WorldWideScience

Sample records for aerosol source apportionment

  1. Source apportionment of carbonaceous aerosol in southern Sweden

    Directory of Open Access Journals (Sweden)

    J. Genberg

    2011-05-01

    Full Text Available A one-year study was performed at the Vavihill background station in southern Sweden to estimate the anthropogenic contribution to the carbonaceous aerosol. Weekly samples of the particulate matter PM10 were collected on quartz filters, and the amounts of organic carbon, elemental carbon, radiocarbon (14C and levoglucosan were measured. This approach enabled source apportionment of the total carbon in the PM10 fraction using the concentration ratios of the sources. The sources considered in this study were emissions from the combustion of fossil fuels and biomass, as well as biogenic sources. During the summer, the carbonaceous aerosol mass was dominated by compounds of biogenic origin (82 %, which are associated with biogenic primary and secondary organic aerosols. During the winter months, biomass combustion (38 % and fossil fuel combustion (33 % were the main contributors to the carbonaceous aerosol. Elemental carbon concentrations in winter were about twice as large as during summer, and can be attributed to biomass combustion, probably from domestic wood burning. The contribution of fossil fuels to elemental carbon was stable throughout the year, although the fossil contribution to organic carbon increased during the winter. Thus, the organic aerosol originated mainly from natural sources during the summer and from anthropogenic sources during the winter. The result of this source apportionment was compared with results from the EMEP model. The model and measurements were generally consistent for total atmospheric organic carbon, however, the contribution of the sources varied substantially. E.g. the biomass burning contributions of OC were underestimated by the model by a factor of 8.2 compared to the measurements.

  2. Receptor models for source apportionment of remote aerosols in Brazil

    International Nuclear Information System (INIS)

    The PIXE (particle induced X-ray emission), and PESA (proton elastic scattering analysis) method were used in conjunction with receptor models for source apportionment of remote aerosols in Brazil. The PIXE used in the determination of concentration for elements with Z >- 11, has a detection limit of about 1 ng/m3. The concentrations of carbon, nitrogen and oxygen in the fine fraction of Amazon Basin aerosols was measured by PESA. We sampled in Jureia (SP), Fernando de Noronha, Arembepe (BA), Firminopolis (GO), Itaberai (GO) and Amazon Basin. For collecting the airbone particles we used cascade impactors, stacked filter units, and streaker samplers. Three receptor models were used: chemical mass balance, stepwise multiple regression analysis and principal factor analysis. The elemental and gravimetric concentrations were explained by the models within the experimental errors. Three sources of aerosol were quantitatively distinguished: marine aerosol, soil dust and aerosols related to forests. The emission of aerosols by vegetation is very clear for all the sampling sites. In Amazon Basin and Jureia it is the major source, responsible for 60 to 80% of airborne concentrations. (Author)

  3. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    OpenAIRE

    Daellenbach, K. R.; Bozzetti, C.; A. Křepelová; F. Canonaco; Wolf, R.; P. Zotter; P. Fermo; Crippa, M.; Slowik, J. G.; Y. Sosedova; Y. Zhang; R.-J. Huang; L. Poulain; S. Szidat; U. Baltensperger

    2015-01-01

    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make impractical its deployment at sufficient sites to determine regional characteristics. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the chara...

  4. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    OpenAIRE

    Daellenbach, K. R.; Bozzetti, C.; A. Křepelová; F. Canonaco; Wolf, R.; P. Zotter; P. Fermo; Crippa, M.; Slowik, J. G.; Y. Sosedova; Y. Zhang; Huang, R.-J.; L. Poulain; S. Szidat; U. Baltensperger

    2016-01-01

    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make its deployment at sufficient sites to determine regional characteristics impractical. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of th...

  5. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    OpenAIRE

    Daellenbach, K. R.; Bozzetti, C.; A. Křepelová; F. Canonaco; Wolf, R.; P. Zotter; P. Fermo; Crippa, M.; Slowik, J. G.; Y. Sosedova; Zhang, Yanlin; Huang, R.-J.; L. Poulain; Szidat, Sönke; U. Baltensperger

    2016-01-01

    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make its deployment at sufficient sites to determine regional characteristics impractical. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical natur...

  6. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    Directory of Open Access Journals (Sweden)

    K. R. Daellenbach

    2015-08-01

    Full Text Available Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make impractical its deployment at sufficient sites to determine regional characteristics. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM filter samples (PM1, PM2.5, PM10 collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g. AMS or Aerosol Chemical Speciation Monitor (ACSM. The bulk recoveries of organic aerosol (60–91 % achieved using this technique, together with low detection limits (0.8 μg of organic aerosol on the analyzed filter fraction allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon, oxygen containing and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g. filter artifacts and limited time resolution may be used to enhance the AMS capabilities in measuring size-fractionated, spatially-resolved long-term datasets.

  7. Characterization and source apportionment of organic aerosol using offline aerosol mass spectrometry

    Science.gov (United States)

    Daellenbach, K. R.; Bozzetti, C.; Křepelová, A.; Canonaco, F.; Wolf, R.; Zotter, P.; Fermo, P.; Crippa, M.; Slowik, J. G.; Sosedova, Y.; Zhang, Y.; Huang, R.-J.; Poulain, L.; Szidat, S.; Baltensperger, U.; El Haddad, I.; Prévôt, A. S. H.

    2016-01-01

    Field deployments of the Aerodyne Aerosol Mass Spectrometer (AMS) have significantly advanced real-time measurements and source apportionment of non-refractory particulate matter. However, the cost and complex maintenance requirements of the AMS make its deployment at sufficient sites to determine regional characteristics impractical. Furthermore, the negligible transmission efficiency of the AMS inlet for supermicron particles significantly limits the characterization of their chemical nature and contributing sources. In this study, we utilize the AMS to characterize the water-soluble organic fingerprint of ambient particles collected onto conventional quartz filters, which are routinely sampled at many air quality sites. The method was applied to 256 particulate matter (PM) filter samples (PM1, PM2.5, and PM10, i.e., PM with aerodynamic diameters smaller than 1, 2.5, and 10 µm, respectively), collected at 16 urban and rural sites during summer and winter. We show that the results obtained by the present technique compare well with those from co-located online measurements, e.g., AMS or Aerosol Chemical Speciation Monitor (ACSM). The bulk recoveries of organic aerosol (60-91 %) achieved using this technique, together with low detection limits (0.8 µg of organic aerosol on the analyzed filter fraction) allow its application to environmental samples. We will discuss the recovery variability of individual hydrocarbon ions, ions containing oxygen, and other ions. The performance of such data in source apportionment is assessed in comparison to ACSM data. Recoveries of organic components related to different sources as traffic, wood burning, and secondary organic aerosol are presented. This technique, while subjected to the limitations inherent to filter-based measurements (e.g., filter artifacts and limited time resolution) may be used to enhance the AMS capabilities in measuring size-fractionated, spatially resolved long-term data sets.

  8. Primary and secondary organic aerosol origin by combined gas-particle phase source apportionment

    Directory of Open Access Journals (Sweden)

    M. Crippa

    2013-08-01

    Full Text Available Secondary organic aerosol (SOA, a prominent fraction of particulate organic mass (OA, remains poorly constrained. Its formation involves several unknown precursors, formation and evolution pathways and multiple natural and anthropogenic sources. Here a combined gas-particle phase source apportionment is applied to wintertime and summertime data collected in the megacity of Paris in order to investigate SOA origin during both seasons. This was possible by combining the information provided by an aerosol mass spectrometer (AMS and a proton transfer reaction mass spectrometer (PTR-MS. A better constrained apportionment of primary OA (POA sources is also achieved using this methodology, making use of gas-phase tracers. These tracers made possible the discrimination between biogenic and continental/anthropogenic sources of SOA. We found that continental SOA was dominant during both seasons (24–50% of total OA, while contributions from photochemistry-driven SOA (9% of total OA and marine emissions (13% of total OA were also observed during summertime. A semi-volatile nighttime component was also identified (up to 18% of total OA during wintertime. This approach was successfully applied here and implemented in a new source apportionment toolkit.

  9. Relevance of aerosol size spectrum analysis as support to qualitative source apportionment studies

    International Nuclear Information System (INIS)

    This work presents a diagnostic methodology in support to source apportionment studies to identify remote and local pollution sources. It is based on the temporal analysis of both PM size distributions and PM size fraction correlation along with natural radioactivity measurements as index of Planetary Boundary Layer dynamic. A correlation drop is indicative of changing aerosol sources. When this observation is coupled with decreasing level of natural radioactivity and increasing aerosol concentration, be it coarse or fine, it is indicative of the inflow of remote polluted air masses. The methodology defines in which size range operates the contribution of remote pollution sources. It was applied to two PM10 pollution episodes: the first involved the advection of coarse PM, the second entailed the inflow of two air masses, one transporting coarse dust and the other fine PM. Dust models and backward trajectories analysis confirmed such results, indicating the air mass provenience. - Highlights: ► Tool as a qualitative support to source apportionment studies. ► Time and size resolved aerosol and natural radioactivity measurements. ► Methodology gives immediate information on PM presence from local/remote sources. ► Long range transport episodes are demonstrated without any chemical analysis. ► Dust models and backward-trajectory analysis used for confirming the results found. - Long range transport episodes are clearly demonstrated by time and size resolved aerosol and natural radioactivity measurements without any chemical analysis.

  10. Isotope source apportionment of carbonaceous aerosol as a function of particle size and thermal refractiveness

    Science.gov (United States)

    Masalaite, Agne; Holzinger, Rupert; Remeikis, Vidmantas; Röckmann, Thomas; Dusek, Ulrike

    2016-04-01

    The stable carbon isotopes can be used to get information about sources and processing of carbonaceous aerosol. We will present results from source apportionment of carbonaceous aerosol as a function of particle size thermal refractiveness. Separate source apportionment for particles smaller than 200 nm and for different carbon volatility classes are rarely reported and give new insights into aerosol sources in the urban environment. Stable carbon isotope ratios were measured for the organic carbon (OC) fraction and total carbon (TC) of MOUDI impactor samples that were collected on a coastal site (Lithuania) during the winter 2012 and in the city of Vilnius (Lithuania) during the winter of 2009. The 11 impactor stages spanned a size range from 0.056 to 18 μm, but only the 6 stages in the submicron range were analysed. The δ13C values of bulk total carbon (δ13CTC) were determined with an elemental analyser (Flash EA 1112) coupled with an isotope ratio mass spectrometer (Thermo Finnigan Delta Plus Advantage) (EA - IRMS). Meanwhile δ13COC was measured using thermal-desorption isotope ratio mass spectrometry (IRMS) system. This allows a rough separation of the more volatile OC fraction (desorbed in the oven of IRMS up to 250 0C) from the more refractory fraction (desorbed up to 400 0C). In this study we investigated the composition of organic aerosol desorbed from filter samples at different temperatures using the thermal-desorption proton-transfer-reaction mass spectrometry (TD-PTR-MS) technique. During winter-time in Lithuania we expect photochemistry and biogenic emissions to be of minor importance. The main sources of aerosol carbon should be fossil fuel and biomass combustion. In both sites, the coastal and the urban site, δ13C measurements give a clear indication that the source contributions differ for small and large particles. Small particles NWO grants Nr. 820.01.001, and 834.08.002).

  11. Radiocarbon (14C) source apportionment of carbonaceous aerosol components in the Asian Atmospheric Brown Cloud

    International Nuclear Information System (INIS)

    Full text: Light-absorbing carbonaceous matter constitutes one of the largest uncertainties in climate modeling. The high concentrations of black carbon - soot - in the Asian Brown Cloud lead to strong atmospheric heating and large surface cooling that is as important to regional climate forcing as greenhouse gases, yet the sources of these aerosols are not well understood. Emission inventory models suggest that biofuel/biomass burning accounts for 60 - 90 % of the sources of these aerosol components whereas measurements of the elemental composition of ambient aerosols compared with source signatures point to combustion of fossil fuel as the primary culprit. However, both approaches acknowledge large uncertainties in source apportionment of the elusively defined black carbon. This study approached the sourcing challenge by applying microscale radiocarbon measurements to aerosol particles collected during the winter monsoon both over the Indian Ocean and in central India. The radiocarbon approach is ideally suited to this task as fossil sources are void of 14C whereas biomass combustion products hold a contemporary 14C signal. High-volume air samples of total carbonaceous aerosols revealed 14C signals that were similar for N. Indian source and Indian Ocean receptor regions, consistent with the absence of any significant formation of secondary organic aerosols, with a 60 - 70 % contribution from biomass combustion and biogenic sources. Isolates of elemental or soot carbon fractions varied between 40 - 70 %, depending on isolation method. These novel radiocarbon constraints on the sources of light-absorbing carbonaceous matter aid prioritizing of what combustion processes to target for emission mitigations of these health-afflicting and climate-forcing aerosols in the South Asian region. (author)

  12. Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites

    Directory of Open Access Journals (Sweden)

    K. E. Yttri

    2011-12-01

    Full Text Available In the present study, natural and anthropogenic sources of particulate organic carbon (OCp and elemental carbon (EC have been quantified based on weekly filter samples of PM10 (particles with aerodynamic diameter <10 μm collected at four Nordic rural background sites [Birkenes (Norway, Hyytiälä (Finland, Vavihill (Sweden, Lille Valby, (Denmark] during late summer (5 August–2 September 2009. Levels of source specific tracers, i.e. cellulose, levoglucosan, mannitol and the 14C/12C ratio of total carbon (TC, have been used as input for source apportionment of the carbonaceous aerosol, whereas Latin Hypercube Sampling (LHS was used to statistically treat the multitude of possible combinations resulting from this approach. The carbonaceous aerosol (here: TCp; i.e. particulate TC was totally dominated by natural sources (69–86%, with biogenic secondary organic aerosol (BSOA being the single most important source (48–57%. Interestingly, primary biological aerosol particles (PBAP were the second most important source (20–32%. The anthropogenic contribution was mainly attributed to fossil fuel sources (OCff and ECff (10–24%, whereas no more than 3–7% was explained by combustion of biomass (OCbb and ECbb in this late summer campaign i.e. emissions from residential wood burning and/or wild/agricultural fires. Fossil fuel sources totally dominated the ambient EC loading, which accounted for 4–12% of TCp, whereas <1.5% of EC was attributed to combustion of biomass. The carbonaceous aerosol source apportionment showed only minor variation between the four selected sites. However, Hyytiälä and Birkenes showed greater resemblance to each other, as did Lille Valby and Vavihill, the two latter being somewhat more influenced by anthropogenic sources. Ambient levels of organosulphates and nitrooxy-organosulphates in the Nordic rural

  13. Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites

    Directory of Open Access Journals (Sweden)

    K. E. Yttri

    2011-06-01

    Full Text Available In the present study, natural and anthropogenic sources of particulate organic carbon (OCp and elemental carbon (EC have been quantified based on weekly filter samples of PM10 collected at four Nordic rural background sites (Birkenes (Norway, Hyytiälä (Finland Vavihill (Sweden, Lille Valby (Denmark during late summer (5 August–2 September 2009. Levels of source specific tracers, i.e. cellulose, levoglucosan, mannitol and the 14C/12C ratio of total carbon (TC, have been used as input for source apportionment of the carbonaceous aerosol, whereas Latin Hypercube Sampling (LHS was used to statistically treat the multitude of possible combinations resulting from this approach.

    The carbonaceous aerosol (here: TCp; i.e. particulate TC was totally dominated by natural sources (69–86 %, with biogenic secondary organic aerosol (BSOA being the single most important source (48–57 %. Interestingly, primary biological aerosol particles (PBAP were the second most important source (20–32 %. The anthropogenic contribution was mainly attributed to fossil fuel sources (OCff and ECff (10–24 %, whereas no more than 3–7 % was explained by combustion of biomass (OCbb and ECbb in this late summer campaign i.e. emissions from residential wood burning and/or wild/agricultural fires. Fossil fuel sources totally dominated the ambient EC loading, accounting for 4–12 % of TCp, whereas <1.5 % was attributed to combustion of biomass. The carbonaceous aerosol source apportionment showed only minor variation between the four selected sites. However, Hyytiälä and Birkenes showed greater resemblance to each other, as did Lille Valby and Vavihill, the two latter being somewhat more influenced by anthropogenic sources.

    Ambient levels of organosulphates and nitrooxy-organosulphates in the Nordic rural background environment are reported for

  14. Aerosol source apportionment from 1-year measurements at the CESAR tower in Cabauw, the Netherlands

    Science.gov (United States)

    Schlag, Patrick; Kiendler-Scharr, Astrid; Blom, Marcus Johannes; Canonaco, Francesco; Sebastiaan Henzing, Jeroen; Moerman, Marcel; Prévôt, André Stephan Henry; Holzinger, Rupert

    2016-07-01

    Intensive measurements of submicron aerosol particles and their chemical composition were performed with an Aerosol Chemical Speciation Monitor (ACSM) at the Cabauw Experimental Site for Atmospheric Research (CESAR) in Cabauw, the Netherlands, sampling at 5 m height above ground. The campaign lasted nearly 1 year from July 2012 to June 2013 as part of the EU-FP7-ACTRIS project (Q-ACSM Network). Including equivalent black carbon an average particulate mass concentration of 9.50 µg m-3 was obtained during the whole campaign with dominant contributions from ammonium nitrate (45 %), organic aerosol (OA, 29 %), and ammonium sulfate (19 %). There were 12 exceedances of the World Health Organization (WHO) PM2.5 daily mean limit (25 µg m-3) observed at this rural site using PM1 instrumentation only. Ammonium nitrate and OA represented the largest contributors to total particulate matter during periods of exceedance. Source apportionment of OA was performed season-wise by positive matrix factorization (PMF) using the multilinear engine 2 (ME-2) controlled via the source finder (SoFi). Primary organic aerosols were attributed mainly to traffic (8-16 % contribution to total OA, averaged season-wise) and biomass burning (0-23 %). Secondary organic aerosols (SOAs, 61-84 %) dominated the organic fraction during the whole campaign, particularly on days with high mass loadings. A SOA factor which is attributed to humic-like substances (HULIS) was identified as a highly oxidized background aerosol in Cabauw. This shows the importance of atmospheric aging processes for aerosol concentration at this rural site. Due to the large secondary fraction, the reduction of particulate mass at this rural site is challenging on a local scale.

  15. Aerosol source apportionment from 1 year measurements at the CESAR tower at Cabauw, NL

    Science.gov (United States)

    Schlag, P.; Kiendler-Scharr, A.; Blom, M. J.; Canonaco, F.; Henzing, J. S.; Moerman, M. M.; Prévôt, A. S. H.; Holzinger, R.

    2015-12-01

    Intensive measurements of submicron aerosol particles and their chemical composition were performed with an Aerosol Chemical Speciation Monitor (ACSM) at the Cabauw Experimental Site for Atmospheric Research (CESAR) in Cabauw, NL. The campaign lasted nearly one year from July 2012 to June 2013 as part of the ACTRIS project. Including black carbon data an average particulate mass concentration of 9.50 μg m-3 was obtained during the whole campaign with dominant contributions from ammonium nitrate (45 %), organic aerosol (OA, 29 %), and ammonium sulfate (19 %). 12 exceedances of the World Health Organization (WHO) PM2.5 daily mean limit (25 μg m-3) were observed at this rural site using PM1 instrumentation only. Ammonium nitrate and OA represented the largest contributors to total particulate matter during periods of exceedance. Source apportionment of OA was performed season-wise by Positive Matrix Factorization (PMF) using the Multilinear Engine 2 (ME-2) controlled via the source finder (SoFi). Primary organic aerosols were attributed mainly to traffic (8-16 % contribution to total OA, averaged season-wise) and biomass burning (0-23 %). Secondary organic aerosols (SOA, 61-84 %) dominated the organic fraction during the whole campaign, particularly on days with high mass loadings. A SOA factor which is attributed to humic-like substances (HULIS) was identified as a highly oxidized background aerosol in Cabauw. This shows the importance of atmospheric ageing processes for aerosol concentration at this rural site. Due to the large secondary fraction, the reduction of particulate mass at this rural site is challenging on a local scale.

  16. Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment

    Science.gov (United States)

    de Oliveira Alves, Nilmara; Brito, Joel; Caumo, Sofia; Arana, Andrea; de Souza Hacon, Sandra; Artaxo, Paulo; Hillamo, Risto; Teinilä, Kimmo; Batistuzzo de Medeiros, Silvia Regina; de Castro Vasconcellos, Pérola

    2015-11-01

    The Brazilian Amazon represents about 40% of the world's remaining tropical rainforest. However, human activities have become important drivers of disturbance in that region. The majority of forest fire hotspots in the Amazon arc due to deforestation are impacting the health of the local population of over 10 million inhabitants. In this study we characterize western Amazonia biomass burning emissions through the quantification of 14 Polycyclic Aromatic Hydrocarbons (PAHs), Organic Carbon, Elemental Carbon and unique tracers of biomass burning such as levoglucosan. From the PAHs dataset a toxic equivalence factor is calculated estimating the carcinogenic and mutagenic potential of biomass burning emissions during the studied period. Peak concentration of PM10 during the dry seasons was observed to reach 60 μg m-3 on the 24 h average. Conversely, PM10 was relatively constant throughout the wet season indicating an overall stable balance between aerosol sources and sinks within the filter sampling resolution. Similar behavior is identified for OC and EC components. Levoglucosan was found in significant concentrations (up to 4 μg m-3) during the dry season. Correspondingly, the estimated lung cancer risk calculated during the dry seasons largely exceeded the WHO health-based guideline. A source apportionment study was carried out through the use of Absolute Principal Factor Analysis (APFA), identifying a three-factor solution. The biomass burning factor is found to be the dominating aerosol source, having 75.4% of PM10 loading. The second factor depicts an important contribution of several PAHs without a single source class and therefore was considered as mixed sources factor, contributing to 6.3% of PM10. The third factor was mainly associated with fossil fuel combustion emissions, contributing to 18.4% of PM10. This work enhances the knowledge of aerosol sources and its impact on climate variability and local population, on a site representative of the

  17. Source apportionment of PM2.5 carbonaceous aerosol in Baghdad, Iraq

    Science.gov (United States)

    Hamad, Samera Hussein; Schauer, James Jay; Heo, Jongbae; Kadhim, Ahmed K. H.

    2015-04-01

    Baghdad is the second largest city in the Middle East and suffers from severe air quality degradation due to the high levels of the atmospheric particulate matter (PM). Limited information exists regarding the sources of PM in Baghdad, and the lack of information on sources inhibits the development of control strategies to reduce air pollution. To better understand the nature of fine particulate matter (PM2.5) in Baghdad and the Middle East, a one year sampling campaign to collect PM2.5 was conducted from September 2012 through September 2013, missing August 2013 samples due to the security situation. 24-hour integrated samples collected on a 1-in-6 day schedule were analyzed for the major components, and monthly average samples were analyzed by gas chromatography mass spectrometry (GCMS) methods to measure particle-phase organic molecular markers. The results of organic molecular markers were used in a chemical mass balance (CMB) model to quantify the sources of PM2.5 organic carbon (OC) and PM2.5 mass. Primary sources accounted for 44% of the measured PM2.5, and secondary sources were estimated to make up 28% of the measured PM2.5. Picene, a tracer of coal combustion detected in Baghdad where there is no evidence for coal combustion, can be attributed to burning crude oil and other low quality fuels in Baghdad. Source apportionment results showed that the dominant sources of the carbonaceous aerosols in Baghdad are gasoline (37 ± 6%) and diesel engines (17 ± 3%) which can be attributed to the extensive use of gasoline and diesel powered generators in Baghdad. Wood burning and residual oil combustion contributed to 5 ± 0.4 and 1 ± 0.2% respectively of OC. The unresolved sources contributed to 42 ± 19% of the OC which represented the secondary organic aerosol (SOA) and the unidentified sources.

  18. Source apportionment of aerosol particles near a steel plant by electron microscopy.

    Science.gov (United States)

    Ebert, Martin; Müller-Ebert, Dörthe; Benker, Nathalie; Weinbruch, Stephan

    2012-12-01

    The size, morphology and chemical composition of 37,715 individual particles collected over 22 sampling days in the vicinity of a large integrated steel production were studied by scanning and transmission electron microscopy. Based on the morphology, chemistry and beam stability the particles were classified into the following fourteen groups: silicates, sea salt, calcium sulfates, calcium carbonates, carbonate-silicate mixtures, sulfate-silicate mixtures, iron oxides, iron mixtures, metal oxide-metals, complex secondary particles, soot, Cl-rich particles, P-rich particles, and other particles. The majority of iron oxide (≈85%) and metal oxide-metal (≈70%) particles as well as ≈20% of the silicate particles are fly ashes from high temperature processes. The emissions from the steel work are dominated by iron oxide particles. For source apportionment, seven source categories and two sectors of local wind direction (industrial and urban background) were distinguished. In both sectors PM₁₀ consists of four major source categories: 35% secondary, 20% industrial, 17% soil and 16% soot in the urban background sector compared to 45% industrial, 20% secondary, 13% soil, and 9% soot in the industrial sector. As the secondary and the soot components are higher in the urban background sector than in the industrial sector, it is concluded that both components predominantly originate from urban background sources (traffic, coal burning, and domestic heating). Abatement measures should not only focus on the steel work but should also include the urban background aerosol. PMID:23149950

  19. Aerosols characterisation and pollution source apportionment in Aboesi Airshed: impact assessment

    International Nuclear Information System (INIS)

    Atmospheric aerosols in the PM10- 2.5 (N = 155) and PM2.5 (N = 155) fractions have been sampled and characterised at Aboesi, in the Shama District of Ghana (about 10 meters above mean sea level) for 12 months during dry and rainy seasons. The samples have been analyzed by Energy Dispersive Polarised X-ray Fluorescence (EDPXRF). Particle Induced X-ray Emission (PIXE), and Particle Induced Gamma Emission (PIGE) in order to quantify their elemental constituents. Average annual concentrations of 88.4 µgm-3 (range: 6.8 - 590.1 µgm-3 ) and 25 µgm-3 (range: 1.3 - 128.7 µgm-3 ) were recorded for PM10 and PM2.5 respectively. These values were found to be above the European Union (EU) and World Health Organisation (WHO) maximum allowable limits. The enrichment factors (EF) computed from elemental composition of the aerosols showed that major elements (Na to Fe) were more enriched in the PM10 fraction than they were in the PM2.5 than fraction, while trace-elements (V to Pb) were more enriched than PM2.5 than in PM10. Positive Matrix Factorisation (PMF) source apportionment allowed us to identify, quantify, and characterize the following aerosol classes: sea salt (17%), soil dust (44%), industrial emissions (3%). Oil Combustion (15%), and biomass burning (21%) for the PM10 - 2.5, fraction. The same five factors were also apportioned in the PM2.5 fraction: sea spray (10%), oil combustion (41%), industrial emission (16%). biomass burning (31%), and soil dust (2%). Sources of anthropogenic pollution (oil combustion, biomass burning, and industrial emission) were the main contributors to the line PM2.5 fraction. while sources of natural origin (sea spray, and soil dust) contributed mainly to the coarse (PM10 - 2.5) fraction. The source profiles revealed the influence of long range aerosol transport and also an episode of the 'Saharan dust' impact during the harmattan season. Particulate matter has been linked to air pollution as an important component of pollutants

  20. Submicron aerosol source apportionment of wintertime pollution in Paris, France by Double Positive Matrix Factorization (PMF2 using Aerosol Chemical Speciation Monitor (ACSM and multi-wavelength Aethalometer

    Directory of Open Access Journals (Sweden)

    J.-E. Petit

    2014-06-01

    Full Text Available Online non-refractory submicron Aerosol Mass Spectrometer (AMS measurements in urban areas have successfully allowed the apportionment of specific sources and/or physical and chemical properties of the organic fraction. However, in order to be fully representative of PM pollution, a comprehensive source apportionment analysis is needed by taking into account all major components of submicron aerosols, creating strengthened bonds between the organic components and pollution sources. We present here a novel two-step methodology to perform such an analysis, by taking advantage of high time resolution of monitoring instruments: the Aerosol Chemical Speciation Monitor (ACSM and the multi-wavelength absorption measurements (Aethalometer AE31 in Paris, France. As a first step, organic aerosols (OA were deconvoluted to hydrocarbon-like OA (HOA, Biomass Burning OA (BBOA and Oxygenated OA (OOA with Positive Matrix Factorization, and black carbon was deconvolved into its wood burning and fossil fuel combustion fractions. A second PMF analysis was then carried out with organic factors, BC fractions and inorganic species (nitrate, sulfate, ammonium, chloride, leading to a~four-factor solution allowing real-time characterization of the major sources of PM1. Outputs of this PMF2 include two dominant combustion sources (wood burning and traffic as well as semi-volatile and low-volatile secondary aerosols. While HOA is found to be emitted by both wood burning and traffic, the latter sources occurred to significantly contribute also to OOA.

  1. Organic composition and source apportionment of fine aerosol at Monterrey, Mexico, based on organic markers

    Science.gov (United States)

    Mancilla, Y.; Mendoza, A.; Fraser, M. P.; Herckes, P.

    2016-01-01

    attribution results obtained using the CMB (chemical mass balance) model indicate that emissions from motor vehicle exhausts are the most important, accounting for the 64 % of the PM2.5, followed by meat-cooking operations with 31 % The vegetative detritus and biomass burning had the smallest contribution (2.2 % of the PM2.5). To our knowledge, this is only the second study to explore the organic composition and source apportionment of fine organic aerosol based on molecular markers in Mexico and the first for the MMA. Particularly molecular marker were quantified by solvent extraction with dichloromethane, derivatization, and gas chromatography with mass spectrometry (GC/MS).

  2. Characterization of emissions from South Asian biofuels and application to source apportionment of carbonaceous aerosol in the Himalayas

    Science.gov (United States)

    Stone, Elizabeth A.; Schauer, James J.; Pradhan, Bidya Banmali; Dangol, Pradeep Man; Habib, Gazala; Venkataraman, Chandra; Ramanathan, V.

    2010-03-01

    This study focuses on improving source apportionment of carbonaceous aerosol in South Asia and consists of three parts: (1) development of novel molecular marker-based profiles for real-world biofuel combustion, (2) application of these profiles to a year-long data set, and (3) evaluation of profiles by an in-depth sensitivity analysis. Emissions profiles for biomass fuels were developed through source testing of a residential stove commonly used in South Asia. Wood fuels were combusted at high and low rates, which corresponded to source profiles high in organic carbon (OC) or high in elemental carbon (EC), respectively. Crop wastes common to the region, including rice straw, mustard stalk, jute stalk, soybean stalk, and animal residue burnings, were also characterized. Biofuel profiles were used in a source apportionment study of OC and EC in Godavari, Nepal. This site is located in the foothills of the Himalayas and was selected for its well-mixed and regionally impacted air masses. At Godavari, daily samples of fine particulate matter (PM2.5) were collected throughout the year of 2006, and the annual trends in particulate mass, OC, and EC followed the occurrence of a regional haze in South Asia. Maximum concentrations occurred during the dry winter season and minimum concentrations occurred during the summer monsoon season. Specific organic compounds unique to aerosol sources, molecular markers, were measured in monthly composite samples. These markers implicated motor vehicles, coal combustion, biomass burning, cow dung burning, vegetative detritus, and secondary organic aerosol as sources of carbonaceous aerosol. A molecular marker-based chemical mass balance (CMB) model provided a quantitative assessment of primary source contributions to carbonaceous aerosol. The new profiles were compared to widely used biomass burning profiles from the literature in a sensitivity analysis. This analysis indicated a high degree of stability in estimates of source

  3. Studying organic aerosols during bonfire night in Manchester: ME-2 source apportionment

    Science.gov (United States)

    Reyes Villegas, Ernesto; Allan, James

    2016-04-01

    Over the past decade, there has been an increasing interest in short-term events that negatively affect air quality (Zhao et al. 2014) such as bonfires and fireworks. In general, during these episodes, high particulate matter concentrations drop within 24 hrs; however, it is the fine fraction that dominates the emissions, known to have a potentially negative impact on air quality, thus the impact of bonfires/fireworks on air quality must be considered. Aerosols and gases were measured using a variety of instruments at The University of Manchester, sampling atmospheric emissions on Bonfire night, 5 November, one week before and one week later, in 2013 and 2014. The Multilinear Engine (ME-2) factorization tool was used through the recently developed source finder interface (SoFi, Canonaco et al. 2013) to identify sources of organic aerosols (OA) sampled with an Aerosol Mass Spectrometer (AMS). ME-2 identified five sources: solid fuel OA (SFOA), hydrocarbon like OA (HOA), cooking OA (COA), semi-volatile (SVOOA) and low volatility (LVOOA) during both years. In 2014, air pollutant concentrations were particularly high, with the highest SFOA concentrations being 20 μgm-3 at 20:30 hrs. when fireworks from different parks in Manchester were launched. Black carbon (BC) concentrations started increasing before the fireworks, around 18:00 hrs; these concentrations are representative of bonfire emissions. However, traffic emissions may be contributing to BC here; further work will be done to differentiate traffic emissions from solid fuel emissions. By analysing daily aerosol concentrations according to DEFRA's Daily Air Quality Index, it is possible to observe that in 2014, PM2.5 concentrations were considered to be high (65 μgm-3) while in 2013, PM2.5 concentrations were considered low (12 μgm-3); in the case of BBOA, concentrations ranged from 2.9 μgm-3 in 2014 to 0.65 μgm-3 in 2013. The discrepancy between these studies is mainly a result of different meteorological

  4. Apportionment of atmospheric aerosols collected over Hungary to sources by target transformation factor analysis

    International Nuclear Information System (INIS)

    Wind-sector related regional signatures deduced from PIXE data revealed a major contribution of Middle-East Europe to the atmospheric aerosol loading in Europe. This is in accordance with the findings of a Swedish and a Turkish group. The characteristics of the local aerosols are given in terms of source profiles and source scores. (orig.)

  5. On the isolation of OC and EC and the optimal strategy of radiocarbon-based source apportionment of carbonaceous aerosols

    Directory of Open Access Journals (Sweden)

    Y. L. Zhang

    2012-07-01

    Full Text Available Radiocarbon (14C measurements of elemental carbon (EC and organic carbon (OC separately (as opposed to only total carbon, TC allow an unambiguous quantification of their non-fossil and fossil sources and represent an improvement in carbonaceous aerosol source apportionment. Isolation of OC and EC for accurate 14C determination requires complete removal of interfering fractions with maximum recovery. To evaluate the extent of positive and negative artefacts during OC and EC separation, we performed sample preparation with a commercial Thermo-Optical OC/EC Analyser (TOA by monitoring the optical properties of the sample during the thermal treatments. Extensive attention has been devoted to the set-up of TOA conditions, in particular, heating program and choice of carrier gas. Based on different types of carbonaceous aerosols samples, an optimised TOA protocol (Swiss_4S with four steps is developed to minimise the charring of OC, the premature combustion of EC and thus artefacts of 14C-based source apportionment of EC. For the isolation of EC for 14C analysis, the water-extraction treatment on the filter prior to any thermal treatment is an essential prerequisite for subsequent radiocarbon; otherwise the non-fossil contribution may be overestimated due to the positive bias from charring. The Swiss_4S protocol involves the following consecutive four steps (S1, S2, S3 and S4: (1 S1 in pure oxygen (O2 at 375 °C for separation of OC for untreated filters, and water-insoluble organic carbon (WINSOC for water-extracted filters; (2 S2 in O2 at 475 °C, followed by (3 S3 in helium (He at 650 °C, aiming at complete OC removal before EC isolation and leading to better consistency with thermal-optical protocols like EUSAAR_2, compared to pure oxygen methods; and (4 S4 in O2 at 760 °C for recovery of the remaining EC.

    WINSOC was found to have a significantly higher fossil

  6. On the isolation of OC and EC and the optimal strategy of radiocarbon-based source apportionment of carbonaceous aerosols

    Directory of Open Access Journals (Sweden)

    Y. L. Zhang

    2012-11-01

    Full Text Available Radiocarbon (14C measurements of elemental carbon (EC and organic carbon (OC separately (as opposed to only total carbon, TC allow an unambiguous quantification of their non-fossil and fossil sources and represent an improvement in carbonaceous aerosol source apportionment. Isolation of OC and EC for accurate 14C determination requires complete removal of interfering fractions with maximum recovery. The optimal strategy for 14C-based source apportionment of carbonaceous aerosols should follow an approach to subdivide TC into different carbonaceous aerosol fractions for individual 14C analyses, as these fractions may differ in their origins. To evaluate the extent of positive and negative artefacts during OC and EC separation, we performed sample preparation with a commercial Thermo-Optical OC/EC Analyser (TOA by monitoring the optical properties of the sample during the thermal treatments. Extensive attention has been devoted to the set-up of TOA conditions, in particular, heating program and choice of carrier gas. Based on different types of carbonaceous aerosols samples, an optimised TOA protocol (Swiss_4S with four steps is developed to minimise the charring of OC, the premature combustion of EC and thus artefacts of 14C-based source apportionment of EC. For the isolation of EC for 14C analysis, the water-extraction treatment on the filter prior to any thermal treatment is an essential prerequisite for subsequent radiocarbon measurements; otherwise the non-fossil contribution may be overestimated due to the positive bias from charring. The Swiss_4S protocol involves the following consecutive four steps (S1, S2, S3 and S4: (1 S1 in pure oxygen (O2 at 375 °C for separation of OC for untreated filters and water-insoluble organic carbon (WINSOC for water-extracted filters; (2 S2 in O2 at 475 °C followed by (3 S3 in helium (He at 650 °C, aiming at complete

  7. Chemical characterization and source apportionment of submicron aerosol particles with aerosol mass spectrometers

    OpenAIRE

    Carbone, Samara

    2014-01-01

    Fine particles affect climate change in complex ways that are not fully understood and were verified to be harmful to animal and human health. For these reasons information concerning their composition is important to understand their behaviour and to elaborate strategies to mitigate air pollution in urban environments. The overall objective of this study was to investigate in more detail chemical characteristics of ambient particulate matter (PM) and its sources. Studies made in laborat...

  8. Apportionment of urban aerosol sources in Chongqing (China) using synergistic on-line techniques

    Science.gov (United States)

    Chen, Yang; Yang, Fumo

    2016-04-01

    The sources of ambient fine particulate matter (PM2.5) during wintertime at a background urban location in Chongqing (southwestern China) have been determined. Aerosol chemical composition analyses were performed using multiple on-line techniques, such as single particle aerosol mass spectrometer (SPAMS) for single particle chemical composition, on-line elemental carbon-organic carbon analyzer (on-line OC-EC), on-line X-ray fluorescence (XRF) for elements, and in-situ Gas and Aerosol Compositions monitor (IGAC) for water-soluble ions in PM2.5. All the datasets from these techniques have been adjusted to a 1-h time resolution for receptor model input. Positive matrix factorization (PMF) has been used for resolving aerosol sources. At least six sources, including domestic coal burning, biomass burning, dust, traffic, industrial and secondary/aged factors have been resolved and interpreted. The synergistic on-line techniques were helpful for identifying aerosol sources more clearly than when only employing the results from the individual techniques. This results are useful for better understanding of aerosol sources and atmospheric processes.

  9. The AIRPARIF-AEROSOL project: A comprehensive source apportionment study of fine aerosols (PM2.5) in the region of Paris (France)

    Science.gov (United States)

    Sciare, Jean; Ghersi, Veronique; Bressi, Michael; Lameloise, Philippe; Bonnaire, Nicolas; Rosso, Amandine; Nicolas, Jose; Moukhtar, Sophie; Ferron, Anais; Baumier, Dominique

    2010-05-01

    With a population of about 12 millions inhabitants (20% of the French population), Greater Paris (France) is one of the most populated megacity in Europe and among the few located in developed countries. Due to its favorable geographical situation (far from other big European cities and influenced very often by clean oceanic air masses), it may be considered as a good candidate for investigating the build-up of urban air pollution from temperate industrialized countries. Particulate mass of fine aerosols with aerodynamic diameter below 2.5μm (PM2.5) is continuously monitored at several stations from great Paris for almost 8 years by the local air quality network (AIRPARIF), using a conventional on-line automatic system (R&P TEOM; see Patashnik and Rupprecht, 1991). During the period 2000-2006, levels of PM2.5 in the region of Paris have shown rather stable yearly mean values ranging 13 to 16?g/m3 whereas most of the other pollutants monitored by AIRPARIF have shown a net decrease during this period (http:\\www.airparif.asso.fr). Since the year 2007, this situation has becoming worse for particulate pollution with a net increase of the yearly mean concentration of PM2.5 (up to 21?g/m3), which increase is partly due to the use of a new PM2.5 measurement technique (R&P TEOM-FDMS instrument) enabling a proper determination of the semi-volatile fraction of fine aerosols. Although this new method greatly improves the determination of PM2.5, it has also brought PM2.5 levels in the region of Paris closer to the 25?g/m3 yearly mean targeted value recommended by Europe for 2010 (limit value for 2015). Efficient abatement policies aiming at reducing levels of PM2.5 in the region of Paris will have to be fed by preliminary PM2.5 source apportionment studies and exhaustive aerosol chemistry studies (chemical mass balance) allowing a better separation between regional to continental aerosol sources. The objective of the AIRPARIF-AEROSOL project aims to perform a spatially- and

  10. Source apportionment of submicron organic aerosols at an urban site by linear unmixing of aerosol mass spectra

    Directory of Open Access Journals (Sweden)

    V. A. Lanz

    2006-11-01

    Full Text Available Submicron ambient aerosol was characterized in summer 2005 at an urban background site in Zurich, Switzerland, during a three-week measurement campaign. Highly time-resolved samples of non-refractory aerosol components were analyzed with an Aerodyne aerosol mass spectrometer (AMS. Positive matrix factorization (PMF was used for the first time for AMS data to identify the main components of the total organic aerosol and their sources. The PMF retrieved factors were compared to measured reference mass spectra and were correlated with tracer species of the aerosol and gas phase measurements from collocated instruments. Six factors were found to explain virtually all variance in the data and could be assigned either to sources or to aerosol components such as oxygenated organic aerosol (OOA. Our analysis suggests that at the measurement site only a small (<10% fraction of organic PM1 originates from freshly emitted fossil fuel combustion. Other primary sources identified to be of similar or even higher importance are charbroiling (10–15% and wood burning (~10%, along with a minor source interpreted to be influenced by food cooking (6%. The fraction of all identified primary sources is considered as primary organic aerosol (POA. This interpretation is supported by calculated ratios of the modelled POA and measured primary pollutants such as elemental carbon (EC, NOx, and CO, which are in good agreement to literature values. A high fraction (60–69% of the measured organic aerosol mass is OOA which is interpreted mostly as secondary organic aerosol (SOA. This oxygenated organic aerosol can be separated into a highly aged fraction, OOA I, (40–50% with low volatility and a mass spectrum similar to fulvic acid, and a more volatile and probably less processed fraction, OOA II (on average 20%. This is the first publication of a multiple component analysis technique to AMS organic spectral data and also the first report of the

  11. Nuclear microprobe analysis and source apportionment of individual atmospheric aerosol particles

    International Nuclear Information System (INIS)

    In atmospheric aerosol reserach, one key issue is to determine the sources of the airborne particles. Bulk PIXE analysis coupled with receptor modeling provides a useful, but limited view of the aerosol sources influencing one particular site or sample. The scanning nuclear microprobe (SNM) technique is a microanalytical technique that gives unique information on individual aerosol particles. In the SNM analyses a 1.0 μm size 2.4 MeV proton beam from the Oxford SNM was used. The trace elements with Z>11 were measured by the particle induced X-ray emission (PIXE) method with detection limits in the 1-10 ppm range. Carbon, nitrogen and oxygen are measured simultaneously using Rutherford backscattering spectrometry (RBS). Atmospheric aerosol particles were collected at the Brazilian Antarctic Station and at biomass burning sites in the Amazon basin tropical rain forest in Brazil. In the Antarctic samples, the sea-salt aerosol particles were clearly predominating, with NaCl and CaSO4 as major compounds with several trace elements as Al, Si, P, K, Mn, Fe, Ni, Cu, Zn, Br, Sr, and Pb. Factor analysis of the elemental data showed the presence of four components: 1) Soil dust particles; 2) NaCl particles; 3) CaSO4 with Sr; and 4) Br and Mg. Strontium, observed at 20-100 ppm levels, was always present in the CaSO4 particles. The hierarchical cluster procedure gave results similar to the ones obtained through factor analysis. For the tropical rain forest biomass burning aerosol emissions, biogenic particles with a high organic content dominate the particle population, while K, P, Ca, Mg, Zn, and Si are the dominant elements. Zinc at 10-200 ppm is present in biogenic particles rich in P and K. The quantitative aspects and excellent detection limits make SNM analysis of individual aerosol particles a very powerful analytical tool. (orig.)

  12. Chemical composition and source apportionment of aerosol over the Klang valley

    International Nuclear Information System (INIS)

    This paper reports the study of aerosol chemical composition of fine particles (PM 2.5) and possible sources of air pollution over the Klang Valley, Kuala Lumpur, based on the samples collected for a period of 6 years from July 2000 to Jun 2006. Samples collected were measured for mass, black carbon and elemental content of Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Br and Pb. The fine aerosol mass concentration ranged from 11 - 110 ?g/m3. Black carbon is the major component of the fine aerosol with the weight fraction of 20%, whilst S is the major elemental content with the weight fraction about 5% as relative to the fine particle mass. The factor analysis method, positive matrix factorization (PMF) was then used to confirm the possible sources. The result of PMF analysis produced five-factor sources that contribute to the fine particles in the Klang Valley area. The five factors represent sea spray, industry, motor vehicles, smoke and soil. Motor vehicle is the main source of particulates in the area, with an average contribution of 51% of the fine mass concentration, followed by industry, smoke, sea spray and soil, with average contribution of 28%, 14%, 3.6% and 2.1%, respectively. (Author)

  13. Source apportionment of single aerosol particles in the atmosphere of Shanghai city

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A nuclear microprobe with high spatial resolution and high analyti cal sensitivity was applied to analyze atmospheric aerosol at five monitoring sites in Shanghai city. Meantime, a new pattern recognition technique, which used the micro PIXE spectrum of a single aerosol particle as its fingerprint, was developed to identify the origin of the particle. The results showed that the major contributors to the at mosphere pollution were soil dust (31.6%), building dust (30.8%), and the next were vehicle exhaust (13.7%), metallurgic industry excrements (5.6%), oil combustion (5%) and coal combustion (2.3%). Besides these, about 10% of the particles could not be identified. Based on the cluster analysis of these particles, they could be divided into eight groups. By inference, they might belong to some sub-pollution sources from soil dust, building dust and metallurgic industry excrements. Moreover, some new pollution sources from tyres and chemical plants were also revealed.

  14. Online coupling of pure O2 thermo-optical methods - 14C AMS for source apportionment of carbonaceous aerosols

    Science.gov (United States)

    Agrios, Konstantinos; Salazar, Gary; Zhang, Yan-Lin; Uglietti, Chiara; Battaglia, Michael; Luginbühl, Marc; Ciobanu, Viorela Gabriela; Vonwiller, Matthias; Szidat, Sönke

    2015-10-01

    This paper reports on novel separation methods developed for the direct determination of 14C in organic carbon (OC) and elemental carbon (EC), two sub-fractions of total carbon (TC) of atmospheric air particulate matter. Until recently, separation of OC and EC has been performed off-line by manual and time-consuming techniques that relied on the collection of massive CO2 fractions. We present here two on-line hyphenated techniques between a Sunset OC/EC analyzer and a MICADAS (MIni radioCArbon DAting System) accelerator mass spectrometer (AMS) equipped with a gas ion source. The first implementation facilitates the direct measurement in the low sample size range (<10 μg C) with high throughput on a routine basis, while the second explores the potential for a continuous-flow real-time CO2 gas feed into the ion source. The performance achieved with reference materials and real atmospheric samples will be discussed to draw conclusions on the improvement offered in the field of 14C aerosol source apportionment.

  15. Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing

    International Nuclear Information System (INIS)

    Particulate matter (PM2.5) samples were collected over Delhi, India during January to December 2012 and analysed for carbonaceous aerosols and inorganic ions (SO42− and NO3−) in order to examine variations in atmospheric chemistry, combustion sources and influence of long-range transport. The PM2.5 samples are measured (offline) via medium volume air samplers and analysed gravimetrically for carbonaceous (organic carbon, OC; elemental carbon, EC) aerosols and inorganic ions (SO42− and NO3−). Furthermore, continuous (online) measurements of PM2.5 (via Beta-attenuation analyser), black carbon (BC) mass concentration (via Magee scientific Aethalometer) and carbon monoxide (via CO-analyser) are carried out. PM2.5 (online) range from 18.2 to 500.6 μg m−3 (annual mean of 124.6 ± 87.9 μg m−3) exhibiting higher night-time (129.4 μg m−3) than daytime (103.8 μg m−3) concentrations. The online concentrations are 38% and 28% lower than the offline during night and day, respectively. In general, larger night-time concentrations are found for the BC, OC, NO3−and SO42−, which are seasonally dependent with larger differences during late post-monsoon and winter. The high correlation (R2 = 0.74) between OC and EC along with the OC/EC of 7.09 (day time) and 4.55 (night-time), suggest significant influence of biomass-burning emissions (burning of wood and agricultural waste) as well as secondary organic aerosol formation during daytime. Concentrated weighted trajectory (CWT) analysis reveals that the potential sources for the carbonaceous aerosols and pollutants are local emissions within the urban environment and transported smoke from agricultural burning in northwest India during post-monsoon. BC radiative forcing estimates result in very high atmospheric heating rates (~ 1.8–2.0 K day−1) due to agricultural burning effects during the 2012 post-monsoon season. - Highlights: • Very high PM2.5 (> 200 µg m−3) levels over Delhi during agricultural

  16. Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing

    Energy Technology Data Exchange (ETDEWEB)

    Bisht, D.S. [Indian Institute of Tropical Meteorology, New Delhi (India); Dumka, U.C., E-mail: dumka@aries.res.in [Aryabhatta Research Institute of Observational Sciences, Nainital (India); Kaskaoutis, D.G. [School of Natural Sciences, Shiv Nadar University, Tehsil Dadri (India); Pipal, A.S. [Department of Chemistry, Savitribai Phule Pune University, Pune (India); Srivastava, A.K. [Indian Institute of Tropical Meteorology, New Delhi (India); Soni, V.K.; Attri, S.D.; Sateesh, M. [India Meteorology Department, Lodhi Road, New Delhi (India); Tiwari, S. [Indian Institute of Tropical Meteorology, New Delhi (India)

    2015-07-15

    Particulate matter (PM{sub 2.5}) samples were collected over Delhi, India during January to December 2012 and analysed for carbonaceous aerosols and inorganic ions (SO{sub 4}{sup 2−} and NO{sub 3}{sup −}) in order to examine variations in atmospheric chemistry, combustion sources and influence of long-range transport. The PM{sub 2.5} samples are measured (offline) via medium volume air samplers and analysed gravimetrically for carbonaceous (organic carbon, OC; elemental carbon, EC) aerosols and inorganic ions (SO{sub 4}{sup 2−} and NO{sub 3}{sup −}). Furthermore, continuous (online) measurements of PM{sub 2.5} (via Beta-attenuation analyser), black carbon (BC) mass concentration (via Magee scientific Aethalometer) and carbon monoxide (via CO-analyser) are carried out. PM{sub 2.5} (online) range from 18.2 to 500.6 μg m{sup −3} (annual mean of 124.6 ± 87.9 μg m{sup −3}) exhibiting higher night-time (129.4 μg m{sup −3}) than daytime (103.8 μg m{sup −3}) concentrations. The online concentrations are 38% and 28% lower than the offline during night and day, respectively. In general, larger night-time concentrations are found for the BC, OC, NO{sub 3}{sup −}and SO{sub 4}{sup 2−}, which are seasonally dependent with larger differences during late post-monsoon and winter. The high correlation (R{sup 2} = 0.74) between OC and EC along with the OC/EC of 7.09 (day time) and 4.55 (night-time), suggest significant influence of biomass-burning emissions (burning of wood and agricultural waste) as well as secondary organic aerosol formation during daytime. Concentrated weighted trajectory (CWT) analysis reveals that the potential sources for the carbonaceous aerosols and pollutants are local emissions within the urban environment and transported smoke from agricultural burning in northwest India during post-monsoon. BC radiative forcing estimates result in very high atmospheric heating rates (~ 1.8–2.0 K day{sup −1}) due to agricultural burning effects

  17. Source apportionment of single aerosol particles in the atmosphere of Shanghai city

    International Nuclear Information System (INIS)

    A nuclear microprobe with high spatial resolution and high analytical sensitivity was applied to analyze atmospheric aerosol at five monitoring sites in Shanghai city. Meantime, a new pattern recognition technique, which used the micro-PIXE spectrum of a single aerosol particle as its fingerprint, was developed to identify the origin of the particle. The results showed that the major contributors to the atmosphere pollution were soil dust (31.6%), building dust (30.8%), and the next were vehicle exhaust (13.7%), metallurgic industry excrements (5.6%), oil combustion (5%) and coal combustion (2.3%). Besides these, about 10% of the particles could not be identified. Based on the cluster analysis of these particles, they could be divided into soil dust, building dust and metallurgic industry excrements. Moreover, some new pollution sources from tyres and chemical plants were also revealed

  18. Characterization and source apportionment of submicron aerosol with aerosol mass spectrometer during the PRIDE-PRD 2006 campaign

    Science.gov (United States)

    Xiao, R.; Takegawa, N.; Zheng, M.; Kondo, Y.; Miyazaki, Y.; Miyakawa, T.; Hu, M.; Shao, M.; Zeng, L.; Gong, Y.; Lu, K.; Deng, Z.; Zhao, Y.; Zhang, Y. H.

    2011-07-01

    Size-resolved chemical compositions of non-refractory submicron aerosol were measured using an Aerodyne quadrupole aerosol mass spectrometer (Q-AMS) at the rural site Back Garden (BG), located ~50 km northwest of Guangzhou in July 2006. This paper characterized the submicron aerosol particles of regional air pollution in Pearl River Delta (PRD) in the southern China. Organics and sulfate dominated the submicron aerosol compositions, with average mass concentrations of 11.8 ± 8.4 μg m-3 and 13.5 ± 8.7 μg m-3, respectively. Unlike other air masses, the air masses originated from Southeast-South and passing through the PRD urban areas exhibited distinct bimodal size distribution characteristics for both organics and sulfate: the first mode peaked at vacuum aerodynamic diameters (Dva) ∼200 nm and the second mode occurred at Dva from 300-700 nm. With the information from AMS, it was found from this study that the first mode of organics in PRD regional air masses was contributed by both secondary organic aerosol formation and combustion-related emissions, which is different from most findings in other urban areas (first mode of organics primarily from combustion-related emissions). The analysis of AMS mass spectra data by positive matrix factorization (PMF) model identified three sources of submicron organic aerosol including hydrocarbon-like organic aerosol (HOA), low volatility oxygenated organic aerosol (LV-OOA) and semi-volatile oxygenated organic aerosol (SV-OOA). The strong correlation between HOA and EC indicated primary combustion emissions as the major source of HOA while a close correlation between SV-OOA and semi-volatile secondary species nitrate as well as between LV-OOA and nonvolatile secondary species sulfate suggested secondary aerosol formation as the major source of SV-OOA and LV-OOA at the BG site. However, LV-OOA was more aged than SV-OOA as its spectra was highly correlated with the reference spectra of fulvic acid, an indicator of aged and

  19. Carbonaceous aerosols and pollutants over Delhi urban environment: Temporal evolution, source apportionment and radiative forcing.

    Science.gov (United States)

    Bisht, D S; Dumka, U C; Kaskaoutis, D G; Pipal, A S; Srivastava, A K; Soni, V K; Attri, S D; Sateesh, M; Tiwari, S

    2015-07-15

    Particulate matter (PM2.5) samples were collected over Delhi, India during January to December 2012 and analysed for carbonaceous aerosols and inorganic ions (SO4(2-) and NO3(-)) in order to examine variations in atmospheric chemistry, combustion sources and influence of long-range transport. The PM2.5 samples are measured (offline) via medium volume air samplers and analysed gravimetrically for carbonaceous (organic carbon, OC; elemental carbon, EC) aerosols and inorganic ions (SO4(2-) and NO3(-)). Furthermore, continuous (online) measurements of PM2.5 (via Beta-attenuation analyser), black carbon (BC) mass concentration (via Magee scientific Aethalometer) and carbon monoxide (via CO-analyser) are carried out. PM2.5 (online) range from 18.2 to 500.6μgm(-3) (annual mean of 124.6±87.9μgm(-3)) exhibiting higher night-time (129.4μgm(-3)) than daytime (103.8μgm(-3)) concentrations. The online concentrations are 38% and 28% lower than the offline during night and day, respectively. In general, larger night-time concentrations are found for the BC, OC, NO3(-)and SO4(2-), which are seasonally dependent with larger differences during late post-monsoon and winter. The high correlation (R(2)=0.74) between OC and EC along with the OC/EC of 7.09 (day time) and 4.55 (night-time), suggest significant influence of biomass-burning emissions (burning of wood and agricultural waste) as well as secondary organic aerosol formation during daytime. Concentrated weighted trajectory (CWT) analysis reveals that the potential sources for the carbonaceous aerosols and pollutants are local emissions within the urban environment and transported smoke from agricultural burning in northwest India during post-monsoon. BC radiative forcing estimates result in very high atmospheric heating rates (~1.8-2.0Kday(-1)) due to agricultural burning effects during the 2012 post-monsoon season. PMID:25864155

  20. Source apportionment of fine organic aerosol in Mexico City during the MILAGRO Experiment 2006

    Directory of Open Access Journals (Sweden)

    E. A. Stone

    2007-07-01

    Full Text Available Organic carbon (OC comprises a large fraction of fine particulate matter (PM2.5 in Mexico City. Daily and select 12-h PM2.5 samples were collected in urban and peripheral sites in Mexico City from 17–30 March 2006. Samples were analyzed for OC and elemental carbon (EC using thermal-optical filter-based methods. Real-time water-soluble organic carbon (WSOC was collected at the peripheral site. Organic compounds, particularly molecular markers, were quantified by soxhlet extraction with methanol and dichloromethane, derivitization, and gas chromatography with mass spectrometric detection (GCMS. A chemical mass balance model (CMB based on molecular marker species was used to determine the relative contribution of major sources to ambient OC. Motor vehicles, including diesel and gasoline, consistently accounted for 47% of OC in the urban area and 31% on the periphery. The daily contribution of biomass burning to OC was highly variable, and ranged from 5–30% at the urban site and 11–50% at the peripheral site. The remaining OC unapportioned to primary sources showed a strong correlation with WSOC and was considered to be secondary in nature. Comparison of temporally resolved OC showed that contributions from primary aerosol sources during daylight hours were not significantly different from nighttime. This study provides quantitative understanding of the important sources of OC during the MILAGRO 2006 field campaign.

  1. Source apportionment of fine organic aerosol in Mexico City during the MILAGRO experiment 2006

    Directory of Open Access Journals (Sweden)

    E. A. Stone

    2008-03-01

    Full Text Available Organic carbon (OC comprises a large fraction of fine particulate matter (PM2.5 in Mexico City. Daily and select 12-h PM2.5 samples were collected in urban and peripheral sites in Mexico City from 17–30 March 2006. Samples were analyzed for OC and elemental carbon (EC using thermal-optical filter-based methods. Real-time water-soluble organic carbon (WSOC was collected at the peripheral site. Organic compounds, particularly molecular markers, were quantified by soxhlet extraction with methanol and dichloromethane, derivitization, and gas chromatography with mass spectrometric detection (GCMS. A chemical mass balance model (CMB based on molecular marker species was used to determine the relative contribution of major sources to ambient OC. Motor vehicles, including diesel and gasoline, consistently accounted for 49% of OC in the urban area and 32% on the periphery. The daily contribution of biomass burning to OC was highly variable, and ranged from 5–26% at the urban site and 7–39% at the peripheral site. The remaining OC unapportioned to primary sources showed a strong correlation with WSOC and was considered to be secondary in nature. Comparison of temporally resolved OC showed that contributions from primary aerosol sources during daylight hours were not significantly different from nighttime. This study provides quantitative understanding of the important sources of OC during the MILAGRO 2006 field campaign.

  2. Radiocarbon-based source apportionment of elemental carbon aerosols at two South Asian receptor observatories over a full annual cycle

    International Nuclear Information System (INIS)

    Black carbon (BC) aerosols impact climate and air quality. Since BC from fossil versus biomass combustion have different optical properties and different abilities to penetrate the lungs, it is important to better understand their relative contributions in strongly affected regions such as South Asia. This study reports the first year-round 14C-based source apportionment of elemental carbon (EC), the mass-based correspondent to BC, using as regional receptor sites the international Maldives Climate Observatory in Hanimaadhoo (MCOH) and the mountaintop observatory of the Indian Institute of Tropical Meteorology in Sinhagad, India (SINH). For the highly-polluted winter season (December–March), the fractional contribution to EC from biomass burning (fbio) was 53 ± 5% (n = 6) at MCOH and 56 ± 3% at SINH (n = 5). The fbio for the non-winter remainder was 53 ± 11% (n = 6) at MCOH and 48 ± 8% (n = 7) at SINH. This observation-based constraint on near-equal contributions from biomass burning and fossil fuel combustion at both sites compare with predictions from eight technology-based emission inventory (EI) models for India of (fbio)EI spanning 55–88%, suggesting that most current EI for Indian BC systematically under predict the relative contribution of fossil fuel combustion. A continued iterative testing of bottom-up EI with top-down observational source constraints has the potential to lead to reduced uncertainties regarding EC sources and emissions to the benefit of both models of climate and air quality as well as guide efficient policies to mitigate emissions. (letter)

  3. Source apportionment of submicron organic aerosol at an urban background and a road site in Barcelona (Spain during SAPUSS

    Directory of Open Access Journals (Sweden)

    M. Alier

    2013-10-01

    Full Text Available This study investigates the contribution of potential sources to the submicron (PM1 organic aerosol (OA simultaneously detected at an urban background (UB and a road site (RS in Barcelona during the 30 days of the intensive field campaign of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies, September–October 2010. A total of 103 filters at 12 h sampling time resolution were collected at both sites. Thirty-six neutral and polar organic compounds of known emission sources and photo-chemical transformation processes were analyzed by gas chromatography–mass spectrometry (GC-MS. The concentrations of the trace chemical compounds analyzed are herein presented and discussed. Additionally, OA source apportionment was performed by multivariate curve resolution–alternating least squares (MCR-ALS and six OA components were identified at both sites: two were of primary anthropogenic OA origin and three of secondary OA origin, while a sixth one was not clearly defined. Primary organics from emissions of local anthropogenic activities (urban primary organic aerosol, or POA Urban, mainly traffic emissions but also cigarette smoke, contributed 43% (1.5 μg OC m−3 and 18% (0.4 μg OC m−3 to OA at RS and UB, respectively. A secondary primary source – biomass burning (BBOA – was found in all the samples (average values 7% RS; 12% UB; 0.3 μg OC m−3, but this component was substantially contributing to OA only when the sampling sites were under influence of regional air mass circulation (REG.. Three secondary organic aerosol (SOA components (describing overall 60% of the variance were observed in the urban ambient PM1. Products of isoprene oxidation (SOA ISO – i.e. 2-methylglyceric acid, C5 alkene triols and 2-methyltetrols – showed the highest abundance at both sites when the city was under influence of inland air masses. The overall concentrations of SOA ISO were similar at both sites (0.4 and 0.3 μg m−3, or 16% and 7%, at

  4. Source apportionment of submicron organic aerosol at an urban background and a road site in Barcelona, Spain

    Directory of Open Access Journals (Sweden)

    M. Alier

    2013-04-01

    Full Text Available This study investigates the contribution of potential sources to the sub-micron (PM1 organic aerosol (OA simultaneously detected at an urban background (UB and a road site (RS in Barcelona during the 30 days of the intensive field campaign of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies, September–October 2010. 103 filters at 12 h sampling time resolution were collected at both sites. Thirty-six neutral and polar organic compounds of known emission sources and photo-chemical transformation processes were analyzed by Gas Chromatography-Mass Spectrometry (GC-MS. The concentrations of the trace chemical compounds analyzed are herein presented and discussed. Additionally, OA source apportionment was performed by Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS and six OA components were identified at both sites: two were of primary anthropogenic OA origin, three of secondary OA origin while a sixth one was not clearly defined. Primary organics from emissions of local anthropogenic activities (Urban primary organic aerosol, Urban POA contributed for 43% (1.5 μg OC m−3 and 18% (0.4 μg OC m−3 to OA in RS and UB, respectively. A secondary primary source – biomass burning (BBOA – was found in all the samples (average values 7% RS; 12% UB; 0.3 μg OC m−3, but this component was substantially contributing to OA only when the sampling sites were under influence of regional air mass circulation. Three Secondary Organic Aerosol (SOA components (describing overall 60% of the variance were observed in the urban ambient PM1. Products of isoprene oxidation (SOA ISO, i.e. 2-methylglyceric acid, C5 alkene triols and 2-methyltetrols, showed the highest abundance at both sites when the city was under influence of inland air masses. The overall concentrations of SOA ISO were similar at both sites (0.4 and 0.3 μg m−3, 16% and 7%, at UB and RS, respectively. By contrast, a SOA biogenic component attributed to

  5. Chemical characterization of fine organic aerosol for source apportionment at Monterrey, Mexico

    Science.gov (United States)

    Mancilla, Y.; Mendoza, A.; Fraser, M. P.; Herckes, P.

    2015-07-01

    , source attribution results obtained using the CMB model indicate that emissions from motor vehicle exhausts are the most important, accounting for the 64 % of the PM2.5. The vegetative detritus and biomass burning had the smallest contribution (2.2 % of the PM2.5). To our knowledge, this is the second study to explore the broad chemical characterization of fine organic aerosol in Mexico and the first for the MMA.

  6. Chemical characterization of fine organic aerosol for source apportionment at Monterrey, Mexico

    Directory of Open Access Journals (Sweden)

    Y. Mancilla

    2015-07-01

    events. Finally, source attribution results obtained using the CMB model indicate that emissions from motor vehicle exhausts are the most important, accounting for the 64 % of the PM2.5. The vegetative detritus and biomass burning had the smallest contribution (2.2 % of the PM2.5. To our knowledge, this is the second study to explore the broad chemical characterization of fine organic aerosol in Mexico and the first for the MMA.

  7. ACTRIS ACSM intercomparison – Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers

    Directory of Open Access Journals (Sweden)

    R. Fröhlich

    2015-06-01

    Full Text Available Chemically resolved atmospheric aerosol data sets from the largest intercomparison of the Aerodyne aerosol chemical speciation monitors (ACSMs performed to date were collected at the French atmospheric supersite SIRTA. In total 13 quadrupole ACSMs (Q-ACSM from the European ACTRIS ACSM network, one time-of-flight ACSM (ToF-ACSM, and one high-resolution ToF aerosol mass spectrometer (AMS were operated in parallel for about 3 weeks in November and December~2013. Part 1 of this study reports on the accuracy and precision of the instruments for all the measured species. In this work we report on the intercomparison of organic components and the results from factor analysis source apportionment by positive matrix factorisation (PMF utilising the multilinear engine 2 (ME-2. Except for the organic contribution of mass-to-charge ratio m/z 44 to the total organics (f44, which varied by factors between 0.6 and 1.3 compared to the mean, the peaks in the organic mass spectra were similar among instruments. The m/z 44 differences in the spectra resulted in a variable f44 in the source profiles extracted by ME-2, but had only a minor influence on the extracted mass contributions of the sources. The presented source apportionment yielded four factors for all 15 instruments: hydrocarbon-like organic aerosol (HOA, cooking-related organic aerosol (COA, biomass burning-related organic aerosol (BBOA and secondary oxygenated organic aerosol (OOA. ME-2 boundary conditions (profile constraints were optimised individually by means of correlation to external data in order to achieve equivalent / comparable solutions for all ACSM instruments and the results are discussed together with the investigation of the influence of alternative anchors (reference profiles. A comparison of the ME-2 source apportionment output of all 15 instruments resulted in relative standard deviations (SD from the mean between 13.7 and 22.7 % of the source's average mass contribution depending on

  8. ACTRIS ACSM intercomparison – Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers

    Directory of Open Access Journals (Sweden)

    R. Fröhlich

    2015-02-01

    Full Text Available Chemically resolved atmospheric aerosol data sets from the largest intercomparison of the Aerodyne aerosol chemical speciation monitors (ACSM performed to date were collected at the French atmospheric supersite SIRTA. In total 13 quadrupole ACSMs (Q-ACSM from the European ACTRIS ACSM network, one time-of-flight ACSM (ToF-ACSM, and one high-resolution ToF aerosol mass spectrometer (AMS were operated in parallel for about three weeks in November and December 2013. Part 1 of this study reports on the accuracy and precision of the instruments for all the measured species. In this work we report on the intercomparison of organic components and the results from factor analysis source apportionment by positive matrix factorisation (PMF utilising the multilinear engine 2 (ME-2. Except for the organic contribution of m/z 44 to the total organics (f44, which varied by factors between 0.6 and 1.3 compared to the mean, the peaks in the organic mass spectra were similar among instruments. The m/z 44 differences in the spectra resulted in a variable f44 in the source profiles extracted by ME-2, but had only a minor influence on the extracted mass contributions of the sources. The presented source apportionment yielded four factors for all 15 instruments: hydrocarbon-like organic aerosol (HOA, cooking-related organic aerosol (COA, biomass burning-related organic aerosol (BBOA and secondary oxygenated organic aerosol (OOA. Individual application and optimisation of the ME-2 boundary conditions (profile constraints are discussed together with the investigation of the influence of alternative anchors (reference profiles. A comparison of the ME-2 source apportionment output of all 15 instruments resulted in relative SD from the mean between 13.7 and 22.7% of the source's average mass contribution depending on the factors (HOA: 14.3 ± 2.2%, COA: 15.0 ± 3.4%, OOA: 41.5 ± 5.7%, BBOA: 29.3 ± 5.0%. Factors which tend to be subject to minor factor mixing (in this

  9. Size distribution, mixing state and source apportionments of black carbon aerosols in London during winter time

    Directory of Open Access Journals (Sweden)

    D. Liu

    2014-06-01

    Dc distributions and coating thicknesses, with BCsf displaying larger Dc and larger coating thickness compared to BCtr. BC particles from different sources were also apportioned by applying a multiple linear regression between the total BC mass and each AMS-PMF factor (BC-AMS-PMF method, and also attributed by applying the absorption spectral dependence of carbonaceous aerosols to 7-wavelength Aethalometer measurements (Aethalometer method. Air masses that originated from westerly (W, southeasterly (SE, or easterly (E sectors showed BCsf fractions that ranged from low to high, and whose mass median Dc values were 137 ± 10 nm, 143 ± 11 nm, and 169 ± 29 nm respectively. The corresponding bulk relative coating thickness of BC (coated particle size / BC core – Dp / Dc for these same sectors was 1.28 ± 0.07, 1.45 ± 0.16, and 1.65 ± 0.19. For W, SE and E air masses, the number fraction of BCsf ranged from 6 ± 2% to 11 ± 5% to 18 ± 10% respectively, but importantly the larger BC core sizes lead to an increased fraction of BCsf in terms of mass than number (for W–SE–E air masses, the BCsf mass fractions ranged from 16 ± 6 %–24 ± 10%–39 ± 14% respectively. An increased fraction of non-BC particles (particles that did not contain a BC core was also observed when SF sources were more significant. The BC mass attribution by the SP2 method agreed well with the BC-AMS-PMF multiple linear regression method (BC-AMS-PMF : SP2 ratio = 1.05, r2 = 0.80 over the entire experimental period. Good agreement was found between BCsf attributed with the Aethalometer model and the SP2. However, the assumed Absorption Ångström Exponent (αwb had to be changed according to the different air mass sectors to yield the best comparison with the SP2. This could be due to influences of fuel type or burn phase.

  10. Characteristics and source apportionment of atmospheric aerosols at the summit of Mount Tai during summertime

    Directory of Open Access Journals (Sweden)

    H. Xu

    2009-07-01

    Full Text Available To investigate the long-range transport of air pollutants in North China, aerosol samples were collected at the summit of Mount Tai (Shandong province in June of 2006. Water-soluble ion and metal element concentrations were analyzed using ion chromatography (IC and inductively coupled plasma-mass spectrometry (ICP-MS, respectively. Results showed three different size distributions for the ions and metal elements characterized, including masses in: (i the accumulation mode, with a peak at 0.43 to 1.1 μm (SO42−, NH4+, K+, Pb, Zn, Ti; (ii the coarse particle mode, with a peak at 4.7 to 5.8 μm (Ca2+, Mg2+, Ca, Mg, Fe, Al, Ba, Mn; and (iii a bimodal distribution, with peaks at 0.43 to 0.65 μm and 4.7 to 5.8 μm (NO3, Na+, Cl, Na, Co, Ni, Mo, Cu. When SO42− was in high concentration, the mass median diameter was between 0.5 μm and 0.8 μm, belonging to the "drop mode". The concentrations of SO42−, NO3, NH4+, and K+ were quite variable. Interestingly, SO42−, NO3, and NH4+ reached their highest concentrations when the humid air mass was coming from the south. Furthermore, crustal element concentrations increased when the air mass came from the north and pollution element concentrations were elevated when the air mass came from the south.

  11. Source apportionment and dynamic changes of carbonaceous aerosols during the haze bloom-decay process in China based on radiocarbon and organic molecular tracers

    Science.gov (United States)

    Liu, Junwen; Li, Jun; Liu, Di; Ding, Ping; Shen, Chengde; Mo, Yangzhi; Wang, Xinming; Luo, Chunling; Cheng, Zhineng; Szidat, Sönke; Zhang, Yanlin; Chen, Yingjun; Zhang, Gan

    2016-03-01

    Fine carbonaceous aerosols (CAs) is the key factor influencing the currently filthy air in megacities in China, yet few studies simultaneously focus on the origins of different CAs species using specific and powerful source tracers. Here, we present a detailed source apportionment for various CAs fractions, including organic carbon (OC), water-soluble OC (WSOC), water-insoluble OC (WIOC), elemental carbon (EC) and secondary OC (SOC) in the largest cities of North (Beijing, BJ) and South China (Guangzhou, GZ), using the measurements of radiocarbon and anhydrosugars. Results show that non-fossil fuel sources such as biomass burning and biogenic emission make a significant contribution to the total CAs in Chinese megacities: 56 ± 4 in BJ and 46 ± 5 % in GZ, respectively. The relative contributions of primary fossil carbon from coal and liquid petroleum combustions, primary non-fossil carbon and secondary organic carbon (SOC) to total carbon are 19, 28 and 54 % in BJ, and 40, 15 and 46 % in GZ, respectively. Non-fossil fuel sources account for 52 in BJ and 71 % in GZ of SOC, respectively. These results suggest that biomass burning has a greater influence on regional particulate air pollution in North China than in South China. We observed an unabridged haze bloom-decay process in South China, which illustrates that both primary and secondary matter from fossil sources played a key role in the blooming phase of the pollution episode, while haze phase is predominantly driven by fossil-derived secondary organic matter and nitrate.

  12. Aerosol composition and source apportionment in the Mexico City Metropolitan Area with PIXE/PESA/STIM and multivariate analysis

    OpenAIRE

    Johnson, K.S.; B. de Foy; B. Zuberi; L. T. Molina; M. J. Molina; Xie, Y; A. Laskin; Shutthanandan, V.

    2006-01-01

    Aerosols play an important role in the atmosphere but are poorly characterized, particularly in urban areas like the Mexico City Metropolitan Area (MCMA). The chemical composition of urban particles must be known to assess their effects on the environment, and specific particulate emissions sources should be identified to establish effective pollution control standards. For these reasons, samples of particulate matter ≤2.5 μm (PM2.5) were collected during the MCMA-2003 Field Campaign f...

  13. Aerosol composition and source apportionment in the Mexico City Metropolitan Area with PIXE/PESA/STIM and multivariate analysis

    OpenAIRE

    Johnson, K.S.; B. de Foy; B. Zuberi; L. T. Molina; M. J. Molina; Xie, Y; A. Laskin; Shutthanandan, V.

    2006-01-01

    Aerosols play an important role in the atmosphere but are poorly characterized, particularly in urban areas like the Mexico City Metropolitan Area (MCMA). The chemical composition of urban particles must be known to assess their effects on the environment, and specific particulate emissions sources should be identified to establish effective pollution control standards. For these reasons, samples of particulate matter ≤2.5 μm (PM2.5) were collected dur...

  14. Organic Aerosol source apportionment in London 2013 with ME-2: exploring the solution space with annual and seasonal analysis

    OpenAIRE

    Reyes-Villegas, Ernesto; Green, David C.; Priestman, Max; Canonaco, Francesco; Coe, Hugh; Prévôt, André S.H.; Allan, James D.

    2016-01-01

    The Multilinear Engine (ME-2) factorisation tool is being widely used following the recent development of the Source Finder (SoFi) interphase at PSI. However, the success of this tool, when using the a-value approach, largely depends on the inputs (i.e. target profiles) applied as well as the experience of the user. A strategy to explore the solution space is proposed to objectively determine the solution that best deconvolves the organic aerosol (OA) sources where trilinear regression has pr...

  15. Aerosol composition and source apportionment in the Mexico City Metropolitan Area with PIXE/PESA/STIM and multivariate analysis

    Directory of Open Access Journals (Sweden)

    K. S. Johnson

    2006-01-01

    Full Text Available Aerosols play an important role in the atmosphere but are poorly characterized, particularly in urban areas like the Mexico City Metropolitan Area (MCMA. The chemical composition of urban particles must be known to assess their effects on the environment, and specific particulate emissions sources should be identified to establish effective pollution control standards. For these reasons, samples of particulate matter ≤2.5 μm (PM2.5 were collected during the MCMA-2003 Field Campaign for elemental and multivariate analyses. Proton-Induced X-ray Emission (PIXE, Proton-Elastic Scattering Analysis (PESA and Scanning Transmission Ion Microscopy (STIM measurements were done to determine concentrations of 19 elements from Na to Pb, hydrogen, and total mass, respectively. The most abundant elements from PIXE analysis were S, Si, K, Fe, Ca, and Al, while the major emissions sources associated with these elements were industry, wind-blown soil, and biomass burning. Wind trajectories suggest that metals associated with industrial emissions came from northern areas of the city whereas soil aerosols came from the southwest and increased in concentration during dry conditions. Elemental markers for fuel oil combustion, V and Ni, correlated with a large SO2 plume to suggest an anthropogenic, rather than volcanic, emissions source. By subtracting major components of soil and sulfates determined by PIXE analysis from STIM total mass measurements, we estimate that approximately 50% of non-volatile PM2.5 consisted of carbonaceous material.

  16. Aerosol composition and source apportionment in the Mexico City Metropolitan Area with PIXE/PESA/STIM and multivariate analysis

    Directory of Open Access Journals (Sweden)

    K. S. Johnson

    2006-05-01

    Full Text Available Aerosols play an important role in the atmosphere but are poorly characterized, particularly in urban areas like the Mexico City Metropolitan Area (MCMA. The chemical composition of urban particles must be known to assess their effects on the environment, and specific particulate emissions sources should be identified to establish effective pollution control standards. For these reasons, samples of particulate matter ≤2.5 μm (PM2.5 were collected during the MCMA-2003 Field Campaign for elemental and multivariate analyses. Proton-Induced X-ray Emission (PIXE, Proton-Elastic Scattering Analysis (PESA and Scanning Transmission Ion Microscopy (STIM techniques were done to determine concentrations of 19 elements from Na to Pb, hydrogen, and total mass, respectively. The most abundant elements from PIXE analysis were S, Si, K, Fe, Ca, and Al, while the major emissions sources associated with these elements were industry, wind-blown soil, and biomass burning. Wind trajectories suggest that metals associated with industrial emissions came from northern areas of the city whereas soil aerosols came from the southwest and increased in concentration during dry conditions. Elemental markers for fuel oil combustion V and Ni correlated with a large SO2 plume to suggest an anthropogenic, rather than volcanic, emissions source. By subtracting major components of soil and sulfate determined by PIXE analysis from STIM total mass measurements, we estimate that approximately 50% of non-volatile PM2.5 consisted of carbonaceous material.

  17. Regional air quality in Leipzig, Germany: detailed source apportionment of size-resolved aerosol particles and comparison with the year 2000.

    Science.gov (United States)

    van Pinxteren, D; Fomba, K W; Spindler, G; Müller, K; Poulain, L; Iinuma, Y; Löschau, G; Hausmann, A; Herrmann, H

    2016-07-18

    A detailed source apportionment of size-resolved aerosol particles in the area of Leipzig, Germany, was performed. Sampling took place at four sites (traffic, traffic/residential, urban background, regional background) in parallel during summer 2013 and the winters 2013/14/15. Twenty-one samples were taken per season with a 5-stage Berner impactor and analysed for particulate mass, inorganic ions, organic and elemental carbon, water-soluble organic carbon, trace metals, and a wide range of organic species. The compositional data were used to estimate source contributions to particulate matter (PM) in quasi-ultrafine (up to 140 nm), accumulation mode, and coarse size ranges using Positive Matrix Factorisation (PMF) receptor modelling. Traffic (exhaust and general traffic emissions), coal combustion, biomass combustion, photochemistry, general secondary formation, cooking, fungal spores, urban dust, fresh sea/road salt, and aged sea salt were all found to contribute to different extents to observed PM concentrations. PMF derived estimates agreed reasonably with estimates from established macrotracer approaches. Quasi-ultrafine PM originated mainly from traffic (20-50%) and photochemistry (30-50%) in summer, while it was dominated by solid fuel (mainly biomass) combustion in winter (50-70%). Tentatively identified cooking aerosol contributed up to 36% on average at the residential site. For accumulation mode particles, two secondary sources typically contributed 40-90% to particle mass. In winter, biomass and coal combustion contributions were up to ca. 25% and 45%, respectively. Main sources of coarse particles were diverse and included nearly all PMF-resolved ones depending on season and air mass origin. For PM10, traffic (typically 20-40% at kerbside sites), secondary formation (30-60%), biomass combustion (10-15% in winter), and coal combustion (30-40% in winter with eastern air mass inflow) were the main quantified sources. At the residential site, contributions

  18. Source apportionment of airborne particulates through receptor modeling: Indian scenario

    Science.gov (United States)

    Banerjee, Tirthankar; Murari, Vishnu; Kumar, Manish; Raju, M. P.

    2015-10-01

    Airborne particulate chemistry mostly governed by associated sources and apportionment of specific sources is extremely essential to delineate explicit control strategies. The present submission initially deals with the publications (1980s-2010s) of Indian origin which report regional heterogeneities of particulate concentrations with reference to associated species. Such meta-analyses clearly indicate the presence of reservoir of both primary and secondary aerosols in different geographical regions. Further, identification of specific signatory molecules for individual source category was also evaluated in terms of their scientific merit and repeatability. Source signatures mostly resemble international profile while, in selected cases lack appropriateness. In India, source apportionment (SA) of airborne particulates was initiated way back in 1985 through factor analysis, however, principal component analysis (PCA) shares a major proportion of applications (34%) followed by enrichment factor (EF, 27%), chemical mass balance (CMB, 15%) and positive matrix factorization (PMF, 9%). Mainstream SA analyses identify earth crust and road dust resuspensions (traced by Al, Ca, Fe, Na and Mg) as a principal source (6-73%) followed by vehicular emissions (traced by Fe, Cu, Pb, Cr, Ni, Mn, Ba and Zn; 5-65%), industrial emissions (traced by Co, Cr, Zn, V, Ni, Mn, Cd; 0-60%), fuel combustion (traced by K, NH4+, SO4-, As, Te, S, Mn; 4-42%), marine aerosols (traced by Na, Mg, K; 0-15%) and biomass/refuse burning (traced by Cd, V, K, Cr, As, TC, Na, K, NH4+, NO3-, OC; 1-42%). In most of the cases, temporal variations of individual source contribution for a specific geographic region exhibit radical heterogeneity possibly due to unscientific orientation of individual tracers for specific source and well exaggerated by methodological weakness, inappropriate sample size, implications of secondary aerosols and inadequate emission inventories. Conclusively, a number of challenging

  19. Accuracy and precision of 14C-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol

    Science.gov (United States)

    Mouteva, G. O.; Fahrni, S. M.; Santos, G. M.; Randerson, J. T.; Zhang, Y.-L.; Szidat, S.; Czimczik, C. I.

    2015-09-01

    Aerosol source apportionment remains a critical challenge for understanding the transport and aging of aerosols, as well as for developing successful air pollution mitigation strategies. The contributions of fossil and non-fossil sources to organic carbon (OC) and elemental carbon (EC) in carbonaceous aerosols can be quantified by measuring the radiocarbon (14C) content of each carbon fraction. However, the use of 14C in studying OC and EC has been limited by technical challenges related to the physical separation of the two fractions and small sample sizes. There is no common procedure for OC/EC 14C analysis, and uncertainty studies have largely focused on the precision of yields. Here, we quantified the uncertainty in 14C measurement of aerosols associated with the isolation and analysis of each carbon fraction with the Swiss_4S thermal-optical analysis (TOA) protocol. We used an OC/EC analyzer (Sunset Laboratory Inc., OR, USA) coupled to a vacuum line to separate the two components. Each fraction was thermally desorbed and converted to carbon dioxide (CO2) in pure oxygen (O2). On average, 91 % of the evolving CO2 was then cryogenically trapped on the vacuum line, reduced to filamentous graphite, and measured for its 14C content via accelerator mass spectrometry (AMS). To test the accuracy of our setup, we quantified the total amount of extraneous carbon introduced during the TOA sample processing and graphitization as the sum of modern and fossil (14C-depleted) carbon introduced during the analysis of fossil reference materials (adipic acid for OC and coal for EC) and contemporary standards (oxalic acid for OC and rice char for EC) as a function of sample size. We further tested our methodology by analyzing five ambient airborne particulate matter (PM2.5) samples with a range of OC and EC concentrations and 14C contents in an interlaboratory comparison. The total modern and fossil carbon blanks of our setup were 0.8 ± 0.4 and 0.67 ± 0.34 μg C, respectively

  20. Characterization and source apportionment of aerosol light extinction with a coupled model of CMB-IMPROVE in Hangzhou, Yangtze River Delta of China

    Science.gov (United States)

    Wang, Jiao; Zhang, Yu-fen; Feng, Yin-chang; Zheng, Xian-jue; Jiao, Li; Hong, Sheng-mao; Shen, Jian-dong; Zhu, Tan; Ding, Jing; Zhang, Qi

    2016-09-01

    To investigate the characteristics and sources of aerosol light extinction in the Yangtze River Delta of China, a campaign was carried out in Hangzhou from December 2013 to November 2014. Hourly data for air pollutants including PM2.5, SO2, NO2, O3 and CO, and aerosol optical properties including aerosol scattering coefficient and aerosol absorbing coefficient was obtained in the environmental air quality automatic monitoring station. Meteorological parameters were measured synchronously in the automated meteorology monitoring station. Additionally, around seven sets of ambient PM2.5 samples per month were collected and analyzed during the campaign. The annual mean aerosol scattering coefficient, aerosol absorbing coefficient and aerosol single scattering albedo measured in this study was 514 ± 284 Mm- 1, 35 ± 20 Mm- 1 and 94% respectively. The aerosol extinction coefficient reconstructed using the modified IMPROVE (Interagency Monitoring of Protected Visual Environment) formula was compared to the measured extinction coefficient. Better correlations could be found between the measured and reconstructed extinction coefficient when RH was under 90%. A coupled model of CMB (chemical mass balance) and modified IMPROVE was used to apportion the sources of aerosol light extinction in Hangzhou. Vehicle exhaust, secondary nitrate and secondary sulfate were identified as the most significant sources for aerosol light extinction, accounted for 30.2%, 24.1% and 15.8% respectively.

  1. 碳同位素技术在碳质气溶胶源解析中应用的研究进展%The Use of Carbon Isotope Analysis in Source Apportionment of Carbonaceous Aerosols: A Review

    Institute of Scientific and Technical Information of China (English)

    张世春; 王毅勇; 童全松

    2013-01-01

    概述了国内外14C和13C技术在大气碳质气溶胶源解析中应用的研究进展,指出14C在碳质气溶胶源解析研究中具有不可替代的独特优势,联合采用14C和13C技术有利于解决多种排放源的区分问题;随着碳质气溶胶组分分离技术的进步,对有机碳(0C)和黑碳(BC)等组分中14C的研究获得重要进展;除需深入研究13C的分馏机制外,建立各种排放源在不同区域的δ13C值域“特征谱”的重要性也日益突出;结合14C和13C以外的其他示踪剂、模型和分析方法将提供更多关于气溶胶来源的信息,并减小来源贡献率估算的不确定性.%The observation and source apportionment of carbonaceous aerosols is one of the focus of studies in the current scientific community. Radioactive (14C) and stable (13C) carbon isotopes have become useful tools in the source apportionment studies for carbonaceous aerosols. In this paper, we review the recent development of carbon isotope techniques, and explore its potential to be used for source apportionment for carbonaceous aerosols. It was pointed out that 14C has unique advantages in the quantitative distinguishment between fossil fuel and contemporary biomass combustion sources of atmospheric Organic Carbon (0C) and Black Carbon ( BC) , and that the combined C- C analysis can better constrain the sources of carbonaceous aerosols. Recent progress towards isolating OC and BC from other components of the particles has made it appicable to perform C measurements for OC and BC seperately. As for 13C, it was proposed that while it is very important to investigate the isotopic fraetionation mechanism of δ13C values of the carbonaceous aerosols, a regional δ13C signature map for the carbonacoues aerosols should be biult up aiming to facilitate explaining the δ13C variations and hence constraining the emisson sources. Future research that uses these carbon isotope techniques, in conjunction with other means such as

  2. Source apportionment and the role of meteorological conditions in the assessment of air pollution exposure due to urban emissions

    OpenAIRE

    Schäfer, K.; M. Elsasser; Arteaga-Salas, J. M.; Gu, J; Pitz, M; Schnelle-Kreis, J.; J. Cyrys; Emeis, S.; Prevot, A.S.H.; R. Zimmermann(Physikalisches Institut, University of Bonn, Bonn, Germany)

    2014-01-01

    As particulate matter (PM) impacts human health, knowledge about its composition, exposure and source apportionment is required. A study of the urban atmosphere in the case of Augsburg, Germany, during winter (31 January–12 March 2010) is thus presented here. Investigations were performed on the basis of aerosol mass spectrometry and further air pollutants and meteorological measurements, including mixing layer height. Organic matter was separated by source apportionment ...

  3. Source apportionment of toxic chemical pollutants at Trombay region

    International Nuclear Information System (INIS)

    the concentration data. Factor analysis, a form of receptor modeling technique was used for source apportionment of different fractions of atmospheric aerosols. This study will provide information feedback on the actual effects of anthropogenic activities on the local environment. (author)

  4. Source apportionment of size resolved particulate matter at a European air pollution hot spot.

    Science.gov (United States)

    Pokorná, P; Hovorka, J; Klán, M; Hopke, P K

    2015-01-01

    Positive Matrix Factorization-PMF was applied to hourly resolved elemental composition of fine (PM0.15-1.15) and coarse (PM1.15-10) aerosol particles to apportion their sources in the airshed of residential district, Ostrava-Radvanice and Bartovice in winter 2012. Multiple-site measurement by PM2.5 monitors complements the source apportionment. As there were no statistical significant differences amongst the monitors, the source apportionment derived for the central site data is expected to apply to whole residential district. The apportioned sources of the fine aerosol particles were coal combustion (58.6%), sinter production-hot phase (22.9%), traffic (15%), raw iron production (3.5%), and desulfurization slag processing (air pollution sources helped to interpret the PMF solution. PMID:25260163

  5. Calibration method for a photoacoustic system for real time source apportionment of light absorbing carbonaceous aerosol based on size distribution measurements

    Science.gov (United States)

    Utry, Noemi; Ajtai, Tibor; Pinter, Mate; Orvos, Peter I.; Szabo, Gabor; Bozoki, Zoltan

    2016-04-01

    In this study, we introduce a calibration method with which sources of light absorbing carbonaceous particulate matter (LAC) can be apportioned in real time based on multi wavelength optical absorption measurements with a photoacoustic system. The method is primary applicable in wintry urban conditions when LAC is dominated by traffic and biomass burning. The proposed method was successfully tested in a field campaign in the city center of Szeged, Hungary during winter time where the dominance of traffic and wood burning aerosol has been experimentally demonstrated earlier. With the help of the proposed calibration method a relationship between the measured Aerosol Angström Exponent (AAE) and the number size distribution can be deduced. Once the calibration curve is determined, the relative strength of the two pollution sources can be deduced in real time as long as the light absorbing fraction of PM is exclusively related to traffic and wood burning. This assumption is indirectly confirmed in the presented measurement campaign by the fact that the measured size distribution is composed of two unimodal size distributions identified to correspond to traffic and wood burning aerosols. The proposed method offers the possibility of replacing laborious chemical analysis with simple in-situ measurement of aerosol size distribution data.

  6. Source Apportionment of Particulate Matter Sampled in Cape Verde

    Science.gov (United States)

    Marta Almeida, Susana; Almeida-Silva, Marina; Pio, Casimiro; Nunes, Teresa; Cardoso, João; Cerqueira, Mário; Reis, Miguel; Chaves, Paula Cristina; Taborda, Ana

    2013-04-01

    Due to its geographical position, Cape Verde is highly affected by the transport of dust from the Sahara desert. Consequently, very high concentrations of particles are registered in this archipelago, being essential to elucidate the role that Saharan dust may play in the degradation of Cape Verde air quality, human health, wellbeing, visibility, tourism and economy. The objective of this study was to identify the main sources and origins of particles sampled in Cape Verde. PM10 was sampled during 2011 and chemical characterization of particles was performed by Neutron Activation Analysis and Particle Induced X-ray Emission for elemental measurements, by Ion Chromatography for the determination of water soluble ions and by a Thermal-optical system for the measurement of carbonaceous aerosol. Source apportionment was performed by integrating Positive Matrix Factorization and Backward Trajectory Analysis. Results showed that in average 68% of the PM10 mass in Cape Verde had a natural origin, being 48% associated with the soil and 20% associated with the sea. During the transport of dust from the Sahara desert the contribution of mineral aerosol increased significantly (69% during periods affected by trajectories provided from Sahara desert versus 13% during periods affected by local sources).

  7. Source Apportionment of Atmospheric Mercury Using Positive Matrix Factorization

    Science.gov (United States)

    Richards, L. M.; Perry, K. D.; Abbott, M. L.

    2008-12-01

    A growing problem in the western United States is the widespread contamination of remote lakes by the atmospheric transport and deposition of mercury. Because methylmercury is known to bioaccumulate within the food chain, even small amounts of mercury introduced into an aquatic ecosystem can result in fish that are unsuitable for human consumption. The problem is complex because many natural and anthropogenic sources of mercury exist within the western United States (e.g., coal combustion, cement production, wildfires, mining activities, and emissions from naturally enriched soils and geothermal areas). Mercury can also be transported intercontinental distances (e.g., Asian coal combustion) under appropriate meteorological conditions. Thus, any mercury source apportionment study must be able to distinguish between these disparate source types. In this study, we measured gaseous elemental mercury (GEM), reactive gaseous mercury (RGM), and particulate mercury (HgP) with a Tekran system near Salmon Falls Creek Reservoir in south-central Idaho. These measurements were made during a series of one-month-long, intensive operation periods (IOPs) in the winter, spring, and summer of 2008. In each IOP, we also made coincident size- and time-resolved aerosol elemental composition measurements using an 8-stage rotating drum impactor and synchrotron X-ray fluorescence (SXRF) analysis. The SXRF analysis provided aerosol elemental concentration measurements with 3-hour time resolution. The Positive Matrix Factorization (PMF) receptor model was applied to the high-resolution, aerosol elemental composition data from each IOP to determine the temporal variability of the contributing source types based on the calculated source profiles. A multiple linear regression (MLR) technique was then used to apportion the measured mercury concentrations to the source types identified by the PMF analysis.

  8. Source apportionment in oil spill remediation.

    Science.gov (United States)

    Muñoz, Jorge; Mudge, Stephen M; Loyola-Sepulveda, Rodrigo; Muñoz, Gonzalo; Bravo-Linares, Claudio

    2012-05-01

    A pipe rupture during unloading led to a spillage of 350-700 tonnes of Caño Limon, a light sweet crude oil, into San Vicente Bay in 2007. Initial clean-up methods removed the majority of the oil from the sandy beaches although some oil remained on the rocky shores. It was necessary for the responsible party to clean the spilled oil even though at this location there were already crude oil hydrocarbons from previous industrial activity. A biosolvent based on vegetable oil derivatives was used to solubilise the remaining oil and a statistical approach to source apportionment was used to determine the efficacy of the cleaning. Sediment and contaminated rock samples were taken prior to cleaning and again at the same locations two days after application of the biosolvent. The oil was extracted using a modified USEPA Method 3550B. The alkanes were quantified together with oil biomarkers on a GC-MS. The contribution that Caño Limon made to the total oil hydrocarbons was calculated from a Partial Least Squares (PLS) analysis using Caño Limon crude oil as the source. By the time the biosolvent was applied, there had already been some attenuation of the oil with all alkanes source of the oil in this case and the contribution that Caño Limon made to the total oil ranged from 0% to 74%. The total hydrocarbon concentrations were lower after cleaning indicating an efficacy of 90% although the reduction in Caño Limon oil was smaller. This was sufficient to make further remediation unnecessary. PMID:22588176

  9. Radiocarbon-derived source apportionment of fine carbonaceous aerosols before, during, and after the 2014 Asia-Pacific Economic Cooperation (APEC) summit in Beijing, China

    Science.gov (United States)

    Liu, Junwen; Mo, Yangzhi; Li, Jun; Liu, Di; Shen, Chengde; Ding, Ping; Jiang, Haoyu; Cheng, Zhineng; Zhang, Xiangyun; Tian, Chongguo; Chen, Yingjun; Zhang, Gan

    2016-04-01

    The Asia-Pacific Economic Cooperation (APEC) summit took place in Beijing, China, 5-11 November 2014, during which numerous measures were performed to control the air pollution, and consequently, the sky of Beijing was so clean that the public called it "APEC blue." The concentrations before, during, and after the APEC summit are 14.4 ± 6.81 µg C/m3, 6.66 ± 2.99 µg C/m3, and 32.3 ± 10.6 µg C/m3, respectively, for organic carbon (OC), and 2.27 ± 1.17 µg C/m3, 0.76 ± 0.52 µg C/m3, and 4.99 ± 1.74 µg C/m3, respectively, for elemental carbon (EC). We quantify the contributions of fossil and nonfossil sources to the OC and EC using radiocarbon. Results show that the contribution of nonfossil sources is 56 ± 1% (before APEC), 61 ± 1% (during APEC), and 48 ± 1% (after APEC), respectively, for OC, and 36 ± 4% (before APEC), 46 ± 1% (during APEC), and 33 ± 4% (after APEC), respectively, for EC. Comparing to the period before APEC, 70% and 60% of fossil EC and OC and 60% and 50% of nonfossil EC and OC are reduced, respectively, implying that the control on the nonfossil sources has considerable contribution to the good air quality in Beijing. Both EC and OC mass loadings during the APEC summit would have increased by 60% if the biomass-burning activities were not taken into account for control. In such a case, the atmospheric visibility would decrease 20% at least and the blue sky thereby would likely not have been visible during the summit.

  10. Indoor source apportionment in urban communities near industrial sites

    Science.gov (United States)

    Tunno, Brett J.; Dalton, Rebecca; Cambal, Leah; Holguin, Fernando; Lioy, Paul; Clougherty, Jane E.

    2016-08-01

    Because fine particulate matter (PM2.5) differs in chemical composition, source apportionment is frequently used for identification of relative contributions of multiple sources to outdoor concentrations. Indoor air pollution and source apportionment is often overlooked, though people in northern climates may spend up to 90% of their time inside. We selected 21 homes for a 1-week indoor sampling session during summer (July to September 2011), repeated in winter (January to March 2012). Elemental analysis was performed using inductively-coupled plasma mass spectrometry (ICP-MS), and factor analysis was used to determine constituent grouping. Multivariate modeling was run on factor scores to corroborate interpretations of source factors based on a literature review. For each season, a 5-factor solution explained 86-88% of variability in constituent concentrations. Indoor sources (i.e. cooking, smoking) explained greater variability than did outdoor sources in these industrial communities. A smoking factor was identified in each season, predicted by number of cigarettes smoked. Cooking factors were also identified in each season, explained by frequency of stove cooking and stovetop frying. Significant contributions from outdoor sources including coal and motor vehicles were also identified. Higher coal and secondary-related elemental concentrations were detected during summer than winter. Our findings suggest that source contributions to indoor concentrations can be identified and should be examined in relation to health effects.

  11. Source apportionment and the role of meteorological conditions in the assessment of air pollution exposure due to urban emissions

    Science.gov (United States)

    Schäfer, K.; Elsasser, M.; Arteaga-Salas, J. M.; Gu, J.; Pitz, M.; Schnelle-Kreis, J.; Cyrys, J.; Emeis, S.; Prevot, A. S. H.; Zimmermann, R.

    2014-01-01

    As particulate matter (PM) impacts human health, knowledge about its composition, exposure and source apportionment is required. A study of the urban atmosphere in the case of Augsburg, Germany, during winter (31 January-12 March 2010) is thus presented here. Investigations were performed on the basis of aerosol mass spectrometry and further air pollutants and meteorological measurements, including mixing layer height. Organic matter was separated by source apportionment of PM1 with positive matrix factorization (PMF) in three factors: OOA - oxygenated organic aerosol (secondary organic factor), HOA - hydrocarbon-like organic aerosol (traffic factor or primary organic factor) and WCOA - wood combustion organic aerosol (wood combustion factor), which extend the information from black carbon (BC) measurements. PMF was also applied to the particle size distribution (PSD) data of PM2.5 to determine different source profiles and we assigned them to the particle sources: nucleation aerosol, fresh traffic aerosol, aged traffic aerosol, stationary combustion aerosol and secondary aerosol. Ten different temporal phases were identified on the basis of weather characteristics and aerosol composition and used for correlations of all air pollutants and meteorological parameters. While source apportionment from both organic PM composition and PSD agree and show that the main emission sources of PM exposure are road traffic as well as stationary and wood combustion, secondary aerosol factor concentrations are very often the highest ones. The hierarchical clustering analysis with the Ward method of cross-correlations of each air pollutant and PM component and of the correlations of each pollutant with all meteorological parameters provided two clusters: "secondary pollutants of PM1 and fine particles" and "primary pollutants (including CO and benzene) and accumulation mode particles". The dominant meteorological influences on pollutant concentrations are wind speed and mixing

  12. Apportionment of air pollution sources by receptor models in Hong Kong

    Science.gov (United States)

    Fung, Y. S.; Wong, L. W. Y.

    The application of a receptor modelling method for the apportionment of air pollution sources in a highly urbanised area has been investigated using trace metals as marker elements in air particulates sampled at five stations in New Territories in Hong Kong. The elemental profile of the coal used for burning, the fly ash obtained after the electrostatic precipitator and the ambient particulates collected at the five sampling sites were determined. The variability is found to be substantial and necessitates the use of factor analysis to identify the source prior to regression analysis for apportionment of the contribution of the various factors identified. Six factors are successfully isolated and their sources identified. Despite a negative loading of the sea aerosol, the mass contributions of other major sources (mg m -3) are estimated as construction work (6.48), automobile/incineration (1.93), wind-blown dust (7.14), coal-fired power plant (4.92) and oil combustion sources (8.15). The use of particle fractionation was found able to resolve earthy and non-natural material, especially at the fine particulate end, and thus provides a method to solve the negative scaling problem encountered during the regression analysis.

  13. An integrated PM2.5 source apportionment study: Positive Matrix Factorisation vs. the chemical transport model CAMx

    Science.gov (United States)

    Bove, M. C.; Brotto, P.; Cassola, F.; Cuccia, E.; Massabò, D.; Mazzino, A.; Piazzalunga, A.; Prati, P.

    2014-09-01

    Receptor and Chemical Transport Models are commonly used tools in source apportionment studies, even if different expertise is required. We describe an experiment using both approaches to apportion the PM2.5 (i.e., particulate matter with aerodynamic diameters below 2.5 μm) sources in the city of Genoa (Italy). A sampling campaign was carried out to collect PM2.5 samples daily for approximately six month during 2011 in three sites. The subsequent compositional analyses included the speciation of elements, major ions and both organic and elemental carbon; these data produced a large database for receptor modelling through Positive Matrix Factorisation (PMF). In the same period, a meteorological and air quality modelling system was implemented based on the mesoscale numerical weather prediction model WRF and the chemical transport model CAMx to obtain meteorological and pollutant concentrations up to a resolution of 1.1 km. The source apportionment was evaluated by CAMx over the same period that was used for the monitoring campaign using the Particulate Source Apportionment Technology tool. Even if the source categorisations were changed (i.e., groups of time-correlated compounds in PMF vs. activity categories in CAMx), the PM2.5 source apportionment by PMF and CAMx produced comparable results. The different information provided by the two approaches (e.g., real-world factor profile by PMF and apportionment of a secondary aerosol by CAMx) was used jointly to elucidate the composition and origin of PM2.5 and to develop a more general methodology. When studying the primary and secondary components of PM, the main anthropogenic sources in the area were road transportation, energy production/industry and maritime emissions, accounting for 40%-50%, 20%-30% and 10%-15%, of PM2.5, respectively.

  14. Source Apportionment of PM2.5 in Delhi, India Using PMF Model.

    Science.gov (United States)

    Sharma, S K; Mandal, T K; Jain, Srishti; Saraswati; Sharma, A; Saxena, Mohit

    2016-08-01

    Chemical characterization of PM2.5 [organic carbon, elemental carbon, water soluble inorganic ionic components, and major and trace elements] was carried out for a source apportionment study of PM2.5 at an urban site of Delhi, India from January, 2013, to December, 2014. The annual average mass concentration of PM2.5 was 122 ± 94.1 µg m(-3). Strong seasonal variation was observed in PM2.5 mass concentration and its chemical composition with maxima during winter and minima during monsoon. A receptor model, positive matrix factorization (PMF) was applied for source apportionment of PM2.5 mass concentration. The PMF model resolved the major sources of PM2.5 as secondary aerosols (21.3 %), followed by soil dust (20.5 %), vehicle emissions (19.7 %), biomass burning (14.3 %), fossil fuel combustion (13.7 %), industrial emissions (6.2 %) and sea salt (4.3 %). PMID:27209541

  15. Photochemical grid model implementation and application of VOC, NOx, and O3 source apportionment

    Science.gov (United States)

    For the purposes of developing optimal emissions control strategies, efficient approaches are needed to identify the major sources or groups of sources that contribute to elevated ozone (O3) concentrations. Source-based apportionment techniques implemented in photochemical grid m...

  16. Iodine source apportionment in the Malawian diet

    Science.gov (United States)

    Watts, M. J.; Joy, E. J. M.; Young, S. D.; Broadley, M. R.; Chilimba, A. D. C.; Gibson, R. S.; Siyame, E. W. P.; Kalimbira, A. A.; Chilima, B.; Ander, E. L.

    2015-10-01

    The aim of this study was to characterise nutritional-I status in Malawi. Dietary-I intakes were assessed using new datasets of crop, fish, salt and water-I concentrations, while I status was assessed for 60 women living on each of calcareous and non-calcareous soils as defined by urinary iodine concentration (UIC). Iodine concentration in staple foods was low, with median concentrations of 0.01 mg kg-1 in maize grain, 0.008 mg kg-1 in roots and tubers, but 0.155 mg kg-1 in leafy vegetables. Freshwater fish is a good source of dietary-I with a median concentration of 0.51 mg kg-1. Mean Malawian dietary-Iodine intake from food, excluding salt, was just 7.8 μg d-1 compared to an adult requirement of 150 μg d-1. Despite low dietary-I intake from food, median UICs were 203 μg L-1 with only 12% defined as I deficient whilst 21% exhibited excessive I intake. Iodised salt is likely to be the main source of dietary I intake in Malawi; thus, I nutrition mainly depends on the usage and concentration of I in iodised salt. Drinking water could be a significant source of I in some areas, providing up to 108 μg d-1 based on consumption of 2 L d-1.

  17. Comparison of several wood smoke markers and source apportionment methods for wood burning particulate mass

    Directory of Open Access Journals (Sweden)

    J. Sandradewi

    2008-04-01

    Full Text Available Residential wood combustion has only recently been recognized as a major contributor to air pollution in Switzerland and in other European countries. A source apportionment method using the aethalometer light absorption parameters was applied to five winter campaigns at three sites in Switzerland: a village with high wood combustion activity in winter, an urban background site and a highway site. The particulate mass from traffic (PMtraffic and wood burning (PMwb emissions obtained with this model compared fairly well with results from the 14C source apportionment method. PMwb from the model was also compared to well known wood smoke markers such as anhydrosugars (levoglucosan and mannosan and fine mode potassium, as well as to a marker recently suggested from the Aerodyne aerosol mass spectrometer (mass fragment m/z 60. Additionally the anhydrosugars were compared to the 14C results and were shown to be comparable to literature values from wood burning emission studies using different types of wood (hardwood, softwood. The levoglucosan to PMwb ratios varied much more strongly between the different campaigns (4–13% compared to mannosan to PMwb with a range of 1–1.5%. Possible uncertainty aspects for the various methods and markers are discussed.

  18. Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective

    Science.gov (United States)

    Zhang, R.; Jing, J.; Tao, J.; Hsu, S.-C.; Wang, G.; Cao, J.; Lee, C. S. L.; Zhu, L.; Chen, Z.; Zhao, Y.; Shen, Z.

    2013-07-01

    that comprehensively explores the chemical characterizations and source apportionments of PM2.5 aerosol speciation in Beijing by applying multiple approaches based on a completely seasonal perspective.

  19. Nitrate source apportionment in a subtropical watershed using Bayesian model

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Liping; Han, Jiangpei; Xue, Jianlong; Zeng, Lingzao [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058 (China); Shi, Jiachun, E-mail: jcshi@zju.edu.cn [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058 (China); Wu, Laosheng, E-mail: laowu@zju.edu.cn [College of Environmental and Natural Resource Sciences, Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, Zhejiang University, Hangzhou, 310058 (China); Jiang, Yonghai [State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012 (China)

    2013-10-01

    Nitrate (NO{sub 3}{sup −}) pollution in aquatic system is a worldwide problem. The temporal distribution pattern and sources of nitrate are of great concern for water quality. The nitrogen (N) cycling processes in a subtropical watershed located in Changxing County, Zhejiang Province, China were greatly influenced by the temporal variations of precipitation and temperature during the study period (September 2011 to July 2012). The highest NO{sub 3}{sup −} concentration in water was in May (wet season, mean ± SD = 17.45 ± 9.50 mg L{sup −1}) and the lowest concentration occurred in December (dry season, mean ± SD = 10.54 ± 6.28 mg L{sup −1}). Nevertheless, no water sample in the study area exceeds the WHO drinking water limit of 50 mg L{sup −1} NO{sub 3}{sup −}. Four sources of NO{sub 3}{sup −} (atmospheric deposition, AD; soil N, SN; synthetic fertilizer, SF; manure and sewage, M and S) were identified using both hydrochemical characteristics [Cl{sup −}, NO{sub 3}{sup −}, HCO{sub 3}{sup −}, SO{sub 4}{sup 2−}, Ca{sup 2+}, K{sup +}, Mg{sup 2+}, Na{sup +}, dissolved oxygen (DO)] and dual isotope approach (δ{sup 15}N–NO{sub 3}{sup −} and δ{sup 18}O–NO{sub 3}{sup −}). Both chemical and isotopic characteristics indicated that denitrification was not the main N cycling process in the study area. Using a Bayesian model (stable isotope analysis in R, SIAR), the contribution of each source was apportioned. Source apportionment results showed that source contributions differed significantly between the dry and wet season, AD and M and S contributed more in December than in May. In contrast, SN and SF contributed more NO{sub 3}{sup −} to water in May than that in December. M and S and SF were the major contributors in December and May, respectively. Moreover, the shortcomings and uncertainties of SIAR were discussed to provide implications for future works. With the assessment of temporal variation and sources of NO{sub 3}{sup −}, better

  20. Nitrate source apportionment in a subtropical watershed using Bayesian model

    International Nuclear Information System (INIS)

    Nitrate (NO3−) pollution in aquatic system is a worldwide problem. The temporal distribution pattern and sources of nitrate are of great concern for water quality. The nitrogen (N) cycling processes in a subtropical watershed located in Changxing County, Zhejiang Province, China were greatly influenced by the temporal variations of precipitation and temperature during the study period (September 2011 to July 2012). The highest NO3− concentration in water was in May (wet season, mean ± SD = 17.45 ± 9.50 mg L−1) and the lowest concentration occurred in December (dry season, mean ± SD = 10.54 ± 6.28 mg L−1). Nevertheless, no water sample in the study area exceeds the WHO drinking water limit of 50 mg L−1 NO3−. Four sources of NO3− (atmospheric deposition, AD; soil N, SN; synthetic fertilizer, SF; manure and sewage, M and S) were identified using both hydrochemical characteristics [Cl−, NO3−, HCO3−, SO42−, Ca2+, K+, Mg2+, Na+, dissolved oxygen (DO)] and dual isotope approach (δ15N–NO3− and δ18O–NO3−). Both chemical and isotopic characteristics indicated that denitrification was not the main N cycling process in the study area. Using a Bayesian model (stable isotope analysis in R, SIAR), the contribution of each source was apportioned. Source apportionment results showed that source contributions differed significantly between the dry and wet season, AD and M and S contributed more in December than in May. In contrast, SN and SF contributed more NO3− to water in May than that in December. M and S and SF were the major contributors in December and May, respectively. Moreover, the shortcomings and uncertainties of SIAR were discussed to provide implications for future works. With the assessment of temporal variation and sources of NO3−, better agricultural management practices and sewage disposal programs can be implemented to sustain water quality in subtropical watersheds. - Highlights: • Nitrate concentration in water displayed

  1. On the autarchic use of solely PIXE data in particulate matter source apportionment studies by receptor modeling

    Science.gov (United States)

    Lucarelli, F.; Nava, S.; Calzolai, G.; Chiari, M.; Giannoni, M.; Traversi, R.; Udisti, R.

    2015-11-01

    Particle Induced X-ray Emission (PIXE) analysis of aerosol samples allows simultaneous detection of several elements, including important tracers of many particulate matter sources. This capability, together with the possibility of analyzing a high number of samples in very short times, makes PIXE a very effective tool for source apportionment studies by receptor modeling. However, important aerosol components, like nitrates, OC and EC, cannot be assessed by PIXE: this limitation may strongly compromise the results of a source apportionment study if based on PIXE data alone. In this work, an experimental dataset characterised by an extended chemical speciation (elements, EC-OC, ions) is used to test the effect of reducing input species in the application of one of the most widely used receptor model, namely Positive Matrix Factorization (PMF). The main effect of using only PIXE data is that the secondary nitrate source is not identified and the contribution of biomass burning is overestimated, probably due to the similar seasonal pattern of these two sources.

  2. Receptor Model Source Apportionment of Nonmethane Hydrocarbons in Mexico City

    Directory of Open Access Journals (Sweden)

    V. Mugica

    2002-01-01

    Full Text Available With the purpose of estimating the source contributions of nonmethane hydrocarbons (NMHC to the atmosphere at three different sites in the Mexico City Metropolitan Area, 92 ambient air samples were measured from February 23 to March 22 of 1997. Light- and heavy-duty vehicular profiles were determined to differentiate the NMHC contribution of diesel and gasoline to the atmosphere. Food cooking source profiles were also determined for chemical mass balance receptor model application. Initial source contribution estimates were carried out to determine the adequate combination of source profiles and fitting species. Ambient samples of NMHC were apportioned to motor vehicle exhaust, gasoline vapor, handling and distribution of liquefied petroleum gas (LP gas, asphalt operations, painting operations, landfills, and food cooking. Both gasoline and diesel motor vehicle exhaust were the major NMHC contributors for all sites and times, with a percentage of up to 75%. The average motor vehicle exhaust contributions increased during the day. In contrast, LP gas contribution was higher during the morning than in the afternoon. Apportionment for the most abundant individual NMHC showed that the vehicular source is the major contributor to acetylene, ethylene, pentanes, n-hexane, toluene, and xylenes, while handling and distribution of LP gas was the major source contributor to propane and butanes. Comparison between CMB estimates of NMHC and the emission inventory showed a good agreement for vehicles, handling and distribution of LP gas, and painting operations; nevertheless, emissions from diesel exhaust and asphalt operations showed differences, and the results suggest that these emissions could be underestimated.

  3. Photochemical grid model implementation of VOC, NOx, and O3 source apportionment

    Directory of Open Access Journals (Sweden)

    R. H. F. Kwok

    2014-09-01

    Full Text Available For the purposes of developing optimal emissions control strategies, efficient approaches are needed to identify the major sources or groups of sources that contribute to elevated ozone (O3 concentrations. Source based apportionment techniques implemented in photochemical grid models track sources through the physical and chemical processes important to the formation and transport of air pollutants. Photochemical model source apportionment has been used to estimate impacts of specific sources, groups of sources (sectors, sources in specific geographic areas, and stratospheric and lateral boundary inflow on O3. The implementation and application of a source apportionment technique for O3 and its precursors, nitrogen oxides (NOx and volatile organic compounds (VOC, for the Community Multiscale Air Quality (CMAQ model are described here. The Integrated Source Apportionment Method (ISAM O3 approach is a hybrid of source apportionment and source sensitivity in that O3 production is attributed to precursor sources based on O3 formation regime (e.g., for a NOx-sensitive regime, O3 is apportioned to participating NOx emissions. This implementation is illustrated by tracking multiple emissions source sectors and lateral boundary inflow. NOx, VOC, and O3 attribution to tracked sectors in the application are consistent with spatial and temporal patterns of precursor emissions. The O3 ISAM implementation is further evaluated through comparisons of apportioned ambient concentrations and deposition amounts with those derived from brute force zero-out scenarios, with correlation coefficients ranging between 0.58 and 0.99 depending on specific combination of target species and tracked precursor emissions. Low correlation coefficients occur for chemical regimes that have strong non-linearity in O3 sensitivity, which demonstrates different functionalities between source apportionment and zero-out approaches, depending on whether sources of interest are either to

  4. Photochemical grid model implementation of VOC, NOx, and O3 source apportionment

    Science.gov (United States)

    Kwok, R. H. F.; Baker, K. R.; Napelenok, S. L.; Tonnesen, G. S.

    2014-09-01

    For the purposes of developing optimal emissions control strategies, efficient approaches are needed to identify the major sources or groups of sources that contribute to elevated ozone (O3) concentrations. Source based apportionment techniques implemented in photochemical grid models track sources through the physical and chemical processes important to the formation and transport of air pollutants. Photochemical model source apportionment has been used to estimate impacts of specific sources, groups of sources (sectors), sources in specific geographic areas, and stratospheric and lateral boundary inflow on O3. The implementation and application of a source apportionment technique for O3 and its precursors, nitrogen oxides (NOx) and volatile organic compounds (VOC), for the Community Multiscale Air Quality (CMAQ) model are described here. The Integrated Source Apportionment Method (ISAM) O3 approach is a hybrid of source apportionment and source sensitivity in that O3 production is attributed to precursor sources based on O3 formation regime (e.g., for a NOx-sensitive regime, O3 is apportioned to participating NOx emissions). This implementation is illustrated by tracking multiple emissions source sectors and lateral boundary inflow. NOx, VOC, and O3 attribution to tracked sectors in the application are consistent with spatial and temporal patterns of precursor emissions. The O3 ISAM implementation is further evaluated through comparisons of apportioned ambient concentrations and deposition amounts with those derived from brute force zero-out scenarios, with correlation coefficients ranging between 0.58 and 0.99 depending on specific combination of target species and tracked precursor emissions. Low correlation coefficients occur for chemical regimes that have strong non-linearity in O3 sensitivity, which demonstrates different functionalities between source apportionment and zero-out approaches, depending on whether sources of interest are either to be accounted

  5. A new methodology to assess the performance and uncertainty of source apportionment models in intercomparison exercises

    Science.gov (United States)

    Belis, C. A.; Pernigotti, D.; Karagulian, F.; Pirovano, G.; Larsen, B. R.; Gerboles, M.; Hopke, P. K.

    2015-10-01

    A new methodology to assess source apportionment model performance in intercomparison exercises, encompassing the preparation of real-world and synthetic datasets and the evaluation of the source apportionment results reported by participants, is described. The evaluation consists of three types of tests: complementary tests, preliminary tests, and performance tests. The complementary tests provide summary information about the source apportionment results as a whole. The preliminary tests check whether source/factors belong to a given source category. Three types of indicators: Pearson correlation (Pearson), standardized identity distance (SID), and weighted difference (WD) are used to test factor/source chemical profiles, while factor/source time series and contribution-to-species values are tested only using the Pearson. The performance tests, based on international standards for proficiency testing, are targeted at evaluating whether the reported biases in the quantification of the factor/source contribution estimates (SCEs) and uncertainties are consistent with previously established quality standards in a fitness-for-purpose approach. Moreover, the consistency of the SCE time series is evaluated using a variant of the RMSE normalised by the reference standard uncertainty. The described methodology facilitates a thorough evaluation of the source apportionment output. The new indicator to compare source or factor profiles presented in this study (SID) is more robust and provides additional information compared to the existing ones.

  6. Problems in the fingerprints based polycyclic aromatic hydrocarbons source apportionment analysis and a practical solution

    International Nuclear Information System (INIS)

    This work intended to explain the challenges of the fingerprints based source apportionment method for polycyclic aromatic hydrocarbons (PAH) in the aquatic environment, and to illustrate a practical and robust solution. The PAH data detected in the sediment cores from the Illinois River provide the basis of this study. Principal component analysis (PCA) separates PAH compounds into two groups reflecting their possible airborne transport patterns; but it is not able to suggest specific sources. Not all positive matrix factorization (PMF) determined sources are distinguishable due to the variability of source fingerprints. However, they constitute useful suggestions for inputs for a Bayesian chemical mass balance (CMB) analysis. The Bayesian CMB analysis takes into account the measurement errors as well as the variations of source fingerprints, and provides a credible source apportionment. Major PAH sources for Illinois River sediments are traffic (35%), coke oven (24%), coal combustion (18%), and wood combustion (14%). - Highlights: • Fingerprint variability poses challenges in PAH source apportionment analysis. • PCA can be used to group compounds or cluster measurements. • PMF requires results validation but is useful for source suggestion. • Bayesian CMB provide practical and credible solution. - A Bayesian CMB model combined with PMF is a practical and credible fingerprints based PAH source apportionment method

  7. Fine particulate matter in the tropical environment: monsoonal effects, source apportionment, and health risk assessment

    Science.gov (United States)

    Khan, M. F.; Latif, M. T.; Saw, W. H.; Amil, N.; Nadzir, M. S. M.; Sahani, M.; Tahir, N. M.; Chung, J. X.

    2016-01-01

    The health implications of PM2.5 in the tropical region of Southeast Asia (SEA) are significant as PM2.5 can pose serious health concerns. PM2.5 concentration and sources here are strongly influenced by changes in the monsoon regime from the south-west quadrant to the north-east quadrant in the region. In this work, PM2.5 samples were collected at a semi-urban area using a high-volume air sampler at different seasons on 24 h basis. Analysis of trace elements and water-soluble ions was performed using inductively coupled plasma mass spectroscopy (ICP-MS) and ion chromatography (IC), respectively. Apportionment analysis of PM2.5 was carried out using the United States Environmental Protection Agency (US EPA) positive matrix factorization (PMF) 5.0 and a mass closure model. We quantitatively characterized the health risks posed to human populations through the inhalation of selected heavy metals in PM2.5. 48 % of the samples collected exceeded the World Health Organization (WHO) 24 h PM2.5 guideline but only 19 % of the samples exceeded 24 h US EPA National Ambient Air Quality Standard (NAAQS). The PM2.5 concentration was slightly higher during the north-east monsoon compared to south-west monsoon. The main trace metals identified were As, Pb, Cd, Ni, Mn, V, and Cr while the main ions were SO42-, NO3-, NH4+, and Na. The mass closure model identified four major sources of PM2.5 that account for 55 % of total mass balance. The four sources are mineral matter (MIN) (35 %), secondary inorganic aerosol (SIA) (11 %), sea salt (SS) (7 %), and trace elements (TE) (2 %). PMF 5.0 elucidated five potential sources: motor vehicle emissions coupled with biomass burning (31 %) were the most dominant, followed by marine/sulfate aerosol (20 %), coal burning (19 %), nitrate aerosol (17 %), and mineral/road dust (13 %). The hazard quotient (HQ) for four selected metals (Pb, As, Cd, and Ni) in PM2.5 mass was highest in PM2.5 mass from the coal burning source and least in PM2.5 mass

  8. Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modelling of complete high time-resolution aerosol mass spectra

    Directory of Open Access Journals (Sweden)

    M. L. McGuire

    2014-02-01

    the ability to better understand the chemical nature of atypical factors from high resolution mass spectra. Second, utilizing PMF to extract factors containing inorganic species allowed for the determination of extent of neutralization, which could have implications for aerosol parameterization. Third, subtler differences in organic aerosol components were resolved through the incorporation of inorganic mass into the PMF matrix. The additional temporal features provided by the inorganic aerosol components allowed for the resolution of more types of oxygenated organic aerosol than could be reliably resolved from PMF of organics alone. Comparison of findings from the PMFFull MS and PMFOrg MS methods showed that for the Windsor airshed, the PMFFull MS method enabled additional conclusions to be drawn in terms of aerosol sources and chemical processes. While performing PMFOrg MS can provide important distinctions between types of organic aerosol, it is shown that including inorganic species in the PMF analysis can permit further apportionment of organics for unit mass resolution AMS mass spectra.

  9. Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modelling of complete high time-resolution aerosol mass spectra

    Science.gov (United States)

    McGuire, M. L.; Chang, R. Y.-W.; Slowik, J. G.; Jeong, C.-H.; Healy, R. M.; Lu, G.; Mihele, C.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2014-02-01

    to better understand the chemical nature of atypical factors from high resolution mass spectra. Second, utilizing PMF to extract factors containing inorganic species allowed for the determination of extent of neutralization, which could have implications for aerosol parameterization. Third, subtler differences in organic aerosol components were resolved through the incorporation of inorganic mass into the PMF matrix. The additional temporal features provided by the inorganic aerosol components allowed for the resolution of more types of oxygenated organic aerosol than could be reliably resolved from PMF of organics alone. Comparison of findings from the PMFFull MS and PMFOrg MS methods showed that for the Windsor airshed, the PMFFull MS method enabled additional conclusions to be drawn in terms of aerosol sources and chemical processes. While performing PMFOrg MS can provide important distinctions between types of organic aerosol, it is shown that including inorganic species in the PMF analysis can permit further apportionment of organics for unit mass resolution AMS mass spectra.

  10. Source apportionment of particles at Station Nord, North East Greenland during 2008–2010 using COPREM and PMF analysis

    Directory of Open Access Journals (Sweden)

    A. Massling

    2012-09-01

    Full Text Available In order to develop strategies for controlling and reducing Arctic air pollution, there is a need to understand the basic mechanisms for determining the fate of air pollution in the Arctic. Sources of atmospheric particles at Station Nord (81°36' N, 16°40' W in North East Greenland were evaluated for a two-year period from March 2008 to February 2010. Source apportionment using Positive Matrix Factorization (PMF and COnstrained Physical Receptor Model (COPREM was based on measurements of black carbon, elements (Al, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, As, Se, Br, Rb, Sr, Zr, Pb and inorganic ions (SO2, SO42−, Na+, NH4+, NO3−, Cl−. In general, source apportionment results by PMF and COPREM showed good agreement. Five sources adequately explained the measurements, which included a Marine and a Soil source of natural origin and three additional anthropogenic sources, which were all influenced by metal industries. One anthropogenic source was dominated by Zn of which air mass back trajectories using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT model suggested a Canadian Arctic origin, despite certain influences from southern and eastern origins. Another anthropogenic source was characterised by high concentrations of Pb and As, which has been historically referred to as a Combustion source at Station Nord. The impacts of large-scale industry in Siberia, Russia were evident through high Cu concentrations in both the Combustion source and an additional Cu/Ni source. Br correlated well with the anthropogenic species S and Pb though the elements are unlikely to have a common origin. More likely, sulphuric acid aerosols serve as transport containers for Br species of marine or local origin. Of particular relevance to climate, sources of black carbon were identified to be mainly anthropogenic and most probably of Siberian origin (80–98%.

  11. Apportionment of sources affecting water quality: Case study of Kandla Creek, Gulf of Katchchh

    Digital Repository Service at National Institute of Oceanography (India)

    Dalal, S.G.; Shirodkar, P.V.; Verlekar, X.N.; Jagtap, T.G.; Rao, G.S.

    and salinity were due to natural effects of strong tidal currents (tidal range, 7 m) and intrusion of saline waters from the salt works. The high loading of petroleum hydrocarbons was due to the spillage from loading and unloading of oil and other petroleum... the reliability of the APCS modeling approach for the source apportionment of the Creek water. Further, this model could also be a useful tool to eliminate multi-colinearity problems and to remove indirect effect of parameters. We believe that the apportionment...

  12. Problems in the fingerprints based polycyclic aromatic hydrocarbons source apportionment analysis and a practical solution.

    Science.gov (United States)

    Zou, Yonghong; Wang, Lixia; Christensen, Erik R

    2015-10-01

    This work intended to explain the challenges of the fingerprints based source apportionment method for polycyclic aromatic hydrocarbons (PAH) in the aquatic environment, and to illustrate a practical and robust solution. The PAH data detected in the sediment cores from the Illinois River provide the basis of this study. Principal component analysis (PCA) separates PAH compounds into two groups reflecting their possible airborne transport patterns; but it is not able to suggest specific sources. Not all positive matrix factorization (PMF) determined sources are distinguishable due to the variability of source fingerprints. However, they constitute useful suggestions for inputs for a Bayesian chemical mass balance (CMB) analysis. The Bayesian CMB analysis takes into account the measurement errors as well as the variations of source fingerprints, and provides a credible source apportionment. Major PAH sources for Illinois River sediments are traffic (35%), coke oven (24%), coal combustion (18%), and wood combustion (14%). PMID:26208321

  13. Source apportionment of mercury in dust fallout at urban residential area of Central India

    OpenAIRE

    S. Pervez; G. Balakrishna; Tiwari, S

    2009-01-01

    The components and quantities of atmospheric dust fallout have been reported to be the pollution indicator of large urban areas. The multiplicity and complexity of sources of atmospheric dusts in urban regions (e.g. industrial complexes composed of a variety of industrial processes, automobiles, construction activities etc.) has put forward the need of source apportionment of these sources indicating their contribution to specific environmental receptor. The study presented...

  14. Concentrations and source apportionment of PM10 and associated major and trace elements in the Rhodes Island, Greece.

    Science.gov (United States)

    Argyropoulos, Georgios; Manoli, Evangelia; Kouras, Athanasios; Samara, Constantini

    2012-08-15

    Ambient concentrations of PM(10) and associated major and trace elements were measured over the cold and the warm season of 2007 at two sites located in the Rhodes Island (Greece), in Eastern Mediterranean, aimed at source apportionment by Chemical Mass Balance (CMB) receptor modeling. Source chemical profiles, necessary in CMB modeling, were obtained for a variety of emission sources that could possibly affect the study area, including sea spray, geological material, soot emissions from the nearby oil-fuelled thermal power plant, and other anthropogenic activities, such as vehicular traffic, residential oil combustion, wood burning, and uncontrolled open-air burning of agricultural biomass and municipal waste. Source apportionment of PM(10) and elemental components was carried out by employing an advanced CMB version, the Robotic Chemical Mass Balance model (RCMB). Vehicular emissions were found to be major PM(10) contributor accounting, on average, for 36.8% and 31.7% during the cold period, and for 40.9% and 39.2% in the warm period at the two sites, respectively. The second largest source of ambient PM(10), with minor seasonal variation, was secondary sulfates (mainly ammonium and calcium sulfates), with total average contribution around 16.5% and 18% at the two sites. Soil dust was also a remarkable source contributing around 22% in the warm period, whereas only around 10% in the cold season. Soot emitted from the thermal power plant was found to be negligible contributor to ambient PM(10) (burning aerosol from the countries surrounding the Black Sea was considered possible. PMID:22705902

  15. Advanced source apportionment of size-resolved trace elements at multiple sites in London during winter

    Science.gov (United States)

    Visser, S.; Slowik, J. G.; Furger, M.; Zotter, P.; Bukowiecki, N.; Canonaco, F.; Flechsig, U.; Appel, K.; Green, D. C.; Tremper, A. H.; Young, D. E.; Williams, P. I.; Allan, J. D.; Coe, H.; Williams, L. R.; Mohr, C.; Xu, L.; Ng, N. L.; Nemitz, E.; Barlow, J. F.; Halios, C. H.; Fleming, Z. L.; Baltensperger, U.; Prévôt, A. S. H.

    2015-10-01

    Trace element measurements in PM10-2.5, PM2.5-1.0 and PM1.0-0.3 aerosol were performed with 2 h time resolution at kerbside, urban background and rural sites during the ClearfLo winter 2012 campaign in London. The environment-dependent variability of emissions was characterized using the Multilinear Engine implementation of the positive matrix factorization model, conducted on data sets comprising all three sites but segregated by size. Combining the sites enabled separation of sources with high temporal covariance but significant spatial variability. Separation of sizes improved source resolution by preventing sources occurring in only a single size fraction from having too small a contribution for the model to resolve. Anchor profiles were retrieved internally by analysing data subsets, and these profiles were used in the analyses of the complete data sets of all sites for enhanced source apportionment. A total of nine different factors were resolved (notable elements in brackets): in PM10-2.5, brake wear (Cu, Zr, Sb, Ba), other traffic-related (Fe), resuspended dust (Si, Ca), sea/road salt (Cl), aged sea salt (Na, Mg) and industrial (Cr, Ni); in PM2.5-1.0, brake wear, other traffic-related, resuspended dust, sea/road salt, aged sea salt and S-rich (S); and in PM1.0-0.3, traffic-related (Fe, Cu, Zr, Sb, Ba), resuspended dust, sea/road salt, aged sea salt, reacted Cl (Cl), S-rich and solid fuel (K, Pb). Human activities enhance the kerb-to-rural concentration gradients of coarse aged sea salt, typically considered to have a natural source, by 1.7-2.2. These site-dependent concentration differences reflect the effect of local resuspension processes in London. The anthropogenically influenced factors traffic (brake wear and other traffic-related processes), dust and sea/road salt provide further kerb-to-rural concentration enhancements by direct source emissions by a factor of 3.5-12.7. The traffic and dust factors are mainly emitted in PM10-2.5 and show strong

  16. Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe

    OpenAIRE

    Ulevicius, Vidmantas; Byčenkienė, Steigvilė; Bozzetti, Carlo; Vlachou, Athanasia; Plauškaitė, Kristina; Mordas, Genrik; Dudoitis, Vadimas; Abbaszade, Gülcin; Remeikis, Vidmantas; Garbaras, Andrius; Masalaite, Agne; Blees, Jan; Fröhlich, Roman; Dällenbach, Kaspar R.; Canonaco, Francesco

    2016-01-01

    In early spring the Baltic region is frequently affected by high-pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinea...

  17. Comparison of several wood smoke markers and source apportionment methods for wood burning particulate mass

    OpenAIRE

    Sandradewi, J.; Prévôt, A.S.H.; M. R. Alfarra; Szidat, S.; Wehrli, M. N.; Ruff, M.; S. Weimer; Lanz, V A; Weingartner, E.; Perron, N.; Caseiro, A.; Kasper-Giebl, A.; H. Puxbaum; Wacker, L.; Baltensperger, U.

    2008-01-01

    Residential wood combustion has only recently been recognized as a major contributor to air pollution in Switzerland and in other European countries. A source apportionment method using the aethalometer light absorption parameters was applied to five winter campaigns at three sites in Switzerland: a village with high wood combustion activity in winter, an urban background site and a highway site. The particulate mass from traffic (PMtraffic) and wood burning (PM

  18. Source apportionment of particles at Station Nord, North East Greenland during 2008–2010 using COPREM and PMF analysis

    Directory of Open Access Journals (Sweden)

    Q. T. Nguyen

    2013-01-01

    Full Text Available In order to develop strategies for controlling and reducing Arctic air pollution, there is a need to understand the basic mechanisms for determining the fate of air pollution in the Arctic. Sources of atmospheric particles at Station Nord (81° 36' N, 16° 40' W in North East Greenland were evaluated for a two-year period from March 2008 to February 2010. Source apportionment using Positive Matrix Factorization (PMF and COnstrained Physical REceptor Model (COPREM was based on measurements of black carbon, elements (Al, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, As, Se, Br, Rb, Sr, Zr, Pb and inorganic ions (SO2, SO42−, Na+, NH4+, NO3, Cl2−. In general, source apportionment results by PMF and COPREM showed good agreement. Five sources adequately explained the measurements, which included a Marine and a Soil source of natural origin and three additional anthropogenic sources, which were all influenced by metal industries. One anthropogenic source was dominated by Zn of which air mass back trajectories using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT model suggested a Canadian Arctic origin, despite certain influences from Southern and Eastern origins. Another anthropogenic source was characterised by high concentrations of Pb and As, which has been historically referred to as a Combustion source at Station Nord. The impacts of large-scale industry in Siberia, Russia were evident through high Cu concentrations in both the Combustion source and an additional Cu/Ni source.

    Br correlated well with the anthropogenic species S and Pb though the elements are unlikely to have a common origin. More likely, sulphuric acid aerosols serve as transport containers for Br species of marine origin. Of particular relevance to climate, sources of black carbon were identified to be

  19. Spallation Neutron Source Availability Top-Down Apportionment Using Characteristic Factors and Expert Opinion

    International Nuclear Information System (INIS)

    Apportionment is the assignment of top-level requirements to lower tier elements of the overall facility. A method for apportioning overall facility availability requirements among systems and subsystems is presented. Characteristics that influence equipment reliability and maintainability are discussed. Experts, using engineering judgment, scored each characteristic for each system whose availability design goal is to be established. The Analytic Hierarchy Process (AHP) method is used to produce a set of weighted rankings for each characteristic for each alternative system. A mathematical model is derived which incorporates these weighting factors. The method imposes higher availability requirements on those systems in which an incremental increase in availability is easier to achieve, and lower availability requirements where greater availability is more difficult and costly. An example is given of applying this top-down apportionment methodology to the Spallation Neutron Source (SNS) facility

  20. Size-resolved source apportionment of carbonaceous particulate matter in urban and rural sites in central California

    Science.gov (United States)

    Ham, Walter A.; Kleeman, Michael J.

    2011-08-01

    Very little is currently known about the relationship between exposure to different sources of ambient ultrafine particles (PM 0.1) and human health effects. If human health effects are enhanced by PM 0.1's ability to cross cell membranes, then more information is needed describing the sources of ultrafine particles that are deposited in the human respiratory system. The current study presents results for the source apportionment of airborne particulate matter in six size fractions smaller than 1.8 μm particle diameter including ultrafine particles (PM 0.1) in one of the most polluted air basins in the United States. Size-resolved source apportionment results are presented at an urban site and rural site in central California's heavily polluted San Joaquin Valley during the winter and summer months using a molecular marker chemical mass balance (MM-CMB) method. Respiratory deposition calculations for the size-resolved source apportionment results are carried out with the Multiple Path Particle Dosimetry Model ( MPPD v 2.0), including calculations for ultrafine (PM 0.1) source deposition. Diesel engines accounted for the majority of PM 0.1 and PM 1.8 EC at both the urban and rural sampling locations during both summer and winter seasons. Meat cooking accounted for 33-67% and diesel engines accounted for 15-21% of the PM 0.1 OC at Fresno. Meat cooking accounted for 22-26% of the PM 0.1 OC at the rural Westside location, while diesel engines accounted for 8-9%. Wood burning contributions to PM 0.1 OC increased to as much as 12% of PM 0.1 OC during the wintertime. The modest contribution of wood smoke reflects the success of emissions control programs over the past decade. In contrast to PM 0.1, PM 1.8 OC had a higher fraction of unidentified source contributions (68-85%) suggesting that this material is composed of secondary organic aerosol (SOA) or primary organic aerosol (POA) that has been processed by atmospheric chemical reactions. Meat cooking was the largest

  1. Sources of carbonaceous aerosol in the Amazon basin

    Directory of Open Access Journals (Sweden)

    S. Gilardoni

    2011-03-01

    Full Text Available The quantification of sources of carbonaceous aerosol is important to understand their atmospheric concentrations and regulating processes and to study possible effects on climate and air quality, in addition to develop mitigation strategies.

    In the framework of the European Integrated Project on Aerosol Cloud Climate Interactions (EUCAARI fine (Dp < 2.5 μm and coarse (2.5 μm < Dp <10 μm aerosol particles were sampled from February to June (wet season and from August to September (dry season 2008 in the central Amazon basin. The mass of fine particles averaged 2.4 μg m−3 during the wet season and 4.2 μg m−3 during the dry season. The average coarse aerosol mass concentration during wet and dry periods was 7.9 and 7.6 μg m−3, respectively. The overall chemical composition of fine and coarse mass did not show any seasonality with the largest fraction of fine and coarse aerosol mass explained by organic carbon (OC; the average OC to mass ratio was 0.4 and 0.6 in fine and coarse aerosol modes, respectively. The mass absorbing cross section of soot was determined by comparison of elemental carbon and light absorption coefficient measurements and it was equal to 4.7 m2 g−1 at 637 nm. Carbon aerosol sources were identified by Positive Matrix Factorization (PMF analysis of thermograms: 44% of fine total carbon mass was assigned to biomass burning, 43% to secondary organic aerosol (SOA, and 13% to volatile species that are difficult to apportion. In the coarse mode, primary biogenic aerosol particles (PBAP dominated the carbonaceous aerosol mass. The results confirmed the importance of PBAP in forested areas.

    The source apportionment results were employed to evaluate the ability of global chemistry transport models to simulate carbonaceous aerosol sources in a regional tropical background site. The comparison showed an overestimation

  2. Microbial water pollution: a screening tool for initial catchment-scale assessment and source apportionment.

    Science.gov (United States)

    Kay, D; Anthony, S; Crowther, J; Chambers, B J; Nicholson, F A; Chadwick, D; Stapleton, C M; Wyer, M D

    2010-11-01

    The European Union Water Framework Directive requires that Management Plans are developed for individual River Basin Districts. From the point of view of faecal indicator organisms (FIOs), there is a critical need for screening tools that can provide a rapid assessment of the likely FIO concentrations and fluxes within catchments under base- and high-flow conditions, and of the balance ('source apportionment') between agriculture- and sewage-derived sources. Accordingly, the present paper reports on: (1) the development of preliminary generic models, using water quality and land cover data from previous UK catchment studies for assessing FIO concentrations, fluxes and source apportionment within catchments during the summer bathing season; (2) the calibration of national land use data, against data previously used in the models; and (3) provisional FIO concentration and source-apportionment assessments for England and Wales. The models clearly highlighted the crucial importance of high-flow conditions for the flux of FIOs within catchments. At high flow, improved grassland (and associated livestock) was the key FIO source; FIO loadings derived from catchments with high proportions of improved grassland were shown to be as high as from urbanized catchments; and in many rural catchments, especially in NW and SW England and Wales, which are important areas of lowland livestock (especially dairy) farming, ≥ 40% of FIOs was assessed to be derived from agricultural sources. In contrast, under base-flow conditions, when there was little or no runoff from agricultural land, urban (i.e. sewerage-related) sources were assessed to dominate, and even in rural areas the majority of FIOs were attributed to urban sources. The results of the study demonstrate the potential of this type of approach, particularly in light of climate change and the likelihood of more high-flow events, in underpinning informed policy development and prioritization of investment. PMID:19717181

  3. Application of a source apportionment model in consideration of volatile organic compounds in an urban stream

    Science.gov (United States)

    Asher, W.E.; Luo, W.; Campo, K.W.; Bender, D.A.; Robinson, K.W.; Zogorski, J.S.; Pankow, J.F.

    2007-01-01

    Position-dependent concentrations of trichloroethylene and methyl-tert-butyl ether are considered for a 2.81-km section of the Aberjona River in Massachusetts, USA. This river flows through Woburn and Winchester (Massachusetts, USA), an area that is highly urbanized, has a long history of industrial activities dating to the early 1800s, and has gained national attention because of contamination from chlorinated solvent compounds in Woburn wells G and H. The river study section is in Winchester and begins approximately five stream kilometers downstream from the Woburn wells superfund site. Approximately 300 toxic release sites are documented in the watershed upstream from the terminus of the study section. The inflow to the river study section is considered one source of contamination. Other sources are the atmosphere, a tributary flow, and groundwater flows entering the river; the latter are categorized according to stream zone (1, 2, 3, etc.). Loss processes considered include outflows to groundwater and water-to-atmosphere transfer of volatile compounds. For both trichloroethylene and methyl-rerf-butyl ether, degradation is neglected over the timescale of interest. Source apportionment fractions with assigned values ??inflow, ??1, ??2, ??3, etc. are tracked by a source apportionment model. The strengths of the groundwater and tributary sources serve as fitting parameters when minimizing a reduced least squares statistic between water concentrations measured during a synoptic study in July 2001 versus predictions from the model. The model fits provide strong evidence of substantial unknown groundwater sources of trichloroethylene and methyl-tert-butyl ether amounting to tens of grams per day of trichloroethylene and methyl-tert-butyl ether in the river along the study section. Modeling in a source apportionment manner can be useful to water quality managers allocating limited resources for remediation and source control. ?? 2007 SETAC.

  4. Do anthropogenic or coastal aerosol sources impact on a clean marine aerosol signature at Mace Head?

    Science.gov (United States)

    O'Dowd, C.; Ceburnis, D.; Ovadnevaite, J.; Rinaldi, M.; Facchini, M. C.

    2013-03-01

    Atmospheric aerosols have been sampled and characterised at the Mace Head North East (N.E.) Atlantic atmospheric research station since 1958, with many interesting phenomena being discovered. However, with the range of new discoveries and scientific advances, there has been a range of concomitant criticisms challenging the representativeness of aerosol sampled at the station to that of aerosol over the open ocean. Two recurring criticisms relate to the lack of representativeness due to enhanced coastal sources, thereby leading to artificially high values to aerosol parameters, and to the influence of long-range transport of anthropogenic aerosol and its potential dominance over, or drowning-out of, a natural marine aerosol signal. Here we review the results of previous experimental studies into marine aerosols over the N.E. Atlantic and at Mace Head with the aim of evaluating their representativeness relative to that of an open ocean aerosol with negligible anthropogenic influence. Particular focus is given to organic matter (OM) aerosol. In summary, no correlation was found between OM and black carbon (BC) either at BC levels of 0-15 or 15-50 ng m-3, suggesting that OM concentrations up to peak values of 3.8 μg m-3 are predominantly natural in origin. Sophisticated carbon isotope analysis and aerosol mass spectral finger printing corroborate the natural source of OM with 80% biogenic source apportionment being observed for general clean air conditions, rising to 98% during specific primary marine organic plumes when peak concentrations >3 μg m-3 are observed. A range of other experiments are discussed which corroborate the dominance of a marine signal under Mace Head clean air criteria along. Further, analysis of a series of experiments conducted at Mace Head conclude that negligible coastal, surf zone, or tidal effects are discernible in the submicron size range for sampling heights of 7 m and above. The Mace Head clean air criteria ensures anthropogenic and

  5. Do anthropogenic or coastal aerosol sources impact on a clean marine aerosol signature at Mace Head?

    Directory of Open Access Journals (Sweden)

    C. O'Dowd

    2013-03-01

    Full Text Available Atmospheric aerosols have been sampled and characterised at the Mace Head North East (N.E. Atlantic atmospheric research station since 1958, with many interesting phenomena being discovered. However, with the range of new discoveries and scientific advances, there has been a range of concomitant criticisms challenging the representativeness of aerosol sampled at the station to that of aerosol over the open ocean. Two recurring criticisms relate to the lack of representativeness due to enhanced coastal sources, thereby leading to artificially high values to aerosol parameters, and to the influence of long-range transport of anthropogenic aerosol and its potential dominance over, or drowning-out of, a natural marine aerosol signal. Here we review the results of previous experimental studies into marine aerosols over the N.E. Atlantic and at Mace Head with the aim of evaluating their representativeness relative to that of an open ocean aerosol with negligible anthropogenic influence. Particular focus is given to organic matter (OM aerosol. In summary, no correlation was found between OM and black carbon (BC either at BC levels of 0–15 or 15–50 ng m−3, suggesting that OM concentrations up to peak values of 3.8 μg m−3 are predominantly natural in origin. Sophisticated carbon isotope analysis and aerosol mass spectral finger printing corroborate the natural source of OM with 80% biogenic source apportionment being observed for general clean air conditions, rising to 98% during specific primary marine organic plumes when peak concentrations >3 μg m−3 are observed. A range of other experiments are discussed which corroborate the dominance of a marine signal under Mace Head clean air criteria along. Further, analysis of a series of experiments conducted at Mace Head conclude that negligible coastal, surf zone, or tidal effects are discernible in the submicron size range for sampling heights of 7 m and above. The Mace Head clean air criteria

  6. Contribution Assessment of Regional Air Pollution over Northeast Asia using CMAQ Source Apportionment Tools

    Science.gov (United States)

    Choi, K.; Woo, J.; Kim, H.; Lee, J.; Kim, C.

    2011-12-01

    East Asia is one of the largest emission source regions in the world because of the large population and fast economic growth for several decades. Recent observation from space also demonstrates that emissions in East Asia - especially China - have been increased impressively since 1995. A number of regional scale transport studies using comprehensive 3D modeling system such as CMAQ have been conducted to understand transboundary air pollution. The contribution assessment using such a comprehensive modeling system, however, was not extensively investigated in this region. Air pollution contributions from multiple source types and regions over East Asia were examined using CMAQ based source apportionment tool off-line coupled with a meteorological model (WRF). The simulation was conducted for the entire year of 2009. The CMAQ ozone & particle precursor tagging methodologies (OPTM) source apportionment tool were applied in our study. An anthropogenic emissions inventory and processing methodology have been developed in support of the source-receptor modeling study in East Asia region. Emissions from open biomass burning and biogenic source were also estimated to support air quality contributions assessment from various sources and source types. Remote sensing-based atmosphere information and ground based monitoring data has been included to evaluate the simulation results. The results of our analysis will be presented at the conference.

  7. Temporal trend and source apportionment of water pollution in different functional zones of Qiantang River, China.

    Science.gov (United States)

    Su, Shiliang; Li, Dan; Zhang, Qi; Xiao, Rui; Huang, Fang; Wu, Jiaping

    2011-02-01

    The increasingly serious river water pollution in developing countries poses great threat to environmental health and human welfare. The assignment of river function to specific uses, known as zoning, is a useful tool to reveal variations of water environmental adaptability to human impact. Therefore, characterizing the temporal trend and identifying responsible pollution sources in different functional zones could greatly improve our knowledge about human impacts on the river water environment. The aim of this study is to obtain a deeper understanding of temporal trends and sources of water pollution in different functional zones with a case study of the Qiantang River, China. Measurement data were obtained and pretreated for 13 variables from 41 monitoring sites in four categories of functional zones during the period 1996-2004. An exploratory approach, which combines smoothing and non-parametric statistical tests, was applied to characterize trends of four significant parameters (permanganate index, ammonia nitrogen, total cadmium and fluoride) accounting for differences among different functional zones identified by discriminant analysis. Aided by GIS, yearly pollution index (PI) for each monitoring site was further mapped to compare the within-group variations in temporal dynamics for different functional zones. Rotated principal component analysis and receptor model (absolute principle component score-multiple linear regression, APCS-MLR) revealed that potential pollution sources and their corresponding contributions varied among the four functional zones. Variations of APCS values for each site of one functional zone as well as their annual average values highlighted the uncertainties associated with cross space-time effects in source apportionment. All these results reinforce the notion that the concept of zoning should be taken seriously in water pollution control. Being applicable to other rivers, the framework of management-oriented source apportionment

  8. Characterization of urban aerosol sources in Debrecen, Hungary

    International Nuclear Information System (INIS)

    Complete text of publication follows. Aerosol pollution represents significant health hazard in urban environments. Despite the fact that Debrecen has not a much stressed environment the city is highly exposed to aerosol pollution. In order to evaluate the impact of aerosol particles on health, the knowledge of the particle size distribution, chemical composition, sources, and their change in time and space is needed. This work presents a source apportionment study of fine (particles with aerodynamic diameter less than 2.5 μm) and coarse (particles with aerodynamic diameter between 2.5 and 10 μm) particulate matter in Debrecen by following the evolution of the elemental components with hourly time resolution. The variation of the elemental concentrations, their periodicity, correlation with other elements and meteorological parameters were studied on samples collected in different seasons. Aerosol sources were determined using the positive matrix factorization (PMF) method. Aerosol samples were collected in the garden of the ATOMKI with a 2-stage sequential streaker sampler manufactured by PIXE International, which collected the fine and coarse fraction separately with few hours' time resolution. Between October 2007 and January 2009 five 10-days long sampling campaigns were carried out. The elemental composition was determined by Particle Induced X-ray emission (PIXE) for Z ≥ 13, and the elemental carbon (BC) content was estimated with a smoke stain reflectometer. Source apportionment was carried out with the PMF receptor model developed for aerosol source characterization, provided by US EPA. Mass of species apportioned to factor, percentage of species apportioned to factors and average factor contributions of the campaigns, of working days and weekends and within the days were calculated. The PMF analysis resulted seven factors in the fine and seven factors in the coarse mode. The main sources of atmospheric aerosol in the city of Debrecen were traffic

  9. An integrated approach to assess heavy metal source apportionment in peri-urban agricultural soils.

    Science.gov (United States)

    Huang, Ying; Li, Tingqiang; Wu, Chengxian; He, Zhenli; Japenga, Jan; Deng, Meihua; Yang, Xiaoe

    2015-12-15

    Three techniques (Isotope Ratio Analysis, GIS mapping, and Multivariate Statistical Analysis) were integrated to assess heavy metal pollution and source apportionment in peri-urban agricultural soils. The soils in the study area were moderately polluted with cadmium (Cd) and mercury (Hg), lightly polluted with lead (Pb), and chromium (Cr). GIS Mapping suggested Cd pollution originates from point sources, whereas Hg, Pb, Cr could be traced back to both point and non-point sources. Principal component analysis (PCA) indicated aluminum (Al), manganese (Mn), nickel (Ni) were mainly inherited from natural sources, while Hg, Pb, and Cd were associated with two different kinds of anthropogenic sources. Cluster analysis (CA) further identified fertilizers, waste water, industrial solid wastes, road dust, and atmospheric deposition as potential sources. Based on isotope ratio analysis (IRA) organic fertilizers and road dusts accounted for 74-100% and 0-24% of the total Hg input, while road dusts and solid wastes contributed for 0-80% and 19-100% of the Pb input. This study provides a reliable approach for heavy metal source apportionment in this particular peri-urban area, with a clear potential for future application in other regions. PMID:26257294

  10. Source apportionment of PM2.5 in top polluted cities in Hebei, China using the CMAQ model

    Science.gov (United States)

    Wang, Litao; Wei, Zhe; Wei, Wei; Fu, Joshua S.; Meng, Chenchen; Ma, Simeng

    2015-12-01

    Hebei has been recognized as one of the most polluted provinces in China, characterized by extremely high concentrations of fine particulate matter (PM2.5) in many of its cities, especially those located in the southern area of the province and highly potentially northward transported to Beijing. Source apportionment of PM2.5 is the basis and prerequisite of an effective control strategy. In this study, the Mesoscale Modeling System Generation 5 (MM5) and the Models-3/Community Multiscale Air Quality (CMAQ) modeling system are applied to East Asia and North China at 36- and 12-km horizontal grid resolutions, and the source apportionment of PM2.5 in the three top polluted cities in Hebei, i.e., Shijiazhuang, Xingtai, and Handan, is performed using the Brute-Force method. It is concluded that the regional source contributions to PM2.5 are 27.9% in Shijiazhuang, 46.6% in Xingtai, and 40.4% in Handan. The major local contributors are industrial, domestic and agricultural sources in all the three cities with the contributions of 39.8%, 15.8%, and 10.6% in Shijiazhuang, 30.5%, 13.6%, and 6.9% in Xingtai, 35.9%, 13.5%, and 6.2% in Handan, respectively. As to the secondary aerosols of sulfate (SO42-), nitrate (NO3-), and ammonium (NH4+) in PM2.5, which are important chemical species in PM2.5 (about 30-40% in PM2.5) and cannot be further apportioned by receptor models, the regional source contributions to the total concentrations of SO42-, NO3-, and NH4+ are 40.9%, 62.0%, and 59.1% in Shijiazhuang, Xingtai, and Handan, respectively. The local industrial, domestic and agricultural contributions to those are 23.7%, 6.6%, and 29.8% in total in Shijiazhuang, 17.5%, 5.0%, and 17.7% in Xingtai, and 20.6%, 4.8%, and 17.8% in Handan, respectively. The regional joint controls of air pollution are more important in Xingtai and Handan than in Shijiazhuang, and the emission controls of agricultural sources need to be further considered in the future policy.

  11. Source Apportionment of Sulfate and Nitrate over the Pearl River Delta Region in China

    Directory of Open Access Journals (Sweden)

    Xingcheng Lu

    2016-07-01

    Full Text Available In this work, the Weather Research Forecast (WRF–Sparse Matrix Operator Kernel Emission (SMOKE–Comprehensive Air Quality Model with Extensions (CAMx modeling system with particulate source apportionment technology (PSAT module was used to study and analyze the source apportionment of sulfate and nitrate particulate matter in the Pearl River Delta region (PRD. The results show that superregional transport was an important contributor for both sulfates and nitrates in all 10 cities in this region in both February (winter and August (summer. Especially in February, the average super-regional contribution of sulfate and nitrate reached up to 80% and 56% respectively. For the local and regional source category, power plant emissions (coal-fired and oil-fired and industry emissions were important for sulfate formation in this region. Industry emissions and mobile emissions are important for nitrate formation in this region. In August, the sum of these two sources contributed around over 60% of local and regional nitrate. The contributions from power plant emissions and marine emissions became important in August due to the southerly prevailing wind direction. Area sources and biogenic emissions were negligible for sulfate and nitrate formation in this region. Our results reveal that cross-province cooperation is necessary for control of sulfates and nitrates in this region.

  12. AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in five southern European cities

    Science.gov (United States)

    Amato, Fulvio; Alastuey, Andrés; Karanasiou, Angeliki; Lucarelli, Franco; Nava, Silvia; Calzolai, Giulia; Severi, Mirko; Becagli, Silvia; Gianelle, Vorne L.; Colombi, Cristina; Alves, Celia; Custódio, Danilo; Nunes, Teresa; Cerqueira, Mario; Pio, Casimiro; Eleftheriadis, Konstantinos; Diapouli, Evangelia; Reche, Cristina; Cruz Minguillón, María; Manousakas, Manousos-Ioannis; Maggos, Thomas; Vratolis, Stergios; Harrison, Roy M.; Querol, Xavier

    2016-03-01

    The AIRUSE-LIFE+ project aims at characterizing similarities and heterogeneities in particulate matter (PM) sources and contributions in urban areas from southern Europe. Once the main PMx sources are identified, AIRUSE aims at developing and testing the efficiency of specific and non-specific measures to improve urban air quality. This article reports the results of the source apportionment of PM10 and PM2.5 conducted at three urban background sites (Barcelona, Florence and Milan, BCN-UB, FI-UB and MLN-UB), one suburban background site (Athens, ATH-SUB) and one traffic site (Porto, POR-TR). After collecting 1047 PM10 and 1116 PM2.5 24 h samples during 12 months (from January 2013 on) simultaneously at the five cities, these were analysed for the contents of OC, EC, anions, cations, major and trace elements and levoglucosan. The USEPA PMF5 receptor model was applied to these data sets in a harmonized way for each city. The sum of vehicle exhaust (VEX) and non-exhaust (NEX) contributes between 3.9 and 10.8 µg m-3 (16-32 %) to PM10 and 2.3 and 9.4 µg m-3 (15-36 %) to PM2.5, although a fraction of secondary nitrate is also traffic-related but could not be estimated. Important contributions arise from secondary particles (nitrate, sulfate and organics) in PM2.5 (37-82 %) but also in PM10 (40-71 %), mostly at background sites, revealing the importance of abating gaseous precursors in designing air quality plans. Biomass burning (BB) contributions vary widely, from 14-24 % of PM10 in POR-TR, MLN-UB and FI-UB, 7 % in ATH-SUB, to < 2 % in BCN-UB. In PM2.5, BB is the second most important source in MLN-UB (21 %) and in POR-TR (18 %), the third one in FI-UB (21 %) and ATH-SUB (11 %), but is again negligible (< 2 %) in BCN-UB. This large variability among cities is mostly due to the degree of penetration of biomass for residential heating. In Barcelona natural gas is very well supplied across the city and is used as fuel in 96 % of homes, while in other cities, PM levels

  13. Use of Lead Isotopes to Identify Sources of Metal and Metalloid Contaminants in Atmospheric Aerosol from Mining Operations

    OpenAIRE

    Félix, Omar I.; Csavina, Janae; Field, Jason; Kyle P. Rine; Sáez, A. Eduardo; Betterton, Eric A.

    2014-01-01

    Mining operations are a potential source of metal and metalloid contamination by atmospheric particulate generated from smelting activities, as well as from erosion of mine tailings. In this work, we show how lead isotopes can be used for source apportionment of metal and metalloid contaminants from the site of an active copper mine. Analysis of atmospheric aerosol shows two distinct isotopic signatures: one prevalent in fine particles (< 1 μm aerodynamic diameter) while the other corresponds...

  14. Source apportionment of PM2.5 in Incheon, Korea

    Science.gov (United States)

    Choi, J.; Ban, S.; Lee, C.; Yi, S.; Zoh, K.

    2011-12-01

    PM2.5 samples were collected at a centrally located urban monitoring site in Incheon, Korea, every third day from Jun 2009 to may 2010 and analyzed their chemical species. In this study, we investigated the source of PM2.5 using Positive Matrix Factorization(PMF), the source area from Potential Source Contribution Function (PSCF) and Conditional Probability Function(CPF), and characterized source variation among episode, non-episode, yellow sand events. Incheon, study site, is located at the mid-western tip of the Korean Peninsula with a population of 2.6 million people and area of 1029.4 km2, respectively. As a transportation hub, the city also holds the importance of meteological/geological aspect affecting the air quality of capital region, in that is prevailing westerlies zone and a air passageway from China to Japan passing through seoul, korea. In the study, the Four channel based on Annular Denuder System(ADS) were used for sample collection(URG co, USA). The filter samples were analyzed with respect to species type such as ion group, metal, and OC/EC compound using ion chromatography, ICP/MS, and NIOSH TOT method, respectively. The PM2.5 concentration was 43ug/m3 that is almost three times higher than the US NAAQS annual PM2.5 standard of 15ug/m3. Nine PM2.5 sources were resolved from PMF analysis that provided reasonable source profiles and interesting insights into the source contributions to the ambient mass concentrations. The major sources of PM2.5 were secondary nitrate(26.4%), secondary sulfate(17.3%), gasoline(16.4%), and residual oil combustion(13.5%), with lesser contributions from biomass burning (7.5%), road dust(6.9%), soil (5.5%), coal fire powerplant (4.0%), and free sea salt(2.4%). CPF results identified possible local source directions such as motor vehicles, free sea salt. PSCF results indicated that likely pollution areas increased secondary particle concentrations(sulfate and nitrate) in Incheon to be the major industrial areas in China

  15. Chemical speciation and source apportionment of Non-Methane Volatile Organic Compounds (NMVOCs) in a Middle Eastern country

    Science.gov (United States)

    Salameh, Therese; Sauvage, Stéphane; Afif, Charbel; Borbon, Agnès; Locoge, Nadine

    2014-05-01

    NMVOCs, emitted from various sources, are of particular interest since they contribute to the formation of tropospheric ozone, PAN and secondary organic aerosols resulting in negative impacts on human health, climate and on the environment. To identify abatement measures, a profound knowledge of emission sources and their composition is a prerequisite. Air pollution in the Middle East region remains difficult to assess and understand because of a lack of ground-based measurements and the limited information on NMVOC chemical speciation and source apportionment. Based on a large database of NMVOC observations obtained in Beirut, the capital of Lebanon (a developing country in the Middle East region, located in Western Asia on the eastern shore of the Mediterranean Sea), the overall objective of this work is to apportion the sources of NMVOCs encountered in Lebanon. First, source profiles were determined with field measurements close to the main potential emitters namely the road transport, gasoline vapour, power generation and solvent uses. The results obtained are compared to other studies held in other regions and are used to assess the emission inventory developed for Lebanon. Secondly, two intensive field campaigns were held in a receptor site in Beirut during summer 2011 and winter 2012 in order to obtain a large time resolved dataset. The PMF analysis of this dataset was applied to apportion anthropogenic sources in this area. In both seasons, combustion (road transport and power generation) and gasoline evaporation, especially in winter, were the main sources contributing to the NMVOCs in Beirut. The results will support model implementation especially by completing the emission inventory established for the year 2010 by Waked et al. 2012 according to the EEA/EMEP guidelines because of the lack of Lebanon-specific emission factor.

  16. An inter-comparison of PM2.5 at urban and urban background sites: Chemical characterization and source apportionment

    Science.gov (United States)

    Cesari, D.; Donateo, A.; Conte, M.; Merico, E.; Giangreco, A.; Giangreco, F.; Contini, D.

    2016-06-01

    A measurement campaign was performed between 04/03/2013 and 17/07/2013 for simultaneous collection of PM2.5 samples in two nearby sites in southeastern Italy: an urban site and an urban background site. PM2.5 at the two sites were similar; however, the chemical composition and the contributions of the main sources were significantly different. The coefficients of divergence (CODs) showed spatial heterogeneity of EC (higher at the urban site because of traffic emissions) and of all metals. Major ions (NH4+, Na+, and SO42 -) and OC had low CODs, suggesting a homogeneous distribution of sea spray, secondary sulfate, and secondary organic matter (SOM = 1.6*OCsec, where OCsec is the secondary OC). The strong correlations between Na+ and Cl-, and the low Cl-/Na+ ratios, suggested the presence of aged sea spray with chloride depletion (about 79% of Cl-) and formation of sodium nitrate at both sites. In both sites, the non-sea-salt sulfate was about 97% of sulfate, and the strong correlation between SO42 - and NH4+ indicated that ammonium was present as ammonium sulfate. However, during advection of Saharan Dust, calcium sulfate was present rather than ammonium sulfate. The source apportionment was performed using the Positive Matrix Factorization comparing outputs of model EPA PMF 3.0 and 5.0 version. Six aerosol sources were identified at both sites: traffic, biomass burning, crustal-resuspended dust, secondary nitrate, marine aerosol, and secondary sulfate. The PMF3.0 model was not completely able, in these sites, to separate marine contribution from secondary nitrate and secondary sulfate from OC, underestimating the marine contribution and overestimating the secondary sulfate with respect to stoichiometric calculations. The application of specific constraints on PMF5.0 provided cleaner profiles, improving the comparison with stoichiometric calculations. The seasonal trends revealed larger biomass burning contributions during the cold period at both sites due to

  17. Carbonaceous aerosols from different tropical biomass burning sources

    Science.gov (United States)

    Cachier, Hélène; Brémond, Marie-Pierre; Buat-Ménard, Patrick

    1989-08-01

    FOLLOWING a repetitive pattern, biomass burning affects the intertropical belt on a continental scale during the dry season1. The importance of these anthropogenic activities with regard to carbonaceous-component emissions into the global atmosphere is now well recognized2-4. It has been suggested that large injections of black carbon aerosols from the Tropics are of potential importance for the radiative and chemical balance of the troposphere5-10. Studies on carbonaceous aerosols have indicated that, on an annual basis, the intensity of the emissions from tropical biomass burning could compare with that of emissions from fossil-fuel burning in industrial countries7,8. Also, results from combustion chamber experiments have determined the important range of the emission factor for both the organic and the black carbon components of the aerosol1-16. Following on from our earlier studies on total atmospheric particulate carbon (Ct) and isotopic composition (δ13C) (ref. 2), we now present new data on the black carbon content (Cb) of atmospheric particles sampled during the biomass-burning season in the wooden savannah of the Ivory Coast. The Cb/Ct ratio is generally lower than expected and highly variable. This variability indicates that there are drastic changes in source apportionment, which from our isotope studies may be ascribed to the variety of vegetation fuel and also to the mode of combustion. Therefore the Cb/Ct ratio can potentially discriminate biomass-burning emissions from different tropical ecosystems.

  18. Source apportionment using LOTOS-EUROS: module description and evaluation

    Directory of Open Access Journals (Sweden)

    R. Kranenburg

    2013-06-01

    Full Text Available To design effective mitigation strategies, the origin of emissions which produce air pollutants needs to be known. Contributors to air pollutants can be emission sources, like road traffic or industry, but also be more specified to emission from one location or from a specified time. Chemistry transport models can be used to assess the origin of air pollution across a large domain. However, in traditional simulations the information on origin is lost and brute force scenario studies are performed to assess the origin. Alternatively, one can trace the origin of air pollutants throughout a simulation using a labeling approach. In this paper we document and demonstrate a newly developed labeling module for the chemistry transport model LOTOS-EUROS which tracks the source allocation for all particulate matter components and precursor gases. Dedicated simulations confirmed that the new module functions correctly. The new module provides more accurate information about the source contributions than using a brute force approach with scenario runs as the chemical regime remains unchanged. An important advantage of the new module is the reduction of computation costs and analysis work associated with the calculations. The new module was applied to assess the origin of particulate nitrate across the Netherlands. Averaged across the Dutch territory, the main contributions to nitrate are derived from road and non-road transport as well as power plants. Overall, only one-fifth of the concentration derived from sources located inside the country. The new technology enables new research directions as improved information on pollution origin is desired for policy support as well as scientific applications.

  19. Source apportionment using LOTOS-EUROS: module description and evaluation

    OpenAIRE

    Kranenburg, R. van; A. J. Segers; Hendriks, C.; Schaap, M.

    2013-01-01

    To design effective mitigation strategies, the origin of emissions which produce air pollutants needs to be known. Contributors to air pollutants can be emission sources, like road traffic or industry, but also be more specified to emission from one location or from a specified time. Chemistry transport models can be used to assess the origin of air pollution across a large domain. However, in traditional simulations the information on origin is lost and brute force scenario...

  20. Source apportionment using LOTOS-EUROS: module description and evaluation

    Science.gov (United States)

    Kranenburg, R.; Segers, A. J.; Hendriks, C.; Schaap, M.

    2013-06-01

    To design effective mitigation strategies, the origin of emissions which produce air pollutants needs to be known. Contributors to air pollutants can be emission sources, like road traffic or industry, but also be more specified to emission from one location or from a specified time. Chemistry transport models can be used to assess the origin of air pollution across a large domain. However, in traditional simulations the information on origin is lost and brute force scenario studies are performed to assess the origin. Alternatively, one can trace the origin of air pollutants throughout a simulation using a labeling approach. In this paper we document and demonstrate a newly developed labeling module for the chemistry transport model LOTOS-EUROS which tracks the source allocation for all particulate matter components and precursor gases. Dedicated simulations confirmed that the new module functions correctly. The new module provides more accurate information about the source contributions than using a brute force approach with scenario runs as the chemical regime remains unchanged. An important advantage of the new module is the reduction of computation costs and analysis work associated with the calculations. The new module was applied to assess the origin of particulate nitrate across the Netherlands. Averaged across the Dutch territory, the main contributions to nitrate are derived from road and non-road transport as well as power plants. Overall, only one-fifth of the concentration derived from sources located inside the country. The new technology enables new research directions as improved information on pollution origin is desired for policy support as well as scientific applications.

  1. Source apportionment using LOTOS-EUROS: module description and evaluation

    Directory of Open Access Journals (Sweden)

    R. Kranenburg

    2012-11-01

    Full Text Available To design effective mitigation strategies the origin of air pollutants needs to be known. Chemistry transport models can be used to assess the origin of air pollution across a large domain. However, in traditional simulations the information on origin is lost and brute force scenario studies are performed to assess the origin. Alternatively, one can trace the origin of air pollutants throughout a simulation using a labeling approach. In this paper we document and demonstrate a newly developed labeling module for the chemistry transport model LOTOS-EUROS which tracks the source allocation for all particulate matter components and precursor gases. Dedicated simulations confirmed that the new module functions correctly. The new module provides more accurate information about the source contributions than using a brute force approach with scenario runs as the chemical regime remains unchanged. An important advantage of the new module is the reduction of computation costs and analysis work associated with the calculations. The new module was applied to assess the origin of particulate nitrate across the Netherlands. Averaged across the Dutch territory the main contributions to nitrate derive from road and non-road transport as well as power plants. Overall, only one-fifth of the concentration derived from sources located inside the country. The new technology enables new research directions as improved information on pollution origin is desired for policy support as well as scientific applications.

  2. Source apportionment studies on particulate matter in Beijing/China

    Science.gov (United States)

    Suppan, P.; Shen, R.; Shao, L.; Schrader, S.; Schäfer, K.; Norra, S.; Vogel, B.; Cen, K.; Wang, Y.

    2013-05-01

    More than 15 million people in the greater area of Beijing are still suffering from severe air pollution levels caused by sources within the city itself but also from external impacts like severe dust storms and long range advection from the southern and central part of China. Within this context particulate matter (PM) is the major air pollutant in the greater area of Beijing (Garland et al., 2009). PM did not serve only as lead substance for air quality levels and therefore for adverse health impact effects but also for a strong influence on the climate system by changing e.g. the radiative balance. Investigations on emission reductions during the Olympic Summer Games in 2008 have caused a strong reduction on coarser particles (PM10) but not on smaller particles (PM2.5). In order to discriminate the composition of the particulate matter levels, the different behavior of coarser and smaller particles investigations on source attribution, particle characteristics and external impacts on the PM levels of the city of Beijing by measurements and modeling are performed: a) Examples of long term measurements of PM2.5 filter sampling in 2010/2011 with the objectives of detailed chemical (source attribution, carbon fraction, organic speciation and inorganic composition) and isotopic analyses as well as toxicological assessment in cooperation with several institutions (Karlsruhe Institute of Technology (IfGG/IMG), Helmholtz Zentrum München (HMGU), University Rostock (UR), Chinese University of Mining and Technology Beijing, CUMTB) will be discussed. b) The impact of dust storm events on the overall pollution level of particulate matter in the greater area of Beijing is being assessed by the online coupled comprehensive model system COSMO-ART. First results of the dust storm modeling in northern China (2011, April 30th) demonstrates very well the general behavior of the meteorological parameters temperature and humidity as well as a good agreement between modeled and

  3. Atmospheric Source Apportionment of PCBs Using Chiral Signatures

    Directory of Open Access Journals (Sweden)

    A Jamshidi

    2005-10-01

    Full Text Available Polychlorinated biphenyls (PCBs are organochlorine chemicals that found widespread use in a diverse range of applications, with around 1.2 million tones produced worldwide. Although, the production of PCBs was banned in western nations in order to health concerns in the late 1970s, concentrations in the environment remain elevated, particularly in urban areas. There are two principal sources for atmospheric PCBs; primary source (ventilation of indoor air contaminated via leakage from old electrical equipment, building materials and secondary source (volatilisation from soil contaminated as a result of past releases. Recent literature suggests that while PCB volatilisation from soil is likely to constitute a significant source of atmospheric PCB, new sources (primary such as the ventilation of contaminated indoor air may constitute the most important contributions in urban areas. Aim: to evaluate the relative significance of primary and secondary sources of PCBs to the atmosphere at a number of locations in the West Midlands. Chiral analysis was employed to monitor enantiomeric fractions of selected chiral PCBs in topsoil and outdoor air over a one-year period. Overall 220 air and soil samples were collected from 10 different sites. Sampling locations were located on a southwest (upwind to northeast (downwind transect at intervals of between 3 and 15 km across the conurbation. In this way, a mix of rural, suburban, and urban sampling locations was studied. Samples were extracted, purified, and subjected to chiral GC/MS as previously described. Result: EFs in air for PCBs 136 and 149 are essentially racemic (EF= 0.5± 0.005 at all locations, while the EFs for PCB 95 in air are less obviously racemic, but display appreciable divergence from the EFs found in the corresponding soil samples. Volatilisation from soil appears to make a minimal contribution to atmospheric PCB concentrations at these locations. EFs of PCBs 95 and 136 are essentially

  4. Source apportionment of atmospheric PAHs in the Western Balkans by natural abundance radiocarbon analysis

    Energy Technology Data Exchange (ETDEWEB)

    Zdenek Zencak; Jana Klanova; Ivan Holoubek; Oerjan Gustafsson [Stockholm University, Stockholm (Sweden). Department of Applied Environmental Science

    2007-06-01

    Progress in source apportionment of priority combustion-derived atmospheric pollutants can be made by an inverse approach to inventory emissions, namely, receptor-based compound class-specific radiocarbon analysis (CCSRA) of target pollutants. In the present study, CCSRA of the combustion-derived polycyclic aromatic hydrocarbons (PAHs) present in the atmosphere of the countries of the former republic of Yugoslavia was performed. The carbon stable isotope composition ({delta}{sup 13}C) of PAHs varied between -27.68 and -27.19{per_thousand}, whereas {Delta}{sup 14}C values ranged from -568{per_thousand} for PAHs sampled in Kosovo to -288{per_thousand} for PAHs sampled in the Sarajevo area. The application of an isotopic mass balance model to these {Delta}{sup 14}C data revealed a significant contribution (35-65%) from the combustion of non-fossil material to the atmospheric PAH pollution, even in urban and industrialized areas. Furthermore, consistency was observed between the isotopic composition of PAHs obtained by high-volume sampling and those collected by passive sampling. This encourages the use of passive samplers for CCSRA applications. This marks the first time that a CCSRA investigation could be executed on a geographically wide scale, providing a quantitative field-based source apportionment, which points out that also non-fossil combustion processes should be targeted for remedial action. 36 refs., 1 fig., 3 tabs.

  5. Contamination characteristics and source apportionment of trace metals in soils around Miyun Reservoir.

    Science.gov (United States)

    Chen, Haiyang; Teng, Yanguo; Chen, Ruihui; Li, Jiao; Wang, Jinsheng

    2016-08-01

    Due to their toxicity and bioaccumulation, trace metals in soils can result in a wide range of toxic effects on animals, plants, microbes, and even humans. Recognizing the contamination characteristics of soil metals and especially apportioning their potential sources are the necessary preconditions for pollution prevention and control. Over the past decades, several receptor models have been developed for source apportionment. Among them, positive matrix factorization (PMF) has gained popularity and was recommended by the US Environmental Protection Agency as a general modeling tool. In this study, an extended chemometrics model, multivariate curve resolution-alternating least squares based on maximum likelihood principal component analysis (MCR-ALS/MLPCA), was proposed for source apportionment of soil metals and applied to identify the potential sources of trace metals in soils around Miyun Reservoir. Similar to PMF, the MCR-ALS/MLPCA model can incorporate measurement error information and non-negativity constraints in its calculation procedures. Model validation with synthetic dataset suggested that the MCR-ALS/MLPCA could extract acceptable recovered source profiles even considering relatively larger error levels. When applying to identify the sources of trace metals in soils around Miyun Reservoir, the MCR-ALS/MLPCA model obtained the highly similar profiles with PMF. On the other hand, the assessment results of contamination status showed that the soils around reservoir were polluted by trace metals in slightly moderate degree but potentially posed acceptable risks to the public. Mining activities, fertilizers and agrochemicals, and atmospheric deposition were identified as the potential anthropogenic sources with contributions of 24.8, 14.6, and 13.3 %, respectively. In order to protect the drinking water source of Beijing, special attention should be paid to the metal inputs to soils from mining and agricultural activities. PMID:27107989

  6. A novel approach for apportionment between primary and secondary sources of airborne nitrated polycyclic aromatic hydrocarbons (NPAHs)

    Science.gov (United States)

    Lin, Yan; Qiu, Xinghua; Ma, Yiqiu; Wang, Junxia; Wu, Yusheng; Zeng, Limin; Hu, Min; Zhu, Tong; Zhu, Yifang

    2016-08-01

    Nitrated polycyclic aromatic hydrocarbons (NPAHs) are strong environmental mutagens and carcinogens originating from both primary emissions and secondary reactions in the atmosphere. The sources and the toxicity of different NPAH species could vary greatly; therefore a specie-specific source apportionment is essential to evaluate their health risks and to formulate controlling regulations. However, few studies have reported source apportionment of NPAHs species to date. In this study, we developed an easy-to-perform method for the apportionment of primary versus secondary sources of airborne NPAHs based on the relationship between NPAHs and NO2. After log-transformation of both NPAHs and NO2 concentrations, a slope of β between these two variables was obtained by the linear regression. When β is significantly smaller than 1, it indicates primary emissions while β significantly greater than 1 suggests secondary formation. We have validated this method with data previously collected in Beijing. A good correlation, with R value of 0.57, was observed between results produced by this new method and by Positive Matrix Factorization (PMF). The correlation could be further improved (R = 0.71) if the gas/particle partition of NPAHs is taken into consideration. This developed method enables the source apportionment for individual NPAHs species and could be used to validate the results of other receptor models.

  7. The Analysis of PM2.5 Source Apportionment Technique's Competitiveness in China

    Science.gov (United States)

    Qian, K.; Deng, L.; An, Y. B.; Liu, S. Y.; Hao, H. Z.

    Nowadays, people has paid more attention to PM2.5 in various countries of the world. PM2.5 is a kind of particulate matter whose diameter less than 2.5μm, with great damage to environment and public's health. The origin of source apportionment technique is studies of atmospheric particulate matter, it uses two mathematical models, one of them is diffusion model which study the source of pollution, and another one called receptor model which study the pollution of area. In my study, I will analyze the competitiveness of similar technology in various countries by using microscope to analyze shape characteristic, Enrichment Factor Method (EF), Factor Analyze Method (FA), EPA-CMB8.2 Model, combining with the consequence of Improved-source-analysis Technology and Orthogonal matrix decomposition Model.

  8. Source apportionment for urban PM10 and PM2.5 in the Beijing area

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; GUO JingHua; SUN YeLe; YUAN Hui; ZHUANG GuoShun; ZHUANG YaHui; HAO ZhengPing

    2007-01-01

    Airborne particulate matter (PM2.5 and PM10) samples were collected at the Beijing Normal University sampling site in the urban area of Beijing, China in dry and wet seasons during 2001―2004. Concentrations of 23 elements and 14 ions in particulate samples were determined by ICP-AES and IC, respectively. Source apportionment results derived from both Positive Matrix Factorization (PMF) and Chemical Mass Balance (CMB) models indicate that the major contributors of PM2.5 and PM10 in Beijing are: soil dust, fossil fuel combustion, vehicle exhausts, secondary particulate, biomass burning and some industrial sources. We have identified both regional common sources, such as vehicular emissions, particulate of secondary origin and biomass burning, as well as country-specific problems, such as sand storms and soil dust that should be addressed for effective air quality control.

  9. Source apportionment of ambient VOCS in Mumbai city

    Science.gov (United States)

    Srivastava, Anjali

    Air pollution kills almost half a million Asians every year. Most of this pollution is emitted from buses, trucks, motorcycles and other forms of transport. As Asia's cities continue to expand, the rising number of vehicles has resulted in even greater pollution. Amongst the measures available to control, vehicular emission was engine modification, catalytic converters and fuel modifications. Some of these have led to emissions of some hazardous air pollutants (HAP) like volatile organic compounds (VOCs). VOC emission is an area needing attention in air quality management. This paper discusses a study on VOC concentration at major sources like traffic junction, residential area, commercial areas, industrial areas and petrol pumps in Mumbai city. CMB8 Model has been used to apportion VOCs in Mumbai city. It was observed that evaporative emissions dominate in Mumbai. In order to control VOCs in air the management strategy should thus focus on cost effective vapor recovery systems at refueling stations and in vehicles. Effective inspection and maintenance programme can reduce evaporative and exhaust VOC emissions. Modifying certain fuel parameters, like reducing benzene content in petrol will as well reduce VOC content in air. The benzene content in petrol was 3% in the year 2001 in Mumbai. Adulteration also results in high levels of VOCs in air.

  10. Differences between Magnitudes and Health Impacts of BC Emissions Across the United States using 12 km Scale Seasonal Source Apportionment

    Czech Academy of Sciences Publication Activity Database

    Turner, M.D.; Henze, D.K.; Hakami, A.; Zhao, S.; Resler, Jaroslav; Carmichael, G.; Stanier, C.; Baek, J.; Sandu, A.; Russell, A.G.; Nenes, A.; Jeong, G.; Capps, S.; Percell, P.; Pinder, R.; Napelenok, S.; Bash, J.; Chai, T.

    2015-01-01

    Roč. 49, č. 7 (2015), s. 4362-4371. ISSN 0013-936X Institutional support: RVO:67985807 Keywords : air quality * health impact * source apportionment * adjoint * particulate matter * black carbon Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 5.330, year: 2014

  11. SOURCE APPORTIONMENT OF PM 2.5 AND CARBON IN SEATTLE USING CHEMICAL MASS BALANCE AND POSITIVE MATRIX FACTORIZATION

    Science.gov (United States)

    Three years of PM2.5 speciated data were collected and chemically analyzed using the IMPROVE protocol at the Beacon Hill site in Seattle. The data were analyzed by the Chemical Mass Balance Version 8 (CMB8) and Positive Matrix Factorization (PMF) source apportionment models. T...

  12. Source apportionment of arsenic in atmospheric dust fall out in an urban residential area, Raipur, Central India

    OpenAIRE

    G. Balakrishna; S. Pervez; D. S. Bisht

    2011-01-01

    The components and quantities of atmospheric dust fallout have been reported to be the pollution indicator of large urban areas. The multiplicity and complexity of sources of atmospheric dusts in urban regions has put forward the need of source apportionment of these sources indicating their contribution to specific environmental receptor. The study presented here is focused on investigation of source contribution estimates of Arsenic in urban dust fallout in an urban-industrial area, Raipur,...

  13. Characterization and source apportionment of fine particulate sources at Rijeka, Croatia from 2013 to 2015

    Science.gov (United States)

    Ivošević, Tatjana; Stelcer, Eduard; Orlić, Ivica; Bogdanović Radović, Iva; Cohen, David

    2016-03-01

    PM2.5 daily aerosol samples were collected in Rijeka, Croatia during period from 6th August 2013 to 29th January 2015. In total, 259 samples were collected on Teflon filters and analyzed by PIXE and PIGE techniques to give information on 21 elements from Na to Pb. Additionally, black carbon was determined with the Laser Integrated Plate Method. Results were statistically evaluated using Positive Matrix Factorization (PMF). Eight major pollution sources: auto, smoke, secondary sulfates, heavy oil combustion, sea spray, road dust, industry iron and soil dust were identified together with their relative contributions in total PM2.5 pollution.

  14. Investigating types and sources of organic aerosol in Rocky Mountain National Park using aerosol mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. I. Schurman

    2014-07-01

    Full Text Available The environmental impacts of atmospheric particles are highlighted in remote areas where visibility and ecosystem health can be degraded by even relatively low particle concentrations. Submicron particle size, composition, and source apportionment were explored at Rocky Mountain National Park using a High-Resolution Time-of-Flight Aerosol Mass Spectrometer. This summer campaign found low average, but variable, particulate mass (PM concentrations (max = 93.1 μg m−3, avg. = 5.13 ± 2.72 μg m−3 of which 75.2 ± 11.1% is organic. Low-volatility oxidized organic aerosol (LV-OOA, 39.3% of PM1 on average identified using Positive Matrix Factorization appears to be mixed with ammonium sulfate (3.9 and 16.6% of mass, respectively, while semi-volatile OOA (27.6% is correlated with ammonium nitrate (nitrate: 4.3%; concentrations of these mixtures are enhanced with upslope (SE surface winds from the densely populated Front Range area, indicating the importance of transport. A local biomass burning organic aerosol (BBOA, 8.4% source is suggested by mass spectral cellulose combustion markers (m/zs 60 and 73 limited to brief, high-concentration, polydisperse events (suggesting fresh combustion, a diurnal maximum at 22:00 local standard time (LST when campfires were set at adjacent summer camps, and association with surface winds consistent with local campfire locations. The particle characteristics determined here represent typical summertime conditions at the Rocky Mountain site based on comparison to ∼10 years of meteorological, particle composition, and fire data.

  15. Quantitative identification and source apportionment of anthropogenic heavy metals in marine sediment of Hong Kong

    Science.gov (United States)

    Zhou, Feng; Guo, Huaicheng; Liu, Lei

    2007-10-01

    Based on ten heavy metals collected twice annually at 59 sites from 1998 to 2004, enrichment factors (EFs), principal component analysis (PCA) and multivariate linear regression of absolute principal component scores (MLR-APCS) were used in identification and source apportionment of the anthropogenic heavy metals in marine sediment. EFs with Fe as a normalizer and local background as reference values was properly tested and suitable in Hong Kong, and Zn, Ni, Pb, Cu, Cd, Hg and Cr mainly originated from anthropogenic sources, while Al, Mn and Fe were derived from rocks weathering. Rotated PCA and GIS mapping further identified two types of anthropogenic sources and their impacted regions: (1) electronic industrial pollution, riparian runoff and vehicle exhaust impacted the entire Victoria Harbour, inner Tolo Harbour, Eastern Buffer, inner Deep Bay and Cheung Chau; and (2) discharges from textile factories and paint, influenced Tsuen Wan Bay and Kwun Tong typhoon shelter and Rambler Channel. In addition, MLR-APCS was successfully introduced to quantitatively determine the source contributions with uncertainties almost less than 8%: the first anthropogenic sources were responsible for 50.0, 45.1, 86.6, 78.9 and 87.5% of the Zn, Pb, Cu, Cd and Hg, respectively, whereas 49.9% of the Ni and 58.4% of the Cr came from the second anthropogenic sources.

  16. Evaluation of organic markers for chemical mass balance source apportionment at the Fresno Supersite

    Science.gov (United States)

    Chow, J. C.; Watson, J. G.; Lowenthal, D. H.; Chen, L. W. A.; Zielinska, B.; Mazzoleni, L. R.; Magliano, K. L.

    2007-04-01

    Sources of PM2.5 at the Fresno Supersite during high PM2.5 episodes occurring from 15 December 2000-3 February 2001 were estimated with the Chemical Mass Balance (CMB) receptor model. The ability of source profiles with organic markers to distinguish motor vehicle, residential wood combustion (RWC), and cooking emissions was evaluated with simulated data. Organics improved the distinction between gasoline and diesel vehicle emissions and allowed a more precise estimate of the cooking source contribution. Sensitivity tests using average ambient concentrations showed that the gasoline vehicle contribution was not resolved without organics. Organics were not required to estimate hardwood contributions. The most important RWC marker was the water-soluble potassium ion. The estimated cooking contribution did not depend on cholesterol because its concentrations were below the detection limit in most samples. Winter time source contributions were estimated by applying the CMB model to individual and average sample concentrations. RWC was the largest source, contributing 29-31% of measured PM2.5. Hardwood and softwood combustion accounted for 16-17% and 12-15%, respectively. Secondary ammonium nitrate and motor vehicle emissions accounted for 31-33% and 9-15%, respectively. The gasoline vehicle contribution (3-10%) was comparable to the diesel vehicle contribution (5-6%). The cooking contribution was 5-19% of PM2.5. Fresno source apportionment results were consistent with those estimated in previous studies.

  17. Evaluation of organic markers for chemical mass balance source apportionment at the Fresno Supersite

    Directory of Open Access Journals (Sweden)

    J. C. Chow

    2007-01-01

    Full Text Available Sources of PM2.5 at the Fresno Supersite during high PM2.5 episodes occurring from 15 December 2000–3 February 2001 were estimated with the Chemical Mass Balance (CMB receptor model. The ability of source profiles with organic markers to distinguish motor vehicle, residential wood combustion (RWC, and cooking emissions was evaluated with simulated data. Organics improved the distinction between gasoline and diesel vehicle emissions and allowed a more precise estimate of the cooking source contribution. Sensitivity tests using average ambient concentrations showed that the gasoline vehicle contribution was not resolved without organics. Organics were not required to estimate hardwood contributions. The most important RWC marker was the water-soluble potassium ion. The estimated cooking contribution did not depend on cholesterol because its concentrations were below the detection limit in most samples. Winter time source contributions were estimated by applying the CMB model to individual and average sample concentrations. RWC was the largest source, contributing 29–31% of measured PM2.5. Hardwood and softwood combustion accounted for 16–17% and 12–15%, respectively. Secondary ammonium nitrate and motor vehicle emissions accounted for 31–33% and 9–15%, respectively. The gasoline vehicle contribution (3–10% was comparable to the diesel vehicle contribution (5–6%. The cooking contribution was 5–19% of PM2.5. Fresno source apportionment results were consistent with those estimated in previous studies.

  18. Overview of receptor-based source apportionment studies for speciated atmospheric mercury

    Directory of Open Access Journals (Sweden)

    I. Cheng

    2015-02-01

    Full Text Available Receptor-based source apportionment studies of speciated atmospheric mercury are not only concerned with source contributions, but also the influence of transport, transformation, and deposition processes on speciated atmospheric mercury concentrations at receptor locations. Previous studies applied multivariate receptor models including Principal Components Analysis and Positive Matrix Factorization, and back trajectory receptor models including Potential Source Contribution Function, Gridded Frequency Distributions, and Concentration-back trajectory models. Anthropogenic combustion sources, crustal/soil dust, and chemical and physical processes, such as gaseous elemental mercury (GEM oxidation reactions, boundary layer mixing, and GEM flux from surfaces, were inferred from the multivariate studies, which were predominantly conducted at receptor sites in Canada and the US. Back trajectory receptor models revealed potential impacts of large industrial areas such as the Ohio River Valley in the US and throughout China, metal smelters, mercury evasion from the ocean and Great Lakes, and free troposphere transport on receptor measurements. Input data and model parameters specific to atmospheric mercury receptor models are summarized and model strengths and weaknesses are also discussed. One area of improvement that applies to all receptor models is the greater focus on evaluating the accuracy of receptor models at identifying potential speciated atmospheric mercury sources, source locations, and chemical and physical processes in the atmosphere.

  19. Chemical characterization and source apportionment of fine and coarse particulate matter in Lahore, Pakistan

    Science.gov (United States)

    Stone, Elizabeth; Schauer, James; Quraishi, Tauseef A.; Mahmood, Abid

    2010-03-01

    Lahore, Pakistan is an emerging megacity that is heavily polluted with high levels of particle air pollution. In this study, respirable particulate matter (PM 2.5 and PM 10) were collected every sixth day in Lahore from 12 January 2007 to 19 January 2008. Ambient aerosol was characterized using well-established chemical methods for mass, organic carbon (OC), elemental carbon (EC), ionic species (sulfate, nitrate, chloride, ammonium, sodium, calcium, and potassium), and organic species. The annual average concentration (±one standard deviation) of PM 2.5 was 194 ± 94 μg m -3 and PM 10 was 336 ± 135 μg m -3. Coarse aerosol (PM 10-2.5) was dominated by crustal sources like dust (74 ± 16%, annual average ± one standard deviation), whereas fine particles were dominated by carbonaceous aerosol (organic matter and elemental carbon, 61 ± 17%). Organic tracer species were used to identify sources of PM 2.5 OC and chemical mass balance (CMB) modeling was used to estimate relative source contributions. On an annual basis, non-catalyzed motor vehicles accounted for more than half of primary OC (53 ± 19%). Lesser sources included biomass burning (10 ± 5%) and the combined source of diesel engines and residual fuel oil combustion (6 ± 2%). Secondary organic aerosol (SOA) was an important contributor to ambient OC, particularly during the winter when secondary processing of aerosol species during fog episodes was expected. Coal combustion alone contributed a small percentage of organic aerosol (1.9 ± 0.3%), but showed strong linear correlation with unidentified sources of OC that contributed more significantly (27 ± 16%). Brick kilns, where coal and other low quality fuels are burned together, are suggested as the most probable origins of unapportioned OC. The chemical profiling of emissions from brick kilns and other sources unique to Lahore would contribute to a better understanding of OC sources in this megacity.

  20. Characterization and source apportionment of water pollution in Jinjiang River, China.

    Science.gov (United States)

    Chen, Haiyang; Teng, Yanguo; Yue, Weifeng; Song, Liuting

    2013-11-01

    Characterizing water quality and identifying potential pollution sources could greatly improve our knowledge about human impacts on the river ecosystem. In this study, fuzzy comprehensive assessment (FCA), pollution index (PI), principal component analysis (PCA), and absolute principal component score-multiple linear regression (APCS-MLR) were combined to obtain a deeper understanding of temporal-spatial characterization and sources of water pollution with a case study of the Jinjiang River, China. Measurement data were obtained with 17 water quality variables from 20 sampling sites in the December 2010 (withered water period) and June 2011 (high flow period). FCA and PI were used to comprehensively estimate the water quality variables and compare temporal-spatial variations, respectively. Rotated PCA and receptor model (APCS-MLR) revealed potential pollution sources and their corresponding contributions. Application results showed that comprehensive application of various multivariate methods were effective for water quality assessment and management. In the withered water period, most sampling sites were assessed as low or moderate pollution with characteristics pollutants of permanganate index and total nitrogen (TN), whereas 90% sites were classified as high pollution in the high flow period with higher TN and total phosphorus. Agricultural non-point sources, industrial wastewater discharge, and domestic sewage were identified as major pollution sources. Apportionment results revealed that most variables were complicatedly influenced by industrial wastewater discharge and agricultural activities in withered water period and primarily dominated by agricultural runoff in high flow period. PMID:23737126

  1. Chemical mass balance source apportionment of PM 10 in an industrialized urban area of Northern Greece

    Science.gov (United States)

    Samara, C.; Kouimtzis, Th; Tsitouridou, R.; Kanias, G.; Simeonov, V.

    Ambient PM 10 were sampled at three sites in an industrialized urban area of Northern Greece during June 1997-June 1998 and analyzed for 17 chemical elements, 5 water-soluble ions and 13 polycyclic aromatic hydrocarbons. In addition, chemical source profiles consisting of the same particulate components were obtained for a number of industrial activities (cement, fertilizer and asphalt production, quarry operations, metal electroplating, metal welding and tempering, steel manufacture, lead and bronze smelters, metal scrap incineration), residential oil burning, non-catalyst and catalyst-equipped passenger cars, diesel fuelled taxis and buses, as well as for geological fugitive sources (paved road dust and soil from open lands). Ambient and source data were used in a chemical mass balance (CMB) receptor model for source identification and apportionment. Results of CMB modeling showed that major source of ambient PM 10 at all three sites was diesel vehicle exhaust. Significant contribution from industrial oil burning was also evidenced at the site located closest to the industrial area.

  2. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes

    Science.gov (United States)

    Tian, S. L.; Pan, Y. P.; Wang, Y. S.

    2016-01-01

    Additional size-resolved chemical information is needed before the physicochemical characteristics and sources of airborne particles can be understood; however, this information remains unavailable in most regions of China due to lacking measurement data. In this study, we report observations of various chemical species in size-segregated particle samples that were collected over 1 year in the urban area of Beijing, a megacity that experiences severe haze episodes. In addition to fine particles, high concentrations of coarse particles were measured during the periods of haze. The abundance and chemical compositions of the particles in this study were temporally and spatially variable, with major contributions from organic matter and secondary inorganic aerosols. The contributions of organic matter to the particle mass decreased from 37.9 to 31.2 %, and the total contribution of sulfate, nitrate and ammonium increased from 19.1 to 33.9 % between non-haze and haze days, respectively. Due to heterogeneous reactions and hygroscopic growth, the peak concentrations of the organic carbon, cadmium and sulfate, nitrate, ammonium, chloride and potassium shifted from 0.43 to 0.65 µm on non-haze days to 0.65-1.1 µm on haze days. Although the size distributions of lead and thallium were similar during the observation period, their concentrations increased by a factor of more than 1.5 on haze days compared with non-haze days. We observed that sulfate and ammonium, which have a size range of 0.43-0.65 µm, sulfate and nitrate, which have a size range of 0.65-1.1 µm, calcium, which has a size range of 5.8-9 µm, and the meteorological factors of relative humidity and wind speed were responsible for haze pollution when the visibility was less than 10 km. Source apportionment using Positive Matrix Factorization showed six PM2.1 sources and seven PM2.1-9 common sources: secondary inorganic aerosol (25.1 % for fine particles vs. 9.8 % for coarse particles), coal combustion (17

  3. Ensemble-trained source apportionment of fine particulate matter and method uncertainty analysis

    Science.gov (United States)

    Balachandran, Sivaraman; Pachon, Jorge E.; Hu, Yongtao; Lee, Dongho; Mulholland, James A.; Russell, Armistead G.

    2012-12-01

    An ensemble-based approach is applied to better estimate source impacts on fine particulate matter (PM2.5) and quantify uncertainties in various source apportionment (SA) methods. The approach combines source impacts from applications of four individual SA methods: three receptor-based models and one chemical transport model (CTM). Receptor models used are the chemical mass balance methods CMB-LGO (Chemical Mass Balance-Lipschitz global optimizer) and CMB-MM (molecular markers) as well as a factor analytic method, Positive Matrix Factorization (PMF). The CTM used is the Community Multiscale Air Quality (CMAQ) model. New source impact estimates and uncertainties in these estimates are calculated in a two-step process. First, an ensemble average is calculated for each source category using results from applying the four individual SA methods. The root mean square error (RMSE) between each method with respect to the average is calculated for each source category; the RMSE is then taken to be the updated uncertainty for each individual SA method. Second, these new uncertainties are used to re-estimate ensemble source impacts and uncertainties. The approach is applied to data from daily PM2.5 measurements at the Atlanta, GA, Jefferson Street (JST) site in July 2001 and January 2002. The procedure provides updated uncertainties for the individual SA methods that are calculated in a consistent way across methods. Overall, the ensemble has lower relative uncertainties as compared to the individual SA methods. Calculated CMB-LGO uncertainties tend to decrease from initial estimates, while PMF and CMB-MM uncertainties increase. Estimated CMAQ source impact uncertainties are comparable to other SA methods for gasoline vehicles and SOC but are larger than other methods for other sources. In addition to providing improved estimates of source impact uncertainties, the ensemble estimates do not have unrealistic extremes as compared to individual SA methods and avoids zero impact

  4. Source apportionment of traffic emissions of particulate matter using tunnel measurements

    Science.gov (United States)

    Lawrence, Samantha; Sokhi, Ranjeet; Ravindra, Khaiwal; Mao, Hongjun; Prain, Hunter Douglas; Bull, Ian D.

    2013-10-01

    This study aims to quantify exhaust/non-exhaust emissions and the uncertainties associated with them by combining innovative motorway tunnel sampling and source apportionment modelling. Analytical techniques ICP-AES and GC-MS were used to identify the metallic and organic composition of PM10, respectively. Good correlation was observed between Fe, Cu, Mn, Ni, Pb and Sb and change in traffic volume. The concentration of polycyclic aromatic hydrocarbons and other organics varies significantly at the entrance and exit site of the tunnel, with fluoranthene, pyrene, benzo[a]pyrene, chrysene and benzothiazole having the highest incremented concentrations. The application of Principal Component Analysis and Multiple Linear Regression Analysis helped to identify the emission sources for 82% of the total PM10 mass inside the tunnel. Identified sources include resuspension (27%), diesel exhaust emissions (21%), petrol exhaust emissions (12%), brake wear emissions (11%) and road surface wear (11%). This study shows that major health related chemical species of PM10 originate from non-exhaust sources, further signifying the need for legislation to reduce these emissions.

  5. Thia-arenes as source apportionment tracers for urban air particulate

    International Nuclear Information System (INIS)

    Over sixty respirable air particulate samples were selected from a large number of filters collected in Hamilton, Ontario, Canada. Depending on the wind direction these sites were either predominantly upwind or predominantly downwind of the industrial sources. The sixty filters were extracted and analyzed using GC-MS for a range of PAH and sulfur-containing PAH (thia-arenes). Various reference standards (coal tar, diesel exhaust, urban air particulate) and source samples (coke oven condensate) were analyzed as well. A set of air particulate samples collected in another city alongside a highway provided an urban vehicular air sample. Unique thia-arene profiles were noted in the reference and source samples which provided the basis for this source apportionment work; two main approaches were used: (1) analysis of alkylated derivatives of thia-arenes with a molecular mass of 184 amu and (2) analysis of 234 amu isomers. The diesel exhaust and urban vehicular samples gave identical profiles while the coal tar and coke oven samples also had identical profiles but in different respects. The air samples collected at samplers located upwind of the coke ovens showed thia-arene profiles which were similar to the profile observed with a diesel exhaust reference material. However, air samples collected downwind of the coke ovens were heavily loaded samples and resembled the coal tar coke and oven condensate samples

  6. Source apportionment of particles at Station Nord, North East Greenland during 2008–2010 using COPREM and PMF analysis

    DEFF Research Database (Denmark)

    Nguyen, Q. T.; Skov, Henrik; Sørensen, L. L.;

    2013-01-01

    evaluated for a two-year period from March 2008 to February 2010. Source apportionment using Positive Matrix Factorization (PMF) and COnstrained Physical REceptor Model (COPREM) was based on measurements of black carbon, elements (Al, Si, S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Ga, As, Se, Br, Rb, Sr, Zr...... origins. Another anthropogenic source was characterised by high concentrations of Pb and As, which has been historically referred to as a Combustion source at Station Nord. The impacts of large-scale industry in Siberia, Russia were evident through high Cu concentrations in both the Combustion source and...... an additional Cu/Ni source....

  7. Quantification of the effects of molecular marker oxidation on source apportionment estimates for motor vehicles

    Science.gov (United States)

    Roy, Anirban A.; Wagstrom, Kristina M.; Adams, Peter J.; Pandis, Spyros N.; Robinson, Allen L.

    2011-06-01

    Molecular markers are individual organic compounds used in receptor models to apportion fine particulate matter to sources. These models currently assume that molecular markers are chemically stable; however, recent laboratory experiments suggest they may be significantly oxidized on atmospherically relevant time scales. To investigate the effects of photo-oxidation, we extended a 3-D chemical transport model (PMCAMx) to simulate norhopane concentrations over the eastern United States during July 2001. Norhopane is an important molecular marker for motor vehicle exhaust. We examined eight different simulation scenarios, using different combinations of reaction rates and source profiles. The simulations including norhopane oxidation better reproduced the observed spatial patterns of norhopane concentrations than the non-reactive cases. Chemical mass balance (CMB) analysis was performed using the PMCAMx-predicted motor vehicle norhopane and elemental carbon (EC) concentrations to quantify the bias caused by oxidation on source apportionment estimates. Norhopane oxidation caused CMB to underestimate total vehicle OC by 10-50%, with larger biases in rural areas. This underestimation was largely due to changes in the amount of OC apportioned to gasoline vehicles which was reduced by as much as 100%. The OC apportioned to diesel vehicle emissions was relatively insensitive to norhopane reaction. Therefore, oxidation can substantially alter CMB estimates regarding the relative importance of gasoline and diesel vehicle emissions.

  8. Source apportionment of atmospheric particulate carbon in Las Vegas, Nevada,USA

    Institute of Scientific and Technical Information of China (English)

    Mark C.Green; Judith C.Chow; M.-C.Oliver Chang; L.-W.Antony Chen; Hampden D.Kuhns; Vicken R.Etyemezian; John G.Watson

    2013-01-01

    A study was conducted to quantify wintertime contributions of source types to carbonaceous PM2.5 at four urban sites in the Las Vegas Valley,one of the most rapidly growing urban areas in the southwestern United States.Twenty-four hour average ambient samples were collected for mass,ions,elements,organic carbon (OC),elemental carbon (EC),and trace organic markers analysis.Additional measurements were made to determine diurnal patterns in light-absorbing black carbon (BC) as a marker for combustion sources.Carbonaceous PM sources of on-road gasoline vehicles,on-road diesel vehicles,and off-road diesel engines were characterized with their chemical profiles,as well as fuel-based emission factors,using an In-Plume Sampling System.The Effective Variance Chemical Mass Balance (EV-CMB) source apportionment model was applied to the ambient samples collected,using source profiles developed in this study as well as profiles from other relevant studies.Four main sources contributed to PM2.5 carbon within the Las Vegas Valley:(1) paved road dust,(2) on-road gasoline vehicles,(3) residential wood combustion,and (4) on-road diesel vehicles.CMB estimated that on-road mixed fleet gasoline vehicles are the largest source for OC and EC at all the sites.The contribution of paved road dust to both OC and EC was 5-10% at the four sites.On-road diesel vehicles contribute 22% of the OC and 34% of the EC at a site near the city center,which is located immediately downwind of a major freeway.Residential wood combustion is a more important source than on-road diesel vehicles for two residential neighborhood sites.These results are consistent with our conceptual model,and the research methodology may be applied to studying other urban areas.

  9. Measurement of greenhouse gases (GHGs) and source apportionment in Bakersfield, CA during CALNEX 2010

    Science.gov (United States)

    Guha, A.; Gentner, D. R.; Goldstein, A.; Provencal, R. A.; Gardner, A.; Calnex Bakersfield Science Team

    2010-12-01

    The California Global Warming Solutions Act 2006 creates a need to validate and improve the GHG inventory of the State, which has been largely based on activity and emission factor based estimates. As part of CALNEX 2010, we conducted measurements at the Bakersfield supersite of CO2, CH4, and N2O using fast response laser analyzers (LGR Inc.) to document the ambient mixing ratios of GHGs and analyze their major sources in the region, with an emphasis on understanding emissions of methane (CH4) and nitrous oxide (N2O). The site was located downwind of the urban center during the day and usually experienced a reversal of wind direction at night. Bakersfield is an urban area with heavy industrialization including petroleum refineries, oilfields, manufacturing, and cogeneration plants, all of which can be sources of the abovementioned GHGs. The site was close to a highway and potentially subject to vehicular CH4 and N2O emissions. Hence, CO and a broad variety of VOCs, which can serve as tracers (particularly for vehicle emissions), were included in the measurements to help with source apportionment. In addition to typical urban and industrial sources, Kern County is a rich agricultural region and includes a large number of cattle feedlots, dairies, settling ponds and landfills which are assumed to be some of the largest anthropogenic sources of methane in the State. Additionally, the agricultural industry uses significant amounts of fertilizers, which can lead to production of N2O from the soils along with emissions from controlled biomass burning of agricultural waste. The three GHGs studied show a strong diurnal pattern with concentrations building up in the night-time as the planetary boundary layer (PBL) becomes smaller and reversal in wind direction causes the site to become downwind of some GHG sources like landfills and feedlots. The mean background concentrations at the site (CNO2= 323 ppb; CCO2 = 390 ppm) during the day were consistent with those from the

  10. Development of PM2.5 source impact spatial fields using a hybrid source apportionment air quality model

    Directory of Open Access Journals (Sweden)

    C. E. Ivey

    2015-01-01

    Full Text Available An integral part of air quality management is knowledge of the impact of pollutant sources on ambient concentrations of particulate matter (PM. There is also a growing desire to directly use source impact estimates in health studies; however, source impacts cannot be directly measured. Several limitations are inherent in most source apportionment methods, which has led to the development of a novel hybrid approach that is used to estimate source impacts by combining the capabilities of receptor modeling (RM and chemical transport modeling (CTM. The hybrid CTM-RM method calculates adjustment factors to refine the CTM-estimated impact of sources at monitoring sites using pollutant species observations and the results of CTM sensitivity analyses, though it does not directly generate spatial source impact fields. The CTM used here is the Community Multi-Scale Air Quality (CMAQ model, and the RM approach is based on the Chemical Mass Balance model. This work presents a method that utilizes kriging to spatially interpolate source-specific impact adjustment factors to generate revised CTM source impact fields from the CTM-RM method results, and is applied to January 2004 over the continental United States. The kriging step is evaluated using data withholding and by comparing results to data from alternative networks. Directly applied and spatially interpolated hybrid adjustment factors at withheld monitors had a correlation coefficient of 0.89, a linear regression slope of 0.83 ± 0.02, and an intercept of 0.14 ± 0.02. Refined source contributions reflect current knowledge of PM emissions (e.g., significant differences in biomass burning impact fields. Concentrations of 19 species and total PM2.5 mass were reconstructed for withheld monitors using directly applied and spatially interpolated hybrid adjustment factors. The mean concentrations of total PM2.5 for withheld monitors were 11.7 (± 8.3, 16.3 (± 11, 8.59 (± 4.7, and 9.20 (± 5.7 μg m−3

  11. The distribution and source apportionment of aliphatic hydrocarbons in soils from the outskirts of Beijing

    Energy Technology Data Exchange (ETDEWEB)

    Youfeng Zhu; Hui Liu; Zhiqun Xi; Xiufeng Liu; Xiaobai Xu [Chinese Academy of Sciences, Research Center for Eco-Environmental Sciences, Beijing (China); Hangxing Cheng [Institute of Geochemical and Geophysical Exploration, Beijing (China)

    2005-03-15

    We report the first extensive study of the spatial distribution and source apportionment of aliphatic hydrocarbons in soils from the Beijing outskirts. Mixed soil samples (5-30 cm depth) were collected for the quantitative determination of n-alkanes, isoprenoids, unresolved complex mixtures and the qualitative determination of hopanes and steranes. The total concentrations, including n-alkanes from C{sub 13} to C{sub 36}, pristane and phytane, were in the range of 0.60-39.92 {mu}g/g, with a median value of 1.97 {mu}g/g. No correlation between soil organic matter content or the percentage of clay and the concentrations was found. Carbon preference index (CPI) values for the whole range of n-alkanes varied between 0.73 and 4.27, with a median value of 1.64, and a contour map of CPI was drawn. A predominance of odd/even carbon n-alkanes and unresolved complex mixtures with different shapes and range were frequently observed. Factor analysis reduced the data set to two principal components explaining 82.82% of the total variation among samples and confirming contributions from low molecular weight species (63.66%) and long-chain n-alkanes (19.27%), respectively. Based on the principal component analysis, the concentration profiles and molecular markers, it was concluded that the aliphatic hydrocarbons were from both biogenic and anthropogenic sources. (Author)

  12. Characterization and source apportionment of particulate matter Sumatra, Indonesia, during a recent peat fire episode.

    Science.gov (United States)

    See, Siao Wei; Balasubramanian, Rajasekhar; Rianawati, Elisabeth; Karthikeyan, Sathrugnan; Streets, David G

    2007-05-15

    An intensive field study was conducted in Sumatra, Indonesia, during a peat fire episode to investigate the physical and chemical characteristics of particulate emissions in peat smoke and to provide necessary data for source-receptor analyses. Ambient air sampling was carried out at three different sites located at varying distances from the peatfires to determine changes in mass and number concentrations of PM2.5 and its chemical composition (carbonaceous and nitrogenous materials, polycyclic aromatic hydrocarbons, water-soluble inorganic and organic ions, and total and water-soluble metals). The three sites represent a rural site directly affected by the local peat combustion, a semirural site, and an urban site situated downwind of the peat fires. The mass concentration of PM2.5 and the number concentration of airborne particles were as high as 1600 microg/m3 and 1.7 x 10(5) cm(-3), respectively, in the vicinity of peat fires. The major components of PM2.5 in peat smoke haze were carbonaceous particles, particularly organic carbon, NO3-, and SO4(2-), while the less abundant constituents included ions such as NH4+, NO2-, Na+, K+, organic acids, and metals such as Al, Fe, and Ti. Source apportionment by chemical mass balance receptor modeling indicates that peat smoke can travel long distances and significantly affect the air quality at locations downwind. PMID:17547168

  13. Levels and source apportionment of volatile organic compounds in southwestern area of Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Rodolfo Sosa, E. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico); Humberto Bravo, A. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico)], E-mail: hbravo@servidor.unam.mx; Violeta Mugica, A. [Universidad Autonoma Metropolitana, Azcapotzalco, D.F. (Mexico); Pablo Sanchez, A. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico); Emma Bueno, L. [Centro Nacional de Investigacion y Capacitacion Ambiental, Instituto Nacional de Ecologia (Mexico); Krupa, Sagar [Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108 (United States)

    2009-03-15

    Thirteen volatile organic compounds (VOCs) were quantified at three sites in southwestern Mexico City from July 2000 to February 2001. High concentrations of different VOCs were found at a Gasoline refueling station (GS), a Condominium area (CA), and at University Center for Atmospheric Sciences (CAS). The most abundant VOCs at CA and CAS were propane, n-butane, toluene, acetylene and pentane. In comparison, at GS the most abundant were toluene, pentane, propane, n-butane, and acetylene. Benzene, a known carcinogenic compound had average levels of 28, 35 and 250 ppbC at CAS, CA, and GS respectively. The main contributing sources of the measured VOCs at CA and CAS were the handling and management of LP (Liquid Propane) gas, vehicle exhaust, asphalt works, and use of solvents. At GS almost all of the VOCs came from vehicle exhaust and fuel evaporation, although components of LP gas were also present. Based on the overall results possible abatement strategies are discussed. - Volatile organic compounds were quantified in order to perform their source apportionment in southwestern area of Mexico City.

  14. Source apportionment of fluorine pollution in regional shallow groundwater at You'xi County southeast China.

    Science.gov (United States)

    Lü, Jian; Qiu, Haiyuan; Lin, Huangbin; Yuan, Yuan; Chen, Zhi; Zhao, Rurong

    2016-09-01

    Source apportionment of fluorine pollution in the regional shallow groundwater at You'xi County, southeast China, has been analyzed by means of monitoring F(-) ion change characteristics in this area. Meanwhile, pollution sources and influencing factors of the shallow groundwater have been uncovered by studying the correlation between F(-) and other related ions such as Na(+), Ca(2+), Cl(-), NO3(-), HCO3(-), as well as (K(+) + Na(+))/Ca(2+) ratio (R) and pH effect. The results show that F(-) ions in shallow groundwater at the study area come mainly from the dissolution of fluorinated minerals in a form of fluorite (CaF2), the so-called water-rock interaction, and there is a higher possibility for the occurrence of fluorine water where the ratio of (K(+) + Na(+))/Ca(2+) exceeds a value of 2.1. Moreover, the release and migration of F(-) ions have been favored by the alkaline environment in this study area. PMID:27239970

  15. Application of hierarchical Bayesian unmixing models in river sediment source apportionment

    Science.gov (United States)

    Blake, Will; Smith, Hugh; Navas, Ana; Bodé, Samuel; Goddard, Rupert; Zou Kuzyk, Zou; Lennard, Amy; Lobb, David; Owens, Phil; Palazon, Leticia; Petticrew, Ellen; Gaspar, Leticia; Stock, Brian; Boeckx, Pacsal; Semmens, Brice

    2016-04-01

    Fingerprinting and unmixing concepts are used widely across environmental disciplines for forensic evaluation of pollutant sources. In aquatic and marine systems, this includes tracking the source of organic and inorganic pollutants in water and linking problem sediment to soil erosion and land use sources. It is, however, the particular complexity of ecological systems that has driven creation of the most sophisticated mixing models, primarily to (i) evaluate diet composition in complex ecological food webs, (ii) inform population structure and (iii) explore animal movement. In the context of the new hierarchical Bayesian unmixing model, MIXSIAR, developed to characterise intra-population niche variation in ecological systems, we evaluate the linkage between ecological 'prey' and 'consumer' concepts and river basin sediment 'source' and sediment 'mixtures' to exemplify the value of ecological modelling tools to river basin science. Recent studies have outlined advantages presented by Bayesian unmixing approaches in handling complex source and mixture datasets while dealing appropriately with uncertainty in parameter probability distributions. MixSIAR is unique in that it allows individual fixed and random effects associated with mixture hierarchy, i.e. factors that might exert an influence on model outcome for mixture groups, to be explored within the source-receptor framework. This offers new and powerful ways of interpreting river basin apportionment data. In this contribution, key components of the model are evaluated in the context of common experimental designs for sediment fingerprinting studies namely simple, nested and distributed catchment sampling programmes. Illustrative examples using geochemical and compound specific stable isotope datasets are presented and used to discuss best practice with specific attention to (1) the tracer selection process, (2) incorporation of fixed effects relating to sample timeframe and sediment type in the modelling

  16. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Dron

    2010-04-01

    Full Text Available The functional group composition of various organic aerosols (OA is being investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCI-MS/MS. The determinations of the three functional groups' contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups and precursor ion (nitro groups scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA produced through photo-oxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounted for 1.7% (vehicular to 13.5% (o-xylene photo-oxidation of the organic carbon. The diagnostic functional group ratios are then used to tentatively differentiate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France during a strong winter pollution event. The three functional groups under study account for a total functionalisation rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to distinguish the sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assesses a wood burning organic carbon contribution of about 60%. Finally, examples of functional group mass

  17. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes

    Directory of Open Access Journals (Sweden)

    S. L. Tian

    2015-03-01

    Full Text Available More size-resolved chemical information is needed before the physicochemical characteristics and sources of airborne particles can be understood, but this information remains unavailable in most regions of China due to a paucity of measurement data. In this study, we report a one-year observation of various chemical species in size-segregated particle samples collected in urban Beijing, a mega city that experiences severe haze episodes. In addition to fine particles, the measured particle size distributions showed high concentrations of coarse particles during the haze periods. The abundance and chemical compositions of the particles in this study were temporally and spatially variable, with major contributions from organic matter and secondary inorganic aerosols. The contribution of the organic matter to the mass decreased from 37.9 to 33.1%, whereas the total contribution of SO42−, NO3− and NH4+ increased from 19.1 to 32.3% on non-haze and haze days, respectively. Due to heterogeneous reactions and hygroscopic growth, the peaks in the size distributions of organic carbon, SO42−, NO3−, NH4+, Cl−, K+ and Cu shifted from 0.43–0.65 μm on non-haze days to 0.65–1.1 μm on haze days. Although the size distributions are similar for the heavy metals Pb, Cd and Tl during the observation period, their concentrations increased by a factor of more than 1.5 on haze days compared with non-haze days. We found that NH4+ with a size range of 0.43–0.65 μm, SO42− and NO3− with a size range of 0.65–1.1 μm and Ca2+ with a size range of 5.8–9 μm as well as the meteorological factors of relative humidity and wind speed were responsible for the haze pollution when the visibility was less than 15 km. Source apportionment using positive matrix factorization identified six common sources: secondary inorganic aerosols (26.1% for fine particles vs. 9.5% for coarse particles, coal combustion (19 vs. 23.6%, primary emissions from vehicles (5.9 vs

  18. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes

    Science.gov (United States)

    Tian, S. L.; Pan, Y. P.; Wang, Y. S.

    2015-03-01

    More size-resolved chemical information is needed before the physicochemical characteristics and sources of airborne particles can be understood, but this information remains unavailable in most regions of China due to a paucity of measurement data. In this study, we report a one-year observation of various chemical species in size-segregated particle samples collected in urban Beijing, a mega city that experiences severe haze episodes. In addition to fine particles, the measured particle size distributions showed high concentrations of coarse particles during the haze periods. The abundance and chemical compositions of the particles in this study were temporally and spatially variable, with major contributions from organic matter and secondary inorganic aerosols. The contribution of the organic matter to the mass decreased from 37.9 to 33.1%, whereas the total contribution of SO42-, NO3- and NH4+ increased from 19.1 to 32.3% on non-haze and haze days, respectively. Due to heterogeneous reactions and hygroscopic growth, the peaks in the size distributions of organic carbon, SO42-, NO3-, NH4+, Cl-, K+ and Cu shifted from 0.43-0.65 μm on non-haze days to 0.65-1.1 μm on haze days. Although the size distributions are similar for the heavy metals Pb, Cd and Tl during the observation period, their concentrations increased by a factor of more than 1.5 on haze days compared with non-haze days. We found that NH4+ with a size range of 0.43-0.65 μm, SO42- and NO3- with a size range of 0.65-1.1 μm and Ca2+ with a size range of 5.8-9 μm as well as the meteorological factors of relative humidity and wind speed were responsible for the haze pollution when the visibility was less than 15 km. Source apportionment using positive matrix factorization identified six common sources: secondary inorganic aerosols (26.1% for fine particles vs. 9.5% for coarse particles), coal combustion (19 vs. 23.6%), primary emissions from vehicles (5.9 vs. 8.0%), biomass burning (8.5 vs. 2

  19. Connecting Organic Aerosol Climate-Relevant Properties to Chemical Mechanisms of Sources and Processing

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Joel

    2015-01-26

    The research conducted on this project aimed to improve our understanding of secondary organic aerosol (SOA) formation in the atmosphere, and how the properties of the SOA impact climate through its size, phase state, and optical properties. The goal of this project was to demonstrate that the use of molecular composition information to mechanistically connect source apportionment and climate properties can improve the physical basis for simulation of SOA formation and properties in climate models. The research involved developing and improving methods to provide online measurements of the molecular composition of SOA under atmospherically relevant conditions and to apply this technology to controlled simulation chamber experiments and field measurements. The science we have completed with the methodology will impact the simulation of aerosol particles in climate models.

  20. Characteristics and source apportionment of PM1 emissions at a roadside station

    International Nuclear Information System (INIS)

    Highlights: → We present results from 24 h roadside measurements of PM1 mass and main components. → Elemental carbon, organic matter, and sulfate are the dominant components. → All elements related to human health are lower than the guideline values. → Vehicle exhaust episodes occur during summer. → Secondary aerosols and incinerator/biomass burning episodes exist during winter. - Abstract: The mass concentrations of PM1 (particles less than 1.0 μm in aerodynamic diameter), organic carbon (OC), elemental carbon (EC), water-soluble ions, and up to 25 elements were reported for 24 h aerosol samples collected every sixth day at a roadside sampling station in Hong Kong from October 2004 to September 2005. Annual average PM1 mass concentration was 44.5 ± 19.5 μg m-3. EC, OM (organic matter, OC x 1.2), and SO4= were the dominant components, accounting for ∼36%, ∼26%, and ∼24% of PM1, respectively. Other components, i.e., NO3-, NH4+, geological material, trace elements and unidentified material, comprised the remaining ∼14%. Annual average OC/EC ratio (0.6 ± 0.3) was low, indicating that primary vehicle exhaust was the major source of carbonaceous aerosols. The seasonal variations of pollutants were due to gas-particle partitioning processes or a change in air mass rather than secondary aerosol produced locally. Vehicle exhaust, secondary aerosols, and waste incinerator/biomass burning were dominant air pollution sources, accounting for ∼38%, ∼22% and ∼16% of PM1, respectively. Pollution episodes during summer (May-August) which were frequently accompanied by tropical storms or typhoons were dominated by vehicle emissions. During winter (November-February) pollution episodes coincided with northeasterly monsoons were characterized by secondary aerosols and incinerator/biomass burning emissions.

  1. Measurement and apportionment of radon source terms for modeling indoor environments

    International Nuclear Information System (INIS)

    During the present 2 1/2 year contract period, we have made significant Progress in modeling the source apportionment of indoor 222Rn and in 222Rn decay product dosimetry. Two additional areas were worked on which we believe are useful for the DOE Radon research Program. One involved an analysis of the research house data, grouping the hourly house 222Rn measurements into 2 day, 7 day and 90 day intervals to simulate the response of passive monitors. Another area requiring some attention resulted in a publication of 3 years of our indoor/outdoor measurements in a high-rise apartment. Little interest has been evinced in apartment measurements yet 20% of the US population lives in multiple-family dwellings, not in contact with the ground. These data together with a summary of all other published data on apartments showed that apartments have only about 50% greater 222Rn concentration than the measured outdoor 222Rn. Apartment dwellers generally represent a low risk group regarding 222Rn exposure. The following sections describe the main projects in some detail

  2. Source apportionment and water solubility of metals in size segregated particles in urban environments.

    Science.gov (United States)

    Jiang, Sabrina Yanan; Kaul, Daya S; Yang, Fenhuan; Sun, Li; Ning, Zhi

    2015-11-15

    Metals in atmospheric particulate matter (PM) have been associated with various adverse health effects. Different factors contributing to the characterization and distribution of atmospheric metals in urban environments lead to uncertainty of the understanding of their impact on public health. However, few studies have provided a comprehensive picture of the spatial and seasonal variability of metal concentration, solubility and size distribution, all of which have important roles in their contribution to health effects. This study presents an experimental investigation on the characteristics of metals in PM2.5 and coarse PM in two seasons from four urban sites in Hong Kong. The PM samples were extracted separately with aqua regia and water, and a total of sixteen elements were analyzed using ICP-MS and ICP-OES to determine the size segregated concentration and solubility of metals. The concentrations of major metals were distributed in similar patterns with the same order of magnitude among different urban sites. Source apportionment using Positive Matrix Factorization (PMF) indicated that three sources namely road dust, vehicular exhaust and ship emission are major contributors to the urban atmospheric metal concentrations in Hong Kong with distinctly different profiles between coarse PM and PM2.5 fractions. The individual metals were assigned to different sources, consistent with literature documentation, except potassium emerging with substantial contribution from vehicle exhaust emission. Literature data from past studies on both local and other cities were compared to the results from the present study to investigate the impact of different emission sources and control policies on metal distribution in urban atmosphere. A large variation of solubility among the metals reflected that the majority of metals in PM2.5 were more soluble than those in coarse PM indicating size dependent chemical states of metals. The data from this study provides a rich dataset of

  3. Chemical apportionment of aerosol optical properties during the Asia-Pacific Economic Cooperation summit in Beijing, China

    Science.gov (United States)

    Han, Tingting; Xu, Weiqi; Chen, Chen; Liu, Xingang; Wang, Qingqing; Li, Jie; Zhao, Xiujuan; Du, Wei; Wang, Zifa; Sun, Yele

    2015-12-01

    , the contribution of primary aerosol to particle extinction increased from 26.8% to 39.6%, elucidating an enhanced role of local primary sources in visibility deterioration during APEC. Further analysis of chemically resolved particle extinction showed that the extinction contributions of aerosol species varied greatly between different air masses but generally with ammonium nitrate, ammonium sulfate, and secondary OA being the three major contributors.

  4. Overview of receptor-based source apportionment studies for speciated atmospheric mercury

    Science.gov (United States)

    Cheng, I.; Xu, X.; Zhang, L.

    2015-07-01

    Receptor-based source apportionment studies of speciated atmospheric mercury are not only concerned with source contributions but also with the influence of transport, transformation, and deposition processes on speciated atmospheric mercury concentrations at receptor locations. Previous studies applied multivariate receptor models including principal components analysis and positive matrix factorization, and back trajectory receptor models including potential source contribution function, gridded frequency distributions, and concentration-back trajectory models. Combustion sources (e.g., coal combustion, biomass burning, and vehicular, industrial and waste incineration emissions), crustal/soil dust, and chemical and physical processes, such as gaseous elemental mercury (GEM) oxidation reactions, boundary layer mixing, and GEM flux from surfaces were inferred from the multivariate studies, which were predominantly conducted at receptor sites in Canada and the US. Back trajectory receptor models revealed potential impacts of large industrial areas such as the Ohio River valley in the US and throughout China, metal smelters, mercury evasion from the ocean and the Great Lakes, and free troposphere transport on receptor measurements. Input data and model parameters specific to atmospheric mercury receptor models are summarized and model strengths and weaknesses are also discussed. Multivariate models are suitable for receptor locations with intensive air monitoring because they require long-term collocated and simultaneous measurements of speciated atmospheric Hg and ancillary pollutants. The multivariate models provide more insight about the types of Hg emission sources and Hg processes that could affect speciated atmospheric Hg at a receptor location, whereas back trajectory receptor models are mainly ideal for identifying potential regional Hg source locations impacting elevated Hg concentrations. Interpretation of the multivariate model output to sources can be

  5. Final report of the IAEA advisory group meeting on accelerator-based nuclear analytical techniques for characterization and source identification of aerosol particles

    International Nuclear Information System (INIS)

    The field of aerosol characterization and source identification covers a wide range of scientific and technical activities in many institutions, in both developed and developing countries. This field includes research and applications on urban air pollution, source apportionment of suspended particulate matter, radioactive aerosol particles, organic compounds carried on particulate matter, elemental characterization of particles, and other areas. The subject of this AGM focused on the use of accelerator-based nuclear analytical techniques for determination of elemental composition of particles (by either bulk or single particle analysis) and the use of accumulated knowledge for source identification

  6. Reactive oxygen species associated with water-soluble PM2.5 in the southeastern United States: spatiotemporal trends and source apportionment

    Science.gov (United States)

    Verma, V.; Fang, T.; Guo, H.; King, L.; Bates, J. T.; Peltier, R. E.; Edgerton, E.; Russell, A. G.; Weber, R. J.

    2014-12-01

    We assess the potential of the water-soluble fraction of atmospheric fine aerosols in the southeastern United States to generate reactive oxygen species (ROS) and identify major ROS-associated emission sources. ROS-generation potential of particles was quantified by the dithiothreitol (DTT) assay and involved analysis of fine particulate matter (PM) extracted from high-volume quartz filters (23 h integrated samples) collected at various sites in different environmental settings in the southeast, including three urban-Atlanta sites, in addition to a rural site. Paired sampling was conducted with one fixed site in Atlanta (Jefferson Street), representative of the urban environment, with the others rotating among different sites, for ~250 days between June 2012 and September 2013 (N=483). A simple linear regression between the DTT activity and aerosol chemical components revealed strong associations between PM ROS-generation potential and secondary organic aerosol (WSOC - water-soluble organic carbon) in summer, and biomass burning markers in winter. Redox-active metals were also somewhat correlated with the DTT activity, but mostly at urban and roadside sites. Positive matrix factorization (PMF) was applied to apportion the relative contribution of various sources to the ROS-generation potential of water-soluble PM2.5 in urban Atlanta. PMF showed that vehicular emissions contribute uniformly throughout the year (12-25%), while secondary oxidation processes dominated the DTT activity in summer (46%) and biomass burning in winter (47%). Road dust was significant only during drier periods (~12% in summer and fall). Source apportionment by chemical mass balance (CMB) was reasonably consistent with PMF, but with higher contribution from vehicular emissions (32%). Given the spatially large data set of PM sampled over an extended period, the study reconciles the results from previous work that showed only region- or season-specific aerosol components or sources contributing

  7. Reactive oxygen species associated with water-soluble PM2.5 in the southeastern United States: spatiotemporal trends and source apportionment

    Directory of Open Access Journals (Sweden)

    V. Verma

    2014-07-01

    Full Text Available We assess the potential of the water-soluble fraction of atmospheric fine aerosols in the southeastern US to generate reactive oxygen species (ROS and identify major ROS-associated emission sources. ROS-generation potential of particles was quantified by the dithiothreitol (DTT assay and involved analysis of fine particulate matter (PM extracted from high-volume quartz filters (23 h integrated samples collected at various sites in different environmental settings in the southeast, including three urban Atlanta sites, in addition to a rural site. Paired sampling was conducted with one fixed site in Atlanta (Jefferson Street, representative of the urban environment, with the others rotating among different sites, for ~250 days between June 2012 and September 2013 (N = 483. A simple linear regression between the DTT activity and aerosol chemical components revealed strong associations between PM ROS generation potential and secondary organic aerosol (WSOC in summer, and biomass burning markers in winter. Redox-active metals were also correlated with the DTT activity, but mostly at urban and roadside sites. Positive matrix factorization (PMF was applied to apportion the relative contribution of various sources to the ROS generation potential of water-soluble PM2.5 in urban Atlanta. PMF showed that vehicular emissions contribute uniformly throughout the year (12 to 25%, while secondary oxidation processes dominated the DTT activity in summer (46% and biomass burning in winter (47%. Mineral dust was significant only during drier periods (~12% in summer and fall. Source apportionment by chemical mass balance (CMB was reasonably consistent with PMF, but with higher contribution from vehicular emissions (32%. Given the spatially large data set of PM sampled over an extended period, the study reconciles the results from previous work that showed only region- or season-specific aerosol components or sources contributing to PM ROS activity, possibly due to

  8. Chemical composition of aerosol particles and light extinction apportionment before and during the heating season in Beijing, China

    Science.gov (United States)

    Wang, Qingqing; Sun, Yele; Jiang, Qi; Du, Wei; Sun, Chengzhu; Fu, Pingqing; Wang, Zifa

    2015-12-01

    Despite extensive efforts into characterization of the sources and formation mechanisms of severe haze pollution in the megacity of Beijing, the response of aerosol composition and optical properties to coal combustion emissions in the heating season remain poorly understood. Here we conducted a 3 month real-time measurement of submicron aerosol (PM1) composition by an Aerosol Chemical Speciation Monitor and particle light extinction by a Cavity Attenuated Phase Shift extinction monitor in Beijing, China, from 1 October to 31 December 2012. The average (±σ) PM1 concentration was 82.4 (±73.1) µg/m3 during the heating period (HP, 15 November to 31 December), which was nearly 50% higher than that before HP (1 October to 14 November). While nitrate and secondary organic aerosol (SOA) showed relatively small changes, organics, sulfate, and chloride were observed to have significant increases during HP, indicating the dominant impacts of coal combustion sources on these three species. The relative humidity-dependent composition further illustrated an important role of aqueous-phase processing for the sulfate enhancement during HP. We also observed great increases of hydrocarbon-like OA (HOA) and coal combustion OA (CCOA) during HP, which was attributed to higher emissions at lower temperatures and coal combustion emissions, respectively. The relationship between light extinction and chemical composition was investigated using a multiple linear regression model. Our results showed that the largest contributors to particle extinction were ammonium nitrate (32%) and ammonium sulfate (28%) before and during HP, respectively. In addition, the contributions of SOA and primary OA to particle light extinction were quantified. The results showed that the OA extinction was mainly caused by SOA before HP and by SOA and CCOA during HP, yet with small contributions from HOA and cooking aerosol for the entire study period. Our results elucidate substantial changes of aerosol

  9. Successful application of lead isotopes in source apportionment, legal proceedings, remediation and monitoring

    International Nuclear Information System (INIS)

    In late 2006, the seaside community in Esperance Western Australia was alerted to thousands of native bird species dying. The source of the lead (Pb) was determined by Pb isotopes to derive from the handling of Pb carbonate concentrate through the Port, which began in July 2005. Concern was expressed for the impact of this on the community. Our objectives were to employ Pb isotope ratios to evaluate the source of Pb in environmental samples for use in legal proceedings, and for use in remediation and monitoring. Isotope measurements were undertaken of bird livers, plants, drinking water, soil, harbour sediments, air, bulk ceiling dust, gutter sludge, surface swabs and blood. The unique lead isotopic signature of the contaminating Pb carbonate enabled diagnostic apportionment of lead in samples. Apart from some soil and water samples, the proportion of contaminating Pb was >95% in the environmental samples. Lead isotopes were critical in resolving legal proceedings, are being used in the remediation of premises, were used in monitoring of workers involved in the decontamination of the storage facility, and monitoring transport of the concentrate through another port facility. Air samples show the continued presence of contaminant Pb, more than one year after shipping of concentrate ceased, probably arising from dust resuspension. Brief details of the comprehensive testing and cleanup of the Esperance community are provided along with the role of the Community. Lead isotopic analyses can provide significant benefits to regulatory agencies, interested parties, and the community where the signature is able to be characterised with a high degree of certainty. - Highlights: ▶ Lead carbonate concentrate. ▶ Successful use of Pb isotopes in identifying sources of Pb arising from transport and shipping. ▶ Use of Pb isotopes in legal proceedings and their use in cleanup of residences. ▶ Use of Pb isotopes in cleanup of a residual 9000 tonnes of Pb carbonate and in

  10. Integrating Source Apportionment Tracers into a Bottom-up Inventory of Methane Emissions in the Barnett Shale Hydraulic Fracturing Region.

    Science.gov (United States)

    Townsend-Small, Amy; Marrero, Josette E; Lyon, David R; Simpson, Isobel J; Meinardi, Simone; Blake, Donald R

    2015-07-01

    A growing dependence on natural gas for energy may exacerbate emissions of the greenhouse gas methane (CH4). Identifying fingerprints of these emissions is critical to our understanding of potential impacts. Here, we compare stable isotopic and alkane ratio tracers of natural gas, agricultural, and urban CH4 sources in the Barnett Shale hydraulic fracturing region near Fort Worth, Texas. Thermogenic and biogenic sources were compositionally distinct, and emissions from oil wells were enriched in alkanes and isotopically depleted relative to natural gas wells. Emissions from natural gas production varied in δ(13)C and alkane ratio composition, with δD-CH4 representing the most consistent tracer of natural gas sources. We integrated our data into a bottom-up inventory of CH4 for the region, resulting in an inventory of ethane (C2H6) sources for comparison to top-down estimates of CH4 and C2H6 emissions. Methane emissions in the Barnett are a complex mixture of urban, agricultural, and fossil fuel sources, which makes source apportionment challenging. For example, spatial heterogeneity in gas composition and high C2H6/CH4 ratios in emissions from conventional oil production add uncertainty to top-down models of source apportionment. Future top-down studies may benefit from the addition of δD-CH4 to distinguish thermogenic and biogenic sources. PMID:26148556

  11. GIS-based source identification and apportionment of diffuse water pollution: perfluorinated compound pollution in the Tokyo Bay basin.

    Science.gov (United States)

    Zushi, Yasuyuki; Masunaga, Shigeki

    2011-11-01

    To efficiently reduce perfluorinated compound (PFC) pollution, it is important to have an understanding of PFC sources and their contribution to the pollution. In this study, source identification of diffuse water pollution by PFCs was conducted using a GIS-based approach. Major components of the source identification were collection of the monitoring data and preparation of the corresponding geographic information that was extracted from a constructed GIS database. The spatially distributed pollution factors were then explored by multiple linear regression analysis, after which they were visually expressed using GIS. Among the 35 PFC homologues measured in a survey of the Tokyo Bay basin, 18 homologues were analyzed. Pollution by perfluorooctane sulfonate (PFOS) was explained well by the percentage of arterial traffic area in the basin, and the 84% variance of the measured PFOS concentration was explained by two geographic variables, arterial traffic area and population. Source apportionment between point and nonpoint sources was conducted based on the results of the analysis. The contribution of PFOS from nonpoint sources was comparable to that from point sources in several major rivers flowing into Tokyo Bay. Source identification and apportionment using the GIS-based approach was shown to be effective, especially for ubiquitous types of pollution, such as PFC pollution. PMID:21885084

  12. Chemical mass balance source apportionment for combined PM 2.5 measurements from U.S. non-urban and urban long-term networks

    Science.gov (United States)

    Antony Chen, L.-W.; Watson, John G.; Chow, Judith C.; DuBois, David W.; Herschberger, Lisa

    2010-12-01

    The Minnesota Particulate Matter 2.5 (PM 2.5) Source Apportionment Study was undertaken to explore the utility of PM 2.5 mass, element, ion, and carbon measurements from long-term speciation networks for pollution source attribution. Ambient monitoring data at eight sites across the state were retrieved from the archives of the Interagency Monitoring of Protected Visual Environments (IMPROVE) and the Speciation Trends Network (STN; part of the Chemical Speciation Network [CSN]) and analyzed by an Effective Variance - Chemical Mass Balance (EV-CMB) receptor model with region-specific geological source profiles developed in this study. PM 2.5 was apportioned into contributions of fugitive soil dust, calcium-rich dust, taconite (low grade iron ore) dust, road salt, motor vehicle exhaust, biomass burning, coal-fired utility, and secondary aerosol. Secondary sulfate and nitrate contributed strongly (49-71% of PM 2.5) across all sites and was dominant (≥60%) at IMPROVE sites. Vehicle exhausts accounted for 20-70% of the primary PM 2.5 contribution, largely exceeding the proportion in the primary PM 2.5 emission inventory. The diesel exhaust contribution was separable from the gasoline engine exhaust contribution at the STN sites. Higher detection limits for several marker elements in the STN resulted in non-detectable coal-fired boiler contributions which were detected in the IMPROVE data. Despite the different measured variables, analytical methods, and detection limits, EV-CMB results from a nearby IMPROVE-STN non-urban/urban sites showed similar contributions from regional sources - including fugitive dust and secondary aerosol. Seasonal variations of source contributions were examined and extreme PM 2.5 episodes were explained by both local and regional pollution events.

  13. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) in ambient air of an industrial region in Turkey

    Science.gov (United States)

    Aydin, Yagmur Meltem; Kara, Melik; Dumanoglu, Yetkin; Odabasi, Mustafa; Elbir, Tolga

    2014-11-01

    Source apportionment is generally applied to a time series of data collected at a single site. However, in a complex airshed containing several different sources, it may be helpful to collect samples from multiple sites to ensure that some of them have low contributions from specific sources, thus the boundaries can be properly defined. Ambient air polycyclic aromatic hydrocarbon (PAH) and polychlorinated biphenyls (PCB) samples (n = 160) were collected at 40 sites during four seasons (summer, fall, winter, and spring) between July 2009 and April 2010 in the heavily industrialized Aliaga region in Turkey to investigate their spatial, seasonal variations and to identify possible PAH and PCB sources. The newest version of EPA PMF (V5.0) having the capability of handling multiple site data was used for source apportionment. Five PAH sources were identified as biomass and coal combustion, iron-steel production, unburned crude oil and petroleum products, and diesel and gasoline exhaust emissions with contributions of 40, 27, 27, 3, and 3%, respectively. The sources of PCBs were identified as iron-steel production (consisting of steel-making and ship breaking activities), coal and wood combustion, and evaporative emissions from technical PCB mixtures with contributions of 57, 31, and 12%, respectively.

  14. Sediment PAH source apportionment in the Liaohe River using the ME2 approach: A comparison to the PMF model.

    Science.gov (United States)

    Xu, Jian; Peng, Xing; Guo, Chang-Sheng; Xu, Jiao; Lin, Hai-Xia; Shi, Guo-Liang; Lv, Jia-Pei; Zhang, Yuan; Feng, Yin-Chang; Tysklind, Mats

    2016-05-15

    Environmental contaminant source apportionment is essential for pollution management and control. This study analysed surface sediment samples for 16 priority polycyclic aromatic hydrocarbons (PAHs). PAH sources were identified by two receptor models, which included positive matrix factorization (PMF) and multilinear engine 2 (ME2). Three PAH sources in the Liaohe River sediments were identified by PMF, including traffic, coke oven and coal combustion. The ME2 model apportioned one additional source. The two models yielded excellent correlation coefficients between the measured and predicted PAH concentrations. Traffic emission was the primary PAH source associated with the Liaohe River sediments, with estimated PMF contributions of 58% in May and 63% in September. Coke oven (19%-25%) and coal combustion (13%-18%) were the other two major PAH sources. For ME2, gasoline and diesel were separated: accounted for 14% in May and 16% in September; and 53% in May and 48% in September. This study marks the first application of the ME2 model to study sediment contaminant source apportionment. The methodology can potentially be applied to other aquatic environment contaminants. PMID:26925728

  15. Size-resolved source apportionment of ambient particles by positive matrix factorization

    Science.gov (United States)

    Han, J. S.; Moon, K. J.; Lee, S. J.; Kim, Y. J.; Ryu, S. Y.; Cliff, S. S.; Yi, S. M.

    2005-07-01

    Size- and time-resolved aerosol samples were collected using an eight-stage DRUM sampler from 29 March to 29 May in 2002 at Gosan, Jeju Island, Korea, which is one of the representative background sites in East Asia. These samples were analyzed using synchrotron X-ray fluorescence for 3-h average concentrations of 19 elements consisting of S, Si, Al, Fe, Ca, Cl, Cu, Zn, Ti, K, Mn, Pb, Ni, V, Se, As, Rb, Cr, Br. The size-resolved data sets were then analyzed using the positive matrix factorization (PMF) technique in order to identify possible sources and estimate their contribution to particulate matter mass. PMF analysis uses the uncertainty of the measured data to provide an optimal weighting. Fifteen sources were resolved in eight size ranges (0.07-12 µm) and included Chinese aerosol, soil dust, sea salt, biomass burning, coal combustion, oil heating furnace, residual oil-fired boiler, municipal incineration, nonferrous metal source, ferrous metal source, gasoline vehicle, diesel vehicle, copper smelter, and volcano emission. PMF analysis of size-resolved source contributions showed that natural sources represented by soil dust, sea salt and Chinese aerosol contributed about 79% to the predicted primary PM mass in the coarse size range (1.15-12 µm). On the other hand, anthropogenic sources such as coal combustion and biomass burning contributed about 60% in the fine size range (0.56-2.5 µm). The diesel vehicle source contributed the most in the ultra-fine size range (0.07-0.56 µm) and was responsible for about 52% of the primary PM mass.

  16. Source apportionment of elevated wintertime PAHs by compound-specific radiocarbon analysis

    Directory of Open Access Journals (Sweden)

    R. J. Sheesley

    2008-12-01

    Full Text Available Natural abundance radiocarbon analysis facilitates distinct source apportionment between contemporary biomass/biofuel (14C "alive" versus fossil fuel (14C "dead" combustion. Here, the first compound-specific radiocarbon analysis (CSRA of atmospheric polycylic aromatic hydrocarbons (PAHs was demonstrated for a set of samples collected in Lycksele, Sweden a small town with frequent episodes of severe atmospheric pollution in the winter. Renewed interest in residential wood combustion means than this type of seasonal pollution is of increasing concern in many areas. Five individual/paired PAH isolates from three pooled fortnight-long filter collections were analyzed by CSRA: phenanthrene, fluoranthene, pyrene, benzo[b+k]fluoranthene and indeno[cd]pyrene plus benzo[ghi]perylene; phenanthrene was the only compound also analyzed in the gas phase. The measured Δ14C for PAHs spanned from −138.3‰ to 58.0‰. A simple isotopic mass balance model was applied to estimate the fraction biomass (fbiomass contribution that was constrained to a range of 71% for indeno[cd]pyrene+benzo[ghi]perylene to 87% for the gas phase phenanthrene and particulate fluoranthene, respectively. Indeno[cd]pyrene plus benzo[ghi]perylene, known to be enhanced in gasoline-powered motor vehicle exhaust compared to diesel exhaust, had the lowest contribution of biomass combustion of the measured PAHs by 9%. The total organic carbon (TOC, defined as carbon remaining after removal of inorganic carbon fbiomass was estimated to be 77%, which falls within the range for PAHs. This CSRA data of atmospheric PAHs demonstrate the non-uniformity of biomass combustion contribution to different PAHs even in a location with limited local emission sources and illustrates that regulatory efforts would not evenly reduce all PAHs.

  17. Source apportionment of elevated wintertime PAHs by compound-specific radiocarbon analysis

    Directory of Open Access Journals (Sweden)

    R. J. Sheesley

    2009-05-01

    Full Text Available Natural abundance radiocarbon analysis facilitates distinct source apportionment between contemporary biomass/biofuel (14C "alive" versus fossil fuel (14C "dead" combustion. Here, the first compound-specific radiocarbon analysis (CSRA of atmospheric polycyclic aromatic hydrocarbons (PAHs was demonstrated for a set of samples collected in Lycksele, Sweden a small town with frequent episodes of severe atmospheric pollution in the winter. Renewed interest in using residential wood combustion (RWC means that this type of seasonal pollution is of increasing concern in many areas. Five individual/paired PAH isolates from three pooled fortnight-long filter collections were analyzed by CSRA: phenanthrene, fluoranthene, pyrene, benzo[b+k]fluoranthene and indeno[cd]pyrene plus benzo[ghi]perylene; phenanthrene was the only compound also analyzed in the gas phase. The measured Δ14C for PAHs spanned from −138.3‰ to 58.0‰. A simple isotopic mass balance model was applied to estimate the fraction biomass (fbiomass contribution, which was constrained to 71–87% for the individual PAHs. Indeno[cd]pyrene plus benzo[ghi]perylene had an fbiomass of 71%, while fluoranthene and phenanthrene (gas phase had the highest biomass contribution at 87%. The total organic carbon (TOC, defined as carbon remaining after removal of inorganic carbon fbiomass was estimated to be 77%, which falls within the range for PAHs. This CSRA data of atmospheric PAHs established that RWC is the dominating source of atmospheric PAHs to this region of the boreal zone with some variations among RWC contributions to specific PAHs.

  18. Quantification and source apportionment of the methane emission flux from the city of Indianapolis

    Directory of Open Access Journals (Sweden)

    M. O. L. Cambaliza

    2015-01-01

    Full Text Available Abstract We report the CH4 emission flux from the city of Indianapolis, IN, the site of the Indianapolis Flux Experiment (INFLUX project for developing, assessing, and improving top-down and bottom-up approaches for quantifying urban greenhouse gas emissions. Using an aircraft-based mass balance approach, we find that the average CH4 emission rate from five flight experiments in 2011 is 135 ± 58 (1σ moles s-1 (7800 ± 3300 kg hr-1. The effective per capita CH4 emission rate for Indianapolis is 77 kg CH4 person-1 yr-1, a figure that is less than the national anthropogenic CH4 emission (∼91 kg CH4 person-1 yr-1 but considerably larger than the global figure (∼48 kg CH4 person-1 yr-1. We consistently observed elevated CH4 concentrations at specific coordinates along our flight transects downwind of the city. Inflight investigations as well as back trajectories using measured wind directions showed that the elevated concentrations originated from the southwest side of the city where a landfill and a natural gas transmission regulating station (TRS are located. Street level mobile measurements downwind of the landfill and the TRS supported the results of aircraft-based data, and were used to quantify the relative contributions from the two sources. We find that the CH4 emission from the TRS was negligible relative to the landfill, which was responsible for 33 ± 10% of the citywide emission flux. A regression of propane versus methane from aircraft flask samples suggests that the remaining citywide CH4 emissions (∼67% derive from the natural gas distribution system. We discuss the combination of surface mobile observations and aircraft city-wide flux measurements to determine the total flux and apportionment to important sources.

  19. Source apportionment of elevated wintertime PAHs by compound-specific radiocarbon analysis

    Science.gov (United States)

    Sheesley, R. J.; Kruså, M.; Krecl, P.; Johansson, C.; Gustafsson, Ã.-.

    2008-12-01

    Natural abundance radiocarbon analysis facilitates distinct source apportionment between contemporary biomass/biofuel (14C "alive") versus fossil fuel (14C "dead") combustion. Here, the first compound-specific radiocarbon analysis (CSRA) of atmospheric polycylic aromatic hydrocarbons (PAHs) was demonstrated for a set of samples collected in Lycksele, Sweden a small town with frequent episodes of severe atmospheric pollution in the winter. Renewed interest in residential wood combustion means than this type of seasonal pollution is of increasing concern in many areas. Five individual/paired PAH isolates from three pooled fortnight-long filter collections were analyzed by CSRA: phenanthrene, fluoranthene, pyrene, benzo[b+k]fluoranthene and indeno[cd]pyrene plus benzo[ghi]perylene; phenanthrene was the only compound also analyzed in the gas phase. The measured Δ14C for PAHs spanned from -138.3‰ to 58.0‰. A simple isotopic mass balance model was applied to estimate the fraction biomass (fbiomass) contribution that was constrained to a range of 71% for indeno[cd]pyrene+benzo[ghi]perylene to 87% for the gas phase phenanthrene and particulate fluoranthene, respectively. Indeno[cd]pyrene plus benzo[ghi]perylene, known to be enhanced in gasoline-powered motor vehicle exhaust compared to diesel exhaust, had the lowest contribution of biomass combustion of the measured PAHs by 9%. The total organic carbon (TOC, defined as carbon remaining after removal of inorganic carbon) fbiomass was estimated to be 77%, which falls within the range for PAHs. This CSRA data of atmospheric PAHs demonstrate the non-uniformity of biomass combustion contribution to different PAHs even in a location with limited local emission sources and illustrates that regulatory efforts would not evenly reduce all PAHs.

  20. The 2013 severe haze over southern Hebei, China: model evaluation, source apportionment, and policy implications

    Science.gov (United States)

    Wang, L. T.; Wei, Z.; Yang, J.; Zhang, Y.; Zhang, F. F.; Su, J.; Meng, C. C.; Zhang, Q.

    2014-03-01

    Extremely severe and persistent haze occurred in January 2013 over eastern and northern China. The record-breaking high concentrations of fine particulate matter (PM2.5) of more than 700 μg m-3 on hourly average and the persistence of the episodes have raised widespread, considerable public concerns. During that period, 7 of the top 10 polluted cities in China were within the Hebei Province. The three cities in southern Hebei (Shijiazhuang, Xingtai, and Handan) have been listed as the top three polluted cities according to the statistics for the first half of the year 2013. In this study, the Mesoscale Modeling System Generation 5 (MM5) and the Models-3/Community Multiscale Air Quality (CMAQ) modeling system are applied to simulate the 2013 severe winter regional hazes in East Asia and northern China at horizontal grid resolutions of 36 and 12 km, respectively, using the Multi-resolution Emission Inventory for China (MEIC). The source contributions of major source regions and sectors to PM2.5 concentrations in the three most polluted cities in southern Hebei are quantified by aiming at the understanding of the sources of the severe haze pollution in this region, and the results are compared with December 2007, the haziest month in the period 2001-2010. Model evaluation against meteorological and air quality observations indicates an overall acceptable performance and the model tends to underpredict PM2.5 and coarse particulate matter (PM10) concentrations during the extremely polluted episodes. The MEIC inventory is proven to be a good estimation in terms of total emissions of cities but uncertainties exist in the spatial allocations of emissions into fine grid resolutions within cities. The source apportionment shows that emissions from northern Hebei and the Beijing-Tianjin city cluster are two major regional contributors to the pollution in January 2013 in Shijiazhuang, compared with those from Shanxi and northern Hebei for December 2007. For Xingtai and Handan

  1. The 2013 severe haze over the southern Hebei, China: model evaluation, source apportionment, and policy implications

    Science.gov (United States)

    Wang, L. T.; Wei, Z.; Yang, J.; Zhang, Y.; Zhang, F. F.; Su, J.; Meng, C. C.; Zhang, Q.

    2013-11-01

    Extremely severe and persistent haze occurred in January 2013 over the eastern and northern China. The record-breaking high concentrations of fine particulate matter (PM2.5) of more than 700 μg m-3 on hourly average and the persistence of the episodes have raised widespread, considerable public concerns. During that period, seven of the top ten polluted cities in China were within Hebei Province. The three cities in southern Hebei, Shijiazhuang, Xingtai, and Handan, have been listed as the top three polluted cities according to the statistics for the first half year of 2013. In this study, the Mesoscale Modeling System Generation 5 (MM5) and the Models-3/Community Multiscale Air Quality (CMAQ) modeling system are applied to simulate the 2013 severe winter regional hazes in East Asia and the northern China at horizontal grid resolutions of 36 and 12 km, respectively, using the Multi-resolution Emission Inventory of China (MEIC). The source contributions of major source regions and sectors to PM2.5 concentrations in the three most-polluted cities in southern Hebei are quantified aiming at the understanding of the sources of the severe haze pollution in this region, and the results are compared with December 2007, the haziest month in 2001-2010. Model evaluation against meteorological and air quality observations indicates an overall acceptable performance and the model tends to underpredict PM2.5 and coarse particulate matter (PM10) concentrations during the extremely severe polluted episodes. The MEIC inventory is proved to be a good estimation in terms of total emissions of cities but uncertainties exist in the spatial allocations of emissions into fine grid resolutions within cities. The source apportionment shows that emissions from the northern Hebei and the Beijing-Tianjin city cluster are two major regional contributors to the pollution in January 2013 in Shijiazhuang, comparing with those from Shanxi and the northern Hebei for December 2007. For Xingtai and

  2. Applications of lead isotope rations for identification and apportionment on pollution sources in food

    International Nuclear Information System (INIS)

    Lead is one of the toxic heavy metals which can accumulate to an adverse effect level in human bodies through ingestion, inhalation or other pathways. Because of the persistent lead contamination in farmland environment, large risk exists in the primary stage of 'from farm to table' chain. Environmental media such as soils, atmospheric aerosols were the possible lead sources of agro-food. To pinpoint the pollution sources exactly, cut off the contamination pathways in time, and reduce the risk of hazard, pollution sources tracing was very important. Lead isotope ratio combined with certain models is an effective method to discriminate correctly pollution sources and calculate the individual source contributions. In this review, to provide theoretical and technical reference for controlling lead pollution in environment and food, lead pollution sources in food, tracing principle and methods of lead isotope ratios, and its applications on vegetable, tea, wine, cereal and other food products were concerned. (authors)

  3. Characteristics and source apportionment of organic matter in PM(2.5) from cities in different climatic zones of China

    Science.gov (United States)

    Feng, Jialiang

    For the first time, the dependency of the characteristics of organic matter in PM2.5 on geographical and climatic zones in three metropolitan cities of China was studied. Seasonal samples were collected at suburban and urban sites in Beijing, Shanghai and Guangzhou in 2002 and 2003. To further support the above study, seasonal samples were also collected at Changdao Island, a remote island, in Bohai Sea/Yellow Sea. Concentrations of organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), and solvent-extractable organic compounds (SEOC) were analyzed. The characteristics of the n-alkanes, polycyclic aromatic hydrocarbons, n-fatty acids, n-alkanols and molecular markers such as triterpanes were determined and used for source identification. Source apportionment was complemented by Chemical Mass Balance (CMB) modeling using the measured organic species as tracers. The impact of wind speed and wind direction on air quality was studied by back trajectory calculations and analysis. In general, traffic emissions were the largest contributors of OC followed by coal burning, kitchen emissions, vegetative detritus and biomass burning. However, in the space-heating season in Northern China, coal burning was the most important contributor of OC in the suburban areas of Beijing and at Changdao. Beijing had the highest concentration of organic aerosol followed by Guangzhou and Shanghai, while seasonal variation was in reverse order. Dispersion conditions determined by local topographies and meteorology were responsible for this trend. Contrary to common understanding, pollutant concentrations at the suburban sites were higher than the urban sites in all three cities. The main reason was the rapid urbanization of the suburban areas in the immediate vicinity of urban centers since China opened up for economic development, in addition, large numbers of manufacturing plants were relocated from the cities to the countryside in an attempt to clean up the urban

  4. Development of PM2.5 source impact spatial fields using a hybrid source apportionment air quality model

    Science.gov (United States)

    Ivey, C. E.; Holmes, H. A.; Hu, Y. T.; Mulholland, J. A.; Russell, A. G.

    2015-07-01

    An integral part of air quality management is knowledge of the impact of pollutant sources on ambient concentrations of particulate matter (PM). There is also a growing desire to directly use source impact estimates in health studies; however, source impacts cannot be directly measured. Several limitations are inherent in most source apportionment methods motivating the development of a novel hybrid approach that is used to estimate source impacts by combining the capabilities of receptor models (RMs) and chemical transport models (CTMs). The hybrid CTM-RM method calculates adjustment factors to refine the CTM-estimated impact of sources at monitoring sites using pollutant species observations and the results of CTM sensitivity analyses, though it does not directly generate spatial source impact fields. The CTM used here is the Community Multiscale Air Quality (CMAQ) model, and the RM approach is based on the chemical mass balance (CMB) model. This work presents a method that utilizes kriging to spatially interpolate source-specific impact adjustment factors to generate revised CTM source impact fields from the CTM-RM method results, and is applied for January 2004 over the continental United States. The kriging step is evaluated using data withholding and by comparing results to data from alternative networks. Data withholding also provides an estimate of method uncertainty. Directly applied (hybrid, HYB) and spatially interpolated (spatial hybrid, SH) hybrid adjustment factors at withheld observation sites had a correlation coefficient of 0.89, a linear regression slope of 0.83 ± 0.02, and an intercept of 0.14 ± 0.02. Refined source contributions reflect current knowledge of PM emissions (e.g., significant differences in biomass burning impact fields). Concentrations of 19 species and total PM2.5 mass were reconstructed for withheld observation sites using HYB and SH adjustment factors. The mean concentrations of total PM2.5 at withheld observation sites were

  5. Source apportionment of ambient particle number concentrations in central Los Angeles using positive matrix factorization (PMF)

    Science.gov (United States)

    Sowlat, Mohammad Hossein; Hasheminassab, Sina; Sioutas, Constantinos

    2016-04-01

    In this study, the positive matrix factorization (PMF) receptor model (version 5.0) was used to identify and quantify major sources contributing to particulate matter (PM) number concentrations, using PM number size distributions in the range of 13 nm to 10 µm combined with several auxiliary variables, including black carbon (BC), elemental and organic carbon (EC/OC), PM mass concentrations, gaseous pollutants, meteorological, and traffic counts data, collected for about 9 months between August 2014 and 2015 in central Los Angeles, CA. Several parameters, including particle number and volume size distribution profiles, profiles of auxiliary variables, contributions of different factors in different seasons to the total number concentrations, diurnal variations of each of the resolved factors in the cold and warm phases, weekday/weekend analysis for each of the resolved factors, and correlation between auxiliary variables and the relative contribution of each of the resolved factors, were used to identify PM sources. A six-factor solution was identified as the optimum for the aforementioned input data. The resolved factors comprised nucleation, traffic 1, traffic 2 (with a larger mode diameter than traffic 1 factor), urban background aerosol, secondary aerosol, and soil/road dust. Traffic sources (1 and 2) were the major contributor to PM number concentrations, collectively making up to above 60 % (60.8-68.4 %) of the total number concentrations during the study period. Their contribution was also significantly higher in the cold phase compared to the warm phase. Nucleation was another major factor significantly contributing to the total number concentrations (an overall contribution of 17 %, ranging from 11.7 to 24 %), with a larger contribution during the warm phase than in the cold phase. The other identified factors were urban background aerosol, secondary aerosol, and soil/road dust, with relative contributions of approximately 12 % (7.4-17.1), 2.1 % (1

  6. Seasonal effect and source apportionment of polycyclic aromatic hydrocarbons in PM2.5

    Science.gov (United States)

    Khan, Md Firoz; Latif, Mohd Talib; Lim, Chee Hou; Amil, Norhaniza; Jaafar, Shoffian Amin; Dominick, Doreena; Mohd Nadzir, Mohd Shahrul; Sahani, Mazrura; Tahir, Norhayati Mohd

    2015-04-01

    This study aims to investigate distribution and sources of 16 polycyclic aromatic hydrocarbons (PAHs) bound to fine particulate matter (PM2.5) captured in a semi-urban area in Malaysia during different seasons, and to assess their health risks. PM2.5 samples were collected using a high volume air sampler on quartz filter paper at a flow rate of 1 m3 min-1 for 24 h. PAHs on the filter paper were extracted with dichloromethane (DCM) using an ultrasonic centrifuge solid-phase extraction method and measured by gas chromatography-mass spectroscopy. The results showed that the range of PAHs concentrations in the study period was between 0.21 and 12.08 ng m-3. The concentrations of PAHs were higher during the south-west monsoon (0.21-12.08 ng m-3) compared to the north-east monsoon (0.68-3.80 ng m-3). The high molecular weight (HMW) PAHs (≥5 ring) are significantly prominent (>70%) compared to the low molecular weight (LMW) PAHs (≤4 ring) in PM2.5. The Spearman correlation indicates that the LMW and HMW PAHs correlate strongly among themselves. The diagnostic ratios (DRs) of I[c]P/I[c]P + BgP and B[a]P/B[g]P suggest that the HMW PAHs originated from fuel combustion sources. The source apportionment analysis of PAHs was resolved using DRs-positive matrix factorization (PMF)-multiple linear regression (MLR). The main sources identified were (a) gasoline combustion (65%), (b) diesel and heavy oil combustion (19%) and (c) natural gas and coal burning (15%). The health risk evaluation, by means of the lifetime lung cancer risk (LLCR), showed no potential carcinogenic risk from the airborne BaPeq (which represents total PAHs at the present study area in Malaysia). The seasonal LLCR showed that the carcinogenic risk of total PAHs were two fold higher during south-westerly monsoon compared to north-easterly monsoon.

  7. Multimedia fate and source apportionment of polycyclic aromatic hydrocarbons in a coking industry city in Northern China

    International Nuclear Information System (INIS)

    A steady state Level III fate model was established and applied to quantify source–receptor relationship in a coking industry city in Northern China. The local emission inventory of PAHs, as the model input, was acquired based on energy consumption and emission factors. The model estimations were validated by measured data and indicated remarkable variations in the paired isomeric ratios. When a rectification factor, based on the receptor-to-source ratio, was calculated by the fate model, the quantitatively verified molecular diagnostic ratios provided reasonable results of local PAH emission sources. Due to the local ban and measures on small scale coking activities implemented from the beginning of 2004, the model calculations indicated that the local emission amount of PAHs in 2009 decreased considerably compared to that in 2003. -- Highlights: •A steady-state fate model could well elucidate the multimedia fate of PAHs. •A rectification factor for correcting the paired isomeric ratio was calculated. •The corrected isomeric ratios were successfully applied to source apportionment. -- Based on multimedia model correction, the specific isomeric ratios could provide reasonable apportionments for the local PAHs emission sources

  8. Source apportionment profile of the fine air particulate pollution in a sampling site in Quezon City (Philippines)

    International Nuclear Information System (INIS)

    Air particulate matter (PM10) was monitored and collected at a sampling site in Quezon City, Philippines since 1998 for the purpose of source identification and source apportionment. For such to be achieved, parameters like particulate mass, black carbon, and elemental concentration and identification must be determined. These were attained by using gravimetry, reflectometr, and particle-induced x-ray emissions (PIXE) spectrometry and x-ray fluorescence spectrometry (XRF), respectively. Source apportionment was attained with the use of Positive Matrix Factorization 2 (PMF2). This resulted to the identification of six air pollution sources. These are vehicular emissions (49%), smoke (14%), secondary S (22%), fine soil (8%) and industry (7%). Data also showed PM10 compliance to the Philippines 1-year guideline value of 60μg m-3 but in excedance of the WHO 1-year guideline value of 20μg m-3. Furthermore, PM2.5 levels are in exceedance of the WHO 1-year guideline value of 15μg m-3 and the WHO 1-year guideline value of 10μg m-3. Also worth noting, particulate lead (Pb) levels of the fine fractions observed to follow a decreasing pattern that coincides well with the introduction of unleaded-gasoline in 1998, and the eventual phase-out of the leaded-gasoline in 2001.(author)

  9. Source apportionment of PM10 in a north-western Europe regional urban background site (Lens, France) using positive matrix factorization and including primary biogenic emissions

    Science.gov (United States)

    Waked, A.; Favez, O.; Alleman, L. Y.; Piot, C.; Petit, J.-E.; Delaunay, T.; Verlinden, E.; Golly, B.; Besombes, J.-L.; Jaffrezo, J.-L.; Leoz-Garziandia, E.

    2014-04-01

    In this work, the source of ambient particulate matter (PM10) collected over a one-year period at an urban background site in Lens (France) was determined and investigated using a positive matrix factorization receptor model (US EPA PMF v3.0). In addition, a potential source contribution function (PSCF) was performed by means of the Hybrid Single-Particle Lagrangian Integrated Trajectory (Hysplit) v4.9 model to assess prevailing geographical origins of the identified sources. A selective iteration process was followed for the qualification of the more robust and meaningful PMF solution. Components measured and used in the PMF included inorganic and organic species: soluble ionic species, trace elements, elemental carbon (EC), sugar alcohols, sugar anhydride, and organic carbon (OC). The mean PM10 concentration measured from March 2011 to March 2012 was about 21 μg m-3 with typically OM, nitrate and sulfate contributing to most of the mass and accounting respectively for 5.8, 4.5 and 2.3 μg m-3 on a yearly basis. Accordingly, PMF outputs showed that the main emission sources were (in decreasing order of contribution) secondary inorganic aerosols (28% of the total PM10 mass), aged marine emissions (19%), with probably predominant contribution of shipping activities, biomass burning (13%), mineral dust (13%), primary biogenic emissions (9%), fresh sea salts (8%), primary traffic emissions (6%) and heavy oil combustion (4%). Significant temporal variations were observed for most of the identified sources. In particular, biomass burning emissions were negligible in summer but responsible for about 25% of total PM10 and 50% of total OC in wintertime. Conversely, primary biogenic emissions were found to be negligible in winter but to represent about 20% of total PM10 and 40% of total OC in summer. The latter result calls for more investigations of primary biogenic aerosols using source apportionment studies, which quite usually disregard this type of source. This study

  10. Source apportionment of PM10 in a North-Western Europe regional urban background site (Lens, France using Positive Matrix Factorization and including primary biogenic emissions

    Directory of Open Access Journals (Sweden)

    A. Waked

    2013-10-01

    Full Text Available In this work, the source of ambient particulate matter (PM10 collected over a one year period at an urban background site in Lens (France were determined and investigated using a~Positive Matrix Factorization receptor model (US EPA PMF v3.0. In addition, a Potential Source Contribution Function (PSCF was performed by means of the Hysplit v4.9 model to assess prevailing geographical origins of the identified sources. A selective iteration process was followed for the qualification of the more robust and meaningful PMF solution. Components measured and used in the PMF include inorganic and organic species: soluble ionic species, trace elements, elemental carbon (EC, sugars alcohols, sugar anhydride, and organic carbon (OC. The mean PM10 concentration measured from March 2011 to March 2012 was about 21 μg m−3 with typically OM, nitrate and sulfate contributing to most of the mass and accounting respectively for 5.8, 4.5 and 2.3 μg m−3 on a yearly basis. Accordingly, PMF outputs showed that the main emission sources were (in a decreasing order of contribution: secondary inorganic aerosols (28% of the total PM10 mass, aged marine emissions (19%, with probably predominant contribution of shipping activities, biomass burning (13%, mineral dust (13%, primary biogenic emissions (9%, fresh sea salts (8%, primary traffic emissions (6% and heavy oil combustion (4%. Significant temporal variations were observed for most of the identified sources. In particular, biomass burning emissions were negligible in summer but responsible for about 25% of total PM10 and 50% of total OC at wintertime. Conversely, primary biogenic emissions were found to be negligible in winter but to represent about 20% of total PM10 and 40% of total OC in summer. The latter result calls for more investigations of primary biogenic aerosols using source apportionment studies, which quite usually disregards this type of sources. This study furthermore underlines the major influence

  11. Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, S.M., E-mail: smarta@ctn.ist.utl.pt [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 139.7 km, 2695-066 Bobadela LRS (Portugal); Lage, J. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 139.7 km, 2695-066 Bobadela LRS (Portugal); Fernández, B. [Global R& D, ArcelorMittal, Avilés (Spain); Garcia, S. [Instituto de Soldadura e Qualidade, Av. Prof. Dr. Cavaco Silva, 33, 2740-120 Porto Salvo (Portugal); Reis, M.A.; Chaves, P.C. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 139.7 km, 2695-066 Bobadela LRS (Portugal)

    2015-07-15

    The objective of this work was to provide a chemical characterization of atmospheric particles collected in the vicinity of a steelmaking industry and to identify the sources that affect PM{sub 10} levels. A total of 94 PM samples were collected in two sampling campaigns that occurred in February and June/July of 2011. PM{sub 2.5} and PM{sub 2.5–10} were analyzed for a total of 22 elements by Instrumental Neutron Activation Analysis and Particle Induced X-ray Emission. The concentrations of water soluble ions in PM{sub 10} were measured by Ion Chromatography and Indophenol-Blue Spectrophotometry. Positive Matrix Factorization receptor model was used to identify sources of particulate matter and to determine their mass contribution to PM{sub 10}. Seven main groups of sources were identified: marine aerosol identified by Na and Cl (22%), steelmaking and sinter plant represented by As, Cr, Cu, Fe, Ni, Mn, Pb, Sb and Zn (11%), sinter plant stack identified by NH{sub 4}{sup +}, K and Pb (12%), an unidentified Br source (1.8%), secondary aerosol from coke making and blast furnace (19%), fugitive emissions from the handling of raw material, sinter plant and vehicles dust resuspension identified by Al, Ca, La, Si, Ti and V (14%) and sinter plant and blast furnace associated essentially with Fe and Mn (21%). - Highlights: • Emissions from steelworks are very complex. • The larger steelworks contribution to PM{sub 10} was from blast furnace and sinter plant. • Sinter plant stack emissions contributed for 12% of the PM{sub 10} mass. • Secondary aerosol from coke making and blast furnace contributed for 19% of the PM{sub 10}. • Fugitive dust emissions highly contribute to PM{sub 10} mass.

  12. Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry

    International Nuclear Information System (INIS)

    The objective of this work was to provide a chemical characterization of atmospheric particles collected in the vicinity of a steelmaking industry and to identify the sources that affect PM10 levels. A total of 94 PM samples were collected in two sampling campaigns that occurred in February and June/July of 2011. PM2.5 and PM2.5–10 were analyzed for a total of 22 elements by Instrumental Neutron Activation Analysis and Particle Induced X-ray Emission. The concentrations of water soluble ions in PM10 were measured by Ion Chromatography and Indophenol-Blue Spectrophotometry. Positive Matrix Factorization receptor model was used to identify sources of particulate matter and to determine their mass contribution to PM10. Seven main groups of sources were identified: marine aerosol identified by Na and Cl (22%), steelmaking and sinter plant represented by As, Cr, Cu, Fe, Ni, Mn, Pb, Sb and Zn (11%), sinter plant stack identified by NH4+, K and Pb (12%), an unidentified Br source (1.8%), secondary aerosol from coke making and blast furnace (19%), fugitive emissions from the handling of raw material, sinter plant and vehicles dust resuspension identified by Al, Ca, La, Si, Ti and V (14%) and sinter plant and blast furnace associated essentially with Fe and Mn (21%). - Highlights: • Emissions from steelworks are very complex. • The larger steelworks contribution to PM10 was from blast furnace and sinter plant. • Sinter plant stack emissions contributed for 12% of the PM10 mass. • Secondary aerosol from coke making and blast furnace contributed for 19% of the PM10. • Fugitive dust emissions highly contribute to PM10 mass

  13. Source apportionment of particulate matter in a South Asian Mega City: A case study of Karachi

    Science.gov (United States)

    Shahid, imran

    2016-04-01

    PM2.5 and PM10-2.5. In order to make air quality better and risk free in South Asian cities a comprehensive and integrated regional effort is required that include continuous air quality monitoring, source apportionment and implementation of regional air quality policies.

  14. Characterization and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in Sediments from the Bohai Sea, China

    Science.gov (United States)

    Liu, Jihua; Hu, Ningjing; Shi, Xuefa

    2015-04-01

    Characterization and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in Sediments from the Bohai Sea, China Liu Jihua, Hu Ningjing, Shi Xuefa First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous organic contaminants in the environment. Indeed, 16 PAH compounds have been listed as priority pollutants by the United States Environmental Protection Agency and the European Union because of their potential toxicity to humans and ecosystems. As POPs are released or escape into the environment, their global accumulation in marine sediments generates a complex balance between inputs and outputs. Furthermore, PAHs in coastal sediments can serve as effective tracers of materials transport from land-to-sea (Fang et al., 2009). Hence, investigations of PAHs in sediments can provide useful information for further understanding of environmental processes and material transport. In this study, sixteen polycyclic aromatic hydrocarbons (PAHs) were extracted from a total of 112 surface sediment samples collected across the entire territory of the Bohai Sea. The detectable concentrations of PAHs ranged from 97.2 to 300.7 ng/g across all samples, indicating low contamination levels of PAHs compared with reported values for other coastal sediments in China and developed countries. The highest concentrations were found within three belts in the vicinity of Luan River Estuary-Qinhuangdao Harbor, the Cao River Estuary-Bohai Sea Center, and north of the Yellow River Estuary. The distribution patterns of PAHs and source identification implied that PAH contamination in the Bohai Sea mainly originates from offshore oil exploration, sewage discharge from rivers and shipping activities. Further Principal components analysis (PCA)/multivariate linear regression (MLR) analysis suggested that the contributions of spilled oil products (petrogenic), coal combustion and traffic

  15. Aerosol sources and their contribution to the chemical composition of aerosols in the Eastern Mediterranean Sea during summertime

    Directory of Open Access Journals (Sweden)

    J. Sciare

    2003-01-01

    Full Text Available A detailed study on the temporal variability of compounds important in controlling aerosol chemical composition was performed during a one-month experiment conducted during summer 2000 at a background site on Crete, in the Eastern Mediterranean Sea. Contribution of different aerosol sources in the Eastern Mediterranean Basin could be investigated at this location since the site is influenced by a wide range of air masses originating mainly in Europe and Africa. Chemical apportionment was performed for various air mass origins and showed a strong impact of anthropogenic emissions in the Turkey and Central Europe sectors, with black carbon (BC and non-sea-salt sulfate (nss-SO4 concentrations higher than observed in the Eastern and Western Europe sectors. High levels of non-sea-salt calcium (nss-Ca were associated with air masses from Africa but also from Central Turkey. Evidence was found that BC calculation based on light absorbance during dust events was biased. This quality-controlled high temporal resolution dataset allowed to investigate in detail the source-receptor relationships responsible for the levels of BC, nss-SO4 and sulfur dioxide (SO2, observed in Crete. Among the results obtained from this model, the major contribution of Turkey and Central Europe was confirmed in terms of anthropogenic emissions. Comparisons with remote optical properties obtained from Satellite observations (SEAWIFS north of Crete indicates that our ground based aerosol characterization was suitable for describing aerosol properties in the atmospheric column for most of the time during the campaign.

  16. Simultaneous monitoring and compositions analysis of PM1 and PM2.5 in Shanghai: Implications for characterization of haze pollution and source apportionment.

    Science.gov (United States)

    Qiao, Ting; Zhao, Mengfei; Xiu, Guangli; Yu, Jianzhen

    2016-07-01

    A year-long simultaneous observation of PM1 and PM2.5 were conducted at ECUST campus in Shanghai, the compositions were analyzed and compared. Results showed that PM2.5 was dominated by PM1 on clear days while the contribution of PM1-2.5 to PM2.5 increased on haze days, indicating that PM2.5 should be given priority to characterize or predict haze pollution. On haze days, accumulation of organic carbon (OC), elemental carbon (EC) and primary organic carbon (POC) in PM1-2.5 was faster than that in PM1. Humic-like substances carbon (Hulis-C) in both PM2.5 and PM1 formed faster than water soluble organic carbon (WSOC) on haze days, hence Hulis-C/WSOC increased with the intensification of haze pollution. In terms of water soluble ions, NO3(-)/SO4(2-) in PM1 increased with the aggravation of haze pollution, implying that mobile sources dominated on haze days, so is nitrogen oxidation ratio (NOR). Liquid water content (LWC) in both PM1 and PM2.5 had positive correlations with relative humidity (RH) but negative correlations with visibility, implying that hygroscopic growth might be a factor for visibility impairment, especially LWC in PM1. By comparison with multi-linear equations of LWC in PM1 and PM2.5, NO3(-) exerted a higher influence on hygroscopicity of PM1 than PM2.5, while RH, WSOC, SO4(2-) and NH4(+) had higher effects on PM2.5, especially WSOC. Source apportionment of PM2.5 was also investigated to provide reference for policy making. Cluster analysis by HYSPLIT (HYbrid Single Particle Lagrangian Integrated Trajectory) model showed that PM2.5 originated from marine aerosols, middle-scale transportation and large-scale transportation. Furthermore, PM2.5 on haze days was dominated by middle-scale transportation. In line with source apportionment by positive matrix factorization (PMF) model, PM2.5 was attributed to secondary inorganics, aged sea salt, combustion emissions, hygroscopic growth and secondary organics. Secondary formation was the principle source of

  17. Variation of atmospheric aerosol components and sources during smog episodes in Debrecen, Hungary

    International Nuclear Information System (INIS)

    Full text: Atmospheric particulate matter (APM) pollution is one of the leading environmental problems in densely populated urban environments. In most cities all around the world high aerosol pollution levels occurs regularly. Debrecen, an average middle-European city is no exception. Every year there are several days when the aerosol pollution level exceeds the alarm threshold value (100 μ-g/m3 for PM10 in 24- hours average). When the PM10 pollution level remains over this limit value for days, it is called 'smog' by the authorities. In this work we studied the variation of the elemental components and sources of PM10, PM2.5 and PM coarse and their dependence on meteorological conditions in Debrecen during two smog episodes occurred in November 2011. Aerosol samples were collected with 2-hours time resolution with a PIXE International sequential streaker in an urban background site in the downtown of Debrecen. In order to get information about the size distribution of the aerosol elemental components 9-stage cascade impactors were also employed during the sampling campaigns. The elemental composition (Z ≥ 13) were determined by Particle Induced X-Ray Emission (PIXE) at the IBA Laboratory of Atomki. Concentrations of elemental carbon were measured with a smoke stain reflectometer. On this data base source apportionment was carried out by using the positive matrix factorisation (PMF) method. Four factors were identified for both size fractions, including soil dust, traffic, domestic heating, and oil combustion. The time pattern of the aerosol elemental components and PM sources exhibited strong dependence on the mixing layer thickness. We showed that domestic heating had a major contribution to the aerosol pollution. (This work was carried out in the frame of the János Bolyai Research Scholarship of the Hungarian Academy of Sciences and TÁMOP-4.2.2/B-10/1-2010-0024 project). (author)

  18. Concentration levels and source apportionment of ultrafine particles in road microenvironments

    Science.gov (United States)

    Argyropoulos, G.; Samara, C.; Voutsa, D.; Kouras, A.; Manoli, E.; Voliotis, A.; Tsakis, A.; Chasapidis, L.; Konstandopoulos, A.; Eleftheriadis, K.

    2016-03-01

    A mobile laboratory unit (MOBILAB) with on-board instrumentation (Scanning Mobility Particle Sizer, SMPS; Ambient NOx analyzer) was used to measure size-resolved particle number concentrations (PNCs) of quasi-ultrafine particles (UFPs, 9-372 nm), along with NOx, in road microenvironments. On-road measurements were carried out in and around a large Greek urban agglomeration, the Thessaloniki Metropolitan Area (TMA). Two 2-week measurement campaigns were conducted during the warm period of 2011 and the cold period of 2012. During each sampling campaign, MOBILAB was driven through a 5-day inner-city route and a second 5-day external route covering in total a wide range of districts (urban, urban background, industrial and residential), and road types (major and minor urban roads, freeways, arterial and interurban roads). All routes were conducted during working days, in morning and in afternoon hours under real-world traffic conditions. Spatial classification of MOBILAB measurements involved the assignment of measurement points to location bins defined by the aspect ratio of adjacent urban street canyons (USCs). Source apportionment was further carried out, by applying Positive Matrix Factorization (PMF) to particle size distribution data. Apportioned PMF factors were interpreted, by employing a two-step methodology, which involved (a) statistical association of PMF factor contributions with 12 h air-mass back-trajectories ending at the TMA during MOBILAB measurements, and (b) Multiple Linear Regression (MLR) using PMF factor contributions as the dependent variables, while relative humidity, solar radiation flux, and vehicle speed were used as the independent variables. The applied data analysis showed that low-speed cruise and high-load engine operation modes are the two dominant sources of UFPs in most of the road microenvironments in the TMA, with significant contributions from background photochemical processes during the warm period, explaining the reversed

  19. Source apportionment of particulate matter in Chinese megacities: the implication for emission control strategies

    Science.gov (United States)

    Huang, Ru-Jin; Elser, Miriam; Wang, Qiyuan Wang; Bozzetti, Carlo; Wolf, Robert; Wang, Yichen; Ni, Haiyan; Wang, Meng; Ho, Kin-Fai; Han, Yongming; Dällenbach, Kaspar; Canonaco, Francesco; Slowik, Jay; El Haddad, Imad; Baltensperger, Urs; Cao, Junji; Prévôt, André S. H.

    2015-04-01

    The rapid industrialization and urbanization in developing countries has led to an increase in air pollution, along a similar trajectory to that previously experienced by the developed nations. In China, particulate pollution is a serious environmental problem that is influencing air quality, regional and global climates, and human health. A quantitative understanding of these effects has proven extremely challenging due to spatial and temporal variability in the sources of aerosols and their precursors, the complexity of particle composition, and uncertainties associated with the atmospheric aging of existing particles (Pöschl 2005; Hallquist et al., 2009; Huang et al., 2014). Nowadays the average PM2.5 concentrations in China are approximately one to two orders of magnitude higher than those observed in urban areas in the US and European countries (Cao 2012). This has forced the Chinese government to announce its first national environmental standard for PM2.5 in 2012 and to make highly ambitious plans for emission control. The Chinese aim to reduce the PM2.5 concentrations by up to 25% of the 2012 levels by 2017, backed by 277 billion investments from the central government. To achieve this ambitious aim, a better understanding of the aerosol composition, sources, and atmospheric processing is required. In this study, we present the results from intensive field measurement campaigns carried out in Chinese megacities in 2013/2014. The sources of PM2.5 and the organic aerosol (OA) were investigated by applying the multi-linear engine (ME-2) receptor model (Canonaco et al., 2013) to a comprehensive dataset. Primary sources including vehicle emissions, biomass burning, coal burning, and dust-related emissions were identified and quantified. The contributions from secondary aerosol formation processes to total PM2.5 mass and OA mass were evaluated. Detailed results will be presented and discussed. References Cao, J. J. (2012) J. Earth Environ., 3, 1030

  20. Source apportionment of PM10 at a small industrial area using Positive Matrix Factorization

    Science.gov (United States)

    Lim, Jong-Myoung; Lee, Jin-Hong; Moon, Jong-Hwa; Chung, Yong-Sam; Kim, Ki-Hyun

    2010-01-01

    In this study, PM10-bound concentrations of 28 trace metals and 3 ionic components were measured from samples collected at Daejeon Industrial Complexes I and II, Korea from April 2000 to December 2002. Positive matrix factorization (PMF) and conditional probability function (CPF) were applied to these PM data sets to identify the diverse sources in the industrial area. A total of nine source types were identified to be important which include: secondary aerosol, cement/construction, soil dust, road dust, vehicle exhaust, incineration/Pb-related industry, metal smelting, fossil fuel combustion, and field burning. Results of our study suggest that there are competing relationships between anthropogenic and natural source processes in this industrial area.

  1. AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in 5 Southern European cities

    Science.gov (United States)

    Amato, F.; Alastuey, A.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Severi, M.; Becagli, S.; Gianelle, V. L.; Colombi, C.; Alves, C.; Custódio, D.; Nunes, T.; Cerqueira, M.; Pio, C.; Eleftheriadis, K.; Diapouli, E.; Reche, C.; Minguillón, M. C.; Manousakas, M.; Maggos, T.; Vratolis, S.; Harrison, R. M.; Querol, X.

    2015-09-01

    The AIRUSE-LIFE+ project aims at characterising similarities and heterogeneities in PM sources and contributions in urban areas from the Southern Europe. Once the main PMx sources are identified, AIRUSE aims at developing and testing the efficiency of specific and non-specific measures to improve urban air quality. This article reports the results of the source apportionment of PM10 and PM2.5 conducted at three urban background sites (Barcelona, Florence and Milan, BCN-UB, FI-UB, MLN-UB) one sub-urban background site (Athens, ATH-SUB) and one traffic site (Porto, POR-TR). After collecting 1047 PM10 and 1116 PM2.5 24 h samples from January 2013 to February 2014 simultaneously at the 5 cities, these were analysed for the contents of OC, EC, anions, cations, major and trace elements and levoglucosan. The USEPA PMF5 receptor model was applied to these datasets in a harmonised way for each city. The sum of vehicle exhaust and non-exhaust contributes within 3.9-10.8 μg m-3 (16-32 %) to PM10 and 2.3-9.4 μg m-3 (15-36 %) to PM2.5, although a fraction of secondary nitrate is also traffic-related but could not be estimated. Important contributions arise from secondary particles (nitrate, sulphate and organics) in PM2.5 (37-82 %) but also in PM10 (40-71 %) mostly at background sites, revealing the importance of abating gaseous precursors in designing air quality plans. Biomass burning (BB) contributions vary widely, from 14-24 % of PM10 in POR-TR, MLN-UB and FI-UB, 7 % in ATH-SUB to < 2 % in BCN-UB. In PM2.5, BB is the second most important source in MLN-UB (21 %) and in POR-TR (18 %), the third one in FI-UB (21 %) and ATH-SUB (11 %), but again negligible (< 2 %) in BCN-UB. This large variability among cities is mostly due to the degree of penetration of biomass for residential heating. In Barcelona natural gas is very well supplied across the city and used as fuel in 96 % of homes, while, in other cities, PM levels increase on an annual basis by 1-9 μg m-3 due to this

  2. Atmospheric Aerosol Source-Receptor Relationships: The Role of Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2005-12-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2005 through August 2005. Significant progress was made this project period on the source characterization, source apportionment, and deterministic modeling activities. This report highlights new data on road dust, vegetative detritus and motor vehicle emissions. For example, the results show significant differences in the composition in urban and rural road dust. A comparison of the organic of the fine particulate matter in the tunnel with the ambient provides clear evidence of the significant contribution of vehicle emissions to ambient PM. The source profiles developed from this work are being used by the source-receptor modeling activities. The report presents results on the spatial distribution of PMF-factors. The results can be grouped into three different categories: regional sources, local sources, or potentially both regional and local sources. Examples of the regional sources are the sulfate and selenium PMF-factors which most likely-represent coal fired power plants. Examples of local sources are the specialty steel and lead factors. There is reasonable correspondence between these apportionments and data from the EPA TRI and AIRS emission inventories. Detailed comparisons between PMCAMx predictions and measurements by the STN and IMPROVE measurements in the Eastern US are presented. Comparisons were made for the major aerosol components and PM{sub 2.5} mass in July 2001, October 2001, January 2002, and April 2002. The results are encouraging with average fraction biases for most species less than 0.25. The improvement of the model performance during the last two years was mainly due to the comparison of the model predictions with the continuous measurements in the Pittsburgh Supersite. Major improvements have included the descriptions: of ammonia emissions (CMU inventory), night time nitrate chemistry, EC emissions and their diurnal

  3. A study of control policy in the Pearl River Delta region by using the particulate matter source apportionment method

    Science.gov (United States)

    Wu, Dongwei; Fung, Jimmy Chi Hung; Yao, Teng; Lau, Alexis Kai Hon

    2013-09-01

    In recent years, Mainland China, and in particular the industrial hotbed of the Pearl River Delta (PRD) has experienced an increasingly serious problem of high concentrations of airborne particulate matter. Following the tightening-up of China's air quality policies in recent years, and with especially fine particles now added to a new air quality objective, the identification of major source regions and major types of pollutants has become crucial. In this study, the Comprehensive Air Quality Model (CAMx), together with the Particulate Source Apportionment Technology (PSAT) source apportionment method, has been applied to analyze how different emission activities influence PM concentration in the PRD region. By using this method, a detailed source region and emission category contribution matrix is derived for all regions within the Hong Kong/PRD region and source appointment results show that, on average, for different cities super-regional transport and mobile vehicles are the two major fine particle sources, contributing 62% (34.3 μg m-3) and 21% (12.2 μg m-3) of the total figure in December, and 42% (13.1 μg m-3) and 28% (9.7 μg m-3) in April. Meanwhile, over the same period in Hong Kong, in addition to these two factors, marine proved another very significant source of particle pollutant, amounting to 18% of the total figure (4.7 μg m-3). Another important cause of high PM levels has been the transport of fine particles between cities within the PRD region, with three different regions selected for detailed analysis. Results show that for the Hong Kong/PRD region local reduction of mobile sources and collaboration between different areas could have succeeded in alleviating the air pollution problem.

  4. Primary sources of PM2.5 organic aerosol in an industrial Mediterranean city, Marseille

    Science.gov (United States)

    El Haddad, I.; Marchand, N.; Wortham, H.; Piot, C.; Besombes, J.-L.; Cozic, J.; Chauvel, C.; Armengaud, A.; Robin, D.; Jaffrezo, J.-L.

    2011-03-01

    Marseille, the most important port of the Mediterranean Sea, represents a challenging case study for source apportionment exercises, combining an active photochemistry and multiple emission sources, including fugitive emissions from industrial sources and shipping. This paper presents a Chemical Mass Balance (CMB) approach based on organic markers and metals to apportion the primary sources of organic aerosol in Marseille, with a special focus on industrial emissions. Overall, the CMB model accounts for the major primary anthropogenic sources including motor vehicles, biomass burning and the aggregate emissions from three industrial processes (heavy fuel oil combustion/shipping, coke production and steel manufacturing) as well as some primary biogenic emissions. This source apportionment exercise is well corroborated by 14C measurements. Primary OC estimated by the CMB accounts on average for 22% of total OC and is dominated by the vehicular emissions that contribute on average for 17% of OC mass concentration (vehicular PM contributes for 17% of PM2.5). Even though industrial emissions contribute only 2.3% of the total OC (7% of PM2.5), they are associated with ultrafine particles (Dp<80 nm) and high concentrations of Polycyclic Aromatic Hydrocarbons (PAH) and heavy metals such as Pb, Ni and V. On one hand, given that industrial emissions governed key primary markers, their omission would lead to substantial uncertainties in the CMB analysis performed in areas heavily impacted by such sources, hindering accurate estimation of non-industrial primary sources and secondary sources. On the other hand, being associated with bursts of submicron particles and carcinogenic and mutagenic components such as PAH, these emissions are most likely related with acute ill-health outcomes and should be regulated despite their small contributions to OC. Another important result is the fact that 78% of OC mass cannot be attributed to the major primary sources and, thus, remains un

  5. Source apportionment of particulate matter (PM 2.5) in an urban area using dispersion, receptor and inverse modelling

    Science.gov (United States)

    Laupsa, Herdis; Denby, Bruce; Larssen, Steinar; Schaug, Jan

    Air pollution emission inventories are the basis for air quality assessment and management strategies. The quality of the inventories is of great importance since these data are essential for air pollution impact assessments using dispersion models. In this study, the quality of the emission inventory for fine particulates (PM 2.5) is assessed: first, using the calculated source contributions from a receptor model; second, using source apportionment from a dispersion model; and third, by applying a simple inverse modelling technique which utilises multiple linear regression of the dispersion model source contributions together with the observed PM 2.5 concentrations. For the receptor modelling the chemical composition of PM 2.5 filter samples from a measurement campaign performed between January 2004 and April 2005 are analysed. Positive matrix factorisation is applied as the receptor model to detect and quantify the various source contributions. For the same observational period and site, dispersion model calculations using the Air Quality Management system, AirQUIS, are performed. The results identify significant differences between the dispersion and receptor model source apportionment, particularly for wood burning and traffic induced suspension. For wood burning the receptor model calculations are lower, by a factor of 0.54, but for the traffic induced suspension they are higher, by a factor of 7.1. Inverse modelling, based on regression of the dispersion model source contributions and the PM 2.5 concentrations, indicates similar discrepancies in the emissions inventory. In order to assess if the differences found at the one site are generally applicable throughout Oslo, the individual source category emissions are rescaled according to the receptor modelling results. These adjusted PM 2.5 concentrations are compared with measurements at four independent stations to evaluate the updated inventory. Statistical analysis shows improvement in the estimated

  6. Retrieving global aerosol sources from satellites using inverse modeling

    Directory of Open Access Journals (Sweden)

    O. Dubovik

    2008-01-01

    Full Text Available Understanding aerosol effects on global climate requires knowing the global distribution of tropospheric aerosols. By accounting for aerosol sources, transports, and removal processes, chemical transport models simulate the global aerosol distribution using archived meteorological fields. We develop an algorithm for retrieving global aerosol sources from satellite observations of aerosol distribution by inverting the GOCART aerosol transport model.

    The inversion is based on a generalized, multi-term least-squares-type fitting, allowing flexible selection and refinement of a priori algorithm constraints. For example, limitations can be placed on retrieved quantity partial derivatives, to constrain global aerosol emission space and time variability in the results. Similarities and differences between commonly used inverse modeling and remote sensing techniques are analyzed. To retain the high space and time resolution of long-period, global observational records, the algorithm is expressed using adjoint operators.

    Successful global aerosol emission retrievals at 2°×2.5 resolution were obtained by inverting GOCART aerosol transport model output, assuming constant emissions over the diurnal cycle, and neglecting aerosol compositional differences. In addition, fine and coarse mode aerosol emission sources were inverted separately from MODIS fine and coarse mode aerosol optical thickness data, respectively. These assumptions are justified, based on observational coverage and accuracy limitations, producing valuable aerosol source locations and emission strengths. From two weeks of daily MODIS observations during August 2000, the global placement of fine mode aerosol sources agreed with available independent knowledge, even though the inverse method did not use any a priori information about aerosol sources, and was initialized with a "zero aerosol emission" assumption. Retrieving coarse mode aerosol emissions was less successful

  7. Chemometric techniques in distribution, characterisation and source apportionment of polycyclic aromatic hydrocarbons (PAHS) in aquaculture sediments in Malaysia.

    Science.gov (United States)

    Retnam, Ananthy; Zakaria, Mohamad Pauzi; Juahir, Hafizan; Aris, Ahmad Zaharin; Zali, Munirah Abdul; Kasim, Mohd Fadhil

    2013-04-15

    This study investigated polycyclic aromatic hydrocarbons (PAHs) pollution in surface sediments within aquaculture areas in Peninsular Malaysia using chemometric techniques, forensics and univariate methods. The samples were analysed using soxhlet extraction, silica gel column clean-up and gas chromatography mass spectrometry. The total PAH concentrations ranged from 20 to 1841 ng/g with a mean of 363 ng/g dw. The application of chemometric techniques enabled clustering and discrimination of the aquaculture sediments into four groups according to the contamination levels. A combination of chemometric and molecular indices was used to identify the sources of PAHs, which could be attributed to vehicle emissions, oil combustion and biomass combustion. Source apportionment using absolute principle component scores-multiple linear regression showed that the main sources of PAHs are vehicle emissions 54%, oil 37% and biomass combustion 9%. Land-based pollution from vehicle emissions is the predominant contributor of PAHs in the aquaculture sediments of Peninsular Malaysia. PMID:23452623

  8. Source apportionment of air pollution exposures of rural Chinese women cooking with biomass fuels

    Science.gov (United States)

    Huang, Wei; Baumgartner, Jill; Zhang, Yuanxun; Wang, Yuqin; Schauer, James J.

    2015-03-01

    Particulate matter (PM) from different sources may differentially affect human health. Few studies have assessed the main sources of personal exposure to PM and their contributions among residents of developing countries, where pollution sources differ from those in higher-income settings. 116 daily (24-h) personal PM2.5 exposure samples were collected among 81 women cooking with biomass fuels in two villages in rural Yunnan, China. The PM samples were analyzed for mass and chemical composition, including water-soluble organic carbon (WSOC), black carbon (BC), and molecular markers. We found black carbon, n-alkanes and levoglucosan dominated the most abundant fractions of the total measured species and average personal PM2.5 exposure was higher in winter than that in summer in both villages. The composition data were then analyzed using a positive matrix factorization (PMF) receptor model to identify the main PM emission sources contributing to women's exposures and to assess their spatial (between villages) and seasonal variation in our study setting. The 6-factor solution provided reasonably stable profiles and was selected for further analysis. Our results show that rural Chinese women cooking with biomass fuels are exposed to a variety of sources. The identified factors include wood combustion (41.1%), a cooking source (35.6%), a mobile source (12.6%), plant waxes (6.7%), pyrolysis combustion (3.0%), and secondary organic aerosols (SOA; 1.0%). The mean source contributions of the mobile source, cooking source, and wood combustion factor to PM2.5 exposure were significantly different between women living in the two study villages, whereas the mean SOA, wood combustion, and plant waxes factors differed seasonally. There was no relationship between source contributions and questionnaire-based measurements of source-specific exposures, implying that the impacts of source contributions on exposure are affected by complex spatial, temporal and behavioral patterns

  9. Intra-urban biomonitoring: Source apportionment using tree barks to identify air pollution sources.

    Science.gov (United States)

    Moreira, Tiana Carla Lopes; de Oliveira, Regiani Carvalho; Amato, Luís Fernando Lourenço; Kang, Choong-Min; Saldiva, Paulo Hilário Nascimento; Saiki, Mitiko

    2016-05-01

    It is of great interest to evaluate if there is a relationship between possible sources and trace elements using biomonitoring techniques. In this study, tree bark samples of 171 trees were collected using a biomonitoring technique in the inner city of São Paulo. The trace elements (Al, Ba, Ca, Cl, Cu, Fe, K, Mg, Mn, Na, P, Rb, S, Sr and Zn) were determined by the energy dispersive X-ray fluorescence (EDXRF) spectrometry. The Principal Component Analysis (PCA) was applied to identify the plausible sources associated with tree bark measurements. The greatest source was vehicle-induced non-tailpipe emissions derived mainly from brakes and tires wear-out and road dust resuspension (characterized with Al, Ba, Cu, Fe, Mn and Zn), which was explained by 27.1% of the variance, followed by cement (14.8%), sea salt (11.6%) and biomass burning (10%), and fossil fuel combustion (9.8%). We also verified that the elements related to vehicular emission showed different concentrations at different sites of the same street, which might be helpful for a new street classification according to the emission source. The spatial distribution maps of element concentrations were obtained to evaluate the different levels of pollution in streets and avenues. Results indicated that biomonitoring techniques using tree bark can be applied to evaluate dispersion of air pollution and provide reliable data for the further epidemiological studies. PMID:26995269

  10. Currents trends in the application of IBA techniques to air pollution source fingerprinting and source apportionment

    International Nuclear Information System (INIS)

    Full text: IBA techniques have been used for many years to characterise fine particle air pollution. This is not new the techniques are well established. Typically 2-3 MeV protons are used to bombard thin filter papers and up to four simultaneous techniques like PIXE, PIGE, RBS and ERDA will be applied to obtain (μg/g) concentrations for elements from hydrogen to lead. Generally low volume samplers are used to sample between 20-30 m3 of air over a 24 hour period, this together with IBA's sensitivity means that concentrations down to 1 ng/m3 of air sampled can be readily achieved with only a few minutes of proton irradiation. With these short irradiation times and low sensitivities for a broad range of elements in the periodic table, large numbers of samples can be obtained and analysed very quickly and easily. At ANSTO we have used IBA methods to acquire a database of over 50,000 filters from 85 different sites through Australia and Asia, each filter has been analysed for more than 21 different chemical species. Large databases extending over many years means that modern statistical techniques like positive matrix factorisation (PMF) can be used to define well characterised source fingerprints and source contributions for a range of different fine particle air pollutants. In this paper we will discuss these PMF techniques and show how they identify both natural sources like sea spray and windblown soils as well as anthropogenic sources like automobiles, biomass burning, coal-fired power stations and industrial emissions. These data are particularly useful for Governments, EPA's and managers of pollution to better understanding pollution sources and their relative contributions and hence to better manage air pollution. Current trends are to take these IBA and PMF techniques a step further and to combine them with wind speed and back trajectory data to better pin point and identify emission sources. We show how this is now being applied on both a local

  11. [Regional Source Apportionment of PM2.5 in Beijing in January 2013].

    Science.gov (United States)

    Li, Xuan; Nie, Teng; Qi, Jun; Zhou, Zhen; Sun, Xue-song

    2015-04-01

    In January 2013, Beijing area experienced several severe haze weather events. The pollution of fine particles has become an important problem in Beijing. Understanding the sources of PM2.5 in Beijing is essential for solutions and related policy-formulations. Three-dimensional air quality modelling system was established to analyze the PM2.5 pollution during 20-24 January in 2013. PSAT technology was used to study the regional sources of Beijing PM2.5 pollution. The results showed that local emission was the major source of PM2.5 in Beijing City, with an average contribution rate of 34% . The average contribution rates of Hebei and Tianjin were 26% and 4%, respectively. The neighboring area and the boundary conditions contributed 12% and 24% to PM2.5 in Beijing. In the heavy pollution period, the influence of regional transportation increased significantly, and became the major source of PM2.5 pollution in Beijing. Nitrate in PM2.5 in Beijing mainly came from the surrounding area of Beijing City, while sulfate and secondary organic aerosols showed characteristics of long-distance transportation. Ammonium salt and other components were mainly from Beijing local contribution. PMID:26164884

  12. Water Quality Assessment of River Soan (Pakistan) and Source Apportionment of Pollution Sources Through Receptor Modeling.

    Science.gov (United States)

    Nazeer, Summya; Ali, Zeshan; Malik, Riffat Naseem

    2016-07-01

    The present study was designed to determine the spatiotemporal patterns in water quality of River Soan using multivariate statistics. A total of 26 sites were surveyed along River Soan and its associated tributaries during pre- and post-monsoon seasons in 2008. Hierarchical agglomerative cluster analysis (HACA) classified sampling sites into three groups according to their degree of pollution, which ranged from least to high degradation of water quality. Discriminant function analysis (DFA) revealed that alkalinity, orthophosphates, nitrates, ammonia, salinity, and Cd were variables that significantly discriminate among three groups identified by HACA. Temporal trends as identified through DFA revealed that COD, DO, pH, Cu, Cd, and Cr could be attributed for major seasonal variations in water quality. PCA/FA identified six factors as potential sources of pollution of River Soan. Absolute principal component scores using multiple regression method (APCS-MLR) further explained the percent contribution from each source. Heavy metals were largely added through industrial activities (28 %) and sewage waste (28 %), nutrients through agriculture runoff (35 %) and sewage waste (28 %), organic pollution through sewage waste (27 %) and urban runoff (17 %) and macroelements through urban runoff (39 %), and mineralization and sewage waste (30 %). The present study showed that anthropogenic activities are the major source of variations in River Soan. In order to address the water quality issues, implementation of effective waste management measures are needed. PMID:27000830

  13. Sources and composition of urban aerosol particles

    Science.gov (United States)

    Vogt, M.; Johansson, C.; Mårtensson, M.; Struthers, H.; Ahlm, L.; Nilsson, D.

    2011-09-01

    From May 2008 to March 2009 aerosol emissions were measured using the eddy covariance method covering the size range 0.25 to 2.5 μm diameter (Dp) from a 105 m tower, in central Stockholm, Sweden. Supporting chemical aerosol data were collected at roof and street level. Results show that the inorganic fraction of sulfate, nitrate, ammonium and sea salt accounts for approximately 15% of the total aerosol mass water soluble soil contributing 11% and water insoluble soil 47%. Carbonaceous compounds were at the most 27% of PM1 mass. It was found that heating the air from the tower to 200 °C resulted in the loss of approximately 60% of the aerosol volume at 0.25 μm Dp whereas only 40% of the aerosol volume was removed at 0.6 μm Dp. Further heating to 300 °C caused very little additional losses roof level in the city, supporting the assumption that the non-volatile material consists of carbonaceous compounds. The average diurnal cycles of the BC emissions from road traffic (as inferred from the ratio of the incremental concentrations of nitrogen oxides (NOx) and BC measured on a densely trafficked street) and the fluxes of non-volatile material at tower level are in close agreement, suggesting a traffic source of BC. We have estimated the emission factors (EFs) for non-volatile particles <0.6 μm Dp to be 2.4±1.4 mg veh-1 km-1 based on either CO2 fluxes or traffic activity data. Light (LDV) and heavy duty vehicle (HDV) EFs were estimated using multiple linear regression and reveal that for non-volatile particulate matter in the 0.25 to 0.6 μm Dp range, the EFHDV is approximately twice as high as the EFLDV, the difference not being statistically significant.

  14. Secondary organic carbon quantification and source apportionment of PM10 in Kaifeng, China

    Institute of Scientific and Technical Information of China (English)

    WU Lin; FENG Yinchang; WU Jianhui; ZHU Tan; BI Xiaohui; HAN Bo; YANG Weihong; YANG Zhiqiang

    2009-01-01

    During 2005, the filter samples of ambient PM10 from five sites and the source samples of particulate matter were collected in Kaifeng, Henan province of China. Nineteen elements, water-soluble ions, total carbon (TC) and organic carbon (OC) contained in samples were analyzed. Seven contributive source types were identified and their contributions to ambient PM10 were estimated by chemical mass balance (CMB) receptor model. Weak associations between the concentrations of organic carbon and element carbon (EC) were observed during the sampling periods, indicating that there was secondary organic aerosol pollution in the urban atmosphere. An indirect method of "OC/EC minimum ratio" was applied to estimate the concentration of secondary organic carbon (SOC). The results showed that SOC contributed 26.2%, 32.4% and 18.0% of TC in spring, summer-fall and winter respectively, and the annual average SOC concentration was 7.07 μg/m3, accounting for 5.73% of the total mass in ambient PM10. The carbon species concentrations in ambient PM10 were recalculated by subtracting the SOC concentrations from measured concentrations of TC and OC to increase the compatibility of source and receptor measurements for CMB model.

  15. New insight into the spatiotemporal variability and source apportionments of C1-C4 alkyl nitrates in Hong Kong

    Science.gov (United States)

    Ling, Z. H.; Guo, H.; Simpson, I. J.; Saunders, S. M.; Lam, S. H. M.; Lyu, X. P.; Blake, D. R.

    2015-08-01

    Alkyl nitrates (RONO2) were measured concurrently at a mountain site (TMS) and an urban site (TW) at the foot of the same mountain in Hong Kong from September to November 2010, when high O3 mixing ratios were frequently observed. The abundance and temporal patterns of five C1-C4 RONO2 and their parent hydrocarbons (RH), the RONO2/RH ratios and photochemical age of air masses at TMS differed from those at TW, reflecting different contributions of direct emissions and secondary formation of RONO2 at the two sites. Relative to 2-BuONO2/n-butane, the measured ratios of C1-C2 RONO2/RH at the two sites exhibited significant positive deviations from pure photochemical (PP) curves and background initial ratio (BIR) curves obtained from laboratory kinetic data, suggesting that background mixing ratios had a significant influence on the RONO2 and RH distributions. In contrast to the C1-C2 RONO2/RH ratios, the evolution for the measured ratios of C3 RONO2/RH to 2-BuONO2/n-butane agreed well with the ratio distributions in the PP and BIR curves at the two sites. Furthermore, the ratios of 1-/2-PrONO2 and yields of 1- and 2-PrONO2 suggested that the C3 RONO2 were mainly from secondary formation at TMS, whereas secondary formation and other additional sources had a significant influence on C3 RONO2 mixing ratios at TW. The source apportionment results confirmed that secondary formation was the dominant contributor to all the RONO2 at TMS, while most of the RONO2 at TW were from secondary formation and biomass burning. The findings of the source apportionments and photochemical evolution of RONO2 are helpful to evaluate photochemical processing in Hong Kong using RONO2 as an indicator.

  16. Sources apportionment of PM2.5 in a background site in the North China Plain.

    Science.gov (United States)

    Yao, Lan; Yang, Lingxiao; Yuan, Qi; Yan, Chao; Dong, Can; Meng, Chuanping; Sui, Xiao; Yang, Fei; Lu, Yaling; Wang, Wenxing

    2016-01-15

    To better understand the sources and potential source regions of PM2.5, a field study was conducted from January 2011 to November 2011 at a background site, the Yellow River Delta National Nature Reserve (YRDNNR) in the North China Plain. Positive matrix factorisation (PMF) analysis and a potential source contribution function (PSCF) model were used to assess the data, which showed that YRDNNR experienced serious air pollution. Concentrations of PM2.5 at YRDNNR were 71.2, 92.7, 97.1 and 62.5 μg m(-3) in spring, summer, autumn and winter, respectively, with 66.0% of the daily samples exhibiting higher concentrations of PM2.5 than the national air quality standard. PM2.5 mass closure showed remarkable seasonal variations. Sulphate, nitrate and ammonium were the dominant fractions of PM2.5 in summer (58.0%), whereas PM2.5 was characterized by a high load of organic aerosols (40.2%) in winter. PMF analysis indicated that secondary sulphate and nitrate (54.3%), biomass burning (15.8%), industry (10.7%), crustal matter (8.3%), vehicles (5.2%) and copper smelting (4.9%) were important sources of PM2.5 at YRDNNR on an annual average. The source of secondary sulphate and nitrate was probably industrial coal combustion. PSCF analysis indicated a significant regional impact on PM2.5 at YRDNNR all year round. Local emission may be non-negligible at YRDNNR in summer. The results of the present study provide a scientific basis for the development of PM2.5 control strategies on a regional scale. PMID:26433327

  17. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    International Nuclear Information System (INIS)

    The functional group composition of various organic aerosols (OA) is investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCIMS/MS). The determinations of three functional groups contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups, R-COOH and R-CO-R' respectively) and precursor ion (nitro groups, R-NO2) scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA) produced through photooxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounts for 1.7% (vehicular) to 13.5% (o-xylene photooxidation) of the organic carbon. Diagnostic functional group ratios are then used to tentatively discriminate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France) during a strong winter pollution event. The three functional groups under study account for a total functionalization rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to discriminate sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assess a wood burning organic carbon contribution of about 60%. Finally, examples of functional group mass

  18. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Dron

    2010-08-01

    Full Text Available The functional group composition of various organic aerosols (OA is investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCI-MS/MS. The determinations of three functional groups contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups, R-COOH and R-CO-R´ respectively and precursor ion (nitro groups, R-NO2 scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA produced through photooxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounts for 1.7% (vehicular to 13.5% (o-xylene photooxidation of the organic carbon. Diagnostic functional group ratios are then used to tentatively discriminate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France during a strong winter pollution event. The three functional groups under study account for a total functionalisation rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to discriminate sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assess a wood burning organic carbon contribution of about 60

  19. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dron, J.; El Haddad, I.; Temime-Roussel, B.; Wortham, H.; Marchand, N. [Univ Aix Marseille, CNRS, Lab Chim Provence, Equipe Instrumentat and React Atmospher, UMR 6264, F-13331 Marseille 3 (France); Jaffrezo, J.L. [Univ Grenoble 1, CNRS, UMR 5183, Lab Glaciol and Geophys Environm, F-38402 St Martin Dheres (France)

    2010-07-01

    The functional group composition of various organic aerosols (OA) is investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCIMS/MS). The determinations of three functional groups contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups, R-COOH and R-CO-R' respectively) and precursor ion (nitro groups, R-NO{sub 2}) scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA) produced through photooxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounts for 1.7% (vehicular) to 13.5% (o-xylene photooxidation) of the organic carbon. Diagnostic functional group ratios are then used to tentatively discriminate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France) during a strong winter pollution event. The three functional groups under study account for a total functionalization rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to discriminate sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assess a wood burning organic carbon contribution of about 60%. Finally, examples of functional

  20. PM2.5 pollution in a megacity of southwest China: source apportionment and implication

    Science.gov (United States)

    Tao, J.; Gao, J.; Zhang, L.; Zhang, R.; Che, H.; Zhang, Z.; Lin, Z.; Jing, J.; Cao, J.; Hsu, S.-C.

    2014-08-01

    Daily PM2.5 (aerosol particles with an aerodynamic diameter of less than 2.5 μm) samples were collected at an urban site in Chengdu, an inland megacity in southwest China, during four 1-month periods in 2011, with each period in a different season. Samples were subject to chemical analysis for various chemical components ranging from major water-soluble ions, organic carbon (OC), element carbon (EC), trace elements to biomass burning tracers, anhydrosugar levoglucosan (LG), and mannosan (MN). Two models, the ISORROPIA II thermodynamic equilibrium model and the positive matrix factorization (PMF) model, were applied to explore the likely chemical forms of ionic constituents and to apportion sources for PM2.5. Distinctive seasonal patterns of PM2.5 and associated main chemical components were identified and could be explained by varying emission sources and meteorological conditions. PM2.5 showed a typical seasonality of waxing in winter and waning in summer, with an annual mean of 119 μg m-3. Mineral soil concentrations increased in spring, whereas biomass burning species elevated in autumn and winter. Six major source factors were identified to have contributed to PM2.5 using the PMF model. These were secondary inorganic aerosols, coal combustion, biomass burning, iron and steel manufacturing, Mo-related industries, and soil dust, and they contributed 37 ± 18, 20 ± 12, 11 ± 10, 11 ± 9, 11 ± 9, and 10 ± 12%, respectively, to PM2.5 masses on annual average, while exhibiting large seasonal variability. On annual average, the unknown emission sources that were not identified by the PMF model contributed 1 ± 11% to the measured PM2.5 mass. Various chemical tracers were used for validating PMF performance. Antimony (Sb) was suggested to be a suitable tracer of coal combustion in Chengdu. Results of LG and MN helped constrain the biomass burning sources, with wood burning dominating in winter and agricultural waste burning dominating in autumn. Excessive Fe (Ex

  1. Source Apportionment of Elemental Carbon Across the San Francisco Bay Area Using Combined Radiocarbon and Chemical Mass Balances

    Science.gov (United States)

    Yoon, S.; Fairley, D.; Sheesley, R. J.

    2014-12-01

    The San Francisco Bay Area is impacted by ambient particulate matter (PM) from a variety of sources including motor vehicles, biomass burning, off-road vehicles, industry, and meat cooking. Ambient PM, especially fine PM (diameter less than 2.5μm, PM2.5), is known to negatively impact health. Elemental Carbon (EC) is one of the major constituents of PM2.5. It not only negatively affects health but is also a powerful short-lived climate forcer. The State of California and Bay Area Air Quality Management District (BAAQMD) have made efforts in regulating contribution of EC from diesel trucks and wood burning, respectively. These and other efforts have assisted in significantly reducing the annual average PM2.5 concentrations approximately 30% since 2005 and 70% since 1990. Despite these improvements, to better determine the relative contribution of contemporary vs. fossil carbon, radiocarbon source apportionment of EC was conducted on PM2.5 collected in the Bay Area. Measurements of the abundance of 14C in the EC fractions are used to quantify the relative contributions of fossil carbon (fossil fuel combustion, including motor vehicle exhaust) and contemporary carbon (biomass combustion and meat cooking). This comprehensive study included seven sites in the Bay Area and 12 months of sampling starting November 2011 through October 2012. The samples were composited to represent winter (November-February) and non-winter (March-October). In addition to radiocarbon analysis, Chemical Mass Balance (CMB) analysis using bulk PM2.5 composition and selected trace gases was used to understand the split among gasoline, natural gas, and diesel exhaust. Preliminary apportionment of the seven sites shows roughly equal contributions of fossil fuel and biomass burning/cooking for both winter and non-winter samples. There is evidence that the diesel contribution to EC, in particular, has decreased substantially over the last decade.

  2. PM2.5 in an industrial district of Zhengzhou, China: Chemical composition and source apportionment

    Institute of Scientific and Technical Information of China (English)

    Ningbo Geng; Jia Wang; Yifei Xu; Wending Zhang; Chun Chen; Ruiqin Zhang

    2013-01-01

    Zhengzhou is a developing city in China,that is heavily polluted by high levels of particulate matter.In this study,fine particulate matter (PM2.5) was collected and analyzed for their chemical composition (soluble ions,elements,elemental carbon (EC) and organic carbon (OC)) in an industrial district of Zhengzhou in 2010.The average concentrations of PM2.5 were 181,122,186 and 211 μg/m3 for spring,summer,autumn and winter,respectively,with an annual average of 175 μg/m3,far exceeding the PM2.5 regulation of USA National Air Quality Standards (15 μg/m3).The dominant components of PM2.5 in Zhengzhou were secondary ions (sulphate and nitrate) and carbon fractions.Soluble ions,total carbon and elements contributed 41%,13% and 3% of PM2.5 mass,respectively.Soil dust,secondary aerosol and coal combustion,each contributing about 26%,24% and 23% of total PM2.5 mass,were the major sources of PM2.5,according to the result of positive matrix factorization analysis.A mixed source of biomass burning,oil combustion and incineration contributed 13% of PM2.5.Fine particulate matter arising from vehicles and industry contributed about 10% and 4% of PM2.5,respectively.

  3. A stable isotope approach for source apportionment of chlorinated ethene plumes at a complex multi-contamination events urban site.

    Science.gov (United States)

    Nijenhuis, Ivonne; Schmidt, Marie; Pellegatti, Eleonora; Paramatti, Enrico; Richnow, Hans Hermann; Gargini, Alessandro

    2013-10-01

    The stable carbon isotope composition of chlorinated aliphatic compounds such as chlorinated methanes, ethanes and ethenes was examined as an intrinsic fingerprint for apportionment of sources. A complex field site located in Ferrara (Italy), with more than 50years history of use of chlorinated aliphatic compounds, was investigated in order to assess contamination sources. Several contamination plumes were found in a complex alluvial sandy multi-aquifer system close to the river Po; sources are represented by uncontained former industrial and municipal dump sites as well as by spills at industrial areas. The carbon stable isotope signature allowed distinguishing 2 major sources of contaminants. One source of chlorinated aliphatic contaminants was strongly depleted in ¹³C (methane for synthesis. The other source had typical carbon isotope compositions of >-40‰ which is commonly observed in recent production of chlorinated solvents. The degradation processes in the plumes could be traced interpreting the isotope enrichment and depletion of parent and daughter compounds, respectively. We demonstrate that, under specific production conditions, namely when highly chlorinated ethenes are produced as by-product during chloromethanes production, ¹³C depleted fingerprinting of contaminants can be obtained and this can be used to track sources and address the responsible party of the pollution in urban areas. PMID:24077332

  4. Evaluation and Source Apportionment of Heavy Metals (HMs in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs in Shanxi, China

    Directory of Open Access Journals (Sweden)

    Baoling Duan

    2015-12-01

    Full Text Available Heavy metals (HMs in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index Igeo and correlation analyses between HMs were also conducted. HMs were arranged in the following decreasing order of mean concentration: Zn > Cu > Cr > Pb > As > Hg > Cd; the maximum concentrations of all HMs were within the limit of maximum content permitted by Chinese discharge standard. Igeo classes of HMs pollution in order from most polluted to least were: Cu and Hg pollution were the highest; Cd and Cr pollution were moderate; Zn, As and Pb pollution were the least. Sources of HM contamination in sewage sludge were identified as three components. The primary contaminant source accounting for 35.7% of the total variance was identified as smelting industry, coking plant and traffic sources; the second source accounting for 29.0% of the total variance was distinguished as household and water supply pollution; the smallest of the three sources accounting for 16.2% of the total variance was defined as special industries such as leather tanning, textile manufacturing and chemical processing industries. Source apportionment of HMs in sewage sludge can control HM contamination through suggesting improvements in government policies and industrial processes.

  5. Evaluation and Source Apportionment of Heavy Metals (HMs) in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs) in Shanxi, China.

    Science.gov (United States)

    Duan, Baoling; Liu, Fenwu; Zhang, Wuping; Zheng, Haixia; Zhang, Qiang; Li, Xiaomei; Bu, Yushan

    2015-12-01

    Heavy metals (HMs) in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs) in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA) was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index I(geo) and correlation analyses between HMs were also conducted. HMs were arranged in the following decreasing order of mean concentration: Zn > Cu > Cr > Pb > As > Hg > Cd; the maximum concentrations of all HMs were within the limit of maximum content permitted by Chinese discharge standard. I(geo) classes of HMs pollution in order from most polluted to least were: Cu and Hg pollution were the highest; Cd and Cr pollution were moderate; Zn, As and Pb pollution were the least. Sources of HM contamination in sewage sludge were identified as three components. The primary contaminant source accounting for 35.7% of the total variance was identified as smelting industry, coking plant and traffic sources; the second source accounting for 29.0% of the total variance was distinguished as household and water supply pollution; the smallest of the three sources accounting for 16.2% of the total variance was defined as special industries such as leather tanning, textile manufacturing and chemical processing industries. Source apportionment of HMs in sewage sludge can control HM contamination through suggesting improvements in government policies and industrial processes. PMID:26690464

  6. Evaluation and Source Apportionment of Heavy Metals (HMs) in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs) in Shanxi, China

    Science.gov (United States)

    Duan, Baoling; Liu, Fenwu; Zhang, Wuping; Zheng, Haixia; Zhang, Qiang; Li, Xiaomei; Bu, Yushan

    2015-01-01

    Heavy metals (HMs) in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs) in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA) was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index Igeo and correlation analyses between HMs were also conducted. HMs were arranged in the following decreasing order of mean concentration: Zn > Cu > Cr > Pb > As > Hg > Cd; the maximum concentrations of all HMs were within the limit of maximum content permitted by Chinese discharge standard. Igeo classes of HMs pollution in order from most polluted to least were: Cu and Hg pollution were the highest; Cd and Cr pollution were moderate; Zn, As and Pb pollution were the least. Sources of HM contamination in sewage sludge were identified as three components. The primary contaminant source accounting for 35.7% of the total variance was identified as smelting industry, coking plant and traffic sources; the second source accounting for 29.0% of the total variance was distinguished as household and water supply pollution; the smallest of the three sources accounting for 16.2% of the total variance was defined as special industries such as leather tanning, textile manufacturing and chemical processing industries. Source apportionment of HMs in sewage sludge can control HM contamination through suggesting improvements in government policies and industrial processes. PMID:26690464

  7. Impacts of Oil and Gas Production on Winter Ozone Pollution in the Uintah Basin Using Model Source Apportionment

    Science.gov (United States)

    Tran, H. N. Q.; Tran, T. T.; Mansfield, M. L.; Lyman, S. N.

    2014-12-01

    Contributions of emissions from oil and gas activities to elevated ozone concentrations in the Uintah Basin - Utah were evaluated using the CMAQ Integrated Source Apportionment Method (CMAQ-ISAM) technique, and were compared with the results of traditional budgeting methods. Unlike the traditional budgeting method, which compares simulations with and without emissions of the source(s) in question to quantify its impacts, the CMAQ-ISAM technique assigns tags to emissions of each source and tracks their evolution through physical and chemical processes to quantify the final ozone product yield from the source. Model simulations were performed for two episodes in winter 2013 of low and high ozone to provide better understanding of source contributions under different weather conditions. Due to the highly nonlinear ozone chemistry, results obtained from the two methods differed significantly. The growing oil and gas industry in the Uintah Basin is the largest contributor to the elevated zone (>75 ppb) observed in the Basin. This study therefore provides an insight into the impact of oil and gas industry on the ozone issue, and helps in determining effective control strategies.

  8. Atmospheric aerosol source identification and estimates of source contributions to air pollution in Dundee, UK

    Science.gov (United States)

    Qin, Y.; Oduyemi, K.

    Anthropogenic aerosol (PM 10) emission sources sampled at an air quality monitoring station in Dundee have been analysed. However, the information on local natural aerosol emission sources was unavailable. A method that combines receptor model and atmospheric dispersion model was used to identify aerosol sources and estimate source contributions to air pollution. The receptor model identified five sources. These are aged marine aerosol source with some chlorine replaced by sulphate, secondary aerosol source of ammonium sulphate, secondary aerosol source of ammonium nitrate, soil and construction dust source, and incinerator and fuel oil burning emission source. For the vehicle emission source, which has been comprehensively described in the atmospheric emission inventory but cannot be identified by the receptor model, an atmospheric dispersion model was used to estimate its contributions. In Dundee, a significant percentage, 67.5%, of the aerosol mass sampled at the study station could be attributed to the six sources named above.

  9. Source apportionment of atmospheric fine particulate matter collected at the Seney National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The trends in secondary organic aerosol at a remote location are studied using atmospheric fine particulate matter samples collected at Seney National Wildlife...

  10. Characterization and source apportionment of health risks from ambient PM10 in Hong Kong over 2000-2011

    Science.gov (United States)

    Li, Zhiyuan; Yuan, Zibing; Li, Ying; Lau, Alexis K. H.; Louie, Peter K. K.

    2015-12-01

    Atmospheric particulate matter (PM) pollution is a major public health concern in Hong Kong. In this study, the spatiotemporal variations of health risks from ambient PM10 from seven air quality monitoring stations between 2000 and 2011 were analyzed. Positive matrix factorization (PMF) was adopted to identify major source categories of ambient PM10 and quantify their contributions. Afterwards, a point-estimated risk model was used to identify the inhalation cancer and non-cancer risks of PM10 sources. The long-term trends of the health risks from classified local and non-local sources were explored. Furthermore, the reason for the increase of health risks during high PM10 days was discussed. Results show that vehicle exhaust source was the dominant inhalation cancer risk (ICR) contributor (72%), whereas trace metals and vehicle exhaust sources contributed approximately 27% and 21% of PM10 inhalation non-cancer risk (INCR), respectively. The identified local sources accounted for approximately 80% of the ICR in Hong Kong, while contribution percentages of the non-local and local sources for INCR are comparable. The clear increase of ICR at high PM days was mainly attributed to the increase of contributions from coal combustion/biomass burning and secondary sulfate, while the increase of INCR at high PM days was attributed to the increase of contributions from the sources coal combustion/biomass burning, secondary nitrate, and trace metals. This study highlights the importance of health risk-based source apportionment in air quality management with protecting human health as the ultimate target.

  11. Numerical study of atmospheric particulate matters: source apportionment to characterize 3D transport and transformation of precursors and secondary pollutants

    Science.gov (United States)

    Wu, Dongwei

    In recent years, Mainland China, and in particular the industrial hotbed of the Pearl River Delta (PRD) has experienced an increasingly serious problem of high concentrations of airborne particulate matter. Following the tightening-up of China's air quality policies in recent years, and with especially fine particles now added to a new air quality objective, the identification of major source regions and major types of pollutants has become critically important. In this study, a source-oriented method (Particulate Source Apportionment Technology: PSAT) implemented in 3-D Comprehensive Air Quality Model (CAMx), has been applied to analyze how different emission activities impact fine particle concentration in the PRD region. By using this method, a detailed source region and emission category contribution matrix is derived for all regions within the Hong Kong/PRD region. Source appointment results shows that, in summer and spring time, emissions inside PRD region are the major fine particle sources, contribution 70.7% (11.2 mug/m3) and 52.5% (13.1 mug/m3) to the total figure. Super-regional transports are found to be significant in autumn and winter, contribution 58.5% (20.2 mug/m3) and 64.6% (27.8 mug/m3) of the total fine particles in PRD and Hong Kong region. Another important cause of high PM levels has been the transport of fine particles between cities within the PRD region, with three different regions selected for detailed analysis. Results show that mobile vehicle and industry emission are the two major sources for fine particles. Meanwhile, over the same period in Hong Kong, marine proved to be another very significant source of particle pollutant in addition to the significant impact from motor vehicle. Results show that for the Hong Kong/PRD region local reduction of mobile sources and collaboration between different areas could have succeeded in alleviating the air pollution problem.

  12. Bioavailability of Polycyclic Aromatic Hydrocarbons and their Potential Application in Eco-risk Assessment and Source Apportionment in Urban River Sediment

    Science.gov (United States)

    Yang, Xunan; Yu, Liuqian; Chen, Zefang; Xu, Meiying

    2016-03-01

    Traditional risk assessment and source apportionment of sediments based on bulk polycyclic aromatic hydrocarbons (PAHs) can introduce biases due to unknown aging effects in various sediments. We used a mild solvent (hydroxypropyl-β-cyclodextrin) to extract the bioavailable fraction of PAHs (a-PAHs) from sediment samples collected in Pearl River, southern China. We investigated the potential application of this technique for ecological risk assessments and source apportionment. We found that the distribution of PAHs was associated with human activities and that the a-PAHs accounted for a wide range (4.7%–21.2%) of total-PAHs (t-PAHs), and high risk sites were associated with lower t-PAHs but higher a-PAHs. The correlation between a-PAHs and the sediment toxicity assessed using tubificid worms (r = ‑0.654, P = 0.021) was greater than that from t-PAH-based risk assessment (r = ‑0.230, P = 0.472). Moreover, the insignificant correlation between a-PAH content and mPEC-Q of low molecular weight PAHs implied the potiential bias of t-PAH-based risk assessment. The source apportionment from mild extracted fractions was consistent across different indicators and was in accordance with typical pollution sources. Our results suggested that mild extraction-based approaches reduce the potential error from aging effects because the mild extracted PAHs provide a more direct indicator of bioavailability and fresher fractions in sediments.

  13. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, Jeffrey [Univ. of Arkansas, Little Rock, AR (United States)

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  14. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    International Nuclear Information System (INIS)

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  15. The source apportionment of polycyclic aromatic hydrocarbons (PAHs) in the topsoil in Xiaodian sewage irrigation area, North of China.

    Science.gov (United States)

    Li, Jia-Le; Wang, Yan-Xin; Zhang, Cai-Xiang; Dong, Yi-Hui; Du, Bin; Liao, Xiao-Ping

    2014-12-01

    31 topsoil samples were collected by grid method in Xiaodian sewage irrigation area, Taiyuan City, North of China. The concentrations of 16 kinds of polycyclic aromatic hydrocarbons (PAHs) were determined by gas chromatograph coupled with mass spectrum. Generally speaking, the distribution order of PAHs in the area is: those with five and six rings > those with four rings > those with two and three rings. Source apportionment shows a significant zonation of the source of PAHs: the civil coal pollution occurred in the north part, the local and far factory pollution happened in the middle area and the mixed pollution sources from coal and wood combustion, automotive emission, presented in the south area. The distribution of PAHs has a definite relationship with the sewage water flow and soil adsorption. The related coefficient between PAHs and physicochemical property showed there was a negative correlation between pH, silt, clay and PAHs while there was a positive correlation between total organic carbon, sand and PAHs. PMID:25139034

  16. Levels and source apportionment of children's lead exposure: could urinary lead be used to identify the levels and sources of children's lead pollution?

    Science.gov (United States)

    Cao, Suzhen; Duan, Xiaoli; Zhao, Xiuge; Wang, Beibei; Ma, Jin; Fan, Delong; Sun, Chengye; He, Bin; Wei, Fusheng; Jiang, Guibin

    2015-04-01

    As a highly toxic heavy metal, the pollution and exposure risks of lead are of widespread concern for human health. However, the collection of blood samples for use as an indicator of lead pollution is not always feasible in most cohort or longitudinal studies, especially those involving children health. To evaluate the potential use of urinary lead as an indicator of exposure levels and source apportionment, accompanying with environmental media samples, lead concentrations and isotopic measurements (expressed as (207)Pb/(206)Pb, (208)Pb/(206)Pb and (204)Pb/(206)Pb) were investigated and compared between blood and urine from children living in the vicinities of a typical coking plant and lead-acid battery factory. The results showed urinary lead might not be a preferable proxy for estimating blood lead levels. Fortunately, urinary lead isotopic measurements could be used as an alternative for identifying the sources of children's lead exposure, which coincided well with the blood lead isotope ratio analysis. PMID:25617855

  17. Development and evaluation of a daily temporal interpolation model for fine particulate matter species concentrations and source apportionment

    Science.gov (United States)

    Redman, Jeremiah D.; Holmes, Heather A.; Balachandran, Sivaraman; Maier, Marissa L.; Zhai, Xinxin; Ivey, Cesunica; Digby, Kyle; Mulholland, James A.; Russell, Armistead G.

    2016-09-01

    The impacts of emissions sources on air quality in St. Louis, Missouri are assessed for use in acute health effects studies. However, like many locations in the United States, the speciated particulate matter (PM) measurements from regulatory monitoring networks in St. Louis are only available every third day. The power of studies investigating acute health effects of air pollution is reduced when using one-in-three day source impacts compared to daily source impacts. This paper presents a temporal interpolation model to estimate daily speciated PM2.5 mass concentrations and source impact estimates using one-in-three day measurements. The model is used to interpolate 1-in-3 day source impact estimates and to interpolate the 1-in-3 day PM species concentrations prior to source apportionment (SA). Both approaches are compared and evaluated using two years (June 2001-May 2003) of daily data from the St. Louis Midwest Supersite (STL-SS). Data withholding is used to simulate a 1-in-3 day data set from the daily data to evaluate interpolated estimates. After evaluation using the STL-SS data, the model is used to estimate daily source impacts at another site approximately seven kilometers (7 km) northwest of the STL-SS (Blair); results between the sites are compared. For interpolated species concentrations, the model performs better for secondary species (sulfate, nitrate, ammonium, and organic carbon) than for primary species (metals and elemental carbon), likely due to the greater spatial autocorrelation of secondary species. Pearson correlation (R) values for sulfate, nitrate, ammonium, elemental carbon, and organic carbon ranged from 0.61 (elemental carbon, EC2) to 0.97 (sulfate). For trace metals, the R values ranged from 0.31 (Ba) to 0.81 (K). The interpolated source impact estimates also indicated a stronger correlation for secondary sources. Correlations of the secondary source impact estimates based on measurement data and interpolation data ranged from 0.68 to 0

  18. Sources and composition of urban aerosol particles

    Directory of Open Access Journals (Sweden)

    M. Vogt

    2011-09-01

    Full Text Available From May 2008 to March 2009 aerosol emissions were measured using the eddy covariance method covering the size range 0.25 to 2.5 μm diameter (Dp from a 105 m tower, in central Stockholm, Sweden. Supporting chemical aerosol data were collected at roof and street level. Results show that the inorganic fraction of sulfate, nitrate, ammonium and sea salt accounts for approximately 15% of the total aerosol mass <1 μm Dp (PM1 with water soluble soil contributing 11% and water insoluble soil 47%. Carbonaceous compounds were at the most 27% of PM1 mass. It was found that heating the air from the tower to 200 °C resulted in the loss of approximately 60% of the aerosol volume at 0.25 μm Dp whereas only 40% of the aerosol volume was removed at 0.6 μm Dp. Further heating to 300 °C caused very little additional losses <0.6 μm Dp. The chemical analysis did not include carbonaceous compounds, but based on the difference between the total mass concentration and the sum of the analyzed non-carbonaceous materials, it can be assumed that the non-volatile particulate material (heated to 300 °C consists mainly of carbonaceous compounds, including elemental carbon. Furthermore, it was found that the non-volatile particle fraction <0.6 μm Dp correlated (r2 = 0.4 with the BC concentration at roof level in the city, supporting the assumption that the non-volatile material consists of carbonaceous compounds. The average diurnal cycles of the BC emissions from road traffic (as inferred from the ratio of the incremental concentrations of nitrogen oxides (NOx and BC measured on a densely trafficked street and the fluxes of non-volatile material at tower level are in close agreement, suggesting a traffic source of BC. We have estimated the emission factors (EFs for non

  19. Characterization of PM2.5 in Guangzhou, China: uses of organic markers for supporting source apportionment.

    Science.gov (United States)

    Wang, Jingzhi; Ho, Steven Sai Hang; Ma, Shexia; Cao, Junji; Dai, Wenting; Liu, Suixin; Shen, Zhenxing; Huang, Rujin; Wang, Gehui; Han, Yongming

    2016-04-15

    Organic carbon (OC), elemental carbon (EC), and non-polar organic compounds including n-alkanes (n-C14-n-C40), polycyclic aromatic hydrocarbons (PAHs), phthalate esters (PAEs) and hopanes were quantified in fine particulate (PM2.5), which were collected in urban area of Guangzhou, China in winter and summer in 2012/2013. The pollutants levels were well comparable with the data obtained in previous studies in Pearl River Delta (PRD) region but much lower than most northern Chinese megacities. The contribution of EC to PM2.5 and OC/EC ratio suggest that the pollution sources were relatively consistent in GZ between the two seasons. Benzo[a]pyrene (BaP) was the most abundant PAHs, which were 4.9 and 1.0ng/m(3) on average, accounting for 10.7% and 9.1% to the total quantified PAHs in winter and summer, respectively. The total concentrations of PAEs ranged from 289.1 to 2435ng/m(3) and from 102.4 to 1437ng/m(3), respectively, in winter and summer. Di-n-butyl phthalate (DBP) was the most dominant PAEs. The ambient levels of PAEs could be partly attributed to the widespread uses of the household products, municipal garbage compressing, sewage, and external painting material on the building. Source apportionment for OC with chemical mass balance (CMB) model demonstrated coal combustion, vehicle emission, cooking, and secondary organic compounds (SOC) formation were the four major pollution sources. Both of the indices of n-alkanes and diagnostic PAHs ratios support that anthropogenic sources such as vehicle emission and coal combustion were the significant pollution sources with some extents from epicuticular waxes by terrestrial plants. The ratio of hopanes to EC proved the influences from vehicle emission, and displayed a certain degree of the air aging in the Guangzhou ambient air. PMID:26851882

  20. Radiocarbon analysis of elemental and organic carbon in Switzerland during winter-smog episodes from 2008 to 2012 - Part 1: Source apportionment and spatial variability

    Science.gov (United States)

    Zotter, P.; Ciobanu, V. G.; Zhang, Y. L.; El-Haddad, I.; Macchia, M.; Daellenbach, K. R.; Salazar, G. A.; Huang, R.-J.; Wacker, L.; Hueglin, C.; Piazzalunga, A.; Fermo, P.; Schwikowski, M.; Baltensperger, U.; Szidat, S.; Prévôt, A. S. H.

    2014-12-01

    While several studies have investigated winter-time air pollution with a wide range of concentration levels, hardly any results are available for longer time periods covering several winter-smog episodes at various locations; e.g., often only a few weeks from a single winter are investigated. Here, we present source apportionment results of winter-smog episodes from 16 air pollution monitoring stations across Switzerland from five consecutive winters. Radiocarbon (14C) analyses of the elemental (EC) and organic (OC) carbon fractions, as well as levoglucosan, major water-soluble ionic species and gas-phase pollutant measurements were used to characterize the different sources of PM10. The most important contributions to PM10 during winter-smog episodes in Switzerland were on average the secondary inorganic constituents (sum of nitrate, sulfate and ammonium = 41 ± 15%) followed by organic matter (OM) (34 ± 13%) and EC (5 ± 2%). The non-fossil fractions of OC (fNF,OC) ranged on average from 69 to 85 and 80 to 95% for stations north and south of the Alps, respectively, showing that traffic contributes on average only up to ~ 30% to OC. The non-fossil fraction of EC (fNF,EC), entirely attributable to primary wood burning, was on average 42 ± 13 and 49 ± 15% for north and south of the Alps, respectively. While a high correlation was observed between fossil EC and nitrogen oxides, both primarily emitted by traffic, these species did not significantly correlate with fossil OC (OCF), which seems to suggest that a considerable amount of OCF is secondary, from fossil precursors. Elevated fNF,EC and fNF,OC values and the high correlation of the latter with other wood burning markers, including levoglucosan and water soluble potassium (K+) indicate that residential wood burning is the major source of carbonaceous aerosols during winter-smog episodes in Switzerland. The inspection of the non-fossil OC and EC levels and the relation with levoglucosan and water-soluble K

  1. Radiocarbon analysis of elemental and organic carbon in Switzerland during winter-smog episodes from 2008 to 2012 – Part 1: Source apportionment and spatial variability

    Directory of Open Access Journals (Sweden)

    P. Zotter

    2014-06-01

    Full Text Available While several studies have investigated winter-time air pollution with a wide range of concentration levels, hardly any results are available for longer time periods covering several winter-smog episodes at various locations; e.g. often only a few weeks from a single winter are investigated. Here, we present source apportionment results of winter-smog episodes from 16 air pollution monitoring stations across Switzerland from five consecutive winters. Radiocarbon (14C analyses of the elemental (EC and organic (OC carbon fractions, as well as levoglucosan, major water-soluble ionic species and gas-phase pollutant measurements were used to characterize the different sources of PM10. The most important contributions to PM10 during winter-smog episodes in Switzerland were on average the secondary inorganic constituents (sum of nitrate, sulfate and ammonium = 41 ± 15% followed by organic matter OM (30 ± 12% and EC (5 ± 2%. The non-fossil fractions of OC (fNF,OC ranged on average from 69–85% and 80–95 % for stations north and south of the Alps, respectively, showing that traffic contributes on average only up to ~30% to OC. The non-fossil fraction of EC (fNF,EC, entirely attributable to primary biomass burning, was on average 42 ± 13% and 49 ± 15% for north and south of the Alps, respectively. While a high correlation was observed between fossil EC and nitrogen oxides, both primarily emitted by traffic, these species did not significantly correlate with fossil OC (OCF, which seems to suggest that a considerable amount of OCF is secondary, formed from fossil precursors. Elevated fNF,EC and fNF,OC values and the high correlation of the latter with other wood burning markers, including levoglucosan and water soluble potassium (K+ indicate that biomass burning is the major source of carbonaceous aerosols during winter-smog episodes in Switzerland. The inspection of the non-fossil OC and EC levels and the relation with levoglucosan and water

  2. Measurements and source apportionment of particle-associated polycyclic aromatic hydrocarbons in ambient air in Riyadh, Saudi Arabia

    Science.gov (United States)

    Bian, Qijing; Alharbi, Badr; Collett, Jeffrey; Kreidenweis, Sonia; Pasha, Mohammad J.

    2016-07-01

    Ambient air samples were obtained in Riyadh, the capital and largest city of Saudi Arabia, during two measurement campaigns spanning September 2011 to September 2012. Sixteen particle-phase polycyclic aromatic hydrocarbons (PAH) were quantified in 167 samples. Pyrene and fluoranthene were the most abundant PAH, with average of 3.37 ± 14.01 ng m-3 and 8.00 ± 44.09 ng m-3, respectively. A dominant contribution from low molecular weight (LMW) PAH (MW industrial emissions on PAH concentrations. Monte Carlo source apportionment using diagnostic ratios showed that 80 ± 10% of the average LMW PAH concentrations were contributed by petroleum vapor emissions, while 53 ± 19% of high molecular weight (HMW) PAH were from solid fuel combustion emissions. The positive matrix factorization model estimated that oil combustion emissions dominated total PAH concentrations, accounting for on average 96%, likely due to widespread use of oil fuels in energy production (power plants and industries). Our results demonstrate the significant influence of petroleum product production and consumption on particulate-phase PAH concentrations in Riyadh, but also point to the importance of traffic and solid fuel burning, including coke burning and seasonal biomass burning, especially as they contribute to the ambient levels of HMW PAH.

  3. Characteristics and source apportionment of VOCs measured in an industrial area of Nanjing, Yangtze River Delta, China

    Science.gov (United States)

    An, Junlin; Zhu, Bin; Wang, Honglei; Li, Yongyu; Lin, Xu; Yang, Hui

    2014-11-01

    Based on the data of volatile organic compounds (VOCs) collected continuously in the Nanjing industrial area, the VOCs temporal variability, photochemical reactivity, differences in tracer ratios, and source apportionment by principal component analysis/absolute principal component scores (PCA/APCS) were analyzed. The results showed that the total VOC concentration was 43.5 ppbv, which was 45.1% alkanes, 25.3% alkenes, 7.3% alkynes and 22.3% aromatics. There was an obvious seasonal variation in the of VOCs, with a maximum in summer and minimum in winter, as well as in the VOC components, with alkanes and alkynes highest in winter, alkenes highest in summer, and aromatics highest in spring. The VOCs exhibited significant diurnal variations, i.e. high at night and low during the day. The concentrations of nighttime VOCs were highest to lowest as follows: summer > autumn > spring > winter. By contrast, the concentrations of daytime VOCs were highest to lowest as follows: winter > summer > spring > autumn. The diurnal variation of the VOCs was the largest in autumn and the smallest in winter. The largest diurnal variation of alkanes and alkenes occurred in autumn, whereas the largest diurnal variation of aromatics and alkynes occurred in spring. Using the propylene-equivalent method, alkenes had the highest concentration, followed by aromatics and alkanes. The ratios of T/B, E/B and X/B were 1.2, 1.0 and 0.8, respectively, possibly due to the aging air mass. Based on the specific pollutant ratio method, the observation site was greatly affected by the surrounding industrial areas. The source analysis of the VOCs in the PCA/APCS mode showed that the sources consisted of industrial production sources, automobile emission sources, combustion sources, industrial production volatilization sources, solvent use sources and biogenic emission sources; in addition, there were seasonal variations. Overall, the sources related to industrial production activities accounted for 45

  4. CHARACTERIZATION OF URBAN AEROSOL SOURCES IN DEBRECEN, HUNGARY

    Directory of Open Access Journals (Sweden)

    ZSÓFIA KERTÉSZ

    2008-12-01

    Full Text Available Debrecen is an average middle European city from the point of view of aerosol pollution. Its location makes the city an ideal place for observing aerosol transport processes. Systematic investigation ofatmospheric aerosol of the east-Hungarian region has been performed in the Institute of Nuclear Research of the Hungarian Academy of Sciences for 20 years by accelerator based elemental analytical technique. As a complementation of this research we observed the size distribution andshort-term time variation of the elemental component of fine (PM2.5 and coarse (PM10-PM2.5 urban aerosol in the frame of sampling campaigns during 2007 and 2008 in a downtown site of Debrecen.Meteorological parameters were also recorded parallel to the aerosol sampling. Elemental concentrations (Z ≥ 12 were determined by particle induced X-ray emission (PIXE analytical technique at the Laboratory of Ion Beam Applications (IBA of the ATOMKI. On the obtained database six sources of the urban aerosol were identified: 2 types of soil, domestic heating, sulphate originating from long range transport processes, an unidentified source enriched with chlorine andtraffic. Emission episodes were also observed. The short-time variation of urban aerosol combined with meteorological data and with mass size distribution serves as a basis to reach a better understanding of the aerosol sources in receptor areas, to select local emission and long range transport episodes, to follow the evolution of aerosol, and to make a better estimate on the health impact.

  5. ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2004-12-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2004 through August 2004. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. Results highlighted in this report include evaluation of the performance of PMCAMx+ for an air pollution episode in the Eastern US, an emission profile for a coke production facility, ultrafine particle composition during a nucleation event, and a new hybrid approach for source apportionment. An agreement was reached with a utility to characterize fine particle and mercury emissions from a commercial coal fired power. Research in the next project period will include source testing of a coal fired power plant, source apportionment analysis, emission scenario modeling with PMCAMx+, and writing up results for submission as journal articles.

  6. Aerosol nitrate from lightning - from sources to impacts

    Science.gov (United States)

    Tost, Holger

    2016-04-01

    Particulate nitrate is a key component on the inorganic atmospheric aerosol composition. Due to its semi-volatility, an accurate description of the budget and the impacts of nitrate aerosol are still somewhat uncertain. To address some of the impacts of nitrate, in this study we explicitly analyse the impact of aerosol nitrate from a natural source, namely lightning. As the lightning NOx emissions are only a contribution to the total NOx emissions, this example does not resemble a typical annihilation scenario, which might substantially misjudge the effect of aerosol nitrate due to the high non-linearity in the nitrate budget, but also other directly connected compounds, but tries to shed light onto the sensitivity of aerosol nitrate and its effects. On the other hand, lightning represents an emission source of NOx, which is partly injected directly in the upper troposphere, where due to its longer lifetime and the temperature dependent stability of NH4NO3 aerosol nitrate can form much easier and has a longer lifetime against decomposition. This study uses a comprehensive chemistry climate model to track the evolution of aerosol nitrate from the lightning NOx emission, via chemical processing and gas-aerosol partitioning, aerosol microphyiscal processes down to the climatic impacts of the nitrate aerosol particles via direct aerosol-radiation and aerosol-cloud interactions. All of these processes are explicitly considered with the help of state-of-the-art (parameterisation) schemes, including a comprehensive multi-phase chemistry configuration, a microphysical and chemical composition aerosol model, aerosol optical properties and a two-moment cloud microphysical scheme with explicit activation of aerosol particles into cloud droplets and the consideration of aerosol particles in ice formation processes. Furthermore, some uncertainty with respect to cloud droplet formation has been considered by using two different aerosol activation schemes. To estimate the

  7. A new source of oxygenated organic aerosol and oligomers

    Directory of Open Access Journals (Sweden)

    J. Liggio

    2013-03-01

    Full Text Available A large oxygenated organic uptake to aerosols was observed when exposing ambient urban air to inorganic acidic and non-acidic sulfate seed aerosol. For non-acidic seed aerosol the uptake was attributed to the direct dissolution of primary vehicle exhaust gases into the aqueous aerosol fraction, and was correlated to the initial seed sulphate mass. The uptake of primary oxygenated organic gases to aerosols in this study represents a significant amount of organic aerosol (OA that may be considered primary when compared to that reported for primary organic aerosol (POA, but is considerably more oxygenated (O : C ~ 0.3 than traditional POA. Consequently, a fraction of measured ambient oxygenated OA, which correlates with secondary sulphate, may in fact be of a primary, rather than secondary source. These results represent a new source of oxygenated OA on neutral aerosol and imply that the uptake of primary organic gases will occur in the ambient atmosphere, under dilute conditions, and in the presence of pre-existing SO4 aerosols which contain water. Conversely, under acidic seed aerosol conditions, oligomer formation was observed with the uptake of organics being enhanced by a factor of three or more compared to neutral aerosols, and in less than 2 min, representing an additional source of SOA to the atmosphere. This resulted in a trajectory in Van Krevelen space towards higher O : C (slope ~ −1.5, despite a lack of continual gas-phase oxidation in this closed system. The results demonstrate that high molecular weight species will form on acidic aerosols at the ambient level and mixture of organic gases, but are otherwise unaffected by subsequent aerosol neutralization, and that aerosol acidity will affect the organic O : C via aerosol-phase reactions. These two processes, forming oxygenated POA under neutral conditions and SOA under acidic conditions can contribute to the total ambient OA mass and the evolution of ambient aerosol O : C ratios

  8. Source and risk apportionment of selected VOCs and PM2.5 species using partially constrained receptor models with multiple time resolution data

    International Nuclear Information System (INIS)

    This study was conducted to identify and quantify the sources of selected volatile organic compounds (VOCs) and fine particulate matter (PM2.5) by using a partially constrained source apportionment model suitable for multiple time resolution data. Hourly VOC, 12-h and 24-h PM2.5 speciation data were collected during three seasons in 2013. Eight factors were retrieved from the Positive Matrix Factorization solutions and adding source profile constraints enhanced the interpretability of source profiles. Results showed that the evaporative emission factor was the largest contributor (25%) to VOC mass concentration, while the largest contributor to PM2.5 mass concentration was soil dust/regional transport related factor (26%). In terms of risk prioritization, traffic/industry related factor was the major cause for benzene, ethylbenzene, Cr, and polycyclic aromatic hydrocarbons (29–69%) while petrochemical related factor contributed most to the Ni risk (36%). This indicated that a larger contributor to mass concentration may not correspond to a higher risk. - Highlights: • We applied a partially constrained receptor model to multiple time resolution data. • Hourly VOC, 12-h and 24-h PM2.5 speciation data were combined in the model. • Adding constraints to the model enhanced the interpretability of source profiles. • We applied a risk apportionment approach to obtain the source-specific risk values. • A larger contributor to mass concentration may not correspond to a higher risk. - Combining a constrained receptor model and a risk apportionment approach could provide valuable information to design effective control strategies

  9. On the Aerosol Source Livestock Raising

    Science.gov (United States)

    Schneider, F. E.; Brüggemann, E.; Gnauk, T.; Lammel, G.; Müller, F.; Plewka, A.; Röhrl, A.; Wieser, P. H.

    2002-12-01

    Agriculture is a prime stakeholder in the atmospheric and climate changes as on one hand side it will be strongly affected by a changing climate and yet is today by air pollution while on the other hand, through her emissions agriculture is also driving these changes. Particulate matter is important for air pollution / human health. Very little is known about the mass flux and composition of the particulate matter emitted from livestock farming. We report on the design and results of a pilot study investigating the aerosol source livestock farming undertaken at the experimental farm Talgut Lindenhof of the University of Hohenheim, in a hilly region in Southern Germany. Particulate matter was sampled for off-line chemical analyses and physically characterized in-situ close to the animal housings as well as through simultaneous measurements upwind and downwind of the farm. Off-line analyses comprised particulate matter mass, inorganic ion content, carbon fractions, total element content, single particle analyses, besides other. Estimates on the emission term are made.

  10. Environmental carcinogenic polycyclic aromatic hydrocarbons in soil from Himalayas, India: Implications for spatial distribution, sources apportionment and risk assessment.

    Science.gov (United States)

    Devi, Ningombam Linthoingambi; Yadav, Ishwar Chandra; Shihua, Qi; Dan, Yang; Zhang, Gan; Raha, Priyankar

    2016-02-01

    The Indian Himalayan Region (IHR) is one of the important mountain ecosystems among the global mountain system which support wide variety of flora, fauna, human communities and cultural diversities. Surface soil samples (n = 69) collected from IHR were analysed for 16 priority polycyclic aromatic hydrocarbons (PAH) listed by USEPA. The ∑16PAH concentration in surface soil ranged from 15.3 to 4762 ngg(-1) (mean 458 ngg(-1)). The sum total of low molecular weight PAH (∑LMW-PAHs) (mean 74.0 ngg(-1)) were relatively lower than the high molecular weight PAH (∑HMW-PAHs) (mean 384 ngg(-1)). The concentration of eight carcinogenic PAHs (BaA, CHR, BbF, BkF, BaP, DahA, IcdP, BghiP) were detected high in mountain soil from IHR and ranged from 0.73 to 2729 ngg(-1) (mean 272 ngg(-1)). Based on spatial distribution map, high concentration of HMW- and LMW-PAHs were detected at GS1 site in Guwahati (615 and 4071 ngg(-1)), and lowest concentration of HMW-PAHs were found at IS6 in Itanagar (5.80 ngg(-1)) and LMW-PAHs at DS2 (17.3 ngg(-1)) in Dibrugarh. Total organic carbon (TOC) in mountain soil was poorly connected with ∑PAHs (r(2) = 0.072) and Car-PAHs (r(2) = 0.048), suggesting the little role of TOC in adsorption of PAHs. Isomeric ratio of PAHs showed the source of PAH contamination in IHR is mixed of petrogenic and pyrogenic origin and was affirmed by PAHs composition profile. These source apportionment results were further confirmed by principal component analysis (PCA). Eco-toxicological analysis showed the calculated TEQ for most carcinogenic PAH were 2-4 times more than the Dutch allowed limit, while TEQ of BaP was 25 times high, suggesting increasing trend of carcinogenicity of surface soil. PMID:26386774

  11. Photochemical and other sources of organic compounds in the Canadian high arctic aerosol pollution during winter-spring.

    Science.gov (United States)

    Fu, Pingqing; Kawamura, Kimitaka; Barrie, Leonard A

    2009-01-15

    Total suspended particles collected at Alert in the Canadian high Arctic (February-June) were analyzed for solvent extractable organic compounds using gas chromatography-mass spectrometry to better understand the sources and source apportionment of aerosol pollution that can affect the Arctic climate. More than 100 organic species were detected in the aerosols and were grouped into different compound classes based on the functional groups. Polyacids were found to be the most abundant compound class, followed by phthalates, aromatic acids, fatty acids, fatty alcohols, sugars/sugar alcohols, and n-alkanes, while polycyclic aromatic hydrocarbons, sterols, and lignin and resin acids were minor. Concentrations of total quantified organics seemed slightly higher in darkwinter aerosols (13.2-16.6 ng m(-3), average 14.5 ng m(-3)) than those after polar sunrise (6.70-17.7 ng m(-3), average 11.8 ng m(-3)). During dark winter, fossil fuel combustion products (30-51%), secondary oxidation products, as well as higher plant emissions were found as major contributors to the Arctic aerosols. However, after polar sunrise on 5 March, secondary oxidation products (5-53%) and plasticizer-derived phthalates became the dominant compound classes, followed by fossil fuel combustion and microbial/marine sources. Biomass burning emissions were found to contribute only 0.4-6% of the total identified organics, although they maximized in dark winter. This study demonstrates that long-range atmospheric transport, changes in the solar irradiance, and ambient temperature can significantly control the chemical composition of organic aerosols in the Arctic region. PMID:19238953

  12. Source apportionment of indoor, outdoor and personal PM2.5 exposure of pregnant women in Barcelona, Spain

    Science.gov (United States)

    Minguillón, M. C.; Schembari, A.; Triguero-Mas, M.; de Nazelle, A.; Dadvand, P.; Figueras, F.; Salvado, J. A.; Grimalt, J. O.; Nieuwenhuijsen, M.; Querol, X.

    2012-11-01

    Exposure to air pollution has been shown to adversely affect foetal development in the case of pregnant women. The present study aims to investigate the PM composition and sources influencing personal exposure of pregnant women in Barcelona. To this end, indoor, outdoor and personal exposure measurements were carried out for a selection of 54 pregnant women between November 2008 and November 2009. PM2.5 samples were collected during two consecutive days and then analysed for black smoke (BS), major and trace elements, and polycyclic aromatic hydrocarbons (PAHs) concentrations. Personal information such as commuting patterns and cosmetics use was also collected. PM2.5 concentrations were higher for personal samples than for indoor and outdoor environments. Indoor, outdoor and personal BS and sulphate concentrations were strongly correlated, although some specific indoor and outdoor sulphate sources may exist. Average trace elements concentrations were similar indoor, outdoor and for personal exposure, but the correlations were moderate for most of them. Most of the PAHs concentrations showed strong correlations indoor-outdoor. A source apportionment analysis of the PM composition data by means of a Positive Matrix Factorization (PMF) resulted in the identification of six sources for the outdoor and indoor environments: secondary sulphate, fueloil + sea salt (characterized by V, Ni, Na and Mg), mineral, cigarette (characterized by K, Ce, Cd, benzo(k)fluoranthene and benzo(ghi)perylene), road traffic (characterized by BS and low weight PAHs), and industrial (characterized by Pb, Sn, Cu, Mn and Fe). For personal exposure two specific sources were found: cosmetics (characterized by abundance of Ca, Li, Ti and Sr and the absence of Al) and train/subway (characterized by Fe, Mn, Cu and Ba). The contribution of the sources varied widely among women, especially for cigarette (from zero to up to 4 μg m-3), train/subway (up to more than 6 μg m-3) and cosmetics (up to more

  13. PM10 source apportionment applying PMF and chemical tracer analysis to ship-borne measurements in the Western Mediterranean

    Science.gov (United States)

    Bove, M. C.; Brotto, P.; Calzolai, G.; Cassola, F.; Cavalli, F.; Fermo, P.; Hjorth, J.; Massabò, D.; Nava, S.; Piazzalunga, A.; Schembari, C.; Prati, P.

    2016-01-01

    A PM10 sampling campaign was carried out on board the cruise ship Costa Concordia during three weeks in summer 2011. The ship route was Civitavecchia-Savona-Barcelona-Palma de Mallorca-Malta (Valletta)-Palermo-Civitavecchia. The PM10 composition was measured and utilized to identify and characterize the main PM10 sources along the ship route through receptor modelling, making use of the Positive Matrix Factorization (PMF) algorithm. A particular attention was given to the emissions related to heavy fuel oil combustion by ships, which is known to be also an important source of secondary sulphate aerosol. Five aerosol sources were resolved by the PMF analysis. The primary contribution of ship emissions to PM10 turned out to be (12 ± 4)%, while secondary ammonium sulphate contributed by (35 ± 5)%. Approximately, 60% of the total sulphate was identified as secondary aerosol while about 20% was attributed to heavy oil combustion in ship engines. The measured concentrations of methanesulphonic acid (MSA) indicated a relevant contribution to the observed sulphate loading by biogenic sulphate, formed by the atmospheric oxidation of dimethyl sulphide (DMS) emitted by marine phytoplankton.

  14. Source Resolution and Risk Apportionment of Air Emission Sources in AN Industrial Complex for Risk Reduction Considerations: AN Air Waste Management Methodology.

    Science.gov (United States)

    Mukerjee, Shaibal

    The purpose of this study was to develop an air waste management methodology for apportioning the health risks associated with air emission source categories that are identified in a given airshed. This was implemented by expanding the receptor model technique to assess the non-carcinogenic and carcinogenic inhalation risks to an exposed population for certain element pollutants determined to be coming from specific emission sources. The concept was demonstrated using air quality data from a mid-sized industrial complex located in a rural/residential area. It was demonstrated that risks from identified, major elemental emission categories can be quantified and that a total, additive risk be determined for main source categories in the airshed. Potential risk reduction measures were targeted at main risk sources without arbitrarily reducing risk for all sources in the airshed thereby making it a cost-effective approach. Dispersion modeling was utilized from previous emission inventory data so that risk estimates for these sources could be modeled at other receptor points in the airshed. The factor analytic procedure for Source Resolution in the initial receptor modeling approach was used to show whether the ambient data fitted a Maximum-Likelihood Factor Analysis or Principal Component Analysis for identifying underlying emission sources. It was also shown how Maximum -Likelihood Factor Analysis can be a stronger source resolution procedure as opposed to Principal Component Analysis since Factor Analysis is metrically invariant. Finally, the use of the ambient air data for total particulates was used to expand the Source Resolution and Risk Apportionment concepts to augment the Bubble Policy currently used in Air Quality Management.

  15. Chemical characteristics and source apportionment of PM10 during a brown haze episode in Harbin,China

    Institute of Scientific and Technical Information of China (English)

    Likun Huang; Chung-Shin Yuan; Guangzhi Wang; Kun Wang

    2011-01-01

    This study investigates the correlation between PM10 and meteorological factors such as wind speed,atmospheric visibility,dew point,relative humidity,and ambient temperature during a brown haze episode. In order to identify the potential sources of PM10 during brown haze episode,respirable particulate matter (PM10) was collected during both non-haze days and haze days and further analyzed for metallic elements,ionic species,and carbonaceous contents. Among them,ionic species contributed 45-64% to PM10,while metallic elements contributed 7-21% to PM10 which was smaller than the other chemical constituents. The average OC/EC ratio (42) in haze days was about three times of the average OC/EC ratio (14) in non-haze days. By using chemical mass balance (CMB) receptor model,the major sources were apportioned,including traffics,incinerators,coal combustion,steel industry,petrochemical industry,and secondary aerosols,etc. The contribution to PM10 concentration of each source was calculated for all the samples collected. The results showed that coal combustion was the major source of PM10 in non-haze days and secondary aerosols were the major source in haze days,followed by petrochemical industry,incinerators,and traffics,while other sources had negligible effect.

  16. Sources of methane and nitrous oxide in California's Central Valley estimated through direct airborne flux and positive matrix factorization source apportionment of groundbased and regional tall tower measurements

    Science.gov (United States)

    Guha, Abhinav

    Methane (CH4) and nitrous oxide (N2O) are two major greenhouse gases that contribute significantly to the increase in anthropogenic radiative-forcing causing perturbations to the earth's climate system. In a watershed moment in the state's history of environmental leadership and commitment, California, in 2006, opted for sharp reductions in their greenhouse gas (GHG) emissions and adopted a long-term approach to address climate change that includes regulation of emissions from individual emitters and source categories. There are large CH4 and N2O emissions sources in the state, predominantly in the agricultural and waste management sector. While these two gases account for increasing number of `top-down' studies based on ambient observations point towards underestimation of their emissions in the inventory. Three intensive field observation campaigns that were spatially and temporally diverse took place between 2010 and 2013 in the Central Valley of California where the largest known sources of CH4 and N2O (e.g. agricultural systems and dairies) and potentially significant CH4 sources (e.g. oil and gas extraction) are located. The CalNex (California Nexus - Research at the Nexus of Air Quality and Climate Change) field campaign during summer 2010 (May 15 - June 30) took place in the urban core of Bakersfield in the southern San Joaquin Valley, a city whose economy is built around agriculture and the oil and gas industry. During summer of 2011, airborne measurements were performed over a large spatial domain, all across and around the Central Valley as part of the CABERNET (California Airborne BVOC Emission Research in Natural Ecosystem Transects) study. Next, a one-year continuous field campaign (WGC 2012-13, June 2012 - August 2013) was conducted at the Walnut Grove tall tower near the Sacramento-San Joaquin River Delta in the Central Valley. Through analysis of these field measurements, this dissertation presents the apportionment of observed CH4 and N2O

  17. ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2004-04-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of September 2003 through February 2004. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. Results highlighted in this report include chemical fractionation of the organic fraction to quantify the ratio of organic mass to organic carbon (OM/OC). The average OM/OC ratio for the 31 samples analyzed so far is 1.89, ranging between 1.62 and 2.53, which is consistent with expectations for an atmospherically processed regional aerosol. Analysis of the single particle data reveals that a on a particles in Pittsburgh consist of complex mixture of primary and secondary components. Approximately 79% of all particles measured with the instrument containing some form of carbon, with Carbonaceous Ammonium Nitrate (54.43%) being the dominant particle class. PMCAMx predictions were compared with data from more than 50 sites of the STN network located throughout the Eastern United States for the July 2001 period. OC and sulfate concentrations predicted by PMCAMx are within {+-}30% of the observed concentration at most of these sites. Spherical Aluminum Silicate particle concentrations (SAS) were used to estimate the contribution of primary coal emissions to fine particle levels at the central monitoring site. Primary emissions from coal combustion contribute on average 0.44 {+-} 0.3 {micro}g/m{sup 3} to PM{sub 2.5} at the site or 1.4 {+-} 1.3% of the total PM{sub 2.5} mass. Chemical mass balance analysis was performed to apportion the primary organic aerosol. About 70% of the primary OC emissions are from vehicular sources, with the gasoline contribution being on average three times greater than the diesel emissions in the summer.

  18. Ambient particle source apportionment and daily hospital admissions among children and elderly in Copenhagen

    DEFF Research Database (Denmark)

    Andersen, Zorana Jovanovic; Wahlin, P.; Raaschou-Nielsen, Ole;

    2007-01-01

    An association between particulate air pollution and morbidity and mortality is well established. However, little is known about which sources of particulate matter contribute most to the adverse health effects. Identification of responsible sources would merit more efficient control. For a 6-yea...

  19. Source apportionment and pollution evaluation of heavy metals in water and sediments of Buriganga River, Bangladesh, using multivariate analysis and pollution evaluation indices.

    Science.gov (United States)

    Bhuiyan, Mohammad Amir Hossain; Dampare, Samuel B; Islam, M A; Suzuki, Shigeyuki

    2015-01-01

    Concentrations of heavy metals in water and sediment samples of Buriganga River in the capital city Dhaka, Bangladesh, were studied to understand the level of heavy metals and their source apportionment. The results showed that the mean concentrations of heavy metals both in water and sediment samples were very high and, in most cases, exceeded the permissible limits recommended by the Bangladesh government and other international organizations. Significantly higher concentrations of Pb, Cr, Mn, Co, Ni, Cu, Zn, As, and Cd were found in sediment samples. However, average concentrations of metals both in water and sediment samples were above the effect range median. The heavy metal pollution index (HPI) and degree of contamination (Cd) yielded different results in water samples despite significant correlations between them. The heavy metal evaluation index (HEI) showed strong correlations with HPI and Cd and provided better assessment of pollution levels. The enrichment factor (EF) and geoaccumulation index (Igeo) showed the elevated value of Cr, Pb, and Cd in access of background values. The measured elements were subjected to positive matrix factorization (PMF) and examining correlations in order to explain the content, behavior, and source apportionment of metals. PMF resulted in a successful partitioning of variances into sources related to background geochemistry and contaminant influences. However, the PMF approach successfully demarcated the major sources of metals from tannery, paint, municipal sewage, textiles, and agricultural activities. PMID:25416128

  20. Characterization and source apportionment of particle number concentration at a semi-urban tropical environment.

    Science.gov (United States)

    Khan, Md Firoz; Latif, Mohd Talib; Amil, Norhaniza; Juneng, Liew; Mohamad, Noorlin; Nadzir, Mohd Shahrul Mohd; Hoque, Hossain Mohammed Syedul

    2015-09-01

    Principal component analysis (PCA) and correlation have been used to study the variability of particle mass and particle number concentrations (PNC) in a tropical semi-urban environment. PNC and mass concentration (diameter in the range of 0.25->32.0 μm) have been measured from 1 February to 26 February 2013 using an in situ Grimm aerosol sampler. We found that the 24-h average total suspended particulates (TSP), particulate matter ≤10 μm (PM10), particulate matter ≤2.5 μm (PM2.5) and particulate matter ≤1 μm (PM1) were 14.37 ± 4.43, 14.11 ± 4.39, 12.53 ± 4.13 and 10.53 ± 3.98 μg m(-3), respectively. PNC in the accumulation mode (spectroradiometer (MODIS) distribution. PMID:25925145

  1. Chemical characteristics and source apportionment of PM2.5 during the harvest season in eastern China's agricultural regions

    Science.gov (United States)

    Li, Jianfeng; Song, Yu; Mao, Yi; Mao, Zhichun; Wu, Yusheng; Li, Mengmeng; Huang, Xin; He, Qichao; Hu, Min

    2014-08-01

    To determine the contribution of the open burning of wheat straw residues to local PM2.5 during the harvest season of June 2013, PM2.5 was sampled in an agricultural region in eastern China. The sampling site was approximately 1 km from the nearest wheat field. Chemical compositions were analyzed, and source apportionment was undertaken using the positive matrix factorization model. The average PM2.5 concentration was 110.7 μg/m3, containing 36.4 μg/m3 organics, 7.3 μg/m3 EC, 6.0 μg/m3 potassium (K) and 4.9 μg/m3 chloride ion (Cl-). The sampling period was divided into three phases: the pre-local-burning phase (Phase 1), the local-burning phase (Phase 2) and the post-local-burning phase (Phase 3). In Phase 2, the concentrations of PM2.5 and the organics, EC, K and Cl- in PM2.5 were 163.6 μg/m3, 59.0 μg/m3, 12.2 μg/m3, 11.0 μg/m3 and 10.8 μg/m3, respectively, which were all remarkably higher than in both Phase 1 and Phase 3. Eight sources of PM2.5 were determined, including two types of wheat residue burning sources, which showed a significant difference in Cl- content. The atmospheric relative humidity (RH) and the aging process of PM2.5 might be the causes: only fresh particulate emissions from wheat residue burning could feature high-concentration Cl- under high RH conditions. In Phase 2, wheat residue burning contributed 51.3% of PM2.5, 75.8% of OC, 74.5% of EC, 90.1% of K and 104.1% of Cl-. These percentages were lower in Phases 1 and 3 than in Phase 2. Wheat residue burning caused such severe air pollution that it's necessary to prohibit the open burning of crop residues in order to protect public health and the environment.

  2. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in sediments from Khuzestan province, Iran

    DEFF Research Database (Denmark)

    Lübeck, Josephine; Poulsen, Kristoffer Gulmark; Knudsen, Sofie B.;

    2016-01-01

    polycyclic aromatic hydrocarbon (PAH) pollution. A four-component principal component analysis (PCA) model was obtained. While principal component 1 (PC1) was related to the total concentration of PAHs, the remaining PCs described three distinct sources: PC2 and PC3 collectively differentiate between......Khuzestan, Iran is heavily industrialised with petrochemical and refinery companies. Herein, sediment and soil samples were collected from Hendijan coast, Khore Mosa and Arvandroud River. The CHEMSIC (CHEmometric analysis of Selected Ion Chromatograms) method was used to assign the main sources of...... revealed a mixture with high proportions of high-molecular-weight PAHs, indicating a pyrogenic/weathered petrogenic source. Samples from Hendijan coast contained low relative concentrations of PAHs, thus only little information on pollution sources....

  3. Particle sized-resolved source apportionment of primary and secondary organic tracer compounds at urban and rural locations in Spain

    Directory of Open Access Journals (Sweden)

    B. L. van Drooge

    2015-04-01

    Full Text Available Atmospheric particulate matter (PM was fractionated in six aerodynamic sizes, > 7.2, 7.2–3, 3–1.5, 1.5–1, 1–0.5, PM > 0.5 μm. Thus, markers of photochemically synthesized organic compounds or combustion sources, either biomass burning or traffic emissions, were predominantly observed in the fraction Important seasonal differences were observed at the rural site. In the PM > 0.5 μm fractions the differences involved predominant soil-sourced compounds in the warm period and mixed combustion sources, photochemical products and vegetation emissions in the cold. Multivariate Curve Resolution Alternating Least Squares showed that these organic aerosols essentially originated from six source components. Four of them reflected primary emissions related with either natural products, e.g. vegetation emissions and up whirled soil dust, or anthropogenic contributions, e.g. combustion products and compounds related with urban life-style activities, mainly vehicular exhausts and tobacco smoking. Two secondary organic aerosol components were identified. They accumulated in the smallest ( 0.5 μm and involved strong or mild photochemical transformations of vegetation precursor molecules, respectively. Toxicologically relevant information was also disclosed with the present approach. Thus, the strong predominance of biomass burning residues at the rural site during the cold period involved atmospheric concentrations of polycyclic aromatic hydrocarbons that were three times higher than at the urban sites and benzo[a]pyrene concentrations above legal recommendations.

  4. Source apportionment of PM10 mass and particulate carbon in the Kathmandu Valley, Nepal

    Science.gov (United States)

    Kim, Bong Mann; Park, Jin-Soo; Kim, Sang-Woo; Kim, Hyunjae; Jeon, Haeun; Cho, Chaeyoon; Kim, Ji-Hyoung; Hong, Seungkyu; Rupakheti, Maheswar; Panday, Arnico K.; Park, Rokjin J.; Hong, Jihyung; Yoon, Soon-Chang

    2015-12-01

    The Kathmandu Valley in Nepal is a bowl-shaped urban basin in the Himalayan foothills with a serious problem of fine particulate air pollution that impacts local health and impairs visibility. Particulate carbon concentrations have reached severe levels that threaten the health of 3.5 million local residents. Moreover, snow and ice on the Himalayan mountains are melting as a result of additional warming due to particulate carbon, especially high black carbon concentrations. To date, the sources of the Valley's particulate carbon and the impacts of different sources on particulate carbon concentrations are not well understood. Thus, before an effective control strategy can be developed, these particulate carbon sources must be identified and quantified. Our study has found that the four primary sources of particulate carbon in the Kathmandu Valley during winter are brick kilns, motor vehicles, fugitive soil dust, and biomass/garbage burning. Their source contributions are quantified using a recently developed new multivariate receptor model SMP. In contrast to other highly polluted areas such as China, secondary contribution is almost negligible in Kathmandu Valley. Brick kilns (40%), motor vehicles (37%) and biomass/garbage burning (22%) have been identified as the major sources of elemental carbon (black carbon) in the Kathmandu Valley during winter, while motor vehicles (47%), biomass/garbage burning (32%), and soil dust (13%) have been identified as the most important sources of organic carbon. Our research indicates that controlling emissions from motor vehicles, brick kilns, biomass/garbage burning, and soil dust is essential for the mitigation of the particulate carbon that threatens public health, impairs visibility, and influences climate warming within and downwind from the Kathmandu Valley. In addition, this paper suggests several useful particulate carbon mitigation methods that can be applied to Kathmandu Valley and other areas in South Asia with

  5. Source apportionment of polycyclic aromatic hydrocarbons in surface soil in Tianjin, China

    International Nuclear Information System (INIS)

    Principal component analysis and multiple linear regression were applied to apportion sources of polycyclic aromatic hydrocarbons (PAHs) in surface soils of Tianjin, China based on the measured PAH concentrations of 188 surface soil samples. Four principal components were identified representing coal combustion, petroleum, coke oven plus biomass burning, and chemical industry discharge, respectively. The contributions of major sources were quantified as 41% from coal, 20% from petroleum, and 39% from coking and biomass, which are compatible with PAH emissions estimated based on fuel consumption and emission factors. When the study area was divided into three zones with distinctive differences in soil PAH concentration and profile, different source features were unveiled. For the industrialized Tanggu-Hangu zone, the major contributors were coking (43%), coal (37%) and vehicle exhaust (20%). In rural area, however, in addition to the three main sources, biomass burning was also important (13%). In urban-suburban zone, incineration accounted for one fourth of the total. - PAHs in surface soil of Tianjin were apportioned and coal combustion, vehicle exhaust, coke production, and biomass burning were found to be the major sources

  6. [Chemical Compositions and Sources Apportionment of Re-suspended Dust in Jincheng].

    Science.gov (United States)

    Wang, Yan; Peng, Lin; Li, Li-juan; Zhang, Teng; Liu, Hai-li; Mu, Ling

    2016-01-15

    In order to make effective plan to provide the scientific basis for prevention and control of re-suspended dust (RD), samples of particulate sources including RD and other pollution sources of Jincheng were collected. Elements, ions and carbon in particulate sources were analyzed. Enrichment factor, potential ecological risk assessment, and chemical mass balance model were used to analyze the chemical composition and the source of RD. The result indicated that the main components in RD of Jingeheng were Si, TC, Ca, OC, Al, Mg, Na, Fe, K and SO4(2-), contributing 61.14% of total mass of RD. The most abundant content of RD was crustal elements, and the ions were enriched in the fine particles. The mass fraction of OC in PM2. was higher, whereas the mass fraction of EC in PM10 was higher, indicating that secondary organic pollutants were mainly dominated in the fine particles. The dust PM2.5 and PM10 potential ecological risk indexes were extremely strong, and PM2.5 had higher ecological harm than PM10. Pb had the highest enrichment factor of 196.97 in PM2.5, which was followed by As, Cr, Ni, V, Zn and Cu, the enrichment factors of which were all greater than 10, indicating that they were apparently enriched and affected by human activities. Soil dust, construction dust, vehicle exhaust, and coal dust were the main sources of RD. PMID:27078944

  7. Season - dependent and source-influenced aerosol in Northern Siberia

    Science.gov (United States)

    Popovicheva, Olga; Makshtas, Alexander; Bogorodsky, Peter; Eleftheriadis, Kostantinos; Diapouli, Evangelia; Shonia, Natalia; Uttal, Taneil

    2016-04-01

    Aerosol may serve as a tracer of arctic pollution, allowing a link to climate response if its major characteristics relating to natural and anthropogeneous sources are defined. It has been shown that BC and sulfates are the most important aerosol constituents measured in the Arctic boundary layer; these species demonstrate similar seasonal variations with a peak during winter to early spring and a minimum in summer. Long - time gap in consistent aerosol observations in the Russian Arctic strongly limits the assessment of air pollution and climate impacts. On-line monitoring, sampling, and analyses of atmospheric aerosols were carried out at the Tiksi Hydrometeorological Observatory, Northern Siberia, during one year from September 2014 to 2015. Physico-chemical characterization combining aethalometry, thermo-optical analysis, and analytical chemistry was used in order to identify the seasonal variability of aerosols and to link their composition to possible sources, as well as to characterize the differences in aerosol chemical composition between natural background conditions and BC-pollution episodes. The present study reports the first results from the Tiksi Observatory on season-dependent and source-influenced characteristics of aerosol species, such as carbon fractions (OC, EC), inorganic and organic functionalities of chemical compounds, sulfates, nitrates and other ion components, and elements. In addition, data obtained by individual particles analysis provide insight into micromarkers of combustion sources. Aerosol at the Tiksi Observatory is found to be originated from natural marine, biogenic, and continental sources as well as influenced by local residential activity and regional pollution. Characterization of aerosols during OC and BC-pollution episodes, combined with analysis of the wind direction, atmosphere stability, and air mass trajectories, allows for the identification of the sources which are responsible for the emission of hazardous compounds

  8. Multi-source apportionment of polycyclic aromatic hydrocarbons using simultaneous linear equations

    Science.gov (United States)

    Marinaite, Irina; Semenov, Mikhail

    2014-05-01

    A new approach to identify multiple sources of polycyclic aromatic hydrocarbons (PAHs) and to evaluate the source contributions to atmospheric deposition of particulate PAHs is proposed. The approach is based on differences in concentrations of sums of PAHs with the same molecular weight among the sources. The data on PAHs accumulation in snow as well as the source profiles were used for calculations. Contributions of aluminum production plant, oil-fired central heating boilers, and residential wood and coal combustion were calculated using the linear mixing models. The concentrations of PAH pairs such as Benzo[b]fluorantene + Benzo[k]fluorantene and Benzo[g,h,i]perylene + Indeno[1,2,3-c,d]pyrene normalized to Benzo[a]antracene + Chrysene were used as tracers in mixing equations. The results obtained using ratios of sums of PAHs were compared with those obtained using molecular diagnostic ratios such as Benzo[a]antracene/Chrysene and Benzo[g,h,i]perylene/Indeno[1,2,3-c,d]pyrene. It was shown that the results obtained using diagnostic ratios as tracers are less reliable than results obtained using ratios of sums of PAHs. Funding was provided by Siberian Branch of Russian Academy of Sciences grant No. 8 (2012-2014).

  9. Measurement and apportionment of radon source terms for modeling indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Harley, N.H.

    1990-01-01

    This research has two main goals; (1) to quantify mechanisms for radon entry into homes of different types and to determine the fraction of indoor radon attributable to each source and (2) to model and calculate the dose (and therefore alpha particle fluence) to cells in the human and animal tracheobronchial tree that is pertinent to induction of bronchogenic carcinoma from inhaled radon daughters.

  10. Measurement and apportionment of radon source terms for modeling indoor environments

    International Nuclear Information System (INIS)

    This research has two main goals; (1) to quantify mechanisms for radon entry into homes of different types and to determine the fraction of indoor radon attributable to each source and (2) to model and calculate the dose (and therefore alpha particle fluence) to cells in the human and animal tracheobronchial tree that is pertinent to induction of bronchogenic carcinoma from inhaled radon daughters

  11. Characterization and source apportionment of volatile organic compounds in urban and suburban Tianjin, China

    Science.gov (United States)

    Han, Meng; Lu, Xueqiang; Zhao, Chunsheng; Ran, Liang; Han, Suqin

    2015-03-01

    Tianjin is the third largest megacity and the fastest growth area in China, and consequently faces the problems of surface ozone and haze episodes. This study measures and characterizes volatile organic compounds (VOCs), which are ozone precursors, to identify their possible sources and evaluate their contribution to ozone formation in urban and suburban Tianjin, China during the HaChi (Haze in China) summer campaign in 2009. A total of 107 species of ambient VOCs were detected, and the average concentrations of VOCs at urban and suburban sites were 92 and 174 ppbv, respectively. Of those, 51 species of VOCs were extracted to analyze the possible VOC sources using positive matrix factorization. The identified sources of VOCs were significantly related to vehicular activities, which specifically contributed 60% to urban and 42% to suburban VOCs loadings in Tianjin. Industrial emission was the second most prominent source of ambient VOCs in both urban and suburban areas, although the contribution of industry in the suburban area (36%) was much higher than that at the urban area (16%). We conclude that controlling vehicle emissions should be a top priority for VOC reduction, and that fast industrialization and urbanization causes air pollution to be more complex due to the combined emission of VOCs from industry and daily life, especially in suburban areas.

  12. Chemical mass balance source apportionment of fine and PM10 in the Desert Southwest, USA

    Science.gov (United States)

    The Desert Southwest Coarse Particulate Matter Study was undertaken in Pinal County, Arizona, to better understand the origin and impact of sources of fine and coarse particulate matter (PM) in rural, arid regions of the U.S. southwestern desert. The desert southwest experiences ...

  13. Nitrate behaviors and source apportionment in an aquatic system from a watershed with intensive agricultural activities.

    Science.gov (United States)

    Lu, Lu; Cheng, Hongguang; Pu, Xiao; Liu, Xuelian; Cheng, Qianding

    2015-01-01

    Nitrate pollution in aquatic systems caused by intensive agricultural activities is a serious problem in the Sanjiang Plain. In this study, a dual isotope approach (δ(15)N-NO3(-) and δ(18)O-NO3(-)) was employed to identify potential nitrate sources (atmospheric deposition, AD; NO3(-) derived from soil organic matter nitrification, NS; NO3(-) derived from chemical fertilizer nitrification, NF; and manure and sewage, M&S) and transformation processes occurring in the Abujiao River watershed located in the Sanjiang Plain. The Bayesian model (stable isotope analysis in R, SIAR) was utilized to apportion the contribution of the potential sources. In this watershed, the nitrate concentrations in the surface water were low (mean ± SD = 1.15 ± 0.84 mg L(-1)), and were greatly influenced by precipitation and land use conditions during the two sampling periods (the high flow period, September; the low flow period, November). On the contrary, in the ground water, high NO3(-) concentrations were observed (7.84 ± 5.83 mg L(-1)) and no significant temporal variation in NO3(-) was found during the sampling periods. The sampled water δ(18)O-NO3(-) values suggest that the nitrification process was not the main N cycling process, because most of the measured δ(18)O-NO3(-) values were above the expected δ(18)O-NO3(-) from nitrification throughout the sampling periods. Both the chemical and isotopic characteristics indicated that the signs of de-nitrification were absent in the surface water. However, significant de-nitrification processes were observed in the ground water for all sample periods. Results from the SIAR model showed that source contributions differed significantly during the two sampling periods. During the high flow period, chemical fertilizers and soil N fertilizer equally contributed to the major sources of nitrate in the surface water. In contrast, manure and sewage sources dominated the source contribution during the low flow period (November). This study

  14. Path-integral method for the source apportionment of photochemical pollutants

    Science.gov (United States)

    Dunker, A. M.

    2015-06-01

    A new, path-integral method is presented for apportioning the concentrations of pollutants predicted by a photochemical model to emissions from different sources. A novel feature of the method is that it can apportion the difference in a species concentration between two simulations. For example, the anthropogenic ozone increment, which is the difference between a simulation with all emissions present and another simulation with only the background (e.g., biogenic) emissions included, can be allocated to the anthropogenic emission sources. The method is based on an existing, exact mathematical equation. This equation is applied to relate the concentration difference between simulations to line or path integrals of first-order sensitivity coefficients. The sensitivities describe the effects of changing the emissions and are accurately calculated by the decoupled direct method. The path represents a continuous variation of emissions between the two simulations, and each path can be viewed as a separate emission-control strategy. The method does not require auxiliary assumptions, e.g., whether ozone formation is limited by the availability of volatile organic compounds (VOCs) or nitrogen oxides (NOx), and can be used for all the species predicted by the model. A simplified configuration of the Comprehensive Air Quality Model with Extensions (CAMx) is used to evaluate the accuracy of different numerical integration procedures and the dependence of the source contributions on the path. A Gauss-Legendre formula using three or four points along the path gives good accuracy for apportioning the anthropogenic increments of ozone, nitrogen dioxide, formaldehyde, and nitric acid. Source contributions to these increments were obtained for paths representing proportional control of all anthropogenic emissions together, control of NOx emissions before VOC emissions, and control of VOC emissions before NOx emissions. There are similarities in the source contributions from the

  15. Large chemical characterisation of PM10 emitted from graphite material production: Application in source apportionment.

    Science.gov (United States)

    Golly, B; Brulfert, G; Berlioux, G; Jaffrezo, J-L; Besombes, J-L

    2015-12-15

    This work focuses on emissions from industrial sources that are still poorly understood in Europe, especially the "carbon industry". The study is based on two intensive sampling campaigns performed in a graphite material production plant for 2weeks in July 2013 and November 2013 in alpine valleys. The chemical characterization of PM10 was conducted at three sampling sites (outdoor and indoor sites) located inside one industrial area, which is considered as the highest emissions source of polycyclic aromatic hydrocarbons (PAHs) in the Arve valley. The identification of specific tracers among metals and trace elements is commonly used to characterize industrial emissions. In our study, original enrichment factors relative to the "rural exposed background" have been calculated, and the metallic fraction was not affected by this industrial source. In contrast, the organic fraction of PM10 has a number of features, providing a complete organic source profile and referred to as the "carbon industry". In particular, polycyclic aromatic sulfur heterocycles (PASH) have been largely detected from fugitive emissions with rather large concentrations. The average concentrations of benzo(b)naphtho(2,1-d)thiophene (BNT(2,1)) reached 2.35-6.56ng·m(-3) and 60.5-376ng·m(-3) for outdoor and indoor sites, respectively. The use of this reference profile in the chemical mass balance model (CMB) applied to samples collected in two sites near industrial areas shows that this source had an average contribution of 6% of the organic matter (OM) mass during the sampling period during the winter of 2013. PMID:26322728

  16. Measurement of Greenhouse gases (GHGs) and source apportionment in Bakersfield, CA during CalNex 2010

    Science.gov (United States)

    Guha, A.; Gentner, D. R.; Weber, R.; Gardner, A.; Provencal, R. A.; Goldstein, A. H.

    2011-12-01

    The California Global Warming Solutions Act 2006 (AB 32) creates a need to verify and validate the state GHG inventory, which is largely based on activity data and emission factor based estimates. The "bottom-up" emission factors for methane (CH4) and nitrous oxide (N2O) have large uncertainties and there is a lack of adequate "top-down" measurements to characterize emission rates from sources. Emissions from non-CO2 GHG sources display spatial heterogeneity and temporal variability, and are thus, often, poorly characterized. The Central Valley of California is an agriculture and industry intensive region with huge concentration of dairies, refineries and active oil fields which are known CH4 sources. As part of the CalNex campaign, we performed measurements of principal trace GHG gases (CO2, CH4, and N2O) and combustion tracer CO at the Bakersfield super-site during the summer of 2010. Measurements were made over a period of six weeks using fast response lasers based on cavity enhanced absorption spectroscopy (LGR Inc. CA). Coincident measurements of hundreds of volatile organic compounds (VOCs) served as anthropogenic and biogenic tracers of the GHG sources at local and regional levels. The local mean CH4 (1.93ppm) and N2O (325ppb) minimum are larger than that measured at Mauna Loa (NOAA). Daytime winds from the north-west draw emissions from the city center, Fruitvale oilfield and two refineries. Huge enhancements of CH4 relative to CO2 (> 4ppm of CH4) are seen on some days but almost on each night, when wind reversal and valley backflow brings winds from the east (oil fields and landfill). Winds from south-southwest (dairies) have ΔCH4 / ΔCO2 ratios similar to previous dairy chamber studies (Mitloehner et al., 2009). The ΔCH4 / ΔCO ratios at Bakersfield are much larger than that calculated downwind of Los Angeles at Mt. Wilson (Hsu et al., 2009) or in-flight measurements during CalNex (NOAA) suggesting additional non-combustion sources strongly influence

  17. Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model.

    Science.gov (United States)

    Wang, Long; Wang, Shuxiao; Zhang, Lei; Wang, Yuxuan; Zhang, Yanxu; Nielsen, Chris; McElroy, Michael B; Hao, Jiming

    2014-07-01

    China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. In this study, China's Hg emission inventory is updated to 2007 and applied in the GEOS-Chem model to simulate the Hg concentrations and depositions in China. Results indicate that simulations agree well with observed background Hg concentrations. The anthropogenic sources contributed 35-50% of THg concentration and 50-70% of total deposition in polluted regions. Sensitivity analysis was performed to assess the impacts of mercury emissions from power plants, non-ferrous metal smelters and cement plants. It is found that power plants are the most important emission sources in the North China, the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) while the contribution of non-ferrous metal smelters is most significant in the Southwest China. The impacts of cement plants are significant in the YRD, PRD and Central China. PMID:24768744

  18. Measurement and apportionment of radon source terms for modeling indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Harley, N.H.

    1992-01-01

    This research has two main goals; (1) to quantify mechanisms for radon entry into homes of different types and to determine the fraction of indoor radon attributable to each source and (2) to model and calculate the dose (and therefore alpha particle fluence) to cells in the human and animal tracheobronchial tree that is pertinent to induction of bronchogenic carcinoma from inhaled radon daughters. The dosimetry has been extended to include organs other than the lung.

  19. Measurement and apportionment of radon source terms for modeling indoor environments

    International Nuclear Information System (INIS)

    This research has two main goals; (1) to quantify mechanisms for radon entry into homes of different types and to determine the fraction of indoor radon attributable to each source and (2) to model and calculate the dose (and therefore alpha particle fluence) to cells in the human and animal tracheobronchial tree that is pertinent to induction of bronchogenic carcinoma from inhaled radon daughters. The dosimetry has been extended to include organs other than the lung

  20. Spatio-Temporal Variations and Source Apportionment of Water Pollution in Danjiangkou Reservoir Basin, Central China

    OpenAIRE

    Pan Chen; Lan Li; Hongbin Zhang

    2015-01-01

    Understanding the spatio-temporal variation and the potential source of water pollution could greatly improve our knowledge of human impacts on the environment. In this work, data of 11 water quality indices were collected during 2012–2014 at 10 monitoring sites in the mainstream and major tributaries of the Danjiangkou Reservoir Basin, Central China. The fuzzy comprehensive assessment (FCA), the cluster analysis (CA) and the discriminant analysis (DA) were used to assess the water pollutio...

  1. Characteristics, toxicity, and source apportionment of polycylic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea

    Energy Technology Data Exchange (ETDEWEB)

    Dong, T.T.T.; Lee, B.K. [University of Ulsan, Ulsan (Republic of Korea). Dept. of Civil & Environmental Engineering

    2009-03-15

    This study identified concentrations, molecular distributions, toxicities, and sources of polycyclic aromatic hydrocarbons (PAHs) in road dust from different areas of Ulsan, the largest industrial city in Korea. The total PAH concentrations in industrial areas were dependent on industrial emissions and vehicular exhaust, while those in urban areas were mainly dependent on traffic density, sampling site location, and accumulation of pollutants or road dust. The PAH concentration of each particle size group increased with decreasing particle size. This may be because of the higher surface area available for deposition or coating of PAHs in road dust with smaller particle sizes. The molecular distributions of PAHs among the sites in the petrochemical area and heavy traffic area were similar because of the similarities in their emission sources. The toxic equivalent concentrations (TEQs) of PAHs in the road dust ranged from 0.93 {mu}g/g to 16.74 {mu}g/g in industrial areas and from 4.37 {mu}g/g to 68.84 {mu}g/g in urban areas. The correlation coefficient of total PAH concentration and TEQ in urban areas was 0.98, which was much higher than that in industrial areas where it was 0.75. Principal component analysis showed that PAHs in road dust from Ulsan originate from four main sources: diesel vehicular emissions, oil combustion, gasoline vehicular emissions, and coal combustion.

  2. Characteristics, toxicity, and source apportionment of polycylic aromatic hydrocarbons (PAHs) in road dust of Ulsan, Korea.

    Science.gov (United States)

    Dong, Trang T T; Lee, Byeong-Kyu

    2009-03-01

    This study identified concentrations, molecular distributions, toxicities, and sources of polycylic aromatic hydrocarbons (PAHs) in road dust from different areas of Ulsan, the largest industrial city in Korea. The total PAH concentrations in industrial areas were dependent on industrial emissions and vehicular exhaust, while those in urban areas were mainly dependent on traffic density, sampling site location, and accumulation of pollutants or road dust. The PAH concentration of each particle size group increased with decreasing particle size. This may be because of the higher surface area available for deposition or coating of PAHs in road dust with smaller particle sizes. The molecular distributions of PAHs among the sites in the petrochemical area and heavy traffic area were similar because of the similarities in their emission sources. The toxic equivalent concentrations (TEQs) of PAHs in the road dust ranged from 0.93 microg/g to 16.74 microg/g in industrial areas and from 4.37 microg/g to 68.84 microg/g in urban areas. The correlation coefficient of total PAH concentration and TEQ in urban areas was 0.98, which was much higher than that in industrial areas where it was 0.75. Principal component analysis showed that PAHs in road dust from Ulsan originate from four main sources: diesel vehicular emissions, oil combustion, gasoline vehicular emissions, and coal combustion. PMID:19103459

  3. Spatial distribution and source apportionment of PFASs in surface sediments from five lake regions, China

    Science.gov (United States)

    Qi, Yanjie; Huo, Shouliang; Xi, Beidou; Hu, Shibin; Zhang, Jingtian; He, Zhuoshi

    2016-01-01

    Perfluoroalkyl substances (PFASs) have been found in environment globally. However, studies on PFAS occurrence in sediments of lakes or reservoirs remain relatively scarce. In this study, two hundred and sixty-two surface sediment samples were collected from forty-eight lakes and two reservoirs all over China. Average PFAS concentrations in surface sediments from each lake or reservoir varied from 0.086 ng/g dw to 5.79 ng/g dw with an average of 1.15 ng/g dw. Among five lake regions, average PFAS concentrations for the lakes from Eastern Plain Region were the highest. Perfluorooctanoic acid, perfluoroundecanoic acid and perfluorooctane sulfonic acid (PFOS) were the predominant PFASs in surface sediments. The significant positive correlations between PFAS concentrations and total organic carbon, total nitrogen and total phosphorus contents in sediments revealed the influences of sedimentary characteristics on PFAS occurrence. A two-dimensional hierarchical cluster analysis heat map was depicted to analyze the possible origins of sediments and individual PFAS. The food-packaging, textile, electroplating, firefighting and semiconductor industry emission sources and the precious metals and coating industry emission sources were identified as the main sources by two receptor models, with contributions of 77.7 and 22.3% to the total concentrations of C4-C14- perfluoroalkyl carboxylic acids and PFOS, respectively. PMID:26947748

  4. Occurrence and source apportionment of PAHs in highly vulnerable karst system.

    Science.gov (United States)

    Shao, Yixian; Wang, Yanxin; Xu, Xiaoqing; Wu, Xiao; Jiang, Zhou; He, Shanshan; Qian, Kun

    2014-08-15

    The concentration and spatial distribution of polycyclic aromatic hydrocarbons (PAHs) in topsoil, groundwater and groundwater suspended solids (SS) at Guozhuang karst water system of northern China were investigated. The total concentration of PAHs ranged from 622 to 87,880 ng/g dry weight in topsoil, from 4739 to 59,314 ng/g dry weight in SS, and from 2137 to 9037 ng/L in groundwater, with mean values of 17,174 ng/g, 11,990 ng/g and 5020 ng/L, respectively. High concentrations of PAHs were mainly observed in the coal mining industrial area and the discharge area. The composition of PAHs indicated that low molecular weight PAHs were predominant in groundwater samples, the content of medium molecular weight PAHs was elevated in SS, and carcinogenic high molecular weight PAHs were frequently detected in topsoil. The high contents of low-medium molecular weight PAHs in groundwater and SS suggested relatively recent local sources of PAHs that were transported into the aquifer via leakage of contaminated surface water and/or infiltration of PAH-containing precipitation. The results of evaluating sources of PAHs using ratios of specific PAH compounds showed that PAHs mainly originated from coal and wood combustion. Furthermore, five sources were identified by positive matrix factorization (PMF) model, and the contribution to the total loadings of groundwater PAHs were: 2% for unburnt oil, 32% for coal combustion, 22% for vehicle emission, 27% for biomass combustion and 18% for coke production, respectively. Furthermore, strong correlations of total PAHs with total organic carbon (TOC) in topsoil indicated co-emission of PAHs and TOC. Poor correlations of PAHs with dissolved organic carbon (DOC) in groundwater indicated that other factors exert stronger influences. Therefore, PAHs might have posed a major threat to the quality of potable groundwater in Guozhuang karst water system. PMID:24852613

  5. Fine particulate matter in the tropical environment: monsoonal effects, source apportionment, and health risk assessment

    OpenAIRE

    M. F. Khan; Latif, M. T.; W. H. Saw; N. Amil; Nadzir, M. S. M.; Sahani, M.; N. M. Tahir; Chung, J. X.

    2016-01-01

    The health implications of PM2.5 in the tropical region of Southeast Asia (SEA) are significant as PM2.5 can pose serious health concerns. PM2.5 concentration and sources here are strongly influenced by changes in the monsoon regime from the south-west quadrant to the north-east quadrant in the region. In this work, PM2.5 samples were collected at a semi-urban area using a high-volume air sampler at different seasons on 24 h basis. Analysis of trace elements and water-sol...

  6. [Source Contribution Analysis of the Fine Particles in Shanghai During a Heavy Haze Episode in December, 2013 Based on the Particulate Matter Source Apportionment Technology].

    Science.gov (United States)

    Li, Li; An, Jing-yu; Yan, Ru-sha

    2015-10-01

    The haze pollution caused by high PM2.5 concentrations has become one of the major environmental issues restricting urban and regional sustainable development in China in recent years. Therefore, the diagnosis of the pollution sources of PM2.5 and its major components in a scientific and efficient way is of great significance both scientifically and theoretically. A rare heavy haze pollution event occurred in Shanghai and the surrounding Yangtze River Delta in early December, 2013, that the hourly PM2.5 concentration reached 640 μg x m(-3). In this study, we analyzed the three typical episodes that occurred in Shanghai during this period. The particulate matter source apportionment technology (PSAT) was applied to study the source contributions to PM2.5 and its major components. Results showed that NO3-(2.5) were mostly contributed by industrial boilers and kilns, transportation and power plants. Comparatively, most of the SO4(2-) 2.5 came from industry and transport sectors. During the three episodes including haze, foggy haze and transport, local emissions contributed 35.3%, 44.8%, 22.7%, while super-regional transport accounted for 42.0%, 41.1% and 59.8% to PM2.5, respectively. In the YRD modeling domain, fugitive dust, industrial processing, volatile source, industrial boilers and kilns and transport were the major contributors to high concentrations of PM2.5, with the average contributions of 25.1%, 14.9%, 15.8%, 13.7% and 15.9%, respectively. Results showed that the very heavy haze pollution is usually not caused by a single city, the regional joint pollution control is of great importance to relieve the pollution level. PMID:26841584

  7. Spatio-Temporal Variations and Source Apportionment of Water Pollution in Danjiangkou Reservoir Basin, Central China

    Directory of Open Access Journals (Sweden)

    Pan Chen

    2015-05-01

    Full Text Available Understanding the spatio-temporal variation and the potential source of water pollution could greatly improve our knowledge of human impacts on the environment. In this work, data of 11 water quality indices were collected during 2012–2014 at 10 monitoring sites in the mainstream and major tributaries of the Danjiangkou Reservoir Basin, Central China. The fuzzy comprehensive assessment (FCA, the cluster analysis (CA and the discriminant analysis (DA were used to assess the water pollution status and analyze its spatio-temporal variation. Ten sites were classified by the high pollution (HP region and the low pollution (LP region, while 12 months were divided into the wet season and the dry season. It was found that the HP region was mainly in the small tributaries with small drainage areas and low average annual discharges, and it was also found that most of these rivers went through urban areas with industrial and domestic sewages input into the water body. Principal component analysis/factor analysis (PCA/FA was applied to reveal potential pollution sources, whereas absolute principal component score-multiple linear regression (APCS-MLR was used to identify their contributions to each water quality variable. The study area was found as being generally affected by industrial and domestic sewage. Furthermore, the HP region was polluted by chemical industries, and the LP region was influenced by agricultural and livestock sewage.

  8. Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model

    International Nuclear Information System (INIS)

    China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. In this study, China's Hg emission inventory is updated to 2007 and applied in the GEOS-Chem model to simulate the Hg concentrations and depositions in China. Results indicate that simulations agree well with observed background Hg concentrations. The anthropogenic sources contributed 35–50% of THg concentration and 50–70% of total deposition in polluted regions. Sensitivity analysis was performed to assess the impacts of mercury emissions from power plants, non-ferrous metal smelters and cement plants. It is found that power plants are the most important emission sources in the North China, the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) while the contribution of non-ferrous metal smelters is most significant in the Southwest China. The impacts of cement plants are significant in the YRD, PRD and Central China. - Highlights: • China's anthropogenic mercury emission was 643.1 t in 2007. • GEOS-Chem model well reproduces the background Hg concentrations. • Anthropogenic emissions contribute 35–50% of Hg concentrations in polluted regions. • The priorities for mercury control in polluted regions are identified. - Anthropogenic Hg emissions are updated and their impacts on atmospheric mercury concentrations and depositions are quantified for China

  9. Source apportionment of DDTs in maricultured fish: a modeling study in South China.

    Science.gov (United States)

    Fang, Shu-Ming; Bao, Lian-Jun; Yiruhan; Zeng, Eddy Y

    2016-04-01

    Fish is one of the most important nutrition sources for humanity. Contaminant exposure risk in fish farming will eventually deliver to the crowd through diet. China is the largest fish producing as well as exporting country, where mariculture plays an important role in fish production, especially in South China. Previous investigations indicated that a variety of compartments in farming areas of South China Sea were polluted by persistent organic pollutants, including DDT (dichlorodiphenyltrichloroethane) and its derivatives, some of which is designated as DDTs. In the present study, Hailing Bay and Daya Bay of Guangdong Province, China, were selected as the study sites and DDTs as the target compounds. A fish enrichment model was developed to assess the relative contributions of various pathways to the mass loadings of DDTs in the fish. Average concentrations (and concentration ranges) of DDTs in various environmental compartments of Hailing Bay and Daya Bay were included in modeling and analysis. Modeling results indicated that fish food and seawater contributed approximately the same proportions for the DDTs in maricultured fish. Antifouling paint was supposed to be the primary source of water DDTs in mariculture zone of Hailing Bay and Daya Bay, which contributed 69 % of the total DDTs to the mariculture water. We suggest that in order to protect people from consuming highly contaminated maricuture zone fish, the most effective and feasible methods are using environment-friendly antifouling paint and applying less polluted fish food in the fish reproduction process. PMID:26081772

  10. Source Apportionment of Stack Emissions from Research and Development Facilities Using Positive Matrix Factorization

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, Marcel Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larson, Timothy V. [Univ. of Washington, Seattle, WA (United States)

    2014-08-19

    Emissions from research and development (R&D) facilities are difficult to characterize due to the wide variety of processes used, changing nature of research, and large number of chemicals. Positive matrix factorization (PMF) was applied to volatile organic compounds (VOCs) concentrations measured in the main exhaust stacks of four different R&D buildings to identify the number and composition of major contributing sources. PMF identified from 9-11 source-related factors contributing to the stack emissions depending on the building. The factors that were similar between buildings were major contributors to trichloroethylene (TCE), acetone, and ethanol emissions. Several other factors had similar profiles for two or more buildings but not for all four. One factor for each building was a combination of p/m-xylene, o-xylene and ethylbenzene. At least one factor for each building was identified that contained a broad mix of many species and constraints were used in PMF to modify the factors to resemble more closely the off-shift concentration profiles. PMF accepted the constraints with little decrease in model fit. Although the PMF model predicted the profiles of the off-shift samples, the percent of total emissions was under-predicted by the model versus the measured data.

  11. Modeling study of natural emissions, source apportionment, and emission control of atmospheric mercury

    Science.gov (United States)

    Shetty, Suraj K.

    Mercury (Hg) is a toxic pollutant and is important to understand its cycling in the environment. In this dissertation, a number of modeling investigations were conducted to better understand the emission from natural surfaces, the source-receptor relationship of the emissions, and emission reduction of atmospheric mercury. The first part of this work estimates mercury emissions from vegetation, soil and water surfaces using a number of natural emission processors and detailed (LAI) Leaf Area Index data from GIS (Geographic Information System) satellite products. East Asian domain was chosen as it contributes nearly 50% of the global anthropogenic mercury emissions into the atmosphere. The estimated annual natural mercury emissions (gaseous elemental mercury) in the domain are 834 Mg yr-1 with 462 Mg yr-1 contributing from China. Compared to anthropogenic sources, natural sources show greater seasonal variability (highest in simmer). The emissions are significant, sometimes dominant, contributors to total mercury emission in the regions. The estimates provide possible explanation for the gaps between the anthropogenic emission estimates based on activity data and the emission inferred from field observations in the regions. To understand the contribution of domestic emissions to mercury deposition in the United States, the second part of the work applies the mercury model of Community Multi-scale Air Quality Modeling system (CMAQ-Hg v4.6) to apportion the various emission sources attributing to the mercury wet and dry deposition in the 6 United States receptor regions. Contributions to mercury deposition from electric generating units (EGU), iron and steel industry (IRST), industrial point sources excluding EGU and IRST (OIPM), the remaining anthropogenic sources (RA), natural processes (NAT), and out-of-boundary transport (BC) in domain was estimated. The model results for 2005 compared reasonably well to field observations made by MDN (Mercury Deposition Network

  12. Source apportionment and air quality impact assessment studies in Beijing/China

    Science.gov (United States)

    Suppan, P.; Schrader, S.; Shen, R.; Ling, H.; Schäfer, K.; Norra, S.; Vogel, B.; Wang, Y.

    2012-04-01

    More than 15 million people in the greater area of Beijing are still suffering from severe air pollution levels caused by sources within the city itself but also from external impacts like severe dust storms and long range advection from the southern and central part of China. Within this context particulate matter (PM) is the major air pollutant in the greater area of Beijing (Garland et al., 2009). PM did not serve only as lead substance for air quality levels and therefore for adverse health impact effects but also for a strong influence on the climate system by changing e.g. the radiative balance. Investigations on emission reductions during the Olympic Summer Games in 2008 have caused a strong reduction on coarser particles (PM10) but not on smaller particles (PM2.5). In order to discriminate the composition of the particulate matter levels, the different behavior of coarser and smaller particles investigations on source attribution, particle characteristics and external impacts on the PM levels of the city of Beijing by measurements and modeling are performed: Examples of long term measurements of PM2.5 filter sampling in 2005 with the objectives of detailed chemical (source attribution, carbon fraction, organic speciation and inorganic composition) and isotopic analyses as well as toxicological assessment in cooperation with several institutions (Karlsruhe Institute of Technology (IfGG/IMG), Helmholtz Zentrum München (HMGU), University Rostock (UR), Chinese University of Mining and Technology Beijing, CUMTB) will be discussed. Further experimental studies include the operation of remote sensing systems to determine continuously the MLH (by a ceilometer) and gaseous air pollutants near the ground (by DOAS systems) as well as at the 320 m measurement tower (adhesive plates at different heights for passive particle collection) in cooperation with the Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences (CAS). The influence of the MLH on

  13. Better constraints on sources of carbonaceous aerosols using a combined 14C – macro tracer analysis in a European rural background site

    Directory of Open Access Journals (Sweden)

    S. Henne

    2011-06-01

    burning and fossil sources. This indicates that the oxidation of semi-volatile and intermediate volatility organic compounds co-emitted with primary organics is a significant source of SOA, as suggested by recent model results and Aerosol Mass Spectrometer measurements. Comparison with previous global model simulations, indicates a strong underestimate of wintertime primary aerosol emissions in this region. The comparison of source apportionment results in different urban and rural areas showed that the sampling site was mainly affected by local aerosol sources during winter and regional air masses from the nearby Po Valley in summer. This observation was further confirmed by back-trajectory analysis applying the Potential Source Contribution Function method to identify potential source regions.

  14. Source apportionment of size segregated fine/ultrafine particle by PMF in Beijing

    Science.gov (United States)

    Tan, Ji-hua; Duan, Jing-chun; Chai, Fa-he; He, Ke-bin; Hao, Ji-Ming

    2014-03-01

    Considering the adverse health effects to human body, the number concentration of atmospheric PM (particulate material) is more important than the mass concentration. CO, NO, NO2, SO2 and number concentrations of PM were obtained from a remote site (Miyun), a roadside site (North Fourth Ring Road) and an urban residential site (Tsinghua University) in Beijing in winter. The size distribution and the possible sources of number concentrations were examined using EPA PMF (positive matrix factorization) model. A data set of totally 9610 of number concentration with the size range of 0.028 μm to 0.948 μm was included in the PMF analysis. The highest total particle number, mass and area of fine particles concentrations were observed at the North Fourth Ring Road site and the lowest were observed at Miyun site. Four factors were identified at Miyun site, as Factor 1 and Factor 4 may be related to long distance transportation, and Factor 2 and Factor 3 may be assigned as coal combustion and locomotive emission nearby, respectively; three factors were identified at North Fourth Ring Road, of which Factor 1 and Factor 3 are traffic related and Factor 2 may be coal combustion related. Compared with Factor 1, the contributions of Factor 3 to NOx and SO2 were 4-5 times higher. Additionally, Factor 3 was also a major contributor to CO. It suggested that Factor 1 and Factor 3 had the same source emission of motor vehicle, but different engine types, fuel types or exhaust treatments. Three factors were identified at Tsinghua site, as Factor 1 may come from aging vehicle emission, and Factor 2 and Factor 3 may be coal combustion related.

  15. An integrated SOM-based multivariate approach for spatio-temporal patterns identification and source apportionment of pollution in complex river network

    International Nuclear Information System (INIS)

    In this study, three classification techniques (self-organizing maps, hierarchical cluster analysis and discriminant analysis) were applied to identify spatial water pollution levels, temporal water quality response delay phenomena (WQRDP), source pollution types (point, urban non-point, or agricultural non-point). Two models (principal components analysis (PCA), and positive matrix factorization (PMF)) were used to do the further quantitative source apportionment studying. The 27 inflow rivers in spatial were divided into three pollution levels (A, high; B, medium; C, low). The primary pollution pattern in spatial Clusters A, B, and C were point, urban non-point and agricultural non-point separately, in consideration of simultaneous land use types. Source apportionment results identified five typical factors in spatial Cluster A and six typical factors in spatial Cluster B and C as responsible for the data structure, explaining 80%–90% of the total variance of the dataset. - Highlights: ► The nutrients pollution level in spatial Clusters A, B, and C were high, medium and low respectively. ► The WQRDP mainly caused by rivers internal pollution and surface detention. ► The non-point source pollution was a primary factor in the entire study watershed. ► Organic wastewater is the primary sources of pollution. ► NO3− pollution was prominent in spatial Cluster C. - Spatio-temporal combinational analysis provides a powerful mean to identify source pollution types and the non-point source pollution was a primary factor in the study watershed.

  16. A large source of low-volatility secondary organic aerosol

    Science.gov (United States)

    Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard; Sipilä, Mikko; Junninen, Heikki; Pullinen, Iida; Springer, Monika; Rubach, Florian; Tillmann, Ralf; Lee, Ben; Lopez-Hilfiker, Felipe; Andres, Stefanie; Acir, Ismail-Hakki; Rissanen, Matti; Jokinen, Tuija; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Nieminen, Tuomo; Kurtén, Theo; Nielsen, Lasse B.; Jørgensen, Solvejg; Kjaergaard, Henrik G.; Canagaratna, Manjula; Maso, Miikka Dal; Berndt, Torsten; Petäjä, Tuukka; Wahner, Andreas; Kerminen, Veli-Matti; Kulmala, Markku; Worsnop, Douglas R.; Wildt, Jürgen; Mentel, Thomas F.

    2014-02-01

    Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.

  17. Contaminant source apportionment by PIMMS lead isotope analysis and SEM-image analysis.

    Science.gov (United States)

    McGill, R A; Pearce, J M; Fortey, N J; Watt, J; Ault, L; Parrish, R R

    2003-03-01

    By combining scanning electron microscopy (SEM) image analysis and laser ablation plasma ionisation multi-collector mass spectrometry (LA-PIMMS), high precision lead isotope analyses can be obtained from individual metal-rich particles. Soils from Wolverhampton and Nottingham were sampled on the basis of high Pb concentrations or brownfield location. Pressed powder pellets of each were rastered by LA-PIMMS to obtain a bulk Pb-isotope signature. The results plot along an apparent mixing line between the major sources of lead contamination in the UK, that is UK ore deposits and alkyl-lead from petrol additives (Australian ore). Two particularly lead-rich soils were chosen to investigate the lead distribution and isotope variability between size and density fractions. The fine-grained and low-density fractions contained most of the lead and have Pb-isotope ratios comparable with the bulk soils. By contrast, the small, lead-enriched denser fractions contained only a minor proportion of the total lead but Pb-isotope signatures indicating relative enrichment in one or other of the end-members from the mixing line. Further characterisation of individual Pb-rich grains is in progress. PMID:12901075

  18. Application of Receptor Models on Water Quality Data in Source Apportionment in Kuantan River Basin

    Directory of Open Access Journals (Sweden)

    Mohd Fahmi Mohd Nasir

    2012-12-01

    Full Text Available Recent techniques in the management of surface river water have been expanding the demand on the method that can provide more representative of multivariate data set. A proper technique of the architecture of artificial neural network (ANN model and multiple linear regression (MLR provides an advance tool for surface water modeling and forecasting. The development of receptor model was applied in order to determine the major sources of pollutants at Kuantan River Basin, Malaysia. Thirteen water quality parameters were used in principal component analysis (PCA and new variables of fertilizer waste, surface runoff, anthropogenic input, chemical and mineral changes and erosion are successfully developed for modeling purposes. Two models were compared in terms of efficiency and goodness-of-fit for water quality index (WQI prediction. The results show that APCS-ANN model gives better performance with high R2 value (0.9680 and small root mean square error (RMSE value (2.6409 compared to APCS-MLR model. Meanwhile from the sensitivity analysis, fertilizer waste acts as the dominant pollutant contributor (59.82% to the basin studied followed by anthropogenic input (22.48%, surface runoff (13.42%, erosion (2.33% and lastly chemical and mineral changes (1.95%. Thus, this study concluded that receptor modeling of APCS-ANN can be used to solve various constraints in environmental problem that exist between water distribution variables toward appropriate water quality management.

  19. Distribution and source apportionment studies of heavy metals in soil of cotton/wheat fields.

    Science.gov (United States)

    Rafique, Nazia; Tariq, Saadia R

    2016-05-01

    Heavy metals enriched agricultural soils have been the subject of great concern because these metals have potential to be transferred to the soil solution and afterward accumulated in food chain. To study the trace metal persistence in crop soil, 90 representative soil samples were collected and analyzed for heavy metal (As, Cd, Cu, Fe, Mn, Ni, Pb, and Zn) and anions (chloride, nitrates, phosphates and sulfates). Cluster and factor analysis techniques were used for the source identification of these excessive heavy metal levels and ecological risk was determined with potential ecological risk assessment. The degree of enrichment of eight studied heavy metals in comparison with the corresponding background levels decreased in order: Cd > Pb > Fe > Ni > Mn > As > Cu ~ Zn. Arsenic and cadmium exhibited 1.30- and 1.64-fold exceeded levels than threshold limits set by National environment quality standards, respectively. Cd in cotton field's soil may lead to higher potential risk than other heavy metals. On overall basis, the cumulative mean potential ecological risk for the district (207.75) corresponded to moderate risk level with higher contributions from As and Pb especially from Cd. Cadmium formed strong positive correlation with phosphate content of soil at p pesticides. PMID:27115422

  20. Source apportionment of sedimentary hydrocarbons in the Segara Anakan Nature Reserve, Indonesia.

    Science.gov (United States)

    Syakti, Agung Dhamar; Hidayati, Nuning Vita; Hilmi, Endang; Piram, Anne; Doumenq, Pierre

    2013-09-15

    The study aimed to determine the spatial distribution of n-alkanes and polycyclic aromatic hydrocarbons (PAHs) in surface sediments of the Segara Anakan nature reserve and their potential origins using gas chromatography-mass spectrometry. Total alkane concentrations ranged from 3755 to 129,027 μg kg(-1), and the concentrations of 16 PAHs ranged from 375 to 29,517 μg kg(-1). The ratios of specific n-alkanes (e.g., CPI(24-34), WaxC(n), and Paq), including a new proposed index, terrestrial-marine discriminant (TMD), as well as the ratios of selected PAHs (e.g., Ant/∑178, Fl/∑202, BaAnt/∑228, and IPyr/∑276), showed that the sources of hydrocarbons in the sediments were generally biogenic, including both terrigenous and marine, with an anthropogenic pyrolytic contribution (petrogenic and biogenic combustion). For the environmental risk assessment, a sediment quality guideline (SQGs) comparison indicated that the station risk levels ranged from low to medium-low, except for R6, which has a greater impact on the ecological risk for marine organisms. PMID:23896405

  1. Modelling street level PM10 concentrations across Europe: source apportionment and possible futures

    Directory of Open Access Journals (Sweden)

    G. Kiesewetter

    2014-07-01

    Full Text Available Despite increasing emission controls, particulate matter (PM has remained a critical issue for European air quality in recent years. The various sources of PM, both from primary particulate emissions as well as secondary formation from precursor gases, make this a complex problem to tackle. In order to allow for credible predictions of future concentrations under policy assumptions, a modelling approach is needed that considers all chemical processes and spatial dimensions involved, from long-range transport of pollution to local emissions in street canyons. Here we describe a modelling scheme which has been implemented in the GAINS integrated assessment model to assess compliance with PM10 (PM with aerodynamic diameter 10 across Europe. Furthermore, we analyse the predicted evolution of PM10 concentrations in the European Union until 2030 under different policy scenarios. Significant improvements in ambient PM10 concentrations are expected assuming successful implementation of already agreed legislation; however, these will not be large enough to ensure attainment of PM10 limit values in hot spot locations such as Southern Poland and major European cities. Remaining issues are largely eliminated in a scenario applying the best available emission control technologies to the maximal technically feasible extent.

  2. Spatio-temporal patterns and source apportionment of pollution in Qiantang River (China) using neural-based modeling and multivariate statistical techniques

    Science.gov (United States)

    Su, Shiliang; Zhi, Junjun; Lou, Liping; Huang, Fang; Chen, Xia; Wu, Jiaping

    Characterizing the spatio-temporal patterns and apportioning the pollution sources of water bodies are important for the management and protection of water resources. The main objective of this study is to describe the dynamics of water quality and provide references for improving river pollution control practices. Comprehensive application of neural-based modeling and different multivariate methods was used to evaluate the spatio-temporal patterns and source apportionment of pollution in Qiantang River, China. Measurement data were obtained and pretreated for 13 variables from 41 monitoring sites for the period of 2001-2004. A self-organizing map classified the 41 monitoring sites into three groups (Group A, B and C), representing different pollution characteristics. Four significant parameters (dissolved oxygen, biochemical oxygen demand, total phosphorus and total lead) were identified by discriminant analysis for distinguishing variations of different years, with about 80% correct assignment for temporal variation. Rotated principal component analysis (PCA) identified four potential pollution sources for Group A (domestic sewage and agricultural pollution, industrial wastewater pollution, mineral weathering, vehicle exhaust and sand mining), five for Group B (heavy metal pollution, agricultural runoff, vehicle exhaust and sand mining, mineral weathering, chemical plants discharge) and another five for Group C (vehicle exhaust and sand mining, chemical plants discharge, soil weathering, biochemical pollution, mineral weathering). The identified potential pollution sources explained 75.6% of the total variances for Group A, 75.0% for Group B and 80.0% for Group C, respectively. Receptor-based source apportionment was applied to further estimate source contributions for each pollution variable in the three groups, which facilitated and supported the PCA results. These results could assist managers to develop optimal strategies and determine priorities for river

  3. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China

    Science.gov (United States)

    Shao, Ping; An, Junlin; Xin, Jinyuan; Wu, Fangkun; Wang, Junxiu; Ji, Dongsheng; Wang, Yuesi

    2016-07-01

    Volatile organic compounds (VOCs) were continuously observated in a northern suburb of Nanjing, a typical industrial area in the Yangtze River Delta, in a summer observation period from 15th May to 31st August 2013. The average concentration of total VOCs was (34.40 ± 25.20) ppbv, including alkanes (14.98 ± 12.72) ppbv, alkenes (7.35 ± 5.93) ppbv, aromatics (9.06 ± 6.64) ppbv and alkynes (3.02 ± 2.01) ppbv, respectively. Source apportionment via Positive Matrix Factorization was conducted, and six major sources of VOCs were identified. The industry-related sources, including industrial emissions and industrial solvent usage, occupied the highest proportion, accounting for about 51.26% of the VOCs. Vehicular emissions occupied the second highest proportion, accounting for about 34.08%. The rest accounted for about 14.66%, including vegetation emission and liquefied petroleum gas/natural gas usage. Contributions of VOCs to photochemical O3 formation were evaluated by the application of a detailed chemical mechanism model (NCAR MM). Alkenes were the dominant contributors to the O3 photochemical production, followed by aromatics and alkanes. Alkynes had a very small impact on photochemical O3 formation. Based on the outcomes of the source apportionment, a sensitivity analysis of relative O3 reduction efficiency (RORE), under different source removal regimes such as using the reduction of VOCs from 10% to 100% as input, was conducted. The RORE was the highest (~ 20%-40%) when the VOCs from solvent-related sources decreased by 40%. The highest RORE values for vegetation emissions, industrial emissions, vehicle exhaust, and LPG/NG usage were presented in the scenarios of 50%, 80%, 40% and 40%, respectively.

  4. Bio aerosol Generation at wastewater treatment plants: Identification of main bio aerosols sources

    International Nuclear Information System (INIS)

    Typical operations taking place at wastewater treatment plants, especially those involving aeration and mechanical agitation of raw wastewater, represent one of the main sources of bio aerosols that, if inhaled, could pose a biologic hazard to site workers and local residents. Six different wastewater treatment plants from southeast Spain were monitories in order to identify the main bio aerosol sources and to evaluate the airborne microorganisms levels to which workers may be exposed to. Air samples were taken from selected locations by using a single stage impactor. (Author)

  5. Chemical composition of PM2.5 particles in Salamanca, Guanajuato Mexico: Source apportionment with receptor models

    Science.gov (United States)

    Herrera Murillo, Jorge; Campos Ramos, Arturo; Ángeles García, Felipe; Blanco Jiménez, Salvador; Cárdenas, Beatriz; Mizohata, Akira

    2012-04-01

    The National Institute of Ecology, through Management General for Environmental Research and Training (DGCENICA) carried out a sampling campaign where a total of 21 elements were determined in 140 PM2.5 samples from one sampling site located in the city of Salamanca, Guanajuato-Mexico between November 2006 and November 2007. The annual average PM2.5 concentration was 45 μg/m3 almost three times the Mexican Annual standard for PM2.5. Mineral, organic and elemental carbon were the most important components present in particles PM2.5. Two advanced receptor models, UNMIX and positive matrix factorization (PMF) were used for PM2.5 source identification. Four and six sources were identified by UNMIX and PMF, respectively, from a combined dataset including 15 chemical species. Source categories were determined based on both, component abundances in the source profiles, and their temporal characteristics. Overall, different sources were identified as the major contributors: heavy fuels combustion, traditional brick production-agricultural burning, crustal, road traffic and secondary organic aerosols.

  6. Better constraints on sources of carbonaceous aerosols using a combined 14C – macro tracer analysis in a European rural background site

    Directory of Open Access Journals (Sweden)

    S. Henne

    2011-01-01

    Full Text Available The source contributions to carbonaceous PM2.5 aerosol were investigated at a European background site at the edge of the Po Valley, in Northern Italy, during the period January–December 2007. Carbonaceous aerosol was described as the sum of eight source components: primary (1 and secondary (2 biomass burning organic carbon, biomass burning elemental carbon (3, primary (4 and secondary (5 fossil fuel burning organic carbon, fossil fuel burning elemental carbon (6, primary (7 and secondary (8 biogenic organic carbon. The concentration of each component was quantified using a set of macro tracers (organic carbon OC, elemental carbon EC, and levoglucosan, micro tracers (arabitol and mannitol, and 14C measurements. This was the first time that 14C measurements were performed on a long time series of data able to represent the entire annual cycle. This set of 6 tracers, together with assumed uncertainty ranges of the ratios of OC-to-EC, and the fraction of modern carbon in the 8 source categories, provides strong constraints to the source contributions to carbonaceous aerosol. The uncertainty of contributions was assessed with a Quasi-Monte Carlo (QMC method accounting for the variability of OC and EC emission factors, and the uncertainty of reference fractions of modern carbon. During winter biomass burning composed 50% of the total carbon (TC concentration, while in summer secondary biogenic OC accounted for 45% of TC. The contribution of primary biogenic aerosol particles was negligible during the entire year. Moreover, aerosol associated with fossil fuel burning represented 26% and 43% of TC in winter and summer, respectively. The comparison of source apportionment results in different urban and rural areas showed that the sampling site was mainly affected by local aerosol sources during winter and regional air masses from the nearby Po Valley in summer. This observation was further confirmed by back-trajectory analysis applying the Potential

  7. Source apportionment of air pollution in China: Extending the usefulness of receptor modeling by combining multivariate and chemical mass balance models

    International Nuclear Information System (INIS)

    The research explores the possibility of using a two step method of identifying and quantifying air pollution emissions in an urban environment. The procedures uses a mathematical model called Target Transformation Factor Analysis (TTFA) to estimate source profiles using ambient trace element air concentration data. A source profile is analogous to a fingerprint since it is unique to each source of air pollution. The profiles estimated by TTFA are then employed in a Chemical Mass Balance (CMB) source apportionment analysis for the air shed. Other known sources are estimated using source signatures from the literature. Applying the TTFA and CMB models in this fashion is called receptor modeling. Generically, a receptor model is the combination of measured air pollution concentration data with a numerical technique which apportions the measured air pollution among distinct source types. The results show that TTFA can be used to provide quantitative estimates of air pollution source profiles for an urban center in China. The number of profiles for unique source types was limited for the data set since emissions from certain types of sources co-varied during each sampling day. Consequently, the CMB analyses that applied the TTFA source profiles needed to be supplemented with standard U.S. EPA source profiles

  8. Size-resolved source apportionment of ambient particles by positive matrix factorization at Gosan background site in East Asia

    Science.gov (United States)

    Han, J. S.; Moon, K. J.; Lee, S. J.; Kim, Y. J.; Ryu, S. Y.; Cliff, S. S.; Yi, S. M.

    2006-01-01

    Size- and time-resolved aerosol samples were collected using an eight-stage Davis rotating unit for monitoring (DRUM) sampler from 29 March to 29 May in 2002 at Gosan, Jeju Island, Korea, which is one of the representative background sites in East Asia. These samples were analyzed using synchrotron X-ray fluorescence for 3-h average concentrations of 19 elements consisting of S, Si, Al, Fe, Ca, Cl, Cu, Zn, Ti, K, Mn, Pb, Ni, V, Se, As, Rb, Cr, Br. The size-resolved data sets were then analyzed using the positive matrix factorization (PMF) technique in order to identify possible sources and estimate their contribution to particulate matter mass. PMF analysis uses the uncertainty of the measured data to provide an optimal weighting. Fifteen sources were resolved in eight size ranges (0.07~12 μm) and included continental soil, local soil, sea salt, biomass/biofuel burning, coal combustion, oil heating furnace, residual oil fired boiler, municipal incineration, nonferrous metal source, ferrous metal source, gasoline vehicle, diesel vehicle, copper smelter and volcanic emission. PMF analysis of size-resolved source contributions showed that natural sources represented by local soil, sea salt and continental soil contributed about 79% to the predicted primary particulate matter (PM) mass in the coarse size range (1.15~12 μm). On the other hand, anthropogenic sources such as coal combustion and biomass/biofuel burning contributed about 60% in the fine size range (0.56~2.5 μm). The diesel vehicle source contributed the most in the ultra-fine size range (0.07~0.56 μm) and was responsible for about 52% of the primary PM mass.

  9. Size-resolved source apportionment of ambient particles by positive matrix factorization at Gosan background site in East Asia

    Directory of Open Access Journals (Sweden)

    J. S. Han

    2006-01-01

    Full Text Available Size- and time-resolved aerosol samples were collected using an eight-stage Davis rotating unit for monitoring (DRUM sampler from 29 March to 29 May in 2002 at Gosan, Jeju Island, Korea, which is one of the representative background sites in East Asia. These samples were analyzed using synchrotron X-ray fluorescence for 3-h average concentrations of 19 elements consisting of S, Si, Al, Fe, Ca, Cl, Cu, Zn, Ti, K, Mn, Pb, Ni, V, Se, As, Rb, Cr, Br. The size-resolved data sets were then analyzed using the positive matrix factorization (PMF technique in order to identify possible sources and estimate their contribution to particulate matter mass. PMF analysis uses the uncertainty of the measured data to provide an optimal weighting. Fifteen sources were resolved in eight size ranges (0.07~12 μm and included continental soil, local soil, sea salt, biomass/biofuel burning, coal combustion, oil heating furnace, residual oil fired boiler, municipal incineration, nonferrous metal source, ferrous metal source, gasoline vehicle, diesel vehicle, copper smelter and volcanic emission. PMF analysis of size-resolved source contributions showed that natural sources represented by local soil, sea salt and continental soil contributed about 79% to the predicted primary particulate matter (PM mass in the coarse size range (1.15~12 μm. On the other hand, anthropogenic sources such as coal combustion and biomass/biofuel burning contributed about 60% in the fine size range (0.56~2.5 μm. The diesel vehicle source contributed the most in the ultra-fine size range (0.07~0.56 μm and was responsible for about 52% of the primary PM mass.

  10. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    Science.gov (United States)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2015-06-01

    Aerosol particles were characterized by an Aerodyne aerosol chemical speciation monitor along with various collocated instruments in Beijing, China, to investigate the role of fireworks (FW) and secondary aerosol in particulate pollution during the Chinese Spring Festival of 2013. Three FW events, exerting significant and short-term impacts on fine particles (PM2.5), were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW were shown to have a large impact on non-refractory potassium, chloride, sulfate, and organics in submicron aerosol (PM1), of which FW organics appeared to be emitted mainly in secondary, with its mass spectrum resembling that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated the total PM1 mass on average, accounting for 63-82% during nine PEs in this study. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impact of reduced anthropogenic emissions on aerosol chemistry in the city. Primary species showed ubiquitous reductions during the holiday period with the largest reduction being in cooking organic aerosol (OA; 69%), in nitrogen monoxide (54%), and in coal combustion OA (28%). Secondary sulfate, however, remained only slightly changed, and the SOA and the total PM2.5 even slightly increased. Our results have significant implications for controlling local primary source emissions during PEs, e.g., cooking and traffic activities. Controlling these factors might have a limited effect on improving air quality in the megacity of Beijing, due to the dominance of SPM from regional transport in aerosol particle composition.

  11. Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe

    Science.gov (United States)

    Ulevicius, Vidmantas; Byčenkienė, Steigvilė; Bozzetti, Carlo; Vlachou, Athanasia; Plauškaitė, Kristina; Mordas, Genrik; Dudoitis, Vadimas; Abbaszade, Gülcin; Remeikis, Vidmantas; Garbaras, Andrius; Masalaite, Agne; Blees, Jan; Fröhlich, Roman; Dällenbach, Kaspar R.; Canonaco, Francesco; Slowik, Jay G.; Dommen, Josef; Zimmermann, Ralf; Schnelle-Kreis, Jürgen; Salazar, Gary A.; Agrios, Konstantinos; Szidat, Sönke; El Haddad, Imad; Prévôt, André S. H.

    2016-05-01

    In early spring the Baltic region is frequently affected by high-pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB) on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1) was measured by an Aerodyne aerosol chemical speciation monitor (ACSM) and a source apportionment with the multilinear engine (ME-2) running the positive matrix factorization (PMF) model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m-3 and black carbon (BC) up to 17 µg m-3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C) measurements of the elemental (EC) and organic (OC) carbon fractions. Non-fossil organic carbon (OCnf) was the dominant fraction of PM1, with the primary (POCnf) and secondary (SOCnf) fractions contributing 26-44 % and 13-23 % to the total carbon (TC), respectively. 5-8 % of the TC had a primary fossil origin (POCf), whereas the contribution of fossil secondary organic carbon (SOCf) was 4-13 %. Non-fossil EC (ECnf) and fossil EC (ECf) ranged from 13-24 and 7-13 %, respectively. Isotope ratios of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

  12. Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe

    Directory of Open Access Journals (Sweden)

    V. Ulevicius

    2015-09-01

    Full Text Available In early spring the Baltic region is frequently affected by high pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1 was measured by an Aerodyne aerosol chemical speciation monitor (ACSM and a source apportionment with the multilinear engine (ME-2 running the positive matrix factorization (PMF model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m−3 and black carbon (BC up to 17 μg m−3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C measurements of the elemental (EC and organic (OC carbon fractions. Non-fossil organic carbon (OCnf was the dominant fraction of PM1, with the primary (POCnf and secondary (SOCnf fractions contributing 26–44 % and 13–23 % to the TC, respectively. 5–8 % of the TC had a primary fossil origin (POCf, whereas the contribution of fossil secondary organic carbon (SOCf was 4–13 %. Non-fossil EC (ECnf and fossil EC (ECf ranged from 13–24 % and 7–12 %, respectively. Isotope ratio of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

  13. Chemical composition and source apportionment of PM10 and PM2.5 in different functional areas of Lanzhou, China.

    Science.gov (United States)

    Qiu, Xionghui; Duan, Lei; Gao, Jian; Wang, Shulan; Chai, Fahe; Hu, Jun; Zhang, Jingqiao; Yun, Yaru

    2016-02-01

    To elucidate the air pollution characteristics of northern China, airborne PM10 (atmospheric dynamic equivalent diameter≤10μm) and PM2.5 (atmospheric dynamic equivalent diameter≤2.5μm) were sampled in three different functional areas (Yuzhong County, Xigu District and Chengguan District) of Lanzhou, and their chemical composition (elements, ions, carbonaceous species) was analyzed. The results demonstrated that the highest seasonal mean concentrations of PM10 (369.48μg/m(3)) and PM2.5 (295.42μg/m(3)) were detected in Xigu District in the winter, the lowest concentration of PM2.5 (53.15μg/m(3)) was observed in Yuzhong District in the fall and PM10 (89.60μg/m(3)) in Xigu District in the fall. The overall average OC/EC (organic carbon/elemental carbon) value was close to the representative OC/EC ratio for coal consumption, implying that the pollution of Lanzhou could be attributed to the burning of coal. The content of SNA (the sum of sulfate, nitrate, ammonium, SNA) in PM2.5 in Yuzhong County was generally lower than that at other sites in all seasons. The content of SNA in PM2.5 and PM10 in Yuzhong County was generally lower than that at other sites in all seasons (0.24-0.38), indicating that the conversion ratios from precursors to secondary aerosols in the low concentration area was slower than in the area with high and intense pollutants. Six primary particulate matter sources were chosen based on positive matrix factorization (PMF) analysis, and emissions from dust, secondary aerosols, and coal burning were identified to be the primary sources responsible for the particle pollution in Lanzhou. PMID:26969547

  14. Source apportionment of PM10 and PM2.5 in a desert region in northern Chile

    International Nuclear Information System (INIS)

    Estimating contributions of anthropogenic sources to ambient particulate matter (PM) in desert regions is a challenging issue because wind erosion contributions are ubiquitous, significant and difficult to quantify by using source-oriented, dispersion models. A receptor modeling analysis has been applied to ambient PM10 and PM2.5 measured in an industrial zone ∼ 20 km SE of Antofagasta (23.63°S, 70.39°W), a midsize coastal city in northern Chile; the monitoring site is within a desert region that extends from northern Chile to southern Perú. Integrated 24-hour ambient samples of PM10 and PM2.5 were taken with Harvard Impactors; samples were analyzed by X Ray Fluorescence, ionic chromatography (NO3− and SO4=), atomic absorption (Na+, K+) and thermal optical transmission for elemental and organic carbon determination. Receptor modeling was carried out using Positive Matrix Factorization (US EPA Version 3.0); sources were identified by looking at specific tracers, tracer ratios, local winds and wind trajectories computed from NOAA's HYSPLIT model. For the PM2.5 fraction, six contributions were found — cement plant, 33.7 ± 1.3%; soil dust, 22.4 ± 1.6%; sulfates, 17.8 ± 1.7%; mineral stockpiles and brine plant, 12.4 ± 1.2%; Antofagasta, 8.5 ± 1.3% and copper smelter, 5.3 ± 0.8%. For the PM10 fraction five sources were identified — cement plant, 38.2 ± 1.5%; soil dust, 31.2 ± 2.3%; mineral stockpiles and brine plant, 12.7 ± 1.7%; copper smelter, 11.5 ± 1.6% and marine aerosol, 6.5 ± 2.4%. Therefore local sources contribute to ambient PM concentrations more than distant sources (Antofagasta, marine aerosol) do. Soil dust is enriched with deposition of marine aerosol and calcium, sulfates and heavy metals from surrounding industrial activities. The mean contribution of suspended soil dust to PM10 is 50 μg/m3 and the peak daily value is 104 μg/m3. For the PM2.5 fraction, suspended soil dust contributes with an average of 9.3 μg/m3 and a peak daily

  15. Effects of soil dust episodes and mixed fuel sources on source apportionment of PM10 particles in Kuopio, Finland

    Science.gov (United States)

    Hosiokangas, Jari; Ruuskanen, Juhani; Pekkanen, Juha

    A receptor modeling study was carried out in Kuopio, Finland, between January and April 1994. Near the center of town, the daily mean concentrations were measured for PM10, sulphur dioxide, carbon monoxide and Black Smoke. Elemental concentrations of PM10 samples for 38 days were analyzed by ICP-MS. The main sources and their contributions to the measured concentrations of PM10 particles were solved by receptor modeling using a factor analysis-multiple linear regression (FA-MLR) model. Because a dust episode was very strong during two sampling days, the FA analysis was strongly influenced by this episode and did not give main factors. The factor analysis, when the two episode days were omitted, gave credible factors related to the sources in the study area. The four major sources and their estimated contributions to the average PM10 concentration of 27.2 μg m -3 were: soil and street dust 46-48%, heavy fuel oil burning 12-18%, traffic exhaust 10-14%, wood burning ca. 11% and unidentified sources 15-25%. However, during spring dust episode days, with maximum PM10 concentration of 150 μg m -3, the main source of PM10 was soil.

  16. Source apportionment of PM 10 at residential and industrial sites of an urban region of Kolkata, India

    Science.gov (United States)

    Karar, Kakoli; Gupta, A. K.

    2007-03-01

    PM 10 and its chemical species mass concentrations were measured once in a week at residential (Kasba) and industrial (Cossipore) sites of an urban region of Kolkata for a period of 24 h during November 2003 to November 2004. At each monitoring site, 53 sets of daily average PM 10 samples were collected during the study period. Approximately 55% of the monitoring days are weekdays, while 45% are weekends. The PM 10 mass concentrations ranged from 68.2 to 280.6 μg m - 3 at the residential site, and 62.4 to 401.2 μg m - 3 at the industrial site. Polycyclic aromatic hydrocarbon compounds (PAH), fluoranthene (Fl), pyrene (Py), benzo(a)anthracene (BaA), benzo(b)fluoranthene (BbF) and benzo(a)pyrene (BaP) have been analyzed using Gas Chromatoghaphy. Metals in PM 10 deposited on quartz microfibre filter papers were measured using an Inductively Coupled Plasma-Atomic Emission Spectrometer. Chromium (Cr), zinc (Zn), lead (Pb), cadmium (Cd), nickel (Ni), manganese (Mn) and iron (Fe) are the seven toxic trace metals quantified from the measured PM 10 concentrations. Total carbon (TC), inorganic carbon (IC) and organic carbon (OC) were analyzed using a Carbon analyzer. Exposed quartz microfibre filter papers were also analyzed for water-soluble anions of fluoride (F -), chloride (Cl -), nitrate (NO 3-), phosphate (PO 43-) and sulfate (SO 42-) using ion chromatography. In this study, principal component analysis (PCA)/absolute principal component scores (APCS) model was applied to the mass concentrations of PM 10 and its chemical species. Principal component analysis with varimax rotation identified five possible sources; solid waste dumping, vehicular emission, coal combustion, cooking and soil dust at residential site. The extracted possible sources at the industrial site were vehicular emissions, coal combustion, electroplating industry, tyre wear and secondary aerosol. A quantitative estimation by principal component analysis-multiple linear regression (PCA-MLR) model

  17. Studies of aerosol particle formation from various sources using ion and electron beam analytical techniques.

    OpenAIRE

    Gharibi, Arash

    2006-01-01

    The thesis presents the results of studies of aerosol particle formation using ion and electron beam analytical techniques. The sources of aerosol particle formation studied are the following: 1. production of primary aerosol particles in the high Arctic region during summers 2. emission of ultrafine aerosol particles from wear on the road-tire interface 3. emission of aerosol particles from district heating units operating on three commonly-used biofuels. A source...

  18. Chemical composition and sources of organic aerosols over London from the ClearfLo 2012 campaigns

    Science.gov (United States)

    Finessi, Emanuela; Holmes, Rachel; Hopkins, James; Lee, James; Harrison, Roy; Hamilton, Jacqueline

    2014-05-01

    Air quality in urban areas represents a major public health issue with around one third of the European population concentrated in cities and numbers expected to increase at global scale, particularly in developing countries. Particulate matter (PM) represents a primary threat for human health as numerous studies have confirmed the association between increased levels of cardiovascular and respiratory diseases with the exposure to PM. Despite considerable efforts made in improving air quality and progressively stricter emissions regulations, the PM concentrations have not changed much over the past decades for reasons that remain unclear, and highlight that studies on PM source apportionment are required for the formulation of effective policy. We investigated the chemical composition of organic aerosol (OA) collected during two intensive field campaigns held in winter and summer 2012 in the frame of the project Clean air for London (http://www.clearflo.ac.uk/). PM samples were collected both at a city background site (North Kensington) and at a rural site 50 km southeast of London (Detling) with 8 to 24 hours sampling schedule and analysed using off-line methods. Thermal-optical analysis was used to quantify OC-EC components while a suite of soft ionization mass spectrometric techniques was deployed for detailed chemical characterization. Liquid chromatography mass Spectrometry (LC-MSn) was mostly used for the simultaneous detection and quantification of various tracers for both primary and secondary OA sources. Well-established markers for wood burning primary OA like levoglucosan and azelaic acid were quantified together with various classes of nitroaromatics including methyl-nitrocatechols that are potential tracers for wood burning secondary OA. In addition, oxidation products of biogenic VOCs such as isoprene and monoterpenes were also quantified for both seasons and sites. A non-negligible contribution from biogenic SOA to urban OA was found in summertime

  19. Identification of sources of Phoenix aerosol by positive matrix factorization

    Energy Technology Data Exchange (ETDEWEB)

    Ramadan, Z.; Song, X.-H.; Hopke, P.K. [Clarkson University, Potsdam, NY (USA). Depts. of Chemical Engineering and Chemistry

    2000-08-01

    Chemical composition data for fine and coarse particles collected in Phoenix, AZ were analyzed using positive matrix factorization (PMF). The objective was to identify the possible aerosol sources at the sampling site. Two sets of fine particle samples were collected by different samplers. Each of the resulting fine particle data sets was analyzed separately. For each fine particle data set, eight factors were obtained, identified as (1) biomass burning characterized by high concentrations of organic carbon (OC) elemental carbon (EC), and K; (2) wood burning with high concentrations of Na, K, OC and EC; (3) motor vehicles with high concentrations of OC and EC; (4) nonferrous smelting process characterized by Cu, Zn, As and Pb; (5) heavy-duty diesel characterized by high EC, OC, and Mn; (6) sea-salt factor dominated by Na and Cl; (7) soil with high values for Al, Si, Ca, Ti and Fe; and (8) secondary aerosol with SO{sub 4}{sup -2} and OC that may represent coal-fired power plant emissions. The major sources for the fine particles were motor vehicles, vegetation burning factors (biomass and wood burning), and coal-fired power plants. These sources contributed most of the fine aerosol mass by emitting carbonaceous particles, and they have higher contributions in winter. For the coarse particles, the major source contributions were soil and construction (high Ca). These sources also peaked in winter. 20 refs., 14 figs., 3 tabs.

  20. Comparison of PM10 concentrations and metal content in three different sites of the Venice Lagoon: An analysis of possible aerosol sources

    Institute of Scientific and Technical Information of China (English)

    Daniele Contini; Franco Belosi; Andrea Gambaro; Daniela Cesari; Angela Maria Stortini; Maria Chiara Bove

    2012-01-01

    The Venice Lagoon is exposed to atmospheric pollutants from industrial activities,thermoelectric power plants,petrochemical plants,incinerator,domestic heating,ship traffic,glass factories and vehicular emissions on the mainland.In 2005,construction began on the mobile dams (MOSE),one dam for each channel connecting the lagoon to the Adriatic Sea as a barrier against high tide.These construction works could represent an additional source of pollutants.PM10 samples were taken on random days between 2007 and 2010 at three different sites:Punta Sabbioni,Chioggia and Malamocco,located near the respective dam construction worksites.Chemical analyses of V,Cr,Fe,Co,Ni,Cu,Zn,As,Mo,Cd,Sb,T1 and Pb in PM10 samples were performed by Inductively coupled plasmaquadrupole mass spectrometry (ICP-QMS) and results were used to identify the main aerosol sources.The correlation of measured data with meteorology,and source apportionment,failed to highlight a contribution specifically associated to the emissions of the MOSE construction works.The comparison of the measurements at the three sites showed a substantial homogeneity of metal concentrations in the area.Source apportionment with principal component analysis (PCA) and positive matrix factorization (PMF) showed that a four principal factors model could describe the sources of metals in PM10.Three of them were assigned to specific sources in the area and one was characterised as a source of mixed origin (anthropogenic and crustal).A specific anthropogenic source of PM10 rich in Ni and Cr,active at the Chioggia site,was also identified.

  1. Source apportionment and seasonal variation of PM2.5 in a Sub-Sahara African city: Nairobi, Kenya

    Directory of Open Access Journals (Sweden)

    S. M. Gaita

    2014-04-01

    Full Text Available Sources of airborne particulate matter and their seasonal variation in urban areas in Sub-Sahara Africa are poorly understood due to lack of long-term measurement data. In view of this, airborne fine particles matter (particle diameter ≤ 2.5 μm, PM2.5 were collected between May 2008 and April 2010 at two sites (urban background site and suburban site within the Nairobi metropolitan area. A total of 780 samples were collected and analyzed for particulate mass, black carbon (BC and thirteen trace elements. The average PM2.5 concentration at the urban background site was 20 ± 8 μg m−3 whereas the concentration at the suburban site was 13 ± 8 μg m−3. The daily PM2.5 concentrations exceeded 25 μg m−3 (the World Health Organization 24 h guideline value 29% of the days at the urban background site and 7% of the days at the suburban site. At both sites, BC, Fe, S and Cl accounted for approximately 80% of all detected elements. Positive Matrix Factorization analysis identified five source factors that contribute to PM2.5 in Nairobi; traffic, mineral dust, secondary aerosol, industrial and combustion. Mineral dust and traffic factors were related to approximately 74% of PM2.5. Identified source factors exhibited seasonal variation though traffic factor was prominently consistent throughout the sampling period. The results provide information that can be exploited for policy formulation and mitigation strategies to control air pollution in Sub-Sahara African cities.

  2. Characterization of aerosol composition, concentrations, and sources at Baengnyeong Island, Korea using an aerosol mass spectrometer

    Science.gov (United States)

    Lee, Taehyoung; Choi, Jinsoo; Lee, Gangwoong; Ahn, Junyoung; Park, Jin Soo; Atwood, Samuel A.; Schurman, Misha; Choi, Yongjoo; Chung, Yoomi; Collett, Jeffrey L.

    2015-11-01

    To improve understanding of the sources and chemical properties of particulate pollutants on the western side of the Korean Peninsula, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) measured non-refractory fine (PM1) particles from May to November, 2011 at Baengnyeong Island, South Korea. Organic matter and sulfate were generally the most abundant species and exhibited maximum concentrations of 36 μg/m3 and 39 μg/m3, respectively. Nitrate concentrations peaked at 32 μg/m3 but were typically much lower than sulfate and organic matter concentrations. May, September, October, and November featured the highest monthly average concentrations, with lower concentrations typically observed from June through August. Potential source contribution function (PSCF) analysis and individual case studies revealed that transport from eastern China, an area with high SO2 emissions, was associated with high particulate sulfate concentrations at the measurement site. Observed sulfate aerosol sometimes was fully neutralized by ammonium but often was acidic; the average ammonium to sulfate molar ratio was 1.49. Measured species size distributions revealed a range of sulfate particle size distributions with modes between 100 and 600 nm. Organic aerosol source regions were widespread, including contributions from eastern China and South Korea. Positive matrix factorization (PMF) analysis indicated three "factors," or types of organic aerosol, comprising one primary, hydrocarbon-like organic aerosol (HOA) and two oxidized organic aerosol (OOA) components, including a more oxidized (MO-OOA) and a less oxidized (LO-OOA) oxidized organic aerosol. On average, HOA and OOA contributed 21% and 79% of the organic mass (OM), respectively, with the MO-OOA fraction nearly three times as abundant as the LO-OOA fraction. Biomass burning contributions to observed OM were low during the late spring/early summer agricultural burning season in eastern China, since

  3. Comprehensive airborne characterization of aerosol from a major bovine source

    Directory of Open Access Journals (Sweden)

    H. Jonsson

    2008-09-01

    Full Text Available We report an extensive airborne characterization of aerosol downwind of a massive bovine source in the San Joaquin Valley (California on two flights during July 2007. The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS Twin Otter probed chemical composition, particle size distribution, mixing state, sub- and supersaturated water uptake behavior, light scattering properties, and the interrelationship between these parameters and meteorology. Total PM1.0 levels and concentrations of organics, nitrate, and ammonium were enhanced in the plume from the source as compared to the background aerosol. Organics dominated the plume aerosol mass (~56–64%, followed either by sulfate or nitrate, and then ammonium. Particulate amines were detected in the plume aerosol by a particle-into-liquid sampler (PILS and via mass spectral markers in the Aerodyne C-ToF-AMS. Amines were found to be a significant atmospheric base even in the presence of ammonia; particulate amine concentrations are estimated as at least 14–23% of that of ammonium in the plume. Enhanced sub- and supersaturated water uptake and reduced refractive indices were coincident with lower organic mass fractions, higher nitrate mass fractions, and the detection of amines. The likelihood of suppressed droplet growth owing to kinetic limitations from hydrophobic organic material is explored. After removing effects associated with size distribution and mixing state, the normalized activated fraction of cloud condensation nuclei (CCN increased as a function of the subsaturated hygroscopic growth factor, with the highest activated fractions being consistent with relatively lower organic mass fractions and higher nitrate mass fractions. Subsaturated hygroscopic growth factors for the organic fraction of the aerosol are estimated based on employing the Zdanovskii-Stokes Robinson (ZSR mixing rule. Representative values for a parameterization treating particle water

  4. Comprehensive airborne characterization of aerosol from a major bovine source

    Directory of Open Access Journals (Sweden)

    A. Sorooshian

    2008-06-01

    Full Text Available We report an extensive airborne characterization of aerosol downwind of a massive bovine source in the San Joaquin Valley (California on two flights during July 2007. The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS Twin Otter probed chemical composition, particle size distribution, mixing state, sub- and supersaturated water uptake behavior, light scattering properties, and the interrelationship between these parameters and meteorology. Total PM1.0 levels and concentrations of organics, nitrate, and ammonium were enhanced in the plume from the source as compared to the background aerosol. Organics dominated the plume aerosol mass (~56–64%, followed either by sulfate or nitrate, and then ammonium. Particulate amines were detected in the plume aerosol by a particle-into-liquid sampler (PILS and via mass spectral markers in the Aerodyne cToF-AMS. Amines were found to be a significant atmospheric base even in the presence of ammonia; particulate amine concentrations are estimated as at least 14–23% of that of ammonium in the plume. Enhanced sub- and supersaturated water uptake and reduced refractive indices were coincident with lower organic mass fractions, higher nitrate mass fractions, and the detection of amines. Kinetic limitations due to hydrophobic organic material are shown to have likely suppressed droplet growth. After removing effects associated with size distribution and mixing state, the normalized activated fraction of cloud condensation nuclei (CCN increased as a function of the subsaturated hygroscopic growth factor, with the highest activated fractions being consistent with relatively lower organic mass fractions and higher nitrate mass fractions. Subsaturated hygroscopic growth factors for the organic fraction of the aerosol are estimated based on employing the Zdanovskii-Stokes Robinson (ZSR mixing rule. Representative values for a parameterization treating particle water uptake in both the

  5. Source Apportionment of PM2.5 using PMF and CMB: Comparison of the Effects of Transboundary and Local Pollutions in the Western Japan

    Science.gov (United States)

    Iijima, A.; Sugata, S.

    2014-12-01

    PM2.5 has become one of the most important aspects in recent air pollution issues. In Japan, the achievement rate of the environmental quality standard for PM2.5 is in a worse situation so far (43.3% for ambient air monitoring station, 33.3% for roadside air pollution monitoring station in FY2012). Therefore, source apportionment will be essential to policy and decision making for improving the PM2.5 pollution. Since 2011, we started the field monitoring study called "Current Status Elucidation and Source Contribution Assessment of PM2.5 Pollution in Collaboration with Environmental Research Institutes across Japan" which was granted by the Environment Research and Technology Development Fund (5B-1101) of the Ministry of the Environment, Japan. PM2.5 samples were collected at 14 sites during four campaigns. Chemical analyses of carbonaceous compounds, ionic species, and elements were conducted. Source apportionment was performed by using Positive Matrix Factorization (PMF, EPA PMF 3.0) and Chemical Mass Balance (CMB, EPA CMB 8.1) models. PMF model resolved a six-factor solution. Each of these factors has a distinctive grouping of species that can be associated with a specific source sector (F1: Biomass burning, F2: Sulfate + Oil combustion, F3: Industry, F4: Nitrate, F5: Sulfate + Coal combustion, and F6: Chloride). In the winter campaign (Jan. 24 to Feb. 7) in 2013, F5 accounted for 50% of total PM2.5 mass at Tsushima (34.2°N 129.3°E, the westernmost remote site). The contribution of F5 tended to decrease toward the eastern sites (27% at Fukuoka (33.5°N 130.5°E, urban site), 22% at Higashi-Osaka (34.7°N 135.6°E, urban site)). CMB model showed similar results in the same campaign. Coal combustion accounted for 49%, 30%, and 22% of total PM2.5 mass at Tsushima, Fukuoka, and Higashi-Osaka, respectively (Fig.1). On the other hand, at urban sites, higher contributions from local sources such as secondary nitrate (16% at Fukuoka, 21% at Higashi-Osaka), diesel fuel

  6. ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2005-04-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of September 2004 through February 2005. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. The major experimental achievement this project period was the characterization of the mercury and fine particle emissions from two modern, large, commercial pulverized coal boilers. This testing completes the field work component of the Source Characterization Activity. This report highlights results from mercury emission measurements made using a dilution sampler. The measurements clearly indicate that mercury is being transformed from an oxidized to an elemental state within the dilution. However, wall effects are significant making it difficult to determine whether or not these changes occur in the gas phase or due to some interaction with the sampler walls. This report also presents results from an analysis that uses spherical aluminum silicate (SAS) particles as a marker for primary PM{sub 2.5} emitted from coal combustion. Primary emissions from coal combustion contribute only a small fraction of the PM{sub 2.5} mass (less than 1.5% in the summer and less than 3% in the winter) at the Pittsburgh site. Ambient SAS concentrations also appear to be reasonably spatially homogeneous. Finally, SAS emission factors measured at pilot-scale are consistent with measurements made at full-scale. This report also presents results from applying the Unmix and PMF models to estimate the contribution of different sources to the PM{sub 2.5} mass concentrations in Pittsburgh using aerosol composition information. Comparison of the two models shows similar source composition and contribution for five factors: crustal material, nitrate, an Fe, Mn, and Zn factor, specialty steel production, and a cadmium factor. PMF found several additional factors. Comparison between source contributions

  7. Source contributions to organic aerosol in the eastern United States

    Science.gov (United States)

    Lane, Timothy Edward

    Organic aerosols (OA) and elemental carbon (EC) are important components of atmospheric particulate matter (PM), potentially posing health hazards and contributing to global climate change. Secondary organic aerosol (SOA) is formed when condensable products from the oxidation of volatile organic compounds (VOCs) in the gas phase partition into the aerosol phase. Implementation of effective control strategies for organic PM2.5 (organic particles with diameters less than 2.5 mum) requires the quantification of the contribution of each source to the ambient OA and EC concentrations. The overall goal of this work is to determine which sources contribute the most to the organic aerosol concentrations across the eastern US. First, a source-resolved model is developed to predict the contribution of eight different sources to primary organic aerosol concentrations. Primary organic aerosol (OA) and elemental carbon (EC) concentrations are tracked for eight different sources: gasoline vehicles, non-road diesel vehicles, on-road diesel vehicles, biomass burning, wood burning, natural gas combustion, road dust, and all other sources. The results of the source-resolved model are compared to the results of chemical mass balance (CMB) models for Pittsburgh and multiple urban/rural sites from the Southeastern Aerosol Research and Characterization (SEARCH) network. Significant discrepancies exist between the source-resolved model and the CMB model predictions for several of the sources. There is strong evidence that the organic PM emissions from natural gas combustion are overestimated. Other similarities and discrepancies between the source-resolved model and the CMB model for primary OA and EC are discussed along with problems in the current emission inventory for certain sources. Next, the importance of isoprene as a source of SOA is determined using PMCAMx to predict the isoprene SOA concentration across the eastern US. Isoprene, the most abundant non-methane hydrocarbon

  8. Characteristics and source apportionment of PM2.5 during a fall heavy haze episode in the Yangtze River Delta of China

    Science.gov (United States)

    Hua, Yang; Cheng, Zhen; Wang, Shuxiao; Jiang, Jingkun; Chen, Daren; Cai, Siyi; Fu, Xiao; Fu, Qingyan; Chen, Changhong; Xu, Bingye; Yu, Jianqiao

    2015-12-01

    Joint field observations were conducted from October to November in 2011 to observe haze pollution in the Yangtze River Delta (YRD), China. Samples of particulate matter with diameter less than 2.5 μm (PM2.5) and less than 10 μm (PM10), gaseous pollutants and meteorology data were collected in five cities - Shanghai, Suzhou, Nanjing, Ningbo and Hangzhou - in the YRD. The chemical composition of PM2.5 was analyzed and the light extinction resulting from each chemical species was calculated using the IMPROVE algorithm. A typical heavy haze episode was selected and the chemical mass balance (CMB) model was applied to identify the sources of PM2.5. The average PM2.5 and PM10 mass concentrations during the haze episode were 100 ± 24 μg/m3 and 164 ± 19 μg/m3, respectively; visibility decreased to 1 km. Organic matter (OM), sulfate, nitrate, and ammonium were the dominant components of PM2.5, accounting for 33%, 19%, 17% and 11% of PM2.5 mass, respectively. Sulfate, OM and nitrate had the highest impact on light extinction, contributing 30%, 28% and 19%, respectively. The source apportionment indicate that PM2.5 is primarily from secondary pollutants and primary emissions from vehicles and biomass burning. A polluted air mass from north Jiangsu Province and stagnant meteorology further aggravated the haze pollution. The five cities had similar characteristics and pollution sources.

  9. Sources and source processes of organic nitrogen aerosols in the atmosphere

    Science.gov (United States)

    Erupe, Mark E.

    The research in this dissertation explored the sources and chemistry of organic nitrogen aerosols in the atmosphere. Two approaches were employed: field measurements and laboratory experiments. In order to characterize atmospheric aerosol, two ambient studies were conducted in Cache Valley in Northern Utah during strong winter inversions of 2004 and 2005. The economy of this region is heavily dependent on agriculture. There is also a fast growing urban population. Urban and agricultural emissions, aided by the valley geography and meteorology, led to high concentrations of fine particles that often exceeded the national ambient air quality standards. Aerosol composition was dominated by ammonium nitrate and organic species. Mass spectra from an aerosol mass spectrometer revealed that the organic ion peaks were consistent with reduced organic nitrogen compounds, typically associated with animal husbandry practices. Although no direct source characterization studies have been undertaken in Cache Valley with an aerosol mass spectrometer, spectra from a study at a swine facility in Ames, Iowa, did not show any evidence of reduced organic nitrogen species. This, combined with temporal and diurnal characteristics of organic aerosol peaks, was a pointer that the organic nitrogen species in Cache Valley likely formed from secondary chemistry. Application of multivariate statistical analyses to the organic aerosol spectra further supported this hypothesis. To quantify organic nitrogen signals observed in ambient studies as well as understand formation chemistry, three categories of laboratory experiments were performed. These were calibration experiments, smog chamber studies, and an analytical method development. Laboratory calibration experiments using standard calibrants indicated that quantifying the signals from organic nitrogen species was dependent on whether they formed through acid-base chemistry or via secondary organic aerosol pathway. Results from smog chamber

  10. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida.

    Science.gov (United States)

    Haji Gholizadeh, Mohammad; Melesse, Assefa M; Reddi, Lakshmi

    2016-10-01

    In this study, principal component analysis (PCA), factor analysis (FA), and the absolute principal component score-multiple linear regression (APCS-MLR) receptor modeling technique were used to assess the water quality and identify and quantify the potential pollution sources affecting the water quality of three major rivers of South Florida. For this purpose, 15years (2000-2014) dataset of 12 water quality variables covering 16 monitoring stations, and approximately 35,000 observations was used. The PCA/FA method identified five and four potential pollution sources in wet and dry seasons, respectively, and the effective mechanisms, rules and causes were explained. The APCS-MLR apportioned their contributions to each water quality variable. Results showed that the point source pollution discharges from anthropogenic factors due to the discharge of agriculture waste and domestic and industrial wastewater were the major sources of river water contamination. Also, the studied variables were categorized into three groups of nutrients (total kjeldahl nitrogen, total phosphorus, total phosphate, and ammonia-N), water murkiness conducive parameters (total suspended solids, turbidity, and chlorophyll-a), and salt ions (magnesium, chloride, and sodium), and average contributions of different potential pollution sources to these categories were considered separately. The data matrix was also subjected to PMF receptor model using the EPA PMF-5.0 program and the two-way model described was performed for the PMF analyses. Comparison of the obtained results of PMF and APCS-MLR models showed that there were some significant differences in estimated contribution for each potential pollution source, especially in the wet season. Eventually, it was concluded that the APCS-MLR receptor modeling approach appears to be more physically plausible for the current study. It is believed that the results of apportionment could be very useful to the local authorities for the control and

  11. A new methodology to assess the performance and uncertainty of source apportionment models II: The results of two European intercomparison exercises

    Science.gov (United States)

    Belis, C. A.; Karagulian, F.; Amato, F.; Almeida, M.; Artaxo, P.; Beddows, D. C. S.; Bernardoni, V.; Bove, M. C.; Carbone, S.; Cesari, D.; Contini, D.; Cuccia, E.; Diapouli, E.; Eleftheriadis, K.; Favez, O.; El Haddad, I.; Harrison, R. M.; Hellebust, S.; Hovorka, J.; Jang, E.; Jorquera, H.; Kammermeier, T.; Karl, M.; Lucarelli, F.; Mooibroek, D.; Nava, S.; Nøjgaard, J. K.; Paatero, P.; Pandolfi, M.; Perrone, M. G.; Petit, J. E.; Pietrodangelo, A.; Pokorná, P.; Prati, P.; Prevot, A. S. H.; Quass, U.; Querol, X.; Saraga, D.; Sciare, J.; Sfetsos, A.; Valli, G.; Vecchi, R.; Vestenius, M.; Yubero, E.; Hopke, P. K.

    2015-12-01

    The performance and the uncertainty of receptor models (RMs) were assessed in intercomparison exercises employing real-world and synthetic input datasets. To that end, the results obtained by different practitioners using ten different RMs were compared with a reference. In order to explain the differences in the performances and uncertainties of the different approaches, the apportioned mass, the number of sources, the chemical profiles, the contribution-to-species and the time trends of the sources were all evaluated using the methodology described in Belis et al. (2015). In this study, 87% of the 344 source contribution estimates (SCEs) reported by participants in 47 different source apportionment model results met the 50% standard uncertainty quality objective established for the performance test. In addition, 68% of the SCE uncertainties reported in the results were coherent with the analytical uncertainties in the input data. The most used models, EPA-PMF v.3, PMF2 and EPA-CMB 8.2, presented quite satisfactory performances in the estimation of SCEs while unconstrained models, that do not account for the uncertainty in the input data (e.g. APCS and FA-MLRA), showed below average performance. Sources with well-defined chemical profiles and seasonal time trends, that make appreciable contributions (>10%), were those better quantified by the models while those with contributions to the PM mass close to 1% represented a challenge. The results of the assessment indicate that RMs are capable of estimating the contribution of the major pollution source categories over a given time window with a level of accuracy that is in line with the needs of air quality management.

  12. Source apportionment of methane and nitrous oxide in California's San Joaquin Valley at CalNex 2010 via positive matrix factorization

    Directory of Open Access Journals (Sweden)

    A. Guha

    2015-03-01

    Full Text Available Sources of methane (CH4 and nitrous oxide (N2O were investigated using measurements from a site in southeast Bakersfield as part of the CalNex (California at the Nexus of Air Quality and Climate Change experiment from 15 May to 30 June 2010. Typical daily minimum mixing ratios of CH4 and N2O were higher than daily averages that were simultaneously observed at a similar latitude background station (NOAA, Mauna Loa by approximately 70 and 0.5 ppb, respectively. Substantial enhancements of CH4 and N2O (hourly averages > 500 ppb and > 7 ppb, respectively were routinely observed suggesting the presence of large regional sources. Collocated measurements of carbon monoxide (CO and a range of volatile organic compounds (VOCs (e.g. straight-chain and branched alkanes, cycloalkanes, chlorinated alkanes, aromatics, alcohols, isoprene, terpenes and ketones were used with a Positive Matrix Factorization (PMF source apportionment method to estimate the contribution of regional sources to observed enhancements of CH4 and N2O. The PMF technique provided a "top-down" deconstruction of ambient gas-phase observations into broad source categories, yielding a 7-factor solution. We identified these source factors as emissions from evaporative and fugitive; motor vehicles; livestock and dairy; agricultural and soil management; daytime light and temperature driven; non-vehicular urban; and nighttime terpene biogenics and anthropogenics. The dairy and livestock factor accounted for a majority of the CH4 (70–90% enhancements during the duration of the experiments. Propagation of uncertainties in the PMF-derived factor profiles and time series from bootstrapping analysis resulted in a 29% uncertainty in the CH4 apportionment to this factor. The dairy and livestock factor was also a principal contributor to the daily enhancements of N2O (60–70% with an uncertainty of 33%. Agriculture and soil management accounted for ~20–25% of N2O enhancements over the course of a

  13. Tracing the sources of mineral aerosols over Ahmedabad with 87Sr/86Sr. IRP-8

    International Nuclear Information System (INIS)

    Atmospheric aerosols play an important role in the biogeochemistry of various elements and have significant effect on climate. They show large spatial and temporal variability in their sources and abundances. These variability need to be understood for evaluating their environmental impact. Mineral dust, a dominant component of aerosols, can have regional and/or long-range sources. Deserts and semi-arid areas are important dust sources on a global scale. Sr and Nd isotope compositions can be used as tracers to tag the sources of mineral aerosols. In this study an attempt has been made to trace the sources of aerosols over Ahmedabad

  14. SOURCE APPORTIONMENT STUDIES OF PM-2.5 IN TWO CZECH CITIES: POSSIBLE USES IN HEALTH STUDIES

    Science.gov (United States)

    Aerosol and gas phase air pollutant measurements were made in two cities during an ongoing air pollution-health outcome study in the Czech Republic. Teplice, located in northwestern Bohemia, was selected because the local population was exposed to high air pollution levels. Prac...

  15. Importance of core/concrete aerosol production and some containment heat sources to the source term

    International Nuclear Information System (INIS)

    Production of aerosols by core/concrete interaction in a large break PWR severe accident is discussed, and both vaporization and mechanical production processes are examined. In the case of the former, equilibrium chemical thermodynamic studies are used to decide which chemical species should be considered, recognizing the uncertainty in the likely configuration of the core/concrete melt. Lanthanide release is found to be particularly sensitive to this configuration. It is found that kinetic effects are not important in preventing the attainment of chemical equilibrium in the gas bubbling through the melt. At early times aerosol production by bubble bursting at the melt surface is found to be less important than that due to vaporization, except for those materials released in small quantities, e.g. Mo. The bubble bursting mechanism becomes relatively more important at later times. Calculations for a large modern PWR show that environmental release from the core/concrete aerosol is likely to be of comparable or greater importance (in terms of released decay heat) than that from the in-vessel core-melt aerosol for all but very early containment failure or failure to isolate, neglecting attenuation of the core/concrete aerosol during its flow from the cavity to the main containment volume. The importance of performing linked thermal-hydraulic and aerosol physics calculations is highlighted by the blowdown aerosol in a large break accident. Treatment of the decay heat arising from the aerosol material released to the containment is discussed. It is shown that it is very important to consider this heat source in containment pressure calculations, but it was not found to be important to treat its spatial dependence accurately in the large break accident considered here. Some scoping calculations for material resuspension on containment overpressure failure, due to a hydrogen burn, are presented

  16. Polycyclic aromatic hydrocarbons (PAHs) at traffic and urban background sites of northern Greece: source apportionment of ambient PAH levels and PAH-induced lung cancer risk.

    Science.gov (United States)

    Manoli, Evangelia; Kouras, Athanasios; Karagkiozidou, Olga; Argyropoulos, Georgios; Voutsa, Dimitra; Samara, Constantini

    2016-02-01

    Thirteen particle-phase PAHs, including nine >4-ring congeners [Benz[a]anthracene (BaAn), Chrysene (Chry), Benzo[b]fluoranthene (BbF), Benzo[k]fluoranthene (BkF), Benzo[e]pyrene (BeP), Benzo[a]pyrene (BaP), Dibenzo[a,h]anthracene (dBaAn), Benzo[g,h,i]perylene (BghiPe), Indeno(1,2,3-c,d)pyrene (IP)], listed by IARC (International Agency for Research on Cancer) as class 1, class 2A, and 2B carcinogens, plus four ≤4-ring congeners [Phenanthrene (Ph), Anthracene (An), Fluoranthene (Fl), Pyrene (Py)], were concurrently measured in inhalable and respirable particle fractions (PM10 and PM2.5) at a heavy-traffic and an urban background site in Thessaloniki, northern Greece, during the warm and the cold period of the year. Carcinogenic and mutagenic potencies of the PAH-bearing particles were calculated, and the inhalation cancer risk (ICR) for local population was estimated. Finally, Chemical Mass Balance (CMB) modeling was employed for the source apportionment of ambient PAH levels and the estimated lung cancer risk. Resulted inhalation cancer risk during winter was found to be equivalent in the city center and the urban background area suggesting that residential wood burning may offset the benefits from minor traffic emissions. PMID:26490935

  17. Assessment of water quality in the elbe river at flood water conditions based on cluster analysis, principle components analysis, and source apportionment

    International Nuclear Information System (INIS)

    An assessment of water quality measurements during a spring flood in the Elbe River is presented. Daily samples were taken at a site in the middle Elbe, which is part of the network of the International Commission for the Protection of the Elbe River (IKSE/MKOL). Cluster analysis (CA), principal components analysis (PCA), and source apportionment (APCS apportioning) were used to assess the flood-dependent matter transport. As a result, three main components could be extracted as important to the matter transport in the Elbe River basin during flood events: (i) re-suspended contaminated sediments, which led to temporarily increased concentrations of suspended matter and of most of the investigated heavy metals; (ii) water discharge related concentrations of pedogenic dissolved organic matter (DOM) as well as preliminary diluted concentrations of uranium and chloride, parameters with stable pollution background in the river basin; and (iii) abandoned mines, i.e., their dewatering systems, with particular influence on nickel, manganese, and zinc concentrations. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Pharmaceuticals and personal care products (PPCPs) in urban and suburban rivers of Beijing, China: occurrence, source apportionment and potential ecological risk.

    Science.gov (United States)

    Dai, Guohua; Wang, Bin; Fu, Chaochen; Dong, Rui; Huang, Jun; Deng, Shubo; Wang, Yujue; Yu, Gang

    2016-04-20

    This study analyzed 15 pharmaceuticals and personal care products (PPCPs) in two rivers with different urbanization levels in the surrounding watershed (urban and suburb) in Beijing, China. Along the rivers, effluent samples from wastewater treatment plants (WWTPs) and wastewater samples from direct discharge outlets were also collected to reveal their possible contribution to the occurrence of PPCPs in these two rivers. Among the 15 PPCPs, 14 compounds were detected with caffeine (maximum 11 900 ng L(-1)) being the dominant compound. The total concentration of the detected PPCPs in direct discharge outlets (median 4706 ng L(-1)) was much higher than that in river waters (2780 ng L(-1)) and WWTP effluents (1971 ng L(-1)). The suburban-influenced Liangshui River had significantly higher PPCP concentrations compared to the urban-influenced Qing River due to more input of untreated wastewater from direct discharge outlets. Source apportionment showed that approximately 55% of the total PPCPs were contributed by untreated wastewater in the suburban-influenced river. Finally, ecological risk assessment has been regarded as a necessary part of general research. According to the environmental risk assessment results, caffeine, trimethoprim and metoprolol were found to be the most critical compounds, due to their high risk quotient values. The results of the present study can provide useful information for future PPCP pollution control and sustainable water management in Beijing, China. PMID:26985863

  19. Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing

    Science.gov (United States)

    Wang, Z. B.; Hu, M.; Wu, Z. J.; Yue, D. L.; He, L. Y.; Huang, X. F.; Liu, X. G.; Wiedensohler, A.

    2013-10-01

    A series of long-term and temporary measurements were conducted to study the improvement of air quality in Beijing during the Olympic Games period (8-24 August 2008). To evaluate actions taken to improve the air quality, comparisons of particle number and volume size distributions of August 2008 and 2004-2007 were performed. The total particle number and volume concentrations were 14 000 cm-3 and 37 μm-3 cm-3 in August of 2008, respectively. These were reductions of 41% and 35% compared with mean values of August 2004-2007. A cluster analysis on air mass history and source apportionment were performed, exploring reasons for the reduction of particle concentrations. Back trajectories were classified into five major clusters. Air masses from the south direction are always associated with pollution events during the summertime in Beijing. In August 2008, the frequency of air mass arriving from the south was 1.3 times higher compared to the average of the previous years, which however did not result in elevated particle volume concentrations in Beijing. Therefore, the reduced particle number and volume concentrations during the 2008 Beijing Olympic Games cannot be only explained by meteorological conditions. Four factors were found influencing particle concentrations using a positive matrix factorization (PMF) model. They were identified as local and remote traffic emissions, combustion sources as well as secondary transformation. The reductions of the four sources were calculated to 47%, 44%, 43% and 30%, respectively. The significant reductions of particle number and volume concentrations may attribute to actions taken, focusing on primary emissions, especially related to the traffic and combustion sources.

  20. Lead isotopes combined with a sequential extraction procedure for source apportionment in the dry deposition of Asian dust and non-Asian dust.

    Science.gov (United States)

    Lee, Pyeong-Koo; Yu, Soonyoung

    2016-03-01

    Lead isotopic compositions were determined in leachates that were generated using sequential extractions of dry deposition samples of Asian dust (AD) and non-Asian dust (NAD) and Chinese desert soils, and used to apportion Pb sources. Results showed significant differences in (206)Pb/(207)Pb and (206)Pb/(204)Pb isotopic compositions in non-residual fractions between the dry deposition samples and the Chinese desert soils while (206)Pb/(207)Pb and (206)Pb/(204)Pb isotopic compositions in residual fraction of the dry deposition of AD and NAD were similar to the mean (206)Pb/(207)Pb and (206)Pb/(204)Pb in residual fraction of the Alashan Plateau soil. These results indicate that the geogenic materials of the dry deposition of AD and NAD were largely influenced by the Alashan Plateau soil, while the secondary sources of the dry deposition were different from those of the Chinese desert soils. In particular, the lead isotopic compositions in non-residual fractions of the dry deposition were homogenous, which implies that the non-residual four fractions (F1 to F4) shared the primary anthropogenic origin. (206)Pb/(207)Pb values and the predominant wind directions in the study area suggested that airborne particulates of heavily industrialized Chinese cities were one of the main Pb sources. Source apportionment calculations showed that the average proportion of anthropogenic Pb in the dry deposition of AD and NAD was 87% and 95% respectively in total Pb extraction, 92% and 97% in non-residual fractions, 15% and 49% in residual fraction. Approximately 81% and 80% of the anthropogenic Pb was contributed by coal combustion in China in the dry deposition of AD and NAD respectively while the remainder was derived from industrial Pb contamination. The research result proposes that sequential extractions with Pb isotope analysis are a useful tool for the discrimination of anthropogenic and geogenic origins in highly contaminated AD and NAD. PMID:26708760

  1. Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing

    Directory of Open Access Journals (Sweden)

    Z. B. Wang

    2013-10-01

    Full Text Available A series of long-term and temporary measurements were conducted to study the improvement of air quality in Beijing during the Olympic Games period (8–24 August 2008. To evaluate actions taken to improve the air quality, comparisons of particle number and volume size distributions of August 2008 and 2004–2007 were performed. The total particle number and volume concentrations were 14 000 cm−3 and 37 μm−3 cm−3 in August of 2008, respectively. These were reductions of 41% and 35% compared with mean values of August 2004–2007. A cluster analysis on air mass history and source apportionment were performed, exploring reasons for the reduction of particle concentrations. Back trajectories were classified into five major clusters. Air masses from the south direction are always associated with pollution events during the summertime in Beijing. In August 2008, the frequency of air mass arriving from the south was 1.3 times higher compared to the average of the previous years, which however did not result in elevated particle volume concentrations in Beijing. Therefore, the reduced particle number and volume concentrations during the 2008 Beijing Olympic Games cannot be only explained by meteorological conditions. Four factors were found influencing particle concentrations using a positive matrix factorization (PMF model. They were identified as local and remote traffic emissions, combustion sources as well as secondary transformation. The reductions of the four sources were calculated to 47%, 44%, 43% and 30%, respectively. The significant reductions of particle number and volume concentrations may attribute to actions taken, focusing on primary emissions, especially related to the traffic and combustion sources.

  2. Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing

    Directory of Open Access Journals (Sweden)

    Z. B. Wang

    2013-02-01

    Full Text Available A series of long-term and temporary measurements were conducted to study the improvement of air quality in Beijing during Olympic Games period (8–24 August 2008. To evaluate actions taken to improve the air quality, comparisons of particle number and volume size distributions of August 2008 and 2004–2007 were performed. The total particle number and volume concentrations were 14 000 cm−3 and 37 μm3 cm−3 in August of 2008, respectively. These were reductions of 41% and 35% compared with the mean values of August 2004–2007. A cluster analysis on air mass history and source apportionment were performed, exploring reasons of the reduction of particle concentrations. Back trajectories were classified into five major clusters. Air mass from south direction are always associated with pollution events during the summertime of Beijing. In August 2008, the frequency of air mass arriving from south has been twice higher compared to the average of the previous years, these southerly air masses did however not result in elevated particle volume concentrations in Beijing. This result implied that the air mass history was not the key factor, explaining reduced particle number and volume concentrations during the Beijing 2008 Olympic Games. Four factors were found influencing particle concentrations using a Positive matrix factorization (PMF model. They were identified to local and remote traffic emissions, combustion sources as well as secondary transformation. The reductions of the four sources were calculated to 47%, 44%, 43% and 30%, respectively. The significant reductions of particle number and volume concentrations may attribute to actions taken, focusing on primary emissions, especially related to the traffic and combustion sources.

  3. Seasonal and spatial variation of trace elements in multi-size airborne particulate matters of Beijing, China: Mass concentration, enrichment characteristics, source apportionment, chemical speciation and bioavailability

    Science.gov (United States)

    Gao, Jiajia; Tian, Hezhong; Cheng, Ke; Lu, Long; Wang, Yuxuan; Wu, Ye; Zhu, Chuanyong; Liu, Kaiyun; Zhou, Junrui; Liu, Xingang; Chen, Jing; Hao, Jiming

    2014-12-01

    The seasonal and spatial variation characteristics of 19 elements (Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, S, Sb, Se, Zn) in TSP/PM10/PM2.5 samples were investigated, which were collected from April 2011 to January 2012 simultaneously at an urban downtown site, a traffic roadside site, a suburban site, and a rural site in Beijing. The elevated concentrations of several toxic trace elements (As, Cd, Mn, Ni, Pb, etc.) in particles revealed that the contamination of toxic elements in Beijing could not be neglected. Positive matrix factorization method (PMF) was applied for source apportionment of trace elements in PM, and three factors (crust related sources, combustion sources, and traffic and steel industrial related sources) were identified. Furthermore, the chemical speciation and bioavailability of various elements were identified by applying European Community Bureau of Reference (BCR) procedure. Our results showed that eight toxic elements (As, Cd, Cr, Cu, Ni, Pb, Sb and Zn) exhibited higher mobility in PM2.5 than in PM10. Notably, elements of As, Cd, Pb and Zn were presented with higher mobility than the other elements, and these elements were lightly to release into the environment and easily available to human body. Additionally, As, Cd, Pb and Zn also accounted for higher percentages in the bound to mobile fractions at the central urban areas of Beijing. Therefore, special concerns should be paid to these toxic trace elements which had relatively high mobility in fine particles, when planning and implementing the comprehensive air pollution mitigation policies in Beijing.

  4. Source apportionment of fine particles and its chemical components over the Yangtze River Delta, China during a heavy haze pollution episode

    Science.gov (United States)

    Li, L.; An, J. Y.; Zhou, M.; Yan, R. S.; Huang, C.; Lu, Q.; Lin, L.; Wang, Y. J.; Tao, S. K.; Qiao, L. P.; Zhu, S. H.; Chen, C. H.

    2015-12-01

    An extremely high PM2.5 pollution episode occurred over the eastern China in January 2013. In this paper, the particulate matter source apportionment technology (PSAT) method coupled within the Comprehensive air quality model with extensions (CAMx) is applied to study the source contributions to PM2.5 and its major components at six receptors (Urban Shanghai, Chongming, Dianshan Lake, Urban Suzhou, Hangzhou and Zhoushan) in the Yangtze River Delta (YRD) region. Contributions from 4 source areas (including Shanghai, South Jiangsu, North Zhejiang and Super-region) and 9 emission sectors (including power plants, industrial boilers and kilns, industrial processing, mobile source, residential, volatile emissions, dust, agriculture and biogenic emissions) to PM2.5 and its major components (sulfate, nitrate, ammonia, organic carbon and elemental carbon) at the six receptors in the YRD region are quantified. Results show that accumulation of local pollution was the largest contributor during this air pollution episode in urban Shanghai (55%) and Suzhou (46%), followed by long-range transport (37% contribution to Shanghai and 44% to Suzhou). Super-regional emissions play an important role in PM2.5 formation at Hangzhou (48%) and Zhoushan site (68%). Among the emission sectors contributing to the high pollution episode, the major source categories include industrial processing (with contributions ranging between 12.7 and 38.7% at different receptors), combustion source (21.7-37.3%), mobile source (7.5-17.7%) and fugitive dust (8.4-27.3%). Agricultural contribution is also very significant at Zhoushan site (24.5%). In terms of the PM2.5 major components, it is found that industrial boilers and kilns are the major source contributor to sulfate and nitrate. Volatile emission source and agriculture are the major contributors to ammonia; transport is the largest contributor to elemental carbon. Industrial processing, volatile emissions and mobile source are the most significant

  5. Sub-Antarctic marine aerosol: significant contributions from biogenic sources

    Directory of Open Access Journals (Sweden)

    J. Schmale

    2013-03-01

    Full Text Available Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS, was 21% non-sea salt sulfate 2% nitrate, 7% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea salt signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA profiles could be isolated: an amino acids/amine factor (AA-OA, 18% of OA mass, a methanesulfonic acid OA factor (MSA-OA, 25%, a marine oxygenated OA factor (M-OOA, 40%, a sea salt OA fraction (SS-OA, 7% and locally produced hydrocarbon-like OA (HOA, 9%. The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (C : N ratio = 0.13, has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea salt aerosol was identified (SS-OA. However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not

  6. Sub-Antarctic marine aerosol: dominant contributions from biogenic sources

    Directory of Open Access Journals (Sweden)

    J. Schmale

    2013-09-01

    Full Text Available Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS, was 21% non-sea-salt sulfate, 2% nitrate, 8% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea spray signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA profiles could be isolated: an amino acid/amine factor (AA-OA, 18% of OA mass, a methanesulfonic acid OA factor (MSA-OA, 25%, a marine oxygenated OA factor (M-OOA, 41%, a sea spray OA fraction (SS-OA, 7% and locally produced hydrocarbon-like OA (HOA, 9%. The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (N : C ratio = 0.13, has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea spray aerosol was identified (SS-OA. However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not

  7. Sub-Antarctic marine aerosol: significant contributions from biogenic sources

    Science.gov (United States)

    Schmale, J.; Schneider, J.; Nemitz, E.; Tang, Y. S.; Dragosits, U.; Blackall, T. D.; Trathan, P. N.; Phillips, G. J.; Sutton, M.; Braban, C. F.

    2013-03-01

    Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W) in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS), was 21% non-sea salt sulfate 2% nitrate, 7% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea salt signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA) profiles could be isolated: an amino acids/amine factor (AA-OA, 18% of OA mass), a methanesulfonic acid OA factor (MSA-OA, 25%), a marine oxygenated OA factor (M-OOA, 40%), a sea salt OA fraction (SS-OA, 7%) and locally produced hydrocarbon-like OA (HOA, 9%). The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (C : N ratio = 0.13), has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea salt aerosol was identified (SS-OA). However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not associated to sea

  8. Sub-Antarctic marine aerosol: dominant contributions from biogenic sources

    Science.gov (United States)

    Schmale, J.; Schneider, J.; Nemitz, E.; Tang, Y. S.; Dragosits, U.; Blackall, T. D.; Trathan, P. N.; Phillips, G. J.; Sutton, M.; Braban, C. F.

    2013-09-01

    Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W) in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS), was 21% non-sea-salt sulfate, 2% nitrate, 8% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea spray signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA) profiles could be isolated: an amino acid/amine factor (AA-OA, 18% of OA mass), a methanesulfonic acid OA factor (MSA-OA, 25%), a marine oxygenated OA factor (M-OOA, 41%), a sea spray OA fraction (SS-OA, 7%) and locally produced hydrocarbon-like OA (HOA, 9%). The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (N : C ratio = 0.13), has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea spray aerosol was identified (SS-OA). However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not associated

  9. Aerosol composition, sources and processes during wintertime in Beijing, China

    Directory of Open Access Journals (Sweden)

    Y. L. Sun

    2013-01-01

    Full Text Available Air pollution is a major environmental concern among all seasons in megacity Beijing, China. Here we present the results from a winter study that was conducted from 21 November 2011 to 20 January 2012 with an Aerodyne Aerosol Chemical Speciation Monitor (ACSM and various collocated instruments. The non-refractory submicron aerosol (NR-PM1 species vary dramatically with clean periods and pollution episodes alternating frequently. Compared to summer, wintertime submicron aerosols show much enhanced organics and chloride, which on average account for 52% and 5%, respectively of the total NR-PM1 mass. All NR-PM1 species show quite different diurnal behaviors between summer and winter. For example, the wintertime nitrate presents a gradual increase during daytime and correlates well with secondary organic aerosol (OA, indicating a dominant role of photochemical production over gas-particle partitioning. Positive matrix factorization was performed on ACSM OA mass spectra, and identified three primary OA (POA factors, i.e. hydrocarbon-like OA (HOA, cooking OA (COA, and coal combustion OA (CCOA, and one secondary factor, i.e. oxygenated OA (OOA. The POA dominates OA during wintertime, contributing 69% with the rest of 31% being SOA. Further, all POA components show pronounced diurnal cycles with the highest concentrations occurring at nighttime. CCOA is the largest primary source during the heating season, on average accounting for 33% of OA and 17% of NR-PM1. CCOA also plays a significant role in chemically-resolved particulate matter (PM pollution as its mass contribution increases linearly as a function of NR-PM1 mass loadings. The SOA however presents a reversed trend, which might indicate the limited SOA formation during high PM pollution episodes in winter. The effects of meteorology on PM pollution and aerosol processing were also explored. In particular, the sulfate mass is largely enhanced

  10. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    Directory of Open Access Journals (Sweden)

    J.-J. Cao

    2013-01-01

    Full Text Available An intensive investigation of carbonaceous PM2.5 and TSP (total suspended particles from Pudong (China was conducted as part of the MIRAGE-Shanghai (Megacities Impact on Regional and Global Environment experiment in 2009. Data for organic and elemental carbon (OC and EC, organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs, and stable carbon isotopes OC (δ13COC and EC (δ13CEC were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA; high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = −24.5 ± 0.8‰ and δ13CEC = −25.1 ± 0.6‰ indicated that fossil fuels were the most important source for carbonaceous PM2.5 (particulate matter less than 2.5 micrometers in diameter, with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%; other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  11. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    Directory of Open Access Journals (Sweden)

    J.-J. Cao

    2012-07-01

    Full Text Available An intensive investigation of carbonaceous PM2.5 and TSP from Pudong (China was conducted as part of the MIRAGE-Shanghai Experiment in 2009. Data for organic and elemental carbon (OC and EC, organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs, and stable C isotopes OC (δ13COC and EC (δ13CEC were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA; high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = −24.5 ± 0.8‰ and δ13CEC = −25.1 ± 0.6‰ indicated that fossil fuels were the most important source for carbonaceous PM2.5, with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%: other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  12. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    Science.gov (United States)

    Cao, J.-J.; Zhu, C.-S.; Tie, X.-X.; Geng, F.-H.; Xu, H.-M.; Ho, S. S. H.; Wang, G.-H.; Han, Y.-M.; Ho, K.-F.

    2013-01-01

    An intensive investigation of carbonaceous PM2.5 and TSP (total suspended particles) from Pudong (China) was conducted as part of the MIRAGE-Shanghai (Megacities Impact on Regional and Global Environment) experiment in 2009. Data for organic and elemental carbon (OC and EC), organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs), and stable carbon isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA); high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = -24.5 ± 0.8‰ and δ13CEC = -25.1 ± 0.6‰) indicated that fossil fuels were the most important source for carbonaceous PM2.5 (particulate matter less than 2.5 micrometers in diameter), with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%; other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  13. Aerosol Source Attributions and Source-Receptor Relationships Across the Northern Hemisphere

    Science.gov (United States)

    Bian, Huisheng; Chin, Mian; Kucsera, Tom; Pan, Xiaohua; Darmenov, Anton; Colarco, Peter; Torres, Omar; Shults, Michael

    2014-01-01

    Emissions and long-range transport of air pollution pose major concerns on air quality and climate change. To better assess the impact of intercontinental transport of air pollution on regional and global air quality, ecosystems, and near-term climate change, the UN Task Force on Hemispheric Transport of Air Pollution (HTAP) is organizing a phase II activity (HTAP2) that includes global and regional model experiments and data analysis, focusing on ozone and aerosols. This study presents the initial results of HTAP2 global aerosol modeling experiments. We will (a) evaluate the model results with surface and aircraft measurements, (b) examine the relative contributions of regional emission and extra-regional source on surface PM concentrations and column aerosol optical depth (AOD) over several NH pollution and dust source regions and the Arctic, and (c) quantify the source-receptor relationships in the pollution regions that reflect the sensitivity of regional aerosol amount to the regional and extra-regional emission reductions.

  14. Aerosol characterization at the Saharan AERONET site Tamanrasset

    Directory of Open Access Journals (Sweden)

    C. Guirado

    2014-06-01

    AOD ~ 0.39 at 440 nm and a deep CBL. The aerosol-type characterization shows desert mineral dust as prevailing aerosol. Both pure Saharan dust and very clear sky conditions are observed depending on the season. However, several case studies indicate an anthropogenic fine mode contribution from Libya and Algeria's industrial areas. The Concentration Weighted Trajectory (CWT source apportionment method was used to identify potential sources of air masses arriving at Tamanrasset at several heights for each season. Microphysical and optical properties and precipitable water vapour were also investigated.

  15. Methods of analysis for complex organic aerosol mixtures from urban emission sources of particulate carbon

    International Nuclear Information System (INIS)

    Organic aerosols comprise approximately 30% by mass of the total fine particulate matter present in urban atmospheres. The chemical composition of such aerosols is complex and reflects input from multiple sources of primary emissions to the atmosphere, as well as from secondary production of carbonaceous aerosol species via photochemical reactions. To identify discrete sources of fine carbonaceous particles in urban atmospheres, analytical methods must reconcile both bulk chemical and molecular properties of the total carbonaceous aerosol fraction. This paper presents an overview of the analytical protocol developed and used in a study of the major sources of fine carbon particles emitted to an urban atmosphere. 23 refs., 1 fig., 2 tabs

  16. Characteristics and sources of PM2.5-bound carbonaceous aerosols in the Yangtze River Delta, China

    Science.gov (United States)

    Hong, Youwei; Hong, Zhenyu; Chen, Jinsheng

    2016-04-01

    An investigation of atmospheric fine particle (PM2.5) from Shanghai, Nanjing and Ningbo in the Yangtze River Delta was conducted during Nov 2014 and Aug 2015. Organic species, including 16 polycyclic aromatic hydrocarbons (PAHs), 10 nitro-PAHs and C8 to C40 n-alkanes, and stable carbon isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate carbonaceous aerosols' spatiotemporal variations and identify their potential sources. The averaged concentrations of total PAHs and n-alkanes in Shanghai, Nanjing and Ningbo were 16.5 and 101.1 ng m-3, 21.1 and 128.2 ng m-3, 33.0 and 241.1 ng m-3, respectively, while the mean concentrations of 10 nitro-PAHs was 2.02, 2.37 and 2.70 ng m-3. Seasonal variations of organic compounds were listed in the following order: winter > autumn > spring > summer. N-alkanes detected in PM2.5 were characterized by odd carbon number preference, with a unimodal peak shape. The maximum carbon number (Cmax) was C29, followed by C27 and C31. According to diagnostic ratios and principle components analysis (PCA) methods, vehicle emissions and coal burning were the dominant sources of PAHs. The ratios of 2-nitrofluoranthene to 1-nitropyrene were larger than 5, indicating that atmospheric transformation from PAHs was a major source of nitro-PAHs. Meanwhile, primary emissions tracers i.e., 1-nitropyrene (the mean concentration of 0.024 ng m-3 in all cities) was observed, suggesting primary contribution of motor vehicle exhaust to the fine particulate organic aerosols. In addition, isotope abundances (δ13COC=‑24.6±0.8‰ and δ13CEC = ‑23.9±1.4‰) and EC/TC ratio (0.2 < EC/TC < 0.5) in Shanghai demonstrated that fossil fuels (e.g. motor vehicles) were the most important source for carbonaceous PM2.5. We further focus on radiocarbon (14C) analysis and gas/particle partitioning of organic tracers on different size particles. Keywords: organic tracers; stable carbon isotopes; spatiotemporal variations; sources apportionment; Yangtze River Delta

  17. Characteristics and sources of PM2.5-bound carbonaceous aerosols in the Yangtze River Delta, China

    Science.gov (United States)

    Hong, Youwei; Hong, Zhenyu; Chen, Jinsheng

    2016-04-01

    An investigation of atmospheric fine particle (PM2.5) from Shanghai, Nanjing and Ningbo in the Yangtze River Delta was conducted during Nov 2014 and Aug 2015. Organic species, including 16 polycyclic aromatic hydrocarbons (PAHs), 10 nitro-PAHs and C8 to C40 n-alkanes, and stable carbon isotopes OC (δ13COC) and EC (δ13CEC) were used to evaluate carbonaceous aerosols' spatiotemporal variations and identify their potential sources. The averaged concentrations of total PAHs and n-alkanes in Shanghai, Nanjing and Ningbo were 16.5 and 101.1 ng m-3, 21.1 and 128.2 ng m-3, 33.0 and 241.1 ng m-3, respectively, while the mean concentrations of 10 nitro-PAHs was 2.02, 2.37 and 2.70 ng m-3. Seasonal variations of organic compounds were listed in the following order: winter > autumn > spring > summer. N-alkanes detected in PM2.5 were characterized by odd carbon number preference, with a unimodal peak shape. The maximum carbon number (Cmax) was C29, followed by C27 and C31. According to diagnostic ratios and principle components analysis (PCA) methods, vehicle emissions and coal burning were the dominant sources of PAHs. The ratios of 2-nitrofluoranthene to 1-nitropyrene were larger than 5, indicating that atmospheric transformation from PAHs was a major source of nitro-PAHs. Meanwhile, primary emissions tracers i.e., 1-nitropyrene (the mean concentration of 0.024 ng m-3 in all cities) was observed, suggesting primary contribution of motor vehicle exhaust to the fine particulate organic aerosols. In addition, isotope abundances (δ13COC=‑24.6±0.8‰ and δ13CEC = ‑23.9±1.4‰) and EC/TC ratio (0.2 fossil fuels (e.g. motor vehicles) were the most important source for carbonaceous PM2.5. We further focus on radiocarbon (14C) analysis and gas/particle partitioning of organic tracers on different size particles. Keywords: organic tracers; stable carbon isotopes; spatiotemporal variations; sources apportionment; Yangtze River Delta

  18. Aerosol Particle Sources Affecting the Swedish Air Quality at Urban and Rural Level.

    OpenAIRE

    Kristensson, Adam

    2005-01-01

    During the last decades anthropogenic aerosol particles have attracted much attention due to their adverse health effects and their influence of climate change, and in Sweden, there are mainly three aerosol sources that affect the air quality; domestic wood combustion, traffic, and long distance transport, which includes new particle formation. This work concerns the characterization of these sources and an estimate of how much they contribute to the aerosol particle number (ToN) and mass con...

  19. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    OpenAIRE

    M. F. Heringa; Decarlo, P. F.; Chirico, R.; T. Tritscher; M. Clairotte; Mohr, C.; M. Crippa; Slowik, J. G.; Pfaffenberger, L.; Dommen, J.; Weingartner, E.; Prévôt, A.S.H.; Baltensperger, U.

    2012-01-01

    Organic aerosol (OA) represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da < 1 μm) mass. Secondary organic aerosol (SOA) is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA...

  20. Nuclear magnetic resonance spectroscopy for determining the functional content of organic aerosols: A review

    International Nuclear Information System (INIS)

    The knowledge deficit of organic aerosol (OA) composition has been identified as the most important factor limiting our understanding of the atmospheric fate and implications of aerosol. The efforts to chemically characterize OA include the increasing utilization of nuclear magnetic resonance spectroscopy (NMR). Since 1998, the functional composition of different types, sizes and fractions of OA has been studied with one-dimensional, two-dimensional and solid state proton and carbon-13 NMR. This led to the use of functional group ratios to reconcile the most important sources of OA, including secondary organic aerosol and initial source apportionment using positive matrix factorization. Future research efforts may be directed towards the optimization of experimental parameters, detailed NMR experiments and analysis by pattern recognition methods to identify the chemical components, determination of the NMR fingerprints of OA sources and solid state NMR to study the content of OA as a whole. - Highlights: • Organic aerosol composition by 1H- and 13C-NMR spectroscopy. • NMR fingerprints of specific sources, types and sizes of organic aerosol. • Source reconciliation and apportionment using NMR spectroscopy. • Research priorities towards understanding organic aerosol composition and origin. - This review presents the recent advances on the characterization of organic aerosol composition using nuclear magnetic resonance spectroscopy

  1. Source apportionment by PMF on elemental concentrations obtained by PIXE analysis of PM10 samples collected at the vicinity of lignite power plants and mines in Megalopolis, Greece

    Energy Technology Data Exchange (ETDEWEB)

    Manousakas, M. [Department of Chemistry, University of Patras, 26500 Patras, Achaia (Greece); E.R.L., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. Demokritos, 15310 Ag. Paraskevi, Attiki (Greece); Diapouli, E. [E.R.L., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. Demokritos, 15310 Ag. Paraskevi, Attiki (Greece); Papaefthymiou, H. [Department of Chemistry, University of Patras, 26500 Patras, Achaia (Greece); Migliori, A.; Karydas, A.G.; Padilla-Alvarez, R.; Bogovac, M.; Kaiser, R.B. [Nuclear Science and Instrumentation Laboratory (NSIL), International Atomic Energy Agency, 2400 Seibersdorf (Austria); Jaksic, M.; Bogdanovic-Radovic, I. [Ruder Boskovic Institute, Bijenicka 54, P.O. Box 180, 10002 Zagreb (Croatia); Eleftheriadis, K. [E.R.L., Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, N.C.S.R. Demokritos, 15310 Ag. Paraskevi, Attiki (Greece)

    2015-04-15

    Particulate matter (PM) is an important constituent of atmospheric pollution especially in areas under the influence of industrial emissions. Megalopolis is a small city of 10,000 inhabitants located in central Peloponnese in close proximity to three coal opencast mines and two lignite fired power plants. 50 PM{sub 10} samples were collected in Megalopolis during the years 2009–11 for elemental and multivariate analysis. For the elemental analysis PIXE was used as one of the most effective techniques in APM analytical characterization. Altogether, the concentrations of 22 elements (Z = 11–33), whereas Black Carbon was also determined for each sample using a reflectometer. Factorization software was used (EPA PMF 3.0) for source apportionment analysis. The analysis revealed that major emission sources were soil dust 33% (7.94 ± 0.27 μg/m{sup 3}), biomass burning 19% (4.43 ± 0.27 μg/m{sup 3}), road dust 15% (3.63 ± 0.37 μg/m{sup 3}), power plant emissions 13% (3.01 ± 0.44 μg/m{sup 3}), traffic 12% (2.82 ± 0.37 μg/m{sup 3}), and sea spray 8% (1.99 ± 0.41 μg/m{sup 3}). Wind trajectories have suggested that metals associated with emission from the power plants came mainly from west and were connected with the locations of the lignite mines located in this area. Soil resuspension, road dust and power plant emissions increased during the warm season of the year, while traffic/secondary, sea spray and biomass burning become dominant during the cold season.

  2. Source apportionment by PMF on elemental concentrations obtained by PIXE analysis of PM10 samples collected at the vicinity of lignite power plants and mines in Megalopolis, Greece

    Science.gov (United States)

    Manousakas, M.; Diapouli, E.; Papaefthymiou, H.; Migliori, A.; Karydas, A. G.; Padilla-Alvarez, R.; Bogovac, M.; Kaiser, R. B.; Jaksic, M.; Bogdanovic-Radovic, I.; Eleftheriadis, K.

    2015-04-01

    Particulate matter (PM) is an important constituent of atmospheric pollution especially in areas under the influence of industrial emissions. Megalopolis is a small city of 10,000 inhabitants located in central Peloponnese in close proximity to three coal opencast mines and two lignite fired power plants. 50 PM10 samples were collected in Megalopolis during the years 2009-11 for elemental and multivariate analysis. For the elemental analysis PIXE was used as one of the most effective techniques in APM analytical characterization. Altogether, the concentrations of 22 elements (Z = 11-33), whereas Black Carbon was also determined for each sample using a reflectometer. Factorization software was used (EPA PMF 3.0) for source apportionment analysis. The analysis revealed that major emission sources were soil dust 33% (7.94 ± 0.27 μg/m3), biomass burning 19% (4.43 ± 0.27 μg/m3), road dust 15% (3.63 ± 0.37 μg/m3), power plant emissions 13% (3.01 ± 0.44 μg/m3), traffic 12% (2.82 ± 0.37 μg/m3), and sea spray 8% (1.99 ± 0.41 μg/m3). Wind trajectories have suggested that metals associated with emission from the power plants came mainly from west and were connected with the locations of the lignite mines located in this area. Soil resuspension, road dust and power plant emissions increased during the warm season of the year, while traffic/secondary, sea spray and biomass burning become dominant during the cold season.

  3. Elemental quantification, chemistry, and source apportionment in golf course facilities in semi-arid urban landscape using portable x-ray fluorescence spectrometer

    Directory of Open Access Journals (Sweden)

    T. K. Udeigwe

    2015-01-01

    Full Text Available This study extends the application of the portable x-ray fluorescence (PXRF spectrometry to examination of elements in semi-arid urban landscapes of the Southern High Plains (SHP of the United States (US, focusing on golf courses. The complex environmental challenges of this region and the unique management practices at golf course facilities could lead to differences in concentration and chemistry of elements between managed (irrigated and non-managed (non-irrigated portions of these facilities. Soil samples were collected at the depths of 0–10, 10–20, and 20–30 cm from managed and non-managed areas of seven different facilities in the city of Lubbock, Texas, and analyzed for a suite of soil properties. Total elemental quantification was conducted using PXRF. Findings mostly indicated no significant differences in concentration of examined elements between the managed and non-managed areas of the facilities. However, strong positive relationships (R2 = 0.82–0.91, p < 0.001 were observed among elements (e.g. Fe and each of Cr, Mn, Ni, and As; Cu and Zn; As and Cr and between these elements and soil constituents or properties such as clay, calcium carbonate, organic matter, and pH. The strengths of these relationships were mostly higher in the non-managed areas, suggesting possible alteration in the chemistry of these elements by anthropogenic influences. Principal component analyses (PCA and correlation analyses within the managed areas suggested that As, Cr, Fe, Mn, and Ni could be of lithogenic origin, while Cu, Pb, and Zn were attributed to anthropogenic influences. Only one possible source of element, likely lithogenic, was identified within non-managed areas. As evidenced from the study, the PXRF can be a valuable tool for elemental quantification, and rapid investigation of elemental interaction and source apportionment in semi-arid climates.

  4. Reactive oxygen species associated with water-soluble PM2.5 in the southeastern United States: spatiotemporal trends and source apportionment

    OpenAIRE

    Verma, V.; T. Fang; Guo, H; King, L.; Bates, J. T.; R. E. Peltier; Edgerton, E.; Russell, A.J.; Weber, R. J.

    2014-01-01

    We assess the potential of the water-soluble fraction of atmospheric fine aerosols in the southeastern US to generate reactive oxygen species (ROS) and identify major ROS-associated emission sources. ROS-generation potential of particles was quantified by the dithiothreitol (DTT) assay and involved analysis of fine particulate matter (PM) extracted from high-volume quartz filters (23 h integrated samples) collected at various sites in diff...

  5. Source apportionment of PM10 and PM(2.5) at Tocopilla, Chile (22 degrees 05' S, 70 degrees 12' W).

    Science.gov (United States)

    Jorquera, Héctor

    2009-06-01

    Tocopilla is located on the coast of Northern Chile, within an arid region that extends from 30 degrees S to the border with Perú. The major industrial activities are related to the copper mining industry. A measurement campaign was conducted during March and April 2006 to determine ambient PM10 and PM(2.5) concentrations in the city. The results showed significantly higher PM10 concentrations in the southern part of the city (117 microg/m3) compared with 79 and 80 (microg/m3) in the central and northern sites. By contrast, ambient PM2.5 concentrations had a more uniform spatial distribution across the city, around 20 (microg/m3). In order to conduct a source apportionment, daily PM10 and PM(2.5) samples were analyzed for elements by XRF. EPA's Positive Matrix Factorization software was used to interpret the results of the chemical compositions. The major source contributing to PM(2.5) at sites 1, 2 and 3, respectively are: (a) sulfates, with approximately 50% of PM2.5 concentrations at the three sites; (b) fugitive emissions from fertilizer storage and handling, with 16%, 21% and 10%; (c) Coal and residual oil combustion, with 15%, 15% and 4%; (d) Sea salt, 5%, 6% and 16%; (e) Copper ore processing, 4%, 5% and 15%; and (f) a mixed dust source with 11%, 7% and 4%. Results for PM10--at sites 1, 2 and 3, respectively--show that the major contributors are: (a) sea salt source with 36%, 32% and 36% of the PM10 concentration; (b) copper processing emissions mixed with airborne soil dust with 6.6%, 11.5% and 41%; (c) sulfates with 31%, 31% and 12%; (d) a mixed dust source with 16%, 12% and 10%, and (e) the fertilizer stockpile emissions, with 11%, 14% and 2% of the PM10 concentration. The high natural background of PM10 implies that major reductions in anthropogenic emissions of PM10 and SO2 would be required to attain ambient air quality standards for PM10; those reductions would curb down ambient PM(2.5) concentrations as well. PMID:18512124

  6. Urban increments of gaseous and aerosol pollutants and their sources using mobile aerosol mass spectrometry measurements

    Science.gov (United States)

    Elser, Miriam; Bozzetti, Carlo; El-Haddad, Imad; Maasikmets, Marek; Teinemaa, Erik; Richter, Rene; Wolf, Robert; Slowik, Jay G.; Baltensperger, Urs; Prévôt, André S. H.

    2016-06-01

    Air pollution is one of the main environmental concerns in urban areas, where anthropogenic emissions strongly affect air quality. This work presents the first spatially resolved detailed characterization of PM2.5 (particulate matter with aerodynamic equivalent diameter daero ≤ 2.5 µm) in two major Estonian cities, Tallinn and Tartu. The measurements were performed in March 2014 using a mobile platform. In both cities, the non-refractory (NR)-PM2.5 was characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) using a recently developed lens which increases the transmission of super-micron particles. Equivalent black carbon (eBC) and several trace gases including carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were also measured. The chemical composition of PM2.5 was found to be very similar in the two cities. Organic aerosol (OA) constituted the largest fraction, explaining on average about 52 to 60 % of the PM2.5 mass. Four sources of OA were identified using positive matrix factorization (PMF): hydrocarbon-like OA (HOA, from traffic emissions), biomass burning OA (BBOA, from biomass combustion), residential influenced OA (RIOA, probably mostly from cooking processes with possible contributions from waste and coal burning), and oxygenated OA (OOA, related to secondary aerosol formation). OOA was the major OA source during nighttime, explaining on average half of the OA mass, while during daytime mobile measurements the OA was affected by point sources and dominated by the primary fraction. A strong increase in the secondary organic and inorganic components was observed during periods with transport of air masses from northern Germany, while the primary local emissions accumulated during periods with temperature inversions. Mobile measurements offered the identification of different source regions within the urban areas and the assessment of the extent to which pollutants concentrations exceeded regional background

  7. Vertical profile, source apportionment, and toxicity of PAHs in sediment cores of a wharf near the coal-based steel refining industrial zone in Kaohsiung, Taiwan.

    Science.gov (United States)

    Chen, Chih-Feng; Chen, Chiu-Wen; Ju, Yun-Ru; Dong, Cheng-Di

    2016-03-01

    Three sediment cores were collected from a wharf near a coal-based steel refining industrial zone in Kaohsiung, Taiwan. Analyses for 16 polycyclic aromatic hydrocarbons (PAHs) of the US Environmental Protection Agency priority list in the core sediment samples were conducted using gas chromatography-mass spectrometry. The vertical profiles of PAHs in the core sediments were assessed, possible sources and apportionment were identified, and the toxicity risk of the core sediments was determined. The results from the sediment analyses showed that total concentrations of the 16 PAHs varied from 11774 ± 4244 to 16755 ± 4593 ng/g dry weight (dw). Generally, the vertical profiles of the PAHs in the sediment cores exhibited a decreasing trend from the top to the lower levels of the S1 core and an increasing trend of PAHs from the top to the lower levels of the S2 and S3 cores. Among the core sediment samples, the five- and six-ring PAHs were predominantly in the S1 core, ranging from 42 to 54 %, whereas the composition of the PAHs in the S2 and S3 cores were distributed equally across three groups: two- and three-ring, four-ring, and five- and six-ring PAHs. The results indicated that PAH contamination at the site of the S1 core had a different source. The molecular indices and principal component analyses with multivariate linear regression were used to determine the source contributions, with the results showing that the contributions of coal, oil-related, and vehicle sources were 38.6, 35.9, and 25.5 %, respectively. A PAH toxicity assessment using the mean effect range-median quotient (m-ERM-q, 0.59-0.79), benzo[a]pyrene toxicity equivalent (TEQ(carc), 1466-1954 ng TEQ/g dw), and dioxin toxicity equivalent (TEQ(fish), 3036-4174 pg TEQ/g dw) identified the wharf as the most affected area. The results can be used for regular monitoring, and future pollution prevention and management should target the coal-based industries in this region for pollution

  8. Source apportionment of methane and nitrous oxide in California's San Joaquin Valley at CalNex 2010 via positive matrix factorization

    Science.gov (United States)

    Guha, A.; Gentner, D. R.; Weber, R. J.; Provencal, R.; Goldstein, A. H.

    2015-10-01

    Sources of methane (CH4) and nitrous oxide (N2O) were investigated using measurements from a site in southeast Bakersfield as part of the CalNex (California at the Nexus of Air Quality and Climate Change) experiment from mid-May to the end of June 2010. Typical daily minimum mixing ratios of CH4 and N2O were higher than daily minima that were simultaneously observed at a mid-oceanic background station (NOAA, Mauna Loa) by approximately 70 ppb and 0.5 ppb, respectively. Substantial enhancements of CH4 and N2O (hourly averages > 500 and > 7 ppb, respectively) were routinely observed, suggesting the presence of large regional sources. Collocated measurements of carbon monoxide (CO) and a range of volatile organic compounds (VOCs) (e.g., straight-chain and branched alkanes, cycloalkanes, chlorinated alkanes, aromatics, alcohols, isoprene, terpenes and ketones) were used with a positive matrix factorization (PMF) source apportionment method to estimate the contribution of regional sources to observed enhancements of CH4 and N2O. The PMF technique provided a "top-down" deconstruction of ambient gas-phase observations into broad source categories, yielding a seven-factor solution. We identified these emission source factors as follows: evaporative and fugitive; motor vehicles; livestock and dairy; agricultural and soil management; daytime light and temperature driven; non-vehicular urban; and nighttime terpene biogenics and anthropogenics. The dairy and livestock factor accounted for the majority of the CH4 (70-90 %) enhancements during the duration of experiments. The dairy and livestock factor was also a principal contributor to the daily enhancements of N2O (60-70 %). Agriculture and soil management accounted for ~ 20-25 % of N2O enhancements over a 24 h cycle, which is not surprising given that organic and synthetic fertilizers are known to be a major source of N2O. The N2O attribution to the agriculture and soil management factor had a high uncertainty in the

  9. A large source of low-volatility secondary organic aerosol

    DEFF Research Database (Denmark)

    Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard;

    2014-01-01

    Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar...... radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed...... at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low...

  10. Do anthropogenic, continental or coastal aerosol sources impact on a marine aerosol signature at Mace Head?

    OpenAIRE

    C. O'Dowd; Ceburnis, D.; J. Ovadnevaite; A Vaishya; Rinaldi, M.; Facchini, M. C.

    2014-01-01

    Atmospheric aerosols have been sampled and characterised at the Mace Head north-east (NE) Atlantic atmospheric research station since 1958, with many interesting phenomena being discovered. However, with the range of new discoveries and scientific advances, there has been a range of concomitant criticisms challenging the representativeness of aerosol sampled at the station compared to that of aerosol over the pristine open-ocean. Two recurring criticisms relate to the lack o...

  11. Do anthropogenic or coastal aerosol sources impact on a clean marine aerosol signature at Mace Head?

    OpenAIRE

    C. O'Dowd; D. Ceburnis; J. Ovadnevaite; Rinaldi, M.; Facchini, M. C.

    2013-01-01

    Atmospheric aerosols have been sampled and characterised at the Mace Head North East (N.E.) Atlantic atmospheric research station since 1958, with many interesting phenomena being discovered. However, with the range of new discoveries and scientific advances, there has been a range of concomitant criticisms challenging the representativeness of aerosol sampled at the station to that of aerosol over the open ocean. Two recurring criticisms relate to the lack of representativeness due to enhanc...

  12. Concentration profiles, source apportionment and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in dumpsite soils from Agbogbloshie e-waste dismantling site, Accra, Ghana.

    Science.gov (United States)

    Daso, Adegbenro P; Akortia, Eric; Okonkwo, Jonathan O

    2016-06-01

    methodological approaches for PAH source apportionment, including the use of molecular diagnostic ratios, mostly implicated pyrogenic processes as the main sources of PAHs into the investigated dumpsite soils. Furthermore, their compositional profiles across the sampling sites also suggest similar sources of PAHs into the dumpsite soil. PMID:26897583

  13. Impact of interannual variations in aerosol particle sources on orographic precipitation over California's Central Sierra Nevada

    OpenAIRE

    J. M. Creamean; A. P. Ault; White, A B; P. J. Neiman; Ralph, F.M.; Minnis, P.; K. A. Prather

    2015-01-01

    Aerosols that serve as cloud condensation nuclei (CCN) and ice nuclei (IN) have the potential to profoundly influence precipitation processes. Furthermore, changes in orographic precipitation have broad implications for reservoir storage and flood risks. As part of the CalWater field campaign (2009–2011), the variability and associated impacts of different aerosol sources on precipitation were investigated in the California Sierra Nevada using an aerosol tim...

  14. Skin as a potential source of infectious foot and mouth disease aerosols

    OpenAIRE

    Dillon, Michael B.

    2011-01-01

    This review examines whether exfoliated, virus-infected animal skin cells could be an important source of infectious foot and mouth disease virus (FMDV) aerosols. Infectious material rafting on skin cell aerosols is an established means of transmitting other diseases. The evidence for a similar mechanism for FMDV is: (i) FMDV is trophic for animal skin and FMDV epidermis titres are high, even in macroscopically normal skin; (ii) estimates for FMDV skin cell aerosol emissions appear consistent...

  15. Composition and source apportionment of PM1 at urban site Kanpur in India using PMF coupled with CBPF

    Science.gov (United States)

    Rai, Pragati; Chakraborty, Abhishek; Mandariya, Anil Kumar; Gupta, Tarun

    2016-09-01

    This study addresses the three major questions: (1) what are the emission sources of PM1 which are affecting the study area; (2) where do these emission sources come from; and (3) is there any temporal variation in the emission sources. To address these issues, two advanced statistical methods are described in this paper. Identification of emission sources was performed by EPA PMF (v 5.0) and to understand the temporal variability, sampling was done for three winter seasons 2008-09, 2009-10 and 2011-12 within Kanpur city. To identify the possible source directions, Conditional Bivariate Probability function (CBPF) was used. The average PM1 concentration was higher in 2008-09 followed by 2011-12 and 2009-10 winter seasons. 2008-09 winter showed sources such as secondary sources mixed with power plant emission (42.8%), industrial emission (32.3%), coal combustion, brick kilns and vehicular emission (13.2%) and residual oil combustion and road dust (11.7%). The major contributors during winter season 2009-10 were secondary sources (33.1%), biomass burning (23.3%), heavy oil combustion (13%), vehicular emission mixed with crustal dust (11.3%), leather tanning industries (10.3%), industrial emission (4%), coal combustion and brick kilns (3.4%) and solid waste burning and incineration (1.5%) compared to secondary sources mixed with biomass burning (42.3%), industrial emission and crustal dust (35.1%) and vehicular emission and brick kilns (22.6%) during 2011-12 winter season. PMF model revealed that secondary sources were the main contributors for all the three winter seasons followed by biomass burning and power plant emission. The results of CBPF analysis agreed well with the locations of known local point sources., e.g. in the case of industrial emissions, the maximum probability was in the direction between NES direction where almost all the major industries are located in and around Kanpur while in the opposite direction the probability of biomass burning was high

  16. Source Apportionment and Risk Assessment of Emerging Contaminants: An Approach of Pharmaco-Signature in Water Systems

    OpenAIRE

    Jheng-Jie Jiang; Chon-Lin Lee; Meng-Der Fang; Boyd, Kenneth G.; Gibb, Stuart W.

    2015-01-01

    This paper presents a methodology based on multivariate data analysis for characterizing potential source contributions of emerging contaminants (ECs) detected in 26 river water samples across multi-scape regions during dry and wet seasons. Based on this methodology, we unveil an approach toward potential source contributions of ECs, a concept we refer to as the "Pharmaco-signature." Exploratory analysis of data points has been carried out by unsupervised pattern recognition (hierarchical clu...

  17. Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO

    Directory of Open Access Journals (Sweden)

    P. F. DeCarlo

    2010-02-01

    Full Text Available Organic aerosol (OA represents approximately half of the submicron aerosol in Mexico City and the Central Mexican Plateau. This study uses the high time resolution measurements performed onboard the NCAR/NSF C-130 aircraft during the MILAGRO/MIRAGE-Mex field campaign in March 2006 to investigate the sources and chemical processing of the OA in this region. An examination of the OA/ΔCO ratio evolution as a function of photochemical age shows distinct behavior in the presence or absence of substantial open biomass burning (BB influence, with the latter being consistent with other studies in polluted areas. In addition, we present results from Positive Matrix Factorization (PMF analysis of 12-s High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS OA spectra. Four components were resolved. Three of the components contain substantial organic oxygen and are termed semivolatile oxygenated OA (SV-OOA, low-volatility OOA (LV-OOA, and biomass burning OA (BBOA. A reduced "hydrocarbon-like OA" (HOA component is also resolved. LV-OOA is highly oxygenated (atomic O/C~1 and is aged organic aerosol linked to regional airmasses, with likely contributions from pollution, biomass burning, and other sources. SV-OOA is strongly correlated with ammonium nitrate, Ox, and the Mexico City Basin. We interpret SV-OOA as secondary OA which is nearly all (>90% anthropogenic in origin. In the absence of biomass burning it represents the largest fraction of OA over the Mexico City basin, consistent with other studies in this region. BBOA is identified as arising from biomass burning sources due to a strong correlation with HCN, and the elevated contribution of the ion C2H4O2+ (m/z 60, a marker for levoglucosan and other primary BB species. WRF-FLEXPART calculated fire impact factors (FIF show good correlation with BBOA mass concentrations within the basin, but show location offsets in the far field

  18. Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO

    Directory of Open Access Journals (Sweden)

    P. F. DeCarlo

    2010-06-01

    Full Text Available Organic aerosol (OA represents approximately half of the submicron aerosol in Mexico City and the Central Mexican Plateau. This study uses the high time resolution measurements performed onboard the NCAR/NSF C-130 aircraft during the MILAGRO/MIRAGE-Mex field campaign in March 2006 to investigate the sources and chemical processing of the OA in this region. An examination of the OA/ΔCO ratio evolution as a function of photochemical age shows distinct behavior in the presence or absence of substantial open biomass burning (BB influence, with the latter being consistent with other studies in polluted areas. In addition, we present results from Positive Matrix Factorization (PMF analysis of 12-s High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS OA spectra. Four components were resolved. Three of the components contain substantial organic oxygen and are termed semivolatile oxygenated OA (SV-OOA, low-volatility OOA (LV-OOA, and biomass burning OA (BBOA. A reduced "hydrocarbon-like OA" (HOA component is also resolved. LV-OOA is highly oxygenated (atomic O/C~1 and is aged organic aerosol linked to regional airmasses, with likely contributions from pollution, biomass burning, and other sources. SV-OOA is strongly correlated with ammonium nitrate, Ox, and the Mexico City Basin. We interpret SV-OOA as secondary OA which is nearly all (>90% anthropogenic in origin. In the absence of biomass burning it represents the largest fraction of OA over the Mexico City basin, consistent with other studies in this region. BBOA is identified as arising from biomass burning sources due to a strong correlation with HCN, and the elevated contribution of the ion C2H4O2+ (m/z 60, a marker for levoglucosan and other primary BB species. WRF-FLEXPART calculated fire impact factors (FIF show good correlation with BBOA mass concentrations within the basin, but show location offsets in the far field

  19. Effects of aerosol sources and chemical compositions on cloud drop sizes and glaciation temperatures

    Science.gov (United States)

    Zipori, Assaf; Rosenfeld, Daniel; Tirosh, Ofir; Teutsch, Nadya; Erel, Yigal

    2015-09-01

    The effect of aerosols on cloud properties, such as its droplet sizes and its glaciation temperatures, depends on their compositions and concentrations. In order to examine these effects, we collected rain samples in northern Israel during five winters (2008-2011 and 2013) and determined their chemical composition, which was later used to identify the aerosols' sources. By combining the chemical data with satellite-retrieved cloud properties, we linked the aerosol types, sources, and concentrations with the cloud glaciation temperatures (Tg). The presence of dust increased Tg from -26°C to -12°C already at relatively low dust concentrations. This result is in agreement with the conventional wisdom that desert dust serves as good ice nuclei (INs). With higher dust concentrations, Tg saturated at -12°C, even though cloud droplet sizes decreased as a result of the cloud condensation nucleating (CCN) activity of the dust. Marine air masses also encouraged freezing, but in this case, freezing was enhanced by the larger cloud droplet sizes in the air masses (caused by low CCN concentrations) and not by IN concentrations or by aerosol type. An increased fraction of anthropogenic aerosols in marine air masses caused a decrease in Tg, indicating that these aerosols served as poor IN. Anthropogenic aerosols reduced cloud droplet sizes, which further decreased Tg. Our results could be useful in climate models for aerosol-cloud interactions, as we investigated the effects of aerosols of different sources on cloud properties. Such parameterization can simplify these models substantially.

  20. Source apportionment of the particulate PAHs at Seoul, Korea: impact of long range transport to a megacity

    Directory of Open Access Journals (Sweden)

    J. Y. Lee

    2007-07-01

    Full Text Available Northeast Asia including China, Korea, and Japan is one of the world's largest fossil fuel consumption regions. Seoul, Korea, is a megacity in Northeast Asia. Its emissions of air pollutants can affect the region, and in turn it is also affected by regional emissions. To understand the extent of these influences, major sources of ambient particulate PAHs in Seoul were identified and quantified based on measurements made between August 2002 and December 2003. The chemical mass balance (CMB model was applied. Seven major emission sources were identified based on the emission data in Seoul and Northeast Asia: Gasoline and diesel vehicles, residential coal use, coke ovens, coal power plants, biomass burning, and natural gas (NG combustion. The major sources of particulate PAHs in Seoul during the whole measurement period were gasoline and diesel vehicles, together accounted for 31% of the measured particulate PAHs levels. However, the source contributions showed distinct daily and seasonal variations. High contributions of biomass burning and coal (residential and coke oven were observed in fall and winter, accounting for 63% and 82% of the total concentration of PAHs, respectively. Since these sources were not strong in and around Seoul, they are likely to be related to transport from outside of Seoul, from China and/or North Korea. This implies that the air quality in a mega-city such as Seoul can be influenced by the long range transport of air pollutants such as PAHs.

  1. Source apportionment of the particulate PAHs at Seoul, Korea: impact of long range transport to a megacity

    Directory of Open Access Journals (Sweden)

    J. Y. Lee

    2007-01-01

    Full Text Available Northeast Asia including China, Korea, and Japan is one of the world's largest fossil fuel consumption regions. Seoul is a megacity in Northeast Asia and its emissions of air pollutants can affect the region and is also affected by the regional emissions. To understand the degree of this relationship, major sources of ambient particulate PAHs at Seoul, Korea were identified and quantified based on the measurement data between August 2002 and December 2003. The chemical mass balance (CMB model was applied. Seven major emission sources were identified based on the emission data in Seoul and Northeast Asia: Gasoline and diesel vehicles, coal residential, coke oven, coal power plant, biomass burning, natural gas (NG combustion. The major source of particulate PAHs at Seoul on the whole measurement period was gasoline and diesel vehicles, accounted for 31% of the measured particulate PAHs levels. However, the source contributions showed distinct seasonal variations. High contributions of biomass burning and coal (residential and coke oven were shown in fall and winter accounted for 63% and 82% of the total PAHs concentration, respectively. Since these sources were not strong in and around Seoul, these might be related to transport from outside of Seoul, from China and/or North Korea. It implies that the air quality in the large urban city such as Seoul can be influenced by the long range transport of air pollutants such as PAHs.

  2. Source apportionment with uncertainty estimates of fine particulate matter in Ostrava, Czech Republic using Positive Matrix Factorization

    Science.gov (United States)

    A 14-week investigation during a warm and cold seasons was conducted to improve understanding of air pollution sources that might be impacting air quality in Ostrava, the Czech Republic. Fine particulate matter (PM2.5) samples were collected in consecutive 12-h day and night incr...

  3. Spatial Distribution, Air-Water Fugacity Ratios and Source Apportionment of Polychlorinated Biphenyls in the Lower Great Lakes Basin.

    Science.gov (United States)

    Khairy, Mohammed; Muir, Derek; Teixeira, Camilla; Lohmann, Rainer

    2015-12-01

    Polychlorinated biphenyls (PCBs) continue to be contaminants of concern across the Great Lakes. It is unclear whether current concentrations are driven by ongoing primary emissions from their original uses, or whether ambient PCBs are dominated by their environmental cycling. Freely dissolved PCBs in air and water were measured using polyethylene passive samplers across Lakes Erie and Ontario during summer and fall, 2011, to investigate their spatial distribution, determine and apportion their sources and to asses their air-water exchange gradients. Average gaseous and freely dissolved ∑29 PCB concentrations ranged from 5.0 to 160 pg/m(3) and 2.0 to 55 pg/L respectively. Gaseous concentrations were significantly correlated (R(2) = 0.80) with the urban area within a 3-20 km radius. Fugacity ratios indicated that the majority of PCBs are volatilizing from the water thus acting as a secondary source for the atmosphere. Dissolved PCBs were probably linked to PCB emissions from contaminated sites and areas of concern. Positive matrix factorization indicated that although volatilized Aroclors (gaseous PCBs) and unaltered Aroclors (dissolved PCBs) dominate in some samples, ongoing non-Aroclor sources such as paints/pigments (PCB 11) and coal/wood combustion showed significant contributions across the lower Great Lakes. Accordingly, control strategies should give further attention to PCBs emitted from current use sources. PMID:25915412

  4. Source apportionment of the carcinogenic potential of polycyclic aromatic hydrocarbons (PAH) associated to airborne PM10 by a PMF model.

    Science.gov (United States)

    Callén, M S; Iturmendi, A; López, J M; Mastral, A M

    2014-02-01

    In order to perform a study of the carcinogenic potential of polycyclic aromatic hydrocarbons (PAH), benzo(a)pyrene equivalent (BaP-eq) concentration was calculated and modelled by a receptor model based on positive matrix factorization (PMF). Nineteen PAH associated to airborne PM10 of Zaragoza, Spain, were quantified during the sampling period 2001-2009 and used as potential variables by the PMF model. Afterwards, multiple linear regression analysis was used to quantify the potential sources of BaP-eq. Five sources were obtained as the optimal solution and vehicular emission was identified as the main carcinogenic source (35 %) followed by heavy-duty vehicles (28 %), light-oil combustion (18 %), natural gas (10 %) and coal combustion (9 %). Two of the most prevailing directions contributing to this carcinogenic character were the NE and N directions associated with a highway, industrial parks and a paper factory. The lifetime lung cancer risk exceeded the unit risk of 8.7 x 10(-5) per ng/m(3) BaP in both winter and autumn seasons and the most contributing source was the vehicular emission factor becoming an important issue in control strategies. PMID:24022101

  5. ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2003-11-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2003 through August 2003. Significant progress was made this project period on the source characterization, source apportionment, and deterministic modeling activities. Major accomplishments included: Development of an emission profile for an integrated coke production facility and simulations using PMCAMx for a two week period during July 2001. The emissions from the coke facility are dominated by carbonaceous compounds. Forty seven percent of the organic carbon mass was identified on a compound level basis. Polycyclic aromatic hydrocarbons were the dominant organic compound class in the coke emissions. Initial comparisons with the data collected in Pittsburgh suggest good agreement between the model predictions and observations. Single particle composition data appear useful for identifying primary sources. An example of this unique approach is illustrated using the Fe and Ce particle class with appear associated with steel production.

  6. Measurement and apportionment of radon source terms for modeling indoor environments. Annual progress report, March 1991--February 1992

    Energy Technology Data Exchange (ETDEWEB)

    Harley, N.H.

    1992-02-01

    This research has two main goals; (1) to quantify mechanisms for radon entry into homes of different types and to determine the fraction of indoor radon attributable to each source and (2) to model and calculate the dose (and therefore alpha particle fluence) to cells in the human and animal tracheobronchial tree that is pertinent to induction of bronchogenic carcinoma from inhaled radon daughters. The dosimetry has been extended to include organs other than the lung.

  7. Evaluation and Source Apportionment of Heavy Metals (HMs) in Sewage Sludge of Municipal Wastewater Treatment Plants (WWTPs) in Shanxi, China

    OpenAIRE

    Baoling Duan; Fenwu Liu; Wuping Zhang; Haixia Zheng; Qiang Zhang; Xiaomei Li; Yushan Bu

    2015-01-01

    Heavy metals (HMs) in sewage sludge have become the crucial limiting factors for land use application. Samples were collected and analyzed from 32 waste water treatment plants (WWTPs) in the Shanxi Province, China. HM levels in sewage sludge were assessed. The multivariate statistical method principal component analysis (PCA) was applied to identify the sources of HMs in sewage sludge. HM pollution classes by geochemical accumulation index Igeo and correlation analyses between HMs were also c...

  8. Source apportionment of wide range particle size spectra and black carbon collected at the airport of Venice (Italy)

    Science.gov (United States)

    Masiol, Mauro; Vu, Tuan V.; Beddows, David C. S.; Harrison, Roy M.

    2016-08-01

    Atmospheric particles are of high concern due to their toxic properties and effects on climate, and large airports are known as significant sources of particles. This study investigates the contribution of the Airport of Venice (Italy) to black carbon (BC), total particle number concentrations (PNC) and particle number size distributions (PNSD) over a large range (14 nm-20 μm). Continuous measurements were conducted between April and June 2014 at a site located 110 m from the main taxiway and 300 m from the runway. Results revealed no significantly elevated levels of BC and PNC, but exhibited characteristic diurnal profiles. PNSD were then analysed using both k-means cluster analysis and positive matrix factorization. Five clusters were extracted and identified as midday nucleation events, road traffic, aircraft, airport and nighttime pollution. Six factors were apportioned and identified as probable sources according to the size profiles, directional association, diurnal variation, road and airport traffic volumes and their relationships to micrometeorology and common air pollutants. Photochemical nucleation accounted for ∼44% of total number, followed by road + shipping traffic (26%). Airport-related emissions accounted for ∼20% of total PNC and showed a main mode at 80 nm and a second mode beyond the lower limit of the SMPS (factors accounted for less than 10% of number counts, but were relevant for total volume concentrations: nighttime nitrate, regional pollution and local resuspension. An analysis of BC levels over different wind sectors revealed no especially significant contributions from specific directions associated with the main local sources, but a potentially significant role of diurnal dynamics of the mixing layer on BC levels. The approaches adopted in this study have identified and apportioned the main sources of particles and BC at an international airport located in area affected by a complex emission scenario. The results may underpin

  9. Source apportionment and risk assessment of emerging contaminants: an approach of pharmaco-signature in water systems.

    Directory of Open Access Journals (Sweden)

    Jheng-Jie Jiang

    Full Text Available This paper presents a methodology based on multivariate data analysis for characterizing potential source contributions of emerging contaminants (ECs detected in 26 river water samples across multi-scape regions during dry and wet seasons. Based on this methodology, we unveil an approach toward potential source contributions of ECs, a concept we refer to as the "Pharmaco-signature." Exploratory analysis of data points has been carried out by unsupervised pattern recognition (hierarchical cluster analysis, HCA and receptor model (principal component analysis-multiple linear regression, PCA-MLR in an attempt to demonstrate significant source contributions of ECs in different land-use zone. Robust cluster solutions grouped the database according to different EC profiles. PCA-MLR identified that 58.9% of the mean summed ECs were contributed by domestic impact, 9.7% by antibiotics application, and 31.4% by drug abuse. Diclofenac, ibuprofen, codeine, ampicillin, tetracycline, and erythromycin-H2O have significant pollution risk quotients (RQ>1, indicating potentially high risk to aquatic organisms in Taiwan.

  10. Application of radiocarbon analysis and receptor modeling to the source apportionment of PAHs (polycyclic aromatic hydrocarbons) in the atmosphere

    International Nuclear Information System (INIS)

    The radiocarbon tracer technique was used to demonstrate that polycyclic aromatic hydrocarbons (PAHs) can be used for quantitative receptor modeling of air pollution. Fine-particle samples were collected during December, 1985, in Albuquerque, NM. Motor vehicles (fossil) and residential wood combustion (RWC, modern) were the major PAH-sources. For each sample, the PAH-fraction was solvent-extracted, isolated by liquid chromatography, and analyzed by GC-FID and GC-MS. The PAH-fractions from sixteen samples were analyzed for 14C by Accelerator Mass Spectrometry. Radiocarbon data were used to calculate the relative RWC contribution (fRWC) for samples analyzed for 14C. Normalized concentrations of a prospective motor vehicle tracer, benzo(ghi)perylene (BGP) had a strong, negative correlation with fRWC. Normalized BGP concentrations were used to apportion sources for samples not analyzed for 14C. Multiple Linear Regression (MLR) vs. ADCS and BGP was used to estimate source profiles for use in Target Factor Analysis (TFA). Profiles predicted by TFA were used in Chemical Mass Balances (CMBs). For non-volatile, stable PAHs, agreement between observed and predicted concentrations was excellent. The worst fits were observed for the most volatile PAHs and for coronene. The total RWC contributions predicted by CMBs correlated well with the radiocarbon data

  11. Determination of elemental composition and probable sources of atmospheric aerosol in Tirana by EDXRF analysis

    International Nuclear Information System (INIS)

    Full text: The importance of aerosol composition study is directly related with the specific role that aerosol particles play on human health and in different atmospheric parameters. The air pollution monitoring in Tirana has started long ago by measuring some common pollutants, but only during the last years a few attempts have been made for the study of aerosol composition. These were based on the analysis of total aerosol samples collected on cellulose filters using energy dispersive X ray fluorescence (EDXRF) spectrometry. Recently, with the support of the Albanian Ministry of Environment, an aerosol sampling campaign was organized in Tirana. Two different stations were selected for collecting aerosol samples. The first was situated in the centre of the city while the second, in a clean area, near the top of the mountain Dajti. In each of the stations total and size-fractionated aerosol samples were collected respectively on TFA-41 cellulose filters using high volume pumps and on Nuclepore filters using stacked filter unit sampler. An experimental EDXRF system was used for the determination of the concentrations of about 15 elements in the aerosol-loaded filters. The analytical data obtained allowed the calculation of the mean elemental concentrations in the aerosol and their crustal enrichment factors. The application of multivariate methods (Factor Analysis) allowed the identification of the main aerosol sources. (author)

  12. Aerosol structure and vertical distribution in a multi-source dust region.

    Science.gov (United States)

    Zhang, Jie; Zhang, Qiang; Tang, Congguo; Han, Yongxiang

    2012-01-01

    The vertical distribution of aerosols was directly observed under various atmospheric conditions in the free troposphere using surface micro-pulse lidar (MPL4) at the Zhangye Station (39.08 degrees N, 100.27 degrees E) in western China in the spring of 2008. The study shows that the aerosol distribution over Zhangye can be vertically classified into upper, middle and lower layers with altitudes of 4.5 to 9 km, 2.5 to 4.5 km, and less than 2.5 km, respectively. The aerosol in the upper layer originated from the external sources at higher altitude regions, from far desert regions upwind of Zhangye or transported from higher atmospheric layers by free convection, and the altitude of this aerosol layer decreased with time; the aerosols in the middle and lower layers originated from both external and local sources. The aerosol extinction coefficients in the upper and lower layers decreased with altitude, whereas the coefficient in the middle layer changed only slightly, which suggests that aerosol mixing occurs in the middle layer. The distribution of aerosols with altitude has three features: a single peak that forms under stable atmospheric conditions, an exponential decrease with altitude that occurs under unstable atmospheric conditions, and slight change in the mixed layer. Due to the impact of the top of the atmospheric boundary layer, the diurnal variation in the aerosol extinction coefficient has a single peak, which is higher in the afternoon and lower in the morning. PMID:23513689

  13. Sources markers in aerosols, oceanic particles and sediments

    Directory of Open Access Journals (Sweden)

    Saliot A.

    2009-02-01

    Full Text Available This review presents some diagnostic criteria used for identifying and quantifying terrestrial organic matter inputs to the ocean. Coupled to the isotopic composition of total organic carbon, the analysis of stable biomarkers permits to trace higher plant contributions in aerosols, dusts, sedimenting particles and dissolved phase in the water column and ultimately in recent and ancient sediments and soils. Some applications are presented, based on the analysis of n-alkyl compounds by a combination of gas chromatography and mass spectrometry (n-alkanes, n-alkanols, n-alkanoic acids and wax esters. Another approach has been developed using the analysis of macromolecular compounds present in higher plants. Abundances of the phenolic compounds from lignin, benzene carboxylic acids obtained during cupric oxide oxidation, Curie pyrolysis are used to characterise terrestrial organic matter sources and inputs. Finally due to the importance of biomass burning in continent-ocean transfers, biomarkers are presented in the polycyclic aromatic hydrocarbon class and for monosaccharide derivatives from the breakdown of cellulose.

  14. Sources markers in aerosols, oceanic particles and sediments

    Science.gov (United States)

    Saliot, A.

    2009-02-01

    This review presents some diagnostic criteria used for identifying and quantifying terrestrial organic matter inputs to the ocean. Coupled to the isotopic composition of total organic carbon, the analysis of stable biomarkers permits to trace higher plant contributions in aerosols, dusts, sedimenting particles and dissolved phase in the water column and ultimately in recent and ancient sediments and soils. Some applications are presented, based on the analysis of n-alkyl compounds by a combination of gas chromatography and mass spectrometry (n-alkanes, n-alkanols, n-alkanoic acids and wax esters). Another approach has been developed using the analysis of macromolecular compounds present in higher plants. Abundances of the phenolic compounds from lignin, benzene carboxylic acids obtained during cupric oxide oxidation, Curie pyrolysis are used to characterise terrestrial organic matter sources and inputs. Finally due to the importance of biomass burning in continent-ocean transfers, biomarkers are presented in the polycyclic aromatic hydrocarbon class and for monosaccharide derivatives from the breakdown of cellulose.

  15. Apportionment of polycyclic aromatic hydrocarbon sources in lower Fox River, USA, sediments by a chemical mass balance model

    International Nuclear Information System (INIS)

    Four sediment cores were collected from the lower Fox River, Wisconsin, USA, to identify possible sources of polycyclic aromatic hydrocarbons (PAHs) using a chemical mass balance model. The cores, which were obtained in 1995 from areas close to Green Bay, Wisconsin, USA, had total PAH concentrations between 19.3 and 0.34 ppm. To determine historical trends of PAH inputs, 210Pb and 137Cs dating was used, and elemental carbon particle analysis was done to characterize particles from the combustion of coal, wood, and petroleum. Source fingerprints were taken from the literature. Their results indicate that coke oven emissions, highway dust, coal gasification, and wood burning are likely sources of PAHs in the lower Fox River. Coke oven emissions are in the range of 40 to 90% of total PAHs, and this fraction decreases from 1930 to 1990, except in core Fox River-A (FR-A). The overall highway dust (HWY) contribution is between 10 and 75%, and this fraction increases from 1930 to present, except in core FR-A. The wood burning (WB) contribution is less than 7% in cores FR-B, FR-C, and FR-D. In core FR-A, a maximum (∼23%) is found around 1960. The contribution of wood burning has changed from less than 6% in 1950 to between 3 and 10% in 1995. Evidence of aerobic biodegradation or photolysis in the sediment of phenanthrene, with a half-life of approximately 0.5 years has been found at the site of core FR-D, which is the shallowest (1.1 m) of the four core sites

  16. In situ Measurements of Absorbing Aerosols from Urban Sources, in Maritime Environments and during Biomass Combustion

    Science.gov (United States)

    Mazzoleni, C.; Manvendra, D.; Chylek, P.; Arnott, P.

    2006-12-01

    Absorbing aerosols have important but still ill quantified effects on climate, visibility, cloud processes, and air quality. The compilation of aerosol scattering and absorption databases from reliable measurements is essential to reduce uncertainties in these inter-linked research areas. The atmospheric radiative balance for example, is modeled using the aerosol single scattering albedo (ratio of scattering to scattering plus absorption, SSA) as a fundamental input parameter in climate models. Sulfate aerosols with SSA values close to 1 scatter solar radiation resulting in a negative radiative forcing. However aerosol SSA values less than 1 are common when combustion processes are contributing to the aerosol sources. Absorbing aerosols directly heat the atmosphere and reduce the solar radiation at the surface. Currently, the net global anthropogenic aerosol direct radiative forcing is estimated to be around -0.5W m-2 with uncertainty of about 80% largely due to lack of understanding of SSA of sulfate-organic-soot aerosols. We present a rapidly expanding data set of direct in situ aerosol absorption and scattering measurements performed since June 2005 by photoacoustic instrument (at 781 and 870 nm), with integrated a total scattering sensor, during numerous field campaigns. Data have been collected over a wide range of aerosol sources, local environments and anthropogenic activities. Airborne measurements were performed in marine stratus off shore of the California coast and in cumulus clouds and clear air in the Houston, TX area; ground-based measurements have been performed in many locations in Mexico City; while laboratory measurements have been collected during a controlled combustion experiment of many different biomass fuels. The large dynamic range of aerosol types and conditions from these different field campaigns will be integrated to help quantify the SSA values, their variability, and their implications on the radiative forcing of climate.

  17. Source attribution of water-soluble organic aerosol by nuclear magnetic resonance spectroscopy.

    Science.gov (United States)

    Decesari, Stefano; Mircea, Mihaiela; Cavalli, Fabrizia; Fuzzi, Sandro; Moretti, Fabio; Tagliavini, Emilio; Facchini, Maria Cristina

    2007-04-01

    The functional group compositions of atmospheric aerosol water-soluble organic compoundswere obtained employing proton nuclear magnetic resonance (1H NMR) spectroscopy in a series of recent experiments in several areas of the world characterized by different aerosol sources and pollution levels. Here, we discuss the possibility of using 1H NMR functional group distributions to identifythe sources of aerosol in the different areas. Despite the limited variability of functional group compositions of atmospheric aerosol samples, characteristic 1H NMR fingerprints were derived for three major aerosol sources: biomass burning, secondary formation from anthropogenic and biogenic VOCs, and emission from the ocean. The functional group patterns obtained in areas characterized by one of the above dominant source processes were then compared to identify the dominant sources for samples coming from mixed sources. This analysis shows that H NMR spectroscopy can profitably be used as a valuable tool for aerosol source identification. In addition, compared to other existing methodologies, it is able to relate the source fingerprints to integral chemical properties of the organic mixtures, which determine their reactivity and their physicochemical properties and ultimately the fate of the organic particles in the atmosphere. PMID:17438803

  18. Source apportionment of wide range particle size spectra and black carbon collected at the airport of Venice (Italy)

    Science.gov (United States)

    Masiol, Mauro; Vu, Tuan V.; Beddows, David C. S.; Harrison, Roy M.

    2016-08-01

    Atmospheric particles are of high concern due to their toxic properties and effects on climate, and large airports are known as significant sources of particles. This study investigates the contribution of the Airport of Venice (Italy) to black carbon (BC), total particle number concentrations (PNC) and particle number size distributions (PNSD) over a large range (14 nm-20 μm). Continuous measurements were conducted between April and June 2014 at a site located 110 m from the main taxiway and 300 m from the runway. Results revealed no significantly elevated levels of BC and PNC, but exhibited characteristic diurnal profiles. PNSD were then analysed using both k-means cluster analysis and positive matrix factorization. Five clusters were extracted and identified as midday nucleation events, road traffic, aircraft, airport and nighttime pollution. Six factors were apportioned and identified as probable sources according to the size profiles, directional association, diurnal variation, road and airport traffic volumes and their relationships to micrometeorology and common air pollutants. Photochemical nucleation accounted for ∼44% of total number, followed by road + shipping traffic (26%). Airport-related emissions accounted for ∼20% of total PNC and showed a main mode at 80 nm and a second mode beyond the lower limit of the SMPS (international airport located in area affected by a complex emission scenario. The results may underpin measures for improving local and regional air quality, and health impact assessment studies.

  19. [Distribution Characteristics and Source Apportionment of n-Alkanes in Water from Yellow River in Henan Section].

    Science.gov (United States)

    Feng, Jing-lan; Xi, Nan-nan; Zhang, Fei; Liu, Shu-hui; Sun, Jian-hui

    2016-03-15

    To investigate the distributions and possible sources of n-alkanes in water and suspended particulate matter from Yellow River in Henan section, 26 water and suspended particulate matter samples were collected in August 2010 and 22 n-alkanes (C₁₄-C₃₆) were quantitatively determined by gas chromatography-mass spectrometer (GC-MS). Potential sources of n-alkanes were analyzed using different characteristic parameters. The results indicated that total concentrations of 22 n-alkanes were 521-5,843 ng · L⁻¹ with a mean concentration of 1,409 ng · L⁻¹, while the total amounts of n-alkanes in the suspended particulate matter were 463-11,142 ng · L⁻¹ with a mean value of 1,951 ng · L⁻¹. The composition profiles of n-alkanes in water showed unimodal distribution with a peak at C₂₅ in water. However, the composition characteristics of n-alkanes in SPM were of bimodal type, but still with the advantage of high carbon hydrocarbons peak at C₂₅. Results of characteristic parameters including CPI, TAR, OEP and % WaxCn showed that n-alkanes in the studied area were derived mainly from combustion of fossil fuel, while terrestrial higher plant played a role in the existence of n-alkanes in water and suspended particulate matter from Yellow River in Henan section. PMID:27337879

  20. Source Apportionment of Particulate Matter (PM10 In an Integrated Coal Mining Complex of Jharia Coalfield, Eastern India, A Review.

    Directory of Open Access Journals (Sweden)

    Debananda Roy

    2014-04-01

    Full Text Available Coal based thermal power generation accounts for 44.7% of the world's electricity and coal alone provides about 80% of the total energy demand in India. Energy-intensive industries deteriorate the air quality of the residential areas due to release of different pollutants, especially a range of deleterious heavy metals like Hg, Cd, Cu, Pb, and Cr. Near about 53.3 percent of the coal produced every year in India has been used for thermal generation. Jharia Coalfield (JCF is major contributor of coking coal in India. JCF receives particulate matter from various sources such as, opencast coal mining and its associated activities, thermal power stations, automobiles, generator sets fuel burning, construction activities, domestic coal, cooking gas burning, etc. and even the background contribution of natural dust (crustal origin can not be ruled out, particularly, in the zones having loose topsoil. Concentration of particulate matter causes harmful impacts to the society. These multiple sources are contributing to particulates pollution in the study area.

  1. Source apportionment and health risk assessment of PM10 in a naturally ventilated school in a tropical environment.

    Science.gov (United States)

    Mohamad, Noorlin; Latif, Mohd Talib; Khan, Md Firoz

    2016-02-01

    This study aimed to investigate the chemical composition and potential sources of PM10 as well as assess the potential health hazards it posed to school children. PM10 samples were taken from classrooms at a school in Kuala Lumpur's city centre (S1) and one in the suburban city of Putrajaya (S2) over a period of eight hours using a low volume sampler (LVS). The composition of the major ions and trace metals in PM10 were then analysed using ion chromatography (IC) and inductively coupled plasma-mass spectrometry (ICP-MS), respectively. The results showed that the average PM10 concentration inside the classroom at the city centre school (82µg/m(3)) was higher than that from the suburban school (77µg/m(3)). Principal component analysis-absolute principal component scores (PCA-APCS) revealed that road dust was the major source of indoor PM10 at both school in the city centre (36%) and the suburban location (55%). The total hazard quotient (HQ) calculated, based on the formula suggested by the United States Environmental Protection Agency (USEPA), was found to be slightly higher than the acceptable level of 1, indicating that inhalation exposure to particle-bound non-carcinogenic metals of PM10, particularly Cr exposure by children and adults occupying the school environment, was far from negligible. PMID:26590697

  2. The contribution of anthropogenic sources to the aerosols over East China Sea

    Science.gov (United States)

    Wang, Fujiang; Chen, Ying; Meng, Xi; Fu, Jiangping; Wang, Bo

    2016-02-01

    Total suspended particulate (TSP) samples were collected at a pristine island (Huaniao) in northern East China Sea (ECS) between Mar. 2011 and Jan. 2013 and analyzed for the concentrations of major ions and trace elements. Aerosol sources and the distribution of source regions are identified using positive matrix factorization (PMF) and potential source contribution function (PSCF) methods. It is found that aerosols over Huaniao Island are contributed by six main factors including primary industrial emissions (11.3%), secondary aerosol (22%), oxalate-associated aerosol (15.7%), sea salt (36.7%), ship emission (6.3%) and mineral dust (8.1%). Anthropogenic source contribution to the resolved aerosol mass reached the highest (76.6%) and lowest (18%) values in January 2013 and August 2012 respectively, strongly influenced by the prevailing winds of East Asian monsoon. The main source regions of secondary aerosol are southeastern Hebei and Shandong, which is consistent with the most intensive distribution of coal-fired power plants and the largest emission of precursors in this area. Oxalate-associated aerosol is produced primarily along the coastal line. Primary industrial emissions mainly originate from southwestern Shandong and Yangtze River Delta.

  3. Potential source identification for aerosol concentrations over a site in Northwestern India

    Science.gov (United States)

    Payra, Swagata; Kumar, Pramod; Verma, Sunita; Prakash, Divya; Soni, Manish

    2016-03-01

    The collocated measurements of aerosols size distribution (ASD) and aerosol optical thickness (AOT) are analyzed simultaneously using Grimm aerosol spectrometer and MICROTOP II Sunphotometer over Jaipur, capital of Rajasthan in India. The contrast temperature characteristics during winter and summer seasons of year 2011 are investigated in the present study. The total aerosol number concentration (TANC, 0.3-20 μm) during winter season was observed higher than in summer time and it was dominated by fine aerosol number concentration (FANC work, Potential Source Contribution Function (PSCF) analysis is applied to identify locations of sources that influenced concentrations of aerosols over study area in two different seasons. PSCF analysis shows that the dust particles from Thar Desert contribute significantly to the coarse aerosol number concentration (CANC). Higher values of the PSCF in north from Jaipur showed the industrial areas in northern India to be the likely sources of fine particles. The variation in size distribution of aerosols during two seasons is clearly reflected in the log normal size distribution curves. The log normal size distribution curves reveals that the particle size less than 0.8 μm is the key contributor in winter for higher ANC.

  4. Chemical characterisation of atmospheric aerosols during a 2007 summer field campaign at Brasschaat, Belgium: sources and source processes, time series, diel variations, and temperature dependencies

    Directory of Open Access Journals (Sweden)

    Y. Gómez-González

    2011-08-01

    Full Text Available Measurements of organic marker compounds and inorganic species were performed on PM2.5 aerosols from a Belgian forest site that is severely impacted by urban pollution ("De Inslag", Brasschaat, Belgium during a 2007 summer period within the framework of the "Formation mechanisms, marker compounds, and source apportionment for biogenic atmospheric aerosols (BIOSOL" project. The objectives of this study were to determine sources, source processes, time series, and diel variations of the organic species, and to explore the relationships between their concentrations and those of trace gases (O3, NO2, SO2, and CO2 or meteorological parameters (temperature, relative humidity, wind speed, and rain fall. The measured organic species included (i low-molecular weight (MW dicarboxylic acids (LMW DCAs, (ii methanesulfonate (MSA, and (iii terpenoic acids originating from the oxidation of α-pinene, β-pinene, d-limonene and Δ3-carene, and (iv organosulfates related to secondary organic aerosol (SOA from the oxidation of isoprene and α-pinene. The measurements of MSA, the LMW DCAs and selected inorganic species were done with ion chromatography (IC, while those of the terpenoic acids and organosulfates were performed using liquid chromatography with negative ion electrospray ionisation mass spectrometry [LC/(−ESI-MS]. The organic tracers explained, on average, 5.3 % of the organic carbon (OC, of which 0.7 % was due to MSA, 3.4 % to LMW DCAs, and 1.2 % to organosulfates and terpenoic acids. The highest atmospheric concentrations of most species were observed during the first five days of the campaign, which were characterised by maximum day-time temperatures >22 °C. Most of the terpenoic acids and the organosulfates peaked during day-time, consistent with their photochemical origin, except the MW 295 α-pinene-related nitrooxy organosulfates and the terpenoic acids,

  5. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  6. Chemical composition, main sources and temporal variability of PM1 aerosols in southern African grassland

    Directory of Open Access Journals (Sweden)

    P. Tiitta

    2013-06-01

    Full Text Available Southern Africa is a significant source region of atmospheric pollution, yet long-term data on pollutant concentrations and properties from this region are rather limited. A recently established atmospheric measurement station in South Africa, Welgegund, is strategically situated to capture regional background emissions, as well as emissions from the major source regions in the interior of South Africa. We measured non-refractive submicron aerosols (NR-PM1 and black carbon over a one year period in Welgegund, and investigated the seasonal and diurnal patterns of aerosol concentration levels, chemical composition, acidity and oxidation level. Based on air mass back trajectories, four distinct source regions were determined for NR-PM1. Supporting data utilized in our analysis included particle number size distributions, aerosol absorption, trace gas concentrations, meteorological variables and the flux of carbon dioxide. The dominant submicron aerosol constituent during the dry season was organic aerosol, reflecting high contribution from savannah fires and other combustion sources. Organic aerosol concentrations were lower during the wet season, presumably due to wet deposition as well as reduced emissions from combustion sources. Sulfate concentrations were usually high and exceeded organic aerosol concentrations when air-masses were transported over regions containing major point sources. Sulfate and nitrate concentrations peaked when air masses passed over the industrial Highveld (iHV area. In contrast, concentrations were much lower when air masses passed over the cleaner background (BG areas. Air masses associated with the anti-cyclonic recirculation (ACBIC source region contained largely aged OA. Positive Matrix Factorization (PMF analysis of aerosol mass spectra was used to characterize the organic aerosol (OA properties. The factors identified were oxidized organic aerosols (OOA and biomass burning organic aerosols (BBOA in the dry season

  7. Secondary organic aerosol formation from fossil fuel sources contribute majority of summertime organic mass at Bakersfield

    Science.gov (United States)

    Secondary organic aerosols (SOA), known to form in the atmosphere from oxidation of volatile organic compounds (VOCs) emitted by anthropogenic and biogenic sources, are a poorly understood but substantial component of atmospheric particles. In this study, we examined the chemic...

  8. Sources and evolution of cloud-active aerosol in California's Sierra Nevada Mountains

    Science.gov (United States)

    Roberts, G. C.; Corrigan, C.; Noblitt, S.; Creamean, J.; Collins, D. B.; Cahill, J. F.; Prather, K. A.; Collett, J. L.; Henry, C.

    2011-12-01

    To assess the sources of cloud-active aerosol and their influence on the hydrological cycle in California, the CalWater Experiment took place in winter 2011 in the foothills of the Sierra Nevada Mountains. During this experiment, we coupled the capabilities of demonstrated miniaturized instrumentation - cloud condensation nuclei (CCN), water condensation nuclei (WCN) and microchip capillary electrophoresis (MCE) - to provide direct chemical measurements of cloud active aerosols. Ion concentrations of CCN droplets attribute the anthropogenic, marine and secondary organic contributions to cloud-active aerosols. Detailed spectra from an Aerosol-Time-of-Flight Mass Spectrometer provide additional information on the sources of aerosol. Storm fronts and changes in atmospheric boundary layer brought aerosol and anions associated with Central Valley pollution to the field site with CCN concentrations reaching several thousand cm-3. Hygroscopicity parameters indicate aging of the organic fraction during aerosol transport from the Central Valley to the mountains. Otherwise, CCN concentrations were low when high pressure systems prevented boundary layer development and intrusion of the Central Valley pollution to the site. MCE results show that nitrates and sulfates comprise most of the fraction of the aerosol anion mass (PM1). During the passage of storm fronts, which transported pollution from the Central Valley upslope, nitrate concentrations peaked at several μ g m-3. Low supersaturation CCN concentrations coincide with increases in aerosol nitrate, which suggests that nitrate has a role in cloud formation of giant CCN and, furthermore, in precipitation processes in the Sierra Nevada. CCN spectra show large variations depending on the aerosol sources and sometimes exhibit bi-modal distributions with minima at 0.3% Sc -- similar to the so-called 'Hoppel minima' associated to number size distributions. During these bi-modal events, sulfate also increases supporting the

  9. Modeling air quality during the California Regional PM 10/PM 2.5 Air Quality Study (CPRAQS) using the UCD/CIT source-oriented air quality model - Part III. Regional source apportionment of secondary and total airborne particulate matter

    Science.gov (United States)

    Ying, Qi; Lu, Jin; Kleeman, Michael

    A comprehensive air quality modeling project was carried out to simulate regional source contributions to secondary and total (=primary + secondary) airborne particle concentrations in California's Central Valley. A three-week stagnation episode lasting from December 15, 2000 to January 7, 2001, was chosen for study using the air quality and meteorological data collected during the California Regional PM 10/PM 2.5 Air Quality Study (CRPAQS). The UCD/CIT mechanistic air quality model was used with explicit decomposition of the gas phase reaction chemistry to track source contributions to secondary PM. Inert artificial tracers were used with an internal mixture representation to track source contributions to primary PM. Both primary and secondary source apportionment calculations were performed for 15 size fractions ranging from 0.01 to 10 μm particle diameters. Primary and secondary source contributions were resolved for fugitive dust, road dust, diesel engines, catalyst equipped gasoline engines, non-catalyst equipped gasoline engines, wood burning, food cooking, high sulfur fuel combustion, and other anthropogenic sources. Diesel engines were identified as the largest source of secondary nitrate in central California during the study episode, accounting for approximately 40% of the total PM 2.5 nitrate. Catalyst equipped gasoline engines were also significant, contributing approximately 20% of the total secondary PM 2.5 nitrate. Agricultural sources were the dominant source of secondary ammonium ion. Sharp gradients of PM concentrations were predicted around major urban areas. The relative source contributions to PM 2.5 from each source category in urban areas differ from those in rural areas, due to the dominance of primary OC in urban locations and secondary nitrate in the rural areas. The source contributions to ultra-fine particle mass PM 0.1 also show clear urban/rural differences. Wood smoke was found to be the major source of PM 0.1 in urban areas while

  10. Distribution characteristics and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in the Liao River drainage basin, northeast China.

    Science.gov (United States)

    Hu, Jian; Liu, Congqiang; Zhang, Guoping; Zhang, Yanlin; Li, Siliang; Zhao, Zhiqi; Liu, Baojian; Guo, Qinjun

    2016-04-01

    The Liao River drainage basin, which is one of China's seven major rivers basins, is located in northeast China. This region is characterized by important industrial bases including steel factories and oil and chemical plants, all of which have the potential to contribute pollutants to the drainage basin. In this study, 16 polycyclic aromatic hydrocarbons (PAHs) in water and suspended particulate matter (SPM) in the major rivers of the Liao River drainage basin were identified and quantified by gas chromatography mass spectrometry (GC/MS). The total PAH concentrations ranged from 0.4 to 76.5 μg/g (dry weight) in SPM and 32.6 to 108 ng/L in surface water, respectively. Low-ring PAHs (including two- and three-ring PAHs) were dominant in all PAH samples, and the level of low-ring PAHs in surface water was higher than that in SPM. The proportion of two-ring PAHs was the highest, accounting for an average of 68.2 % of the total PAHs in surface water, while the level of three-ring PAHs was the highest in SPM, with an average of 66.3 %. When compared with other river systems, the concentrations of PAHs in the Liao River drainage basin were lower. Identification of the emission sources based on diagnostic ratios suggested petroleum and fossil fuel combustion were important contribution to PAHs in the study area. PMID:26972927

  11. Monsoon rain chemistry and source apportionment using receptor modeling in and around National Capital Region (NCR) of Delhi, India

    Science.gov (United States)

    Tiwari, Suresh; Kulshrestha, U. C.; Padmanabhamurty, B.

    Studies on monsoon precipitation chemistry were carried out to understand the nature of rainwater and sources of pollution at eight different locations in and around the National Capital Region (NCR) of Delhi during southwest monsoon in the years 2003-2005. These sites were Bulandshahr (BUL), Garhmuktesar (GAR), Muradnagar (MUR), Sardhana (SAR), Panipat (PAN), Charkhi Dadri (CHA), Hodal (HOD) and Bahror (BAH). The rainwater samples, collected at these locations, were analyzed for major anions, cations and pH. The data were assessed for its quality. In general, the order of concentrations of major ions was observed to be: Ca 2+>SO 42->HCO 3->NH 4+>Cl ->NO 3->Na +>Mg 2+>K +>F -. The average pH of rainwater at these stations was observed to be 6.39, ranging from 5.77 to 6.62, indicating alkaline nature. However, a few rain events, 31% at Panipat, 12% at Muradnagar and 29% at Sardhana, were observed to be acidic (pHcattle, brick kilns and industries were reflected in third or fourth PC indicating moderate influence of anthropogenic activities in this region.

  12. Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode of 2013

    Science.gov (United States)

    Zhang, Y.-L.; Huang, R.-J.; El Haddad, I.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Zotter, P.; Bozzetti, C.; Daellenbach, K. R.; Canonaco, F.; Slowik, J. G.; Salazar, G.; Schwikowski, M.; Schnelle-Kreis, J.; Abbaszade, G.; Zimmermann, R.; Baltensperger, U.; Prévôt, A. S. H.; Szidat, S.

    2015-02-01

    During winter 2013, extremely high concentrations (i.e., 4-20 times higher than the World Health Organization guideline) of PM2.5 (particulate matter with an aerodynamic diameter China including Xi'an, Beijing, Shanghai and Guangzhou. Statistical analysis of a combined data set from elemental carbon (EC), organic carbon (OC), 14C and biomass-burning marker measurements using Latin hypercube sampling allowed a quantitative source apportionment of carbonaceous aerosols. Based on 14C measurements of EC fractions (six samples each city), we found that fossil emissions from coal combustion and vehicle exhaust dominated EC with a mean contribution of 75 ± 8% across all sites. The remaining 25 ± 8% was exclusively attributed to biomass combustion, consistent with the measurements of biomass-burning markers such as anhydrosugars (levoglucosan and mannosan) and water-soluble potassium (K+). With a combination of the levoglucosan-to-mannosan and levoglucosan-to-K+ ratios, the major source of biomass burning in winter in China is suggested to be combustion of crop residues. The contribution of fossil sources to OC was highest in Beijing (58 ± 5%) and decreased from Shanghai (49 ± 2%) to Xi'an (38 ± 3%) and Guangzhou (35 ± 7%). Generally, a larger fraction of fossil OC was from secondary origins than primary sources for all sites. Non-fossil sources accounted on average for 55 ± 10 and 48 ± 9% of OC and total carbon (TC), respectively, which suggests that non-fossil emissions were very important contributors of urban carbonaceous aerosols in China. The primary biomass-burning emissions accounted for 40 ± 8, 48 ± 18, 53 ± 4 and 65 ± 26% of non-fossil OC for Xi'an, Beijing, Shanghai and Guangzhou, respectively. Other non-fossil sources excluding primary biomass burning were mainly attributed to formation of secondary organic carbon (SOC) from non-fossil precursors such as biomass-burning emissions. For each site, we also compared samples from moderately to heavily

  13. Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode in 2013

    Directory of Open Access Journals (Sweden)

    Y.-L. Zhang

    2014-10-01

    Full Text Available During winter 2013, extremely high concentrations (i.e. 4–20 times higher than the World Health Organization guideline of PM2.5 (particulate matter with an aerodynamic diameter 14C and biomass-burning marker measurements using Latin-hypercube sampling allowed a quantitative source apportionment of carbonaceous aerosols. We found that fossil emissions from coal combustion and vehicle exhaust dominated EC with a mean contribution of 75 ± 8% at all sites. The remaining 25 ± 8% was exclusively attributed to biomass combustion, consistent with the measurements of biomass-burning markers such as anhydrosugars (levoglucosan and mannosan and water-soluble potassium (K+. With a combination of the levoglucosan-to-mannosan and levoglucosan-to-K+ ratios, the major source of biomass burning in winter in China is suggested to be combustion of crop residues. The contribution of fossil sources to OC was highest in Beijing (58 ± 5% and decreased from Shanghai (49 ± 2% to Xian (38 ± 3% and Guangzhou (35 ± 7%. Generally, a larger fraction of fossil OC was rather from secondary origins than primary sources for all sites. Non-fossil sources accounted on average for 55 ± 10% and 48 ± 9% of OC and TC, respectively, which suggests that non-fossil emissions were very important contributors of urban carbonaceous aerosols in China. The primary biomass-burning emissions accounted for 40 ± 8%, 48 ± 18%, 53 ± 4% and 65 ± 26% of non-fossil OC for Xian, Beijing, Shanghai and Guangzhou, respectively. Other non-fossil sources excluding primary biomass-burning were mainly attributed to formation of secondary organic carbon (SOC from non-fossil precursors such as biomass-burning emissions. For each site, we also compared samples from moderately with heavily polluted days according to particulate matter mass. Despite a significant increase of absolute mass concentrations of primary emissions from both, fossil and non-fossil sources, during the heavily polluted events

  14. Levels and source apportionment of children's lead exposure: Could urinary lead be used to identify the levels and sources of children's lead pollution?

    International Nuclear Information System (INIS)

    As a highly toxic heavy metal, the pollution and exposure risks of lead are of widespread concern for human health. However, the collection of blood samples for use as an indicator of lead pollution is not always feasible in most cohort or longitudinal studies, especially those involving children health. To evaluate the potential use of urinary lead as an indicator of exposure levels and source apportionment, accompanying with environmental media samples, lead concentrations and isotopic measurements (expressed as 207Pb/206Pb, 208Pb/206Pb and 204Pb/206Pb) were investigated and compared between blood and urine from children living in the vicinities of a typical coking plant and lead-acid battery factory. The results showed urinary lead might not be a preferable proxy for estimating blood lead levels. Fortunately, urinary lead isotopic measurements could be used as an alternative for identifying the sources of children's lead exposure, which coincided well with the blood lead isotope ratio analysis. - Highlights: • Pb isotopes of environmental media and children's blood and urine were analyzed. • Pb exposure and pollution source were studied in lead-acid battery and coking areas. • Pb isotope ratios in blood and urine were similar to those of food, water and PM. • Urine Pb level may not be used as a proxy for indicating the lead levels in blood. • Urine Pb isotope ratios is an alternative to identify source and exposure pathways. - Urinary lead is not a preferable proxy to estimate blood lead level, but urinary lead isotope ratios could be an alternative for identifying the sources of lead exposure in children

  15. [Distribution characteristics and source apportionment of dichloro-diphenyl-tricgloroethanes in Zhangiiang River Estuary of Fujian, China].

    Science.gov (United States)

    Luo, Dong-lian

    2014-12-01

    The concentration, distribution and transfer of dichloro-diphenyl-tricgloroethanes (DDTs) in the surface layer water, sediments and aquatic organisms from the Zhangjiang River Estuary were investigated using GC-ECD method. The possible sources were assessed based on the distribution and composition characteristics of DDTs together with the investigation results of dicofol. The results showed that the concentration of DDTs in surface layer water ranged from ND (not detected) to 20.1 ng x L(-1) with an average of 10.5 ng x L(-1) in dry period, from ND to 45.2 ng +/- L(-1) with an aver- age of 28.3 ng x L(-1) in wet period, and from ND to 18.8 ng x L(-1) with an average of 5.03 ng x L(-1) in level period. Concentration of DDTs in surface sediment (dry mass) ranged from 1.87 ng x g(-1) to 144 ng x g(-1) with an average of 17.3 ng x g(-1), and that in 11 species of aquatic organisms ranged from 1.09 ng x g(-1) to 432 ng x g(-1) with an average of 37.0 ng x g(-1). Compared to other areas, the residues of DDTs in the Zhangjiang River Estuary were at the medium level. The accumulation factors of DDTs in sediment and aquatic organisms were 1185 and 2534, respectively. The capacities for DDTs accumulation were in the order of fish>shellfish>shrimp>aquatic plants. The concentrations of DDTs showed downtrend along the Zhangjiang River, indicating that the residues of DDTs mainly came from terrigenous pollution rather than from the release of antifouling agent of ships. Based on the composition profile, DDTs mainly came from the early residues. However, the highest value of dicofol was recently detected both in the water and sediment of Y8 station, which suggested that new DDTs inputs at the Y8 station might be related to the recent usage of dicofol. PMID:25876421

  16. Identifying the Sources Contributing to PM Exceedances in Ostrava, Czech Republic, Using Passive Aerosol Sampling Coupled with Computer-Controlled Microscopy

    Science.gov (United States)

    The Czech Hydrometeorological Institute (CHMI) in collaboration with the U.S. Environmental Protection Agency conducted a multi-pollutant source apportionment study in 2012 to quantify the impact of regional as well as local sources on air quality in the Ostrava metropolitan area...

  17. Fourteen months of on-line measurements of the non-refractory submicron aerosol at the Jungfraujoch (3580 m a.s.l.) - chemical composition, origins and organic aerosol sources

    Science.gov (United States)

    Fröhlich, R.; Cubison, M. J.; Slowik, J. G.; Bukowiecki, N.; Canonaco, F.; Croteau, P. L.; Gysel, M.; Henne, S.; Herrmann, E.; Jayne, J. T.; Steinbacher, M.; Worsnop, D. R.; Baltensperger, U.; Prévôt, A. S. H.

    2015-10-01

    Chemically resolved (organic, nitrate, sulfate, ammonium) data of non-refractory submicron (NR-PM1) aerosol from the first long-term deployment (27 July 2012 to 02 October 2013) of a time-of-flight aerosol chemical speciation monitor (ToF-ACSM) at the Swiss high-altitude site Jungfraujoch (JFJ; 3580 m a.s.l.) are presented. Besides total mass loadings, diurnal variations and relative species contributions during the different meteorological seasons, geographical origin and sources of organic aerosol (OA) are discussed. Backward transport simulations show that the highest (especially sulfate) concentrations of NR-PM1 were measured in air masses advected to the station from regions south of the JFJ, while lowest concentrations were seen from western regions. OA source apportionment for each season was performed using the Source Finder (SoFi) interface for the multilinear engine (ME-2). OA was dominated in all seasons by oxygenated OA (OOA, 71-88 %), with lesser contributions from local tourism-related activities (7-12 %) and hydrocarbon-like OA related to regional vertical transport (3-9 %). In summer the OOA can be separated into a background low-volatility OA (LV-OOA I, possibly associated with long-range transport) and a slightly less oxidised low-volatility OA (LV-OOA II) associated with regional vertical transport. Wood burning-related OA associated with regional transport was detected during the whole winter 2012/2013 and during rare events in summer 2013, in the latter case attributed to small-scale transport for the surrounding valleys. Additionally, the data were divided into periods with free tropospheric (FT) conditions and periods with planetary boundary layer (PBL) influence, enabling the assessment of the composition for each. Most nitrate and part of the OA are injected from the regional PBL, while sulfate is mainly produced in the FT. The south/north gradient of sulfate is also pronounced in FT air masses (sulfate mass fraction from the south: 45

  18. Properties and Sources of Suburban Background Atmospheric Aerosol in Prague

    Czech Academy of Sciences Publication Activity Database

    Schwarz, Jaroslav; Havránek, Vladimír; Maenhaut, W.; Chi, X.; Ždímal, Vladimír; Hovorka, J.; Smolík, Jiří

    Prague : Orgit, 2009 - (Smolík, J.; O'Dowd, C.), s. 188-191 ISBN 978-80-02-12161-2. [International Conference Nucleation and Atmospheric Aerosols /18./. Prague (CZ), 10.08.2009-14.08.2009] R&D Projects: GA MŽP SP/1A3/148/08 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z10480505 Keywords : urban aerosol * size distribution * chemical composition Subject RIV: CF - Physical ; Theoretical Chemistry http://www.icnaa.cz/

  19. PM2.5 water-soluble elements in the southeastern United States: automated analytical method development, spatiotemporal distributions, source apportionment, and implications for heath studies

    Science.gov (United States)

    Fang, T.; Guo, H.; Verma, V.; Peltier, R. E.; Weber, R. J.

    2015-10-01

    Water-soluble redox-active metals are potentially toxic due to its ability to catalytically generate reactive oxygen species (ROS) in vivo, leading to oxidative stress. As part of the Southeastern Center for Air Pollution and Epidemiology (SCAPE), we developed a method to quantify water-soluble elements, including redox-active metals, from a large number of filter samples (N = 530) in support of the center's health studies. PM2.5 samples were collected during 2012-2013 at various sites (three urban, two rural, a near-road site, and a road-side site) in the southeastern United States, using high-volume samplers. Water-soluble elements (S, K, Ca, Ti, Mn, Fe, Cu, Zn, As, Se, Br, Sr, Ba, and Pb) were determined by extracting filters in deionized water and re-aerosolized for analyses by X-ray fluorescence (XRF) using an online aerosol element analyzer (Xact, Cooper Environmental). Concentrations ranged from detection limits (nominally 0.1 to 30 ng m-3) to 1.2 μg m-3, with S as the most abundant element, followed by Ca, K, Fe, Cu, Zn, and Ba. Positive matrix factorization (PMF) identified four factors that were associated with specific sources based on relative loadings of various tracers. These include brake/tire wear (with tracers Ba and Cu), biomass burning (K), secondary formation (S, Se, and WSOC), and mineral dust (Ca). Of the four potentially toxic and relatively abundant metals (redox-active Cu, Mn, Fe, and redox-inactive Zn), 51 % of Cu, 32 % of Fe, 17 % of Mn, and 45 % of Zn were associated with the brake/tire factor. Mn was mostly associated with the mineral dust factor (45 %). Zn was found in a mixture of factors, with 26 % associated with mineral dust, 14 % biomass burning, and 13 % secondary formation. Roughly 50 % of Fe and 40 % of Cu were apportioned to the secondary formation factor, likely through increases in the soluble fraction of these elements by sulfur-driven aerosol water and acidity. Linkages between sulfate and water-soluble Fe and Cu may

  20. Potential emission flux to aerosol pollutants over Bengal Gangetic plain through combined trajectory clustering and aerosol source fields analysis

    Science.gov (United States)

    Kumar, D. Bharath; Verma, S.

    2016-09-01

    A hybrid source-receptor analysis was carried out to evaluate the potential emission flux to winter monsoon (WinMon) aerosols over Bengal Gangetic plain urban (Kolkata, Kol) and semi-urban atmospheres (Kharagpur, Kgp). This was done through application of fuzzy c-mean clustering to back-trajectory data combined with emission flux and residence time weighted aerosols analysis. WinMon mean aerosol optical depth (AOD) and angstrom exponent (AE) at Kol (AOD: 0.77; AE: 1.17) were respectively slightly higher than and nearly equal to that at Kgp (AOD: 0.71; AE: 1.18). Out of six source region clusters over Indian subcontinent and two over Indian oceanic region, the cluster mean AOD was the highest when associated with the mean path of air mass originating from the Bay of Bengal and the Arabian sea clusters at Kol and that from the Indo-Gangetic plain (IGP) cluster at Kgp. Spatial distribution of weighted AOD fields showed the highest potential source of aerosols over the IGP, primarily over upper IGP (e.g. Punjab, Haryana), lower IGP (e.g. Uttarpradesh) and eastern region (e.g. west Bengal, Bihar, northeast India) clusters. The emission flux contribution potential (EFCP) of fossil fuel (FF) emissions at surface (SL) of Kol/Kgp, elevated layer (EL) of Kol, and of biomass burning (BB) emissions at SL of Kol were primarily from upper, lower, upper/lower IGP clusters respectively. The EFCP of FF/BB emissions at Kgp-EL/SL, and that of BB at EL of Kol/Kgp were mainly from eastern region and Africa (AFR) clusters respectively. Though the AFR cluster was constituted of significantly high emission flux source potential of dust emissions, the EFCP of dust from northwest India (NWI) was comparable to that from AFR at Kol SL/EL.

  1. Direct Radiative Effect and Heating Rate of black carbon aerosol: high time resolution measurements and source-identified forcing effects

    Science.gov (United States)

    Ferrero, Luca; Mocnik, Grisa; Cogliati, Sergio; Comi, Alberto; Degni, Francesca; Di Mauro, Biagio; Colombo, Roberto; Bolzacchini, Ezio

    2016-04-01

    Black carbon (BC) absorbs sunlight in the atmosphere heating it. However, up to now, heating rate (HR) calculations from the divergence of the net radiative flux with altitude or from the modelling activity are too sparse. This work fills the aforementioned gap presenting a new methodology based on a full set of physical equations to experimentally determine both the radiative power density absorbed into a ground-based atmospheric layer (ADRE), and the consequent HR induced by the absorptive component of aerosol. In urban context, it is essentially related to the BC. The methodology is also applicable to natural components (i.e. dust) and is obtained solving the first derivative of the main radiative transfer equations. The ADRE and the consequent HR can be determined coupling spectral aerosol absorption measurements with the spectrally resolved measurements of the direct, diffuse downward radiation and the surface reflected radiance components. Moreover, the spectral absorption of BC aerosol allows its source apportionment (traffic and biomass burning (BB)) allowing the same apportionment on HR. This work reports one year of high-time resolution measurements (5 min) of sunlight absorption and HR induced by BC aerosol over Milan. A unique sampling site was set up from March 2015 with: 1) Aethalometer (AE-31, Magee Scientific, 7-λ), 2) the Multiplexer-Radiometer-Irradiometer which detects downward and reflected radiance (350-1000 nm in 3648 spectral bands) coupled with a rotating shadow-band to measure spectrally-resolved global and diffuse radiation (thus direct), 3) a meteorological station (LSI-Lastem) equipped with 3 pyranometers (global, diffuse and refrected radiation; 300-3000 nm), a thermohygrometer, a barometer, an anemometer, 4) condensation and optical particle counters (TSI 3775 and Grimm 1.107), 5) low volume sampler (FAI Hydra dual sampler, PM2.5 and PM10) for sample collection and chemistry determination. Results concerning the radiative power

  2. Source apportionment of PM{sub 10} and PM{sub 2.5} in a desert region in northern Chile

    Energy Technology Data Exchange (ETDEWEB)

    Jorquera, Héctor, E-mail: jorquera@ing.puc.cl; Barraza, Francisco

    2013-02-01

    Estimating contributions of anthropogenic sources to ambient particulate matter (PM) in desert regions is a challenging issue because wind erosion contributions are ubiquitous, significant and difficult to quantify by using source-oriented, dispersion models. A receptor modeling analysis has been applied to ambient PM{sub 10} and PM{sub 2.5} measured in an industrial zone ∼ 20 km SE of Antofagasta (23.63°S, 70.39°W), a midsize coastal city in northern Chile; the monitoring site is within a desert region that extends from northern Chile to southern Perú. Integrated 24-hour ambient samples of PM{sub 10} and PM{sub 2.5} were taken with Harvard Impactors; samples were analyzed by X Ray Fluorescence, ionic chromatography (NO{sub 3}{sup −} and SO{sub 4}{sup =}), atomic absorption (Na{sup +}, K{sup +}) and thermal optical transmission for elemental and organic carbon determination. Receptor modeling was carried out using Positive Matrix Factorization (US EPA Version 3.0); sources were identified by looking at specific tracers, tracer ratios, local winds and wind trajectories computed from NOAA's HYSPLIT model. For the PM{sub 2.5} fraction, six contributions were found — cement plant, 33.7 ± 1.3%; soil dust, 22.4 ± 1.6%; sulfates, 17.8 ± 1.7%; mineral stockpiles and brine plant, 12.4 ± 1.2%; Antofagasta, 8.5 ± 1.3% and copper smelter, 5.3 ± 0.8%. For the PM{sub 10} fraction five sources were identified — cement plant, 38.2 ± 1.5%; soil dust, 31.2 ± 2.3%; mineral stockpiles and brine plant, 12.7 ± 1.7%; copper smelter, 11.5 ± 1.6% and marine aerosol, 6.5 ± 2.4%. Therefore local sources contribute to ambient PM concentrations more than distant sources (Antofagasta, marine aerosol) do. Soil dust is enriched with deposition of marine aerosol and calcium, sulfates and heavy metals from surrounding industrial activities. The mean contribution of suspended soil dust to PM{sub 10} is 50 μg/m{sup 3} and the peak daily value is 104 μg/m{sup 3}. For the

  3. Source apportionment of PM2.5 in Cork Harbour, Ireland using a combination of single particle mass spectrometry and quantitative semi-continuous measurements

    Directory of Open Access Journals (Sweden)

    J. R. Sodeau

    2010-01-01

    Full Text Available An aerosol time-of-flight mass spectrometer (ATOFMS was co-located with a suite of semi-continuous instrumentation for the quantitative measurement of elemental carbon (EC, organic carbon (OC, sulfate, particle number and PM2.5 mass at a site in Cork Harbour, Ireland for three weeks in August 2008. Off-line analysis of polar organic markers was also performed for the same period. The data collected was used to identify and apportion local and regional sources of PM2.5. Over 550 000 ATOFMS particle mass spectra were generated and classified using the K-means algorithm. The vast majority of particles ionised by the ATOFMS were attributed to local sources, although one class of carbonaceous particles detected is attributed to North American or Canadian anthropogenic sources. The temporality of the ambient ATOFMS particle classes was subsequently used in conjunction with the semi-continuous measurements to apportion PM2.5 mass using positive matrix factorisation. Six factors were obtained, corresponding to vehicular traffic, marine, long-range transport, power generation, domestic solid fuel combustion and shipping traffic. The estimated contribution of each factor to the measured PM2.5 mass was 23%, 14%, 13%, 11%, 5% and 1.5%, respectively. Shipping was found to contribute 18% of the measured particle number (20–600 nm mobility diameter, and thus may have implications for human health considering the size and composition of ship exhaust particles.

  4. Characteristics and source of black carbon aerosol over Taklimakan Desert

    Institute of Scientific and Technical Information of China (English)

    FU; S.Joshua

    2010-01-01

    Black carbon(BC) and PM10 in the center of the Taklimakan Desert were online monitored in the whole year of 2007.In addi-tion,TSP samples were also synchronously daily collected by medium-volume samplers with Whatman41 filters in the spring of 2007.BC in the dust aerosol was up to 1.14%of the total mass of PM10.A remarkable seasonal variation of BC in the aerosol was observed in the order of winter>spring>autumn>summer.The peak value of BC appeared at midnight while the lowest one in the evening each day,which was just the reverse of that in the urban area.The contribution of BC to the total mass of PM10 on non-dust storm days was~11 times of that in dust storm.Through back trajectory and principal component analysis,it was found that BC in the dust aerosol over Taklimakan Desert might be attributed to the emission from the anthropogenic activities,including domestic heating,cooking,combustion of oil and natural gas,and the medium-range transport from those oases located in the margins of the desert.The total BC aerosol from the Taklimakan Desert to be transported to the eastward downstream was estimated to be 6.3×104 ton yr-1.

  5. A study on characteristics and sources of winter time atmospheric aerosols in Kyoto and Seoul using PIXE and supplementary analysis

    International Nuclear Information System (INIS)

    Atmospheric aerosols were collected using a two stages filter sampler to classify into the fine and coarse fraction in Kyoto and Seoul in winter season. Elemental concentrations of aerosols were analyzed by PIXE and EAS as well as ion concentrations by IC. Analyzed data were used to source of aerosol particles. (author)

  6. Global modelling of direct and indirect effects of sea spray aerosol using a source function encapsulating wave state

    NARCIS (Netherlands)

    Partanen, A.I.; Dunne, E.M.; Bergman, T.; Laakso, A.; Kokkola, H.; Ovadnevaite, J.; Sogacheva, L.; Baisnée, D.; Sciare, J.; Manders, A.; O'Dowd, C.; Leeuw, G. de; Korhonen, H.

    2014-01-01

    Recently developed parameterizations for the sea spray aerosol source flux, encapsulating wave state, and its organic fraction were incorporated into the aerosol-climate model ECHAM-HAMMOZ to investigate the direct and indirect radiative effects of sea spray aerosol particles. Our simulated global s

  7. Sources of light-absorbing aerosol in arctic snow and their seasonal variation

    OpenAIRE

    Hegg, D.A.; Warren, S. G.; Grenfell, T. C.; Doherty, S. J.; A. D. Clarke

    2010-01-01

    Two data sets consisting of measurements of light absorbing aerosols (LAA) in arctic snow together with suites of other corresponding chemical constituents are presented; the first from Siberia, Greenland and near the North Pole obtained in 2008, and the second from the Canadian arctic obtained in 2009. A preliminary differentiation of the LAA into black carbon (BC) and non-BC LAA is done. Source attribution of the light absorbing aerosols was done using a positive matrix factorization (PMF) ...

  8. Particle generation methods applied in large-scale experiments on aerosol behaviour and source term studies

    International Nuclear Information System (INIS)

    In aerosol research aerosols of known size, shape, and density are highly desirable because most aerosols properties depend strongly on particle size. However, such constant and reproducible generation of those aerosol particles whose size and concentration can be easily controlled, can be achieved only in laboratory-scale tests. In large scale experiments, different generation methods for various elements and compounds have been applied. This work presents, in a brief from, a review of applications of these methods used in large scale experiments on aerosol behaviour and source term. Description of generation method and generated aerosol transport conditions is followed by properties of obtained aerosol, aerosol instrumentation used, and the scheme of aerosol generation system-wherever it was available. An information concerning aerosol generation particular purposes and reference number(s) is given at the end of a particular case. These methods reviewed are: evaporation-condensation, using a furnace heating and using a plasma torch; atomization of liquid, using compressed air nebulizers, ultrasonic nebulizers and atomization of liquid suspension; and dispersion of powders. Among the projects included in this worked are: ACE, LACE, GE Experiments, EPRI Experiments, LACE-Spain. UKAEA Experiments, BNWL Experiments, ORNL Experiments, MARVIKEN, SPARTA and DEMONA. The aim chemical compounds studied are: Ba, Cs, CsOH, CsI, Ni, Cr, NaI, TeO2, UO2Al2O3, Al2SiO5, B2O3, Cd, CdO, Fe2O3, MnO, SiO2, AgO, SnO2, Te, U3O8, BaO, CsCl, CsNO3, Urania, RuO2, TiO2, Al(OH)3, BaSO4, Eu