WorldWideScience

Sample records for aerosol source apportionment

  1. Source apportionment of carbonaceous aerosol in southern Sweden

    Directory of Open Access Journals (Sweden)

    J. Genberg

    2011-05-01

    Full Text Available A one-year study was performed at the Vavihill background station in southern Sweden to estimate the anthropogenic contribution to the carbonaceous aerosol. Weekly samples of the particulate matter PM10 were collected on quartz filters, and the amounts of organic carbon, elemental carbon, radiocarbon (14C and levoglucosan were measured. This approach enabled source apportionment of the total carbon in the PM10 fraction using the concentration ratios of the sources. The sources considered in this study were emissions from the combustion of fossil fuels and biomass, as well as biogenic sources. During the summer, the carbonaceous aerosol mass was dominated by compounds of biogenic origin (82 %, which are associated with biogenic primary and secondary organic aerosols. During the winter months, biomass combustion (38 % and fossil fuel combustion (33 % were the main contributors to the carbonaceous aerosol. Elemental carbon concentrations in winter were about twice as large as during summer, and can be attributed to biomass combustion, probably from domestic wood burning. The contribution of fossil fuels to elemental carbon was stable throughout the year, although the fossil contribution to organic carbon increased during the winter. Thus, the organic aerosol originated mainly from natural sources during the summer and from anthropogenic sources during the winter. The result of this source apportionment was compared with results from the EMEP model. The model and measurements were generally consistent for total atmospheric organic carbon, however, the contribution of the sources varied substantially. E.g. the biomass burning contributions of OC were underestimated by the model by a factor of 8.2 compared to the measurements.

  2. Synthesizing Scientific Progress: Outcomes from US EPA’s Carbonaceous Aerosols and Source Apportionment STAR Grants

    Science.gov (United States)

    ABSTRACTA number of studies in the past decade have transformed the way we think about atmospheric aerosols. The advances include, but are not limited to, source apportionment of organics using aerosol mass spectrometer data, the volatility basis set approach, quantifying isopre...

  3. Primary and secondary organic aerosol origin by combined gas-particle phase source apportionment

    Directory of Open Access Journals (Sweden)

    M. Crippa

    2013-08-01

    Full Text Available Secondary organic aerosol (SOA, a prominent fraction of particulate organic mass (OA, remains poorly constrained. Its formation involves several unknown precursors, formation and evolution pathways and multiple natural and anthropogenic sources. Here a combined gas-particle phase source apportionment is applied to wintertime and summertime data collected in the megacity of Paris in order to investigate SOA origin during both seasons. This was possible by combining the information provided by an aerosol mass spectrometer (AMS and a proton transfer reaction mass spectrometer (PTR-MS. A better constrained apportionment of primary OA (POA sources is also achieved using this methodology, making use of gas-phase tracers. These tracers made possible the discrimination between biogenic and continental/anthropogenic sources of SOA. We found that continental SOA was dominant during both seasons (24–50% of total OA, while contributions from photochemistry-driven SOA (9% of total OA and marine emissions (13% of total OA were also observed during summertime. A semi-volatile nighttime component was also identified (up to 18% of total OA during wintertime. This approach was successfully applied here and implemented in a new source apportionment toolkit.

  4. Quantification and radiocarbon source apportionment of black carbon in atmospheric aerosols using the CTO-375 method

    Science.gov (United States)

    Zencak, Zdenek; Elmquist, Marie; Gustafsson, Örjan

    To make progress towards linking the atmosphere and biogeosphere parts of the black carbon (BC) cycle, a chemothermal oxidation method (CTO-375), commonly applied for isolating BC from complex geomatrices such as soils, sediments and aquatic particles, was applied to investigate the BC also in atmospheric particles. Concentrations and 14C-based source apportionment of CTO-375 based BC was established for a reference aerosol (NIST RM-8785) and for wintertime aerosols collected in Stockholm and in a Swedish background area. The results were compared with thermal-optical (OC/EC) measurements. For NIST RM-8785, a good agreement was found between the BC CTO-375 concentration and the reported elemental carbon (EC) concentration measured by the "Speciation Trends Network—National Institute of Occupational Safety and Health" method (EC NIOSH) with BC CTO-375 of 0.054±0.002 g g -1 and EC NIOSH of 0.067±0.008 g g -1. In contrast, there was an average factor of ca. 20 difference between BC CTO-375 and EC NIOSH for the ambient Scandinavian wintertime aerosols, presumably reflecting a combination of BC CTO-375 isolating only the recalcitrant soot-BC portion of the BC continuum and the EC NIOSH metric inadvertently including some intrinsically non-pyrogenic organic matter. Isolation of BC CTO-375 with subsequent off-line radiocarbon analysis yielded fraction modern values (fM) for total organic carbon (TOC) of 0.93 (aerosols from a Swedish background area), and 0.58 (aerosols collected in Stockholm); whereas the fM for BC CTO-375 isolates were 1.08 (aerosols from a Swedish background area), and 0.87 (aerosols collected in Stockholm). This radiocarbon-based source apportionment suggests that contribution from biomass combustion to cold-season atmospheric BC CTO-375 in Stockholm was 70% and in the background area 88%.

  5. Isotope source apportionment of carbonaceous aerosol as a function of particle size and thermal refractiveness

    Science.gov (United States)

    Masalaite, Agne; Holzinger, Rupert; Remeikis, Vidmantas; Röckmann, Thomas; Dusek, Ulrike

    2016-04-01

    The stable carbon isotopes can be used to get information about sources and processing of carbonaceous aerosol. We will present results from source apportionment of carbonaceous aerosol as a function of particle size thermal refractiveness. Separate source apportionment for particles smaller than 200 nm and for different carbon volatility classes are rarely reported and give new insights into aerosol sources in the urban environment. Stable carbon isotope ratios were measured for the organic carbon (OC) fraction and total carbon (TC) of MOUDI impactor samples that were collected on a coastal site (Lithuania) during the winter 2012 and in the city of Vilnius (Lithuania) during the winter of 2009. The 11 impactor stages spanned a size range from 0.056 to 18 μm, but only the 6 stages in the submicron range were analysed. The δ13C values of bulk total carbon (δ13CTC) were determined with an elemental analyser (Flash EA 1112) coupled with an isotope ratio mass spectrometer (Thermo Finnigan Delta Plus Advantage) (EA - IRMS). Meanwhile δ13COC was measured using thermal-desorption isotope ratio mass spectrometry (IRMS) system. This allows a rough separation of the more volatile OC fraction (desorbed in the oven of IRMS up to 250 0C) from the more refractory fraction (desorbed up to 400 0C). In this study we investigated the composition of organic aerosol desorbed from filter samples at different temperatures using the thermal-desorption proton-transfer-reaction mass spectrometry (TD-PTR-MS) technique. During winter-time in Lithuania we expect photochemistry and biogenic emissions to be of minor importance. The main sources of aerosol carbon should be fossil fuel and biomass combustion. In both sites, the coastal and the urban site, δ13C measurements give a clear indication that the source contributions differ for small and large particles. Small particles grants Nr. 820.01.001, and 834.08.002).

  6. Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites

    Directory of Open Access Journals (Sweden)

    K. E. Yttri

    2011-06-01

    Full Text Available In the present study, natural and anthropogenic sources of particulate organic carbon (OCp and elemental carbon (EC have been quantified based on weekly filter samples of PM10 collected at four Nordic rural background sites (Birkenes (Norway, Hyytiälä (Finland Vavihill (Sweden, Lille Valby (Denmark during late summer (5 August–2 September 2009. Levels of source specific tracers, i.e. cellulose, levoglucosan, mannitol and the 14C/12C ratio of total carbon (TC, have been used as input for source apportionment of the carbonaceous aerosol, whereas Latin Hypercube Sampling (LHS was used to statistically treat the multitude of possible combinations resulting from this approach.

    The carbonaceous aerosol (here: TCp; i.e. particulate TC was totally dominated by natural sources (69–86 %, with biogenic secondary organic aerosol (BSOA being the single most important source (48–57 %. Interestingly, primary biological aerosol particles (PBAP were the second most important source (20–32 %. The anthropogenic contribution was mainly attributed to fossil fuel sources (OCff and ECff (10–24 %, whereas no more than 3–7 % was explained by combustion of biomass (OCbb and ECbb in this late summer campaign i.e. emissions from residential wood burning and/or wild/agricultural fires. Fossil fuel sources totally dominated the ambient EC loading, accounting for 4–12 % of TCp, whereas <1.5 % was attributed to combustion of biomass. The carbonaceous aerosol source apportionment showed only minor variation between the four selected sites. However, Hyytiälä and Birkenes showed greater resemblance to each other, as did Lille Valby and Vavihill, the two latter being somewhat more influenced by anthropogenic sources.

    Ambient levels of organosulphates and nitrooxy-organosulphates in the Nordic rural background environment are reported for

  7. Source apportionment of the summer time carbonaceous aerosol at Nordic rural background sites

    Directory of Open Access Journals (Sweden)

    K. E. Yttri

    2011-12-01

    Full Text Available In the present study, natural and anthropogenic sources of particulate organic carbon (OCp and elemental carbon (EC have been quantified based on weekly filter samples of PM10 (particles with aerodynamic diameter <10 μm collected at four Nordic rural background sites [Birkenes (Norway, Hyytiälä (Finland, Vavihill (Sweden, Lille Valby, (Denmark] during late summer (5 August–2 September 2009. Levels of source specific tracers, i.e. cellulose, levoglucosan, mannitol and the 14C/12C ratio of total carbon (TC, have been used as input for source apportionment of the carbonaceous aerosol, whereas Latin Hypercube Sampling (LHS was used to statistically treat the multitude of possible combinations resulting from this approach. The carbonaceous aerosol (here: TCp; i.e. particulate TC was totally dominated by natural sources (69–86%, with biogenic secondary organic aerosol (BSOA being the single most important source (48–57%. Interestingly, primary biological aerosol particles (PBAP were the second most important source (20–32%. The anthropogenic contribution was mainly attributed to fossil fuel sources (OCff and ECff (10–24%, whereas no more than 3–7% was explained by combustion of biomass (OCbb and ECbb in this late summer campaign i.e. emissions from residential wood burning and/or wild/agricultural fires. Fossil fuel sources totally dominated the ambient EC loading, which accounted for 4–12% of TCp, whereas <1.5% of EC was attributed to combustion of biomass. The carbonaceous aerosol source apportionment showed only minor variation between the four selected sites. However, Hyytiälä and Birkenes showed greater resemblance to each other, as did Lille Valby and Vavihill, the two latter being somewhat more influenced by anthropogenic sources. Ambient levels of organosulphates and nitrooxy-organosulphates in the Nordic rural

  8. Source apportionment of ambient aerosol applying PMF on AMS mobile and stationary data

    Science.gov (United States)

    Mohr, C.; Weimer, S.; Richter, R.; Decarlo, P. F.; Chirico, R.; Heringa, M. F.; Prévôt, A. S. H.; Baltensperger, U.

    2009-04-01

    Ambient aerosols are divided into the categories "primary" and "secondary", referring to particles directly emitted into the air, or formed out of precursor species such as volatile organic compounds, respectively. Main sources for primary urban aerosol and precursor species are traffic emissions, but also wood burning for domestic heating purposes especially in winter time (Alfarra et al., 2007). The quantification of various types of aerosol components is important for source identification which in turn is the basis of all mitigation activities. Positive Matrix Factorization (PMF) is a statistical based source apportionment tool that uses constrained, weighted least squares estimation to determine source profiles and strengths. PMF has been applied recently for the first time on highly time resolved organic mass spectra (Lanz et al., 2007) measured by an Aerodyne aerosol mass spectrometer (AMS) (Canagaratna et al., 2007). For the data presented here, two AMS were deployed together with additional instrumentation in the metropolitan area of Zurich in winter 2007/2008. The high-resolution time-of-flight AMS was stationed at an urban background site in the center, 30 meters from and shielded against direct traffic emissions. The quadrupole-based AMS was deployed in a mobile van allowing for on-road submicron aerosol composition measurements, and investigations into the spatial variability of aerosol concentration and composition. Results indicate that traffic emissions are the main contributor to submicron aerosol concentrations measured on-road. Hydrocarbon-like organic aerosol (HOA), a marker for traffic emissions (Lanz et al. 2007), dominates the primary aerosol mass, together with black carbon (BC). BC was monitored with the MAAP (multi angle absorption photometer). Another significant contributor to primary organic aerosol mass in downtown Zurich is domestic wood burning for heating purposes. Traffic and wood burning emissions make up roughly 50% of the total

  9. Aerosol source apportionment from 1-year measurements at the CESAR tower in Cabauw, the Netherlands

    Science.gov (United States)

    Schlag, Patrick; Kiendler-Scharr, Astrid; Blom, Marcus Johannes; Canonaco, Francesco; Sebastiaan Henzing, Jeroen; Moerman, Marcel; Prévôt, André Stephan Henry; Holzinger, Rupert

    2016-07-01

    Intensive measurements of submicron aerosol particles and their chemical composition were performed with an Aerosol Chemical Speciation Monitor (ACSM) at the Cabauw Experimental Site for Atmospheric Research (CESAR) in Cabauw, the Netherlands, sampling at 5 m height above ground. The campaign lasted nearly 1 year from July 2012 to June 2013 as part of the EU-FP7-ACTRIS project (Q-ACSM Network). Including equivalent black carbon an average particulate mass concentration of 9.50 µg m-3 was obtained during the whole campaign with dominant contributions from ammonium nitrate (45 %), organic aerosol (OA, 29 %), and ammonium sulfate (19 %). There were 12 exceedances of the World Health Organization (WHO) PM2.5 daily mean limit (25 µg m-3) observed at this rural site using PM1 instrumentation only. Ammonium nitrate and OA represented the largest contributors to total particulate matter during periods of exceedance. Source apportionment of OA was performed season-wise by positive matrix factorization (PMF) using the multilinear engine 2 (ME-2) controlled via the source finder (SoFi). Primary organic aerosols were attributed mainly to traffic (8-16 % contribution to total OA, averaged season-wise) and biomass burning (0-23 %). Secondary organic aerosols (SOAs, 61-84 %) dominated the organic fraction during the whole campaign, particularly on days with high mass loadings. A SOA factor which is attributed to humic-like substances (HULIS) was identified as a highly oxidized background aerosol in Cabauw. This shows the importance of atmospheric aging processes for aerosol concentration at this rural site. Due to the large secondary fraction, the reduction of particulate mass at this rural site is challenging on a local scale.

  10. Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris

    OpenAIRE

    M. Crippa; P. F. DeCarlo; Slowik, J. G.; Mohr, C; M. F. Heringa; R. Chirico; POULAIN L.; F. Freutel; Sciare, J.; Cozic, J.; Marco, C. F.; M. Elsasser; Nicolas, J.B.; N. Marchand; Abidi, E.

    2013-01-01

    The effect of a post-industrial megacity on local and regional air quality was assessed via a month-long field measurement campaign in the Paris metropolitan area during winter 2010. Here we present source apportionment results from three aerosol mass spectrometers and two aethalometers deployed at three measurement stations within the Paris region. Submicron aerosol composition is dominated by the organic fraction (30–36%) and nitrate (28–29%), with lower contributions from sulfate (14–16%),...

  11. Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris

    OpenAIRE

    M. Crippa; P. F. DeCarlo; Slowik, J. G.; Mohr, C; M. F. Heringa; R. Chirico; POULAIN L.; F. Freutel; Sciare, J.; Cozic, J.; C. F. Di Marco; M. Elsasser; N. José; N. Marchand; Abidi, E.

    2012-01-01

    The effect of a post-industrial megacity on local and regional air quality was assessed via a month-long field measurement campaign in the Paris metropolitan area during winter 2010. Here we present source apportionment results from three aerosol mass spectrometers and two aethalometers deployed at three measurement stations within the Paris region. Submicron aerosol composition is dominated by the organic fraction (30–36%) and nitrate (28–29%), with lower contributions from sulfate (14–16%),...

  12. Biomass burning in the Amazon region: Aerosol source apportionment and associated health risk assessment

    Science.gov (United States)

    de Oliveira Alves, Nilmara; Brito, Joel; Caumo, Sofia; Arana, Andrea; de Souza Hacon, Sandra; Artaxo, Paulo; Hillamo, Risto; Teinilä, Kimmo; Batistuzzo de Medeiros, Silvia Regina; de Castro Vasconcellos, Pérola

    2015-11-01

    The Brazilian Amazon represents about 40% of the world's remaining tropical rainforest. However, human activities have become important drivers of disturbance in that region. The majority of forest fire hotspots in the Amazon arc due to deforestation are impacting the health of the local population of over 10 million inhabitants. In this study we characterize western Amazonia biomass burning emissions through the quantification of 14 Polycyclic Aromatic Hydrocarbons (PAHs), Organic Carbon, Elemental Carbon and unique tracers of biomass burning such as levoglucosan. From the PAHs dataset a toxic equivalence factor is calculated estimating the carcinogenic and mutagenic potential of biomass burning emissions during the studied period. Peak concentration of PM10 during the dry seasons was observed to reach 60 μg m-3 on the 24 h average. Conversely, PM10 was relatively constant throughout the wet season indicating an overall stable balance between aerosol sources and sinks within the filter sampling resolution. Similar behavior is identified for OC and EC components. Levoglucosan was found in significant concentrations (up to 4 μg m-3) during the dry season. Correspondingly, the estimated lung cancer risk calculated during the dry seasons largely exceeded the WHO health-based guideline. A source apportionment study was carried out through the use of Absolute Principal Factor Analysis (APFA), identifying a three-factor solution. The biomass burning factor is found to be the dominating aerosol source, having 75.4% of PM10 loading. The second factor depicts an important contribution of several PAHs without a single source class and therefore was considered as mixed sources factor, contributing to 6.3% of PM10. The third factor was mainly associated with fossil fuel combustion emissions, contributing to 18.4% of PM10. This work enhances the knowledge of aerosol sources and its impact on climate variability and local population, on a site representative of the

  13. Source apportionment of PM2.5 carbonaceous aerosol in Baghdad, Iraq

    Science.gov (United States)

    Hamad, Samera Hussein; Schauer, James Jay; Heo, Jongbae; Kadhim, Ahmed K. H.

    2015-04-01

    Baghdad is the second largest city in the Middle East and suffers from severe air quality degradation due to the high levels of the atmospheric particulate matter (PM). Limited information exists regarding the sources of PM in Baghdad, and the lack of information on sources inhibits the development of control strategies to reduce air pollution. To better understand the nature of fine particulate matter (PM2.5) in Baghdad and the Middle East, a one year sampling campaign to collect PM2.5 was conducted from September 2012 through September 2013, missing August 2013 samples due to the security situation. 24-hour integrated samples collected on a 1-in-6 day schedule were analyzed for the major components, and monthly average samples were analyzed by gas chromatography mass spectrometry (GCMS) methods to measure particle-phase organic molecular markers. The results of organic molecular markers were used in a chemical mass balance (CMB) model to quantify the sources of PM2.5 organic carbon (OC) and PM2.5 mass. Primary sources accounted for 44% of the measured PM2.5, and secondary sources were estimated to make up 28% of the measured PM2.5. Picene, a tracer of coal combustion detected in Baghdad where there is no evidence for coal combustion, can be attributed to burning crude oil and other low quality fuels in Baghdad. Source apportionment results showed that the dominant sources of the carbonaceous aerosols in Baghdad are gasoline (37 ± 6%) and diesel engines (17 ± 3%) which can be attributed to the extensive use of gasoline and diesel powered generators in Baghdad. Wood burning and residual oil combustion contributed to 5 ± 0.4 and 1 ± 0.2% respectively of OC. The unresolved sources contributed to 42 ± 19% of the OC which represented the secondary organic aerosol (SOA) and the unidentified sources.

  14. Source apportionment of carbonaceous aerosol in Sao Paulo using 13C and 14C measurements

    Science.gov (United States)

    Oyama, Beatriz; Andrade, Maria de Fatima; Holzinger, Rupert; Röckmann, Thomas; Meijer, Harro A. J.; Dusek, Ulrike

    2016-04-01

    The Metropolitan Area of Sao Paulo is affected by high aerosol concentrations, which contain a large fraction of organic material. Up to date, not much is known about the composition and origin of the organic aerosol in this city. We present the first source apportionment of the carbonaceous aerosol fraction in Sao Paulo, using stable (13C) and radioactive carbon isotopes (14C). 14C provides a clear-cut distinction between fossil sources, which contain no 14C, and contemporary sources such as biofuels, biomass burning, or biogenic sources, which contain a typical contemporary 14C/12C ratio. 13C can be used to distinguish C3 plants, such as maize and sugarcane, from C4 plants. This can help to identify a possible impact of sugarcane field burning in the rural areas of Sao Paulo State on the aerosol carbon in the city. In the first part of the study, we compare two tunnel studies: Tunnel 1 is frequented only by light duty vehicles, which run mainly on mixtures of gasoline with ethanol (gasohol, 25% ethanol and 85% gasoline) or hydrated ethanol (5% water and 95% ethanol). Tunnel 2 contains a significant fraction of heavy-duty diesel vehicles, and therefore the fraction of biofuels in the average fleet is lower. Comparison of 14C in organic and elemental carbon (OC and EC) shows that in both tunnels there is no significant contribution of biofuels to EC. Combusting ethanol-gasoline fuels in a vehicle engine does apparently not result in significant EC formation from ethanol. Biofuels contribute around 45% to OC in Tunnel 1 an only 20% in Tunnel 2, reflecting a strong impact of diesel vehicles in Tunnel 2. In the second part of the study we conduct a source apportionment of ambient aerosol carbon collected in a field study during winter (July-August) 2012. Ambient EC has two main sources, vehicular emissions and biomass burning. We estimate a contribution of vehicular sources to EC of roughly 90% during weekdays and 80% during weekends, using the 14C values measured in

  15. Submicron aerosol source apportionment of wintertime pollution in Paris, France by Double Positive Matrix Factorization (PMF2 using Aerosol Chemical Speciation Monitor (ACSM and multi-wavelength Aethalometer

    Directory of Open Access Journals (Sweden)

    J.-E. Petit

    2014-06-01

    Full Text Available Online non-refractory submicron Aerosol Mass Spectrometer (AMS measurements in urban areas have successfully allowed the apportionment of specific sources and/or physical and chemical properties of the organic fraction. However, in order to be fully representative of PM pollution, a comprehensive source apportionment analysis is needed by taking into account all major components of submicron aerosols, creating strengthened bonds between the organic components and pollution sources. We present here a novel two-step methodology to perform such an analysis, by taking advantage of high time resolution of monitoring instruments: the Aerosol Chemical Speciation Monitor (ACSM and the multi-wavelength absorption measurements (Aethalometer AE31 in Paris, France. As a first step, organic aerosols (OA were deconvoluted to hydrocarbon-like OA (HOA, Biomass Burning OA (BBOA and Oxygenated OA (OOA with Positive Matrix Factorization, and black carbon was deconvolved into its wood burning and fossil fuel combustion fractions. A second PMF analysis was then carried out with organic factors, BC fractions and inorganic species (nitrate, sulfate, ammonium, chloride, leading to a~four-factor solution allowing real-time characterization of the major sources of PM1. Outputs of this PMF2 include two dominant combustion sources (wood burning and traffic as well as semi-volatile and low-volatile secondary aerosols. While HOA is found to be emitted by both wood burning and traffic, the latter sources occurred to significantly contribute also to OOA.

  16. Organic composition and source apportionment of fine aerosol at Monterrey, Mexico, based on organic markers

    Science.gov (United States)

    Mancilla, Y.; Mendoza, A.; Fraser, M. P.; Herckes, P.

    2016-01-01

    attribution results obtained using the CMB (chemical mass balance) model indicate that emissions from motor vehicle exhausts are the most important, accounting for the 64 % of the PM2.5, followed by meat-cooking operations with 31 % The vegetative detritus and biomass burning had the smallest contribution (2.2 % of the PM2.5). To our knowledge, this is only the second study to explore the organic composition and source apportionment of fine organic aerosol based on molecular markers in Mexico and the first for the MMA. Particularly molecular marker were quantified by solvent extraction with dichloromethane, derivatization, and gas chromatography with mass spectrometry (GC/MS).

  17. Studying organic aerosols during bonfire night in Manchester: ME-2 source apportionment

    Science.gov (United States)

    Reyes Villegas, Ernesto; Allan, James

    2016-04-01

    Over the past decade, there has been an increasing interest in short-term events that negatively affect air quality (Zhao et al. 2014) such as bonfires and fireworks. In general, during these episodes, high particulate matter concentrations drop within 24 hrs; however, it is the fine fraction that dominates the emissions, known to have a potentially negative impact on air quality, thus the impact of bonfires/fireworks on air quality must be considered. Aerosols and gases were measured using a variety of instruments at The University of Manchester, sampling atmospheric emissions on Bonfire night, 5 November, one week before and one week later, in 2013 and 2014. The Multilinear Engine (ME-2) factorization tool was used through the recently developed source finder interface (SoFi, Canonaco et al. 2013) to identify sources of organic aerosols (OA) sampled with an Aerosol Mass Spectrometer (AMS). ME-2 identified five sources: solid fuel OA (SFOA), hydrocarbon like OA (HOA), cooking OA (COA), semi-volatile (SVOOA) and low volatility (LVOOA) during both years. In 2014, air pollutant concentrations were particularly high, with the highest SFOA concentrations being 20 μgm-3 at 20:30 hrs. when fireworks from different parks in Manchester were launched. Black carbon (BC) concentrations started increasing before the fireworks, around 18:00 hrs; these concentrations are representative of bonfire emissions. However, traffic emissions may be contributing to BC here; further work will be done to differentiate traffic emissions from solid fuel emissions. By analysing daily aerosol concentrations according to DEFRA's Daily Air Quality Index, it is possible to observe that in 2014, PM2.5 concentrations were considered to be high (65 μgm-3) while in 2013, PM2.5 concentrations were considered low (12 μgm-3); in the case of BBOA, concentrations ranged from 2.9 μgm-3 in 2014 to 0.65 μgm-3 in 2013. The discrepancy between these studies is mainly a result of different meteorological

  18. Argon offline-AMS source apportionment of organic aerosol over yearly cycles for an urban, rural, and marine site in northern Europe

    OpenAIRE

    Bozzetti, Carlo; Sosedova, Yuliya; Xiao, Mao; Daellenbach, Kaspar R.; Ulevicius, Vidmantas; Dudoitis, Vadimas; Mordas, Genrik; Byčenkienė, Steigvilė; Plauškaitė, Kristina; Vlachou, Athanasia; Golly, Benjamin; Chazeau, Benjamin; Besombes, Jean-Luc; Baltensperger, Urs; Jaffrezo, Jean-Luc

    2017-01-01

    The widespread use of Aerodyne aerosol mass spectrometers (AMS) has greatly improved real-time organic aerosol (OA) monitoring, providing mass spectra that contain sufficient information for source apportionment. However, AMS field deployments remain expensive and demanding, limiting the acquisition of long-term datasets at many sampling sites. The offline application of aerosol mass spectrometry entailing the analysis of nebulized water extracted filter samples (offline-AMS...

  19. On the isolation of OC and EC and the optimal strategy of radiocarbon-based source apportionment of carbonaceous aerosols

    Directory of Open Access Journals (Sweden)

    Y. L. Zhang

    2012-07-01

    Full Text Available Radiocarbon (14C measurements of elemental carbon (EC and organic carbon (OC separately (as opposed to only total carbon, TC allow an unambiguous quantification of their non-fossil and fossil sources and represent an improvement in carbonaceous aerosol source apportionment. Isolation of OC and EC for accurate 14C determination requires complete removal of interfering fractions with maximum recovery. To evaluate the extent of positive and negative artefacts during OC and EC separation, we performed sample preparation with a commercial Thermo-Optical OC/EC Analyser (TOA by monitoring the optical properties of the sample during the thermal treatments. Extensive attention has been devoted to the set-up of TOA conditions, in particular, heating program and choice of carrier gas. Based on different types of carbonaceous aerosols samples, an optimised TOA protocol (Swiss_4S with four steps is developed to minimise the charring of OC, the premature combustion of EC and thus artefacts of 14C-based source apportionment of EC. For the isolation of EC for 14C analysis, the water-extraction treatment on the filter prior to any thermal treatment is an essential prerequisite for subsequent radiocarbon; otherwise the non-fossil contribution may be overestimated due to the positive bias from charring. The Swiss_4S protocol involves the following consecutive four steps (S1, S2, S3 and S4: (1 S1 in pure oxygen (O2 at 375 °C for separation of OC for untreated filters, and water-insoluble organic carbon (WINSOC for water-extracted filters; (2 S2 in O2 at 475 °C, followed by (3 S3 in helium (He at 650 °C, aiming at complete OC removal before EC isolation and leading to better consistency with thermal-optical protocols like EUSAAR_2, compared to pure oxygen methods; and (4 S4 in O2 at 760 °C for recovery of the remaining EC.

    WINSOC was found to have a significantly higher fossil

  20. On the isolation of OC and EC and the optimal strategy of radiocarbon-based source apportionment of carbonaceous aerosols

    Science.gov (United States)

    Zhang, Y. L.; Perron, N.; Ciobanu, V. G.; Zotter, P.; Minguillón, M. C.; Wacker, L.; Prévôt, A. S. H.; Baltensperger, U.; Szidat, S.

    2012-11-01

    Radiocarbon (14C) measurements of elemental carbon (EC) and organic carbon (OC) separately (as opposed to only total carbon, TC) allow an unambiguous quantification of their non-fossil and fossil sources and represent an improvement in carbonaceous aerosol source apportionment. Isolation of OC and EC for accurate 14C determination requires complete removal of interfering fractions with maximum recovery. The optimal strategy for 14C-based source apportionment of carbonaceous aerosols should follow an approach to subdivide TC into different carbonaceous aerosol fractions for individual 14C analyses, as these fractions may differ in their origins. To evaluate the extent of positive and negative artefacts during OC and EC separation, we performed sample preparation with a commercial Thermo-Optical OC/EC Analyser (TOA) by monitoring the optical properties of the sample during the thermal treatments. Extensive attention has been devoted to the set-up of TOA conditions, in particular, heating program and choice of carrier gas. Based on different types of carbonaceous aerosols samples, an optimised TOA protocol (Swiss_4S) with four steps is developed to minimise the charring of OC, the premature combustion of EC and thus artefacts of 14C-based source apportionment of EC. For the isolation of EC for 14C analysis, the water-extraction treatment on the filter prior to any thermal treatment is an essential prerequisite for subsequent radiocarbon measurements; otherwise the non-fossil contribution may be overestimated due to the positive bias from charring. The Swiss_4S protocol involves the following consecutive four steps (S1, S2, S3 and S4): (1) S1 in pure oxygen (O2) at 375 °C for separation of OC for untreated filters and water-insoluble organic carbon (WINSOC) for water-extracted filters; (2) S2 in O2 at 475 °C followed by (3) S3 in helium (He) at 650 °C, aiming at complete OC removal before EC isolation and leading to better consistency with thermal-optical protocols

  1. On the isolation of OC and EC and the optimal strategy of radiocarbon-based source apportionment of carbonaceous aerosols

    Directory of Open Access Journals (Sweden)

    Y. L. Zhang

    2012-11-01

    Full Text Available Radiocarbon (14C measurements of elemental carbon (EC and organic carbon (OC separately (as opposed to only total carbon, TC allow an unambiguous quantification of their non-fossil and fossil sources and represent an improvement in carbonaceous aerosol source apportionment. Isolation of OC and EC for accurate 14C determination requires complete removal of interfering fractions with maximum recovery. The optimal strategy for 14C-based source apportionment of carbonaceous aerosols should follow an approach to subdivide TC into different carbonaceous aerosol fractions for individual 14C analyses, as these fractions may differ in their origins. To evaluate the extent of positive and negative artefacts during OC and EC separation, we performed sample preparation with a commercial Thermo-Optical OC/EC Analyser (TOA by monitoring the optical properties of the sample during the thermal treatments. Extensive attention has been devoted to the set-up of TOA conditions, in particular, heating program and choice of carrier gas. Based on different types of carbonaceous aerosols samples, an optimised TOA protocol (Swiss_4S with four steps is developed to minimise the charring of OC, the premature combustion of EC and thus artefacts of 14C-based source apportionment of EC. For the isolation of EC for 14C analysis, the water-extraction treatment on the filter prior to any thermal treatment is an essential prerequisite for subsequent radiocarbon measurements; otherwise the non-fossil contribution may be overestimated due to the positive bias from charring. The Swiss_4S protocol involves the following consecutive four steps (S1, S2, S3 and S4: (1 S1 in pure oxygen (O2 at 375 °C for separation of OC for untreated filters and water-insoluble organic carbon (WINSOC for water-extracted filters; (2 S2 in O2 at 475 °C followed by (3 S3 in helium (He at 650 °C, aiming at complete

  2. Carbonaceous aerosol source apportionment using the aethalometer model – Evaluation by radiocarbon and levoglucosan analysis at a rural background site in southern Sweden

    OpenAIRE

    Martinsson, Johan; Abdul Azeem, Hafiz; Moa K. Sporre; Bergström, Robert; Ahlberg, Erik; Öström, Emilie; Kristensson, Adam; SWIETLICKI, ERIK; Eriksson Stenström, Kristina

    2016-01-01

    With the present demand on fast and inexpensive aerosol source apportionment methods, the aethalometer model was evaluated for a full seasonal cycle (June 2014–June 2015) at a rural atmospheric measurement station in southern Sweden by using radiocarbon and levoglucosan measurements. By utilizing differences in absorption of UV and IR, the aethalometer model apportions carbon mass into wood burning (WB) and fossil fuel combustion (FF) aerosol. In this study, a small modification in the ...

  3. Aerosol black carbon quantification in the central Indo-Gangetic Plain: Seasonal heterogeneity and source apportionment

    Science.gov (United States)

    Vaishya, Aditya; Singh, Prayagraj; Rastogi, Shantanu; Babu, S. Suresh

    2017-03-01

    Two years of aerosol spectral light absorption measurements, using filter based technique, from the central Indo-Gangetic plain (IGP), Gorakhpur (26.75°N, 83.38°E, 85 m amsl), are analyzed to study their seasonal behavior and to quantify their magnitude in terms of absorbing aerosols loading and source speciation. Spectral absorption analysis reveals a four-fold enhancement in absorption in winter (W) and post-monsoon (PoM) seasons at UV wavelengths as compared to IR wavelengths on account of increased biomass burning aerosol contribution to total absorbing aerosol load. Aerosols from the biomass sources contribute 28% during W and PoM seasons as against 16% in pre-monsoon (PM) and monsoon (M) seasons to the total absorbing aerosol content. A Mode shift in the distribution of the Absorption Ångström exponent (α) from 1.3 to 1.6 from PM-M seasons to PoM-W seasons signifies change in source type of absorbing aerosols from fossil fuel to biomass burning and their relative source strength. Due to near stagnant wind conditions combined with shallow boundary layer height, where air masses travelling to the central IGP are confined to a smaller volume, in W and PoM seasons, local sources assume more prominence rather than long-range transport of aerosols. Long-term measurements of aerosols physicochemical and radiative properties from this measurement location will enhance our understanding of the complex aerosol system over the IGP and its climatic implications.

  4. Apportionment of urban aerosol sources in Cork (Ireland) by synergistic measurement techniques.

    Science.gov (United States)

    Dall'Osto, Manuel; Hellebust, Stig; Healy, Robert M; O'Connor, Ian P; Kourtchev, Ivan; Sodeau, John R; Ovadnevaite, Jurgita; Ceburnis, Darius; O'Dowd, Colin D; Wenger, John C

    2014-09-15

    The sources of ambient fine particulate matter (PM2.5) during wintertime at a background urban location in Cork city (Ireland) have been determined. Aerosol chemical analyses were performed by multiple techniques including on-line high resolution aerosol time-of-flight mass spectrometry (Aerodyne HR-ToF-AMS), on-line single particle aerosol time-of-flight mass spectrometry (TSI ATOFMS), on-line elemental carbon-organic carbon analysis (Sunset_EC-OC), and off-line gas chromatography/mass spectrometry and ion chromatography analysis of filter samples collected at 6-h resolution. Positive matrix factorization (PMF) has been carried out to better elucidate aerosol sources not clearly identified when analyzing results from individual aerosol techniques on their own. Two datasets have been considered: on-line measurements averaged over 2-h periods, and both on-line and off-line measurements averaged over 6-h periods. Five aerosol sources were identified by PMF in both datasets, with excellent agreement between the two solutions: (1) regional domestic solid fuel burning--"DSF_Regional," 24-27%; (2) local urban domestic solid fuel burning--"DSF_Urban," 22-23%; (3) road vehicle emissions--"Traffic," 15-20%; (4) secondary aerosols from regional anthropogenic sources--"SA_Regional" 9-13%; and (5) secondary aged/processed aerosols related to urban anthropogenic sources--"SA_Urban," 21-26%. The results indicate that, despite regulations for restricting the use of smoky fuels, solid fuel burning is the major source (46-50%) of PM2.5 in wintertime in Cork, and also likely other areas of Ireland. Whilst wood combustion is strongly associated with OC and EC, it was found that peat and coal combustion is linked mainly with OC and the aerosol from these latter sources appears to be more volatile than that produced by wood combustion. Ship emissions from the nearby port were found to be mixed with the SA_Regional factor. The PMF analysis allowed us to link the AMS cooking organic

  5. The AIRPARIF-AEROSOL project: A comprehensive source apportionment study of fine aerosols (PM2.5) in the region of Paris (France)

    Science.gov (United States)

    Sciare, Jean; Ghersi, Veronique; Bressi, Michael; Lameloise, Philippe; Bonnaire, Nicolas; Rosso, Amandine; Nicolas, Jose; Moukhtar, Sophie; Ferron, Anais; Baumier, Dominique

    2010-05-01

    With a population of about 12 millions inhabitants (20% of the French population), Greater Paris (France) is one of the most populated megacity in Europe and among the few located in developed countries. Due to its favorable geographical situation (far from other big European cities and influenced very often by clean oceanic air masses), it may be considered as a good candidate for investigating the build-up of urban air pollution from temperate industrialized countries. Particulate mass of fine aerosols with aerodynamic diameter below 2.5μm (PM2.5) is continuously monitored at several stations from great Paris for almost 8 years by the local air quality network (AIRPARIF), using a conventional on-line automatic system (R&P TEOM; see Patashnik and Rupprecht, 1991). During the period 2000-2006, levels of PM2.5 in the region of Paris have shown rather stable yearly mean values ranging 13 to 16?g/m3 whereas most of the other pollutants monitored by AIRPARIF have shown a net decrease during this period (http:\\www.airparif.asso.fr). Since the year 2007, this situation has becoming worse for particulate pollution with a net increase of the yearly mean concentration of PM2.5 (up to 21?g/m3), which increase is partly due to the use of a new PM2.5 measurement technique (R&P TEOM-FDMS instrument) enabling a proper determination of the semi-volatile fraction of fine aerosols. Although this new method greatly improves the determination of PM2.5, it has also brought PM2.5 levels in the region of Paris closer to the 25?g/m3 yearly mean targeted value recommended by Europe for 2010 (limit value for 2015). Efficient abatement policies aiming at reducing levels of PM2.5 in the region of Paris will have to be fed by preliminary PM2.5 source apportionment studies and exhaustive aerosol chemistry studies (chemical mass balance) allowing a better separation between regional to continental aerosol sources. The objective of the AIRPARIF-AEROSOL project aims to perform a spatially- and

  6. Source apportionment of submicron organic aerosols at an urban site by linear unmixing of aerosol mass spectra

    Directory of Open Access Journals (Sweden)

    V. A. Lanz

    2006-11-01

    Full Text Available Submicron ambient aerosol was characterized in summer 2005 at an urban background site in Zurich, Switzerland, during a three-week measurement campaign. Highly time-resolved samples of non-refractory aerosol components were analyzed with an Aerodyne aerosol mass spectrometer (AMS. Positive matrix factorization (PMF was used for the first time for AMS data to identify the main components of the total organic aerosol and their sources. The PMF retrieved factors were compared to measured reference mass spectra and were correlated with tracer species of the aerosol and gas phase measurements from collocated instruments. Six factors were found to explain virtually all variance in the data and could be assigned either to sources or to aerosol components such as oxygenated organic aerosol (OOA. Our analysis suggests that at the measurement site only a small (<10% fraction of organic PM1 originates from freshly emitted fossil fuel combustion. Other primary sources identified to be of similar or even higher importance are charbroiling (10–15% and wood burning (~10%, along with a minor source interpreted to be influenced by food cooking (6%. The fraction of all identified primary sources is considered as primary organic aerosol (POA. This interpretation is supported by calculated ratios of the modelled POA and measured primary pollutants such as elemental carbon (EC, NOx, and CO, which are in good agreement to literature values. A high fraction (60–69% of the measured organic aerosol mass is OOA which is interpreted mostly as secondary organic aerosol (SOA. This oxygenated organic aerosol can be separated into a highly aged fraction, OOA I, (40–50% with low volatility and a mass spectrum similar to fulvic acid, and a more volatile and probably less processed fraction, OOA II (on average 20%. This is the first publication of a multiple component analysis technique to AMS organic spectral data and also the first report of the

  7. Organic aerosol source apportionment in London 2013 with ME-2: exploring the solution space with annual and seasonal analysis

    Science.gov (United States)

    Reyes-Villegas, Ernesto; Green, David C.; Priestman, Max; Canonaco, Francesco; Coe, Hugh; Prévôt, André S. H.; Allan, James D.

    2016-12-01

    The multilinear engine (ME-2) factorization tool is being widely used following the recent development of the Source Finder (SoFi) interface at the Paul Scherrer Institute. However, the success of this tool, when using the a value approach, largely depends on the inputs (i.e. target profiles) applied as well as the experience of the user. A strategy to explore the solution space is proposed, in which the solution that best describes the organic aerosol (OA) sources is determined according to the systematic application of predefined statistical tests. This includes trilinear regression, which proves to be a useful tool for comparing different ME-2 solutions. Aerosol Chemical Speciation Monitor (ACSM) measurements were carried out at the urban background site of North Kensington, London from March to December 2013, where for the first time the behaviour of OA sources and their possible environmental implications were studied using an ACSM. Five OA sources were identified: biomass burning OA (BBOA), hydrocarbon-like OA (HOA), cooking OA (COA), semivolatile oxygenated OA (SVOOA) and low-volatility oxygenated OA (LVOOA). ME-2 analysis of the seasonal data sets (spring, summer and autumn) showed a higher variability in the OA sources that was not detected in the combined March-December data set; this variability was explored with the triangle plots f44 : f43 f44 : f60, in which a high variation of SVOOA relative to LVOOA was observed in the f44 : f43 analysis. Hence, it was possible to conclude that, when performing source apportionment to long-term measurements, important information may be lost and this analysis should be done to short periods of time, such as seasonally. Further analysis on the atmospheric implications of these OA sources was carried out, identifying evidence of the possible contribution of heavy-duty diesel vehicles to air pollution during weekdays compared to those fuelled by petrol.

  8. Source apportionment of single aerosol particles in the atmosphere of Shanghai city

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A nuclear microprobe with high spatial resolution and high analyti cal sensitivity was applied to analyze atmospheric aerosol at five monitoring sites in Shanghai city. Meantime, a new pattern recognition technique, which used the micro PIXE spectrum of a single aerosol particle as its fingerprint, was developed to identify the origin of the particle. The results showed that the major contributors to the at mosphere pollution were soil dust (31.6%), building dust (30.8%), and the next were vehicle exhaust (13.7%), metallurgic industry excrements (5.6%), oil combustion (5%) and coal combustion (2.3%). Besides these, about 10% of the particles could not be identified. Based on the cluster analysis of these particles, they could be divided into eight groups. By inference, they might belong to some sub-pollution sources from soil dust, building dust and metallurgic industry excrements. Moreover, some new pollution sources from tyres and chemical plants were also revealed.

  9. Source apportionment of elevated BaP concentrations in PM10 aerosols in an alpine valley in Austria

    Science.gov (United States)

    Bauer, Heidi; Puxbaum, Hans; Jankowski, Nicole; Sampaio Cordeiro Wagner, Lylian

    2010-05-01

    INTRODUCTION: In a village situated at 1215 m a.s.l. in a natural preserve in an Austrian alpine valley elevated BaP concentrations have been measured in the last years. A highly frequented highway leading from Italy to Germany passes near the village. Monthly means of particulate BaP concentrations show a clear seasonal trend with values below 1 ng/m³ during the warmer months and with concentrations up to 9 ng/m³ in the cold season. Annual averages in the years 2000 - 2005 ranged between 1.4 and 2.8 ng/m³ - much higher than the EU target value of 1 ng/m³. We used a macrotracer model developed at the Vienna University of Technology to determine the contributions of the sources for BaP emissions, which were mainly space heating with wood and traffic from the highway. EXPERIMENTAL: The macrotracer concept is a nine component model to derive source contribution and explains 80-100% of PM10 aerosols in Austria. The amount of traffic exhaust is derived by using EC as tracer, whereas EC produced by wood burning is subtracted, the amount of wood smoke is derived by the anhydro-sugar levoglucosan and the ratio between the anhydro-sugars levoglucosan and mannosan. For the source apportionment of BaP the applied factors reflect on the one hand the composition of the automotive fleet in Austria and on the other hand the composition of the fire wood in the region. Filter samples collected with a high volume sampler in winter were analyzed for PM10 aerosol mass, total, organic, elemental and carbonate carbon, HULIS, anhydro-sugars, polyols and ions (major ions and organic acids) and PAHs. In the same way emission samples taken at a motor test stand and at a test stand for wood combustion were analyzed (Schmidl et al. 2008). The saccharides were determined using high pH anion exchange and pulsed amperometry (HPAE-PAD). Details of the analytical method are given in Iinuma et al., 2009. Elemental and organic carbon were determined with a thermal-optical instrument (Sunset lab

  10. Sensitivity and bias of molecular marker-based aerosol source apportionment models to small conltibutions of coal combustion soot.

    Science.gov (United States)

    Rutter, Andrew P; Snyder, David C; Schauer, James J; DeMinter, Jeff; Shelton, Brandon

    2009-10-15

    Carbonaceous atmospheric particulate matter (PM25) collected in the midwestern United States revealed that soot emissions from incomplete coal combustion were important sources of several organic molecular markers used in source apportionment studies. Despite not constituting a major source of organic carbon in the PM25, coal soot was an important source of polyaromatic hydrocarbons, hopanes, and elemental carbon. These marker compounds are becoming widely used for source apportionment of atmospheric organic PM, meaning that significant emissions of these marker compounds from unaccounted sources such as coal soot could bias apportionment results. This concept was demonstrated using measurements of atmospheric PM collected on a 1-in-6 day schedule at three monitoring sites in Ohio: Mingo Junction (near Steubenville), Cincinnati, and Cleveland. Impacts of coal sootwere measured to be significant at Mingo Junction and small at Cleveland and Cincinnati. As a result, biases in apportionment results were substantial at Mingo Junction and insignificant at Cleveland and Cincinnati. Misapportionments of organic carbon mass at Mingo Junction were significant when coal soot was detected in the particulate samples as identified bythe presence of picene, but when coal soot was not included in the model: gasoline engines (+8% to +58% of OC), smoking engines (0% to -17% of OC), biomass combustion (+1% to +11% of OC), diesel engines (-1% to -2% of OC), natural gas combustion (0% to -2% of OC), and unapportioned OC (0% to -47% of OC). These results suggest that the role of coal soot in source apportionment studies needs to be better examined in many parts of the United States and other parts of the world.

  11. Source apportionment of submicron organic aerosol at an urban background and a road site in Barcelona (Spain during SAPUSS

    Directory of Open Access Journals (Sweden)

    M. Alier

    2013-10-01

    Full Text Available This study investigates the contribution of potential sources to the submicron (PM1 organic aerosol (OA simultaneously detected at an urban background (UB and a road site (RS in Barcelona during the 30 days of the intensive field campaign of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies, September–October 2010. A total of 103 filters at 12 h sampling time resolution were collected at both sites. Thirty-six neutral and polar organic compounds of known emission sources and photo-chemical transformation processes were analyzed by gas chromatography–mass spectrometry (GC-MS. The concentrations of the trace chemical compounds analyzed are herein presented and discussed. Additionally, OA source apportionment was performed by multivariate curve resolution–alternating least squares (MCR-ALS and six OA components were identified at both sites: two were of primary anthropogenic OA origin and three of secondary OA origin, while a sixth one was not clearly defined. Primary organics from emissions of local anthropogenic activities (urban primary organic aerosol, or POA Urban, mainly traffic emissions but also cigarette smoke, contributed 43% (1.5 μg OC m−3 and 18% (0.4 μg OC m−3 to OA at RS and UB, respectively. A secondary primary source – biomass burning (BBOA – was found in all the samples (average values 7% RS; 12% UB; 0.3 μg OC m−3, but this component was substantially contributing to OA only when the sampling sites were under influence of regional air mass circulation (REG.. Three secondary organic aerosol (SOA components (describing overall 60% of the variance were observed in the urban ambient PM1. Products of isoprene oxidation (SOA ISO – i.e. 2-methylglyceric acid, C5 alkene triols and 2-methyltetrols – showed the highest abundance at both sites when the city was under influence of inland air masses. The overall concentrations of SOA ISO were similar at both sites (0.4 and 0.3 μg m−3, or 16% and 7%, at

  12. Source apportionment of submicron organic aerosol at an urban background and a road site in Barcelona, Spain

    Directory of Open Access Journals (Sweden)

    M. Alier

    2013-04-01

    Full Text Available This study investigates the contribution of potential sources to the sub-micron (PM1 organic aerosol (OA simultaneously detected at an urban background (UB and a road site (RS in Barcelona during the 30 days of the intensive field campaign of SAPUSS (Solving Aerosol Problems by Using Synergistic Strategies, September–October 2010. 103 filters at 12 h sampling time resolution were collected at both sites. Thirty-six neutral and polar organic compounds of known emission sources and photo-chemical transformation processes were analyzed by Gas Chromatography-Mass Spectrometry (GC-MS. The concentrations of the trace chemical compounds analyzed are herein presented and discussed. Additionally, OA source apportionment was performed by Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS and six OA components were identified at both sites: two were of primary anthropogenic OA origin, three of secondary OA origin while a sixth one was not clearly defined. Primary organics from emissions of local anthropogenic activities (Urban primary organic aerosol, Urban POA contributed for 43% (1.5 μg OC m−3 and 18% (0.4 μg OC m−3 to OA in RS and UB, respectively. A secondary primary source – biomass burning (BBOA – was found in all the samples (average values 7% RS; 12% UB; 0.3 μg OC m−3, but this component was substantially contributing to OA only when the sampling sites were under influence of regional air mass circulation. Three Secondary Organic Aerosol (SOA components (describing overall 60% of the variance were observed in the urban ambient PM1. Products of isoprene oxidation (SOA ISO, i.e. 2-methylglyceric acid, C5 alkene triols and 2-methyltetrols, showed the highest abundance at both sites when the city was under influence of inland air masses. The overall concentrations of SOA ISO were similar at both sites (0.4 and 0.3 μg m−3, 16% and 7%, at UB and RS, respectively. By contrast, a SOA biogenic component attributed to

  13. Chemical characterization of fine organic aerosol for source apportionment at Monterrey, Mexico

    Directory of Open Access Journals (Sweden)

    Y. Mancilla

    2015-07-01

    events. Finally, source attribution results obtained using the CMB model indicate that emissions from motor vehicle exhausts are the most important, accounting for the 64 % of the PM2.5. The vegetative detritus and biomass burning had the smallest contribution (2.2 % of the PM2.5. To our knowledge, this is the second study to explore the broad chemical characterization of fine organic aerosol in Mexico and the first for the MMA.

  14. Radiocarbon-Based Source apportionment of Elemental Carbon Aerosols at Seoul, South Korea

    Science.gov (United States)

    Shakerian Ghahferrokhi, Farid; Ahn, Jinho; Czimczik, Claudia I.; Holden, Sandra; Park, JinSoo

    2016-04-01

    In this study, 10 samples of PM2.5 (aerosol particle with diameter less than 2.5 μm) were collected in the Northeast of Seoul (37.60o N, 127.05o E), South Korea, over 2-4 day periods in May and June of 2015 with a high volume air sampler. The samples were analyzed for their bulk carbon (TC) and nitrogen (N) elemental and stable isotope composition with EA-IRMS. Elemental carbon (EC) was quantified with the Swiss_4S protocol using a Sunset OC/EC analyzer. Both, TC and EC were analyzed for their radiocarbon (14C) content via accelerator mass spectrometry. The mass and isotopic composition of organic carbon (OC) was quantified by (isotope) mass balance. TC loads were 6.6 +/- 1.5 ug C m-3 air (ave. +/- sd; range 4.7-9.7), with a ∆14C ranging from 240 to -446 per mill and a δ13C of -25.4+/-0.3 per mill. EC was a minor fraction of TC (7.2+/-1.9% or 0.5+/-0.2 ug C m-3 air). EC was strongly depleted in 14C (∆14C = -915 to -819 per mill), with fossil sources accounting for 88+/-3% of EC (6.3+/-1.7% of TC). OC was enriched in 14C above natural levels (∆14C = -401 to 309 per mill), and thus could not be partitioned into fossil and modern sources. Local wind directions showed that air masses originated from the South, demonstrating that regional sources may be the crucial contributor to PM pollution in Seoul during that sampling period (early summer).

  15. ACTRIS ACSM intercomparison – Part 2: Intercomparison of ME-2 organic source apportionment results from 15 individual, co-located aerosol mass spectrometers

    Directory of Open Access Journals (Sweden)

    R. Fröhlich

    2015-02-01

    Full Text Available Chemically resolved atmospheric aerosol data sets from the largest intercomparison of the Aerodyne aerosol chemical speciation monitors (ACSM performed to date were collected at the French atmospheric supersite SIRTA. In total 13 quadrupole ACSMs (Q-ACSM from the European ACTRIS ACSM network, one time-of-flight ACSM (ToF-ACSM, and one high-resolution ToF aerosol mass spectrometer (AMS were operated in parallel for about three weeks in November and December 2013. Part 1 of this study reports on the accuracy and precision of the instruments for all the measured species. In this work we report on the intercomparison of organic components and the results from factor analysis source apportionment by positive matrix factorisation (PMF utilising the multilinear engine 2 (ME-2. Except for the organic contribution of m/z 44 to the total organics (f44, which varied by factors between 0.6 and 1.3 compared to the mean, the peaks in the organic mass spectra were similar among instruments. The m/z 44 differences in the spectra resulted in a variable f44 in the source profiles extracted by ME-2, but had only a minor influence on the extracted mass contributions of the sources. The presented source apportionment yielded four factors for all 15 instruments: hydrocarbon-like organic aerosol (HOA, cooking-related organic aerosol (COA, biomass burning-related organic aerosol (BBOA and secondary oxygenated organic aerosol (OOA. Individual application and optimisation of the ME-2 boundary conditions (profile constraints are discussed together with the investigation of the influence of alternative anchors (reference profiles. A comparison of the ME-2 source apportionment output of all 15 instruments resulted in relative SD from the mean between 13.7 and 22.7% of the source's average mass contribution depending on the factors (HOA: 14.3 ± 2.2%, COA: 15.0 ± 3.4%, OOA: 41.5 ± 5.7%, BBOA: 29.3 ± 5.0%. Factors which tend to be subject to minor factor mixing (in this

  16. Inter-comparison of source apportionment models for the estimation of wood burning aerosols during wintertime in an Alpine city (Grenoble, France

    Directory of Open Access Journals (Sweden)

    O. Favez

    2010-01-01

    Full Text Available The emission of organic aerosols (OA in the ambient air by residential wood burning is nowadays a subject of great scientific concern and a growing number of studies aim at apportioning the influence of such emissions on urban air quality. In the present study, results obtained using two commonly-used source apportionment models, i.e., Chemical Mass Balance (CMB, performed with off-line filter measurements and Positive Matrix Factorization (PMF, applied to aerosol mass spectrometer measurements, as well as using the recently-proposed aethalometer model (based on the measurement of the aerosol light absorption at different wavelengths are inter-compared. This work is performed using field data obtained during the winter season (14 to 30 January 2009 at an urban background site of a French Alpine city (Grenoble. Converging results from the different models indicate a major contribution of wood burning organic aerosols (OMwb to the organic fraction, with mean OMwb contributions to total OA of about 67%, 60% and 38% for the CMB, the aethalometer and the AMS-PMF models, respectively. Quantitative discrepancies might notably be due to the overestimation of OMwb calculated by the CMB due to the loss of semi-volatile compounds from sources to receptor site, as well as to the accounting of oxidized primary wood burning organic (OPOAwb aerosols within the Oxygenated Organic Aerosol (OOA PMF-factor. This OOA factor accounts on average for about 50% of total OM, while non-combustion sources contribute to about 25% and 28% of total OM according to the CMB and aethalometer models, respectively. Each model suggests a mean contribution of fossil fuel emissions to total OM of about 10%. A good agreement is also obtained for the source apportionment of elemental carbon (EC by both the CMB and aethalometer models, with fossil fuel emissions representing on average more than 80% of total EC.

  17. Chemical characterization of fine particulate matter in Changzhou, China, and source apportionment with offline aerosol mass spectrometry

    Science.gov (United States)

    Ye, Zhaolian; Liu, Jiashu; Gu, Aijun; Feng, Feifei; Liu, Yuhai; Bi, Chenglu; Xu, Jianzhong; Li, Ling; Chen, Hui; Chen, Yanfang; Dai, Liang; Zhou, Quanfa; Ge, Xinlei

    2017-02-01

    matter-to-organic carbon (OM / OC) ratios of 0.54, 1.69, 0.11, and 1.99, respectively. Source apportionment of WSOA further identified two secondary OA (SOA) factors (a less oxidized and a more oxidized oxygenated OA) and two primary OA (POA) factors (a nitrogen-enriched hydrocarbon-like traffic OA and a local primary OA likely including species from cooking, coal combustion, etc.). On average, the POA contribution outweighed SOA (55 % vs. 45 %), indicating the important role of local anthropogenic emissions in the aerosol pollution in Changzhou. Our measurement also shows the abundance of organic nitrogen species in WSOA, and the source analyses suggest these species are likely associated with traffic emissions, which warrants more investigations on PM samples from other locations.

  18. Size distribution, mixing state and source apportionments of black carbon aerosols in London during winter time

    Directory of Open Access Journals (Sweden)

    D. Liu

    2014-06-01

    Dc distributions and coating thicknesses, with BCsf displaying larger Dc and larger coating thickness compared to BCtr. BC particles from different sources were also apportioned by applying a multiple linear regression between the total BC mass and each AMS-PMF factor (BC-AMS-PMF method, and also attributed by applying the absorption spectral dependence of carbonaceous aerosols to 7-wavelength Aethalometer measurements (Aethalometer method. Air masses that originated from westerly (W, southeasterly (SE, or easterly (E sectors showed BCsf fractions that ranged from low to high, and whose mass median Dc values were 137 ± 10 nm, 143 ± 11 nm, and 169 ± 29 nm respectively. The corresponding bulk relative coating thickness of BC (coated particle size / BC core – Dp / Dc for these same sectors was 1.28 ± 0.07, 1.45 ± 0.16, and 1.65 ± 0.19. For W, SE and E air masses, the number fraction of BCsf ranged from 6 ± 2% to 11 ± 5% to 18 ± 10% respectively, but importantly the larger BC core sizes lead to an increased fraction of BCsf in terms of mass than number (for W–SE–E air masses, the BCsf mass fractions ranged from 16 ± 6 %–24 ± 10%–39 ± 14% respectively. An increased fraction of non-BC particles (particles that did not contain a BC core was also observed when SF sources were more significant. The BC mass attribution by the SP2 method agreed well with the BC-AMS-PMF multiple linear regression method (BC-AMS-PMF : SP2 ratio = 1.05, r2 = 0.80 over the entire experimental period. Good agreement was found between BCsf attributed with the Aethalometer model and the SP2. However, the assumed Absorption Ångström Exponent (αwb had to be changed according to the different air mass sectors to yield the best comparison with the SP2. This could be due to influences of fuel type or burn phase.

  19. SoFi, an Igor based interface for the efficient use of the generalized multilinear engine (ME-2 for source apportionment: application to aerosol mass spectrometer data

    Directory of Open Access Journals (Sweden)

    F. Canonaco

    2013-07-01

    Full Text Available Source apportionment using the bilinear model through the multilinear engine (ME-2 was successfully applied to non-refractory organic aerosol (OA mass spectra collected during winter 2011 and 2012 in Zurich, Switzerland using the aerosol chemical speciation monitor ACSM. Five factors were identified: low-volatility oxygenated OA (LV-OOA, semivolatile oxygenated OA (SV-OOA, hydrocarbon-like OA (HOA, cooking OA (COA and biomass burning OA (BBOA. A graphical user interface SoFi (Source Finder was developed at PSI in order to facilitate the testing of different rotational techniques available within the ME-2 engine by providing a priori factor profiles for some or all of the expected factors. ME-2 was used to test the positive matrix factorization (PMF model, the fully constrained chemical mass balance (CMB model, and partially constrained models utilizing a values and pulling equations. Within the set of model solutions determined to be environmentally reasonable, BBOA and SV-OOA factor mass spectra and time series showed the greatest variability. This variability represents uncertainty in the model solution and indicates that analysis of model rotations provides a useful approach for assessing the uncertainty of bilinear source apportionment models.

  20. Organic composition and source apportionment of fine aerosol at Monterrey, Mexico, based on organic markers

    OpenAIRE

    Y. Mancilla; Mendoza, A.; M. P. Fraser; Herckes, P.

    2016-01-01

    Primary emissions from anthropogenic and biogenic sources as well as secondary formation are responsible for the pollution levels of ambient air in major urban areas. These sources release fine particles into the air that negatively impact human health and the environment. Organic molecular markers, which are compounds that are unique to specific PM2.5 sources, can be utilized to identify the major emission sources in urban areas. In this study, 43 representative PM2.5 sampl...

  1. Characteristics and source apportionment of atmospheric aerosols at the summit of Mount Tai during summertime

    Directory of Open Access Journals (Sweden)

    H. Xu

    2009-07-01

    Full Text Available To investigate the long-range transport of air pollutants in North China, aerosol samples were collected at the summit of Mount Tai (Shandong province in June of 2006. Water-soluble ion and metal element concentrations were analyzed using ion chromatography (IC and inductively coupled plasma-mass spectrometry (ICP-MS, respectively. Results showed three different size distributions for the ions and metal elements characterized, including masses in: (i the accumulation mode, with a peak at 0.43 to 1.1 μm (SO42−, NH4+, K+, Pb, Zn, Ti; (ii the coarse particle mode, with a peak at 4.7 to 5.8 μm (Ca2+, Mg2+, Ca, Mg, Fe, Al, Ba, Mn; and (iii a bimodal distribution, with peaks at 0.43 to 0.65 μm and 4.7 to 5.8 μm (NO3, Na+, Cl, Na, Co, Ni, Mo, Cu. When SO42− was in high concentration, the mass median diameter was between 0.5 μm and 0.8 μm, belonging to the "drop mode". The concentrations of SO42−, NO3, NH4+, and K+ were quite variable. Interestingly, SO42−, NO3, and NH4+ reached their highest concentrations when the humid air mass was coming from the south. Furthermore, crustal element concentrations increased when the air mass came from the north and pollution element concentrations were elevated when the air mass came from the south.

  2. Source apportionment of the carbonaceous aerosol in Norway – quantitative estimates based on 14C, thermal-optical and organic tracer analysis

    Directory of Open Access Journals (Sweden)

    K. Stenström

    2011-09-01

    Full Text Available In the present study, source apportionment of the ambient summer and winter time particulate carbonaceous matter (PCM in aerosol particles (PM1 and PM10 has been conducted for the Norwegian urban and rural background environment. Statistical treatment of data from thermal-optical, 14C and organic tracer analysis using Latin Hypercube Sampling has allowed for quantitative estimates of seven different sources contributing to the ambient carbonaceous aerosol. These are: elemental carbon from combustion of biomass (ECbb and fossil fuel (ECff, primary and secondary organic carbon arising from combustion of biomass (OCbb and fossil fuel (OCff, primary biological aerosol particles (OCPBAP, which includes plant debris, OCpbc, and fungal spores, OCpbs, and secondary organic aerosol from biogenic precursors (OCBSOA. Our results show that emissions from natural sources were particularly abundant in summer, and with a more pronounced influence at the rural compared to the urban background site. 80% of total carbon (TCp, corrected for the positive artefact in PM10 and ca. 70% of TCpin PM1 could be attributed to natural sources at the rural background site in summer. Natural sources account for about 50% of TCp in PM10 at the urban background site as well. The natural source contribution was always dominated by OCBSOA, regardless of season, site and size fraction. During winter anthropogenic sources totally dominated the carbonaceous aerosol (80–90%. Combustion of biomass contributed slightly more than fossil-fuel sources in winter, whereas emissions from fossil-fuel sources were more abundant in summer. Mass closure calculations show that PCM made significant contributions to the mass concentration of the ambient PM regardless of size fraction, season, and site. A larger fraction of PM1 (ca. 40–60% was accounted for by carbonaceous matter compared to PM10 (ca. 40–50%, but only by a small margin. In general, there were no pronounced differences in the

  3. Source apportionment of the carbonaceous aerosol in Norway – quantitative estimates based on 14C, thermal-optical and organic tracer analysis

    Directory of Open Access Journals (Sweden)

    K. Stenström

    2011-03-01

    Full Text Available In the present study, source apportionment of the ambient summer and winter time particulate carbonaceous matter (PCM in aerosol particles (PM1 and PM10 has been conducted for the Norwegian urban and rural background environment. Statistical treatment of data from thermal-optical, 14C and organic tracer analysis using Latin Hypercube Sampling has allowed for quantitative estimates of seven different sources contributing to the ambient carbonaceous aerosol. These are: elemental carbon from combustion of biomass (ECbb and fossil fuel (ECff, organic carbon from combustion of biomass (OCbb, fossil fuel (OCff, primary biological aerosol particles (OCPBAP, which includes plant debris, OCpbc, and fungal spores, OCpbs, and secondary organic aerosol from biogenic precursors (OCBSOA. Our results show that emissions from natural sources were particularly abundant in summer, and with a more pronounced influence at the rural compared to the urban background site. 80% of total carbon (TCp, corrected for the positive artefact in PM10 and 70% of TCp in PM1 could be attributed to natural sources at the rural background site in summer. Natural sources account for about 50% of TCp in PM10 at the urban background site as well. The natural source contribution was always dominated by OCBSOA, regardless of season, site and size fraction. During winter anthropogenic sources totally dominated the carbonaceous aerosol (83–90%. Combustion of biomass contributed slightly more than fossil-fuel sources in winter, whereas emissions from fossil-fuel sources were more abundant in summer. Mass closure calculations show that PCM likely dominated the mass concentration of the ambient PM regardless of size fraction, season, and site. A larger fraction of PM1 (64–69% was accounted for by carbonaceous matter compared to PM10 (51–67%, but only by a small margin. In general, there were no pronounced differences in the relative contribution of carbonaceous matter to PM with

  4. Size distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in aerosol particle samples from the atmospheric environment of Delhi, India.

    Science.gov (United States)

    Gupta, Sandeep; Kumar, Krishan; Srivastava, Arun; Srivastava, Alok; Jain, V K

    2011-10-15

    Ambient aerosol particles were collected using a five-stage impactor at six different sites in Delhi. The impactor segregates the TSPM into five different sizes (viz. >10.9, 10.9-5.4, 5.4-1.6, 1.6-0.7, and 10.9+10.9 to 5.4+5.4 to 1.6μm) and fine (1.6 to 0.7+<0.7μm). It was observed that the dominant PAHs found were pyrene, benzo(a)pyrene, benzo(ghi)perylene and benzo(b)fluoranthene for both the coarse and fine fractions. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) has been carried out using principal component analysis method (PCA) in both coarse and fine size modes. The major sources identified in this study, responsible for the elevated concentration of PAHs in Delhi, are vehicular emission and coal combustion. Some contribution from biomass burning was also observed.

  5. Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland

    Directory of Open Access Journals (Sweden)

    A. Richard

    2011-09-01

    Full Text Available Time and size resolved data of trace elements were obtained from measurements with a rotating drum impactor (RDI and subsequent X-ray fluorescence spectrometry. Trace elements can act as indicators for the identification of sources of particulate matter <10 μm (PM10 in ambient air. Receptor modeling was performed with positive matrix factorization (PMF for trace element data from an urban background site in Zürich, Switzerland. Eight different sources were identified for the three examined size ranges (PM1−0.1, PM2.5−1 and PM10−2.5: secondary sulfate, wood combustion, fire works, road traffic, mineral dust, de-icing salt, industrial and local anthropogenic activities. The major component was secondary sulfate for the smallest size range; the road traffic factor was found in all three size ranges. This trace element analysis is complemented with data from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (AMS, assessing the PM1 fraction of organic aerosols. A separate PMF analysis revealed three factors related to three of the sources found with the RDI: oxygenated organic aerosol (OOA, related to inorganic secondary sulfate, hydrocarbon-like organic aerosol (HOA, related to road traffic and biomass burning organic aerosol (BBOA, explaining 60 %, 22 % and 17 % of total measured organics, respectively. Since different compounds are used for the source classification, a higher percentage of the ambient PM10 mass concentration can be apportioned to sources by the combination of both methods.

  6. Source apportionment of size and time resolved trace elements and organic aerosols from an urban courtyard site in Switzerland

    Directory of Open Access Journals (Sweden)

    A. Richard

    2011-02-01

    Full Text Available Time and size resolved data of trace elements were obtained from measurements with a rotating drum impactor (RDI and subsequent X-ray fluorescence spectrometry. Trace elements can act as indicators for the identification of sources of particulate matter <10 μm (PM10 in ambient air. Receptor modeling was performed with positive matrix factorization (PMF for trace element data from an urban background site in Zürich, Switzerland. Eight different sources were identified for the three examined size ranges (PM1−0.1, PM2.5−1 and PM10−2.5: secondary sulfate, wood combustion, fire works, road traffic, mineral dust, de-icing salt, industrial and local anthropogenic activities. The major component was secondary sulfate for the smallest size range; the road traffic factor was found in all three size ranges. This trace element analysis is complemented with data from an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (AMS, assessing the PM1 fraction of organic aerosols. A separate PMF analysis revealed three factors related to three of the sources found with the RDI: oxygenated organic aerosol (OOA, related to inorganic secondary sulfate, hydrocarbon like organic aerosol (HOA, related to road traffic and biomass burning organic aerosol (BBOA, explaining 60%, 22% and 17% of total measured organics, respectively. Since different compounds are used for the source classification, a higher percentage of the ambient PM10 mass concentration can be apportioned to sources by the combination of both methods.

  7. Argon offline-AMS source apportionment of organic aerosol over yearly cycles for an urban, rural, and marine site in northern Europe

    Science.gov (United States)

    Bozzetti, Carlo; Sosedova, Yuliya; Xiao, Mao; Daellenbach, Kaspar R.; Ulevicius, Vidmantas; Dudoitis, Vadimas; Mordas, Genrik; Byčenkienė, Steigvilė; Plauškaitė, Kristina; Vlachou, Athanasia; Golly, Benjamin; Chazeau, Benjamin; Besombes, Jean-Luc; Baltensperger, Urs; Jaffrezo, Jean-Luc; Slowik, Jay G.; El Haddad, Imad; Prévôt, André S. H.

    2017-01-01

    The widespread use of Aerodyne aerosol mass spectrometers (AMS) has greatly improved real-time organic aerosol (OA) monitoring, providing mass spectra that contain sufficient information for source apportionment. However, AMS field deployments remain expensive and demanding, limiting the acquisition of long-term datasets at many sampling sites. The offline application of aerosol mass spectrometry entailing the analysis of nebulized water extracted filter samples (offline-AMS) increases the spatial coverage accessible to AMS measurements, being filters routinely collected at many stations worldwide. PM1 (particulate matter with an aerodynamic diameter 1 but is also dependent on season, with lower values in winter than in summer. AMS WSOA spectra were analyzed using positive matrix factorization (PMF), which yielded four factors. These factors included biomass burning OA (BBOA), local OA (LOA) contributing significantly only in Vilnius, and two oxygenated OA (OOA) factors, summer OOA (S-OOA) and background OOA (B-OOA), distinguished by their seasonal variability. The contribution of traffic exhaust OA (TEOA) was not resolved by PMF due to both low concentrations and low water solubility. Therefore, the TEOA concentration was estimated using a chemical mass balance approach, based on the concentrations of hopanes, specific markers of traffic emissions. AMS-PMF source apportionment results were consistent with those obtained from PMF applied to marker concentrations (i.e., major inorganic ions, OC / EC, and organic markers including polycyclic aromatic hydrocarbons and their derivatives, hopanes, long-chain alkanes, monosaccharides, anhydrous sugars, and lignin fragmentation products). OA was the largest fraction of PM1 and was dominated by BBOA during winter with an average concentration of 2 µg m-3 (53 % of OM), while S-OOA, probably related to biogenic emissions, was the prevalent OA component during summer with an average concentration of 1.2 µg m-3 (45 % of

  8. Source apportionment and dynamic changes of carbonaceous aerosols during the haze bloom-decay process in China based on radiocarbon and organic molecular tracers

    Science.gov (United States)

    Liu, Junwen; Li, Jun; Liu, Di; Ding, Ping; Shen, Chengde; Mo, Yangzhi; Wang, Xinming; Luo, Chunling; Cheng, Zhineng; Szidat, Sönke; Zhang, Yanlin; Chen, Yingjun; Zhang, Gan

    2016-03-01

    Fine carbonaceous aerosols (CAs) is the key factor influencing the currently filthy air in megacities in China, yet few studies simultaneously focus on the origins of different CAs species using specific and powerful source tracers. Here, we present a detailed source apportionment for various CAs fractions, including organic carbon (OC), water-soluble OC (WSOC), water-insoluble OC (WIOC), elemental carbon (EC) and secondary OC (SOC) in the largest cities of North (Beijing, BJ) and South China (Guangzhou, GZ), using the measurements of radiocarbon and anhydrosugars. Results show that non-fossil fuel sources such as biomass burning and biogenic emission make a significant contribution to the total CAs in Chinese megacities: 56 ± 4 in BJ and 46 ± 5 % in GZ, respectively. The relative contributions of primary fossil carbon from coal and liquid petroleum combustions, primary non-fossil carbon and secondary organic carbon (SOC) to total carbon are 19, 28 and 54 % in BJ, and 40, 15 and 46 % in GZ, respectively. Non-fossil fuel sources account for 52 in BJ and 71 % in GZ of SOC, respectively. These results suggest that biomass burning has a greater influence on regional particulate air pollution in North China than in South China. We observed an unabridged haze bloom-decay process in South China, which illustrates that both primary and secondary matter from fossil sources played a key role in the blooming phase of the pollution episode, while haze phase is predominantly driven by fossil-derived secondary organic matter and nitrate.

  9. Online coupling of pure O{sub 2} thermo-optical methods – {sup 14}C AMS for source apportionment of carbonaceous aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Agrios, Konstantinos [Department of Chemistry and Biochemistry, University of Bern, Bern (Switzerland); Oeschger Centre for Climate Change Research, University of Bern, Bern (Switzerland); Paul Scherrer Institute, Villigen (Switzerland); Salazar, Gary [Department of Chemistry and Biochemistry, University of Bern, Bern (Switzerland); Oeschger Centre for Climate Change Research, University of Bern, Bern (Switzerland); Zhang, Yan-Lin; Uglietti, Chiara [Department of Chemistry and Biochemistry, University of Bern, Bern (Switzerland); Oeschger Centre for Climate Change Research, University of Bern, Bern (Switzerland); Paul Scherrer Institute, Villigen (Switzerland); Battaglia, Michael [Department of Chemistry and Biochemistry, University of Bern, Bern (Switzerland); Oeschger Centre for Climate Change Research, University of Bern, Bern (Switzerland); Luginbühl, Marc [Department of Chemistry and Biochemistry, University of Bern, Bern (Switzerland); Ciobanu, Viorela Gabriela [Paul Scherrer Institute, Villigen (Switzerland); Vonwiller, Matthias [Department of Chemistry and Biochemistry, University of Bern, Bern (Switzerland); Oeschger Centre for Climate Change Research, University of Bern, Bern (Switzerland); Paul Scherrer Institute, Villigen (Switzerland); Szidat, Sönke, E-mail: szidat@dcb.unibe.ch [Department of Chemistry and Biochemistry, University of Bern, Bern (Switzerland); Oeschger Centre for Climate Change Research, University of Bern, Bern (Switzerland)

    2015-10-15

    This paper reports on novel separation methods developed for the direct determination of {sup 14}C in organic carbon (OC) and elemental carbon (EC), two sub-fractions of total carbon (TC) of atmospheric air particulate matter. Until recently, separation of OC and EC has been performed off-line by manual and time-consuming techniques that relied on the collection of massive CO{sub 2} fractions. We present here two on-line hyphenated techniques between a Sunset OC/EC analyzer and a MICADAS (MIni radioCArbon DAting System) accelerator mass spectrometer (AMS) equipped with a gas ion source. The first implementation facilitates the direct measurement in the low sample size range (<10 μg C) with high throughput on a routine basis, while the second explores the potential for a continuous-flow real-time CO{sub 2} gas feed into the ion source. The performance achieved with reference materials and real atmospheric samples will be discussed to draw conclusions on the improvement offered in the field of {sup 14}C aerosol source apportionment.

  10. Aerosol composition and source apportionment in the Mexico City Metropolitan Area with PIXE/PESA/STIM and multivariate analysis

    Directory of Open Access Journals (Sweden)

    K. S. Johnson

    2006-05-01

    Full Text Available Aerosols play an important role in the atmosphere but are poorly characterized, particularly in urban areas like the Mexico City Metropolitan Area (MCMA. The chemical composition of urban particles must be known to assess their effects on the environment, and specific particulate emissions sources should be identified to establish effective pollution control standards. For these reasons, samples of particulate matter ≤2.5 μm (PM2.5 were collected during the MCMA-2003 Field Campaign for elemental and multivariate analyses. Proton-Induced X-ray Emission (PIXE, Proton-Elastic Scattering Analysis (PESA and Scanning Transmission Ion Microscopy (STIM techniques were done to determine concentrations of 19 elements from Na to Pb, hydrogen, and total mass, respectively. The most abundant elements from PIXE analysis were S, Si, K, Fe, Ca, and Al, while the major emissions sources associated with these elements were industry, wind-blown soil, and biomass burning. Wind trajectories suggest that metals associated with industrial emissions came from northern areas of the city whereas soil aerosols came from the southwest and increased in concentration during dry conditions. Elemental markers for fuel oil combustion V and Ni correlated with a large SO2 plume to suggest an anthropogenic, rather than volcanic, emissions source. By subtracting major components of soil and sulfate determined by PIXE analysis from STIM total mass measurements, we estimate that approximately 50% of non-volatile PM2.5 consisted of carbonaceous material.

  11. Aerosol composition and source apportionment in the Mexico City Metropolitan Area with PIXE/PESA/STIM and multivariate analysis

    Directory of Open Access Journals (Sweden)

    K. S. Johnson

    2006-01-01

    Full Text Available Aerosols play an important role in the atmosphere but are poorly characterized, particularly in urban areas like the Mexico City Metropolitan Area (MCMA. The chemical composition of urban particles must be known to assess their effects on the environment, and specific particulate emissions sources should be identified to establish effective pollution control standards. For these reasons, samples of particulate matter ≤2.5 μm (PM2.5 were collected during the MCMA-2003 Field Campaign for elemental and multivariate analyses. Proton-Induced X-ray Emission (PIXE, Proton-Elastic Scattering Analysis (PESA and Scanning Transmission Ion Microscopy (STIM measurements were done to determine concentrations of 19 elements from Na to Pb, hydrogen, and total mass, respectively. The most abundant elements from PIXE analysis were S, Si, K, Fe, Ca, and Al, while the major emissions sources associated with these elements were industry, wind-blown soil, and biomass burning. Wind trajectories suggest that metals associated with industrial emissions came from northern areas of the city whereas soil aerosols came from the southwest and increased in concentration during dry conditions. Elemental markers for fuel oil combustion, V and Ni, correlated with a large SO2 plume to suggest an anthropogenic, rather than volcanic, emissions source. By subtracting major components of soil and sulfates determined by PIXE analysis from STIM total mass measurements, we estimate that approximately 50% of non-volatile PM2.5 consisted of carbonaceous material.

  12. Source apportionment and dynamic changes of carbonaceous aerosols during the haze bloom–decay process in China based on radiocarbon and organic molecular tracers

    Directory of Open Access Journals (Sweden)

    J. Liu

    2015-12-01

    Full Text Available Fine carbonaceous aerosols (CAs is the key factor influencing the currently filthy air in megacities of China, yet seldom study simultaneously focuses on the origins of different CAs species using specific and powerful source tracers. Here, we present a detailed source apportionment for various CAs fractions, including organic carbon (OC, water-soluble OC (WSOC, water-insoluble OC (WIOC, elemental carbon (EC and secondary OC (SOC in the largest cities of North (Beijing, BJ and South China (Guangzhou, GZ, respectively, using the measurements of radiocarbon and anhydrosugars. Results show that non-fossil fuel sources such as biomass burning and biogenic emission make a significant contribution to the total CAs in Chinese megacities: 56 ± 4 % in BJ and 46 ± 5 % in GZ, respectively. The relative contributions of primary fossil carbon from coal and liquid petroleum combustions, primary non-fossil carbon and secondary organic carbon (SOC to total carbon are 19, 28 and 54 % in BJ, and 40, 15 and 46 % in GZ, respectively. Non-fossil fuel sources account for 52 % in BJ and 71 % in GZ of SOC, respectively. These results suggest that biomass burning has a greater influence on regional particulate air pollution in North China than in South China. We observed an unabridged haze bloom–decay process in South China, which illustrates that both primary and secondary matter from fossil sources played a key role in the blooming phase of the pollution episode, while haze phase is predominantly driven by fossil-derived secondary organic matter and nitrate.

  13. Regional air quality in Leipzig, Germany: detailed source apportionment of size-resolved aerosol particles and comparison with the year 2000.

    Science.gov (United States)

    van Pinxteren, D; Fomba, K W; Spindler, G; Müller, K; Poulain, L; Iinuma, Y; Löschau, G; Hausmann, A; Herrmann, H

    2016-07-18

    A detailed source apportionment of size-resolved aerosol particles in the area of Leipzig, Germany, was performed. Sampling took place at four sites (traffic, traffic/residential, urban background, regional background) in parallel during summer 2013 and the winters 2013/14/15. Twenty-one samples were taken per season with a 5-stage Berner impactor and analysed for particulate mass, inorganic ions, organic and elemental carbon, water-soluble organic carbon, trace metals, and a wide range of organic species. The compositional data were used to estimate source contributions to particulate matter (PM) in quasi-ultrafine (up to 140 nm), accumulation mode, and coarse size ranges using Positive Matrix Factorisation (PMF) receptor modelling. Traffic (exhaust and general traffic emissions), coal combustion, biomass combustion, photochemistry, general secondary formation, cooking, fungal spores, urban dust, fresh sea/road salt, and aged sea salt were all found to contribute to different extents to observed PM concentrations. PMF derived estimates agreed reasonably with estimates from established macrotracer approaches. Quasi-ultrafine PM originated mainly from traffic (20-50%) and photochemistry (30-50%) in summer, while it was dominated by solid fuel (mainly biomass) combustion in winter (50-70%). Tentatively identified cooking aerosol contributed up to 36% on average at the residential site. For accumulation mode particles, two secondary sources typically contributed 40-90% to particle mass. In winter, biomass and coal combustion contributions were up to ca. 25% and 45%, respectively. Main sources of coarse particles were diverse and included nearly all PMF-resolved ones depending on season and air mass origin. For PM10, traffic (typically 20-40% at kerbside sites), secondary formation (30-60%), biomass combustion (10-15% in winter), and coal combustion (30-40% in winter with eastern air mass inflow) were the main quantified sources. At the residential site, contributions

  14. Radiocarbon-based source apportionment of black carbon (BC) in PM 10 aerosols from residential area of suburban Tokyo

    Science.gov (United States)

    Uchida, Masao; Kumata, Hidetoshi; Koike, Yasuyo; Tsuzuki, Mikio; Uchida, Tatsuya; Fujiwara, Kitao; Shibata, Yasuyuki

    2010-04-01

    The AMS technique was applied to analyse black carbon (BC), total organic carbon (TOC), and previously reported polycyclic aromatic hydrocarbons (PAHs) in PM 10 aerosols from a residential area, suburban Tokyo, to determine natural abundance of radiocarbon ( 14C), an ideal tracer to distinguish fossil fuel ( 14C-free) from modern biomass combustion sources of pyrolytic products. The 14C concentrations in BC, isolated using the CTO-375 method, were 42% and 30% pMC (in terms of percent Modern Carbon: pMC) in summer and winter, respectively. The 14C concentrations in BC were also compared with those of compound-class specific 14C content of PAHs previously reported for the same samples: they were 45% and 33% pMC in summer and winter, respectively. The 14C signals of BC were identical to those of high molecular weight (MW ⩾ 226, 5-6 rings) PAHs. The resemblance between 14C signals of BC and PAHs can be referred as a 'certificate' for the validity of the BC isolation method employed in this study. Also, it suggests that 14C-BC approach can be a surrogate for PAHs specific 14C analyses to monitor seasonal source variation of combustion-derived pyrolytic products. On the other hand, 14C contents of total organic carbon in 2004 were 61% and 42% pMC in summer and winter, respectively. This is likely attributed to higher contribution of plant activity in summer.

  15. Chemical Characterization and Source Apportionment of Size Fractionated Atmospheric Aerosols, and, Evaluating Student Attitudes and Learning in Large Lecture General Chemistry Classes

    Science.gov (United States)

    Allen, Gregory Harold

    Chemical speciation and source apportionment of size fractionated atmospheric aerosols were investigated using laser desorption time-of-flight mass spectrometry (LD TOF-MS) and source apportionment was carried out using carbon-14 accelerator mass spectrometry (14C AMS). Sample collection was carried out using the Davis Rotating-drum Unit for Monitoring impact analyzer in Davis, Colfax, and Yosemite, CA. Ambient atmospheric aerosols collected during the winter of 2010/11 and 2011/12 showed a significant difference in the types of compounds found in the small and large sized particles. The difference was due to the increase number of oxidized carbon species that were found in the small particles size ranges, but not in the large particles size ranges. Overall, the ambient atmospheric aerosols collected during the winter in Davis, CA had and average fraction modern of F14C = 0.753 +/- 0.006, indicating that the majority of the size fractionated particles originated from biogenic sources. Samples collected during the King Fire in Colfax, CA were used to determine the contribution of biomass burning (wildfire) aerosols. Factor analysis was used to reduce the ions found in the LD TOF-MS analysis of the King Fire samples. The final factor analysis generated a total of four factors that explained an overall 83% of the variance in the data set. Two of the factors correlated heavily with increased smoke events during the sample period. The increased smoke events produced a large number of highly oxidized organic aerosols (OOA2) and aromatic compounds that are indicative of biomass burning organic aerosols (WBOA). The signal intensities of the factors generated in the King Fire data were investigated in samples collected in Yosemite and Davis, CA to look at the impact of biomass burning on ambient atmospheric aerosols. In both comparison sample collections the OOA2 and WBOA factors both increased during biomass burning events located near the sampling sites. The correlation

  16. Source apportionment of indoor air pollution

    Science.gov (United States)

    Sexton, Ken; Hayward, Steven B.

    An understanding of the relative contributions from important pollutant sources to human exposures is necessary for the design and implementation of effective control strategies. In the past, societal efforts to control air pollution have focused almost exclusively on the outdoor (ambient) environment. As a result, substantial amounts of time and money have been spent to limit airborne discharges from mobile and stationary sources. Yet it is now recognized that exposures to elevated pollutant concentrations often occur as a result of indoor, rather than outdoor, emissions. While the major indoor sources have been identified, their relative impacts on indoor air quality have not been well defined. Application of existing source apportionment models to nonindustrial indoor environments is only just beginning. It is possible that these models might be used to distinguish between indoor and outdoor emissions, as well as to distinguish among indoor sources themselves. However, before the feasibility and suitability of source-apportionment methods for indoor applications can be assessed adequately, it is necessary to take account of model assumptions and associated data requirements. This paper examines the issue of indoor source apportionment and reviews the need for emission characterization studies to support such source-apportionment efforts.

  17. Source apportionment of airborne particulates through receptor modeling: Indian scenario

    Science.gov (United States)

    Banerjee, Tirthankar; Murari, Vishnu; Kumar, Manish; Raju, M. P.

    2015-10-01

    Airborne particulate chemistry mostly governed by associated sources and apportionment of specific sources is extremely essential to delineate explicit control strategies. The present submission initially deals with the publications (1980s-2010s) of Indian origin which report regional heterogeneities of particulate concentrations with reference to associated species. Such meta-analyses clearly indicate the presence of reservoir of both primary and secondary aerosols in different geographical regions. Further, identification of specific signatory molecules for individual source category was also evaluated in terms of their scientific merit and repeatability. Source signatures mostly resemble international profile while, in selected cases lack appropriateness. In India, source apportionment (SA) of airborne particulates was initiated way back in 1985 through factor analysis, however, principal component analysis (PCA) shares a major proportion of applications (34%) followed by enrichment factor (EF, 27%), chemical mass balance (CMB, 15%) and positive matrix factorization (PMF, 9%). Mainstream SA analyses identify earth crust and road dust resuspensions (traced by Al, Ca, Fe, Na and Mg) as a principal source (6-73%) followed by vehicular emissions (traced by Fe, Cu, Pb, Cr, Ni, Mn, Ba and Zn; 5-65%), industrial emissions (traced by Co, Cr, Zn, V, Ni, Mn, Cd; 0-60%), fuel combustion (traced by K, NH4+, SO4-, As, Te, S, Mn; 4-42%), marine aerosols (traced by Na, Mg, K; 0-15%) and biomass/refuse burning (traced by Cd, V, K, Cr, As, TC, Na, K, NH4+, NO3-, OC; 1-42%). In most of the cases, temporal variations of individual source contribution for a specific geographic region exhibit radical heterogeneity possibly due to unscientific orientation of individual tracers for specific source and well exaggerated by methodological weakness, inappropriate sample size, implications of secondary aerosols and inadequate emission inventories. Conclusively, a number of challenging

  18. Accuracy and precision of 14C-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol

    Directory of Open Access Journals (Sweden)

    G. O. Mouteva

    2015-04-01

    Full Text Available Aerosol source apportionment remains a critical challenge for understanding the transport and aging of aerosols, as well as for developing successful air pollution mitigation strategies. The contributions of fossil and non-fossil sources to organic carbon (OC and elemental carbon (EC in carbonaceous aerosols can be quantified by measuring the radiocarbon (14C content of each carbon fraction. However, the use of 14C in studying OC and EC has been limited by technical challenges related to the physical separation of the two fractions and small sample sizes. There is no common procedure for OC/EC 14C analysis, and uncertainty studies have largely focused on the precision of yields. Here, we quantified the uncertainty in 14C measurement of aerosols associated with the isolation and analysis of each carbon fraction with the Swiss_4S thermal-optical analysis (TOA protocol. We used an OC/EC analyzer (Sunset Laboratory Inc., OR, USA coupled to vacuum line to separate the two components. Each fraction was thermally desorbed and converted to carbon dioxide (CO2 in pure oxygen (O2. On average 91% of the evolving CO2 was then cryogenically trapped on the vacuum line, reduced to filamentous graphite, and measured for its 14C content via accelerator mass spectrometry (AMS. To test the accuracy of our set-up, we quantified the total amount of extraneous carbon introduced during the TOA sample processing and graphitization as the sum of modern and fossil (14C-depleted carbon introduced during the analysis of fossil reference materials (adipic acid for OC and coal for EC and contemporary standards (oxalic acid for OC and rice char for EC as a function of sample size. We further tested our methodology by analyzing five ambient airborne particulate matter (PM2.5 samples with a range of OC and EC concentrations and 14C contents in an interlaboratory comparison. The total modern and fossil carbon blanks of our set-up were 0.8 ± 0.4 and 0.67 ± 0.34 μg C

  19. Accuracy and precision of 14C-based source apportionment of organic and elemental carbon in aerosols using the Swiss_4S protocol

    Science.gov (United States)

    Mouteva, G. O.; Fahrni, S. M.; Santos, G. M.; Randerson, J. T.; Zhang, Y.-L.; Szidat, S.; Czimczik, C. I.

    2015-09-01

    Aerosol source apportionment remains a critical challenge for understanding the transport and aging of aerosols, as well as for developing successful air pollution mitigation strategies. The contributions of fossil and non-fossil sources to organic carbon (OC) and elemental carbon (EC) in carbonaceous aerosols can be quantified by measuring the radiocarbon (14C) content of each carbon fraction. However, the use of 14C in studying OC and EC has been limited by technical challenges related to the physical separation of the two fractions and small sample sizes. There is no common procedure for OC/EC 14C analysis, and uncertainty studies have largely focused on the precision of yields. Here, we quantified the uncertainty in 14C measurement of aerosols associated with the isolation and analysis of each carbon fraction with the Swiss_4S thermal-optical analysis (TOA) protocol. We used an OC/EC analyzer (Sunset Laboratory Inc., OR, USA) coupled to a vacuum line to separate the two components. Each fraction was thermally desorbed and converted to carbon dioxide (CO2) in pure oxygen (O2). On average, 91 % of the evolving CO2 was then cryogenically trapped on the vacuum line, reduced to filamentous graphite, and measured for its 14C content via accelerator mass spectrometry (AMS). To test the accuracy of our setup, we quantified the total amount of extraneous carbon introduced during the TOA sample processing and graphitization as the sum of modern and fossil (14C-depleted) carbon introduced during the analysis of fossil reference materials (adipic acid for OC and coal for EC) and contemporary standards (oxalic acid for OC and rice char for EC) as a function of sample size. We further tested our methodology by analyzing five ambient airborne particulate matter (PM2.5) samples with a range of OC and EC concentrations and 14C contents in an interlaboratory comparison. The total modern and fossil carbon blanks of our setup were 0.8 ± 0.4 and 0.67 ± 0.34 μg C, respectively

  20. Chemical characterization and source apportionment of PM2.5 aerosols in a megacity of Southeast China

    Science.gov (United States)

    Li, Huiming; Wang, Qin'geng; Yang, Meng; Li, Fengying; Wang, Jinhua; Sun, Yixuan; Wang, Cheng; Wu, Hongfei; Qian, Xin

    2016-11-01

    PM2.5 aerosol samples were collected during a haze-fog event in winter, as well as in spring, summer, and fall in 2013 within an urban area (Xianlin) and city center area (Gulou) of Nanjing, a megacity of SE China. The PM2.5 showed typical seasonality of waxing in winter and waning in summer or fall with annual average concentrations of 145 and 139 μg/m3 in Xianlin and Gulou, respectively. Concentrations of SO42 -, NO3-, NH4+, Cl-, and K+, EC, OC, secondary organic carbon, and most elements were elevated in winter. The sulfur oxidation ratio and concentrations of SO42 - and Cl- were significantly higher in Xianlin than Gulou (p S4 The enrichment factors (EF) obtained in four seasons in Xianlin (a) and Gulou (b). Fig. S5 Estimated versus observed PM2.5 mass concentrations during sampling period in the two areas (95% confidence interval).

  1. Submicron aerosol analysis and organic source apportionment in an urban atmosphere in Pearl River Delta of China using high-resolution aerosol mass spectrometry

    Science.gov (United States)

    He, Ling-Yan; Huang, Xiao-Feng; Xue, Lian; Hu, Min; Lin, Yun; Zheng, Jun; Zhang, Renyi; Zhang, Yuan-Hang

    2011-06-01

    The Pearl River Delta (PRD) region in South China is one of the most economically developed regions in China while also noted for its severe air pollution, especially in the urban environments. In order to understand in depth the aerosol chemistry and the emission sources in PRD, an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) was deployed at an urban site in the Hong Kong-Shenzhen metropolitan area between 25 October and 2 December 2009. Ten minute-resolved measurement data were analyzed, and an average mass concentration of 44.5 ± 34.0 μg m-3 was calculated for the entire campaign. On average, organic matter was the most abundant PM1 component accounting for 39.7% of the total mass, followed by sulfate (24.5%), black carbon (measured by aethalometer, 14.0%), ammonium (10.2%), nitrate (10.0%), and chloride (1.6%). Moreover, organic matter comprised an increasing fraction of the PM1 loading as the PM1 loading increased, denoting its key role in particulate pollution in this region. Calculations of organic elemental composition based on the high-resolution organic mass spectra obtained indicated that C, H, O, and N on average contributed 33.8%, 55.1%, 10.2%, and 0.9%, respectively, to the total atomic numbers of organic aerosol (OA), which corresponded to an OM/OC ratio (the ratio of organic matter mass/organic carbon mass) of 1.57 ± 0.08. Positive matrix factorization analysis was then conducted on the high-resolution organic mass spectral data set. Four OA components were identified, including a hydrocarbon-like (HOA), a biomass burning (BBOA), and two oxygenated (LV-OOA and SV-OOA) components, which on average accounted for 29.5%, 24.1%, 18.8%, and 27.6%, respectively, of the total organic mass. The HOA was found to have contributions from both fossil fuel combustion and cooking emissions, while the BBOA was well correlated with acetonitrile, a known biomass burning marker. The LV-OOA and SV-OOA corresponded to more aged and

  2. The importance of non-fossil sources in carbonaceous aerosols in a megacity of central China during the 2013 winter haze episode: A source apportionment constrained by radiocarbon and organic tracers

    Science.gov (United States)

    Liu, Junwen; Li, Jun; Vonwiller, Matthias; Liu, Di; Cheng, Hairong; Shen, Kaijun; Salazar, Gary; Agrios, Konstantinos; Zhang, Yanlin; He, Quanfu; Ding, Xiang; Zhong, Guangcai; Wang, Xinming; Szidat, Sönke; Zhang, Gan

    2016-11-01

    To determine the causes of a severe haze episode in January 2013 in China, a source apportionment of different carbonaceous aerosols (CAs) was conducted in a megacity in central China (Wuhan, Hubei Province) by using the measurements of radiocarbon and molecular organic tracers. Non-fossil sources (e.g., domestic biofuel combustion and biogenic emissions) were found to be responsible for 62% ± 5% and 26% ± 8% of organic carbon (OC) and elemental carbon (EC) components by mass, respectively. Non-fossil sources contributed 57% ± 4% to total CAs in this large-scale haze event, whereas fossil-fuel sources were less dominant (43% ± 4%). The CAs were composed of secondary organic carbon (SOC; 46% ± 10%), primary fossil-fuel carbon (29% ± 4%) and primary biomass-burning carbon (25% ± 10%). Although SOC was formed mainly from non-fossil sources (70% ± 4%), the role of fossil precursors was substantial (30% ± 4%), much higher than at the global scale. Combined measurement of organic tracers and radiocarbon showed that most non-fossil SOC was probably derived from biomass burning during this long-lasting haze episode in central China.

  3. Characterization and source apportionment of aerosol light extinction with a coupled model of CMB-IMPROVE in Hangzhou, Yangtze River Delta of China

    Science.gov (United States)

    Wang, Jiao; Zhang, Yu-fen; Feng, Yin-chang; Zheng, Xian-jue; Jiao, Li; Hong, Sheng-mao; Shen, Jian-dong; Zhu, Tan; Ding, Jing; Zhang, Qi

    2016-09-01

    To investigate the characteristics and sources of aerosol light extinction in the Yangtze River Delta of China, a campaign was carried out in Hangzhou from December 2013 to November 2014. Hourly data for air pollutants including PM2.5, SO2, NO2, O3 and CO, and aerosol optical properties including aerosol scattering coefficient and aerosol absorbing coefficient was obtained in the environmental air quality automatic monitoring station. Meteorological parameters were measured synchronously in the automated meteorology monitoring station. Additionally, around seven sets of ambient PM2.5 samples per month were collected and analyzed during the campaign. The annual mean aerosol scattering coefficient, aerosol absorbing coefficient and aerosol single scattering albedo measured in this study was 514 ± 284 Mm- 1, 35 ± 20 Mm- 1 and 94% respectively. The aerosol extinction coefficient reconstructed using the modified IMPROVE (Interagency Monitoring of Protected Visual Environment) formula was compared to the measured extinction coefficient. Better correlations could be found between the measured and reconstructed extinction coefficient when RH was under 90%. A coupled model of CMB (chemical mass balance) and modified IMPROVE was used to apportion the sources of aerosol light extinction in Hangzhou. Vehicle exhaust, secondary nitrate and secondary sulfate were identified as the most significant sources for aerosol light extinction, accounted for 30.2%, 24.1% and 15.8% respectively.

  4. Sensitivity of source apportionment results to mobile source profiles.

    Science.gov (United States)

    Cai, Tianqi; Schauer, James J; Huang, Wei; Fang, Dongqing; Shang, Jing; Wang, Yuqin; Zhang, Yuanxun

    2016-12-01

    The sensitivity of a source apportionment model to mobile source profiles was examined to determine the impact of using non-local mobile source profiles in chemical mass balance (CMB) models. We examined the impact of USA and Chinese mobile source profiles on source apportionment results in St. Louis, Missouri, and Beijing. The results showed that the use of non-local mobile source profiles did not impact the model apportionment results for vegetative detritus and biomass burning, but other primary source contributions were influenced by the use of non-local source profiles. Secondary organic carbon (SOC) contributions estimated by the CMB models with local and non-local profiles were compared to estimate of SOC from the EC tracer method and were found to be consistent with little bias. The results also showed that it is feasible to use the USA mobile profiles in China while model results were biased by using Chinese mobile profiles in the USA. Monthly and annual average concentrations of molecular markers in the source apportionment model showed lower sensitivity to source profiles than daily measurements, which has implications to the design of source apportionment studies.

  5. 碳同位素技术在碳质气溶胶源解析中应用的研究进展%The Use of Carbon Isotope Analysis in Source Apportionment of Carbonaceous Aerosols: A Review

    Institute of Scientific and Technical Information of China (English)

    张世春; 王毅勇; 童全松

    2013-01-01

    概述了国内外14C和13C技术在大气碳质气溶胶源解析中应用的研究进展,指出14C在碳质气溶胶源解析研究中具有不可替代的独特优势,联合采用14C和13C技术有利于解决多种排放源的区分问题;随着碳质气溶胶组分分离技术的进步,对有机碳(0C)和黑碳(BC)等组分中14C的研究获得重要进展;除需深入研究13C的分馏机制外,建立各种排放源在不同区域的δ13C值域“特征谱”的重要性也日益突出;结合14C和13C以外的其他示踪剂、模型和分析方法将提供更多关于气溶胶来源的信息,并减小来源贡献率估算的不确定性.%The observation and source apportionment of carbonaceous aerosols is one of the focus of studies in the current scientific community. Radioactive (14C) and stable (13C) carbon isotopes have become useful tools in the source apportionment studies for carbonaceous aerosols. In this paper, we review the recent development of carbon isotope techniques, and explore its potential to be used for source apportionment for carbonaceous aerosols. It was pointed out that 14C has unique advantages in the quantitative distinguishment between fossil fuel and contemporary biomass combustion sources of atmospheric Organic Carbon (0C) and Black Carbon ( BC) , and that the combined C- C analysis can better constrain the sources of carbonaceous aerosols. Recent progress towards isolating OC and BC from other components of the particles has made it appicable to perform C measurements for OC and BC seperately. As for 13C, it was proposed that while it is very important to investigate the isotopic fraetionation mechanism of δ13C values of the carbonaceous aerosols, a regional δ13C signature map for the carbonacoues aerosols should be biult up aiming to facilitate explaining the δ13C variations and hence constraining the emisson sources. Future research that uses these carbon isotope techniques, in conjunction with other means such as

  6. Source apportionment using reconstructed mass calculations.

    Science.gov (United States)

    Siddique, Naila; Waheed, Shahida

    2014-01-01

    A long-term study was undertaken to investigate the air quality of the Islamabad/Rawalpindi area. In this regard fine and coarse particulate matter were collected from 4 sites in the Islamabad/Rawalpindi region from 1998 to 2010 using Gent samplers and polycarbonate filters and analyzed for their elemental composition using the techniques of Neutron Activation Analysis (NAA), Proton Induced X-ray Emission/Proton Induced Gamma-ray Emission (PIXE/PIGE) and X-ray Fluorescence (XRF) Spectroscopy. The elemental data along with the gravimetric measurements and black carbon (BC) results obtained by reflectance measurement were used to approximate or reconstruct the particulate mass (RCM) by estimation of pseudo sources such as soil, smoke, sea salt, sulfate and black carbon or soot. This simple analysis shows that if the analytical technique used does not measure important major elements then the data will not be representative of the sample composition and cannot be further utilized for source apportionment studies or to perform transboundary analysis. In this regard PIXE/PIGE and XRF techniques that can provide elemental compositional data for most of the major environmentally important elements appear to be more useful as compared to NAA. Therefore %RCM calculations for such datasets can be used as a quality assurance (QA) measure to treat data prior to application of chemometrical tools such as factor analysis (FA) or cluster analysis (CA).

  7. Source apportionment of particulate matter in a large city of southeastern Po Valley (Bologna, Italy).

    Science.gov (United States)

    Tositti, L; Brattich, E; Masiol, M; Baldacci, D; Ceccato, D; Parmeggiani, S; Stracquadanio, M; Zappoli, S

    2014-01-01

    This study reports the results of an experimental research project carried out in Bologna, a midsize town in central Po valley, with the aim at characterizing local aerosol chemistry and tracking the main source emissions of airborne particulate matter. Chemical speciation based upon ions, trace elements, and carbonaceous matter is discussed on the basis of seasonal variation and enrichment factors. For the first time, source apportionment was achieved at this location using two widely used receptor models (principal component analysis/multi-linear regression analysis (PCA/MLRA) and positive matrix factorization (PMF)). Four main aerosol sources were identified by PCA/MLRA and interpreted as: resuspended particulate and a pseudo-marine factor (winter street management), both related to the coarse fraction, plus mixed combustions and secondary aerosol largely associated to traffic and long-lived species typical of the fine fraction. The PMF model resolved six main aerosol sources, interpreted as: mineral dust, road dust, traffic, secondary aerosol, biomass burning and again a pseudo-marine factor. Source apportionment results from both models are in good agreement providing a 30 and a 33% by weight respectively for PCA-MLRA and PMF for the coarse fraction and 70% (PCA-MLRA) and 67% (PMF) for the fine fraction. The episodic influence of Saharan dust transport on PM10 exceedances in Bologna was identified and discussed in term of meteorological framework, composition, and quantitative contribution.

  8. Source apportionment in oil spill remediation.

    Science.gov (United States)

    Muñoz, Jorge; Mudge, Stephen M; Loyola-Sepulveda, Rodrigo; Muñoz, Gonzalo; Bravo-Linares, Claudio

    2012-05-01

    A pipe rupture during unloading led to a spillage of 350-700 tonnes of Caño Limon, a light sweet crude oil, into San Vicente Bay in 2007. Initial clean-up methods removed the majority of the oil from the sandy beaches although some oil remained on the rocky shores. It was necessary for the responsible party to clean the spilled oil even though at this location there were already crude oil hydrocarbons from previous industrial activity. A biosolvent based on vegetable oil derivatives was used to solubilise the remaining oil and a statistical approach to source apportionment was used to determine the efficacy of the cleaning. Sediment and contaminated rock samples were taken prior to cleaning and again at the same locations two days after application of the biosolvent. The oil was extracted using a modified USEPA Method 3550B. The alkanes were quantified together with oil biomarkers on a GC-MS. The contribution that Caño Limon made to the total oil hydrocarbons was calculated from a Partial Least Squares (PLS) analysis using Caño Limon crude oil as the source. By the time the biosolvent was applied, there had already been some attenuation of the oil with all alkanes oil in this case and the contribution that Caño Limon made to the total oil ranged from 0% to 74%. The total hydrocarbon concentrations were lower after cleaning indicating an efficacy of 90% although the reduction in Caño Limon oil was smaller. This was sufficient to make further remediation unnecessary.

  9. Source apportionment of particulate matter in Denmark

    Science.gov (United States)

    Moenster, J.; Glasius, M.; Nielsen, O. J.; Bilde, M.; Jensen, F. P.

    2005-12-01

    Atmospheric particulate matter (PM) has received considerable attention over the last decade as an important component of air pollution, particularly due to its health effects on the exposed population. Typically the mass of particles with diameters smaller that 10 μm (PM10) has been used in large cohort studies to estimate health effects such as increase in hospitalization rate, asthma attacks and premature deaths. Particles smaller than 2.5 μm (PM2.5) and ultra fine particles have been used in various epidemiological studies and correlations between exposure to fine and ultra fine particles and health effects have been found. Limits of acceptable concentrations of PM10, PM2.5 and some carcinogenic species have been made, and it is important to find the origin of the particulate matter to prevent exceeds of these limits. This can be done by measuring particle mass, organic/inorganic fractions of particles, the chemical components and other relevant factors, and then use receptor modeling for source apportionment of the particulate matter. We have done measurements at street level and urban background in Copenhagen, Denmark, to determine the origin of different sizes of particulate matter and the toxic organic compounds connected to these particles. We also did measurements in a small village with less traffic and more residential wood combustion for a comparison between traffic and wood combustion generated pollution. Our results show a significant amount of particulate matter coming from non local sources and are dominated by long-range transported inorganic salts. The amount of these is highly depended on the wind direction and thus on the origin of the wind plume. The origin of the carcinogenic organic compound benzo(a)pyrene was found to be local combustion sources. To prevent events of high particulate matter concentration in Copenhagen, Denmark, a reduction of emission from the local traffic will only lead to a minor effect, since the majority of the

  10. First measurements of reactive α-dicarbonyl concentrations on PM2.5 aerosol over the boreal forest in Finland during HUMPPA-COPEC 2010 – source apportionment and links to aerosol aging

    Directory of Open Access Journals (Sweden)

    T. Petäjä

    2012-01-01

    Full Text Available The first dataset for summertime boreal forest concentrations of two atmospherically relevant α-dicarbonyl compounds, glyoxal (Gly and methylglyoxal (Mgly on PM2.5 aerosol was obtained during the HUMPPA-COPEC-2010 field measurement intensive in Hyytiälä, Finland. Identification of anthropogenic influences over the course of the campaign, using trace gas signatures and aerosol particle chemical composition analysis, allowed the identification of different events such as urban pollution plumes, biomass burning and sawmill emissions as sources of high Gly and Mgly concentrations. Mean aerosol concentrations during periods of biogenic influence were 0.81 ng m−3 for Gly and 0.31 ng m−3 for Mgly. Mgly was generally less abundant in PM2.5, probably due to its shorter photolysis lifetime and less effective partitioning into the particle phase due to its smaller effective Henry's Law constant compared to Gly. This is in contrast with previous urban studies which show significantly more Mgly than Gly. Peak concentrations for Gly coincided with nearby sources, e.g. high VOC emissions from nearby sawmills, urban pollution plumes from the city of Tampere located 50 km southwest of the sampling site and biomass burning emissions from wildfires. Calculated ratios of Gly in PM2.5 and total organic matter in PM1 aerosols indicate higher values in less aged aerosols. Irreversible processing of Gly in the particle phase, e.g. via oxidation by OH radicals, organo sulfate or imidazole formation are processes currently discussed in the literature which could likely explain these findings.

  11. Source apportionment of size-segregated atmospheric particles based on the major water-soluble components in Lecce (Italy)

    Energy Technology Data Exchange (ETDEWEB)

    Contini, D., E-mail: d.contini@isac.cnr.it [Istituto di Scienze dell' Atmosfera e del Clima, ISAC-CNR, Lecce (Italy); Cesari, D. [Istituto di Scienze dell' Atmosfera e del Clima, ISAC-CNR, Lecce (Italy); Genga, A.; Siciliano, M. [Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce (Italy); Ielpo, P. [Istituto di Scienze dell' Atmosfera e del Clima, ISAC-CNR, Lecce (Italy); Istituto di Ricerca Sulle Acque, IRSA-CNR, Bari (Italy); Guascito, M.R. [Dipartimento di Scienze e Tecnologie Biologiche e Ambientali, Università del Salento, Lecce (Italy); Conte, M. [Istituto di Scienze dell' Atmosfera e del Clima, ISAC-CNR, Lecce (Italy)

    2014-02-01

    Atmospheric aerosols have potential effects on human health, on the radiation balance, on climate, and on visibility. The understanding of these effects requires detailed knowledge of aerosol composition and size distributions and of how the different sources contribute to particles of different sizes. In this work, aerosol samples were collected using a 10-stage Micro-Orifice Uniform Deposit Impactor (MOUDI). Measurements were taken between February and October 2011 in an urban background site near Lecce (Apulia region, southeast of Italy). Samples were analysed to evaluate the concentrations of water-soluble ions (SO{sub 4}{sup 2−}, NO{sub 3}{sup −}, NH{sub 4}{sup +}, Cl{sup −}, Na{sup +}, K{sup +}, Mg{sup 2+} and Ca{sup 2+}) and of water-soluble organic and inorganic carbon. The aerosols were characterised by two modes, an accumulation mode having a mass median diameter (MMD) of 0.35 ± 0.02 μm, representing 51 ± 4% of the aerosols and a coarse mode (MMD = 4.5 ± 0.4 μm), representing 49 ± 4% of the aerosols. The data were used to estimate the losses in the impactor by comparison with a low-volume sampler. The average loss in the MOUDI-collected aerosol was 19 ± 2%, and the largest loss was observed for NO{sub 3}{sup −} (35 ± 10%). Significant losses were observed for Ca{sup 2+} (16 ± 5%), SO{sub 4}{sup 2−} (19 ± 5%) and K{sup +} (10 ± 4%), whereas the losses for Na{sup +} and Mg{sup 2+} were negligible. Size-segregated source apportionment was performed using Positive Matrix Factorization (PMF), which was applied separately to the coarse (size interval 1–18 μm) and accumulation (size interval 0.056–1 μm) modes. The PMF model was able to reasonably reconstruct the concentration in each size-range. The uncertainties in the source apportionment due to impactor losses were evaluated. In the accumulation mode, it was not possible to distinguish the traffic contribution from other combustion sources. In the coarse mode, it was not possible to

  12. Source Apportionment of Fine Particles in Xinzhen, Beijing

    Institute of Scientific and Technical Information of China (English)

    JIN; Xiang-chun; ZHANG; Gui-ying; XIAO; Cai-jin; WANG; Ping-sheng; WANG; Xing-hua; HUA; Long; YAO; Yong-gang; YUAN; Guo-jun; NI; Bang-fa

    2013-01-01

    As the capital city of China,Beijing often suffers from hazy weather recently.In order to improve air quality,it is of great importance to perform source apportionment and source trajectory.A total of 140airborne particulate matter samples were collected at Xinzhen from May,2007 to July,2013 and their chemical compositions were analyzed by Particle Induced X-ray Emission(PIXE)and Energy Disperse-X

  13. Sources of optically active aerosol particles over the Amazon forest

    Science.gov (United States)

    Guyon, Pascal; Graham, Bim; Roberts, Gregory C.; Mayol-Bracero, Olga L.; Maenhaut, Willy; Artaxo, Paulo; Andreae, Meinrat O.

    Size-fractionated ambient aerosol samples were collected at a pasture site and a primary rainforest site in the Brazilian Amazon Basin during two field campaigns (April-May and September-October 1999), as part of the European contribution to the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA-EUSTACH). The samples were analyzed for up to 19 trace elements by particle-induced X-ray emission analysis (PIXE), for equivalent black carbon (BC e) by a light reflectance technique and for mass concentration by gravimetric analysis. Additionally, we made continuous measurements of absorption and light scattering by aerosol particles. The vertical chemical composition gradients at the forest site have been discussed in a companion article (Journal of Geophysical Research-Atmospheres 108 (D18), 4591 (doi:4510.1029/2003JD003465)). In this article, we present the results of a source identification and quantitative apportionment study of the wet and dry season aerosols, including an apportionment of the measured scattering and absorption properties of the total aerosol in terms of the identified aerosol sources. Source apportionments (obtained from absolute principal component analysis) revealed that the wet and dry season aerosols contained the same three main components, but in different (absolute and relative) amounts: the wet season aerosol consisted mainly of a natural biogenic component, whereas pyrogenic aerosols dominated the dry season aerosol mass. The third component identified was soil dust, which was often internally mixed with the biomass-burning aerosol. All three components contributed significantly to light extinction during both seasons. At the pasture site, up to 47% of the light absorption was attributed to biogenic particles during the wet season, and up to 35% at the tower site during the wet-to-dry transition period. The results from the present study suggest that, in addition to pyrogenic particles, biogenic and soil dust aerosols must be

  14. Radiocarbon-derived source apportionment of fine carbonaceous aerosols before, during, and after the 2014 Asia-Pacific Economic Cooperation (APEC) summit in Beijing, China

    Science.gov (United States)

    Liu, Junwen; Mo, Yangzhi; Li, Jun; Liu, Di; Shen, Chengde; Ding, Ping; Jiang, Haoyu; Cheng, Zhineng; Zhang, Xiangyun; Tian, Chongguo; Chen, Yingjun; Zhang, Gan

    2016-04-01

    The Asia-Pacific Economic Cooperation (APEC) summit took place in Beijing, China, 5-11 November 2014, during which numerous measures were performed to control the air pollution, and consequently, the sky of Beijing was so clean that the public called it "APEC blue." The concentrations before, during, and after the APEC summit are 14.4 ± 6.81 µg C/m3, 6.66 ± 2.99 µg C/m3, and 32.3 ± 10.6 µg C/m3, respectively, for organic carbon (OC), and 2.27 ± 1.17 µg C/m3, 0.76 ± 0.52 µg C/m3, and 4.99 ± 1.74 µg C/m3, respectively, for elemental carbon (EC). We quantify the contributions of fossil and nonfossil sources to the OC and EC using radiocarbon. Results show that the contribution of nonfossil sources is 56 ± 1% (before APEC), 61 ± 1% (during APEC), and 48 ± 1% (after APEC), respectively, for OC, and 36 ± 4% (before APEC), 46 ± 1% (during APEC), and 33 ± 4% (after APEC), respectively, for EC. Comparing to the period before APEC, 70% and 60% of fossil EC and OC and 60% and 50% of nonfossil EC and OC are reduced, respectively, implying that the control on the nonfossil sources has considerable contribution to the good air quality in Beijing. Both EC and OC mass loadings during the APEC summit would have increased by 60% if the biomass-burning activities were not taken into account for control. In such a case, the atmospheric visibility would decrease 20% at least and the blue sky thereby would likely not have been visible during the summit.

  15. Enterococcus and Escherichia coli fecal source apportionment with microbial source tracking genetic markers - is it feasible?

    Science.gov (United States)

    Fecal pollution is measured in surface waters using culture-based measurements of enterococci and Escherichia coli bacteria. Source apportionment of these two fecal indicator bacteria is an urgent need for prioritizing remediation efforts and quantifying health risks associated...

  16. Indoor source apportionment in urban communities near industrial sites

    Science.gov (United States)

    Tunno, Brett J.; Dalton, Rebecca; Cambal, Leah; Holguin, Fernando; Lioy, Paul; Clougherty, Jane E.

    2016-08-01

    Because fine particulate matter (PM2.5) differs in chemical composition, source apportionment is frequently used for identification of relative contributions of multiple sources to outdoor concentrations. Indoor air pollution and source apportionment is often overlooked, though people in northern climates may spend up to 90% of their time inside. We selected 21 homes for a 1-week indoor sampling session during summer (July to September 2011), repeated in winter (January to March 2012). Elemental analysis was performed using inductively-coupled plasma mass spectrometry (ICP-MS), and factor analysis was used to determine constituent grouping. Multivariate modeling was run on factor scores to corroborate interpretations of source factors based on a literature review. For each season, a 5-factor solution explained 86-88% of variability in constituent concentrations. Indoor sources (i.e. cooking, smoking) explained greater variability than did outdoor sources in these industrial communities. A smoking factor was identified in each season, predicted by number of cigarettes smoked. Cooking factors were also identified in each season, explained by frequency of stove cooking and stovetop frying. Significant contributions from outdoor sources including coal and motor vehicles were also identified. Higher coal and secondary-related elemental concentrations were detected during summer than winter. Our findings suggest that source contributions to indoor concentrations can be identified and should be examined in relation to health effects.

  17. Source apportionment of PM10 in the Western Mediterranean based on observations from a cruise ship

    Science.gov (United States)

    Schembari, C.; Bove, M. C.; Cuccia, E.; Cavalli, F.; Hjorth, J.; Massabò, D.; Nava, S.; Udisti, R.; Prati, P.

    2014-12-01

    Two intensive PM10 sampling campaigns were performed in the summers of 2009 and 2010 on the ship Costa Pacifica during cruises in the Western Mediterranean. Samples, mainly collected on an hourly basis, were analysed with different techniques (Particle Induced X-Ray Emission, PIXE; Energy Dispersive - X Ray Fluorescence, ED-XRF; Ion Chromatography, IC; Thermo-optical analysis) to retrieve the PM10 composition and its time pattern. The data were used for obtaining information about the sources of aerosol, with a focus on ship emissions, through apportionment using chemical marker compounds, correlation analysis and Positive Matrix Factorization (PMF) receptor modelling. For the campaign in 2010, 66% of the aerosol sulphate was found to be anthropogenic, only minor contributions of dust and sea salt sulphate were observed while the biogenic contribution, estimated based on the measurements of MSA, was found to be more important (26%), but influenced by large uncertainties. V and Ni were found to be suitable tracers of ship emissions during the campaigns. Four sources of aerosol were resolved by the PMF analysis; the source having the largest impact on PM10, BC and sulphate was identified as a mixed source, comprising emissions from ships. The correlations between sulphate and V and Ni showed the influence of ship emissions on sulphate in marine air masses. For the leg Palma-Tunis crossing a main ship route, the correlations between aerosol sulphate and V and Ni were particularly strong (r2 = 0.9 for both elements).

  18. Aerosol characteristics and sources for the Amazon Basin during the wet season

    Science.gov (United States)

    Artaxo, Paulo; Maenhaut, Willy; Stroms, Hedwig; van Grieken, Rene

    1990-09-01

    An attempt is made to obtain the main chemical and morphological characteristics of particles released to the atmosphere by the tropical rain forest during the wet season. Fine and coarse aerosol fractions were collected and analyzed for elemental composition by bulk and individual particle analysis techniques. Elemental concentrations were measured by the particle-induced X-ray emission technique. Absolute principal factor analysis was applied to the elemental concentrations in order to derive source profiles for the identified sources of aerosols. Total mass source apportionment was used to obtain a quantitative assessment of the biogenic aerosol component and of the other aerosol sources. Total aerosol mass source apportionment showed that biogenic particles account for 55-95 percent of the airborne concentrations, indicating that biogenic particles can play an important role in the global aerosol budget and in the global biogeochemical cycles of various elements.

  19. An inter-comparison of PM10 source apportionment using PCA and PMF receptor models in three European sites.

    Science.gov (United States)

    Cesari, Daniela; Amato, F; Pandolfi, M; Alastuey, A; Querol, X; Contini, D

    2016-08-01

    Source apportionment of aerosol is an important approach to investigate aerosol formation and transformation processes as well as to assess appropriate mitigation strategies and to investigate causes of non-compliance with air quality standards (Directive 2008/50/CE). Receptor models (RMs) based on chemical composition of aerosol measured at specific sites are a useful, and widely used, tool to perform source apportionment. However, an analysis of available studies in the scientific literature reveals heterogeneities in the approaches used, in terms of "working variables" such as the number of samples in the dataset and the number of chemical species used as well as in the modeling tools used. In this work, an inter-comparison of PM10 source apportionment results obtained at three European measurement sites is presented, using two receptor models: principal component analysis coupled with multi-linear regression analysis (PCA-MLRA) and positive matrix factorization (PMF). The inter-comparison focuses on source identification, quantification of source contribution to PM10, robustness of the results, and how these are influenced by the number of chemical species available in the datasets. Results show very similar component/factor profiles identified by PCA and PMF, with some discrepancies in the number of factors. The PMF model appears to be more suitable to separate secondary sulfate and secondary nitrate with respect to PCA at least in the datasets analyzed. Further, some difficulties have been observed with PCA in separating industrial and heavy oil combustion contributions. Commonly at all sites, the crustal contributions found with PCA were larger than those found with PMF, and the secondary inorganic aerosol contributions found by PCA were lower than those found by PMF. Site-dependent differences were also observed for traffic and marine contributions. The inter-comparison of source apportionment performed on complete datasets (using the full range of

  20. Overview of the Lombardy Region (I) Source Apportionment Study

    Science.gov (United States)

    Larsen, B. R.

    2009-04-01

    The Lombardia Region (RL) is situated in the central part of the Po Plain (I) where the mesoscale climatological conditions are determined to a high degree by the orographical characteristics of this area. Encirclement from three sides (North, West and South) by the mountain chains contributes greatly to the climatological peculiarities that are related from the physical point of view to the dynamic of the air mass in this region. The adverse anemological regime and the persistence of atmospheric stability result in low wind speeds, inversion of the temperature, and shallow inversion layers. Due to these particular geographical and the meteorological conditions associated with a high population density (9 million inhabitants) and the connected anthropogenic activities, RL is one of Europe's most polluted regions with regard to PM and photochemical smog. The 24 hours EU air quality limit for PM10 of 50 ug/m3 is exceeded up to 180 days per year and the yearly limit of 40 ug/m3 is in breach for most urban/urban background areas. In order to efficiently plan abatement strategies, quantitative information is required on the pollution sources and available emission inventories need to be compared with source apportionment results derived by receptor modeling of the chemical composition of PM10 in ambient air and in source emissions. The European Commission Joint Research Centre (JRC) has embarked on a major integrated project in RL (2006-2010) in collaboration with the air quality authorities (ARPA) to support the design of appropriate air quality and emission reduction strategies in this area. The present paper presents the first results of this project, carried out during typical winter episodes in 2007 at ten measurement stations distributed over the entire RL. The source contributions to PM10 and the associated air toxics (benzo[a]pyrene, Pb, Ni, Cd and As) have been quantified by Chemical Mass Balance and Positive Matrix Factorization based upon the chemical

  1. Quantitative back-trajectory apportionment of sources of particulate sulfate at Big Bend National Park, TX

    Science.gov (United States)

    Gebhart, Kristi A.; Schichtel, Bret A.; Barna, Michael G.; Malm, William C.

    As part of the Big Bend Regional Aerosol and Visibility Observational (BRAVO) study, a quantitative back-trajectory-based receptor model, Trajectory Mass Balance (TrMB) was used to estimate source apportionment of particulate sulfur measured at Big Bend National Park, Texas, during July-October 1999. The model was exercised using a number of sets of trajectories generated by three different trajectory models, with three different sets of input gridded meteorology, and tracked for 5, 7, and 10 days back in time. The performance of the TrMB model with the different trajectory inputs was first evaluated against perfluorocarbon tracers and synthetically generated sulfate concentrations from a regional air quality model, both of which had known attributions. These tests were used to determine which trajectories were adequate for the TrMB modeling of measured sulfate concentrations, illustrated the magnitude of the daily uncertainties as compared to the uncertainties in the mean attributions, and demonstrated the value of a robust evaluation process. Depending on trajectories, mean sulfate source apportionment results were 39-50% from Mexico, 7-26% from the eastern US, 12-45% from Texas, and 3-25% from the western US. These ranges were inclusive of the best BRAVO attribution estimates for Mexico, Texas, and the western US, but TrMB underestimated the eastern US contribution as compared to the BRAVO best estimates.

  2. Block Tensor Decomposition for Source Apportionment of Air Pollution

    CERN Document Server

    Hopke, Philip K; Li, Na; Navasca, Carmeliza

    2011-01-01

    The ambient particulate chemical composition data with three particle diameter sizes (2.5mmsource apportionment analysis calls for a novel multiway factor analysis. We apply the regularized block tensor decomposition to the collected air sample data. In particular, we use the Block Term Decomposition (BTD) in rank-(L;L;1) form to identify nine pollution sources (Fe+Zn, Sulfur with Dust, Road Dust, two types of Metal Works, Road Salt, Local Sulfate, and Homogeneous and Cloud Sulfate).

  3. Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective

    Directory of Open Access Journals (Sweden)

    R. Zhang

    2013-07-01

    systematic study that comprehensively explores the chemical characterizations and source apportionments of PM2.5 aerosol speciation in Beijing by applying multiple approaches based on a completely seasonal perspective.

  4. Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective

    Directory of Open Access Journals (Sweden)

    R. Zhang

    2013-04-01

    the first systematical study that comprehensively explores the chemical characterizations and source apportionments of PM2.5 aerosol speciation in Beijing by applying multiple approaches based on a completely seasonal perspective.

  5. Chemical characterization and source apportionment of PM2.5 in Beijing: seasonal perspective

    Science.gov (United States)

    Zhang, R.; Jing, J.; Tao, J.; Hsu, S.-C.; Wang, G.; Cao, J.; Lee, C. S. L.; Zhu, L.; Chen, Z.; Zhao, Y.; Shen, Z.

    2013-07-01

    that comprehensively explores the chemical characterizations and source apportionments of PM2.5 aerosol speciation in Beijing by applying multiple approaches based on a completely seasonal perspective.

  6. Critical review of black carbon and elemental carbon source apportionment in Europe and the United States

    Science.gov (United States)

    Briggs, Nicole L.; Long, Christopher M.

    2016-11-01

    An increasing number of air pollution source apportionment studies in Europe and the United States have focused on the black carbon (BC) fraction of ambient particulate matter (PM) given its linkage with adverse public health and climate impacts. We conducted a critical review of European and US BC source apportionment studies published since 2003. Since elemental carbon (EC) has been used as a surrogate measure of BC, we also considered source apportionment studies of EC measurements. This review extends the knowledge presented in previous ambient PM source apportionment reviews because we focus on BC and EC and critically examine the differences between source apportionment results for different methods and source categories. We identified about 50 BC and EC source apportionment studies that have been conducted in either Europe or the US since 2003, finding a striking difference in the commonly used source apportionment methods between the two regions and variations in the assigned source categories. Using three dominant methodologies (radiocarbon, aethalometer, and macro-tracer methods) that only allow for BC to be broadly apportioned into either fossil fuel combustion or biomass burning source categories, European studies generally support fossil fuel combustion as the dominant ambient BC source, but also show significant biomass burning contributions, in particular in wintertime at non-urban locations. Among US studies where prevailing methods such as chemical mass balance (CMB) and positive matrix factorization (PMF) models have allowed for estimation of more refined source contributions, there are fewer findings showing the significance of biomass burning and variable findings on the relative proportion of BC attributed to diesel versus gasoline emissions. Overall, the available BC source apportionment studies provide useful information demonstrating the significance of both fossil fuel combustion and biomass burning BC emission sources in Europe and the US

  7. On the autarchic use of solely PIXE data in particulate matter source apportionment studies by receptor modeling

    Energy Technology Data Exchange (ETDEWEB)

    Lucarelli, F. [Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); National Institute of Nuclear Physics (INFN)-Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Nava, S., E-mail: nava@fi.infn.it [National Institute of Nuclear Physics (INFN)-Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Calzolai, G. [Department of Physics and Astronomy, University of Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Chiari, M. [National Institute of Nuclear Physics (INFN)-Florence, Via G. Sansone 1, 50019 Sesto Fiorentino (Italy); Giannoni, M.; Traversi, R.; Udisti, R. [Department of Chemistry, University of Florence, Via della Lastruccia 3, 50019 Sesto Fiorentino (Italy)

    2015-11-15

    Particle Induced X-ray Emission (PIXE) analysis of aerosol samples allows simultaneous detection of several elements, including important tracers of many particulate matter sources. This capability, together with the possibility of analyzing a high number of samples in very short times, makes PIXE a very effective tool for source apportionment studies by receptor modeling. However, important aerosol components, like nitrates, OC and EC, cannot be assessed by PIXE: this limitation may strongly compromise the results of a source apportionment study if based on PIXE data alone. In this work, an experimental dataset characterised by an extended chemical speciation (elements, EC–OC, ions) is used to test the effect of reducing input species in the application of one of the most widely used receptor model, namely Positive Matrix Factorization (PMF). The main effect of using only PIXE data is that the secondary nitrate source is not identified and the contribution of biomass burning is overestimated, probably due to the similar seasonal pattern of these two sources.

  8. Receptor Model Source Apportionment of Nonmethane Hydrocarbons in Mexico City

    Directory of Open Access Journals (Sweden)

    V. Mugica

    2002-01-01

    Full Text Available With the purpose of estimating the source contributions of nonmethane hydrocarbons (NMHC to the atmosphere at three different sites in the Mexico City Metropolitan Area, 92 ambient air samples were measured from February 23 to March 22 of 1997. Light- and heavy-duty vehicular profiles were determined to differentiate the NMHC contribution of diesel and gasoline to the atmosphere. Food cooking source profiles were also determined for chemical mass balance receptor model application. Initial source contribution estimates were carried out to determine the adequate combination of source profiles and fitting species. Ambient samples of NMHC were apportioned to motor vehicle exhaust, gasoline vapor, handling and distribution of liquefied petroleum gas (LP gas, asphalt operations, painting operations, landfills, and food cooking. Both gasoline and diesel motor vehicle exhaust were the major NMHC contributors for all sites and times, with a percentage of up to 75%. The average motor vehicle exhaust contributions increased during the day. In contrast, LP gas contribution was higher during the morning than in the afternoon. Apportionment for the most abundant individual NMHC showed that the vehicular source is the major contributor to acetylene, ethylene, pentanes, n-hexane, toluene, and xylenes, while handling and distribution of LP gas was the major source contributor to propane and butanes. Comparison between CMB estimates of NMHC and the emission inventory showed a good agreement for vehicles, handling and distribution of LP gas, and painting operations; nevertheless, emissions from diesel exhaust and asphalt operations showed differences, and the results suggest that these emissions could be underestimated.

  9. Source apportionment of speciated PM10 in the United Kingdom in 2008: Episodes and annual averages

    Science.gov (United States)

    Redington, A. L.; Witham, C. S.; Hort, M. C.

    2016-11-01

    The Lagrangian atmospheric dispersion model NAME (Numerical Atmospheric-dispersion Modelling Environment), has been used to simulate the formation and transport of PM10 over North-West Europe in 2008. The model has been evaluated against UK measurement data and been shown to adequately represent the observed PM10 at rural and urban sites on a daily basis. The Lagrangian nature of the model allows information on the origin of pollutants (and hence their secondary products) to be retained to allow attribution of pollutants at receptor sites back to their sources. This source apportionment technique has been employed to determine whether the different components of the modelled PM10 have originated from UK, shipping, European (excluding the UK) or background sources. For the first time this has been done to evaluate the composition during periods of elevated PM10 as well as the annual average composition. The episode data were determined by selecting the model data for each hour when the corresponding measurement data was >50 μg/m3. All the modelled sites show an increase in European pollution contribution and a decrease in the background contribution in the episode case compared to the annual average. The European contribution is greatest in southern and eastern parts of the UK and decreases moving northwards and westwards. Analysis of the speciated attribution data over the selected sites reveals that for 2008, as an annual average, the top three contributors to total PM10 are UK primary PM10 (17-25%), UK origin nitrate aerosol (18-21%) and background PM10 (11-16%). Under episode conditions the top three contributors to modelled PM10 are UK origin nitrate aerosol (12-33%), European origin nitrate aerosol (11-19%) and UK primary PM10 (12-18%).

  10. Source apportionment using positive matrix factorization on daily measurements of inorganic and organic speciated PM 2.5

    Science.gov (United States)

    Dutton, Steven J.; Vedal, Sverre; Piedrahita, Ricardo; Milford, Jana B.; Miller, Shelly L.; Hannigan, Michael P.

    2010-07-01

    Particulate matter less than 2.5 microns in diameter (PM 2.5) has been linked with a wide range of adverse health effects. Determination of the sources of PM 2.5 most responsible for these health effects could lead to improved understanding of the mechanisms of such effects and more targeted regulation. This has provided the impetus for the Denver Aerosol Sources and Health (DASH) study, a multi-year source apportionment and health effects study relying on detailed inorganic and organic PM 2.5 speciation measurements. In this study, PM 2.5 source apportionment is performed by coupling positive matrix factorization (PMF) with daily speciated PM 2.5 measurements including inorganic ions, elemental carbon (EC) and organic carbon (OC), and organic molecular markers. A qualitative comparison is made between two models, PMF2 and ME2, commonly used for solving the PMF problem. Many previous studies have incorporated chemical mass balance (CMB) for organic molecular marker source apportionment on limited data sets, but the DASH data set is large enough to use multivariate factor analysis techniques such as PMF. Sensitivity of the PMF2 and ME2 models to the selection of speciated PM 2.5 components and model input parameters was investigated in depth. A combination of diagnostics was used to select an optimum, 7-factor model using one complete year of daily data with pointwise measurement uncertainties. The factors included 1) a wintertime/methoxyphenol factor, 2) an EC/sterane factor, 3) a nitrate/polycyclic aromatic hydrocarbon (PAH) factor, 4) a summertime/selective aliphatic factor, 5) an n-alkane factor, 6) a middle-oxygenated PAH/alkanoic acid factor and 7) an inorganic ion factor. These seven factors were qualitatively linked with known PM 2.5 emission sources with varying degrees of confidence. Mass apportionment using the 7-factor model revealed the contribution of each factor to the mass of OC, EC, nitrate and sulfate. On an annual basis, the majority of OC and EC

  11. Source Apportionment Using Positive Matrix Factorization on Daily Measurements of Inorganic and Organic Speciated PM(2.5).

    Science.gov (United States)

    Dutton, Steven J; Vedal, Sverre; Piedrahita, Ricardo; Milford, Jana B; Miller, Shelly L; Hannigan, Michael P

    2010-07-01

    Particulate matter less than 2.5 microns in diameter (PM(2.5)) has been linked with a wide range of adverse health effects. Determination of the sources of PM(2.5) most responsible for these health effects could lead to improved understanding of the mechanisms of such effects and more targeted regulation. This has provided the impetus for the Denver Aerosol Sources and Health (DASH) study, a multi-year source apportionment and health effects study relying on detailed inorganic and organic PM(2.5) speciation measurements.In this study, PM(2.5) source apportionment is performed by coupling positive matrix factorization (PMF) with daily speciated PM(2.5) measurements including inorganic ions, elemental carbon (EC) and organic carbon (OC), and organic molecular markers. A qualitative comparison is made between two models, PMF2 and ME2, commonly used for solving the PMF problem. Many previous studies have incorporated chemical mass balance (CMB) for organic molecular marker source apportionment on limited data sets, but the DASH data set is large enough to use multivariate factor analysis techniques such as PMF.Sensitivity of the PMF2 and ME2 models to the selection of speciated PM(2.5) components and model input parameters was investigated in depth. A combination of diagnostics was used to select an optimum, 7-factor model using one complete year of daily data with pointwise measurement uncertainties. The factors included 1) a wintertime/methoxyphenol factor, 2) an EC/sterane factor, 3) a nitrate/polycyclic aromatic hydrocarbon (PAH) factor, 4) a summertime/selective aliphatic factor, 5) an n-alkane factor, 6) a middle oxygenated PAH/alkanoic acid factor and 7) an inorganic ion factor. These seven factors were qualitatively linked with known PM(2.5) emission sources with varying degrees of confidence. Mass apportionment using the 7-factor model revealed the contribution of each factor to the mass of OC, EC, nitrate and sulfate. On an annual basis, the majority of OC

  12. Photochemical grid model implementation of VOC, NOx, and O3 source apportionment

    Directory of Open Access Journals (Sweden)

    R. H. F. Kwok

    2014-09-01

    Full Text Available For the purposes of developing optimal emissions control strategies, efficient approaches are needed to identify the major sources or groups of sources that contribute to elevated ozone (O3 concentrations. Source based apportionment techniques implemented in photochemical grid models track sources through the physical and chemical processes important to the formation and transport of air pollutants. Photochemical model source apportionment has been used to estimate impacts of specific sources, groups of sources (sectors, sources in specific geographic areas, and stratospheric and lateral boundary inflow on O3. The implementation and application of a source apportionment technique for O3 and its precursors, nitrogen oxides (NOx and volatile organic compounds (VOC, for the Community Multiscale Air Quality (CMAQ model are described here. The Integrated Source Apportionment Method (ISAM O3 approach is a hybrid of source apportionment and source sensitivity in that O3 production is attributed to precursor sources based on O3 formation regime (e.g., for a NOx-sensitive regime, O3 is apportioned to participating NOx emissions. This implementation is illustrated by tracking multiple emissions source sectors and lateral boundary inflow. NOx, VOC, and O3 attribution to tracked sectors in the application are consistent with spatial and temporal patterns of precursor emissions. The O3 ISAM implementation is further evaluated through comparisons of apportioned ambient concentrations and deposition amounts with those derived from brute force zero-out scenarios, with correlation coefficients ranging between 0.58 and 0.99 depending on specific combination of target species and tracked precursor emissions. Low correlation coefficients occur for chemical regimes that have strong non-linearity in O3 sensitivity, which demonstrates different functionalities between source apportionment and zero-out approaches, depending on whether sources of interest are either to

  13. Receptor modeling application framework for particle source apportionment.

    Science.gov (United States)

    Watson, John G; Zhu, Tan; Chow, Judith C; Engelbrecht, Johann; Fujita, Eric M; Wilson, William E

    2002-12-01

    Receptor models infer contributions from particulate matter (PM) source types using multivariate measurements of particle chemical and physical properties. Receptor models complement source models that estimate concentrations from emissions inventories and transport meteorology. Enrichment factor, chemical mass balance, multiple linear regression, eigenvector. edge detection, neural network, aerosol evolution, and aerosol equilibrium models have all been used to solve particulate air quality problems, and more than 500 citations of their theory and application document these uses. While elements, ions, and carbons were often used to apportion TSP, PM10, and PM2.5 among many source types, many of these components have been reduced in source emissions such that more complex measurements of carbon fractions, specific organic compounds, single particle characteristics, and isotopic abundances now need to be measured in source and receptor samples. Compliance monitoring networks are not usually designed to obtain data for the observables, locations, and time periods that allow receptor models to be applied. Measurements from existing networks can be used to form conceptual models that allow the needed monitoring network to be optimized. The framework for using receptor models to solve air quality problems consists of: (1) formulating a conceptual model; (2) identifying potential sources; (3) characterizing source emissions; (4) obtaining and analyzing ambient PM samples for major components and source markers; (5) confirming source types with multivariate receptor models; (6) quantifying source contributions with the chemical mass balance; (7) estimating profile changes and the limiting precursor gases for secondary aerosols; and (8) reconciling receptor modeling results with source models, emissions inventories, and receptor data analyses.

  14. Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modelling of complete high time-resolution aerosol mass spectra

    Directory of Open Access Journals (Sweden)

    M. L. McGuire

    2014-02-01

    the ability to better understand the chemical nature of atypical factors from high resolution mass spectra. Second, utilizing PMF to extract factors containing inorganic species allowed for the determination of extent of neutralization, which could have implications for aerosol parameterization. Third, subtler differences in organic aerosol components were resolved through the incorporation of inorganic mass into the PMF matrix. The additional temporal features provided by the inorganic aerosol components allowed for the resolution of more types of oxygenated organic aerosol than could be reliably resolved from PMF of organics alone. Comparison of findings from the PMFFull MS and PMFOrg MS methods showed that for the Windsor airshed, the PMFFull MS method enabled additional conclusions to be drawn in terms of aerosol sources and chemical processes. While performing PMFOrg MS can provide important distinctions between types of organic aerosol, it is shown that including inorganic species in the PMF analysis can permit further apportionment of organics for unit mass resolution AMS mass spectra.

  15. Fine particulate matter in the tropical environment: monsoonal effects, source apportionment, and health risk assessment

    Science.gov (United States)

    Khan, M. F.; Latif, M. T.; Saw, W. H.; Amil, N.; Nadzir, M. S. M.; Sahani, M.; Tahir, N. M.; Chung, J. X.

    2016-01-01

    The health implications of PM2.5 in the tropical region of Southeast Asia (SEA) are significant as PM2.5 can pose serious health concerns. PM2.5 concentration and sources here are strongly influenced by changes in the monsoon regime from the south-west quadrant to the north-east quadrant in the region. In this work, PM2.5 samples were collected at a semi-urban area using a high-volume air sampler at different seasons on 24 h basis. Analysis of trace elements and water-soluble ions was performed using inductively coupled plasma mass spectroscopy (ICP-MS) and ion chromatography (IC), respectively. Apportionment analysis of PM2.5 was carried out using the United States Environmental Protection Agency (US EPA) positive matrix factorization (PMF) 5.0 and a mass closure model. We quantitatively characterized the health risks posed to human populations through the inhalation of selected heavy metals in PM2.5. 48 % of the samples collected exceeded the World Health Organization (WHO) 24 h PM2.5 guideline but only 19 % of the samples exceeded 24 h US EPA National Ambient Air Quality Standard (NAAQS). The PM2.5 concentration was slightly higher during the north-east monsoon compared to south-west monsoon. The main trace metals identified were As, Pb, Cd, Ni, Mn, V, and Cr while the main ions were SO42-, NO3-, NH4+, and Na. The mass closure model identified four major sources of PM2.5 that account for 55 % of total mass balance. The four sources are mineral matter (MIN) (35 %), secondary inorganic aerosol (SIA) (11 %), sea salt (SS) (7 %), and trace elements (TE) (2 %). PMF 5.0 elucidated five potential sources: motor vehicle emissions coupled with biomass burning (31 %) were the most dominant, followed by marine/sulfate aerosol (20 %), coal burning (19 %), nitrate aerosol (17 %), and mineral/road dust (13 %). The hazard quotient (HQ) for four selected metals (Pb, As, Cd, and Ni) in PM2.5 mass was highest in PM2.5 mass from the coal burning source and least in PM2.5 mass

  16. Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe

    Science.gov (United States)

    Belis, C. A.; Karagulian, F.; Larsen, B. R.; Hopke, P. K.

    2013-04-01

    A review was conducted of the published literature on source apportionment of ambient particulate matter (PM) in Europe using receptor models (RMs). Consistent records were identified for source contribution estimates of PM mass concentrations for 272 records and of organic carbon (OC) in PM for 60 records. Over the period 2000-2012, a shift was observed in the use of RMs from principal component analysis, enrichment factors, and classical factor analysis to Positive Matrix Factorization while Chemical Mass Balance is still topical. Following a meta-analysis of the published results, six major source categories for PM were defined that comprise almost all individual sources apportioned in Europe: atmospheric formation of secondary inorganic aerosol (SIA), traffic, re-suspension of crustal/mineral dust, biomass burning, (industrial) point sources, and sea/road salt. For the OC fraction, the three main source categories were: atmospheric formation of secondary organic aerosol, biomass burning, and fossil fuel combustion. The geographical and seasonal variations of these sources are mapped and discussed. A special analysis of PM concentrations that exceed the current European air quality limits indicated SIA and traffic as the most important source categories to target for abatement throughout the year together with biomass burning during the cold season.

  17. Characterisation and source apportionment of PM10 in an urban background site in Lecce

    Science.gov (United States)

    Contini, D.; Genga, A.; Cesari, D.; Siciliano, M.; Donateo, A.; Bove, M. C.; Guascito, M. R.

    2010-01-01

    The analysis reported in this work has been performed to characterise PM10 concentration measured in an urban background site in Lecce (Apulia region, Italy). PM10 concentration and its inorganic chemical composition have been studied using three procedures: a qualitative analysis of the correlation coefficients between the different species and of the crustal enrichment factor; the cluster analysis (CA) and the principal component analysis (PCA). The results of the three procedures are in good agreement. The five groups identified by the CA correspond to the five principal components obtained with the PCA and they reflect the results qualitatively inferred using the two-species correlation coefficients. The CA results helped in putting in evidence a correlation between Ni, V and sulphate that was less evident in the PCA. The relative abundance of V is larger with wind from the N-NW directions where the main industrial sites of the region are located. This suggests the presence of anthropogenic inorganic secondary aerosol generated by a common source of V and SO 2 that are likely the industrial releases and the ship emissions. The absolute PCA (APCA) allowed the quantitative apportionment of the five components observed: crustal matter (49.5%), secondary inorganic aerosol (24.1%), marine aerosol (6.3%), traffic (16.5%), and industrial (2.1%). Observed PM10 concentration clearly shows a seasonal pattern, opposite to the one observed in the northern and central Italy, with average PM10 larger in the warm season (spring and summer) with respect to the cold season as a consequence of the increase of crustal matter contribution likely due to the intrusion of African dust. These intrusions are more frequent in the warm season and have an influence on daily PM10 concentrations variable between 6% and 120% in this site. Correlation with meteorological data indicates that the more intense cases of intrusions of African dust happen with wind blowing from the SW direction

  18. Concentrations and source apportionment of PM10 and associated major and trace elements in the Rhodes Island, Greece.

    Science.gov (United States)

    Argyropoulos, Georgios; Manoli, Evangelia; Kouras, Athanasios; Samara, Constantini

    2012-08-15

    Ambient concentrations of PM(10) and associated major and trace elements were measured over the cold and the warm season of 2007 at two sites located in the Rhodes Island (Greece), in Eastern Mediterranean, aimed at source apportionment by Chemical Mass Balance (CMB) receptor modeling. Source chemical profiles, necessary in CMB modeling, were obtained for a variety of emission sources that could possibly affect the study area, including sea spray, geological material, soot emissions from the nearby oil-fuelled thermal power plant, and other anthropogenic activities, such as vehicular traffic, residential oil combustion, wood burning, and uncontrolled open-air burning of agricultural biomass and municipal waste. Source apportionment of PM(10) and elemental components was carried out by employing an advanced CMB version, the Robotic Chemical Mass Balance model (RCMB). Vehicular emissions were found to be major PM(10) contributor accounting, on average, for 36.8% and 31.7% during the cold period, and for 40.9% and 39.2% in the warm period at the two sites, respectively. The second largest source of ambient PM(10), with minor seasonal variation, was secondary sulfates (mainly ammonium and calcium sulfates), with total average contribution around 16.5% and 18% at the two sites. Soil dust was also a remarkable source contributing around 22% in the warm period, whereas only around 10% in the cold season. Soot emitted from the thermal power plant was found to be negligible contributor to ambient PM(10) (<1%), however it appeared to appreciably contribute to the ambient V and Ni (11.3% and 5.1%, respectively) at one of the sites during the warm period, when electricity production is intensified. Trajectory analysis did not indicate any transport of Sahara dust; on the contrary, long range transport of soil dust from arid continental regions of Minor Asia and of biomass burning aerosol from the countries surrounding the Black Sea was considered possible.

  19. Weak acid extractable metals in Bramble Bay, Queensland, Australia: temporal behaviour, enrichment and source apportionment.

    Science.gov (United States)

    Brady, James P; Ayoko, Godwin A; Martens, Wayde N; Goonetilleke, Ashantha

    2015-02-15

    Sediment samples were taken from six sampling sites in Bramble Bay, Queensland, Australia between February and November in 2012. They were analysed for a range of heavy metals including Al, Fe, Mn, Ti, Ce, Th, U, V, Cr, Co, Ni, Cu, Zn, As, Cd, Sb, Te, Hg, Tl and Pb. Fraction analysis, Enrichment Factors and Principal Component Analysis-Absolute Principal Component Scores (PCA-APCS) were carried out in order to assess metal pollution, potential bioavailability and source apportionment. Cr and Ni exceeded the Australian Interim Sediment Quality Guidelines at some sampling sites, while Hg was found to be the most enriched metal. Fraction analysis identified increased weak acid soluble Hg and Cd during the sampling period. Source apportionment via PCA-APCS found four sources of metals pollution, namely, marine sediments, shipping, antifouling coatings and a mixed source. These sources need to be considered in any metal pollution control measure within Bramble Bay.

  20. Study on the Current Situation and Source Apportionment of PM2.5Pollution in China

    Institute of Scientific and Technical Information of China (English)

    Nianliang; CHENG; Shangyin; GAO; Yunting; LI; Bingfen; CHENG; Kuikui; YUAN

    2015-01-01

    In this paper,using concentration data of PM2. 5in 2013 in China and referring to a lot of literature,we preliminary studied the pollution of fine particulate matter and summarized PM2. 5source apportionment in the key cities in China. Our results showed that PM2. 5showed significant spatial and temporal distribution; high surface concentrations of PM2. 5concentrated mainly in the North China Plain,the Sichuan Basin,Yangtze River Delta and other regions; the average annual concentration of PM2. 5was about 80μg / m3 in North China Plain; Seasonal changes in the concentration of PM2. 5was winter > spring > autumn > summer; fired sources,industrial sources,vehicle exhaust were the major sources of PM2. 5; motor vehicle exhaust mostly contributed 10%- 30% to PM2. 5. This review provides a fundamental understanding of PM2. 5source apportionment and serves as an important reference for future source apportionment studies to be widely conducted in China.

  1. Do anthropogenic or coastal aerosol sources impact on a clean marine aerosol signature at Mace Head?

    Directory of Open Access Journals (Sweden)

    C. O'Dowd

    2013-03-01

    Full Text Available Atmospheric aerosols have been sampled and characterised at the Mace Head North East (N.E. Atlantic atmospheric research station since 1958, with many interesting phenomena being discovered. However, with the range of new discoveries and scientific advances, there has been a range of concomitant criticisms challenging the representativeness of aerosol sampled at the station to that of aerosol over the open ocean. Two recurring criticisms relate to the lack of representativeness due to enhanced coastal sources, thereby leading to artificially high values to aerosol parameters, and to the influence of long-range transport of anthropogenic aerosol and its potential dominance over, or drowning-out of, a natural marine aerosol signal. Here we review the results of previous experimental studies into marine aerosols over the N.E. Atlantic and at Mace Head with the aim of evaluating their representativeness relative to that of an open ocean aerosol with negligible anthropogenic influence. Particular focus is given to organic matter (OM aerosol. In summary, no correlation was found between OM and black carbon (BC either at BC levels of 0–15 or 15–50 ng m−3, suggesting that OM concentrations up to peak values of 3.8 μg m−3 are predominantly natural in origin. Sophisticated carbon isotope analysis and aerosol mass spectral finger printing corroborate the natural source of OM with 80% biogenic source apportionment being observed for general clean air conditions, rising to 98% during specific primary marine organic plumes when peak concentrations >3 μg m−3 are observed. A range of other experiments are discussed which corroborate the dominance of a marine signal under Mace Head clean air criteria along. Further, analysis of a series of experiments conducted at Mace Head conclude that negligible coastal, surf zone, or tidal effects are discernible in the submicron size range for sampling heights of 7 m and above. The Mace Head clean air criteria

  2. Size-resolved source apportionment of carbonaceous particulate matter in urban and rural sites in central California

    Science.gov (United States)

    Ham, Walter A.; Kleeman, Michael J.

    2011-08-01

    Very little is currently known about the relationship between exposure to different sources of ambient ultrafine particles (PM 0.1) and human health effects. If human health effects are enhanced by PM 0.1's ability to cross cell membranes, then more information is needed describing the sources of ultrafine particles that are deposited in the human respiratory system. The current study presents results for the source apportionment of airborne particulate matter in six size fractions smaller than 1.8 μm particle diameter including ultrafine particles (PM 0.1) in one of the most polluted air basins in the United States. Size-resolved source apportionment results are presented at an urban site and rural site in central California's heavily polluted San Joaquin Valley during the winter and summer months using a molecular marker chemical mass balance (MM-CMB) method. Respiratory deposition calculations for the size-resolved source apportionment results are carried out with the Multiple Path Particle Dosimetry Model ( MPPD v 2.0), including calculations for ultrafine (PM 0.1) source deposition. Diesel engines accounted for the majority of PM 0.1 and PM 1.8 EC at both the urban and rural sampling locations during both summer and winter seasons. Meat cooking accounted for 33-67% and diesel engines accounted for 15-21% of the PM 0.1 OC at Fresno. Meat cooking accounted for 22-26% of the PM 0.1 OC at the rural Westside location, while diesel engines accounted for 8-9%. Wood burning contributions to PM 0.1 OC increased to as much as 12% of PM 0.1 OC during the wintertime. The modest contribution of wood smoke reflects the success of emissions control programs over the past decade. In contrast to PM 0.1, PM 1.8 OC had a higher fraction of unidentified source contributions (68-85%) suggesting that this material is composed of secondary organic aerosol (SOA) or primary organic aerosol (POA) that has been processed by atmospheric chemical reactions. Meat cooking was the largest

  3. Two Model-Based Methods for Policy Analyses of Fine Particulate Matter Control in China: Source Apportionment and Source Sensitivity

    Science.gov (United States)

    Li, X.; Zhang, Y.; Zheng, B.; Zhang, Q.; He, K.

    2013-12-01

    Anthropogenic emissions have been controlled in recent years in China to mitigate fine particulate matter (PM2.5) pollution. Recent studies show that sulfate dioxide (SO2)-only control cannot reduce total PM2.5 levels efficiently. Other species such as nitrogen oxide, ammonia, black carbon, and organic carbon may be equally important during particular seasons. Furthermore, each species is emitted from several anthropogenic sectors (e.g., industry, power plant, transportation, residential and agriculture). On the other hand, contribution of one emission sector to PM2.5 represents contributions of all species in this sector. In this work, two model-based methods are used to identify the most influential emission sectors and areas to PM2.5. The first method is the source apportionment (SA) based on the Particulate Source Apportionment Technology (PSAT) available in the Comprehensive Air Quality Model with extensions (CAMx) driven by meteorological predictions of the Weather Research and Forecast (WRF) model. The second method is the source sensitivity (SS) based on an adjoint integration technique (AIT) available in the GEOS-Chem model. The SA method attributes simulated PM2.5 concentrations to each emission group, while the SS method calculates their sensitivity to each emission group, accounting for the non-linear relationship between PM2.5 and its precursors. Despite their differences, the complementary nature of the two methods enables a complete analysis of source-receptor relationships to support emission control policies. Our objectives are to quantify the contributions of each emission group/area to PM2.5 in the receptor areas and to intercompare results from the two methods to gain a comprehensive understanding of the role of emission sources in PM2.5 formation. The results will be compared in terms of the magnitudes and rankings of SS or SA of emitted species and emission groups/areas. GEOS-Chem with AIT is applied over East Asia at a horizontal grid

  4. Temporal trend and source apportionment of water pollution in different functional zones of Qiantang River, China.

    Science.gov (United States)

    Su, Shiliang; Li, Dan; Zhang, Qi; Xiao, Rui; Huang, Fang; Wu, Jiaping

    2011-02-01

    The increasingly serious river water pollution in developing countries poses great threat to environmental health and human welfare. The assignment of river function to specific uses, known as zoning, is a useful tool to reveal variations of water environmental adaptability to human impact. Therefore, characterizing the temporal trend and identifying responsible pollution sources in different functional zones could greatly improve our knowledge about human impacts on the river water environment. The aim of this study is to obtain a deeper understanding of temporal trends and sources of water pollution in different functional zones with a case study of the Qiantang River, China. Measurement data were obtained and pretreated for 13 variables from 41 monitoring sites in four categories of functional zones during the period 1996-2004. An exploratory approach, which combines smoothing and non-parametric statistical tests, was applied to characterize trends of four significant parameters (permanganate index, ammonia nitrogen, total cadmium and fluoride) accounting for differences among different functional zones identified by discriminant analysis. Aided by GIS, yearly pollution index (PI) for each monitoring site was further mapped to compare the within-group variations in temporal dynamics for different functional zones. Rotated principal component analysis and receptor model (absolute principle component score-multiple linear regression, APCS-MLR) revealed that potential pollution sources and their corresponding contributions varied among the four functional zones. Variations of APCS values for each site of one functional zone as well as their annual average values highlighted the uncertainties associated with cross space-time effects in source apportionment. All these results reinforce the notion that the concept of zoning should be taken seriously in water pollution control. Being applicable to other rivers, the framework of management-oriented source apportionment

  5. Source apportionment of PM2.5 in top polluted cities in Hebei, China using the CMAQ model

    Science.gov (United States)

    Wang, Litao; Wei, Zhe; Wei, Wei; Fu, Joshua S.; Meng, Chenchen; Ma, Simeng

    2015-12-01

    Hebei has been recognized as one of the most polluted provinces in China, characterized by extremely high concentrations of fine particulate matter (PM2.5) in many of its cities, especially those located in the southern area of the province and highly potentially northward transported to Beijing. Source apportionment of PM2.5 is the basis and prerequisite of an effective control strategy. In this study, the Mesoscale Modeling System Generation 5 (MM5) and the Models-3/Community Multiscale Air Quality (CMAQ) modeling system are applied to East Asia and North China at 36- and 12-km horizontal grid resolutions, and the source apportionment of PM2.5 in the three top polluted cities in Hebei, i.e., Shijiazhuang, Xingtai, and Handan, is performed using the Brute-Force method. It is concluded that the regional source contributions to PM2.5 are 27.9% in Shijiazhuang, 46.6% in Xingtai, and 40.4% in Handan. The major local contributors are industrial, domestic and agricultural sources in all the three cities with the contributions of 39.8%, 15.8%, and 10.6% in Shijiazhuang, 30.5%, 13.6%, and 6.9% in Xingtai, 35.9%, 13.5%, and 6.2% in Handan, respectively. As to the secondary aerosols of sulfate (SO42-), nitrate (NO3-), and ammonium (NH4+) in PM2.5, which are important chemical species in PM2.5 (about 30-40% in PM2.5) and cannot be further apportioned by receptor models, the regional source contributions to the total concentrations of SO42-, NO3-, and NH4+ are 40.9%, 62.0%, and 59.1% in Shijiazhuang, Xingtai, and Handan, respectively. The local industrial, domestic and agricultural contributions to those are 23.7%, 6.6%, and 29.8% in total in Shijiazhuang, 17.5%, 5.0%, and 17.7% in Xingtai, and 20.6%, 4.8%, and 17.8% in Handan, respectively. The regional joint controls of air pollution are more important in Xingtai and Handan than in Shijiazhuang, and the emission controls of agricultural sources need to be further considered in the future policy.

  6. Fine particulates over South Asia: Review and meta-analysis of PM2.5 source apportionment through receptor model.

    Science.gov (United States)

    Singh, Nandita; Murari, Vishnu; Kumar, Manish; Barman, S C; Banerjee, Tirthankar

    2017-04-01

    Fine particulates (PM2.5) constitute dominant proportion of airborne particulates and have been often associated with human health disorders, changes in regional climate, hydrological cycle and more recently to food security. Intrinsic properties of particulates are direct function of sources. This initiates the necessity of conducting a comprehensive review on PM2.5 sources over South Asia which in turn may be valuable to develop strategies for emission control. Particulate source apportionment (SA) through receptor models is one of the existing tool to quantify contribution of particulate sources. Review of 51 SA studies were performed of which 48 (94%) were appeared within a span of 2007-2016. Almost half of SA studies (55%) were found concentrated over few typical urban stations (Delhi, Dhaka, Mumbai, Agra and Lahore). Due to lack of local particulate source profile and emission inventory, positive matrix factorization and principal component analysis (62% of studies) were the primary choices, followed by chemical mass balance (CMB, 18%). Metallic species were most regularly used as source tracers while use of organic molecular markers and gas-to-particle conversion were minimum. Among all the SA sites, vehicular emissions (mean ± sd: 37 ± 20%) emerged as most dominating PM2.5 source followed by industrial emissions (23 ± 16%), secondary aerosols (22 ± 12%) and natural sources (20 ± 15%). Vehicular emissions (39 ± 24%) also identified as dominating source for highly polluted sites (PM2.5>100 μgm(-3), n = 15) while site specific influence of either or in combination of industrial, secondary aerosols and natural sources were recognized. Source specific trends were considerably varied in terms of region and seasonality. Both natural and industrial sources were most influential over Pakistan and Afghanistan while over Indo-Gangetic plain, vehicular, natural and industrial emissions appeared dominant. Influence of vehicular emission was found

  7. Source Apportionment of Heavy Metals in Soils Using Multivariate Statistics and Geostatistics

    Institute of Scientific and Technical Information of China (English)

    QU Ming-Kai; LI Wei-Dong; ZHANG Chuan-Rong; WANG Shan-Qin; YANG Yong; HE Li-Yuan

    2013-01-01

    The main objectives of this study were to introduce an integrated method for effectively identifying soil heavy metal pollution sources and apportioning their contributions,and apply it to a case study.The method combines the principal component analysis/absolute principal component scores (PCA/APCS) receptor model and geostatistics.The case study was conducted in an area of 31 km2 in the urban-rural transition zone of Wuhan,a metropolis of central China.124 topsoil samples were collected for measuring the concentrations of eight heavy metal elements (Mn,Cu,Zn,Pb,Cd,Cr,Ni and Co).PCA results revealed that three major factors were responsible for soil heavy metal pollution,which were initially identified as "steel production","agronomic input" and "coal consumption".The APCS technique,combined with multiple linear regression analysis,was then applied for source apportionment.Steel production appeared to be the main source for Ni,Co,Cd,Zn and Mn,agronomic input for Cu,and coal consumption for Pb and Cr.Geostatistical interpolation using ordinary kriging was finally used to map the spatial distributions of the contributions of pollution sources and further confirm the result interpretations.The introduced method appears to be an effective tool in soil pollution source apportionment and identification,and might provide valuable reference information for pollution control and environmental management.

  8. Radon source apportionment in the home, dosimetry and risk modeling. Final report, 1993--1997

    Energy Technology Data Exchange (ETDEWEB)

    Harley, N.H.

    1998-08-04

    This research covered the following 3 topics in 4 years: (1) the source apportionment of {sup 222}Rn in the home; (2) the internal bronchial dosimetry of inhaled {sup 222}Rn decay products; and (3) the lung cancer risk from inhalation of the short lived decay products of {sup 222}Rn. A 4th year of support was appended to this grant with a switch in research effort to determine a method for long term measurement of the particle size distribution of the short lived decay products in homes.

  9. Source apportionment of PM2.5 in Seoul, Korea

    Directory of Open Access Journals (Sweden)

    S.-M. Yi

    2008-12-01

    Full Text Available PM2.5 samples were collected at a centrally located urban monitoring site in Seoul, Korea, every third day from March 2003 to December 2006 and analyzed for their chemical constituents. Sources were identified using Positive Matrix Factorization (PMF. A total of 393 samples were obtained during the sampling period, and 20 chemical species were measured. Nine PM2.5 sources were identified providing physically realistic profiles and interesting insights into the source contributions to the ambient mass concentrations. The major sources of PM2.5 were secondary nitrate (20%, secondary sulfate (20%, gasoline-fueled vehicles (17%, and biomass burning (12%, with lesser contributions from diesel emissions (8%, soil (7%, industry (6%, road salt and two-stroke engine (5%, and aged sea salt (2%. PM2.5 levels in Seoul were influenced by both local urban activities and regional-scale transport. Conditional Probability Function (CPF results identified possible source directions of local sources such as motor vehicles (gasoline and diesel, industry, and road salt. Potential Source Contribution Function (PSCF results showed that possible source areas contributing to the elevated secondary particle concentrations (sulfate and nitrate in Seoul to be the major industrial areas in China.

  10. Source apportionment of PM2.5 in Seoul, Korea

    Science.gov (United States)

    Heo, J.-B.; Hopke, P. K.; Yi, S.-M.

    2008-12-01

    PM2.5 samples were collected at a centrally located urban monitoring site in Seoul, Korea, every third day from March 2003 to December 2006 and analyzed for their chemical constituents. Sources were identified using Positive Matrix Factorization (PMF). A total of 393 samples were obtained during the sampling period, and 20 chemical species were measured. Nine PM2.5 sources were identified providing physically realistic profiles and interesting insights into the source contributions to the ambient mass concentrations. The major sources of PM2.5 were secondary nitrate (20%), secondary sulfate (20%), gasoline-fueled vehicles (17%), and biomass burning (12%), with lesser contributions from diesel emissions (8%), soil (7%), industry (6%), road salt and two-stroke engine (5%), and aged sea salt (2%). PM2.5 levels in Seoul were influenced by both local urban activities and regional-scale transport. Conditional Probability Function (CPF) results identified possible source directions of local sources such as motor vehicles (gasoline and diesel), industry, and road salt. Potential Source Contribution Function (PSCF) results showed that possible source areas contributing to the elevated secondary particle concentrations (sulfate and nitrate) in Seoul to be the major industrial areas in China.

  11. Analyzing hydrocarbons in sewer to help in PAH source apportionment in sewage sludges.

    Science.gov (United States)

    Mansuy-Huault, Laurence; Regier, Annette; Faure, Pierre

    2009-05-01

    A multi-molecular approach for polycyclic aromatic hydrocarbons (PAH) source apportionment in sewage sludge was tested. Three simple catchment areas with corresponding wastewater treatment plants (WWTP) were chosen. Sewage sludges of these WWTPs chronically exceeded the French guide values for PAHs. Aliphatic and aromatic hydrocarbons were quantified in sediments or wastewater suspended particulate matter sampled in different locations of the sewer as well as in sewage sludge. Various molecular indices including PAH ratios were calculated. The results showed that the ratios calculated from sewage sludge analyses provided a rather unspecific hydrocarbon fingerprint where combustion input appear as the main PAH sources. The complexity of the inputs as well as degradation occurring during wastewater treatment prevent any detailed diagnosis. Coupled to the analyses of samples collected in the sewer, the multi-molecular approach becomes more efficient especially for the identification of specific petroleum inputs such as fuel or used lubricating oils which can be important PAH sources. Indeed, the sampling in the sewer allows a spatial screening of the hydrocarbon inputs and facilitates the PAH source apportionment by avoiding the dilution of specific inputs with the whole wastewater inputs and by limiting the degradation of the molecular fingerprint that could occur during transfer and treatment in the WWTP. Then, the combination of PAH ratios and aliphatic distribution analyses is a very valuable approach that can help in sewer and WWTP management.

  12. Toxicity evaluation and source apportionment of Polycyclic Aromatic Hydrocarbons (PAHs) at three stations in Istanbul, Turkey.

    Science.gov (United States)

    Hanedar, Asude; Alp, Kadir; Kaynak, Burçak; Avşar, Edip

    2014-08-01

    This paper focuses on the toxicity evaluation and source apportionment of Polycyclic Aromatic Hydrocarbons (PAHs) in three monitoring stations in Istanbul, Turkey. A total of 326 airborne samples were collected and analyzed for 16 PAHs and Total Suspended Particles (TSP) for the period of September 2006-December 2007. The total average PAH concentrations were 100.7±61.3, 84.6±46.7 and 25.1±13.3 ng m(-3) and the TSP concentrations were 101.2±53.2, 152.3±99.1, 49.8±18.6 μg m(-3) for URB1, URB2 and RUR stations, respectively. Benzo(a)Pyren (BaP) toxic equivalency factors to PAH concentration values were calculated indicating that the health risk of BaP and DiBenz(a,h)Anthracene (markers of traffic emissions) have the highest contribution compared to all of the other species measured at the sampling sites. In order to determine PAH sources, two different source apportionment techniques were applied to the measurements; diagnostic ratios (DR) and Positive Matrix Factorization (PMF). The results of the two applications were compatible indicating the vehicle emissions - especially diesel engines - as the major source for urban stations.

  13. An inter-comparison of PM2.5 at urban and urban background sites: Chemical characterization and source apportionment

    Science.gov (United States)

    Cesari, D.; Donateo, A.; Conte, M.; Merico, E.; Giangreco, A.; Giangreco, F.; Contini, D.

    2016-06-01

    A measurement campaign was performed between 04/03/2013 and 17/07/2013 for simultaneous collection of PM2.5 samples in two nearby sites in southeastern Italy: an urban site and an urban background site. PM2.5 at the two sites were similar; however, the chemical composition and the contributions of the main sources were significantly different. The coefficients of divergence (CODs) showed spatial heterogeneity of EC (higher at the urban site because of traffic emissions) and of all metals. Major ions (NH4+, Na+, and SO42 -) and OC had low CODs, suggesting a homogeneous distribution of sea spray, secondary sulfate, and secondary organic matter (SOM = 1.6*OCsec, where OCsec is the secondary OC). The strong correlations between Na+ and Cl-, and the low Cl-/Na+ ratios, suggested the presence of aged sea spray with chloride depletion (about 79% of Cl-) and formation of sodium nitrate at both sites. In both sites, the non-sea-salt sulfate was about 97% of sulfate, and the strong correlation between SO42 - and NH4+ indicated that ammonium was present as ammonium sulfate. However, during advection of Saharan Dust, calcium sulfate was present rather than ammonium sulfate. The source apportionment was performed using the Positive Matrix Factorization comparing outputs of model EPA PMF 3.0 and 5.0 version. Six aerosol sources were identified at both sites: traffic, biomass burning, crustal-resuspended dust, secondary nitrate, marine aerosol, and secondary sulfate. The PMF3.0 model was not completely able, in these sites, to separate marine contribution from secondary nitrate and secondary sulfate from OC, underestimating the marine contribution and overestimating the secondary sulfate with respect to stoichiometric calculations. The application of specific constraints on PMF5.0 provided cleaner profiles, improving the comparison with stoichiometric calculations. The seasonal trends revealed larger biomass burning contributions during the cold period at both sites due to

  14. Source apportionment of PM2.5 in Incheon, Korea

    Science.gov (United States)

    Choi, J.; Ban, S.; Lee, C.; Yi, S.; Zoh, K.

    2011-12-01

    PM2.5 samples were collected at a centrally located urban monitoring site in Incheon, Korea, every third day from Jun 2009 to may 2010 and analyzed their chemical species. In this study, we investigated the source of PM2.5 using Positive Matrix Factorization(PMF), the source area from Potential Source Contribution Function (PSCF) and Conditional Probability Function(CPF), and characterized source variation among episode, non-episode, yellow sand events. Incheon, study site, is located at the mid-western tip of the Korean Peninsula with a population of 2.6 million people and area of 1029.4 km2, respectively. As a transportation hub, the city also holds the importance of meteological/geological aspect affecting the air quality of capital region, in that is prevailing westerlies zone and a air passageway from China to Japan passing through seoul, korea. In the study, the Four channel based on Annular Denuder System(ADS) were used for sample collection(URG co, USA). The filter samples were analyzed with respect to species type such as ion group, metal, and OC/EC compound using ion chromatography, ICP/MS, and NIOSH TOT method, respectively. The PM2.5 concentration was 43ug/m3 that is almost three times higher than the US NAAQS annual PM2.5 standard of 15ug/m3. Nine PM2.5 sources were resolved from PMF analysis that provided reasonable source profiles and interesting insights into the source contributions to the ambient mass concentrations. The major sources of PM2.5 were secondary nitrate(26.4%), secondary sulfate(17.3%), gasoline(16.4%), and residual oil combustion(13.5%), with lesser contributions from biomass burning (7.5%), road dust(6.9%), soil (5.5%), coal fire powerplant (4.0%), and free sea salt(2.4%). CPF results identified possible local source directions such as motor vehicles, free sea salt. PSCF results indicated that likely pollution areas increased secondary particle concentrations(sulfate and nitrate) in Incheon to be the major industrial areas in China

  15. Source apportionment of fine particles in Kuwait City.

    Science.gov (United States)

    Alolayan, Mohammad A; Brown, Kathleen W; Evans, John S; Bouhamra, Walid S; Koutrakis, Petros

    2013-03-15

    This study investigated major sources of PM2.5 in the atmosphere of Kuwait based on a sampling program conducted between February 2004 and October 2005. Three source identification techniques were used in this study: (1) a positive matrix factorization model; (2) backward trajectory profiles; and (3) concentration rose plots. Five major sources of PM2.5 were estimated. These were sand dust (sand storms), oil combustion (power plants), petrochemical industry (fertilizer, nylon or catalyst regeneration facilities), traffic (vehicle emissions and road dust) and transported emissions (emissions from outside Kuwait, such as those from automobiles, road dust or smelters). The estimated contributions to PM2.5 of these sources were: 54% from sand dust, 18% from oil combustion, 12% from petrochemical industry, 11% from traffic and 5% from anthropogenic sources transported from outside the country. Oil combustion, petrochemical industry and traffic were found to emanate from local sources, whereas sand dust and some emissions from traffic, and possibly smelters, appeared to originate from sources outside of Kuwait (transported). The PM2.5 levels in Kuwait during our previous sampling study averaged 53μg/m(3). More than half of the measured PM2.5 appears to have been due to crustal material, much originating outside of the country. However, the relatively high levels of PM2.5 contributed by anthropogenic local sources, such as oil combustion, petrochemical industry emissions, and traffic indicated that there may be great opportunities for Kuwait to improve public health. The application of cost-effective emission controls and development of forward looking environmental health policies have the potential to significantly reduce emissions, population exposures to PM2.5 and the burden of mortality and morbidity from air pollution.

  16. AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in five southern European cities

    Science.gov (United States)

    Amato, Fulvio; Alastuey, Andrés; Karanasiou, Angeliki; Lucarelli, Franco; Nava, Silvia; Calzolai, Giulia; Severi, Mirko; Becagli, Silvia; Gianelle, Vorne L.; Colombi, Cristina; Alves, Celia; Custódio, Danilo; Nunes, Teresa; Cerqueira, Mario; Pio, Casimiro; Eleftheriadis, Konstantinos; Diapouli, Evangelia; Reche, Cristina; Cruz Minguillón, María; Manousakas, Manousos-Ioannis; Maggos, Thomas; Vratolis, Stergios; Harrison, Roy M.; Querol, Xavier

    2016-03-01

    The AIRUSE-LIFE+ project aims at characterizing similarities and heterogeneities in particulate matter (PM) sources and contributions in urban areas from southern Europe. Once the main PMx sources are identified, AIRUSE aims at developing and testing the efficiency of specific and non-specific measures to improve urban air quality. This article reports the results of the source apportionment of PM10 and PM2.5 conducted at three urban background sites (Barcelona, Florence and Milan, BCN-UB, FI-UB and MLN-UB), one suburban background site (Athens, ATH-SUB) and one traffic site (Porto, POR-TR). After collecting 1047 PM10 and 1116 PM2.5 24 h samples during 12 months (from January 2013 on) simultaneously at the five cities, these were analysed for the contents of OC, EC, anions, cations, major and trace elements and levoglucosan. The USEPA PMF5 receptor model was applied to these data sets in a harmonized way for each city. The sum of vehicle exhaust (VEX) and non-exhaust (NEX) contributes between 3.9 and 10.8 µg m-3 (16-32 %) to PM10 and 2.3 and 9.4 µg m-3 (15-36 %) to PM2.5, although a fraction of secondary nitrate is also traffic-related but could not be estimated. Important contributions arise from secondary particles (nitrate, sulfate and organics) in PM2.5 (37-82 %) but also in PM10 (40-71 %), mostly at background sites, revealing the importance of abating gaseous precursors in designing air quality plans. Biomass burning (BB) contributions vary widely, from 14-24 % of PM10 in POR-TR, MLN-UB and FI-UB, 7 % in ATH-SUB, to road dust resuspension. In PM2.5 percentages decrease to 2-7 % at SUB-UB sites and 15 % at the TR site. - Industry, mainly metallurgy, contributing 4-11 % of PM10 (5-12 % in PM2.5), but only at BCN-UB, POR-TR and MLN-UB. No clear impact of industrial emissions was found in FI-UB and ATH-SUB. - Natural contributions from sea salt (13 % of PM10 in POR-TR, but only 2-7 % in the other cities) and Saharan dust (14 % in ATH-SUB, but less than 4 % in

  17. Source apportionment using LOTOS-EUROS: module description and evaluation

    Directory of Open Access Journals (Sweden)

    R. Kranenburg

    2013-06-01

    Full Text Available To design effective mitigation strategies, the origin of emissions which produce air pollutants needs to be known. Contributors to air pollutants can be emission sources, like road traffic or industry, but also be more specified to emission from one location or from a specified time. Chemistry transport models can be used to assess the origin of air pollution across a large domain. However, in traditional simulations the information on origin is lost and brute force scenario studies are performed to assess the origin. Alternatively, one can trace the origin of air pollutants throughout a simulation using a labeling approach. In this paper we document and demonstrate a newly developed labeling module for the chemistry transport model LOTOS-EUROS which tracks the source allocation for all particulate matter components and precursor gases. Dedicated simulations confirmed that the new module functions correctly. The new module provides more accurate information about the source contributions than using a brute force approach with scenario runs as the chemical regime remains unchanged. An important advantage of the new module is the reduction of computation costs and analysis work associated with the calculations. The new module was applied to assess the origin of particulate nitrate across the Netherlands. Averaged across the Dutch territory, the main contributions to nitrate are derived from road and non-road transport as well as power plants. Overall, only one-fifth of the concentration derived from sources located inside the country. The new technology enables new research directions as improved information on pollution origin is desired for policy support as well as scientific applications.

  18. Source apportionment of indoor PM10 in Elderly Care Centre.

    Science.gov (United States)

    Almeida-Silva, M; Faria, T; Saraga, D; Maggos, T; Wolterbeek, H T; Almeida, S M

    2016-04-01

    Source contribution to atmospheric particulate matter (PM) has been exhaustively modelled. However, people spend most of their time indoors where this approach is less explored. This evidence worsens considering elders living in Elderly Care Centres, since they are more susceptible. The present study aims to investigate the PM composition and sources influencing elderly exposure. Two 2-week sampling campaigns were conducted-one during early fall (warm phase) and another throughout the winter (cold phase). PM10 were collected with two TCR-Tecora(®) samplers that were located in an Elderly Care Centre living room and in the correspondent outdoor. Chemical analysis of the particles was performed by neutron activation analysis for element characterization, by ion chromatography for the determination of water soluble ions and by a thermal optical technique for the measurement of organic and elemental carbon. Statistical analysis showed that there were no statistical differences between seasons and environments. The sum of the indoor PM10 components measured in this work explained 57 and 53 % of the total PM10 mass measured by gravimetry in warm and cold campaigns, respectively. Outdoor PM10 concentrations were significantly higher during the day than night (p value < 0.05), as well as Ca(2+), Fe, Sb and Zn. The contribution of indoor and outdoor sources was assessed by principal component analysis and showed the importance of the highways and the airport located less than 500 m from the Elderly Care Centre for both indoor and outdoor air quality.

  19. Contamination characteristics and source apportionment of trace metals in soils around Miyun Reservoir.

    Science.gov (United States)

    Chen, Haiyang; Teng, Yanguo; Chen, Ruihui; Li, Jiao; Wang, Jinsheng

    2016-08-01

    Due to their toxicity and bioaccumulation, trace metals in soils can result in a wide range of toxic effects on animals, plants, microbes, and even humans. Recognizing the contamination characteristics of soil metals and especially apportioning their potential sources are the necessary preconditions for pollution prevention and control. Over the past decades, several receptor models have been developed for source apportionment. Among them, positive matrix factorization (PMF) has gained popularity and was recommended by the US Environmental Protection Agency as a general modeling tool. In this study, an extended chemometrics model, multivariate curve resolution-alternating least squares based on maximum likelihood principal component analysis (MCR-ALS/MLPCA), was proposed for source apportionment of soil metals and applied to identify the potential sources of trace metals in soils around Miyun Reservoir. Similar to PMF, the MCR-ALS/MLPCA model can incorporate measurement error information and non-negativity constraints in its calculation procedures. Model validation with synthetic dataset suggested that the MCR-ALS/MLPCA could extract acceptable recovered source profiles even considering relatively larger error levels. When applying to identify the sources of trace metals in soils around Miyun Reservoir, the MCR-ALS/MLPCA model obtained the highly similar profiles with PMF. On the other hand, the assessment results of contamination status showed that the soils around reservoir were polluted by trace metals in slightly moderate degree but potentially posed acceptable risks to the public. Mining activities, fertilizers and agrochemicals, and atmospheric deposition were identified as the potential anthropogenic sources with contributions of 24.8, 14.6, and 13.3 %, respectively. In order to protect the drinking water source of Beijing, special attention should be paid to the metal inputs to soils from mining and agricultural activities.

  20. A novel approach for apportionment between primary and secondary sources of airborne nitrated polycyclic aromatic hydrocarbons (NPAHs)

    Science.gov (United States)

    Lin, Yan; Qiu, Xinghua; Ma, Yiqiu; Wang, Junxia; Wu, Yusheng; Zeng, Limin; Hu, Min; Zhu, Tong; Zhu, Yifang

    2016-08-01

    Nitrated polycyclic aromatic hydrocarbons (NPAHs) are strong environmental mutagens and carcinogens originating from both primary emissions and secondary reactions in the atmosphere. The sources and the toxicity of different NPAH species could vary greatly; therefore a specie-specific source apportionment is essential to evaluate their health risks and to formulate controlling regulations. However, few studies have reported source apportionment of NPAHs species to date. In this study, we developed an easy-to-perform method for the apportionment of primary versus secondary sources of airborne NPAHs based on the relationship between NPAHs and NO2. After log-transformation of both NPAHs and NO2 concentrations, a slope of β between these two variables was obtained by the linear regression. When β is significantly smaller than 1, it indicates primary emissions while β significantly greater than 1 suggests secondary formation. We have validated this method with data previously collected in Beijing. A good correlation, with R value of 0.57, was observed between results produced by this new method and by Positive Matrix Factorization (PMF). The correlation could be further improved (R = 0.71) if the gas/particle partition of NPAHs is taken into consideration. This developed method enables the source apportionment for individual NPAHs species and could be used to validate the results of other receptor models.

  1. Source apportionment for urban PM10 and PM2.5 in the Beijing area

    Institute of Scientific and Technical Information of China (English)

    ZHANG Wei; GUO JingHua; SUN YeLe; YUAN Hui; ZHUANG GuoShun; ZHUANG YaHui; HAO ZhengPing

    2007-01-01

    Airborne particulate matter (PM2.5 and PM10) samples were collected at the Beijing Normal University sampling site in the urban area of Beijing, China in dry and wet seasons during 2001―2004. Concentrations of 23 elements and 14 ions in particulate samples were determined by ICP-AES and IC, respectively. Source apportionment results derived from both Positive Matrix Factorization (PMF) and Chemical Mass Balance (CMB) models indicate that the major contributors of PM2.5 and PM10 in Beijing are: soil dust, fossil fuel combustion, vehicle exhausts, secondary particulate, biomass burning and some industrial sources. We have identified both regional common sources, such as vehicular emissions, particulate of secondary origin and biomass burning, as well as country-specific problems, such as sand storms and soil dust that should be addressed for effective air quality control.

  2. The Analysis of PM2.5 Source Apportionment Technique's Competitiveness in China

    Science.gov (United States)

    Qian, K.; Deng, L.; An, Y. B.; Liu, S. Y.; Hao, H. Z.

    Nowadays, people has paid more attention to PM2.5 in various countries of the world. PM2.5 is a kind of particulate matter whose diameter less than 2.5μm, with great damage to environment and public's health. The origin of source apportionment technique is studies of atmospheric particulate matter, it uses two mathematical models, one of them is diffusion model which study the source of pollution, and another one called receptor model which study the pollution of area. In my study, I will analyze the competitiveness of similar technology in various countries by using microscope to analyze shape characteristic, Enrichment Factor Method (EF), Factor Analyze Method (FA), EPA-CMB8.2 Model, combining with the consequence of Improved-source-analysis Technology and Orthogonal matrix decomposition Model.

  3. [Pollutant source apportionment of combined sewer overflows using chemical mass balance method].

    Science.gov (United States)

    Dai, Mei-Hong; Li, Tian; Zhang, Wei

    2013-11-01

    Pollutant characteristics of surface runoff, sanitary sewage and sewer deposits from a combined sewer system in Shanghai were studied. It was confirmed that the content of Zn, NH4(+) -N, P, respectively in surface runoff, sanitary sewage and sewer deposits was specific and relatively stable based on contrasting pollutant characteristics of different sources. Three non-dimensional parameters-Zn/P, NH4(+) -N/Zn, P/K were proposed as characteristic index for surface runoff, sanitary sewage and sewer deposits. In order to find sources of pollutants in CSO, the application of chemical mass balance method was discussed: the average contributions to CSO were 42.8% for surface runoff, 12.2% for sanitary sewage, 23.8% for sewer deposits, and the results basically reflected the composition of CSO pollution. The research method and results can provide guidance for pollutant source apportionment of combined sewer overflows.

  4. Source apportionment of gaseous and particulate PAHs from traffic emission using tunnel measurements in Shanghai, China

    Science.gov (United States)

    Liu, Ying; Wang, Siyao; Lohmann, Rainer; Yu, Na; Zhang, Chenkai; Gao, Yi; Zhao, Jianfu; Ma, Limin

    2015-04-01

    Understanding sources and contributions of gaseous and particulate PAHs from traffic-related pollution can provide valuable information for alleviating air contamination from traffic in urban areas. On-road sampling campaigns were comprehensively conducted during 2011-2012 in an urban tunnel of Shanghai, China. 2-3 rings PAHs were abundant in the tunnel's gas and particle phases. Diagnostic ratios of PAHs were statistically described; several were significantly different between the gas and particle phases. Principal component analysis (PCA), positive matrix factorization (PMF), bivariate correlation analysis and multiple linear regression analysis (MLRA) were applied to apportion sources of gaseous and particulate PAHs in the tunnel. Main sources of the gaseous PAHs included evaporative emission of fuel, high-temperature and low-temperature combustion of fuel, accounting for 50-51%, 30-36% and 13-20%, respectively. Unburned fuel particles (56.4-78.3%), high-temperature combustion of fuel (9.5-26.1%) and gas-to-particle condensation (12.2-17.5%) were major contributors to the particulate PAHs. The result reflected, to a large extent, PAH emissions from the urban traffic of Shanghai. Improving fuel efficiency of local vehicles will greatly reduce contribution of traffic emission to atmospheric PAHs in urban areas. Source apportionment of PM10 mass was also performed based on the organic component data. The results showed that high-temperature combustion of fuel and gas-to-particle condensation contributed to 15-18% and 7-8% of PM10 mass, respectively, but 55-57% of the particle mass was left unexplained. Although the results from the PCA and PMF models were comparable, the PMF method is recommended for source apportionment of PAHs in real traffic conditions. In addition, the combination of multivariate statistical method and bivariate correlation analysis is a useful tool to comprehensively assess sources of PAHs.

  5. Characterization and source apportionment of fine particulate sources at Rijeka, Croatia from 2013 to 2015

    Energy Technology Data Exchange (ETDEWEB)

    Ivošević, Tatjana, E-mail: tatjana.ivosevic14@gmail.com [Faculty of Engineering, University of Rijeka, Vukovarska 58, HR-51000 Rijeka (Croatia); Stelcer, Eduard [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia); Orlić, Ivica [Department of Physics, University of Rijeka, Radmile Matejčić 2, HR-51000 Rijeka (Croatia); Bogdanović Radović, Iva [Laboratory for Ion Beam Interactions, Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb (Croatia); Cohen, David [Australian Nuclear Science and Technology Organisation, Locked Bag 2001, Kirrawee DC, NSW 2232 (Australia)

    2016-03-15

    PM{sub 2.5} daily aerosol samples were collected in Rijeka, Croatia during period from 6th August 2013 to 29th January 2015. In total, 259 samples were collected on Teflon filters and analyzed by PIXE and PIGE techniques to give information on 21 elements from Na to Pb. Additionally, black carbon was determined with the Laser Integrated Plate Method. Results were statistically evaluated using Positive Matrix Factorization (PMF). Eight major pollution sources: auto, smoke, secondary sulfates, heavy oil combustion, sea spray, road dust, industry iron and soil dust were identified together with their relative contributions in total PM{sub 2.5} pollution.

  6. Characterization and source apportionment of fine particulate sources at Rijeka, Croatia from 2013 to 2015

    Science.gov (United States)

    Ivošević, Tatjana; Stelcer, Eduard; Orlić, Ivica; Bogdanović Radović, Iva; Cohen, David

    2016-03-01

    PM2.5 daily aerosol samples were collected in Rijeka, Croatia during period from 6th August 2013 to 29th January 2015. In total, 259 samples were collected on Teflon filters and analyzed by PIXE and PIGE techniques to give information on 21 elements from Na to Pb. Additionally, black carbon was determined with the Laser Integrated Plate Method. Results were statistically evaluated using Positive Matrix Factorization (PMF). Eight major pollution sources: auto, smoke, secondary sulfates, heavy oil combustion, sea spray, road dust, industry iron and soil dust were identified together with their relative contributions in total PM2.5 pollution.

  7. SOURCE APPORTIONMENT OF PM 2.5 AND CARBON IN SEATTLE USING CHEMICAL MASS BALANCE AND POSITIVE MATRIX FACTORIZATION

    Science.gov (United States)

    Three years of PM2.5 speciated data were collected and chemically analyzed using the IMPROVE protocol at the Beacon Hill site in Seattle. The data were analyzed by the Chemical Mass Balance Version 8 (CMB8) and Positive Matrix Factorization (PMF) source apportionment models. T...

  8. Source apportionment and health effect of NOx over the Pearl River Delta region in southern China.

    Science.gov (United States)

    Lu, Xingcheng; Yao, Teng; Li, Ying; Fung, Jimmy C H; Lau, Alexis K H

    2016-05-01

    As one of the most notorious atmospheric pollutants, NOx not only promotes the formation of ozone but also has adverse health effects on humans. It is therefore of great importance to study the sources of NOx and its effects on human health. The Comprehensive Air Quality Model (CAMx) modeling system and ozone source apportionment technology (OSAT) were used to study the contribution of NOx from different emission sources over southern China. The results indicate that heavy duty diesel vehicles (HDDVs) and industrial point sources are the two major local NOx sources, accounting for 30.8% and 18.5% of local NOx sources, respectively. In Hong Kong, marine emissions contributed around 43.4% of local NOx in 2011. Regional transport is another important source of this pollutant, especially in February and November, and it can contribute over 30% of ambient NOx on average. Power plant point emission is an significant regional source in Zhuhai, Zhongshan and Foshan. The total emission sources are estimated to cause 2119 (0-4405) respiratory deaths and 991 (0-2281) lung cancer deaths due to long-term exposure to NOx in the Pearl River Delta region. Our results suggest that local governments should combine their efforts and vigorously promote further reduction of NOx emissions, especially for those sources that make a substantial contribution to NOx emissions and affect human health: HDDV, LDGV, industrial point sources and marine sources.

  9. Space-time quantitative source apportionment of soil heavy metal concentration increments.

    Science.gov (United States)

    Yang, Yong; Christakos, George; Guo, Mingwu; Xiao, Lu; Huang, Wei

    2017-04-01

    Assessing the space-time trends and detecting the sources of heavy metal accumulation in soils have important consequences in the prevention and treatment of soil heavy metal pollution. In this study, we collected soil samples in the eastern part of the Qingshan district, Wuhan city, Hubei Province, China, during the period 2010-2014. The Cd, Cu, Pb and Zn concentrations in soils exhibited a significant accumulation during 2010-2014. The spatiotemporal Kriging technique, based on a quantitative characterization of soil heavy metal concentration variations in terms of non-separable variogram models, was employed to estimate the spatiotemporal soil heavy metal distribution in the study region. Our findings showed that the Cd, Cu, and Zn concentrations have an obvious incremental tendency from the southwestern to the central part of the study region. However, the Pb concentrations exhibited an obvious tendency from the northern part to the central part of the region. Then, spatial overlay analysis was used to obtain absolute and relative concentration increments of adjacent 1- or 5-year periods during 2010-2014. The spatial distribution of soil heavy metal concentration increments showed that the larger increments occurred in the center of the study region. Lastly, the principal component analysis combined with the multiple linear regression method were employed to quantify the source apportionment of the soil heavy metal concentration increments in the region. Our results led to the conclusion that the sources of soil heavy metal concentration increments should be ascribed to industry, agriculture and traffic. In particular, 82.5% of soil heavy metal concentration increment during 2010-2014 was ascribed to industrial/agricultural activities sources. Using STK and SOA to obtain the spatial distribution of heavy metal concentration increments in soils. Using PCA-MLR to quantify the source apportionment of soil heavy metal concentration increments.

  10. Monitoring and source apportionment of trace elements in PM2.5: Implications for local air quality management.

    Science.gov (United States)

    Li, Yueyan; Chang, Miao; Ding, Shanshan; Wang, Shiwen; Ni, Dun; Hu, Hongtao

    2017-03-08

    Fine particulate matter (PM2.5) samples were collected simultaneously every hour in Beijing between April 2014 and April 2015 at five sites. Thirteen trace elements (TEs) in PM2.5 were analyzed by online X-ray fluorescence (XRF). The annual average PM2.5 concentrations ranged from 76.8 to 102.7 μg m(-3). TEs accounted for 5.9%-8.7% of the total PM2.5 mass with Cl, S, K, and Si as the most dominant elements. Spearman correlation coefficients of PM2.5 or TE concentrations between the background site and other sites showed that PM2.5 and some element loadings were affected by regional and local sources, whereas Cr, Si, and Ni were attributed to substantial local emissions. Temporal variations of TEs in PM2.5 were significant and provided information on source profiles. The PM2.5 concentrations were highest in autumn and lowest in summer. Mn and Cr showed similar variation. Fe, Ca, Si, and Ti tended to show higher concentrations in spring, whereas concentrations of S peaked in summer. Concentrations of Cl, K, Pb, Zn, Cu, and Ni peaked in winter. PM2.5 and TE median concentrations were higher on Saturdays than on weekdays. The diurnal pattern of PM2.5 and TE median concentrations yielded similar bimodal patterns. Five dominant sources of PM2.5 mass were identified via positive matrix factorization (PMF). These sources included the regional and local secondary aerosols, traffic, coal burning, soil dust, and metal processing. Air quality management strategies, including regional environmental coordination and collaboration, reduction in secondary aerosol precursors, restrictive vehicle emission standards, promotion of public transport, and adoption of clean energy, should be strictly implemented. High time-resolution measurements of TEs provided detailed source profiles, which can greatly improve precision in interpreting source apportionment calculations; the PMF analysis of online XRF data is a powerful tool for local air quality management.

  11. Comparison of the MURA and an improved single-receptor (SIRA) trajectory source apportionment (TSA) method using artificial sources

    Science.gov (United States)

    Lee, Stephanie; Ashbaugh, Lowell

    Two trajectory source apportionment methods were tested using an artificially generated data set to determine their ability to detect the known sources. The forward-looking step from the multi-receptor trajectory analysis (MURA) method was added to the conditional probability (CP)method of Ashbaugh et al. [1985. A residence time probability analysis of sulfur concentrations at Grand Canyon National Park. Atmospheric Environment 19(8), 1263-1270] to develop the single-receptor forward CP (SIRA) method. The multi-receptor (MURA) and the SIRA methods were tested with three simulations using artificially generated sources. The ability of the methods to detect the sources was quantified for each simulation. The first simulation showed that the SIRA method is an improvement over the original CP method. The MURA trajectory method proved to be superior at identifying sources for the simulation located in the west and comparable to the SIRA method for the two simulations located in the east.

  12. Source apportionment of PM(2.5) and selected hazardous air pollutants in Seattle.

    Science.gov (United States)

    Wu, Chang-fu; Larson, Timothy V; Wu, Szu-Ying; Williamson, John; Westberg, Hal H; Liu, L-J Sally

    2007-11-01

    The potential benefits of combining the speciated PM(2.5) and VOCs data in source apportionment analysis for identification of additional sources remain unclear. We analyzed the speciated PM(2.5) and VOCs data collected at the Beacon Hill in Seattle, WA between 2000 and 2004 with the Multilinear Engine (ME-2) to quantify source contributions to the mixture of hazardous air pollutants (HAPs). We used the 'missing mass', defined as the concentration of the measured total particle mass minus the sum of all analyzed species, as an additional variable and implemented an auxiliary equation to constrain the sum of all species mass fractions to be 100%. Regardless of whether the above constraint was implemented and/or the additional VOCs data were included with the PM(2.5) data, the models identified that wood burning (24%-31%), secondary sulfate (20%-24%) and secondary nitrate (15%-20%) were the main contributors to PM(2.5). Using only PM(2.5) data, the model distinguished two diesel features with the 100% constraint, but identified only one diesel feature without the constraint. When both PM(2.5) and VOCs data were used, one additional feature was identified as the major contributor (26%) to total VOC mass. Adding VOCs data to the speciated PM(2.5) data in source apportionment modeling resulted in more accurate source contribution estimates for combustion related sources as evidenced by the less 'missing mass' percentage in PM(2.5). Using the source contribution estimates, we evaluated the validity of using black carbon (BC) as a surrogate for diesel exhaust. We found that BC measured with an aethalometer at 370 nm and 880 nm had reasonable correlations with the estimated concentrations of diesel particulate matters (r>0.7), as well as with the estimated concentrations of wood burning particles during the heating seasons (r=0.56-0.66). This indicates that the BC is not a unique tracer for either source. The difference in BC between 370 and 880 nm, however, correlated

  13. Overview of receptor-based source apportionment studies for speciated atmospheric mercury

    Directory of Open Access Journals (Sweden)

    I. Cheng

    2015-02-01

    Full Text Available Receptor-based source apportionment studies of speciated atmospheric mercury are not only concerned with source contributions, but also the influence of transport, transformation, and deposition processes on speciated atmospheric mercury concentrations at receptor locations. Previous studies applied multivariate receptor models including Principal Components Analysis and Positive Matrix Factorization, and back trajectory receptor models including Potential Source Contribution Function, Gridded Frequency Distributions, and Concentration-back trajectory models. Anthropogenic combustion sources, crustal/soil dust, and chemical and physical processes, such as gaseous elemental mercury (GEM oxidation reactions, boundary layer mixing, and GEM flux from surfaces, were inferred from the multivariate studies, which were predominantly conducted at receptor sites in Canada and the US. Back trajectory receptor models revealed potential impacts of large industrial areas such as the Ohio River Valley in the US and throughout China, metal smelters, mercury evasion from the ocean and Great Lakes, and free troposphere transport on receptor measurements. Input data and model parameters specific to atmospheric mercury receptor models are summarized and model strengths and weaknesses are also discussed. One area of improvement that applies to all receptor models is the greater focus on evaluating the accuracy of receptor models at identifying potential speciated atmospheric mercury sources, source locations, and chemical and physical processes in the atmosphere.

  14. Evaluation of organic markers for chemical mass balance source apportionment at the Fresno Supersite

    Directory of Open Access Journals (Sweden)

    J. C. Chow

    2007-01-01

    Full Text Available Sources of PM2.5 at the Fresno Supersite during high PM2.5 episodes occurring from 15 December 2000–3 February 2001 were estimated with the Chemical Mass Balance (CMB receptor model. The ability of source profiles with organic markers to distinguish motor vehicle, residential wood combustion (RWC, and cooking emissions was evaluated with simulated data. Organics improved the distinction between gasoline and diesel vehicle emissions and allowed a more precise estimate of the cooking source contribution. Sensitivity tests using average ambient concentrations showed that the gasoline vehicle contribution was not resolved without organics. Organics were not required to estimate hardwood contributions. The most important RWC marker was the water-soluble potassium ion. The estimated cooking contribution did not depend on cholesterol because its concentrations were below the detection limit in most samples. Winter time source contributions were estimated by applying the CMB model to individual and average sample concentrations. RWC was the largest source, contributing 29–31% of measured PM2.5. Hardwood and softwood combustion accounted for 16–17% and 12–15%, respectively. Secondary ammonium nitrate and motor vehicle emissions accounted for 31–33% and 9–15%, respectively. The gasoline vehicle contribution (3–10% was comparable to the diesel vehicle contribution (5–6%. The cooking contribution was 5–19% of PM2.5. Fresno source apportionment results were consistent with those estimated in previous studies.

  15. Chemical mass balance source apportionment of PM 10 in an industrialized urban area of Northern Greece

    Science.gov (United States)

    Samara, C.; Kouimtzis, Th; Tsitouridou, R.; Kanias, G.; Simeonov, V.

    Ambient PM 10 were sampled at three sites in an industrialized urban area of Northern Greece during June 1997-June 1998 and analyzed for 17 chemical elements, 5 water-soluble ions and 13 polycyclic aromatic hydrocarbons. In addition, chemical source profiles consisting of the same particulate components were obtained for a number of industrial activities (cement, fertilizer and asphalt production, quarry operations, metal electroplating, metal welding and tempering, steel manufacture, lead and bronze smelters, metal scrap incineration), residential oil burning, non-catalyst and catalyst-equipped passenger cars, diesel fuelled taxis and buses, as well as for geological fugitive sources (paved road dust and soil from open lands). Ambient and source data were used in a chemical mass balance (CMB) receptor model for source identification and apportionment. Results of CMB modeling showed that major source of ambient PM 10 at all three sites was diesel vehicle exhaust. Significant contribution from industrial oil burning was also evidenced at the site located closest to the industrial area.

  16. A factor analysis-multiple regression model for source apportionment of suspended particulate matter

    Science.gov (United States)

    Okamoto, Shin'ichi; Hayashi, Masayuki; Nakajima, Masaomi; Kainuma, Yasutaka; Shiozawa, Kiyoshige

    A factor analysis-multiple regression (FA-MR) model has been used for a source apportionment study in the Tokyo metropolitan area. By a varimax rotated factor analysis, five source types could be identified: refuse incineration, soil and automobile, secondary particles, sea salt and steel mill. Quantitative estimations using the FA-MR model corresponded to the calculated contributing concentrations determined by using a weighted least-squares CMB model. However, the source type of refuse incineration identified by the FA-MR model was similar to that of biomass burning, rather than that produced by an incineration plant. The estimated contributions of sea salt and steel mill by the FA-MR model contained those of other sources, which have the same temporal variation of contributing concentrations. This symptom was caused by a multicollinearity problem. Although this result shows the limitation of the multivariate receptor model, it gives useful information concerning source types and their distribution by comparing with the results of the CMB model. In the Tokyo metropolitan area, the contributions from soil (including road dust), automobile, secondary particles and refuse incineration (biomass burning) were larger than industrial contributions: fuel oil combustion and steel mill. However, since vanadium is highly correlated with SO 42- and other secondary particle related elements, a major portion of secondary particles is considered to be related to fuel oil combustion.

  17. Size-resolved source apportionment of particulate matter in urban Beijing during haze and non-haze episodes

    Science.gov (United States)

    Tian, S. L.; Pan, Y. P.; Wang, Y. S.

    2016-01-01

    Additional size-resolved chemical information is needed before the physicochemical characteristics and sources of airborne particles can be understood; however, this information remains unavailable in most regions of China due to lacking measurement data. In this study, we report observations of various chemical species in size-segregated particle samples that were collected over 1 year in the urban area of Beijing, a megacity that experiences severe haze episodes. In addition to fine particles, high concentrations of coarse particles were measured during the periods of haze. The abundance and chemical compositions of the particles in this study were temporally and spatially variable, with major contributions from organic matter and secondary inorganic aerosols. The contributions of organic matter to the particle mass decreased from 37.9 to 31.2 %, and the total contribution of sulfate, nitrate and ammonium increased from 19.1 to 33.9 % between non-haze and haze days, respectively. Due to heterogeneous reactions and hygroscopic growth, the peak concentrations of the organic carbon, cadmium and sulfate, nitrate, ammonium, chloride and potassium shifted from 0.43 to 0.65 µm on non-haze days to 0.65-1.1 µm on haze days. Although the size distributions of lead and thallium were similar during the observation period, their concentrations increased by a factor of more than 1.5 on haze days compared with non-haze days. We observed that sulfate and ammonium, which have a size range of 0.43-0.65 µm, sulfate and nitrate, which have a size range of 0.65-1.1 µm, calcium, which has a size range of 5.8-9 µm, and the meteorological factors of relative humidity and wind speed were responsible for haze pollution when the visibility was less than 10 km. Source apportionment using Positive Matrix Factorization showed six PM2.1 sources and seven PM2.1-9 common sources: secondary inorganic aerosol (25.1 % for fine particles vs. 9.8 % for coarse particles), coal combustion (17

  18. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Dron

    2010-04-01

    Full Text Available The functional group composition of various organic aerosols (OA is being investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCI-MS/MS. The determinations of the three functional groups' contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups and precursor ion (nitro groups scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA produced through photo-oxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounted for 1.7% (vehicular to 13.5% (o-xylene photo-oxidation of the organic carbon. The diagnostic functional group ratios are then used to tentatively differentiate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France during a strong winter pollution event. The three functional groups under study account for a total functionalisation rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to distinguish the sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assesses a wood burning organic carbon contribution of about 60%. Finally, examples of functional group mass

  19. Source apportionment of atmospheric particulate carbon in Las Vegas, Nevada,USA

    Institute of Scientific and Technical Information of China (English)

    Mark C.Green; Judith C.Chow; M.-C.Oliver Chang; L.-W.Antony Chen; Hampden D.Kuhns; Vicken R.Etyemezian; John G.Watson

    2013-01-01

    A study was conducted to quantify wintertime contributions of source types to carbonaceous PM2.5 at four urban sites in the Las Vegas Valley,one of the most rapidly growing urban areas in the southwestern United States.Twenty-four hour average ambient samples were collected for mass,ions,elements,organic carbon (OC),elemental carbon (EC),and trace organic markers analysis.Additional measurements were made to determine diurnal patterns in light-absorbing black carbon (BC) as a marker for combustion sources.Carbonaceous PM sources of on-road gasoline vehicles,on-road diesel vehicles,and off-road diesel engines were characterized with their chemical profiles,as well as fuel-based emission factors,using an In-Plume Sampling System.The Effective Variance Chemical Mass Balance (EV-CMB) source apportionment model was applied to the ambient samples collected,using source profiles developed in this study as well as profiles from other relevant studies.Four main sources contributed to PM2.5 carbon within the Las Vegas Valley:(1) paved road dust,(2) on-road gasoline vehicles,(3) residential wood combustion,and (4) on-road diesel vehicles.CMB estimated that on-road mixed fleet gasoline vehicles are the largest source for OC and EC at all the sites.The contribution of paved road dust to both OC and EC was 5-10% at the four sites.On-road diesel vehicles contribute 22% of the OC and 34% of the EC at a site near the city center,which is located immediately downwind of a major freeway.Residential wood combustion is a more important source than on-road diesel vehicles for two residential neighborhood sites.These results are consistent with our conceptual model,and the research methodology may be applied to studying other urban areas.

  20. Connecting Organic Aerosol Climate-Relevant Properties to Chemical Mechanisms of Sources and Processing

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Joel [Univ. of Washington, Seattle, WA (United States)

    2015-01-26

    The research conducted on this project aimed to improve our understanding of secondary organic aerosol (SOA) formation in the atmosphere, and how the properties of the SOA impact climate through its size, phase state, and optical properties. The goal of this project was to demonstrate that the use of molecular composition information to mechanistically connect source apportionment and climate properties can improve the physical basis for simulation of SOA formation and properties in climate models. The research involved developing and improving methods to provide online measurements of the molecular composition of SOA under atmospherically relevant conditions and to apply this technology to controlled simulation chamber experiments and field measurements. The science we have completed with the methodology will impact the simulation of aerosol particles in climate models.

  1. Development of PM2.5 source impact spatial fields using a hybrid source apportionment air quality model

    Directory of Open Access Journals (Sweden)

    C. E. Ivey

    2015-01-01

    Full Text Available An integral part of air quality management is knowledge of the impact of pollutant sources on ambient concentrations of particulate matter (PM. There is also a growing desire to directly use source impact estimates in health studies; however, source impacts cannot be directly measured. Several limitations are inherent in most source apportionment methods, which has led to the development of a novel hybrid approach that is used to estimate source impacts by combining the capabilities of receptor modeling (RM and chemical transport modeling (CTM. The hybrid CTM-RM method calculates adjustment factors to refine the CTM-estimated impact of sources at monitoring sites using pollutant species observations and the results of CTM sensitivity analyses, though it does not directly generate spatial source impact fields. The CTM used here is the Community Multi-Scale Air Quality (CMAQ model, and the RM approach is based on the Chemical Mass Balance model. This work presents a method that utilizes kriging to spatially interpolate source-specific impact adjustment factors to generate revised CTM source impact fields from the CTM-RM method results, and is applied to January 2004 over the continental United States. The kriging step is evaluated using data withholding and by comparing results to data from alternative networks. Directly applied and spatially interpolated hybrid adjustment factors at withheld monitors had a correlation coefficient of 0.89, a linear regression slope of 0.83 ± 0.02, and an intercept of 0.14 ± 0.02. Refined source contributions reflect current knowledge of PM emissions (e.g., significant differences in biomass burning impact fields. Concentrations of 19 species and total PM2.5 mass were reconstructed for withheld monitors using directly applied and spatially interpolated hybrid adjustment factors. The mean concentrations of total PM2.5 for withheld monitors were 11.7 (± 8.3, 16.3 (± 11, 8.59 (± 4.7, and 9.20 (± 5.7 μg m−3

  2. Measurement of greenhouse gases (GHGs) and source apportionment in Bakersfield, CA during CALNEX 2010

    Science.gov (United States)

    Guha, A.; Gentner, D. R.; Goldstein, A.; Provencal, R. A.; Gardner, A.; Calnex Bakersfield Science Team

    2010-12-01

    The California Global Warming Solutions Act 2006 creates a need to validate and improve the GHG inventory of the State, which has been largely based on activity and emission factor based estimates. As part of CALNEX 2010, we conducted measurements at the Bakersfield supersite of CO2, CH4, and N2O using fast response laser analyzers (LGR Inc.) to document the ambient mixing ratios of GHGs and analyze their major sources in the region, with an emphasis on understanding emissions of methane (CH4) and nitrous oxide (N2O). The site was located downwind of the urban center during the day and usually experienced a reversal of wind direction at night. Bakersfield is an urban area with heavy industrialization including petroleum refineries, oilfields, manufacturing, and cogeneration plants, all of which can be sources of the abovementioned GHGs. The site was close to a highway and potentially subject to vehicular CH4 and N2O emissions. Hence, CO and a broad variety of VOCs, which can serve as tracers (particularly for vehicle emissions), were included in the measurements to help with source apportionment. In addition to typical urban and industrial sources, Kern County is a rich agricultural region and includes a large number of cattle feedlots, dairies, settling ponds and landfills which are assumed to be some of the largest anthropogenic sources of methane in the State. Additionally, the agricultural industry uses significant amounts of fertilizers, which can lead to production of N2O from the soils along with emissions from controlled biomass burning of agricultural waste. The three GHGs studied show a strong diurnal pattern with concentrations building up in the night-time as the planetary boundary layer (PBL) becomes smaller and reversal in wind direction causes the site to become downwind of some GHG sources like landfills and feedlots. The mean background concentrations at the site (CNO2= 323 ppb; CCO2 = 390 ppm) during the day were consistent with those from the

  3. Characterization and source apportionment of particulate matter Indonesia, during a recent peat fire episode.

    Science.gov (United States)

    See, Siao Wei; Balasubramanian, Rajasekhar; Rianawati, Elisabeth; Karthikeyan, Sathrugnan; Streets, David G

    2007-05-15

    An intensive field study was conducted in Sumatra, Indonesia, during a peat fire episode to investigate the physical and chemical characteristics of particulate emissions in peat smoke and to provide necessary data for source-receptor analyses. Ambient air sampling was carried out at three different sites located at varying distances from the peatfires to determine changes in mass and number concentrations of PM2.5 and its chemical composition (carbonaceous and nitrogenous materials, polycyclic aromatic hydrocarbons, water-soluble inorganic and organic ions, and total and water-soluble metals). The three sites represent a rural site directly affected by the local peat combustion, a semirural site, and an urban site situated downwind of the peat fires. The mass concentration of PM2.5 and the number concentration of airborne particles were as high as 1600 microg/m3 and 1.7 x 10(5) cm(-3), respectively, in the vicinity of peat fires. The major components of PM2.5 in peat smoke haze were carbonaceous particles, particularly organic carbon, NO3-, and SO4(2-), while the less abundant constituents included ions such as NH4+, NO2-, Na+, K+, organic acids, and metals such as Al, Fe, and Ti. Source apportionment by chemical mass balance receptor modeling indicates that peat smoke can travel long distances and significantly affect the air quality at locations downwind.

  4. Levels and source apportionment of volatile organic compounds in southwestern area of Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Rodolfo Sosa, E. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico); Humberto Bravo, A. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico)], E-mail: hbravo@servidor.unam.mx; Violeta Mugica, A. [Universidad Autonoma Metropolitana, Azcapotzalco, D.F. (Mexico); Pablo Sanchez, A. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Circuito Exterior, Ciudad Universitaria, C.P. 04510, D.F. (Mexico); Emma Bueno, L. [Centro Nacional de Investigacion y Capacitacion Ambiental, Instituto Nacional de Ecologia (Mexico); Krupa, Sagar [Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108 (United States)

    2009-03-15

    Thirteen volatile organic compounds (VOCs) were quantified at three sites in southwestern Mexico City from July 2000 to February 2001. High concentrations of different VOCs were found at a Gasoline refueling station (GS), a Condominium area (CA), and at University Center for Atmospheric Sciences (CAS). The most abundant VOCs at CA and CAS were propane, n-butane, toluene, acetylene and pentane. In comparison, at GS the most abundant were toluene, pentane, propane, n-butane, and acetylene. Benzene, a known carcinogenic compound had average levels of 28, 35 and 250 ppbC at CAS, CA, and GS respectively. The main contributing sources of the measured VOCs at CA and CAS were the handling and management of LP (Liquid Propane) gas, vehicle exhaust, asphalt works, and use of solvents. At GS almost all of the VOCs came from vehicle exhaust and fuel evaporation, although components of LP gas were also present. Based on the overall results possible abatement strategies are discussed. - Volatile organic compounds were quantified in order to perform their source apportionment in southwestern area of Mexico City.

  5. Source apportionment of surface ozone in the Yangtze River Delta, China in the summer of 2013

    Science.gov (United States)

    Li, L.; An, J. Y.; Shi, Y. Y.; Zhou, M.; Yan, R. S.; Huang, C.; Wang, H. L.; Lou, S. R.; Wang, Q.; Lu, Q.; Wu, J.

    2016-11-01

    We applied ozone source apportionment technology (OSAT) with tagged tracers coupled within the Comprehensive Air Quality Model with Extensions (CAMx) to study the region and source category contribution to surface ozone in the Yangtze River Delta area in summer of 2013. Results indicate that the daytime ozone concentrations in the YRD region are influenced by emissions both locally, regionally and super-regionally. At urban Shanghai, Hangzhou and Suzhou receptors, the ozone formation is mainly VOC-limited, precursor emissions form Zhejiang province dominate their O3 concentrations. At the junction area among two provinces and Shanghai city, the ozone is usually influenced by all the three areas. The daily max O3 at the Dianshan Lake in July are contributed by Zhejiang (48.5%), Jiangsu (11.7%), Anhui (11.6%) and Shanghai (7.4%), long-range transport constitutes around 20.9%. At Chongming site, the BVOC emissions rate is higher than urban region. Regional contribution results show that Shanghai constitutes 15.6%, Jiangsu contributes 16.2% and Zhejiang accounts for 25.5% of the daily max O3. The analysis of the source category contribution to high ozone in the Yangtze River Delta region indicates that the most significant anthropogenic emission source sectors contributing to O3 pollution include industry, vehicle exhaust, although the effects vary with source sector and selected pollution episodes. Emissions of NOx and VOCs emitted from the fuel combustion of industrial boilers and kilns, together with VOCs emissions from industrial process contribute a lot to the high concentrations in urban Hangzhou, Suzhou and Shanghai. The contribution from regional elevated power plants cannot be neglected, especially to Dianshan Lake. Fugitive emissions of volatile pollution sources also have certain contribution to regional O3. These results indicate that the regional collaboration is of most importance to reduce ambient ozone pollution, particularly during high ozone episodes.

  6. Application of hierarchical Bayesian unmixing models in river sediment source apportionment

    Science.gov (United States)

    Blake, Will; Smith, Hugh; Navas, Ana; Bodé, Samuel; Goddard, Rupert; Zou Kuzyk, Zou; Lennard, Amy; Lobb, David; Owens, Phil; Palazon, Leticia; Petticrew, Ellen; Gaspar, Leticia; Stock, Brian; Boeckx, Pacsal; Semmens, Brice

    2016-04-01

    Fingerprinting and unmixing concepts are used widely across environmental disciplines for forensic evaluation of pollutant sources. In aquatic and marine systems, this includes tracking the source of organic and inorganic pollutants in water and linking problem sediment to soil erosion and land use sources. It is, however, the particular complexity of ecological systems that has driven creation of the most sophisticated mixing models, primarily to (i) evaluate diet composition in complex ecological food webs, (ii) inform population structure and (iii) explore animal movement. In the context of the new hierarchical Bayesian unmixing model, MIXSIAR, developed to characterise intra-population niche variation in ecological systems, we evaluate the linkage between ecological 'prey' and 'consumer' concepts and river basin sediment 'source' and sediment 'mixtures' to exemplify the value of ecological modelling tools to river basin science. Recent studies have outlined advantages presented by Bayesian unmixing approaches in handling complex source and mixture datasets while dealing appropriately with uncertainty in parameter probability distributions. MixSIAR is unique in that it allows individual fixed and random effects associated with mixture hierarchy, i.e. factors that might exert an influence on model outcome for mixture groups, to be explored within the source-receptor framework. This offers new and powerful ways of interpreting river basin apportionment data. In this contribution, key components of the model are evaluated in the context of common experimental designs for sediment fingerprinting studies namely simple, nested and distributed catchment sampling programmes. Illustrative examples using geochemical and compound specific stable isotope datasets are presented and used to discuss best practice with specific attention to (1) the tracer selection process, (2) incorporation of fixed effects relating to sample timeframe and sediment type in the modelling

  7. Chemical apportionment of aerosol optical properties during the Asia-Pacific Economic Cooperation summit in Beijing, China

    Science.gov (United States)

    Han, Tingting; Xu, Weiqi; Chen, Chen; Liu, Xingang; Wang, Qingqing; Li, Jie; Zhao, Xiujuan; Du, Wei; Wang, Zifa; Sun, Yele

    2015-12-01

    , the contribution of primary aerosol to particle extinction increased from 26.8% to 39.6%, elucidating an enhanced role of local primary sources in visibility deterioration during APEC. Further analysis of chemically resolved particle extinction showed that the extinction contributions of aerosol species varied greatly between different air masses but generally with ammonium nitrate, ammonium sulfate, and secondary OA being the three major contributors.

  8. Reactive oxygen species associated with water-soluble PM2.5 in the southeastern United States: spatiotemporal trends and source apportionment

    Directory of Open Access Journals (Sweden)

    V. Verma

    2014-07-01

    Full Text Available We assess the potential of the water-soluble fraction of atmospheric fine aerosols in the southeastern US to generate reactive oxygen species (ROS and identify major ROS-associated emission sources. ROS-generation potential of particles was quantified by the dithiothreitol (DTT assay and involved analysis of fine particulate matter (PM extracted from high-volume quartz filters (23 h integrated samples collected at various sites in different environmental settings in the southeast, including three urban Atlanta sites, in addition to a rural site. Paired sampling was conducted with one fixed site in Atlanta (Jefferson Street, representative of the urban environment, with the others rotating among different sites, for ~250 days between June 2012 and September 2013 (N = 483. A simple linear regression between the DTT activity and aerosol chemical components revealed strong associations between PM ROS generation potential and secondary organic aerosol (WSOC in summer, and biomass burning markers in winter. Redox-active metals were also correlated with the DTT activity, but mostly at urban and roadside sites. Positive matrix factorization (PMF was applied to apportion the relative contribution of various sources to the ROS generation potential of water-soluble PM2.5 in urban Atlanta. PMF showed that vehicular emissions contribute uniformly throughout the year (12 to 25%, while secondary oxidation processes dominated the DTT activity in summer (46% and biomass burning in winter (47%. Mineral dust was significant only during drier periods (~12% in summer and fall. Source apportionment by chemical mass balance (CMB was reasonably consistent with PMF, but with higher contribution from vehicular emissions (32%. Given the spatially large data set of PM sampled over an extended period, the study reconciles the results from previous work that showed only region- or season-specific aerosol components or sources contributing to PM ROS activity, possibly due to

  9. Source apportionment of arsenic in atmospheric dust fall out in an urban residential area, Raipur, Central India

    Directory of Open Access Journals (Sweden)

    G. Balakrishna

    2011-06-01

    Full Text Available The components and quantities of atmospheric dust fallout have been reported to be the pollution indicator of large urban areas. The multiplicity and complexity of sources of atmospheric dusts in urban regions has put forward the need of source apportionment of these sources indicating their contribution to specific environmental receptor. The study presented here is focused on investigation of source contribution estimates of Arsenic in urban dust fallout in an urban-industrial area, Raipur, India. Source-receptor based representative sampling plan using longitudinal study design has been adopted. Six sampling sites have been identified on the basis of land use for development plan of anthropogenic activities and factors related to the transportation and dispersion pattern of atmospheric dusts. Source apportionment has been done using Chemical Mass Balance (CMB 8. Good fit parameters and relative source contribution has been analyzed and documented. Dominance of coal fired industries sources on arsenic levels measured at selected ambient residential receptors compared to line sources has been observed. Road-traffic has shown highest contribution of dust at indoor houses and out door-street automobile exhaust has shows highest contribution for arsenic. The results of CMB output and regression data of source-receptor dust matrices have shown comparable pattern.

  10. Source apportionment of atmospheric water over East Asia - a source tracer study in CAM5.1

    Science.gov (United States)

    Pan, Chen; Zhu, Bin; Gao, Jinhui; Kang, Hanqing

    2017-02-01

    The atmospheric water tracer (AWT) method is implemented in the Community Atmosphere Model version 5.1 (CAM5.1) to quantitatively identify the contributions of various source regions to precipitation and water vapour over East Asia. Compared to other source apportionment methods, the AWT method was developed based on detailed physical parameterisations, and can therefore trace the behaviour of atmospheric water substances directly and exactly. According to the simulation, the northern Indian Ocean (NIO) is the dominant oceanic moisture source region for precipitation over the Yangtze River valley (YRV) and southern China (SCN) in summer, while the north-western Pacific (NWP) dominates during other seasons. Evaporation over the South China Sea (SCS) is responsible for only 2.7-3.7 % of summer precipitation over the YRV and SCN. In addition, the Indo-China Peninsula is an important terrestrial moisture source region (annual contribution of ˜ 10 %). The overall relative contribution of each source region to the water vapour amount is similar to the corresponding contribution to precipitation over the YRV and SCN. A case study for the SCS shows that only a small part ( ≤ 5.5 %) of water vapour originates from local evaporation, whereas much more water vapour is supplied by the NWP and NIO. In addition, because evaporation from the SCS represents only a small contribution to the water vapour over the YRV and SCN in summer, the SCS mainly acts as a water vapour transport pathway where moisture from the NIO and NWP meet.

  11. Source regional contributions to PM2.5 in a megacity in China using an advanced source regional apportionment method.

    Science.gov (United States)

    Tian, Ying-Ze; Chen, Gang; Wang, Hai-Ting; Huang-Fu, Yan-Qi; Shi, Guo-Liang; Han, Bo; Feng, Yin-Chang

    2016-03-01

    To quantify contributions of individual source categories from diverse regions to PM2.5, PM2.5 samples were collected in a megacity in China and analyzed through a newly developed source regional apportionment (SRA) method. Levels, compositions and seasonal variations of speciated PM2.5 dataset were investigated. Sources were determined by Multilinear Engine 2 (ME2) model, and results showed that the PM2.5 in Tianjin was mainly influenced by secondary sulphate & secondary organic carbon SOC (percent contribution of 26.2%), coal combustion (24.6%), crustal dust & cement dust (20.3%), secondary nitrate (14.9%) and traffic emissions (14.0%). The SRA method showed that northwest region R2 was the highest regional contributor to secondary sources, with percent contributions to PM2.5 being 9.7% for secondary sulphate & SOC and 6.0% for secondary nitrates; the highest coal combustion was from local region R1 (6.2%) and northwest R2 (8.0%); the maximum contributing region to crustal & cement dust was southeast region R4 (5.0%); and contributions of traffic emissions were relatively spatial homogeneous. The seasonal variation of regional source contributions was observed: in spring, the crustal and cement dust contributed a higher percentage and the R4 was an important contributor; the secondary process attributed an increase fraction in summer; the mixed coal combustion from southwest R5 enhanced in autumn.

  12. Measurement and apportionment of radon source terms for modeling indoor environments

    Energy Technology Data Exchange (ETDEWEB)

    Harley, N.H.

    1992-01-01

    During the present 2 1/2 year contract period, we have made significant Progress in modeling the source apportionment of indoor [sup 222]Rn and in [sup 222]Rn decay product dosimetry. Two additional areas were worked on which we believe are useful for the DOE Radon research Program. One involved an analysis of the research house data, grouping the hourly house [sup 222]Rn measurements into 2 day, 7 day and 90 day intervals to simulate the response of passive monitors. Another area requiring some attention resulted in a publication of 3 years of our indoor/outdoor measurements in a high-rise apartment. Little interest has been evinced in apartment measurements yet 20% of the US population lives in multiple-family dwellings, not in contact with the ground. These data together with a summary of all other published data on apartments showed that apartments have only about 50% greater [sup 222]Rn concentration than the measured outdoor [sup 222]Rn. Apartment dwellers generally represent a low risk group regarding [sup 222]Rn exposure. The following sections describe the main projects in some detail.

  13. Source apportionment and risk assessment of polycyclic aromatic hydrocarbons in the atmospheric environment of Alexandria, Egypt.

    Science.gov (United States)

    Khairy, Mohammed A; Lohmann, Rainer

    2013-05-01

    In this study, three receptor models [factor analysis/multiple linear regression (FA/MLR), positive matrix factorization (PMF) and UNMIX] were applied seasonally to investigate the source apportionment of PAHs in the atmospheric environment of Alexandria, and a lifetime cancer risk was assessed. ∑44 (gas+particle) PAH concentrations varied from 330 to 1770ngm(-3) and 170-1290ngm(-3) in the summer and winter seasons respectively. PAH concentrations at the industrial sites were significantly higher than at the traffic and residential sites during the winter season (p<0.001). Summer PAH concentrations were significantly higher than the winter season at the traffic sites (p=0.027). Results obtained from the three receptor models were comparable. Vehicle emissions, both diesel and gasoline contributed on average 36.0-49.0% and 19.0-34.0% respectively, natural gas combustion 11.0-27.0% and, during the summer only, also evaporative/uncombusted petroleum sources 8.00-18.0%. Seasonal trends were found for the gasoline emission source. Overall, PMF and UNMIX models afforded better source identification than did FA/MLR. The lifetime cancer risk assessment showed that incremental lifetime cancer risks (ILTCRs) were greater than the acceptable level of 10(-6) through dermal and ingestion routes at all the investigated sites and through the inhalation route at the industrial and traffic sites only. Total ILTCRs (6.64×10(-3)-4.42×10(-2)) indicated high potential risks to the local residents.

  14. Receptor model-based source apportionment of particulate pollution in Hyderabad, India.

    Science.gov (United States)

    Guttikunda, Sarath K; Kopakka, Ramani V; Dasari, Prasad; Gertler, Alan W

    2013-07-01

    Air quality in Hyderabad, India, often exceeds the national ambient air quality standards, especially for particulate matter (PM), which, in 2010, averaged 82.2 ± 24.6, 96.2 ± 12.1, and 64.3 ± 21.2 μg/m(3) of PM10, at commercial, industrial, and residential monitoring stations, respectively, exceeding the national ambient standard of 60 μg/m(3). In 2005, following an ordinance passed by the Supreme Court of India, a source apportionment study was conducted to quantify source contributions to PM pollution in Hyderabad, using the chemical mass balance (version 8.2) receptor model for 180 ambient samples collected at three stations for PM10 and PM2.5 size fractions for three seasons. The receptor modeling results indicated that the PM10 pollution is dominated by the direct vehicular exhaust and road dust (more than 60%). PM2.5 with higher propensity to enter the human respiratory tracks, has mixed sources of vehicle exhaust, industrial coal combustion, garbage burning, and secondary PM. In order to improve the air quality in the city, these findings demonstrate the need to control emissions from all known sources and particularly focus on the low-hanging fruits like road dust and waste burning, while the technological and institutional advancements in the transport and industrial sectors are bound to enhance efficiencies. Andhra Pradesh Pollution Control Board utilized these results to prepare an air pollution control action plan for the city.

  15. Overview of receptor-based source apportionment studies for speciated atmospheric mercury

    Science.gov (United States)

    Cheng, I.; Xu, X.; Zhang, L.

    2015-07-01

    Receptor-based source apportionment studies of speciated atmospheric mercury are not only concerned with source contributions but also with the influence of transport, transformation, and deposition processes on speciated atmospheric mercury concentrations at receptor locations. Previous studies applied multivariate receptor models including principal components analysis and positive matrix factorization, and back trajectory receptor models including potential source contribution function, gridded frequency distributions, and concentration-back trajectory models. Combustion sources (e.g., coal combustion, biomass burning, and vehicular, industrial and waste incineration emissions), crustal/soil dust, and chemical and physical processes, such as gaseous elemental mercury (GEM) oxidation reactions, boundary layer mixing, and GEM flux from surfaces were inferred from the multivariate studies, which were predominantly conducted at receptor sites in Canada and the US. Back trajectory receptor models revealed potential impacts of large industrial areas such as the Ohio River valley in the US and throughout China, metal smelters, mercury evasion from the ocean and the Great Lakes, and free troposphere transport on receptor measurements. Input data and model parameters specific to atmospheric mercury receptor models are summarized and model strengths and weaknesses are also discussed. Multivariate models are suitable for receptor locations with intensive air monitoring because they require long-term collocated and simultaneous measurements of speciated atmospheric Hg and ancillary pollutants. The multivariate models provide more insight about the types of Hg emission sources and Hg processes that could affect speciated atmospheric Hg at a receptor location, whereas back trajectory receptor models are mainly ideal for identifying potential regional Hg source locations impacting elevated Hg concentrations. Interpretation of the multivariate model output to sources can be

  16. Stable isotope measurements of carbon fractions (OC/EC) in airborne particulate: A new dimension for source characterization and apportionment

    Science.gov (United States)

    Huang, L.; Brook, J. R.; Zhang, W.; Li, S. M.; Graham, L.; Ernst, D.; Chivulescu, A.; Lu, G.

    A method to measure 13C/ 12C ratios of individual carbon fractions of airborne particular matter (PM) from filter samples using a stepwise thermal desorption/combustion OC/EC analyzer (via thermal optical transmission, (TOT) coupled with gas chromatography separation, followed by isotopic ratio mass spectrometer (GC-IRMS) analysis has been developed. In the TOT instrument, carbon fractions are released at different temperature ranges and different redox conditions. Organic carbon fraction (OC) was released at a relatively low temperature ( T=550 °C), whereas, elemental carbon or black carbon fraction (EC or BC) was released at a high temperature ( T>800 °C) via combustion. A temperature step of 870 °C without oxygen was chosen to remove the impact of carbonate carbon (CC) and possible cross-impact from OC and EC. All the fractions were collected cryogenically and subject to carbon isotope measurements via GC-IRMS. To evaluate the precision, accuracy and linearity range of the measurements, the different types of blanks and standards were investigated, including OC (i.e. glucose, sucrose, n-Alkanes and polycyclic aromatic hydrocarbons (PAHs), CC (i.e. carbonates) and EC (i.e. carbon black and graphite). The overall precision and the accuracy of the method is ˜0.3‰. The method was applied to Pacific2001 aerosol samples from the Greater Vancouver area in Canada. The results show that good baseline separations in thermographs can be achieved for individual carbon fractions (i.e. OC and EC) using optimized temperature plateau and retention times; relative small difference in carbon isotopic composition between OC and EC ( ΔC=δ13C-δ13C) were found in tunnel samples, whereas, the largest Δ 13C OC-EC were obtained in forest air samples; the Δ 13C OC-EC in ambient PM is likely dependant upon the dominant sources present in the vicinity of the sampling sites; the distribution of 13C/ 12C ratios of OC/EC can provide useful information for source characterization

  17. Seasonal variability and source apportionment of volatile organic compounds (VOCs) in the Paris megacity (France)

    Science.gov (United States)

    Baudic, Alexia; Gros, Valérie; Sauvage, Stéphane; Locoge, Nadine; Sanchez, Olivier; Sarda-Estève, Roland; Kalogridis, Cerise; Petit, Jean-Eudes; Bonnaire, Nicolas; Baisnée, Dominique; Favez, Olivier; Albinet, Alexandre; Sciare, Jean; Bonsang, Bernard

    2016-09-01

    Within the framework of air quality studies at the megacity scale, highly time-resolved volatile organic compound (C2-C8) measurements were performed in downtown Paris (urban background sites) from January to November 2010. This unique dataset included non-methane hydrocarbons (NMHCs) and aromatic/oxygenated species (OVOCs) measured by a GC-FID (gas chromatograph with a flame ionization detector) and a PTR-MS (proton transfer reaction - mass spectrometer), respectively. This study presents the seasonal variability of atmospheric VOCs being monitored in the French megacity and their various associated emission sources. Clear seasonal and diurnal patterns differed from one VOC to another as the result of their different origins and the influence of environmental parameters (solar radiation, temperature). Source apportionment (SA) was comprehensively conducted using a multivariate mathematical receptor modeling. The United States Environmental Protection Agency's positive matrix factorization tool (US EPA, PMF) was used to apportion and quantify ambient VOC concentrations into six different sources. The modeled source profiles were identified from near-field observations (measurements from three distinct emission sources: inside a highway tunnel, at a fireplace and from a domestic gas flue, hence with a specific focus on road traffic, wood-burning activities and natural gas emissions) and hydrocarbon profiles reported in the literature. The reconstructed VOC sources were cross validated using independent tracers such as inorganic gases (NO, NO2, CO), black carbon (BC) and meteorological data (temperature). The largest contributors to the predicted VOC concentrations were traffic-related activities (including motor vehicle exhaust, 15 % of the total mass on the annual average, and evaporative sources, 10 %), with the remaining emissions from natural gas and background (23 %), solvent use (20 %), wood-burning (18 %) and a biogenic source (15 %). An important finding of

  18. Development, testing, and application of a new Multi-Receptor (MURA) Trajectory Source Apportionment (TSA) method

    Science.gov (United States)

    Lee, Stephanie J.

    Trajectory Source Apportionment (TSA) methods are statistical techniques used to identify sources of pollution at a sampling site (receptor). TSA methods have traditionally been applied to a single receptor (Ashbaugh et al., 1985; Seibert et al., 1994; Lui et al., 2003) with some exploration of using more than one receptor (Stohl, 1996; Zeng and Hopke, 1989). A new Multi-Receptor (MURA) method was developed here. It utilizes a two step process to first identify Potential Source Regions (PSRs), and then examine them to see how often they affect each receptor. The MURA method was first tested against the conditional probability method developed by Ashbaugh et al. (1985) to determine each method's ability to detect known sources. Two artificial data sets were used; one containing a single source and one that contained four sources. The MURA method outperformed the conditional probability method. Next, the MURA method was compared to an improved version of the conditional probability method (SIRA). This test utilized three sets of artificial data in the western and eastern U.S. Although the SIRA method was an improvement over the conditional probability method, the MURA method still performed better in the four-source simulation located in the western United States. In the two eastern simulations both the MURA and SIRA methods performed similarly. The third test evaluated the impact of trajectory starting heights from 10m to 500m on the MURA method using the three simulations from the SIRA comparison. In the western simulation, the starting height had little to no impact on the accuracy of the method. In the two eastern simulations, the 10m, 50m, and 250m starting heights performed more consistently over both simulations. The MURA method was then applied to two groups of IMPROVE receptors to identify sources of sulfate and nitrate. The southwest, the western Great Plains, and the eastern Midwest affect the south central United States group for high sulfate or nitrate

  19. Metals and metalloids in atmospheric dust: Use of lead isotopic analysis for source apportionment

    Science.gov (United States)

    Felix Villar, Omar I.

    Mining activities generate aerosol in a wide range of sizes. Smelting activities produce mainly fine particles ( 1 microm). The adverse effects of aerosols on human health depend mainly on two key characteristics: size and chemical composition. One of the main objectives of this research is to analyze the size distribution of contaminants in aerosol produced by mining operations. For this purpose, a Micro-Orifice Uniform Deposit Impactor (MOUDI) was utilized. Results from the MOUDI samples show higher concentrations of the toxic elements like lead and arsenic in the fine fraction (Mitigation strategies could be developed if the source of contamination is well defined. Environmental conditions as wind speed, wind direction, relative humidity and precipitation have an important role in the concentration of atmospheric dust. Dry environments with low relative humidity are ideal for the transport of aerosols. Results obtained from this research show the relationship between dust concentrations and meteorological parameters. Dust concentrations are highly correlated with relative humidity and wind speed. With all the data collected on site and the analysis of the meteorological parameters, models can be develop to predict the transport of particles as well as the concentration of contaminants at a specific point. These models were developed and are part of the results shown in this dissertation.

  20. Source apportionment of elevated wintertime PAHs by compound-specific radiocarbon analysis

    Directory of Open Access Journals (Sweden)

    R. J. Sheesley

    2009-05-01

    Full Text Available Natural abundance radiocarbon analysis facilitates distinct source apportionment between contemporary biomass/biofuel (14C "alive" versus fossil fuel (14C "dead" combustion. Here, the first compound-specific radiocarbon analysis (CSRA of atmospheric polycyclic aromatic hydrocarbons (PAHs was demonstrated for a set of samples collected in Lycksele, Sweden a small town with frequent episodes of severe atmospheric pollution in the winter. Renewed interest in using residential wood combustion (RWC means that this type of seasonal pollution is of increasing concern in many areas. Five individual/paired PAH isolates from three pooled fortnight-long filter collections were analyzed by CSRA: phenanthrene, fluoranthene, pyrene, benzo[b+k]fluoranthene and indeno[cd]pyrene plus benzo[ghi]perylene; phenanthrene was the only compound also analyzed in the gas phase. The measured Δ14C for PAHs spanned from −138.3‰ to 58.0‰. A simple isotopic mass balance model was applied to estimate the fraction biomass (fbiomass contribution, which was constrained to 71–87% for the individual PAHs. Indeno[cd]pyrene plus benzo[ghi]perylene had an fbiomass of 71%, while fluoranthene and phenanthrene (gas phase had the highest biomass contribution at 87%. The total organic carbon (TOC, defined as carbon remaining after removal of inorganic carbon fbiomass was estimated to be 77%, which falls within the range for PAHs. This CSRA data of atmospheric PAHs established that RWC is the dominating source of atmospheric PAHs to this region of the boreal zone with some variations among RWC contributions to specific PAHs.

  1. Source apportionment of elevated wintertime PAHs by compound-specific radiocarbon analysis

    Directory of Open Access Journals (Sweden)

    R. J. Sheesley

    2008-12-01

    Full Text Available Natural abundance radiocarbon analysis facilitates distinct source apportionment between contemporary biomass/biofuel (14C "alive" versus fossil fuel (14C "dead" combustion. Here, the first compound-specific radiocarbon analysis (CSRA of atmospheric polycylic aromatic hydrocarbons (PAHs was demonstrated for a set of samples collected in Lycksele, Sweden a small town with frequent episodes of severe atmospheric pollution in the winter. Renewed interest in residential wood combustion means than this type of seasonal pollution is of increasing concern in many areas. Five individual/paired PAH isolates from three pooled fortnight-long filter collections were analyzed by CSRA: phenanthrene, fluoranthene, pyrene, benzo[b+k]fluoranthene and indeno[cd]pyrene plus benzo[ghi]perylene; phenanthrene was the only compound also analyzed in the gas phase. The measured Δ14C for PAHs spanned from −138.3‰ to 58.0‰. A simple isotopic mass balance model was applied to estimate the fraction biomass (fbiomass contribution that was constrained to a range of 71% for indeno[cd]pyrene+benzo[ghi]perylene to 87% for the gas phase phenanthrene and particulate fluoranthene, respectively. Indeno[cd]pyrene plus benzo[ghi]perylene, known to be enhanced in gasoline-powered motor vehicle exhaust compared to diesel exhaust, had the lowest contribution of biomass combustion of the measured PAHs by 9%. The total organic carbon (TOC, defined as carbon remaining after removal of inorganic carbon fbiomass was estimated to be 77%, which falls within the range for PAHs. This CSRA data of atmospheric PAHs demonstrate the non-uniformity of biomass combustion contribution to different PAHs even in a location with limited local emission sources and illustrates that regulatory efforts would not evenly reduce all PAHs.

  2. Nitrogen Source Apportionment for the Catchment, Estuary, and Adjacent Coastal Waters of the River Scheldt

    Directory of Open Access Journals (Sweden)

    Jan E. Vermaat

    2012-06-01

    Full Text Available Using the systems approach framework (SAF, a coupled model suite was developed for simulating land-use decision making in response to nutrient abatement costs and water and nutrient fluxes in the hydrological network of the Scheldt River, and nutrient fluxes in the estuary and adjacent coastal sea. The purpose was to assess the efficiency of different long-term water quality improvement measures in current and future climate and societal settings, targeting nitrogen (N load reduction. The spatial-dynamic model suite consists of two dynamically linked modules: PCRaster is used for the drainage network and is combined with ExtendSim modules for farming decision making and estuarine N dispersal. Model predictions of annual mean flow and total N concentrations compared well with data available for river and estuary (r² ≥ 0.83. Source apportionment was carried out to societal sectors and administrative regions; both households and agriculture are the major sources of N, with the regions of Flanders and Wallonia contributing most. Load reductions by different measures implemented in the model were comparable (~75% remaining after 30 yr, but costs differed greatly. Increasing domestic sewage connectivity was more effective, at comparatively low cost (47% remaining. The two climate scenarios did not lead to major differences in load compared with the business-as-usual scenario (~88% remaining. Thus, this spatially explicit model of water flow and N fluxes in the Scheldt catchment can be used to compare different long-term policy options for N load reduction to river, estuary, and receiving sea in terms of their effectiveness, cost, and optimal location of implementation.

  3. Spatial distribution, potential risk assessment, and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in sediments of Lake Chaohu, China.

    Science.gov (United States)

    Li, Chaocan; Huo, Shouliang; Yu, Zhiqiang; Xi, Beidou; Zeng, Xiangying; Wu, Fengchang

    2014-10-01

    Twenty-nine sediment samples were collected from Lake Chaohu, a shallow eutrophic lake in Eastern China, and were analyzed for 15 priority polycyclic aromatic hydrocarbons (PAHs) to determine the spatial distribution and exposure risks of PAHs. Three receptor models, the principal component analysis-multiple linear regression (PCA-MLR) model, the positive matrix factorization (PMF) model, and the Unmix model, were used in combination with the PAHs diagnostic ratios to investigate the potential source apportionment of PAHs. A clear gradient in the spatial distribution and the potential toxicity of PAHs was observed from west to east in the sediments of Lake Chaohu. ∑15PAH concentrations and the TEQ were in the range of 80.82-30 365.01 ng g(-1) d.w. and 40.77-614.03, respectively. The highest values of the aforementioned variables were attributed to urban-industrial pollution sources in the west lake region, and the levels decreased away from the river inlets. The three different models yielded excellent correlation coefficients between the predicted and measured levels of the 15 PAH compounds. Similarly, source apportionment results were derived from the three receptor models and the PAH diagnostic ratios, suggesting that the highest contribution to the PAHs was from coal combustion and wood combustion, followed by vehicular emissions. The PMF model yielded the following contributions to the PAHs from gasoline combustion, diesel combustion, unburned petroleum emissions, and wood combustion: 34.49, 24.61, 16.11, 13.01, and 11.78 %, respectively. The PMF model produced more detailed source apportionment results for the PAHs than the PCA-MLR and Unmix models.

  4. Chemical Characterization and Source Apportionment of Indoor and Outdoor Fine Particulate Matter (PM2.5) in Retirement Communities of the Los Angeles Basin

    Science.gov (United States)

    Hasheminassab, Sina; Daher, Nancy; Shafer, Martin M.; Schauer, James J.; Delfino, Ralph J.; Sioutas, Constantinos

    2014-01-01

    Concurrent indoor and outdoor measurements of fine particulate matter (PM2.5) were conducted at three retirement homes in the Los Angeles Basin during two separate phases (cold and warm) between 2005 and 2006. Indoor-to-outdoor relationships of PM2.5 chemical constituents were determined and sources of indoor and outdoor PM2.5 were evaluated using a molecular marker-based chemical mass balance (MM-CMB) model. Indoor levels of elemental carbon (EC) along with metals and trace elements were found to be significantly affected by outdoor sources. EC, in particular, displayed very high indoor-to-outdoor (I/O) mass ratios accompanied by strong I/O correlations, illustrating the significant impact of outdoor sources on indoor levels of EC. Similarly, indoor levels of polycyclic aromatic hydrocarbons (PAHs), hopanes, and steranes were strongly correlated with their outdoor components and displayed I/O ratios close to unity. On the other hand, concentrations of n-alkanes and organic acids inside the retirement communities were dominated by indoor sources (e.g. food cooking and consumer products), as indicated by their I/O ratios, which exceeded unity. Source apportionment results revealed that vehicular emissions were the major contributor to both indoor and outdoor PM2.5, accounting for 39 and 46% of total mass, respectively. Moreover, the contribution of vehicular sources to indoor levels was generally comparable to its corresponding outdoor estimate. Other water-insoluble organic matter (other WIOM), which accounts for emissions from uncharacterized primary biogenic sources, displayed a wider range of contributions, varying from 2 to 73% of PM2.5, across all sites and phases of the study. Lastly, higher indoor than outdoor contribution of other water-soluble organic matter (other WSOM) was evident at some of the sites, suggesting the production of secondary aerosols as well as direct emissions from primary sources (including cleaning or other consumer products) at the

  5. Source apportionment of atmospheric pollutants based on the online data by using PMF and ME2 models at a megacity, China

    Science.gov (United States)

    Liu, Baoshuang; Yang, Jiamei; Yuan, Jie; Wang, Jiao; Dai, Qili; Li, Tingkun; Bi, Xiaohui; Feng, Yinchang; Xiao, Zhimei; Zhang, Yufen; Xu, Hong

    2017-03-01

    From 1st June to 31st August 2015, the online datasets (the water soluble inorganic ions (WSIIs), OC and EC in PM2.5, and SO2, NO2, NO) were measured continuously at Tianjin. Source apportionment of atmospheric pollutants was carried out by using PMF and ME2 models based on the online datasets. During summer in Tianjin, the ammonium sulfate/ammonium hydrogen sulfate might be major forms of sulfate in the atmospheric aerosol, while the ammonium nitrate might be major forms of nitrate. The poor correlation between OC and EC might be caused by the changes of emission sources and the production of secondary organic carbon (SOC). Five source-categories that contributed to atmospheric pollutants were extracted by PMF and ME2 models, respectively. The profiles calculated by PMF and ME2 models were consistent, and the source contributions estimated by the two models were also similar. The correlations (R2 = 0.84-0.94) were better on the time series of the contributed concentrations for the same source-category calculated from PMF and ME2 models. The source-categories were identified as secondary sources (the contribution of 25.4-26.1%), vehicle exhaust (23.3-25.4%), coal combustion (16.5-18.2%), crustal dust (13.2-14.0%) and biomass burning (9.1-10.2%). For the same source-category identified from PMF and ME2 models, the differences of profiles might be attributed to the differences of calculated methods from the two models and the uncertainties of the online datasets.

  6. Atmospheric Aerosol Source-Receptor Relationships: The Role of Coal-Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2005-12-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2005 through August 2005. Significant progress was made this project period on the source characterization, source apportionment, and deterministic modeling activities. This report highlights new data on road dust, vegetative detritus and motor vehicle emissions. For example, the results show significant differences in the composition in urban and rural road dust. A comparison of the organic of the fine particulate matter in the tunnel with the ambient provides clear evidence of the significant contribution of vehicle emissions to ambient PM. The source profiles developed from this work are being used by the source-receptor modeling activities. The report presents results on the spatial distribution of PMF-factors. The results can be grouped into three different categories: regional sources, local sources, or potentially both regional and local sources. Examples of the regional sources are the sulfate and selenium PMF-factors which most likely-represent coal fired power plants. Examples of local sources are the specialty steel and lead factors. There is reasonable correspondence between these apportionments and data from the EPA TRI and AIRS emission inventories. Detailed comparisons between PMCAMx predictions and measurements by the STN and IMPROVE measurements in the Eastern US are presented. Comparisons were made for the major aerosol components and PM{sub 2.5} mass in July 2001, October 2001, January 2002, and April 2002. The results are encouraging with average fraction biases for most species less than 0.25. The improvement of the model performance during the last two years was mainly due to the comparison of the model predictions with the continuous measurements in the Pittsburgh Supersite. Major improvements have included the descriptions: of ammonia emissions (CMU inventory), night time nitrate chemistry, EC emissions and their diurnal

  7. Chemical characterization of atmospheric particles and source apportionment in the vicinity of a steelmaking industry

    Energy Technology Data Exchange (ETDEWEB)

    Almeida, S.M., E-mail: smarta@ctn.ist.utl.pt [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 139.7 km, 2695-066 Bobadela LRS (Portugal); Lage, J. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 139.7 km, 2695-066 Bobadela LRS (Portugal); Fernández, B. [Global R& D, ArcelorMittal, Avilés (Spain); Garcia, S. [Instituto de Soldadura e Qualidade, Av. Prof. Dr. Cavaco Silva, 33, 2740-120 Porto Salvo (Portugal); Reis, M.A.; Chaves, P.C. [Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10, 139.7 km, 2695-066 Bobadela LRS (Portugal)

    2015-07-15

    The objective of this work was to provide a chemical characterization of atmospheric particles collected in the vicinity of a steelmaking industry and to identify the sources that affect PM{sub 10} levels. A total of 94 PM samples were collected in two sampling campaigns that occurred in February and June/July of 2011. PM{sub 2.5} and PM{sub 2.5–10} were analyzed for a total of 22 elements by Instrumental Neutron Activation Analysis and Particle Induced X-ray Emission. The concentrations of water soluble ions in PM{sub 10} were measured by Ion Chromatography and Indophenol-Blue Spectrophotometry. Positive Matrix Factorization receptor model was used to identify sources of particulate matter and to determine their mass contribution to PM{sub 10}. Seven main groups of sources were identified: marine aerosol identified by Na and Cl (22%), steelmaking and sinter plant represented by As, Cr, Cu, Fe, Ni, Mn, Pb, Sb and Zn (11%), sinter plant stack identified by NH{sub 4}{sup +}, K and Pb (12%), an unidentified Br source (1.8%), secondary aerosol from coke making and blast furnace (19%), fugitive emissions from the handling of raw material, sinter plant and vehicles dust resuspension identified by Al, Ca, La, Si, Ti and V (14%) and sinter plant and blast furnace associated essentially with Fe and Mn (21%). - Highlights: • Emissions from steelworks are very complex. • The larger steelworks contribution to PM{sub 10} was from blast furnace and sinter plant. • Sinter plant stack emissions contributed for 12% of the PM{sub 10} mass. • Secondary aerosol from coke making and blast furnace contributed for 19% of the PM{sub 10}. • Fugitive dust emissions highly contribute to PM{sub 10} mass.

  8. Simultaneous monitoring and compositions analysis of PM1 and PM2.5 in Shanghai: Implications for characterization of haze pollution and source apportionment.

    Science.gov (United States)

    Qiao, Ting; Zhao, Mengfei; Xiu, Guangli; Yu, Jianzhen

    2016-07-01

    A year-long simultaneous observation of PM1 and PM2.5 were conducted at ECUST campus in Shanghai, the compositions were analyzed and compared. Results showed that PM2.5 was dominated by PM1 on clear days while the contribution of PM1-2.5 to PM2.5 increased on haze days, indicating that PM2.5 should be given priority to characterize or predict haze pollution. On haze days, accumulation of organic carbon (OC), elemental carbon (EC) and primary organic carbon (POC) in PM1-2.5 was faster than that in PM1. Humic-like substances carbon (Hulis-C) in both PM2.5 and PM1 formed faster than water soluble organic carbon (WSOC) on haze days, hence Hulis-C/WSOC increased with the intensification of haze pollution. In terms of water soluble ions, NO3(-)/SO4(2-) in PM1 increased with the aggravation of haze pollution, implying that mobile sources dominated on haze days, so is nitrogen oxidation ratio (NOR). Liquid water content (LWC) in both PM1 and PM2.5 had positive correlations with relative humidity (RH) but negative correlations with visibility, implying that hygroscopic growth might be a factor for visibility impairment, especially LWC in PM1. By comparison with multi-linear equations of LWC in PM1 and PM2.5, NO3(-) exerted a higher influence on hygroscopicity of PM1 than PM2.5, while RH, WSOC, SO4(2-) and NH4(+) had higher effects on PM2.5, especially WSOC. Source apportionment of PM2.5 was also investigated to provide reference for policy making. Cluster analysis by HYSPLIT (HYbrid Single Particle Lagrangian Integrated Trajectory) model showed that PM2.5 originated from marine aerosols, middle-scale transportation and large-scale transportation. Furthermore, PM2.5 on haze days was dominated by middle-scale transportation. In line with source apportionment by positive matrix factorization (PMF) model, PM2.5 was attributed to secondary inorganics, aged sea salt, combustion emissions, hygroscopic growth and secondary organics. Secondary formation was the principle source of

  9. Source apportionment of particulate matter in a South Asian Mega City: A case study of Karachi

    Science.gov (United States)

    Shahid, imran

    2016-04-01

    PM2.5 and PM10-2.5. In order to make air quality better and risk free in South Asian cities a comprehensive and integrated regional effort is required that include continuous air quality monitoring, source apportionment and implementation of regional air quality policies.

  10. Characterization and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in Sediments from the Bohai Sea, China

    Science.gov (United States)

    Liu, Jihua; Hu, Ningjing; Shi, Xuefa

    2015-04-01

    Characterization and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in Sediments from the Bohai Sea, China Liu Jihua, Hu Ningjing, Shi Xuefa First Institute of Oceanography, State Oceanic Administration, Qingdao 266061, China Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous organic contaminants in the environment. Indeed, 16 PAH compounds have been listed as priority pollutants by the United States Environmental Protection Agency and the European Union because of their potential toxicity to humans and ecosystems. As POPs are released or escape into the environment, their global accumulation in marine sediments generates a complex balance between inputs and outputs. Furthermore, PAHs in coastal sediments can serve as effective tracers of materials transport from land-to-sea (Fang et al., 2009). Hence, investigations of PAHs in sediments can provide useful information for further understanding of environmental processes and material transport. In this study, sixteen polycyclic aromatic hydrocarbons (PAHs) were extracted from a total of 112 surface sediment samples collected across the entire territory of the Bohai Sea. The detectable concentrations of PAHs ranged from 97.2 to 300.7 ng/g across all samples, indicating low contamination levels of PAHs compared with reported values for other coastal sediments in China and developed countries. The highest concentrations were found within three belts in the vicinity of Luan River Estuary-Qinhuangdao Harbor, the Cao River Estuary-Bohai Sea Center, and north of the Yellow River Estuary. The distribution patterns of PAHs and source identification implied that PAH contamination in the Bohai Sea mainly originates from offshore oil exploration, sewage discharge from rivers and shipping activities. Further Principal components analysis (PCA)/multivariate linear regression (MLR) analysis suggested that the contributions of spilled oil products (petrogenic), coal combustion and traffic

  11. Source Apportionment of PM10 by Positive Matrix Factorization in Urban Area of Mumbai, India

    Directory of Open Access Journals (Sweden)

    Indrani Gupta

    2012-01-01

    Full Text Available Particulate Matter (PM10 has been one of the main air pollutants exceeding the ambient standards in most of the major cities in India. During last few years, receptor models such as Chemical Mass Balance, Positive Matrix Factorization (PMF, PCA–APCS and UNMIX have been used to provide solutions to the source identification and contributions which are accepted for developing effective and efficient air quality management plans. Each site poses different complexities while resolving PM10 contributions. This paper reports the variability of four sites within Mumbai city using PMF. Industrial area of Mahul showed sources such as residual oil combustion and paved road dust (27%, traffic (20%, coal fired boiler (17%, nitrate (15%. Residential area of Khar showed sources such as residual oil combustion and construction (25%, motor vehicles (23%, marine aerosol and nitrate (19%, paved road dust (18% compared to construction and natural dust (27%, motor vehicles and smelting work (25%, nitrate (16% and biomass burning and paved road dust (15% in Dharavi, a low income slum residential area. The major contributors of PM10 at Colaba were marine aerosol, wood burning and ammonium sulphate (24%, motor vehicles and smelting work (22%, Natural soil (19%, nitrate and oil burning (18%.

  12. Concentration levels and source apportionment of ultrafine particles in road microenvironments

    Science.gov (United States)

    Argyropoulos, G.; Samara, C.; Voutsa, D.; Kouras, A.; Manoli, E.; Voliotis, A.; Tsakis, A.; Chasapidis, L.; Konstandopoulos, A.; Eleftheriadis, K.

    2016-03-01

    A mobile laboratory unit (MOBILAB) with on-board instrumentation (Scanning Mobility Particle Sizer, SMPS; Ambient NOx analyzer) was used to measure size-resolved particle number concentrations (PNCs) of quasi-ultrafine particles (UFPs, 9-372 nm), along with NOx, in road microenvironments. On-road measurements were carried out in and around a large Greek urban agglomeration, the Thessaloniki Metropolitan Area (TMA). Two 2-week measurement campaigns were conducted during the warm period of 2011 and the cold period of 2012. During each sampling campaign, MOBILAB was driven through a 5-day inner-city route and a second 5-day external route covering in total a wide range of districts (urban, urban background, industrial and residential), and road types (major and minor urban roads, freeways, arterial and interurban roads). All routes were conducted during working days, in morning and in afternoon hours under real-world traffic conditions. Spatial classification of MOBILAB measurements involved the assignment of measurement points to location bins defined by the aspect ratio of adjacent urban street canyons (USCs). Source apportionment was further carried out, by applying Positive Matrix Factorization (PMF) to particle size distribution data. Apportioned PMF factors were interpreted, by employing a two-step methodology, which involved (a) statistical association of PMF factor contributions with 12 h air-mass back-trajectories ending at the TMA during MOBILAB measurements, and (b) Multiple Linear Regression (MLR) using PMF factor contributions as the dependent variables, while relative humidity, solar radiation flux, and vehicle speed were used as the independent variables. The applied data analysis showed that low-speed cruise and high-load engine operation modes are the two dominant sources of UFPs in most of the road microenvironments in the TMA, with significant contributions from background photochemical processes during the warm period, explaining the reversed

  13. COLLABORATIVE RESEARCH: Study of Aerosol Sources and Processing at the GVAX Pantnagar Supersite

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Joel A. [Univ. of Washington, Seattle, WA (United States); Worsnop, Douglas [Aerodyne Research, Billerica, MA (United States)

    2016-09-22

    This project was part of a collaborative campaign, including the participation of scientists from seven research groups as part of the Winter Intensive Operating Period (January-February 2012) of the Clean Air for London (ClearfLo) campaign at a rural site in Detling, UK, 45 km southeast of central London to study wintertime sources of urban particulate matter. The UW contribution by PI Thornton’s group was to make the first deployment of a chemical ionization mass spectrometer instrument (MOVI-CI-ToFMS) to measure both particle and gas phase organic acids. The new instrument ran nearly continuously during the ClearfLo WINTER IOP at the Detling site, producing a first-ever data set of molecular composition information that can be used for source apportionment and process studies. The UW group published a paper in Environmental Science and Technology and contributed to another (Bohnenstengel et al BAMS 2015) detailing a direct molecular connection between biomass/biofuel burning particles and aerosol light absorption. The ES&T paper (Mohr, et al ES&T 2013) has received 42 citations in just 3 years indicative of its significant impact on the field. These measurements of urban and rural aerosol properties will contribute to improved modeling of regional aerosol emissions, and of atmospheric aging and removal.

  14. Source apportionment of environmental PAHs using compound-specific stable carbon isotope ratio measurements combined with molecular approaches

    Energy Technology Data Exchange (ETDEWEB)

    Chao Li; Mick Cooper; Chenggong Sun [University of Nottingham, Nottingham (United Kingdom). School of Chemical, Environmental and Mining Engineering

    2007-07-01

    Polycyclic Aromatic Hydrocarbons (PAHs) are a series of highly toxic and/or carcinogenic pollutants in the environment. They are widely distributed in various environmental sedimentary systems, airborne particulates and other environmental elements. The sources of PAHs are manifold, including coal utilisation (combustion, carbonisation and gasification), biomass burning, public transportation, and natural gas utilisation. In order to control emissions and to understand the transformation, environmental pathways and therefore the impact of PAHs from individual emission sources, it is necessary to develop techniques to facilitate these needs. The traditional method of source apportionment is through molecular methods, such as via molecular biomarkers or by the utilisation of specific ratios of certain PAHs diagnostic of their origins. However, this often proves ambiguous, because of the large variety of emission sources and by molecular alteration caused by a combination of any numbers of environmental factors e.g. biodegradation, transformation, sorption/desorption, leaching and photo-oxidation. 17 refs., 5 figs., 6 tabs.

  15. Preliminary PM2.5 and PM10 fractions source apportionment complemented by statistical accuracy determination

    Directory of Open Access Journals (Sweden)

    Samek Lucyna

    2016-03-01

    Full Text Available Samples of PM10 and PM2.5 fractions were collected between the years 2010 and 2013 at the urban area of Krakow, Poland. Numerous types of air pollution sources are present at the site; these include steel and cement industries, traffic, municipal emission sources and biomass burning. Energy dispersive X-ray fluorescence was used to determine the concentrations of the following elements: Cl, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, As and Pb within the collected samples. Defining the elements as indicators, airborne particulate matter (APM source profiles were prepared by applying principal component analysis (PCA, factor analysis (FA and multiple linear regression (MLR. Four different factors identifying possible air pollution sources for both PM10 and PM2.5 fractions were attributed to municipal emissions, biomass burning, steel industry, traffic, cement and metal industry, Zn and Pb industry and secondary aerosols. The uncertainty associated with each loading was determined by a statistical simulation method that took into account the individual elemental concentrations and their corresponding uncertainties. It will be possible to identify two or more sources of air particulate matter pollution for a single factor in case it is extremely difficult to separate the sources.

  16. Marine submicron aerosol gradients, sources and sinks

    Science.gov (United States)

    Ceburnis, Darius; Rinaldi, Matteo; Ovadnevaite, Jurgita; Martucci, Giovanni; Giulianelli, Lara; O'Dowd, Colin D.

    2016-10-01

    Aerosol principal sources and sinks over eastern North Atlantic waters were studied through the deployment of an aerosol chemistry gradient sampling system. The chemical gradients of primary and secondary aerosol components - specifically, sea salt (SS), water-insoluble organic matter (WIOM), water-soluble organic matter (WSOM), nitrate, ammonium, oxalate, amines, methanesulfonic acid (MSA) and water-soluble organic nitrogen (WSON) - were examined in great detail. Sea salt fluxes were estimated by the boundary layer box model and ranged from 0.3 to 3.5 ng m-2 s-1 over the wind speed range of 5-12 m s-1 and compared well with the derived fluxes from existing sea salt source parameterisations. The observed seasonal pattern of sea salt gradients was mainly driven by wind stress in addition to the yet unquantified effect of marine OM modifying fractional contributions of SS and OM in sea spray. WIOM gradients were a complex combination of rising and waning biological activity, especially in the flux footprint area, and wind-driven primary sea spray production supporting the coupling of recently developed sea spray and marine OM parameterisations.

  17. The source apportionment of polycyclic aromatic hydrocarbons (PAHs) in the topsoil in Xiaodian sewage irrigation area, North of China.

    Science.gov (United States)

    Li, Jia-Le; Wang, Yan-Xin; Zhang, Cai-Xiang; Dong, Yi-Hui; Du, Bin; Liao, Xiao-Ping

    2014-12-01

    31 topsoil samples were collected by grid method in Xiaodian sewage irrigation area, Taiyuan City, North of China. The concentrations of 16 kinds of polycyclic aromatic hydrocarbons (PAHs) were determined by gas chromatograph coupled with mass spectrum. Generally speaking, the distribution order of PAHs in the area is: those with five and six rings > those with four rings > those with two and three rings. Source apportionment shows a significant zonation of the source of PAHs: the civil coal pollution occurred in the north part, the local and far factory pollution happened in the middle area and the mixed pollution sources from coal and wood combustion, automotive emission, presented in the south area. The distribution of PAHs has a definite relationship with the sewage water flow and soil adsorption. The related coefficient between PAHs and physicochemical property showed there was a negative correlation between pH, silt, clay and PAHs while there was a positive correlation between total organic carbon, sand and PAHs.

  18. Determination and analysis of PM 10 source apportionment during episodes of air pollution in Central Eastern European urban areas: The case of wintertime 2006

    Science.gov (United States)

    Juda-Rezler, Katarzyna; Reizer, Magdalena; Oudinet, Jean-Paul

    2011-11-01

    Source apportionment of air pollution due to particulate matter with an aerodynamic diameter Russia-Belarus-Ukraine), most were also under LRT from Southern origin (Slovakia, Czech Republic), and northern cities were under national RT influence. PCA analysis shows that ion-sums of secondary inorganic aerosols account for LRT pollution while arsenic and chromium represents markers of RT (industrial) and LP (residential) sources of PM 10, respectively. Determination of several ratios (REG/UB, REG/TRAF, TRAF/UB) calculated between PM 10 levels measured at regional background (REG); urban background (UB) and traffic (TRAF) monitoring sites shows that, with ratios REG/UB ≥ 0.57, PM 10 episodes in both Szczecin and Warsaw bore a marked RT origin. The lower REG/UB ≤ 0.35 in the Southern cities of Cracow and Zabrze indicates that LP was the main contributor to the observed episodes. Only PM 10 episodes in Southern-western Poland (Jelenia Góra) were clearly of LP origin as characterized, by the lowest REG/UB ratio (<0.2). The high TRAF/UB ratios obtained for all cities (close to 1) indicate that there was a great uniformity of PM levels on an urban scale owing to the meteorologically stagnant conditions. A high correlation between PM 10, NO 2 and CO confirms that traffic emission represented a common and an important LP source of urban pollution in most Polish cities during January 2006. On the other hand PM 10 which is also highly correlated with SO 2 in 4 cities out of 6, indicates that coal combustion through domestic heating or industrial activities was also an important LP source of PM 10. Finally, extremely unfavourable meteorological conditions caused by the influence of a Siberian high-pressure system were found to be associated with the occurrence of severe PM 10 episodes of pollution.

  19. The application of carbon-14 analyses to the source apportionment of atmospheric carbonaceous particulate matter: a review.

    Science.gov (United States)

    Heal, Mathew R

    2014-01-01

    Organic carbon (OC) and elemental carbon (EC) together constitute a substantial proportion of airborne particulate matter (PM). Insight into the sources of this major contributor to PM is important for policies to mitigate the impact of PM on human health and climate change. In recent years measurement of the abundance of the radioisotope of carbon ((14)C) in samples of PM by accelerator mass spectrometry has been used to help quantify the relative contributions from sources of fossil carbon and contemporary carbon. This review provides an introduction to the different sources of carbon within PM and the role of (14)C measurements, a description of the preparation of PM samples and of the instrumentation used to quantify (14)C, and a summary of the results and source apportionment methods reported in published studies since 2004. All studies report a sizable fraction of the carbonaceous PM as of non-fossil origin. Even for PM collected in urban locations, the proportions of non-fossil carbon generally exceed 30%; typically the proportion in urban background locations is around 40-60% depending on the local influence of biomass burning. Where values have been measured directly, proportions of non-fossil carbon in EC are lower than in OC, reflecting the greater contribution of fossil-fuel combustion to EC and the generally small sources of contemporary EC. Detailed source apportionment studies point to important contributions from biogenic-derived secondary OC, consistent with other evidence of a ubiquitous presence of heavily oxidized background secondary OC. The review concludes with some comments on current issues and future prospects, including progress towards compound-class and individual-compound-specific (14)C analyses.

  20. AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in 5 Southern European cities

    Science.gov (United States)

    Amato, F.; Alastuey, A.; Karanasiou, A.; Lucarelli, F.; Nava, S.; Calzolai, G.; Severi, M.; Becagli, S.; Gianelle, V. L.; Colombi, C.; Alves, C.; Custódio, D.; Nunes, T.; Cerqueira, M.; Pio, C.; Eleftheriadis, K.; Diapouli, E.; Reche, C.; Minguillón, M. C.; Manousakas, M.; Maggos, T.; Vratolis, S.; Harrison, R. M.; Querol, X.

    2015-09-01

    The AIRUSE-LIFE+ project aims at characterising similarities and heterogeneities in PM sources and contributions in urban areas from the Southern Europe. Once the main PMx sources are identified, AIRUSE aims at developing and testing the efficiency of specific and non-specific measures to improve urban air quality. This article reports the results of the source apportionment of PM10 and PM2.5 conducted at three urban background sites (Barcelona, Florence and Milan, BCN-UB, FI-UB, MLN-UB) one sub-urban background site (Athens, ATH-SUB) and one traffic site (Porto, POR-TR). After collecting 1047 PM10 and 1116 PM2.5 24 h samples from January 2013 to February 2014 simultaneously at the 5 cities, these were analysed for the contents of OC, EC, anions, cations, major and trace elements and levoglucosan. The USEPA PMF5 receptor model was applied to these datasets in a harmonised way for each city. The sum of vehicle exhaust and non-exhaust contributes within 3.9-10.8 μg m-3 (16-32 %) to PM10 and 2.3-9.4 μg m-3 (15-36 %) to PM2.5, although a fraction of secondary nitrate is also traffic-related but could not be estimated. Important contributions arise from secondary particles (nitrate, sulphate and organics) in PM2.5 (37-82 %) but also in PM10 (40-71 %) mostly at background sites, revealing the importance of abating gaseous precursors in designing air quality plans. Biomass burning (BB) contributions vary widely, from 14-24 % of PM10 in POR-TR, MLN-UB and FI-UB, 7 % in ATH-SUB to road dust resuspension. In PM2.5 percentages decrease to 2-7 % at SUB-UB sites and 15 % at the TR site. - Industries, mainly metallurgy, contributing 4-11 % of PM10 (5-12 % in PM2.5), but only at BCN-UB, POR-TR and MLN-UB. No clear impact of industrial emissions was found in FI-UB and ATH-SUB. - Natural contributions from sea salt (13 % of PM10 in POR-TR but only 2-7 % in the other cities) and Saharan dust (14 % in ATH-SUB), but less than 4 % in the other cities. During high pollution days, the

  1. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dron, J.; El Haddad, I.; Temime-Roussel, B.; Wortham, H.; Marchand, N. [Univ Aix Marseille, CNRS, Lab Chim Provence, Equipe Instrumentat and React Atmospher, UMR 6264, F-13331 Marseille 3 (France); Jaffrezo, J.L. [Univ Grenoble 1, CNRS, UMR 5183, Lab Glaciol and Geophys Environm, F-38402 St Martin Dheres (France)

    2010-07-01

    The functional group composition of various organic aerosols (OA) is investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCIMS/MS). The determinations of three functional groups contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups, R-COOH and R-CO-R' respectively) and precursor ion (nitro groups, R-NO{sub 2}) scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA) produced through photooxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounts for 1.7% (vehicular) to 13.5% (o-xylene photooxidation) of the organic carbon. Diagnostic functional group ratios are then used to tentatively discriminate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France) during a strong winter pollution event. The three functional groups under study account for a total functionalization rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to discriminate sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assess a wood burning organic carbon contribution of about 60%. Finally, examples of functional

  2. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Dron

    2010-08-01

    Full Text Available The functional group composition of various organic aerosols (OA is investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCI-MS/MS. The determinations of three functional groups contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups, R-COOH and R-CO-R´ respectively and precursor ion (nitro groups, R-NO2 scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA produced through photooxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounts for 1.7% (vehicular to 13.5% (o-xylene photooxidation of the organic carbon. Diagnostic functional group ratios are then used to tentatively discriminate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France during a strong winter pollution event. The three functional groups under study account for a total functionalisation rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to discriminate sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assess a wood burning organic carbon contribution of about 60

  3. Source apportionment of air pollution exposures of rural Chinese women cooking with biomass fuels

    Science.gov (United States)

    Huang, Wei; Baumgartner, Jill; Zhang, Yuanxun; Wang, Yuqin; Schauer, James J.

    2015-03-01

    Particulate matter (PM) from different sources may differentially affect human health. Few studies have assessed the main sources of personal exposure to PM and their contributions among residents of developing countries, where pollution sources differ from those in higher-income settings. 116 daily (24-h) personal PM2.5 exposure samples were collected among 81 women cooking with biomass fuels in two villages in rural Yunnan, China. The PM samples were analyzed for mass and chemical composition, including water-soluble organic carbon (WSOC), black carbon (BC), and molecular markers. We found black carbon, n-alkanes and levoglucosan dominated the most abundant fractions of the total measured species and average personal PM2.5 exposure was higher in winter than that in summer in both villages. The composition data were then analyzed using a positive matrix factorization (PMF) receptor model to identify the main PM emission sources contributing to women's exposures and to assess their spatial (between villages) and seasonal variation in our study setting. The 6-factor solution provided reasonably stable profiles and was selected for further analysis. Our results show that rural Chinese women cooking with biomass fuels are exposed to a variety of sources. The identified factors include wood combustion (41.1%), a cooking source (35.6%), a mobile source (12.6%), plant waxes (6.7%), pyrolysis combustion (3.0%), and secondary organic aerosols (SOA; 1.0%). The mean source contributions of the mobile source, cooking source, and wood combustion factor to PM2.5 exposure were significantly different between women living in the two study villages, whereas the mean SOA, wood combustion, and plant waxes factors differed seasonally. There was no relationship between source contributions and questionnaire-based measurements of source-specific exposures, implying that the impacts of source contributions on exposure are affected by complex spatial, temporal and behavioral patterns

  4. Intra-urban biomonitoring: Source apportionment using tree barks to identify air pollution sources.

    Science.gov (United States)

    Moreira, Tiana Carla Lopes; de Oliveira, Regiani Carvalho; Amato, Luís Fernando Lourenço; Kang, Choong-Min; Saldiva, Paulo Hilário Nascimento; Saiki, Mitiko

    2016-05-01

    It is of great interest to evaluate if there is a relationship between possible sources and trace elements using biomonitoring techniques. In this study, tree bark samples of 171 trees were collected using a biomonitoring technique in the inner city of São Paulo. The trace elements (Al, Ba, Ca, Cl, Cu, Fe, K, Mg, Mn, Na, P, Rb, S, Sr and Zn) were determined by the energy dispersive X-ray fluorescence (EDXRF) spectrometry. The Principal Component Analysis (PCA) was applied to identify the plausible sources associated with tree bark measurements. The greatest source was vehicle-induced non-tailpipe emissions derived mainly from brakes and tires wear-out and road dust resuspension (characterized with Al, Ba, Cu, Fe, Mn and Zn), which was explained by 27.1% of the variance, followed by cement (14.8%), sea salt (11.6%) and biomass burning (10%), and fossil fuel combustion (9.8%). We also verified that the elements related to vehicular emission showed different concentrations at different sites of the same street, which might be helpful for a new street classification according to the emission source. The spatial distribution maps of element concentrations were obtained to evaluate the different levels of pollution in streets and avenues. Results indicated that biomonitoring techniques using tree bark can be applied to evaluate dispersion of air pollution and provide reliable data for the further epidemiological studies.

  5. Sources and composition of urban aerosol particles

    Science.gov (United States)

    Vogt, M.; Johansson, C.; Mårtensson, M.; Struthers, H.; Ahlm, L.; Nilsson, D.

    2011-09-01

    From May 2008 to March 2009 aerosol emissions were measured using the eddy covariance method covering the size range 0.25 to 2.5 μm diameter (Dp) from a 105 m tower, in central Stockholm, Sweden. Supporting chemical aerosol data were collected at roof and street level. Results show that the inorganic fraction of sulfate, nitrate, ammonium and sea salt accounts for approximately 15% of the total aerosol mass traffic (as inferred from the ratio of the incremental concentrations of nitrogen oxides (NOx) and BC measured on a densely trafficked street) and the fluxes of non-volatile material at tower level are in close agreement, suggesting a traffic source of BC. We have estimated the emission factors (EFs) for non-volatile particles traffic activity data. Light (LDV) and heavy duty vehicle (HDV) EFs were estimated using multiple linear regression and reveal that for non-volatile particulate matter in the 0.25 to 0.6 μm Dp range, the EFHDV is approximately twice as high as the EFLDV, the difference not being statistically significant.

  6. Currents trends in the application of IBA techniques to air pollution source fingerprinting and source apportionment

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, David; Stelcer, Ed.; Atanacio, Armand; Crawford, Jagoda [Australian Nuclear Science and Technology Organisation, Kirrawee DC (Australia)

    2013-07-01

    Full text: IBA techniques have been used for many years to characterise fine particle air pollution. This is not new the techniques are well established. Typically 2-3 MeV protons are used to bombard thin filter papers and up to four simultaneous techniques like PIXE, PIGE, RBS and ERDA will be applied to obtain (μg/g) concentrations for elements from hydrogen to lead. Generally low volume samplers are used to sample between 20-30 m{sup 3} of air over a 24 hour period, this together with IBA's sensitivity means that concentrations down to 1 ng/m{sup 3} of air sampled can be readily achieved with only a few minutes of proton irradiation. With these short irradiation times and low sensitivities for a broad range of elements in the periodic table, large numbers of samples can be obtained and analysed very quickly and easily. At ANSTO we have used IBA methods to acquire a database of over 50,000 filters from 85 different sites through Australia and Asia, each filter has been analysed for more than 21 different chemical species. Large databases extending over many years means that modern statistical techniques like positive matrix factorisation (PMF) can be used to define well characterised source fingerprints and source contributions for a range of different fine particle air pollutants. In this paper we will discuss these PMF techniques and show how they identify both natural sources like sea spray and windblown soils as well as anthropogenic sources like automobiles, biomass burning, coal-fired power stations and industrial emissions. These data are particularly useful for Governments, EPA's and managers of pollution to better understanding pollution sources and their relative contributions and hence to better manage air pollution. Current trends are to take these IBA and PMF techniques a step further and to combine them with wind speed and back trajectory data to better pin point and identify emission sources. We show how this is now being applied on both

  7. Chemical characterisation and source apportionment of PM2.5 and PM10 at rural, urban and traffic sites in Navarra (North of Spain)

    Science.gov (United States)

    Aldabe, J.; Elustondo, D.; Santamaría, C.; Lasheras, E.; Pandolfi, M.; Alastuey, A.; Querol, X.; Santamaría, J. M.

    2011-10-01

    PM10 and PM2.5 levels, concentrations of major components, trace elements, pH, conductivity and source apportionment were evaluated from samples collected during 2009 at three different locations (rural, urban and urban-traffic) in Navarra (North of Spain). Mean particulate matter concentrations were below the annual limit value for PM10 and annual target value for PM2.5 established by the European Directive 2008/50/EC and similar to those recorded at other locations in the North of Spain. The major components of PM10 in the three sampling stations were, by order of importance, OC + EC, NO3- and non-marine sulphate (nmSO42-), whereas the major components of PM2.5 were OC + EC, nmSO42- and NO3-. ΔpH values indicated that PM2.5 samples were more acidic than PM10 ones. The 90-96% of total trace elements contribution in PM2.5 and PM10 were described by P, Ti, Cr, Mn, Ni, Cu, Zn, Sr, Sn, Ba and Pb. Concentrations of those elements were lower than values obtained in Pamplona in 2002-2004 and similar to those found in other sub-urban and urban Spanish cities. PMF model identified 5 principle sources for PM10 and PM2.5 in Iturrama and Plaza de la Cruz (crustal, secondary sulphate, secondary nitrate, traffic and sea-salt aerosols) and 4 sources for PM10 in Bertiz (crustal, secondary sulphate, secondary nitrate and sea-salt).

  8. Secondary organic carbon quantification and source apportionment of PM10 in Kaifeng, China

    Institute of Scientific and Technical Information of China (English)

    WU Lin; FENG Yinchang; WU Jianhui; ZHU Tan; BI Xiaohui; HAN Bo; YANG Weihong; YANG Zhiqiang

    2009-01-01

    During 2005, the filter samples of ambient PM10 from five sites and the source samples of particulate matter were collected in Kaifeng, Henan province of China. Nineteen elements, water-soluble ions, total carbon (TC) and organic carbon (OC) contained in samples were analyzed. Seven contributive source types were identified and their contributions to ambient PM10 were estimated by chemical mass balance (CMB) receptor model. Weak associations between the concentrations of organic carbon and element carbon (EC) were observed during the sampling periods, indicating that there was secondary organic aerosol pollution in the urban atmosphere. An indirect method of "OC/EC minimum ratio" was applied to estimate the concentration of secondary organic carbon (SOC). The results showed that SOC contributed 26.2%, 32.4% and 18.0% of TC in spring, summer-fall and winter respectively, and the annual average SOC concentration was 7.07 μg/m3, accounting for 5.73% of the total mass in ambient PM10. The carbon species concentrations in ambient PM10 were recalculated by subtracting the SOC concentrations from measured concentrations of TC and OC to increase the compatibility of source and receptor measurements for CMB model.

  9. Variations in source apportionments of nutrient load among seasons and hydrological years in a semi-arid watershed: GWLF model results.

    Science.gov (United States)

    Du, Xinzhong; Li, Xuyong; Zhang, Wangshou; Wang, Huiliang

    2014-05-01

    Quantifying source apportionments of nutrient load and their variations among seasons and hydrological years can provide useful information for watershed nutrient load reduction programs. There are large seasonal and inter-annual variations in nutrient loads and their sources in semi-arid watersheds that have a monsoon climate. The Generalized Watershed Loading Function model was used to simulate monthly nutrient loads from 2004 to 2011 in the Liu River watershed, Northern China. Model results were used to investigate nutrient load contributions from different sources, temporal variations of source apportionments and the differences in the behavior of total nitrogen (TN) and total phosphorus (TP). Examination of source apportionments for different seasons showed that point sources were the main source of TN and TP in the non-flood season, whereas contributions from diffuse sources, such as rural runoff, soil erosion, and urban areas, were much higher in the flood season. Furthermore, results for three typical hydrological years showed that the contribution ratios of nutrient loads from point sources increased as streamflow decreased, while contribution ratios from rural runoff and urban area increased as streamflow increased. Further, there were significant differences between TN and TP sources on different time scales. Our findings suggest that priority actions and management measures should be changed for different time periods and hydrological conditions, and that different strategies should be used to reduce loads of nitrogen and phosphorus effectively.

  10. Sources and transformations of atmospheric aerosol particles

    Science.gov (United States)

    Cross, Eben Spencer

    transported towards Europe. In this study, particles were highly processed prior to sampling, with residence times of a few days in the atmosphere. The MILAGRO campaign focused on the evolution of the Mexico City plume as it was transported north. During this study, regional and locally emitted particles were measured with residence times varying from minutes to days in the atmosphere. In both studies, the light scattering - AMS system provided detailed information about the density and composition of single particles, leading to important insights into how atmospheric processing transforms the particle properties. In Mexico City, the light scattering-AMS system was used for the first time as a true single particle mass spectrometer and revealed specific details about the atmospheric processing of primary particles from combustion sources. To quantify the radiative effects of the particles on climate, the processing and ultimate fate of primary emissions (often containing black carbon or soot) must be understood. To provide a solid basis for the interpretation of the data obtained during the field studies, experiments were conducted with a well characterized soot generation-sampling system developed by the Boston College research group. The laboratory soot source was combined with the light scattering - AMS system and a Cloud Condensation Nuclei Counter (CCNC) to measure the change in cloud-forming activity of soot particles as they are processed in the atmosphere. Because of the importance of black carbon in the atmosphere, several instruments have been developed to measure black carbon. In July of 2008, an intercomparison study of 18 instruments was conducted in the Boston College laboratory, with soot particles produced and processed to mimic a wide range of atmospherically-relevant conditions. Transformations in the physical, chemical, and optical properties of soot particles were monitored with the combined suite of aerosol instrumentation. Results from the

  11. PM2.5 pollution in a megacity of southwest China: source apportionment and implication

    Science.gov (United States)

    Tao, J.; Gao, J.; Zhang, L.; Zhang, R.; Che, H.; Zhang, Z.; Lin, Z.; Jing, J.; Cao, J.; Hsu, S.-C.

    2014-08-01

    Daily PM2.5 (aerosol particles with an aerodynamic diameter of less than 2.5 μm) samples were collected at an urban site in Chengdu, an inland megacity in southwest China, during four 1-month periods in 2011, with each period in a different season. Samples were subject to chemical analysis for various chemical components ranging from major water-soluble ions, organic carbon (OC), element carbon (EC), trace elements to biomass burning tracers, anhydrosugar levoglucosan (LG), and mannosan (MN). Two models, the ISORROPIA II thermodynamic equilibrium model and the positive matrix factorization (PMF) model, were applied to explore the likely chemical forms of ionic constituents and to apportion sources for PM2.5. Distinctive seasonal patterns of PM2.5 and associated main chemical components were identified and could be explained by varying emission sources and meteorological conditions. PM2.5 showed a typical seasonality of waxing in winter and waning in summer, with an annual mean of 119 μg m-3. Mineral soil concentrations increased in spring, whereas biomass burning species elevated in autumn and winter. Six major source factors were identified to have contributed to PM2.5 using the PMF model. These were secondary inorganic aerosols, coal combustion, biomass burning, iron and steel manufacturing, Mo-related industries, and soil dust, and they contributed 37 ± 18, 20 ± 12, 11 ± 10, 11 ± 9, 11 ± 9, and 10 ± 12%, respectively, to PM2.5 masses on annual average, while exhibiting large seasonal variability. On annual average, the unknown emission sources that were not identified by the PMF model contributed 1 ± 11% to the measured PM2.5 mass. Various chemical tracers were used for validating PMF performance. Antimony (Sb) was suggested to be a suitable tracer of coal combustion in Chengdu. Results of LG and MN helped constrain the biomass burning sources, with wood burning dominating in winter and agricultural waste burning dominating in autumn. Excessive Fe (Ex

  12. PM2.5 in an industrial district of Zhengzhou, China: Chemical composition and source apportionment

    Institute of Scientific and Technical Information of China (English)

    Ningbo Geng; Jia Wang; Yifei Xu; Wending Zhang; Chun Chen; Ruiqin Zhang

    2013-01-01

    Zhengzhou is a developing city in China,that is heavily polluted by high levels of particulate matter.In this study,fine particulate matter (PM2.5) was collected and analyzed for their chemical composition (soluble ions,elements,elemental carbon (EC) and organic carbon (OC)) in an industrial district of Zhengzhou in 2010.The average concentrations of PM2.5 were 181,122,186 and 211 μg/m3 for spring,summer,autumn and winter,respectively,with an annual average of 175 μg/m3,far exceeding the PM2.5 regulation of USA National Air Quality Standards (15 μg/m3).The dominant components of PM2.5 in Zhengzhou were secondary ions (sulphate and nitrate) and carbon fractions.Soluble ions,total carbon and elements contributed 41%,13% and 3% of PM2.5 mass,respectively.Soil dust,secondary aerosol and coal combustion,each contributing about 26%,24% and 23% of total PM2.5 mass,were the major sources of PM2.5,according to the result of positive matrix factorization analysis.A mixed source of biomass burning,oil combustion and incineration contributed 13% of PM2.5.Fine particulate matter arising from vehicles and industry contributed about 10% and 4% of PM2.5,respectively.

  13. Mercury isotopes of atmospheric particle bound mercury for source apportionment study in urban Kolkata, India

    Directory of Open Access Journals (Sweden)

    Reshmi Das

    2016-04-01

    Full Text Available Abstract The particle bound mercury (PBM in urban-industrial areas is mainly of anthropogenic origin, and is derived from two principal sources: Hg bound to particulate matter directly emitted by industries and power generation plants, and adsorption of gaseous elemental mercury (GEM and gaseous oxidized mercury (GOM on air particulates from gas or aqueous phases. Here, we measured the Hg isotope composition of PBM in PM10 samples collected from three locations, a traffic junction, a waste incineration site and an industrial site in Kolkata, the largest metropolis in Eastern India. Sampling was carried out in winter and monsoon seasons between 2013–2015. The objective was to understand whether the isotope composition of the PBM represents source composition. The PBM collected from the waste burning site showed little mass independent fractionation (MIF (Δ199Hg = +0.12 to -0.11‰, similar to the signature in liquid Hg and Hg ores around the world with no seasonal variations. Samples from the industrial site showed mostly negative MDF and MIF (δ202Hg = -1.34 to -3.48 ‰ and Δ199Hg = +0.01 to -0.31‰. The MDF is consistent with PBM generated by coal combustion however, the MIF is 0.15‰ more negative compared to the Hg isotope ratios in Indian coals. The traffic junction PBM is probably not produced in situ, but has travelled some distances from nearby industrial sources. The longer residence time of this PBM in the atmosphere has resulted in-aerosol aqueous photoreduction. Thus, the MIF displays a larger range (Δ199Hg = +0.33 to -0.30‰ compared to the signature from the other sites and with more positive values in the humid monsoon season. Different Hg isotopic signature of PBM in the three different sampling locations within the same city indicates that both source and post emission atmospheric transformations play important roles in determining isotopic signature of PBM.

  14. Source apportionment of population representative samples of PM(2.5) in three European cities using structural equation modelling.

    Science.gov (United States)

    Ilacqua, Vito; Hänninen, Otto; Saarela, Kristina; Katsouyanni, Klea; Künzli, Nino; Jantunen, Matti

    2007-10-01

    Apportionment of urban particulate matter (PM) to sources is central for air quality management and efficient reduction of the substantial public health risks associated with fine particles (PM(2.5)). Traffic is an important source combustion particles, but also a significant source of resuspended particles that chemically resemble Earth's crust and that are not affected by development of cleaner motor technologies. A substantial fraction of urban ambient PM originates from long-range transport outside the immediate urban environment including secondary particles formed from gaseous emissions of mainly sulphur, nitrogen oxides and ammonia. Most source apportionment studies are based on small number of fixed monitoring sites and capture well population exposures to regional and long-range transported particles. However, concentrations from local sources are very unevenly distributed and the results from such studies are therefore poorly representative of the actual exposures. The current study uses PM(2.5) data observed at population based random sampled residential locations in Athens, Basle and Helsinki with 17 elemental constituents, selected VOCs (xylenes, trimethylbenzenes, nonane and benzene) and light absorbance (black smoke). The major sources identified across the three cities included crustal, salt, long-range transported inorganic and traffic sources. Traffic was associated separately with source categories with crustal (especially Athens and Helsinki) and long-range transported chemical composition (all cities). Remarkably high fractions of the variability of elemental (R(2)>0.6 except for Ca in Basle 0.38) and chemical concentrations (R(2)>0.5 except benzene in Basle 0.22 and nonane in Athens 0.39) are explained by the source factors of an SEM model. The RAINS model that is currently used as the main tool in developing European air quality management policies seems to capture the local urban fraction (the city delta term) quite well, but underestimates

  15. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, Jeffrey [Univ. of Arkansas, Little Rock, AR (United States)

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  16. Aerosol optical depths and their contributing sources in Taiwan

    Science.gov (United States)

    Chan, K. L.; Chan, K. L.

    2017-01-01

    In this paper, we present a quantitative investigation of the contributions of different aerosols to the aerosol optical depths (AODs) in Taiwan using a global chemical transport model (GEOS-Chem) and remote sensing measurements. The study focus is on the period from June 2012 to October 2013. Five different types of aerosols are investigated: sea salt, dust, sulfate, organic carbon and black carbon. Three of these aerosols, namely sulfate, organic carbon and black carbon, have significant anthropogenic sources. Model simulation results were compared with both ground based sun photometer measurements and MODerate resolution Imaging Spectroradiometer (MODIS) satellite observations. The model data shows good agreement with satellite observations (R = 0.72) and moderate correlation with sun photometer measurements (R = 0.52). Simulation results show the anthropogenic aerosols contribute ∼65% to the total AOD in Taipei, while natural originated aerosols only show a minor impact (∼35%). Among all the aerosols, sulfate is the dominating species, contributing 62.4% to the annual average total AOD. Organic carbon and black carbons respectively contribute 7.3% and 1.5% to the annual averaged total AOD. The annual average contributions of sea salt and dust aerosols to the total AOD are 26.4% and 2.4%, respectively. A sensitivity study was performed to identify the contributions of anthropogenic aerosol sources in each region to the AODs in Taipei. North-East Asia was identified as the major contributing source region of anthropogenic aerosols to Taipei, accounting for more than 50% of total sulfate, 32% of total organic carbon and 51% of total black carbon aerosols. South-East Asia is the second largest contributing source region, contributing 35%, 24% and 34% of total sulfate, organic carbon and black carbon aerosols, respectively. The aerosols from continents other than Asia only show minor impacts to the aerosol load in Taipei. In addition, a case study of a biomass

  17. A framework of characteristics identification and source apportionment of water pollution in a river: a case study in the Jinjiang River, China.

    Science.gov (United States)

    Chen, Haiyang; Teng, Yanguo; Wang, Jinsheng

    2012-01-01

    A framework for characteristics identification and source apportionment of water pollution in the Jinjiang River of China was proposed in this study for evaluation. A total of 114 water samples which were generated between May 2009 and September 2010 at 13 sites were collected and analysed. First, support vector machine (SVM) and water quality pollutant index (WQPI) were used for water quality comprehensive evaluation and identifying characteristic contaminants. Later, factor analysis with nonnegative constraints (FA-NNC) was employed for source apportionment. Finally, multi-linear regression of the absolute principal component score (APCS/MLR) was applied to further estimate source contributions for each characteristic contaminant. The results indicated that the water quality of the Jinjiang River was mainly at the third level (65.79%) based on national surface water quality permissible standards in China. Ammonia nitrogen, total phosphorus, mercury, iron and manganese were identified as characteristic contaminants. Source apportionment results showed that industrial activities (63.16%), agricultural non-point source (16.50%) and domestic sewage (12.85%) were the main anthropogenic pollution sources which were influencing the water quality of Jinjiang River. This proposed method provided a helpful framework for conducting water pollution management in aquatic environment.

  18. Use of Lead Isotopes to Identify Sources of Metal and Metalloid Contaminants in Atmospheric Aerosol from Mining Operations

    Science.gov (United States)

    Félix, Omar I.; Csavina, Janae; Field, Jason; Rine, Kyle P.; Sáez, A. Eduardo; Betterton, Eric A.

    2014-01-01

    Mining operations are a potential source of metal and metalloid contamination by atmospheric particulate generated from smelting activities, as well as from erosion of mine tailings. In this work, we show how lead isotopes can be used for source apportionment of metal and metalloid contaminants from the site of an active copper mine. Analysis of atmospheric aerosol shows two distinct isotopic signatures: one prevalent in fine particles (< 1 μm aerodynamic diameter) while the other corresponds to coarse particles as well as particles in all size ranges from a nearby urban environment. The lead isotopic ratios found in the fine particles are equal to those of the mine that provides the ore to the smelter. Topsoil samples at the mining site show concentrations of Pb and As decreasing with distance from the smelter. Isotopic ratios for the sample closest to the smelter (650 m) and from topsoil at all sample locations, extending to more than 1 km from the smelter, were similar to those found in fine particles in atmospheric dust. The results validate the use of lead isotope signatures for source apportionment of metal and metalloid contaminants transported by atmospheric particulate. PMID:25496740

  19. Emission factors and source apportionment for abrasion particles produced by road traffic

    Science.gov (United States)

    Bukowiecki, N.; Lienemann, P.; Figi, R.; Hill, M.; Richard, A.; Furger, M.; Rickers, K.; Cliff, S. S.; Baltensperger, U.; Gehrig, R.

    2009-04-01

    Particle emissions of road traffic are generally associated with fresh exhaust emissions only. However, recent studies identified a clear contribution of non-exhaust emissions to the PM10 load of the ambient air. These emissions consist of particles produced by abrasion from brakes, road wear, tire wear, as well as resuspension of deposited road dust. For many urban environments, quantitative information about the contributions of the individual abrasion processes is still scarce. For effective PM10 reduction scenarios it is of particular interest to know whether road wear, resuspension or fresh abrasion from vehicles is dominating the non-exhaust PM10 contribution. In Switzerland, the emissions of road traffic abrasion particles into the ambient air were characterized in the project APART (Abrasion Particles produced by Road Traffic). The project aimed at finding the contribution of the non-exhaust sources to total traffic-related PM10 and PM2.5 for different traffic conditions, by determining specific elemental fingerprint signatures for the various sources. This was achieved by hourly elemental mass concentration measurements in three size classes (2.5-10, 1-2.5 and 0.1-1 micrometers) with a rotating drum impactor (RDI) and subsequent synchrotron radiation X-ray fluorescence spectrometry (SR-XRF). The elemental fingerprint measurements were embedded into a large set of aerosol, gas phase, meteorological and traffic count measurements. To identify traffic related emissions, measurements were performed upwind and downwind of selected roads. For a better investigation of road wear, a road wear simulator was applied in additional experiments. This allows for the identification and quantification of the different source contributions by means of source-receptor modeling, and for the calculation of real-world emission factors for the individual abrasion sources. The preliminary analysis of hourly resolved trace element measurements in a street canyon in Zürich showed

  20. Back-trajectory-based source apportionment of airborne sulfur and nitrogen concentrations at Rocky Mountain National Park, Colorado, USA

    Science.gov (United States)

    Gebhart, Kristi A.; Schichtel, Bret A.; Malm, William C.; Barna, Michael G.; Rodriguez, Marco A.; Collett, Jeffrey L., Jr.

    2011-01-01

    The Rocky Mountain Atmospheric Nitrogen and Sulfur Study (RoMANS), conducted during the spring and summer of 2006, was designed to assess the sources of nitrogen and sulfur species that contribute to wet and dry deposition and visibility impairment at Rocky Mountain National Park (RMNP), Colorado. Several source apportionment methods were utilized for RoMANS, including the Trajectory Mass Balance (TrMB) Model, a receptor-based method in which the hourly measured concentrations are the dependent variables and the residence times of back trajectories in several source regions are the independent variables. The regression coefficients are estimates of the mean emissions, dispersion, chemical transformation, and deposition between the source areas and the receptors. For RoMANS, a new ensemble technique was employed in which input parameters were varied to explore the range, variability, and model sensitivity of source attribution results and statistical measures of model fit over thousands of trials for each set of concentration measurements. Results showed that carefully chosen source regions dramatically improved the ability of TrMB to reproduce temporal patterns in the measured concentrations, and source attribution results were also very sensitive to source region choices. Conversely, attributions were relatively insensitive to trajectory start height, trajectory length, minimum endpoints per source area, and maximum endpoint height, as long as the trajectories were long enough to reach contributing source areas and were not overly restricted in height or horizontal location. Source attribution results estimated that more than half the ammonia and 30-45% of sulfur dioxide and other nitrogen-containing species at the RoMANS core site were from sources within the state of Colorado. Approximately a quarter to a third of the sulfate was from within Colorado.

  1. Sources and composition of urban aerosol particles

    Directory of Open Access Journals (Sweden)

    M. Vogt

    2011-09-01

    Full Text Available From May 2008 to March 2009 aerosol emissions were measured using the eddy covariance method covering the size range 0.25 to 2.5 μm diameter (Dp from a 105 m tower, in central Stockholm, Sweden. Supporting chemical aerosol data were collected at roof and street level. Results show that the inorganic fraction of sulfate, nitrate, ammonium and sea salt accounts for approximately 15% of the total aerosol mass <1 μm Dp (PM1 with water soluble soil contributing 11% and water insoluble soil 47%. Carbonaceous compounds were at the most 27% of PM1 mass. It was found that heating the air from the tower to 200 °C resulted in the loss of approximately 60% of the aerosol volume at 0.25 μm Dp whereas only 40% of the aerosol volume was removed at 0.6 μm Dp. Further heating to 300 °C caused very little additional losses <0.6 μm Dp. The chemical analysis did not include carbonaceous compounds, but based on the difference between the total mass concentration and the sum of the analyzed non-carbonaceous materials, it can be assumed that the non-volatile particulate material (heated to 300 °C consists mainly of carbonaceous compounds, including elemental carbon. Furthermore, it was found that the non-volatile particle fraction <0.6 μm Dp correlated (r2 = 0.4 with the BC concentration at roof level in the city, supporting the assumption that the non-volatile material consists of carbonaceous compounds. The average diurnal cycles of the BC emissions from road traffic (as inferred from the ratio of the incremental concentrations of nitrogen oxides (NOx and BC measured on a densely trafficked street and the fluxes of non-volatile material at tower level are in close agreement, suggesting a traffic source of BC. We have estimated the emission factors (EFs for non

  2. Source apportionment of atmospheric fine particulate matter collected at the Seney National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The trends in secondary organic aerosol at a remote location are studied using atmospheric fine particulate matter samples collected at Seney National Wildlife...

  3. Characterization and source apportionment of health risks from ambient PM10 in Hong Kong over 2000-2011

    Science.gov (United States)

    Li, Zhiyuan; Yuan, Zibing; Li, Ying; Lau, Alexis K. H.; Louie, Peter K. K.

    2015-12-01

    Atmospheric particulate matter (PM) pollution is a major public health concern in Hong Kong. In this study, the spatiotemporal variations of health risks from ambient PM10 from seven air quality monitoring stations between 2000 and 2011 were analyzed. Positive matrix factorization (PMF) was adopted to identify major source categories of ambient PM10 and quantify their contributions. Afterwards, a point-estimated risk model was used to identify the inhalation cancer and non-cancer risks of PM10 sources. The long-term trends of the health risks from classified local and non-local sources were explored. Furthermore, the reason for the increase of health risks during high PM10 days was discussed. Results show that vehicle exhaust source was the dominant inhalation cancer risk (ICR) contributor (72%), whereas trace metals and vehicle exhaust sources contributed approximately 27% and 21% of PM10 inhalation non-cancer risk (INCR), respectively. The identified local sources accounted for approximately 80% of the ICR in Hong Kong, while contribution percentages of the non-local and local sources for INCR are comparable. The clear increase of ICR at high PM days was mainly attributed to the increase of contributions from coal combustion/biomass burning and secondary sulfate, while the increase of INCR at high PM days was attributed to the increase of contributions from the sources coal combustion/biomass burning, secondary nitrate, and trace metals. This study highlights the importance of health risk-based source apportionment in air quality management with protecting human health as the ultimate target.

  4. Bioavailability of Polycyclic Aromatic Hydrocarbons and their Potential Application in Eco-risk Assessment and Source Apportionment in Urban River Sediment

    Science.gov (United States)

    Yang, Xunan; Yu, Liuqian; Chen, Zefang; Xu, Meiying

    2016-03-01

    Traditional risk assessment and source apportionment of sediments based on bulk polycyclic aromatic hydrocarbons (PAHs) can introduce biases due to unknown aging effects in various sediments. We used a mild solvent (hydroxypropyl-β-cyclodextrin) to extract the bioavailable fraction of PAHs (a-PAHs) from sediment samples collected in Pearl River, southern China. We investigated the potential application of this technique for ecological risk assessments and source apportionment. We found that the distribution of PAHs was associated with human activities and that the a-PAHs accounted for a wide range (4.7%-21.2%) of total-PAHs (t-PAHs), and high risk sites were associated with lower t-PAHs but higher a-PAHs. The correlation between a-PAHs and the sediment toxicity assessed using tubificid worms (r = -0.654, P = 0.021) was greater than that from t-PAH-based risk assessment (r = -0.230, P = 0.472). Moreover, the insignificant correlation between a-PAH content and mPEC-Q of low molecular weight PAHs implied the potiential bias of t-PAH-based risk assessment. The source apportionment from mild extracted fractions was consistent across different indicators and was in accordance with typical pollution sources. Our results suggested that mild extraction-based approaches reduce the potential error from aging effects because the mild extracted PAHs provide a more direct indicator of bioavailability and fresher fractions in sediments.

  5. Variation in nitrate isotopic signatures in sewage for source apportionment with urbanization: a case study in Beijing, China.

    Science.gov (United States)

    Xian, Chaofan; Ouyang, Zhiyun; Li, Yanmin; Xiao, Yang; Ren, Yufen

    2016-11-01

    Nitrate (NO3(-)) pollution is a severe problem in urban aquatic systems especially within megacity undergoing rapid urbanization, and mostly, sewage is supposed as the prevailing NO3(-) source. A dual isotope approach (δ (15)N-NO3(-) and δ (18)O-NO3(-)) was applied to explore the variation in NO3(-) isotopic signatures in sewage processed by wastewater treatment plants (WWTPs) in Beijing from 2014 to 2015. We found that the raw and treated sewage owned the different NO3(-) isotopic signatures, including δ (15)N from 1.1 to 24.7 ‰ and δ (18)O from 1.6 to 22.8 ‰ in raw sewage, as well as δ (15)N from 6.1 to 22.8 ‰ and δ (18)O from 1.6 to 13.2 ‰ in treated effluents. The WWTP processing would result in the enrichment of NO3(-) isotopic compositions in discharged effluents with NO3(-) concentrations increasing. Besides, advanced sewage treatment technology with more pollutant N reduction may raise the heavier NO3(-) isotopic compositions further. The NO3(-) isotope value ranges of urban sewage and manure should be separated, and the seasonal and tighter NO3(-) isotope value ranges are supposed to improve the accuracy of source apportionment. The NO3(-) isotope value ranges conducted in this study might provide useful information for tracing NO3(-) sources towards the implementation of efficient water pollution control in Beijing.

  6. Source apportionment of polycyclic aromatic hydrocarbons in PM2.5 using positive matrix factorization modeling in Shanghai, China.

    Science.gov (United States)

    Wang, Fengwen; Lin, Tian; Feng, Jialiang; Fu, Huaiyu; Guo, Zhigang

    2015-01-01

    Providing quantitative information on the sources of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in urban regions is vital to establish effective abatement strategies for air pollution in a megacity. In this study, based on a year data set from October 2011 to August 2012, the sources of PM2.5-bound 16 USEPA priority PAHs (16 PAHs) in Shanghai, a megacity in China, were apportioned by positive matrix factorization (PMF) modeling. The average concentrations (in ng m(-3)) of 16 PAHs in PM2.5 in the fall, winter, spring and summer were 20.5 ± 18.2, 27.2 ± 24.0, 13.7 ± 7.7 and 6.4 ± 8.1, respectively, with an annual average of 16.9 ± 9.0. The source apportionment by PMF indicated that coal burning (30.5%) and gasoline engine emission (29.0%) were the two major sources of PAHs in the PM2.5 in Shanghai, followed by diesel engine emission (17.5%), air-surface exchange (11.9%) and biomass burning (11.1%). The highest source contributor for PAHs in the fall and winter was gasoline engine emission (36.7%) and coal burning (41.9%), respectively; while in the spring and summer, it was diesel engine emission that contributed the most (52.1% and 43.5%, respectively). It was suggested that there was a higher contribution of PAHs from engine emissions in 2011-2012 compared with those in 2002-2003. The major sources apportioned by PMF complemented well with this of using diagnostic ratios, suggesting a convincing identification of sources for the PM2.5-bound 16 PAHs in a megacity.

  7. Development and evaluation of a daily temporal interpolation model for fine particulate matter species concentrations and source apportionment

    Science.gov (United States)

    Redman, Jeremiah D.; Holmes, Heather A.; Balachandran, Sivaraman; Maier, Marissa L.; Zhai, Xinxin; Ivey, Cesunica; Digby, Kyle; Mulholland, James A.; Russell, Armistead G.

    2016-09-01

    The impacts of emissions sources on air quality in St. Louis, Missouri are assessed for use in acute health effects studies. However, like many locations in the United States, the speciated particulate matter (PM) measurements from regulatory monitoring networks in St. Louis are only available every third day. The power of studies investigating acute health effects of air pollution is reduced when using one-in-three day source impacts compared to daily source impacts. This paper presents a temporal interpolation model to estimate daily speciated PM2.5 mass concentrations and source impact estimates using one-in-three day measurements. The model is used to interpolate 1-in-3 day source impact estimates and to interpolate the 1-in-3 day PM species concentrations prior to source apportionment (SA). Both approaches are compared and evaluated using two years (June 2001-May 2003) of daily data from the St. Louis Midwest Supersite (STL-SS). Data withholding is used to simulate a 1-in-3 day data set from the daily data to evaluate interpolated estimates. After evaluation using the STL-SS data, the model is used to estimate daily source impacts at another site approximately seven kilometers (7 km) northwest of the STL-SS (Blair); results between the sites are compared. For interpolated species concentrations, the model performs better for secondary species (sulfate, nitrate, ammonium, and organic carbon) than for primary species (metals and elemental carbon), likely due to the greater spatial autocorrelation of secondary species. Pearson correlation (R) values for sulfate, nitrate, ammonium, elemental carbon, and organic carbon ranged from 0.61 (elemental carbon, EC2) to 0.97 (sulfate). For trace metals, the R values ranged from 0.31 (Ba) to 0.81 (K). The interpolated source impact estimates also indicated a stronger correlation for secondary sources. Correlations of the secondary source impact estimates based on measurement data and interpolation data ranged from 0.68 to 0

  8. Chemical characterisation of atmospheric aerosols during a 2007 summer field campaign at Brasschaat, Belgium: sources and source processes of biogenic secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    Y. Gómez-González

    2012-01-01

    Full Text Available Measurements of organic marker compounds and inorganic species were performed on PM2.5 aerosols from a Belgian forest site that is severely impacted by urban pollution ("De Inslag", Brasschaat, Belgium during a 2007 summer period within the framework of the "Formation mechanisms, marker compounds, and source apportionment for biogenic atmospheric aerosols (BIOSOL" project. The measured organic species included (i low-molecular weight (MW dicarboxylic acids (LMW DCAs, (ii methanesulfonate (MSA, (iii terpenoic acids originating from the oxidation of α-pinene, β-pinene, d-limonene and Δ3-carene, and (iv organosulfates related to secondary organic aerosol from the oxidation of isoprene and α-pinene. The organic tracers explained, on average, 5.3 % of the organic carbon (OC, of which 0.7 % was due to MSA, 3.4 % to LMW DCAs, 0.6 % to organosulfates, and 0.6 % to terpenoic acids. The highest atmospheric concentrations of most species were observed during the first five days of the campaign, which were characterised by maximum day-time temperatures >22 °C. Most of the terpenoic acids and the organosulfates peaked during day-time, consistent with their local photochemical origin. High concentrations of 3-methyl-1,2,3-butanetricarboxylic acid (MBTCA and low concentrations of cis-pinonic acid were noted during the first five days of the campaign, indicative of an aged biogenic aerosol. Several correlations between organic species were very high (r>0.85, high (0.7<r<0.85, or substantial (0.5<r<0.7, suggesting that they are generated through similar formation pathways. Substantial correlations with temperature were found for OC, water-soluble OC, MBTCA, and several other organic species. MBTCA and terebic acid were highly correlated with the temperature (r>0.7 and showed an Arrhenius-type relationship, consistent with their formation through OH radical chemistry.

  9. Characterization of polar organic compounds and source analysis of fine organic aerosols in Hong Kong

    Science.gov (United States)

    Li, Yunchun

    Organic aerosols, as an important fraction of airborne particulate mass, significantly affect the environment, climate, and human health. Compared with inorganic species, characterization of individual organic compounds is much less complete and comprehensive because they number in thousands or more and are diverse in chemical structures. The source contributions of organic aerosols are far from being well understood because they can be emitted from a variety of sources as well as formed from photochemical reactions of numerous precursors. This thesis work aims to improve the characterization of polar organic compounds and source apportionment analysis of fine organic carbon (OC) in Hong Kong, which consists of two parts: (1) An improved analytical method to determine monocarboxylic acids, dicarboxylic acids, ketocarboxylic acids, and dicarbonyls collected on filter substrates has been established. These oxygenated compounds were determined as their butyl ester or butyl acetal derivatives using gas chromatography-mass spectrometry. The new method made improvements over the original Kawamura method by eliminating the water extraction and evaporation steps. Aerosol materials were directly mixed with the BF 3/BuOH derivatization agent and the extracting solvent hexane. This modification improves recoveries for both the more volatile and the less water-soluble compounds. This improved method was applied to study the abundances and sources of these oxygenated compounds in PM2.5 aerosol samples collected in Hong Kong under different synoptic conditions during 2003-2005. These compounds account for on average 5.2% of OC (range: 1.4%-13.6%) on a carbon basis. Oxalic acid was the most abundant species. Six C2 and C3 oxygenated compounds, namely oxalic, malonic, glyoxylic, pyruvic acids, glyoxal, and methylglyoxal, dominated this suite of oxygenated compounds. More efforts are therefore suggested to focus on these small compounds in understanding the role of oxygenated

  10. ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2004-12-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of March 2004 through August 2004. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. Results highlighted in this report include evaluation of the performance of PMCAMx+ for an air pollution episode in the Eastern US, an emission profile for a coke production facility, ultrafine particle composition during a nucleation event, and a new hybrid approach for source apportionment. An agreement was reached with a utility to characterize fine particle and mercury emissions from a commercial coal fired power. Research in the next project period will include source testing of a coal fired power plant, source apportionment analysis, emission scenario modeling with PMCAMx+, and writing up results for submission as journal articles.

  11. Complex anthropogenic sources of platinum group elements in aerosols on Cape Cod, USA.

    Science.gov (United States)

    Sen, Indra S; Peucker-Ehrenbrink, Bernhard; Geboy, Nicholas

    2013-09-17

    Platinum group elements (PGE) of anthropogenic origin have been reported in rainwater, snow, roadside soil and vegetation, industrial waste, and urban airborne particles around the world. As recent studies have shown that PGE are bioavailable in the environment and pose health risks at chronic levels, the extent of PGE pollution is of global concern. In this study, we report PGE concentrations and osmium isotope ((187)Os/(188)Os) ratios of airborne particles (particulate matter, PM10) collected in Woods Hole, a small coastal village on Cape Cod, Massachusetts, U.S.A. The sampling site is more than 100 km away from the nearest urban centers (Boston, Providence) and has no large industrial emission center within a 30 km radius. The study reveals that, although PGE concentrations in rural airborne particulate matter are orders of magnitude lower than in urban aerosols, 69% of the total osmium is of anthropogenic origin. Anthropogenic PGE signatures in airborne particles are thus not restricted to large cities with high traffic flows and substantial industries; they can also be found in rural environments. We further conclude that the combination of Pt/Rh concentration ratios and (187)Os/(188)Os composition can be used to trace PGE sources. The Pt/Rh and (187)Os/(188)Os composition of Woods Hole aerosols indicate that the anthropogenic PGE fraction is primarily sourced from ore smelting processes, with possible minor contributions from fossil fuel burning and automobile catalyst-derived materials. Our results further substantiate the use of (187)Os/(188)Os in source apportionment studies on continental scales.

  12. Measurement and apportionment of radon source terms for modeling indoor environments. Final progress report, March 1990--August 1992

    Energy Technology Data Exchange (ETDEWEB)

    Harley, N.H.

    1992-12-31

    During the present 2 1/2 year contract period, we have made significant Progress in modeling the source apportionment of indoor {sup 222}Rn and in {sup 222}Rn decay product dosimetry. Two additional areas were worked on which we believe are useful for the DOE Radon research Program. One involved an analysis of the research house data, grouping the hourly house {sup 222}Rn measurements into 2 day, 7 day and 90 day intervals to simulate the response of passive monitors. Another area requiring some attention resulted in a publication of 3 years of our indoor/outdoor measurements in a high-rise apartment. Little interest has been evinced in apartment measurements yet 20% of the US population lives in multiple-family dwellings, not in contact with the ground. These data together with a summary of all other published data on apartments showed that apartments have only about 50% greater {sup 222}Rn concentration than the measured outdoor {sup 222}Rn. Apartment dwellers generally represent a low risk group regarding {sup 222}Rn exposure. The following sections describe the main projects in some detail.

  13. Measurements and source apportionment of particle-associated polycyclic aromatic hydrocarbons in ambient air in Riyadh, Saudi Arabia

    Science.gov (United States)

    Bian, Qijing; Alharbi, Badr; Collett, Jeffrey; Kreidenweis, Sonia; Pasha, Mohammad J.

    2016-07-01

    Ambient air samples were obtained in Riyadh, the capital and largest city of Saudi Arabia, during two measurement campaigns spanning September 2011 to September 2012. Sixteen particle-phase polycyclic aromatic hydrocarbons (PAH) were quantified in 167 samples. Pyrene and fluoranthene were the most abundant PAH, with average of 3.37 ± 14.01 ng m-3 and 8.00 ± 44.09 ng m-3, respectively. A dominant contribution from low molecular weight (LMW) PAH (MW < 228) suggested a large influence of industrial emissions on PAH concentrations. Monte Carlo source apportionment using diagnostic ratios showed that 80 ± 10% of the average LMW PAH concentrations were contributed by petroleum vapor emissions, while 53 ± 19% of high molecular weight (HMW) PAH were from solid fuel combustion emissions. The positive matrix factorization model estimated that oil combustion emissions dominated total PAH concentrations, accounting for on average 96%, likely due to widespread use of oil fuels in energy production (power plants and industries). Our results demonstrate the significant influence of petroleum product production and consumption on particulate-phase PAH concentrations in Riyadh, but also point to the importance of traffic and solid fuel burning, including coke burning and seasonal biomass burning, especially as they contribute to the ambient levels of HMW PAH.

  14. Distribution and Source Apportionment of Polycyclic Aromatic Hydrocarbons from Atmospheric Particulate Matter PM2.5 in Beijing

    Institute of Scientific and Technical Information of China (English)

    LIU Dameng; GAO Shaopeng; AN Xianghua

    2008-01-01

    A total of 11 PM2.5 samples were collected from October 2003 to October 2004 at 8 sampling sites in Beijing city.The PM2.5 concentrations are all above the PM2.5 pollution standard(65μg m(-3))established by Environmental Protection Agency,USA(USEPA)in 1997 except for the Ming Tombs site.PM2.5 con-centrations in winter are much higher than in summer.The 16 Polycyclic aromatic hydrocarbons(PAHs)listed as priority pollutants by USEPA in PM2.5 were completely identified and quantified by high perfor-mance liquid chromatography(HPLC)with variable wavelength detector(VWD)and fluorescence detector (FLD)employed.The PM2.5 concentrations indicate that the pollution situation is still serious in Beijing.The sum of 16 PAHs concentrations ranged from 22.17 to 5366 ng m-3.The concentrations of the heavier molecular weight PAHs have a different pollution trend from the lower PAHs.Seasonal variations were mainly attributed to the difference in coal combustion emission and meteorological conditions.The source apportionment analysis suggests that PAHs from PM2.5 in Beijing city mainly come from coal combustion and vehicle exhaust emission.New measures about restricting coal combustion and vehicle exhaust must be established as soon as possible to improve the air pollution situation in Beijing city.

  15. Integrated Application of Multivariate Statistical Methods to Source Apportionment of Watercourses in the Liao River Basin, Northeast China

    Science.gov (United States)

    Chen, Jiabo; Li, Fayun; Fan, Zhiping; Wang, Yanjie

    2016-01-01

    Source apportionment of river water pollution is critical in water resource management and aquatic conservation. Comprehensive application of various GIS-based multivariate statistical methods was performed to analyze datasets (2009–2011) on water quality in the Liao River system (China). Cluster analysis (CA) classified the 12 months of the year into three groups (May–October, February–April and November–January) and the 66 sampling sites into three groups (groups A, B and C) based on similarities in water quality characteristics. Discriminant analysis (DA) determined that temperature, dissolved oxygen (DO), pH, chemical oxygen demand (CODMn), 5-day biochemical oxygen demand (BOD5), NH4+–N, total phosphorus (TP) and volatile phenols were significant variables affecting temporal variations, with 81.2% correct assignments. Principal component analysis (PCA) and positive matrix factorization (PMF) identified eight potential pollution factors for each part of the data structure, explaining more than 61% of the total variance. Oxygen-consuming organics from cropland and woodland runoff were the main latent pollution factor for group A. For group B, the main pollutants were oxygen-consuming organics, oil, nutrients and fecal matter. For group C, the evaluated pollutants primarily included oxygen-consuming organics, oil and toxic organics. PMID:27775679

  16. Source regions for atmospheric aerosol measured at Barrow, Alaska.

    Science.gov (United States)

    Polissar, A V; Hopke, P K; Harris, J M

    2001-11-01

    Aerosol data consisting of condensation nuclei (CN) counts, black carbon (BC) mass concentration, and aerosol light scattering coefficient at the wavelength of 450 nm (SC) measured at Barrow, AK, from 1986 to 1997 have been analyzed. BC and SC show an annual cycle with the Arctic haze maxima in the winter and spring and the minima in the summer. The CN time series shows two maxima in March and August. Potential source contribution function (PSCF) that combines the aerosol data with air parcel backward trajectories was applied to identify potential source areas and the preferred pathways that give rise to the observed high aerosol concentrations at Barrow. Ten-day isentropic back trajectories arriving twice daily at 500 and 1500 m above sea level were calculated for the period from 1986 to 1997. The PSCF analyses were performed based on the 80th percentile criterion values for the 2- and 24-h averages of the measured aerosol parameters. There was a good correspondence between PSCF maps for the 2- and 24-h averages, indicating that 1-day aerosol sampling in the Arctic adequately represents the aerosol source areas. In winter, the high PSCF values for BC and SC are related to industrial source areas in Eurasia. The trajectory domain in winter and spring is larger than in summer, reflecting weaker transport in summer. No high PSCF areas for BC and SC can be observed in summer. The result is related to the poor transport into the Arctic plus the strong removal of aerosol by precipitation in summer. In contrast to the BC and SC maps, the CN plot for summer shows high PSCF areas in the North Pacific Ocean. High CN values appearto be mostly connected with the long-range transport from Eurasia in winter and spring and with the reduced sulfur compound emission from biogenic activities in the ocean in the summer. PSCF analysis was found to be effective in identifying potential aerosol source areas.

  17. Influence of organic and inorganic markers in the source apportionment of airborne PM10 in Zaragoza (Spain) by two receptor models.

    Science.gov (United States)

    Callén, M S; López, J M; Mastral, A M

    2013-05-01

    Improving knowledge on the apportionment of airborne particulate matter will be useful to handle and fulfill the legislation regarding this pollutant. The main aim of this work was to assess the influence of markers in the source apportionment of airborne PM10, in particular, whether the use of particle polycyclic aromatic hydrocarbon (PAH) and ions provided similar results to the ones obtained using not only the mentioned markers but also gas phase PAH and trace elements. In order to reach this aim, two receptor models: UNMIX and positive matrix factorization were applied to two sets of data in Zaragoza city from airborne PM10, a previously reported campaign (2003-2004) (Callén et al. Chemosphere 76:1120-1129, 2009), where PAH associated to the gas and particle phases, ions and trace elements were used as markers and a long sampling campaign (2001-2009), where only PAH in the particle phase and ions were analyzed. For both campaigns, positive matrix factorization was able to explain a higher number of sources than the UNMIX model. Independently of the sampling campaign and the receptor model used, soil resuspension was the main PM10 source, especially in the warm period (21st March-21st September), where most of the PM10 exceedances were produced. Despite some of the markers of anthropogenic sources were different for both campaigns, common sources associated to different combustion sources (coal, light-oil, heavier-oil, biomass, and traffic) were found and PAH in particle phase and ions seemed to be good markers for the airborne PM10 apportionment.

  18. ISS Ambient Air Quality: Updated Inventory of Known Aerosol Sources

    Science.gov (United States)

    Meyer, Marit

    2014-01-01

    Spacecraft cabin air quality is of fundamental importance to crew health, with concerns encompassing both gaseous contaminants and particulate matter. Little opportunity exists for direct measurement of aerosol concentrations on the International Space Station (ISS), however, an aerosol source model was developed for the purpose of filtration and ventilation systems design. This model has successfully been applied, however, since the initial effort, an increase in the number of crewmembers from 3 to 6 and new processes on board the ISS necessitate an updated aerosol inventory to accurately reflect the current ambient aerosol conditions. Results from recent analyses of dust samples from ISS, combined with a literature review provide new predicted aerosol emission rates in terms of size-segregated mass and number concentration. Some new aerosol sources have been considered and added to the existing array of materials. The goal of this work is to provide updated filtration model inputs which can verify that the current ISS filtration system is adequate and filter lifetime targets are met. This inventory of aerosol sources is applicable to other spacecraft, and becomes more important as NASA considers future long term exploration missions, which will preclude the opportunity for resupply of filtration products.

  19. ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2004-04-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of September 2003 through February 2004. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. Results highlighted in this report include chemical fractionation of the organic fraction to quantify the ratio of organic mass to organic carbon (OM/OC). The average OM/OC ratio for the 31 samples analyzed so far is 1.89, ranging between 1.62 and 2.53, which is consistent with expectations for an atmospherically processed regional aerosol. Analysis of the single particle data reveals that a on a particles in Pittsburgh consist of complex mixture of primary and secondary components. Approximately 79% of all particles measured with the instrument containing some form of carbon, with Carbonaceous Ammonium Nitrate (54.43%) being the dominant particle class. PMCAMx predictions were compared with data from more than 50 sites of the STN network located throughout the Eastern United States for the July 2001 period. OC and sulfate concentrations predicted by PMCAMx are within {+-}30% of the observed concentration at most of these sites. Spherical Aluminum Silicate particle concentrations (SAS) were used to estimate the contribution of primary coal emissions to fine particle levels at the central monitoring site. Primary emissions from coal combustion contribute on average 0.44 {+-} 0.3 {micro}g/m{sup 3} to PM{sub 2.5} at the site or 1.4 {+-} 1.3% of the total PM{sub 2.5} mass. Chemical mass balance analysis was performed to apportion the primary organic aerosol. About 70% of the primary OC emissions are from vehicular sources, with the gasoline contribution being on average three times greater than the diesel emissions in the summer.

  20. PM10 source apportionment applying PMF and chemical tracer analysis to ship-borne measurements in the Western Mediterranean

    Science.gov (United States)

    Bove, M. C.; Brotto, P.; Calzolai, G.; Cassola, F.; Cavalli, F.; Fermo, P.; Hjorth, J.; Massabò, D.; Nava, S.; Piazzalunga, A.; Schembari, C.; Prati, P.

    2016-01-01

    A PM10 sampling campaign was carried out on board the cruise ship Costa Concordia during three weeks in summer 2011. The ship route was Civitavecchia-Savona-Barcelona-Palma de Mallorca-Malta (Valletta)-Palermo-Civitavecchia. The PM10 composition was measured and utilized to identify and characterize the main PM10 sources along the ship route through receptor modelling, making use of the Positive Matrix Factorization (PMF) algorithm. A particular attention was given to the emissions related to heavy fuel oil combustion by ships, which is known to be also an important source of secondary sulphate aerosol. Five aerosol sources were resolved by the PMF analysis. The primary contribution of ship emissions to PM10 turned out to be (12 ± 4)%, while secondary ammonium sulphate contributed by (35 ± 5)%. Approximately, 60% of the total sulphate was identified as secondary aerosol while about 20% was attributed to heavy oil combustion in ship engines. The measured concentrations of methanesulphonic acid (MSA) indicated a relevant contribution to the observed sulphate loading by biogenic sulphate, formed by the atmospheric oxidation of dimethyl sulphide (DMS) emitted by marine phytoplankton.

  1. Diurnal variations and source apportionment of ozone at the summit of Mount Huang, a rural site in Eastern China.

    Science.gov (United States)

    Gao, J; Zhu, B; Xiao, H; Kang, H; Hou, X; Yin, Y; Zhang, L; Miao, Q

    2017-03-01

    Comprehensive measurements were conducted at the summit of Mount (Mt.) Huang, a rural site located in eastern China during the summer of 2011. They observed that ozone showed pronounced diurnal variations with high concentrations at night and low values during daytime. The Weather Research and Forecasting with Chemistry (WRF-Chem) model was applied to simulate the ozone concentrations at Mt. Huang in June 2011. With processes analysis and online ozone tagging method we coupled into the model system, the causes of this diurnal pattern and the contributions from different source regions were investigated. Our results showed that boundary layer diurnal cycle played an important role in driving the ozone diurnal variation. Further analysis showed that the negative contribution of vertical mixing was significant, resulting in the ozone decrease during the daytime. In contrast, ozone increased at night owing to the significant positive contribution of advection. This shifting of major factor between vertical mixing and advection formed this diurnal variation. Ozone source apportionment results indicated that approximately half was provided by inflow effect of ozone from outside the model domain (O3-INFLOW) and the other half was formed by ozone precursors (O3-PBL) emitted in eastern, central, and southern China. In the O3-PBL, 3.0% of the ozone was from Mt. Huang reflecting the small local contribution (O3-LOC) and the non-local contributions (O3-NLOC) accounted for 41.6%, in which ozone from the southerly regions contributed significantly, for example, 9.9% of the ozone originating from Jiangxi, representing the highest geographical contributor. Because the origin and variation of O3-NLOC was highly related to the diurnal movements in boundary layer, the similar diurnal patterns between O3-NLOC and total ozone both indicated the direct influence of O3-NLOC and the importance of boundary layer diurnal variations in the formation of such distinct diurnal ozone variations

  2. Environmental carcinogenic polycyclic aromatic hydrocarbons in soil from Himalayas, India: Implications for spatial distribution, sources apportionment and risk assessment.

    Science.gov (United States)

    Devi, Ningombam Linthoingambi; Yadav, Ishwar Chandra; Shihua, Qi; Dan, Yang; Zhang, Gan; Raha, Priyankar

    2016-02-01

    The Indian Himalayan Region (IHR) is one of the important mountain ecosystems among the global mountain system which support wide variety of flora, fauna, human communities and cultural diversities. Surface soil samples (n = 69) collected from IHR were analysed for 16 priority polycyclic aromatic hydrocarbons (PAH) listed by USEPA. The ∑16PAH concentration in surface soil ranged from 15.3 to 4762 ngg(-1) (mean 458 ngg(-1)). The sum total of low molecular weight PAH (∑LMW-PAHs) (mean 74.0 ngg(-1)) were relatively lower than the high molecular weight PAH (∑HMW-PAHs) (mean 384 ngg(-1)). The concentration of eight carcinogenic PAHs (BaA, CHR, BbF, BkF, BaP, DahA, IcdP, BghiP) were detected high in mountain soil from IHR and ranged from 0.73 to 2729 ngg(-1) (mean 272 ngg(-1)). Based on spatial distribution map, high concentration of HMW- and LMW-PAHs were detected at GS1 site in Guwahati (615 and 4071 ngg(-1)), and lowest concentration of HMW-PAHs were found at IS6 in Itanagar (5.80 ngg(-1)) and LMW-PAHs at DS2 (17.3 ngg(-1)) in Dibrugarh. Total organic carbon (TOC) in mountain soil was poorly connected with ∑PAHs (r(2) = 0.072) and Car-PAHs (r(2) = 0.048), suggesting the little role of TOC in adsorption of PAHs. Isomeric ratio of PAHs showed the source of PAH contamination in IHR is mixed of petrogenic and pyrogenic origin and was affirmed by PAHs composition profile. These source apportionment results were further confirmed by principal component analysis (PCA). Eco-toxicological analysis showed the calculated TEQ for most carcinogenic PAH were 2-4 times more than the Dutch allowed limit, while TEQ of BaP was 25 times high, suggesting increasing trend of carcinogenicity of surface soil.

  3. Source apportionment of indoor, outdoor and personal PM2.5 exposure of pregnant women in Barcelona, Spain

    Science.gov (United States)

    Minguillón, M. C.; Schembari, A.; Triguero-Mas, M.; de Nazelle, A.; Dadvand, P.; Figueras, F.; Salvado, J. A.; Grimalt, J. O.; Nieuwenhuijsen, M.; Querol, X.

    2012-11-01

    Exposure to air pollution has been shown to adversely affect foetal development in the case of pregnant women. The present study aims to investigate the PM composition and sources influencing personal exposure of pregnant women in Barcelona. To this end, indoor, outdoor and personal exposure measurements were carried out for a selection of 54 pregnant women between November 2008 and November 2009. PM2.5 samples were collected during two consecutive days and then analysed for black smoke (BS), major and trace elements, and polycyclic aromatic hydrocarbons (PAHs) concentrations. Personal information such as commuting patterns and cosmetics use was also collected. PM2.5 concentrations were higher for personal samples than for indoor and outdoor environments. Indoor, outdoor and personal BS and sulphate concentrations were strongly correlated, although some specific indoor and outdoor sulphate sources may exist. Average trace elements concentrations were similar indoor, outdoor and for personal exposure, but the correlations were moderate for most of them. Most of the PAHs concentrations showed strong correlations indoor-outdoor. A source apportionment analysis of the PM composition data by means of a Positive Matrix Factorization (PMF) resulted in the identification of six sources for the outdoor and indoor environments: secondary sulphate, fueloil + sea salt (characterized by V, Ni, Na and Mg), mineral, cigarette (characterized by K, Ce, Cd, benzo(k)fluoranthene and benzo(ghi)perylene), road traffic (characterized by BS and low weight PAHs), and industrial (characterized by Pb, Sn, Cu, Mn and Fe). For personal exposure two specific sources were found: cosmetics (characterized by abundance of Ca, Li, Ti and Sr and the absence of Al) and train/subway (characterized by Fe, Mn, Cu and Ba). The contribution of the sources varied widely among women, especially for cigarette (from zero to up to 4 μg m-3), train/subway (up to more than 6 μg m-3) and cosmetics (up to more

  4. Chemical characteristics and source apportionment of PM10 during a brown haze episode in Harbin,China

    Institute of Scientific and Technical Information of China (English)

    Likun Huang; Chung-Shin Yuan; Guangzhi Wang; Kun Wang

    2011-01-01

    This study investigates the correlation between PM10 and meteorological factors such as wind speed,atmospheric visibility,dew point,relative humidity,and ambient temperature during a brown haze episode. In order to identify the potential sources of PM10 during brown haze episode,respirable particulate matter (PM10) was collected during both non-haze days and haze days and further analyzed for metallic elements,ionic species,and carbonaceous contents. Among them,ionic species contributed 45-64% to PM10,while metallic elements contributed 7-21% to PM10 which was smaller than the other chemical constituents. The average OC/EC ratio (42) in haze days was about three times of the average OC/EC ratio (14) in non-haze days. By using chemical mass balance (CMB) receptor model,the major sources were apportioned,including traffics,incinerators,coal combustion,steel industry,petrochemical industry,and secondary aerosols,etc. The contribution to PM10 concentration of each source was calculated for all the samples collected. The results showed that coal combustion was the major source of PM10 in non-haze days and secondary aerosols were the major source in haze days,followed by petrochemical industry,incinerators,and traffics,while other sources had negligible effect.

  5. Advanced source apportionment of PM2.5 using online mass spectrometry in two major cities in China

    Science.gov (United States)

    Prevot, Andre S. H.; Elser, Miram; Huang, Rujin; Slowik, Jay; Wang, Qiyuan; Canonaco, Francesco; Bozzetti, Carlo; Cao, Junji; Baltensperger, Urs; El Haddad, Imad

    2016-04-01

    During winter 2013-2014 aerosol mass spectrometer (AMS) measurements were conducted in two major cities of China: Xi'an and Beijing. The AMS was equipped with a recently developed aerodynamic lens for direct measurements of the PM2.5 fraction for the first time in Asia (Williams et al., 2013). We could show that around 40% of the mass is lost using a conventional PM1 inlet. The statistical tool multi-linear engine 2 using constrained positive matrix factorization was used to derive the sources of organic aerosols. During the more extreme haze periods, 537 and 243 ug/m3 were recorded in Xi'an and Beijing respectively. The main results include a dominance of coal combustion in Beijing of the primary organic aerosols with a contribution of more than 90% to the cancerogenic polycyclic hydrocarbons. In Xi'an primary wood burning was a more important source. In both cities, an increase of secondary organic aerosols could be observed. The results including uncertainties will be discussed and put in perspective of previous analyses of haze in northern China including our previous analysis published in Nature (Huang et al., 2014). The study can be used as a role model for future similar analyses in Asia where the emission sources are highly complex. Huang, R.J., Cao, J.J., El Haddad, I. and Prévôt A.S.H. et al. (2014) Nature 514, 218-222. Williams, L.R., Prévôt, A.S.H., Worsnop, D.R. et al. (2013) Atmos. Meas. Tech. 6, 3271-3280.

  6. Source apportionment of PM2.5 at a regional background site in North China using PMF linked with radiocarbon analysis: insight into the contribution of biomass burning

    Science.gov (United States)

    Zong, Zheng; Wang, Xiaoping; Tian, Chongguo; Chen, Yingjun; Qu, Lin; Ji, Ling; Zhi, Guorui; Li, Jun; Zhang, Gan

    2016-09-01

    Source apportionment of fine particles (PM2.5) at a background site in North China in the winter of 2014 was done using statistical analysis, radiocarbon (14C) measurement and positive matrix factorization (PMF) modeling. Results showed that the concentration of PM2.5 was 77.6 ± 59.3 µg m-3, of which sulfate (SO42-) concentration was the highest, followed by nitrate (NO3-), organic carbon (OC), elemental carbon (EC) and ammonium (NH4+). As demonstrated by backward trajectory, more than half of the air masses during the sampling period were from the Beijing-Tianjin-Hebei (BTH) region, followed by Mongolia and the Shandong Peninsula. Cluster analysis of chemical species suggested an obvious signal of biomass burning in the PM2.5 from the Shandong Peninsula, while the PM2.5 from the BTH region showed a vehicle emission pattern. This finding was further confirmed by the 14C measurement of OC and EC in two merged samples. The 14C result indicated that biogenic and biomass burning emission contributed 59 ± 4 and 52 ± 2 % to OC and EC concentrations, respectively, when air masses originated from the Shandong Peninsula, while the contributions fell to 46 ± 4 and 38 ± 1 %, respectively, when the prevailing wind changed and came from the BTH region. The minimum deviation between source apportionment results from PMF and 14C measurement was adopted as the optimal choice of the model exercises. Here, two minor overestimates with the same range (3 %) implied that the PMF result provided a reasonable source apportionment of the regional PM2.5 in this study. Based on the PMF modeling, eight sources were identified; of these, coal combustion, biomass burning and vehicle emission were the main contributors of PM2.5, accounting for 29.6, 19.3 and 15.9 %, respectively. Compared with overall source apportionment, the contributions of vehicle emission, mineral dust, coal combustion and biomass burning increased when air masses came from the BTH region, Mongolia and the Shandong

  7. [Source apportionment of dioxin-like polychlorinated biphenyls in soil of the modern Yellow River Delta].

    Science.gov (United States)

    Liu, Jing; Cui, Zhao-jie; Fan, Guo-lan; Xu, Hong-yu

    2007-12-01

    The concentrations of 12 dioxin-like polychlorinated biphenyls (PCBs) in twenty two soil samples collected from modern Yellow River Delta were determined by dual capillary GC-ECD associated with GC-MS. Principle component analysis (PCA) was applied in analysing the dioxin-like PCBs data to obtain types, sources, percentages of source contribution and the congener composition of PCBs in the Delta on the congener level. The results indicated that four types of PCBs contamination sources affecting the PCBs distribution pattern were apportioned in the Delta. The first source was water runoff (non-point source), which was from the industrial production and use by the enterprises along the Yellow River, and it contributed 49.6% of the total contamination burden in the Delta, its dioxin-like PCBs profile was similar to native PCBs and Aroclorl221; the second and third types of PCBs sources were point sources, whose percentages of contribution were 15.0% and 10.1% respectively, the composition of the second source was similar to that of Aroclor1221 and Aroclor1242, the composition of the third source was similar to that of Aroclor1260; the fourth source is believed to be non-point source which was from the atmospheric dry and wet precipitation, it contributed 8.4%, its profile have similarity composition of the integration of Aroclor1242, Aroclor1248 and Aroclor1260.

  8. An Analysis of AERONET Aerosol Absorption Properties and Classifications Representative of Aerosol Source Regions

    Science.gov (United States)

    Giles, David M.; Holben, Brent N.; Eck, Thomas F.; Sinyuk, Aliaksandr; Smirnov, Alexander; Slutsker, Ilya; Dickerson, R. R.; Thompson, A. M.; Schafer, J. S.

    2012-01-01

    Partitioning of mineral dust, pollution, smoke, and mixtures using remote sensing techniques can help improve accuracy of satellite retrievals and assessments of the aerosol radiative impact on climate. Spectral aerosol optical depth (tau) and single scattering albedo (omega (sub 0) ) from Aerosol Robotic Network (AERONET) measurements are used to form absorption [i.e., omega (sub 0) and absorption Angstrom exponent (alpha(sub abs))] and size [i.e., extinction Angstrom exponent (alpha(sub ext)) and fine mode fraction of tau] relationships to infer dominant aerosol types. Using the long-term AERONET data set (1999-2010), 19 sites are grouped by aerosol type based on known source regions to: (1) determine the average omega (sub 0) and alpha(sub abs) at each site (expanding upon previous work); (2) perform a sensitivity study on alpha(sub abs) by varying the spectral omega (sub 0); and (3) test the ability of each absorption and size relationship to distinguish aerosol types. The spectral omega (sub 0) averages indicate slightly more aerosol absorption (i.e., a 0.0 pollution and smoke with dust show stronger absorption than dust alone. Frequency distributions of alpha(sub abs) show significant overlap among aerosol type categories and at least 10% of the alpha(sub abs) retrievals in each category are below 1.0. Perturbing the spectral omega (sub 0) by +/- 0.03 induces significant alpha(sub abs) changes from the unperturbed value by at least approx. +/- 0.6 for Dust, approx. +/-0.2 for Mixed, and approx. +/-0.1 for Urban/Industrial and Biomass Burning. The omega (sub 0)440nm and alpha(sub ext) 440-870nm relationship shows the best separation among aerosol type clusters, providing a simple technique for determining aerosol type from surface- and future space-based instrumentation.

  9. Linking Aerosol Source Activities to Present and Future Climate Effects

    Science.gov (United States)

    Koch, D.; Bond, T. C.; Streets, D.; Menon, S.; Unger, N.

    2007-05-01

    Aerosol source sectors (transport, power, industry, residential, biomass burning) generate distinct mixtures of aerosol species. These mixtures in turn have different effects on climate. As sectoral emissions change in coming decades, whether by regulation or not, it is helpful to link pollution from source types to climate consequences. We do so, using our global (GISS GCM) aerosol model for present and future IPCC SRES scenarios. According to our model, residential and transport sectors have net positive 1995 aerosol forcings (0.04 and 0.03 W m-2) due to their large black carbon contents. However, the sulfate-dominated power and industry sectors have net negative 1995 forcings (-0.10 and -0.09 W m-2). Due to the near-balance of absorbing and scattering components, biomass burning forcing is small. For the 2050 SRES A1B scenario, the net (negative) aerosol forcing is double 1995 due primarily to increased sulfur emissions in the industry and power sectors. For 2050 B1 the net (negative) forcing decreases relative to 1995, as sulfur emissions are reduced. Both future scenarios project decreasing residential emissions. Yet transport emissions are expected to remain significant and thus become the dominant source of warming aerosols in the future. Aerosol pollution is projected to shift southward relative to the present, as the current industrialized regions generally reduce emissions and tropical and southern hemispheric regions continue to develop. Similar to these SRES scenarios, IIASA scenarios project a decline in residential emissions; however IIASA is more optimistic about transport sector emissions reductions. We will conduct present-day climate experiments, including aerosol direct and indirect effects, to study impacts of power and transport sectors on climate features such as air temperature and hydrologic cycle.

  10. Source apportionment and pollution evaluation of heavy metals in water and sediments of Buriganga River, Bangladesh, using multivariate analysis and pollution evaluation indices.

    Science.gov (United States)

    Bhuiyan, Mohammad Amir Hossain; Dampare, Samuel B; Islam, M A; Suzuki, Shigeyuki

    2015-01-01

    Concentrations of heavy metals in water and sediment samples of Buriganga River in the capital city Dhaka, Bangladesh, were studied to understand the level of heavy metals and their source apportionment. The results showed that the mean concentrations of heavy metals both in water and sediment samples were very high and, in most cases, exceeded the permissible limits recommended by the Bangladesh government and other international organizations. Significantly higher concentrations of Pb, Cr, Mn, Co, Ni, Cu, Zn, As, and Cd were found in sediment samples. However, average concentrations of metals both in water and sediment samples were above the effect range median. The heavy metal pollution index (HPI) and degree of contamination (Cd) yielded different results in water samples despite significant correlations between them. The heavy metal evaluation index (HEI) showed strong correlations with HPI and Cd and provided better assessment of pollution levels. The enrichment factor (EF) and geoaccumulation index (Igeo) showed the elevated value of Cr, Pb, and Cd in access of background values. The measured elements were subjected to positive matrix factorization (PMF) and examining correlations in order to explain the content, behavior, and source apportionment of metals. PMF resulted in a successful partitioning of variances into sources related to background geochemistry and contaminant influences. However, the PMF approach successfully demarcated the major sources of metals from tannery, paint, municipal sewage, textiles, and agricultural activities.

  11. Chemical mass balance source apportionment of fine and PM10 in the Desert Southwest, USA

    Directory of Open Access Journals (Sweden)

    Andrea L. Clements

    2016-03-01

    Full Text Available The Desert Southwest Coarse Particulate Matter Study was undertaken in Pinal County, Arizona, to better understand the origin and impact of sources of fine and coarse particulate matter (PM in rural, arid regions of the U.S. southwestern desert. The desert southwest experiences some of the highest PM10 mass concentrations in the country. To augment previously reported results, 6-week aggregated organic speciation data that included ambient concentrations of n-alkanes, polycyclic aromatic hydrocarbons, organic acids, and saccharides were used in chemical mass balance modeling (CMB. A set of re-suspended soil samples were analyzed for specific marker species to provide locally-appropriate source profiles for the CMB analysis. These profiles, as well as previously collected plant and fungal spore profiles from the region, were combined with published source profiles for other relevant sources and used in the CMB analysis. The six new region-specific source profiles included both organic and inorganic species for four crustal material sources, one plant detritus source, and one fungal spore source.Results indicate that up to half of the ambient PM2.5 was apportioned to motor vehicles with the highest regional contribution observed in the small urban center of Casa Grande. Daily levels of apportioned crustal material accounted for up to 50% of PM2.5 mass with the highest contributions observed at the sites closest to active agricultural areas. Apportioned secondary PM, biomass burning, and road dust typically contributed less than 35% as a group to the apportioned PM2.5 mass. Crustal material was the primary source apportioned to PM10 and accounted for between 50–90% of the apportioned mass. Of the other sources apportioned to PM10, motor vehicles and road dust were the largest contributors at the urban and one of the rural sites, whereas road dust and meat cooking operations were the largest contributors at the other rural site.

  12. Sources and characteristics of fine particles over the Yellow Sea and Bohai Sea using online single particle aerosol mass spectrometer.

    Science.gov (United States)

    Fu, Huaiyu; Zheng, Mei; Yan, Caiqing; Li, Xiaoying; Gao, Huiwang; Yao, Xiaohong; Guo, Zhigang; Zhang, Yuanhang

    2015-03-01

    Marine aerosols over the East China Seas are heavily polluted by continental sources. During the Chinese Comprehensive Ocean Experiment in November 2012, size and mass spectra of individual atmospheric particles in the size range from 0.2 to 2.0 μm were measured on board by a single particle aerosol mass spectrometer (SPAMS). The average hourly particle number (PN) was around 4560±3240 in the South Yellow Sea (SYS), 2900±3970 in the North Yellow Sea (NYS), and 1700±2220 in the Bohai Sea (BS). PN in NYS and BS varied greatly over 3 orders of magnitude, while that in SYS varied slightly. The size distributions were fitted with two log-normal modes. Accumulation mode dominated in NYS and BS, especially during episodic periods. Coarse mode particles played an important role in SYS. Particles were classified using an adaptive resonance theory based neural network algorithm (ART-2a). Six particle types were identified with secondary-containing, aged sea-salt, soot-like, biomass burning, fresh sea-salt, and lead-containing particles accounting for 32%, 21%, 18%, 16%, 4%, and 3% of total PN, respectively. Aerosols in BS were relatively enriched in particles from anthropogenic sources compared to SYS, probably due to emissions from more developed upwind regions and indicating stronger influence of continental outflow on marine environment. Variation of source types depended mainly on origins of transported air masses. This study examined rapid changes in PN, size distribution and source types of fine particles in marine atmospheres. It also demonstrated the effectiveness of high-time-resolution source apportionment by ART-2a.

  13. Particle sized-resolved source apportionment of primary and secondary organic tracer compounds at urban and rural locations in Spain

    Directory of Open Access Journals (Sweden)

    B. L. van Drooge

    2015-04-01

    Full Text Available Atmospheric particulate matter (PM was fractionated in six aerodynamic sizes, > 7.2, 7.2–3, 3–1.5, 1.5–1, 1–0.5, PM > 0.5 μm. Thus, markers of photochemically synthesized organic compounds or combustion sources, either biomass burning or traffic emissions, were predominantly observed in the fraction Important seasonal differences were observed at the rural site. In the PM > 0.5 μm fractions the differences involved predominant soil-sourced compounds in the warm period and mixed combustion sources, photochemical products and vegetation emissions in the cold. Multivariate Curve Resolution Alternating Least Squares showed that these organic aerosols essentially originated from six source components. Four of them reflected primary emissions related with either natural products, e.g. vegetation emissions and up whirled soil dust, or anthropogenic contributions, e.g. combustion products and compounds related with urban life-style activities, mainly vehicular exhausts and tobacco smoking. Two secondary organic aerosol components were identified. They accumulated in the smallest ( 0.5 μm and involved strong or mild photochemical transformations of vegetation precursor molecules, respectively. Toxicologically relevant information was also disclosed with the present approach. Thus, the strong predominance of biomass burning residues at the rural site during the cold period involved atmospheric concentrations of polycyclic aromatic hydrocarbons that were three times higher than at the urban sites and benzo[a]pyrene concentrations above legal recommendations.

  14. Spatial variation and source apportionment of water pollution in Qiantang River (China) using statistical techniques.

    Science.gov (United States)

    Huang, Fang; Wang, Xiaoquan; Lou, Liping; Zhou, Zhiqing; Wu, Jiaping

    2010-03-01

    Understanding the spatial distribution and apportioning the sources of water pollution are important in the study and efficient management of water resources. In this work, we considered data for 13 water quality variables collected during the year 2004 at 46 monitoring sites along the Qiantang River (China). Fuzzy comprehensive analysis categorized the data into three major pollution zones (low, moderate, and high) based on national quality standards for surface waters, China. Most sites classified as "low pollution zones" (LP) occurred in the main river channel, whereas those classified as "moderate and high pollution zones" (MP and HP, respectively) occurred in the tributaries. Factor analysis identified two potential pollution sources that explained 67% of the total variance in LP, two potential pollution sources that explained 73% of the total variance in MP, and three potential pollution sources that explained 80% of the total variance in HP. UNMIX was used to estimate contributions from identified pollution sources to each water quality variable and each monitoring site. Most water quality variables were influenced primarily by pollution due to industrial wastewater, agricultural activities and urban runoff. In LP, non-point source pollution such as agricultural runoff and urban runoff dominated; in MP and HP, mixed source pollution dominated. The pollution in the small tributaries was more serious than that in the main channel. These results provide information for developing better pollution control strategies for the Qiantang River.

  15. Source apportionment of chlorinated polycyclic aromatic hydrocarbons associated with ambient particles in a Japanese megacity

    Science.gov (United States)

    Kamiya, Yuta; Iijima, Akihiro; Ikemori, Fumikazu; Okuda, Tomoaki; Ohura, Takeshi

    2016-12-01

    Chlorinated polycyclic aromatic hydrocarbons (ClPAHs) are novel species of environmental contaminants whose possible sources remain unclear. The occurrence of ClPAHs within total suspended particles (TSP) is compared with weekly air samples at two sites of differing characteristics (industrial and residential) in the megacity of Nagoya, Japan. Samples were collected over 12 months during 2011–2012. All 24 species of targeted ClPAHs were detected at both industrial and residential sites, where mean concentrations of total ClPAHs in TSP were 20.7 and 14.1 pg/m3, respectively. High concentrations at the industrial site were frequently observed during winter, suggesting potent seasonal ClPAH sources there. Positive matrix factorization modeling of particulate ClPAH source identification and apportioning were conducted for datasets including ClPAHs, PAHs, elements and ions, plus elemental carbons in TSP. Eight factors were identified as possible ClPAH sources, with estimates that the dominant one was a specific source of ClPAH emission (31%), followed by traffic (23%), photodegradable and semi-volatile species (18%), long-range transport (11%), and industry and oil combustion (10%). Source contributions of ClPAHs differed substantially from those of PAHs. This suggests specific and/or potent ClPAH sources in the local area, and that the production mechanisms between ClPAHs and PAHs are substantially different.

  16. Sources of methane and nitrous oxide in California's Central Valley estimated through direct airborne flux and positive matrix factorization source apportionment of groundbased and regional tall tower measurements

    Science.gov (United States)

    Guha, Abhinav

    Methane (CH4) and nitrous oxide (N2O) are two major greenhouse gases that contribute significantly to the increase in anthropogenic radiative-forcing causing perturbations to the earth's climate system. In a watershed moment in the state's history of environmental leadership and commitment, California, in 2006, opted for sharp reductions in their greenhouse gas (GHG) emissions and adopted a long-term approach to address climate change that includes regulation of emissions from individual emitters and source categories. There are large CH4 and N2O emissions sources in the state, predominantly in the agricultural and waste management sector. While these two gases account for Transects) study. Next, a one-year continuous field campaign (WGC 2012-13, June 2012 - August 2013) was conducted at the Walnut Grove tall tower near the Sacramento-San Joaquin River Delta in the Central Valley. Through analysis of these field measurements, this dissertation presents the apportionment of observed CH4 and N2O concentration enhancements into major source categories along with direct emissions estimates from airborne observations. We perform high-precision measurements of greenhouse gases using gas analyzers based on absorption spectroscopy, and other source marker volatile organic compounds (VOCs) using state of the art VOC measurement systems (e.g. proton transfer reaction mass spectrometry). We combine these measurements with a statistical source apportionment technique called positive matrix factorization (PMF) to evaluate and investigate the major local sources of CH4 and N2O during CalNex and Walnut Grove campaigns. In the CABERNET study, we combine measurements with an airborne approach to a well-established micrometeorological technique (eddy-covariance method) to derive CH4 fluxes over different source regions in the Central Valley. In the CalNex experiments, we demonstrate that dairy and livestock remains the largest source sector of non-CO2 greenhouse gases in the San

  17. Source apportionment of PM10 and PM2.5 near a large mining zone in Northern Chile

    Science.gov (United States)

    Jorquera, H.

    2008-12-01

    Chile's economic growth is mainly driven by intensive mining activities; currently Chile produces ~ 40% of copper worldwide. Most of those activities are located in northern Chile, in a desert region where strong regional winds contribute with soil erosion as well. The city of Calama (22.4°S, 68.9°W) is about 17 km south of Chuquicamata, one of the largest open pit copper mines in the world, both located on the west edge of the Andes; Calama is at 2,400 m asl and it is 215 km east of the Pacific Ocean. The mining complex releases ~ 21 kton/y of PM10 and ~ 78 kton/y of SO2 from a copper smelter. The levels of ambient PM10 have steadily increased at Calama in the last 5 years, so there is concern about the impacts from copper industry in the city´s inhabitants, most of who work in mining or related economic activities. A campaign was conducted at Calama between October and December 2007, sampling ambient PM10 and PM2.5 at several sites across the city. Filters were analyzed at the Desert Research Institute, Reno, NV for elemental composition by XRF and for elemental and organic carbon using thermal analysis. The application of positive matrix factorization (PMF) model identified four sources contributing to ambient PM2.5: secondary sulfates (49%), traffic emissions (37%), dust street (9%) and copper smelter emissions (5%). In the coarse fraction, four sources were identified: dust street (45%), wind erosion (34%), mineral processing (14%) and copper smelter emissions (7%). No natural background was found for PM2.5. For ambient PM10 the source apportionment obtained is: mining activities (33%), street dust (34%), wind erosion (22%) and traffic emissions (12%). With a current PM10 annual average of 58 μg/m3 and further mining activities projected in the area, there is a big challenge to improve air quality in the populated area close to the mining operations.

  18. Source apportionment of polycyclic aromatic hydrocarbons in surface soil in Tianjin, China

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Q.; Duan, Y.H.; Yang, Y.; Wang, X.J.; Tao, S. [Peking University, Beijing (China)

    2007-05-15

    Principal component analysis and multiple linear regression were applied to apportion sources of polycyclic aromatic hydrocarbons (PAHs) in surface soils of Tianjin, China based on the measured PAH concentrations of 188 surface soil samples. Four principal components were identified representing coal combustion, petroleum, coke oven plus biomass burning, and chemical industry discharge, respectively. The contributions of major sources were quantified as 41% from coal, 20% from petroleum, and 39% from coking and biomass, which are compatible with PAH emissions estimated based on fuel consumption and emission factors. When the study area was divided into three zones with distinctive differences in soil PAH concentration and profile, different source features were unveiled. For the industrialized Tanggu-Hangu zone, the major contributors were coking (43%), coal (37%) and vehicle exhaust (20%). In rural area, however, in addition to the three main sources, biomass burning was also important (13%). In urban-suburban zone, incineration accounted for one fourth of the total.

  19. Source apportionment of polycyclic aromatic hydrocarbons (PAHs) in sediments from Khuzestan province, Iran

    DEFF Research Database (Denmark)

    Lübeck, Josephine; Poulsen, Kristoffer Gulmark; Knudsen, Sofie B.;

    2016-01-01

    Khuzestan, Iran is heavily industrialised with petrochemical and refinery companies. Herein, sediment and soil samples were collected from Hendijan coast, Khore Mosa and Arvandroud River. The CHEMSIC (CHEmometric analysis of Selected Ion Chromatograms) method was used to assign the main sources...... of polycyclic aromatic hydrocarbon (PAH) pollution. A four-component principal component analysis (PCA) model was obtained. While principal component 1 (PC1) was related to the total concentration of PAHs, the remaining PCs described three distinct sources: PC2 and PC3 collectively differentiate between...... weathered petrogenic and pyrogenic, and PC4 is indicative for a diagenetic input. The sources of PAHs in the Arvandroud River were mainly relatively fresh oil with some samples corresponding to a weathered oil input. Further, perylene (indicator for diagenetic source) was identified. Samples from Khore Mosa...

  20. PM10 source apportionment in a Swiss Alpine valley impacted by highway traffic.

    Science.gov (United States)

    Ducret-Stich, Regina E; Tsai, Ming-Yi; Thimmaiah, Devraj; Künzli, Nino; Hopke, Philip K; Phuleria, Harish C

    2013-09-01

    Although trans-Alpine highway traffic exhaust is one of the major sources of air pollution along the highway valleys of the Alpine regions, little is known about its contribution to residential exposure and impact on respiratory health. In this paper, source-specific contributions to particulate matter with an aerodynamic diameter traffic-related: traffic exhaust, road dust, tire and brake wear, and road salt contributing 16 %, 8 %, 1 %, and 2 % to annual PM10 concentrations, respectively. They showed a clear dependence with distance to highway. Additional contributions were identified from secondary particles (27 %), biomass burning (18 %), railway (11 %), and mineral dust including a local construction site (13 %). Comparing these source contributions with known source-specific biomarkers (e.g., levoglucosan, nitro-polycyclic aromatic hydrocarbons) showed high agreement with biomass burning, moderate with secondary particles (in winter), and lowest agreement with traffic exhaust.

  1. A large source of low-volatility secondary organic aerosol.

    Science.gov (United States)

    Ehn, Mikael; Thornton, Joel A; Kleist, Einhard; Sipilä, Mikko; Junninen, Heikki; Pullinen, Iida; Springer, Monika; Rubach, Florian; Tillmann, Ralf; Lee, Ben; Lopez-Hilfiker, Felipe; Andres, Stefanie; Acir, Ismail-Hakki; Rissanen, Matti; Jokinen, Tuija; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Nieminen, Tuomo; Kurtén, Theo; Nielsen, Lasse B; Jørgensen, Solvejg; Kjaergaard, Henrik G; Canagaratna, Manjula; Maso, Miikka Dal; Berndt, Torsten; Petäjä, Tuukka; Wahner, Andreas; Kerminen, Veli-Matti; Kulmala, Markku; Worsnop, Douglas R; Wildt, Jürgen; Mentel, Thomas F

    2014-02-27

    Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate the oxidation of VOCs, in particular the terpene α-pinene, under atmospherically relevant conditions in chamber experiments. We find that a direct pathway leads from several biogenic VOCs, such as monoterpenes, to the formation of large amounts of extremely low-volatility vapours. These vapours form at significant mass yield in the gas phase and condense irreversibly onto aerosol surfaces to produce secondary organic aerosol, helping to explain the discrepancy between the observed atmospheric burden of secondary organic aerosol and that reported by many model studies. We further demonstrate how these low-volatility vapours can enhance, or even dominate, the formation and growth of aerosol particles over forested regions, providing a missing link between biogenic VOCs and their conversion to aerosol particles. Our findings could help to improve assessments of biosphere-aerosol-climate feedback mechanisms, and the air quality and climate effects of biogenic emissions generally.

  2. Phosphorus in the aerosols over oceans transported offshore from China to the Arctic Ocean:Speciation, spatial distribution, and potential sources

    Institute of Scientific and Technical Information of China (English)

    SUN Chen; XIE Zhouqing; KANG Hui; YU Juan

    2015-01-01

    Atmospheric aerosol samples were collected from July to September 2008 onboard a round-trip cruise over the Eastern China Sea, Japan Sea, Western North Pacific Ocean, and the Arctic Ocean (31.1°N–85.18°N, 122.48°E–146.18°W). Total phosphorus (TP) and total inorganic phosphorus (TIP) were analyzed. The organic phosphorus (OP) was calculated by subtracting TIP from TP. Average concentrations of TP in the East Asia, Western North Paciifc and Arctic Ocean were 7.90±6.45, 6.87±6.66 and 7.13±6.76 ng∙m-3, while TIP levels were 6.67±5.02, 6.07±6.58, and 6.23±5.96 along the three regions. TP and TIP levels varied considerably both spatially and temporally over the study extent. TIP was found to be the dominant species in most samples, accounting for 86.6% of TP on average. OP was also a signiifcant fraction of TP due to the primary biogenic aerosol (PBA) contribution. The phosphorus in the atmospheric aerosol over the Arctic Ocean had a higher concentration than previous model simulations. Source apportionment analysis indicates that dust is an important phosphorus source which can be globally transported, and thus dust aerosol may be an important nutrient source in some remote regions.

  3. Source Apportionment of Volatile Organic Compounds in an Urban Environment at the Yangtze River Delta, China.

    Science.gov (United States)

    An, Junlin; Wang, Junxiu; Zhang, Yuxin; Zhu, Bin

    2017-04-01

    Volatile organic compounds (VOCs) were collected continuously during June-August 2013 and December 2013-February 2014 at an urban site in Nanjing in the Yangtze River Delta. The positive matrix factorization receptor model was used to analyse the sources of VOCs in different seasons. Eight and seven sources were identified in summer and winter, respectively. In summer and winter, the dominant sources of VOCs were vehicular emissions, liquefied petroleum gas/natural gas (LPG/NG) usage, solvent usage, biomass/biofuel burning, and industrial production. In summer, vehicular emissions made the most significant contribution to ambient VOCs (38%), followed by LPG/NG usage (20%), solvent usage (19%), biomass/biofuel burning (13%), and industrial production (10%). In winter, LPG/NG usage accounted for 36% of ambient VOCs, whereas vehicular emissions, biomass/biofuel burning, industrial production and solvent usage contributed 30, 18, 9, and 6%, respectively. The contribution of LPG/NG usage in winter was approximately four times that in summer, whereas the contribution from biomass/biofuel burning in winter was more than twice that in summer. The sources related to vehicular emissions and LPG/NG usages were important. Using conditional probability function analysis, the VOC sources were mainly associated with easterly, northeasterly and southeasterly directions, pointing towards the major expressway and industrial area. Using the propylene-equivalent method, paint and varnish (23%) was the highest source of VOCs in summer and biomass/biofuel burning (36%) in winter. Using the ozone formation potential method, the most important source was biomass/biofuel burning (32% in summer and 47% in winter). The result suggests that the biomass/biofuel burning and paint and varnish play important roles in controlling ozone chemical formation in Nanjing.

  4. Seasonal trends, chemical speciation and source apportionment of fine PM in Tehran

    Science.gov (United States)

    Arhami, Mohammad; Hosseini, Vahid; Zare Shahne, Maryam; Bigdeli, Mostafa; Lai, Alexandra; Schauer, James J.

    2017-03-01

    Frequent air pollution episodes have been reported for Tehran, Iran, mainly because of critically high levels of fine particulate matter (PM2.5). The composition and sources of these particles are poorly known, so this study aims to identify the major components and heavy metals in PM2.5 along with their seasonal trends and associated sources. 24-hour PM2.5 samples were collected at a main residential station every 6 days for a full year from February 2014 to February 2015. The samples were analyzed for ions, organic carbon (including water-soluble and insoluble portions), elemental carbon (EC), and all detectable elements. The dominant mass components, which were determined by means of chemical mass closure, were organic matter (35%), dust (25%), non-sea salt sulfate (11%), EC (9%), ammonium (5%), and nitrate (2%). Organic matter and EC together comprised 44% of fine PM on average (increased to >70% in the colder season), which reflects the significance of anthropogenic urban sources (i.e. vehicles). The contributions of different components varied considerably throughout the year, particularly the dust component that varied from 7% in the cold season to 56% in the hot and dry season. Principal component analyses were applied, resulting in 5 major source factors that explained 85% of the variance in fine PM. Factor 1, representing soil dust, explained 53%; Factor 2 denotes heavy metals mainly found in industrial sources and accounted for 18%; and rest of factors, mainly representing combustion sources, explained 14% of the variation. The levels of major heavy metals were further evaluated, and their trends showed considerable increases during cold seasons. The results of this study provide useful insight to fine PM in Tehran, which could help in identifying their health effects and sources, and also adopting effective control strategies.

  5. Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China.

    Science.gov (United States)

    Chen, Haiyang; Teng, Yanguo; Lu, Sijin; Wang, Yeyao; Wu, Jin; Wang, Jinsheng

    2016-02-01

    Understanding the exposure risks of trace metals in contamination soils and apportioning their sources are the basic preconditions for soil pollution prevention and control. In this study, a detailed investigation was conducted to assess the health risks of trace metals in surface soils of Beijing which is one of the most populated cities in the world and to apportion their potential sources. The data set of metals for 12 elements in 240 soil samples was collected. Pollution index and enrichment factor were used to identify the general contamination characteristic of soil metals. The probabilistic risk model was employed for health risk assessment, and a chemometrics technique, multivariate curve resolution-weighted alternating least squares (MCR-WALS), was applied to apportion sources. Results suggested that the soils in Beijing metropolitan region were contaminated by Hg, Cd, Cu, As, and Pb in varying degree, lying in the moderate pollution level. As a whole, the health risks posed by soil metals were acceptable or close to tolerable. Comparatively speaking, children and adult females were the relatively vulnerable populations for the non-carcinogenic and carcinogenic risks, respectively. Atmospheric deposition, fertilizers and agrochemicals, and natural source were apportioned as the potential sources determining the contents of trace metals in soils of Beijing area with contributions of 15.5%-16.4%, 5.9%-7.7% and 76.0%-78.6%, respectively.

  6. Source apportionment of PAHs using Unmix model for Yantai costal surface sediments, China.

    Science.gov (United States)

    Lang, Yin-Hai; Yang, Wei

    2014-01-01

    16 Polycyclic aromatic hydrocarbons (PAHs) in 20 surface sediments from Yantai offshore area were measured. The total PAHs concentrations varied from 450.0 to 4,299.0 ng/g, with a mean of 2,492.9 ng/g. The high molecular weight (HMW) PAHs were most abundant and the ratio ranged from 54.9 % to 81.6 % in all sampling stations, indicating that pyrogenic sources were a predominant contribution to PAHs pollution. The source contributions of PAHs were estimated based on the EPA Unmix 6.0 receptor model. The data were well simulated due to a high correlation coefficient between predicted and measured PAHs concentration (R(2) = 0.99). A mixed source of coal combustion and traffic pollution contributed to 38.9 % of the measured PAHs, followed by diesel emission (38.8 %) and a mixed source of biomass combustion and gasoline engine emissions (22.3 %). The current findings further validated that Unmix model could be applied to apportion the sources of PAHs in sediments.

  7. Comparison of lead isotopes with source apportionment models, including SOM, for air particulates.

    Science.gov (United States)

    Gulson, Brian; Korsch, Michael; Dickson, Bruce; Cohen, David; Mizon, Karen; Davis, J Michael

    2007-08-01

    We have measured high precision lead isotopes in PM(2.5) particulates from a highly-trafficked site (Mascot) and rural site (Richmond) in the Sydney Basin, New South Wales, Australia to compare with isotopic data from total suspended particulates (TSP) from other sites in the Sydney Basin and evaluate relationships with source fingerprints obtained from multi-element PM(2.5) data. The isotopic data for the period 1998 to 2004 show seasonal peaks and troughs that are more pronounced in the rural site for the PM(2.5).samples but are consistent with the TSP. The Self Organising Map (SOM) method has been applied to the multi-element PM(2.5) data to evaluate its use in obtaining fingerprints for comparison with standard statistical procedures (ANSTO model). As seasonal effects are also significant for the multi-element data, the SOM modelling is reported as site and season dependent. At the Mascot site, the ANSTO model exhibits decreasing (206)Pb/(204)Pb ratios with increasing contributions of fingerprints for "secondary smoke" (industry), "soil", "smoke" and "seaspray". Similar patterns were shown by SOM winter fingerprints for both sites. At the rural site, there are large isotopic variations but for the majority of samples these are not associated with increased contributions from the main sources with the ANSTO model. For two winter sampling times, there are increased contributions from "secondary industry", "smoke", "soil" and seaspray with one time having a source or sources of Pb similar to that of Mascot. The only positive relationship between increasing (206)Pb/(204)Pb ratio and source contributions is found at the rural site using the SOM summer fingerprints, both of which show a significant contribution from sulphur. Several of the fingerprints using either model have significant contributions from black carbon (BC) and/or sulphur (S) that probably derive from diesel fuels and industrial sources. Increased contributions from sources with the SOM summer

  8. Chemical mass balance source apportionment of fine and PM10 in the Desert Southwest, USA

    Science.gov (United States)

    The Desert Southwest Coarse Particulate Matter Study was undertaken in Pinal County, Arizona, to better understand the origin and impact of sources of fine and coarse particulate matter (PM) in rural, arid regions of the U.S. southwestern desert. The desert southwest experiences ...

  9. Characterization and source apportionment of volatile organic compounds in urban and suburban Tianjin, China

    Science.gov (United States)

    Han, Meng; Lu, Xueqiang; Zhao, Chunsheng; Ran, Liang; Han, Suqin

    2015-03-01

    Tianjin is the third largest megacity and the fastest growth area in China, and consequently faces the problems of surface ozone and haze episodes. This study measures and characterizes volatile organic compounds (VOCs), which are ozone precursors, to identify their possible sources and evaluate their contribution to ozone formation in urban and suburban Tianjin, China during the HaChi (Haze in China) summer campaign in 2009. A total of 107 species of ambient VOCs were detected, and the average concentrations of VOCs at urban and suburban sites were 92 and 174 ppbv, respectively. Of those, 51 species of VOCs were extracted to analyze the possible VOC sources using positive matrix factorization. The identified sources of VOCs were significantly related to vehicular activities, which specifically contributed 60% to urban and 42% to suburban VOCs loadings in Tianjin. Industrial emission was the second most prominent source of ambient VOCs in both urban and suburban areas, although the contribution of industry in the suburban area (36%) was much higher than that at the urban area (16%). We conclude that controlling vehicle emissions should be a top priority for VOC reduction, and that fast industrialization and urbanization causes air pollution to be more complex due to the combined emission of VOCs from industry and daily life, especially in suburban areas.

  10. Source apportionment of particulate matter in the US and associations with lung inflammatory markers

    Energy Technology Data Exchange (ETDEWEB)

    Duvall, R.M.; Norris, G.A.; Dailey, L.A.; Burke, J.M.; McGee, J.K.; Gilmour, M.I.; Gordon, T.; Devlin, R.B. [US EPA, Research Triangle Park, NC (United States). National Exposure Research Laboratory

    2008-07-01

    Size-fractionated particulate matter (PM) samples were collected from six U.S. cities and chemically analyzed as part of the Multiple Air Pollutant Study. Particles were administered to cultured lung cells and the production of three different proinflammatory markers was measured to explore the association between the health effect markers and PM. Ultrafine, fine, and coarse PM samples were collected between December 2003 and May 2004 over a 4-wk period in each city. Filters were pooled for each city and the PM samples were extracted then analyzed for trace metals, ions, and elemental carbon. Particle extracts were applied to cultured human primary airway epithelial cells, and the secreted levels of interleukin-8 (IL-8), heme oxygenase-1, and cyclooxygenase-2 were measured 1 and 24 h following exposure. Fine PM sources were quantified by the chemical mass balance (CMB) model. The relationship between toxicological measures, PM sources, and individual species were evaluated using linear regression. Ultrafine and fine PM mass were associated with increases in IL-8 (r{sup 2} = .80 for ultrafine and r{sup 2} = .52 for fine). Sources of fine PM and their relative contributions varied across the sampling sites and a strong linear association was observed between IL-8 and secondary sulfate from coal combustion (r{sup 2} = .79). Ultrafine vanadium, lead, copper, and sulfate were also associated with increases in IL-8. Increases in inflammatory markers were not observed for coarse PM mass and source markers. These findings suggest that certain PM size fractions and sources are associated with markers of lung injury or inflammation.

  11. Large chemical characterisation of PM10 emitted from graphite material production: Application in source apportionment.

    Science.gov (United States)

    Golly, B; Brulfert, G; Berlioux, G; Jaffrezo, J-L; Besombes, J-L

    2015-12-15

    This work focuses on emissions from industrial sources that are still poorly understood in Europe, especially the "carbon industry". The study is based on two intensive sampling campaigns performed in a graphite material production plant for 2weeks in July 2013 and November 2013 in alpine valleys. The chemical characterization of PM10 was conducted at three sampling sites (outdoor and indoor sites) located inside one industrial area, which is considered as the highest emissions source of polycyclic aromatic hydrocarbons (PAHs) in the Arve valley. The identification of specific tracers among metals and trace elements is commonly used to characterize industrial emissions. In our study, original enrichment factors relative to the "rural exposed background" have been calculated, and the metallic fraction was not affected by this industrial source. In contrast, the organic fraction of PM10 has a number of features, providing a complete organic source profile and referred to as the "carbon industry". In particular, polycyclic aromatic sulfur heterocycles (PASH) have been largely detected from fugitive emissions with rather large concentrations. The average concentrations of benzo(b)naphtho(2,1-d)thiophene (BNT(2,1)) reached 2.35-6.56ng·m(-3) and 60.5-376ng·m(-3) for outdoor and indoor sites, respectively. The use of this reference profile in the chemical mass balance model (CMB) applied to samples collected in two sites near industrial areas shows that this source had an average contribution of 6% of the organic matter (OM) mass during the sampling period during the winter of 2013.

  12. Better constraints on sources of carbonaceous aerosols using a combined 14C – macro tracer analysis in a European rural background site

    Directory of Open Access Journals (Sweden)

    S. Henne

    2011-01-01

    Full Text Available The source contributions to carbonaceous PM2.5 aerosol were investigated at a European background site at the edge of the Po Valley, in Northern Italy, during the period January–December 2007. Carbonaceous aerosol was described as the sum of eight source components: primary (1 and secondary (2 biomass burning organic carbon, biomass burning elemental carbon (3, primary (4 and secondary (5 fossil fuel burning organic carbon, fossil fuel burning elemental carbon (6, primary (7 and secondary (8 biogenic organic carbon. The concentration of each component was quantified using a set of macro tracers (organic carbon OC, elemental carbon EC, and levoglucosan, micro tracers (arabitol and mannitol, and 14C measurements. This was the first time that 14C measurements were performed on a long time series of data able to represent the entire annual cycle. This set of 6 tracers, together with assumed uncertainty ranges of the ratios of OC-to-EC, and the fraction of modern carbon in the 8 source categories, provides strong constraints to the source contributions to carbonaceous aerosol. The uncertainty of contributions was assessed with a Quasi-Monte Carlo (QMC method accounting for the variability of OC and EC emission factors, and the uncertainty of reference fractions of modern carbon. During winter biomass burning composed 50% of the total carbon (TC concentration, while in summer secondary biogenic OC accounted for 45% of TC. The contribution of primary biogenic aerosol particles was negligible during the entire year. Moreover, aerosol associated with fossil fuel burning represented 26% and 43% of TC in winter and summer, respectively. The comparison of source apportionment results in different urban and rural areas showed that the sampling site was mainly affected by local aerosol sources during winter and regional air masses from the nearby Po Valley in summer. This observation was further confirmed by back-trajectory analysis applying the Potential

  13. Source apportionment of sediment-associated aliphatic hydrocarbon in a eutrophicated shallow lake, China.

    Science.gov (United States)

    Wang, Ji-Zhong; Yang, Ze-Yu; Chen, Tian-Hu

    2012-11-01

    Chaohu Lake, one of the most eutrophicated lakes in China, has been suffering from long-term outside pollution, urban sewage, river outflows, and agricultural runoff which expectedly have been the main contributors of hydrocarbons. However, the contributions from these various sources have not been specified. The present study is aimed at identifying the potential sources of hydrocarbons in surface sediment around the whole lake and assessing the relative contributions using principal components analysis-multiple linear regression (PCA-MLR). Sixty-one surface sediments covering the whole Chaohu Lake and three main estuaries of inflowing rivers were collected, dried, extracted, and analyzed for 27 normal alkanes (n-alkanes, from C(12) to C(38), defined Σ(27)AH) and unresolved complex mixture (UCM) by GC/MS. Diagnostic ratios and PCA-MLR were utilized to apportion their sources. The concentrations of Σ(27)AH and UCM ranged from 434 to 3,870 ng/g and 11.9 to 325 μg/g dry weight, respectively, for all samples. The concentrations of Σ(27)AH in western region and estuary of Nanfei River were slightly higher but without statistical significance than those from eastern region and estuaries of Yuxi River and Hangbu River. The concentration of UCM from western region was significantly higher than that obtained from eastern region. These results reflect the importance of input of urban runoff by Nanfei River and serious eutrophication in western region. Aliphatic hydrocarbons in Chaohu Lake were mainly derived from high plant wax with mixed sources of phytoplankton and petroleum. Weak microbial decomposition of n-alkanes would be expected to occur from the low ratios of isoprenoid hydrocarbons pristine (pri) and phytane (phy) to n-C(17) and n-C(18), respectively. Higher plant, fossil combustion, petroleum residue, and phytoplankton were proposed as the main origines of aliphatic hydrocarbons by PCA while the contributions of individual n-alkane homologues, pri and phy

  14. Source apportionment of atmospheric mercury pollution in China using the GEOS-Chem model.

    Science.gov (United States)

    Wang, Long; Wang, Shuxiao; Zhang, Lei; Wang, Yuxuan; Zhang, Yanxu; Nielsen, Chris; McElroy, Michael B; Hao, Jiming

    2014-07-01

    China is the largest atmospheric mercury (Hg) emitter in the world. Its Hg emissions and environmental impacts need to be evaluated. In this study, China's Hg emission inventory is updated to 2007 and applied in the GEOS-Chem model to simulate the Hg concentrations and depositions in China. Results indicate that simulations agree well with observed background Hg concentrations. The anthropogenic sources contributed 35-50% of THg concentration and 50-70% of total deposition in polluted regions. Sensitivity analysis was performed to assess the impacts of mercury emissions from power plants, non-ferrous metal smelters and cement plants. It is found that power plants are the most important emission sources in the North China, the Yangtze River Delta (YRD) and the Pearl River Delta (PRD) while the contribution of non-ferrous metal smelters is most significant in the Southwest China. The impacts of cement plants are significant in the YRD, PRD and Central China.

  15. Apportionment of sources affecting water quality: Case study of Kandla Creek, Gulf of Katchchh

    Digital Repository Service at National Institute of Oceanography (India)

    Dalal, S.G.; Shirodkar, P.V.; Verlekar, X.N.; Jagtap, T.G.; Rao, G.S.

    : 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Environmental Forensics Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713770863.... The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources...

  16. New chemical tracers for diesel source emission apportionment in ambient fine particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Charland, J.P.; Caravaggio, G.; MacDonald, P.; MacPhee, T. [Natural Resources Canada, Ottawa, ON (Canada); Graham, L.A. [Environment Canada, Ottawa, ON (Canada)

    2009-07-01

    Hopanes and steranes are petroleum biomarkers that are commonly used in chemical mass balance (CMB)studies to determine the source of organic carbon from motor vehicle exhaust. Hopanes and steranes are found in engine lubricating oil and trace amounts are released during engine combustion. Since lubricating oils are used in both gasoline and diesel engines, the distribution and abundance of these biomarkers relative to organic carbon (OC) in exhaust particulate matter (PM) cannot be used to distinguish between these sources. The purpose of this study was to find molecular markers specific to diesel fuel that can be used to assess the contribution of diesel vehicles exhaust to ambient PM. PM filter samples were collected from gasoline and diesel vehicles. At the same time, samples of fresh and used engine specific lubricating oils were also collected along with gasoline and diesel fuel for organic speciation. Thermal desorption (TD)-gas chromatography mass spectrometry (GC/MS) was used to analyze all samples. Ambient air PM samples were also collected and analyzed for the presence of these newly proposed tracers. It was concluded that the detection of bicycloparaffins in PM can provide new insight into diesel emissions and help determine pollution sources.

  17. Source apportionment advances using polar plots of bivariate correlation and regression statistics

    Science.gov (United States)

    Grange, Stuart K.; Lewis, Alastair C.; Carslaw, David C.

    2016-11-01

    This paper outlines the development of enhanced bivariate polar plots that allow the concentrations of two pollutants to be compared using pair-wise statistics for exploring the sources of atmospheric pollutants. The new method combines bivariate polar plots, which provide source characteristic information, with pair-wise statistics that provide information on how two pollutants are related to one another. The pair-wise statistics implemented include weighted Pearson correlation and slope from two linear regression methods. The development uses a Gaussian kernel to locally weight the statistical calculations on a wind speed-direction surface together with variable-scaling. Example applications of the enhanced polar plots are presented by using routine air quality data for two monitoring sites in London, United Kingdom for a single year (2013). The London examples demonstrate that the combination of bivariate polar plots, correlation, and regression techniques can offer considerable insight into air pollution source characteristics, which would be missed if only scatter plots and mean polar plots were used for analysis. Specifically, using correlation and slopes as pair-wise statistics, long-range transport processes were isolated and black carbon (BC) contributions to PM2.5 for a kerbside monitoring location were quantified. Wider applications and future advancements are also discussed.

  18. Source apportionment of PM2.5 chemically speciated mass and particle number concentrations in New York City

    Science.gov (United States)

    Masiol, M.; Hopke, P. K.; Felton, H. D.; Frank, B. P.; Rattigan, O. V.; Wurth, M. J.; LaDuke, G. H.

    2017-01-01

    The major sources of fine particulate matter (PM2.5) in New York City (NYC) were apportioned by applying positive matrix factorization (PMF) to two different sets of particle characteristics: mass concentrations using chemical speciation data and particle number concentrations (PNC) using number size distribution, continuously monitored gases, and PM2.5 data. Post-processing was applied to the PMF results to: (i) match with meteorological data, (ii) use wind data to detect the likely locations of the local sources, and (iii) use concentration weighted trajectory models to assess the strength of potential regional/transboundary sources. Nine sources of PM2.5 mass were apportioned and identified as: secondary ammonium sulfate, secondary ammonium nitrate, road traffic exhaust, crustal dust, fresh sea-salt, aged sea-salt, biomass burning, residual oil/domestic heating and zinc. The sources of PNC were investigated using hourly average number concentrations in six size bins, gaseous air pollutants, mass concentrations of PM2.5, particulate sulfate, OC, and EC. These data were divided into 3 periods indicative of different seasonal conditions. Five sources were resolved for each period: secondary particles, road traffic, NYC background pollution (traffic and oil heating largely in Manhattan), nucleation and O3-rich aerosol. Although traffic does not account for large amounts of PM2.5 mass, it was the main source of particles advected from heavily trafficked zones. The use of residual oil had limited impacts on PM2.5 mass but dominates PNC in cold periods.

  19. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    Science.gov (United States)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2015-06-01

    Aerosol particles were characterized by an Aerodyne aerosol chemical speciation monitor along with various collocated instruments in Beijing, China, to investigate the role of fireworks (FW) and secondary aerosol in particulate pollution during the Chinese Spring Festival of 2013. Three FW events, exerting significant and short-term impacts on fine particles (PM2.5), were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW were shown to have a large impact on non-refractory potassium, chloride, sulfate, and organics in submicron aerosol (PM1), of which FW organics appeared to be emitted mainly in secondary, with its mass spectrum resembling that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated the total PM1 mass on average, accounting for 63-82% during nine PEs in this study. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impact of reduced anthropogenic emissions on aerosol chemistry in the city. Primary species showed ubiquitous reductions during the holiday period with the largest reduction being in cooking organic aerosol (OA; 69%), in nitrogen monoxide (54%), and in coal combustion OA (28%). Secondary sulfate, however, remained only slightly changed, and the SOA and the total PM2.5 even slightly increased. Our results have significant implications for controlling local primary source emissions during PEs, e.g., cooking and traffic activities. Controlling these factors might have a limited effect on improving air quality in the megacity of Beijing, due to the dominance of SPM from regional transport in aerosol particle composition.

  20. Assessment of Eutrophication in Estuaries: Pressure-State-Response and Nitrogen Source Apportionment

    Science.gov (United States)

    Whitall, David; Bricker, Suzanne; Ferreira, Joao; Nobre, Ana M.; Simas, Teresa; Silva, Margarida

    2007-10-01

    A eutrophication assessment method was developed as part of the National Estuarine Eutrophication Assessment (NEEA) Program. The program is designed to improve monitoring and assessment of eutrophication in the estuaries and coastal bays of the United States with the intent to guide management plans and develop analytical and research models and tools for managers. These tools will help guide and improve management success for estuaries and coastal resources. The assessment method, a Pressure-State-Response approach, uses a simple model to determine Pressure and statistical criteria for indicator variables (where applicable) to determine State. The Response determination is mostly heuristic, although research models are being developed to improve that component. The three components are determined individually and then combined into a single rating. Application to several systems in the European Union (E.U.), specifically in Portugal, shows that the method is transferable, and thus is useful for development of management measures in both the Unites States and E.U. This approach identifies and quantifies the key anthropogenic nutrient input sources to estuaries so that management measures can target inputs for maximum effect. Because nitrogen is often the limiting nutrient in estuarine systems, examples of source identification and quantification for nitrogen have been developed for 11 coastal watersheds on the U.S. east coast using the WATERSN model. In general, estuaries in the Northeastern United States receive most of their nitrogen from human sewage, followed by atmospheric deposition. This is in contrast to some watersheds in the Mid-Atlantic (Chesapeake Bay) and South Atlantic (Pamlico Sound), which receive most of their nitrogen from agricultural runoff. Source identification is important for implementing effective management measures that should be monitored for success using assessment methods, as described herein. For instance, these results suggest that

  1. Novel biogeochemical fingerprinting approaches to sediment source apportionment in catchments (Invited)

    Science.gov (United States)

    Dungait, J.; Puttock, A.; Beniston, J. W.; Brazier, R. E.; Lal, R.; Collins, A.

    2013-12-01

    Apportioning the source of organic carbon in eroding sediments is important to constrain the scale of transport processes and to assess the impact of anthropogenic activity on environmental quality. Established biogeochemical techniques are used to trace organic inputs typically derived directly or indirectly from plants into soils, sediments and water using lipid biomarkers. Recently, advances in bulk and compound specific stable 13C isotope analyses have provided novel ways of exploring the source and residence times of organic matter in soils using the natural abundance stable 13C isotope signature of C3 and C4 plant end member values. However, the application of biogeochemical source tracing technologies at the molecular level at field to catchment scales has been slow to develop because of perceived problems with dilution of molecular-scale signals. This paper describes the results of recent experiments in natural and agricultural environments in the UK (Collins et al., 2013; Dungait et al., 2013) and United States (Puttock et al., 2012; Beniston et al., submitted) that have successfully applied new biogeochemical fingerprinting techniques using stable 13C isotope approaches and complementary modelling approaches to explore the transport of particulate and sediment-bound organic carbon at a range of scales from the small plot (m2) to field (ha) and small catchment (10's ha). References Beniston et al (submitted) The effects of crop residue removal on soil erosion and macronutrient dynamics on soils under no till for 42 years. Biogeosciences Collins et al (2013) Catchment source contributions to the sediment-bound organic matter degrading salmonid spawning gravels in a lowland river, southern England. Science of the Total Environment 456-457, 181-195. Dungait et al (2013) Microbial responses to the erosional redistribution of soil organic carbon in arable fields. Soil Biology and Biochemistry 60, 195-201. Puttock et al (2012) Stable carbon isotope analysis of

  2. Fossil and non-fossil source contributions to atmospheric carbonaceous aerosols during extreme spring grassland fires in Eastern Europe

    Directory of Open Access Journals (Sweden)

    V. Ulevicius

    2015-09-01

    Full Text Available In early spring the Baltic region is frequently affected by high pollution events due to biomass burning in that area. Here we present a comprehensive study to investigate the impact of biomass/grass burning (BB on the evolution and composition of aerosol in Preila, Lithuania, during springtime open fires. Non-refractory submicron particulate matter (NR-PM1 was measured by an Aerodyne aerosol chemical speciation monitor (ACSM and a source apportionment with the multilinear engine (ME-2 running the positive matrix factorization (PMF model was applied to the organic aerosol fraction to investigate the impact of biomass/grass burning. Satellite observations over regions of biomass burning activity supported the results and identification of air mass transport to the area of investigation. Sharp increases in biomass burning tracers, such as levoglucosan up to 683 ng m−3 and black carbon (BC up to 17 μg m−3 were observed during this period. A further separation between fossil and non-fossil primary and secondary contributions was obtained by coupling ACSM PMF results and radiocarbon (14C measurements of the elemental (EC and organic (OC carbon fractions. Non-fossil organic carbon (OCnf was the dominant fraction of PM1, with the primary (POCnf and secondary (SOCnf fractions contributing 26–44 % and 13–23 % to the TC, respectively. 5–8 % of the TC had a primary fossil origin (POCf, whereas the contribution of fossil secondary organic carbon (SOCf was 4–13 %. Non-fossil EC (ECnf and fossil EC (ECf ranged from 13–24 % and 7–12 %, respectively. Isotope ratio of stable carbon and nitrogen isotopes were used to distinguish aerosol particles associated with solid and liquid fossil fuel burning.

  3. Seasonal variation and source apportionment of PAHs in TSP in the atmosphere of Guiyang, Southwest China

    Science.gov (United States)

    Hu, J.; Liu, C. Q.; Zhang, G. P.; Zhang, Y. L.

    2012-11-01

    Total suspended particle (TSP) samples were collected during January to December in 2005 at urban and rural sites in Guiyang, and were analyzed for 14 particulate-phase polycyclic aromatic hydrocarbons (P-PAHs) using High Performance Liquid Chromatography (HPLC) with fluorescence detection. The total concentration of the P-PAHs ranged from 6.0-29.1 ng/m3 at monitoring sites, and 1.2-84.8 ng/m3 in and around Guiyang. P-PAHs concentration in samples collected from Guiyang possesses distinct seasonal variation with a higher concentration in winter and lower concentration in summer. PAHs with 5-ring were found to have the most distinct seasonal variation among other target PAHs. Correlations between the TSP concentration, ambient temperature (T), relative humidity (RH), and the P-PAHs concentrations were evaluated. It was found that the TSP had significant influence on the P-PAHs concentration with correlation coefficients of 0.69 (P < 0.01, n = 180). In addition, the P-PAHs concentration showed negative correlation with RH (r = - 0.28, P < 0.01, n = 180), and a moderate negative correlation with T (r = - 0.17, P < 0.05 n = 180). Diagnostic ratios and Principal Component Analysis suggest that the main pollution sources identified were coal combustion emission (52.5%), traffic gasoline (21.4%) and other miscellaneous sources (14.2%).

  4. Spatio-Temporal Variations and Source Apportionment of Water Pollution in Danjiangkou Reservoir Basin, Central China

    Directory of Open Access Journals (Sweden)

    Pan Chen

    2015-05-01

    Full Text Available Understanding the spatio-temporal variation and the potential source of water pollution could greatly improve our knowledge of human impacts on the environment. In this work, data of 11 water quality indices were collected during 2012–2014 at 10 monitoring sites in the mainstream and major tributaries of the Danjiangkou Reservoir Basin, Central China. The fuzzy comprehensive assessment (FCA, the cluster analysis (CA and the discriminant analysis (DA were used to assess the water pollution status and analyze its spatio-temporal variation. Ten sites were classified by the high pollution (HP region and the low pollution (LP region, while 12 months were divided into the wet season and the dry season. It was found that the HP region was mainly in the small tributaries with small drainage areas and low average annual discharges, and it was also found that most of these rivers went through urban areas with industrial and domestic sewages input into the water body. Principal component analysis/factor analysis (PCA/FA was applied to reveal potential pollution sources, whereas absolute principal component score-multiple linear regression (APCS-MLR was used to identify their contributions to each water quality variable. The study area was found as being generally affected by industrial and domestic sewage. Furthermore, the HP region was polluted by chemical industries, and the LP region was influenced by agricultural and livestock sewage.

  5. [Distribution and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in urban rainfall runoff].

    Science.gov (United States)

    Wu, Zi-Lan; Yang, Yi; Liu, Min; Lu, Min; Yu, Ying-Peng; Wang, Qing; Zheng, Xin

    2014-11-01

    Runoff samples were collected from traffic roads, campus, residential road and roof in a typical rain event. Polycyclic aromatic hydrocarbons (PAHs) in both dissolved and particle phases were investigated at impervious surfaces. The PAHs wash-off process at different monitoring sites was analyzed. The scatters of first flush were conducted in a method of fitting power function to quantitatively assess the magnitude of first flush effect (FFE). The sources of PAHs were identified using factor analysis. The results showed that PAHs concentrations in runoff samples varied from 317.21 ng x L(-1) to 10364.3 ng x L(-1) with the maximal and minimal contents of PAHs found on Longwu Road and campus, respectively. The values of event mean concentration ( EMC) varied considerably at different sampling sites. The concentration of washed-off pollutant generally decreased with runoff duration, which showed an obvious attenuation trend. The runoff process indicated the occurrence of FFE at different levels. PAHs mainly came from the incomplete combustion of fossil fuels, oil leakage and coking, and the contribution of each source was different in accordance with various surfaces.

  6. Source apportionment of DDTs in maricultured fish: a modeling study in South China.

    Science.gov (United States)

    Fang, Shu-Ming; Bao, Lian-Jun; Yiruhan; Zeng, Eddy Y

    2016-04-01

    Fish is one of the most important nutrition sources for humanity. Contaminant exposure risk in fish farming will eventually deliver to the crowd through diet. China is the largest fish producing as well as exporting country, where mariculture plays an important role in fish production, especially in South China. Previous investigations indicated that a variety of compartments in farming areas of South China Sea were polluted by persistent organic pollutants, including DDT (dichlorodiphenyltrichloroethane) and its derivatives, some of which is designated as DDTs. In the present study, Hailing Bay and Daya Bay of Guangdong Province, China, were selected as the study sites and DDTs as the target compounds. A fish enrichment model was developed to assess the relative contributions of various pathways to the mass loadings of DDTs in the fish. Average concentrations (and concentration ranges) of DDTs in various environmental compartments of Hailing Bay and Daya Bay were included in modeling and analysis. Modeling results indicated that fish food and seawater contributed approximately the same proportions for the DDTs in maricultured fish. Antifouling paint was supposed to be the primary source of water DDTs in mariculture zone of Hailing Bay and Daya Bay, which contributed 69 % of the total DDTs to the mariculture water. We suggest that in order to protect people from consuming highly contaminated maricuture zone fish, the most effective and feasible methods are using environment-friendly antifouling paint and applying less polluted fish food in the fish reproduction process.

  7. Source Apportionment of Stack Emissions from Research and Development Facilities Using Positive Matrix Factorization

    Energy Technology Data Exchange (ETDEWEB)

    Ballinger, Marcel Y. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Larson, Timothy V. [Univ. of Washington, Seattle, WA (United States)

    2014-08-19

    Emissions from research and development (R&D) facilities are difficult to characterize due to the wide variety of processes used, changing nature of research, and large number of chemicals. Positive matrix factorization (PMF) was applied to volatile organic compounds (VOCs) concentrations measured in the main exhaust stacks of four different R&D buildings to identify the number and composition of major contributing sources. PMF identified from 9-11 source-related factors contributing to the stack emissions depending on the building. The factors that were similar between buildings were major contributors to trichloroethylene (TCE), acetone, and ethanol emissions. Several other factors had similar profiles for two or more buildings but not for all four. One factor for each building was a combination of p/m-xylene, o-xylene and ethylbenzene. At least one factor for each building was identified that contained a broad mix of many species and constraints were used in PMF to modify the factors to resemble more closely the off-shift concentration profiles. PMF accepted the constraints with little decrease in model fit. Although the PMF model predicted the profiles of the off-shift samples, the percent of total emissions was under-predicted by the model versus the measured data.

  8. Volatile aromatic compounds in Mexico City atmosphere: levels and source apportionment

    Energy Technology Data Exchange (ETDEWEB)

    Mugica, V. [Universidad Autonoma Metropolitana - Unidad Azcapotzalco, Mexico, D.F. (Mexico); Ruiz, M.E. [Instituto Mexicano del Petroleo, Mexico, D.F. (Mexico); Watson, J.; Chow, J. [Desert Research Institute, Reno, Nevada (United States)

    2003-01-01

    Samples of ambient air were simultaneously collected at three different sites of Mexico City in March of 1997 in order to quantify the most abundant volatile aromatic compounds and estimate the source contributions by application of the chemical mass balance model (CMB). Volatile aromatic compounds were around 20% of the total of non-methane hydrocarbons present in morning air samples. The most abundant volatile aromatic species in urban air were toluene and xylenes followed by 1, 2, 4 trimethylbenzene, benzene, ethylbenzene, metaethyltoluene, 1, 3, 5 trimethylbenzene, styrene, n propylbenzene, and isopropylbenzene. Sampling campaigns were carried out at crossroads, a bus station, a parking place, and areas where solvents and petroleum distillates are used, with the objective of determining people's exposure to volatile aromatic compounds. The CMB was applied for estimating the contribution of different sources to the presence of each one of the most abundant aromatic compounds. Motor vehicle exhaust was the main source of all aromatic compounds, especially gasoline exhaust, although diesel exhausts and asphalt operations also accounted for toluene, xylenes, ethylbenzene, propylbenzenes, and styrene. Graphic arts and paint applications had an important impact on the presence of toluene. [Spanish] Se colectaron simultaneamente muestras de aire ambiente en tres sitios de la Ciudad de Mexico durante el mes de marzo de 1997 con el fin de conocer las concentraciones y el origen de compuestos aromaticos utilizando el modelo de balance de masa de especies quimicas (CMB). Los compuestos aromaticos volatiles representaron alrededor del 20% del total de hidrocarburos no metalicos presentes en las muestras matutinas colectadas. Las especies aromaticas volatiles mas abundantes en el ambiente fueron el tolueno y los xilenos, seguidos por 1, 2, 4 trimetilbenceno, benceno, etilbenceno, metaetiltolueno, nporpilbenceno, isopropilbenceno, 1, 3, 5 trimetilbenceno y estireno. Se

  9. Temporal variations and source apportionment of Hulis-C in PM2.5 in urban Shanghai.

    Science.gov (United States)

    Zhao, Mengfei; Qiao, Ting; Li, Yulan; Tang, Xiaoxing; Xiu, Guangli; Yu, Jian Zhen

    2016-11-15

    Humic-like substances (Hulis), the hydrophobic part of water-soluble organic compounds, have been recognized to play important roles in environmental behavior of PM2.5 in atmosphere. In this study, Hulis and other components of PM2.5, collected in urban Shanghai from September 2013 to August 2014 were analyzed. The annual average concentration of Hulis carbon (Hulis-C) was (2.61±2.58) μg/m(3), accounting for about 50% of water-soluble organic carbon (WSOC). The monthly average Hulis-C concentration peaked in December while the lowest was in summer, coinciding with the high and low of levoglucosan and secondary inorganic aerosol (SIA). Biomass burning and secondary formation were both important sources of Hulis-C, and their contributions showed obvious seasonality. In late autumn and winter, the strong inter-correlations among Hulis-C concentrations, NO3(-)/SO4(2-) mass ratios and nitrogen oxidation ratios (NOR) were found, suggesting the atmospheric oxidation of NOx to nitrate and related gas-phase reactions may be inter-linked with Hulis-C formation. In summer, photochemical reaction was clearly the major source of Hulis-C. The investigation by backward trajectory analysis showed that the long-range transport from the Northwest brought large amounts of PM2.5 and enhanced Hulis-C and levoglucosan level, indicating biomass burning as a significant source of Hulis-C under this type of synoptic weather conditions. In comparison, Hulis formation associated with the NOx oxidation pathway was mainly associated with the short-range transport from the neighboring cities. Marine aerosol was relatively clean and had little effects on Hulis-C. The CWT (concentration weighted trajectory) model results suggested that the Yangtze River Delta (YRD) region was an important source region of Hulis-C, while the effect of some northwestern areas was not negligible.

  10. Modelling street level PM10 concentrations across Europe: source apportionment and possible futures

    Science.gov (United States)

    Kiesewetter, G.; Borken-Kleefeld, J.; Schöpp, W.; Heyes, C.; Thunis, P.; Bessagnet, B.; Terrenoire, E.; Fagerli, H.; Nyiri, A.; Amann, M.

    2015-02-01

    Despite increasing emission controls, particulate matter (PM) has remained a critical issue for European air quality in recent years. The various sources of PM, both from primary particulate emissions as well as secondary formation from precursor gases, make this a complex problem to tackle. In order to allow for credible predictions of future concentrations under policy assumptions, a modelling approach is needed that considers all chemical processes and spatial dimensions involved, from long-range transport of pollution to local emissions in street canyons. Here we describe a modelling scheme which has been implemented in the GAINS integrated assessment model to assess compliance with PM10 (PM with aerodynamic diameter traffic stations and 80% of the stations which exceeded the EU air quality limit values in 2009. As a validation, we compare modelled trends in the period 2000-2008 to observations, which are well reproduced. The modelling scheme is applied here to quantify explicitly source contributions to ambient concentrations at several critical monitoring stations, displaying the differences in spatial origin and chemical composition of urban roadside PM10 across Europe. Furthermore, we analyse the predicted evolution of PM10 concentrations in the European Union until 2030 under different policy scenarios. Significant improvements in ambient PM10 concentrations are expected assuming successful implementation of already agreed legislation; however, these will not be large enough to ensure attainment of PM10 limit values in hot spot locations such as Southern Poland and major European cities. Remaining issues are largely eliminated in a scenario applying the best available emission control technologies to the maximal technically feasible extent.

  11. Chemical characteristics and source apportionment of atmospheric particles during heating period in Harbin, China

    Institute of Scientific and Technical Information of China (English)

    Likun Huang; Guangzhi Wang

    2014-01-01

    Atmospheric particles (total suspended particles (TSPs); particulate matter (PM) with particle size below 10 μm,PM10; particulate matter with particle size below 2.5 μm,PM2.5)were collected and analyzed during heating and non-heating periods in Harbin.The sources of PM10 and PM2.5 were identified by the chemical mass balance (CMB) receptor model.Results indicated that PM2.5/TSP was the most prevalent and PM2.5 was the main component of PM10,while the presence of PM10-100 was relatively weak.SC42-and NO3-concentrations were more significant than other ions during the heating period.As compared with the non-heating period,Mn,Ni,Pb,S,Si,Ti,Zn,As,Ba,Cd,Cr,Fe and K were relatively higher during the heating period.In particular,Mn,Ni,S,Si,Ti,Zn and As in PM2.5 were obviously higher during the heating period.Organic carbon (OC) in the heating period was 2-5 times higher than in the non-heating period.Elemental carbon (EC) did not change much.OC/EC ratios were 8-11 during the heating period,which was much higher than in other Chinese cities (OC/EC:4-6).Results from the CMB indicated that 11 pollution sources were identified,of which traffic,coal combustion,secondary sulfate,secondary nitrate,and secondary organic carbon made the greatest contnbution.Before the heating period,dust and petrochemical industry made a larger contribution.In the heating period,coal combustion and secondary sulfate were higher.After the heating period,dust and petrochemical industry were highen Some hazardous components in PM2.5 were higher than in PM10,because PM2.5 has a higher ability to absorb toxic substances.Thus PM2.5 pollution is more significant regarding human health effects in the heating period.

  12. Particulate pollution in urban Chongqing of southwest China: Historical trends of variation, chemical characteristics and source apportionment.

    Science.gov (United States)

    Chen, Yuan; Xie, Shao-Dong; Luo, Bin; Zhai, Chong-Zhi

    2017-04-15

    Chongqing, the largest megacity in southwest China, faces serious aerosol pollution but lacks information on particle characteristics and its sources. Official data released by Chongqing Environmental Protection Bureau demonstrated that urban PM10 concentrations decreased remarkably from 150μgm(-3) in 2000 to 90μgm(-3) in 2012. However, only several peer-reviewed studies paid attention to local fine particle (PM2.5) pollution. In the study, PM2.5 samples were obtained and subjected to chemical analysis in an urban site of the city during 2012 to 2013. The annual mean PM10 and PM2.5 concentrations in urban Chongqing were 103.9±52.5 and 75.4±42.2μgm(-3), respectively. PM2.5 showed a distinct seasonality of high concentration in winter and similar levels in other seasons. The average OC/EC (organic carbon/element carbon) ratio was 3.7 with more high-OC/EC ratio sources contribution in autumn and winter. The varying sources and formation mechanisms resulted in SO4(2-) and NH4(+) peaks in both summer and winter, whereas high nitrate concentration was only observed in winter. In the average mass closure, PM2.5 was composed of 23.0% SO4(2-), 11.7% NO3(-), 10.9% NH4(+), 30.8% OM (organic matter), 5.2% EC, 8.2% mineral dust, 0.6% TEO (trace elements), 1.0% Cl(-) and 1.1% K(+), while exhibiting large seasonal variability. Using positive matrix factorization (PMF), six sources were apportioned in PM2.5: secondary inorganic aerosols, coal combustion, other industrial pollution, soil dust, vehicular emission, and metallurgical industry. The annual mean contribution of above sources to PM2.5 was 37.5, 22.0, 17.5, 11.0, 9.8 and 2.2%, respectively. Coal combustion was identified by As tracer and dominated the primary sources of PM2.5, while the two different industrial sources were characterized by Cr and Mo, Co, Ni, and Se, respectively. The study is of great importance in characterizing the historical trends, current chemical characteristics and sources of fine particles in

  13. Spatial distribution and source apportionment of PAHs in marine surface sediments of Prydz Bay, East Antarctica.

    Science.gov (United States)

    Xue, Rui; Chen, Ling; Lu, Zhibo; Wang, Juan; Yang, Haizhen; Zhang, Jie; Cai, Minghong

    2016-12-01

    This paper reports the concentrations of polycyclic aromatic hydrocarbons (PAHs) in marine sediments sampled from Prydz Bay, East Antarctica. Total PAH concentrations ranged from 12.95 to 30.93 ng/g, with a mean of 17.99 ± 5.57 ng/g. Two- and three-ring PAHs were the most abundant compounds found at the majority of the sampling stations of Prydz Bay. Long-range atmospheric transportation was found to play an important role in determining the spatial distribution of PAHs in the sediments sampled here. However, transport by ocean currents and release from melting glaciers were also found to influence PAH distributions in the sediments of East Antarctica. The vertical migration of PAHs in sediments showed a decreasing trend with depth, with higher concentrations in the relatively shallow-water regions (1000 m) of the Amery Basin and associated Canyons, respectively. A Pearson correlation analysis between PAH concentrations and sediment parameters demonstrated that PAHs has poor correlations with grain size, but has positive correlation with total organic carbon, indicated complex processing during transfer to remote environments. The results of qualitative and quantitative analyses indicate that the PAHs sampled here were derived mainly from a mixture of biomass combustion, traffic emissions, and petrogenic sources.

  14. Modelling street level PM10 concentrations across Europe: source apportionment and possible futures

    Directory of Open Access Journals (Sweden)

    G. Kiesewetter

    2014-07-01

    Full Text Available Despite increasing emission controls, particulate matter (PM has remained a critical issue for European air quality in recent years. The various sources of PM, both from primary particulate emissions as well as secondary formation from precursor gases, make this a complex problem to tackle. In order to allow for credible predictions of future concentrations under policy assumptions, a modelling approach is needed that considers all chemical processes and spatial dimensions involved, from long-range transport of pollution to local emissions in street canyons. Here we describe a modelling scheme which has been implemented in the GAINS integrated assessment model to assess compliance with PM10 (PM with aerodynamic diameter 10 across Europe. Furthermore, we analyse the predicted evolution of PM10 concentrations in the European Union until 2030 under different policy scenarios. Significant improvements in ambient PM10 concentrations are expected assuming successful implementation of already agreed legislation; however, these will not be large enough to ensure attainment of PM10 limit values in hot spot locations such as Southern Poland and major European cities. Remaining issues are largely eliminated in a scenario applying the best available emission control technologies to the maximal technically feasible extent.

  15. Modelling street level PM10 concentrations across Europe: source apportionment and possible futures

    Directory of Open Access Journals (Sweden)

    G. Kiesewetter

    2015-02-01

    Full Text Available Despite increasing emission controls, particulate matter (PM has remained a critical issue for European air quality in recent years. The various sources of PM, both from primary particulate emissions as well as secondary formation from precursor gases, make this a complex problem to tackle. In order to allow for credible predictions of future concentrations under policy assumptions, a modelling approach is needed that considers all chemical processes and spatial dimensions involved, from long-range transport of pollution to local emissions in street canyons. Here we describe a modelling scheme which has been implemented in the GAINS integrated assessment model to assess compliance with PM10 (PM with aerodynamic diameter 10 across Europe. Furthermore, we analyse the predicted evolution of PM10 concentrations in the European Union until 2030 under different policy scenarios. Significant improvements in ambient PM10 concentrations are expected assuming successful implementation of already agreed legislation; however, these will not be large enough to ensure attainment of PM10 limit values in hot spot locations such as Southern Poland and major European cities. Remaining issues are largely eliminated in a scenario applying the best available emission control technologies to the maximal technically feasible extent.

  16. Spatial Distribution, Sources Apportionment and Health Risk of Metals in Topsoil in Beijing, China.

    Science.gov (United States)

    Sun, Chunyuan; Zhao, Wenji; Zhang, Qianzhong; Yu, Xue; Zheng, Xiaoxia; Zhao, Jiayin; Lv, Ming

    2016-07-20

    In order to acquire the pollution feature and regularities of distribution of metals in the topsoil within the sixth ring road in Beijing, a total of 46 soil samples were collected, and the concentrations of twelve elements (Nickel, Ni, Lithium, Li, Vanadium, V, Cobalt, Co, Barium, Ba, Strontium, Sr, Chrome, Cr, Molybdenum, Mo, Copper, Cu, Cadmium, Cd, Zinc, Zn, Lead, Pb) were analyzed. Geostatistics and multivariate statistics were conducted to identify spatial distribution characteristics and sources. In addition, the health risk of the analyzed heavy metals to humans (adult) was evaluated by an U.S. Environmental Protection Agency health risk assessment model. The results indicate that these metals have notable variation in spatial scale. The concentration of Cr was high in the west and low in the east, while that of Mo was high in the north and low in the south. High concentrations of Cu, Cd, Zn, and Pb were found in the central part of the city. The average enrichment degree of Cd is 5.94, reaching the standard of significant enrichment. The accumulation of Cr, Mo, Cu, Cd, Zn, and Pb is influenced by anthropogenic activity, including vehicle exhaustion, coal burning, and industrial processes. Health risk assessment shows that both non-carcinogenic and carcinogenic risks of selected heavy metals are within the safety standard and the rank of the carcinogenic risk of the four heavy metals is Cr > Co > Ni > Cd.

  17. Spatial Distribution, Sources Apportionment and Health Risk of Metals in Topsoil in Beijing, China

    Directory of Open Access Journals (Sweden)

    Chunyuan Sun

    2016-07-01

    Full Text Available In order to acquire the pollution feature and regularities of distribution of metals in the topsoil within the sixth ring road in Beijing, a total of 46 soil samples were collected, and the concentrations of twelve elements (Nickel, Ni, Lithium, Li, Vanadium, V, Cobalt, Co, Barium, Ba, Strontium, Sr, Chrome, Cr, Molybdenum, Mo, Copper, Cu, Cadmium, Cd, Zinc, Zn, Lead, Pb were analyzed. Geostatistics and multivariate statistics were conducted to identify spatial distribution characteristics and sources. In addition, the health risk of the analyzed heavy metals to humans (adult was evaluated by an U.S. Environmental Protection Agency health risk assessment model. The results indicate that these metals have notable variation in spatial scale. The concentration of Cr was high in the west and low in the east, while that of Mo was high in the north and low in the south. High concentrations of Cu, Cd, Zn, and Pb were found in the central part of the city. The average enrichment degree of Cd is 5.94, reaching the standard of significant enrichment. The accumulation of Cr, Mo, Cu, Cd, Zn, and Pb is influenced by anthropogenic activity, including vehicle exhaustion, coal burning, and industrial processes. Health risk assessment shows that both non-carcinogenic and carcinogenic risks of selected heavy metals are within the safety standard and the rank of the carcinogenic risk of the four heavy metals is Cr > Co > Ni > Cd.

  18. Distribution and source apportionment studies of heavy metals in soil of cotton/wheat fields.

    Science.gov (United States)

    Rafique, Nazia; Tariq, Saadia R

    2016-05-01

    Heavy metals enriched agricultural soils have been the subject of great concern because these metals have potential to be transferred to the soil solution and afterward accumulated in food chain. To study the trace metal persistence in crop soil, 90 representative soil samples were collected and analyzed for heavy metal (As, Cd, Cu, Fe, Mn, Ni, Pb, and Zn) and anions (chloride, nitrates, phosphates and sulfates). Cluster and factor analysis techniques were used for the source identification of these excessive heavy metal levels and ecological risk was determined with potential ecological risk assessment. The degree of enrichment of eight studied heavy metals in comparison with the corresponding background levels decreased in order: Cd > Pb > Fe > Ni > Mn > As > Cu ~ Zn. Arsenic and cadmium exhibited 1.30- and 1.64-fold exceeded levels than threshold limits set by National environment quality standards, respectively. Cd in cotton field's soil may lead to higher potential risk than other heavy metals. On overall basis, the cumulative mean potential ecological risk for the district (207.75) corresponded to moderate risk level with higher contributions from As and Pb especially from Cd. Cadmium formed strong positive correlation with phosphate content of soil at p < 0.01. Cluster analysis indicated that Cluster 1 (extremely polluted) probably originated from anthropogenic inputs of phosphate fertilizer and past usage of arsenical pesticides.

  19. Changes in concentration, composition and source contribution of atmospheric organic aerosols by shifting coal to natural gas in Urumqi

    Science.gov (United States)

    Ren, Yanqin; Wang, Gehui; Wu, Can; Wang, Jiayuan; Li, Jianjun; Zhang, Lu; Han, Yanni; Liu, Lang; Cao, Cong; Cao, Junji; He, Qing; Liu, Xinchun

    2017-01-01

    Size-segregated aerosols were collected in Urumqi, a megacity in northwest China, during two heating seasons, i.e., before (heating season І: January-March 2012) and after (heating season II: January-March 2014) the project "shifting coal to natural gas", and determined for n-alkanes, PAHs and oxygenated PAHs to investigate the impact of replacement of coal by natural gas on organic aerosols in the urban atmosphere. Our results showed that compared to those in heating season I concentrations of n-alkanes, PAHs and OPAHs decreased by 74%, 74% and 82% in heating season II, respectively. Source apportionment analysis suggested that coal combustion, traffic emission and biomass burning are the major sources of the determined organics during the heating seasons in Urumqi. Traffic emission is the main source for n-alkanes in the city. Coal combustion is the dominant source of PAHs and OPAHs in heating season І, but traffic emission becomes their major source in heating season ІI. Relative contributions of coal combustion to n-alkanes, PAHs and OPAHs in Urumqi decreased from 21 to 75% in heating season I to 4.0-21% in heating season II due to the replacement of coal with natural gas for house heating. Health risk assessment further indicated that compared with that in heating season I the number of lung cancer related to PAHs exposure in Urumqi decreased by 73% during heating season II due to the project implementation. Our results suggest that replacing coal by clean energy sources for house heating will significantly mitigate air pollution and improve human health in China.

  20. Source apportionment of VOCs and the contribution to photochemical ozone formation during summer in the typical industrial area in the Yangtze River Delta, China

    Science.gov (United States)

    Shao, Ping; An, Junlin; Xin, Jinyuan; Wu, Fangkun; Wang, Junxiu; Ji, Dongsheng; Wang, Yuesi

    2016-07-01

    Volatile organic compounds (VOCs) were continuously observated in a northern suburb of Nanjing, a typical industrial area in the Yangtze River Delta, in a summer observation period from 15th May to 31st August 2013. The average concentration of total VOCs was (34.40 ± 25.20) ppbv, including alkanes (14.98 ± 12.72) ppbv, alkenes (7.35 ± 5.93) ppbv, aromatics (9.06 ± 6.64) ppbv and alkynes (3.02 ± 2.01) ppbv, respectively. Source apportionment via Positive Matrix Factorization was conducted, and six major sources of VOCs were identified. The industry-related sources, including industrial emissions and industrial solvent usage, occupied the highest proportion, accounting for about 51.26% of the VOCs. Vehicular emissions occupied the second highest proportion, accounting for about 34.08%. The rest accounted for about 14.66%, including vegetation emission and liquefied petroleum gas/natural gas usage. Contributions of VOCs to photochemical O3 formation were evaluated by the application of a detailed chemical mechanism model (NCAR MM). Alkenes were the dominant contributors to the O3 photochemical production, followed by aromatics and alkanes. Alkynes had a very small impact on photochemical O3 formation. Based on the outcomes of the source apportionment, a sensitivity analysis of relative O3 reduction efficiency (RORE), under different source removal regimes such as using the reduction of VOCs from 10% to 100% as input, was conducted. The RORE was the highest (~ 20%-40%) when the VOCs from solvent-related sources decreased by 40%. The highest RORE values for vegetation emissions, industrial emissions, vehicle exhaust, and LPG/NG usage were presented in the scenarios of 50%, 80%, 40% and 40%, respectively.

  1. Spatial distribution, source apportionment and ecological risk assessment of residual organochlorine pesticides (OCPs) in the Himalayas.

    Science.gov (United States)

    Devi, Ningombam Linthoingambi; Yadav, Ishwar Chandra; Raha, Priyankar; Shihua, Qi; Dan, Yang

    2015-12-01

    The Indian Himalayan Region (IHR) is one of the important mountain ecosystems among the global mountain system which support wide variety of flora, fauna, human communities and cultural diversities. Surface soil samples collected from IHR were analysed for 23 organochlorine pesticides (OCPs). The concentration of ∑OCPs ranged from 0.28 to 2143.96 ng/g (mean 221.54 ng/g) and was mostly dominated by DDTs. The concentration of ∑DDTs ranged from 0.28 to 2126.94 ng/g (mean 216.65 ng/g). Other OCPs such as HCHs, endosulfan and heptachlor, Aldrin and dieldrin were detected in lower concentration in IHR. Their concentrations in soil samples ranged from ND to 2.79 ng/g for HCHs, ND to 2.83 ng/g for endosulfans, NDto 1.46 ng/g for heptachlor, ND to 2.12 ng/g for Aldrin and ND to 1.81 ng/g for dieldrin. Spatial distribution of OCPs suggested prevalence of DDTs and HCHs at Guwahati and Itanagar, respectively. The close relationship between total organic carbon (TOC) and part of OCP compounds (especially α- and γ-HCH) indicated the important role of TOC in accumulation, binding and persistence of OCP in soil. Diagnostic ratio of DDT metabolites and HCH isomers showed DDT contamination is due to recent application of technical DDT and dicofol, and HCH contamination was due to mixture of technical HCH and lindane source. This was further confirmed by principal component analysis. Ecological risk analysis of OCP residues in soil samples concluded the moderate to severe contamination of soil.

  2. Source attribution of aerosol size distributions and model evaluation using Whistler Mountain measurements and GEOS-Chem-TOMAS simulations

    Science.gov (United States)

    D'Andrea, S. D.; Ng, J. Y.; Kodros, J. K.; Atwood, S. A.; Wheeler, M. J.; Macdonald, A. M.; Leaitch, W. R.; Pierce, J. R.

    2016-01-01

    number concentrations, and increased N80 by more than 50 %, while decreasing the number of smaller particles because of suppression of new-particle formation and enhanced coagulation sink. Similarly, biomass burning influenced Whistler Peak during summer months, with an increase in N80 exceeding 5000 cm-3. Occasionally, Whistler Peak experienced N80 > 1000 cm-3 without significant influence from Asian anthropogenic or biomass-burning aerosol. Air masses were advected at low elevations through forested valleys during times when temperature and downwelling insolation were high, ideal conditions for formation of large sources of low-volatility biogenic secondary organic aerosol (SOA). This condensable material increased particle growth and hence N80. The low-cost filtering techniques and source apportionment used in this study can be used in other global models to give insight into the sources and processes that shape the aerosol at mountain sites, leading to a better understanding of mountain meteorology and chemistry.

  3. A large source of low-volatility secondary organic aerosol

    DEFF Research Database (Denmark)

    Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard;

    2014-01-01

    particles from sizes of less than three nanometres up to the sizes of cloud condensation nuclei (about one hundred nanometres) in many continental ecosystems requires abundant, essentially non-volatile organic vapours, but the sources and compositions of such vapours remain unknown. Here we investigate......Forests emit large quantities of volatile organic compounds (VOCs) to the atmosphere. Their condensable oxidation products can form secondary organic aerosol, a significant and ubiquitous component of atmospheric aerosol, which is known to affect the Earth's radiation balance by scattering solar...... radiation and by acting as cloud condensation nuclei. The quantitative assessment of such climate effects remains hampered by a number of factors, including an incomplete understanding of how biogenic VOCs contribute to the formation of atmospheric secondary organic aerosol. The growth of newly formed...

  4. Characterization of aerosol composition, concentrations, and sources at Baengnyeong Island, Korea using an aerosol mass spectrometer

    Science.gov (United States)

    Lee, Taehyoung; Choi, Jinsoo; Lee, Gangwoong; Ahn, Junyoung; Park, Jin Soo; Atwood, Samuel A.; Schurman, Misha; Choi, Yongjoo; Chung, Yoomi; Collett, Jeffrey L.

    2015-11-01

    To improve understanding of the sources and chemical properties of particulate pollutants on the western side of the Korean Peninsula, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) measured non-refractory fine (PM1) particles from May to November, 2011 at Baengnyeong Island, South Korea. Organic matter and sulfate were generally the most abundant species and exhibited maximum concentrations of 36 μg/m3 and 39 μg/m3, respectively. Nitrate concentrations peaked at 32 μg/m3 but were typically much lower than sulfate and organic matter concentrations. May, September, October, and November featured the highest monthly average concentrations, with lower concentrations typically observed from June through August. Potential source contribution function (PSCF) analysis and individual case studies revealed that transport from eastern China, an area with high SO2 emissions, was associated with high particulate sulfate concentrations at the measurement site. Observed sulfate aerosol sometimes was fully neutralized by ammonium but often was acidic; the average ammonium to sulfate molar ratio was 1.49. Measured species size distributions revealed a range of sulfate particle size distributions with modes between 100 and 600 nm. Organic aerosol source regions were widespread, including contributions from eastern China and South Korea. Positive matrix factorization (PMF) analysis indicated three "factors," or types of organic aerosol, comprising one primary, hydrocarbon-like organic aerosol (HOA) and two oxidized organic aerosol (OOA) components, including a more oxidized (MO-OOA) and a less oxidized (LO-OOA) oxidized organic aerosol. On average, HOA and OOA contributed 21% and 79% of the organic mass (OM), respectively, with the MO-OOA fraction nearly three times as abundant as the LO-OOA fraction. Biomass burning contributions to observed OM were low during the late spring/early summer agricultural burning season in eastern China, since

  5. Sources of chemical species in rainwater during monsoon and non-monsoonal periods over two mega cities in India and dominant source region of secondary aerosols

    Science.gov (United States)

    Rao, P. S. P.; Tiwari, S.; Matwale, J. L.; Pervez, S.; Tunved, P.; Safai, P. D.; Srivastava, A. K.; Bisht, D. S.; Singh, S.; Hopke, P. K.

    2016-12-01

    Samples of rainwater (RW) were collected to characterize the chemistry and sources in two representative megacities at Pune (Southwest) and Delhi (Northern) India from 2011 to 2014 across two seasons: monsoon (MN) and non-monsoon (NMN). Collected RW samples were analyzed for major chemical constituents (F-, Cl-, SO42-, NO3-, NH4+, Na+, K+, Ca2+, and Mg2+), pH and conductivity. In addition, bicarbonate (HCO3-) was also estimated. The mean pH values of the RW were >6 at Pune and pollution effects in these Indian mega cities. Both the Ca2+ and SO42- were the dominant ions, accounting for 43% (Pune) and 54% (Delhi) of the total ions. The sum of measured ions during the NMN period was greater than the NM period by a factor of 1.5 for Pune (278.4: NM and 412.1: NMN μeq/l) and a factor of about 2.5 for Delhi (406 and 1037.7 μeq/l). The contributions of SO42- and NO3- to the RW acidity were ∼40% and 60%, respectively, at Pune and correspondingly, 36% and 64% at Delhi. The concentrations of secondary aerosols (SO42-and NO3-) were higher by a factor of two and three when the air masses were transported to Pune from the continental side. At Delhi, the concentrations of SO42-, NO3-, Ca2+, and Mg2+ were significantly higher when the air masses arrive from Punjab, Haryana, and Pakistan indicating the greater atmospheric pollution over the Indo-Gangetic Plain. Positive matrix factorization was applied to the source apportionment of the deposition fluxes of these ions. Three factors were obtained for Pune and four for Delhi. The sources at Pune were secondary aerosols from fossil fuel combustion, soil dust, and marine, whereas, at Delhi, the sources were soil, fossil fuel combustion, biomass burning, and industrial chlorine.

  6. Comparison of PM10 concentrations and metal content in three different sites of the Venice Lagoon: An analysis of possible aerosol sources

    Institute of Scientific and Technical Information of China (English)

    Daniele Contini; Franco Belosi; Andrea Gambaro; Daniela Cesari; Angela Maria Stortini; Maria Chiara Bove

    2012-01-01

    The Venice Lagoon is exposed to atmospheric pollutants from industrial activities,thermoelectric power plants,petrochemical plants,incinerator,domestic heating,ship traffic,glass factories and vehicular emissions on the mainland.In 2005,construction began on the mobile dams (MOSE),one dam for each channel connecting the lagoon to the Adriatic Sea as a barrier against high tide.These construction works could represent an additional source of pollutants.PM10 samples were taken on random days between 2007 and 2010 at three different sites:Punta Sabbioni,Chioggia and Malamocco,located near the respective dam construction worksites.Chemical analyses of V,Cr,Fe,Co,Ni,Cu,Zn,As,Mo,Cd,Sb,T1 and Pb in PM10 samples were performed by Inductively coupled plasmaquadrupole mass spectrometry (ICP-QMS) and results were used to identify the main aerosol sources.The correlation of measured data with meteorology,and source apportionment,failed to highlight a contribution specifically associated to the emissions of the MOSE construction works.The comparison of the measurements at the three sites showed a substantial homogeneity of metal concentrations in the area.Source apportionment with principal component analysis (PCA) and positive matrix factorization (PMF) showed that a four principal factors model could describe the sources of metals in PM10.Three of them were assigned to specific sources in the area and one was characterised as a source of mixed origin (anthropogenic and crustal).A specific anthropogenic source of PM10 rich in Ni and Cr,active at the Chioggia site,was also identified.

  7. Comprehensive airborne characterization of aerosol from a major bovine source

    Directory of Open Access Journals (Sweden)

    A. Sorooshian

    2008-06-01

    Full Text Available We report an extensive airborne characterization of aerosol downwind of a massive bovine source in the San Joaquin Valley (California on two flights during July 2007. The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS Twin Otter probed chemical composition, particle size distribution, mixing state, sub- and supersaturated water uptake behavior, light scattering properties, and the interrelationship between these parameters and meteorology. Total PM1.0 levels and concentrations of organics, nitrate, and ammonium were enhanced in the plume from the source as compared to the background aerosol. Organics dominated the plume aerosol mass (~56–64%, followed either by sulfate or nitrate, and then ammonium. Particulate amines were detected in the plume aerosol by a particle-into-liquid sampler (PILS and via mass spectral markers in the Aerodyne cToF-AMS. Amines were found to be a significant atmospheric base even in the presence of ammonia; particulate amine concentrations are estimated as at least 14–23% of that of ammonium in the plume. Enhanced sub- and supersaturated water uptake and reduced refractive indices were coincident with lower organic mass fractions, higher nitrate mass fractions, and the detection of amines. Kinetic limitations due to hydrophobic organic material are shown to have likely suppressed droplet growth. After removing effects associated with size distribution and mixing state, the normalized activated fraction of cloud condensation nuclei (CCN increased as a function of the subsaturated hygroscopic growth factor, with the highest activated fractions being consistent with relatively lower organic mass fractions and higher nitrate mass fractions. Subsaturated hygroscopic growth factors for the organic fraction of the aerosol are estimated based on employing the Zdanovskii-Stokes Robinson (ZSR mixing rule. Representative values for a parameterization treating particle water uptake in both the

  8. Comprehensive airborne characterization of aerosol from a major bovine source

    Directory of Open Access Journals (Sweden)

    H. Jonsson

    2008-09-01

    Full Text Available We report an extensive airborne characterization of aerosol downwind of a massive bovine source in the San Joaquin Valley (California on two flights during July 2007. The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS Twin Otter probed chemical composition, particle size distribution, mixing state, sub- and supersaturated water uptake behavior, light scattering properties, and the interrelationship between these parameters and meteorology. Total PM1.0 levels and concentrations of organics, nitrate, and ammonium were enhanced in the plume from the source as compared to the background aerosol. Organics dominated the plume aerosol mass (~56–64%, followed either by sulfate or nitrate, and then ammonium. Particulate amines were detected in the plume aerosol by a particle-into-liquid sampler (PILS and via mass spectral markers in the Aerodyne C-ToF-AMS. Amines were found to be a significant atmospheric base even in the presence of ammonia; particulate amine concentrations are estimated as at least 14–23% of that of ammonium in the plume. Enhanced sub- and supersaturated water uptake and reduced refractive indices were coincident with lower organic mass fractions, higher nitrate mass fractions, and the detection of amines. The likelihood of suppressed droplet growth owing to kinetic limitations from hydrophobic organic material is explored. After removing effects associated with size distribution and mixing state, the normalized activated fraction of cloud condensation nuclei (CCN increased as a function of the subsaturated hygroscopic growth factor, with the highest activated fractions being consistent with relatively lower organic mass fractions and higher nitrate mass fractions. Subsaturated hygroscopic growth factors for the organic fraction of the aerosol are estimated based on employing the Zdanovskii-Stokes Robinson (ZSR mixing rule. Representative values for a parameterization treating particle water

  9. ATMOSPHERIC AEROSOL SOURCE-RECEPTOR RELATIONSHIPS: THE ROLE OF COAL-FIRED POWER PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    Allen L. Robinson; Spyros N. Pandis; Cliff I. Davidson

    2005-04-01

    This report describes the technical progress made on the Pittsburgh Air Quality Study (PAQS) during the period of September 2004 through February 2005. Significant progress was made this project period on the analysis of ambient data, source apportionment, and deterministic modeling activities. The major experimental achievement this project period was the characterization of the mercury and fine particle emissions from two modern, large, commercial pulverized coal boilers. This testing completes the field work component of the Source Characterization Activity. This report highlights results from mercury emission measurements made using a dilution sampler. The measurements clearly indicate that mercury is being transformed from an oxidized to an elemental state within the dilution. However, wall effects are significant making it difficult to determine whether or not these changes occur in the gas phase or due to some interaction with the sampler walls. This report also presents results from an analysis that uses spherical aluminum silicate (SAS) particles as a marker for primary PM{sub 2.5} emitted from coal combustion. Primary emissions from coal combustion contribute only a small fraction of the PM{sub 2.5} mass (less than 1.5% in the summer and less than 3% in the winter) at the Pittsburgh site. Ambient SAS concentrations also appear to be reasonably spatially homogeneous. Finally, SAS emission factors measured at pilot-scale are consistent with measurements made at full-scale. This report also presents results from applying the Unmix and PMF models to estimate the contribution of different sources to the PM{sub 2.5} mass concentrations in Pittsburgh using aerosol composition information. Comparison of the two models shows similar source composition and contribution for five factors: crustal material, nitrate, an Fe, Mn, and Zn factor, specialty steel production, and a cadmium factor. PMF found several additional factors. Comparison between source contributions

  10. Source apportionment of heavy metals and ionic contaminants in rainwater tanks in a subtropical urban area in Australia.

    Science.gov (United States)

    Huston, R; Chan, Y C; Chapman, H; Gardner, T; Shaw, G

    2012-03-15

    Due to prolonged droughts in recent years, the use of rainwater tanks in urban areas has increased in Australia. In order to apportion sources of contribution to heavy metal and ionic contaminants in rainwater tanks in Brisbane, a subtropical urban area in Australia, monthly tank water samples (24 sites, 31 tanks) and concurrent bulk deposition samples (18 sites) were collected during mainly April 2007-March 2008. The samples were analysed for acid-soluble metals, soluble anions, total inorganic carbon and total organic carbon, and characteristics such as total solid and pH. The Positive Matrix Factorisation model, EPA PMF 3.0, was used to apportion sources of contribution to the contaminants. Four source factors were identified for the bulk deposition samples, including 'crustal matter/sea salt', 'car exhausts/road side dust', 'industrial dust' and 'aged sea salt/secondary aerosols'. For the tank water samples, apart from these atmospheric deposition related factors which contributed in total to 65% of the total contaminant concentration on average, another six rainwater collection system related factors were identified, including 'plumbing', 'building material', 'galvanizing', 'roofing', 'steel' and 'lead flashing/paint' (contributing in total to 35% of the total concentration on average). The Australian Drinking Water Guideline for lead was exceeded in 15% of the tank water samples. The collection system related factors, in particular the 'lead flashing/paint' factor, contributed to 79% of the lead in the tank water samples on average. The concentration of lead in tank water was found to vary with various environmental and collection system factors, in particular the presence of lead flashing on the roof. The results also indicated the important role of sludge dynamics inside the tank on the quality of tank water.

  11. Source apportionment and seasonal variation of PM2.5 in a Sub-Sahara African city: Nairobi, Kenya

    Directory of Open Access Journals (Sweden)

    S. M. Gaita

    2014-04-01

    Full Text Available Sources of airborne particulate matter and their seasonal variation in urban areas in Sub-Sahara Africa are poorly understood due to lack of long-term measurement data. In view of this, airborne fine particles matter (particle diameter ≤ 2.5 μm, PM2.5 were collected between May 2008 and April 2010 at two sites (urban background site and suburban site within the Nairobi metropolitan area. A total of 780 samples were collected and analyzed for particulate mass, black carbon (BC and thirteen trace elements. The average PM2.5 concentration at the urban background site was 20 ± 8 μg m−3 whereas the concentration at the suburban site was 13 ± 8 μg m−3. The daily PM2.5 concentrations exceeded 25 μg m−3 (the World Health Organization 24 h guideline value 29% of the days at the urban background site and 7% of the days at the suburban site. At both sites, BC, Fe, S and Cl accounted for approximately 80% of all detected elements. Positive Matrix Factorization analysis identified five source factors that contribute to PM2.5 in Nairobi; traffic, mineral dust, secondary aerosol, industrial and combustion. Mineral dust and traffic factors were related to approximately 74% of PM2.5. Identified source factors exhibited seasonal variation though traffic factor was prominently consistent throughout the sampling period. The results provide information that can be exploited for policy formulation and mitigation strategies to control air pollution in Sub-Sahara African cities.

  12. Global Modeling of the Oceanic Source of Organic Aerosols

    Directory of Open Access Journals (Sweden)

    Stelios Myriokefalitakis

    2010-01-01

    Full Text Available The global marine organic aerosol budget is investigated by a 3-dimensional chemistry-transport model considering recently proposed parameterisations of the primary marine organic aerosol (POA and secondary organic aerosol (SOA formation from the oxidation of marine volatile organic compounds. MODIS and SeaWiFS satellite data of Chlorophyll-a and ECMWF solar incoming radiation, wind speed, and temperature are driving the oceanic emissions in the model. Based on the adopted parameterisations, the SOA and the submicron POA marine sources are evaluated at about 5 Tg yr−1 (∼1.5 Tg C yr−1 and 7 to 8 Tg yr−1 (∼4 Tg C yr−1, respectively. The computed marine SOA originates from the dimethylsulfide oxidation (∼78%, the potentially formed dialkyl amine salts (∼21%, and marine hydrocarbon oxidation (∼0.1%. Comparison of calculations with observations indicates an additional marine source of soluble organic carbon that could be partially encountered by marine POA chemical ageing.

  13. Contributions of local sources, long-range and mountain wind transport for aerosols over an eastern Himalayan high-altitude station in India

    Science.gov (United States)

    Chatterjee, Abhijit; Sarkar, Chirantan; Singh, Ajay; Ghosh, Sanjay; Raha, Sibaji; Das, Sanat

    A long-term study (2010-2013) on aerosols mass concentrations (PM2.5), number concentrations of size segregated aerosols and mass concentration of total suspended black carbon aerosols has been made over Darjeeling (27.01 N, 88.15 E), a high altitude (2200 m asl) station at eastern Himalaya in India. Seasonal and diurnal variation of all types of aerosols, their chemical composition and source apportionment revealed that aerosols over this part of Himalaya are mainly of two types; locally generated and long-range transported aerosols. The diurnal variation of aerosols including black carbon showed distinct feature of up-slope mountain wind transport mainly during premonsoon (Mar-May) which brings aerosol particles from low land regions. This present study focuses on the estimation of the individual contributions from local emissions (LE), long-range transport (LRT) and mountain wind transport (MWT) towards the total aerosol loading over Darjeeling. Several strike events (called by local political party) were observed at Darjeeling over the entire period of study (2008-2013) when all the local activities (schools, colleges, offices, vehicular, industrial etc) were stopped fully. Most of the strike events occurred during premonsoon. We have observed three types of events during premonsoon over the entire study period; 1) strike events with the contribution of LRT+MWT with zero local emissions (LE=0), 2) normal days with the contribution of LE+LRT+MWT, 3) normal days with the contribution of LE+MWT with zero long-range contribution (LRT=0). On normal days, the diurnal variation of aerosols during premonsoon showed sharp morning and evening peaks associated to local anthropogenic activities with the effect of up-slope mountain wind during afternoon. During strike events, the morning and evening peaks were absent but a broad peak was observed during afternoon associated to up-slope mountain wind. The increase in aerosol concentrations during afternoon on strike days

  14. Source apportionment for sediment PAHs from the Daliao River (China) using an extended fit measurement mode of chemical mass balance model.

    Science.gov (United States)

    Chen, Hai-Yang; Teng, Yan-Guo; Wang, Jin-Sheng

    2013-02-01

    To minimize the selection uncertainties of source profiles and obtain the higher model performance, an extended fit measurement mode for chemical mass balance model (EFMM-CMB) was proposed and applied to estimate source contributions for sediment PAHs from the Daliao River around which is the important industrial bases with oil, chemical and steel factories in the northeast part of China. Based on least squares fitting method, EFMM-CMB initially calculated the fit measurement index to every one of the possible combinations that can be made from the source profiles. Any successful applications of the fitting method were ranked according to performance measures, and then determined by maximizing an overall fitting index for a unique solution. Apportionment results from two case scenarios showed that the values of performance measures for EFMM-CMB were better to that for CMB8.2 results. With species selection of high molecular weight PAHs, power plant (45.75%), biomass burning (29.34%) and traffic tunnel (10.59%) were identified as the major sources of sediment PAHs from the Daliao River region.

  15. Application of stochastic models in identification and apportionment of heavy metal pollution sources in the surface soils of a large-scale region.

    Science.gov (United States)

    Hu, Yuanan; Cheng, Hefa

    2013-04-16

    As heavy metals occur naturally in soils at measurable concentrations and their natural background contents have significant spatial variations, identification and apportionment of heavy metal pollution sources across large-scale regions is a challenging task. Stochastic models, including the recently developed conditional inference tree (CIT) and the finite mixture distribution model (FMDM), were applied to identify the sources of heavy metals found in the surface soils of the Pearl River Delta, China, and to apportion the contributions from natural background and human activities. Regression trees were successfully developed for the concentrations of Cd, Cu, Zn, Pb, Cr, Ni, As, and Hg in 227 soil samples from a region of over 7.2 × 10(4) km(2) based on seven specific predictors relevant to the source and behavior of heavy metals: land use, soil type, soil organic carbon content, population density, gross domestic product per capita, and the lengths and classes of the roads surrounding the sampling sites. The CIT and FMDM results consistently indicate that Cd, Zn, Cu, Pb, and Cr in the surface soils of the PRD were contributed largely by anthropogenic sources, whereas As, Ni, and Hg in the surface soils mostly originated from the soil parent materials.

  16. Linking trace gas measurements and molecular tracers of organic matter in aerosols for identification of ecosystem sources and types of wildfires in Central Siberia

    Science.gov (United States)

    Panov, A. V.; Prokushkin, A. S.; Korets, M. A.; Bryukhanov, A. V.; Myers-Pigg, A. N.; Louchouarn, P.; Sidenko, N. V.; Amon, R.; Andreae, M. O.; Heimann, M.

    2016-11-01

    Summer 2012 was one of the extreme wildfire years in Siberia. At the surface air monitoring station “ZOTTO” (60°48'N, 89°21'E, 114 m a.s.l.) in Central Siberia we observed biomass burning (BB) influence on the ongoing atmospheric measurements within more than 50 % of the time in June-July 2012 that indicates a 30 times greater wildfire signal compared to previously reported ordinary biomass burning signature for the study area. While previous studies thoroughly estimated a relative input of BB into aerosol composition (i.e. size distribution, physical and optical parameters etc.) at ZOTTO, in this paper we characterize the source apportionment of the smoke aerosols with molecular tracer techniques from large-scale wildfires occurred in 2012 in the two prevailing types of Central Siberian ecosystems: complexes of pine forests and bogs and dark coniferous forests. Wildfires in the selected ecosystems are highly differed by their combustion phase (flaming/smoldering), the type of fire (crown/ground), biomass fuel, and nature of soil that greatly determines the smoke particle composition. Anhydrosugars (levoglucosan and its isomers) and lignin phenols taken as indicators of the sources and the state of particulate matter (PM) inputs in the specific fire plumes were used as powerful tools to compare wildfires in different environmental conditions and follow the role and contribution of different sources of terrestrial organic matter in the transport of BB pollutants into the pristine atmosphere of boreal zone in Central Siberia.

  17. Century-long source apportionment of PAHs in Athabasca oil sands region lakes using diagnostic ratios and compound-specific carbon isotope signatures.

    Science.gov (United States)

    Jautzy, Josué; Ahad, Jason M E; Gobeil, Charles; Savard, Martine M

    2013-06-18

    Evaluating the impact that airborne contamination associated with Athabasca oil sands (AOS) mining operations has on the surrounding boreal forest ecosystem requires a rigorous approach to source discrimination. This study presents a century-long historical record of source apportionment of polycyclic aromatic hydrocarbons (PAHs) in dated sediments from two headwater lakes located approximately 40 and 55 km east from the main area of open pit mining activities. Concentrations of the 16 Environmental Protection Agency (EPA) priority PAHs in addition to retene, dibenzothiophene (DBT), and six alkylated groups were measured, and both PAH molecular diagnostic ratios and carbon isotopic signatures (δ(13)C) of individual PAHs were used to differentiate natural from anthropogenic inputs. Although concentrations of PAHs in these lakes were low and below the Canadian Council of Ministers of the Environment (CCME) guidelines, diagnostic ratios pointed to an increasingly larger input of petroleum-derived (i.e., petrogenic) PAHs over the past 30 years concomitant with δ(13)C values progressively shifting to the value of unprocessed AOS bitumen. This petrogenic source is attributed to the deposition of bitumen in dust particles associated with wind erosion from open pit mines.

  18. Effects of systematic error, estimates and uncertainties in chemical mass balance apportionments: Quail Roost II revisited

    Science.gov (United States)

    Lowenthal, Douglas H.; Hanumara, R. Choudary; Rahn, Kenneth A.; Currie, Lloyd A.

    The Quail Roost II synthetic data set II was used to derive a comprehensive method of estimating uncertainties for chemical mass balance (CMB) apportionments. Collinearity-diagnostic procedures were applied to CMB apportionments of data set II to identify seriously collinear source profiles and evaluate the effects of the degree of collinearity on source-strength estimates and their uncertainties. Fractional uncertainties of CMB estimates were up to three times higher for collinear source profiles than for independent ones. A theoretical analysis of CMB results for synthetic data set II led to the following general conclusions about CMB methodology. Uncertainties for average estimated source strengths will be unrealistically low unless sources whose estimates are constrained to zero are included when calculating uncertainties. Covariance in source-strength estimates is caused by collinearity and systematic errors in source specification and composition. Propagated uncertainties may be underestimated unless covariances as well as variances of estimates are included. Apportioning the average aerosol will account for systematic errors only when the correct model is known, when measurement uncertainties in ambient and source-profile data are realistic, and when the source profiles are not collinear.

  19. Aerosol composition, sources and processes during wintertime in Beijing, China

    Directory of Open Access Journals (Sweden)

    Y. L. Sun

    2013-01-01

    Full Text Available Air pollution is a major environmental concern among all seasons in megacity Beijing, China. Here we present the results from a winter study that was conducted from 21 November 2011 to 20 January 2012 with an Aerodyne Aerosol Chemical Speciation Monitor (ACSM and various collocated instruments. The non-refractory submicron aerosol (NR-PM1 species vary dramatically with clean periods and pollution episodes alternating frequently. Compared to summer, wintertime submicron aerosols show much enhanced organics and chloride, which on average account for 52% and 5%, respectively of the total NR-PM1 mass. All NR-PM1 species show quite different diurnal behaviors between summer and winter. For example, the wintertime nitrate presents a gradual increase during daytime and correlates well with secondary organic aerosol (OA, indicating a dominant role of photochemical production over gas-particle partitioning. Positive matrix factorization was performed on ACSM OA mass spectra, and identified three primary OA (POA factors, i.e. hydrocarbon-like OA (HOA, cooking OA (COA, and coal combustion OA (CCOA, and one secondary factor, i.e. oxygenated OA (OOA. The POA dominates OA during wintertime, contributing 69% with the rest of 31% being SOA. Further, all POA components show pronounced diurnal cycles with the highest concentrations occurring at nighttime. CCOA is the largest primary source during the heating season, on average accounting for 33% of OA and 17% of NR-PM1. CCOA also plays a significant role in chemically-resolved particulate matter (PM pollution as its mass contribution increases linearly as a function of NR-PM1 mass loadings. The SOA however presents a reversed trend, which might indicate the limited SOA formation during high PM pollution episodes in winter. The effects of meteorology on PM pollution and aerosol processing were also explored. In particular, the sulfate mass is largely enhanced

  20. Sub-Antarctic marine aerosol: significant contributions from biogenic sources

    Directory of Open Access Journals (Sweden)

    J. Schmale

    2013-03-01

    Full Text Available Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS, was 21% non-sea salt sulfate 2% nitrate, 7% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea salt signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA profiles could be isolated: an amino acids/amine factor (AA-OA, 18% of OA mass, a methanesulfonic acid OA factor (MSA-OA, 25%, a marine oxygenated OA factor (M-OOA, 40%, a sea salt OA fraction (SS-OA, 7% and locally produced hydrocarbon-like OA (HOA, 9%. The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (C : N ratio = 0.13, has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea salt aerosol was identified (SS-OA. However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not

  1. Sub-Antarctic marine aerosol: dominant contributions from biogenic sources

    Directory of Open Access Journals (Sweden)

    J. Schmale

    2013-09-01

    Full Text Available Biogenic influences on the composition and characteristics of aerosol were investigated on Bird Island (54°00' S, 38°03' W in the South Atlantic during November and December 2010. This remote marine environment is characterised by large seabird and seal colonies. The chemical composition of the submicron particles, measured by an aerosol mass spectrometer (AMS, was 21% non-sea-salt sulfate, 2% nitrate, 8% ammonium, 22% organics and 47% sea salt including sea salt sulfate. A new method to isolate the sea spray signature from the high-resolution AMS data was applied. Generally, the aerosol was found to be less acidic than in other marine environments due to the high availability of ammonia, from local fauna emissions. By positive matrix factorisation five different organic aerosol (OA profiles could be isolated: an amino acid/amine factor (AA-OA, 18% of OA mass, a methanesulfonic acid OA factor (MSA-OA, 25%, a marine oxygenated OA factor (M-OOA, 41%, a sea spray OA fraction (SS-OA, 7% and locally produced hydrocarbon-like OA (HOA, 9%. The AA-OA was dominant during the first two weeks of November and found to be related with the hatching of penguins in a nearby colony. This factor, rich in nitrogen (N : C ratio = 0.13, has implications for the biogeochemical cycling of nitrogen in the area as particulate matter is often transported over longer distances than gaseous N-rich compounds. The MSA-OA was mainly transported from more southerly latitudes where phytoplankton bloomed. The bloom was identified as one of three sources for particulate sulfate on Bird Island, next to sea salt sulfate and sulfate transported from South America. M-OOA was the dominant organic factor and found to be similar to marine OA observed at Mace Head, Ireland. An additional OA factor highly correlated with sea spray aerosol was identified (SS-OA. However, based on the available data the type of mixture, internal or external, could not be determined. Potassium was not

  2. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    Directory of Open Access Journals (Sweden)

    J.-J. Cao

    2012-07-01

    Full Text Available An intensive investigation of carbonaceous PM2.5 and TSP from Pudong (China was conducted as part of the MIRAGE-Shanghai Experiment in 2009. Data for organic and elemental carbon (OC and EC, organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs, and stable C isotopes OC (δ13COC and EC (δ13CEC were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA; high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = −24.5 ± 0.8‰ and δ13CEC = −25.1 ± 0.6‰ indicated that fossil fuels were the most important source for carbonaceous PM2.5, with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%: other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  3. Characteristics and sources of carbonaceous aerosols from Shanghai, China

    Directory of Open Access Journals (Sweden)

    J.-J. Cao

    2013-01-01

    Full Text Available An intensive investigation of carbonaceous PM2.5 and TSP (total suspended particles from Pudong (China was conducted as part of the MIRAGE-Shanghai (Megacities Impact on Regional and Global Environment experiment in 2009. Data for organic and elemental carbon (OC and EC, organic species, including C17 to C40 n-alkanes and 17 polycyclic aromatic hydrocarbons (PAHs, and stable carbon isotopes OC (δ13COC and EC (δ13CEC were used to evaluate the aerosols' temporal variations and identify presumptive sources. High OC/EC ratios indicated a large fraction of secondary organic aerosol (SOA; high char/soot ratios indicated stronger contributions to EC from motor vehicles and coal combustion than biomass burning. Diagnostic ratios of PAHs indicated that much of the SOA was produced via coal combustion. Isotope abundances (δ13COC = −24.5 ± 0.8‰ and δ13CEC = −25.1 ± 0.6‰ indicated that fossil fuels were the most important source for carbonaceous PM2.5 (particulate matter less than 2.5 micrometers in diameter, with lesser impacts from biomass burning and natural sources. An EC tracer system and isotope mass balance calculations showed that the relative contributions to total carbon from coal combustion, motor vehicle exhaust, and SOA were 41%, 21%, and 31%; other primary sources such as marine, soil and biogenic emissions contributed 7%. Combined analyses of OC and EC, n-alkanes and PAHs, and stable carbon isotopes provide a new way to apportion the sources of carbonaceous particles.

  4. 14C-Based source assessment of soot aerosols in Stockholm and the Swedish EMEP-Aspvreten regional background site

    Science.gov (United States)

    Andersson, August; Sheesley, Rebecca J.; Kruså, Martin; Johansson, Christer; Gustafsson, Örjan

    2011-01-01

    Combustion-derived soot or black carbon (BC) in the atmosphere has a strong influence on both climate and human health. In order to propose effective mitigation strategies for BC emissions it is of importance to investigate geographical distributions and seasonal variations of BC emission sources. Here, a radiocarbon methodology is used to distinguish between fossil fuel and biomass burning sources of soot carbon (SC). SC is isolated for subsequent off-line 14C quantification with the chemothermal oxidation method at 375 °C (CTO-375 method), which reflects a recalcitrant portion of the BC continuum known to minimize inadvertent inclusion of any non-pyrogenic organic matter. Monitored wind directions largely excluded impact from the Stockholm metropolitan region at the EMEP-Aspvreten rural station 70 km to the south-west. Nevertheless, the Stockholm city and the rural stations yielded similar relative source contributions with fraction biomass ( fbiomass) for fall and winter periods in the range of one-third to half. Large temporal variations in 14C-based source apportionment was noted for both the 6 week fall and the 4 month winter observations. The fbiomass appeared to be related to the SC concentration suggesting that periods of elevated BC levels may be caused by increased wood fuel combustion. These results for the largest metropolitan area in Scandinavia combine with other recent 14C-based studies of combustion-derived aerosol fractions to suggest that biofuel combustion is contributing a large portion of the BC load to the northern European atmosphere.

  5. Aerosol Source Attributions and Source-Receptor Relationships Across the Northern Hemisphere

    Science.gov (United States)

    Bian, Huisheng; Chin, Mian; Kucsera, Tom; Pan, Xiaohua; Darmenov, Anton; Colarco, Peter; Torres, Omar; Shults, Michael

    2014-01-01

    Emissions and long-range transport of air pollution pose major concerns on air quality and climate change. To better assess the impact of intercontinental transport of air pollution on regional and global air quality, ecosystems, and near-term climate change, the UN Task Force on Hemispheric Transport of Air Pollution (HTAP) is organizing a phase II activity (HTAP2) that includes global and regional model experiments and data analysis, focusing on ozone and aerosols. This study presents the initial results of HTAP2 global aerosol modeling experiments. We will (a) evaluate the model results with surface and aircraft measurements, (b) examine the relative contributions of regional emission and extra-regional source on surface PM concentrations and column aerosol optical depth (AOD) over several NH pollution and dust source regions and the Arctic, and (c) quantify the source-receptor relationships in the pollution regions that reflect the sensitivity of regional aerosol amount to the regional and extra-regional emission reductions.

  6. Source apportionment of methane and nitrous oxide in California's San Joaquin Valley at CalNex 2010 via positive matrix factorization

    Directory of Open Access Journals (Sweden)

    A. Guha

    2015-03-01

    Full Text Available Sources of methane (CH4 and nitrous oxide (N2O were investigated using measurements from a site in southeast Bakersfield as part of the CalNex (California at the Nexus of Air Quality and Climate Change experiment from 15 May to 30 June 2010. Typical daily minimum mixing ratios of CH4 and N2O were higher than daily averages that were simultaneously observed at a similar latitude background station (NOAA, Mauna Loa by approximately 70 and 0.5 ppb, respectively. Substantial enhancements of CH4 and N2O (hourly averages > 500 ppb and > 7 ppb, respectively were routinely observed suggesting the presence of large regional sources. Collocated measurements of carbon monoxide (CO and a range of volatile organic compounds (VOCs (e.g. straight-chain and branched alkanes, cycloalkanes, chlorinated alkanes, aromatics, alcohols, isoprene, terpenes and ketones were used with a Positive Matrix Factorization (PMF source apportionment method to estimate the contribution of regional sources to observed enhancements of CH4 and N2O. The PMF technique provided a "top-down" deconstruction of ambient gas-phase observations into broad source categories, yielding a 7-factor solution. We identified these source factors as emissions from evaporative and fugitive; motor vehicles; livestock and dairy; agricultural and soil management; daytime light and temperature driven; non-vehicular urban; and nighttime terpene biogenics and anthropogenics. The dairy and livestock factor accounted for a majority of the CH4 (70–90% enhancements during the duration of the experiments. Propagation of uncertainties in the PMF-derived factor profiles and time series from bootstrapping analysis resulted in a 29% uncertainty in the CH4 apportionment to this factor. The dairy and livestock factor was also a principal contributor to the daily enhancements of N2O (60–70% with an uncertainty of 33%. Agriculture and soil management accounted for ~20–25% of N2O enhancements over the course of a

  7. Source apportionment of methane and nitrous oxide in California's San Joaquin Valley at CalNex 2010 via positive matrix factorization

    Science.gov (United States)

    Guha, A.; Gentner, D. R.; Weber, R. J.; Provencal, R.; Goldstein, A. H.

    2015-03-01

    Sources of methane (CH4) and nitrous oxide (N2O) were investigated using measurements from a site in southeast Bakersfield as part of the CalNex (California at the Nexus of Air Quality and Climate Change) experiment from 15 May to 30 June 2010. Typical daily minimum mixing ratios of CH4 and N2O were higher than daily averages that were simultaneously observed at a similar latitude background station (NOAA, Mauna Loa) by approximately 70 and 0.5 ppb, respectively. Substantial enhancements of CH4 and N2O (hourly averages > 500 ppb and > 7 ppb, respectively) were routinely observed suggesting the presence of large regional sources. Collocated measurements of carbon monoxide (CO) and a range of volatile organic compounds (VOCs) (e.g. straight-chain and branched alkanes, cycloalkanes, chlorinated alkanes, aromatics, alcohols, isoprene, terpenes and ketones) were used with a Positive Matrix Factorization (PMF) source apportionment method to estimate the contribution of regional sources to observed enhancements of CH4 and N2O. The PMF technique provided a "top-down" deconstruction of ambient gas-phase observations into broad source categories, yielding a 7-factor solution. We identified these source factors as emissions from evaporative and fugitive; motor vehicles; livestock and dairy; agricultural and soil management; daytime light and temperature driven; non-vehicular urban; and nighttime terpene biogenics and anthropogenics. The dairy and livestock factor accounted for a majority of the CH4 (70-90%) enhancements during the duration of the experiments. Propagation of uncertainties in the PMF-derived factor profiles and time series from bootstrapping analysis resulted in a 29% uncertainty in the CH4 apportionment to this factor. The dairy and livestock factor was also a principal contributor to the daily enhancements of N2O (60-70%) with an uncertainty of 33%. Agriculture and soil management accounted for ~20-25% of N2O enhancements over the course of a day, not

  8. A missing source of aerosols in Antarctica - beyond long-range transport, phytoplankton, and photochemistry

    Science.gov (United States)

    Giordano, Michael R.; Kalnajs, Lars E.; Avery, Anita; Goetz, J. Douglas; Davis, Sean M.; DeCarlo, Peter F.

    2017-01-01

    Understanding the sources and evolution of aerosols is crucial for constraining the impacts that aerosols have on a global scale. An unanswered question in atmospheric science is the source and evolution of the Antarctic aerosol population. Previous work over the continent has primarily utilized low temporal resolution aerosol filters to answer questions about the chemical composition of Antarctic aerosols. Bulk aerosol sampling has been useful in identifying seasonal cycles in the aerosol populations, especially in populations that have been attributed to Southern Ocean phytoplankton emissions. However, real-time, high-resolution chemical composition data are necessary to identify the mechanisms and exact timing of changes in the Antarctic aerosol. The recent 2ODIAC (2-Season Ozone Depletion and Interaction with Aerosols Campaign) field campaign saw the first ever deployment of a real-time, high-resolution aerosol mass spectrometer (SP-AMS - soot particle aerosol mass spectrometer - or AMS) to the continent. Data obtained from the AMS, and a suite of other aerosol, gas-phase, and meteorological instruments, are presented here. In particular, this paper focuses on the aerosol population over coastal Antarctica and the evolution of that population in austral spring. Results indicate that there exists a sulfate mode in Antarctica that is externally mixed with a mass mode vacuum aerodynamic diameter of 250 nm. Springtime increases in sulfate aerosol are observed and attributed to biogenic sources, in agreement with previous research identifying phytoplankton activity as the source of the aerosol. Furthermore, the total Antarctic aerosol population is shown to undergo three distinct phases during the winter to summer transition. The first phase is dominated by highly aged sulfate particles comprising the majority of the aerosol mass at low wind speed. The second phase, previously unidentified, is the generation of a sub-250 nm aerosol population of unknown composition

  9. Ambient PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) in Changhua County, central Taiwan: Seasonal variation, source apportionment and cancer risk assessment.

    Science.gov (United States)

    Chen, Yu-Cheng; Chiang, Hung-Che; Hsu, Chin-Yu; Yang, Tzu-Ting; Lin, Tzu-Yu; Chen, Mu-Jean; Chen, Nai-Tzu; Wu, Yuh-Shen

    2016-11-01

    This study investigates PM2.5-bound PAHs for rural sites (Dacheng and Fangyuan) positioned close to heavy air-polluting industries in Changhua County, central Taiwan. A total of 113 PM2.5 samples with 22 PAHs collected from 2014 to 2015 were analyzed, and Positive Matrix Factorization (PMF) and diagnostic ratios of PAHs were applied to quantify potential PAH sources. The influences of local and regional sources were also explored using the conditional probability function (CPF) and potential source contribution function (PSCF) with PMF-modeled results, respectively. Annual mean concentrations of total PAHs were 2.91 ± 1.34 and 3.04 ± 1.40 ng/m(3) for Dacheng and Fangyuan, respectively, and their corresponding BaPeq were measured at 0.534 ± 0.255 and 0.563 ± 0.273 ng/m(3) in concentration. Seasonal variations with higher PAHs found for the winter than for the spring and summer were observed for both sites. The lifetime excess cancer risk (ECR) from inhalation exposure to PAHs was recorded as 4.7 × 10(-5) overall. Potential sources of PM2.5-bound PAHs include unburned petroleum and traffic emissions (42%), steel industry and coal combustion (31%), and petroleum and oil burning (27%), and unburned petroleum and traffic emission could contribute the highest ECR (2.4 × 10(-5)). The CPF results show that directional apportionment patterns were consistent with the actual locations of local PAH sources. The PSCF results indicate that mainly northeastern regions of China have contributed elevated PM2.5-bound PAHs from long-range transports.

  10. Inter-comparison of source apportionment of PM10 using PMF and CMB in three sites nearby an industrial area in central Italy

    Science.gov (United States)

    Cesari, Daniela; Donateo, Antonio; Conte, Marianna; Contini, Daniele

    2016-12-01

    Receptor models (RMs), based on chemical composition of particulate matter (PM), such as Chemical Mass Balance (CMB) and Positive Matrix Factorization (PMF), represent useful tools for determining the impact of PM sources to air quality. This information is useful, especially in areas influenced by anthropogenic activities, to plan mitigation strategies for environmental management. Recent inter-comparison of source apportionment (SA) results showed that one of the difficulties in the comparison of estimated source contributions is the compatibility of the sources, i.e. the chemical profiles of factor/sources used in receptor models. This suggests that SA based on integration of several RMs could give more stable and reliable solutions with respect to a single model. The aim of this work was to perform inter-comparison of PMF (using PMF3.0 and PMF5.0 codes) and CMB outputs, focusing on both source chemical profiles and estimates of source contributions. The dataset included 347 daily PM10 samples collected in three sites in central Italy located near industrial emissions. Samples were chemically analysed for the concentrations of 21 chemical species (NH4+, Ca2 +, Mg2 +, Na+, K+, Mg2 +, SO42 -, NO3-, Cl-, Si, Al, Ti, V, Mn, Fe, Ni, Cu, Zn, Br, EC, and OC) used as input of RMs. The approach identified 9 factor/sources: marine, traffic, resuspended dust, biomass burning, secondary sulphate, secondary nitrate, crustal, coal combustion power plant and harbour-industrial. Results showed that the application of constraints in PMF5.0 improved interpretability of profiles and comparability of estimated source contributions with stoichiometric calculations. The inter-comparison of PMF and CMB gave significant differences for secondary nitrate, biomass burning, and harbour-industrial sources, due to non-compatibility of these source profiles that have local specificities. When these site-dependent specificities were taken into account, optimising the input source profiles of

  11. Aerosol characterization at the Saharan AERONET site Tamanrasset

    Directory of Open Access Journals (Sweden)

    C. Guirado

    2014-06-01

    AOD ~ 0.39 at 440 nm and a deep CBL. The aerosol-type characterization shows desert mineral dust as prevailing aerosol. Both pure Saharan dust and very clear sky conditions are observed depending on the season. However, several case studies indicate an anthropogenic fine mode contribution from Libya and Algeria's industrial areas. The Concentration Weighted Trajectory (CWT source apportionment method was used to identify potential sources of air masses arriving at Tamanrasset at several heights for each season. Microphysical and optical properties and precipitable water vapour were also investigated.

  12. Seasonal and spatial variation of trace elements in multi-size airborne particulate matters of Beijing, China: Mass concentration, enrichment characteristics, source apportionment, chemical speciation and bioavailability

    Science.gov (United States)

    Gao, Jiajia; Tian, Hezhong; Cheng, Ke; Lu, Long; Wang, Yuxuan; Wu, Ye; Zhu, Chuanyong; Liu, Kaiyun; Zhou, Junrui; Liu, Xingang; Chen, Jing; Hao, Jiming

    2014-12-01

    The seasonal and spatial variation characteristics of 19 elements (Al, As, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, S, Sb, Se, Zn) in TSP/PM10/PM2.5 samples were investigated, which were collected from April 2011 to January 2012 simultaneously at an urban downtown site, a traffic roadside site, a suburban site, and a rural site in Beijing. The elevated concentrations of several toxic trace elements (As, Cd, Mn, Ni, Pb, etc.) in particles revealed that the contamination of toxic elements in Beijing could not be neglected. Positive matrix factorization method (PMF) was applied for source apportionment of trace elements in PM, and three factors (crust related sources, combustion sources, and traffic and steel industrial related sources) were identified. Furthermore, the chemical speciation and bioavailability of various elements were identified by applying European Community Bureau of Reference (BCR) procedure. Our results showed that eight toxic elements (As, Cd, Cr, Cu, Ni, Pb, Sb and Zn) exhibited higher mobility in PM2.5 than in PM10. Notably, elements of As, Cd, Pb and Zn were presented with higher mobility than the other elements, and these elements were lightly to release into the environment and easily available to human body. Additionally, As, Cd, Pb and Zn also accounted for higher percentages in the bound to mobile fractions at the central urban areas of Beijing. Therefore, special concerns should be paid to these toxic trace elements which had relatively high mobility in fine particles, when planning and implementing the comprehensive air pollution mitigation policies in Beijing.

  13. Long-term measurements of particle number size distributions and the relationships with air mass history and source apportionment in the summer of Beijing

    Science.gov (United States)

    Wang, Z. B.; Hu, M.; Wu, Z. J.; Yue, D. L.; He, L. Y.; Huang, X. F.; Liu, X. G.; Wiedensohler, A.

    2013-10-01

    A series of long-term and temporary measurements were conducted to study the improvement of air quality in Beijing during the Olympic Games period (8-24 August 2008). To evaluate actions taken to improve the air quality, comparisons of particle number and volume size distributions of August 2008 and 2004-2007 were performed. The total particle number and volume concentrations were 14 000 cm-3 and 37 μm-3 cm-3 in August of 2008, respectively. These were reductions of 41% and 35% compared with mean values of August 2004-2007. A cluster analysis on air mass history and source apportionment were performed, exploring reasons for the reduction of particle concentrations. Back trajectories were classified into five major clusters. Air masses from the south direction are always associated with pollution events during the summertime in Beijing. In August 2008, the frequency of air mass arriving from the south was 1.3 times higher compared to the average of the previous years, which however did not result in elevated particle volume concentrations in Beijing. Therefore, the reduced particle number and volume concentrations during the 2008 Beijing Olympic Games cannot be only explained by meteorological conditions. Four factors were found influencing particle concentrations using a positive matrix factorization (PMF) model. They were identified as local and remote traffic emissions, combustion sources as well as secondary transformation. The reductions of the four sources were calculated to 47%, 44%, 43% and 30%, respectively. The significant reductions of particle number and volume concentrations may attribute to actions taken, focusing on primary emissions, especially related to the traffic and combustion sources.

  14. Chemical characterization and source apportionment estimates of particulate matter collected within the framework of EU project HEPMEAP

    OpenAIRE

    Bloemen HJT; Gerlofs-Nijland ME; Janssen NAH; Sandstrom T; Bree L van; Cassee FR; LVM; MGO; LOK

    2005-01-01

    Een groot deel van de massa van het fijnstof bestaat uit anorganisch aerosol (34% nitraat, sulfaat en ammonium). Daarnaast bestaat circa 2% uit organisch materiaal afkomstig van verbrandingsprocessen. Ruwe schattingen van de verkeersbijdrage voor deze twee fracties varieren tussen 30% en 60%. In het kader van het project 'Health effects of particles from motor engine exhaust and ambient pollution - HEPMEAP', een unieke Europese samenwerking tussen toxicologen en epidemiologen, is bu...

  15. Urban increments of gaseous and aerosol pollutants and their sources using mobile aerosol mass spectrometry measurements

    Science.gov (United States)

    Elser, Miriam; Bozzetti, Carlo; El-Haddad, Imad; Maasikmets, Marek; Teinemaa, Erik; Richter, Rene; Wolf, Robert; Slowik, Jay G.; Baltensperger, Urs; Prévôt, André S. H.

    2016-06-01

    Air pollution is one of the main environmental concerns in urban areas, where anthropogenic emissions strongly affect air quality. This work presents the first spatially resolved detailed characterization of PM2.5 (particulate matter with aerodynamic equivalent diameter daero ≤ 2.5 µm) in two major Estonian cities, Tallinn and Tartu. The measurements were performed in March 2014 using a mobile platform. In both cities, the non-refractory (NR)-PM2.5 was characterized by a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) using a recently developed lens which increases the transmission of super-micron particles. Equivalent black carbon (eBC) and several trace gases including carbon monoxide (CO), carbon dioxide (CO2), and methane (CH4) were also measured. The chemical composition of PM2.5 was found to be very similar in the two cities. Organic aerosol (OA) constituted the largest fraction, explaining on average about 52 to 60 % of the PM2.5 mass. Four sources of OA were identified using positive matrix factorization (PMF): hydrocarbon-like OA (HOA, from traffic emissions), biomass burning OA (BBOA, from biomass combustion), residential influenced OA (RIOA, probably mostly from cooking processes with possible contributions from waste and coal burning), and oxygenated OA (OOA, related to secondary aerosol formation). OOA was the major OA source during nighttime, explaining on average half of the OA mass, while during daytime mobile measurements the OA was affected by point sources and dominated by the primary fraction. A strong increase in the secondary organic and inorganic components was observed during periods with transport of air masses from northern Germany, while the primary local emissions accumulated during periods with temperature inversions. Mobile measurements offered the identification of different source regions within the urban areas and the assessment of the extent to which pollutants concentrations exceeded regional background

  16. Corrigendum to "Chemical apportionment of southern African aerosol mass and optical depth" published in Atmos. Chem. Phys., 9, 7643-7655, 2009

    Science.gov (United States)

    Magi, B. I.

    2011-05-01

    A correction to results by Magi (2009) is presented here. By combining the in situ measurements of speciated aerosol mass concentrations with concurrent measurements of total aerosol optical properties at a wavelength of 550 nm, it is shown that ~66 % of scattering is due to carbonaceous aerosol, where derived mass scattering cross sections (MSC) for OC and BC are 3.8 ± 0.5 m2 g-1 and 2.9 ± 0.8 m2 g-1, respectively. Derived values of mass absorption cross sections (MAC) for OC and BC are 0.7 ± 0.2 m2 g-1 and 12.1 ± 0.8 m2 g-1, respectively. The values of MAC imply that ~21 % of the mid-visible aerosol absorption in southern Africa is due to OC, with the remainder due to BC. SSA for BC and OC are about the same as Magi (2009). The results here are determined using an approach that accounts for the fact that OC and BC are partially scattering and absorbing.

  17. Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO

    Directory of Open Access Journals (Sweden)

    P. F. DeCarlo

    2010-06-01

    Full Text Available Organic aerosol (OA represents approximately half of the submicron aerosol in Mexico City and the Central Mexican Plateau. This study uses the high time resolution measurements performed onboard the NCAR/NSF C-130 aircraft during the MILAGRO/MIRAGE-Mex field campaign in March 2006 to investigate the sources and chemical processing of the OA in this region. An examination of the OA/ΔCO ratio evolution as a function of photochemical age shows distinct behavior in the presence or absence of substantial open biomass burning (BB influence, with the latter being consistent with other studies in polluted areas. In addition, we present results from Positive Matrix Factorization (PMF analysis of 12-s High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS OA spectra. Four components were resolved. Three of the components contain substantial organic oxygen and are termed semivolatile oxygenated OA (SV-OOA, low-volatility OOA (LV-OOA, and biomass burning OA (BBOA. A reduced "hydrocarbon-like OA" (HOA component is also resolved. LV-OOA is highly oxygenated (atomic O/C~1 and is aged organic aerosol linked to regional airmasses, with likely contributions from pollution, biomass burning, and other sources. SV-OOA is strongly correlated with ammonium nitrate, Ox, and the Mexico City Basin. We interpret SV-OOA as secondary OA which is nearly all (>90% anthropogenic in origin. In the absence of biomass burning it represents the largest fraction of OA over the Mexico City basin, consistent with other studies in this region. BBOA is identified as arising from biomass burning sources due to a strong correlation with HCN, and the elevated contribution of the ion C2H4O2+ (m/z 60, a marker for levoglucosan and other primary BB species. WRF-FLEXPART calculated fire impact factors (FIF show good correlation with BBOA mass concentrations within the basin, but show location offsets in the far field

  18. Investigation of the sources and processing of organic aerosol over the Central Mexican Plateau from aircraft measurements during MILAGRO

    Directory of Open Access Journals (Sweden)

    P. F. DeCarlo

    2010-02-01

    Full Text Available Organic aerosol (OA represents approximately half of the submicron aerosol in Mexico City and the Central Mexican Plateau. This study uses the high time resolution measurements performed onboard the NCAR/NSF C-130 aircraft during the MILAGRO/MIRAGE-Mex field campaign in March 2006 to investigate the sources and chemical processing of the OA in this region. An examination of the OA/ΔCO ratio evolution as a function of photochemical age shows distinct behavior in the presence or absence of substantial open biomass burning (BB influence, with the latter being consistent with other studies in polluted areas. In addition, we present results from Positive Matrix Factorization (PMF analysis of 12-s High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS OA spectra. Four components were resolved. Three of the components contain substantial organic oxygen and are termed semivolatile oxygenated OA (SV-OOA, low-volatility OOA (LV-OOA, and biomass burning OA (BBOA. A reduced "hydrocarbon-like OA" (HOA component is also resolved. LV-OOA is highly oxygenated (atomic O/C~1 and is aged organic aerosol linked to regional airmasses, with likely contributions from pollution, biomass burning, and other sources. SV-OOA is strongly correlated with ammonium nitrate, Ox, and the Mexico City Basin. We interpret SV-OOA as secondary OA which is nearly all (>90% anthropogenic in origin. In the absence of biomass burning it represents the largest fraction of OA over the Mexico City basin, consistent with other studies in this region. BBOA is identified as arising from biomass burning sources due to a strong correlation with HCN, and the elevated contribution of the ion C2H4O2+ (m/z 60, a marker for levoglucosan and other primary BB species. WRF-FLEXPART calculated fire impact factors (FIF show good correlation with BBOA mass concentrations within the basin, but show location offsets in the far field

  19. Comparison among Methods of Source Apportionment of PAHs and Their Application in Surface Water Analysis%地表水环境中PAHs源解析的方法比较及应用

    Institute of Scientific and Technical Information of China (English)

    许云竹; 花修艺; 董德明; 梁大鹏; 李仁声; 刘春阳

    2011-01-01

    通过对比分析水环境领域多环芳烃(PAHs)的源解析方法综述了各种源解析方法的原理、优缺点及具体适用范围,并在此基础上,分别从内陆河流湖泊及沿海区域两方面对国内外地表水环境中(包括上覆水及水底表层沉积物)PAHs的源解析方法的应用及解析结果进行分析比较.结果表明,内陆区域河流和湖泊上覆水及沉积物中的PAHs主要来源为矿物燃料及木材等高温燃烧源,河口及近海海水和沉积物中的PAHs主要来源为燃烧源及石油源,石油源对 PAHs 的贡献较内陆区域更明显.%Source apportionment of PAHs applied in the analysis of surface water was studied to control and eliminate water pollution. Comparing variable methods of source apportionment of PAHs, we analyzed and discussed the principle, characteristics and scope of the application of the methods that are usually divided into qualitative analysis and quantitative analysis. The applications and results of source apportionment of PAHs in surface water and sediments were contrasted and analyzed. Then, the source of contaminations was also analyzed briefly. The results of the source apportionment indicate that PAHs in aquatic environment and sediments in inland region mainly come from the combustion of coal, wood, and other minerals. PAHs in coastal areas which are in aquatic and sedimentary environments are derived from petroleum and other combustion processes. Subsequently, PAHs in coastal areas are more obviously from petroleum compared with that in inland region.

  20. Sources of the PM10 aerosol in Flanders, Belgium, and re-assessment of the contribution from wood burning

    Energy Technology Data Exchange (ETDEWEB)

    Maenhaut, Willy, E-mail: willy.maenhaut@ugent.be [Ghent University (UGent), Department of Analytical Chemistry, Krijgslaan 281, S12, B-9000 Gent (Belgium); University of Antwerp - UA, Department of Pharmaceutical Sciences, Universiteitsplein 1, B-2610, Antwerpen (Belgium); Vermeylen, Reinhilde; Claeys, Magda [University of Antwerp - UA, Department of Pharmaceutical Sciences, Universiteitsplein 1, B-2610, Antwerpen (Belgium); Vercauteren, Jordy; Roekens, Edward [Flemish Environment Agency (VMM), Kronenburgstraat 45, B-2000, Antwerpen (Belgium)

    2016-08-15

    From 30 June 2011 to 2 July 2012 PM10 aerosol samples were simultaneously taken every 4th day at four urban background sites in Flanders, Belgium. The sites were in Antwerpen, Gent, Brugge, and Oostende. The PM10 mass concentration was determined by weighing; organic and elemental carbon (OC and EC) were measured by thermal-optical analysis, the wood burning tracers levoglucosan, mannosan and galactosan were determined by gas chromatography/mass spectrometry, 8 water-soluble ions were measured by ion chromatography, and 15 elements were determined by a combination of inductively coupled plasma atomic emission spectrometry and mass spectrometry. The multi-species dataset was subjected to receptor modeling by PMF. The 10 retained factors (with their overall average percentage contributions to the experimental PM10 mass) were wood burning (9.5%), secondary nitrate (24%), secondary sulfate (12.6%), sea salt (10.0%), aged sea salt (19.2%), crustal matter (9.7%), non-ferrous metals (1.81%), traffic (10.3%), non-exhaust traffic (0.52%), and heavy oil burning (3.0%). The average contributions of wood smoke for the four sites were quite substantial in winter and ranged from 12.5 to 20% for the PM10 mass and from 47 to 64% for PM10 OC. Wood burning appeared to be also a notable source of As, Cd, and Pb. The contribution from wood burning to the PM10 mass and OC was also assessed by making use of levoglucosan as single marker compound and the conversion factors of Schmidl et al. (2008), as done in our previous study on wood burning in Flanders (Maenhaut et al., 2012). However, the apportionments were much lower than those deduced from PMF. It seems that the conversion factors of Schmidl et al. (2008) may not be applicable to wood burning in Flanders. From scatter plots of the PMF-derived wood smoke OC and PM versus levoglucosan, we arrived at conversion factors of 9.7 and 22.6, respectively. - Highlights: • A one-year study with 4 urban background sites and a total of 372

  1. Chemical mass balance (CMB) source apportionment and organic speciation of PM(2.5) in Missoula, Montana including the 2000 wildfire season

    Science.gov (United States)

    Ward, Tony J.

    A yearlong sampling program for PM2.5, Semi- Volatile Organic Compounds (SVOCs), and Volatile Organic Compounds (VOCs) was conducted in 2000/2001. The data were used in a Chemical Mass Balance (CMB) Source Apportionment Model (Version 8.0) to apportion the sources of PM2.5 in the Missoula Valley. Results showed that wood combustion contributed an average of 41% to the fine fraction throughout the year. The second largest source of PM 2.5 was diesel (19%), followed by ammonium nitrate (17%), the kraft recovery boilers from Smurfit-Stone Container (14%), other hog fuel boilers (6%), and street sand (5%). Results also showed that PM2.5 levels and contributions from sources were consistent on both sides of the Missoula Valley, but VOCs were twice as high in Missoula compared to Frenchtown. Another aspect of this program was to investigate the organic fraction of the Missoula Valley PM2.5 by evaluating a modified Federal Reference Method (FRM) PM2.5 sampler. A method comparison was also made between sampling for SVOCs using the modified PM2.5 sampler and in using a Hi-volume Polyurethane Foam (PUF) sampler. Results showed that the PM 2.5 PUF measured more of the lighter SVOCs compared to the Hi-vol PUF sampler. This is most likely the result of the higher flows through the Hi-vol PUF which ``strip'' the lighter organics from the surface of the filter. The wildland fires of summer 2000 comprised one of the most severe fire seasons is U.S. history, and had a direct impact on the city of Missoula. Sampling in Missoula was already in progress when the fires began and smoke started rolling into the Missoula Valley. Samples were collected before, during, and after the 2000 fire season, and a detailed characterization of particulate and gaseous emissions from extensive wildland fires was obtained. The 2000/2001 CMB Sampling Program data collected during the 2000 fire season suggest that the main health impacts to downwind populations reside in the fine particulate exposures

  2. Spatial/temporal variations and source apportionment of VOCs monitored at community scale in an urban area.

    Science.gov (United States)

    Yu, Chang Ho; Zhu, Xianlei; Fan, Zhi-hua

    2014-01-01

    This study aimed to characterize spatial/temporal variations of ambient volatile organic compounds (VOCs) using a community-scale monitoring approach and identify the main sources of concern in Paterson, NJ, an urban area with mixed sources of VOCs. VOC samples were simultaneously collected from three local source-dominated (i.e., commercial, industrial, and mobile) sites in Paterson and one background site in Chester, NJ (located ∼58 km southwest of Paterson). Samples were collected using the EPA TO-15 method from midnight to midnight, one in every sixth day over one year. Among the 60 analyzed VOCs, ten VOCs (acetylene, benzene, dichloromethane, ethylbenzene, methyl ethyl ketone, styrene, toluene, m,p-xylene, o-xylene, and p-dichlorobenzene) were selected to examine their spatial/temporal variations. All of the 10 VOCs in Paterson were significantly higher than the background site (psources on air pollution in Paterson. Positive Matrix Factorization (PMF) analysis was applied for 24-hour integrated VOC measurements in Paterson over one year and identified six contributing factors, including motor vehicle exhausts (20%), solvents uses (19%), industrial emissions (16%), mobile+stationery sources (12%), small shop emissions (11%), and others (22%). Additional locational analysis confirmed the identified sources were well matched with point sources located upwind in Paterson. The study demonstrated the community-scale monitoring approach can capture spatial variation of VOCs in an urban community with mixed VOC sources. It also provided robust data to identify major sources of concern in the community.

  3. Bayesian nitrate source apportionment to individual groundwater wells in the Central Valley by use of elemental and isotopic tracers

    Science.gov (United States)

    Ransom, Katherine M.; Grote, Mark N.; Deinhart, Amanda; Eppich, Gary; Kendall, Carol; Sanborn, Matthew E.; Souders, A. Kate; Wimpenny, Joshua; Yin, Qing-zhu; Young, Megan; Harter, Thomas

    2016-07-01

    Groundwater quality is a concern in alluvial aquifers that underlie agricultural areas, such as in the San Joaquin Valley of California. Shallow domestic wells (less than 150 m deep) in agricultural areas are often contaminated by nitrate. Agricultural and rural nitrate sources include dairy manure, synthetic fertilizers, and septic waste. Knowledge of the relative proportion that each of these sources contributes to nitrate concentration in individual wells can aid future regulatory and land management decisions. We show that nitrogen and oxygen isotopes of nitrate, boron isotopes, and iodine concentrations are a useful, novel combination of groundwater tracers to differentiate between manure, fertilizers, septic waste, and natural sources of nitrate. Furthermore, in this work, we develop a new Bayesian mixing model in which these isotopic and elemental tracers were used to estimate the probability distribution of the fractional contributions of manure, fertilizers, septic waste, and natural sources to the nitrate concentration found in an individual well. The approach was applied to 56 nitrate-impacted private domestic wells located in the San Joaquin Valley. Model analysis found that some domestic wells were clearly dominated by the manure source and suggests evidence for majority contributions from either the septic or fertilizer source for other wells. But, predictions of fractional contributions for septic and fertilizer sources were often of similar magnitude, perhaps because modeled uncertainty about the fraction of each was large. For validation of the Bayesian model, fractional estimates were compared to surrounding land use and estimated source contributions were broadly consistent with nearby land use types.

  4. Source apportionment of the ambient PM2.5 across St. Louis using constrained positive matrix factorization

    NARCIS (Netherlands)

    Amato, F.; Hopke, P.K.

    2012-01-01

    In most cases, receptor models are applied to data from a single monitoring site even if there are multiple sampling locations in a given urban area. When it can be reasonably expected that the sites are affected by the same set of sources, it is possible to use the spatial variability of the source

  5. Nitrate source apportionment using a combined dual isotope, chemical and bacterial property, and Bayesian model approach in river systems

    Science.gov (United States)

    Xia, Yongqiu; Li, Yuefei; Zhang, Xinyu; Yan, Xiaoyuan

    2017-01-01

    Nitrate (NO3-) pollution is a serious problem worldwide, particularly in countries with intensive agricultural and population activities. Previous studies have used δ15N-NO3- and δ18O-NO3- to determine the NO3- sources in rivers. However, this approach is subject to substantial uncertainties and limitations because of the numerous NO3- sources, the wide isotopic ranges, and the existing isotopic fractionations. In this study, we outline a combined procedure for improving the determination of NO3- sources in a paddy agriculture-urban gradient watershed in eastern China. First, the main sources of NO3- in the Qinhuai River were examined by the dual-isotope biplot approach, in which we narrowed the isotope ranges using site-specific isotopic results. Next, the bacterial groups and chemical properties of the river water were analyzed to verify these sources. Finally, we introduced a Bayesian model to apportion the spatiotemporal variations of the NO3- sources. Denitrification was first incorporated into the Bayesian model because denitrification plays an important role in the nitrogen pathway. The results showed that fertilizer contributed large amounts of NO3- to the surface water in traditional agricultural regions, whereas manure effluents were the dominant NO3- source in intensified agricultural regions, especially during the wet seasons. Sewage effluents were important in all three land uses and exhibited great differences between the dry season and the wet season. This combined analysis quantitatively delineates the proportion of NO3- sources from paddy agriculture to urban river water for both dry and wet seasons and incorporates isotopic fractionation and uncertainties in the source compositions.

  6. Concentration profiles, source apportionment and risk assessment of polycyclic aromatic hydrocarbons (PAHs) in dumpsite soils from Agbogbloshie e-waste dismantling site, Accra, Ghana.

    Science.gov (United States)

    Daso, Adegbenro P; Akortia, Eric; Okonkwo, Jonathan O

    2016-06-01

    methodological approaches for PAH source apportionment, including the use of molecular diagnostic ratios, mostly implicated pyrogenic processes as the main sources of PAHs into the investigated dumpsite soils. Furthermore, their compositional profiles across the sampling sites also suggest similar sources of PAHs into the dumpsite soil.

  7. Composition and source apportionment of PM1 at urban site Kanpur in India using PMF coupled with CBPF

    Science.gov (United States)

    Rai, Pragati; Chakraborty, Abhishek; Mandariya, Anil Kumar; Gupta, Tarun

    2016-09-01

    This study addresses the three major questions: (1) what are the emission sources of PM1 which are affecting the study area; (2) where do these emission sources come from; and (3) is there any temporal variation in the emission sources. To address these issues, two advanced statistical methods are described in this paper. Identification of emission sources was performed by EPA PMF (v 5.0) and to understand the temporal variability, sampling was done for three winter seasons 2008-09, 2009-10 and 2011-12 within Kanpur city. To identify the possible source directions, Conditional Bivariate Probability function (CBPF) was used. The average PM1 concentration was higher in 2008-09 followed by 2011-12 and 2009-10 winter seasons. 2008-09 winter showed sources such as secondary sources mixed with power plant emission (42.8%), industrial emission (32.3%), coal combustion, brick kilns and vehicular emission (13.2%) and residual oil combustion and road dust (11.7%). The major contributors during winter season 2009-10 were secondary sources (33.1%), biomass burning (23.3%), heavy oil combustion (13%), vehicular emission mixed with crustal dust (11.3%), leather tanning industries (10.3%), industrial emission (4%), coal combustion and brick kilns (3.4%) and solid waste burning and incineration (1.5%) compared to secondary sources mixed with biomass burning (42.3%), industrial emission and crustal dust (35.1%) and vehicular emission and brick kilns (22.6%) during 2011-12 winter season. PMF model revealed that secondary sources were the main contributors for all the three winter seasons followed by biomass burning and power plant emission. The results of CBPF analysis agreed well with the locations of known local point sources., e.g. in the case of industrial emissions, the maximum probability was in the direction between NES direction where almost all the major industries are located in and around Kanpur while in the opposite direction the probability of biomass burning was high

  8. Metal enrichment and lead isotope analysis for source apportionment in the urban dust and rural surface soil.

    Science.gov (United States)

    Yu, Yang; Li, Yingxia; Li, Ben; Shen, Zhenyao; Stenstrom, Michael K

    2016-09-01

    To understand the metal accumulation in the environment and identify its sources, 29 different metal contents and lead (Pb) isotope ratios were determined for 40 urban dust samples, 36 surface soil samples, and one river sediment sample collected in the municipality of Beijing, China. Results showed that cadmium, copper (Cu), mercury, Pb, antimony (Sb), and zinc demonstrated to be the typical urban contaminants and mostly influenced by the adjacent human activities with higher content to background ratios and SD values. Among the 29 metal elements investigated, Cu and Sb were found to be the most distinct elements that were highly affected by the developing level and congestion status of the cities with much higher contents in dust in more developed and congested cities. There was a relatively wider range of Pb isotope ratios of country surface soil than those of urban dust. The results of source identification based on Pb isotope ratios showed that coal combustion was the first largest Pb source and vehicle exhaust was the second largest source. The sum of them accounted for 74.6% mass proportion of overall Pb pollution on average. The surface soil sample collected at an iron mine had the highest (204)Pb/(206)Pb, (207)Pb/(206)Pb, and (208)Pb/(206)Pb ratios indicating ore had much higher ratios than other sources. The fine particle subsamples had higher (204)Pb/(206)Pb, (207)Pb/(206)Pb, and (208)Pb/(206)Pb ratios than the coarse particle subsamples indicating more anthropogenic sources of coal combustion and vehicle exhaust for fine particles and more background influence for coarse particles. These results help with pinpointing the major Pb sources and applying suitable measures for the target sources.

  9. Chemical composition, main sources and temporal variability of PM1 aerosols in southern African grassland

    Science.gov (United States)

    Tiitta, P.; Vakkari, V.; Josipovic, M.; Croteau, P.; Beukes, J. P.; van Zyl, P. G.; Venter, A. D.; Jaars, K.; Pienaar, J. J.; Ng, N. L.; Canagaratna, M. R.; Jayne, J. T.; Kerminen, V.-M.; Kulmala, M.; Laaksonen, A.; Worsnop, D. R.; Laakso, L.

    2013-06-01

    Southern Africa is a significant source region of atmospheric pollution, yet long-term data on pollutant concentrations and properties from this region are rather limited. A recently established atmospheric measurement station in South Africa, Welgegund, is strategically situated to capture regional background emissions, as well as emissions from the major source regions in the interior of South Africa. We measured non-refractive submicron aerosols (NR-PM1) and black carbon over a one year period in Welgegund, and investigated the seasonal and diurnal patterns of aerosol concentration levels, chemical composition, acidity and oxidation level. Based on air mass back trajectories, four distinct source regions were determined for NR-PM1. Supporting data utilized in our analysis included particle number size distributions, aerosol absorption, trace gas concentrations, meteorological variables and the flux of carbon dioxide. The dominant submicron aerosol constituent during the dry season was organic aerosol, reflecting high contribution from savannah fires and other combustion sources. Organic aerosol concentrations were lower during the wet season, presumably due to wet deposition as well as reduced emissions from combustion sources. Sulfate concentrations were usually high and exceeded organic aerosol concentrations when air-masses were transported over regions containing major point sources. Sulfate and nitrate concentrations peaked when air masses passed over the industrial Highveld (iHV) area. In contrast, concentrations were much lower when air masses passed over the cleaner background (BG) areas. Air masses associated with the anti-cyclonic recirculation (ACBIC) source region contained largely aged OA. Positive Matrix Factorization (PMF) analysis of aerosol mass spectra was used to characterize the organic aerosol (OA) properties. The factors identified were oxidized organic aerosols (OOA) and biomass burning organic aerosols (BBOA) in the dry season and low

  10. Chemical characterisation of atmospheric aerosols during a 2007 summer field campaign at Brasschaat, Belgium: sources and source processes, time series, diel variations, and temperature dependencies

    Directory of Open Access Journals (Sweden)

    Y. Gómez-González

    2011-08-01

    Full Text Available Measurements of organic marker compounds and inorganic species were performed on PM2.5 aerosols from a Belgian forest site that is severely impacted by urban pollution ("De Inslag", Brasschaat, Belgium during a 2007 summer period within the framework of the "Formation mechanisms, marker compounds, and source apportionment for biogenic atmospheric aerosols (BIOSOL" project. The objectives of this study were to determine sources, source processes, time series, and diel variations of the organic species, and to explore the relationships between their concentrations and those of trace gases (O3, NO2, SO2, and CO2 or meteorological parameters (temperature, relative humidity, wind speed, and rain fall. The measured organic species included (i low-molecular weight (MW dicarboxylic acids (LMW DCAs, (ii methanesulfonate (MSA, and (iii terpenoic acids originating from the oxidation of α-pinene, β-pinene, d-limonene and Δ3-carene, and (iv organosulfates related to secondary organic aerosol (SOA from the oxidation of isoprene and α-pinene. The measurements of MSA, the LMW DCAs and selected inorganic species were done with ion chromatography (IC, while those of the terpenoic acids and organosulfates were performed using liquid chromatography with negative ion electrospray ionisation mass spectrometry [LC/(−ESI-MS]. The organic tracers explained, on average, 5.3 % of the organic carbon (OC, of which 0.7 % was due to MSA, 3.4 % to LMW DCAs, and 1.2 % to organosulfates and terpenoic acids. The highest atmospheric concentrations of most species were observed during the first five days of the campaign, which were characterised by maximum day-time temperatures >22 °C. Most of the terpenoic acids and the organosulfates peaked during day-time, consistent with their photochemical origin, except the MW 295 α-pinene-related nitrooxy organosulfates and the terpenoic acids,

  11. Secondary organic aerosol formation from fossil fuel sources contribute majority of summertime organic mass at Bakersfield

    Science.gov (United States)

    Secondary organic aerosols (SOA), known to form in the atmosphere from oxidation of volatile organic compounds (VOCs) emitted by anthropogenic and biogenic sources, are a poorly understood but substantial component of atmospheric particles. In this study, we examined the chemic...

  12. Characterization of urban aerosol using aerosol mass spectrometry and proton nuclear magnetic resonance spectroscopy

    Science.gov (United States)

    Cleveland, M. J.; Ziemba, L. D.; Griffin, R. J.; Dibb, J. E.; Anderson, C. H.; Lefer, B.; Rappenglück, B.

    2012-07-01

    Particulate matter was measured during August and September of 2006 in Houston as part of the Texas Air Quality Study II Radical and Aerosol Measurement Project. Aerosol size and composition were determined using an Aerodyne quadrupole aerosol mass spectrometer. Aerosol was dominated by sulfate (4.1 ± 2.6 μg m-3) and organic material (5.5 ± 4.0 μg m-3), with contributions of organic material from both primary (˜32%) and secondary (˜68%) sources. Secondary organic aerosol appears to be formed locally. In addition, 29 aerosol filter samples were analyzed using proton nuclear magnetic resonance (1H NMR) spectroscopy to determine relative concentrations of organic functional groups. Houston aerosols are less oxidized than those observed elsewhere, with smaller relative contributions of carbon-oxygen double bonds. These particles do not fit 1H NMR source apportionment fingerprints for identification of secondary, marine, and biomass burning organic aerosol, suggesting that a new fingerprint for highly urbanized and industrially influenced locations be established.

  13. Spatial/temporal variations and source apportionment of VOCs monitored at community scale in an urban area.

    Directory of Open Access Journals (Sweden)

    Chang Ho Yu

    Full Text Available This study aimed to characterize spatial/temporal variations of ambient volatile organic compounds (VOCs using a community-scale monitoring approach and identify the main sources of concern in Paterson, NJ, an urban area with mixed sources of VOCs. VOC samples were simultaneously collected from three local source-dominated (i.e., commercial, industrial, and mobile sites in Paterson and one background site in Chester, NJ (located ∼58 km southwest of Paterson. Samples were collected using the EPA TO-15 method from midnight to midnight, one in every sixth day over one year. Among the 60 analyzed VOCs, ten VOCs (acetylene, benzene, dichloromethane, ethylbenzene, methyl ethyl ketone, styrene, toluene, m,p-xylene, o-xylene, and p-dichlorobenzene were selected to examine their spatial/temporal variations. All of the 10 VOCs in Paterson were significantly higher than the background site (p<0.01. Ethylbenzene, m,p-xylene, o-xylene, and p-dichlorobenzene measured at the commercial site were significantly higher than the industrial/mobile sites (p<0.01. Seven VOCs (acetylene, benzene, dichloromethane, methyl ethyl ketone, styrene, toluene, and p-dichlorobenzene were significantly different by season (p<0.05, that is, higher in cold seasons than in warm seasons. In addition, dichloromethane, methyl ethyl ketone, and toluene were significantly higher on weekdays than weekend days (p<0.05. These results are consistent with literature data, indicating the impact of anthropogenic VOC sources on air pollution in Paterson. Positive Matrix Factorization (PMF analysis was applied for 24-hour integrated VOC measurements in Paterson over one year and identified six contributing factors, including motor vehicle exhausts (20%, solvents uses (19%, industrial emissions (16%, mobile+stationery sources (12%, small shop emissions (11%, and others (22%. Additional locational analysis confirmed the identified sources were well matched with point sources located upwind in

  14. Source apportionment of PAHs and n-alkanes in respirable particles in Tehran, Iran by wind sector and vertical profile.

    Science.gov (United States)

    Moeinaddini, Mazaher; Esmaili Sari, Abbas; Riyahi bakhtiari, Alireza; Chan, Andrew Yiu-Chung; Taghavi, Seyed Mohammad; Hawker, Darryl; Connell, Des

    2014-06-01

    The vertical concentration profiles and source contributions of polycyclic aromatic hydrocarbons (PAHs) and n-alkanes in respirable particle samples (PM4) collected at 10, 100, 200 and 300-m altitude from the Milad Tower of Tehran, Iran during fall and winter were investigated. The average concentrations of total PAHs and total n-alkanes were 16.7 and 591 ng/m(3), respectively. The positive matrix factorization (PMF) model was applied to the chemical composition and wind data to apportion the contributing sources. The five PAH source factors identified were: 'diesel' (56.3% of total PAHs on average), 'gasoline' (15.5%), 'wood combustion, and incineration' (13%), 'industry' (9.2%), and 'road soil particle' (6.0%). The four n-alkane source factors identified were: 'petrogenic' (65% of total n-alkanes on average), 'mixture of petrogenic and biomass burning' (15%), 'mixture of biogenic and fossil fuel' (11.5%), and 'biogenic' (8.5%). Source contributions by wind sector were also estimated based on the wind sector factor loadings from PMF analysis. Directional dependence of sources was investigated using the conditional probability function (CPF) and directional relative strength (DRS) methods. The calm wind period was found to contribute to 4.4% of total PAHs and 5.0% of total n-alkanes on average. Highest average concentrations of PAHs and n-alkanes were found in the 10 and 100 m samples, reflecting the importance of contributions from local sources. Higher average concentrations in the 300 m samples compared to those in the 200 m samples may indicate contributions from long-range transport. The vertical profiles of source factors indicate the gasoline and road soil particle-associated PAHs, and the mixture from biogenic and fossil fuel source-associated n-alkanes were mostly from local emissions. The smaller average contribution of diesel-associated PAHs in the lower altitude samples also indicates that the restriction of diesel-fueled vehicle use in the central area

  15. Fine particulate matter source apportionment for the chemical speciation trends network site at Birmingham, Alabama, using positive matrix factorization

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, K.; Jayanty, R.K.; Flanagan, J.B. [Research Triangle Institute International, NC (United States). Research Triangle Park

    2008-01-15

    The Positive Matrix Factorization (PMF) receptor model version 1.1 was used with data from the fine particulate matter (PM2.5) Chemical Speciation Trends Network (STN) to estimate source contributions to ambient PM2.5 in a highly industrialized urban setting in the southeastern United States. Model results consistently resolved 10 factors that are interpreted as two secondary, five industrial, one motor vehicle, one road dust, and one biomass burning sources. It was found that most PMF factors did not cleanly represent single source types and instead are 'contaminated' by other sources. Secondary particulate matter formed by atmospheric processes, such as sulfate and secondary OC, contribute the majority of ambient PM2.5 and exhibit strong seasonality 37 {+-} 10% winter vs. 55 {+-} 16% summer average. Motor vehicle emissions constitute the biggest primary PM2.5 mass contribution. In summary, this study demonstrates the utility of the EC tracer method to effectively blank-correct the OC concentrations in the STN dataset. In addition, examination of the effect of input uncertainty estimates on model results indicates that the estimated uncertainties currently being provided with the STN data may be somewhat lower than the levels needed for optimum modeling results. An appendix , available to members on the website www.awma lists stationary sources of PM2.5 within 10 km of the NHBM site and PM2.5 emissions greater than 1 ton per year. 71 refs., 7 figs., 9 tabs.

  16. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    Science.gov (United States)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  17. Characteristics and major sources of carbonaceous aerosols in PM2.5 in Emilia Romagna Region (Northern Italy) from four-year observations

    Energy Technology Data Exchange (ETDEWEB)

    Pietrogrande, Maria Chiara, E-mail: mpc@unife.it [Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17/19, I-44100 Ferrara (Italy); Bacco, Dimitri [Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17/19, I-44100 Ferrara (Italy); Regional Agency for Prevention and Environment—ARPA, Emilia-Romagna (Italy); Ferrari, Silvia; Ricciardelli, Isabella; Scotto, Fabiana; Trentini, Arianna [Regional Agency for Prevention and Environment—ARPA, Emilia-Romagna (Italy); Visentin, Marco [Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via Fossato di Mortara 17/19, I-44100 Ferrara (Italy)

    2016-05-15

    The concentrations of organic and elemental carbon in PM{sub 2.5} aerosol samples were measured in two sites of Emilia Romagna (Po Valley, Northern Italy) in eight campaigns during different seasons from 2011 to 2014. Strong seasonality was observed with the highest OC concentrations during the cold periods (≈ 5.5 μg m{sup −3}) and the lowest in the warm months (≈ 2.7 μg m{sup −3}) as well as with higher EC levels in fall/winter (≈ 1.4 μg m{sup −3}) in comparison with spring/summer (≈ 0.6 μg m{sup −3}). Concerning spatial variability, there were no statistically significant difference (p < 0.05) between OC concentrations at the two sampling sites in each campaign, while the EC values were nearly twofold higher levels at the urban site than those at the rural one. Specific molecular markers were investigated to attempt the basic apportionment of OC by discriminating between the main emission sources of primary OC, such as fossil fuels burning – including traffic vehicle emission – residential wood burning, and bio-aerosol released from plants and microorganisms, and the atmospheric photo-oxidation processes generating OC{sub sec}. The investigated markers were low-molecular-weight carboxylic acids – to describe the contribution of secondary organic aerosol – anhydrosugars – to quantify primary emissions from biomass burning – bio-sugars – to qualitatively estimate biogenic sources – and Polycyclic Aromatic Hydrocarbons – to differentiate among different combustion emissions. Using the levoglucosan tracer method, contribution of wood smoke to atmospheric OC concentration was computed. Wood burning accounts for 33% of OC in fall/winter and for 3% in spring/summer. A clear seasonal trend is also observed for the impact of secondary processes with higher contribution in the warm seasons (≈ 63%) in comparison with that in colder months (≈ 33%), that is consistent with enhanced solar radiation in spring/summer. - Highlights:

  18. Source apportionment of methane and nitrous oxide in California's San Joaquin Valley at CalNex 2010 via positive matrix factorization

    Science.gov (United States)

    Guha, A.; Gentner, D. R.; Weber, R. J.; Provencal, R.; Goldstein, A. H.

    2015-10-01

    Sources of methane (CH4) and nitrous oxide (N2O) were investigated using measurements from a site in southeast Bakersfield as part of the CalNex (California at the Nexus of Air Quality and Climate Change) experiment from mid-May to the end of June 2010. Typical daily minimum mixing ratios of CH4 and N2O were higher than daily minima that were simultaneously observed at a mid-oceanic background station (NOAA, Mauna Loa) by approximately 70 ppb and 0.5 ppb, respectively. Substantial enhancements of CH4 and N2O (hourly averages > 500 and > 7 ppb, respectively) were routinely observed, suggesting the presence of large regional sources. Collocated measurements of carbon monoxide (CO) and a range of volatile organic compounds (VOCs) (e.g., straight-chain and branched alkanes, cycloalkanes, chlorinated alkanes, aromatics, alcohols, isoprene, terpenes and ketones) were used with a positive matrix factorization (PMF) source apportionment method to estimate the contribution of regional sources to observed enhancements of CH4 and N2O. The PMF technique provided a "top-down" deconstruction of ambient gas-phase observations into broad source categories, yielding a seven-factor solution. We identified these emission source factors as follows: evaporative and fugitive; motor vehicles; livestock and dairy; agricultural and soil management; daytime light and temperature driven; non-vehicular urban; and nighttime terpene biogenics and anthropogenics. The dairy and livestock factor accounted for the majority of the CH4 (70-90 %) enhancements during the duration of experiments. The dairy and livestock factor was also a principal contributor to the daily enhancements of N2O (60-70 %). Agriculture and soil management accounted for ~ 20-25 % of N2O enhancements over a 24 h cycle, which is not surprising given that organic and synthetic fertilizers are known to be a major source of N2O. The N2O attribution to the agriculture and soil management factor had a high uncertainty in the

  19. Distribution and source apportionment of polycyclic aromatic hydrocarbons in soils and leaves from high-altitude mountains in southwestern china.

    Science.gov (United States)

    Shi, Bingfang; Wu, Qilin; Ouyang, Huixiang; Liu, Xixiang; Ma, Bo; Zuo, Weiyuan; Chen, Shengyu

    2014-11-01

    Several studies have investigated the distribution patterns and geographic sources of polycyclic aromatic hydrocarbons (PAHs) in mountainous areas. Little is known about how different sources contribute to PAH concentrations at different elevations along mountain slopes. To estimate the distribution and sources of PAHs at different altitudes in mountainous areas of southwestern China, samples of soils and leaves from trees were collected from 1000 to 1500 m asl in the Dawangling forest and analyzed for PAHs. Total PAH concentrations ranged from 93.9 to 802.3 ng g (average, 252.3 ng g) in soils and from 4.1 to 100.9 ng g (average, 23.1 ng g) in leaves. Our results suggest that soil PAH levels in the study area could be classified as "weakly contaminated." The PAH levels in leaves from the Dawangling forest were lower than those found in Himalayan spruce needles from the central Himalayas in China and from an agricultural station in southern England. Total PAHs in the Dawangling forest soils increased with elevation, primarily due to the low-molecular-weight PAHs, which accumulated in samples from higher altitudes. In contrast, high-molecular-weight PAHs were inversely related to or unrelated to elevation. The PAH profiles were similar in soils and leaves from all mountainous regions. Diagnostic ratios showed that the PAHs in soils at different altitudes were from different pollution emission sources; therefore, PAHs in the entire study area were probably derived from mixed sources. Cluster analyses confirmed that liquefied petroleum gas, coal/wood combustion, and petroleum combustion were likely the predominant PAH sources in this region.

  20. Source apportionment of particles at Station Nord, North East Greenland during 2008–2010 using COPREM and PMF analysis

    DEFF Research Database (Denmark)

    Nguyen, Quynh; Skov, Henrik; Sørensen, Lise Lotte;

    2013-01-01

    , which were all influenced by metal industries. One anthropogenic source was dominated by Zn of which air mass back trajectories using the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model suggested a Canadian Arctic origin, despite certain influences from Southern and Eastern......In order to develop strategies for controlling and reducing Arctic air pollution, there is a need to understand the basic mechanisms for determining the fate of air pollution in the Arctic. Sources of atmospheric particles at Station Nord (81° 36' N, 16° 40' W) in North East Greenland were...

  1. LMFBR source term experiments in the Fuel Aerosol Simulant Test (FAST) facility

    Energy Technology Data Exchange (ETDEWEB)

    Petrykowski, J.C.; Longest, A.W.

    1985-01-01

    The transport of uranium dioxide (UO/sub 2/) aerosol through liquid sodium was studied in a series of ten experiments in the Fuel Aerosol Simulant Test (FAST) facility at Oak Ridge National Laboratory (ORNL). The experiments were designed to provide a mechanistic basis for evaluating the radiological source term associated with a postulated, energetic core disruptive accident (CDA) in a liquid metal fast breeder reactor (LMFBR). Aerosol was generated by capacitor discharge vaporization of UO/sub 2/ pellets which were submerged in a sodium pool under an argon cover gas. Measurements of the pool and cover gas pressures were used to study the transport of aerosol contained by vapor bubbles within the pool. Samples of cover gas were filtered to determine the quantity of aerosol released from the pool. The depth at which the aerosol was generated was found to be the most critical parameter affecting release. The largest release was observed in the baseline experiment where the sample was vaporized above the sodium pool. In the nine ''undersodium'' experiments aerosol was generated beneath the surface of the pool at depths varying from 30 to 1060 mm. The mass of aerosol released from the pool was found to be a very small fraction of the original specimen. It appears that the bulk of aerosol was contained by bubbles which collapsed within the pool. 18 refs., 11 figs., 4 tabs.

  2. 基于泥沙指纹识别的小流域颗粒态磷来源解析%Particulate phosphorus sources apportionment in small watershed based on sediment fingerprinting

    Institute of Scientific and Technical Information of China (English)

    周慧平; 常维娜; 张龙江

    2015-01-01

    Sediment control has attracted more attention in watershed management planning, especially for the transport of contaminants and nutrients (such as phosphorus (P)) by fine sediment. Implementation of specific management solutions for a watershed requires understanding the location and nature of the major sediment sources. Composite fingerprinting techniques have been proved as an effective mean of sediment source apportionment in other countries. However, research using this method is not reported for small watersheds that are relative homogeneity in underlying surface, or have lower sediment load output and more human disturbance. As for nutrients, particulate P adsorbed by fine sediment is the major part of P output in an agricultural watershed. Therefore, successful sediment source apportionment would give an access to P source identification and quantitative apportionment study. The objectives of this paper were to identify the sources of particulate P in a small catchment of the upper Jiuxiang River in Nanjing, and to estimate the relative contributions of the potential sources based on sediment source fingerprinting. A total of 56 surface samples from potential sediment sources were collected, including 20 from woodland, 21 from cultivated land, and 15 from mine areas and roads of transportation. In addition to suspended sediment collection, 17 deposited sediment samples were collected in the mainstream near catchment outlet. Twenty three potential fingerprint properties were selected for laboratory analysis with all samples screened to < 63μm. Composite fingerprints were acquired by a two-stage statistical fingerprinting procedure and a multivariate mixing model was used to estimate the contributions of potential sediment sources. A goodness of fit model was used to test the performance of the multivariate mixing model. The particulate P source apportionment was then proceeded based on the sediment fingerprinting results and P content information from all

  3. Wintertime organic and inorganic aerosols in Lanzhou, China: sources, processes, and comparison with the results during summer

    Science.gov (United States)

    Xu, Jianzhong; Shi, Jinsen; Zhang, Qi; Ge, Xinlei; Canonaco, Francesco; Prévôt, André S. H.; Vonwiller, Matthias; Szidat, Sönke; Ge, Jinming; Ma, Jianmin; An, Yanqing; Kang, Shichang; Qin, Dahe

    2016-12-01

    Lanzhou, which is located in a steep alpine valley in western China, is one of the most polluted cities in China during the wintertime. In this study, an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a seven-wavelength aethalometer, and a scanning mobility particle sizer (SMPS) were deployed during 10 January to 4 February 2014 to study the mass concentrations, chemical processes, and sources of submicrometer particulate matter (PM1). The average PM1 concentration during this study was 57.3 µg m-3 (ranging from 2.1 to 229.7 µg m-3 for hourly averages), with organic aerosol (OA) accounting for 51.2 %, followed by nitrate (16.5 %), sulfate (12.5 %), ammonium (10.3 %), black carbon (BC, 6.4 %), and chloride (3.0 %). The mass concentration of PM1 during winter was more than twice the average value observed at the same site in summer 2012 (24.5 µg m-3), but the mass fraction of OA was similar in the two seasons. Nitrate contributed a significantly higher fraction to the PM1 mass in winter than summer (16.5 % vs. 10 %), largely due to more favored partitioning to the particle phase at low air temperature. The mass fractions of both OA and nitrate increased by ˜ 5 % (47 to 52 for OA and 13 to 18 % for nitrate) with the increase of the total PM1 mass loading, while the average sulfate fraction decreased by 6 % (17 to 11 %), indicating the importance of OA and nitrate for the heavy air pollution events in Lanzhou. The size distributions of OA, nitrate, sulfate, ammonium, and chloride all peaked at ˜ 500 nm, with OA being slightly broader, suggesting that aerosol particles were internally mixed during winter, likely due to frequently calm and stagnant air conditions during wintertime in Lanzhou (average wind speed: 0.82 m s-1).The average mass spectrum of OA showed a medium oxidation degree (average O / C ratio of 0.28), which was lower than that during summer 2012 (O / C = 0.33). This is consistent with weaker photochemical processing

  4. Fossil vs. non-fossil sources of fine carbonaceous aerosols in four Chinese cities during the extreme winter haze episode in 2013

    Directory of Open Access Journals (Sweden)

    Y.-L. Zhang

    2014-10-01

    Full Text Available During winter 2013, extremely high concentrations (i.e. 4–20 times higher than the World Health Organization guideline of PM2.5 (particulate matter with an aerodynamic diameter 14C and biomass-burning marker measurements using Latin-hypercube sampling allowed a quantitative source apportionment of carbonaceous aerosols. We found that fossil emissions from coal combustion and vehicle exhaust dominated EC with a mean contribution of 75 ± 8% at all sites. The remaining 25 ± 8% was exclusively attributed to biomass combustion, consistent with the measurements of biomass-burning markers such as anhydrosugars (levoglucosan and mannosan and water-soluble potassium (K+. With a combination of the levoglucosan-to-mannosan and levoglucosan-to-K+ ratios, the major source of biomass burning in winter in China is suggested to be combustion of crop residues. The contribution of fossil sources to OC was highest in Beijing (58 ± 5% and decreased from Shanghai (49 ± 2% to Xian (38 ± 3% and Guangzhou (35 ± 7%. Generally, a larger fraction of fossil OC was rather from secondary origins than primary sources for all sites. Non-fossil sources accounted on average for 55 ± 10% and 48 ± 9% of OC and TC, respectively, which suggests that non-fossil emissions were very important contributors of urban carbonaceous aerosols in China. The primary biomass-burning emissions accounted for 40 ± 8%, 48 ± 18%, 53 ± 4% and 65 ± 26% of non-fossil OC for Xian, Beijing, Shanghai and Guangzhou, respectively. Other non-fossil sources excluding primary biomass-burning were mainly attributed to formation of secondary organic carbon (SOC from non-fossil precursors such as biomass-burning emissions. For each site, we also compared samples from moderately with heavily polluted days according to particulate matter mass. Despite a significant increase of absolute mass concentrations of primary emissions from both, fossil and non-fossil sources, during the heavily polluted events

  5. Source apportionment of atmospheric ammonia before, during, and after the 2014 APEC summit in Beijing using stable nitrogen isotope signatures

    Science.gov (United States)

    Chang, Yunhua; Liu, Xuejun; Deng, Congrui; Dore, Anthony J.; Zhuang, Guoshun

    2016-09-01

    Stable nitrogen isotope composition (δ15N) offers new opportunities to address the long-standing and ongoing controversy regarding the origins of ambient ammonia (NH3), a vital precursor of PM2.5 (particulate matters with aerodynamic diameter equal or less than 2.5 µm) inorganic components, in the urban atmosphere. In this study, the δ15N values of NH3 samples collected from various sources were constrained using a novel and robust chemical method coupled with standard elemental analysis procedures. Independent of the wide variation in mass concentrations (ranging from 33 (vehicle) to over 6000 (human excreta) µg m-3), different NH3 sources have generally different δ15N values (ranging from -52.0 to -9.6 ‰). Significantly high δ15N values are seen as a characteristic feature of all vehicle-derived NH3 samples (-14.2 ± 2.8 ‰), which can be distinguished from other sources emitted at environmental temperature (-29.1 ± 1.7, -37.8 ± 3.6, and -50.0 ± 1.8 ‰ for livestock, waste, and fertilizer, respectively). The isotope δ15N signatures for a range of NH3 emission sources were used to evaluate the contributions of the different sources within measured ambient NH3 in Beijing, using an isotope mixing model (IsoSource). The method was used to quantify the sources of ambient NH3 before, during and after the 2014 Asia-Pacific Economic Cooperation (APEC) summit, when a set of stringent air quality control measures were implemented. Results show that the average NH3 concentrations (the overall contributions of traffic, waste, livestock, and fertilizer) during the three periods were 9.1 (20.3, 28.3, 23.6, and 27.7 %), 7.3 (8.8, 24.9, 14.3, and 52.0 %), and 12.7 (29.4, 23.6, 31.7, and 15.4 %) µg m-3, respectively, representing a 20.0 % decrease first and then a 74.5 % increase in overall NH3 mass concentrations. During (after) the summit, the contributions of traffic, waste, livestock, and fertilizer decreased (increased) by 56.7 (234.2), 12.0 (-5.0), 39.4 (120

  6. Source apportionment of wide range particle size spectra and black carbon collected at the airport of Venice (Italy)

    Science.gov (United States)

    Masiol, Mauro; Vu, Tuan V.; Beddows, David C. S.; Harrison, Roy M.

    2016-08-01

    Atmospheric particles are of high concern due to their toxic properties and effects on climate, and large airports are known as significant sources of particles. This study investigates the contribution of the Airport of Venice (Italy) to black carbon (BC), total particle number concentrations (PNC) and particle number size distributions (PNSD) over a large range (14 nm-20 μm). Continuous measurements were conducted between April and June 2014 at a site located 110 m from the main taxiway and 300 m from the runway. Results revealed no significantly elevated levels of BC and PNC, but exhibited characteristic diurnal profiles. PNSD were then analysed using both k-means cluster analysis and positive matrix factorization. Five clusters were extracted and identified as midday nucleation events, road traffic, aircraft, airport and nighttime pollution. Six factors were apportioned and identified as probable sources according to the size profiles, directional association, diurnal variation, road and airport traffic volumes and their relationships to micrometeorology and common air pollutants. Photochemical nucleation accounted for ∼44% of total number, followed by road + shipping traffic (26%). Airport-related emissions accounted for ∼20% of total PNC and showed a main mode at 80 nm and a second mode beyond the lower limit of the SMPS (pollution and local resuspension. An analysis of BC levels over different wind sectors revealed no especially significant contributions from specific directions associated with the main local sources, but a potentially significant role of diurnal dynamics of the mixing layer on BC levels. The approaches adopted in this study have identified and apportioned the main sources of particles and BC at an international airport located in area affected by a complex emission scenario. The results may underpin measures for improving local and regional air quality, and health impact assessment studies.

  7. Source apportionment of sulfate and nitrate particulate matter in the Eastern United States and effectiveness of emission control programs.

    Science.gov (United States)

    Zhang, Hongliang; Hu, Jianlin; Kleeman, Michael; Ying, Qi

    2014-08-15

    Reducing population exposure to PM2.5 in the eastern US will require control of secondary sulfate and nitrate. A source-oriented Community Multi-scale Air Quality (CMAQ) model is used to determine contributions of major emission sources to nitrate and sulfate concentrations in the seven eastern US cities (New York City, Pittsburgh, Baltimore, Chicago, Detroit, St. Paul, and Winston-Salem) in January and August of 2000 and 2006. Identified major nitrate sources include on-road gasoline-powered vehicles, diesel engines, natural gas and coal combustion. From 2000 to 2006, January nitrate concentrations decreased by 25-68% for all the seven cities. On average, ~53% of this change was caused by emissions controls while 47% was caused by meteorology variations. August nitrate concentrations decreased by a maximum of 68% in New York City but Detroit experienced increasing August nitrate concentrations by up to 33%. On average, ~33% of the reduction in nitrate is offset by increases associated with meteorological conditions that favor nitrate formation. Coal combustion and natural gas are the dominant sources for sulfate in both seasons. January sulfate decrease from 2000 to 2006 in all cities by 4-58% except New York City, which increases by 13%. On average, ~93% of the reduction in sulfate was attributed to emission controls with 7% associated with changes in meteorology. August sulfate concentrations decrease by 11-44% in all cities. On average, emission controls alone between 2000 and 2006 would have caused 6% more reduction but the effectiveness of the controls was mitigated by meteorology conditions more favorable to sulfate production in 2006 vs. 2000. The results of this study suggest that regional emissions controls between 2000 and 2006 have been effective at reducing population exposure to PM2.5 in the eastern US, but yearly variations in meteorology must be carefully considered when assessing the exact magnitude of the control benefits.

  8. Source apportionment and risk assessment of emerging contaminants: an approach of pharmaco-signature in water systems.

    Directory of Open Access Journals (Sweden)

    Jheng-Jie Jiang

    Full Text Available This paper presents a methodology based on multivariate data analysis for characterizing potential source contributions of emerging contaminants (ECs detected in 26 river water samples across multi-scape regions during dry and wet seasons. Based on this methodology, we unveil an approach toward potential source contributions of ECs, a concept we refer to as the "Pharmaco-signature." Exploratory analysis of data points has been carried out by unsupervised pattern recognition (hierarchical cluster analysis, HCA and receptor model (principal component analysis-multiple linear regression, PCA-MLR in an attempt to demonstrate significant source contributions of ECs in different land-use zone. Robust cluster solutions grouped the database according to different EC profiles. PCA-MLR identified that 58.9% of the mean summed ECs were contributed by domestic impact, 9.7% by antibiotics application, and 31.4% by drug abuse. Diclofenac, ibuprofen, codeine, ampicillin, tetracycline, and erythromycin-H2O have significant pollution risk quotients (RQ>1, indicating potentially high risk to aquatic organisms in Taiwan.

  9. Source apportionment and risk assessment of emerging contaminants: an approach of pharmaco-signature in water systems.

    Science.gov (United States)

    Jiang, Jheng-Jie; Jiang, Jheng Jie; Lee, Chon-Lin; Lee, Chon Lin; Fang, Meng-Der; Fang, Meng Der; Boyd, Kenneth G; Gibb, Stuart W

    2015-01-01

    This paper presents a methodology based on multivariate data analysis for characterizing potential source contributions of emerging contaminants (ECs) detected in 26 river water samples across multi-scape regions during dry and wet seasons. Based on this methodology, we unveil an approach toward potential source contributions of ECs, a concept we refer to as the "Pharmaco-signature." Exploratory analysis of data points has been carried out by unsupervised pattern recognition (hierarchical cluster analysis, HCA) and receptor model (principal component analysis-multiple linear regression, PCA-MLR) in an attempt to demonstrate significant source contributions of ECs in different land-use zone. Robust cluster solutions grouped the database according to different EC profiles. PCA-MLR identified that 58.9% of the mean summed ECs were contributed by domestic impact, 9.7% by antibiotics application, and 31.4% by drug abuse. Diclofenac, ibuprofen, codeine, ampicillin, tetracycline, and erythromycin-H2O have significant pollution risk quotients (RQ>1), indicating potentially high risk to aquatic organisms in Taiwan.

  10. Improved source apportionment of PM10 in atmosphere of Changchun%长春市大气环境中PM10二重源解析研究

    Institute of Scientific and Technical Information of China (English)

    王菊; 刘禹彤; 赵秀敏; 刘灿; 房春生

    2013-01-01

    PM10 receptor samples of heating and non-heating periods were collected at the eight existing atmospheric environment automatically monitoring stations in Changchun in 2011. Main sources samples of PM10 such as road dust, comprehensive urban dust, soil wind dust, construction dust, industrial coal dust and motor vehicle exhaust were collected in Changchun. Then inorganic elements contained in the source and receptor samples were analyzed and determined. This paper studied on source apportionment of PM10 in urban atmosphere of Changchun with improved source apportionment technique and its amending method based on the chemical mass balance model (CMB). The result shows that the amending method of improved source apportionment technique is easy to identify the large single dust sources for the atmospheric particulate matter. The result reflected the main sources of PM10 and provided the optimal technical support for the development of air pollution control measures and the prevention of key sources of pollution in Changchun.%  于2011年在长春市的8个大气环境自动检测站上采集了采暖期和非采暖期的PM10受体样品,并针对市区内PM10的主要污染源道路尘、城市综合扬尘、土壤风沙尘、建筑尘、工业燃煤尘和机动车尾气尘等采集了PM10源样品。对源和受体样品中所含无机元素进行了分析测定,使用以化学质量平衡模型(CMB)为基础的二重源解析技术及其改进方法对长春市大气环境中 PM10进行二重源解析研究。结果表明:改进后的二重源解析技术易于确定对 PM10贡献大的各单一尘源,能更好的反映城市大气中PM10的主要来源,为制定长春市大气污染治理方案及重点污染源防治提供科学的技术支撑。

  11. Characterization and source apportionment of volatile organic compounds based on 1-year of observational data in Tianjin, China.

    Science.gov (United States)

    Liu, Baoshuang; Liang, Danni; Yang, Jiamei; Dai, Qili; Bi, Xiaohui; Feng, Yinchang; Yuan, Jie; Xiao, Zhimei; Zhang, Yufen; Xu, Hong

    2016-11-01

    From November 2014 to October 2015, the concentrations of volatile organic compounds (VOCs), O3 and NOx were simultaneously monitored by using online instruments at the air monitoring station belonged to Tianjin Environmental Protection Bureau (TEPB). The results indicated that VOCs concentrations were higher in autumn and lower in spring, while O3 concentrations were higher in summer, and lower in winter. The diurnal variations of VOCs and NOx (NO2 plus NO) showed opposite tendency comparing to that of O3. The concentrations of alkanes were higher (the average of 18.2 ppbv) than that of aromatics (5.3 ppbv) and alkenes (5.2 ppbv), however, the alkenes and aromatics made larger contributions to ozone because of their high reactivity. Tianjin belonged to the VOC-limited region during most of seasons (except summer) according to the VOC/NOx ratios (the 8:1 threshold). The automobile exhaust, industrial emission, liquefied petroleum gas/natural gas (LPG/NG), combustion, gasoline evaporation, internal combustion engine emission and solvent usage were identified as major sources of VOCs by Positive Matrix Factorization (PMF) model in Tianjin, and the contributions to VOCs for the entire year were 23.1%, 19.9%, 18.6%, 10.6%, 8.7%, 5.4% and 4.7%, respectively. The conditional probability function (CPF) analysis indicated that the contributing directions of automobile exhaust and industrial emission were mainly affected by source distributions, and that of other sources might be mainly affected by wind direction. The backward trajectory analysis indicated that the trajectory of air mass originated from Mongolia, which reflected the features of large-scale and long-distance air transport, and that of beginning in Jiangsu, Shandong and Tianjin, which showed the features of small-scale and short-distance. Tianjin, Beijing, Hebei and Northwest of Shandong were identified as major potential source-areas of VOCs by using potential source contribution function (PSCF) and

  12. Polycyclic aromatic hydrocarbons (PAHs) in urban soils of the megacity Shanghai: occurrence, source apportionment and potential human health risk.

    Science.gov (United States)

    Wang, Xue-Tong; Miao, Yi; Zhang, Yuan; Li, Yuan-Cheng; Wu, Ming-Hong; Yu, Gang

    2013-03-01

    A comprehensive investigation was conducted to the urban soil in the megacity Shanghai in order to assess the levels of PAHs and potential risks to human health, to identify and quantitatively assess source contributions to the soil PAHs. A total of 57 soil samples collected in main urban areas of Shanghai, China were analyzed for 26 PAHs including highly carcinogenic dibenzopyrene isomers. The total concentrations ranged from 133 to 8,650 ng g for ΣPAHs and 83.3 to 7,220 ng g for ΣPAHs, with mean values of 2420 and 1,970 ng g, respectively. DBalP and DBaeP may serve as markers for diesel vehicle emission, while DBahP is a probable marker of coke tar as distinct from diesel emissions. Six sources in Shanghai urban area were identified by PMF model; their relative contributions to the total soil PAH burden were 6% for petrogenic sources, 21% for coal combustion, 13% for biomass burning, 16% for creosote, 23% for coke tar related sources and 21% for vehicular emissions, respectively. The benzo[a]pyrene equivalent (BaP) concentrations ranged from 48.9-2,580 ng g for ΣPAHs, 7.02-869 ng g for ΣPAHs and 35.7-1,990 ng g for ΣDBPs. The BaP concentrations of ΣDBPs made up 72% of ΣPAHs. Nearly half of the soil samples showed concentrations above the safe BaP value of 600 ng g. Exposure to these soils through direct contact probably poses a significant risk to human health from carcinogenic effects of soil PAHs. The index of additive cancer risk (IACR) values in almost one third of urban soil samples were more than the safe value of 1.0, indicating these urban soil PAHs in the study area may pose a potential threat to potable groundwater water quality from leaching of carcinogenic PAH mixtures from soil.

  13. Identifying the Sources Contributing to PM Exceedances in Ostrava, Czech Republic, Using Passive Aerosol Sampling Coupled with Computer-Controlled Microscopy

    Science.gov (United States)

    The Czech Hydrometeorological Institute (CHMI) in collaboration with the U.S. Environmental Protection Agency conducted a multi-pollutant source apportionment study in 2012 to quantify the impact of regional as well as local sources on air quality in the Ostrava metropolitan area...

  14. Burial fluxes and source apportionment of carbon in culture areas of Sanggou Bay over the past 200 years

    Institute of Scientific and Technical Information of China (English)

    LIU Sai; HUANG Jiansheng; YANG Qian; YANG Shu; YANG Guipeng; SUN Yao

    2015-01-01

    In this study, we assessed the burial fluxes and source appointment of different forms of carbon in core sediments collected from culture areas in the Sanggou Bay, and preliminarily analyzed the reasons for the greater proportion of inorganic carbon burial fluxes (BFTIC). The average content of total carbon (TC) in the Sanggou Bay was 2.14%. Total organic carbon (TOC) accounted for a small proportion in TC, more than 65% of which derived from terrigenous organic carbon (Ct), and while the proportion of marine-derived organic carbon (Ca) increased significantly since the beginning of large-scale aquaculture. Total inorganic carbon (TIC) accounted for 60%–75%of TC, an average of which was 60%, with a maximum up to 90% during flourishing periods (1880–1948) of small natural shellfish derived from seashells inorganic carbon (Shell-IC). The TC burial fluxes ranged from 31 g/(m2·a) to 895 g/(m2·a) with an average of 227 g/(m2·a), which was dominated by TIC (about 70%). Shell-IC was the main source of TIC and even TC. As the main food of natural shellfish, biogenic silica (BSi) negatively correlated with BFTIC through affecting shellfish breeding. BFTIC of Sta. S1, influenced greatly by the Yellow Sea Coastal Current, had a certain response to Pacific Decadal Oscillation (PDO) in some specific periods.

  15. Source Apportionment of Particulate Matter (PM10 In an Integrated Coal Mining Complex of Jharia Coalfield, Eastern India, A Review.

    Directory of Open Access Journals (Sweden)

    Debananda Roy

    2014-04-01

    Full Text Available Coal based thermal power generation accounts for 44.7% of the world's electricity and coal alone provides about 80% of the total energy demand in India. Energy-intensive industries deteriorate the air quality of the residential areas due to release of different pollutants, especially a range of deleterious heavy metals like Hg, Cd, Cu, Pb, and Cr. Near about 53.3 percent of the coal produced every year in India has been used for thermal generation. Jharia Coalfield (JCF is major contributor of coking coal in India. JCF receives particulate matter from various sources such as, opencast coal mining and its associated activities, thermal power stations, automobiles, generator sets fuel burning, construction activities, domestic coal, cooking gas burning, etc. and even the background contribution of natural dust (crustal origin can not be ruled out, particularly, in the zones having loose topsoil. Concentration of particulate matter causes harmful impacts to the society. These multiple sources are contributing to particulates pollution in the study area.

  16. Source apportionment of particle-bound polycyclic aromatic hydrocarbons in Lumbini, Nepal by using the positive matrix factorization receptor model

    Science.gov (United States)

    Chen, Pengfei; Li, Chaoliu; Kang, Shichang; Yan, Fangping; Zhang, Qianggong; Ji, Zhengming; Tripathee, Lekhendra; Rupakheti, Dipesh; Rupakheti, Maheswar; Qu, Bin; Sillanpää, Mika

    2016-12-01

    Indo-Gangetic Plain (IGP) is one of the most polluted regions in the world. Despite numbers of studies conducted at urban site, few data are available at rural area. In this study, characteristics of 15 particle-bound priority polycyclic aromatic hydrocarbons (PAHs) of total suspended particles (TSPs) collected at a typical rural area (Lumbini) of IGP from April 2013 to March 2014 were reported. The results showed that annual average TSP and PAH concentrations were 209 ± 123 μg/m3 and 94.8 ± 54.6 ng/m3, respectively, which were similar to those of large cities such as Agra and Delhi in the upwind adjacent regions. Clear seasonal variation of TSP and PAH concentrations was observed, with the highest average concentration occurring in winter followed by the pre-monsoon, post-monsoon, and monsoon seasons, reflecting combined influence of source strength and monsoon circulation on PAH concentrations of Lumbini. Positive matrix factorization analysis showed that biomass combustion (50.6%) and vehicular emissions (30.4%) were first two sources of PAHs, followed by coal combustion (11.6%) and air-soil exchange (7.4%), in line with that of diagnostic molecular ratios results. Because of extensive agro-residue burning, intensive forest fires, and conducive weather conditions, contribution of biomass burning during non-monsoon season (55.7%) was higher than that of monsoon season (42.1%). The total BaP equivalent concentration (BaPeq) of particulate PAHs ranged between 2.51 and 47.3 ng/m3, was 2-40 times higher than the WHO guideline (1 ng/m3), implying local residents were at risk for adverse health effects.

  17. Potential emission flux to aerosol pollutants over Bengal Gangetic plain through combined trajectory clustering and aerosol source fields analysis

    Science.gov (United States)

    Kumar, D. Bharath; Verma, S.

    2016-09-01

    A hybrid source-receptor analysis was carried out to evaluate the potential emission flux to winter monsoon (WinMon) aerosols over Bengal Gangetic plain urban (Kolkata, Kol) and semi-urban atmospheres (Kharagpur, Kgp). This was done through application of fuzzy c-mean clustering to back-trajectory data combined with emission flux and residence time weighted aerosols analysis. WinMon mean aerosol optical depth (AOD) and angstrom exponent (AE) at Kol (AOD: 0.77; AE: 1.17) were respectively slightly higher than and nearly equal to that at Kgp (AOD: 0.71; AE: 1.18). Out of six source region clusters over Indian subcontinent and two over Indian oceanic region, the cluster mean AOD was the highest when associated with the mean path of air mass originating from the Bay of Bengal and the Arabian sea clusters at Kol and that from the Indo-Gangetic plain (IGP) cluster at Kgp. Spatial distribution of weighted AOD fields showed the highest potential source of aerosols over the IGP, primarily over upper IGP (e.g. Punjab, Haryana), lower IGP (e.g. Uttarpradesh) and eastern region (e.g. west Bengal, Bihar, northeast India) clusters. The emission flux contribution potential (EFCP) of fossil fuel (FF) emissions at surface (SL) of Kol/Kgp, elevated layer (EL) of Kol, and of biomass burning (BB) emissions at SL of Kol were primarily from upper, lower, upper/lower IGP clusters respectively. The EFCP of FF/BB emissions at Kgp-EL/SL, and that of BB at EL of Kol/Kgp were mainly from eastern region and Africa (AFR) clusters respectively. Though the AFR cluster was constituted of significantly high emission flux source potential of dust emissions, the EFCP of dust from northwest India (NWI) was comparable to that from AFR at Kol SL/EL.

  18. Polycyclic Aromatic Hydrocarbons Bound to PM 2.5 in Urban Coimbatore, India with Emphasis on Source Apportionment

    Directory of Open Access Journals (Sweden)

    R. Mohanraj

    2012-01-01

    Full Text Available Coimbatore is one of the fast growing industrial cities of Southern India with an urban population of 1.9 million. This study attempts to evaluate the trends of airborne fine particulates (PM 2.5 and polyaromatic hydrocarbons (PAH on them. The PM 2.5 mass was collected in polytetra fluoroethylene filters using fine particulate sampler at monthly intervals during March 2009 to February 2010. PAHs were extracted from PM 2.5 and estimated by high-performance liquid chromatography. It is alarming to note that PM 2.5 values ranged between 27.85 and 165.75 μg/m3 and exceeded the air quality standards in many sampling events. The sum of 9 PAHs bound to PM 2.5 in a single sampling event ranged from 4.1 to 1632.3 ng/m3. PAH diagnostic ratios and principal component analysis results revealed vehicular emissions and diesel-powered generators as predominant sources of PAH in Coimbatore.

  19. Distribution characteristics and source apportionment of polycyclic aromatic hydrocarbons (PAHs) in the Liao River drainage basin, northeast China.

    Science.gov (United States)

    Hu, Jian; Liu, Congqiang; Zhang, Guoping; Zhang, Yanlin; Li, Siliang; Zhao, Zhiqi; Liu, Baojian; Guo, Qinjun

    2016-04-01

    The Liao River drainage basin, which is one of China's seven major rivers basins, is located in northeast China. This region is characterized by important industrial bases including steel factories and oil and chemical plants, all of which have the potential to contribute pollutants to the drainage basin. In this study, 16 polycyclic aromatic hydrocarbons (PAHs) in water and suspended particulate matter (SPM) in the major rivers of the Liao River drainage basin were identified and quantified by gas chromatography mass spectrometry (GC/MS). The total PAH concentrations ranged from 0.4 to 76.5 μg/g (dry weight) in SPM and 32.6 to 108 ng/L in surface water, respectively. Low-ring PAHs (including two- and three-ring PAHs) were dominant in all PAH samples, and the level of low-ring PAHs in surface water was higher than that in SPM. The proportion of two-ring PAHs was the highest, accounting for an average of 68.2 % of the total PAHs in surface water, while the level of three-ring PAHs was the highest in SPM, with an average of 66.3 %. When compared with other river systems, the concentrations of PAHs in the Liao River drainage basin were lower. Identification of the emission sources based on diagnostic ratios suggested petroleum and fossil fuel combustion were important contribution to PAHs in the study area.

  20. Sources of anions in aerosols in northeast Greenland during late winter

    DEFF Research Database (Denmark)

    Lauridsen, Marlene Fenger; Sørensen, Lise Lotte; Kristensen, Kasper

    2013-01-01

    affecting the composition of aerosols in the high Arctic. Therefore size-segregated aerosols were sampled at a high Arctic site, Station Nord (Northeast Greenland), in March 2009 using a Micro Orifice Uniform Deposit Impactor. The aerosol samples were extracted in order to analyse three water-soluble anions......−4 is by far the dominating anion accounting for 50–85% of the analyzed mass. The analysis suggests that Cl− and NO−3 in coarser particles (> 1.5 μm) originate from local/regional sources. Under conditions where the air mass is transported over sea ice at high wind speeds, very coarse particles (> 18 μm...

  1. Organic aerosol sources an partitioning in CMAQv5.2

    Science.gov (United States)

    We describe a major CMAQ update, available in version 5.2, which explicitly treats the semivolatile mass transfer of primary organic aerosol compounds, in agreement with available field and laboratory observations. Until this model release, CMAQ has considered these compounds to ...

  2. Characteristics and source of black carbon aerosol over Taklimakan Desert

    Institute of Scientific and Technical Information of China (English)

    FU; S.Joshua

    2010-01-01

    Black carbon(BC) and PM10 in the center of the Taklimakan Desert were online monitored in the whole year of 2007.In addi-tion,TSP samples were also synchronously daily collected by medium-volume samplers with Whatman41 filters in the spring of 2007.BC in the dust aerosol was up to 1.14%of the total mass of PM10.A remarkable seasonal variation of BC in the aerosol was observed in the order of winter>spring>autumn>summer.The peak value of BC appeared at midnight while the lowest one in the evening each day,which was just the reverse of that in the urban area.The contribution of BC to the total mass of PM10 on non-dust storm days was~11 times of that in dust storm.Through back trajectory and principal component analysis,it was found that BC in the dust aerosol over Taklimakan Desert might be attributed to the emission from the anthropogenic activities,including domestic heating,cooking,combustion of oil and natural gas,and the medium-range transport from those oases located in the margins of the desert.The total BC aerosol from the Taklimakan Desert to be transported to the eastward downstream was estimated to be 6.3×104 ton yr-1.

  3. Direct Radiative Effect and Heating Rate of black carbon aerosol: high time resolution measurements and source-identified forcing effects

    Science.gov (United States)

    Ferrero, Luca; Mocnik, Grisa; Cogliati, Sergio; Comi, Alberto; Degni, Francesca; Di Mauro, Biagio; Colombo, Roberto; Bolzacchini, Ezio

    2016-04-01

    Black carbon (BC) absorbs sunlight in the atmosphere heating it. However, up to now, heating rate (HR) calculations from the divergence of the net radiative flux with altitude or from the modelling activity are too sparse. This work fills the aforementioned gap presenting a new methodology based on a full set of physical equations to experimentally determine both the radiative power density absorbed into a ground-based atmospheric layer (ADRE), and the consequent HR induced by the absorptive component of aerosol. In urban context, it is essentially related to the BC. The methodology is also applicable to natural components (i.e. dust) and is obtained solving the first derivative of the main radiative transfer equations. The ADRE and the consequent HR can be determined coupling spectral aerosol absorption measurements with the spectrally resolved measurements of the direct, diffuse downward radiation and the surface reflected radiance components. Moreover, the spectral absorption of BC aerosol allows its source apportionment (traffic and biomass burning (BB)) allowing the same apportionment on HR. This work reports one year of high-time resolution measurements (5 min) of sunlight absorption and HR induced by BC aerosol over Milan. A unique sampling site was set up from March 2015 with: 1) Aethalometer (AE-31, Magee Scientific, 7-λ), 2) the Multiplexer-Radiometer-Irradiometer which detects downward and reflected radiance (350-1000 nm in 3648 spectral bands) coupled with a rotating shadow-band to measure spectrally-resolved global and diffuse radiation (thus direct), 3) a meteorological station (LSI-Lastem) equipped with 3 pyranometers (global, diffuse and refrected radiation; 300-3000 nm), a thermohygrometer, a barometer, an anemometer, 4) condensation and optical particle counters (TSI 3775 and Grimm 1.107), 5) low volume sampler (FAI Hydra dual sampler, PM2.5 and PM10) for sample collection and chemistry determination. Results concerning the radiative power

  4. Collaborative research. Study of aerosol sources and processing at the GVAX Pantnagar Supersite

    Energy Technology Data Exchange (ETDEWEB)

    Worsnop, Doug [Univ. of Colorado, Boulder, CO (United States); Volkamer, Rainer [Univ. of Colorado, Boulder, CO (United States)

    2012-08-13

    The Two Column Aerosol Project (TCAP) investigated uncertainties in the aerosol direct effect in the northern hemisphere mid-latitudes. The University of Colorado 2D-MAX-DOAS and LED-CE-DOAS instruments were collocated with DOE’s Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) and Mobile Aerosol Observing System (MAOS) during the TCAP-1 campaign at Cape Cod, MA (1 July to 13 August 2012). We have performed atmospheric radiation closure studies to evaluate the use of a novel parameter, i.e., the Raman Scattering Probability (RSP). We have performed first measurements of RSP almucantar scans, and measure RSP in spectra of scattered solar photons at 350nm and 430nm. Radiative Transfer Modelling of RSP demonstrate that the RSP measurement is maximally sensitive to infer even extremely low aerosol optical depth (AOD < 0.01) reliably by DOAS at low solar relative azimuth angles. We further assess the role of elevated aerosol layers on near surface observations of oxygen collision complexes, O 2-O2. Elevated aerosol layers modify the near surface absorption of O2-O2 and RSP. The combination of RSP and O2-O2 holds largely unexplored potential to better constrain elevated aerosol layers and measure column aerosol optical properties such as aerosol effective radius, extinction, aerosol phase functions and refractive indices. The TCAP deployment also provides a time series of reactive trace gas vertical profiles, i.e., nitrogen dioxide (NO2) and glyoxal (C2H2O2), which are measured simultaneously with the aerosol optical properties by DOAS. NO2 is an important precursor for ozone (O3) that modifies oxidative capacity. Glyoxal modifies oxidative capacity and is a source for brown carbon by forming secondary organic aerosol (SOA) via multiphase reactions in aerosol and cloud water. We have performed field measurements of these gases

  5. Sources and characteristics of sub-micron aerosols in the San Joaquin Valley, CA

    Science.gov (United States)

    Bahreini, R.; Middlebrook, A. M.; Brioude, J.; Brock, C. A.; de Gouw, J. A.; Hall, K.; Holloway, J. S.; Neuman, J.; Nowak, J. B.; Pollack, I. B.; Ryerson, T. B.; Warneke, C.; Parrish, D. D.

    2010-12-01

    The NOAA WP-3D aircraft performed several flights in the San Joaquin Valley (SJV), California during the CalNex-2010 (California Research at the Nexus of Air Quality and Climate Change) field project in May-June 2010. SJV is generally a rural valley, with a high concentration of feedlots and agricultural sites as well as urbanized centers such as Fresno and Bakersfield. Preliminary results on size-resolved chemical composition of sub-micron aerosols measured using a compact time-of-flight aerosol mass spectrometer, measurements of trace gases affecting secondary production of aerosols, and FLEXPART back trajectory analyses are presented in order to identify sources of aerosols transported to or produced in the valley. Observed enhancements in various trace gases and aerosol species indicate a mixed influence from urban, industrial, and animal feedlots in the SJV. Three distinct observations suggest a complex transport pattern of pollutants with different origins to and within the valley: 1) CO and NOx mixing ratios were prominent downwind of the urban areas in the valley; 2) SO2, aerosol organics and sulfate were higher closer to the foothills of the Sierra Nevada Mountains on the east of the valley; 3) high concentration of aerosol phase ammonium and nitrate were observed in NH3-rich air masses, directly downwind of the feedlots in the central part of the valley. Aerosol enhancements in each of these air mass categories relative to the background determine the relative contribution and significance of different sources to aerosol loadings in the valley. Differences in VOC measurements and meteorology will be explored to investigate the observed variation in characteristics of organics on different days.

  6. Aerosol structure and vertical distribution in a multi-source dust region

    Institute of Scientific and Technical Information of China (English)

    Jie Zhang; Qiang Zhang; Congguo Tang; Yongxiang Han

    2012-01-01

    The vertical distribution of aerosols was directly observed under various atmospheric conditions in the free troposphere using surface micro-pulse lidar(MPLA)at the Zhangye Station(39.08°N,100.27°E)in western China in the spring of 2008.The study shows that the aerosol distribution over Zhangye can be vertically classified into upper,middle and lower layers with altitudes of 4.5 to 9 km,2.5 to 4.5 km,and less than 2.5 km,respectively.The aerosol in the upper layer originated from the external sources at higher altitude regions,from far desert regions upwind of Zhangye or transported from higher atmospheric layers by free convection,and the altitude of this aerosol layer decreased with time; the aerosols in the middle and lower layers originated from both external and local sources.The aerosol extinction coefficients in the upper and lower layers decreased with altitude,whereas the coefficient in the middle layer changed only slightly,which suggests that aerosol mixing occurs in the middle layer.The distribution of aerosols with altitude has three features:a single peak that forms under stable atmospheric conditions,an exponential decrease with altitude that occurs under unstable atmospheric conditions,and slight change in the mixed layer.Due to the impact of the top of the atmospheric boundary layer,the diurnal variation in the aerosol extinction coefficient has a single peak,which is higher in the afternoon and lower in the morning.

  7. Source apportionment of fine PM and sub-micron particle number concentrations at a regional background site in the western Mediterranean: a 2.5 year study

    Science.gov (United States)

    Cusack, M.; Pérez, N.; Pey, J.; Alastuey, A.; Querol, X.

    2013-05-01

    The chemical composition and sources of ambient fine particulate matter (PM1) over a period of 2.5 years for a regional background site in the western Mediterranean are presented in this work. Furthermore, sub-micron particle number concentrations and the sources of these particles are also presented. The mean PM1 concentration for the measurement period was 8.9 μg m-3, with organic matter (OM) and sulphate comprising most of the mass (3.2 and 1.5 μg m-3 respectively). Six sources were identified in PM1 by Positive Matrix Factorisation (PMF): secondary organic aerosol, secondary nitrate, industrial, traffic + biomass burning, fuel oil combustion and secondary sulphate. Typically anthropogenic sources displayed elevated concentrations during the week with reductions at weekends. Nitrate levels were elevated in winter and negligible in summer, whereas secondary sulphate levels underwent a contrasting seasonal evolution with highest concentrations in summer, similar to the fuel oil combustion source. The SOA source was influenced by episodes of sustained pollution as a result of anticyclonic conditions occurring during winter, giving rise to thermal inversions and the accumulation of pollutants in the mixing layer. Increased levels in summer were owing to higher biogenic emissions and regional recirculation of air masses. The industrial source decreased in August due to decreased emissions during the vacation period. Increases in the traffic + biomass burning source were recorded in January, April and October, which were attributed to the occurrence of the aforementioned pollution episodes and local biomass burning emission sources, which include agriculture and domestic heating systems. Average particle number concentrations (N9-825 nm) from 5/11/2010 to 01/06/2011 and from 15/10/2011 to 18/12/2011 reached 3097 cm-3. Five emission sources of particle of sub-micron particles were determined by Principal Component Analysis (PCA); industrial + traffic + biomass

  8. AERONET-based microphysical and optical properties of smoke-dominated aerosol near source regions and transported over oceans, and implications for satellite retrievals of aerosol optical depth

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Eck, T. F.; Smirnov, A.; Holben, B. N.

    2013-09-01

    Smoke aerosols from biomass burning are an important component of the global aerosol cycle. Analysis of Aerosol Robotic Network (AERONET) retrievals of size distribution and refractive index reveals variety between biomass burning aerosols in different global source regions, in terms of aerosol particle size and single scatter albedo (SSA). Case studies of smoke transported to coastal/island AERONET sites also mostly lie within the range of variability at near-source sites. Two broad ''families'' of aerosol properties are found, corresponding to sites dominated by boreal forest burning (larger, broader fine mode, with midvisible SSA ∼0.95), and those influenced by grass, shrub, or crop burning with additional forest contributions (smaller, narrower particles with SSA ∼0.88-0.9 in the midvisible). The strongest absorption is seen in southern African savannah at Mongu (Zambia), with average SSA ∼0.85 in the midvisible. These can serve as candidate sets of aerosol microphysical/optical properties for use in satellite aerosol optical depth (AOD) retrieval algorithms. The models presently adopted by these algorithms over ocean are often insufficiently absorbing to represent these biomass burning aerosols. A corollary of this is an underestimate of AOD in smoke outflow regions, which has important consequences for applications of these satellite datasets.

  9. Source apportionment of PM{sub 10} and PM{sub 2.5} in a desert region in northern Chile

    Energy Technology Data Exchange (ETDEWEB)

    Jorquera, Héctor, E-mail: jorquera@ing.puc.cl; Barraza, Francisco

    2013-02-01

    Estimating contributions of anthropogenic sources to ambient particulate matter (PM) in desert regions is a challenging issue because wind erosion contributions are ubiquitous, significant and difficult to quantify by using source-oriented, dispersion models. A receptor modeling analysis has been applied to ambient PM{sub 10} and PM{sub 2.5} measured in an industrial zone ∼ 20 km SE of Antofagasta (23.63°S, 70.39°W), a midsize coastal city in northern Chile; the monitoring site is within a desert region that extends from northern Chile to southern Perú. Integrated 24-hour ambient samples of PM{sub 10} and PM{sub 2.5} were taken with Harvard Impactors; samples were analyzed by X Ray Fluorescence, ionic chromatography (NO{sub 3}{sup −} and SO{sub 4}{sup =}), atomic absorption (Na{sup +}, K{sup +}) and thermal optical transmission for elemental and organic carbon determination. Receptor modeling was carried out using Positive Matrix Factorization (US EPA Version 3.0); sources were identified by looking at specific tracers, tracer ratios, local winds and wind trajectories computed from NOAA's HYSPLIT model. For the PM{sub 2.5} fraction, six contributions were found — cement plant, 33.7 ± 1.3%; soil dust, 22.4 ± 1.6%; sulfates, 17.8 ± 1.7%; mineral stockpiles and brine plant, 12.4 ± 1.2%; Antofagasta, 8.5 ± 1.3% and copper smelter, 5.3 ± 0.8%. For the PM{sub 10} fraction five sources were identified — cement plant, 38.2 ± 1.5%; soil dust, 31.2 ± 2.3%; mineral stockpiles and brine plant, 12.7 ± 1.7%; copper smelter, 11.5 ± 1.6% and marine aerosol, 6.5 ± 2.4%. Therefore local sources contribute to ambient PM concentrations more than distant sources (Antofagasta, marine aerosol) do. Soil dust is enriched with deposition of marine aerosol and calcium, sulfates and heavy metals from surrounding industrial activities. The mean contribution of suspended soil dust to PM{sub 10} is 50 μg/m{sup 3} and the peak daily value is 104 μg/m{sup 3}. For the

  10. Atmospheric acidification of mineral aerosols: a source of bioavailable phosphorus for the oceans

    Directory of Open Access Journals (Sweden)

    A. Nenes

    2011-07-01

    Full Text Available Primary productivity of continental and marine ecosystems is often limited or co-limited by phosphorus. Deposition of atmospheric aerosols provides the major external source of phosphorus to marine surface waters. However, only a fraction of deposited aerosol phosphorus is water soluble and available for uptake by phytoplankton. We propose that atmospheric acidification of aerosols is a prime mechanism producing soluble phosphorus from soil-derived minerals. Acid mobilization is expected to be pronounced where polluted and dust-laden air masses mix. Our hypothesis is supported by the soluble compositions and reconstructed pH values for atmospheric particulate matter samples collected over a 5-yr period at Finokalia, Crete. In addition, at least tenfold increase in soluble phosphorus was observed when Saharan soil and dust were acidified in laboratory experiments which simulate atmospheric conditions. Aerosol acidification links bioavailable phosphorus supply to anthropogenic and natural acidic gas emissions, and may be a key regulator of ocean biogeochemistry.

  11. Atmospheric acidification of mineral aerosols: a source of bioavailable phosphorus for the oceans

    Directory of Open Access Journals (Sweden)

    A. Nenes

    2011-02-01

    Full Text Available Primary productivity of continental and marine ecosystems is often limited or co-limited by phosphorus. Deposition of atmospheric aerosols provides the major external source of phosphorus to surface waters. However, only a fraction of deposited aerosol phosphorus is water soluble and available for uptake by phytoplankton. We propose that atmospheric acidification of aerosols is a prime mechanism producing soluble phosphorus from soil-derived minerals. Acid mobilization is expected to be pronounced where polluted and dust-laden air masses mix. Our hypothesis is supported by the soluble compositions and reconstructed pH values for atmospheric particulate matter samples collected over a 5-year period at Finokalia, Crete. At least tenfold increase in soluble phosphorus is observed when Saharan soil and dust were acidified in laboratory experiments which simulate atmospheric conditions. Aerosol acidification links bioavailable phosphorus supply to anthropogenic and natural acidic gas emissions, and may be a key regulator of ocean biogeochemistry.

  12. Evaluation of coarse and fine particulate sources using a portable aerosol monitor in a desert community.

    Science.gov (United States)

    Phalen, Robert N; Coleman, Ted

    2012-08-01

    The purpose of this study was to use a portable aerosol monitor as a preliminary screening tool to identify local sources of coarse (PM(10-2.5)) and fine (PM(2.5)) particulate matter within the Coachella Valley, a low-elevation desert community. The portable aerosol monitor proved to be useful in identifying particle sources unique to the region, namely, sand dunes with sparse ground cover (vegetation), a river wash, and diesel truck and freight train traffic. The general limitations relate to discrepancies in the fraction of PM(10-2.5) when compared to regional air quality data and a lack of accurate mass-based data.

  13. Insights into Submicron Aerosol Composition and Sources from the WINTER Aircraft Campaign Over the Eastern US.

    Science.gov (United States)

    Schroder, J. C.; Campuzano Jost, P.; Day, D. A.; Fibiger, D. L.; McDuffie, E. E.; Blake, N. J.; Hills, A. J.; Hornbrook, R. S.; Apel, E. C.; Weinheimer, A. J.; Campos, T. L.; Brown, S. S.; Jimenez, J. L.

    2015-12-01

    The WINTER aircraft campaign was a recent field experiment to probe the sources and evolution of gas pollutants and aerosols in Northeast US urban and industrial plumes during the winter. A highly customized Aerodyne aerosol mass spectrometer (AMS) was flown on the NCAR C-130 to characterize submicron aerosol composition and evolution. Thirteen research flights were conducted covering a wide range of conditions, including rural, urban, and marine environments during day and night. Organic aerosol (OA) was a large component of the submicron aerosol in the boundary layer. The fraction of OA (fOA) was smaller (35-40%) than in recent US summer campaigns (~60-70%). Biomass burning was observed to be an important source of OA in the boundary layer, which is consistent with recent wintertime studies that show a substantial contribution of residential wood burning to the OA loadings. OA oxygenation (O/C ratio) shows a broad distribution with a substantial fraction of smaller O/C ratios when compared to previous summertime campaigns. Since measurements were rarely made very close to primary sources (i.e. directly above urban areas), this is consistent with oxidative chemistry being slower during winter. SOA formation and aging in the NYC plume was observed during several flights and compared with summertime results from LA (CalNex) and Mexico City (MILAGRO). Additionally, an oxidation flow reactor (OFR) capable of oxidizing ambient air up to several equivalent days of oxidation was deployed for the first time in an aircraft platform. The aerosol outflow of the OFR was sampled with the AMS to provide real-time snapshots of the potential for aerosol formation and aging. For example, a case study of a flight through the Ohio River valley showed evidence of oxidation of SO2 to sulfate. The measured sulfate enhancements were in good agreement with our OFR chemical model. OFR results for SOA will be discussed.

  14. Chemical composition, sources, and processes of urban aerosols during summertime in Northwest China: insights from High Resolution Aerosol Mass Spectrometry

    Science.gov (United States)

    Xu, J.; Zhang, Q.; Chen, M.; Ge, X.; Ren, J.; Qin, D.

    2014-06-01

    An aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed along with a Scanning Mobility Particle Sizer (SMPS) and a Multi Angle Absorption Photometers (MAAP) to measure the temporal variations of the mass loading, chemical composition, and size distribution of sub-micrometer particulate matter (PM1) in Lanzhou, northwest China, during 12 July-7 August 2012. The average PM1 mass concentration including non-refractory PM1 (NR-PM1) measured by HR-ToF-AMS and black carbon (BC) measured by MAAP during this study was 24.5 μg m-3 (ranging from 0.86 to 105μg m-3), with a mean composition consisting of 47% organics, 16% sulfate, 12% BC, 11% ammonium, 10% nitrate, and 4% chloride. The organics was consisted of 70% carbon, 21% oxygen, 8% hydrogen, and 1% nitrogen, with the average oxygen-to-carbon ratio (O / C) of 0.33 and organic mass-to-carbon ratio (OM / OC) of 1.58. Positive matrix factorization (PMF) of the high-resolution mass spectra of organic aerosols (OA) identified four distinct factors which represent, respectively, two primary OA (POA) emission sources (traffic and food cooking) and two secondary OA (SOA) types - a fresher, semi-volatile oxygenated OA (SV-OOA) and a more aged, low-volatility oxygenated OA (LV-OOA). Traffic-related hydrocarbon-like OA (HOA) and BC displayed distinct diurnal patterns both with peak at ~07:00-11:00 (BJT: UTC +8) corresponding to the morning rush hours, while cooking OA (COA) peaked during three meal periods. The diurnal profiles of sulfate and LV-OOA displayed a broad peak between ∼07:00-15:00, while those of nitrate, ammonium, and SV-OOA showed a narrower peak at ~08:00-13:00. The later morning and early afternoon peak in the diurnal profiles of secondary aerosol species was likely caused by mixing down of pollutants aloft, which were likely produced in the residual layer decoupled from the boundary layer during night time. The mass spectrum of SV-OOA also showed similarity with that of

  15. Limitation of the Use of the Absorption Angstrom Exponent for Source Apportionment of Equivalent Black Carbon: a Case Study from the North West Indo-Gangetic Plain.

    Science.gov (United States)

    Garg, Saryu; Chandra, Boggarapu Praphulla; Sinha, Vinayak; Sarda-Esteve, Roland; Gros, Valerie; Sinha, Baerbel

    2016-01-19

    Angstrom exponent measurements of equivalent black carbon (BCeq) have recently been introduced as a novel tool to apportion the contribution of biomass burning sources to the BCeq mass. The BCeq is the mass of ideal BC with defined optical properties that, upon deposition on the aethalometer filter tape, would cause equal optical attenuation of light to the actual PM2.5 aerosol deposited. The BCeq mass hence is identical to the mass of the total light-absorbing carbon deposited on the filter tape. Here, we use simultaneously collected data from a seven-wavelength aethalometer and a high-sensitivity proton-transfer reaction mass spectrometer installed at a suburban site in Mohali (Punjab), India, to identify a number of biomass combustion plumes. The identified types of biomass combustion include paddy- and wheat-residue burning, leaf litter, and garbage burning. Traffic plumes were selected for comparison. We find that the combustion efficiency, rather than the fuel used, determines αabs, and consequently, the αabs can be ∼1 for flaming biomass combustion and >1 for older vehicles that operate with poorly optimized engines. Thus, the absorption angstrom exponent is not representative of the fuel used and, therefore, cannot be used as a generic tracer to constrain source contributions.

  16. Source apportionment of fine PM and sub-micron particle number concentrations at a regional background site in the western Mediterranean: a 2.5 yr study

    Science.gov (United States)

    Cusack, M.; Pérez, N.; Pey, J.; Alastuey, A.; Querol, X.

    2013-02-01

    The chemical composition and sources of ambient fine particulate matter (PM1) over a period of 2.5 yr for a regional background site in the western Mediterranean are presented in this work. Major components (such as SO12-, NO3-, NH4+, organic and elemental carbon) and trace elements were analysed and the emission sources affecting PM1 were determined using Positive Matrix Factorisation (PMF). Furthermore, sub-micron particle number concentrations and the sources of these particles are also presented. Sources of sub-micron particles were determined by Principal Component Analysis (PCA). The mean PM1 concentration for the measurement period was 8.9 μg m-3, with organic matter (OM) and sulphate comprising most of the mass (3.2 and 1.5 μg m-3). A clear seasonal variation was recorded with higher PM1 concentrations in summer (11.2 μg m-3) compared to winter (6.6 μg m-3). This summer increase was due to elevated levels of sulphate and OM. Six sources were identified by PMF: secondary organic aerosol, secondary nitrate, industrial, traffic + biomass burning, fuel oil combustion and secondary sulphate. The daily variations of these sources were also determined, whereby the typically anthropogenic sources displayed elevated concentrations during the week with reductions at weekends. Nitrate levels were elevated in winter and negligible in summer, whereas secondary sulphate levels underwent a contrasting seasonal evolution with highest concentrations in summer, similar to the fuel oil combustion source. The SOA source was influenced by episodes of sustained pollution as a result of anticyclonic conditions occurring during winter, giving rise to thermal inversions and the accumulation of pollutants in the mixing layer. Increased levels in summer were owing to higher biogenic emissions and regional recirculation of air masses. The industrial source decreased in August due to decreased emissions during the vacation period. Increases in the traffic + biomass burning source

  17. Source attribution of climatically important aerosol properties measured at Paposo (Chile during VOCALS

    Directory of Open Access Journals (Sweden)

    D. Chand

    2010-11-01

    Full Text Available Measurements of submicron aerosol composition, light scattering, and size distribution were made from 17 October to 15 November 2008 at the elevated Paposo site (25° 0.4' S, 70° 27.01' W, 690 m a.s.l. on the Chilean coast as part of the VOCALS* Regional Experiment (REx. Based on the chemical composition measurements, a receptor modeling analysis using Positive Matrix Factorization (PMF was carried out, yielding four broad source categories of the aerosol mass, light scattering coefficient, and a proxy for cloud condensation nucleus (CCN concentration at 0.4% supersaturation derived from the size distribution measurements assuming an observed soluble mass fraction of 0.53. The sources resolved were biomass burning, marine, an urban-biofuels mix and a somewhat ambiguous mix of smelter emissions and mineral dust. The urban-biofuels mix is the most dominant aerosol mass component (52% followed by biomass burning (25%, smelter/soil dust (12% and marine (9% sources. The average (mean±std submicron aerosol mass concentration, aerosol light scattering coefficient and proxy CCN concentration were, 8.77±5.40 μg m−3, 21.9±11.0 Mm−1 and 548±210 cm−3, respectively. Sulfate is the dominant identified submicron species constituting roughly 40% of the dry mass (3.64±2.30 μg m−3, although the indentified soluble species constitute only 53% of the mass. Much of the unidentified mass is likely organic in nature. The relative importance of each aerosol source category is different depending upon whether mass, light scattering, or CCN concentration is being considered, indicating that the mean size of aerosols associated with each source are different. Marine aerosols do not appear to contribute to more than 10% to either mass, light scattering, or CCN concentration at this site. Back trajectory cluster analysis proved consistent with the PMF source attribution.

    *VOCALS: VAMOS** Ocean

  18. Source attribution of climatically important aerosol properties measured at Paposo (Chile during VOCALS

    Directory of Open Access Journals (Sweden)

    D. Chand

    2010-07-01

    Full Text Available Measurements of submicron aerosol composition, light scattering, and size distribution were made from 17 October to 15 November 2008 at the elevated Paposo site (25° 0.4' S, 70°27.01' W, 690 m a.s.l. on the Chilean coast as part of the VOCALS1 Regional Experiment (REx. Based on the chemical composition measurements, a receptor modeling analysis using Positive Matrix Factorization (PMF was carried out, yielding four broad source categories of the aerosol mass, light scattering coefficient, and a proxy for cloud condensation nucleus (CCN concentration at 0.4% supersaturation derived from the size distribution measurements assuming an observed soluble mass fraction of 0.53. The sources resolved were biomass burning, marine, an urban-biofuels mix and a somewhat ambiguous mix of smelter emissions and mineral dust. The urban-biofuels mix is the most dominant aerosol mass component (52% followed by biomass burning (25%, smelter/soil dust (12% and marine (9% sources. The average (mean±std submicron aerosol mass concentration, aerosol light scattering coefficient and proxy CCN concentration were, 8.77±5.40 μg m−3, 21.9±11.0 Mm−1 and 548±210 cm−3, respectively. Sulfate is the dominant identified submicron species constituting roughly 40% of the dry mass (3.64±2.30 μg m−3, although the indentified soluble species constitute only 53% of the mass. Much of the unidentified mass is likely organic in nature. The relative importance of each aerosol source category is different depending upon whether mass, light scattering, or CCN concentration is being considered, indicating that the mean size of aerosols associated with each source are different. Marine aerosols do not appear to contribute to more than 10% to either mass, light scattering, or CCN concentration at this site. Back trajectory cluster analysis proved consistent with the PMF source attribution.


    1 VOCALS

  19. Technical Note: In-situ quantification of aerosol sources and sinks over regional geographical scales

    Directory of Open Access Journals (Sweden)

    G. Buzorius

    2009-01-01

    Full Text Available In order to obtain the source/sink functions for atmospheric particulates located on the planetary surface or elevated in the atmosphere; direct aerosol emission measurements are required. For this purpose, the performance of an airborne aerosol flux measurement system with an improved 3-km spatial resolution is evaluated in this study. Eddy covariance method was used in flux calculations. A footprint for airborne flux sampling with the increased resolution becomes comparable in area to the footprint for tower sampling (with the footprint length being 2 to 10 km. The improvement in spatial resolution allows quantification of emission rates from individual sources located several kilometers apart. Locally measured aerosol flux provides useful information about aerosol sources and sinks located below or aloft of measurement altitude. The advantage is a moving platform that allows scanning of aerosol emissions or depositions over practically unlimited geographic scales. The technique delivers effective emission rates of atmospheric particulates from specific sources such as highway segments, city blocks, and remote and industrial areas. The improved spatial resolution airborne flux measurements were conducted in ambient conditions with low (<500 m mixed boundary layer heights. Measurement results are reported from clean and partly polluted marine environments, and heavily polluted continental environments. The upward and downward fluxes from the clean marine environment were smaller than 0.5×106 particles m−2 s−1 in absolute value. The effective emissions measured from a ship plume ranged from 2×108 to 3×108 m−2 s−1, and effective fluxes measured crossing cities plumes with populations of 10 000 to 12 000 inhabitants were in the range of 2×108 to 3×108 m−2 s−1. Correlations between heat and aerosol fluxes are

  20. Primary and secondary aerosols in Beijing in winter: sources, variations and processes

    Science.gov (United States)

    Sun, Yele; Du, Wei; Fu, Pingqing; Wang, Qingqing; Li, Jie; Ge, Xinlei; Zhang, Qi; Zhu, Chunmao; Ren, Lujie; Xu, Weiqi; Zhao, Jian; Han, Tingting; Worsnop, Douglas R.; Wang, Zifa

    2016-07-01

    Winter has the worst air pollution of the year in the megacity of Beijing. Despite extensive winter studies in recent years, our knowledge of the sources, formation mechanisms and evolution of aerosol particles is not complete. Here we have a comprehensive characterization of the sources, variations and processes of submicron aerosols that were measured by an Aerodyne high-resolution aerosol mass spectrometer from 17 December 2013 to 17 January 2014 along with offline filter analysis by gas chromatography/mass spectrometry. Our results suggest that submicron aerosols composition was generally similar across the winter of different years and was mainly composed of organics (60 %), sulfate (15 %) and nitrate (11 %). Positive matrix factorization of high- and unit-mass resolution spectra identified four primary organic aerosol (POA) factors from traffic, cooking, biomass burning (BBOA) and coal combustion (CCOA) emissions as well as two secondary OA (SOA) factors. POA dominated OA, on average accounting for 56 %, with CCOA being the largest contributor (20 %). Both CCOA and BBOA showed distinct polycyclic aromatic hydrocarbons (PAHs) spectral signatures, indicating that PAHs in winter were mainly from coal combustion (66 %) and biomass burning emissions (18 %). BBOA was highly correlated with levoglucosan, a tracer compound for biomass burning (r2 = 0.93), and made a considerable contribution to OA in winter (9 %). An aqueous-phase-processed SOA (aq-OOA) that was strongly correlated with particle liquid water content, sulfate and S-containing ions (e.g. CH2SO2+) was identified. On average aq-OOA contributed 12 % to the total OA and played a dominant role in increasing oxidation degrees of OA at high RH levels (> 50 %). Our results illustrate that aqueous-phase processing can enhance SOA production and oxidation states of OA as well in winter. Further episode analyses highlighted the significant impacts of meteorological parameters on aerosol composition, size

  1. Radiocarbon-insights into temporal variations in the sources and concentrations of carbonaceous aerosols in the Los Angeles and Salt Lake City Metropolitan Areas

    Science.gov (United States)

    Czimczik, Claudia; Mouteva, Gergana; Simon, Fahrni; Guaciara, Santos; James, Randerson

    2014-05-01

    Increased fossil fuel consumption and biomass burning are contributing to significantly larger emissions of black carbon (BC) aerosols to the atmosphere. Together with organic carbon (OC), BC is a major constituent of fine particulate matter in urban air, contributes to haze and has been linked to a broad array of adverse health effects. Black carbon's high light absorption capacity and role in key (in-)direct climate feedbacks also lead to a range of impacts in the Earth system (e.g. warming, accelerated snow melt, changes in cloud formation). Recent work suggests that regulating BC emissions can play an important role in improving regional air quality and reducing future climate warming. However, BC's atmospheric transport pathways, lifetime and magnitudes of emissions by sector and region, particularly emissions from large urban centers, remain poorly constrained by measurements. Contributions of fossil and modern sources to the carbonaceous aerosol pool (corresponding mainly to traffic/industrial and biomass-burning/biogenic sources, respectively) can be quantified unambiguously by measuring the aerosol radiocarbon (14C) content. However, accurate 14C-based source apportionment requires the physical isolation of BC and OC, and minimal sample contamination with extraneous carbon or from OC charring. Compound class-specific 14C analysis of BC remains challenging due to very small sample sizes (5-15 ug C). Therefore, most studies to date have only analyzed the 14C content of the total organic carbonaceous aerosol fraction. Here, we present time-series 14C data of BC and OC from the Los Angeles (LA) metropolitan area in California - one of two megacities in the United States - and from Salt Lake City (SLC), UT. In the LA area, we analyzed 48h-PM10 samples near the LA port throughout 2007 and 2008 (with the exception of summer). We also collected monthly-PM2.5 samples at the University of California - Irvine, with shorter sampling periods during regional wildfire

  2. Assessment of pollution aerosols sources above the Straits of Dover using lead isotope geochemistry.

    Science.gov (United States)

    Deboudt, K; Flament, P; Weis, D; Mennessier, J P; Maquinghen, P

    1999-09-15

    We assess the capability of lead isotopes to study the transport of pollution aerosols above the Straits of Dover by collecting atmospheric aerosols above the Eastern Channel and the Southern Bight of the North Sea. During the same period, we characterized the lead isotopic signature of the main industrial sources on the French coast near the Straits of Dover. Urban and automobile-derived aerosols were also collected. Due to the phasing out of lead in gasoline, the urban isotopic composition (206Pb/207Pb = 1.158 +/- 0.003) has become more radiogenic, although it is highly variable. On a regional scale, major industrial emissions have a well-defined isotopic composition (1.13 isotopic compositions, it can be shown that lead aerosols originating from eastern Europe have an isotopic signature (1.145 isotopic composition of west-European lead aerosols (1.111 < 206Pb/207Pb < 1.142). The influence of remote North American sources is suggested, with caution, due to uncertainties in meteorological calculations.

  3. Characteristics of trace metals in marine aerosols and their source identiifcation over the Southern Ocean

    Institute of Scientific and Technical Information of China (English)

    ZHAO Shuhui; CHEN Liqi; LIN Hongmei

    2015-01-01

    Atmospheric trace metals (Cu, Zn, Cd, Pb, Fe, V, and Cr), As, Al and Na in marine aerosols were studied over the Southern Ocean during the 28th Chinese National Antarctic Research Expedition. Fe was the most abundant of the analyzed trace metals, with an average concentration of 28.824 ng∙m-3. V and Zn concentrations were also high, and their average concentrations were 5.541 ng∙m-3 and 2.584 ng∙m-3, respectively. Although sea spray significantly influenced the marine aerosol particles measured (Na had the highest concentrations of the analyzed elements, with an average concentration of 2.65 μg∙m-3), multivariate analyses (enrichment factor and principal components analysis) indicated that most of the elements were not associated with oceanic sources. Over the Southern Ocean, Fe, Cd, As, Al and Cr in the aerosols mainly originated from crustal sources, while Cu, Pb, V and Zn originated from crustal sources and anthropogenic emissions. The enrichment factors (EFcrust) for most elements (Fe, Al, As, Cr, Cd, Cu and V) were much lower in the northern latitudes, indicating that when the sampling occurred closer to land the concentrations of these elements in aerosols were strongly affected by terrestrial crustal sources.

  4. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    Science.gov (United States)

    Heringa, M. F.; Decarlo, P. F.; Chirico, R.; Tritscher, T.; Clairotte, M.; Mohr, C.; Crippa, M.; Slowik, J. G.; Pfaffenberger, L.; Dommen, J.; Weingartner, E.; Prévôt, A. S. H.; Baltensperger, U.

    2012-02-01

    Organic aerosol (OA) represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS) and compared to SOA from α-pinene. The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production. Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra showing Pearson's r values >0.94 for the correlations between the four different SOA types after five hours of aging. High-resolution mass spectra (HR-MS) showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxygenated OA (SV-OOA) observed in the ambient aerosol. The atomic O:C ratios were found to be in the range of 0.25-0.55 with no major increase during the first five hours of aging. On average, the diesel SOA showed the lowest O:C ratio followed by SOA from wood burning, α-pinene and the scooter emissions. Grouping the fragment ions revealed that the SOA source with the highest O:C ratio had the largest fraction of small ions. The HR data of the four sources could be clustered and separated using principal component analysis (PCA). The model showed a significant separation of the four SOA types and clustering of the duplicate experiments on the first two principal components (PCs), which explained 79% of the total variance. Projection of ambient SV-OOA spectra resolved by positive matrix factorization (PMF) showed that this approach could be useful to identify large contributions of the tested SOA sources to SV-OOA. The first results from this

  5. Source apportionment of PM2.5 in Cork Harbour, Ireland using a combination of single particle mass spectrometry and quantitative semi-continuous measurements

    Directory of Open Access Journals (Sweden)

    J. C. Wenger

    2010-10-01

    Full Text Available An aerosol time-of-flight mass spectrometer (ATOFMS was deployed for the measurement of the size resolved chemical composition of single particles at a site in Cork Harbour, Ireland for three weeks in August 2008. The ATOFMS was co-located with a suite of semi-continuous instrumentation for the measurement of particle number, elemental carbon (EC, organic carbon (OC, sulfate and particulate matter smaller than 2.5 μm in diameter (PM2.5. The temporality of the ambient ATOFMS particle classes was subsequently used in conjunction with the semi-continuous measurements to apportion PM2.5 mass using positive matrix factorisation. The synergy of the single particle classification procedure and positive matrix factorisation allowed for the identification of six factors, corresponding to vehicular traffic, marine, long-range transport, various combustion, domestic solid fuel combustion and shipping traffic with estimated contributions to the measured PM2.5 mass of 23%, 14%, 13%, 11%, 5% and 1.5% respectively. Shipping traffic was found to contribute 18% of the measured particle number (20–600 nm mobility diameter, and thus may have important implications for human health considering the size and composition of ship exhaust particles. The positive matrix factorisation procedure enabled a more refined interpretation of the single particle results by providing source contributions to PM2.5 mass, while the single particle data enabled the identification of additional factors not possible with typical semi-continuous measurements, including local shipping traffic.

  6. Pan-Arctic patterns in black carbon sources and fluvial discharges deduced from radiocarbon and PAH source apportionment markers in estuarine surface sediments

    Science.gov (United States)

    Elmquist, Marie; Semiletov, Igor; Guo, Laodong; Gustafsson, Örjan

    2008-06-01

    A pan-arctic geospatial picture of black carbon (BC) characteristics was obtained from the seven largest arctic rivers by combining with molecular combustion markers (polycyclic aromatic hydrocarbons) and radiocarbon (14C) analysis. The results suggested that the contribution from modern biomass burning to BC ranged from low in the Yukon (8%) and Lena (5%) Rivers to high in the Yenisey River (88%). The Mackenzie River contributed almost half of the total arctic fluvial BC export of 202 kton a-1 (kton = 109 g), with the five Russian-Arctic rivers contributing 10-36 kton a-1 each. The 14C-based source estimate of fluvially exported BC to the Arctic Ocean, weighted by the riverine BC fluxes, amount to about 20% from vegetation/biofuel burning and 80% from 14C-extinct sources such as fossil fuel combustion and relict BC in uplifted source rocks. Combining these pan-arctic data with available estimates of BC export from other rivers gave a revised estimate of global riverine BC export flux of 26 × 103 kton a-1. This is twice higher than a single previous estimate and confirms that river export of BC is a more important pathway of BC to the oceans than direct atmospheric deposition.

  7. Saccharide Composition in Fine and Coarse Particulate Matter and Soils in Central Arizona and Use of Saccharides as Molecular Markers for Source Apportionment

    Science.gov (United States)

    Jia, Y.; Clements, A.; Fraser, M.

    2009-04-01

    The desert southwestern United States routinely exceeds health-based standards for coarse particulate matter [1]. PM10 concentrations are high in both urban and rural areas and are believed to originate from fugitive dust emissions from agricultural fields and roads and soil erosion from the surrounding desert locations. Soil together with its associated biota contains a complex mixture of biogenic detritus, including plant detritus, airborne microbes comprised of bacteria, viruses, spores of lichens and fungi, small algae, and protozoan cysts [4][5], which can mostly become airborne when winds are strong enough and soil dry enough to be re-entrained into the atmosphere [3]. Other potential sources to PM10 may include primary biological aerosol particles (PBAPs), given a multitude of flower, grass, and fungal species that thrive in the Sonoran desert and actively release pollens and spores throughout the year [2]. However, because soil and fugitive dust is also believed to contain a large number of these biological particles and is considered as a secondary host of PBAPs [3] [4], the role and contribution of PBAPs as a direct ambient PM source in the desert southwest have not been clearly stated or investigated. In an effort to identify and assess the relative contribution of these and other major PM sources in the southwestern US region, and particularly to assess the contribution from soil and fugitive dust, a series of ambient PM samples and soil samples were collected in Higley, AZ, USA, a suburb of the Phoenix metropolitan area which has seen rapid urban sprawl onto agricultural lands. Because of their suggested ability to track biologically important organic materials from natural environment [4][6][7][8][9][10], saccharides were chosen as the key compounds to trace the release of soil dusts into the atmosphere, and to elucidate other major sources that contribute to the PM levels in this location in the arid southwestern US. To this end, saccharide compounds

  8. 五大连池大气中PAHs污染源解析及控制措施%Pollution Source Apportionment And Control Measure Of Pahs In Air In Wudalianchi

    Institute of Scientific and Technical Information of China (English)

    孔令军; 李海智

    2012-01-01

    对于五大连池大气中PAHs的污染研究,通过在该地区的农村设置大气采样点,进行了为期一个季度的大气样品采集,对PAHs的污染来源进行了初探,运用比值法和主成分分析法相结合对大气中PAHs的来源进行了定性和定量研究,结果表明,煤和生物质等的高温燃烧源是五大连池大气中PAHs的主要污染源,贡献率为83.5%,地表挥发和大气传输源的混合源的贡献率为16.5%。%For the pollution study of PAHs in Wudalianchi, the air samples were collected in a typical rural area for one season. The pollution sources of PAHs were investigated. The selected diagnostic ratios and PCA were combined for the source apportionment of PAHs in air in Wudalianchi. The pyrogenic combustion sources of coal and biomass was the primary source of PAHs in the air in Wudalianchi, accounting for 83.5% of ∑ 16PAHs, followed by the mixed source of surface evaporation and atmospheric transportation ( 16.5% ) .

  9. Source strength of fungal spore aerosolization from moldy building material

    Energy Technology Data Exchange (ETDEWEB)

    Gorny, Rafa L.; Reponen, Tiina; Grinshpun, Sergey A.; Willeke, Klaus [Cincinnati Univ., Dept. of Environmental Health, Cincinnati, OH (United States)

    2001-07-01

    The release of Aspergillus versicolor, Cladosporium cladosporioides, and Penicillium melinii spores from agar and ceiling tile surfaces was tested under different controlled environmental conditions using a newly designed and constructed aerosolization chamber. This study revealed that all the investigated parameters, such as fungal species, air velocity above the surface, texture of the surface, and vibration of contaminated material, affected the fungal spore release. It was found that typical indoor air currents can release up to 200 spores cm {sup -2} from surface with fungal spores during 30-min experiments. The release of fungal spores from smooth agar surfaces was found to be inadequate for accurately predicting the emission from rough ceiling tile surfaces because the air turbulence increases the spore release from a rough surface. A vibration of a frequency of 1Hz at a power level of 14W resulted in a significant increase in the spore release rate. The release appears to depend on the morphology of the fungal colonies grown on ceiling tile surfaces including the thickness of conidiophores, the length of spore chains, and the shape of spores. The spores were found to be released continuously during each 30-min experiment. However, the release rate was usually highest during the first few minutes of exposure to air currents and mechanical vibration. About 71-88% of the spores released during a 30-min interval became airborne during the first 10min. (Author)

  10. Environmental radiation safety: source term modification by soil aerosols. Interim report

    Energy Technology Data Exchange (ETDEWEB)

    Moss, O.R.; Allen, M.D.; Rossignol, E.J.; Cannon, W.C.

    1980-08-01

    The goal of this project is to provide information useful in estimating hazards related to the use of a pure refractory oxide of /sup 238/Pu as a power source in some of the space vehicles to be launched during the next few years. Although the sources are designed and built to withstand re-entry into the earth's atmosphere, and to impact with the earth's surface without releasing any plutonium, the possibility that such an event might produce aerosols composed of soil and /sup 238/PuO/sub 2/ cannot be absolutely excluded. This report presents the results of our most recent efforts to measure the degree to which the plutonium aerosol source term might be modified in a terrestrial environment. The five experiments described represent our best effort to use the original experimental design to study the change in the size distribution and concentration of a /sup 238/PuO/sub 2/ aerosol due to coagulation with an aerosol of clay or sandy loam soil.

  11. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    Directory of Open Access Journals (Sweden)

    M. F. Heringa

    2012-02-01

    Full Text Available Organic aerosol (OA represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da < 1 μm mass. Secondary organic aerosol (SOA is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA from a log wood burner, a Euro 2 diesel car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS and compared to SOA from α-pinene.

    The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production.

    Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra showing Pearson's r values >0.94 for the correlations between the four different SOA types after five hours of aging. High-resolution mass spectra (HR-MS showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxygenated OA (SV-OOA observed in the ambient aerosol. The atomic O:C ratios were found to be in the range of 0.25–0.55 with no major increase during the first five hours of aging. On average, the diesel SOA showed the lowest O:C ratio followed by SOA from wood burning, α-pinene and the scooter emissions. Grouping the fragment ions revealed that the SOA source with the highest O:C ratio had the largest fraction of small ions.

    The HR data of the four sources could be clustered and separated using

  12. A new method to discriminate secondary organic aerosols from different sources using high-resolution aerosol mass spectra

    Directory of Open Access Journals (Sweden)

    M. F. Heringa

    2011-10-01

    Full Text Available Organic aerosol (OA represents a significant and often major fraction of the non-refractory PM1 (particulate matter with an aerodynamic diameter da < 1 μm mass. Secondary organic aerosol (SOA is an important contributor to the OA and can be formed from biogenic and anthropogenic precursors. Here we present results from the characterization of SOA produced from the emissions of three different anthropogenic sources. SOA from a log wood burner, a Euro 2 diesel car and a two-stroke Euro 2 scooter were characterized with an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS and compared to SOA from α-pinene.

    The emissions were sampled from the chimney/tailpipe by a heated inlet system and filtered before injection into a smog chamber. The gas phase emissions were irradiated by xenon arc lamps to initiate photo-chemistry which led to nucleation and subsequent particle growth by SOA production.

    Duplicate experiments were performed for each SOA type, with the averaged organic mass spectra in the m/z range 12–250 showing Pearson's r values >0.94 for the correlations between the different SOA types after 5 h of aging. High-resolution mass spectra (HR-MS showed that the dominant peaks in the MS, m/z 43 and 44, are dominated by the oxygenated ions C2H3O+ and CO2+, respectively, similarly to the relatively fresh semi-volatile oxidized OA (SV-OOA observed in the ambient aerosol. The atomic O : C ratios were found to be in the range of 0.25–0.55 with no major increase during the first 5 h of aging. On average, the diesel SOA showed the lowest O : C ratio followed by SOA from wood burning, α-pinene and the scooter emissions. Grouping the fragment ions based on their carbon number revealed that the SOA source with the highest O : C ratio had the largest fraction of small ions. Fragment ions

  13. Atmospheric aerosol compositions and sources at two national background sites in northern and southern China

    Science.gov (United States)

    Zhu, Qiao; He, Ling-Yan; Huang, Xiao-Feng; Cao, Li-Ming; Gong, Zhao-Heng; Wang, Chuan; Zhuang, Xin; Hu, Min

    2016-08-01

    Although China's severe air pollution has become a focus in the field of atmospheric chemistry and the mechanisms of urban air pollution there have been researched extensively, few field sampling campaigns have been conducted at remote background sites in China, where air pollution characteristics on a larger scale are highlighted. In this study, an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), together with an Aethalometer, was deployed at two of China's national background sites in northern (Lake Hongze site; 33.23° N, 118.33° E; altitude 21 m) and southern (Mount Wuzhi site; 18.84° N, 109.49° E; altitude 958 m) China in the spring seasons in 2011 and 2015, respectively, in order to characterize submicron aerosol composition and sources. The campaign-average PM1 concentration was 36.8 ± 19.8 µg m-3 at the northern China background (NCB) site, which was far higher than that at the southern China background (SCB) site (10.9 ± 7.8 µg m-3). Organic aerosol (OA) (27.2 %), nitrate (26.7 %), and sulfate (22.0 %) contributed the most to the PM1 mass at NCB, while OA (43.5 %) and sulfate (30.5 %) were the most abundant components of the PM1 mass at SCB, where nitrate only constituted a small fraction (4.7 %) and might have contained a significant amount of organic nitrates (5-11 %). The aerosol size distributions and organic aerosol elemental compositions all indicated very aged aerosol particles at both sites. The OA at SCB was more oxidized with a higher average oxygen to carbon (O / C) ratio (0.98) than that at NCB (0.67). Positive matrix factorization (PMF) analysis was used to classify OA into three components, including a hydrocarbon-like component (HOA, attributed to fossil fuel combustion) and two oxygenated components (OOA1 and OOA2, attributed to secondary organic aerosols from different source areas) at NCB. PMF analysis at SCB identified a semi-volatile oxygenated component (SV-OOA) and a low-volatility oxygenated

  14. Modelled radiative effects of sea spray aerosol using a source function encapsulating wave state

    Science.gov (United States)

    Partanen, Antti-Ilari; Dunne, Eimear M.; Bergman, Tommi; Laakso, Anton; Kokkola, Harri; Ovadnevaite, Jurgita; Sogacheva, Larisa; Baisnée, Dominique; Sciare, Jean; Manders, Astrid; O'Dowd, Colin; de Leeuw, Gerrit; Korhonen, Hannele

    2014-05-01

    Sea spray aerosol particles have significant effects on global climate by scattering solar radiation (direct effect) and modifying cloud properties (indirect effect). Sea spray consists mainly of sea salt, but in biologically active regions, major fraction of sea spray may come in the form of primary marine organic matter (PMOM). Traditionally, sea spray flux has been parameterized in global models in terms of wind speed, and organic fraction of sea spray in terms of chlorophyll-a concentration. In this study, we have incorporated recently developed parameterizations for the sea spray aerosol source flux into the global aerosol-climate model ECHAM-HAMMOZ. The parameterizations encapsulate the wave state via Reynolds number, and predict the organic fraction of the sea spray aerosol source flux. The model was then used to investigate the direct and indirect effects of sea spray aerosol particles. We compared simulated sea spray concentrations with in-situ measurements from Mace Head (North Atlantic), Point Reyes (North Pacific), and Amsterdam Island (Southern Indian Ocean). Aerosol optical depth (AOD) was compared with satellite measurements from PARASOL. Modelled annual mean global emissions of sea salt and PMOM were 805 Tg yr-1 (uncertainty range of 378-1233 Tg yr-1) and 1.1 Tg yr-1 (0.5-1.8 Tg yr-1), respectively. Sea salt emissions were considerably lower than the majority of previous estimates, but PMOM was in the range of previous studies. The model captured sea salt concentrations fairly well in the smaller size ranges at Mace Head (annual normalized mean bias of -13% for particles with vacuum aerodynamic diameter Dva

  15. HETEROGENEOUS SOOT NANOSTRUCTURE IN ATMOSPHERIC AND COMBUSTION SOURCE AEROSOLS

    Science.gov (United States)

    Microscopic images of soot emissions from wildfire and a wide range of anthropogenic combustion sources show that the nanostructures of individual particles in these emissions are predominantly heterogeneous, decidedly influenced by the fuel composition and by the particular comb...

  16. Impact of interannual variations in aerosol particle sources on orographic precipitation over California's Central Sierra Nevada

    Science.gov (United States)

    Creamean, J. M.; Ault, A. P.; White, A. B.; Neiman, P. J.; Ralph, F. M.; Minnis, P.; Prather, K. A.

    2015-01-01

    Aerosols that serve as cloud condensation nuclei (CCN) and ice nuclei (IN) have the potential to profoundly influence precipitation processes. Furthermore, changes in orographic precipitation have broad implications for reservoir storage and flood risks. As part of the CalWater field campaign (2009-2011), the variability and associated impacts of different aerosol sources on precipitation were investigated in the California Sierra Nevada using an aerosol time-of-flight mass spectrometer for precipitation chemistry, S-band profiling radar for precipitation classification, remote sensing measurements of cloud properties, and surface meteorological measurements. The composition of insoluble residues in precipitation samples collected at a surface site contained mostly local biomass burning and long-range transported dust and biological particles (2009), local sources of biomass burning and pollution (2010), and long-range transport from distant sources (2011). Although differences in the sources were observed from year-to-year, the most consistent source of dust and biological residues were associated with storms consisting of deep convective cloud systems with significant quantities of precipitation initiated in the ice phase. Further, biological residues were dominant (up to 40%) during storms with relatively warm cloud temperatures (up to -15 °C), supporting the important role bioparticles can play as ice nucleating particles. On the other hand, lower percentages of residues from local biomass burning and pollution were observed over the three winter seasons (on average 31 and 9%, respectively). When precipitation quantities were relatively low, these residues most likely served as CCN, forming smaller more numerous cloud droplets at the base of shallow cloud systems, and resulting in less efficient riming processes. The correlation between the source of aerosols within clouds and precipitation type and quantity will be further probed in models to understand the

  17. Chemical composition, sources, and processes of urban aerosols during summertime in Northwest China: insights from High Resolution Aerosol Mass Spectrometry

    Directory of Open Access Journals (Sweden)

    J. Xu

    2014-06-01

    Full Text Available An aerodyne High Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS was deployed along with a Scanning Mobility Particle Sizer (SMPS and a Multi Angle Absorption Photometers (MAAP to measure the temporal variations of the mass loading, chemical composition, and size distribution of sub-micrometer particulate matter (PM1 in Lanzhou, northwest China, during 12 July–7 August 2012. The average PM1 mass concentration including non-refractory PM1 (NR-PM1 measured by HR-ToF-AMS and black carbon (BC measured by MAAP during this study was 24.5 μg m−3 (ranging from 0.86 to 105μg m−3, with a mean composition consisting of 47% organics, 16% sulfate, 12% BC, 11% ammonium, 10% nitrate, and 4% chloride. The organics was consisted of 70% carbon, 21% oxygen, 8% hydrogen, and 1% nitrogen, with the average oxygen-to-carbon ratio (O / C of 0.33 and organic mass-to-carbon ratio (OM / OC of 1.58. Positive matrix factorization (PMF of the high-resolution mass spectra of organic aerosols (OA identified four distinct factors which represent, respectively, two primary OA (POA emission sources (traffic and food cooking and two secondary OA (SOA types – a fresher, semi-volatile oxygenated OA (SV-OOA and a more aged, low-volatility oxygenated OA (LV-OOA. Traffic-related hydrocarbon-like OA (HOA and BC displayed distinct diurnal patterns both with peak at ~07:00–11:00 (BJT: UTC +8 corresponding to the morning rush hours, while cooking OA (COA peaked during three meal periods. The diurnal profiles of sulfate and LV-OOA displayed a broad peak between ∼07:00–15:00, while those of nitrate, ammonium, and SV-OOA showed a narrower peak at ~08:00–13:00. The later morning and early afternoon peak in the diurnal profiles of secondary aerosol species was likely caused by mixing down of pollutants aloft, which were likely produced in the residual layer decoupled from the boundary layer during night time. The mass spectrum of SV-OOA also showed similarity

  18. Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China.

    Science.gov (United States)

    Han, Xiaokun; Guo, Qingjun; Liu, Congqiang; Fu, Pingqing; Strauss, Harald; Yang, Junxing; Hu, Jian; Wei, Lianfang; Ren, Hong; Peters, Marc; Wei, Rongfei; Tian, Liyan

    2016-07-20

    Particulate pollution from anthropogenic and natural sources is a severe problem in China. Sulfur and oxygen isotopes of aerosol sulfate (δ(34)Ssulfate and δ(18)Osulfate) and water-soluble ions in aerosols collected from 2012 to 2014 in Beijing are being utilized to identify their sources and assess seasonal trends. The mean δ(34)S value of aerosol sulfate is similar to that of coal from North China, indicating that coal combustion is a significant contributor to atmospheric sulfate. The δ(34)Ssulfate and δ(18)Osulfate values are positively correlated and display an obvious seasonality (high in winter and low in summer). Although an influence of meteorological conditions to this seasonality in isotopic composition cannot be ruled out, the isotopic evidence suggests that the observed seasonality reflects temporal variations in the two main contributions to Beijing aerosol sulfate, notably biogenic sulfur emissions in the summer and the increasing coal consumption in winter. Our results clearly reveal that a reduction in the use of fossil fuels and the application of desulfurization technology will be important for effectively reducing sulfur emissions to the Beijing atmosphere.

  19. Potential sea salt aerosol sources from frost flowers in the pan-Arctic region

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Li [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Now at Department of Earth System Science, University of California, Irvine California USA; Russell, Lynn M. [Scripps Institution of Oceanography, University of California, San Diego, La Jolla California USA; Burrows, Susannah M. [Atmospheric Science and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA

    2016-09-23

    In order to better represent observed wintertime aerosol concentrations at Barrow, Alaska, we implemented an observationally-based parameterization for estimating sea salt production from frost flowers in the Community Earth System Model (CESM). In this work, we evaluate the potential influence of this sea salt source on the pan-Arctic (60ºN-90ºN) climate. Results show that frost flower salt emissions substantially increase the modeled surface sea salt aerosol concentration in the winter months when new sea ice and frost flowers are present. The parameterization reproduces both the magnitude and seasonal variation of the observed submicron sea salt aerosol concentration at surface in Barrow during winter much better than the standard CESM simulation without a frost-flower salt particle source. Adding these frost flower salt particle emissions increases aerosol optical depth by 10% and results in a small cooling at surface. The increase in salt particle mass concentrations of a factor of 8 provides nearly two times the cloud condensation nuclei concentration, as well as 10% increases in cloud droplet number and 40% increases in liquid water content near coastal regions adjacent to continents. These cloud changes reduce longwave cloud forcing by 3% and cause a small surface warming, increasing the downward longwave flux at the surface by 2 W m-2 in the pan-Arctic under the present-day climate.

  20. Using stable isotopes to trace sources and formation processes of sulfate aerosols from Beijing, China

    Science.gov (United States)

    Han, Xiaokun; Guo, Qingjun; Liu, Congqiang; Fu, Pingqing; Strauss, Harald; Yang, Junxing; Hu, Jian; Wei, Lianfang; Ren, Hong; Peters, Marc; Wei, Rongfei; Tian, Liyan

    2016-07-01

    Particulate pollution from anthropogenic and natural sources is a severe problem in China. Sulfur and oxygen isotopes of aerosol sulfate (δ34Ssulfate and δ18Osulfate) and water-soluble ions in aerosols collected from 2012 to 2014 in Beijing are being utilized to identify their sources and assess seasonal trends. The mean δ34S value of aerosol sulfate is similar to that of coal from North China, indicating that coal combustion is a significant contributor to atmospheric sulfate. The δ34Ssulfate and δ18Osulfate values are positively correlated and display an obvious seasonality (high in winter and low in summer). Although an influence of meteorological conditions to this seasonality in isotopic composition cannot be ruled out, the isotopic evidence suggests that the observed seasonality reflects temporal variations in the two main contributions to Beijing aerosol sulfate, notably biogenic sulfur emissions in the summer and the increasing coal consumption in winter. Our results clearly reveal that a reduction in the use of fossil fuels and the application of desulfurization technology will be important for effectively reducing sulfur emissions to the Beijing atmosphere.

<