulus with high shielding ability. EMI shielding characteristics were calculated for shields formed from pristine and intercalated graphite fiber/epoxy composites and compare to preliminary experimental results for these materials and to the characteristics of shields made from aluminum. Calculations indicate that effective EMI shields could be fabricated from intercalated graphite composites which would have less than 12 percent of the mass of conventional aluminum shields, based on mechanical properties and shielding characteristics alone.

  2. Green Aerospace Fuels from Nonpetroleum Sources

    Science.gov (United States)

    Hepp, Aloysius F.; Kulis, Michael J.; DeLaRee, Ana B.; Zubrin, Robert; Berggren, Mark; Hensel, Joseph D.; Kimble, Michael C.

    2011-01-01

    Efforts to produce green aerospace propellants from nonpetroleum sources are outlined. The paper begins with an overview of feedstock processing and relevant small molecule or C1 chemistry. Gas-to-liquid technologies, notably Fischer-Tropsch (FT) processing of synthesis gas (CO and H2), are being optimized to enhance the fraction of product stream relevant to aviation (and other transportation) fuels at the NASA Glenn Research Center (GRC). Efforts to produce optimized catalysts are described. Given the high cost of space launch, the recycling of human metabolic and plastic wastes to reduce the need to transport consumables to orbit to support the crew of a space station has long been recognized as a high priority. If the much larger costs of transporting consumables to the Moon or beyond are taken into account, the importance of developing waste recycling systems becomes still more imperative. One promising way to transform organic waste products into useful gases is steam reformation; this well-known technology is currently being optimized by a Colorado company for exploration and planetary surface operations. Reduction of terrestrial waste streams while producing energy and/or valuable raw materials is an opportunity being realized by a new generation of visionary entrepreneurs. A technology that has successfully demonstrated production of fuels and related chemicals from waste plastics developed in Northeast Ohio is described. Technologies being developed by a Massachusetts company to remove sulfur impurities are highlighted. Common issues and concerns for nonpetroleum fuel production are emphasized. Energy utilization is a concern for production of fuels whether a terrestrial operation or on the lunar (or Martian) surface; the term green relates to not only mitigating excess carbon release but also to the efficiency of grid-energy usage. For space exploration, energy efficiency can be an essential concern. Other issues of great concern include minimizing

  3. 航天用热致变色材料低太阳吸收率研究%Investigation on Low Solar Absorptivity of Thermochromic Material for Aerospace Application

    Institute of Scientific and Technical Information of China (English)

    范德松; 李强; 宣益民

    2012-01-01

    Thermochromic material La0.TCa0.2Sr0.1MnO3 can changes its emissivity with temperature. However, a serious problem is that it has a large solar absorptivity to limit its application in space. In order to reduce the large solar absorptivity, multilayer films are designed. Based on the designed structure, the multilayer films are deposited on the surface of thermochromic material. The results of calculation and experiment for the solar absorptivity of thermochromic material and thermochromic material with multilayer films are presented. Investigation results indicate that the solar absorptivity of thermochromic material is reduced from 0.78 to 0.27 by designing the multilayer films on the material surface. This enhances the applicability of the material.%La_(0.7)Ca_(0.2)Sr_(0.1)MnO_3热致变色材料是一种发射率随温度变化的热控功能材料,不足的是这种材料的太阳吸收率过大。针对此问题,本文从多层薄膜理论和最优化理论出发,获得了基于多层薄膜的低太阳吸收率热致变色材料。根据计算得到的膜系结构参数,采用电子束蒸发法在热致变色材料表面沉积了多层薄膜,并对设计计算与实验测试结果进行研究和分析。研究表明:多层薄膜结构的设计能将热致变色材料的太阳吸收率从0.78降低至0.27,提高了热致变色材料的实用性。

  4. Automation technology for aerospace power management

    Science.gov (United States)

    Larsen, R. L.

    1982-01-01

    The growing size and complexity of spacecraft power systems coupled with limited space/ground communications necessitate increasingly automated onboard control systems. Research in computer science, particularly artificial intelligence has developed methods and techniques for constructing man-machine systems with problem-solving expertise in limited domains which may contribute to the automation of power systems. Since these systems perform tasks which are typically performed by human experts they have become known as Expert Systems. A review of the current state of the art in expert systems technology is presented, and potential applications in power systems management are considered. It is concluded that expert systems appear to have significant potential for improving the productivity of operations personnel in aerospace applications, and in automating the control of many aerospace systems.

  5. IT Data Mining Tool Uses in Aerospace

    Science.gov (United States)

    Monroe, Gilena A.; Freeman, Kenneth; Jones, Kevin L.

    2012-01-01

    Data mining has a broad spectrum of uses throughout the realms of aerospace and information technology. Each of these areas has useful methods for processing, distributing, and storing its corresponding data. This paper focuses on ways to leverage the data mining tools and resources used in NASA's information technology area to meet the similar data mining needs of aviation and aerospace domains. This paper details the searching, alerting, reporting, and application functionalities of the Splunk system, used by NASA's Security Operations Center (SOC), and their potential shared solutions to address aircraft and spacecraft flight and ground systems data mining requirements. This paper also touches on capacity and security requirements when addressing sizeable amounts of data across a large data infrastructure.

  6. Advancing Malaysia’s Aerospace Industry: A Review of Governing Behaviors Required in Overcoming the Barriers in Global Aerospace Supply Chain Integration

    OpenAIRE

    Jones, David A.

    2006-01-01

    The global aerospace manufacturing industry is defined by original equipment manufacturers (OEM’s) consisting of major manufacturers of aircraft or aircraft systems as well as their principal and sub-tier suppliers. It is dominated by large manufacturers known as primes supported by system integrators and numerous component, parts and material suppliers. These are focused on meeting the diverse and differing capital equipment needs of these sectors. These supply products and services in direc...

  7. Development of UHTC- Ultra-high-temperature ceramics for aerospace and industrial applications

    OpenAIRE

    Bellosi, Alida

    2009-01-01

    Zirconium and Hafnium diborides and carbides belong to the class of Ultra-High-Temperature Ceramics (UHTC) for their high melting point (2700-3900?C). The interest on these materials is due to the unique combination of properties 8High hardness, high electrical and thermal conductivity, chemical inertness). They constitute a clss of promising materials for HT applications in industrial secors like foundry, refractory or nuclear plants. Applications are also found in aerospace industry: leadin...

  8. CORPORATE MULTICULTURALISM IN THE GLOBAL AEROSPACE INDUSTRY

    OpenAIRE

    Kaskel, Danielle

    2010-01-01

    International aerospace corporations have recently witnessed a rapid growth in the pace of globalization. Increasing global sales, international acquisitions, and production outsourcing to other countries are activities that highlight the critical necessity of effectively conducting business between culturally diverse stakeholders. An awareness of the ways in which culture defines who we are and how that affects interaction with others is crucial to international business success. Geert Hofs...

  9. Towards open innovation practices in aerospace industry

    OpenAIRE

    Parida, Vinit; Larsson, Tobias; Isaksson, Ola; Oghazi, Pejvak

    2011-01-01

    Across industrial settings and environmental conditions, innovation is viewed as a source of advancing firms’ competitive position. Recently, a shift has been witnessed from the traditional innovation model, which mainly focused on internal research and development (R&D) towards open innovation. In this study, we have attempted to study if this approach is suitable for the regular, more mature industry by focusing the context of aerospace industry. The study involves a single case company...

  10. Integrated aerospace technologies in precision agriculture support

    International Nuclear Information System (INIS)

    In a scenery where agriculture plays a more and more 'decisive and strategic role, the spread, in that sector, of aerospace and advanced robotic technology, more and more' accessible, meets the needs of basing decisions on integrated information, not only for increase production, but also to ensure food quality 'to the world population, minimizing the environmental impacts and climatic problems, and enhancing biodiversity'.

  11. Integration of pyrotechnics into aerospace systems

    Science.gov (United States)

    Bement, Laurence J.; Schimmel, Morry L.

    1993-01-01

    The application of pyrotechnics to aerospace systems has been resisted because normal engineering methods cannot be used in design and evaluation. Commonly used approaches for energy sources, such as electrical, hydraulic and pneumatic, do not apply to explosive and pyrotechnic devices. This paper introduces the unique characteristics of pyrotechnic devices, describes how functional evaluations can be conducted, and demonstrates an engineering approach for pyrotechnic integration. Logic is presented that allows evaluation of two basic types of pyrotechnic systems to demonstrate functional margin.

  12. Developing IVHM Requirements for Aerospace Systems

    Science.gov (United States)

    Rajamani, Ravi; Saxena, Abhinav; Kramer, Frank; Augustin, Mike; Schroeder, John B.; Goebel, Kai; Shao, Ginger; Roychoudhury, Indranil; Lin, Wei

    2013-01-01

    The term Integrated Vehicle Health Management (IVHM) describes a set of capabilities that enable sustainable and safe operation of components and subsystems within aerospace platforms. However, very little guidance exists for the systems engineering aspects of design with IVHM in mind. It is probably because of this that designers have to use knowledge picked up exclusively by experience rather than by established process. This motivated a group of leading IVHM practitioners within the aerospace industry under the aegis of SAE's HM-1 technical committee to author a document that hopes to give working engineers and program managers clear guidance on all the elements of IVHM that they need to consider before designing a system. This proposed recommended practice (ARP6883 [1]) will describe all the steps of requirements generation and management as it applies to IVHM systems, and demonstrate these with a "real-world" example related to designing a landing gear system. The team hopes that this paper and presentation will help start a dialog with the larger aerospace community and that the feedback can be used to improve the ARP and subsequently the practice of IVHM from a systems engineering point-of-view.

  13. Aerospace devices for magnetic replicas

    Science.gov (United States)

    Weinstein, Roy

    1993-05-01

    Retained persistent magnetic field has been studied and improved in the superconductor YBa2Cu3O7 (Y123). During the study, trapped magnetic field, B(t), has been increased by over a factor of 10(exp 5). Methods used to improve magnetic field trapping were principally: (1) the adoption of the Melt Texturing process to increase grain size; (2) the addition of excess Y to disperse deposits of Y2BaCuO5 (Y211) and again increase grain size; (3) irradiation with high energy particles including 1H+, 3He++, 4He++, and fission fragments; and (4) utilizing temperatures below 77 K has also been quantified as a way to increase trapped field. In addition, in our study of B(t), we have found laws governing creep, activation, temperature dependence, creep vs. current flow, etc. In the range 20 K less than or equal to T less than or equal to 65 K, and for B less than 10 Tesla, a simple empirical relationship was found: B(trap) (T2) = B(trap) (T1) ((Tc - T2)/(Tc - T1))squared where Tc is the critical temperature. The highest experimental trapped field was B(trap) = 3.96 Tesla, at 65 K. We believe this to be the highest persistent field ever produced, by any method. A two component model of the persistent currents has been developed. This accurately reproduces the data, using as parameters only the magnitude of a constant surface current, J(s), and a constant volume current J(v). The model successfully predicts B(t) (xyz) for the case of maximum trapped field, for all samples observed. It has also been extended to describe the unsaturated case either zero field cooled, or field cooled. Loss of strap with time has been studied for the critical state (Bt,max), and non critical state (Bt less than Bt,max), for times from a few minutes to a few months, for unirradiated material, for irradiation by 1H+, 3He++, 4He++, high z projectiles, and neutrons, and for all materials used in the overall study. We conclude that: (1) multi Tesla trapped fields are attained; (2) fields over 10 T are

  14. Materials reliability. Technical activities, 1990. (NAS-NRC Assessment Panel, January 31-February 1, 1991)

    Energy Technology Data Exchange (ETDEWEB)

    McHenry, H.I.

    1990-12-01

    Selected Highlights of the Materials Reliability Division are as follows: Composites NDE: A high resolution ultrasonic system has been developed for inspecting thick polymer-matrix composites; NDE Instruments: Field trials were conducted on two prototype ultrasonic NDE instruments. A formability sensor system was delivered to the Ford Motor Company for evaluation at their Dearborn stamping plant. An ultrasonic system for roll-by inspection of railroad wheels is being evaluated at the American Association of Railroads test track in Pueblo, Colorado; Elastic Waves in Composites: A powerful technique using a time-dependent Green's function method has been developed for studying propagation of elastic waves and their scattering from discontinuities in anisotropic solids; Electronic Packaging: Computer programs have been developed to convert coordinate points on solder joint surfaces obtained by x-ray laminography and optical inspection into finite element meshes for stress analysis; Thermomechanical Processing: The continuous cooling transformation (CCT) characteristics and the high-temperature, high strain-rate flow properties were measured for microalloyed SAE 1141 forging steel; Charpy Standards: Over 1000 industrial customers were supplied with Charpy V-notch reference specimens and calibration services for certification of Charpy impact test machines to ASTM Standard E23; Cryogenic Testing: A 5 MN (1 million pound-force) servohydraulic testing machine was refurbished and equipped with a cryostat and dewar capable of testing specimens 2 m long and 50 cm in diameter in liquid helium; Aluminum-Lithium Alloys: A cooperative program with NASA indicated that aluminum-lithium alloys have sufficient oxygen compatibility for use in cryogenic tankage for the Advanced Launch System; Automated Welding: An intelligent welding program was initiated for the U.S. Navy in conjunction with Babcock and Wilcox and INEL.

  15. Production Strategies for Production-Quality Parts for Aerospace Applications

    Science.gov (United States)

    Cawley, J. D.; Best, J. E.; Liu, Z.; Eckel, A. J.; Reed, B. D.; Fox, D. S.; Bhatt, R.; Levine, Stanley R. (Technical Monitor)

    2000-01-01

    A combination of rapid prototyping processes (3D Systems' stereolithography and Sanders Prototyping's ModelMaker) are combined with gelcasting to produce high quality silicon nitride components that were performance tested under simulated use conditions. Two types of aerospace components were produced, a low-force rocket thruster and a simulated airfoil section. The rocket was tested in a test stand using varying mixtures of H2 and O2, whereas the simulated airfoil was tested by subjecting it to a 0.3 Mach jet-fuel burner flame. Both parts performed successfully, demonstrating the usefulness of the rapid prototyping in efforts to effect materials substitution. In addition, the simulated airfoil was used to explore the possibility of applying thermal/environmental barrier coatings and providing for internal cooling of ceramic parts. It is concluded that this strategy for processing offers the ceramic engineer all the flexibility normally associated with investment casting of superalloys.

  16. Finite element thermo-viscoplastic analysis of aerospace structures

    Science.gov (United States)

    Pandey, Ajay K.; Dechaumphai, Pramote; Thornton, Earl A.

    1990-01-01

    The time-dependent thermo-viscoplastic response of aerospace structures subjected to intense aerothermal loads is predicted using the finite-element method. The finite-element analysis uses the Bodner-Partom unified viscoplastic constitutive relations to determine rate-dependent nonlinear material behavior. The methodology is verified by comparison with experimental data and other numerical results for a uniaxially-loaded bar. The method is then used (1) to predict the structural response of a rectangular plate subjected to line heating along a centerline, and (2) to predict the thermal-structural response of a convectively-cooled engine cowl leading edge subjected to aerodynamic shock-shock interference heating. Compared to linear elastic analysis, the viscoplastic analysis results in lower peak stresses and regions of plastic deformations.

  17. Finite-element thermo-viscoplastic analysis of aerospace structures

    Science.gov (United States)

    Pandey, Ajay; Dechaumphai, Pramote; Thornton, Earl A.

    1990-01-01

    The time-dependent thermo-viscoplastic response of aerospace structures subjected to intense aerothermal loads is predicted using the finite-element method. The finite-element analysis uses the Bodner-Partom unified viscoplastic constitutive relations to determine rate-dependent nonlinear material behavior. The methodology is verified by comparison with experimental data and other numerical results for a uniaxially-loaded bar. The method is then used (1) to predict the structural response of a rectangular plate subjected to line heating along a centerline, and (2) to predict the thermal-structural response of a convectively-cooled engine cowl leading edge subjected to aerodynamic shock-shock interference heating. Compared to linear elastic analysis, the viscoplastic analysis results in lower peak stresses and regions of plastic deformations.

  18. Active Wireless Temperature Sensors for Aerospace Thermal Protection Systems

    Science.gov (United States)

    Milos, Frank S.; Karunaratne, K.; Arnold, Jim (Technical Monitor)

    2002-01-01

    Health diagnostics is an area where major improvements have been identified for potential implementation into the design of new reusable launch vehicles in order to reduce life-cycle costs, to increase safety margins, and to improve mission reliability. NASA Ames is leading the effort to advance inspection and health management technologies for thermal protection systems. This paper summarizes a joint project between NASA Ames and Korteks to develop active wireless sensors that can be embedded in the thermal protection system to monitor sub-surface temperature histories. These devices are thermocouples integrated with radio-frequency identification circuitry to enable acquisition and non-contact communication of temperature data through aerospace thermal protection materials. Two generations of prototype sensors are discussed. The advanced prototype collects data from three type-k thermocouples attached to a 2.54-cm square integrated circuit.

  19. Progress in patch repair of aerospace composite structures

    Science.gov (United States)

    Hou, Weiguo; Zhang, Weifang; Tang, Qingyun

    2012-04-01

    With the rapid application of the composite structure in the aerospace industry, more load-bearing structures and components are used with composites instead of conventional engineering materials. However, the composite structures are inevitably suffered damages in the complex environment, the composites structures repair become more important in the airplane maintenance. This paper describes the composites patch repair progress. Firstly, the flaws and damages concerned to composite structures are concluded, and also the repair principles are presented. Secondly, the advantages and disadvantages for different repair methods are analyzed, as well as the different bonded repair and their applicability to different structures is discussed. According the recent research in theory and experiment, the scarf repair effects under different parameters are analyzed. Finally, the failure mechanisms of repair structure are discussed, and some prospects are put forward.

  20. Open Access Publishing in Aerospace – Opportunities and Pitfalls

    OpenAIRE

    Scholz, Dieter

    2013-01-01

    The first Open Access (OA) peer reviewed online journals in aerospace were all established after 2007. Still today more and more OA aerospace journals get started. Many publishers are located in less developed countries. The benefits of OA publishing are undisputed in the academic community, but there is disagreement if the new publishers can work to required standards. The current situation is evaluated based on an Internet review. OA journals in aerospace are listed with their major charact...

  1. NASA Engineering Safety Center NASA Aerospace Flight Battery Systems Working Group 2007 Proactive Task Status

    Science.gov (United States)

    Manzo, Michelle A.

    2007-01-01

    In 2007, the NASA Engineering Safety Center (NESC) chartered the NASA Aerospace Flight Battery Systems Working Group to bring forth and address critical battery-related performance/manufacturing issues for NASA and the aerospace community. A suite of tasks identifying and addressing issues related to Ni-H2 and Li-ion battery chemistries was submitted and selected for implementation. The current NESC funded are: (1) Wet Life of Ni-H2 Batteries (2) Binding Procurement (3) NASA Lithium-Ion Battery Guidelines (3a) Li-Ion Performance Assessment (3b) Li-Ion Guidelines Document (3b-i) Assessment of Applicability of Pouch Cells for Aerospace Missions (3b-ii) High Voltage Risk Assessment (3b-iii) Safe Charge Rates for Li-Ion Cells (4) Availability of Source Material for Li-Ion Cells (5) NASA Aerospace Battery Workshop This presentation provides a brief overview of the tasks in the 2007 plan and serves as an introduction to more detailed discussions on each of the specific tasks.

  2. Computational Modeling of Flow Control Systems for Aerospace Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Clear Science Corp. proposes to develop computational methods for designing active flow control systems on aerospace vehicles with the primary objective of...

  3. Commercialization of terrestrial applications of aerospace power technology

    International Nuclear Information System (INIS)

    The potential for commercialization of terrestrial energy systems based upon aerospace power technology's explored. Threats to the aerospace power technology industry, caused by the end of the cold war and weak world economy are described. There are also new opportunities caused by increasing terrestrial energy needs and world-wide concern for the environment. In this paper, the strengths and weaknesses of the aerospace power industry in commercializing terrestrial energy technologies are reviewed. Finally, actions which will enable the aerospace power technology industry to commercialize products into terrestrial energy markets are described

  4. High Performing, Low Temperature Operating, Long Lifetime, Aerospace Lubricants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) proposes to synthesize, characterize, and test new ionic liquids and formulations as lubricants for aerospace applications. The...

  5. 航天航空用难熔金属材料的研究进展%Research Development of Refractory Metal Materials Used in the Field of Aerospace

    Institute of Scientific and Technical Information of China (English)

    郑欣; 白润; 王东辉; 蔡晓梅; 王峰; 夏明星; 喻吉良

    2011-01-01

    综述了航天航空用难熔金属钨、钼、钽、铌、铼和其合金及其涂层在高温结构研究方面的现状和应用情况,对航天用难熔金属合金的种类、力学性能、涂层的性能、制备方法作了介绍.难熔金属主要用于火箭发动机和航天器结构件,其中钨、钼及其合金单晶应用于空间动力系统.难熔金属及其合金的使用温度高低顺序与材料熔点的顺序相同.%The research states and applications of refractory metals tungsten, molybdenum, tantalum, niobium and rhenium and their alloys and coatings used in spaceflight industry, have been summarized. The kinds, mechanical properties and preparation technologies of the alloys and performances of their coatings have also been introduced. The refractory metals are mainly used as rocket engine and spacecraft structural parts. And the tungsten, molybdenum and their crystals are also used in space dynamical system. The order of the service temperature from high to low in refractory metals and their alloys is same as the melting point order of materials.

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 39: The role of computer networks in aerospace engineering

    Science.gov (United States)

    Bishop, Ann P.; Pinelli, Thomas E.

    1994-01-01

    This paper presents selected results from an empirical investigation into the use of computer networks in aerospace engineering. Such networks allow aerospace engineers to communicate with people and access remote resources through electronic mail, file transfer, and remote log-in. The study drew its subjects from private sector, government and academic organizations in the U.S. aerospace industry. Data presented here were gathered in a mail survey, conducted in Spring 1993, that was distributed to aerospace engineers performing a wide variety of jobs. Results from the mail survey provide a snapshot of the current use of computer networks in the aerospace industry, suggest factors associated with the use of networks, and identify perceived impacts of networks on aerospace engineering work and communication.

  7. Chemical Gas Sensors for Aerospace Applications

    Science.gov (United States)

    Hunter, Gary W.; Liu, C. C.

    1998-01-01

    Chemical sensors often need to be specifically designed (or tailored) to operate in a given environment. It is often the case that a chemical sensor that meets the needs of one application will not function adequately in another application. The more demanding the environment and specialized the requirement, the greater the need to adapt exiting sensor technologies to meet these requirements or, as necessary, develop new sensor technologies. Aerospace (aeronautic and space) applications are particularly challenging since often these applications have specifications which have not previously been the emphasis of commercial suppliers. Further, the chemical sensing needs of aerospace applications have changed over the years to reflect the changing emphasis of society. Three chemical sensing applications of particular interest to the National Aeronautics and Space Administration (NASA) which illustrate these trends are launch vehicle leak detection, emission monitoring, and fire detection. Each of these applications reflects efforts ongoing throughout NASA. As described in NASA's "Three Pillars for Success", a document which outlines NASA's long term response to achieve the nation's priorities in aerospace transportation, agency wide objectives include: improving safety and decreasing the cost of space travel, significantly decreasing the amount of emissions produced by aeronautic engines, and improving the safety of commercial airline travel. As will be discussed below, chemical sensing in leak detection, emission monitoring, and fire detection will help enable the agency to meet these objectives. Each application has vastly different problems associated with the measurement of chemical species. Nonetheless, the development of a common base technology can address the measurement needs of a number of applications.

  8. Oklahoma Aerospace Intellectual Capital/Educational Recommendations: An Inquiry of Oklahoma Aerospace Executives

    Science.gov (United States)

    Nelson, Erin M.

    2010-01-01

    Scope and Method of Study: The purpose of this qualitative study was to conduct detailed personal interviews with aerospace industry executives/managers from both the private and military sectors from across Oklahoma to determine their perceptions of intellectual capital needs of the industry. Interviews with industry executives regarding…

  9. National Aerospace Plane Thermal Development. (Latest citations from the Aerospace Database)

    Science.gov (United States)

    1997-01-01

    The bibliography contains citations concerning thermal properties of the National Aerospace Plane (NASP). Analysis of thermal stress, and methods for determining thermal effects on the plane's supersonic structure are discussed. The citations also review temperature extremes that the vehicle is likely to encounter.

  10. Computational composite mechanics for aerospace propulsion structures

    Science.gov (United States)

    Chamis, Christos C.

    1987-01-01

    Specialty methods are presented for the computational simulation of specific composite behavior. These methods encompass all aspects of composite mechanics, impact, progressive fracture and component specific simulation. Some of these methods are structured to computationally simulate, in parallel, the composite behavior and history from the initial frabrication through several missions and even to fracture. Select methods and typical results obtained from such simulations are described in detail in order to demonstrate the effectiveness of computationally simulating: (1) complex composite structural behavior in general, and (2) specific aerospace propulsion structural components in particular.

  11. Aerospace technology and commercial nuclear power

    International Nuclear Information System (INIS)

    The objective of the workshop conference upon which this report is based was to compare the technologies, institutions, and procedures of the aerospace and commercial nuclear power industries, to seek commonalities and contrasts, and to identify the most promising avenues for beneficial transfer of information, technology, and procedures between the two industries. Seven working groups convened at the conference to meet this objective. Their general conclusions are presented. The working group topics included: powerplant deseign; plant safety and operations; powerplant control technology and integration; plant facility construction and standardization; economic and financial analyses; public awareness and understanding; and management of nuclear waste and spent fuel

  12. Fiber optic smart structures for aerospace applications

    Science.gov (United States)

    Udd, Eric

    Fiber optic smart structures as applied to aerospace platforms are reviewed. Emphasis is placed on advantages of these structures which include weight saving for equivalent performance, immunity to electromagnetic interference, the ability to multiplex a number of fiber optic sensors along a single line, the inherent high bandwidth of fiber optic sensors and the data links supporting them, the ability to perform in extremely hostile environments at high temperatures, vibration, and shock loadings. It is concluded that fiber optic smart structures have a considerable potential to enhance the value of future aircraft and spacecraft through improved reliability, maintainability, and flight performance augmentation.

  13. Infrared signature studies of aerospace vehicles

    Science.gov (United States)

    Mahulikar, Shripad P.; Sonawane, Hemant R.; Arvind Rao, G.

    2007-10-01

    Infrared (IR) emissions from aircraft are used to detect, track, and lock-on to the target. MAN Portable Air Defence Systems (MANPADS) have emerged as a major cause of aircraft and helicopter loss. Therefore, IR signature studies are important to counter this threat for survivability enhancement, and are an important aspect of stealth technology. This paper reviews contemporary developments in this discipline, with particular emphasis on IR signature prediction from aerospace vehicles. The role of atmosphere in IR signature analysis, and relation between IR signature level and target susceptibility are illustrated. Also, IR signature suppression systems and countermeasure techniques are discussed, to highlight their effectiveness and implications in terms of penalties.

  14. The ARM unpiloted aerospace vehicle (UAV) program

    Energy Technology Data Exchange (ETDEWEB)

    Sowle, D. [Mission Research Corporation, Santa Barbara, CA (United States)

    1995-09-01

    Unmanned aerospace vehicles (UAVs) are an important complement to the DOE`s Atmospheric Radiation Measurement (ARM) Program. ARM is primarily a ground-based program designed to extensively quantify the radiometric and meteorological properties of an atmospheric column. There is a need for airborne measurements of radiative profiles, especially flux at the tropopause, cloud properties, and upper troposphere water vapor. There is also a need for multi-day measurements at the tropopause; for example, in the tropics, at 20 km for over 24 hours. UAVs offer the greatest potential for long endurance at high altitudes and may be less expensive than piloted flights. 2 figs.

  15. Non-Catalytic Self Healing Composite Material Solution Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fiber reinforce polymer (FRP) composite materials are seeing increasing use in the construction of a wide variety of aerospace structures. However, uncertainties...

  16. Development of lightweight structural health monitoring systems for aerospace applications

    Science.gov (United States)

    Pearson, Matthew

    This thesis investigates the development of structural health monitoring systems (SHM) for aerospace applications. The work focuses on each aspect of a SHM system covering novel transducer technologies and damage detection techniques to detect and locate damage in metallic and composite structures. Secondly the potential of energy harvesting and power arrangement methodologies to provide a stable power source is assessed. Finally culminating in the realisation of smart SHM structures. 1. Transducer Technology A thorough experimental study of low profile, low weight novel transducers not normally used for acoustic emission (AE) and acousto-ultrasonics (AU) damage detection was conducted. This included assessment of their performance when exposed to aircraft environments and feasibility of embedding these transducers in composites specimens in order to realise smart structures. 2. Damage Detection An extensive experimental programme into damage detection utilising AE and AU were conducted in both composites and metallic structures. These techniques were used to assess different damage mechanism within these materials. The same transducers were used for novel AE location techniques coupled with AU similarity assessment to successfully detect and locate damage in a variety of structures. 3. Energy Harvesting and Power Management Experimental investigations and numerical simulations were undertaken to assess the power generation levels of piezoelectric and thermoelectric generators for typical vibration and temperature differentials which exist in the aerospace environment. Furthermore a power management system was assessed to demonstrate the ability of the system to take the varying nature of the input power and condition it to a stable power source for a system. 4. Smart Structures The research conducted is brought together into a smart carbon fibre wing showcasing the novel embedded transducers for AE and AU damage detection and location, as well as vibration energy

  17. Comparison and analysis of two modern methods in the structural health monitoring techniques in aerospace

    Science.gov (United States)

    Riahi, Mohammad; Ahmadi, Alireza

    2016-04-01

    Role of air transport in the development and expansion of world trade leading to economic growth of different countries is undeniable. Continuing the world's trade sustainability without expansion of aerospace is next to impossible. Based on enormous expenses for design, manufacturing and maintenance of different aerospace structures, correct and timely diagnosis of defects in those structures to provide for maximum safety has the highest importance. Amid all this, manufacturers of commercial and even military aircrafts are after production of less expensive, lighter, higher fuel economy and nonetheless, higher safety. As such, two events has prevailed in the aerospace industries: (1) Utilization of composites for the fuselage as well as other airplane parts, (2) using modern manufacturing methods. Arrival of two these points have created the need for upgrading of the present systems as well as innovating newer methods in diagnosing and detection of defects in aerospace structures. Despite applicability of nondestructive testing (NDT) methods in aerospace for decades, due to some limitations in the defect detection's certainty, particularly for composite material and complex geometries, shadow of doubt has fallen on maintaining complete confidence in using NDT. These days, two principal approach are ahead to tackle the above mentioned problems. First, approach for the short range is the creative and combinational mean to increase the reliability of NDT and for the long run, innovation of new methods on the basis of structural health monitoring (SHM) is in order. This has led to new philosophy in the maintenance area and in some instances; field of design has also been affected by it.

  18. Ceramic multilayer based on ZrB2/SiC system for aerospace applications

    OpenAIRE

    Padovano, Elisa

    2015-01-01

    The work of this PhD thesis is focused on the processing and characterisation of ZrB2/SiC based multilayer materials, produced by tape casting and sintered without pressure assistance for aerospace applications. The multilayer components were processed in order to be used as external part of a thermal protection system; because of they directly face the atmosphere, in order to withstand high temperature, high heat fluxes and oxidizing environment, they have to show good oxidation and thermal ...

  19. Polymer-based composites for aerospace: An overview of IMAST results

    Science.gov (United States)

    Milella, Eva; Cammarano, Aniello

    2016-05-01

    This paper gives an overview of technological results, achieved by IMAST, the Technological Cluster on Engineering of Polymeric Composite Materials and Structures, in the completed Research Projects in the aerospace field. In this sector, the Cluster developed different solutions: lightweight multifunctional fiber-reinforced polymer composites for aeronautic structures, advanced manufacturing processes (for the optimization of energy consumption and waste reduction) and multifunctional components (e.g., thermal, electrical, acoustic and fire resistance).

  20. Strategies for Burr Minimization and Cleanability in Aerospace and Automotive Manufacturing

    OpenAIRE

    Avila, Miguel C.; Gardner, Joel D.; Reich-Weiser, Corinne; Vijayaraghavan, Athulan; Dornfeld, David

    2006-01-01

    The quality of machined components in the aerospace and automotive industries has become increasingly critical in the past years because of greater complexity of the workpieces, miniaturization, usage of new composite materials, and tighter tolerances. This trend has put continual pressure not only on improvements in machining operations, but also on the optimization of the cleanability of parts. The paper reviews recent work done in these areas at the University of California-Berkele...

  1. Standard Test Method for Intensity of Scratches on Aerospace Transparent Plastics

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers the visual inspection of shallow or superficial scratches on the surface of aerospace transparent plastic materials. 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  2. Application of Niobium Enriched Ormosils as Thermally Stable Coatings for Aerospace Aluminium Coatings

    OpenAIRE

    Varma, P.C. Rajath; Oubaha, Mohamed; Periyat, Pradeepan; McDonagh, Colette; Duffy, Brendan

    2011-01-01

    The aim of this experimental research is to study the ability of niobium rich sol-gel coatings to withstand thermal stress, while remaining impermeable to corrosive agents for the protection of aerospace alloys. The coating material is developed via polymeric sol-gel synthesis employing 3-(trimethoxysilyl)propylmethacrylate (MAPTMS) and niobium ethoxide precursors as a source of silicon and niobium, respectively. The beneficial effect of niobium inclusion within coating was characterised spec...

  3. Summary of aerospace and nuclear engineering activities

    Science.gov (United States)

    1988-01-01

    The Texas A&M Nuclear and Aerospace engineering departments have worked on five different projects for the NASA/USRA Advanced Design Program during the 1987/88 year. The aerospace department worked on two types of lunar tunnelers that would create habitable space. The first design used a heated cone to melt the lunar regolith, and the second used a conventional drill to bore its way through the crust. Both used a dump truck to get rid of waste heat from the reactor as well as excess regolith from the tunneling operation. The nuclear engineering department worked on three separate projects. The NEPTUNE system is a manned, outer-planetary explorer designed with Jupiter exploration as the baseline mission. The lifetime requirement for both reactor and power-conversion systems was twenty years. The second project undertaken for the power supply was a Mars Sample Return Mission power supply. This was designed to produce 2 kW of electrical power for seven years. The design consisted of a General Purpose Heat Source (GPHS) utilizing a Stirling engine as the power conversion unit. A mass optimization was performed to aid in overall design. The last design was a reactor to provide power for propulsion to Mars and power on the surface. The requirements of 300 kW of electrical power output and a mass of less than 10,000 Rg were set. This allowed the reactor and power conversion unit to fit within the Space Shuttle cargo bay.

  4. Research Opportunities in Advanced Aerospace Concepts

    Science.gov (United States)

    Jones, Gregory S.; Bangert, Linda S.; Garber, Donald P.; Huebner, Lawrence D.; McKinley, Robert E.; Sutton, Kenneth; Swanson, Roy C., Jr.; Weinstein, Leonard

    2000-01-01

    This report is a review of a team effort that focuses on advanced aerospace concepts of the 21st Century. The paper emphasis advanced technologies, rather than cataloging every unusual aircraft that has ever been attempted. To dispel the myth that "aerodynamics is a mature science" an extensive list of "What we cannot do, or do not know" was enumerated. A zeit geist, a feeling for the spirit of the times, was developed, based on existing research goals. Technological drivers and the constraints that might influence these technological developments in a future society were also examined. The present status of aeronautics, space exploration, and non-aerospace applications, both military and commercial, including enabling technologies are discussed. A discussion of non-technological issues affecting advanced concepts research is presented. The benefit of using the study of advanced vehicles as a tool to uncover new directions for technology development is often necessary. An appendix is provided containing examples of advanced vehicle configurations currently of interest.

  5. Pathways and Challenges to Innovation in Aerospace

    Science.gov (United States)

    Terrile, Richard J.

    2010-01-01

    This paper explores impediments to innovation in aerospace and suggests how successful pathways from other industries can be adopted to facilitate greater innovation. Because of its nature, space exploration would seem to be a ripe field of technical innovation. However, engineering can also be a frustratingly conservative endeavor when the realities of cost and risk are included. Impediments like the "find the fault" engineering culture, the treatment of technical risk as almost always evaluated in terms of negative impact, the difficult to account for expansive Moore's Law growth when making predictions, and the stove-piped structural organization of most large aerospace companies and federally funded research laboratories tend to inhibit cross-cutting technical innovation. One successful example of a multi-use cross cutting application that can scale with Moore's Law is the Evolutionary Computational Methods (ECM) technique developed at the Jet Propulsion Lab for automated spectral retrieval. Future innovations like computational engineering and automated design optimization can potentially redefine space exploration, but will require learning lessons from successful innovators.

  6. 76 FR 58776 - U.S. Aerospace Supplier & Investment Mission

    Science.gov (United States)

    2011-09-22

    ... Canadian aerospace OEMs for U.S. Companies. 16:00-16:30 Mission Debriefing at Hotel. Program End... applicants will be evaluated on their ability to satisfy the selection criteria as outlined below. This... U.S. suppliers of aerospace products the opportunity to meet with key potential customers such...

  7. 32 CFR 705.30 - Aerospace Education Workshop.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Aerospace Education Workshop. 705.30 Section 705... REGULATIONS AND OFFICIAL RECORDS PUBLIC AFFAIRS REGULATIONS § 705.30 Aerospace Education Workshop. (a) This... institutions sponsoring the workshop program: Provided, That such support does not interfere with the...

  8. 76 FR 23339 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2011-04-26

    ...: 76 FR 19147, Notice Number 11-030, April 6, 2011. SUMMARY: The National Aeronautics and Space... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... Aerospace Safety Advisory Panel (ASAP) to take place on April 29, 2011, at the Kennedy Space Center, FL....

  9. Current Trends in Aerospace Engineering Education on Taiwan.

    Science.gov (United States)

    Hsieh, Sheng-Jii

    A proposal for current trends in Aerospace Engineering Education on Taiwan has been drawn from the suggestions made after a national conference of "Workshop on Aerospace Engineering Education Reform." This workshop was held in January 18-20, 1998, at the Institute of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan,…

  10. 77 FR 75908 - Airworthiness Directives; Gulfstream Aerospace Corporation

    Science.gov (United States)

    2012-12-26

    ... Policies and Procedures (44 FR 11034, February 26, 1979), (3) Will not affect intrastate aviation in Alaska... Aerospace Corporation AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of proposed... Aerospace Corporation Model GV and GV-SP airplanes. This proposed AD was prompted by reports of two...

  11. 75 FR 6407 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2010-02-09

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Wednesday, February 24, 2010, 12:30 p.m. to 2:30 p... Center Visitor's Center to gain access.) ] FOR FURTHER INFORMATION CONTACT: Ms. Kathy Dakon,...

  12. 77 FR 25502 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2012-04-30

    ... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... meeting of the Aerospace Safety Advisory Panel. DATES: Friday, May 25, 2012, 10:00-11:00 a.m. CST... Visitor Control Center to gain access.) FOR FURTHER INFORMATION CONTACT: Ms. Harmony Myers,...

  13. Aerospace Technology Curriculum Guide. Invest in Success. Vo. Ed. #260.

    Science.gov (United States)

    Idaho State Dept. of Education, Boise. Div. of Vocational Education.

    This document contains standards for an articulated secondary and postsecondary curriculum in aerospace technology. The curriculum standards can be used to ensure that vocational programs meet the needs of local business and industry. The first part of the document contains a task list and student performance standards for the aerospace technology…

  14. 76 FR 26316 - Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2011-05-06

    ...: 76 FR 23339, Notice Number 11-043, dated April 26, 2011; and 76 FR 19147, Notice Number 11-030, dated... SPACE ADMINISTRATION Aerospace Safety Advisory Panel; Meeting AGENCY: National Aeronautics and Space... Federal Register of April 26, 2011, announcing a meeting of the Aerospace Safety Advisory Panel (ASAP)...

  15. Transpiration cooling assisted ablative thermal protection of aerospace substructures

    International Nuclear Information System (INIS)

    Ablatives are heat-shielding materials used to protect aerospace substructures. These materials are sacrificial in nature and provide protection primarily through the large endothermic transformation during exposure to hyper thermal environment such as encountered in re-entry modules. The performance of certain ablatives was reported in terms of their TGA/DTA in Advanced Materials-97 (pp 57-65). The focus of this earlier research resided in the consolidation of interface between the refractory inclusion and the host polymeric matrix to improve thermal resistance. In the present work we explore the scope of transpiration cooling in ablative performance through flash evaporation of liquid incorporated in the host EPDM (Ethylene Propylene Diene Monomer) matrix. The compression-molded specimens were exposed separately to plasma flame (15000 C) and oxyacetylene torch (3000 C) and the back face transient temperature is recorded in situ employing a thermocouple/data logger system. Both head on impingement (HOI) and parallel flow (PF) through a central cavity in the ablator were used. It is observed that transpiration cooling is effective and yields (a) rapid thermal equilibrium in the specimen, (b) lower back face temperature and (c) lower ablation rate, compared to conventional ablatives. SEM/EDS analysis is presented to amplify the point. (author)

  16. Puncture Self-Healing Polymers for Aerospace Applications

    Science.gov (United States)

    Gordon, Keith L.; Penner, Ronald K.; Bogert, Phil B.; Yost, W. T.; Siochi, Emilie J.

    2011-01-01

    Space exploration launch costs on the order of $10K per pound provide ample incentive to seek innovative, cost-effective ways to reduce structural mass without sacrificing safety and reliability. Damage-tolerant structural systems can provide a route to avoiding weight penalty while enhancing vehicle safety and reliability. Self-healing polymers capable of spontaneous puncture repair show great promise to mitigate potentially catastrophic damage from events such as micrometeoroid penetration. Effective self-repair requires these materials to heal instantaneously following projectile penetration while retaining structural integrity. Poly(ethylene-co-methacrylic acid) (EMMA), also known as Surlyn is an ionomer-based copolymer that undergoes puncture reversal (self-healing) following high impact puncture at high velocities. However EMMA is not a structural engineering polymer, and will not meet the demands of aerospace applications requiring self-healing engineering materials. Current efforts to identify candidate self-healing polymer materials for structural engineering systems are reported. Rheology, high speed thermography, and high speed video for self-healing semi-crystalline and amorphous polymers will be reported.

  17. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 41: Technical communication practices of Dutch and US aerospace engineers and scientists: International perspective on aerospace

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. The studies had the following objectives: (1) to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions, (2) to determine the use and production of technical communication by aerospace engineers and scientists, (3) to investigate their use of libraries and technical information centers, (4) to investigate their use of and the importance to them of computer and information technology, (5) to examine their use of electronic networks, and (6) to determine their use of foreign and domestically produced technical reports. Self-administered (mail) questionnaires were distributed to Dutch aerospace engineers and scientists at the National Aerospace Laboratory (NLR) in the Netherlands, the NASA Ames Research Center in the U.S., and the NASA Langley Research Center in the U.S. Responses of the Dutch and U.S. participants to selected questions are presented in this paper.

  18. Technical communications in aerospace - An analysis of the practices reported by U.S. and European aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    The flow of scientific and technical information (STI) at the individual, organizational, national, and international levels is studied. The responses of U.S and European aerospace engineers and scientists to questionnaires concerning technical communications in aerospace are examined. Particular attention is given to the means used to communicate information and the social system of the aerospace knowledge diffusion process. Demographic data about the survey respondents are provided. The methods used to communicate technical data and the sources utilized to solve technical problems are described. The importance of technical writing skills and the use of computer technology in the aerospace field are discussed. The derived data are useful for R&D and information managers in order to improve access to and utilization of aerospace STI.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 19: Computer and information technology and aerospace knowledge diffusion

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.; Bishop, Ann P.

    1992-01-01

    To remain a world leader in aerospace, the US must improve and maintain the professional competency of its engineers and scientists, increase the research and development (R&D) knowledge base, improve productivity, and maximize the integration of recent technological developments into the R&D process. How well these objectives are met, and at what cost, depends on a variety of factors, but largely on the ability of US aerospace engineers and scientists to acquire and process the results of federally funded R&D. The Federal Government's commitment to high speed computing and networking systems presupposes that computer and information technology will play a major role in the aerospace knowledge diffusion process. However, we know little about information technology needs, uses, and problems within the aerospace knowledge diffusion process. The use of computer and information technology by US aerospace engineers and scientists in academia, government, and industry is reported.

  20. Weakly ionized plasmas in aerospace applications

    International Nuclear Information System (INIS)

    This paper is an overview of the activity and state-of-the-art in the field of plasma aerospace applications. Both experimental results and theoretical ideas are analysed. Principal attention is focused on understanding the physical mechanisms of the plasma effect on hypersonic aerodynamics. In particular, it is shown that drag reduction can be achieved using a proper distribution of heat sources around a flying body. Estimates of the energetic efficiency of the thermal mechanism of aerodynamic drag reduction are presented. The non-thermal effect caused by the interaction of a plasma flow with a magnetic field is also analysed. Specifically, it is shown that appropriate spatial distribution of volumetric forces around a hypersonic body allows for complete elimination of shock wave generation. It should be noted that in an ideal case, shock waves could be eliminated without energy consumption

  1. An adaptive guidance algorithm for aerospace vehicles

    Science.gov (United States)

    Bradt, J. E.; Hardtla, J. W.; Cramer, E. J.

    The specifications for proposed space transportation systems are placing more emphasis on developing reusable avionics subsystems which have the capability to respond to vehicle evolution and diverse missions while at the same time reducing the cost of ground support for mission planning, contingency response and verification and validation. An innovative approach to meeting these goals is to specify the guidance problem as a multi-point boundary value problen and solve that problem using modern control theory and nonlinear constrained optimization techniques. This approach has been implemented as Gamma Guidance (Hardtla, 1978) and has been successfully flown in the Inertial Upper Stage. The adaptive guidance algorithm described in this paper is a generalized formulation of Gamma Guidance. The basic equations are presented and then applied to four diverse aerospace vehicles to demonstrate the feasibility of using a reusable, explicit, adaptive guidance algorithm for diverse applications and vehicles.

  2. Artificial Immune System Approaches for Aerospace Applications

    Science.gov (United States)

    KrishnaKumar, Kalmanje; Koga, Dennis (Technical Monitor)

    2002-01-01

    Artificial Immune Systems (AIS) combine a priori knowledge with the adapting capabilities of biological immune system to provide a powerful alternative to currently available techniques for pattern recognition, modeling, design, and control. Immunology is the science of built-in defense mechanisms that are present in all living beings to protect against external attacks. A biological immune system can be thought of as a robust, adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. Biological immune systems use a finite number of discrete "building blocks" to achieve this adaptiveness. These building blocks can be thought of as pieces of a puzzle which must be put together in a specific way-to neutralize, remove, or destroy each unique disturbance the system encounters. In this paper, we outline AIS models that are immediately applicable to aerospace problems and identify application areas that need further investigation.

  3. Analytical prediction of aerospace vehicle vibration environments

    Science.gov (United States)

    Wilby, J. F.; Piersol, A. G.

    1981-09-01

    Considerable attention has been given recently to the formulation and validation of analytical models for the prediction of aerospace vehicle vibration response to acoustic and fluctuating pressures. This paper summarizes the development of such analytical models for two applications, (1) structural vibrations of the Space Shuttle orbiter vehicle due to broadband rocket noise and aerodynamic boundary layer turbulence, and (2) structural vibrations of general aviation aircraft due to discrete frequency propeller and reciprocating engine exhaust noise. In both cases, the spatial exterior excitations are convected pressure fields which are described on the basis of measured cross spectra (coherence and phase) information. Structural modal data are obtained from analytical predictions, and structural responses to appropriate excitation fields are calculated. The results are compared with test data, and the strengths and weaknesses of the analytical models are assessed.

  4. Development and Application of Microfabricated Chemical Gas Sensors For Aerospace Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, Q. H.; Sawayda, M. S.; Jin, A.; Hammond, J.; Makel, D.; Hall, G.

    1990-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring and control, and fire detection. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. Sensor development for each application involves its own challenges in the fields of materials science and fabrication technology. This paper discusses the needs of space applications and the point-contact sensor technology being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, nitrogen oxides (Nox, carbon monoxide, oxygen, and carbon dioxide are being developed. A description is given of each sensor type and its present stage of development. Demonstration and application these sensor technologies will be described. The demonstrations range from use of a microsystem based hydrogen sensor on the Shuttle to engine demonstration of a nanocrystalline based sensor for NO, detection. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  5. Study on the evaluation of aerospace microelectronic industry

    Institute of Scientific and Technical Information of China (English)

    江帆; 陈荣秋

    2004-01-01

    Aerospace microelectronic technology has become the core competence of aerospace technology. For evaluating the aerospace microelectronic industry, it is necessary to change descriptive language of goal to quantitative index that can be measured. Knowing quantified goals or tree structure and array of general goal system, with certain algorithm and processing each corresponding list or array, we can bring out a quantified general goal value. The multi-objective (multi-attribute) evaluation method and the relevant weight sum algorithm have been adopted to quantitatively evaluate and forecast the developing state of the industry. A practical example illustrates that the applied decision technique and the algorithm are feasible and effective.

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 12: The diffusion of federally funded aerospace research and development (R/D) and the information seeking behavior of US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    In this paper, the diffusion of federally funded aerospace R&D is explored from the perspective of the information-seeking behavior of U.S. aerospace engineers and scientists. The following three assumptions frame this exploration: (1) knowledge production, transfer, and utilization are equally important components of the aerospace R&D process; (2) the diffusion of knowledge resulting from federally funded aerospace R&D is indispensable for the U.S. to remain a world leader in aerospace; and (3) U.S. government technical reports, produced by NASA and DOD, play an important, but as yet undefined, role in the diffusion of federally funded aerospace R&D. A conceptual model for federally funded aerospace knowledge diffusion, one that emphasizes U.S. goverment technical reports, is presented. Data regarding three research questions concerning the information-seeking behavior of U.S. aerospace engineers and scientists are also presented.

  7. Design and analysis of aerospace structures at elevated temperatures. [aircraft, missiles, and space platforms

    Science.gov (United States)

    Chang, C. I.

    1989-01-01

    An account is given of approaches that have emerged as useful in the incorporation of thermal loading considerations into advanced composite materials-based aerospace structural design practices. Sources of structural heating encompass not only propulsion system heat and aerodynamic surface heating at supersonic speeds, but the growing possibility of intense thermal fluxes from directed-energy weapons. The composite materials in question range from intrinsically nonheat-resistant polymer matrix systems to metal-matrix composites, and increasingly to such ceramic-matrix composites as carbon/carbon, which are explicitly intended for elevated temperature operation.

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 47: The value of computer networks in aerospace

    Science.gov (United States)

    Bishop, Ann Peterson; Pinelli, Thomas E.

    1995-01-01

    This paper presents data on the value of computer networks that were obtained from a national survey of 2000 aerospace engineers that was conducted in 1993. Survey respondents reported the extent to which they used computer networks in their work and communication and offered their assessments of the value of various network types and applications. They also provided information about the positive impacts of networks on their work, which presents another perspective on value. Finally, aerospace engineers' recommendations on network implementation present suggestions for increasing the value of computer networks within aerospace organizations.

  9. Spectroscopic Measurement Techniques for Aerospace Flows

    Science.gov (United States)

    Danehy, Paul M.; Bathel, Brett F.; Johansen, Craig T.; Cutler, Andrew D.; Hurley, Samantha

    2014-01-01

    The conditions that characterize aerospace flows are so varied, that a single diagnostic technique is not sufficient for its measurement. Fluid dynamists use knowledge of similarity to help categorize and focus on different flow conditions. For example, the Reynolds number represents the ratio of inertial to viscous forces in a flow. When the velocity scales, length scales, and gas density are large and the magnitude of the molecular viscosity is low, the Reynolds number becomes large. This corresponds to large scale vehicles (e.g Airbus A380), fast moving objects (e.g. artillery projectiles), vehicles in dense fluids (e.g. submarine in water), or flows with low dynamic viscosity (e.g. skydiver in air). In each of these cases, the inertial forces dominate viscous forces, and unsteady turbulent fluctuations in the flow variables are observed. In contrast, flows with small length scales (e.g. dispersion of micro-particles in a solid rocket nozzle), slow moving objects (e.g. micro aerial vehicles), flows with low density gases (e.g. atmospheric re-entry), or fluids with a large magnitude of viscosity (e.g. engine coolant flow), all have low Reynolds numbers. In these cases, viscous forces become very important and often the flows can be steady and laminar. The Mach number, which is the ratio of the velocity to the speed of sound in the medium, also helps to differentiate types of flows. At very low Mach numbers, acoustic waves travel much faster than the object, and the flow can be assumed to be incompressible (e.g. Cessna 172 aircraft). As the object speed approaches the speed of sound, the gas density can become variable (e.g. flow over wing of Learjet 85). When the object speed is higher than the speed of sound (Ma > 1), the presences of shock waves and other gas dynamic features can become important to the vehicle performance (e.g. SR-71 Blackbird). In the hypersonic flow regime (Ma > 5), large changes in temperature begin to affect flow properties, causing real

  10. High Spatial Resolution shape Sensing for Adaptive Aerospace Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is accepted that adaptive aerospace vehicles whose flight avionic systems are reconfigurable are needed to respond to changing flight parameters, vehicle system...

  11. Risk communication strategy development using the aerospace systems engineering process

    Science.gov (United States)

    Dawson, S.; Sklar, M.

    2004-01-01

    This paper explains the goals and challenges of NASA's risk communication efforts and how the Aerospace Systems Engineering Process (ASEP) was used to map the risk communication strategy used at the Jet Propulsion Laboratory to achieve these goals.

  12. The electronic transfer of information and aerospace knowledge diffusion

    Science.gov (United States)

    Pinelli, Thomas E.; Bishop, Ann P.; Barclay, Rebecca O.; Kennedy, John M.

    1992-01-01

    Increasing reliance on and investment in information technology and electronic networking systems presupposes that computing and information technology will play a motor role in the diffusion of aerospace knowledge. Little is known, however, about actual information technology needs, uses, and problems within the aerospace knowledge diffusion process. The authors state that the potential contributions of information technology to increased productivity and competitiveness will be diminished unless empirically derived knowledge regarding the information-seeking behavior of the members of the social system - those who are producing, transferring, and using scientific and technical information - is incorporated into a new technology policy framework. Research into the use of information technology and electronic networks by U.S. aerospace engineers and scientists, collected as part of a research project designed to study aerospace knowledge diffusion, is presented in support of this assertion.

  13. Development of Microfabricated Chemical Gas Sensors and Sensor Arrays for Aerospace Applications

    Science.gov (United States)

    Hunter, G. W.; Neudeck, P. G.; Fralick, G.; Thomas, V.; Liu, C. C.; Wu, W. H.; Ward, B.; Makel, D.

    2002-01-01

    Aerospace applications require the development of chemical sensors with capabilities beyond those of commercially available sensors. In particular, factors such as minimal sensor size, weight, and power consumption are particularly important. Development areas which have potential aerospace applications include launch vehicle leak detection, engine health monitoring, fire detection, and environmental monitoring. Sensor development for these applications is based on progress in three types of technology: 1) Micromachining and microfabrication (Microsystem) technology to fabricate miniaturized sensors. 2) The use of nanocrystalline materials to develop sensors with improved stability combined with higher sensitivity. 3) The development of high temperature semiconductors, especially silicon carbide. However, due to issues of selectivity and cross-sensitivity, individual sensors are limited in the amount of information that they can provide in environments that contain multiple chemical species. Thus, sensor arrays are being developed to address detection needs in such multi-species environments. This paper discusses the needs of space applications as well as the point-contact sensor technology and sensor arrays being developed to address these needs. Sensors to measure hydrogen, hydrocarbons, hydrazine, nitrogen oxides (NO,), carbon monoxide, oxygen, and carbon dioxide are being developed as well as arrays for leak, fire, and emissions detection. Demonstrations of the technology will also be discussed. It is concluded that microfabricated sensor technology has significant potential for use in a range of aerospace applications.

  14. Innovation Examples for Ecological Vehicles based on Aerospace Research

    OpenAIRE

    Schier, Michael; Rinderknecht, Frank

    2013-01-01

    In this paper innovative technologies from the aerospace research are presented, which are usable for a successful electric mobility of the future. They represent a selection of the German aerospace center research projects, where synergies between space and aviation applications as well as between rail and road traffic applications are used. The work relates to the fields of vehicle-energy concepts, alternative energy converters and lightweight design. Within the individual development proje...

  15. Applications of aerospace technology to petroleum extraction and reservoir engineering

    Science.gov (United States)

    Jaffe, L. D.; Back, L. H.; Berdahl, C. M.; Collins, E. E., Jr.; Gordon, P. G.; Houseman, J.; Humphrey, M. F.; Hsu, G. C.; Ham, J. D.; Marte, J. E.; Owen, W. A.

    1977-01-01

    Through contacts with the petroleum industry, the petroleum service industry, universities and government agencies, important petroleum extraction problems were identified. For each problem, areas of aerospace technology that might aid in its solution were also identified, where possible. Some of the problems were selected for further consideration. Work on these problems led to the formulation of specific concepts as candidate for development. Each concept is addressed to the solution of specific extraction problems and makes use of specific areas of aerospace technology.

  16. Displaced Capital: A Study of Aerospace Plant Closings

    OpenAIRE

    Valerie A. Ramey; Shapiro, Matthew D.

    2001-01-01

    Using equipment-level data from aerospace plants that closed during the 1990s, this paper studies the process of moving installed physical capital to a new use. The analysis yields three results that suggest significant sectoral specificity of physical capital and substantial costs of redeploying the capital. First, other aerospace companies are overrepresented among buyers of the used capital relative to their representation in the market for new investment goods. Second, even after age-rela...

  17. Maintenance applications of augmented reality for the Chinese aerospace industry

    OpenAIRE

    Ou, Peng

    2011-01-01

    Since augmented reality has not reached full maturity in use, it is not widely adopted within the aerospace industry. According to the literature review, minimal research efforts have been conducted to assess the cost-benefit or cost- effectiveness of augmented reality so far. Moreover, to the best of researcher’s knowledge, no research has been carried out to develop a systematic process for selecting and implementing augmented reality within the Chinese aerospace industry....

  18. A review of multifunctional structure technology for aerospace applications

    Science.gov (United States)

    Sairajan, K. K.; Aglietti, G. S.; Mani, K. M.

    2016-03-01

    The emerging field of multifunctional structure (MFS) technologies enables the design of systems with reduced mass and volume, thereby improving their overall efficiency. It requires developments in different engineering disciplines and their integration into a single system without degrading their individual performances. MFS is particularly suitable for aerospace applications where mass and volume are critical to the cost of the mission. This article reviews the current state of the art of multifunctional structure technologies relevant to aerospace applications.

  19. The European aerospace R&D collaboration network

    OpenAIRE

    Guffarth, Daniel; Barber, Michael J.

    2013-01-01

    We describe the development of the European aerospace R&D collaboration network from 1987 to 2013 with the help of the publicly available raw data of the European Framework Programmes and the German Förderkatalog. In line with the sectoral innovation system approach, we describe the evolution of the aerospace R&D network on three levels. First, based on their thematic categories, all projects are inspected and the development of technology used over time is described. Second, the composition ...

  20. Human performance in aerospace environments: The search for psychological determinants

    Science.gov (United States)

    Helmreich, Robert L.; Wilhelm, John A.

    1987-01-01

    A program of research into the psychological determinants of individual and crew performance in aerospace environments is described. Constellations of personality factors influencing behavior in demanding environments are discussed. Relationships between attitudes and performance and attitudes and personality are also reported. The efficacy of training in interpersonal relations as a means of changing attitudes and behavior is explored along with the influence of personality on attitude change processes. Finally, approaches to measuring group behavior in aerospace settings are described.

  1. Frequency Response Function Based Damage Identification for Aerospace Structures

    OpenAIRE

    Oliver, Joseph Acton

    2015-01-01

    Structural health monitoring technologies continue to be pursued for aerospace structures in the interests of increased safety and, when combined with health prognosis, efficiency in life-cycle management. The current dissertation develops and validates damage identification technology as a critical component for structural health monitoring of aerospace structures and, in particular, composite unmanned aerial vehicles. The primary innovation is a statistical least-squares damage identificati...

  2. Lessons learned from modal testing of aerospace structures

    Science.gov (United States)

    Hunt, David L.; Brillhart, Ralph D.

    1993-02-01

    The primary factors affecting the accuracy and the time required to perform modal tests on aerospace structures are discussed, and the lessons learned from modal tests performed over the past 15 yrs are examined. Case histories of modal testing on aerospace structures are reviewed, including the Galileo satellite and the Space Shuttle solid rocket motor and test stand. Currently recommended approaches to the modal testing are addressed.

  3. Engineering derivatives from biological systems for advanced aerospace applications

    Science.gov (United States)

    Winfield, Daniel L.; Hering, Dean H.; Cole, David

    1991-01-01

    The present study consisted of a literature survey, a survey of researchers, and a workshop on bionics. These tasks produced an extensive annotated bibliography of bionics research (282 citations), a directory of bionics researchers, and a workshop report on specific bionics research topics applicable to space technology. These deliverables are included as Appendix A, Appendix B, and Section 5.0, respectively. To provide organization to this highly interdisciplinary field and to serve as a guide for interested researchers, we have also prepared a taxonomy or classification of the various subelements of natural engineering systems. Finally, we have synthesized the results of the various components of this study into a discussion of the most promising opportunities for accelerated research, seeking solutions which apply engineering principles from natural systems to advanced aerospace problems. A discussion of opportunities within the areas of materials, structures, sensors, information processing, robotics, autonomous systems, life support systems, and aeronautics is given. Following the conclusions are six discipline summaries that highlight the potential benefits of research in these areas for NASA's space technology programs.

  4. Applications of aerospace technology in biology and medicine

    Science.gov (United States)

    Rouse, D. J.

    1983-01-01

    Utilization of NASA technology and its application to medicine is discussed. The introduction of new or improved commercially available medical products and incorporation of aerospace technology is outlined. A biopolar donor-recipient model of medical technology transfer is presented to provide a basis for the methodology. The methodology is designed to: (1) identify medical problems and NASA technology that, in combination, constitute opportunities for successful medical products; (2) obtain the early participation of industry in the transfer process; and (3) obtain acceptance by the medical community of new medical products based on NASA technology. Two commercial transfers were completed: the ocular screening device, a system for quick detection of vision problems in preschool children, and Porta-Fib III, a hospital monitoring unit. Two institutional transfers were completed: implant materials testing, the application of NASA fracture control technology to improve reliability of metallic prostheses, and incinerator monitoring, a quadrupole mass spectrometer to monitor combustion products of municipal incinerators. Mobility aids for the blind and ultrasound diagnosis of burn depth are also studied.

  5. Applications of aerospace technology in biology and medicine

    Science.gov (United States)

    Bass, B.; Beall, H. C.; Brown, J. N., Jr.; Clingman, W. H.; Eakes, R. E.; Kizakevich, P. N.; Mccartney, M.; Rouse, D. J.

    1982-01-01

    Utilization of National Aeronautics and Space Administration (NASA) technology in medicine is discussed. The objective is best obtained by stimulation of the introduction of new or improved commercially available medical products incorporating aerospace technology. A bipolar donor/recipient model of medical technology transfer is presented to provide a basis for the team's methodology. That methodology is designed to: (1) identify medical problems and NASA technology that, in combination, constitute opportunities for successful medical products; (2) obtain the early participation of industry in the transfer process; and (3) obtain acceptance by the medical community of new medical products based on NASA technology. Two commercial transfers were completed: the Stowaway, a lightweight wheelchair that provides mobility for the disabled and elderly in the cabin of commercial aircraft, and Micromed, a portable medication infusion pump for the reliable, continuous infusion of medications such as heparin or insulin. The marketing and manufacturing factors critical to the commercialization of the lightweight walker incorporating composite materials were studied. Progress was made in the development and commercialization of each of the 18 currently active projects.

  6. Structural Health Management for Future Aerospace Vehicles

    Science.gov (United States)

    Prosser, W. H.; Allison, S. G.; Woodard, S. E.; Wincheski, R. A.; Cooper, E. G.; Price, D. C.; Hedley, M.; Prokopenko, M.; Scott, D. A.; Tessler, A.

    2004-01-01

    Structural Health Management (SHM) will be of critical importance to provide the safety, reliability and affordability necessary for the future long duration space missions described in America's Vision for Space Exploration. Long duration missions to the Moon, Mars and beyond cannot be accomplished with the current paradigm of periodic, ground based structural integrity inspections. As evidenced by the Columbia tragedy, this approach is also inadequate for the current Shuttle fleet, thus leading to its initial implementation of on-board SHM sensing for impact detection as part of the return to flight effort. However, future space systems, to include both vehicles as well as structures such as habitation modules, will require an integrated array of onboard in-situ sensing systems. In addition, advanced data systems architectures will be necessary to communicate, store and process massive amounts of SHM data from large numbers of diverse sensors. Further, improved structural analysis and design algorithms will be necessary to incorporate SHM sensing into the design and construction of aerospace structures, as well as to fully utilize these sensing systems to provide both diagnosis and prognosis of structural integrity. Ultimately, structural integrity information will feed into an Integrated Vehicle Health Management (IVHM) system that will provide real-time knowledge of structural, propulsion, thermal protection and other critical systems for optimal vehicle management and mission control. This paper will provide an overview of NASA research and development in the area of SHM as well as to highlight areas of technology improvement necessary to meet these future mission requirements.

  7. Information processing for aerospace structural health monitoring

    Science.gov (United States)

    Lichtenwalner, Peter F.; White, Edward V.; Baumann, Erwin W.

    1998-06-01

    Structural health monitoring (SHM) technology provides a means to significantly reduce life cycle of aerospace vehicles by eliminating unnecessary inspections, minimizing inspection complexity, and providing accurate diagnostics and prognostics to support vehicle life extension. In order to accomplish this, a comprehensive SHM system will need to acquire data from a wide variety of diverse sensors including strain gages, accelerometers, acoustic emission sensors, crack growth gages, corrosion sensors, and piezoelectric transducers. Significant amounts of computer processing will then be required to convert this raw sensor data into meaningful information which indicates both the diagnostics of the current structural integrity as well as the prognostics necessary for planning and managing the future health of the structure in a cost effective manner. This paper provides a description of the key types of information processing technologies required in an effective SHM system. These include artificial intelligence techniques such as neural networks, expert systems, and fuzzy logic for nonlinear modeling, pattern recognition, and complex decision making; signal processing techniques such as Fourier and wavelet transforms for spectral analysis and feature extraction; statistical algorithms for optimal detection, estimation, prediction, and fusion; and a wide variety of other algorithms for data analysis and visualization. The intent of this paper is to provide an overview of the role of information processing for SHM, discuss various technologies which can contribute to accomplishing this role, and present some example applications of information processing for SHM implemented at the Boeing Company.

  8. NASA Aerospace Flight Battery Program: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements. Volume 1, Part 2

    Science.gov (United States)

    Jung, David S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 2 - Volume I: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements of the program's operations.

  9. NASA/DoD Aerospace Knowledge Diffusion Research Project. Paper 30: The electronic transfer of information and aerospace knowledge diffusion

    Science.gov (United States)

    Pinelli, Thomas E.; Bishop, Ann P.; Barclay, Rebecca O.; Kennedy, John M.

    1992-01-01

    Increasing reliance on and investment in information technology and electronic networking systems presupposes that computing and information technology will play a major role in the diffusion of aerospace knowledge. Little is known, however, about actual information technology needs, uses, and problems within the aerospace knowledge diffusion process. The authors state that the potential contributions of information technology to increased productivity and competitiveness will be diminished unless empirically derived knowledge regarding the information-seeking behavior of the members of the social system - those who are producing, transferring, and using scientific and technical information - is incorporated into a new technology policy framework. Research into the use of information technology and electronic networks by U.S. aerospace engineers and scientists, collected as part of a research project designed to study aerospace knowledge diffusion, is presented in support of this assertion.

  10. Association of Demographic Variables versus Frequency of Use of Aerospace Gateways: A Survey of Aerospace Scientists and Engineers of Bangalore

    OpenAIRE

    R Guruprasad; Marimuthu, P.

    2013-01-01

    Gateway is a network point that acts as an entrance to another network. They are broadly classified into (a) Library Gateways or (b) Subject Specific Gateways (vortals). These Gateways contain enormous web resources that have been thoroughly evaluated and its quality of information checked by respective subject experts. A research survey was undertaken to ascertain the „Association of Demographic Variables versus the Frequency of Usage of Aerospace Gateways‟ amongst the aerospace scientists a...

  11. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 5: Aerospace librarians and technical information specialists as information intermediaries: A report of phase 2 activities of the NASA/DOD Aerospace Knowledge Diffusion Research Project

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    The objective of the NASA/DOD Aerospace Knowledge Diffusion Research Project is to provide descriptive and analytical data regarding the flow of scientific and technical information (STI) at the individual, organizational, national, and international levels, placing emphasis on the systems used to diffuse the results of federally funded aerospace STI. An overview of project assumptions, objectives, and design is presented and preliminary results of the phase 2 aerospace library survey are summarized. Phase 2 addressed aerospace knowledge transfer and use within the larger social system and focused on the flow of aerospace STI in government and industry and the role of the information intermediary in knowledge transfer.

  12. NDE of Fiber Reinforced Foam Composite Structures for Future Aerospace Vehicles

    Science.gov (United States)

    Walker, james; Roth, Don; Hopkins, Dale

    2010-01-01

    This slide presentation reviews the complexities of non-destructive evaluation (NDE) of fiber reinforced foam composite structures to be used for aerospace vehicles in the future.Various views of fiber reinforced foam materials are shown and described. Conventional methods of NDE for composites are reviewed such as Micro-computed X-Ray Tomography, Thermography, Shearography, and Phased Array Ultrasonics (PAUT). These meth0ods appear to work well on the face sheet and face sheet ot core bond, they do not provide adequate coverage for the webs. There is a need for additional methods that will examine the webs and web to foam core bond.

  13. The National Aero-Space Plane, the guidance and control engineer's dream or nightmare?

    Science.gov (United States)

    Sanchez, Felix

    Major technical challenges associated with the National Aerospace Plane (NASP) Program are discussed, including the ones viewed from a controls perspective. Design and engineering challenges encountered in the propulsion system, the structural material selection, and the computational fluid dynamic mechanisms to predict Mach 8+ regimes, are briefly discussed. Emphasis is put on those significant challenges in the guidance and control fields relating to vehicle management systems, integrated propulsion/flight control, optimal vehicle trajectory control, and challenges in the associated fields on instrumentation and information systems. An insight into the complexity of the problem is provided, and the importance of guidance and control in future NASP achievements is highlighted.

  14. Standard Test Method for Intensity of Scratches on Aerospace Glass Enclosures

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This test method covers the visual inspection of scratches on the glass surface of aerospace transparent enclosures. 1.2 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3 This standard may involve hazardous materials, operations, and equipment. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  15. A standardized diode cryogenic temperature sensor for aerospace applications

    Science.gov (United States)

    Courts, Samuel Scott

    2016-03-01

    The model DT-670-SD cryogenic diode temperature sensor, manufactured by Lake Shore Cryotronics, Inc. has been used on numerous aerospace space missions since its introduction nearly 15 years ago. While the sensing element is a diode, it is operated in a non-standard manner when used as a temperature sensor over the 1.4-500 K temperature range. For this reason, the NASA and MIL-type test and performance standards designed to ensure high reliability of diode aerospace parts don't properly define the inspection and test protocol for the DT-670-SD temperature sensor as written. This requires each aerospace application to develop unique test and inspection protocols for the project, typically for a small number of sensors, resulting in expensive sensors with a long lead time. With over 30 years of experience in supplying cryogenic temperature sensors for aerospace applications, Lake Shore has developed screening and qualification inspection and test protocols to provide "commercial off-the-shelf (COTS)" DT-670-SD temperature sensors that should meet the requirements of most high-reliability applications including aerospace. Parts from acceptance and qualified lots will be available at a base sensor level with the ability to specify an interchangeability tolerance, calibration range, mounting adaptor, and/or lead extension for final configuration. This work presents details of this acceptance and qualification inspection and test protocol as well as performance characteristics of the DT-670-SD cryogenic temperature sensors when inspected and tested to this protocol.

  16. Design of Inorganic Water Repellent Coatings for Thermal Protection Insulation on an Aerospace Vehicle

    Science.gov (United States)

    Fuerstenau, D. W.; Ravikumar, R.

    1997-01-01

    In this report, thin film deposition of one of the model candidate materials for use as water repellent coating on the thermal protection systems (TPS) of an aerospace vehicle was investigated. The material tested was boron nitride (BN), the water-repellent properties of which was detailed in our other investigation. Two different methods, chemical vapor deposition (CVD) and pulsed laser deposition (PLD), were used to prepare the BN films on a fused quartz substrate (one of the components of thermal protection systems on aerospace vehicles). The deposited films were characterized by a variety of techniques including X-ray diffraction, X-ray photoelectron spectroscopy, and scanning electron microscopy. The BN films were observed to be amorphous in nature, and a CVD-deposited film yielded a contact angle of 60 degrees with water, similar to the pellet BN samples investigated previously. This demonstrates that it is possible to use the bulk sample wetting properties as a guideline to determine the candidate waterproofing material for the TPS.

  17. Smart electronics with interdigital electrodes, antennas, and MEMS for aerospace structures

    Science.gov (United States)

    Varadan, Vijay K.; Varadan, Vasundara V.

    1995-05-01

    A remote local and global sensing and control of aerospace structures using advanced polymeric smart materials, MEMS, and built-in antennas is presented. The sensors are fabricated with interdigital transducers printed on a piezoelectric polymer. They in turn are mounted onto an ultrathin Penn State novel RF antenna (patent filed). The sensors are designed to measure both pressure and shear of the fluid flow on aerospace structures. The wave form measurements may be monitored at a remote location either at the cockpit or elsewhere via the antennas in the sensors and an outside antenna. The integrated MEMS actuators, which are comprised of cantilever-, diaphragm-, and microbridge-based MEMS with suitable smart electronics etched onto the structure, are controlled by the built-in antennas through feedback and feedforward control architecture. The integration of such materials and smart electronics into the skin of airfoil is ideal for sensing and controlling drag. The basic idea of this concept involves detection of the point of transition from laminar to turbulent flow and transmitting acoustical energy into the boundary layer so that the low-energy fluid particles accelerate in the transverse direction and mix with the high energy flow outside of the boundary layer. The use of the present smart materials and electronics for active noise control and EMI suppression in aircraft and helicopters is also outlines.

  18. Thermal Output of WK-Type Strain Gauges on Various Materials at Cryogenic and Elevated Temperatures

    Science.gov (United States)

    Kowalkowski, Matthew K.; Rivers, H. Kevin; Smith, Russell W.

    1998-01-01

    Strain gage apparent strain (thermal output) is one of the largest sources of error associated with the measurement of strain when temperatures and mechanical loads are varied. In this paper, experimentally determined apparent strains of WK-type strain gages, installed on both metallic and composite-laminate materials of various lay-ups and resin systems for temperatures ranging from -450 F to 230 F are presented. For the composite materials apparent strain in both the 0 ply orientation angle and the 90 ply orientation angle were measured. Metal specimens tested included: aluminum-lithium alloy (Al-LI 2195-T87), aluminum alloy (Al 2219-T87), and titanium alloy. Composite materials tested include: graphite-toughened-epoxy (IM7/997- 2), graphite-bismaleimide (IM7/5260), and graphite-K3 (IM7/K3B). The experimentally determined apparent strain data are curve fit with a fourth-order polynomial for each of the materials studied. The apparent strain data and the polynomials that are fit to the data are compared with those produced by the strain gage manufacturer, and the results and comparisons are presented. Unacceptably high errors between the manufacture's data and the experimentally determined data were observed (especially at temperatures below - 270-F).

  19. Aerospace applications of high temperature superconductivity

    Science.gov (United States)

    Heinen, V. O.; Connolly, D. J.

    1991-01-01

    Space application of high temperature superconducting (HTS) materials may occur before most terrestrial applications because of the passive cooling possibilities in space and because of the economic feasibility of introducing an expensive new technology which has a significant system benefit in space. NASA Lewis Research Center has an ongoing program to develop space technology capitalizing on the potential benefit of HTS materials. The applications being pursued include space communications, power and propulsion systems, and magnetic bearings. In addition, NASA Lewis is pursuing materials research to improve the performance of HTS materials for space applications.

  20. Aerospace toxicology overview: aerial application and cabin air quality.

    Science.gov (United States)

    Chaturvedi, Arvind K

    2011-01-01

    Aerospace toxicology is a rather recent development and is closely related to aerospace medicine. Aerospace toxicology can be defined as a field of study designed to address the adverse effects of medications, chemicals, and contaminants on humans who fly within or outside the atmosphere in aviation or on space flights. The environment extending above and beyond the surface of the Earth is referred to as aerospace. The term aviation is frequently used interchangeably with aerospace. The focus of the literature review performed to prepare this paper was on aerospace toxicology-related subject matters, aerial application and aircraft cabin air quality. Among the important topics addressed are the following: · Aerial applications of agricultural chemicals, pesticidal toxicity, and exposures to aerially applied mixtures of chemicals and their associated formulating solvents/surfactants The safety of aerially encountered chemicals and the bioanalytical methods used to monitor exposures to some of them · The presence of fumes and smoke, as well as other contaminants that may generally be present in aircraft/space vehicle cabin air · And importantly, the toxic effects of aerially encountered contaminants, with emphasis on the degradation products of oils, fluids, and lubricants used in aircraft, and finally · Analytical methods used for monitoring human exposure to CO and HCN are addressed in the review, as are the signs and symptoms associated with exposures to these combustion gases. Although many agricultural chemical monitoring studies have been published, few have dealt with the occurrence of such chemicals in aircraft cabin air. However, agricultural chemicals do appear in cabin air; indeed, attempts have been made to establish maximum allowable concentrations for several of the more potentially toxic ones that are found in aircraft cabin air. In this article, I emphasize the need for precautionary measures to be taken to minimize exposures to aerially

  1. Value-leverage by Aerospace Original Equipment Manufacturers

    OpenAIRE

    Beelaerts van Blokland, W.W.A.

    2010-01-01

    With the creation of new aircraft products; Embraer E-170/190, Dassault 7X, Airbus A380 and Boeing B787, aerospace original equipment manufacturers (OEMs) involve suppliers not only with the co-production of aircraft sub systems, but also with the entire development of sub systems, like fuselage and wings. Hence, the value to create and produce aircraft tends to shift for a major part from the OEM towards the suppliers. In fact, the aerospace OEM levers value on suppliers for the creation of ...

  2. Development and integration of modern laboratories in aerospace education

    Science.gov (United States)

    Desautel, D.; Hunter, N.; Mourtos, N.; Pernicka, H.

    1992-01-01

    This paper describes the development and integration of a suite of laboratories in an aerospace engineering program. The program's approach to undergraduate education is described as the source for the development of the supporting laboratories. Nine laboratories supporting instruction were developed and installed. The nine laboratories include most major flight-vehicle disciplines. The purpose and major equipments/experiments of each laboratory are briefly described, as is the integration of the laboratory with coursework. The laboratory education provided by this program successfully achieves its purpose of producing competitive aerospace engineering graduates and advancing the level of undergraduate education.

  3. Electrically conducting polymers for aerospace applications

    Science.gov (United States)

    Meador, Mary Ann B.; Gaier, James R.; Good, Brian S.; Sharp, G. R.; Meador, Michael A.

    1991-01-01

    Current research on electrically conducting polymers from 1974 to the present is reviewed focusing on the development of materials for aeronautic and space applications. Problems discussed include extended pi-systems, pyrolytic polymers, charge-transfer systems, conductive matrix resins for composite materials, and prospects for the use of conducting polymers in space photovoltaics.

  4. NASA Aerospace Flight Battery Program: Recommendations for Technical Requirements for Inclusion in Aerospace Battery Procurements. Volume 2/Part 2

    Science.gov (United States)

    Jung, David S.; Manzo, Michelle A.

    2010-01-01

    This NASA Aerospace Flight Battery Systems Working Group was chartered within the NASA Engineering and Safety Center (NESC). The Battery Working Group was tasked to complete tasks and to propose proactive work to address battery related, agency-wide issues on an annual basis. In its first year of operation, this proactive program addressed various aspects of the validation and verification of aerospace battery systems for NASA missions. Studies were performed, issues were discussed and in many cases, test programs were executed to generate recommendations and guidelines to reduce risk associated with various aspects of implementing battery technology in the aerospace industry. This document contains Part 2 - Volume II Appendix A to Part 2 - Volume I.

  5. Study on the control mechanism of China aerospace enterprises' binary multinational operation

    Institute of Scientific and Technical Information of China (English)

    Wang Jian; Li Hanling; Wu Weiwei

    2008-01-01

    China's aerospace enterprises carry on the multinational operation and participate in the international competition and the international division of labor and cooperation positively.This article first analyzs China aerospace enterprises' binary multinational business control objective and constructes its model.Then the article analyzes the tangible and intangible control mechanism of China aerospace enterprises' binary multinational operation respectively.Finally,the article constructs the model of China aerospace enterprises' binary multinational operation mechanisms.

  6. A Conceptual Aerospace Vehicle Structural System Modeling, Analysis and Design Process

    Science.gov (United States)

    Mukhopadhyay, Vivek

    2007-01-01

    A process for aerospace structural concept analysis and design is presented, with examples of a blended-wing-body fuselage, a multi-bubble fuselage concept, a notional crew exploration vehicle, and a high altitude long endurance aircraft. Aerospace vehicle structures must withstand all anticipated mission loads, yet must be designed to have optimal structural weight with the required safety margins. For a viable systems study of advanced concepts, these conflicting requirements must be imposed and analyzed early in the conceptual design cycle, preferably with a high degree of fidelity. In this design process, integrated multidisciplinary analysis tools are used in a collaborative engineering environment. First, parametric solid and surface models including the internal structural layout are developed for detailed finite element analyses. Multiple design scenarios are generated for analyzing several structural configurations and material alternatives. The structural stress, deflection, strain, and margins of safety distributions are visualized and the design is improved. Over several design cycles, the refined vehicle parts and assembly models are generated. The accumulated design data is used for the structural mass comparison and concept ranking. The present application focus on the blended-wing-body vehicle structure and advanced composite material are also discussed.

  7. Shape memory polymers and their composites in aerospace applications: a review

    International Nuclear Information System (INIS)

    As a new class of smart materials, shape memory polymers and their composites (SMPs and SMPCs) can respond to specific external stimulus and remember the original shape. There are many types of stimulus methods to actuate the deformation of SMPs and SMPCs, of which the thermal- and electro-responsive components and structures are common. In this review, the general mechanism of SMPs and SMPCs are first introduced, the stimulus methods are then discussed to demonstrate the shape recovery effect, and finally, the applications of SMPs and SMPCs that are reinforced with fiber materials in aerospace are reviewed. SMPC hinges and booms are discussed in the part on components; the booms can be divided again into foldable SMPC truss booms, coilable SMPC truss booms and storable tubular extendible member (STEM) booms. In terms of SMPC structures, the solar array and deployable panel, reflector antenna and morphing wing are introduced in detail. Considering the factors of weight, recovery force and shock effect, SMPCs are expected to have great potential applications in aerospace. (topical review)

  8. Shape memory polymers and their composites in aerospace applications: a review

    Science.gov (United States)

    Liu, Yanju; Du, Haiyang; Liu, Liwu; Leng, Jinsong

    2014-02-01

    As a new class of smart materials, shape memory polymers and their composites (SMPs and SMPCs) can respond to specific external stimulus and remember the original shape. There are many types of stimulus methods to actuate the deformation of SMPs and SMPCs, of which the thermal- and electro-responsive components and structures are common. In this review, the general mechanism of SMPs and SMPCs are first introduced, the stimulus methods are then discussed to demonstrate the shape recovery effect, and finally, the applications of SMPs and SMPCs that are reinforced with fiber materials in aerospace are reviewed. SMPC hinges and booms are discussed in the part on components; the booms can be divided again into foldable SMPC truss booms, coilable SMPC truss booms and storable tubular extendible member (STEM) booms. In terms of SMPC structures, the solar array and deployable panel, reflector antenna and morphing wing are introduced in detail. Considering the factors of weight, recovery force and shock effect, SMPCs are expected to have great potential applications in aerospace.

  9. Propulsion Systems for Aircraft. Aerospace Education II. Instructional Unit II.

    Science.gov (United States)

    Elmer, James D.

    This curriculum guide accompanies another publication in the Aerospace Education II series entitled "Propulsion Systems for Aircraft." The guide includes specific guidelines for teachers on each chapter in the textbook. Suggestions are included for objectives (traditional and behavioral), suggested outline, orientation, suggested key points,…

  10. 78 FR 77501 - NASA Aerospace Safety Advisory Panel; Meeting

    Science.gov (United States)

    2013-12-23

    ..., Houston, TX 77058. FOR FURTHER INFORMATION CONTACT: Ms. Marian Norris, Aerospace Safety Advisory Panel... full name and company affiliation (if applicable) to Ms. Marian Norris at mnorris@nasa.gov by January... 5-minutes in length. To do so, members of the public must contact Ms. Marian Norris at...

  11. Research and Development of Rapid Design Systems for Aerospace Structure

    Science.gov (United States)

    Schaeffer, Harry G.

    1999-01-01

    This report describes the results of research activities associated with the development of rapid design systems for aerospace structures in support of the Intelligent Synthesis Environment (ISE). The specific subsystems investigated were the interface between model assembly and analysis; and, the high performance NASA GPS equation solver software system in the Windows NT environment on low cost high-performance PCs.

  12. 76 FR 1600 - U.S. Aerospace Supplier & Investment Mission

    Science.gov (United States)

    2011-01-11

    ... for high returns given these factors and the ongoing support of USCS Canada. Commercial Setting Canada..., May 2 8:00-8:30 Mission welcoming remarks by Consul General/SCO & Mission Logistics Briefing. 8:30-9..., engage in networking activities and visit key Canadian aerospace OEM plants such as Bombardier....

  13. Personality and organizational influences on aerospace human performance

    Science.gov (United States)

    Helmreich, Robert L.

    1989-01-01

    Individual and organizational influences on performance in aerospace environments are discussed. A model of personality with demonstrated validity is described along with reasons why personality's effects on performance have been underestimated. Organizational forces including intergroup conflict and coercive pressures are also described. It is suggested that basic and applied research in analog situations is needed to provide necessary guidance for planning future space missions.

  14. Value-leverage by Aerospace Original Equipment Manufacturers

    NARCIS (Netherlands)

    Beelaerts van Blokland, W.W.A.

    2010-01-01

    With the creation of new aircraft products; Embraer E-170/190, Dassault 7X, Airbus A380 and Boeing B787, aerospace original equipment manufacturers (OEMs) involve suppliers not only with the co-production of aircraft sub systems, but also with the entire development of sub systems, like fuselage and

  15. Guidelines for the Procurement of Aerospace Nickel Cadmium Cells

    Science.gov (United States)

    Thierfelder, Helmut

    1997-01-01

    NASA has been using a Modular Power System containing "standard" nickel cadmium (NiCd) batteries, composed of "standard" NiCd cells. For many years the only manufacturer of the NASA "standard" NiCd cells was General Electric Co. (subsequently Gates Aerospace and now SAFT). This standard cell was successfully used in numerous missions. However, uncontrolled technical changes, and changes in industrial restructuring require a new approach. General Electric (now SAFT Aerospace Batteries) had management changes, new manufacturers entered the market (Eagle-Picher Industries, ACME Electric Corporation, Aerospace Division, Sanyo Electric Co.) and battery technology advanced. New NASA procurements for aerospace NiCd cells will have specifications unique to the spacecraft and mission requirements. This document provides the user/customer guidelines for the new approach to procuring of and specifying performance requirements for highly reliable NiCd cells and batteries. It includes details of key parameters and their importance. The appendices contain a checklist, detailed calculations, and backup information.

  16. Aerospace Medicine and Biology: A Continuing Bibliography. Supplement 474

    Science.gov (United States)

    1998-01-01

    This bibliography lists reports, articles and other documents recently introduced into the NASA scientific and technical information database. Subject coverage includes: Aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life and flightcrew behavior and performance.

  17. 75 FR 28547 - Aerospace Supplier Mission to Russia

    Science.gov (United States)

    2010-05-21

    ... with prospective agents, distributors and end-users in Russia's aerospace market. Participating U.S...,798 3,841 Imports from the U.S 513 597 694 The Russian aviation industry remains an important... corporation established in 2006, spearheads the development of the national aviation industry. In 2009,...

  18. Aerospace medicine and biology. A continuing bibliography with indexes

    International Nuclear Information System (INIS)

    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included

  19. Geometric requirements for multidisciplinary analysis of aerospace-vehicle design

    Science.gov (United States)

    Smith, Robert E.; Kerr, Patirca A.

    1992-01-01

    The geometric requirements for creating surfaces and grids for multidisciplinary analysis and optimization of aerospace-vehicle designs are described. Geometric surface representations are outlined and compared. Directions for future designs are proposed. High-speed civil transport aircraft configurations are targeted to demonstrate the processes.

  20. Computer Architecture. (Latest Citations from the Aerospace Database)

    Science.gov (United States)

    1996-01-01

    The bibliography contains citations concerning research and development in the field of computer architecture. Design of computer systems, microcomputer components, and digital networks are among the topics discussed. Multimicroprocessor system performance, software development, and aerospace avionics applications are also included. (Contains 50-250 citations and includes a subject term index and title list.)

  1. Human Requirements of Flight. Aviation and Spaceflight. Aerospace Education III.

    Science.gov (United States)

    Coard, E. A.

    This book, one in the series on Aerospace Education III, deals with the general nature of human physiology during space flights. Chapter 1 begins with a brief discussion of the nature of the atmosphere. Other topics examined in this chapter include respiration and circulation, principles and problems of vision, noise and vibration, and…

  2. Integration of Machining and Inspection in Aerospace Manufacturing

    International Nuclear Information System (INIS)

    The main challenge for aerospace manufacturers today is to develop the ability to produce high-quality products on a consistent basis as quickly as possible and at the lowest-possible cost. At the same time, rising material prices are making the cost of scrap higher than ever so making it more important to minimise waste. Proper inspection and quality control methods are no longer a luxury; they are an essential part of every manufacturing operation that wants to grow and be successful. However, simply bolting on some quality control procedures to the existing manufacturing processes is not enough. Inspection must be fully-integrated with manufacturing for the investment to really produce significant improvements. The traditional relationship between manufacturing and inspection is that machining is completed first on the company's machine tools and the components are then transferred to dedicated inspection equipment to be approved or rejected. However, as machining techniques become more sophisticated, and as components become larger and more complex, there are a growing number of cases where closer integration is required to give the highest productivity and the biggest reductions in wastage. Instead of a simple linear progression from CAD to CAM to machining to inspection, a more complicated series of steps is needed, with extra data needed to fill any gaps in the information available at the various stages. These new processes can be grouped under the heading of adaptive machining. The programming of most machining operations is based around knowing three things: the position of the workpiece on the machine, the starting shape of the material to be machined, and the final shape that needs to be achieved at the end of the operation. Adaptive machining techniques allow successful machining when at least one of those elements is unknown, by using in-process measurement to close the information gaps in the process chain. It also allows any errors to be spotted

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 11: The Voice of the User: How US Aerospace Engineers and Scientists View DoD Technical Reports

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.

    1991-01-01

    The project examines how the results of NASA/DOD research diffuse into the aerospace R&D process, and empirically analyzes the implications of the aerospace knowledge diffusion process. Specific issues considered are the roles played by government technical reports, the recognition of the value of scientific and technical information (STI), and the optimization of the STI aerospace transfer system. Information-seeking habits are assessed for the U.S. aerospace community, the general community, the academic sector, and the international community. U.S. aerospace engineers and scientists use 65 percent of working time to communicate STI, and prefer 'internal' STI over 'external' STI. The isolation from 'external' information is found to be detrimental to U.S. aerospace R&D in general.

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 49: Becoming an aerospace engineer: A cross-gender comparison

    Science.gov (United States)

    Hecht, Laura M.; Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    We conducted a mail (self-reported) survey of 4300 student members of the American Institute of Aeronautics and Astronautics (AIAA) during the spring of 1993 as a Phase 3 activity of the NASA/DoD Aerospace Knowledge Diffusion Research Project. The survey was designed to explore students' career goals and aspirations, communications skills training, and their use of information sources, products, and services. We received 1723 completed questionnaires for an adjusted response rate of 42%. In this article, we compare the responses of female and male aerospace engineering students in the context of two general aspects of their educational experience. First, we explore the extent to which women and men differ in regard to factors that lead to the choice to study aerospace engineering, their current level of satisfaction with that choice, and their career-related goals and aspirations. Second, we examine students' responses to questions about communications skills training and the helpfulness of that training, and their use of and the importance to them of selected information sources, products, and services. The cross-gender comparison revealed more similarities than differences. Female students appear to be more satisfied than their male counterparts with the decision to major in aerospace engineering. Both female and male student respondents consider communications skills important for professional success, but females place a higher value than males do on oral communications skills. Women students also place a higher value than men do on the roles of other students and faculty members in satisfying their needs for information.

  5. Aerospace vehicle water-waste management

    Science.gov (United States)

    Pecoraro, J. N.

    1973-01-01

    The collection and disposal of human wastes, such as urine and feces, in a spacecraft environment are performed in an aesthetic and reliable manner to prevent degradation of crew performance. The waste management system controls, transfers, and processes materials such as feces, emesis, food residues, used expendables, and other wastes. The requirements, collection, transport, and waste processing are described.

  6. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 7:] The NASA/DOD Aerospace Knowledge Diffusion Research Project: The DOD perspective

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    This project will provide descriptive and analytical data regarding the flow of STI at the individual, organizational, national, and international levels. It will examine both the channels used to communicate information and the social system of the aerospace knowledge diffusion process. Results of the project should provide useful information to R and D managers, information managers, and others concerned with improving access to and use of STI. Objectives include: (1) understanding the aerospace knowledge diffusion process at the individual, organizational, and national levels, placing particular emphasis on the diffusion of Federally funded aerospace STI; (2) understanding the international aerospace knowledge diffusion process at the individual and organizational levels, placing particular emphasis on the systems used to diffuse the results of Federally funded aerospace STI; (3) understanding the roles NASA/DoD technical report and aerospace librarians play in the transfer and use of knowledge derived from Federally funded aerospace R and D; (4) achieving recognition and acceptance within NASA, DoD and throughout the aerospace community that STI is a valuable strategic resource for innovation, problem solving, and productivity; and (5) providing results that can be used to optimize the effectiveness and efficiency of the Federal STI aerospace transfer system and exchange mechanism.

  7. Innovative design, analysis and development practices in aerospace and automotive engineering

    CERN Document Server

    Chandrasekhar, U; Arankalle, Avinash

    2014-01-01

    The book presents the best articles presented by researchers, academicians and industrial experts in the International Conference on “Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering”. The book discusses new concept designs, analysis and manufacturing technologies, where more swing is for improved performance through specific and/or multifunctional linguistic design aspects to downsize the system, improve weight to strength ratio, fuel efficiency, better operational capability at room and elevated temperatures, reduced wear and tear, NVH aspects while balancing the challenges of beyond Euro IV/Barat Stage IV emission norms, Greenhouse effects and recyclable materials. The innovative methods discussed in the book will serve as a reference material for educational and research organizations, as well as industry, to take up challenging projects of mutual interest.

  8. Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications

    Science.gov (United States)

    Bochenek, Kamil; Basista, Michal

    2015-11-01

    Over the last few decades intermetallic compounds such as NiAl have been considered as potential high temperature structural materials for aerospace industry. A large number of investigations have been reported describing complex fabrication routes, introducing various reinforcing/alloying elements along with theoretical analyses. These research works were mainly focused on the overcoming of main disadvantage of nickel aluminides that still restricts their application range, i.e. brittleness at room temperature. In this paper we present an overview of research on NiAl processing and indicate methods that are promising in solving the low fracture toughness issue at room temperature. Other material properties relevant for high temperature applications are also addressed. The analysis is primarily done from the perspective of NiAl application in aero engines in temperature regimes from room up to the operating temperature (over 1150 °C) of turbine blades.

  9. U.S. Aerospace and Aviation Industry: A State-By-State Analysis

    Science.gov (United States)

    2002-01-01

    President George W. Bush and the Congress created the Commission on the Future of the United States Aerospace Industry to evaluate the current and future health of the industry as well as the challenges that lie ahead for the U.S. workforce and the economy. To accomplish our mission, we commissioned a study on the economic impact of the aerospace industry nationally and on a state-by-state basis, using the best available U.S. government data. This study sought to define the core of the aerospace industry. The resulting data represents that very core those jobs specifically tied to commercial and civilian aerospace. U.S. Aerospace and Aviation: A State-by-State Analysis examines the civilian and commercial aerospace and aviation industry by employment, wages, payroll, and establishments. The report found that the U.S. civilian and commercial aerospace and aviation industry employed over 2 million workers in 2001.

  10. Face Gear Technology for Aerospace Power Transmission Progresses

    Science.gov (United States)

    2005-01-01

    The use of face gears in an advanced rotorcraft transmission design was first proposed by the McDonnell Douglas Helicopter Company during their contracted effort with the U.S. Army under the Advanced Rotorcraft Transmission (ART) program. Face gears would be used to turn the corner between the horizontal gas turbine engine and the vertical output rotor shaft--a function currently done by spiral bevel gears. This novel gearing arrangement would substantially lower the drive system weight partly because a face gear mesh would be used to split the input power between two output gears. However, the use of face gears and their ability to operate successfully at the speeds and loads required for an aerospace environment was unknown. Therefore a proof-of-concept phase with an existing test stand at the NASA Lewis Research Center was pursued. Hardware was designed that could be tested in Lewis' Spiral Bevel Gear Test Rig. The initial testing indicated that the face gear mesh was a feasible design that could be used at high speeds and load. Surface pitting fatigue was the typical failure mode, and that could lead to tooth fracture. An interim project was conducted to see if slight modifications to the gear tooth geometry or an alternative heat treating process could overcome the surface fatigue problems. From the initial and interim tests, it was apparent that for the surface fatigue problems to be overcome the manufacturing process used for this component would have to be developed to the level used for spiral bevel gears. The current state of the art for face gear manufacturing required using less than optimal gear materials and manufacturing techniques because the surface of the tooth form does not receive final finishing after heat treatment as it does for spiral bevel gears. This resulted in less than desirable surface hardness and manufacturing tolerances. An Advanced Research and Projects Agency (ARPA) Technology Reinvestment Project has been funded to investigate

  11. Structural health management of aerospace hotspots under fatigue loading

    Science.gov (United States)

    Soni, Sunilkumar

    Sustainability and life-cycle assessments of aerospace systems, such as aircraft structures and propulsion systems, represent growing challenges in engineering. Hence, there has been an increasing demand in using structural health monitoring (SHM) techniques for continuous monitoring of these systems in an effort to improve safety and reduce maintenance costs. The current research is part of an ongoing multidisciplinary effort to develop a robust SHM framework resulting in improved models for damage-state awareness and life prediction, and enhancing capability of future aircraft systems. Lug joints, a typical structural hotspot, were chosen as the test article for the current study. The thesis focuses on integrated SHM techniques for damage detection and characterization in lug joints. Piezoelectric wafer sensors (PZTs) are used to generate guided Lamb waves as they can be easily used for onboard applications. Sensor placement in certain regions of a structural component is not feasible due to the inaccessibility of the area to be monitored. Therefore, a virtual sensing concept is introduced to acquire sensor data from finite element (FE) models. A full three dimensional FE analysis of lug joints with piezoelectric transducers, accounting for piezoelectrical-mechanical coupling, was performed in Abaqus and the sensor signals were simulated. These modeled sensors are called virtual sensors. A combination of real data from PZTs and virtual sensing data from FE analysis is used to monitor and detect fatigue damage in aluminum lug joints. Experiments were conducted on lug joints under fatigue loads and sensor signals collected were used to validate the simulated sensor response. An optimal sensor placement methodology for lug joints is developed based on a detection theory framework to maximize the detection rate and minimize the false alarm rate. The placement technique is such that the sensor features can be directly correlated to damage. The technique accounts for a

  12. Modal parameter determination of a lightweight aerospace panel using laser Doppler vibrometer measurements

    Science.gov (United States)

    de Sousa, Kleverson C.; Domingues, Allan C.; Pereira, Pedro P. de S.; Carneiro, Sergio H.; de Morais, Marcus V. G.; Fabro, Adriano T.

    2016-06-01

    The experimental determination of modal parameters, i.e. natural frequencies, mode shapes and damping ratio, are key in characterizing the dynamic behaviour of structures. Typically, such parameters are obtained from dynamic measurements using one or a set of accelerometers, for response measurements, along with force transducers from an impact hammer or an electrodynamic actuator, i.e. a shaker. However, lightweight structures, commonly applied in the aerospace industry, can be significantly affected by the added mass from accelerometers. Therefore, non-contact measurement techniques, like Laser Doppler Vibrometer (LDV), are a more suitable approach in determining the dynamic characteristics of such structures. In this article, the procedures and results of a modal test for a honeycomb sandwich panel for aerospace applications are presented and discussed. The main objectives of the test are the identification of natural frequencies and mode shapes in order to validate a numerical model, as well as the identification of the damping characteristics of the panel. A validated numerical model will be necessary for future detailed response analysis of the satellite, including vibroacoustic investigations to account for acoustic excitations encountered during launching. The numerical model using homogenised material properties is updated to fit the experimental results and very good agreement between experimental and numerically obtained natural frequencies and mode shapes.

  13. X-ray simulation for structural integrity for aerospace components - A case study

    Science.gov (United States)

    Singh, Surendra; Gray, Joseph

    2016-02-01

    The use of Integrated Computational Materials Engineering (ICME) has rapidly evolved from an emerging technology to the industry standards in Materials, Manufacturing, Chemical, Civil, and Aerospace engineering. Despite this the recognition of the ICME merits has been somewhat lacking within NDE community. This is due in part to the makeup of NDE practitioners. They are a very diverse but regimented group. More than 80% of NDE experts are trained and certified as NDT Level 3's and auditors in order to perform their daily inspection jobs. These jobs involve detection of attribute of interest, which may be a defect or condition or both, in a material. These jobs are performed in strict compliance with procedures that have been developed over many years by trial-and-error with minimal understanding of the underlying physics and interplay between the NDE methods setup parameters. It is not in the nature of these trained Level 3's experts to look for alternate or out-of-the box, solutions. Instead, they follow the procedures for compliance as required by regulatory agencies. This approach is time-consuming, subjective, and is treated as a bottleneck in today's manufacturing environments. As such, there is a need for new NDE tools that provide rapid, high quality solutions for studying structural and dimensional integrity in parts at a reduced cost. NDE simulations offer such options by a shortening NDE technique development-time, attaining a new level in the scientific understanding of physics of interactions between interrogating energy and materials, and reducing costs. In this paper, we apply NDE simulation (XRSIM as an example) for simulating X-Ray techniques for studying aerospace components. These results show that NDE simulations help: 1) significantly shorten NDE technique development-time, 2) assist in training NDE experts, by facilitating the understanding of the underlying physics, and 3) improve both capability and reliability of NDE methods in terms of

  14. Aerospace Medicine and Biology: A Continuing Bibliography. Supplement 476

    Science.gov (United States)

    1998-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP-1998-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion. Each entry in the publication consists of a standard bibliographic citation accompanied, in most cases, by an abstract.

  15. Aerospace Medicine and Biology: A Continuing Bibliography. Supplement 475

    Science.gov (United States)

    1998-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion.

  16. Wear Characteristics of Oleophobic Coatings in Aerospace Applications

    Science.gov (United States)

    Shams, Hamza; Basit, Kanza

    2016-05-01

    This paper investigates the wear characteristics of oleophobic coatings when applied over Inconel 718, which has widespread applications in the aerospace industry. Coatings once applied were selectively exposed to controlled uni-and then multi-directional stand storm conditions. Size and speed of sand particles colliding with the work surface were carefully moderated to simulate sand storm conditions. Study of friction was performed using Lateral Force Microscopy (LFM) coupled with standard optical microscopy. The analysis has been used to devise a coefficient of friction value and in turn suggest wear behavior of the coated surface including the time associated with exposure of the base substrate. The analysis after validation aims to suggest methods for safe usage of these coatings for aerospace applications.

  17. Complex monitoring of aerospace and mountain environment at Beo Mussala

    International Nuclear Information System (INIS)

    The mission of BEO Moussala is the observing, complex monitoring and studies of global change processes, aerospace and mountain environment, natural hazards and technological risks. BEO Moussala is the focal point of the BEO Centre of Excellence established and promoted in the framework of FP5 project HIMONTONET essentially improving its research capacities in frame of the FP6 project BEOBAL. The basic fields of current and future activities and studies at BEO Moussala are: global change, aerospace and mountain environment, natural hazards and technological risks and not at least development, design and enhancement of measurement devices and systems. The basic parameters and characteristics of the new measuring facilities are given and discussed from the point of view of the requirements of Global Atmospheric Watch (GAW) and Global Change Programs

  18. Applications of aerospace technology in the public interest: Pollution measurement

    Science.gov (United States)

    Heins, C. F.; Johnson, F. D.

    1974-01-01

    This study of selected NASA contributions to the improvement of pollution measurement examines the pervasiveness and complexity of the economic, political, and social issues in the environmental field; provides a perspective on the relationship between the conduct of aerospace R and D and specific improvements in on site air pollution monitoring equipment now in use; describes the basic relationship between the development of satellite-based monitoring systems and their influence on long-term progress in improving environmental quality; and comments on how both instrumentation and satellite remote sensing are contributing to an improved environment. Examples of specific gains that have been made in applying aerospace R and D to environmental problem-solving are included.

  19. High performance sealing - meeting nuclear and aerospace requirements

    International Nuclear Information System (INIS)

    Although high performance sealing is required in many places, two industries lead all others in terms of their demand-nuclear and aerospace. The factors that govern the high reliability and integrity of seals, particularly elastomer seals, for both industries are discussed. Aerospace requirements include low structural weight and a broad range of conditions, from the cold vacuum of space to the hot, high pressures of rocket motors. It is shown, by example, how a seal can be made an integral part of a structure in order to improve performance, rather than using a conventional handbook design. Typical processes are then described for selection, specification and procurement of suitable elastomers, functional and accelerated performance testing, database development and service-life prediction. Methods for quality assurance of elastomer seals are summarized. Potentially catastrophic internal dejects are a particular problem for conventional non-destructive inspection techniques. A new method of elastodynamic testing for these is described. (author)

  20. Hydrogen Re-Embrittlement of Aerospace grade High Strength Steels

    OpenAIRE

    Valentini, R.; Colombo, C.; De Sanctis, M.; G. Lovicu

    2012-01-01

    Hydrogen Re-Embrittlement on anodically coated high strength steels is a relevant risk for aerospace structures due to the possibility of hydrogen uptake during the operative life of the components. AISI 4340 and Maraging 250 unnotched tensile specimens were subjected to SSRT in order to evaluate the influence of test environment on time to failure. Fracture surfaces were examined by SEM analysis to evaluate the degree of embrittlement and to correlate it with hydrogen diffusivity of the tes...

  1. Measurement of Baseline and Orientation between Distributed Aerospace Platforms

    OpenAIRE

    Wen-Qin Wang

    2013-01-01

    Distributed platforms play an important role in aerospace remote sensing, radar navigation, and wireless communication applications. However, besides the requirement of high accurate time and frequency synchronization for coherent signal processing, the baseline between the transmitting platform and receiving platform and the orientation of platform towards each other during data recording must be measured in real time. In this paper, we propose an improved pulsed duplex microwave ranging app...

  2. Local and national impact of aerospace research and technology

    Science.gov (United States)

    Mccarthy, J. F., Jr.

    1981-01-01

    An overview of work at the NASA Lewis Research Center in the areas of aeronautics space, and energy is presented. Local and national impact of the work is discussed. Some aspects of the U.S. research and technology base, the aerospace industry, and foreign competition are discussed. In conclusion, U.S. research and technology programs are cited as vital to U.S. economic health.

  3. New lidar systems at the German Aerospace Center

    OpenAIRE

    Kaifler, Bernd; Kaifler, Natalie; Büdenbender, Christian; Witschas, Benjamin; Gomez Kabelka, Pau; Rapp, Markus; Mahnke, Peter; Sauder, Daniel; Geyer, Gerhard; Speiser, Jochen

    2015-01-01

    This work gives an overview of the lower-, middle and upper atmosphere lidar projects at the German Aerospace Center (DLR). The Temperature Lidar for Middle Atmosphere research (TELMA) is a combined sodium/Rayleigh/Brillouin-lidar integrated into an 8-foot container. It will provide temperature profiles with high temporal and spatial resolution from near ground level up to approximately 110 km altitude. The lidar system is designed for remote/autonomous operation. First observations with the...

  4. A Methodology for Engineering Competencies Definition in the Aerospace Industry

    OpenAIRE

    Laura Fortunato; Serena Lettera; Mariangela Lazoi; Angelo Corallo; Giovanni Pietro Guidone

    2011-01-01

    The need to cut off lead times, to increase the products innovation, to respond to changing customer requirements and to integrate new technologies into business process pushes companies to increase the collaboration. In particular, collaboration, knowledge sharing and information exchange in the Aerospace Value Network, need to a clear definition and identification of competencies of several actors. Main contractors, stakeholders, customers, suppliers, partners, have different expertise and ...

  5. Hydrogen Re-Embrittlement of Aerospace grade High Strength Steels

    Directory of Open Access Journals (Sweden)

    R. Valentini

    2012-07-01

    Full Text Available Hydrogen Re-Embrittlement on anodically coated high strength steels is a relevant risk for aerospace structures due to the possibility of hydrogen uptake during the operative life of the components. AISI 4340 and Maraging 250 unnotched tensile specimens were subjected to SSRT in order to evaluate the influence of test environment on time to failure. Fracture surfaces were examined by SEM analysis to evaluate the degree of embrittlement and to correlate it with hydrogen diffusivity of the tested steels.

  6. Output Feedback M-MRAC Backstepping With Aerospace Applications

    Science.gov (United States)

    Stepanyan, Vahram; Krishnakumar, Kalmanje Sriniva

    2014-01-01

    The paper presents a certainty equivalence output feedback backstepping adaptive control design method for the systems of any relative degree with unmatched uncertainties without over-parametrization. It uses a fast prediction model to estimate the unknown parameters, which is independent of the control design. It is shown that the system's input and output tracking errors can be systematically decreased by the proper choice of the design parameters. The approach is applied to aerospace control problems and tested in numerical simulations.

  7. Blowdown Wind Tunnels: Latest Citations from the Aerospace Database

    Science.gov (United States)

    1996-01-01

    The bibliography contains citations concerning the design, construction, operation, and performance of blowdown wind tunnels. The use of compressed gas, mechanical piston, or combustion exhaust to provide continuous or short-duration operation from transonic to hypersonic approach velocities is discussed. Also covered are invasive and non-invasive aerothermodynamic instrumentation, data acquisition and reduction techniques, and test reports on aerospace components. Comprehensive coverage of wind tunnel force balancing systems and supersonic wind tunnels are covered in separate bibliographies.

  8. First international conference on nonlinear problems in aviation and aerospace

    International Nuclear Information System (INIS)

    The International Conference on Nonlinear Problems in Aviation and Aerospace was held at Embry-Riddle Aeronautical University, Daytona Beach, Florida on May 9-11, 1996. This conference was sponsored by the International Federation of Nonlinear Analysts, International Federation of Information Processing, and Embry-Riddle Aeronautical University. Over one hundred engineers, scientists, and mathematicians from seventeen countries attended. These proceedings include keynote addresses, invited lectures, and contributed papers presented during the conference

  9. Aerospace applications of high temperature superconductivity

    Science.gov (United States)

    Connolly, D. J.; Heinen, V. O.; Aron, P. R.; Lazar, J.; Romanofsky, Robert R.

    1990-01-01

    A review is presented of all the applications that are part of the NASA program to develop space technology capitalizing on the potential benefit of high temperature superconducting materials. The applications in three major areas are being pursued: sensors and cryogenic systems, space communications, and propulsion and power systems. This review places emphasis on space communications applications and the propulsion and power applications. It is concluded that the power and propulsion applications will eventually be limited by structural considerations rather than by the availability of suitable superconductors. A cursory examination of structural limitations implied by the virial theorem suggested that there is an upper limit to the size of high field magnetic systems that are feasible in space.

  10. Reinforcement of poly ether sulphones (PES) with exfoliated graphene oxide for aerospace applications

    International Nuclear Information System (INIS)

    Composite materials have been used for aerospace for some time now and have gained virtually 100% acceptance as the materials of choice. Speciality polymers like poly ether sulphones (PES), poly ether ether ketones(PEEK), poly ether imides (PEI) are highly preferred materials as plastic matrix due to their superior temperature performance, excellent wear and friction resistance, excellent dimensional accuracy, high tensile strength, high modulus, precise machinability and chemical resistance. In recent years nanoadditives like single and multiwall carbon nanotubes, graphenes and graphene oxides(GO) are finding huge market potential in aerospace and automobile industries. But manufacture related factors such as particle/ matrix interphases, surface activation, mixing process, particle agglomeration, particle size and shape may lead to different property effects. In this research GO/PES composites were prepared by high shear melt blending technique. GO monolayers were exfoliated from natural graphite flake and dispersed homogeneously in PES matrix for the GO content ranging between 0.5 to 2.0 volume percentage with a high shear twin screw batch mixer. These melt blended nanocomposites were injection moulded for mechanical property validation of tensile strength, flexural modulus and impact resistance. Addition of 0.5 volume percentage of GO enhanced the tensile strength and flexural modulus by 40% and 90% respectively. The results show that addition of GO to PES increase mechanical properties due to the formation of continuous network, good dispersion and strong interfacial interactions. The strong interfacial interactions were accounted for the increase in glass transition temperature. Also there was a significant improvement in the impact resistance of the PES/ GO nanocomposite. The injection moulded samples were tested for stealth performance by measuring the electromagnetic shielding property.

  11. Development of Structural Health Management Technology for Aerospace Vehicles

    Science.gov (United States)

    Prosser, W. H.

    2003-01-01

    As part of the overall goal of developing Integrated Vehicle Health Management (IVHM) systems for aerospace vehicles, NASA has focused considerable resources on the development of technologies for Structural Health Management (SHM). The motivations for these efforts are to increase the safety and reliability of aerospace structural systems, while at the same time decreasing operating and maintenance costs. Research and development of SHM technologies has been supported under a variety of programs for both aircraft and spacecraft including the Space Launch Initiative, X-33, Next Generation Launch Technology, and Aviation Safety Program. The major focus of much of the research to date has been on the development and testing of sensor technologies. A wide range of sensor technologies are under consideration including fiber-optic sensors, active and passive acoustic sensors, electromagnetic sensors, wireless sensing systems, MEMS, and nanosensors. Because of their numerous advantages for aerospace applications, most notably being extremely light weight, fiber-optic sensors are one of the leading candidates and have received considerable attention.

  12. Hybrid planar lightwave circuits for defense and aerospace applications

    Science.gov (United States)

    Zhang, Hua; Bidnyk, Serge; Yang, Shiquan; Balakrishnan, Ashok; Pearson, Matt; O'Keefe, Sean

    2010-04-01

    We present innovations in Planar Lightwave Circuits (PLCs) that make them ideally suited for use in advanced defense and aerospace applications. We discuss PLCs that contain no micro-optic components, no moving parts, pose no spark or fire hazard, are extremely small and lightweight, and are capable of transporting and processing a range of optical signals with exceptionally high performance. This PLC platform is designed for on-chip integration of active components such as lasers and detectors, along with transimpedance amplifiers and other electronics. These active components are hybridly integrated with our silica-on-silicon PLCs using fully-automated robotics and image recognition technology. This PLC approach has been successfully applied to the design and fabrication of multi-channel transceivers for aerospace applications. The chips contain hybrid DFB lasers and high-efficiency detectors, each capable of running over 10 Gb/s, with mixed digital and analog traffic multiplexed to a single optical fiber. This highlyintegrated functionality is combined onto a silicon chip smaller than 4 x 10 mm, weighing 125 degC, and more than 2,000 hours operating at 95 degC ambient air temperature. We believe that these recent advancements in planar lightwave circuits are poised to revolutionize optical communications and interconnects in the aerospace and defense industries.

  13. Sensor Selection and Optimization for Health Assessment of Aerospace Systems

    Science.gov (United States)

    Maul, William A.; Kopasakis, George; Santi, Louis M.; Sowers, Thomas S.; Chicatelli, Amy

    2008-01-01

    Aerospace systems are developed similarly to other large-scale systems through a series of reviews, where designs are modified as system requirements are refined. For space-based systems few are built and placed into service these research vehicles have limited historical experience to draw from and formidable reliability and safety requirements, due to the remote and severe environment of space. Aeronautical systems have similar reliability and safety requirements, and while these systems may have historical information to access, commercial and military systems require longevity under a range of operational conditions and applied loads. Historically, the design of aerospace systems, particularly the selection of sensors, is based on the requirements for control and performance rather than on health assessment needs. Furthermore, the safety and reliability requirements are met through sensor suite augmentation in an ad hoc, heuristic manner, rather than any systematic approach. A review of the current sensor selection practice within and outside of the aerospace community was conducted and a sensor selection architecture is proposed that will provide a justifiable, defendable sensor suite to address system health assessment requirements.

  14. Multiple regression analyses in the prediction of aerospace instrument costs

    Science.gov (United States)

    Tran, Linh

    The aerospace industry has been investing for decades in ways to improve its efficiency in estimating the project life cycle cost (LCC). One of the major focuses in the LCC is the cost/prediction of aerospace instruments done during the early conceptual design phase of the project. The accuracy of early cost predictions affects the project scheduling and funding, and it is often the major cause for project cost overruns. The prediction of instruments' cost is based on the statistical analysis of these independent variables: Mass (kg), Power (watts), Instrument Type, Technology Readiness Level (TRL), Destination: earth orbiting or planetary, Data rates (kbps), Number of bands, Number of channels, Design life (months), and Development duration (months). This author is proposing a cost prediction approach of aerospace instruments based on these statistical analyses: Clustering Analysis, Principle Components Analysis (PCA), Bootstrap, and multiple regressions (both linear and non-linear). In the proposed approach, the Cost Estimating Relationship (CER) will be developed for the dependent variable Instrument Cost by using a combination of multiple independent variables. "The Full Model" will be developed and executed to estimate the full set of nine variables. The SAS program, Excel, Automatic Cost Estimating Integrate Tool (ACEIT) and Minitab are the tools to aid the analysis. Through the analysis, the cost drivers will be identified which will help develop an ultimate cost estimating software tool for the Instrument Cost prediction and optimization of future missions.

  15. Resource Management and Contingencies in Aerospace Concurrent Engineering

    Science.gov (United States)

    Karpati, Gabe; Hyde, Tupper; Peabody, Hume; Garrison, Matthew

    2012-01-01

    significant concern in designing complex systems implementing new technologies is that while knowledge about the system is acquired incrementally, substantial financial commitments, even make-or-break decisions, must be made upfront, essentially in the unknown. One practice that helps in dealing with this dichotomy is the smart embedding of contingencies and margins in the design to serve as buffers against surprises. This issue presents itself in full force in the aerospace industry, where unprecedented systems are formulated and committed to as a matter of routine. As more and more aerospace mission concepts are generated by concurrent design laboratories, it is imperative that such laboratories apply well thought-out contingency and margin structures to their designs. The first part of this publication provides an overview of resource management techniques and standards used in the aerospace industry. That is followed by a thought provoking treatise on margin policies. The expose presents the actual flight telemetry data recorded by the thermal discipline during several recent NASA Goddard Space Flight Center missions. The margins actually achieved in flight are compared against pre-flight predictions, and the appropriateness and the ramifications of having designed with rigid margins to bounding stacked worst case conditions are assessed. The second half of the paper examines the particular issues associated with the application of contingencies and margins in the concurrent engineering environment. In closure, a discipline-by-discipline disclosure of the contingency and margin policies in use at the Integrated Design Center at NASA s Goddard Space Flight Center is made.

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 14: An analysis of the technical communications practices reported by Israeli and US aerospace engineers and scientists

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Elazar, David; Kennedy, John M.

    1991-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two pilot studies were conducted that investigated the technical communications practices of Israeli and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their view about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was mailed to randomly selected U.S. aerospace engineers and scientists who are working in cryogenics, adaptive walls, and magnetic suspension. A slightly modified version was sent to Israeli aerospace engineers and scientists working at Israel Aircraft Industries, LTD. Responses of the Israeli and U.S. aerospace engineers and scientists to selected questions are presented in this paper.

  17. Selected aspects of the supply chain management in the aerospace industry

    Directory of Open Access Journals (Sweden)

    Ivan KOBLEN

    2013-03-01

    Full Text Available The paper in the introductory part underlines some factors concerning the aerospace supply chain management (SCM issue. Authors inform on selected definitions in this topic, levels of supply chain and its maturity. The authors are focusing on introducing of the explanation of main specifics of SCM in aerospace industry (original equipment manufacturer, processes and requirements for the suppliers selection and subsequently inform on the role and mission of selected international organizations involved in aerospace SCM and quality issues, namely The Aerospace and Defence Industries Association of Europe (ASD, International Aerospace Quality Group (IAQG and European Aerospace Quality Group (EAQG. The information on Quality Management System in the framework of aerospace industry and SCM are also introduced. The part of paper is dealing with information systems useful in the SCM (the Digital Product Chain and Enterprise Resource Planning. The last part of paper is focused on issue concerning the success factors for SCM in the aerospace industry. In the conclusion part the authors emphasize some aspects and factors regarding the aerospace SCM and summarize the key challenges in the area of SCM in the aerospace industry.

  18. [NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 4:] Technical communications in aerospace: An analysis of the practices reported by US and European aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Glassman, Myron

    1990-01-01

    Results are reported from pilot surveys on the use of scientific and technical information (STI) by U.S. and NATO-nation aerospace scientists and engineers, undertaken as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. The survey procedures and the demographic characteristics of the 67 scientists and engineers who responded to the survey are summarized, and the results are presented in a series of tables and discussed in detail. Findings emphasized include: (1) both U.S. and NATO respondents spend around 60 percent of their work week producing or using STI products; (2) NATO respondents are more likely than their U.S. counterparts to use 'formal' STI products (like technical reports and papers) and the services of librarians and online data bases; (3) most of the respondents use computers and information technology in preparing STI products; and (4) respondents who had taken courses in technical communication agreed on the value and ideal subject matter of such courses.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 31: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 SME mail survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical communications practices of U.S. aerospace engineers and scientists affiliated with, not necessarily belonging to, the Society of Manufacturing Engineers (SME).

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 33: Technical communications practices and the use of information technologies as reported by Dutch and US aerospace engineers

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Tan, Axel S. T.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (The Netherlands), and NASA ARC (U.S.), and NASA LaRC (U.S.). This paper presents responses of the Dutch and U.S. participants to selected questions concerning four of the seven project objectives: determining the importance of technical communications to aerospace engineering professionals, investigating the production of technical communications, examining the use and importance of computer and information technology, and exploring the use of electronic networks.

  1. Fibres : future materials for advanced emerging applications

    OpenAIRE

    Fangueiro, Raúl; Rana, S

    2012-01-01

    Fibrous materials are finding widespread applications in diversified areas, starting from clothing sector to medical fields, various structural and infrastructural applications of civil engineering, aerospace industries and even for energy harvesting and storage applications. In this paper, the results of various research activities conducted by the Fibrous Materials Research Group (FMRG), University of Minho to explore fibrous materials in several advanced and emerging applicatio...

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 35: The use of computer networks in aerospace engineering

    Science.gov (United States)

    Bishop, Ann P.; Pinelli, Thomas E.

    1995-01-01

    This research used survey research to explore and describe the use of computer networks by aerospace engineers. The study population included 2000 randomly selected U.S. aerospace engineers and scientists who subscribed to Aerospace Engineering. A total of 950 usable questionnaires were received by the cutoff date of July 1994. Study results contribute to existing knowledge about both computer network use and the nature of engineering work and communication. We found that 74 percent of mail survey respondents personally used computer networks. Electronic mail, file transfer, and remote login were the most widely used applications. Networks were used less often than face-to-face interactions in performing work tasks, but about equally with reading and telephone conversations, and more often than mail or fax. Network use was associated with a range of technical, organizational, and personal factors: lack of compatibility across systems, cost, inadequate access and training, and unwillingness to embrace new technologies and modes of work appear to discourage network use. The greatest positive impacts from networking appear to be increases in the amount of accurate and timely information available, better exchange of ideas across organizational boundaries, and enhanced work flexibility, efficiency, and quality. Involvement with classified or proprietary data and type of organizational structure did not distinguish network users from nonusers. The findings can be used by people involved in the design and implementation of networks in engineering communities to inform the development of more effective networking systems, services, and policies.

  3. The ageless aerospace vehicle: a complex multi-agent structural health management system

    International Nuclear Information System (INIS)

    Full text: Structural health monitoring and management of complex, safety-critical structures such as aerospace vehicles will ultimately require the development of intelligent systems to process the data from large numbers of sensors, to evaluate and diagnose detected damage, to form a prognosis for the damaged structure, and to make decisions regarding remediation or repair of the damage. A complex multi-agent systems approach to the development of such intelligent systems is being investigated, in order to satisfy the requirements of robustness and scalability. This paper reports the current state of development of a laboratory-scale test-bed built to facilitate the development and demonstration of the sensors, sensing strategies and algorithms that will produce the required functionality. This work involves a wide range of physics-related issues in materials science, sensing and complex systems science. Copyright (2005) Australian Institute of Physics

  4. Risks and reliability of manufacturing processes as related to composite materials for spacecraft structures

    Science.gov (United States)

    Bao, Han P.

    1995-01-01

    Fabricating primary aircraft and spacecraft structures using advanced composite materials entail both benefits and risks. The benefits come from much improved strength-to-weight ratios and stiffness-to-weight ratios, potential for less part count, ability to tailor properties, chemical and solvent resistance, and superior thermal properties. On the other hand, the risks involved include high material costs, lack of processing experience, expensive labor, poor reproducibility, high toxicity for some composites, and a variety of space induced risks. The purpose of this project is to generate a manufacturing database for a selected number of materials with potential for space applications, and to rely on this database to develop quantitative approaches to screen candidate materials and processes for space applications on the basis of their manufacturing risks including costs. So far, the following materials have been included in the database: epoxies, polycyanates, bismalemides, PMR-15, polyphenylene sulfides, polyetherimides, polyetheretherketone, and aluminum lithium. The first four materials are thermoset composites; the next three are thermoplastic composites, and the last one is is a metal. The emphasis of this database is on factors affecting manufacturing such as cost of raw material, handling aspects which include working life and shelf life of resins, process temperature, chemical/solvent resistance, moisture resistance, damage tolerance, toxicity, outgassing, thermal cycling, and void content, nature or type of process, associate tooling, and in-process quality assurance. Based on industry experience and published literature, a relative ranking was established for each of the factors affecting manufacturing as listed above. Potential applications of this database include the determination of a delta cost factor for specific structures with a given process plan and a general methodology to screen materials and processes for incorporation into the current

  5. Emerging Needs for Pervasive Passive Wireless Sensor Networks on Aerospace Vehicles

    Science.gov (United States)

    Wilson, William C.; Juarez, Peter D.

    2014-01-01

    NASA is investigating passive wireless sensor technology to reduce instrumentation mass and volume in ground testing, air flight, and space exploration applications. Vehicle health monitoring systems (VHMS) are desired on all aerospace programs to ensure the safety of the crew and the vehicles. Pervasive passive wireless sensor networks facilitate VHMS on aerospace vehicles. Future wireless sensor networks on board aerospace vehicles will be heterogeneous and will require active and passive network systems. Since much has been published on active wireless sensor networks, this work will focus on the need for passive wireless sensor networks on aerospace vehicles. Several passive wireless technologies such as microelectromechanical systems MEMS, SAW, backscatter, and chipless RFID techniques, have all shown potential to meet the pervasive sensing needs for aerospace VHMS applications. A SAW VHMS application will be presented. In addition, application areas including ground testing, hypersonic aircraft and spacecraft will be explored along with some of the harsh environments found in aerospace applications.

  6. Research and Technology Advisory Committee on Materials and Structures: Report of meeting, February 1973

    Science.gov (United States)

    1973-01-01

    The proceedings of a conference on Materials and Structures is presented. The subjects discussed are: (1) basic materials research: (2) fracture control: (3) aerospace vehicle dynamics and control: and (4) tramp elements in fuels and alloys.

  7. Standardization of shape memory alloy test methods toward certification of aerospace applications

    Science.gov (United States)

    Hartl, D. J.; Mabe, J. H.; Benafan, O.; Coda, A.; Conduit, B.; Padan, R.; Van Doren, B.

    2015-08-01

    The response of shape memory alloy (SMA) components employed as actuators has enabled a number of adaptable aero-structural solutions. However, there are currently no industry or government-accepted standardized test methods for SMA materials when used as actuators and their transition to commercialization and production has been hindered. This brief fast track communication introduces to the community a recently initiated collaborative and pre-competitive SMA specification and standardization effort that is expected to deliver the first ever regulatory agency-accepted material specification and test standards for SMA as employed as actuators for commercial and military aviation applications. In the first phase of this effort, described herein, the team is working to review past efforts and deliver a set of agreed-upon properties to be included in future material certification specifications as well as the associated experiments needed to obtain them in a consistent manner. Essential for the success of this project is the participation and input from a number of organizations and individuals, including engineers and designers working in materials and processing development, application design, SMA component fabrication, and testing at the material, component, and system level. Going forward, strong consensus among this diverse body of participants and the SMA research community at large is needed to advance standardization concepts for universal adoption by the greater aerospace community and especially regulatory bodies. It is expected that the development and release of public standards will be done in collaboration with an established standards development organization.

  8. Prioritization of R&D projects in the aerospace sector: AHP method with ratings

    OpenAIRE

    Mischel Carmen N. Belderrain; Francisco Carlos M. Pantoja; Amanda C. Simões da Silva

    2010-01-01

    The prioritization of R&D projects in the Aerospace Sector is considered a complex problem because it involves qualitative and quantitative issues that are frequently conflicting. This paper aimed to apply the AHP (Analytic Hierarchy Process) method with ratings to select projects of R&D in a Brazilian aerospace institution, Department of Science and Aerospace Technology (DCTA). The results showed that using ratings is appropriate when there is a great quantity of projects, since it reduces t...

  9. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 17: A comparison of the technical communication practices of Dutch and US aerospace engineers and scientists

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (NLR), and NASA Ames Research Center, and the NASA Langley Research Center. The completion rates for the Dutch and U.S. surveys were 55 and 61 percent, respectively. Responses of the Dutch and U.S. participants to selected questions are presented.

  10. The effects of artificial aging on the microstructure and fracture toughness of Al-Cu-Li alloy 2195

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P.S.; Kuruvilla, A.K. [IIT Research Inst., Huntsville, AL (United States). Metallurgy Research Facilities; Malone, T.W.; Stanton, W.P. [National Aeronautics and Space Administration, Huntsville, AL (United States). Marshall Space Flight Center

    1998-10-01

    Aluminum-lithium alloys have shown promise for aerospace applications, and National Aeronautics and Space Administration (NASA) has selected the aluminum-lithium Alloy 2195 for the main structural alloy of the super light weight tank (SLWT) for the space shuttle. This alloy has significantly higher strength than conventional 2xxx alloys (such as 2219) at both ambient and cryogenic temperatures. If properly processed and heat treated, this alloy can display higher fracture toughness at cryogenic temperature than at ambient temperature. However, the properties of production materials have shown greater variation than those of other established alloys, as is the case with any new alloy that is being transitioned to a demanding application. A multistep heating-rate controlled (MSRC) aging treatment has been developed that can improve the cryogenic fracture toughness of aluminum-lithium Alloy 2195. At the same levels of yield strength (YS), this treatment results in considerably higher fracture toughness than that found in Alloy 2195, which has received conventional (isothermal) aging. Transmission electron microscopy revealed that the new treatment greatly reduces the size and density of subgrain-boundary T{sub 1} precipitates. In addition, it promotes T{sub 1} and {theta}{double_prime} nucleation, resulting in a fine and dense distribution of precipitate particles in the matrix. The MSRC aging treatment consists of (a) aging at 127 C (260 F) for 5 h, (b) heating continuously from 127 C (260 F) to 135 C (275 F) at a rate of 0.556 C/h (1 F/h), (c) holding at 135 C (275 F) for 5 h, (d) heating continuously from 135 to 143 C (275 to 290 F) at a rate of 0.556 C/h (1 F/h), and (e) holding at 143 C (290 F) for 25 h to obtain a near peak-aged condition.

  11. Capacitance-based damage detection sensing for aerospace structural composites

    Science.gov (United States)

    Bahrami, P.; Yamamoto, N.; Chen, Y.; Manohara, H.

    2014-04-01

    Damage detection technology needs improvement for aerospace engineering application because detection within complex composite structures is difficult yet critical to avoid catastrophic failure. Damage detection is challenging in aerospace structures because not all the damage detection technology can cover the various defect types (delamination, fiber fracture, matrix crack etc.), or conditions (visibility, crack length size, etc.). These defect states are expected to become even more complex with future introduction of novel composites including nano-/microparticle reinforcement. Currently, non-destructive evaluation (NDE) methods with X-ray, ultrasound, or eddy current have good resolutions (analysis currently requires excessive wiring and complex signal analysis. Here, we present a capacitance sensor-based, structural defect detection technology with improved sensing capability. Thin dielectric polymer layer is integrated as part of the structure; the defect in the structure directly alters the sensing layer's capacitance, allowing full-coverage sensing capability independent of defect size, orientation or location. In this work, capacitance-based sensing capability was experimentally demonstrated with a 2D sensing layer consisting of a dielectric layer sandwiched by electrodes. These sensing layers were applied on substrate surfaces. Surface indentation damage (~1mm diameter) and its location were detected through measured capacitance changes: 1 to 250 % depending on the substrates. The damage detection sensors are light weight, and they can be conformably coated and can be part of the composite structure. Therefore it is suitable for aerospace structures such as cryogenic tanks and rocket fairings for example. The sensors can also be operating in space and harsh environment such as high temperature and vacuum.

  12. Space Transportation System (STS)-133/External Tank (ET)-137 Intertank (IT) Stringer Cracking Issue and Repair Assessment: Proximate Cause Determination and Material Characterization Study

    Science.gov (United States)

    Piascik, Robert S.

    2011-01-01

    Several cracks were detected in stringers located beneath the foam on the External Tank (ET) following the launch scrub of Space Transportation System (STS)-133 on November 5, 2010. The stringer material was aluminum-lithium (AL-Li) 2090-T83 fabricated from sheets that were nominally 0.064 inches thick. The mechanical properties of the stringer material were known to vary between different material lots, with the stringers from ET-137 (predominately lots 620853 and 620854) having the highest yield and ultimate stresses. Subsequent testing determined that these same lots also had the lowest fracture toughness properties. The NASA Engineering and Safety Center (NESC) supported the Space Shuttle Program (SSP)-led investigation. The objective of this investigation was to develop a database of test results to provide validation for structural analysis models, independently confirm test results obtained from other investigators, and determine the proximate cause of the anomalous low fracture toughness observed in stringer lots 620853 and 620854. This document contains the outcome of the investigation.

  13. Aerospace Medicine and Biology: A Continuing Bibliography. Supplement 483

    Science.gov (United States)

    1999-01-01

    Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention. Applied research receives the most emphasis, but references to fundamental studies and theoretical principles related to experimental development also qualify for inclusion.

  14. Domestic applications for aerospace waste and water management technologies

    Science.gov (United States)

    Disanto, F.; Murray, R. W.

    1972-01-01

    Some of the aerospace developments in solid waste disposal and water purification, which are applicable to specific domestic problems are explored. Also provided is an overview of the management techniques used in defining the need, in utilizing the available tools, and in synthesizing a solution. Specifically, several water recovery processes will be compared for domestic applicability. Examples are filtration, distillation, catalytic oxidation, reverse osmosis, and electrodialysis. Solid disposal methods will be discussed, including chemical treatment, drying, incineration, and wet oxidation. The latest developments in reducing household water requirements and some concepts for reusing water will be outlined.

  15. Calculation of hybrid joints used in modern aerospace structures

    Directory of Open Access Journals (Sweden)

    Marcel STERE

    2011-12-01

    Full Text Available The state – of - the art of aeronautical structures show that parts are manufactured and subsequently assembled with the use of fasteners and/ or bonding. Adhesive bonding is a key technology to low weight, high fatigue resistance, robustness and an attractive design for cost structures.The paper results resolve significant problems for two groups of end-users:1 for the aerospace design office: a robust procedure for the design of the hybrid joint structural components;2 for the aeronautical repair centres: a useful procedure for structural design and analysis with significant cost savings.

  16. Aerospace Threaded Fastener Strength in Combined Shear and Tension Loading

    Science.gov (United States)

    Steeve, B. E.; Wingate, R. J.

    2012-01-01

    A test program was initiated by Marshall Space Flight Center and sponsored by the NASA Engineering and Safety Center to characterize the failure behavior of a typical high-strength aerospace threaded fastener under a range of shear to tension loading ratios for both a nut and an insert configuration where the shear plane passes through the body and threads, respectively. The testing was performed with a customized test fixture designed to test a bolt with a single shear plane at a discrete range of loading angles. The results provide data to compare against existing combined loading failure criteria and to quantify the bolt strength when the shear plane passes through the threads.

  17. Standard Practice for Liquid Sampling of Noncryogenic Aerospace Propellants

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2004-01-01

    1.1 This practice covers procedures for obtaining a sample of noncryogenic aerospace propellant. Two procedures are covered as follows: Procedure 1Closed System (Section 6), and Procedure 2Open-End Procedure (Section 7). 1.2 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use. For hazard statements see Sections 4 and 5.

  18. Review of NASA programs in applying aerospace technology to energy

    Science.gov (United States)

    Schwenk, F. C.

    1981-01-01

    NASA's role in energy research and development, with the aid of aerospace technology, is reviewed. A brief history, which began in 1974 with studies of solar energy systems on earth, is presented, and the major energy programs, consisting of over 60 different projects, are described, and include solar terrestrial systems, conservation and fossil energy systems, and space utilization systems. Special attention is given to the Satellite Power System and the isolation of nuclear wastes in space. Emerging prospects for NASA programs in energy technology include bioenergy, and ocean thermal energy conversion, coal extraction and conversion technologies, and support to the nuclear industry in power plant systems safety.

  19. Hypersonic Wind Tunnels: Latest Citations from the Aerospace Database

    Science.gov (United States)

    1996-01-01

    The bibliography contains citations concerning the design, construction, operation, performance, and use of hypersonic wind tunnels. References cover the design of flow nozzles, diffusers, test sections, and ejectors for tunnels driven by compressed air, high-pressure gases, or cryogenic liquids. Methods for flow calibration, boundary layer control, local and freestream turbulence reduction, and force measurement are discussed. Intrusive and non-intrusive instrumentation, sources of measurement error, and measurement corrections are also covered. The citations also include the testing of inlets, nozzles, airfoils, and other components of hypersonic aerospace vehicles. Comprehensive coverage of supersonic and blowdown wind tunnels, and force balance systems for wind tunnels are covered in separate bibliographies.

  20. A Survey of Power Electronics Applications in Aerospace Technologies

    Science.gov (United States)

    Kankam, M. David; Elbuluk, Malik E.

    2001-01-01

    The insertion of power electronics in aerospace technologies is becoming widespread. The application of semiconductor devices and electronic converters, as summarized in this paper, includes the International Space Station, satellite power system, and motor drives in 'more electric' technology applied to aircraft, starter/generators and reusable launch vehicles. Flywheels, servo systems embodying electromechanical actuation, and spacecraft on-board electric propulsion are discussed. Continued inroad by power electronics depends on resolving incompatibility of using variable frequency for 400 Hz-operated aircraft equipment. Dual-use electronic modules should reduce system development cost.

  1. Numerical and Experimental Investigation of the Innovatory Incremental-Forming Process Dedicated to the Aerospace Industry

    Science.gov (United States)

    Szyndler, Joanna; Grosman, Franciszek; Tkocz, Marek; Madej, Lukasz

    2016-05-01

    The main goal of this work is development of the incremental-forming (IF) process for manufacturing integral elements applicable to the aerospace industry. A description of the proposed incremental-forming concept based on division of large die into a series of small anvils pressed into the material by a moving roll is presented within this article. A unique laboratory device has been developed to investigate the effects of process parameters on the material flow and the press loads. Additionally, a developed numerical model of this process with specific boundary conditions is also presented and validated to prove its predictive capabilities. However, main attention is placed on development of the process window. Thus, detailed investigation of the process parameters that can influence material behavior during plastic deformation, namely, roll size and roll frequency, is presented. Proper understanding of the material flow to improve the IF process, as well as press prototype, and to increase its technological readiness is the goal of this article. Results in the form of, e.g., strain distribution or recorded forging loads are presented and discussed.

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 45; The Technical Communications Practices of US Aerospace Engineers and Scientists: Results of the Phase 3 US Aerospace Engineering Educators Survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1996-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. Little is also known about the intermediary-based system that is used to transfer the results of federally funded R&D to the U.S. aerospace industry. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports, present a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communication practices of U.S. aerospace engineers and scientists who were members of the American Institute of Aeronautics and Astronautics (AIAA) and identified themselves as educators.

  3. Platinum Group Metals New Material

    Institute of Scientific and Technical Information of China (English)

    XIE Ming; ZHANG Jiankang; WANG Saibei; HU Jieqiong; LIU Manmen; CHEN Yongtai; ZHANG Jiming; YANG Youcai; YANG Yunfeng; ZHANG Guoquan

    2012-01-01

    Platinum group metals (PGM) include six elements,namely Pt,Pd,Rh,Ir,Os and Ru.PGM and their alloys are the important fundamental materials for modern industry and national defense construction,they have special physical and chemical properties,widely used in metallurgy,chemical,electric,electronic,information,energy,environmental protection,aviation,aerospace,navigation and other high technology industry.Platinum group metals and their alloys,which have good plasticity and processability,can be processed to electrical contact materials,resistance materials,solder,electronic paste,temperature-measurement materials,elastic materials,magnetic materials and high temperature structural materials.

  4. An Experimental and Numerical Investigation of the Mixed-mode Fracture Toughness and Lap Shear Strength of Aerospace Grade Composite Joints

    OpenAIRE

    Mohan, Joseph; Karac, Aleksandar; Murphy, Neal; et al.

    2011-01-01

    The increasing use of composite materials in various industries, such as aerospace, automotive and renewable energy generation, has driven a need for a greater understanding of the fracture behaviour of bonded composite joints. An important prerequisite for the adhesive bonding of composites is the existence of a uniform surface free from contaminants and mould release agents. While there are several ways in which this may be achieved, the use of peel plies has emer...

  5. Proceedings of the 40th Aerospace Mechanisms Symposium

    Science.gov (United States)

    Littlefield, Alan C.; Mueller, Robert P.; Boesiger, Edward A. (Editor)

    2010-01-01

    The Aerospace Mechanisms Symposium (AMS) provides a unique forum for those active in the design, production and use of aerospace mechanisms. A major focus is the reporting of problems and solutions associated with the development and flight certification of new mechanisms. Organized by the Mechanisms Education Association, responsibility for hosting the AMS is shared by the National Aeronautics and Space Administration and Lockheed Martin Space Systems Company (LMSSC). Now in its 40th symposium, the AMS continues to be well attended, attracting participants from both the U.S. and abroad. The 40th AMS, hosted by the Kennedy Space Center (KSC) in Cocoa Beach, Florida, was held May 12, 13 and 14, 2010. During these three days, 38 papers were presented. Topics included gimbals and positioning mechanisms, CubeSats, actuators, Mars rovers, and Space Station mechanisms. Hardware displays during the supplier exhibit gave attendees an opportunity to meet with developers of current and future mechanism components. The use of trade names of manufacturers in this publication does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration

  6. L-C Measurement Acquisition Method for Aerospace Systems

    Science.gov (United States)

    Woodard, Stanley E.; Taylor, B. Douglas; Shams, Qamar A.; Fox, Robert L.

    2003-01-01

    This paper describes a measurement acquisition method for aerospace systems that eliminates the need for sensors to have physical connection to a power source (i.e., no lead wires) or to data acquisition equipment. Furthermore, the method does not require the sensors to be in proximity to any form of acquisition hardware. Multiple sensors can be interrogated using this method. The sensors consist of a capacitor, C(p), whose capacitance changes with changes to a physical property, p, electrically connected to an inductor, L. The method uses an antenna to broadcast electromagnetic energy that electrically excites one or more inductive-capacitive sensors via Faraday induction. This method facilitates measurements that were not previously possible because there was no practical means of providing power and data acquisition electrical connections to a sensor. Unlike traditional sensors, which measure only a single physical property, the manner in which the sensing element is interrogated simultaneously allows measurement of at least two unrelated physical properties (e.g., displacement rate and fluid level) by using each constituent of the L-C element. The key to using the method for aerospace applications is to increase the distance between the L-C elements and interrogating antenna; develop all key components to be non-obtrusive and to develop sensing elements that can easily be implemented. Techniques that have resulted in increased distance between antenna and sensor will be presented. Fluid-level measurements and pressure measurements using the acquisition method are demonstrated in the paper.

  7. The use of aerospace methods for forest state assessment.

    Science.gov (United States)

    Isaev, A S

    1988-01-01

    Siberian forests occupy a significant part of the Asian continent. Their role as an essential component of the Earth's surface, biomass and oxygen producer is increasing annually. Expanded reproduction of taiga forests necessitated by the intensive development of Siberian productive forces, results in an evergrowing need of forest productivity constancy and increase. Proper forest exploitation is a crucial part of the solution of such important problems as the rational use of land and water resources, stable crop yields, and the creation of favourable conditions for human life.To solve these important economic problems, the Siberian branch of the USSR Academy of Sciences has devised a long-term programme of ecological monitoring of Siberian forest resources using aerospace techniques. The programme provides for the establishment and improvement of ecogeographical and physicotechnological principles of the remote sensing of forests and the development of fundamental forest-biological research based on new methodologies, the results of which are used to solve urgent forestry and nature protection problems. The research is carried out in the following major directions: studying spectral characteristics of forest vegetation for forest-state indication; thematic mapping of taiga territories; assessing biological productivity of natural complexes; environmental state monitoring; fire protection of forests; pest and disease control; developin instruments and methods for automatized aerospace data processing for real-time use.We consider forest-state monitoring to be one of the crucial tools in providing the optimum use of forest ecosystems for resource and ecological functions. PMID:24248966

  8. Life assessment of aerospace structure using damage tolerance

    International Nuclear Information System (INIS)

    Damage Tolerant Design plays a major role in the Aerospace Industry not only in the design of new structures and components but also their ongoing maintenance and support. Damage Tolerance Analysis (DT A) is a procedure that defines whether a crack can be sustained safely during the projected service life of the structure. Using this methodology, service life of an aerospace structure can be determined and may be extended by applying proper tooling and machining for repair. In this research the effect of damage increment on the convergence of the residual strength is investigated for a wing component of an aircraft. The stresses redistribution with damage growth is discussed. Simulation using Linear Elastic Fracture Mechanics (LEFM) laws are performed, those results the damage scenarios to be assessed in the real structural geometry and loading environment, using Stress Intensity Factors, Critical Crack Sizes and the Residual Strength of that component. Fatigue crack growth behaviour of the component is also investigated experimentally. The fatigue experiments were performed under constant stress amplitude loadings and constant amplitude loading with single overload. It has been observed that the computed fatigue curves fit well with the experimental results. (author)

  9. Virtual Testbed Aerospace Operations Center (VT-AOC)

    Science.gov (United States)

    Dunaway, Bradley; Broadstock, Tom

    2003-09-01

    The Air Force is conducting research in new technologies for next-generation Aerospace Operations Centers (AOCs). The Virtual Testbed Aerospace Operations Center (VT-AOC) will support advanced research in information technologies that operate in or are closely tied to AOCs. The VT-AOC will provide a context for developing, demonstrating, and testing new processes and tools in a realistic environment. To generate the environment, the VT-AOC will incorporate multiple mixed-resolution simulations that are capable of driving existing and future AOC command and control (C2) systems. The VT-AOC will provide the capability to capture existing or proposed C2 processes and then evaluate them operating in conjunction with new technologies. The VT-AOC will also be capable of connecting with other facilities to support increasingly more complex experiments and demonstrations. Together, these capabilities support key initiatives such as Agile Research and Development/Science and Technology (R&D/S&T), Predictive Battlespace Awareness, and Effects-Based Operations.

  10. The use of β titanium alloys in the aerospace industry

    Science.gov (United States)

    Boyer, R. R.; Briggs, R. D.

    2005-12-01

    Beta titanium alloys have been available since the 1950s (Ti-13V-11Cr-3Mo or B120VCA), but significant applications of these alloys, beyond the SR-71 Blackbird, have been slow in coming. The next significant usage of a β alloy did not occur until the mid-1980s on the B-1B bomber. This aircraft used Ti-15V-3Cr-3Al-3Sn sheet due to its capability for strip rolling, improved formability, and higher strength than Ti-6Al-4V. The next major usage was on a commercial aircraft, the Boeing 777, which made extensive use of Ti-10V-2Fe-3Al high-strength forgings. Ti-15V-3Cr-3Al-3Sn environmental control system ducting, castings, and springs were also used, along with Ti-3Al-8V-6Cr-4Mo-4Zr (β-C) springs. Beta-21S was also introduced for high-temperature usage. More recent work at Boeing has focused on the development of Ti-5Al-5Mo-5V-3Cr, a high-strength alloy that can be used at higher strength than Ti-10V-2Fe-3Al and is much more robust; it has a much wider, or friendlier, processing window. This, along with additional studies at Boeing, and from within the aerospace industry in general will be discussed in detail, summarizing applications and the rationale for the selection of this alloy system for aerospace applications.

  11. Studies in automatic speech recognition and its application in aerospace

    Science.gov (United States)

    Taylor, Michael Robinson

    Human communication is characterized in terms of the spectral and temporal dimensions of speech waveforms. Electronic speech recognition strategies based on Dynamic Time Warping and Markov Model algorithms are described and typical digit recognition error rates are tabulated. The application of Direct Voice Input (DVI) as an interface between man and machine is explored within the context of civil and military aerospace programmes. Sources of physical and emotional stress affecting speech production within military high performance aircraft are identified. Experimental results are reported which quantify fundamental frequency and coarse temporal dimensions of male speech as a function of the vibration, linear acceleration and noise levels typical of aerospace environments; preliminary indications of acoustic phonetic variability reported by other researchers are summarized. Connected whole-word pattern recognition error rates are presented for digits spoken under controlled Gz sinusoidal whole-body vibration. Correlations are made between significant increases in recognition error rate and resonance of the abdomen-thorax and head subsystems of the body. The phenomenon of vibrato style speech produced under low frequency whole-body Gz vibration is also examined. Interactive DVI system architectures and avionic data bus integration concepts are outlined together with design procedures for the efficient development of pilot-vehicle command and control protocols.

  12. Recycling of Glass Fibre Reinforced Aluminium Laminates and Silicon Removal from Aerospace Al Alloy

    NARCIS (Netherlands)

    Zhu, G.

    2012-01-01

    Aerospace aluminium alloys (7xxx and 2xxx series Al alloy) is one of the important Al alloys in our life. The recycling of aerospace Al alloy plays a significant role in sustainable development of Al industry. The fibre reinforced metal laminates GLARE including 67 wt.% 2024 Al alloy was used as upp

  13. Dominant supply chain co-ordination strategies in the Dutch aerospace industry

    NARCIS (Netherlands)

    Voordijk, Hans; Meijboom, Bert

    2005-01-01

    Purpose – Firms in the aerospace industry face considerable pressure to improve co-ordination in their supply chains. The major question of the present study is what supply chain co-ordination strategies are dominant in the Dutch aerospace industry given the market environment of this industry? De

  14. 77 FR 3739 - Executive-led Aerospace and Defense Industry Trade Mission to Turkey-Notification

    Science.gov (United States)

    2012-01-25

    ... International Trade Administration Executive-led Aerospace and Defense Industry Trade Mission to Turkey... and Istanbul December 3-7, 2012. This mission will be led by a Senior Commerce Department official... All parties interested in participating in the Executive-led U.S.- Turkey Aerospace/Defense...

  15. Rakesh K. Kapania named Norris and Laura Mitchell Professor of Aerospace Engineering

    OpenAIRE

    Crumbley, Liz

    2008-01-01

    Rakesh K. Kapania, a professor in the Department of Aerospace and Ocean Engineering in the College of Engineering at Virginia Tech, was appointed the Norris and Laura Mitchell Professor of Aerospace Engineering by the Virginia Tech Board of Visitors during the board's quarterly meeting March 31.

  16. Virginia Tech teams with Wright State, Air Force to design future aerospace vehicles

    OpenAIRE

    Nystrom, Lynn A.

    2009-01-01

    Virginia Tech, Wright State University (WSU), and the Air Force Research Laboratory at Wright Patterson Air Force Base (WPAFB), Ohio, specializing in the design of aerospace vehicles, are teaming to form a collaborative center for the development of future aerospace vehicles (FAVs). The new center will be based at Virginia Tech.

  17. The Effect of Online Systems Analysis Training on Aerospace Industry Business Performance: A Qualitative Study

    Science.gov (United States)

    Burk, Erlan

    2012-01-01

    Aerospace companies needed additional research on technology-based training to verify expectations when enhancing human capital through online systems analysis training. The research for online systems analysis training provided aerospace companies a means to verify expectations for systems analysis technology-based training on business…

  18. 76 FR 41041 - Special Conditions: Gulfstream Aerospace LP (GALP) Model G250 Airplane, Interaction of Systems...

    Science.gov (United States)

    2011-07-13

    ... interaction of control systems and structures. The usual deterministic approach to defining the loads envelope... Administration 14 CFR Part 25 Special Conditions: Gulfstream Aerospace LP (GALP) Model G250 Airplane, Interaction... special conditions are issued for the Gulfstream Aerospace LP (GALP) Model G250 airplane. This...

  19. 76 FR 55347 - Aerospace Executive Service Trade Mission at Singapore Air Show

    Science.gov (United States)

    2011-09-07

    ... AESTM hotel and Singapore Air Show; Pre-scheduled meetings with potential partners, distributors, and... International Trade Administration Aerospace Executive Service Trade Mission at Singapore Air Show AGENCY... organizing an Aerospace Executive Service Trade Mission (AESTM) to Singapore in conjunction with...

  20. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 29: A comparison of the technical communications practices of Japanese and US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Japanese and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third; to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists in Japan and at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Japanese and U.S. surveys were 85 and 61 percent, respectively. Responses of the Japanese and U.S. participants to selected questions are presented in this report.

  1. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 18: A comparison of the technical communication practices of aerospace engineers and scientists in India and the United States

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of India and U.S. aerospace engineers and scientists. Both studies have the same seven objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; fifth, to determine the use and importance of computer and information technology to them; sixth, to determine their use of electronic networks; and seventh, to determine their use of foreign and domestically produced technical reports. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Indian Institute of Science and the NASA Langley Research Center. The completion rates for the India and U.S. surveys were 48 and 53 percent, respectively. Responses of the India and U.S. participants to selected questions are presented in this report.

  2. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 28: The technical communication practices of Russian and US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Keene, Michael L.; Flammia, Madelyn; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DoD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communication practices of Russian and U.S. aerospace engineers and scientists. Both studies had the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communication to their professions; second, to determine the use and production of technical communication by aerospace engineers and scientists; third, to seek their views about the appropriate content of the undergraduate course in technical communication; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line databases; and fifth, to determine the use and importance of computer and information technology to them. A self administered questionnaire was distributed to Russian aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI) and to their U.S. counterparts at the NASA Ames Research Center and the NASA Langley Research Center. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. Responses of the Russian and U.S. participants to selected questions are presented in this paper.

  3. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 16: A comparison of the technical communications practices of Russian and US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Project, two studies were conducted that investigated the technical communications practices of Russian and U.S. aerospace engineers and scientists. Both studies have the same five objectives: first, to solicit the opinions of aerospace engineers and scientists regarding the importance of technical communications to their profession; second, to determine the use and production of technical communications by aerospace engineers and scientists; third, to seek their views about the appropriate content of an undergraduate course in technical communications; fourth, to determine aerospace engineers' and scientists' use of libraries, technical information centers, and on-line data bases; and fifth, to determine the use and importance of computer and information technology to them. A self-administered questionnaire was distributed to aerospace engineers and scientists at the Central Aero-Hydrodynamic Institute (TsAGI), NASA ARC, and NASA LaRC. The completion rates for the Russian and U.S. surveys were 64 and 61 percent, respectively. The responses of the Russian and U.S. participants, to selected questions, are presented in this report.

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 24: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 SAE mail survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists affiliated with the Society of Automotive Engineers (SAE).

  5. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 33: The technical communications practices of US aerospace engineers and scientists: Results of the phase 1 AIAA mail survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the technical communications practices of U.S. aerospace engineers and scientists who are members of the American Institute of Aeronautics and Astronautics (AIAA).

  6. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report number 21: US aerospace industry librarians and technical information specialists as information intermediaries: Results of the phase 2 survey

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1994-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis U.S. aerospace industry librarians and technical information specialists as information intermediaries.

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 55: Career goals and educational preparation of aerospace engineering and science students: An international perspective

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1995-01-01

    Results are presented of a survey of aerospace engineering and science students conducted in India, Japan, Russia, the United Kingdom, and the United States. The similarities and differences among aerospace engineering and science students from the five countries are examined in the context of two general aspects of educational experience. First, the extent to which students differ regarding the factors that led to the choice of a career in aerospace, their current levels of satisfaction with that choice, and career-related goals and objectives is considered. Second, the importance of certain communications/information-use skills for professional use is examined, as well as the frequency of use and importance of specific information sources and products to meet students' educational needs. Overall, the students who participated in this research remain relatively happy with the choice of a career in aerospace engineering, despite pessimism in some quarters about the future of the industry. Regardless of national identity, aerospace engineering and science students appear to share a similar vision of the profession in terms of their career goals and aspirations. The data also indicate that aerospace engineering and science students are well aware of the importance of communications/information-use skills to professional success and that competency in these skills will help them to be productive members of their profession. Collectively, all of the students appear to use and value similar information sources and products, although some differences appear by country.

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 34: How early career-stage US aerospace engineers and scientists produce and use information

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    The U.S. government technical report is a primary means by which the results of federally funded research and development (R&D) are transferred to the U.S. aerospace industry. However, little is known about this information product in terms of its actual use, importance, and value in the transfer of federally funded R&D. To help establish a body of knowledge, the U.S. government technical report is being investigated as part of the NASA/DOD Aerospace Knowledge Diffusion Research Project. In this report, we summarize the literature on technical reports and provide a model that depicts the transfer of federally funded aerospace R&D via the U.S. government technical report. We present results from our investigation of aerospace knowledge diffusion vis-a-vis the U.S. government technical report, and present the results of research that investigated aerospace knowledge diffusion vis-a-vis the production and use of information by U.S. aerospace engineers and scientists who had changed their American Institute of Aeronautics and Astronautics (AIAA) membership from student to professional in the past five years.

  9. A manufacturing database of advanced materials used in spacecraft structures

    Science.gov (United States)

    Bao, Han P.

    1994-01-01

    Cost savings opportunities over the life cycle of a product are highest in the early exploratory phase when different design alternatives are evaluated not only for their performance characteristics but also their methods of fabrication which really control the ultimate manufacturing costs of the product. In the past, Design-To-Cost methodologies for spacecraft design concentrated on the sizing and weight issues more than anything else at the early so-called 'Vehicle Level' (Ref: DOD/NASA Advanced Composites Design Guide). Given the impact of manufacturing cost, the objective of this study is to identify the principal cost drivers for each materials technology and propose a quantitative approach to incorporating these cost drivers into the family of optimization tools used by the Vehicle Analysis Branch of NASA LaRC to assess various conceptual vehicle designs. The advanced materials being considered include aluminum-lithium alloys, thermoplastic graphite-polyether etherketone composites, graphite-bismaleimide composites, graphite- polyimide composites, and carbon-carbon composites. Two conventional materials are added to the study to serve as baseline materials against which the other materials are compared. These two conventional materials are aircraft aluminum alloys series 2000 and series 7000, and graphite-epoxy composites T-300/934. The following information is available in the database. For each material type, the mechanical, physical, thermal, and environmental properties are first listed. Next the principal manufacturing processes are described. Whenever possible, guidelines for optimum processing conditions for specific applications are provided. Finally, six categories of cost drivers are discussed. They include, design features affecting processing, tooling, materials, fabrication, joining/assembly, and quality assurance issues. It should be emphasized that this database is not an exhaustive database. Its primary use is to make the vehicle designer

  10. New Methodologies for Development of High Efficient Machining of Difficult to Cut Materials

    International Nuclear Information System (INIS)

    The article focuses on the automotive and aerospace industries. In these industries the need for enhanced materials performance is necessary if they are to remain competitive in global terms. Unfortunately the material properties, which make them so attractive to the aerospace and automotive industry can also make them difficult to machine. This paper will discuss integrated developments in machining techniques and cutting tools, which are emerging to cope with difficult to cut materials.

  11. A Knowledge-Based System Developer for aerospace applications

    Science.gov (United States)

    Shi, George Z.; Wu, Kewei; Fensky, Connie S.; Lo, Ching F.

    1993-01-01

    A prototype Knowledge-Based System Developer (KBSD) has been developed for aerospace applications by utilizing artificial intelligence technology. The KBSD directly acquires knowledge from domain experts through a graphical interface then builds expert systems from that knowledge. This raises the state of the art of knowledge acquisition/expert system technology to a new level by lessening the need for skilled knowledge engineers. The feasibility, applicability , and efficiency of the proposed concept was established, making a continuation which would develop the prototype to a full-scale general-purpose knowledge-based system developer justifiable. The KBSD has great commercial potential. It will provide a marketable software shell which alleviates the need for knowledge engineers and increase productivity in the workplace. The KBSD will therefore make knowledge-based systems available to a large portion of industry.

  12. Standard Test Method for Environmental Resistance of Aerospace Transparencies

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This test method covers determination of the effects of exposure to thermal shock, condensing humidity, and simulated weather on aerospace transparent enclosures. 1.2 This test method is not recommended for quality control nor is it intended to provide a correlation to actual service life. 1.3 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard. 1.3.1 Exceptions—Certain inch-pound units are furnished in parentheses (not mandatory) and certain temperatures in Fahrenheit associated with other standards are also furnished. 1.4 This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  13. Multi-Gnss Receiver for Aerospace Navigation and Positioning Applications

    Science.gov (United States)

    Peres, T. R.; Silva, J. S.; Silva, P. F.; Carona, D.; Serrador, A.; Palhinha, F.; Pereira, R.; Véstias, M.

    2014-03-01

    The upcoming Galileo system opens a wide range of new opportunities in the Global Navigation Satellite System (GNSS) market. However, the characteristics of the future GNSS signals require the development of new GNSS receivers. In the frame of the REAGE project, DEIMOS and ISEL have developed a GNSS receiver targeted for aerospace applications, supporting current and future GPS L1 and Galileo E1 signals, based on commercial (or, in the furthest extent, industrial) grade components. Although the REAGE project aimed at space applications, the REAGE receiver is also applicable to many terrestrial applications (ground or airborne), such as Georeferencing and Unmanned Aerial Vehicle (UAV) navigation. This paper presents the architecture and features of the REAGE receiver, as well as some results of the validation campaign with GPS L1 and Galileo E1 signals.

  14. Computational Fluid Dynamics in Aerospace Industry in India

    Directory of Open Access Journals (Sweden)

    K. P. Singh

    2010-10-01

    Full Text Available The role of computational fluid dynamics (CFD in the design of fighter aircraft, transport aircraft, launch vehicle and missiles in India is explained. Indigenous developments of grid generators, 3-D Euler and Navier-Stokes solvers using state-of-the-art numerical techniques and physical models have been described. Applications of these indigenous softwares for the prediction of various complex aerodynamic flows over a wide range of Mach number, angle of attacks, are presented. Emergence of CFD methods as an efficient tool for aerospace vehicle design is highlighted.Defence Science Journal, 2010, 60(6, pp.639-652, DOI:http://dx.doi.org/10.14429/dsj.60.582

  15. Development and Processing Improvement of Aerospace Aluminum Alloys

    Science.gov (United States)

    Lisagor, W. Barry; Bales, Thomas T.

    2007-01-01

    This final report, in multiple presentation format, describes a comprehensive multi-tasked contract study to improve the overall property response of selected aerospace alloys, explore further a newly-developed and registered alloy, and correlate the processing, metallurgical structure, and subsequent properties achieved with particular emphasis on the crystallographic orientation texture developed. Modifications to plate processing, specifically hot rolling practices, were evaluated for Al-Li alloys 2195 and 2297, for the recently registered Al-Cu-Ag alloy, 2139, and for the Al-Zn-Mg-Cu alloy, 7050. For all of the alloys evaluated, the processing modifications resulted in significant improvements in mechanical properties. Analyses also resulted in an enhanced understanding of the correlation of processing, crystallographic texture, and mechanical properties.

  16. MULTI-GNSS RECEIVER FOR AEROSPACE NAVIGATION AND POSITIONING APPLICATIONS

    Directory of Open Access Journals (Sweden)

    T. R. Peres

    2014-03-01

    Full Text Available The upcoming Galileo system opens a wide range of new opportunities in the Global Navigation Satellite System (GNSS market. However, the characteristics of the future GNSS signals require the development of new GNSS receivers. In the frame of the REAGE project, DEIMOS and ISEL have developed a GNSS receiver targeted for aerospace applications, supporting current and future GPS L1 and Galileo E1 signals, based on commercial (or, in the furthest extent, industrial grade components. Although the REAGE project aimed at space applications, the REAGE receiver is also applicable to many terrestrial applications (ground or airborne, such as Georeferencing and Unmanned Aerial Vehicle (UAV navigation. This paper presents the architecture and features of the REAGE receiver, as well as some results of the validation campaign with GPS L1 and Galileo E1 signals.

  17. Standard Practice for Preparation of Aerospace Contamination Control Plans

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2009-01-01

    1.1 This practice is intended to assist in the preparation of formal plans for contamination control, especially of aerospace critical surfaces. Requirements may be established at the systems level, either by the customer or the systems integrator, or at the subsystem level. Subsystem requirements may be imposed by the responsible subsystem supplier or they may be flowed down from the systems organization (4.7). The extent of detail and level of cleanliness required can vary with the particular application and type of hardware being built, but all aspects of contamination control must be included in a final plan. Therefore, each of the following elements must be considered for inclusion in a contamination control plan (CCP): 1.1.1 Cleanliness requirements for deliverable hardware addressing particulate, molecular, or biological contaminants or combination thereof. Specify contamination limits and any budget allocations. 1.1.2 Implementation plans to achieve, verify, and maintain the specified cleanliness re...

  18. Robust Design Optimization of an Aerospace Vehicle Prolusion System

    Directory of Open Access Journals (Sweden)

    Muhammad Aamir Raza

    2011-01-01

    Full Text Available This paper proposes a robust design optimization methodology under design uncertainties of an aerospace vehicle propulsion system. The approach consists of 3D geometric design coupled with complex internal ballistics, hybrid optimization, worst-case deviation, and efficient statistical approach. The uncertainties are propagated through worst-case deviation using first-order orthogonal design matrices. The robustness assessment is measured using the framework of mean-variance and percentile difference approach. A parametric sensitivity analysis is carried out to analyze the effects of design variables variation on performance parameters. A hybrid simulated annealing and pattern search approach is used as an optimizer. The results show the objective function of optimizing the mean performance and minimizing the variation of performance parameters in terms of thrust ratio and total impulse could be achieved while adhering to the system constraints.

  19. Internal fluid mechanics research on supercomputers for aerospace propulsion systems

    Science.gov (United States)

    Miller, Brent A.; Anderson, Bernhard H.; Szuch, John R.

    1988-01-01

    The Internal Fluid Mechanics Division of the NASA Lewis Research Center is combining the key elements of computational fluid dynamics, aerothermodynamic experiments, and advanced computational technology to bring internal computational fluid mechanics (ICFM) to a state of practical application for aerospace propulsion systems. The strategies used to achieve this goal are to: (1) pursue an understanding of flow physics, surface heat transfer, and combustion via analysis and fundamental experiments, (2) incorporate improved understanding of these phenomena into verified 3-D CFD codes, and (3) utilize state-of-the-art computational technology to enhance experimental and CFD research. Presented is an overview of the ICFM program in high-speed propulsion, including work in inlets, turbomachinery, and chemical reacting flows. Ongoing efforts to integrate new computer technologies, such as parallel computing and artificial intelligence, into high-speed aeropropulsion research are described.

  20. Internal computational fluid mechanics on supercomputers for aerospace propulsion systems

    Science.gov (United States)

    Andersen, Bernhard H.; Benson, Thomas J.

    1987-01-01

    The accurate calculation of three-dimensional internal flowfields for application towards aerospace propulsion systems requires computational resources available only on supercomputers. A survey is presented of three-dimensional calculations of hypersonic, transonic, and subsonic internal flowfields conducted at the Lewis Research Center. A steady state Parabolized Navier-Stokes (PNS) solution of flow in a Mach 5.0, mixed compression inlet, a Navier-Stokes solution of flow in the vicinity of a terminal shock, and a PNS solution of flow in a diffusing S-bend with vortex generators are presented and discussed. All of these calculations were performed on either the NAS Cray-2 or the Lewis Research Center Cray XMP.

  1. An overview of Ball Aerospace cryogen storage and delivery systems

    Science.gov (United States)

    Marquardt, J.; Keller, J.; Mills, G.; Schmidt, J.

    2015-12-01

    Starting on the Gemini program in the 1960s, Beech Aircraft (now Ball Aerospace) has been designing and manufacturing dewars for a variety of cryogens including liquid hydrogen and oxygen. These dewars flew on the Apollo, Skylab and Space Shuttle spacecraft providing fuel cell reactants resulting in over 150 manned spaceflights. Since Space Shuttle, Ball has also built the liquid hydrogen fuel tanks for the Boeing Phantom Eye unmanned aerial vehicle. Returning back to its fuel cell days, Ball has designed, built and tested a volume-constrained liquid hydrogen and oxygen tank system for reactant delivery to fuel cells on unmanned undersea vehicles (UUVs). Herein past history of Ball technology is described. Testing has been completed on the UUV specific design, which will be described.

  2. Artificial intelligence - New tools for aerospace project managers

    Science.gov (United States)

    Moja, D. C.

    1985-01-01

    Artificial Intelligence (AI) is currently being used for business-oriented, money-making applications, such as medical diagnosis, computer system configuration, and geological exploration. The present paper has the objective to assess new AI tools and techniques which will be available to assist aerospace managers in the accomplishment of their tasks. A study conducted by Brown and Cheeseman (1983) indicates that AI will be employed in all traditional management areas, taking into account goal setting, decision making, policy formulation, evaluation, planning, budgeting, auditing, personnel management, training, legal affairs, and procurement. Artificial intelligence/expert systems are discussed, giving attention to the three primary areas concerned with intelligent robots, natural language interfaces, and expert systems. Aspects of information retrieval are also considered along with the decision support system, and expert systems for project planning and scheduling.

  3. Making aerospace technology work for the automotive industry - Introduction

    Science.gov (United States)

    Olson, W. T.

    1978-01-01

    In many cases it has been found that advances made in one technical field can contribute to other fields. An investigation is in this connection conducted concerning subjects from contemporary NASA programs and projects which might have relevance and potential usefulness to the automotive industry. Examples regarding aerospace developments which have been utilized by the automotive industry are related to electronic design, computer systems, quality control experience, a NASA combustion scanner and television display, exhaust gas analyzers, and a device for suppressing noise propagated through ducts. Projects undertaken by NASA's center for propulsion and power research are examined with respect to their value for the automotive industry. As a result of some of these projects, a gas turbine engine and a Stirling engine might each become a possible alternative to the conventional spark ignition engine.

  4. Posture metrology for aerospace camera in the assembly of spacecraft

    Science.gov (United States)

    Yang, ZaiHua; Yang, Song; Wan, Bile; Pan, Tingyao; Long, Changyu

    2016-01-01

    During the spacecraft assembly process, the posture of the aerospace camera to the spacecraft coordinate system needs to be measured precisely, because the posture data are very important for the earth observing. In order to measure the angles between the camera optical axis and the spacecraft coordinate system's three axes x, y, z, a measurement scheme was designed. The scheme was based on the principle of space intersection measurement with theodolites. Three thodolites were used to respectively collimate the camera axis and two faces of a base cube. Then, through aiming at each other, a measurement network was built. Finally, the posture of the camera was measured. The error analysis and measurement experiments showed that the precision can reach 6″. This method has been used in the assembly of satellite GF-2 with satisfactory results.

  5. Durability properties for adhesively bonded structural aerospace applications

    International Nuclear Information System (INIS)

    This paper reports on the importance of good bond durability of adhesively joined aerospace components which has been recognized for many years. Military and civilian aircraft are exposed to harsh environments in addition to severe thermal and stress cycles during their service lives. Moisture is responsible for the majority of bond failures in the field. The presence of surface contaminants (e.g., fluoride, silicones) and the non-neutral pH of poor rinse water are common causes of adhesion problems in production environments. Honeycomb panels, stringer skins, doubler plates and core cowl assemblies are bonded joint structures that are subject to environmental- or contaminant-induced debonding. The identification and characterization of the causes of such bond failures leads to improved production quality, yield and cost reduction

  6. Total quality management - It works for aerospace information services

    Science.gov (United States)

    Erwin, James; Eberline, Carl; Colquitt, Wanda

    1993-01-01

    Today we are in the midst of information and 'total quality' revolutions. At the NASA STI Program's Center for AeroSpace Information (CASI), we are focused on using continuous improvements techniques to enrich today's services and products and to ensure that tomorrow's technology supports the TQM-based improvement of future STI program products and services. The Continuous Improvements Program at CASI is the foundation for Total Quality Management in products and services. The focus is customer-driven; its goal, to identify processes and procedures that can be improved and new technologies that can be integrated with the processes to gain efficiencies, provide effectiveness, and promote customer satisfaction. This Program seeks to establish quality through an iterative defect prevention approach that is based on the incorporation of standards and measurements into the processing cycle.

  7. Reliability-based design optimization of multiphysics, aerospace systems

    Science.gov (United States)

    Allen, Matthew R.

    Aerospace systems are inherently plagued by uncertainties in their design, fabrication, and operation. Safety factors and expensive testing at the prototype level traditionally account for these uncertainties. Reliability-based design optimization (RBDO) can drastically decrease life-cycle development costs by accounting for the stochastic nature of the system response in the design process. The reduction in cost is amplified for conceptually new designs, for which no accepted safety factors currently exist. Aerospace systems often operate in environments dominated by multiphysics phenomena, such as the fluid-structure interaction of aeroelastic wings or the electrostatic-mechanical interaction of sensors and actuators. The analysis of such phenomena is generally complex and computationally expensive, and therefore is usually simplified or approximated in the design process. However, this leads to significant epistemic uncertainties in modeling, which may dominate the uncertainties for which the reliability analysis was intended. Therefore, the goal of this thesis is to present a RBDO framework that utilizes high-fidelity simulation techniques to minimize the modeling error for multiphysics phenomena. A key component of the framework is an extended reduced order modeling (EROM) technique that can analyze various states in the design or uncertainty parameter space at a reduced computational cost, while retaining characteristics of high-fidelity methods. The computational framework is verified and applied to the RBDO of aeroelastic systems and electrostatically driven sensors and actuators, utilizing steady-state analysis and design criteria. The framework is also applied to the design of electrostatic devices with transient criteria, which requires the use of the EROM technique to overcome the computational burden of multiple transient analyses.

  8. Active sensors for health monitoring of aging aerospace structures

    Energy Technology Data Exchange (ETDEWEB)

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-02-29

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (E/M) impedance technique are cited and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency E/M impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acousto-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  9. Active sensors for health monitoring of aging aerospace structures

    Energy Technology Data Exchange (ETDEWEB)

    GIURGIUTIU,VICTOR; REDMOND,JAMES M.; ROACH,DENNIS P.; RACKOW,KIRK A.

    2000-03-08

    A project to develop non-intrusive active sensors that can be applied on existing aging aerospace structures for monitoring the onset and progress of structural damage (fatigue cracks and corrosion) is presented. The state of the art in active sensors structural health monitoring and damage detection is reviewed. Methods based on (a) elastic wave propagation and (b) electro-mechanical (NM) impedance technique are sighted and briefly discussed. The instrumentation of these specimens with piezoelectric active sensors is illustrated. The main detection strategies (E/M impedance for local area detection and wave propagation for wide area interrogation) are discussed. The signal processing and damage interpretation algorithms are tuned to the specific structural interrogation method used. In the high-frequency EIM impedance approach, pattern recognition methods are used to compare impedance signatures taken at various time intervals and to identify damage presence and progression from the change in these signatures. In the wave propagation approach, the acoustic-ultrasonic methods identifying additional reflection generated from the damage site and changes in transmission velocity and phase are used. Both approaches benefit from the use of artificial intelligence neural networks algorithms that can extract damage features based on a learning process. Design and fabrication of a set of structural specimens representative of aging aerospace structures is presented. Three built-up specimens, (pristine, with cracks, and with corrosion damage) are used. The specimen instrumentation with active sensors fabricated at the University of South Carolina is illustrated. Preliminary results obtained with the E/M impedance method on pristine and cracked specimens are presented.

  10. Novel atmospheric extinction measurement techniques for aerospace laser system applications

    Science.gov (United States)

    Sabatini, Roberto; Richardson, Mark

    2013-01-01

    Novel techniques for laser beam atmospheric extinction measurements, suitable for manned and unmanned aerospace vehicle applications, are presented in this paper. Extinction measurements are essential to support the engineering development and the operational employment of a variety of aerospace electro-optical sensor systems, allowing calculation of the range performance attainable with such systems in current and likely future applications. Such applications include ranging, weaponry, Earth remote sensing and possible planetary exploration missions performed by satellites and unmanned flight vehicles. Unlike traditional LIDAR methods, the proposed techniques are based on measurements of the laser energy (intensity and spatial distribution) incident on target surfaces of known geometric and reflective characteristics, by means of infrared detectors and/or infrared cameras calibrated for radiance. Various laser sources can be employed with wavelengths from the visible to the far infrared portions of the spectrum, allowing for data correlation and extended sensitivity. Errors affecting measurements performed using the proposed methods are discussed in the paper and algorithms are proposed that allow a direct determination of the atmospheric transmittance and spatial characteristics of the laser spot. These algorithms take into account a variety of linear and non-linear propagation effects. Finally, results are presented relative to some experimental activities performed to validate the proposed techniques. Particularly, data are presented relative to both ground and flight trials performed with laser systems operating in the near infrared (NIR) at λ = 1064 nm and λ = 1550 nm. This includes ground tests performed with 10 Hz and 20 kHz PRF NIR laser systems in a large variety of atmospheric conditions, and flight trials performed with a 10 Hz airborne NIR laser system installed on a TORNADO aircraft, flying up to altitudes of 22,000 ft.

  11. IECEC '91; Proceedings of the 26th Intersociety Energy Conversion Engineering Conference, Boston, MA, Aug. 4-9, 1991. Vol. 2 - Aerospace power systems, conversion technologies

    International Nuclear Information System (INIS)

    The present volume on energy and the environment discusses space power requirements, space power systems, space power systems hardware, space radioisotope systems, space solar arrays, space solar cells, space station power, and terrestrial applications of aerospace technology. Attention is given to NASA future space power requirements and issues, the design of a battery charger for the NASA EOS Space Platform, in situ carbon dioxide fixation on Mars, and a preliminary design update of the CRAF/Cassini Power Subsystem. Topics addressed include concentrator testing using projected images, solar power satellites and demonstraton platforms from nonterrestrial materials, a mass sensitivity analysis of lunar orbiting beam power systems, and a power-beaming-based infrastructure for space power. Also discussed are fiber-optic sensors for aerospace electrical measurements, the preliminary design of a mobile lunar power supply, advanced power systems for EOS, and Air Force photovoltaic array alternatives

  12. The fabricability and corrosion resistance of several Al-Cu-Li aerospace alloys

    Energy Technology Data Exchange (ETDEWEB)

    Walsh, D.W. [California Polytechnic State Univ., San Luis Obispo, CA (United States); Danford, M. [NASA MSFC, Huntsville, AL (United States); Sanders, J. [IITRI, Huntsville, AL (United States)

    1996-12-31

    Al-Li-Cu alloys are attractive to the aerospace industry. The high specific strength and stiffness of these alloys will improve lift efficiency, fuel economy, performance and increase payload capabilities. The objectives of this study were to measure the fabricability of Al 2195 (Al-4Cu-1Li) and to assess the effect of welding on corrosion behavior. Al 2219 samples were used in parallel tests to provide a baseline for the data generated. In this study samples were exposed to 3.5% NaCl and mild corrosive water solutions in both the as received and as welded conditions. Fabricability was assessed using Gleeble testing, Varestraint testing and differential scanning calorimetry (DSC). Results indicate that Alloy 2195 is much more susceptible to hot cracking than Al 2219, and that cracking sensitivity is a strong function of chemical composition within specification ranges for Al 2195. Furthermore, for base metal samples, corrosion in mild corrosive water was more severe than corrosion in salt water. In addition, welding increases the corrosion rate in Al 2195 and 2219, and causes severe localization in Al 2195. Furthermore, autogenously welded Al 2195 samples were more susceptible to attack than heterogeneously welded Al 2195 samples and autogenously welded Al2219 samples were less susceptible to corrosion than autogenously welded Al 2195 samples. Heterogeneously welded samples in both materials had high corrosion rates, but only the Al 2195 material was subject to localization of attack. The partially melted zones of Al 2195 samples were subject to severe, focused attack. In all cases, interdendritic constituents in welded areas and intergranular constituents in base material were cathodic to the Al rich matrix materials. Fabricability and corrosion resistance were correlated to material microstructure using optical microscopy, scanning electron microscopy, electron probe microanalysis, polarization resistance and environmental scanning electron microscopy.

  13. Composite Matrix Systems for Cryogenic Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — As an alternative material to aluminum-lithium, cryotanks developed from fiber reinforced composites can offer significant weight savings in applications for fuel...

  14. Multicomponent polymeric materials

    CERN Document Server

    Thomas, Sabu; Saha, Prosenjit

    2016-01-01

    The book offers an in-depth review of the materials design and manufacturing processes employed in the development of multi-component or multiphase polymer material systems. This field has seen rapid growth in both academic and industrial research, as multiphase materials are increasingly replacing traditional single-component materials in commercial applications. Many obstacles can be overcome by processing and using multiphase materials in automobile, construction, aerospace, food processing, and other chemical industry applications. The comprehensive description of the processing, characterization, and application of multiphase materials presented in this book offers a world of new ideas and potential technological advantages for academics, researchers, students, and industrial manufacturers from diverse fields including rubber engineering, polymer chemistry, materials processing and chemical science. From the commercial point of view it will be of great value to those involved in processing, optimizing an...

  15. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 14: Engineering work and information use in aerospace: Results of a telephone survey

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; White, Terry F.

    1992-01-01

    A telephone survey of U.S. aerospace engineers and scientists who were on the Society of Automotive Engineers (SAE) mailing list was conducted between August 14-26, 1991. The survey was undertaken to obtain information on the daily work activities of aerospace engineers and scientists, to measure various practices used by aerospace engineers and scientists to obtain STI, and to ask aerospace engineers and scientists about their use of electronic networks. Co-workers were found important sources of information. Co-workers are used to obtain technical information because the information they have is relevant, not because co-workers are accessible. As technical uncertainty increases, so does the need for information internal and external to the organization. Electronic networks enjoy widespread use within the aerospace community. These networks are accessible and they are used to contact people at remote sites. About 80 percent of the respondents used electronic mail, file transfer, and information or data retrieval to commercial or in-house data bases.

  16. Chemical Fingerprinting of Materials Developed Due To Environmental Issues

    Science.gov (United States)

    Smith, Doris A.; McCool, A. (Technical Monitor)

    2000-01-01

    This paper presents viewgraphs on chemical fingerprinting of materials developed due to environmental issues. Some of the topics include: 1) Aerospace Materials; 2) Building Blocks of Capabilities; 3) Spectroscopic Techniques; 4) Chromatographic Techniques; 5) Factors that Determine Fingerprinting Approach; and 6) Fingerprinting: Combination of instrumental analysis methods that diagnostically characterize a material.

  17. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 43: The role of information resource training in aerospace education. Expanded version

    Science.gov (United States)

    Lawrence, Barbara; Pinelli, Thomas E.; Barclay, Rebecca O.; Kennedy, John M.; Holloway, Karen

    1994-01-01

    Information resource instruction for undergraduate aerospace engineering students has traditionally been limited to an occasional part of the education process--a written paper required in the capstone design course or a library tour. Efforts to encourage the use of aerospace literature and information resources have been made in the past decade, with a recent push from information and, especially, networking technology. This paper presents data from a survey of U.S. aerospace engineering students regarding their instruction in the use of information resources. We find that more than 25 percent of the students surveyed had no instruction in technical communications skills or the use of information resources. We consider the need for instruction in the use of information resources and technical communications skills and the opportunities presented for improvement.

  18. Novel Adaptive Fixturing for Thin Walled Aerospace Parts

    International Nuclear Information System (INIS)

    In the aerospace industry the monolithic structures have been introduced to reduce the costs of assembling large numbers of components. The expected benefit of using thin walled monolithic parts is given by a large reduction in the overall manufacturing costs, nevertheless this kind of component encounters a critical phase in fixturing. Fixtures are used to locate and hold workpieces during manufacturing. Because workpiece surface errors and fixture set-up errors (called source errors) always exist, the fixtured workpiece will consequently have position and/or orientation errors (called resultant errors) that will definitely affect the final machining accuracy. Most often the current clamping procedure is not straightforward, it implies several steps and the success of the operation hardly depends by the skill of the human operator. It is estimated that fixturing could constitute 10-20% of the total manufacturing costs, assuming that the fixtures are amortized over relatively small batches. Fixturing devices must satisfy two requisites, which, in some terms, are opposite: - to provide relatively high forces in order to guarantee that the workpiece will be maintained in position under the maximum cutting forces; - to reduce as much as possible strains induced in the workpiece. Limiting the strains induced in the workpiece is crucial because of elastic strain recovery: releasing the clamped workpiece would result in an unwanted final deformation. In this paper a novel adaptive fixturing based on active clamping forces (supplied by piezoelectric actuators) is presented: a real aerospace part case study, - a Nozzle Guide Vane (NGV) -, is introduced, the related problems are identified, and the adopted solutions shown. The proposed adaptive fixturing device can lead to the following advantages: - to perform an automatic errors-free workpiece clamping and then drastically reduce the overall fixturing set up time; - to recover unwanted strains induced to the workpiece, in

  19. Novel Adaptive Fixturing for Thin Walled Aerospace Parts

    Science.gov (United States)

    Merlo, Angelo; Ricciardi, Donato; Salvi, Edoardo; Fantinati, Dario; Iorio, Ernesto

    2011-12-01

    In the aerospace industry the monolithic structures have been introduced to reduce the costs of assembling large numbers of components. The expected benefit of using thin walled monolithic parts is given by a large reduction in the overall manufacturing costs, nevertheless this kind of component encounters a critical phase in fixturing. Fixtures are used to locate and hold workpieces during manufacturing. Because workpiece surface errors and fixture set-up errors (called source errors) always exist, the fixtured workpiece will consequently have position and/or orientation errors (called resultant errors) that will definitely affect the final machining accuracy. Most often the current clamping procedure is not straightforward, it implies several steps and the success of the operation hardly depends by the skill of the human operator. It is estimated that fixturing could constitute 10-20% of the total manufacturing costs, assuming that the fixtures are amortized over relatively small batches. Fixturing devices must satisfy two requisites, which, in some terms, are opposite: to provide relatively high forces in order to guarantee that the workpiece will be maintained in position under the maximum cutting forces to reduce as much as possible strains induced in the workpiece. Limiting the strains induced in the workpiece is crucial because of elastic strain recovery: releasing the clamped workpiece would result in an unwanted final deformation. In this paper a novel adaptive fixturing based on active clamping forces (supplied by piezoelectric actuators) is presented: a real aerospace part case study, - a Nozzle Guide Vane (NGV) -, is introduced, the related problems are identified, and the adopted solutions shown. The proposed adaptive fixturing device can lead to the following advantages: to perform an automatic errors-free workpiece clamping and then drastically reduce the overall fixturing set up time; to recover unwanted strains induced to the workpiece, in order to

  20. Aerospace Medicine and Biology: A Continuing Bibliography with Indexes. SUPPL-507

    Science.gov (United States)

    2000-01-01

    This report lists: reports, articles and other documents recently announced in the NASA STI Database. Contents include the following: Life sciences (general), aerospace medicine, behavioral sciences, man/system technology and life support, and exobioligy.

  1. 76 FR 70040 - Airworthiness Directives; Gulfstream Aerospace LP (Type Certificate Previously Held by Israel...

    Science.gov (United States)

    2011-11-10

    ... Borfitz, Aerospace Engineer, International Branch, ANM-116, Transport Airplane Directorate, FAA, 1601 Lind...) Air Transport Association (ATA) of America Code 27: Flight controls. Reason (e) The mandatory... method approved by the Manager, International Branch, ANM 116, Transport Airplane Directorate, FAA,...

  2. 75 FR 60721 - Aerospace Supplier Development Mission to China; Recruitment Reopened for Additional Applications

    Science.gov (United States)

    2010-10-01

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF COMMERCE International Trade Administration Aerospace Supplier Development Mission to China; Recruitment Reopened for Additional Applications AGENCY: International Trade Administration, Department of Commerce. ACTION:...

  3. Appraisal of New Product Development Success Indicators in the Aerospace Industry

    DEFF Research Database (Denmark)

    Kazerouni, Afrooz Moatari; Achiche, Sofiane; Hisarciklilar, Onur;

    2011-01-01

    Assessing performance in developing new aerospace products is essential. However, choosing an accurate set of success indicators to measure the performance of complex products is a non-trivial task. Moreover, the most useful success indicators can change over the life of the product; therefore......, different metrics need to be used at different phases of the product lifecycle (PLC). This paper describes the research undertaken to determine success measurement metrics for new product development (NPD) processes. The goal of this research was to ascertain an appropriate set of metrics used by aerospace...... studies were carried out for 16 Canadian and Danish companies. Seven companies belong to the aerospace sector, while nine are non-aerospace companies that are in the B2B market. The data was gathered from relevant product managers at participating companies. The outcomes of this research indicate that 1...

  4. Annual activities report of Brazilian Aerospace Technical Center -CTA/IEAv - 1989

    International Nuclear Information System (INIS)

    This document reports the research activities on nuclear physics and reactors physics and engineering in the Brazilian Aerospace Technical Center/Advanced Studies Institute, Sao Paulo State, in the year of 1989

  5. A Diagnostic Approach for Electro-Mechanical Actuators in Aerospace Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Electro-mechanical actuators (EMA) are finding increasing use in aerospace applications, especially with the trend towards all all-electric aircraft and spacecraft...

  6. Hydrophobic Polymers with Adherend Complexing Sidechains as Durable Aerospace Adhesives Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In support of NASA's Aeronautics Research Mission Directorate, NanoSonic would optimize our moisture-resistant aerospace adhesives with in-situ corrosion mitigating...

  7. Three Dimensional Volumetric Terahertz Scanning for Aerospace Non Destructive Evaluation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA and the aerospace industry are beginning to utilize terahertz (THz) reflection imaging (for example, examining the space shuttle external tank sprayed on foam...

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 21: Technological innovation and technical communications: Their place in aerospace engineering curricula. A survey of European, Japanese, and US Aerospace Engineers and Scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Barclay, Rebecca O.; Holland, Maurita Peterson; Keene, Michael L.; Kennedy, John M.

    1991-01-01

    Aerospace engineers and scientists from Western Europe, Japan, and the United States were surveyed as part of the NASA/DoD Aerospace Knowledge Diffusion Research Project. Questionnaires were used to solicit their opinions regarding the following: (1) the importance of technical communications to their profession; (2) the use and production of technical communications; and (3) their views about the appropriate content of an undergraduate course in technical communications. The ability to communicate technical information effectively was very important to the aerospace engineers and scientists who participated in the study. A considerable portion of their working week is devoted to using and producing technical information. The types of technical communications used and produced varied within and among the three groups. The type of technical communication product used and produced appears to be related to respondents' professional duties. Respondents from the three groups made similar recommendations regarding the principles, mechanics, and on-the-job communications to be included in an undergraduate technical communications course for aerospace majors.

  9. An introduction to the European Aerospace Industry. Case company: Forza Global Solutions

    OpenAIRE

    Purhonen, Tapio

    2014-01-01

    Forza Global Solutions is a small, growing business that operates in a niche market and constantly looks for new opportunities. This has lead to a commission for a market analysis on European aerospace industry to find out if the commissioner should consider entering the given market and the topics that require a more detailed attention. The objective was to find characteristics and situation of the aerospace manufacturing industry in Europe. The commissioner is based in Mexico and has it...

  10. Reliability-based framework for fatigue damage prognosis of bonded structural elements in aerospace composite structures

    OpenAIRE

    Gobbato, Maurizio

    2011-01-01

    Fatigue-induced damage is one of the most uncertain and extremely unpredictable failure mechanisms for a large variety of structural systems (e.g., aerospace, automotive, offshore, and civil structures) subjected to stochastic and cyclic loading during service life. Among these systems, composite lightweight aerospace structures -- such as fighter aircrafts and unmanned aerial vehicles (UAVs) -- are particularly sensitive to both fatigue- induced and impact-induced damage. Within this scenari...

  11. Selected aspects of the supply chain management in the aerospace industry

    OpenAIRE

    Ivan KOBLEN; Lucia NIŽNÍKOVÁ

    2013-01-01

    The paper in the introductory part underlines some factors concerning the aerospace supply chain management (SCM) issue. Authors inform on selected definitions in this topic, levels of supply chain and its maturity. The authors are focusing on introducing of the explanation of main specifics of SCM in aerospace industry (original equipment manufacturer, processes and requirements for the suppliers selection) and subsequently inform on the role and mission of selected international organizatio...

  12. Network evolution, success, and regional development in the European aerospace industry

    OpenAIRE

    Guffarth, Daniel; Barber, Michael J.

    2014-01-01

    The success breeds success hypothesis has been mainly applied to theoretical network approaches. We investigate the European aerospace industry using data on the European Framework Programmes and on Airbus suppliers, focusing on the success breeds success hypothesis at four levels of analysis: the spatial structure of the European aerospace R&D collaboration network, its topological architecture, the individual actors that make up the network, and through a comparison of the Airbus invention ...

  13. Collaborative Aerospace Research and Fellowship Program at NASA Glenn Research Center

    Science.gov (United States)

    Heyward, Ann O.; Kankam, Mark D.

    2004-01-01

    During the summer of 2004, a 10-week activity for university faculty entitled the NASA-OAI Collaborative Aerospace Research and Fellowship Program (CFP) was conducted at the NASA Glenn Research Center in collaboration with the Ohio Aerospace Institute (OAI). This is a companion program to the highly successful NASA Faculty Fellowship Program and its predecessor, the NASA-ASEE Summer Faculty Fellowship Program that operated for 38 years at Glenn. The objectives of CFP parallel those of its companion, viz., (1) to further the professional knowledge of qualified engineering and science faculty,(2) to stimulate an exchange of ideas between teaching participants and employees of NASA, (3) to enrich and refresh the research and teaching activities of participants institutions, and (4) to contribute to the research objectives of Glenn. However, CFP, unlike the NASA program, permits faculty to be in residence for more than two summers and does not limit participation to United States citizens. Selected fellows spend 10 weeks at Glenn working on research problems in collaboration with NASA colleagues and participating in related activities of the NASA-ASEE program. This year's program began officially on June 1, 2004 and continued through August 7, 2004. Several fellows had program dates that differed from the official dates because university schedules vary and because some of the summer research projects warranted a time extension beyond the 10 weeks for satisfactory completion of the work. The stipend paid to the fellows was $1200 per week and a relocation allowance of $1000 was paid to those living outside a 50-mile radius of the Center. In post-program surveys from this and previous years, the faculty cited numerous instances where participation in the program has led to new courses, new research projects, new laboratory experiments, and grants from NASA to continue the work initiated during the summer. Many of the fellows mentioned amplifying material, both in

  14. Application of powder metallurgy technique to produce improved bearing elements for cryogenic aerospace engine turbopumps

    Science.gov (United States)

    Moxson, V. S.; Moracz, D. J.; Bhat, B. N.; Dolan, F. J.; Thom, R.

    1987-01-01

    Traditionally, vacuum melted 440C stainless steel is used for high performance bearings for aerospace cryogenic systems where corrosion due to condensation is a major concern. For the Space Shuttle Main Engine (SSME), however, 440C performance in the high-pressure turbopumps has been marginal. A basic assumption of this study was that powder metallurgy, rather than cast/wrought, processing would provide the finest, most homogeneous bearing alloy structure. Preliminary testing of P/M alloys (hardness, corrosion resistance, wear resistance, fatigue resistance, and fracture toughness) was used to 'de-select' alloys which did perform as well as baseline 440C. Five out of eleven candidate materials (14-4/6V, X-405, MRC-2001, T-440V, and D-5) based on preliminary screening were selected for the actual rolling-sliding five-ball testing. The results of this test were compared with high-performance vacuum-melted M50 bearing steel. The results of the testing indicated outstanding performance of two P/M alloys, X-405 and MRC-2001, which eventually will be further evaluated by full-scale bearing testing.

  15. Low-level tritium research facility for the University of Toronto Institute for Aerospace Studies

    International Nuclear Information System (INIS)

    The objective of the Low-level Tritium Research Facility for the University of Toronto Institute for Aerospace Studies (UTIAS) is to investigate tritium-material interactions and how they differ with respect to protium and deuterium. The tritium laboratory will also be employed to study tritium retention, tritium imaging, and the effect of tritium on diagnostic devices. This report is a preliminary design document of the UTIAS Low-Level Tritium Research Facility including the fundamentals of tritium, a description of the facility, tritium laboratory requirements and the safety analysis of the laboratory. The facility is designed to handle a total elemental tritium inventory of 10 Ci, though it will initially commence operation with 1 Ci and later increased to the maximum value. In the event of an instantaneous emission of the total tritium inventory within the laboratory, the working personnel would be exposed to an airborne tritium concentration less than the maximum permissible. Moreover, with all the safety features included in this design the likelihood of such an accident is very remote. Thus, the tritium laboratory design is intrinsically safe

  16. An Application of the Study of Granular Shocks to Aerospace Problems

    Science.gov (United States)

    Padgett, David Alan

    Granular systems are collections of macroscopic particles which interact with each other through contact. Common examples of granular systems are piles of sand, actual grain in silos or other storage facilities, and industrial powders. Researchers display a heavy interest in granular materials because they are ubiquitous in the world, but their states and interactions with other matter are difficult to describe mathematically. One of the many counterintuitive facts about granular systems is that, under certain circumstances, granular systems can behave like fluids and exhibit shock wave behavior. This dissertation details the development of an event-driven simulation to study the behavior of granular systems as well as some observations made by examining different granular systems as they impact wedges and discs. This dissertation also discusses a novel method of exploiting the shock behavior of granular systems in order to investigate problems in aerospace engineering. Typical computational fluid dynamics solvers can be inefficient when dealing with flows which include shock waves. Prior knowledge of the location of shock waves in a flow can help engineers create CFD grids that allow fluid dynamics solvers to converge faster than they otherwise would and still preserve the accuracy of the solution. By investigating an ideal fluid system with an analogous granular system, the locations of the shock waves are observed and efficient grids for solving the Navier- Stokes equations are developed. Through case studies, this dissertation will show that such efficient grids lead to fluid flow solutions which converge in much less time than comparable fine grids.

  17. Novel Diels-Alder based self-healing epoxies for aerospace composites

    Science.gov (United States)

    Coope, T. S.; Turkenburg, D. H.; Fischer, H. R.; Luterbacher, R.; van Bracht, H.; Bond, I. P.

    2016-08-01

    Epoxy resins containing Diels-Alder (DA) furan and maleimide moieties are presented with the capability to self-heal after exposure to an external heat source. A conventional epoxy amine system has been combined with furfuryl and maleimide functional groups in a two-step process, to avoid major side-reactions, and the concentration of a thermo-reversibly binding cross-linker was considered to balance thermoset and thermoplastic behaviours, and the subsequent self-healing performance. In the context of self-repair technologies an inbuilt ‘intrinsic’ self-healing system is deemed favourable as the healing agent can be placed in known ‘hot spot’ regions (i.e. skin-stringer run outs, ply drops and around drilled holes) where operational damage predominately occurs in load bearing aerospace structures. In this study, the mechanical and self-healing performance of furan functionalised epoxy resins containing varying amounts (10, 20, 30 or 40 pph) of bismaleimide were investigated using a bulk epoxy polymer tapered double cantilever beam test specimen geometry. Two forms, a thin film and a bulk material, were evaluated to account for future integration methods into fibre reinforced polymer (FRP) composites. The highest healing efficiency, with respect to the obtained initial load value, was observed from the 20 pph bulk material derivative. The polymers were successful in achieving consistent multiple (three) healing cycles when heated at 150 °C for 5 min. This novel investigated DA material exhibits favourable processing characteristics for FRP composites as preliminary studies have shown successful coextrution with reinforcing fibres to form free standing films and dry fibre impregnation.

  18. Energetic Combustion Devices for Aerospace Propulsion and Power

    Science.gov (United States)

    Litchford, Ron J.

    2000-01-01

    Chemical reactions have long been the mainstay thermal energy source for aerospace propulsion and power. Although it is widely recognized that the intrinsic energy density limitations of chemical bonds place severe constraints on maximum realizable performance, it will likely be several years before systems based on high energy density nuclear fuels can be placed into routine service. In the mean time, efforts to develop high energy density chemicals and advanced combustion devices which can utilize such energetic fuels may yield worthwhile returns in overall system performance and cost. Current efforts in this vein are being carried out at NASA MSFC under the direction of the author in the areas of pulse detonation engine technology development and light metals combustion devices. Pulse detonation engines are touted as a low cost alternative to gas turbine engines and to conventional rocket engines, but actual performance and cost benefits have yet to be convincingly demonstrated. Light metal fueled engines also offer potential benefits in certain niche applications such as aluminum/CO2 fueled engines for endo-atmospheric Martian propulsion. Light metal fueled MHD generators also present promising opportunities with respect to electric power generation for electromagnetic launch assist. This presentation will discuss the applications potential of these concepts with respect to aero ace propulsion and power and will review the current status of the development efforts.

  19. High efficiency pulse tube cryocoolers for aerospace applications

    Science.gov (United States)

    Dang, Haizheng

    2014-01-01

    This paper reviews the recent advances in Stirling-type pulse tube cryocoolers for aerospace applications in the author's group. Due to the special environment featuring the limited power supply and adverse rejection condition, high cooler efficiencies are emphasized and thus the approaches to realize them are stressed. The cold fingers involve three geometries, and designs and optimizations on key dimensional parameters of coaxial and in-line ones for given compressors are discussed and compared. The high performance moving-coil linear compressors are studied, and the optimizations on linear motor and flexure springs are briefly reviewed as examples of studies on the key compressor technologies. The mature single-stage coolers cover 25-200 K with the capacities varying from milliwatt levels to over 30 W, and the high efficiencies at typical temperatures such as 40 K, 60 K, 80 K and 95 K are presented. The two-stage arrangement is becoming another trend to achieve cooling below 25 K and also to simultaneously provide cooling powers at both stages. Some typical development programs are introduced and a brief overview of the data package is updated.

  20. An operating system for future aerospace vehicle computer systems

    Science.gov (United States)

    Foudriat, E. C.; Berman, W. J.; Will, R. W.; Bynum, W. L.

    1984-01-01

    The requirements for future aerospace vehicle computer operating systems are examined in this paper. The computer architecture is assumed to be distributed with a local area network connecting the nodes. Each node is assumed to provide a specific functionality. The network provides for communication so that the overall tasks of the vehicle are accomplished. The O/S structure is based upon the concept of objects. The mechanisms for integrating node unique objects with node common objects in order to implement both the autonomy and the cooperation between nodes is developed. The requirements for time critical performance and reliability and recovery are discussed. Time critical performance impacts all parts of the distributed operating system; e.g., its structure, the functional design of its objects, the language structure, etc. Throughout the paper the tradeoffs - concurrency, language structure, object recovery, binding, file structure, communication protocol, programmer freedom, etc. - are considered to arrive at a feasible, maximum performance design. Reliability of the network system is considered. A parallel multipath bus structure is proposed for the control of delivery time for time critical messages. The architecture also supports immediate recovery for the time critical message system after a communication failure.

  1. Titanium cholla : lightweight, high-strength structures for aerospace applications.

    Energy Technology Data Exchange (ETDEWEB)

    Atwood, Clinton J.; Voth, Thomas Eugene; Taggart, David G. (University of Rhode Island, Kingston, RI); Gill, David Dennis; Robbins, Joshua H.; Dewhurst, Peter (University of Rhode Island, Kingston, RI)

    2007-10-01

    Aerospace designers seek lightweight, high-strength structures to lower launch weight while creating structures that are capable of withstanding launch loadings. Most 'light-weighting' is done through an expensive, time-consuming, iterative method requiring experience and a repeated design/test/redesign sequence until an adequate solution is obtained. Little successful work has been done in the application of generalized 3D optimization due to the difficulty of analytical solutions, the large computational requirements of computerized solutions, and the inability to manufacture many optimized structures with conventional machining processes. The Titanium Cholla LDRD team set out to create generalized 3D optimization routines, a set of analytically optimized 3D structures for testing the solutions, and a method of manufacturing these complex optimized structures. The team developed two new computer optimization solutions: Advanced Topological Optimization (ATO) and FlexFEM, an optimization package utilizing the eXtended Finite Element Method (XFEM) software for stress analysis. The team also developed several new analytically defined classes of optimized structures. Finally, the team developed a 3D capability for the Laser Engineered Net Shaping{trademark} (LENS{reg_sign}) additive manufacturing process including process planning for 3D optimized structures. This report gives individual examples as well as one generalized example showing the optimized solutions and an optimized metal part.

  2. High Resolution Aerospace Applications using the NASA Columbia Supercomputer

    Science.gov (United States)

    Mavriplis, Dimitri J.; Aftosmis, Michael J.; Berger, Marsha

    2005-01-01

    This paper focuses on the parallel performance of two high-performance aerodynamic simulation packages on the newly installed NASA Columbia supercomputer. These packages include both a high-fidelity, unstructured, Reynolds-averaged Navier-Stokes solver, and a fully-automated inviscid flow package for cut-cell Cartesian grids. The complementary combination of these two simulation codes enables high-fidelity characterization of aerospace vehicle design performance over the entire flight envelope through extensive parametric analysis and detailed simulation of critical regions of the flight envelope. Both packages. are industrial-level codes designed for complex geometry and incorpor.ats. CuStomized multigrid solution algorithms. The performance of these codes on Columbia is examined using both MPI and OpenMP and using both the NUMAlink and InfiniBand interconnect fabrics. Numerical results demonstrate good scalability on up to 2016 CPUs using the NUMAIink4 interconnect, with measured computational rates in the vicinity of 3 TFLOP/s, while InfiniBand showed some performance degradation at high CPU counts, particularly with multigrid. Nonetheless, the results are encouraging enough to indicate that larger test cases using combined MPI/OpenMP communication should scale well on even more processors.

  3. Prediction of three sigma maximum dispersed density for aerospace applications

    Science.gov (United States)

    Charles, Terri L.; Nitschke, Michael D.

    1993-01-01

    Free molecular heating (FMH) is caused by the transfer of energy during collisions between the upper atmosphere molecules and a space vehicle. The dispersed free molecular heating on a surface is an important constraint for space vehicle thermal analyses since it can be a significant source of heating. To reduce FMH to a spacecraft, the parking orbit is often designed to a higher altitude at the expense of payload capability. Dispersed FMH is a function of both space vehicle velocity and atmospheric density, however, the space vehicle velocity variations are insignificant when compared to the atmospheric density variations. The density of the upper atmosphere molecules is a function of altitude, but also varies with other environmental factors, such as solar activity, geomagnetic activity, location, and time. A method has been developed to predict three sigma maximum dispersed density for up to 15 years into the future. This method uses a state-of-the-art atmospheric density code, MSIS 86, along with 50 years of solar data, NASA and NOAA solar activity predictions for the next 15 years, and an Aerospace Corporation correlation to account for density code inaccuracies to generate dispersed maximum density ratios denoted as 'K-factors'. The calculated K-factors can be used on a mission unique basis to calculate dispersed density, and hence dispersed free molecular heating rates. These more accurate K-factors can allow lower parking orbit altitudes, resulting in increased payload capability.

  4. Deployable aerospace PV array based on amorphous silicon alloys

    Science.gov (United States)

    Hanak, Joseph J.; Walter, Lee; Dobias, David; Flaisher, Harvey

    1989-01-01

    The development of the first commercial, ultralight, flexible, deployable, PV array for aerospace applications is discussed. It is based on thin-film, amorphous silicon alloy, multijunction, solar cells deposited on a thin metal or polymer by a proprietary, roll-to-roll process. The array generates over 200 W at AM0 and is made of 20 giant cells, each 54 cm x 29 cm (1566 sq cm in area). Each cell is protected with bypass diodes. Fully encapsulated array blanket and the deployment mechanism weigh about 800 and 500 g, respectively. These data yield power per area ratio of over 60 W/sq m specific power of over 250 W/kg (4 kg/kW) for the blanket and 154 W/kg (6.5 kg/kW) for the power system. When stowed, the array is rolled up to a diameter of 7 cm and a length of 1.11 m. It is deployed quickly to its full area of 2.92 m x 1.11 m, for instant power. Potential applications include power for lightweight space vehicles, high altitude balloons, remotely piloted and tethered vehicles. These developments signal the dawning of a new age of lightweight, deployable, low-cost space arrays in the range from tens to tens of thousands of watts for near-term applications and the feasibility of multi-100 kW to MW arrays for future needs.

  5. A Methodology for Engineering Competencies Definition in the Aerospace Industry

    Directory of Open Access Journals (Sweden)

    Laura Fortunato

    2011-10-01

    Full Text Available The need to cut off lead times, to increase the products innovation, to respond to changing customer requirements and to integrate new technologies into business process pushes companies to increase the collaboration. In particular, collaboration, knowledge sharing and information exchange in the Aerospace Value Network, need to a clear definition and identification of competencies of several actors. Main contractors, stakeholders, customers, suppliers, partners, have different expertise and backgrounds and in this collaborative working environment are called to work together in projects, programs and process. To improve collaboration and support the knowledge sharing, a competencies definition methodology and the related dictionary result useful tools among actors within an extended supply chain. They can use the same terminology and be informed on the competencies available. It becomes easy to specify who knows to do required activities stimulating collaboration and improving communication. Based on an action research developed in the context of the iDesign Foundation project, the paper outlines a competency definition methodology and it presents examples from the implementation in Alenia Aeronautica company. A new definition of competency is suggested supporting by a new method to specify the structural relationship between competencies and activities of aeronautical processes.

  6. Fractographic analysis of tensile failures of aerospace grade composites

    Directory of Open Access Journals (Sweden)

    Masa Suresh Kumar

    2012-12-01

    Full Text Available This paper describes fractographic features observed in aerospace composites failed under tensile loads. Unidirectional Carbon Fibre Reinforced Plastic (UD CFRP and Unidirectional Glass Fibre Reinforced Plastic (UD GFRP composite specimens were fabricated and tested in tension. The morphology of fractured surfaces was studied at various locations to identify failure mechanism and characteristic fractographic features. CFRP composites displayed transverse crack propagation and the fracture surface showed three distinct regions, viz., crack origin, propagation and final failure. Significant variations in the fractographic features were noticed in crack propagation and final failure regions. Crack propagation region exhibited brittle fracture with chevron lines emanating from the crack origin. The entire crack propagation region exhibited radial marks on the individual fibre broken ends. On the other hand, the final fracture region revealed longitudinal matrix splitting and radial marks in majority of locations, and chop marks at some locations. The change in fracture mode in the final fracture was attributed to superimposition of bending loads. GFRP composites exhibited broom like fracture with extensive longitudinal splitting with radial marks present on individual fibre broken ends. Transverse fracture was observed at a few locations. These fracture features were analyzed and correlated with the loading conditions.

  7. Bigelow aerospace colonizing space one module at a time

    CERN Document Server

    Seedhouse, Erik

    2015-01-01

    Here for the first time you can read: how a space technology start-up is pioneering work on expandable space station modules how Robert Bigelow licensed the TransHab idea from NASA, and how his company developed the technology for more than a decade how, very soon, a Bigelow expandable module will be docked with the International Space Station. At the core of Bigelow's plan is the inflatable module technology. Tougher and more durable than their rigid counterparts, these inflatable modules are perfectly suited for use in the space, where Bigelow plans to link them together to form commercial space stations. This book describes how this new breed of space stations will be built and how the link between Bigelow Aerospace, NASA and private companies can lead to a new economy—a space economy. Finally, the book touches on Bigelow's aspirations beyond low Earth orbit, plans that include the landing of a base on the lunar surface and the prospect of missions to Mars.

  8. Post-optimality analysis in aerospace vehicle design

    Science.gov (United States)

    Braun, Robert D.; Kroo, Ilan M.; Gage, Peter J.

    1993-01-01

    This analysis pertains to the applicability of optimal sensitivity information to aerospace vehicle design. The present analysis demonstrates that post-optimality information generated through first-order computations can be used to accurately predict file effect of constraint and parameter perturbations on the optimal solution. This assessment is based on the solution of an aircraft design problem in which the post-optimality estimates are shown to be within a few percent of the true solution over the practical range of constraint and parameter variations. Through solution of a reusable, single-stage-to-orbit, launch vehicle design problem, this optimal sensitivity information is also shown to improve the efficiency of the design process. For a hierarchically decomposed problem, this computational efficiency is realizable by estimating the main-problem objective gradient through optimal sensitivity calculations. By reducing the need for finite differentiation of a re-optimized subproblem, a significant decrease in the number of objective function evaluations required to reach the optimal solution is obtained.

  9. A Systems Engineering Approach to Quality Assurance for Aerospace Testing

    Science.gov (United States)

    Shepherd, Christena C.

    2015-01-01

    On the surface, it appears that AS91001 has little to say about how to apply a Quality Management System (QMS) to major aerospace test programs (or even smaller ones). It also appears that there is little in the quality engineering Body of Knowledge (BOK)2 that applies to testing, unless it is nondestructive examination (NDE), or some type of lab or bench testing associated with the manufacturing process. However, if one examines: a) how the systems engineering (SE) processes are implemented throughout a test program; and b) how these SE processes can be mapped to the requirements of AS9100, a number of areas for involvement of the quality professional are revealed. What often happens is that quality assurance during a test program is limited to inspections of the test article; what could be considered a manufacturing al fresco approach. This limits the quality professional and is a disservice to the programs and projects, since there are a number of ways that quality can enhance critical processes, and support efforts to improve risk reduction, efficiency and effectiveness.

  10. Review of aerospace engineering cost modelling: The genetic causal approach

    Science.gov (United States)

    Curran, R.; Raghunathan, S.; Price, M.

    2004-11-01

    The primary intention of this paper is to review the current state of the art in engineering cost modelling as applied to aerospace. This is a topic of current interest and in addressing the literature, the presented work also sets out some of the recognised definitions of cost that relate to the engineering domain. The paper does not attempt to address the higher-level financial sector but rather focuses on the costing issues directly relevant to the engineering process, primarily those of design and manufacture. This is of more contemporary interest as there is now a shift towards the analysis of the influence of cost, as defined in more engineering related terms; in an attempt to link into integrated product and process development (IPPD) within a concurrent engineering environment. Consequently, the cost definitions are reviewed in the context of the nature of cost as applicable to the engineering process stages: from bidding through to design, to manufacture, to procurement and ultimately, to operation. The linkage and integration of design and manufacture is addressed in some detail. This leads naturally to the concept of engineers influencing and controlling cost within their own domain rather than trusting this to financers who have little control over the cause of cost. In terms of influence, the engineer creates the potential for cost and in a concurrent environment this requires models that integrate cost into the decision making process.

  11. History of SAR at Lockheed Martin (previously Goodyear Aerospace)

    Science.gov (United States)

    Lasswell, Stephen W.

    2005-05-01

    Synthetic Aperture Radar (SAR) was invented by Carl Wiley at Goodyear Aircraft Company in Goodyear, Arizona, in 1951. From that time forward, as the company became Goodyear Aerospace Corporation, Loral Corporation, and finally Lockheed Martin Corporation, the Arizona employees past and present played a long and storied role in numerous SAR firsts. These include the original SAR patent (known as Simultaneous Doppler Buildup), the first demonstration SAR and flight test, the first operational SAR system, the first operational SAR data link, the first 5-foot resolution operational SAR system, the first 1-foot resolution SAR system, and the first large scale SAR digital processor. The company has installed and flown over five hundred SAR systems on more than thirty different types of aircraft for numerous countries throughout the world. The company designed and produced all of the evolving high performance SAR systems for the U. S. Air Force SR-71 "Blackbird" spy plane throughout its entire operational history, spanning some twenty-nine years. Recent SAR accomplishments include long-range standoff high performance SAR systems, smaller high resolution podded SAR systems for fighter aircraft, and foliage penetration (FOPEN) SAR. The company is currently developing the high performance SAR/MTI (Moving Target Indication) radar for the Army Aerial Common Sensor (ACS) system.

  12. Total quality management: It works for aerospace information services

    Science.gov (United States)

    Erwin, James; Eberline, Carl; Colquitt, Wanda

    1993-01-01

    Today we are in the midst of information and 'total quality' revolutions. At the NASA STI Program's Center for AeroSpace Information (CASI), we are focused on using continuous improvements techniques to enrich today's services and products and to ensure that tomorrow's technology supports the TQM-based improvement of future STI program products and services. The Continuous Improvements Program at CASI is the foundation for Total Quality Management in products and services. The focus is customer-driven; its goal, to identify processes and procedures that can be improved and new technologies that can be integrated with the processes to gain efficiencies, provide effectiveness, and promote customer satisfaction. This Program seeks to establish quality through an iterative defect prevention approach that is based on the incorporation of standards and measurements into the processing cycle. Four projects are described that utilize cross-functional, problem-solving teams for identifying requirements and defining tasks and task standards, management participation, attention to critical processes, and measurable long-term goals. The implementation of these projects provides the customer with measurably improved access to information that is provided through several channels: the NASA STI Database, document requests for microfiche and hardcopy, and the Centralized Help Desk.

  13. Friction Stir Welding of Metal Matrix Composites for use in aerospace structures

    Science.gov (United States)

    Prater, Tracie

    2014-01-01

    Friction Stir Welding (FSW) is a relatively nascent solid state joining technique developed at The Welding Institute (TWI) in 1991. The process was first used at NASA to weld the super lightweight external tank for the Space Shuttle. Today FSW is used to join structural components of the Delta IV, Atlas V, and Falcon IX rockets as well as the Orion Crew Exploration Vehicle. A current focus of FSW research is to extend the process to new materials which are difficult to weld using conventional fusion techniques. Metal Matrix Composites (MMCs) consist of a metal alloy reinforced with ceramics and have a very high strength to weight ratio, a property which makes them attractive for use in aerospace and defense applications. MMCs have found use in the space shuttle orbiter's structural tubing, the Hubble Space Telescope's antenna mast, control surfaces and propulsion systems for aircraft, and tank armors. The size of MMC components is severely limited by difficulties encountered in joining these materials using fusion welding. Melting of the material results in formation of an undesirable phase (formed when molten Aluminum reacts with the reinforcement) which leaves a strength depleted region along the joint line. Since FSW occurs below the melting point of the workpiece material, this deleterious phase is absent in FSW-ed MMC joints. FSW of MMCs is, however, plagued by rapid wear of the welding tool, a consequence of the large discrepancy in hardness between the steel tool and the reinforcement material. This work characterizes the effect of process parameters (spindle speed, traverse rate, and length of joint) on the wear process. Based on the results of these experiments, a phenomenological model of the wear process was constructed based on the rotating plug model for FSW. The effectiveness of harder tool materials (such as Tungsten Carbide, high speed steel, and tools with diamond coatings) to combat abrasive wear is explored. In-process force, torque, and

  14. [Pretreatment of Aluminum-Lithium Alloy Sample and Determination of Argentum and Lithium by Spectral Analysis].

    Science.gov (United States)

    Zhou, Hui; Tan, Qian; Gao, Ya-ling; Sang, Shi-hua; Chen, Wen

    2015-10-01

    Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), Flame Atomic Absorption Spectrometry (FAAS) and Visible Spectrometry (VS) was applied for determination of Ag and Li in lithium-aluminium alloy standard sample and test sample, their respective advantages and disadvantages were compared, the excellent selectivity of ICP-OES was confirmed by analyses of certified standard sample. Three different sample digestion methods were compared and discussed in this study. It was found that the better accuracy would be obtained by digesting sample with chloroazotic acid while the content of Li was measured by FAAS, and it was better to digest sample with hydrochloric acid and hydrogen peroxide while determining Ag and Li by ICP-OES simultaneously and determining Ag by FAAS and VS. The interference of co-existing elements and elimination methods was detailedly discussed. Ammonium hydroxide was added to adjust the sample solution into alkalescent and Al, Ti, Zr was precipitated by forming hydroxide precipitation, Mg and Cu was formed complex precipitation with 8-hydroxyquinoline in this condition, then the interference from matrix element to determinate Ag by FAAS was eliminated. In addition, phosphate was used to precipitate Ti to eliminate its interference for determination of Li by FAAS. The same treatment of determination for Ag by FAAS was used to eliminate the interference of matrix element for determination of Ag by VS, the excess of nitrate was added into sample and heated to release Ag+ from silver chloride complex, and the color of 8-hydroxyquinoline was eliminated because of decomposed by heating. The accuracy of analysis result for standard sample was conspicuously improved which confirms the efficient of the method to eliminate interference in this study. The optimal digestion method and eliminate interference method was applied to lithium-aluminium alloy samples. The recovery of samples was from 100.39% to 103.01% by ICP-OES determination for Ag, and from 100.42% to 103.01% by ICP-OES determination for Li. The recovery ranged from 95.91% to 99.98% by FAAS determination for Ag, and ranged from 98.04% to 99.98% for FAAS determination of Li. The recovery was from 98.00% to 101.00 by VS determination for Ag, the analysis results all meet the analysis requirement. PMID:26904838

  15. Resilient and Corrosion-Proof Rolling Element Bearings Made from Superelastic Ni-Ti Alloys for Aerospace

    Science.gov (United States)

    Dellacorte, Christopher

    2014-01-01

    Mechanical components (bearings, gears, mechanisms) typically utilize hardened construction materials to minimize wear and attain long life. In such components, loaded contact points (e.g., meshing gear teeth, bearing balls-raceway contacts) experience high contact stresses. The combination of high hardness and high elastic modulus often leads to damaging contact stress and denting, particularly during transient overload events such as shock impacts that occur during the launching of space vehicles or the landing of aircraft. In this webinar, Dr. DellaCorte will introduce the results of a research project that employs a superelastic alloy, Ni-Ti for rolling element bearing applications. Bearings and components made from such alloys can alleviate many problems encountered in advanced aerospace applications and may solve many terrestrial applications as well

  16. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 40: Technical communications in aerospace education: A study of AIAA student members

    Science.gov (United States)

    Kennedy, John M.; Pinelli, Thomas E.; Barclay, Rebecca O.

    1994-01-01

    This paper describes the preliminary analysis of a survey of the American Institute of Aeronautics and Astronautics (AIAA) student members. In the paper we examine (1) the demographic characteristics of the students, (2) factors that affected their career decisions, (3) their career goals and aspirations, and (4) their training in technical communication and techniques for finding and using aerospace scientific and technical information (STI). We determine that aerospace engineering students receive training in technical communication skills and the use of STI. While those in the aerospace industry think that more training is needed, we believe the students receive the appropriate amount of training. We think that the differences between the amount of training students receive and the perception of training needs is related partially to the characteristics of the students and partially to the structure of the aerospace STI dissemination system. Overall, we conclude that the students' technical communication training and knowledge of STI, while limited by external forces, makes it difficult for students to achieve their career goals.

  17. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 52: A comparison of the technical communications practices of Japanese and US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Holloway, Karen; Sato, Yuko; Barclay, Rebecca O.; Kennedy, John M.

    1995-01-01

    To understand the diffusion of aerospace knowledge, it is necessary to understand the communications practices and the information-seeking behaviors of those involved in the production, transfer, and use of aerospace knowledge at the individual, organizational, national, and international levels. In this paper, we report selected results from a survey of Japanese and U.S. aerospace engineers and scientists that focused on communications practices and information-seeking behaviors in the workplace. Data are presented for the following topics: importance of and time spent communicating information, collaborative writing, need for an undergraduate course in technical communications, use of libraries, the use and importance of electronic (computer) networks, and the use and importance of foreign and domestically produced technical reports. The responses of the survey respondents are placed within the context of the Japanese culture. We assume that differences in Japanese and U.S. cultures influence the communications practices and information-seeking behaviors of Japanese and U.S. aerospace engineers and scientists.

  18. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 36: Technical uncertainty as a correlate of information use by US industry-affiliated aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Glassman, Nanci A.; Affelder, Linda O.; Hecht, Laura M.; Kennedy, John M.; Barclay, Rebecca O.

    1994-01-01

    This paper reports the results of an exploratory study that investigated the influence of technical uncertainty on the use of information and information sources by U.S. industry-affiliated aerospace engineers and scientists in completing or solving a project, task, or problem. Data were collected through a self-administered questionnaire. Survey participants were U.S. aerospace engineers and scientists whose names appeared on the Society of Automotive Engineers (SAE) mailing list. The results support the findings of previous research and the following study assumptions. Information and information-source use differ for projects, problems, and tasks with high and low technical uncertainty. As technical uncertainty increases, information-source use changes from internal to external and from informal to formal sources. As technical uncertainty increases, so too does the use of federally funded aerospace research and development (R&D). The use of formal information sources to learn about federally funded aerospace R&D differs for projects, problems, and tasks with high and low technical uncertainty.

  19. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 66: Emerging Trends in the Globalization of Knowledge: The Role of the Technical Report in Aerospace Research and Development

    Science.gov (United States)

    Pinelli,Thomas E.; Golich, Vicki L.

    1997-01-01

    Economists, management theorists, business strategists, and governments alike recognize knowledge as the single most important resource in today's global economy. Because of its relationship to technological progress and economic growth, many governments have taken a keen interest in knowledge; specifically its production, transfer, and use. This paper focuses on the technical report as a product for disseminating the results of aerospace research and development (R&D) and its use and importance to aerospace engineers and scientists. The emergence of knowledge as an intellectual asset, its relationship to innovation, and its importance in a global economy provides the context for the paper. The relationships between government and knowledge and government and innovation are used to place knowledge within the context of publicly-funded R&D. Data, including the reader preferences of NASA technical reports, are derived from the NASA/DoD Aerospace Knowledge Diffusion Research Project, a ten-year study of knowledge diffusion in the U.S. aerospace industry.

  20. Energy Harvesting for Aerospace Structural Health Monitoring Systems

    Science.gov (United States)

    Pearson, M. R.; Eaton, M. J.; Pullin, R.; Featherston, C. A.; Holford, K. M.

    2012-08-01

    Recent research into damage detection methodologies, embedded sensors, wireless data transmission and energy harvesting in aerospace environments has meant that autonomous structural health monitoring (SHM) systems are becoming a real possibility. The most promising system would utilise wireless sensor nodes that are able to make decisions on damage and communicate this wirelessly to a central base station. Although such a system shows great potential and both passive and active monitoring techniques exist for detecting damage in structures, powering such wireless sensors nodes poses a problem. Two such energy sources that could be harvested in abundance on an aircraft are vibration and thermal gradients. Piezoelectric transducers mounted to the surface of a structure can be utilised to generate power from a dynamic strain whilst thermoelectric generators (TEG) can be used to generate power from thermal gradients. This paper reports on the viability of these two energy sources for powering a wireless SHM system from vibrations ranging from 20 to 400Hz and thermal gradients up to 50°C. Investigations showed that using a single vibrational energy harvester raw power levels of up to 1mW could be generated. Further numerical modelling demonstrated that by optimising the position and orientation of the vibrational harvester greater levels of power could be achieved. However using commercial TEGs average power levels over a flight period between 5 to 30mW could be generated. Both of these energy harvesting techniques show a great potential in powering current wireless SHM systems where depending on the complexity the power requirements range from 1 to 180mW.

  1. Electronic Components for use in Extreme Temperature Aerospace Applications

    Science.gov (United States)

    Patterson, Richard L.; Hammoud, Ahmad; Elbuluk, Malik

    2008-01-01

    Electrical power management and control systems designed for use in planetary exploration missions and deep space probes require electronics that are capable of efficient and reliable operation under extreme temperature conditions. Space-based infra-red satellites, all-electric ships, jet engines, electromagnetic launchers, magnetic levitation transport systems, and power facilities are also typical examples where the electronics are expected to be exposed to harsh temperatures and to operate under severe thermal swings. Most commercial-off-the-shelf (COTS) devices are not designed to function under such extreme conditions and, therefore, new parts must be developed or the conventional devices need to be modified. For example, spacecraft operating in the cold environment of deep space carry a large number of radioisotope heating units in order to maintain the surrounding temperature of the on-board electronics at approximately 20 C. At the other end, built-in radiators and coolers render the operation of electronics possible under hot conditions. These thermal measures lead to design complexity, affect development costs, and increase size and weight. Electronics capable of operation at extreme temperatures, thus, will not only tolerate the hostile operational environment, but also make the overall system efficient, more reliable, and less expensive. The Extreme Temperature Electronics Program at the NASA Glenn Research Center focuses on research and development of electronics suitable for applications in the aerospace environment and deep space exploration missions. Research is being conducted on devices, including COTS parts, for potential use under extreme temperatures. These components include semiconductor switching devices, passive devices, DC/DC converters, operational amplifiers, and oscillators. An overview of the program will be presented along with some experimental findings.

  2. Energy Harvesting for Aerospace Structural Health Monitoring Systems

    International Nuclear Information System (INIS)

    Recent research into damage detection methodologies, embedded sensors, wireless data transmission and energy harvesting in aerospace environments has meant that autonomous structural health monitoring (SHM) systems are becoming a real possibility. The most promising system would utilise wireless sensor nodes that are able to make decisions on damage and communicate this wirelessly to a central base station. Although such a system shows great potential and both passive and active monitoring techniques exist for detecting damage in structures, powering such wireless sensors nodes poses a problem. Two such energy sources that could be harvested in abundance on an aircraft are vibration and thermal gradients. Piezoelectric transducers mounted to the surface of a structure can be utilised to generate power from a dynamic strain whilst thermoelectric generators (TEG) can be used to generate power from thermal gradients. This paper reports on the viability of these two energy sources for powering a wireless SHM system from vibrations ranging from 20 to 400Hz and thermal gradients up to 50°C. Investigations showed that using a single vibrational energy harvester raw power levels of up to 1mW could be generated. Further numerical modelling demonstrated that by optimising the position and orientation of the vibrational harvester greater levels of power could be achieved. However using commercial TEGs average power levels over a flight period between 5 to 30mW could be generated. Both of these energy harvesting techniques show a great potential in powering current wireless SHM systems where depending on the complexity the power requirements range from 1 to 180mW.

  3. Aerospace Power Systems Design and Analysis (APSDA) Tool

    Science.gov (United States)

    Truong, Long V.

    1998-01-01

    The conceptual design of space and/or planetary electrical power systems has required considerable effort. Traditionally, in the early stages of the design cycle (conceptual design), the researchers have had to thoroughly study and analyze tradeoffs between system components, hardware architectures, and operating parameters (such as frequencies) to optimize system mass, efficiency, reliability, and cost. This process could take anywhere from several months to several years (as for the former Space Station Freedom), depending on the scale of the system. Although there are many sophisticated commercial software design tools for personal computers (PC's), none of them can support or provide total system design. To meet this need, researchers at the NASA Lewis Research Center cooperated with Professor George Kusic from the University of Pittsburgh to develop a new tool to help project managers and design engineers choose the best system parameters as quickly as possible in the early design stages (in days instead of months). It is called the Aerospace Power Systems Design and Analysis (APSDA) Tool. By using this tool, users can obtain desirable system design and operating parameters such as system weight, electrical distribution efficiency, bus power, and electrical load schedule. With APSDA, a large-scale specific power system was designed in a matter of days. It is an excellent tool to help designers make tradeoffs between system components, hardware architectures, and operation parameters in the early stages of the design cycle. user interface. It operates on any PC running the MS-DOS (Microsoft Corp.) operating system, version 5.0 or later. A color monitor (EGA or VGA) and two-button mouse are required. The APSDA tool was presented at the 30th Intersociety Energy Conversion Engineering Conference (IECEC) and is being beta tested at several NASA centers. Beta test packages are available for evaluation by contacting the author.

  4. NASA/DOD Aerospace Knowledge Diffusion Research Project. Report 13: Source selection and information use by US aerospace engineers and scientists: Results of a telephone survey

    Science.gov (United States)

    Pinelli, Thomas E.; Glassman, Nanci A.

    1992-01-01

    A telephone survey of U.S. aerospace engineers and scientists belonging to the Society of Automotive Engineers (SAE) was conducted between December 4, 1991 and January 5, 1992. The survey was undertaken to (1) validate the telephone survey as an appropriate technique for collecting data from U.S. aerospace engineers and scientists; (2) collect information about how the results of NASA/DoD aerospace research are used in the R&D process; (3) identify those selection criteria which affect the use of federally-funded aerospace R&D; and (4) obtain information that could be used to develop a self-administered mail questionnaire for use with the same population. The average rating of importance of U.S. government technical reports was 2.5 (on a 4-point scale); The mean/median number of times U.S. government technical reports were used per 6 months was 8/2. Factors scoring highest for U.S. government technical reports were technical accuracy (2.9), reliable data and technical information (2.8), and contains comprehensive data and information (2.7) on a 4-point system. The factors scoring highest for influencing the use of U.S. government technical reports were relevance (3.1), technical accuracy (3.06), and reliable data/information (3.02). Ease of use, familiarity, technical accuracy, and relevance correlated with use of U.S. government technical reports. Survey demographics, survey questionnaire, and the NASA/DoD Aerospace Knowledge Diffusion Research Project publications list are included.

  5. The U.S. Government Technical Report and Aerospace Knowledge Diffusion : Results of an On-Going Investigation

    OpenAIRE

    Pinelli, Thomas E. (NASA Langley Research Center); Khan, A R; Barclay, R.O. (Rensselaer Polytechnic Institute); Kennedy, J.M. (Indiana University); GreyNet, Grey Literature Network Service

    1994-01-01

    This paper contains descriptive and analytical data concerning the U.S. government technical report. These data were collected as part of an on-going investigation directed toward understanding the transfer of federally funded aerospace research and development (R&D). The paper summarizes current literature and research, discusses U.S. government technical report use, and presents data obtained from the Aerospace Knowledge Diffusion Research Project. U.A. aerospace engineers and scientists us...

  6. Ultrasonic testing of complex materials, components and joints. Seminar

    International Nuclear Information System (INIS)

    This seminar proceedings contains 17 contributions on the topic ultrasonic testing of complex materials and material combinations that are increasingly being used in lightweight components in the application fields of aerospace, automotive sector and renewable energies. These demand increased requirement profile to already established NDT methods, which are discussed in this seminar.

  7. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 12: The diffusion of federally funded aerospace Research and Development (R&D) and the information seeking behavior of US aerospace engineers and scientists

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.; Barclay, Rebecca O.

    1991-01-01

    The present exploration of the diffusion of federally-funded R&D via the information-seeking behavior of scientists and engineers proceeds under three assumptions: (1) that knowledge transfer and utilization is as important as knowledge production; (2) that the diffusion of knowledge obtained through federally-funded R&D is necessary for the maintenance of U.S. preeminence in the aerospace field; and (3) that federally-funded NASA and DoD technical reports play an important, albeit as-yet undefined, role in aerospace R&D diffusion. A conceptual model is presented for the process of knowledge diffusion that stresses the role of U.S. government-funded technical reports.

  8. NASA/DOD Aerospace Knowledge Diffusion Research Project. Paper 5: Aerospace librarians and technical information specialists as information intermediaries: A report of phase 2 activities of the NASA/DOD Aerospace Knowledge Diffusion Research Project

    Science.gov (United States)

    Pinelli, Thomas E.; Kennedy, John M.

    1990-01-01

    The flow of U.S. government-funded and foreign scientific and technical information (STI) through libraries and related facilities to users in government and industry is examined, summarizing preliminary results of Phase 2 of the NASA/DOD Aerospace Knowledge Diffusion Research Project (NAKDRP). The design and objectives of NAKDRP are reviewed; the NAKDRP model of STI transfer among producers, STI intermediaries, surrogates (technical report repositories or clearinghouses), and users is explained and illustrated with diagrams; and particular attention is given to the organization and operation of aerospace libraries. In a survey of North American libraries it was found that 25-30 percent of libraries regularly receive technical reports from ESA and the UK; the corresponding figures for Germany and for France, Sweden, and Japan are 18 and 5 percent, respectively. Also included is a series of bar graphs showing the librarians' assessments of the quality and use of NASA Technical Reports.

  9. Standard Test Method for Shear Strength of Fusion Bonded Polycarbonate Aerospace Glazing Material

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    1995-01-01

    1.1 This test method determines the shear yield strength Fsy and shear ultimate strength Fsu of fusion bonds in polycarbonate by applying torsional shear loads to the fusion-bond line. This standard does not purport to address all of the safety concerns, if any, associated with its use. It is the responsibility of the user of this standard to establish appropriate safety and health practices and determine the applicability of regulatory limitations prior to use.

  10. Development of temperature statistical model when machining of aerospace alloy materials

    Directory of Open Access Journals (Sweden)

    Kadirgama Kumaran

    2014-01-01

    Full Text Available This paper presents to develop first-order models for predicting the cutting temperature for end-milling operation of Hastelloy C-22HS by using four different coated carbide cutting tools and two different cutting environments. The first-order equations of cutting temperature are developed using the response surface methodology (RSM. The cutting variables are cutting speed, feed rate, and axial depth. The analyses are carried out with the aid of the statistical software package. It can be seen that the model is suitable to predict the longitudinal component of the cutting temperature close to those readings recorded experimentally with a 95% confident level. The results obtained from the predictive models are also compared with results obtained from finite-element analysis (FEA. The developed first-order equations for the cutting temperature revealed that the feed rate is the most crucial factor, followed by axial depth and cutting speed. The PVD coated cutting tools perform better than the CVD-coated cutting tools in terms of cutting temperature. The cutting tools coated with TiAlN perform better compared with other cutting tools during the machining performance of Hastelloy C-22HS. It followed by TiN/TiCN/TiN and CVD coated with TiN/TiCN/Al2O3 and TiN/TiCN/TiN. From the finite-element analysis, the distribution of the cutting temperature can be discussed. High temperature appears in the lower sliding friction zone and at the cutting tip of the cutting tool. Maximum temperature is developed at the rake face some distance away from the tool nose, however, before the chip lift away.

  11. MoS2-Filled PEEK Composite as a Self-Lubricating Material for Aerospace Applications

    Science.gov (United States)

    Theiler, Geraldine; Gradt, Thomas

    2010-01-01

    At BAM, several projects were conducted in the past years dealing with the tribological properties of friction couples at cryogenic temperature and in vacuum environment. Promising candidates for vacuum application are MoS2-filled PEEK/PTFE composites, which showed a friction coefficient as low as 0.03 in high vacuum. To complete the tribological profile of these composites, further tests were performed in ultra-high vacuum (UHV) at room temperature. In this paper, friction and stick slip behavior, as well as outgassing characteristics during the test are presented.

  12. Experimental Evaluation of Fatigue Crack Initiation from Corroded Hemispherical Notches in Aerospace Structural Materials

    Science.gov (United States)

    Garcia, Daniel B.; Forman, Royce; Shindo, David

    2010-01-01

    A test program was developed and executed to evaluate the influence of corroded hemispherical notches on the fatigue crack initiation and propagation in aluminum 7075-T7351, 4340 steel, and D6AC steel. Surface enhancements such as shot peening and laser shock peening were also incorporated as part of the test effort with the intent of improving fatigue performance. In addition to the testing, fracture mechanics and endurance limit based analysis methods were evaluated to characterize the results with the objective of challenging typical assumptions used in modeling fatigue cracks from corrosion pits. The results specifically demonstrate that the aluminum and steel alloys behave differently with respect to fatigue crack initiation from hemispherical corrosion pits. The aluminum test results were bounded by the fracture mechanics and endurance limit models while exhibiting a general insensitivity to the residual stress field generated by shot peening. The steel specimens were better characterized by the endurance limit fatigue properties and did exhibit sensitivities to residual stresses from the shot peening and laser shock peening

  13. Multilevel optimisation of aerospace and lightweight structures incorporating postbuckling effects

    Science.gov (United States)

    Qu, Shuang

    The optimisation of aerospace structures is a very complex problem, due to the hundreds of design variables a multidisciplinary optimisation may contain, so that multilevel optimisation is required. This thesis presents the recent developments to the multilevel optimisation software VICONOPT MLO, which is a multilevel optimisation interface between the well established analysis and design software packages VICONOPT and MSC/NASTRAN. The software developed is called VICONOPT MLOP (Multilevel Optimisation with Postbuckling), and allows for postbuckling behaviour, using analysis based on the Wittrick-Williams algorithm. The objective of this research is to enable a more detailed insight into the multilevel optimisation and postbuckling behaviour of a complex structure. In VICONOPT MLOP optimisation problems, individual panels of the structural model are allowed to buckle before the design load is reached. These panels continue to carry load with differing levels of reduced stiffness. VICONOPT MLOP creates new MSC/NASTRAN data files based on this reduced stiffness data and iterates through analysis cycles to converge on an appropriate load re-distribution. Once load convergence has been obtained with an appropriate criterion, the converged load distribution is used as a starting point in the optimisation of the constituent panels, i.e. a new design cycle is started, in which the updated ply thicknesses for each panel are calculated by VICONOPT and returned to MSC/NASTRAN through VICONOPT MLOP. Further finite element analysis of the whole structure is then carried out to determine the new stress distributions in each panel. The whole process is repeated until a mass convergence criterion is met. A detailed overview of the functionality of VICONOPT MLOP is presented in the thesis. A case study is conducted into the multilevel optimisation of a composite aircraft wing, to demonstrate the capabilities of VICONOPT MLOP and identify areas for future studies. The results of

  14. Screening EEG in Aircrew Selection: Clinical Aerospace Neurology Perspective

    Science.gov (United States)

    Clark, Jonathan B.; Riley, Terrence

    2001-01-01

    As clinical aerospace neurologists we do not favor using screening EEG in pilot selection on unselected and otherwise asymptomatic individuals. The role of EEG in aviation screening should be as an adjunct to diagnosis, and the decision to disqualify a pilot should never be based solely on the EEG. Although a policy of using a screening EEG in an unselected population might detect an individual with a potentially increased relative risk, it would needlessly exclude many applicants who would probably never have a seizure. A diagnostic test performed on an asymptomatic individual without clinical indications, in a population with a low prevalence of disease (seizure) may be of limited or possibly detrimental value. We feel that rather than do EEGs on all candidates, a better approach would be to perform an EEG for a specific indication, such as family history of seizure, single convulsion (seizure) , history of unexplained loss of consciousness or head injury. Routine screening EEGs in unselected aviation applications are not done without clinical indication in the U.S. Air Force, Navy, or NASA. The USAF discontinued routine screening EEGs for selection in 1978, the U.S. Navy discontinued it in 1981 , and NASA discontinued it in 1995. EEG as an aeromedical screening tool in the US Navy dates back to 1939. The US Navy routinely used EEGs to screen all aeromedical personnel from 1961 to 1981. The incidence of epileptiform activity on EEG in asymptomatic flight candidates ranges from 0.11 to 2.5%. In 3 studies of asymptomatic flight candidates with epileptiform activity on EEG followed for 2 to 15 years, 1 of 31 (3.2%), 1 of 30 (3.3%), and 0 of 14 (0%) developed a seizure, for a cumulative risk of an individual with an epileptiform EEG developing a seizure of 2.67% (2 in 75). Of 28,658 student naval aviation personnel screened 31 had spikes and/or slow waves on EEG, and only 1 later developed a seizure. Of the 28,627 who had a normal EEG, 4 later developed seizures, or

  15. The study and design of a national supply chain for the aerospace titanium components manufacturing industry

    Directory of Open Access Journals (Sweden)

    Lene van der Merwe

    2012-11-01

    Full Text Available Titanium’s strength-to-density ratio, corrosion resistance and high thermal compatibility makes it the perfect metal for aerospace. Titanium is for instance used for the structural airframe, seat tracks, engine components and landing gear of aircraft. The Boeing 787 that had its test flight in 2009 is one of the latest aircraft designs that incorporates a substantially higher percentage of parts manufactured from titanium due to the weight benefit. Titanium’s extensive use in aerospace applications ensures that the aerospace market is the main driver of titanium metal demand. South Africa is the second largest titanium producer in the world after Australia. The abundance of titanium in South Africa together with the growing demand has led it to be identified as a beneficiation priority in a collaborative government initiative, called Titanium Beneficiation Initiative (TBI. The purpose of this paper is to develop a supply chain model for the anticipated South African titanium component manufacturing industry.

  16. Perspectives on Advanced Learning Technologies and Learning Networks and Future Aerospace Workforce Environments

    Science.gov (United States)

    Noor, Ahmed K. (Compiler)

    2003-01-01

    An overview of the advanced learning technologies is given in this presentation along with a brief description of their impact on future aerospace workforce development. The presentation is divided into five parts (see Figure 1). In the first part, a brief historical account of the evolution of learning technologies is given. The second part describes the current learning activities. The third part describes some of the future aerospace systems, as examples of high-tech engineering systems, and lists their enabling technologies. The fourth part focuses on future aerospace research, learning and design environments. The fifth part lists the objectives of the workshop and some of the sources of information on learning technologies and learning networks.

  17. Research on Auto-detection for Remainder Particles of Aerospace Relay Based on Wavelet Analysis

    Institute of Scientific and Technical Information of China (English)

    GAO Hong-liang; ZHANG Hui; WANG Shu-juan

    2007-01-01

    Aerospace relay is one kind of electronic components which is used widely in national defense system and aerospace system. The existence of remainder particles induces the reliability declining, which has become a severe problem in the development of aerospace relay. Traditional particle impact noise detection (PIND) method for remainder detection is ineffective for small particles, due to its low precision and involvement of subjective factors. An auto-detection method for PIND output signals is proposed in this paper, which is based on direct wavelet de-noising (DWD), cross-correlation analysis (CCA) and homo-filtering (HF), the method enhances the affectivity of PIND test about the small particles. In the end, some practical PIND output signals are analysed, and the validity of this new method is proved.

  18. High temperature polymer film dielectrics for aerospace power conditioning capacitor applications

    International Nuclear Information System (INIS)

    Polymer dielectrics are the preferred materials of choice for capacitive energy-storage applications because of their potential for high dielectric breakdown strengths, low dissipation factors and good dielectric stability over a wide range of frequencies and temperatures, despite having inherently lower dielectric constants relative to ceramic dielectrics. They are also amenable to large area processing into films at a relatively lower cost. Air Force currently has a strong need for the development of compact capacitors which are thermally robust for operation in a variety of aerospace power conditioning applications. While such applications typically use polycarbonate (PC) dielectric films in wound capacitors for operation from -55 deg. C to 125 deg. C, future power electronic systems would require the use of polymer dielectrics that can reliably operate up to elevated temperatures in the range of 250-350 deg. C. The focus of this research is the generation and dielectric evaluation of metallized, thin free-standing films derived from high temperature polymer structures such as fluorinated polybenzoxazoles, post-functionalized fluorinated polyimides and fluorenyl polyesters incorporating diamond-like hydrocarbon units. The discussion is centered mainly on variable temperature dielectric measurements of film capacitance and dissipation factor and the effects of thermal cycling, up to a maximum temperature of 350 deg. C, on film dielectric performance. Initial studies clearly point to the dielectric stability of these films for high temperature power conditioning applications, as indicated by their relatively low temperature coefficient of capacitance (TCC) (∼2%) over the entire range of temperatures. Some of the films were also found to exhibit good dielectric breakdown strengths (up to 470 V/μm) and a film dissipation factor of the order of <0.003 (0.3%) at the frequency of interest (10 kHz) for the intended applications. The measured relative dielectric

  19. Manufacturing Challenges Associated with the Use of Metal Matrix Composites in Aerospace Structures

    Science.gov (United States)

    Prater, Tracie

    2014-01-01

    Metal Matrix Composites (MMCs) consist of a metal alloy reinforced with ceramic particles or fibers. These materials possess a very high strength to weight ratio, good resistance to impact and wear, and a number of other properties which make them attractive for use in aerospace and defense applications. MMCs have found use in the space shuttle orbiter's structural tubing, the Hubble Space Telescope's antenna mast, control surfaces and propulsion systems for aircraft, and tank armors. The size of MMC components is severely limited by difficulties encountered in joining these materials using fusion welding. Melting of the material results in formation of an undesirable phase (formed when molten Aluminum reacts with the reinforcement) which leaves a strength depleted region along the joint line. Friction Stir Welding (FSW) is a relatively nascent solid state joining technique developed at The Welding Institute (TWI) in 1991. The process was first used at NASA to weld the super lightweight external tank for the Space Shuttle. Today FSW is used to join structural components of the Delta IV, Atlas V, and Falcon IX rockets as well as NASA's Orion Crew Exploration Vehicle and Space Launch System. A current focus of FSW research is to extend the process to new materials, such as MMCs, which are difficult to weld using conventional fusion techniques. Since Friction Stir Welding occurs below the melting point of the workpiece material, this deleterious phase is absent in FSW-ed MMC joints. FSW of MMCs is, however, plagued by rapid wear of the welding tool, a consequence of the large discrepancy in hardness between the steel tool and the reinforcement material. This chapter summarizes the challenges encountered when joining MMCs to themselves or to other materials in structures. Specific attention is paid to the influence of process variables in Friction Stir Welding on the wear process characterizes the effect of process parameters (spindle speed, traverse rate, and length

  20. Organizational structure and operation of defense/aerospace information centers in the United States of America

    Science.gov (United States)

    Sauter, H. E.; Lushina, L. N.

    1983-01-01

    U.S. Government aerospace and defense information centers are addressed. DTIC and NASA are described in terms of their history, operational authority, information services provided, user community, sources of information collected, efforts under way to improve services, and external agreements regarding the exchange of documents and/or data bases. Contents show how DTIC and NASA provide aerospace/defense information services in support of U.S. research and development efforts. In a general introduction, the importance of scientific and technical information and the need for information centers to acquire, handle, and disseminate it are stressed.

  1. Recycling of Glass Fibre Reinforced Aluminium Laminates and Silicon Removal from Aerospace Al Alloy

    OpenAIRE

    Zhu, G

    2012-01-01

    Aerospace aluminium alloys (7xxx and 2xxx series Al alloy) is one of the important Al alloys in our life. The recycling of aerospace Al alloy plays a significant role in sustainable development of Al industry. The fibre reinforced metal laminates GLARE including 67 wt.% 2024 Al alloy was used as upper fuselage in Airbus A380, but the solution for GLARE recycling is not available. Thermal recycling which uses high temperature to decompose the resin and separate the reinforcement fibres and fil...

  2. PHOTOGRAMMETRIC TRACKING OF AERODYNAMIC SURFACES AND AEROSPACE MODELS AT NASA LANGLEY RESEARCH CENTER

    OpenAIRE

    Shortis, Mark R.; Robson, Stuart; Jones, Thomas W.; Goad, William K.; Lunsford, Charles B.

    2016-01-01

    Aerospace engineers require measurements of the shape of aerodynamic surfaces and the six degree of freedom (6DoF) position and orientation of aerospace models to analyse structural dynamics and aerodynamic forces. The measurement technique must be non-contact, accurate, reliable, have a high sample rate and preferably be non-intrusive. Close range photogrammetry based on multiple, synchronised, commercial-off-the-shelf digital cameras can supply surface shape and 6DoF data at 5-15Hz with cus...

  3. Quantified simulation research on harmonious factors in the leadership teams of aerospace enterprise group

    Institute of Scientific and Technical Information of China (English)

    Yin Xingliang; Hu Yunquan; Yang Fuping; Zhao Hanping; Tang Ning

    2007-01-01

    A brief account of basic connotation and evaluation indexes system of harmonious leadership teams is given. On this basis, a simulation model is built by using the ARENA simulation software and the quantified simulation is carried out for the factors of harmonization of aerospace enterprise leadership teams. Moreover, by taking the characteristics of aerospace enterprise leadership teams into consideration, the comparison of harmonization quantified results of several typical leadership teams, especially on the comparative analysis of influencing degrees of moral characters and capabilities on the leadership teams overall harmonization is emphatically discussed. Finally,a conclusion is drawn.

  4. Aerospace Medicine and Biology: A Continuing Bibliography With Indexes. Supplement 497

    Science.gov (United States)

    2000-01-01

    This supplemental issue of Aerospace Medicine and Biology, A Continuing Bibliography with Indexes (NASA/SP#2000-7011) lists reports, articles, and other documents recently announced in the NASA STI Database. In its subject coverage, Aerospace Medicine and Biology concentrates on the biological, physiological, psychological, and environmental effects to which humans are subjected during and following simulated or actual flight in the Earth's atmosphere or in interplanetary space. References describing similar effects on biological organisms of lower order are also included. Such related topics as sanitary problems, pharmacology, toxicology, safety and survival, life support systems, exobiology, and personnel factors receive appropriate attention.

  5. Cost Reduction Key Drivers Within a Small Batch Aerospace Manufacturing Line

    OpenAIRE

    Delamare, Adrien

    2016-01-01

    This report details my work at the endpoint of the internship I spent within the Composite Manufacturing Unit of Airbus Defence & Space in Les Mureaux, France. It is as well the conclusion of the master’s program in aerospace engineering that I attended at KTH Royal Institute of Technology, Sweden.This document gives an overview of the cost reduction key drivers within a small batch aerospace manufacturing line. Some of the suggested leads developed in the paper have been set up in the pa...

  6. Evaluation of verifiability in HAL/S. [programming language for aerospace computers

    Science.gov (United States)

    Young, W. D.; Tripathi, A. R.; Good, D. I.; Browne, J. C.

    1979-01-01

    The ability of HAL/S to write verifiable programs, a characteristic which is highly desirable in aerospace applications, is lacking since many of the features of HAL/S do not lend themselves to existing verification techniques. The methods of language evaluation are described along with the means in which language features are evaluated for verifiability. These methods are applied in this study to various features of HAL/S to identify specific areas in which the language fails with respect to verifiability. Some conclusions are drawn for the design of programming languages for aerospace applications and ongoing work to identify a verifiable subset of HAL/S is described.

  7. Mechanical performances of lead-free solder joint connections with applications in the aerospace domain

    Directory of Open Access Journals (Sweden)

    Georgiana PADURARU

    2016-03-01

    Full Text Available The paper presents some theoretical and experimental aspects regarding the tribological performances of lead-free solder joint connections, with application in the aerospace domain. In order to highlight the mechanical and tribological properties of solder joint in correlation with different pad finishes, there were made some mechanical determinations using a dedicated Share Test System. The theoretical model highlights the link between the experimental results and the influence of gravitational acceleration on the mechanical and functional integrity of the electronic assemblies that works in vibration environment. The paper novelty is provided by the interdisciplinary experiment that offers results that can be used in the mechanical, tribological, electronical and aerospace domains.

  8. NASA/DoD Aerospace Knowledge Diffusion Research Project. XXXIII - Technical communications practices and the use of information technologies as reported by Dutch and U.S. aerospace engineers

    Science.gov (United States)

    Barclay, Rebecca O.; Pinelli, Thomas E.; Tan, Axel S. T.; Kennedy, John M.

    1993-01-01

    As part of Phase 4 of the NASA/DOD Aerospace Knowledge Diffusion Research Project, two studies were conducted that investigated the technical communications practices of Dutch and U.S. aerospace engineers and scientists. A self-administered questionnaire was distributed to aerospace engineers and scientists at the National Aerospace Laboratory (The Netherlands), and NASA Ames Research Center (U.S.), and the NASA Langley Research Center (U.S.). This paper presents responses of the Dutch and U.S. participants to selected questions about four of the seven project objectives: determining the importance of technical communications to aerospace engineering professionals, investigating the production of technical communications, examining the use and importance of computer and information technology, and exploring the use of electronic networks.

  9. 75 FR 12713 - Airworthiness Directives; AVOX Systems and B/E Aerospace Oxygen Cylinders as Installed on Various...

    Science.gov (United States)

    2010-03-17

    ... ``significant rule'' under the DOT Regulatory Policies and Procedures (44 FR 11034, February 26, 1979); and 3.../E Aerospace Oxygen Cylinders as Installed on Various 14 CFR Part 23 and CAR 3 Airplanes AGENCY... and B/E Aerospace oxygen cylinders, as installed on various 14 CFR part 23 or CAR 3 airplanes....

  10. Resilient and Corrosion-Proof Rolling Element Bearings Made from Superelastic Ni-Ti Alloys for Aerospace Mechanism Applications

    Science.gov (United States)

    DellaCorte, Christopher; Noebe, Ronald D.; Stanford, Malcolm; Padula, Santo A.

    2011-01-01

    Mechanical components (bearings, gears, mechanisms) typically utilize hard materials to minimize wear and attain long life. In such components, heavily loaded contact points (e.g., meshing gear teeth, bearing ball-raceway contacts) experience high contact stresses. The combination of high hardness, heavy loads and high elastic modulus often leads to damaging contact stress. In addition, mechanical component materials, such as tool steel or silicon nitride exhibit limited recoverable strain (typically less than 1 percent). These material attributes can lead to Brinell damage (e.g., denting) particularly during transient overload events such as shock impacts that occur during the launching of space vehicles or the landing of aircraft. In this paper, a superelastic alloy, 60NiTi, is considered for rolling element bearing applications. A series of Rockwell and Brinell hardness, compressive strength, fatigue and tribology tests are conducted and reported. The combination of high hardness, moderate elastic modulus, large recoverable strain, low density, and intrinsic corrosion immunity provide a path to bearings largely impervious to shock load damage. It is anticipated that bearings and components made from alloys with such attributes can alleviate many problems encountered in advanced aerospace applications.

  11. Alternative, Green Processes for the Precision Cleaning of Aerospace Hardware

    Science.gov (United States)

    Maloney, Phillip R.; Grandelli, Heather Eilenfield; Devor, Robert; Hintze, Paul E.; Loftin, Kathleen B.; Tomlin, Douglas J.

    2014-01-01

    Precision cleaning is necessary to ensure the proper functioning of aerospace hardware, particularly those systems that come in contact with liquid oxygen or hypergolic fuels. Components that have not been cleaned to the appropriate levels may experience problems ranging from impaired performance to catastrophic failure. Traditionally, this has been achieved using various halogenated solvents. However, as information on the toxicological and/or environmental impacts of each came to light, they were subsequently regulated out of use. The solvent currently used in Kennedy Space Center (KSC) precision cleaning operations is Vertrel MCA. Environmental sampling at KSC indicates that continued use of this or similar solvents may lead to high remediation costs that must be borne by the Program for years to come. In response to this problem, the Green Solvents Project seeks to develop state-of-the-art, green technologies designed to meet KSCs precision cleaning needs.Initially, 23 solvents were identified as potential replacements for the current Vertrel MCA-based process. Highly halogenated solvents were deliberately omitted since historical precedents indicate that as the long-term consequences of these solvents become known, they will eventually be regulated out of practical use, often with significant financial burdens for the user. Three solvent-less cleaning processes (plasma, supercritical carbon dioxide, and carbon dioxide snow) were also chosen since they produce essentially no waste stream. Next, experimental and analytical procedures were developed to compare the relative effectiveness of these solvents and technologies to the current KSC standard of Vertrel MCA. Individually numbered Swagelok fittings were used to represent the hardware in the cleaning process. First, the fittings were cleaned using Vertrel MCA in order to determine their true cleaned mass. Next, the fittings were dipped into stock solutions of five commonly encountered contaminants and were

  12. Fundamental Insights into Combustion Instability Predictions in Aerospace Propulsion

    Science.gov (United States)

    Huang, Cheng

    Integrated multi-fidelity modeling has been performed for combustion instability in aerospace propulsion, which includes two levels of analysis: first, computational fluid dynamics (CFD) using hybrid RANS/LES simulations for underlying physics investigations (high-fidelity modeling); second, modal decomposition techniques for diagnostics (analysis & validation); third, development of flame response model using model reduction techniques for practical design applications (low-order model). For the high-fidelity modeling, the relevant CFD code development work is moving towards combustion instability prediction for liquid propulsion system. A laboratory-scale single-element lean direct injection (LDI) gas turbine combustor is used for configuration that produces self-excited combustion instability. The model gas turbine combustor is featured with an air inlet section, air plenum, swirler-venturi-injector assembly, combustion chamber, and exit nozzle. The combustor uses liquid fuel (Jet-A/FT-SPK) and heated air up to 800K. Combustion dynamics investigations are performed with the same geometry and operating conditions concurrently between the experiment and computation at both high (φ=0.6) and low (φ=0.36) equivalence ratios. The simulation is able to reach reasonable agreement with experiment measurements in terms of the pressure signal. Computational analyses are also performed using an acoustically-open geometry to investigate the characteristic hydrodynamics in the combustor with both constant and perturbed inlet mass flow rates. Two hydrodynamic modes are identified by using Dynamic Mode Decomposition (DMD) analysis: Vortex Breakdown Bubble (VBB) and swirling modes. Following that, the closed geometry simulation results are analyzed in three steps. In step one, a detailed cycle analysis shows two physically important couplings in the combustor: first, the acoustic compression enhances the spray drop breakup and vaporization, and generates more gaseous fuel for

  13. Wide Temperature DC Link Capacitors for Aerospace Power Electronics Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop advanced DC link capacitors using flexible ultrathin glass dielectric materials. The glass capacitor will be able to be operated in a...

  14. Light weight, high-speed, and self-powered wireless fiber optic sensor (WiFOS) structural health monitor system for avionics and aerospace environments

    Science.gov (United States)

    Mendoza, Edgar A.; Kempen, Cornelia; Sun, Sunjian; Esterkin, Yan

    2014-09-01

    This paper describes recent progress towards the development of an innovative light weight, high-speed, and selfpowered wireless fiber optic sensor (WiFOS™) structural health monitor system suitable for the onboard and in-flight unattended detection, localization, and classification of load, fatigue, and structural damage in advanced composite materials commonly used in avionics and aerospace systems. The WiFOS™ system is based on ROI's advancements on monolithic photonic integrated circuit microchip technology, integrated with smart power management, on-board data processing, wireless data transmission optoelectronics, and self-power using energy harvesting tools such as solar, vibration, thermoelectric, and magneto-electric. The self-powered, wireless WiFOS™ system offers a versatile and powerful SHM tool to enhance the reliability and safety of avionics platforms, jet fighters, helicopters, commercial aircraft that use lightweight composite material structures, by providing comprehensive information about the structural integrity of the structure from a large number of locations. Immediate SHM applications are found in rotorcraft and aircraft, ships, submarines, and in next generation weapon systems, and in commercial oil and petrochemical, aerospace industries, civil structures, power utilities, portable medical devices, and biotechnology, homeland security and a wide spectrum of other applications.

  15. Durability of Advanced Woven Composites in Aerospace Applications

    OpenAIRE

    Patel, Sneha Ramesh

    1999-01-01

    The objective of this project was to evaluate and model the effects of moisture, temperature, and combined hygrothermal aging on the durability of a graphite/epoxy woven composite material system. Imposed environmental and aging conditions were considered to be representative of service conditions for the engine of an advanced subsonic aircraft for which the composite system is a candidate material. The study was designed such that the results could be used in a residual strength based life...

  16. Contribution to "AIAA Aerospace Year in Review" article

    Science.gov (United States)

    Grugel, Richard N.; Downey, J. Patton

    2012-01-01

    The NASA Marshall Space Flight Center Microgravity Science Program is dedicated to promoting our understanding of materials processing by conducting relevant experiments in the microgravity environment and supporting related modeling efforts with the intent of improving ground-based practices. Currently funded investigations include research on dopant distribution and defect formation in semiconductors, microstructural development and transitions in dendritic casting alloys, coarsening phenomena, competition between thermal and kinetic phase formation, and the formation of glassy vs. crystalline material. NASA Microgravity Materials Science Principle Investigators are selected for funding either through a proposal in response to a NASA Research Announcement or by collaborating on a team that has successfully proposed to a foreign space agency research announcement. In the latter case, a US investigator can then apply to NASA for funding through an unsolicited proposal. The International Space Station (ISS) facilities used for the experimental investigations are provided primarily by partnering with foreign agencies and often US investigators are working as a part of a larger team studying a specific area of materials science. Facilities for conducting experiments aboard the ISS include the European Space Agency (ESA) Low Gradient Facility (LGF) and the Solidification and Quench (SQF) modular inserts to the Materials Research Rack/Materials Science Laboratory and are primarily used for controlled solidification studies. The French Space Agency (CNES) provided DECLIC facility allows direct observation of morphological development in transparent materials that solidify analogously to metals. The ESA provided Electro ]Magnetic Levitator (EML) is designed to levitate, melt and then cool samples in order to determine material properties, study nucleation behavior, and document phase transitions. Finally, the Microgravity Science Glovebox (MSG) serves as a onboard

  17. Custom Machines Advance Composite Manufacturing

    Science.gov (United States)

    2012-01-01

    Here is a brief list of materials that NASA will not be using to construct spacecraft: wood, adobe, fiberglass, bone. While it might be obvious why these materials would not make for safe space travel, they do share a common characteristic with materials that may well be the future foundation of spacecraft design: They all are composites. Formed of two or more unlike materials - such as cellulose and lignin in the case of wood, or glass fibers and plastic resin in the case of fiberglass-composites provide enhanced mechanical and physical properties through the combination of their constituent materials. For this reason, composites are used in everything from buildings, bathtubs, and countertops to boats, racecars, and sports equipment. NASA continually works to develop new materials to enable future space missions - lighter, less expensive materials that can still withstand the extreme demands of space travel. Composites such as carbon fiber materials offer promising solutions in this regard, providing strength and stiffness comparable to metals like aluminum but with less weight, allowing for benefits like better fuel efficiency and simpler propulsion system design. Composites can also be made fatigue tolerant and thermally stable - useful in space where temperatures can swing hundreds of degrees. NASA has recently explored the use of composites for aerospace applications through projects like the Composite Crew Module (CCM), a composite-constructed version of the aluminum-lithium Multipurpose Crew Capsule. The CCM was designed to give NASA engineers a chance to gain valuable experience developing and testing composite aerospace structures.

  18. The impact of self healing materials on telecommunication: towards a concrete aircraft?

    NARCIS (Netherlands)

    Schmets, A.J.M.

    2006-01-01

    The use of a material for a specific application is governed by considerations on the expected conditions during its lifetime. For aerospace applications for instance, lightness, reliability and thermal stability ofthe material are of major importance. No material will ever possess all the desired p

  19. Space Technology: Propulsion, Control and Guidance of Space Vehicles. Aerospace Education III.

    Science.gov (United States)

    Savler, D. S.; Mackin, T. E.

    This book, one in the series on Aerospace Education III, includes a discussion of the essentials of propulsion, control, and guidance and the conditions of space travel. Chapter 1 provides a brief account of basic laws of celestial mechanics. Chapters 2, 3, and 4 are devoted to the chemical principles of propulsion. Included are the basics of…

  20. Space Technology: Propulsion, Control and Guidance of Space Vehicles. Aerospace Education III. Instructional Unit II.

    Science.gov (United States)

    Air Univ., Maxwell AFB, AL. Junior Reserve Office Training Corps.

    This curriculum guide is prepared for the Aerospace Education III series publication entitled "Space Technology: Propulsion, Control and Guidance of Space Vehicles." It provides guidelines for each chapter. The guide includes objectives, behavioral objectives, suggested outline, orientation, suggested key points, suggestions for teaching,…