WorldWideScience

Sample records for aerosol retrieval algorithms

  1. The GRAPE aerosol retrieval algorithm

    Directory of Open Access Journals (Sweden)

    G. E. Thomas

    2009-11-01

    Full Text Available The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations – this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998, as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE data-set.

    The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.

  2. Bayesian aerosol retrieval algorithm for MODIS AOD retrieval over land

    Science.gov (United States)

    Lipponen, Antti; Mielonen, Tero; Pitkänen, Mikko R. A.; Levy, Robert C.; Sawyer, Virginia R.; Romakkaniemi, Sami; Kolehmainen, Ville; Arola, Antti

    2018-03-01

    We have developed a Bayesian aerosol retrieval (BAR) algorithm for the retrieval of aerosol optical depth (AOD) over land from the Moderate Resolution Imaging Spectroradiometer (MODIS). In the BAR algorithm, we simultaneously retrieve all dark land pixels in a granule, utilize spatial correlation models for the unknown aerosol parameters, use a statistical prior model for the surface reflectance, and take into account the uncertainties due to fixed aerosol models. The retrieved parameters are total AOD at 0.55 µm, fine-mode fraction (FMF), and surface reflectances at four different wavelengths (0.47, 0.55, 0.64, and 2.1 µm). The accuracy of the new algorithm is evaluated by comparing the AOD retrievals to Aerosol Robotic Network (AERONET) AOD. The results show that the BAR significantly improves the accuracy of AOD retrievals over the operational Dark Target (DT) algorithm. A reduction of about 29 % in the AOD root mean square error and decrease of about 80 % in the median bias of AOD were found globally when the BAR was used instead of the DT algorithm. Furthermore, the fraction of AOD retrievals inside the ±(0.05+15 %) expected error envelope increased from 55 to 76 %. In addition to retrieving the values of AOD, FMF, and surface reflectance, the BAR also gives pixel-level posterior uncertainty estimates for the retrieved parameters. The BAR algorithm always results in physical, non-negative AOD values, and the average computation time for a single granule was less than a minute on a modern personal computer.

  3. Enhanced Deep Blue Aerosol Retrieval Algorithm: The Second Generation

    Science.gov (United States)

    Hsu, N. C.; Jeong, M.-J.; Bettenhausen, C.; Sayer, A. M.; Hansell, R.; Seftor, C. S.; Huang, J.; Tsay, S.-C.

    2013-01-01

    The aerosol products retrieved using the MODIS collection 5.1 Deep Blue algorithm have provided useful information about aerosol properties over bright-reflecting land surfaces, such as desert, semi-arid, and urban regions. However, many components of the C5.1 retrieval algorithm needed to be improved; for example, the use of a static surface database to estimate surface reflectances. This is particularly important over regions of mixed vegetated and non- vegetated surfaces, which may undergo strong seasonal changes in land cover. In order to address this issue, we develop a hybrid approach, which takes advantage of the combination of pre-calculated surface reflectance database and normalized difference vegetation index in determining the surface reflectance for aerosol retrievals. As a result, the spatial coverage of aerosol data generated by the enhanced Deep Blue algorithm has been extended from the arid and semi-arid regions to the entire land areas.

  4. Aerosol retrieval algorithm for the characterization of local aerosol using MODIS L1B data

    International Nuclear Information System (INIS)

    Wahab, A M; Sarker, M L R

    2014-01-01

    Atmospheric aerosol plays an important role in radiation budget, climate change, hydrology and visibility. However, it has immense effect on the air quality, especially in densely populated areas where high concentration of aerosol is associated with premature death and the decrease of life expectancy. Therefore, an accurate estimation of aerosol with spatial distribution is essential, and satellite data has increasingly been used to estimate aerosol optical depth (AOD). Aerosol product (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) data is available at global scale but problems arise due to low spatial resolution, time-lag availability of AOD product as well as the use of generalized aerosol models in retrieval algorithm instead of local aerosol models. This study focuses on the aerosol retrieval algorithm for the characterization of local aerosol in Hong Kong for a long period of time (2006-2011) using high spatial resolution MODIS level 1B data (500 m resolution) and taking into account the local aerosol models. Two methods (dark dense vegetation and MODIS land surface reflectance product) were used for the estimation of the surface reflectance over land and Santa Barbara DISORT Radiative Transfer (SBDART) code was used to construct LUTs for calculating the aerosol reflectance as a function of AOD. Results indicate that AOD can be estimated at the local scale from high resolution MODIS data, and the obtained accuracy (ca. 87%) is very much comparable with the accuracy obtained from other studies (80%-95%) for AOD estimation

  5. Interference of Heavy Aerosol Loading on the VIIRS Aerosol Optical Depth (AOD Retrieval Algorithm

    Directory of Open Access Journals (Sweden)

    Yang Wang

    2017-04-01

    Full Text Available Aerosol optical depth (AOD has been widely used in climate research, atmospheric environmental observations, and other applications. However, high AOD retrieval remains challenging over heavily polluted regions, such as the North China Plain (NCP. The Visible Infrared Imaging Radiometer Suite (VIIRS, which was designed as a successor to the Moderate Resolution Imaging Spectroradiometer (MODIS, will undertake the aerosol observations mission in the coming years. Using the VIIRS AOD retrieval algorithm as an example, we analyzed the influence of heavy aerosol loading through the 6SV radiative transfer model (RTM with a focus on three aspects: cloud masking, ephemeral water body tests, and data quality estimation. First, certain pixels were mistakenly screened out as clouds and ephemeral water bodies because of heavy aerosols, resulting in the loss of AOD retrievals. Second, the greenness of the surface could not be accurately identified by the top of atmosphere (TOA index, and the quality of the aggregation data may be artificially high. Thus, the AOD retrieval algorithm did not perform satisfactorily, indicated by the low availability of data coverage (at least 37.97% of all data records were missing according to ground-based observations and overestimation of the data quality (high-quality data increased from 63.42% to 80.97% according to radiative simulations. To resolve these problems, the implementation of a spatial variability cloud mask method and surficial index are suggested in order to improve the algorithm.

  6. Classification of Aerosol Retrievals from Spaceborne Polarimetry Using a Multiparameter Algorithm

    Science.gov (United States)

    Russell, Philip B.; Kacenelenbogen, Meloe; Livingston, John M.; Hasekamp, Otto P.; Burton, Sharon P.; Schuster, Gregory L.; Johnson, Matthew S.; Knobelspiesse, Kirk D.; Redemann, Jens; Ramachandran, S.; hide

    2013-01-01

    In this presentation, we demonstrate application of a new aerosol classification algorithm to retrievals from the POLDER-3 polarimter on the PARASOL spacecraft. Motivation and method: Since the development of global aerosol measurements by satellites and AERONET, classification of observed aerosols into several types (e.g., urban-industrial, biomass burning, mineral dust, maritime, and various subtypes or mixtures of these) has proven useful to: understanding aerosol sources, transformations, effects, and feedback mechanisms; improving accuracy of satellite retrievals and quantifying assessments of aerosol radiative impacts on climate.

  7. Understanding the aerosol information content in multi-spectral reflectance measurements using a synergetic retrieval algorithm

    Directory of Open Access Journals (Sweden)

    D. Martynenko

    2010-11-01

    Full Text Available An information content analysis for multi-wavelength SYNergetic AErosol Retrieval algorithm SYNAER was performed to quantify the number of independent pieces of information that can be retrieved. In particular, the capability of SYNAER to discern various aerosol types is assessed. This information content depends on the aerosol optical depth, the surface albedo spectrum and the observation geometry. The theoretical analysis is performed for a large number of scenarios with various geometries and surface albedo spectra for ocean, soil and vegetation. When the surface albedo spectrum and its accuracy is known under cloud-free conditions, reflectance measurements used in SYNAER is able to provide for 2–4° of freedom that can be attributed to retrieval parameters: aerosol optical depth, aerosol type and surface albedo.

    The focus of this work is placed on an information content analysis with emphasis to the aerosol type classification. This analysis is applied to synthetic reflectance measurements for 40 predefined aerosol mixtures of different basic components, given by sea salt, mineral dust, biomass burning and diesel aerosols, water soluble and water insoluble aerosols. The range of aerosol parameters considered through the 40 mixtures covers the natural variability of tropospheric aerosols. After the information content analysis performed in Holzer-Popp et al. (2008 there was a necessity to compare derived degrees of freedom with retrieved aerosol optical depth for different aerosol types, which is the main focus of this paper.

    The principle component analysis was used to determine the correspondence between degrees of freedom for signal in the retrieval and derived aerosol types. The main results of the analysis indicate correspondence between the major groups of the aerosol types, which are: water soluble aerosol, soot, mineral dust and sea salt and degrees of freedom in the algorithm and show the ability of the SYNAER to

  8. GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign

    Science.gov (United States)

    Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Jeong, Ukkyo; Kim, Woogyung; Hong, Hyunkee; Holben, Brent; Eck, Thomas F.; Song, Chul H.; Lim, Jae-Hyun; Song, Chang-Keun

    2016-04-01

    The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorological Satellite (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements made to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm together with validation results during the Distributed Regional Aerosol Gridded Observation Networks - Northeast Asia 2012 campaign (DRAGON-NE Asia 2012 campaign). The evaluation during the spring season over East Asia is important because of high aerosol concentrations and diverse types of Asian dust and haze. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single-scattering albedo (SSA) at 440 nm, Ångström exponent (AE) between 440 and 860 nm, and aerosol type. The aerosol models are created based on a global analysis of the Aerosol Robotic Networks (AERONET) inversion data, and covers a broad range of size distribution and absorptivity, including nonspherical dust properties. The Cox-Munk ocean bidirectional reflectance distribution function (BRDF) model is used over ocean, and an improved minimum reflectance technique is used over land. Because turbid water is persistent over the Yellow Sea, the land algorithm is used for such cases. The aerosol products are evaluated against AERONET observations and MODIS Collection 6 aerosol products retrieved from Dark Target (DT) and Deep Blue (DB) algorithms during the DRAGON-NE Asia 2012 campaign conducted from March to May 2012. Comparison of AOD from GOCI and AERONET resulted in a Pearson correlation coefficient of 0.881 and a linear regression equation with GOCI AOD = 1.083 × AERONET AOD - 0.042. The correlation between GOCI and MODIS AODs is higher over ocean than land. GOCI AOD shows better

  9. GOCI Yonsei Aerosol Retrieval (YAER) Algorithm and Validation During the DRAGON-NE Asia 2012 Campaign

    Science.gov (United States)

    Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Jeong, Ukkyo; Kim, Woogyung; Hong, Hyunkee; Holben, Brent; Eck, Thomas F.; hide

    2016-01-01

    The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorological Satellite (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements made to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm together with validation results during the Distributed Regional Aerosol Gridded Observation Networks - Northeast Asia 2012 campaign (DRAGONNE Asia 2012 campaign). The evaluation during the spring season over East Asia is important because of high aerosol concentrations and diverse types of Asian dust and haze. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single-scattering albedo (SSA) at 440 nm, Angstrom exponent (AE) between 440 and 860 nm, and aerosol type. The aerosol models are created based on a global analysis of the Aerosol Robotic Networks (AERONET) inversion data, and covers a broad range of size distribution and absorptivity, including nonspherical dust properties. The Cox-Munk ocean bidirectional reflectance distribution function (BRDF) model is used over ocean, and an improved minimum reflectance technique is used over land. Because turbid water is persistent over the Yellow Sea, the land algorithm is used for such cases. The aerosol products are evaluated against AERONET observations and MODIS Collection 6 aerosol products retrieved from Dark Target (DT) and Deep Blue (DB) algorithms during the DRAGON-NE Asia 2012 campaign conducted from March to May 2012. Comparison of AOD from GOCI and AERONET resulted in a Pearson correlation coefficient of 0.881 and a linear regression equation with GOCI AOD = 1.083 x AERONET AOD - 0.042. The correlation between GOCI and MODIS AODs is higher over ocean than land. GOCI AOD shows better agreement

  10. MISR Dark Water aerosol retrievals: operational algorithm sensitivity to particle non-sphericity

    Directory of Open Access Journals (Sweden)

    O. V. Kalashnikova

    2013-08-01

    Full Text Available The aim of this study is to theoretically investigate the sensitivity of the Multi-angle Imaging SpectroRadiometer (MISR operational (version 22 Dark Water retrieval algorithm to aerosol non-sphericity over the global oceans under actual observing conditions, accounting for current algorithm assumptions. Non-spherical (dust aerosol models, which were introduced in version 16 of the MISR aerosol product, improved the quality and coverage of retrievals in dusty regions. Due to the sensitivity of the retrieval to the presence of non-spherical aerosols, the MISR aerosol product has been successfully used to track the location and evolution of mineral dust plumes from the Sahara across the Atlantic, for example. However, the MISR global non-spherical aerosol optical depth (AOD fraction product has been found to have several climatological artifacts superimposed on valid detections of mineral dust, including high non-spherical fraction in the Southern Ocean and seasonally variable bands of high non-sphericity. In this paper we introduce a formal approach to examine the ability of the operational MISR Dark Water algorithm to distinguish among various spherical and non-spherical particles as a function of the variable MISR viewing geometry. We demonstrate the following under the criteria currently implemented: (1 Dark Water retrieval sensitivity to particle non-sphericity decreases for AOD below about 0.1 primarily due to an unnecessarily large lower bound imposed on the uncertainty in MISR observations at low light levels, and improves when this lower bound is removed; (2 Dark Water retrievals are able to distinguish between the spherical and non-spherical particles currently used for all MISR viewing geometries when the AOD exceeds 0.1; (3 the sensitivity of the MISR retrievals to aerosol non-sphericity varies in a complex way that depends on the sampling of the scattering phase function and the contribution from multiple scattering; and (4 non

  11. An Optimal-Estimation-Based Aerosol Retrieval Algorithm Using OMI Near-UV Observations

    Science.gov (United States)

    Jeong, U; Kim, J.; Ahn, C.; Torres, O.; Liu, X.; Bhartia, P. K.; Spurr, R. J. D.; Haffner, D.; Chance, K.; Holben, B. N.

    2016-01-01

    An optimal-estimation(OE)-based aerosol retrieval algorithm using the OMI (Ozone Monitoring Instrument) near-ultraviolet observation was developed in this study. The OE-based algorithm has the merit of providing useful estimates of errors simultaneously with the inversion products. Furthermore, instead of using the traditional lookup tables for inversion, it performs online radiative transfer calculations with the VLIDORT (linearized pseudo-spherical vector discrete ordinate radiative transfer code) to eliminate interpolation errors and improve stability. The measurements and inversion products of the Distributed Regional Aerosol Gridded Observation Network campaign in northeast Asia (DRAGON NE-Asia 2012) were used to validate the retrieved aerosol optical thickness (AOT) and single scattering albedo (SSA). The retrieved AOT and SSA at 388 nm have a correlation with the Aerosol Robotic Network (AERONET) products that is comparable to or better than the correlation with the operational product during the campaign. The OEbased estimated error represented the variance of actual biases of AOT at 388 nm between the retrieval and AERONET measurements better than the operational error estimates. The forward model parameter errors were analyzed separately for both AOT and SSA retrievals. The surface reflectance at 388 nm, the imaginary part of the refractive index at 354 nm, and the number fine-mode fraction (FMF) were found to be the most important parameters affecting the retrieval accuracy of AOT, while FMF was the most important parameter for the SSA retrieval. The additional information provided with the retrievals, including the estimated error and degrees of freedom, is expected to be valuable for relevant studies. Detailed advantages of using the OE method were described and discussed in this paper.

  12. An effective inversion algorithm for retrieving bimodal aerosol particle size distribution from spectral extinction data

    Science.gov (United States)

    He, Zhenzong; Qi, Hong; Yao, Yuchen; Ruan, Liming

    2014-12-01

    The Ant Colony Optimization algorithm based on the probability density function (PDF-ACO) is applied to estimate the bimodal aerosol particle size distribution (PSD). The direct problem is solved by the modified Anomalous Diffraction Approximation (ADA, as an approximation for optically large and soft spheres, i.e., χ⪢1 and |m-1|⪡1) and the Beer-Lambert law. First, a popular bimodal aerosol PSD and three other bimodal PSDs are retrieved in the dependent model by the multi-wavelength extinction technique. All the results reveal that the PDF-ACO algorithm can be used as an effective technique to investigate the bimodal PSD. Then, the Johnson's SB (J-SB) function and the modified beta (M-β) function are employed as the general distribution function to retrieve the bimodal PSDs under the independent model. Finally, the J-SB and M-β functions are applied to recover actual measurement aerosol PSDs over Beijing and Shanghai obtained from the aerosol robotic network (AERONET). The numerical simulation and experimental results demonstrate that these two general functions, especially the J-SB function, can be used as a versatile distribution function to retrieve the bimodal aerosol PSD when no priori information about the PSD is available.

  13. Aerosol Retrievals from Proposed Satellite Bistatic Lidar Observations: Algorithm and Information Content

    Science.gov (United States)

    Alexandrov, M. D.; Mishchenko, M. I.

    2017-12-01

    Accurate aerosol retrievals from space remain quite challenging and typically involve solving a severely ill-posed inverse scattering problem. We suggested to address this ill-posedness by flying a bistatic lidar system. Such a system would consist of formation flying constellation of a primary satellite equipped with a conventional monostatic (backscattering) lidar and an additional platform hosting a receiver of the scattered laser light. If successfully implemented, this concept would combine the measurement capabilities of a passive multi-angle multi-spectral polarimeter with the vertical profiling capability of a lidar. Thus, bistatic lidar observations will be free of deficiencies affecting both monostatic lidar measurements (caused by the highly limited information content) and passive photopolarimetric measurements (caused by vertical integration and surface reflection).We present a preliminary aerosol retrieval algorithm for a bistatic lidar system consisting of a high spectral resolution lidar (HSRL) and an additional receiver flown in formation with it at a scattering angle of 165 degrees. This algorithm was applied to synthetic data generated using Mie-theory computations. The model/retrieval parameters in our tests were the effective radius and variance of the aerosol size distribution, complex refractive index of the particles, and their number concentration. Both mono- and bimodal aerosol mixtures were considered. Our algorithm allowed for definitive evaluation of error propagation from measurements to retrievals using a Monte Carlo technique, which involves random distortion of the observations and statistical characterization of the resulting retrieval errors. Our tests demonstrated that supplementing a conventional monostatic HSRL with an additional receiver dramatically increases the information content of the measurements and allows for a sufficiently accurate characterization of tropospheric aerosols.

  14. Developments in the Aerosol Layer Height Retrieval Algorithm for the Copernicus Sentinel-4/UVN Instrument

    Science.gov (United States)

    Nanda, Swadhin; Sanders, Abram; Veefkind, Pepijn

    2016-04-01

    The Sentinel-4 mission is a part of the European Commission's Copernicus programme, the goal of which is to provide geo-information to manage environmental assets, and to observe, understand and mitigate the effects of the changing climate. The Sentinel-4/UVN instrument design is motivated by the need to monitor trace gas concentrations and aerosols in the atmosphere from a geostationary orbit. The on-board instrument is a high resolution UV-VIS-NIR (UVN) spectrometer system that provides hourly radiance measurements over Europe and northern Africa with a spatial sampling of 8 km. The main application area of Sentinel-4/UVN is air quality. One of the data products that is being developed for Sentinel-4/UVN is the Aerosol Layer Height (ALH). The goal is to determine the height of aerosol plumes with a resolution of better than 0.5 - 1 km. The ALH product thus targets aerosol layers in the free troposphere, such as desert dust, volcanic ash and biomass during plumes. KNMI is assigned with the development of the Aerosol Layer Height (ALH) algorithm. Its heritage is the ALH algorithm developed by Sanders and De Haan (ATBD, 2016) for the TROPOMI instrument on board the Sentinel-5 Precursor mission that is to be launched in June or July 2016 (tentative date). The retrieval algorithm designed so far for the aerosol height product is based on the absorption characteristics of the oxygen-A band (759-770 nm). The algorithm has heritage to the ALH algorithm developed for TROPOMI on the Sentinel 5 precursor satellite. New aspects for Sentinel-4/UVN include the higher resolution (0.116 nm compared to 0.4 for TROPOMI) and hourly observation from the geostationary orbit. The algorithm uses optimal estimation to obtain a spectral fit of the reflectance across absorption band, while assuming a single uniform layer with fixed width to represent the aerosol vertical distribution. The state vector includes amongst other elements the height of this layer and its aerosol optical

  15. An effective inversion algorithm for retrieving bimodal aerosol particle size distribution from spectral extinction data

    International Nuclear Information System (INIS)

    He, Zhenzong; Qi, Hong; Yao, Yuchen; Ruan, Liming

    2014-01-01

    The Ant Colony Optimization algorithm based on the probability density function (PDF-ACO) is applied to estimate the bimodal aerosol particle size distribution (PSD). The direct problem is solved by the modified Anomalous Diffraction Approximation (ADA, as an approximation for optically large and soft spheres, i.e., χ⪢1 and |m−1|⪡1) and the Beer–Lambert law. First, a popular bimodal aerosol PSD and three other bimodal PSDs are retrieved in the dependent model by the multi-wavelength extinction technique. All the results reveal that the PDF-ACO algorithm can be used as an effective technique to investigate the bimodal PSD. Then, the Johnson's S B (J-S B ) function and the modified beta (M-β) function are employed as the general distribution function to retrieve the bimodal PSDs under the independent model. Finally, the J-S B and M-β functions are applied to recover actual measurement aerosol PSDs over Beijing and Shanghai obtained from the aerosol robotic network (AERONET). The numerical simulation and experimental results demonstrate that these two general functions, especially the J-S B function, can be used as a versatile distribution function to retrieve the bimodal aerosol PSD when no priori information about the PSD is available. - Highlights: • Bimodal PSDs are retrieved by ACO based on probability density function accurately. • J-S B and M-β functions can be used as the versatile function to recover bimodal PSDs. • Bimodal aerosol PSDs can be estimated by J-S B function more reasonably

  16. Satellite Ocean Aerosol Retrieval (SOAR) Algorithm Extension to S-NPP VIIRS as Part of the "Deep Blue" Aerosol Project

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Lee, J.; Bettenhausen, C.; Kim, W. V.; Smirnov, A.

    2018-01-01

    The Suomi National Polar-Orbiting Partnership (S-NPP) satellite, launched in late 2011, carries the Visible Infrared Imaging Radiometer Suite (VIIRS) and several other instruments. VIIRS has similar characteristics to prior satellite sensors used for aerosol optical depth (AOD) retrieval, allowing the continuation of space-based aerosol data records. The Deep Blue algorithm has previously been applied to retrieve AOD from Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Moderate Resolution Imaging Spectroradiometer (MODIS) measurements over land. The SeaWiFS Deep Blue data set also included a SeaWiFS Ocean Aerosol Retrieval (SOAR) algorithm to cover water surfaces. As part of NASA's VIIRS data processing, Deep Blue is being applied to VIIRS data over land, and SOAR has been adapted from SeaWiFS to VIIRS for use over water surfaces. This study describes SOAR as applied in version 1 of NASA's S-NPP VIIRS Deep Blue data product suite. Several advances have been made since the SeaWiFS application, as well as changes to make use of the broader spectral range of VIIRS. A preliminary validation against Maritime Aerosol Network (MAN) measurements suggests a typical uncertainty on retrieved 550 nm AOD of order ±(0.03+10%), comparable to existing SeaWiFS/MODIS aerosol data products. Retrieved Ångström exponent and fine-mode AOD fraction are also well correlated with MAN data, with small biases and uncertainty similar to or better than SeaWiFS/MODIS products.

  17. Development of an Aerosol Opacity Retrieval Algorithm for Use with Multi-Angle Land Surface Images

    Science.gov (United States)

    Diner, D.; Paradise, S.; Martonchik, J.

    1994-01-01

    In 1998, the Multi-angle Imaging SpectroRadiometer (MISR) will fly aboard the EOS-AM1 spacecraft. MISR will enable unique methods for retrieving the properties of atmospheric aerosols, by providing global imagery of the Earth at nine viewing angles in four visible and near-IR spectral bands. As part of the MISR algorithm development, theoretical methods of analyzing multi-angle, multi-spectral data are being tested using images acquired by the airborne Advanced Solid-State Array Spectroradiometer (ASAS). In this paper we derive a method to be used over land surfaces for retrieving the change in opacity between spectral bands, which can then be used in conjunction with an aerosol model to derive a bound on absolute opacity.

  18. Retrieval of Aerosol Microphysical Properties from AERONET Photo-Polarimetric Measurements. 2: A New Research Algorithm and Case Demonstration

    Science.gov (United States)

    Xu, Xiaoguang; Wang, Jun; Zeng, Jing; Spurr, Robert; Liu, Xiong; Dubovik, Oleg; Li, Li; Li, Zhengqiang; Mishchenko, Michael I.; Siniuk, Aliaksandr; hide

    2015-01-01

    A new research algorithm is presented here as the second part of a two-part study to retrieve aerosol microphysical properties from the multispectral and multiangular photopolarimetric measurements taken by Aerosol Robotic Network's (AERONET's) new-generation Sun photometer. The algorithm uses an advanced UNified and Linearized Vector Radiative Transfer Model and incorporates a statistical optimization approach.While the new algorithmhas heritage from AERONET operational inversion algorithm in constraining a priori and retrieval smoothness, it has two new features. First, the new algorithmretrieves the effective radius, effective variance, and total volume of aerosols associated with a continuous bimodal particle size distribution (PSD) function, while the AERONET operational algorithm retrieves aerosol volume over 22 size bins. Second, our algorithm retrieves complex refractive indices for both fine and coarsemodes,while the AERONET operational algorithm assumes a size-independent aerosol refractive index. Mode-resolved refractive indices can improve the estimate of the single-scattering albedo (SSA) for each aerosol mode and thus facilitate the validation of satellite products and chemistry transport models. We applied the algorithm to a suite of real cases over Beijing_RADI site and found that our retrievals are overall consistent with AERONET operational inversions but can offer mode-resolved refractive index and SSA with acceptable accuracy for the aerosol composed by spherical particles. Along with the retrieval using both radiance and polarization, we also performed radiance-only retrieval to demonstrate the improvements by adding polarization in the inversion. Contrast analysis indicates that with polarization, retrieval error can be reduced by over 50% in PSD parameters, 10-30% in the refractive index, and 10-40% in SSA, which is consistent with theoretical analysis presented in the companion paper of this two-part study.

  19. Statistically Optimized Inversion Algorithm for Enhanced Retrieval of Aerosol Properties from Spectral Multi-Angle Polarimetric Satellite Observations

    Science.gov (United States)

    Dubovik, O; Herman, M.; Holdak, A.; Lapyonok, T.; Taure, D.; Deuze, J. L.; Ducos, F.; Sinyuk, A.

    2011-01-01

    The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns) that is not common in satellite observations. The POLDER imager on board the PARASOL microsatellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of all available angular observations obtained by the POLDER sensor in the window spectral channels where absorption by gas is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed at retrieval of extended set of parameters affecting measured radiation.

  20. Long-term analysis of aerosol optical depth over Northeast Asia using a satellite-based measurement: MI Yonsei Aerosol Retrieval Algorithm (YAER)

    Science.gov (United States)

    Kim, Mijin; Kim, Jhoon; Yoon, Jongmin; Chung, Chu-Yong; Chung, Sung-Rae

    2017-04-01

    In 2010, the Korean geostationary earth orbit (GEO) satellite, the Communication, Ocean, and Meteorological Satellite (COMS), was launched including the Meteorological Imager (MI). The MI measures atmospheric condition over Northeast Asia (NEA) using a single visible channel centered at 0.675 μm and four IR channels at 3.75, 6.75, 10.8, 12.0 μm. The visible measurement can also be utilized for the retrieval of aerosol optical properties (AOPs). Since the GEO satellite measurement has an advantage for continuous monitoring of AOPs, we can analyze the spatiotemporal variation of the aerosol using the MI observations over NEA. Therefore, we developed an algorithm to retrieve aerosol optical depth (AOD) using the visible observation of MI, and named as MI Yonsei Aerosol Retrieval Algorithm (YAER). In this study, we investigated the accuracy of MI YAER AOD by comparing the values with the long-term products of AERONET sun-photometer. The result showed that the MI AODs were significantly overestimated than the AERONET values over bright surface in low AOD case. Because the MI visible channel centered at red color range, contribution of aerosol signal to the measured reflectance is relatively lower than the surface contribution. Therefore, the AOD error in low AOD case over bright surface can be a fundamental limitation of the algorithm. Meanwhile, an assumption of background aerosol optical depth (BAOD) could result in the retrieval uncertainty, also. To estimate the surface reflectance by considering polluted air condition over the NEA, we estimated the BAOD from the MODIS dark target (DT) aerosol products by pixel. The satellite-based AOD retrieval, however, largely depends on the accuracy of the surface reflectance estimation especially in low AOD case, and thus, the BAOD could include the uncertainty in surface reflectance estimation of the satellite-based retrieval. Therefore, we re-estimated the BAOD using the ground-based sun-photometer measurement, and

  1. Simultaneous polarimeter retrievals of microphysical aerosol and ocean color parameters from the "MAPP" algorithm with comparison to high-spectral-resolution lidar aerosol and ocean products.

    Science.gov (United States)

    Stamnes, S; Hostetler, C; Ferrare, R; Burton, S; Liu, X; Hair, J; Hu, Y; Wasilewski, A; Martin, W; van Diedenhoven, B; Chowdhary, J; Cetinić, I; Berg, L K; Stamnes, K; Cairns, B

    2018-04-01

    We present an optimal-estimation-based retrieval framework, the microphysical aerosol properties from polarimetry (MAPP) algorithm, designed for simultaneous retrieval of aerosol microphysical properties and ocean color bio-optical parameters using multi-angular total and polarized radiances. Polarimetric measurements from the airborne NASA Research Scanning Polarimeter (RSP) were inverted by MAPP to produce atmosphere and ocean products. The RSP MAPP results are compared with co-incident lidar measurements made by the NASA High-Spectral-Resolution Lidar HSRL-1 and HSRL-2 instruments. Comparisons are made of the aerosol optical depth (AOD) at 355 and 532 nm, lidar column-averaged measurements of the aerosol lidar ratio and Ångstrøm exponent, and lidar ocean measurements of the particulate hemispherical backscatter coefficient and the diffuse attenuation coefficient. The measurements were collected during the 2012 Two-Column Aerosol Project (TCAP) campaign and the 2014 Ship-Aircraft Bio-Optical Research (SABOR) campaign. For the SABOR campaign, 73% RSP MAPP retrievals fall within ±0.04 AOD at 532 nm as measured by HSRL-1, with an R value of 0.933 and root-mean-square deviation of 0.0372. For the TCAP campaign, 53% of RSP MAPP retrievals are within 0.04 AOD as measured by HSRL-2, with an R value of 0.927 and root-mean-square deviation of 0.0673. Comparisons with HSRL-2 AOD at 355 nm during TCAP result in an R value of 0.959 and a root-mean-square deviation of 0.0694. The RSP retrievals using the MAPP optimal estimation framework represent a key milestone on the path to a combined lidar + polarimeter retrieval using both HSRL and RSP measurements.

  2. Assessment of two aerosol optical thickness retrieval algorithms applied to MODIS Aqua and Terra measurements in Europe

    Directory of Open Access Journals (Sweden)

    P. Glantz

    2012-07-01

    Full Text Available The aim of the present study is to validate AOT (aerosol optical thickness and Ångström exponent (α, obtained from MODIS (MODerate resolution Imaging Spectroradiometer Aqua and Terra calibrated level 1 data (1 km horizontal resolution at ground with the SAER (Satellite AErosol Retrieval algorithm and with MODIS Collection 5 (c005 standard product retrievals (10 km horizontal resolution, against AERONET (AErosol RObotic NETwork sun photometer observations over land surfaces in Europe. An inter-comparison of AOT at 0.469 nm obtained with the two algorithms has also been performed. The time periods investigated were chosen to enable a validation of the findings of the two algorithms for a maximal possible variation in sun elevation. The satellite retrievals were also performed with a significant variation in the satellite-viewing geometry, since Aqua and Terra passed the investigation area twice a day for several of the cases analyzed. The validation with AERONET shows that the AOT at 0.469 and 0.555 nm obtained with MODIS c005 is within the expected uncertainty of one standard deviation of the MODIS c005 retrievals (ΔAOT = ± 0.05 ± 0.15 · AOT. The AOT at 0.443 nm retrieved with SAER, but with a much finer spatial resolution, also agreed reasonably well with AERONET measurements. The majority of the SAER AOT values are within the MODIS c005 expected uncertainty range, although somewhat larger average absolute deviation occurs compared to the results obtained with the MODIS c005 algorithm. The discrepancy between AOT from SAER and AERONET is, however, substantially larger for the wavelength 488 nm. This means that the values are, to a larger extent, outside of the expected MODIS uncertainty range. In addition, both satellite retrieval algorithms are unable to estimate α accurately, although the MODIS c005 algorithm performs better. Based on the inter-comparison of the SAER and MODIS c005 algorithms, it was found that SAER on the whole is

  3. GOCI Yonsei aerosol retrieval version 2 aerosol products: improved algorithm description and error analysis with uncertainty estimation from 5-year validation over East Asia

    Science.gov (United States)

    Choi, M.; Kim, J.; Lee, J.; KIM, M.; Park, Y. J.; Holben, B. N.; Eck, T. F.; Li, Z.; Song, C. H.

    2017-12-01

    The Geostationary Ocean Color Imager (GOCI) Yonsei aerosol retrieval (YAER) version 1 algorithm was developed for retrieving hourly aerosol optical depth at 550 nm (AOD) and other subsidiary aerosol optical properties over East Asia. The GOCI YAER AOD showed comparable accuracy compared to ground-based and other satellite-based observations, but still had errors due to uncertainties in surface reflectance and simple cloud masking. Also, it was not capable of near-real-time (NRT) processing because it required a monthly database of each year encompassing the day of retrieval for the determination of surface reflectance. This study describes the improvement of GOCI YAER algorithm to the version 2 (V2) for NRT processing with improved accuracy from the modification of cloud masking, surface reflectance determination using multi-year Rayleigh corrected reflectance and wind speed database, and inversion channels per surface conditions. Therefore, the improved GOCI AOD ( ) is similar with those of Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) AOD compared to V1 of the YAER algorithm. The shows reduced median bias and increased ratio within range (i.e. absolute expected error range of MODIS AOD) compared to V1 in the validation results using Aerosol Robotic Network (AERONET) AOD ( ) from 2011 to 2016. The validation using the Sun-Sky Radiometer Observation Network (SONET) over China also shows similar results. The bias of error ( is within -0.1 and 0.1 range as a function of AERONET AOD and AE, scattering angle, NDVI, cloud fraction and homogeneity of retrieved AOD, observation time, month, and year. Also, the diagnostic and prognostic expected error (DEE and PEE, respectively) of are estimated. The estimated multiple PEE of GOCI V2 AOD is well matched with actual error over East Asia, and the GOCI V2 AOD over Korea shows higher ratio within PEE compared to over China and Japan. Hourly AOD products based on the

  4. Validation of new satellite aerosol optical depth retrieval algorithm using Raman lidar observations at radiative transfer laboratory in Warsaw

    Science.gov (United States)

    Zawadzka, Olga; Stachlewska, Iwona S.; Markowicz, Krzysztof M.; Nemuc, Anca; Stebel, Kerstin

    2018-04-01

    During an exceptionally warm September of 2016, the unique, stable weather conditions over Poland allowed for an extensive testing of the new algorithm developed to improve the Meteosat Second Generation (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) aerosol optical depth (AOD) retrieval. The development was conducted in the frame of the ESA-ESRIN SAMIRA project. The new AOD algorithm aims at providing the aerosol optical depth maps over the territory of Poland with a high temporal resolution of 15 minutes. It was tested on the data set obtained between 11-16 September 2016, during which a day of relatively clean atmospheric background related to an Arctic airmass inflow was surrounded by a few days with well increased aerosol load of different origin. On the clean reference day, for estimating surface reflectance the AOD forecast available on-line via the Copernicus Atmosphere Monitoring Service (CAMS) was used. The obtained AOD maps were validated against AODs available within the Poland-AOD and AERONET networks, and with AOD values obtained from the PollyXT-UW lidar. of the University of Warsaw (UW).

  5. Evaluation of seven European aerosol optical depth retrieval algorithms for climate analysis

    NARCIS (Netherlands)

    Leeuw, G. de; Holzer-Popp, T.; Bevan, S.; Davies, W.H.; Descloitres, J.; Grainger, R.G.; Griesfeller, J.; Heckel, A.; Kinne, S.; Klüser, L.; Kolmonen, P.; Litvinov, P.; Martynenko, D.; North, P.; Ovigneur, B.; Pascal, N.; Poulsen, C.; Ramon, D.; Schulz, M.; Siddans, R.; Sogacheva, L.; Tanré, D.; Thomas, G.E.; Virtanen, T.H.; von Hoyningen Huene, W.; Vountas, M.; Pinnock, S.

    2015-01-01

    Satellite data are increasingly used to provide observation-based estimates of the effects of aerosols on climate. The Aerosol-cci project, part of the European Space Agency's Climate Change Initiative (CCI), was designed to provide essential climate variables for aerosols from satellite data. Eight

  6. Algorithms to retrieve optical properties of three component aerosols from two-wavelength backscatter and one-wavelength polarization lidar measurements considering nonsphericity of dust

    International Nuclear Information System (INIS)

    Nishizawa, Tomoaki; Sugimoto, Nobuo; Matsui, Ichiro; Shimizu, Atsushi; Okamoto, Hajime

    2011-01-01

    We developed backward and forward types of algorithms for estimating the vertical profiles of extinction coefficients at 532 nm for three component aerosols (water-soluble, dust, and sea salt) using three-channel Mie-scattering lidar data of the backscatter (β) at 532 and 1064 nm and the depolarization ratio (δ) at 532 nm. While the water-soluble and sea-salt particles were reasonably assumed to be spherical, the dust particles were treated as randomly oriented spheroids to account for their nonsphericity. The introduction of spheroid models enabled us to more effectively use the three-channel data (i.e., 2β+1δ data) and to reduce the uncertainties caused by the assumption of spherical dust particles in our previously developed algorithms. We also performed an extensive sensitivity study to estimate retrieval errors, which showed that the errors in the extinction coefficient for each aerosol component were smaller than 30% (60%) for the backward (forward) algorithm when the measurement errors were ±5%. We demonstrated the ability of the algorithms to partition aerosol layers consisting of three aerosol components by applying them to shipborne lidar data. Comparisons with sky radiometer measurements revealed that the retrieved optical thickness and angstrom exponent of aerosols using the algorithms developed in this paper agreed well with the sky radiometer measurements (within 6%).

  7. Aerosol Retrievals Over Land and Water using Deep Blue Algorithm from SeaWiFS and MODIS during UAE2 Field Campaign

    Science.gov (United States)

    Hsu, N.

    2005-12-01

    The environment in Southwest Asia exhibits one of the most complex situations for aerosol remote sensing from space. Several air masses with different aerosol characteristics commonly converge in this region. In particular, there are often fine mode pollution particles generated from oil industry activities in the Persian Gulf colliding with coarse mode dust particles lifted from desert sources in the surrounding areas. During the course of the UAE field campaign (August-October, 2004), we provided near-real time information, calculated using the Deep Blue algorithm, of satellite aerosol optical thickness and Angstrom exponent over the Southwest Asia region, including the Arabian Peninsula, Iran, Afghanistan, Pakistan, and part of north Africa. In this paper, we will present results of aerosol characteristics retrieved from SeaWiFS and MODIS over the Arabian Peninsula, Persian Gulf, and the Arabian Sea during the UAE experiment. The spectral surface reflectance data base constructed using satellite reflectance from MODIS and SeaWiFS employed in our algorithm will be discussed. We will also compare the resulting satellite retrieved aerosol optical thickness and Angstrom exponent with those obtained from the ground based sun photometers from AERONET in the region. Finally, we will discuss the changes in shortwave and longwave fluxes at the top of atmosphere in response to changes in aerosol optical thickness (i.e. aerosol forcing).

  8. Adaptation of an aerosol retrieval algorithm using multi-wavelength and multi-pixel information of satellites (MWPM) to GOSAT/TANSO-CAI

    Science.gov (United States)

    Hashimoto, M.; Takenaka, H.; Higurashi, A.; Nakajima, T.

    2017-12-01

    Aerosol in the atmosphere is an important constituent for determining the earth's radiation budget, so the accurate aerosol retrievals from satellite is useful. We have developed a satellite remote sensing algorithm to retrieve the aerosol optical properties using multi-wavelength and multi-pixel information of satellite imagers (MWPM). The method simultaneously derives aerosol optical properties, such as aerosol optical thickness (AOT), single scattering albedo (SSA) and aerosol size information, by using spatial difference of wavelegths (multi-wavelength) and surface reflectances (multi-pixel). The method is useful for aerosol retrieval over spatially heterogeneous surface like an urban region. In this algorithm, the inversion method is a combination of an optimal method and smoothing constraint for the state vector. Furthermore, this method has been combined with the direct radiation transfer calculation (RTM) numerically solved by each iteration step of the non-linear inverse problem, without using look up table (LUT) with several constraints. However, it takes too much computation time. To accelerate the calculation time, we replaced the RTM with an accelerated RTM solver learned by neural network-based method, EXAM (Takenaka et al., 2011), using Rster code. And then, the calculation time was shorternd to about one thouthandth. We applyed MWPM combined with EXAM to GOSAT/TANSO-CAI (Cloud and Aerosol Imager). CAI is a supplement sensor of TANSO-FTS, dedicated to measure cloud and aerosol properties. CAI has four bands, 380, 674, 870 and 1600 nm, and observes in 500 meters resolution for band1, band2 and band3, and 1.5 km for band4. Retrieved parameters are aerosol optical properties, such as aerosol optical thickness (AOT) of fine and coarse mode particles at a wavelenth of 500nm, a volume soot fraction in fine mode particles, and ground surface albedo of each observed wavelength by combining a minimum reflectance method and Fukuda et al. (2013). We will show

  9. Aerosol retrieval experiments in the ESA Aerosol_cci project

    Directory of Open Access Journals (Sweden)

    T. Holzer-Popp

    2013-08-01

    Full Text Available Within the ESA Climate Change Initiative (CCI project Aerosol_cci (2010–2013, algorithms for the production of long-term total column aerosol optical depth (AOD datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1 a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2 a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome applied to four months of global data to identify mature algorithms, and (3 a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008 of data: qualitatively by inspection of monthly mean AOD maps and quantitatively by comparing daily gridded satellite data against daily averaged AERONET sun

  10. Retrieving global aerosol sources from satellites using inverse modeling

    Directory of Open Access Journals (Sweden)

    O. Dubovik

    2008-01-01

    Full Text Available Understanding aerosol effects on global climate requires knowing the global distribution of tropospheric aerosols. By accounting for aerosol sources, transports, and removal processes, chemical transport models simulate the global aerosol distribution using archived meteorological fields. We develop an algorithm for retrieving global aerosol sources from satellite observations of aerosol distribution by inverting the GOCART aerosol transport model.

    The inversion is based on a generalized, multi-term least-squares-type fitting, allowing flexible selection and refinement of a priori algorithm constraints. For example, limitations can be placed on retrieved quantity partial derivatives, to constrain global aerosol emission space and time variability in the results. Similarities and differences between commonly used inverse modeling and remote sensing techniques are analyzed. To retain the high space and time resolution of long-period, global observational records, the algorithm is expressed using adjoint operators.

    Successful global aerosol emission retrievals at 2°×2.5 resolution were obtained by inverting GOCART aerosol transport model output, assuming constant emissions over the diurnal cycle, and neglecting aerosol compositional differences. In addition, fine and coarse mode aerosol emission sources were inverted separately from MODIS fine and coarse mode aerosol optical thickness data, respectively. These assumptions are justified, based on observational coverage and accuracy limitations, producing valuable aerosol source locations and emission strengths. From two weeks of daily MODIS observations during August 2000, the global placement of fine mode aerosol sources agreed with available independent knowledge, even though the inverse method did not use any a priori information about aerosol sources, and was initialized with a "zero aerosol emission" assumption. Retrieving coarse mode aerosol emissions was less successful

  11. SEOM's Sentinel-3/OLCI' project CAWA: advanced GRASP aerosol retrieval

    Science.gov (United States)

    Dubovik, Oleg; litvinov, Pavel; Huang, Xin; Aspetsberger, Michael; Fuertes, David; Brockmann, Carsten; Fischer, Jürgen; Bojkov, Bojan

    2016-04-01

    The CAWA "Advanced Clouds, Aerosols and WAter vapour products for Sentinel-3/OLCI" ESA-SEOM project aims on the development of advanced atmospheric retrieval algorithms for the Sentinel-3/OLCI mission, and is prepared using Envisat/MERIS and Aqua/MODIS datasets. This presentation discusses mainly CAWA aerosol product developments and results. CAWA aerosol retrieval uses recently developed GRASP algorithm (Generalized Retrieval of Aerosol and Surface Properties) algorithm described by Dubovik et al. (2014). GRASP derives extended set of atmospheric parameters using multi-pixel concept - a simultaneous fitting of a large group of pixels under additional a priori constraints limiting the time variability of surface properties and spatial variability of aerosol properties. Over land GRASP simultaneously retrieves properties of both aerosol and underlying surface even over bright surfaces. GRAPS doesn't use traditional look-up-tables and performs retrieval as search in continuous space of solution. All radiative transfer calculations are performed as part of the retrieval. The results of comprehensive sensitivity tests, as well as results obtained from real Envisat/MERIS data will be presented. The tests analyze various aspects of aerosol and surface reflectance retrieval accuracy. In addition, the possibilities of retrieval improvement by means of implementing synergetic inversion of a combination of OLCI data with observations by SLSTR are explored. Both the results of numerical tests, as well as the results of processing several years of Envisat/MERIS data illustrate demonstrate reliable retrieval of AOD (Aerosol Optical Depth) and surface BRDF. Observed retrieval issues and advancements will be discussed. For example, for some situations we illustrate possibilities of retrieving aerosol absorption - property that hardly accessible from satellite observations with no multi-angular and polarimetric capabilities.

  12. Aerosol optical properties derived from the DRAGON-NE Asia campaign, and implications for a single-channel algorithm to retrieve aerosol optical depth in spring from Meteorological Imager (MI on-board the Communication, Ocean, and Meteorological Satellite (COMS

    Directory of Open Access Journals (Sweden)

    M. Kim

    2016-02-01

    Full Text Available An aerosol model optimized for northeast Asia is updated with the inversion data from the Distributed Regional Aerosol Gridded Observation Networks (DRAGON-northeast (NE Asia campaign which was conducted during spring from March to May 2012. This updated aerosol model was then applied to a single visible channel algorithm to retrieve aerosol optical depth (AOD from a Meteorological Imager (MI on-board the geostationary meteorological satellite, Communication, Ocean, and Meteorological Satellite (COMS. This model plays an important role in retrieving accurate AOD from a single visible channel measurement. For the single-channel retrieval, sensitivity tests showed that perturbations by 4 % (0.926 ± 0.04 in the assumed single scattering albedo (SSA can result in the retrieval error in AOD by over 20 %. Since the measured reflectance at the top of the atmosphere depends on both AOD and SSA, the overestimation of assumed SSA in the aerosol model leads to an underestimation of AOD. Based on the AErosol RObotic NETwork (AERONET inversion data sets obtained over East Asia before 2011, seasonally analyzed aerosol optical properties (AOPs were categorized by SSAs at 675 nm of 0.92 ± 0.035 for spring (March, April, and May. After the DRAGON-NE Asia campaign in 2012, the SSA during spring showed a slight increase to 0.93 ± 0.035. In terms of the volume size distribution, the mode radius of coarse particles was increased from 2.08 ± 0.40 to 2.14 ± 0.40. While the original aerosol model consists of volume size distribution and refractive indices obtained before 2011, the new model is constructed by using a total data set after the DRAGON-NE Asia campaign. The large volume of data in high spatial resolution from this intensive campaign can be used to improve the representative aerosol model for East Asia. Accordingly, the new AOD data sets retrieved from a single-channel algorithm, which uses a precalculated look-up table (LUT with the new aerosol model

  13. Aerosol Optical Properties Derived from the DRAGON-NE Asia Campaign, and Implications for a Single-Channel Algorithm to Retrieve Aerosol Optical Depth in Spring from Meteorological Imager (MI) On-Board the Communication, Ocean, and Meteorological Satellite (COMS)

    Science.gov (United States)

    Kim, M.; Kim, J.; Jeong, U.; Kim, W.; Hong, H.; Holben, B.; Eck, T. F.; Lim, J.; Song, C.; Lee, S.; hide

    2016-01-01

    An aerosol model optimized for northeast Asia is updated with the inversion data from the Distributed Regional Aerosol Gridded Observation Networks (DRAGON)-northeast (NE) Asia campaign which was conducted during spring from March to May 2012. This updated aerosol model was then applied to a single visible channel algorithm to retrieve aerosol optical depth (AOD) from a Meteorological Imager (MI) on-board the geostationary meteorological satellite, Communication, Ocean, and Meteorological Satellite (COMS). This model plays an important role in retrieving accurate AOD from a single visible channel measurement. For the single-channel retrieval, sensitivity tests showed that perturbations by 4 % (0.926 +/- 0.04) in the assumed single scattering albedo (SSA) can result in the retrieval error in AOD by over 20 %. Since the measured reflectance at the top of the atmosphere depends on both AOD and SSA, the overestimation of assumed SSA in the aerosol model leads to an underestimation of AOD. Based on the AErosol RObotic NETwork (AERONET) inversion data sets obtained over East Asia before 2011, seasonally analyzed aerosol optical properties (AOPs) were categorized by SSAs at 675 nm of 0.92 +/- 0.035 for spring (March, April, and May). After the DRAGON-NE Asia campaign in 2012, the SSA during spring showed a slight increase to 0.93 +/- 0.035. In terms of the volume size distribution, the mode radius of coarse particles was increased from 2.08 +/- 0.40 to 2.14 +/- 0.40. While the original aerosol model consists of volume size distribution and refractive indices obtained before 2011, the new model is constructed by using a total data set after the DRAGON-NE Asia campaign. The large volume of data in high spatial resolution from this intensive campaign can be used to improve the representative aerosol model for East Asia. Accordingly, the new AOD data sets retrieved from a single-channel algorithm, which uses a precalculated look-up table (LUT) with the new aerosol model, show

  14. GOCI Yonsei aerosol retrieval version 2 products: an improved algorithm and error analysis with uncertainty estimation from 5-year validation over East Asia

    Science.gov (United States)

    Choi, Myungje; Kim, Jhoon; Lee, Jaehwa; Kim, Mijin; Park, Young-Je; Holben, Brent; Eck, Thomas F.; Li, Zhengqiang; Song, Chul H.

    2018-01-01

    The Geostationary Ocean Color Imager (GOCI) Yonsei aerosol retrieval (YAER) version 1 algorithm was developed to retrieve hourly aerosol optical depth at 550 nm (AOD) and other subsidiary aerosol optical properties over East Asia. The GOCI YAER AOD had accuracy comparable to ground-based and other satellite-based observations but still had errors because of uncertainties in surface reflectance and simple cloud masking. In addition, near-real-time (NRT) processing was not possible because a monthly database for each year encompassing the day of retrieval was required for the determination of surface reflectance. This study describes the improved GOCI YAER algorithm version 2 (V2) for NRT processing with improved accuracy based on updates to the cloud-masking and surface-reflectance calculations using a multi-year Rayleigh-corrected reflectance and wind speed database, and inversion channels for surface conditions. The improved GOCI AOD τG is closer to that of the Moderate Resolution Imaging Spectroradiometer (MODIS) and Visible Infrared Imaging Radiometer Suite (VIIRS) AOD than was the case for AOD from the YAER V1 algorithm. The V2 τG has a lower median bias and higher ratio within the MODIS expected error range (0.60 for land and 0.71 for ocean) compared with V1 (0.49 for land and 0.62 for ocean) in a validation test against Aerosol Robotic Network (AERONET) AOD τA from 2011 to 2016. A validation using the Sun-Sky Radiometer Observation Network (SONET) over China shows similar results. The bias of error (τG - τA) is within -0.1 and 0.1, and it is a function of AERONET AOD and Ångström exponent (AE), scattering angle, normalized difference vegetation index (NDVI), cloud fraction and homogeneity of retrieved AOD, and observation time, month, and year. In addition, the diagnostic and prognostic expected error (PEE) of τG are estimated. The estimated PEE of GOCI V2 AOD is well correlated with the actual error over East Asia, and the GOCI V2 AOD over South

  15. AMARSI: Aerosol modeling and retrieval from multi-spectral imagers

    NARCIS (Netherlands)

    Leeuw, G. de; Curier, R.L.; Staroverova, A.; Kokhanovsky, A.; Hoyningen-Huene, W. van; Rozanov, V.V.; Burrows, J.P.; Hesselmans, G.; Gale, L.; Bouvet, M.

    2008-01-01

    The AMARSI project aims at the development and validation of aerosol retrieval algorithms over ocean. One algorithm will be developed for application with data from the Multi Spectral Imager (MSI) on EarthCARE. A second algorithm will be developed using the combined information from AATSR and MERIS,

  16. Accuracy assessment of Terra-MODIS aerosol optical depth retrievals

    International Nuclear Information System (INIS)

    Safarpour, Sahabeh; Abdullah, Khiruddin; Lim, Hwee San; Dadras, Mohsen

    2014-01-01

    Moderate Resolution Imaging Spectroradiometer (MODIS) aerosol products have been widely used to address environment and climate change subjects with daily global coverage. Aerosol optical depth (AOD) is retrieved by different algorithms based on the pixel surface, determining between land and ocean. MODIS-Terra and Global Aerosol Robotic Network (AERONET) products can be obtained from the Multi-sensor Aerosol Products Sampling System (MAPSS) for coastal regions during 2000-2010. Using data collected from 83 coastal stations worldwide from AERONET from 2000-2010, accuracy assessments are made for coastal aerosol optical depth (AOD) retrieved from MODIS aboard the Terra satellite. AOD retrieved from MODIS at 0.55μm wavelength has been compared With the AERONET derived AOD, because it is reliable with the major wavelength used by many chemistry transport and climate models as well as previous MODIS validation studies. After removing retrievals with quality flags below1 for Ocean algorithm and below 3 for Land algorithm, The accuracy of AOD retrieved from MODIS Dark Target Ocean algorithms (correlation coefficient R 2 is 0.844 and a regression equation of τ M = 0.91·τ A + 0.02 (where subscripts M and A represent MODIS and AERONET respectively), is the greater than the MODIS Dark Target Land algorithms (correlation coefficient R 2 is 0.764 and τ M = 0.95·τ A + 0.03) and the Deep Blue algorithm (correlation coefficient R 2 is 0.652 and τ M = 0.81·τ A + 0.04). The reasons of the retrieval error in AOD are found to be the various underlying surface reflectance. Therefore, the aerosol models and underlying surface reflectance are the dominant factors which influence the accuracy of MODIS retrieval performance. Generally the MODIS Land algorithm implements better than the Ocean algorithm for coastal sites

  17. Arrange and average algorithm for the retrieval of aerosol parameters from multiwavelength high-spectral-resolution lidar/Raman lidar data.

    Science.gov (United States)

    Chemyakin, Eduard; Müller, Detlef; Burton, Sharon; Kolgotin, Alexei; Hostetler, Chris; Ferrare, Richard

    2014-11-01

    We present the results of a feasibility study in which a simple, automated, and unsupervised algorithm, which we call the arrange and average algorithm, is used to infer microphysical parameters (complex refractive index, effective radius, total number, surface area, and volume concentrations) of atmospheric aerosol particles. The algorithm uses backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm as input information. Testing of the algorithm is based on synthetic optical data that are computed from prescribed monomodal particle size distributions and complex refractive indices that describe spherical, primarily fine mode pollution particles. We tested the performance of the algorithm for the "3 backscatter (β)+2 extinction (α)" configuration of a multiwavelength aerosol high-spectral-resolution lidar (HSRL) or Raman lidar. We investigated the degree to which the microphysical results retrieved by this algorithm depends on the number of input backscatter and extinction coefficients. For example, we tested "3β+1α," "2β+1α," and "3β" lidar configurations. This arrange and average algorithm can be used in two ways. First, it can be applied for quick data processing of experimental data acquired with lidar. Fast automated retrievals of microphysical particle properties are needed in view of the enormous amount of data that can be acquired by the NASA Langley Research Center's airborne "3β+2α" High-Spectral-Resolution Lidar (HSRL-2). It would prove useful for the growing number of ground-based multiwavelength lidar networks, and it would provide an option for analyzing the vast amount of optical data acquired with a future spaceborne multiwavelength lidar. The second potential application is to improve the microphysical particle characterization with our existing inversion algorithm that uses Tikhonov's inversion with regularization. This advanced algorithm has recently undergone development to allow automated and

  18. MODIS Retrieval of Aerosol Optical Depth over Turbid Coastal Water

    Directory of Open Access Journals (Sweden)

    Yi Wang

    2017-06-01

    Full Text Available We present a new approach to retrieve Aerosol Optical Depth (AOD using the Moderate Resolution Imaging Spectroradiometer (MODIS over the turbid coastal water. This approach supplements the operational Dark Target (DT aerosol retrieval algorithm that currently does not conduct AOD retrieval in shallow waters that have visible sediments or sea-floor (i.e., Class 2 waters. Over the global coastal water regions in cloud-free conditions, coastal screening leads to ~20% unavailability of AOD retrievals. Here, we refine the MODIS DT algorithm by considering that water-leaving radiance at 2.1 μm to be negligible regardless of water turbidity, and therefore the 2.1 μm reflectance at the top of the atmosphere is sensitive to both change of fine-mode and coarse-mode AODs. By assuming that the aerosol single scattering properties over coastal turbid water are similar to those over the adjacent open-ocean pixels, the new algorithm can derive AOD over these shallow waters. The test algorithm yields ~18% more MODIS-AERONET collocated pairs for six AERONET stations in the coastal water regions. Furthermore, comparison of the new retrieval with these AERONET observations show that the new AOD retrievals have equivalent or better accuracy than those retrieved by the MODIS operational algorithm’s over coastal land and non-turbid coastal water product. Combining the new retrievals with the existing MODIS operational retrievals yields an overall improvement of AOD over those coastal water regions. Most importantly, this refinement extends the spatial and temporal coverage of MODIS AOD retrievals over the coastal regions where 60% of human population resides. This expanded coverage is crucial for better understanding of impact of anthropogenic aerosol particles on coastal air quality and climate.

  19. DARE : Dedicated Aerosols Retrieval Experiment

    NARCIS (Netherlands)

    Smorenburg, K.; Courrèges-Lacoste, G.B.; Decae, R.; Court, A.J.; Leeuw, G. de; Visser, H.

    2004-01-01

    At present there is an increasing interest in remote sensing of aerosols from space because of the large impact of aerosols on climate, earth observation and health. TNO has performed a study aimed at improving aerosol characterisation using a space based instrument and state-of-the-art aerosol

  20. Validating MODIS Above-Cloud Aerosol Optical Depth Retrieved from Color Ratio Algorithm Using Direct Measurements Made by NASA's Airborne AATS and 4STAR Sensors

    Science.gov (United States)

    Jethva, Hiren; Torres, Omar; Remer, Lorraine; Redemann, Jens; Livingston, John; Dunagan, Stephen; Shinozuka, Yohei; Kacenelenbogen, Meloe; Segal Rozenhaimer, Michal; Spurr, Rob

    2016-01-01

    We present the validation analysis of above-cloud aerosol optical depth (ACAOD) retrieved from the color ratio method applied to MODIS cloudy-sky reflectance measurements using the limited direct measurements made by NASAs airborne Ames Airborne Tracking Sunphotometer (AATS) and Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) sensors. A thorough search of the airborne database collection revealed a total of five significant events in which an airborne sun photometer, coincident with the MODIS overpass, observed partially absorbing aerosols emitted from agricultural biomass burning, dust, and wildfires over a low-level cloud deck during SAFARI-2000, ACE-ASIA 2001, and SEAC4RS 2013 campaigns, respectively. The co-located satellite-airborne match ups revealed a good agreement (root-mean-square difference less than 0.1), with most match ups falling within the estimated uncertainties associated with the MODIS retrievals (about -10 to +50 ). The co-retrieved cloud optical depth was comparable to that of the MODIS operational cloud product for ACE-ASIA and SEAC4RS, however, higher by 30-50% for the SAFARI-2000 case study. The reason for this discrepancy could be attributed to the distinct aerosol optical properties encountered during respective campaigns. A brief discussion on the sources of uncertainty in the satellite-based ACAOD retrieval and co-location procedure is presented. Field experiments dedicated to making direct measurements of aerosols above cloud are needed for the extensive validation of satellite based retrievals.

  1. Retrieving Smoke Aerosol Height from DSCOVR/EPIC

    Science.gov (United States)

    Xu, X.; Wang, J.; Wang, Y.

    2017-12-01

    Unlike industrial pollutant particles that are often confined within the planetary boundary layer, smoke from forest and agriculture fires can inject massive carbonaceous aerosols into the upper troposphere due to the intense pyro-convection. Sensitivity of weather and climate to absorbing carbonaceous aerosols is regulated by the altitude of those aerosol layers. However, aerosol height information remains limited from passive satellite sensors. Here we present an algorithm to estimate smoke aerosol height from radiances in the oxygen A and B bands measured by the Earth Polychromatic Imaging Camera (EPIC) from the Deep Space Climate Observatory (DSCOVR). With a suit of case studies and validation efforts, we demonstrate that smoke aerosol height can be well retrieved over both ocean and land surfaces multiple times daily.

  2. Retrieving aerosol in a cloudy environment: aerosol product availability as a function of spatial resolution

    Directory of Open Access Journals (Sweden)

    L. A. Remer

    2012-07-01

    Full Text Available The challenge of using satellite observations to retrieve aerosol properties in a cloudy environment is to prevent contamination of the aerosol signal from clouds, while maintaining sufficient aerosol product yield to satisfy specific applications. We investigate aerosol retrieval availability at different instrument pixel resolutions using the standard MODIS aerosol cloud mask applied to MODIS data and supplemented with a new GOES-R cloud mask applied to GOES data for a domain covering North America and surrounding oceans. Aerosol product availability is not the same as the cloud free fraction and takes into account the techniques used in the MODIS algorithm to avoid clouds, reduce noise and maintain sufficient numbers of aerosol retrievals. The inherent spatial resolution of each instrument, 0.5×0.5 km for MODIS and 1×1 km for GOES, is systematically degraded to 1×1, 2×2, 1×4, 4×4 and 8×8 km resolutions and then analyzed as to how that degradation would affect the availability of an aerosol retrieval, assuming an aerosol product resolution at 8×8 km. The analysis is repeated, separately, for near-nadir pixels and those at larger view angles to investigate the effect of pixel growth at oblique angles on aerosol retrieval availability. The results show that as nominal pixel size increases, availability decreases until at 8×8 km 70% to 85% of the retrievals available at 0.5 km, nadir, have been lost. The effect at oblique angles is to further decrease availability over land but increase availability over ocean, because sun glint is found at near-nadir view angles. Finer resolution sensors (i.e., 1×1, 2×2 or even 1×4 km will retrieve aerosols in partly cloudy scenes significantly more often than sensors with nadir views of 4×4 km or coarser. Large differences in the results of the two cloud masks designed for MODIS aerosol and GOES cloud products strongly reinforce that cloud masks must be developed with specific purposes in mind and

  3. Multiangle Implementation of Atmospheric Correction (MAIAC): 2. Aerosol Algorithm

    Science.gov (United States)

    Lyapustin, A.; Wang, Y.; Laszlo, I.; Kahn, R.; Korkin, S.; Remer, L.; Levy, R.; Reid, J. S.

    2011-01-01

    An aerosol component of a new multiangle implementation of atmospheric correction (MAIAC) algorithm is presented. MAIAC is a generic algorithm developed for the Moderate Resolution Imaging Spectroradiometer (MODIS), which performs aerosol retrievals and atmospheric correction over both dark vegetated surfaces and bright deserts based on a time series analysis and image-based processing. The MAIAC look-up tables explicitly include surface bidirectional reflectance. The aerosol algorithm derives the spectral regression coefficient (SRC) relating surface bidirectional reflectance in the blue (0.47 micron) and shortwave infrared (2.1 micron) bands; this quantity is prescribed in the MODIS operational Dark Target algorithm based on a parameterized formula. The MAIAC aerosol products include aerosol optical thickness and a fine-mode fraction at resolution of 1 km. This high resolution, required in many applications such as air quality, brings new information about aerosol sources and, potentially, their strength. AERONET validation shows that the MAIAC and MOD04 algorithms have similar accuracy over dark and vegetated surfaces and that MAIAC generally improves accuracy over brighter surfaces due to the SRC retrieval and explicit bidirectional reflectance factor characterization, as demonstrated for several U.S. West Coast AERONET sites. Due to its generic nature and developed angular correction, MAIAC performs aerosol retrievals over bright deserts, as demonstrated for the Solar Village Aerosol Robotic Network (AERONET) site in Saudi Arabia.

  4. Retrieval of Aerosol Optical Depth over Land using two-angle view Satellite Radiometry during TARFOX

    NARCIS (Netherlands)

    Veefkind, J.P.; Leeuw, G. de; Durkee, P.H.

    1998-01-01

    A new aerosol optical depth retrieval algorithm is presented that uses the two-angle view capability of the Along Track Scanning Radiometer 2 (ATSR-2). By combining the two-angle view and the spectral information this so-called dual view algorithm separates between aerosol and surface contributions

  5. The Influence of Aerosol Hygroscopicity on Retrieving the Aerosol Extincting Coefficient from MPL Data

    Science.gov (United States)

    Zhao, G.; Zhao, C.

    2016-12-01

    Micro-pulse Lidar (MPL) measurements have been widely used to profile the ambient aerosol extincting coefficient(). Lidar Ratio (LR) ,which highly depends on the particle number size distribution (PNSD) and aerosol hygroscopicity, is the most important factor to retrieve the profile. A constant AOD constrained LR is usually used in current algorithms, which would lead to large bias when the relative humidity (RH) in the mixed layer is high. In this research, the influences of PNSD, aerosol hygroscopicity and RH profiles on the vertical variation of LR were investigated based on the datasets from field measurements in the North China Plain (NCP). Results show that LR can have an enhancement factor of more than 120% when the RH reaches to 92%. A new algorithm of retrieving the profile is proposed based on the variation of LR due to aerosol hygroscopicity. The magnitude and vertical structures of retrieved using this method can be significantly different to that of the fiexed LR method. The relative difference can reach up to 40% when the RH in the mixed layer is higher than 90% . Sensitivity studies show that RH profile and PNSD affect most on the retrieved by fiexed LR method. In view of this, a scheme of LR enhancement factor by RH is proposed in the NCP. The relative differnce of the calculated between using this scheme and the new algorithm with the variable LR can be less than 10%.

  6. Use of Multiangle Satellite Observations to Retrieve Aerosol Properties and Ocean Color

    Science.gov (United States)

    Martonchik, John V.; Diner, David; Khan, Ralph

    2005-01-01

    A new technique is described for retrieving aerosol over ocean water and the associated ocean color using multiangle satellite observations. Unlike current satellite aerosol retrieval algorithms which only utilize observations at red wavelengths and longer, with the assumption that these wavelengths have a negligible ocean (water-leaving radiance), this new algorithm uses all available spectral bands and simultaneously retrieves both aerosol properties and the spectral ocean color. We show some results of case studies using MISR data, performed over different water conditions (coastal water, blooms, and open water).

  7. Aerosol optical thickness retrieval over land and water using Global Ozone Monitoring Experiment (GOME) data

    NARCIS (Netherlands)

    Kusmierczyk-Michulec, J.; Leeuw, G. de

    2005-01-01

    An algorithm for the retrieval of the aerosol optical thickness over land and over water from Global Ozone Monitoring Experiment (GOME) data is presented. The cloud fraction in the GOME pixels is determined using the Fast Retrieval Scheme for Clouds From the Oxygen A Band (FRESCO) algorithm. Surface

  8. Improvements of a COMS Land Surface Temperature Retrieval Algorithm Based on the Temperature Lapse Rate and Water Vapor/Aerosol Effect

    Directory of Open Access Journals (Sweden)

    A-Ra Cho

    2015-02-01

    Full Text Available The National Meteorological Satellite Center in Korea retrieves land surface temperature (LST by applying the split-window LST algorithm (CSW_v1.0 to Communication, Ocean, and Meteorological Satellite (COMS data. Considerable errors were detected under conditions of high water vapor content or temperature lapse rates during validation with Moderate Resolution Imaging Spectroradiometer (MODIS LST because of the too simplified LST algorithm. In this study, six types of LST retrieval equations (CSW_v2.0 were developed to upgrade the CSW_v1.0. These methods were developed by classifying “dry,” “normal,” and “wet” cases for day and night and considering the relative sizes of brightness temperature difference (BTD values. Similar to CSW_v1.0, the LST retrieved by CSW_v2.0 had a correlation coefficient of 0.99 with the prescribed LST and a slightly larger bias of −0.03 K from 0.00K; the root mean square error (RMSE improved from 1.41 K to 1.39 K. In general, CSW_v2.0 improved the retrieval accuracy compared to CSW_v1.0, especially when the lapse rate was high (mid-day and dawn and the water vapor content was high. The spatial distributions of LST retrieved by CSW_v2.0 were found to be similar to the MODIS LST independently of the season, day/night, and geographic locations. The validation using one year’s MODIS LST data showed that CSW_v2.0 improved the retrieval accuracy of LST in terms of correlations (from 0.988 to 0.989, bias (from −1.009 K to 0.292 K, and RMSEs (from 2.613 K to 2.237 K.

  9. Improved MODIS aerosol retrieval in urban areas using a land classification approach and empirical orthogonal functions

    Science.gov (United States)

    Levitan, Nathaniel; Gross, Barry

    2016-10-01

    New, high-resolution aerosol products are required in urban areas to improve the spatial coverage of the products, in terms of both resolution and retrieval frequency. These new products will improve our understanding of the spatial variability of aerosols in urban areas and will be useful in the detection of localized aerosol emissions. Urban aerosol retrieval is challenging for existing algorithms because of the high spatial variability of the surface reflectance, indicating the need for improved urban surface reflectance models. This problem can be stated in the language of novelty detection as the problem of selecting aerosol parameters whose effective surface reflectance spectrum is not an outlier in some space. In this paper, empirical orthogonal functions, a reconstruction-based novelty detection technique, is used to perform single-pixel aerosol retrieval using the single angular and temporal sample provided by the MODIS sensor. The empirical orthogonal basis functions are trained for different land classes using the MODIS BRDF MCD43 product. Existing land classification products are used in training and aerosol retrieval. The retrieval is compared against the existing operational MODIS 3 KM Dark Target (DT) aerosol product and co-located AERONET data. Based on the comparison, our method allows for a significant increase in retrieval frequency and a moderate decrease in the known biases of MODIS urban aerosol retrievals.

  10. Global two-channel AVHRR aerosol climatology: effects of stratospheric aerosols and preliminary comparisons with MODIS and MISR retrievals

    International Nuclear Information System (INIS)

    Geogdzhayev, Igor V.; Mishchenko, Michael I.; Liu Li; Remer, Lorraine

    2004-01-01

    We present an update on the status of the global climatology of the aerosol column optical thickness and Angstrom exponent derived from channel-1 and -2 radiances of the Advanced Very High Resolution Radiometer (AVHRR) in the framework of the Global Aerosol Climatology Project (GACP). The latest version of the climatology covers the period from July 1983 to September 2001 and is based on an adjusted value of the diffuse component of the ocean reflectance as derived from extensive comparisons with ship sun-photometer data. We use the updated GACP climatology and Stratospheric Aerosol and Gas Experiment (SAGE) data to analyze how stratospheric aerosols from major volcanic eruptions can affect the GACP aerosol product. One possible retrieval strategy based on the AVHRR channel-1 and -2 data alone is to infer both the stratospheric and the tropospheric aerosol optical thickness while assuming fixed microphysical models for both aerosol components. The second approach is to use the SAGE stratospheric aerosol data in order to constrain the AVHRR retrieval algorithm. We demonstrate that the second approach yields a consistent long-term record of the tropospheric aerosol optical thickness and Angstrom exponent. Preliminary comparisons of the GACP aerosol product with MODerate resolution Imaging Spectrometer (MODIS) and Multiangle Imaging Spectro-Radiometer aerosol retrievals show reasonable agreement, the GACP global monthly optical thickness being lower than the MODIS one by approximately 0.03. Larger differences are observed on a regional scale. Comparisons of the GACP and MODIS Angstrom exponent records are less conclusive and require further analysis

  11. Preliminary results of the aerosol optical depth retrieval in Johor, Malaysia

    International Nuclear Information System (INIS)

    Lim, H Q; Lau, A M S; Kanniah, K D

    2014-01-01

    Monitoring of atmospheric aerosols over the urban area is important as tremendous amounts of pollutants are released by industrial activities and heavy traffic flow. Air quality monitoring by satellite observation provides better spatial coverage, however, detailed aerosol properties retrieval remains a challenge. This is due to the limitation of aerosol retrieval algorithm on high reflectance (bright surface) areas. The aim of this study is to retrieve aerosol optical depth over urban areas of Iskandar Malaysia; the main southern development zone in Johor state, using Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m resolution data. One of the important steps is the aerosol optical depth retrieval is to characterise different types of aerosols in the study area. This information will be used to construct a Look Up Table containing the simulated aerosol reflectance and corresponding aerosol optical depth. Thus, in this study we have characterised different aerosol types in the study area using Aerosol Robotic Network (AERONET) data. These data were processed using cluster analysis and the preliminary results show that the area is consisting of coastal urban (65%), polluted urban (27.5%), dust particles (6%) and heavy pollution (1.5%) aerosols

  12. The impact of aerosol vertical distribution on aerosol optical depth retrieval using CALIPSO and MODIS data: Case study over dust and smoke regions

    Science.gov (United States)

    Wu, Yerong; de Graaf, Martin; Menenti, Massimo

    2017-08-01

    Global quantitative aerosol information has been derived from MODerate Resolution Imaging SpectroRadiometer (MODIS) observations for decades since early 2000 and widely used for air quality and climate change research. However, the operational MODIS Aerosol Optical Depth (AOD) products Collection 6 (C6) can still be biased, because of uncertainty in assumed aerosol optical properties and aerosol vertical distribution. This study investigates the impact of aerosol vertical distribution on the AOD retrieval. We developed a new algorithm by considering dynamic vertical profiles, which is an adaptation of MODIS C6 Dark Target (C6_DT) algorithm over land. The new algorithm makes use of the aerosol vertical profile extracted from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) measurements to generate an accurate top of the atmosphere (TOA) reflectance for the AOD retrieval, where the profile is assumed to be a single layer and represented as a Gaussian function with the mean height as single variable. To test the impact, a comparison was made between MODIS DT and Aerosol Robotic Network (AERONET) AOD, over dust and smoke regions. The results show that the aerosol vertical distribution has a strong impact on the AOD retrieval. The assumed aerosol layers close to the ground can negatively bias the retrievals in C6_DT. Regarding the evaluated smoke and dust layers, the new algorithm can improve the retrieval by reducing the negative biases by 3-5%.

  13. Influence of 3D effects on 1D aerosol retrievals in synthetic, partially clouded scenes

    International Nuclear Information System (INIS)

    Stap, F.A.; Hasekamp, O.P.; Emde, C.; Röckmann, T.

    2016-01-01

    An important challenge in aerosol remote sensing is to retrieve aerosol properties in the vicinity of clouds and in cloud contaminated scenes. Satellite based multi-wavelength, multi-angular, photo-polarimetric instruments are particularly suited for this task as they have the ability to separate scattering by aerosol and cloud particles. Simultaneous aerosol/cloud retrievals using 1D radiative transfer codes cannot account for 3D effects such as shadows, cloud induced enhancements and darkening of cloud edges. In this study we investigate what errors are introduced on the retrieved optical and micro-physical aerosol properties, when these 3D effects are neglected in retrievals where the partial cloud cover is modeled using the Independent Pixel Approximation. To this end a generic, synthetic data set of PARASOL like observations for 3D scenes with partial, liquid water cloud cover is created. It is found that in scenes with random cloud distributions (i.e. broken cloud fields) and either low cloud optical thickness or low cloud fraction, the inversion algorithm can fit the observations and retrieve optical and micro-physical aerosol properties with sufficient accuracy. In scenes with non-random cloud distributions (e.g. at the edge of a cloud field) the inversion algorithm can fit the observations, however, here the retrieved real part of the refractive indices of both modes is biased. - Highlights: • An algorithm for retrieval of both aerosol and cloud properties is presented. • Radiative transfer models of 3D, partially clouded scenes are simulated. • Errors introduced in the retrieved aerosol properties are discussed.

  14. Aerosol properties over the Indian Ocean Experiment (INDOEX) campaign area retrieved from ATSR-2

    NARCIS (Netherlands)

    Robles-Gonzalez, C.; Leeuw, G.de; Decae, R.; Kusmierczyk-Michulec, J.T.; Stammes, P.

    2006-01-01

    Aerosol retrieved algorithms for ATSR-2 have been applied over land and water using data from the Indian Ocean Experiment (INDOEX) Intensive Field Phase (IFP) in February and March 1999. The goal was the extension of the ATSR-2 algorithms, developed for application over the U.S. east coast and

  15. Aerosol optical thickness retrieval over land and water using SCIAMACHY/GOME data

    NARCIS (Netherlands)

    Kusmierczyk-Michulec, J.; Leeuw, G. de

    2005-01-01

    An algorithm for the retrieval of the aerosol optical thickness over land and over water from SCIAMACHY (SCanning Imaging Absorption SpectroMeter for Atmospheric ChartographY) is presented. Because calibrated data are not yet available for the SCIAMACHY channels used by the algorithm, the concepts

  16. MODIS 3km Aerosol Product: Algorithm and Global Perspective

    Science.gov (United States)

    Remer, L. A.; Mattoo, S.; Levy, R. C.; Munchak, L.

    2013-01-01

    After more than a decade of producing a nominal 10 km aerosol product based on the dark target method, the MODIS aerosol team will be releasing a nominal 3 km product as part of their Collection 6 release. The new product differs from the original 10 km product only in the manner in which reflectance pixels are ingested, organized and selected by the aerosol algorithm. Overall, the 3 km product closely mirrors the 10 km product. However, the finer resolution product is able to retrieve over ocean closer to islands and coastlines, and is better able to resolve fine aerosol features such as smoke plumes over both ocean and land. In some situations, it provides retrievals over entire regions that the 10 km product barely samples. In situations traditionally difficult for the dark target algorithm, such as over bright or urban surfaces the 3 km product introduces isolated spikes of artificially high aerosol optical depth (AOD) that the 10 km algorithm avoids. Over land, globally, the 3 km product appears to be 0.01 to 0.02 higher than the 10 km product, while over ocean, the 3 km algorithm is retrieving a proportionally greater number of very low aerosol loading situations. Based on collocations with ground-based observations for only six months, expected errors associated with the 3 km land product are determined to be greater than for the 10 km product: 0.05 0.25 AOD. Over ocean, the suggestion is for expected errors to be the same as the 10 km product: 0.03 0.05 AOD. The advantage of the product is on the local scale, which will require continued evaluation not addressed here. Nevertheless, the new 3 km product is expected to provide important information complementary to existing satellite-derived products and become an important tool for the aerosol community.

  17. Nitrogen Dioxide Observations from the Geostationary Trace Gas and Aerosol Sensor Optimization (GeoTaso) Airborne Instrument: Retrieval Algorithm and Measurements During DISCOVER-AQ Texas 2013

    Science.gov (United States)

    Nowlan, Caroline R.; Liu, Xiong; Leitch, James W.; Chance, Kelly; Abad, Gonzalo Gonzalez; Liu, Xiaojun; Zoogman, Peter; Cole, Joshua; Delker, Thomas; Good, William; hide

    2016-01-01

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA Falcon aircraft in its first intensive field measurement campaign during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) Earth Venture Mission over Houston, Texas, in September 2013. Measurements of backscattered solar radiation between 420 and 465 nm collected on 4 days during the campaign are used to determine slant column amounts of NO2 at 250 m x 250 m spatial resolution with a fitting precision of 2.2 x 10(exp 15) molecules/sq cm. These slant columns are converted to tropospheric NO2 vertical columns using a radiative transfer model and trace gas profiles from the Community Multiscale Air Quality (CMAQ) model. Total column NO2 from GeoTASO is well correlated with ground-based Pandora observations (r = 0.90 on the most polluted and cloud-free day of measurements and r = 0.74 overall), with GeoTASO NO2 slightly higher for the most polluted observations. Surface NO2 mixing ratios inferred from GeoTASO using the CMAQ model show good correlation with NO2 measured in situ at the surface during the campaign (r = 0.85). NO2 slant columns from GeoTASO also agree well with preliminary retrievals from the GEO-CAPE Airborne Simulator (GCAS) which flew on the NASA King Air B200 (r = 0.81, slope = 0.91). Enhanced NO2 is resolvable over areas of traffic NOx emissions and near individual petrochemical facilities.

  18. Development and Testing of the New Surface LER Climatology for OMI UV Aerosol Retrievals

    Science.gov (United States)

    Gupta, Pawan; Torres, Omar; Jethva, Hiren; Ahn, Changwoo

    2014-01-01

    Ozone Monitoring Instrument (OMI) onboard Aura satellite retrieved aerosols properties using UV part of solar spectrum. The OMI near UV aerosol algorithm (OMAERUV) is a global inversion scheme which retrieves aerosol properties both over ocean and land. The current version of the algorithm makes use of TOMS derived Lambertian Equivalent Reflectance (LER) climatology. A new monthly climatology of surface LER at 354 and 388 nm have been developed. This will replace TOMS LER (380 nm and 354nm) climatology in OMI near UV aerosol retrieval algorithm. The main objectives of this study is to produce high resolution (quarter degree) surface LER sets as compared to existing one degree TOMS surface LERs, to product instrument and wavelength consistent surface climatology. Nine years of OMI observations have been used to derive monthly climatology of surface LER. MODIS derived aerosol optical depth (AOD) have been used to make aerosol corrections on OMI wavelengths. MODIS derived BRDF adjusted reflectance product has been also used to capture seasonal changes in the surface characteristics. Finally spatial and temporal averaging techniques have been used to fill the gaps around the globes, especially in the regions with consistent cloud cover such as Amazon. After implementation of new surface data in the research version of algorithm, comparisons of AOD and single scattering albedo (SSA) have been performed over global AERONET sites for year 2007. Preliminary results shows improvements in AOD retrievals globally but more significance improvement were observed over desert and bright locations. We will present methodology of deriving surface data sets and will discuss the observed changes in retrieved aerosol properties with respect to reference AERONET measurements.

  19. System engineering approach to GPM retrieval algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Rose, C. R. (Chris R.); Chandrasekar, V.

    2004-01-01

    System engineering principles and methods are very useful in large-scale complex systems for developing the engineering requirements from end-user needs. Integrating research into system engineering is a challenging task. The proposed Global Precipitation Mission (GPM) satellite will use a dual-wavelength precipitation radar to measure and map global precipitation with unprecedented accuracy, resolution and areal coverage. The satellite vehicle, precipitation radars, retrieval algorithms, and ground validation (GV) functions are all critical subsystems of the overall GPM system and each contributes to the success of the mission. Errors in the radar measurements and models can adversely affect the retrieved output values. Ground validation (GV) systems are intended to provide timely feedback to the satellite and retrieval algorithms based on measured data. These GV sites will consist of radars and DSD measurement systems and also have intrinsic constraints. One of the retrieval algorithms being studied for use with GPM is the dual-wavelength DSD algorithm that does not use the surface reference technique (SRT). The underlying microphysics of precipitation structures and drop-size distributions (DSDs) dictate the types of models and retrieval algorithms that can be used to estimate precipitation. Many types of dual-wavelength algorithms have been studied. Meneghini (2002) analyzed the performance of single-pass dual-wavelength surface-reference-technique (SRT) based algorithms. Mardiana (2003) demonstrated that a dual-wavelength retrieval algorithm could be successfully used without the use of the SRT. It uses an iterative approach based on measured reflectivities at both wavelengths and complex microphysical models to estimate both No and Do at each range bin. More recently, Liao (2004) proposed a solution to the Do ambiguity problem in rain within the dual-wavelength algorithm and showed a possible melting layer model based on stratified spheres. With the No and Do

  20. Retrievals and uncertainty analysis of aerosol single scattering albedo from MFRSR measurements

    International Nuclear Information System (INIS)

    Yin, Bangsheng; Min, Qilong; Joseph, Everette

    2015-01-01

    Aerosol single scattering albedo (SSA) can be retrieved from the ratio of diffuse horizontal and direct normal fluxes measured from multifilter rotating shadowband radiometer (MFRSR). In this study, the measurement channels at 415 nm and 870 nm are selected for aerosol optical depth (AOD) and Angstrom coefficient retrievals, and the measurements at 415 nm are used for aerosol SSA retrievals with the constraint of retrieved Angstrom coefficient. We extensively assessed various issues impacting on the accuracy of SSA retrieval from measurements to input parameters and assumptions. For cloud-free days with mean aerosol loading of 0.13–0.60, our sensitivity study indicated that: (1) 1% calibration uncertainty can result in 0.8–3.7% changes in retrieved SSA; (2) without considering the cosine respond correction and/or forward scattering correction will result in underestimation of 1.1–3.3% and/or 0.73% in retrieved SSA; (3) an overestimation of 0.1 in asymmetry factor can result in an underestimation of 2.54–3.4% in retrieved SSA; (4) for small aerosol loading (e.g., 0.13), the uncertainty associated with the choice of Rayleigh optical depth value can result in non-negligible change in retrieved SSA (e.g., 0.015); (5) an uncertainty of 0.05 for surface albedo can result in changes of 1.49–5.4% in retrieved SSA. We applied the retrieval algorithm to the MFRSR measurements at the Atmospheric Radiation Measurements (ARM) Southern Great Plains (SGP) site. The retrieved results of AOD, Angstrom coefficient, and SSA are basically consistent with other independent measurements from co-located instruments at the site. - Highlights: • Aerosol SSA is derived from MFRSR measured diffuse to direct normal irradiance ratio. • We extensively assessed various issues impacting on the accuracy of SSA retrieval. • The issues are mainly from measurements and model input parameters and assumptions. • We applied the retrieval algorithm to the MFRSR measurements at ARM SGP

  1. The influence of aerosols and land-use type on NO2 satellite retrieval over China

    Science.gov (United States)

    Liu, Mengyao; Lin, Jintai; Boersma, Folkert; Eskes, Henk; Chimot, Julien

    2017-04-01

    Both aerosols and surface reflectance have a strong influence on the retrieval of NO2 tropospheric vertical column densities (VCDs), especially over China with its heavy aerosol loading and rapid changes in land-use type. However, satellite retrievals of NO2 VCDs usually do not explicitly account for aerosol optical effects and surface reflectance anisotropy (BRDF) that varies in space and time. We develop an improved algorithm to derive tropospheric AMFs and VCDs over China from the OMI instrument - POMINO and DOMINO. This method can also be applied to TropOMI NO2 retrievals in the future. With small pixels of TropOMI and higher probability of encountering clear-sky scenes, the influence of BRDF and aerosol interference becomes more important than for OMI. Daily aerosol information is taken from the GEOS-Chem chemistry transport model and the aerosol optical depth (AOD) is adjusted via MODIS AOD climatology. We take the MODIS MCD43C2 C5 product to account for BRDF effects. The relative altitude of NO2 and aerosols is critical factor influencing the NO2 retrieval. In order to evaluate the aerosol extinction profiles (AEP) of GEOS-Chem improve our algorithm, we compare the GEOS-Chem simulation with CALIOP and develop a CALIOP AEP climatology to regulate the model's AEP. This provides a new way to include aerosol information into the tracer gas retrieval for OMI and TropOMI. Preliminary results indicate that the model performs reasonably well in reproducing the AEP shape. However, it seems to overestimate aerosols under 2km and underestimate above. We find that relative humidity (RH) is an important factor influencing the AEP shape when comparing the model with observations. If we adjust the GEOS-Chem RH to CALIOP's RH, the correlations of their AEPs also improve. Besides, take advantage of our retrieval method, we executed sensitivity tests to analyze their influences on NO2 trend and spatiotemporal variations in retrieval. It' the first time to investigate

  2. Multi-sensor cloud and aerosol retrieval simulator and remote sensing from model parameters - Part 2: Aerosols

    Science.gov (United States)

    Wind, Galina; da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-07-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a "simulated radiance" product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land-ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers.This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled.In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model subgrid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  3. Multi-Sensor Cloud and Aerosol Retrieval Simulator and Remote Sensing from Model Parameters . Part 2; Aerosols

    Science.gov (United States)

    Wind, Galina; Da Silva, Arlindo M.; Norris, Peter M.; Platnick, Steven; Mattoo, Shana; Levy, Robert C.

    2016-01-01

    The Multi-sensor Cloud Retrieval Simulator (MCRS) produces a simulated radiance product from any high-resolution general circulation model with interactive aerosol as if a specific sensor such as the Moderate Resolution Imaging Spectroradiometer (MODIS) were viewing a combination of the atmospheric column and land ocean surface at a specific location. Previously the MCRS code only included contributions from atmosphere and clouds in its radiance calculations and did not incorporate properties of aerosols. In this paper we added a new aerosol properties module to the MCRS code that allows users to insert a mixture of up to 15 different aerosol species in any of 36 vertical layers. This new MCRS code is now known as MCARS (Multi-sensor Cloud and Aerosol Retrieval Simulator). Inclusion of an aerosol module into MCARS not only allows for extensive, tightly controlled testing of various aspects of satellite operational cloud and aerosol properties retrieval algorithms, but also provides a platform for comparing cloud and aerosol models against satellite measurements. This kind of two-way platform can improve the efficacy of model parameterizations of measured satellite radiances, allowing the assessment of model skill consistently with the retrieval algorithm. The MCARS code provides dynamic controls for appearance of cloud and aerosol layers. Thereby detailed quantitative studies of the impacts of various atmospheric components can be controlled. In this paper we illustrate the operation of MCARS by deriving simulated radiances from various data field output by the Goddard Earth Observing System version 5 (GEOS-5) model. The model aerosol fields are prepared for translation to simulated radiance using the same model sub grid variability parameterizations as are used for cloud and atmospheric properties profiles, namely the ICA technique. After MCARS computes modeled sensor radiances equivalent to their observed counterparts, these radiances are presented as input to

  4. Extending "Deep Blue" Aerosol Retrieval Coverage to Cases of Absorbing Aerosols Above Clouds: Sensitivity Analysis and First Case Studies

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.; Redemann, J.; Schmid, B.; Shinozuka, Y.

    2016-01-01

    Cases of absorbing aerosols above clouds (AACs), such as smoke or mineral dust, are omitted from most routinely processed space-based aerosol optical depth (AOD) data products, including those from the Moderate Resolution Imaging Spectroradiometer (MODIS). This study presents a sensitivity analysis and preliminary algorithm to retrieve above-cloud AOD and liquid cloud optical depth (COD) for AAC cases from MODIS or similar sensors, for incorporation into a future version of the "Deep Blue" AOD data product. Detailed retrieval simulations suggest that these sensors should be able to determine AAC AOD with a typical level of uncertainty approximately 25-50 percent (with lower uncertainties for more strongly absorbing aerosol types) and COD with an uncertainty approximately10-20 percent, if an appropriate aerosol optical model is known beforehand. Errors are larger, particularly if the aerosols are only weakly absorbing, if the aerosol optical properties are not known, and the appropriate model to use must also be retrieved. Actual retrieval errors are also compared to uncertainty envelopes obtained through the optimal estimation (OE) technique; OE-based uncertainties are found to be generally reasonable for COD but larger than actual retrieval errors for AOD, due in part to difficulties in quantifying the degree of spectral correlation of forward model error. The algorithm is also applied to two MODIS scenes (one smoke and one dust) for which near-coincident NASA Ames Airborne Tracking Sun photometer (AATS) data were available to use as a ground truth AOD data source, and found to be in good agreement, demonstrating the validity of the technique with real observations.

  5. Extending "Deep Blue" aerosol retrieval coverage to cases of absorbing aerosols above clouds: Sensitivity analysis and first case studies

    Science.gov (United States)

    Sayer, A. M.; Hsu, N. C.; Bettenhausen, C.; Lee, J.; Redemann, J.; Schmid, B.; Shinozuka, Y.

    2016-05-01

    Cases of absorbing aerosols above clouds (AACs), such as smoke or mineral dust, are omitted from most routinely processed space-based aerosol optical depth (AOD) data products, including those from the Moderate Resolution Imaging Spectroradiometer (MODIS). This study presents a sensitivity analysis and preliminary algorithm to retrieve above-cloud AOD and liquid cloud optical depth (COD) for AAC cases from MODIS or similar sensors, for incorporation into a future version of the "Deep Blue" AOD data product. Detailed retrieval simulations suggest that these sensors should be able to determine AAC AOD with a typical level of uncertainty ˜25-50% (with lower uncertainties for more strongly absorbing aerosol types) and COD with an uncertainty ˜10-20%, if an appropriate aerosol optical model is known beforehand. Errors are larger, particularly if the aerosols are only weakly absorbing, if the aerosol optical properties are not known, and the appropriate model to use must also be retrieved. Actual retrieval errors are also compared to uncertainty envelopes obtained through the optimal estimation (OE) technique; OE-based uncertainties are found to be generally reasonable for COD but larger than actual retrieval errors for AOD, due in part to difficulties in quantifying the degree of spectral correlation of forward model error. The algorithm is also applied to two MODIS scenes (one smoke and one dust) for which near-coincident NASA Ames Airborne Tracking Sun photometer (AATS) data were available to use as a ground truth AOD data source, and found to be in good agreement, demonstrating the validity of the technique with real observations.

  6. The OMPS Limb Profiler Instrument: Two-Dimensional Retrieval Algorithm

    Science.gov (United States)

    Rault, Didier F.

    2010-01-01

    The upcoming Ozone Mapper and Profiler Suite (OMPS), which will be launched on the NPOESS Preparatory Project (NPP) platform in early 2011, will continue monitoring the global distribution of the Earth's middle atmosphere ozone and aerosol. OMPS is composed of three instruments, namely the Total Column Mapper (heritage: TOMS, OMI), the Nadir Profiler (heritage: SBUV) and the Limb Profiler (heritage: SOLSE/LORE, OSIRIS, SCIAMACHY, SAGE III). The ultimate goal of the mission is to better understand and quantify the rate of stratospheric ozone recovery. The focus of the paper will be on the Limb Profiler (LP) instrument. The LP instrument will measure the Earth's limb radiance (which is due to the scattering of solar photons by air molecules, aerosol and Earth surface) in the ultra-violet (UV), visible and near infrared, from 285 to 1000 nm. The LP simultaneously images the whole vertical extent of the Earth's limb through three vertical slits, each covering a vertical tangent height range of 100 km and each horizontally spaced by 250 km in the cross-track direction. Measurements are made every 19 seconds along the orbit track, which corresponds to a distance of about 150km. Several data analysis tools are presently being constructed and tested to retrieve ozone and aerosol vertical distribution from limb radiance measurements. The primary NASA algorithm is based on earlier algorithms developed for the SOLSE/LORE and SAGE III limb scatter missions. All the existing retrieval algorithms rely on a spherical symmetry assumption for the atmosphere structure. While this assumption is reasonable in most of the stratosphere, it is no longer valid in regions of prime scientific interest, such as polar vortex and UTLS regions. The paper will describe a two-dimensional retrieval algorithm whereby the ozone distribution is simultaneously retrieved vertically and horizontally for a whole orbit. The retrieval code relies on (1) a forward 2D Radiative Transfer code (to model limb

  7. DARE: a dedicated aerosols retrieval instrument

    NARCIS (Netherlands)

    Court, A.J.; Smorenburg, K.; Courrèges-Lacoste, G.B.; Visser, H.; Leeuw, G. de; Decae, R.

    2004-01-01

    Satellite remote sensing of aerosols is a largely unresolved problem. A dedicated instrument aimed at aerosols would be able to reduce the large uncertainties connected to this kind of remote sensing. TNO is performing a study of a space based instrument for aerosol measurements, together with the

  8. Nitrogen dioxide observations from the Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument: Retrieval algorithm and measurements during DISCOVER-AQ Texas 2013

    Science.gov (United States)

    The Geostationary Trace gas and Aerosol Sensor Optimization (GeoTASO) airborne instrument is a test bed for upcoming air quality satellite instruments that will measure backscattered ultraviolet, visible and near-infrared light from geostationary orbit. GeoTASO flew on the NASA F...

  9. The Role of Cloud Contamination, Aerosol Layer Height and Aerosol Model in the Assessment of the OMI Near-UV Retrievals Over the Ocean

    Science.gov (United States)

    Gasso, Santiago; Torres, Omar

    2016-01-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD less than 0.3, 30% for AOD greater than 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm approximately less than 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (less than 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by

  10. Investigating the Use of a Simplified Aerosol Parameterization in Space-Based XCO2 Retrievals from OCO-2

    Science.gov (United States)

    Nelson, R. R.; O'Dell, C.

    2017-12-01

    The primary goal of OCO-2 is to use hyperspectral measurements of reflected near-infrared sunlight to retrieve the column-averaged dry-air mole fraction of carbon dioxide (XCO2) with high accuracy. This is only possible for measurements of scenes nearly free of optically thick clouds and aerosols. As some cloud or aerosol contamination will always be present, the OCO-2 retrieval algorithm includes clouds and aerosols as retrieved properties in its state vector. Information content analyses demonstrate that there are only 2-6 pieces of information about aerosols in the OCO-2 radiances. However, the upcoming OCO-2 algorithm (B8) attempts to retrieve 9 aerosol parameters; this over-fitting can hinder convergence and produce multiple solutions. In this work, we develop a simplified cloud and aerosol parameterization that intelligently reduces the number of retrieved parameters to 5 by only retrieving information about two aerosol layers: a lower tropospheric layer and an upper tropospheric / stratospheric layer. We retrieve the optical depth of each layer and the height of the lower tropospheric layer. Each of these layers contains a mixture of fine and coarse mode aerosol. In comparisons between OCO-2 XCO2 estimates and validation sources including TCCON, this scheme performs about as well as the more complicated OCO-2 retrieval algorithm, but has the potential benefits of more interpretable aerosol results, faster convergence, less nonlinearity, and greater throughput. We also investigate the dependence of our results on the optical properties of the fine and coarse mode aerosol types, such as their effective radii and the environmental relative humidity.

  11. Information content of ozone retrieval algorithms

    Science.gov (United States)

    Rodgers, C.; Bhartia, P. K.; Chu, W. P.; Curran, R.; Deluisi, J.; Gille, J. C.; Hudson, R.; Mateer, C.; Rusch, D.; Thomas, R. J.

    1989-01-01

    The algorithms are characterized that were used for production processing by the major suppliers of ozone data to show quantitatively: how the retrieved profile is related to the actual profile (This characterizes the altitude range and vertical resolution of the data); the nature of systematic errors in the retrieved profiles, including their vertical structure and relation to uncertain instrumental parameters; how trends in the real ozone are reflected in trends in the retrieved ozone profile; and how trends in other quantities (both instrumental and atmospheric) might appear as trends in the ozone profile. No serious deficiencies were found in the algorithms used in generating the major available ozone data sets. As the measurements are all indirect in someway, and the retrieved profiles have different characteristics, data from different instruments are not directly comparable.

  12. Retrieving near-global aerosol loading over land and ocean from AVHRR

    Science.gov (United States)

    Hsu, N. C.; Lee, J.; Sayer, A. M.; Carletta, N.; Chen, S.-H.; Tucker, C. J.; Holben, B. N.; Tsay, S.-C.

    2017-09-01

    The spaceborne advanced very high resolution radiometer (AVHRR) sensor data record is approaching 40 years, providing a crucial asset for studying long-term trends of aerosol properties regionally and globally. However, due to limitations of its channels' information content, aerosol optical depth (AOD) data from AVHRR over land are still largely lacking. In this paper, we describe a new physics-based algorithm to retrieve aerosol loading over both land and ocean from AVHRR for the first time. The over-land algorithm is an extension of our Sea-viewing Wide Field-of-view Sensor and Moderate Resolution Imaging Spectroradiometer (MODIS) Deep Blue algorithm, while a simplified version of our Satellite Ocean Aerosol Retrieval algorithm is used over ocean. We compare retrieved AVHRR AOD with that from MODIS on a daily and seasonal basis and find, in general, good agreement between the two. For the satellites with equatorial crossing times within 2 h of solar noon, the spatial coverage of the AVHRR aerosol product is comparable to that of MODIS, except over very bright arid regions (such as the Sahara), where the underlying surface reflectance at 630 nm reaches the critical surface reflectance. Based upon comparisons of the AVHRR AOD against Aerosol Robotic Network data, preliminary results indicate that the expected error confidence interval envelope is around ±(0.03 + 15%) over ocean and ±(0.05 + 25%) over land for this first version of the AVHRR aerosol products. Consequently, these new AVHRR aerosol products can contribute important building blocks for constructing a consistent long-term data record for climate studies.

  13. Retrieval and Validation of aerosol optical properties from AHI measurements: impact of surface reflectance assumption

    Science.gov (United States)

    Lim, H.; Choi, M.; Kim, J.; Go, S.; Chan, P.; Kasai, Y.

    2017-12-01

    This study attempts to retrieve the aerosol optical properties (AOPs) based on the spectral matching method, with using three visible and one near infrared channels (470, 510, 640, 860nm). This method requires the preparation of look-up table (LUT) approach based on the radiative transfer modeling. Cloud detection is one of the most important processes for guaranteed quality of AOPs. Since the AHI has several infrared channels, which are very advantageous for cloud detection, clouds can be removed by using brightness temperature difference (BTD) and spatial variability test. The Yonsei Aerosol Retrieval (YAER) algorithm is basically utilized on a dark surface, therefore a bright surface (e.g., desert, snow) should be removed first. Then we consider the characteristics of the reflectance of land and ocean surface using three visible channels. The known surface reflectivity problem in high latitude area can be solved in this algorithm by selecting appropriate channels through improving tests. On the other hand, we retrieved the AOPs by obtaining the visible surface reflectance using NIR to normalized difference vegetation index short wave infrared (NDVIswir) relationship. ESR tends to underestimate urban and cropland area, we improved the visible surface reflectance considering urban effect. In this version, ocean surface reflectance is using the new cox and munk method which considers ocean bidirectional reflectance distribution function (BRDF). Input of this method has wind speed, chlorophyll, salinity and so on. Based on validation results with the sun-photometer measurement in AErosol Robotic NETwork (AERONET), we confirm that the quality of Aerosol Optical Depth (AOD) from the YAER algorithm is comparable to the product from the Japan Aerospace Exploration Agency (JAXA) retrieval algorithm. Our future update includes a consideration of improvement land surface reflectance by hybrid approach, and non-spherical aerosols. This will improve the quality of YAER

  14. Retrieval of macrophysical cloud parameters from MIPAS: algorithm description

    Directory of Open Access Journals (Sweden)

    J. Hurley

    2011-04-01

    Full Text Available The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS onboard ENVISAT has the potential to be particularly useful for studying high, thin clouds, which have been difficult to observe in the past. This paper details the development, implementation and testing of an optimal-estimation-type retrieval for three macrophysical cloud parameters (cloud top height, cloud top temperature and cloud extinction coefficient from infrared spectra measured by MIPAS. A preliminary estimation of a parameterisation of the optical and geometrical filling of the measurement field-of-view by cloud is employed as the first step of the retrieval process to improve the choice of a priori for the macrophysical parameters themselves.

    Preliminary application to single-scattering simulations indicates that the retrieval error stemming from uncertainties introduced by noise and by a priori variances in the retrieval process itself is small – although it should be noted that these retrieval errors do not include the significant errors stemming from the assumption of homogeneity and the non-scattering nature of the forward model. Such errors are preliminarily and qualitatively assessed here, and are likely to be the dominant error sources. The retrieval converges for 99% of input cases, although sometimes fails to converge for vetically-thin (<1 km clouds. The retrieval algorithm is applied to MIPAS data; the results of which are qualitatively compared with CALIPSO cloud top heights and PARASOL cloud opacities. From comparison with CALIPSO cloud products, it must be noted that the cloud detection method used in this algorithm appears to potentially misdetect stratospheric aerosol layers as cloud.

    This algorithm has been adopted by the European Space Agency's "MIPclouds" project.

  15. DSMC multicomponent aerosol dynamics: Sampling algorithms and aerosol processes

    Science.gov (United States)

    Palaniswaamy, Geethpriya

    The post-accident nuclear reactor primary and containment environments can be characterized by high temperatures and pressures, and fission products and nuclear aerosols. These aerosols evolve via natural transport processes as well as under the influence of engineered safety features. These aerosols can be hazardous and may pose risk to the public if released into the environment. Computations of their evolution, movement and distribution involve the study of various processes such as coagulation, deposition, condensation, etc., and are influenced by factors such as particle shape, charge, radioactivity and spatial inhomogeneity. These many factors make the numerical study of nuclear aerosol evolution computationally very complicated. The focus of this research is on the use of the Direct Simulation Monte Carlo (DSMC) technique to elucidate the role of various phenomena that influence the nuclear aerosol evolution. In this research, several aerosol processes such as coagulation, deposition, condensation, and source reinforcement are explored for a multi-component, aerosol dynamics problem in a spatially homogeneous medium. Among the various sampling algorithms explored the Metropolis sampling algorithm was found to be effective and fast. Several test problems and test cases are simulated using the DSMC technique. The DSMC results obtained are verified against the analytical and sectional results for appropriate test problems. Results show that the assumption of a single mean density is not appropriate due to the complicated effect of component densities on the aerosol processes. The methods developed and the insights gained will also be helpful in future research on the challenges associated with the description of fission product and aerosol releases.

  16. Aerosol-type retrieval and uncertainty quantification from OMI data

    Science.gov (United States)

    Kauppi, Anu; Kolmonen, Pekka; Laine, Marko; Tamminen, Johanna

    2017-11-01

    We discuss uncertainty quantification for aerosol-type selection in satellite-based atmospheric aerosol retrieval. The retrieval procedure uses precalculated aerosol microphysical models stored in look-up tables (LUTs) and top-of-atmosphere (TOA) spectral reflectance measurements to solve the aerosol characteristics. The forward model approximations cause systematic differences between the modelled and observed reflectance. Acknowledging this model discrepancy as a source of uncertainty allows us to produce more realistic uncertainty estimates and assists the selection of the most appropriate LUTs for each individual retrieval.This paper focuses on the aerosol microphysical model selection and characterisation of uncertainty in the retrieved aerosol type and aerosol optical depth (AOD). The concept of model evidence is used as a tool for model comparison. The method is based on Bayesian inference approach, in which all uncertainties are described as a posterior probability distribution. When there is no single best-matching aerosol microphysical model, we use a statistical technique based on Bayesian model averaging to combine AOD posterior probability densities of the best-fitting models to obtain an averaged AOD estimate. We also determine the shared evidence of the best-matching models of a certain main aerosol type in order to quantify how plausible it is that it represents the underlying atmospheric aerosol conditions.The developed method is applied to Ozone Monitoring Instrument (OMI) measurements using a multiwavelength approach for retrieving the aerosol type and AOD estimate with uncertainty quantification for cloud-free over-land pixels. Several larger pixel set areas were studied in order to investigate the robustness of the developed method. We evaluated the retrieved AOD by comparison with ground-based measurements at example sites. We found that the uncertainty of AOD expressed by posterior probability distribution reflects the difficulty in model

  17. Aerosol-type retrieval and uncertainty quantification from OMI data

    Directory of Open Access Journals (Sweden)

    A. Kauppi

    2017-11-01

    Full Text Available We discuss uncertainty quantification for aerosol-type selection in satellite-based atmospheric aerosol retrieval. The retrieval procedure uses precalculated aerosol microphysical models stored in look-up tables (LUTs and top-of-atmosphere (TOA spectral reflectance measurements to solve the aerosol characteristics. The forward model approximations cause systematic differences between the modelled and observed reflectance. Acknowledging this model discrepancy as a source of uncertainty allows us to produce more realistic uncertainty estimates and assists the selection of the most appropriate LUTs for each individual retrieval.This paper focuses on the aerosol microphysical model selection and characterisation of uncertainty in the retrieved aerosol type and aerosol optical depth (AOD. The concept of model evidence is used as a tool for model comparison. The method is based on Bayesian inference approach, in which all uncertainties are described as a posterior probability distribution. When there is no single best-matching aerosol microphysical model, we use a statistical technique based on Bayesian model averaging to combine AOD posterior probability densities of the best-fitting models to obtain an averaged AOD estimate. We also determine the shared evidence of the best-matching models of a certain main aerosol type in order to quantify how plausible it is that it represents the underlying atmospheric aerosol conditions.The developed method is applied to Ozone Monitoring Instrument (OMI measurements using a multiwavelength approach for retrieving the aerosol type and AOD estimate with uncertainty quantification for cloud-free over-land pixels. Several larger pixel set areas were studied in order to investigate the robustness of the developed method. We evaluated the retrieved AOD by comparison with ground-based measurements at example sites. We found that the uncertainty of AOD expressed by posterior probability distribution reflects the

  18. Evaluation and Windspeed Dependence of MODIS Aerosol Retrievals Over Open Ocean

    Science.gov (United States)

    Kleidman, Richard G.; Smirnov, Alexander; Levy, Robert C.; Mattoo, Shana; Tanre, Didier

    2011-01-01

    The Maritime Aerosol Network (MAN) data set provides high quality ground-truth to validate the MODIS aerosol product over open ocean. Prior validation of the ocean aerosol product has been limited to coastal and island sites. Comparing MODIS Collection 5 ocean aerosol retrieval products with collocated MAN measurements from ships shows that MODIS is meeting the pre-launch uncertainty estimates for aerosol optical depth (AOD) with 64% and 67% of retrievals at 550 nm, and 74% and 78% of retrievals at 870 nm, falling within expected uncertainty for Terra and Aqua, respectively. Angstrom Exponent comparisons show a high correlation between MODIS retrievals and shipboard measurements (R= 0.85 Terra, 0.83 Aqua), although the MODIS aerosol algorithm tends to underestimate particle size for large particles and overestimate size for small particles, as seen in earlier Collections. Prior analysis noted an offset between Terra and Aqua ocean AOD, without concluding which sensor was more accurate. The simple linear regression reported here, is consistent with other anecdotal evidence that Aqua agreement with AERONET is marginally better. However we cannot claim based on the current study that the better Aqua comparison is statistically significant. Systematic increase of error as a function of wind speed is noted in both Terra and Aqua retrievals. This wind speed dependency enters the retrieval when winds deviate from the 6 m/s value assumed in the rough ocean surface and white cap parameterizations. Wind speed dependency in the results can be mitigated by using auxiliary NCEP wind speed information in the retrieval process.

  19. Information Content of Aerosol Retrievals in the Sunglint Region

    Science.gov (United States)

    Ottaviani, M.; Knobelspiesse, K.; Cairns, B.; Mishchenko, M.

    2013-01-01

    We exploit quantitative metrics to investigate the information content in retrievals of atmospheric aerosol parameters (with a focus on single-scattering albedo), contained in multi-angle and multi-spectral measurements with sufficient dynamical range in the sunglint region. The simulations are performed for two classes of maritime aerosols with optical and microphysical properties compiled from measurements of the Aerosol Robotic Network. The information content is assessed using the inverse formalism and is compared to that deriving from observations not affected by sunglint. We find that there indeed is additional information in measurements containing sunglint, not just for single-scattering albedo, but also for aerosol optical thickness and the complex refractive index of the fine aerosol size mode, although the amount of additional information varies with aerosol type.

  20. Atmospheric aerosol characteristics retrieved using ground based ...

    Indian Academy of Sciences (India)

    negative in summer due to enhanced tourists' arrival and also in autumn months due to the month- long International .... ces due to socio-economic activities, population growth ...... in aerosol optical properties over China; Atmos. Chem. Phys.

  1. The operational methane retrieval algorithm for TROPOMI

    Directory of Open Access Journals (Sweden)

    H. Hu

    2016-11-01

    Full Text Available This work presents the operational methane retrieval algorithm for the Sentinel 5 Precursor (S5P satellite and its performance tested on realistic ensembles of simulated measurements. The target product is the column-averaged dry air volume mixing ratio of methane (XCH4, which will be retrieved simultaneously with scattering properties of the atmosphere. The algorithm attempts to fit spectra observed by the shortwave and near-infrared channels of the TROPOspheric Monitoring Instrument (TROPOMI spectrometer aboard S5P.The sensitivity of the retrieval performance to atmospheric scattering properties, atmospheric input data and instrument calibration errors is evaluated. In addition, we investigate the effect of inhomogeneous slit illumination on the instrument spectral response function. Finally, we discuss the cloud filters to be used operationally and as backup.We show that the required accuracy and precision of  < 1 % for the XCH4 product are met for clear-sky measurements over land surfaces and after appropriate filtering of difficult scenes. The algorithm is very stable, having a convergence rate of 99 %. The forward model error is less than 1 % for about 95 % of the valid retrievals. Model errors in the input profile of water do not influence the retrieval outcome noticeably. The methane product is expected to meet the requirements if errors in input profiles of pressure and temperature remain below 0.3 % and 2 K, respectively. We further find that, of all instrument calibration errors investigated here, our retrievals are the most sensitive to an error in the instrument spectral response function of the shortwave infrared channel.

  2. Aerosol particle size distribution in the stratosphere retrieved from SCIAMACHY limb measurements

    Science.gov (United States)

    Malinina, Elizaveta; Rozanov, Alexei; Rozanov, Vladimir; Liebing, Patricia; Bovensmann, Heinrich; Burrows, John P.

    2018-04-01

    health, stratospheric aerosol plays an important role in atmospheric chemistry and climate change. In particular, information about the amount and distribution of stratospheric aerosols is required to initialize climate models, as well as validate aerosol microphysics models and investigate geoengineering. In addition, good knowledge of stratospheric aerosol loading is needed to increase the retrieval accuracy of key trace gases (e.g. ozone or water vapour) when interpreting remote sensing measurements of the scattered solar light. The most commonly used characteristics to describe stratospheric aerosols are the aerosol extinction coefficient and Ångström coefficient. However, the use of particle size distribution parameters along with the aerosol number density is a more optimal approach. In this paper we present a new retrieval algorithm to obtain the particle size distribution of stratospheric aerosol from space-borne observations of the scattered solar light in the limb-viewing geometry. While the mode radius and width of the aerosol particle size distribution are retrieved, the aerosol particle number density profile remains unchanged. The latter is justified by a lower sensitivity of the limb-scattering measurements to changes in this parameter. To our knowledge this is the first data set providing two parameters of the particle size distribution of stratospheric aerosol from space-borne measurements of scattered solar light. Typically, the mode radius and w can be retrieved with an uncertainty of less than 20 %. The algorithm was successfully applied to the tropical region (20° N-20° S) for 10 years (2002-2012) of SCIAMACHY observations in limb-viewing geometry, establishing a unique data set. Analysis of this new climatology for the particle size distribution parameters showed clear increases in the mode radius after the tropical volcanic eruptions, whereas no distinct behaviour of the absolute distribution width could be identified. A tape recorder

  3. Retrieval of Aerosol Optical Depth in the Arid or Semiarid Region of Northern Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Xinpeng Tian

    2018-01-01

    Full Text Available Satellite remote sensing has been widely used to retrieve aerosol optical depth (AOD, which is an indicator of air quality as well as radiative forcing. The dark target (DT algorithm is applied to low reflectance areas, such as dense vegetation, and the deep blue (DB algorithm is adopted for bright-reflecting regions. However, both DT and DB algorithms ignore the effect of surface bidirectional reflectance. This paper provides a method for AOD retrieval in arid or semiarid areas, in which the key points are the accurate estimation of surface reflectance and reasonable assumptions of the aerosol model. To reduce the uncertainty in surface reflectance, a minimum land surface reflectance database at the spatial resolution of 500 m for each month was constructed based on the moderate-resolution imaging spectroradiometer (MODIS surface reflectance product. Furthermore, a bidirectional reflectance distribution function (BRDF correction model was adopted to compensate for the effect of surface reflectance anisotropy. The aerosol parameters, including AOD, single scattering albedo, asymmetric factor, Ångström exponent and complex refractive index, are determined based on the observation of two sunphotometers installed in northern Xinjiang from July to August 2014. The AOD retrieved from the MODIS images was validated with ground-based measurements and the Terra-MODIS aerosol product (MOD04. The 500 m AOD retrieved from the MODIS showed high consistency with ground-based AOD measurements, with an average correlation coefficient of ~0.928, root mean square error (RMSE of ~0.042, mean absolute error (MAE of ~0.032, and the percentage falling within the expected error (EE of the collocations is higher than that for the MOD04 DB product. The results demonstrate that the new AOD algorithm is more suitable to represent aerosol conditions over Xinjiang than the DB standard product.

  4. Explicit and Observation-based Aerosol Treatment in Tropospheric NO2 Retrieval over China from the Ozone Monitoring Instrument

    Science.gov (United States)

    Liu, M.; Lin, J.; Boersma, F.; Pinardi, G.; Wang, Y.; Chimot, J.; Wagner, T.; Xie, P.; Eskes, H.; Van Roozendael, M.; Hendrick, F.

    2017-12-01

    Satellite retrieval of vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) is influenced by aerosols substantially. Aerosols affect the retrieval of "effective cloud fraction (CF)" and "effective cloud top pressure (CP)" that are used in the subsequent NO2 retrieval to account for the presentence of clouds. And aerosol properties and vertical distributions directly affect the NO2 air mass factor (AMF) calculations. Our published POMINO algorithm uses a parallelized LIDORT-driven AMFv6 code to derive CF, CP and NO2 VCD. Daily information on aerosol optical properties are taken from GEOS-Chem simulations, with aerosol optical depth (AOD) further constrained by monthly MODIS AOD. However, the published algorithm does not include an observation-based constraint of aerosol vertical distribution. Here we construct a monthly climatological observation dataset of aerosol extinction profiles, based on Level-2 CALIOP data over 2007-2015, to further constrain aerosol vertical distributions. GEOS-Chem captures the temporal variations of CALIOP aerosol layer heights (ALH) but has an overall underestimate by about 0.3 km. It tends to overestimate the aerosol extinction by 10% below 2 km but with an underestimate by 30% above 2 km, leading to a low bias by 10-30% in the retrieved tropospheric NO2 VCD. After adjusting GEOS-Chem aerosol extinction profiles by the CALIOP monthly ALH climatology, the retrieved NO2 VCDs increase by 4-16% over China on a monthly basis in 2012. The improved NO2 VCDs are better correlated to independent MAX-DOAS observations at three sites than POMINO and DOMINO are - especially for the polluted cases, R2 reaches 0.76 for the adjusted POMINO, much higher than that for the published POMINO (0.68) and DOMINO (0.38). The newly retrieved CP increases by 60 hPa on average, because of a stronger aerosol screening effect. Compared to the CF used in DOMINO, which implicitly includes aerosol information, our improved CF is much lower and can

  5. Assessment of 10-Year Global Record of Aerosol Products from the OMI Near-UV Algorithm

    Science.gov (United States)

    Ahn, C.; Torres, O.; Jethva, H. T.

    2014-12-01

    Global observations of aerosol properties from space are critical for understanding climate change and air quality applications. The Ozone Monitoring Instrument (OMI) onboard the EOS-Aura satellite provides information on aerosol optical properties by making use of the large sensitivity to aerosol absorption and dark surface albedo in the UV spectral region. These unique features enable us to retrieve both aerosol extinction optical depth (AOD) and single scattering albedo (SSA) successfully from radiance measurements at 354 and 388 nm by the OMI near UV aerosol algorithm (OMAERUV). Recent improvements to algorithms in conjunction with the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Atmospheric Infrared Sounder (AIRS) carbon monoxide data also reduce uncertainties due to aerosol layer heights and types significantly in retrieved products. We present validation results of OMI AOD against space and time collocated Aerosol Robotic Network (AERONET) measured AOD values over multiple stations representing major aerosol episodes and regimes. We also compare the OMI SSA against the inversion made by AERONET as well as an independent network of ground-based radiometer called SKYNET in Japan, China, South-East Asia, India, and Europe. The outcome of the evaluation analysis indicates that in spite of the "row anomaly" problem, affecting the sensor since mid-2007, the long-term aerosol record shows remarkable sensor stability. The OMAERUV 10-year global aerosol record is publicly available at the NASA data service center web site (http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/OMI/omaeruv_v003.shtml).

  6. Assessment of aerosol models to AOD retrieval from HJ1 Satellites

    International Nuclear Information System (INIS)

    Yuhuan, Zhang; Zhengqiang, Li; Weizhen, Hou; Ying, Zhang; Yan, Ma; Li Donghui

    2014-01-01

    The Chinese environmental satellites HJ1 A and B can play a significant role in the aerosol retrieval due to their high spatial and temporal resolution. The current Aerosol Optical Depth (AOD) retrieval methods from HJ1-CCD are almost based on the LUT (Look-Up Table), by selecting the best fitting result to determine the AOD. However, aerosol model selection has an important impact on the retrieval results when creating the lookup table; inappropriate choice of aerosol model will significantly affect the accuracy and applicability of the method. This paper determined the local aerosol physical properties (such as complex refractive index, and size distribution) based on the observational data, thus we defined the aerosol type and retrieved the AOD of the local aerosol. Furthermore we compared the results retrieved from the measurement aerosol model with those retrieved from the inherent aerosol model in the radiative transfer model and then evaluate its effect on the aerosol type

  7. Global validation of two-channel AVHRR aerosol optical thickness retrievals over the oceans

    International Nuclear Information System (INIS)

    Liu Li; Mishchenko, Michael I.; Geogdzhayev, Igor; Smirnov, Alexander; Sakerin, Sergey M.; Kabanov, Dmitry M.; Ershov, Oleg A.

    2004-01-01

    The paper presents validation results for the aerosol optical thickness derived by applying a two-channel retrieval algorithm to Advanced Very High Resolution Radiometer (AVHRR) radiance data. The satellite retrievals are compared with ship-borne sun-photometer results. The comparison of spatial and temporal statistics of the AVHRR results and the ship measurements shows a strong correlation. The satellite retrieval results obtained with the original algorithm for a wavelength of 0.55μm are systematically higher than the sun-photometer measurements in the cases of low aerosol loads. The ensemble averaged satellite-retrieved optical thickness overestimates the ensemble averaged sun-photometer data by about 11% with a random error of about 0.04. Increasing the diffuse component of the ocean surface reflectance from 0.002 to 0.004 in the AVHRR algorithm produces a better match, with the ensemble-averaged AVHRR-retrieved optical thickness differing by only about 3.6% from the sun-photometer truth and having a small offset of 0.03

  8. From OLS to VIIRS, an overview of nighttime satellite aerosol retrievals using artificial light sources

    Science.gov (United States)

    Zhang, J.; Miller, S. D.; Reid, J. S.; Hyer, E. J.; McHardy, T. M.

    2015-12-01

    Compared to abundant daytime satellite-based observations of atmospheric aerosol, observations at night are relatively scarce. In particular, conventional satellite passive imaging radiometers, which offer expansive swaths of spatial coverage compared to non-scanning lidar systems, lack sensitivity to most aerosol types via the available thermal infrared bands available at night. In this talk, we make the fundamental case for the importance of nighttime aerosol information in forecast models, and the need to mitigate the existing nocturnal gap. We review early attempts at estimating nighttime aerosol optical properties using the modulation of stable artificial surface lights. Initial algorithm development using DMSP Operational Linescan System (OLS) has graduated to refined techniques based on the Suomi-NPP Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band (DNB). We present examples of these retrievals for selected cases and compare the results to available surface-based point-source validation data.

  9. A sea surface reflectance model for (AATSR, and application to aerosol retrievals

    Directory of Open Access Journals (Sweden)

    A. M. Sayer

    2010-07-01

    Full Text Available A model of the sea surface bidirectional reflectance distribution function (BRDF is presented for the visible and near-IR channels (over the spectral range 550 nm to 1.6 μm of the dual-viewing Along-Track Scanning Radiometers (ATSRs. The intended application is as part of the Oxford-RAL Aerosols and Clouds (ORAC retrieval scheme. The model accounts for contributions to the observed reflectance from whitecaps, sun-glint and underlight. Uncertainties in the parametrisations used in the BRDF model are propagated through into the forward model and retrieved state. The new BRDF model offers improved coverage over previous methods, as retrievals are possible into the sun-glint region, through the ATSR dual-viewing system. The new model has been applied in the ORAC aerosol retrieval algorithm to process Advanced ATSR (AATSR data from September 2004 over the south-eastern Pacific. The assumed error budget is shown to be generally appropriate, meaning the retrieved states are consistent with the measurements and a priori assumptions. The resulting field of aerosol optical depth (AOD is compared with colocated MODIS-Terra observations, AERONET observations at Tahiti, and cruises over the oceanic region. MODIS and AATSR show similar spatial distributions of AOD, although MODIS reports values which are larger and more variable. It is suggested that assumptions in the MODIS aerosol retrieval algorithm may lead to a positive bias in MODIS AOD of order 0.01 at 550 nm over ocean regions where the wind speed is high.

  10. Combined retrievals of boreal forest fire aerosol properties with a polarimeter and lidar

    Directory of Open Access Journals (Sweden)

    K. Knobelspiesse

    2011-07-01

    uncertainties to independent observations. The convergence to an unrealistic local minimum by the optimal estimator is related to the relatively low sensitivity to particles smaller than 0.1 (μm at large optical thicknesses. Thus, optimization algorithms used for operational aerosol retrievals of the fine mode size distribution, when the total optical depth is large, will require initial values generated from table look-ups that exclude unrealistic size/complex index mixtures. External constraints from lidar on initial values used in the optimal estimation methods will also be valuable in reducing the likelihood of obtaining spurious retrievals.

  11. Combined Retrievals of Boreal Forest Fire Aerosol Properties with a Polarimeter and Lidar

    Science.gov (United States)

    Knobelspiesse, K.; Cairns, B.; Ottaviani, M.; Ferrare, R.; Haire, J.; Hostetler, C.; Obland, M.; Rogers, R.; Redemann, J.; Shinozuka, Y.; hide

    2011-01-01

    independent observations. The convergence to an unrealistic local minimum by the optimal estimator is related to the relatively low sensitivity to particles smaller than 0.1 ( m) at large optical thicknesses. Thus, optimization algorithms used for operational aerosol retrievals of the fine mode size distribution, when the total optical depth is large, will require initial values generated from table look-ups that exclude unrealistic size/complex index mixtures. External constraints from lidar on initial values used in the optimal estimation methods will also be valuable in reducing the likelihood of obtaining spurious retrievals.

  12. Optimal estimation retrieval of aerosol microphysical properties from SAGE II satellite observations in the volcanically unperturbed lower stratosphere

    Directory of Open Access Journals (Sweden)

    T. Deshler

    2010-05-01

    Full Text Available Stratospheric aerosol particles under non-volcanic conditions are typically smaller than 0.1 μm. Due to fundamental limitations of the scattering theory in the Rayleigh limit, these tiny particles are hard to measure by satellite instruments. As a consequence, current estimates of global aerosol properties retrieved from spectral aerosol extinction measurements tend to be strongly biased. Aerosol surface area densities, for instance, are observed to be about 40% smaller than those derived from correlative in situ measurements (Deshler et al., 2003. An accurate knowledge of the global distribution of aerosol properties is, however, essential to better understand and quantify the role they play in atmospheric chemistry, dynamics, radiation and climate. To address this need a new retrieval algorithm was developed, which employs a nonlinear Optimal Estimation (OE method to iteratively solve for the monomodal size distribution parameters which are statistically most consistent with both the satellite-measured multi-wavelength aerosol extinction data and a priori information. By thus combining spectral extinction measurements (at visible to near infrared wavelengths with prior knowledge of aerosol properties at background level, even the smallest particles are taken into account which are practically invisible to optical remote sensing instruments. The performance of the OE retrieval algorithm was assessed based on synthetic spectral extinction data generated from both monomodal and small-mode-dominant bimodal sulphuric acid aerosol size distributions. For monomodal background aerosol, the new algorithm was shown to fairly accurately retrieve the particle sizes and associated integrated properties (surface area and volume densities, even in the presence of large extinction uncertainty. The associated retrieved uncertainties are a good estimate of the true errors. In the case of bimodal background aerosol, where the retrieved (monomodal size

  13. Optimal estimation retrieval of aerosol microphysical properties from SAGE~II satellite observations in the volcanically unperturbed lower stratosphere

    Science.gov (United States)

    Wurl, D.; Grainger, R. G.; McDonald, A. J.; Deshler, T.

    2010-05-01

    Stratospheric aerosol particles under non-volcanic conditions are typically smaller than 0.1 μm. Due to fundamental limitations of the scattering theory in the Rayleigh limit, these tiny particles are hard to measure by satellite instruments. As a consequence, current estimates of global aerosol properties retrieved from spectral aerosol extinction measurements tend to be strongly biased. Aerosol surface area densities, for instance, are observed to be about 40% smaller than those derived from correlative in situ measurements (Deshler et al., 2003). An accurate knowledge of the global distribution of aerosol properties is, however, essential to better understand and quantify the role they play in atmospheric chemistry, dynamics, radiation and climate. To address this need a new retrieval algorithm was developed, which employs a nonlinear Optimal Estimation (OE) method to iteratively solve for the monomodal size distribution parameters which are statistically most consistent with both the satellite-measured multi-wavelength aerosol extinction data and a priori information. By thus combining spectral extinction measurements (at visible to near infrared wavelengths) with prior knowledge of aerosol properties at background level, even the smallest particles are taken into account which are practically invisible to optical remote sensing instruments. The performance of the OE retrieval algorithm was assessed based on synthetic spectral extinction data generated from both monomodal and small-mode-dominant bimodal sulphuric acid aerosol size distributions. For monomodal background aerosol, the new algorithm was shown to fairly accurately retrieve the particle sizes and associated integrated properties (surface area and volume densities), even in the presence of large extinction uncertainty. The associated retrieved uncertainties are a good estimate of the true errors. In the case of bimodal background aerosol, where the retrieved (monomodal) size distributions naturally

  14. Evaluation of the MODIS Aerosol Retrievals over Ocean and Land during CLAMS.

    Science.gov (United States)

    Levy, R. C.; Remer, L. A.; Martins, J. V.; Kaufman, Y. J.; Plana-Fattori, A.; Redemann, J.; Wenny, B.

    2005-04-01

    The Chesapeake Lighthouse Aircraft Measurements for Satellites (CLAMS) experiment took place from 10 July to 2 August 2001 in a combined ocean-land region that included the Chesapeake Lighthouse [Clouds and the Earth's Radiant Energy System (CERES) Ocean Validation Experiment (COVE)] and the Wallops Flight Facility (WFF), both along coastal Virginia. This experiment was designed mainly for validating instruments and algorithms aboard the Terra satellite platform, including the Moderate Resolution Imaging Spectroradiometer (MODIS). Over the ocean, MODIS retrieved aerosol optical depths (AODs) at seven wavelengths and an estimate of the aerosol size distribution. Over the land, MODIS retrieved AOD at three wavelengths plus qualitative estimates of the aerosol size. Temporally coincident measurements of aerosol properties were made with a variety of sun photometers from ground sites and airborne sites just above the surface. The set of sun photometers provided unprecedented spectral coverage from visible (VIS) to the solar near-infrared (NIR) and infrared (IR) wavelengths. In this study, AOD and aerosol size retrieved from MODIS is compared with similar measurements from the sun photometers. Over the nearby ocean, the MODIS AOD in the VIS and NIR correlated well with sun-photometer measurements, nearly fitting a one-to-one line on a scatterplot. As one moves from ocean to land, there is a pronounced discontinuity of the MODIS AOD, where MODIS compares poorly to the sun-photometer measurements. Especially in the blue wavelength, MODIS AOD is too high in clean aerosol conditions and too low under larger aerosol loadings. Using the Second Simulation of the Satellite Signal in the Solar Spectrum (6S) radiative code to perform atmospheric correction, the authors find inconsistency in the surface albedo assumptions used by the MODIS lookup tables. It is demonstrated how the high bias at low aerosol loadings can be corrected. By using updated urban/industrial aerosol

  15. An algorithm for hyperspectral remote sensing of aerosols: 2. Information content analysis for aerosol parameters and principal components of surface spectra

    Science.gov (United States)

    Hou, Weizhen; Wang, Jun; Xu, Xiaoguang; Reid, Jeffrey S.

    2017-05-01

    This paper describes the second part of a series of investigation to develop algorithms for simultaneous retrieval of aerosol parameters and surface reflectance from the future hyperspectral and geostationary satellite sensors such as Tropospheric Emissions: Monitoring of POllution (TEMPO). The information content in these hyperspectral measurements is analyzed for 6 principal components (PCs) of surface spectra and a total of 14 aerosol parameters that describe the columnar aerosol volume Vtotal, fine-mode aerosol volume fraction, and the size distribution and wavelength-dependent index of refraction in both coarse and fine mode aerosols. Forward simulations of atmospheric radiative transfer are conducted for 5 surface types (green vegetation, bare soil, rangeland, concrete and mixed surface case) and a wide range of aerosol mixtures. It is shown that the PCs of surface spectra in the atmospheric window channel could be derived from the top-of-the-atmosphere reflectance in the conditions of low aerosol optical depth (AOD ≤ 0.2 at 550 nm), with a relative error of 1%. With degree freedom for signal analysis and the sequential forward selection method, the common bands for different aerosol mixture types and surface types can be selected for aerosol retrieval. The first 20% of our selected bands accounts for more than 90% of information content for aerosols, and only 4 PCs are needed to reconstruct surface reflectance. However, the information content in these common bands from each TEMPO individual observation is insufficient for the simultaneous retrieval of surface's PC weight coefficients and multiple aerosol parameters (other than Vtotal). In contrast, with multiple observations for the same location from TEMPO in multiple consecutive days, 1-3 additional aerosol parameters could be retrieved. Consequently, a self-adjustable aerosol retrieval algorithm to account for surface types, AOD conditions, and multiple-consecutive observations is recommended to derive

  16. STRAT: an automated algorithm to retrieve the vertical structure of the atmosphere from single channel lidar data

    OpenAIRE

    Morille, Yohann; Haeffelin, Martial; Drobinski, Philippe; Pelon, Jacques

    2007-01-01

    International audience; Today several lidar networks around the world provide large data sets that are extremely valuable for aerosol and cloud research. Retrieval of atmospheric constituent properties from lidar profiles requires detailed analysis of spatial and temporal variations of the signal. This paper presents an algorithm called STRAT (STRucture of the ATmosphere) designed to retrieve the vertical distribution of cloud and aerosol layers in the boundary layer and through the free trop...

  17. Retrieval of size distribution for urban aerosols using multispectral optical data

    International Nuclear Information System (INIS)

    Kocifaj, M; Horvath, H

    2005-01-01

    We are dealing with retrieval of aerosol size distribution using multispectral extinction data collected in highly industrialized urban region. Especially, a role of the particle morphology is in the focus of this work. As well known, at present, still many retrieval algorithms are based on simple Lorenz-Mie's theory applicable for perfectly spherical and homogeneous particles, because that approach is fast and can handle the whole size distribution of particles. However, the solid-phase aerosols never render simple geometries, and rather than being spherical or spheroidal they are quite irregular. It is shown, that identification of the modal radius a M of both, the size distribution f(a) and the distribution of geometrical cross section s(a) of aerosol particles is not significantly influenced by the particle's morphology in case the aspect ratio is smaller than 2 and the particles are randomly oriented in the atmospheric environment. On the other hand, the amount of medium-sized particles (radius of which is larger than the modal radius) can be underestimated if distribution of non-spherical grains is substituted by system of volume equivalent spheres. Retrieved volume content of fine aerosols (as characterized by PM 2.5 and PM 1.0 ) can be potentially affected by inappropriate assumption on the particle shape

  18. An algorithm for estimating aerosol optical depth from HIMAWARI-8 data over Ocean

    Science.gov (United States)

    Lee, Kwon Ho

    2016-04-01

    The paper presents currently developing algorithm for aerosol detection and retrieval over ocean for the next generation geostationary satellite, HIMAWARI-8. Enhanced geostationary remote sensing observations are now enables for aerosol retrieval of dust, smoke, and ash, which began a new era of geostationary aerosol observations. Sixteen channels of the Advanced HIMAWARI Imager (AHI) onboard HIMAWARI-8 offer capabilities for aerosol remote sensing similar to those currently provided by the Moderate Resolution Imaging Spectroradiometer (MODIS). Aerosols were estimated in detection processing from visible and infrared channel radiances, and in retrieval processing using the inversion-optimization of satellite-observed radiances with those calculated from radiative transfer model. The retrievals are performed operationally every ten minutes for pixel sizes of ~8 km. The algorithm currently under development uses a multichannel approach to estimate the effective radius, aerosol optical depth (AOD) simultaneously. The instantaneous retrieved AOD is evaluated by the MODIS level 2 operational aerosol products (C006), and the daily retrieved AOD was compared with ground-based measurements from the AERONET databases. The results show that the detection of aerosol and estimated AOD are in good agreement with the MODIS data and ground measurements with a correlation coefficient of ˜0.90 and a bias of 4%. These results suggest that the proposed method applied to the HIMAWARI-8 satellite data can accurately estimate continuous AOD. Acknowledgments This work was supported by "Development of Geostationary Meteorological Satellite Ground Segment(NMSC-2014-01)" program funded by National Meteorological Satellite Centre(NMSC) of Korea Meteorological Administration(KMA).

  19. A study of the effect of non-spherical dust particles on Geostationary Environment Monitoring Spectrometer (GEMS) aerosol optical properties retrievals

    Science.gov (United States)

    Go, S.; Kim, J.; KIM, M.; Choi, M.; Lim, H.

    2017-12-01

    Non-spherical assumption of particle shape has been used to replace the spherical assumption in the Geostationary Environment Monitoring Spectrometer (GEMS) aerosol optical properties retrievals for dust particles. GEMS aerosol retrieval algorithms are based on optimal estimation method to provide aerosol optical depth (AOD), single scattering albedo (SSA) at 443nm, and aerosol loading height (ALH) simultaneously as products. Considering computing time efficiency, the algorithm takes Look-Up Table (LUT) approach using Vector Linearized Discrete Ordinate Radiative Transfer code (VLIDORT), and aerosol optical properties for three aerosol types of absorbing fine aerosol (BC), dust and non-absorbing aerosol (NA) are integrated from AERONET inversion data, and fed into the LUT calculation. In this study, by applying the present algorithm to OMI top-of the atmosphere normalized radiance, retrieved AOD, SSA with both spherical and non-spherical assumptions have been compared to the surface AERONET observations at East Asia sites for 3 years from 2005 to 2007 to evaluate and quantify the effect of non-spherical dust particles on the satellite aerosol retrievals. The root-mean-square error (RMSE) in the satellite retrieved AOD have been slightly reduced as a result of adopting the non-spherical assumption in the GEMS aerosol retrieval algorithm. For SSA, algorithm tested with spheroid models on dust particle shows promising results for the improved SSA. In terms of ALH, the results are qualitatively compared with CALIOP products, and shows consistent variation. This result suggests the importance of taking into account the effects of non-sphericity in the retrieval of dust particles from GEMS measurements.

  20. Improvement of Aerosol Optical Depth Retrieval over Hong Kong from a Geostationary Meteorological Satellite Using Critical Reflectance with Background Optical Depth Correction

    Science.gov (United States)

    Kim, Mijin; Kim, Jhoon; Wong, Man Sing; Yoon, Jongmin; Lee, Jaehwa; Wu, Dong L.; Chan, P.W.; Nichol, Janet E.; Chung, Chu-Yong; Ou, Mi-Lim

    2014-01-01

    Despite continuous efforts to retrieve aerosol optical depth (AOD) using a conventional 5-channelmeteorological imager in geostationary orbit, the accuracy in urban areas has been poorer than other areas primarily due to complex urban surface properties and mixed aerosol types from different emission sources. The two largest error sources in aerosol retrieval have been aerosol type selection and surface reflectance. In selecting the aerosol type from a single visible channel, the season-dependent aerosol optical properties were adopted from longterm measurements of Aerosol Robotic Network (AERONET) sun-photometers. With the aerosol optical properties obtained fromthe AERONET inversion data, look-up tableswere calculated by using a radiative transfer code: the Second Simulation of the Satellite Signal in the Solar Spectrum (6S). Surface reflectance was estimated using the clear sky composite method, awidely used technique for geostationary retrievals. Over East Asia, the AOD retrieved from the Meteorological Imager showed good agreement, although the values were affected by cloud contamination errors. However, the conventional retrieval of the AOD over Hong Kong was largely underestimated due to the lack of information on the aerosol type and surface properties. To detect spatial and temporal variation of aerosol type over the area, the critical reflectance method, a technique to retrieve single scattering albedo (SSA), was applied. Additionally, the background aerosol effect was corrected to improve the accuracy of the surface reflectance over Hong Kong. The AOD retrieved froma modified algorithmwas compared to the collocated data measured by AERONET in Hong Kong. The comparison showed that the new aerosol type selection using the critical reflectance and the corrected surface reflectance significantly improved the accuracy of AODs in Hong Kong areas,with a correlation coefficient increase from0.65 to 0.76 and a regression line change from tMI [basic algorithm] = 0

  1. Retrieval of Aerosol Components Using Multi-Wavelength Mie-Raman Lidar and Comparison with Ground Aerosol Sampling

    Directory of Open Access Journals (Sweden)

    Yukari Hara

    2018-06-01

    Full Text Available We verified an algorithm using multi-wavelength Mie-Raman lidar (MMRL observations to retrieve four aerosol components (black carbon (BC, sea salt (SS, air pollution (AP, and mineral dust (DS with in-situ aerosol measurements, and determined the seasonal variation of aerosol components in Fukuoka, in the western region of Japan. PM2.5, PM10, and mass concentrations of BC and SS components are derived from in-situ measurements. MMRL provides the aerosol extinction coefficient (α, particle linear depolarization ratio (δ, backscatter coefficient (β, and lidar ratio (S at 355 and 532 nm, and the attenuated backscatter coefficient (βatt at 1064 nm. We retrieved vertical distributions of extinction coefficients at 532 nm for four aerosol components (BC, SS, AP, and DS using 1α532 + 1β532 + 1βatt,1064 + 1δ532 data of MMRL. The retrieved extinction coefficients of the four aerosol components at 532 nm were converted to mass concentrations using the theoretical computed conversion factor assuming the prescribed size distribution, particle shape, and refractive index for each aerosol component. MMRL and in-situ measurements confirmed that seasonal variation of aerosol optical properties was affected by internal/external mixing of various aerosol components, in addition to hygroscopic growth of water-soluble aerosols. MMRL overestimates BC mass concentration compared to in-situ observation using the pure BC model. This overestimation was reduced drastically by introducing the internal mixture model of BC and water-soluble substances (Core-Gray Shell (CGS model. This result suggests that considering the internal mixture of BC and water-soluble substances is essential for evaluating BC mass concentration in this area. Systematic overestimation of BC mass concentration was found during summer, even when we applied the CGS model. The observational facts based on in-situ and MMRL measurements suggested that misclassification of AP as CGS particles was

  2. Aerosol Size Distributions During ACE-Asia: Retrievals From Optical Thickness and Comparisons With In-situ Measurements

    Science.gov (United States)

    Kuzmanoski, M.; Box, M.; Box, G. P.; Schmidt, B.; Russell, P. B.; Redemann, J.; Livingston, J. M.; Wang, J.; Flagan, R. C.; Seinfeld, J. H.

    2002-12-01

    As part of the ACE-Asia experiment, conducted off the coast of China, Korea and Japan in spring 2001, measurements of aerosol physical, chemical and radiative characteristics were performed aboard the Twin Otter aircraft. Of particular importance for this paper were spectral measurements of aerosol optical thickness obtained at 13 discrete wavelengths, within 354-1558 nm wavelength range, using the AATS-14 sunphotometer. Spectral aerosol optical thickness can be used to obtain information about particle size distribution. In this paper, we use sunphotometer measurements to retrieve size distribution of aerosols during ACE-Asia. We focus on four cases in which layers influenced by different air masses were identified. Aerosol optical thickness of each layer was inverted using two different techniques - constrained linear inversion and multimodal. In the constrained linear inversion algorithm no assumption about the mathematical form of the distribution to be retrieved is made. Conversely, the multimodal technique assumes that aerosol size distribution is represented as a linear combination of few lognormal modes with predefined values of mode radii and geometric standard deviations. Amplitudes of modes are varied to obtain best fit of sum of optical thicknesses due to individual modes to sunphotometer measurements. In this paper we compare the results of these two retrieval methods. In addition, we present comparisons of retrieved size distributions with in situ measurements taken using an aerodynamic particle sizer and differential mobility analyzer system aboard the Twin Otter aircraft.

  3. Development of 2-D-MAX-DOAS and retrievals of trace gases and aerosols optical properties

    Science.gov (United States)

    Ortega, Ivan

    satellites and atmospheric models. Chapter 3 presents an innovative retrieval approach to measure AOD430 and the aerosol phase function parameter, g, without the need for absolute radiance calibration; the retrieval is based on solar azimuth distributions of the Raman Scattering Probability (RSP), the near-absolute Rotational Raman Scattering (RRS) intensity, during the Department of Energy Two Column Aerosol Project (TCAP) at Cape Cod, MA. Furthermore, the TCAP field campaign provides a unique dataset to evaluate innovative retrieval algorithms and perform radiation closure studies. In Chapters 4 I describe the effect of persistent elevated aerosol layers on the apparent absorption of the collision induced absorption of oxygen (O2-O2, or O4) as seen by the ground based 2-D-MAX-DOAS. Chapter 5 discusses the effect of chemical composition of aerosols for optical closure of aerosol extinction as characterized by ground based (2-D-MAX-DOAS) and airborne remote sensing instruments (HSRL-2) and in-situ observations of aerosol optical properties calculated from size distributions measured aboard the DoE G-1 aircraft. Chapter 5 also includes a discussion on the effects of dry, moist, and size-corrections that need to be applied to the in-situ observations in order to infer extinction in the atmosphere. In the final Chapter 6, I present a comprehensive analysis of CHOCHO, HCHO, and NO2 column measurements obtained in multiple field deployments of MAX-DOAS under different NOx (NO + NO2) conditions and VOC precursors. In particular, I assess the magnitude of the ratio of CHOCHO to HCHO (RGF), which has been proposed as a metric to distinguish biogenic and/or anthropogenic VOC (BVOC/AVOC) influences, and show with box-modeling that the concentration of NO2 and dictates the value of RGF . I proposed a new metric of RGF based on box-modeling and field measurements to distinguish AVOC/BVOC influences and split in BVOCs.

  4. Generalized phase retrieval algorithm based on information measures

    OpenAIRE

    Shioya, Hiroyuki; Gohara, Kazutoshi

    2006-01-01

    An iterative phase retrieval algorithm based on the maximum entropy method (MEM) is presented. Introducing a new generalized information measure, we derive a novel class of algorithms which includes the conventionally used error reduction algorithm and a MEM-type iterative algorithm which is presented for the first time. These different phase retrieval methods are unified on the basis of the framework of information measures used in information theory.

  5. Retrieval of aerosol properties and water-leaving reflectance from multi-angular polarimetric measurements over coastal waters.

    Science.gov (United States)

    Gao, Meng; Zhai, Peng-Wang; Franz, Bryan; Hu, Yongxiang; Knobelspiesse, Kirk; Werdell, P Jeremy; Ibrahim, Amir; Xu, Feng; Cairns, Brian

    2018-04-02

    Ocean color remote sensing is an important tool to monitor water quality and biogeochemical conditions of ocean. Atmospheric correction, which obtains water-leaving radiance from the total radiance measured by satellite-borne or airborne sensors, remains a challenging task for coastal waters due to the complex optical properties of aerosols and ocean waters. In this paper, we report a research algorithm on aerosol and ocean color retrieval with emphasis on coastal waters, which uses coupled atmosphere and ocean radiative transfer model to fit polarized radiance measurements at multiple viewing angles and multiple wavelengths. Ocean optical properties are characterized by a generalized bio-optical model with direct accounting for the absorption and scattering of phytoplankton, colored dissolved organic matter (CDOM) and non-algal particles (NAP). Our retrieval algorithm can accurately determine the water-leaving radiance and aerosol properties for coastal waters, and may be used to improve the atmospheric correction when apply to a hyperspectral ocean color instrument.

  6. Improving Satellite Retrieved Infrared Sea Surface Temperatures in Aerosol-Contaminated Regions

    Science.gov (United States)

    Luo, B.; Minnett, P. J.; Szczodrak, G.; Kilpatrick, K. A.

    2017-12-01

    Infrared satellite observations of sea surface temperature (SST) have become essential for many applications in meteorology, climatology, and oceanography. Applications often require high accuracy SST data: for climate research and monitoring an absolute uncertainty of 0.1K and stability of better than 0.04K per decade are required. Tropospheric aerosol concentrations increase infrared signal attenuation and prevent the retrieval of accurate satellite SST. We compare satellite-derived skin SST with measurements from the Marine-Atmospheric Emitted Radiance Interferometer (M-AERI) deployed on ships during the Aerosols and Ocean Science Expeditions (AEROSE) and with quality-controlled drifter temperatures. After match-up with in-situ SST and filtering of cloud contaminated data, the results indicate that SST retrieved from MODIS (Moderate Resolution Imaging Spectroradiometer) aboard the Terra and Aqua satellites have negative (cool) biases compared to shipboard radiometric measurements. There is also a pronounced negative bias in the Saharan outflow area that can introduce SST errors >1 K at aerosol optical depths > 0.5. In this study, we present a new method to derive night-time Saharan Dust Index (SDI) algorithms based on simulated brightness temperatures at infrared wavelengths of 3.9, 10.8 and 12.0 μm, derived using RTTOV. We derived correction coefficients for Aqua MODIS measurements by regression of the SST errors against the SDI. The biases and standard deviations are reduced by 0.25K and 0.19K after the SDI correction. The goal of this study is to understand better the characteristics and physical mechanisms of aerosol effects on satellite retrieved infrared SST, as well as to derive empirical formulae for improved accuracies in aerosol-contaminated regions.

  7. Role of near ultraviolet wavelength measurements in the detection and retrieval of absorbing aerosols from space

    Science.gov (United States)

    Mukai, Sonoyo; Fujito, Toshiyuki; Nakata, Makiko; Sano, Itaru

    2017-10-01

    Aerosol remote sensing by ultraviolet (UV) wavelength is established by a Total Ozone Mapping Spectrometer (TOMS) mounted on the long-life satellite Nimbus-7 and continues to make observations using Ozone monitoring instrument (OMI) located on the Aura satellite. For example, TOMS demonstrated that UV radiation (0.331 and 0.360 μm) could easily detect absorbing particles such as mineral dust or smoke aerosols. TOMS-AI (absorbing aerosol index) has been used to identify the absorbing aerosols from space. For an upcoming mission, JAXA/GCOM-C will have the polarization sensor SGLI boarded in December 2017. The SGLI has multi (19)-channels including near UV (0.380 μm) and violet (0.412 μm) wavelengths. This work intends to examine the role of near UV data in the detection of absorbing aerosols similar to TOMS-AI played. In practice, the measurements by GLI mounted on the short Japanese mission JAXA/ADEOS-2, whose data archive period was just 8 months from April to October in 2003, are available for simulation of SGLI data because ADEOS-2/GLI installed near UV and violet channels. First of all, the ratio of data at 0.412 μm to that at 0.380 μm is examined as an indicator to detect absorbing aerosols on a global scale during ADEOS-2 era. It is noted that our research group has developed an efficient algorithm for aerosol retrieval in hazy episodes (dense concentrations of atmospheric aerosols). It can be said that at least this work is an attempt to grasp the biomass burning plumes from the satellite.

  8. Lidar-Radiometer Inversion Code (LIRIC) for the Retrieval of Vertical Aerosol Properties from Combined Lidar Radiometer Data: Development and Distribution in EARLINET

    Science.gov (United States)

    Chaikovsky, A.; Dubovik, O.; Holben, Brent N.; Bril, A.; Goloub, P.; Tanre, D.; Pappalardo, G.; Wandinger, U.; Chaikovskaya, L.; Denisov, S.; hide

    2015-01-01

    This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code)algorithm for simultaneous processing of coincident lidar and radiometric (sun photometric) observations for the retrieval of the aerosol concentration vertical profiles. As the lidar radiometric input data we use measurements from European Aerosol Re-search Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC data processing provides sequential inversion of the combined lidar and radiometric data by the estimations of column-integrated aerosol parameters from radiometric measurements followed by the retrieval of height-dependent concentrations of fine and coarse aerosols from lidar signals using integrated column characteristics of aerosol layer as a priori constraints. The use of polarized lidar observations allows us to discriminate between spherical and non-spherical particles of the coarse aerosol mode. The LIRIC software package was implemented and tested at a number of EARLINET stations. Inter-comparison of the LIRIC-based aerosol retrievals was performed for the observations by seven EARLNET lidars in Leipzig, Germany on 25 May 2009. We found close agreement between the aerosol parameters derived from different lidars that supports high robustness of the LIRIC algorithm. The sensitivity of the retrieval results to the possible reduction of the available observation data is also discussed.

  9. Moderate Imaging Resolution Spectroradiometer (MODIS) Aerosol Optical Depth Retrieval for Aerosol Radiative Forcing

    Science.gov (United States)

    Asmat, A.; Jalal, K. A.; Ahmad, N.

    2018-02-01

    The present study uses the Aerosol Optical Depth (AOD) retrieved from Moderate Imaging Resolution Spectroradiometer (MODIS) data for the period from January 2011 until December 2015 over an urban area in Kuching, Sarawak. The results show the minimum AOD value retrieved from MODIS is -0.06 and the maximum value is 6.0. High aerosol loading with high AOD value observed during dry seasons and low AOD monitored during wet seasons. Multi plane regression technique used to retrieve AOD from MODIS (AODMODIS) and different statistics parameter is proposed by using relative absolute error for accuracy assessment in spatial and temporal averaging approach. The AODMODIS then compared with AOD derived from Aerosol Robotic Network (AERONET) Sunphotometer (AODAERONET) and the results shows high correlation coefficient (R2) for AODMODIS and AODAERONET with 0.93. AODMODIS used as an input parameters into Santa Barbara Discrete Ordinate Radiative Transfer (SBDART) model to estimate urban radiative forcing at Kuching. The observed hourly averaged for urban radiative forcing is -0.12 Wm-2 for top of atmosphere (TOA), -2.13 Wm-2 at the surface and 2.00 Wm-2 in the atmosphere. There is a moderate relationship observed between urban radiative forcing calculated using SBDART and AERONET which are 0.75 at the surface, 0.65 at TOA and 0.56 in atmosphere. Overall, variation in AOD tends to cause large bias in the estimated urban radiative forcing.

  10. Error sources in the retrieval of aerosol information over bright surfaces from satellite measurements in the oxygen A band

    Science.gov (United States)

    Nanda, Swadhin; de Graaf, Martin; Sneep, Maarten; de Haan, Johan F.; Stammes, Piet; Sanders, Abram F. J.; Tuinder, Olaf; Pepijn Veefkind, J.; Levelt, Pieternel F.

    2018-01-01

    Retrieving aerosol optical thickness and aerosol layer height over a bright surface from measured top-of-atmosphere reflectance spectrum in the oxygen A band is known to be challenging, often resulting in large errors. In certain atmospheric conditions and viewing geometries, a loss of sensitivity to aerosol optical thickness has been reported in the literature. This loss of sensitivity has been attributed to a phenomenon known as critical surface albedo regime, which is a range of surface albedos for which the top-of-atmosphere reflectance has minimal sensitivity to aerosol optical thickness. This paper extends the concept of critical surface albedo for aerosol layer height retrievals in the oxygen A band, and discusses its implications. The underlying physics are introduced by analysing the top-of-atmosphere reflectance spectrum as a sum of atmospheric path contribution and surface contribution, obtained using a radiative transfer model. Furthermore, error analysis of an aerosol layer height retrieval algorithm is conducted over dark and bright surfaces to show the dependence on surface reflectance. The analysis shows that the derivative with respect to aerosol layer height of the atmospheric path contribution to the top-of-atmosphere reflectance is opposite in sign to that of the surface contribution - an increase in surface brightness results in a decrease in information content. In the case of aerosol optical thickness, these derivatives are anti-correlated, leading to large retrieval errors in high surface albedo regimes. The consequence of this anti-correlation is demonstrated with measured spectra in the oxygen A band from the GOME-2 instrument on board the Metop-A satellite over the 2010 Russian wildfires incident.

  11. Creating Aerosol Types from CHemistry (CATCH): A New Algorithm to Extend the Link Between Remote Sensing and Models

    Science.gov (United States)

    Dawson, K. W.; Meskhidze, N.; Burton, S. P.; Johnson, M. S.; Kacenelenbogen, M. S.; Hostetler, C. A.; Hu, Y.

    2017-11-01

    Current remote sensing methods can identify aerosol types within an atmospheric column, presenting an opportunity to incrementally bridge the gap between remote sensing and models. Here a new algorithm was designed for Creating Aerosol Types from CHemistry (CATCH). CATCH-derived aerosol types—dusty mix, maritime, urban, smoke, and fresh smoke—are based on first-generation airborne High Spectral Resolution Lidar (HSRL-1) retrievals during the Ship-Aircraft Bio-Optical Research (SABOR) campaign, July/August 2014. CATCH is designed to derive aerosol types from model output of chemical composition. CATCH-derived aerosol types are determined by multivariate clustering of model-calculated variables that have been trained using retrievals of aerosol types from HSRL-1. CATCH-derived aerosol types (with the exception of smoke) compare well with HSRL-1 retrievals during SABOR with an average difference in aerosol optical depth (AOD) methods. In the future, spaceborne HSRL-1 and CATCH can be used to gain insight into chemical composition of aerosol types, reducing uncertainties in estimates of aerosol radiative forcing.

  12. Collocation mismatch uncertainties in satellite aerosol retrieval validation

    Science.gov (United States)

    Virtanen, Timo H.; Kolmonen, Pekka; Sogacheva, Larisa; Rodríguez, Edith; Saponaro, Giulia; de Leeuw, Gerrit

    2018-02-01

    Satellite-based aerosol products are routinely validated against ground-based reference data, usually obtained from sun photometer networks such as AERONET (AEROsol RObotic NETwork). In a typical validation exercise a spatial sample of the instantaneous satellite data is compared against a temporal sample of the point-like ground-based data. The observations do not correspond to exactly the same column of the atmosphere at the same time, and the representativeness of the reference data depends on the spatiotemporal variability of the aerosol properties in the samples. The associated uncertainty is known as the collocation mismatch uncertainty (CMU). The validation results depend on the sampling parameters. While small samples involve less variability, they are more sensitive to the inevitable noise in the measurement data. In this paper we study systematically the effect of the sampling parameters in the validation of AATSR (Advanced Along-Track Scanning Radiometer) aerosol optical depth (AOD) product against AERONET data and the associated collocation mismatch uncertainty. To this end, we study the spatial AOD variability in the satellite data, compare it against the corresponding values obtained from densely located AERONET sites, and assess the possible reasons for observed differences. We find that the spatial AOD variability in the satellite data is approximately 2 times larger than in the ground-based data, and the spatial variability correlates only weakly with that of AERONET for short distances. We interpreted that only half of the variability in the satellite data is due to the natural variability in the AOD, and the rest is noise due to retrieval errors. However, for larger distances (˜ 0.5°) the correlation is improved as the noise is averaged out, and the day-to-day changes in regional AOD variability are well captured. Furthermore, we assess the usefulness of the spatial variability of the satellite AOD data as an estimate of CMU by comparing the

  13. Simultaneous retrieval of CO2 and aerosols in a plume from hyper spectral imagery: application to the characterization of forest fire smoke using AVIRIS data

    International Nuclear Information System (INIS)

    Deschamps, Adrien; Marion, Rodolphe; Briottet, Xavier; Foucher, Pierre-Yves

    2013-01-01

    Hyper spectral imagery is a widely used technique to study atmospheric composition. For several years, many methods have been developed to estimate the abundance of gases. However, existing methods do not simultaneously retrieve the properties of aerosols and often use standard aerosol models to describe the radiative impact of particles. This approach is not suited to the characterization of plumes, because plume particles may have a very different composition and size distribution from aerosols described by the standard models given by radiative transfer codes. This article presents a new method to simultaneously retrieve carbon dioxide (CO 2 ) and aerosols inside a plume, combining an aerosol retrieval algorithm using visible and near-infrared (VNIR) wavelengths and a CO 2 estimation algorithm using shortwave infrared (SWIR) wavelengths. The micro-physical properties of the plume particles, obtained after aerosol retrieval, are used to calculate their optical properties in the SWIR. Then, a database of atmospheric terms is generated with the radiative transfer code, Moderate Resolution Atmospheric Transmission (MODTRAN). Finally, pixel radiances around the 2.0 μm absorption feature are used to retrieve the CO 2 abundances. After conducting a signal sensitivity analysis, the method was applied to two airborne visible/infrared imaging spectrometer (AVIRIS) images acquired over areas of biomass burning. For the first image, in situ measurements were available. The results show that including the aerosol retrieval step before the CO 2 estimation: (1) induces a better agreement between in situ measurements and retrieved CO 2 abundances (the CO 2 overestimation of about 15%, induced by neglecting aerosols has been corrected, especially for pixels where the plume is not very thick); (2) reduces the standard deviation of estimated CO 2 abundance by a factor of four; and (3) causes the spatial distribution of retrieved concentrations to be coherent. (authors)

  14. Fuzzy Information Retrieval Using Genetic Algorithms and Relevance Feedback.

    Science.gov (United States)

    Petry, Frederick E.; And Others

    1993-01-01

    Describes an approach that combines concepts from information retrieval, fuzzy set theory, and genetic programing to improve weighted Boolean query formulation via relevance feedback. Highlights include background on information retrieval systems; genetic algorithms; subproblem formulation; and preliminary results based on a testbed. (Contains 12…

  15. The Dedicated Aerosol Retrieval Experiment (DARE): scientific requirements for a dedicated satellite instrument to measure atmospheric aerosols

    NARCIS (Netherlands)

    Decae, R.; Courrèges-Lacoste, G.B.; Leeuw, G. de

    2004-01-01

    DARE (Dedicated Aerosol Retrieval Experiment) is a study to design an instrument for accurate remote sensing of aerosol properties from space. DARE combines useful properties of several existing instruments like TOMS, GOME, ATSR and POLDER. It has a large wavelength range, 330 to 1000 nm, to

  16. Evaluating the Height of Biomass Burning Smoke Aerosols Retrieved from Synergistic Use of Multiple Satellite Sensors Over Southeast Asia

    Science.gov (United States)

    Lee, Jaehwa; Hsu, N. Christina; Bettenhausen, Corey; Sayer, Andrew M.; Seftor, Colin J.; Jeong, Myeong-Jae; Tsay, Si-Chee; Welton, Ellsworth J.; Wang, Sheng-Hsiang; Chen, Wei-Nai

    2016-01-01

    This study evaluates the height of biomass burning smoke aerosols retrieved from a combined use of Visible Infrared Imaging Radiometer Suite (VIIRS), Ozone Mapping and Profiler Suite (OMPS), and Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. The retrieved heights are compared against space borne and ground-based lidar measurements during the peak biomass burning season (March and April) over Southeast Asia from 2013 to 2015. Based on the comparison against CALIOP, a quality assurance (QA) procedure is developed. It is found that 74 (8184) of the retrieved heights fall within 1 km of CALIOP observations for unfiltered (QA-filtered) data, with root-mean-square error (RMSE) of 1.1 km (0.81.0 km). Eliminating the requirement of CALIOP observations from the retrieval process significantly increases the temporal coverage with only a slight decrease in the retrieval accuracy; for best QA data, 64 of data fall within 1 km of CALIOP observations with RMSE of 1.1 km. When compared with Micro-Pulse Lidar Network (MPLNET) measurements deployed at Doi Ang Khang, Thailand, the retrieved heights show RMSE of 1.7 km (1.1 km) for unfiltered (QA-filtered) data for the complete algorithm, and 0.9 km (0.8 km) for the simplified algorithm.

  17. RETRIEVAL OF AEROSOL MICROPHYSICAL PROPERTIES BASED ON THE OPTIMAL ESTIMATION METHOD: INFORMATION CONTENT ANALYSIS FOR SATELLITE POLARIMETRIC REMOTE SENSING MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    W. Z. Hou

    2018-04-01

    Full Text Available This paper evaluates the information content for the retrieval of key aerosol microphysical and surface properties for multispectral single-viewing satellite polarimetric measurements cantered at 410, 443, 555, 670, 865, 1610 and 2250 nm over bright land. To conduct the information content analysis, the synthetic data are simulated by the Unified Linearized Vector Radiative Transfer Model (UNLVTM with the intensity and polarization together over bare soil surface for various scenarios. Following the optimal estimation theory, a principal component analysis method is employed to reconstruct the multispectral surface reflectance from 410 nm to 2250 nm, and then integrated with a linear one-parametric BPDF model to represent the contribution of polarized surface reflectance, thus further to decouple the surface-atmosphere contribution from the TOA measurements. Focusing on two different aerosol models with the aerosol optical depth equal to 0.8 at 550 nm, the total DFS and DFS component of each retrieval aerosol and surface parameter are analysed. The DFS results show that the key aerosol microphysical properties, such as the fine- and coarse-mode columnar volume concentration, the effective radius and the real part of complex refractive index at 550 nm, could be well retrieved with the surface parameters simultaneously over bare soil surface type. The findings of this study can provide the guidance to the inversion algorithm development over bright surface land by taking full use of the single-viewing satellite polarimetric measurements.

  18. Retrieval of Aerosol Microphysical Properties Based on the Optimal Estimation Method: Information Content Analysis for Satellite Polarimetric Remote Sensing Measurements

    Science.gov (United States)

    Hou, W. Z.; Li, Z. Q.; Zheng, F. X.; Qie, L. L.

    2018-04-01

    This paper evaluates the information content for the retrieval of key aerosol microphysical and surface properties for multispectral single-viewing satellite polarimetric measurements cantered at 410, 443, 555, 670, 865, 1610 and 2250 nm over bright land. To conduct the information content analysis, the synthetic data are simulated by the Unified Linearized Vector Radiative Transfer Model (UNLVTM) with the intensity and polarization together over bare soil surface for various scenarios. Following the optimal estimation theory, a principal component analysis method is employed to reconstruct the multispectral surface reflectance from 410 nm to 2250 nm, and then integrated with a linear one-parametric BPDF model to represent the contribution of polarized surface reflectance, thus further to decouple the surface-atmosphere contribution from the TOA measurements. Focusing on two different aerosol models with the aerosol optical depth equal to 0.8 at 550 nm, the total DFS and DFS component of each retrieval aerosol and surface parameter are analysed. The DFS results show that the key aerosol microphysical properties, such as the fine- and coarse-mode columnar volume concentration, the effective radius and the real part of complex refractive index at 550 nm, could be well retrieved with the surface parameters simultaneously over bare soil surface type. The findings of this study can provide the guidance to the inversion algorithm development over bright surface land by taking full use of the single-viewing satellite polarimetric measurements.

  19. Retrieval of aerosol properties and water leaving radiance from multi-angle spectro-polarimetric measurement over coastal waters

    Science.gov (United States)

    Gao, M.; Zhai, P.; Franz, B. A.; Hu, Y.; Knobelspiesse, K. D.; Xu, F.; Ibrahim, A.

    2017-12-01

    Ocean color remote sensing in coastal waters remains a challenging task due to the complex optical properties of aerosols and ocean water properties. It is highly desirable to develop an advanced ocean color and aerosol retrieval algorithm for coastal waters, to advance our capabilities in monitoring water quality, improve our understanding of coastal carbon cycle dynamics, and allow for the development of more accurate circulation models. However, distinguishing the dissolved and suspended material from absorbing aerosols over coastal waters is challenging as they share similar absorption spectrum within the deep blue to UV range. In this paper we report a research algorithm on aerosol and ocean color retrieval with emphasis on coastal waters. The main features of our algorithm include: 1) combining co-located measurements from a hyperspectral ocean color instrument (OCI) and a multi-angle polarimeter (MAP); 2) using the radiative transfer model for coupled atmosphere and ocean system (CAOS), which is based on the highly accurate and efficient successive order of scattering method; and 3) incorporating a generalized bio-optical model with direct accounting of the total absorption of phytoplankton, CDOM and non-algal particles(NAP), and the total scattering of phytoplankton and NAP for improved description of ocean light scattering. The non-linear least square fitting algorithm is used to optimize the bio-optical model parameters and the aerosol optical and microphysical properties including refractive indices and size distributions for both fine and coarse modes. The retrieved aerosol information is used to calculate the atmospheric path radiance, which is then subtracted from the OCI observations to obtain the water leaving radiance contribution. Our work aims to maximize the use of available information from the co-located dataset and conduct the atmospheric correction with minimal assumptions. The algorithm will contribute to the success of current MAP

  20. The semianalytical cloud retrieval algorithm for SCIAMACHY I. The validation

    Directory of Open Access Journals (Sweden)

    A. A. Kokhanovsky

    2006-01-01

    Full Text Available A recently developed cloud retrieval algorithm for the SCanning Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY is briefly presented and validated using independent and well tested cloud retrieval techniques based on the look-up-table approach for MODeration resolutIon Spectrometer (MODIS data. The results of the cloud top height retrievals using measurements in the oxygen A-band by an airborne crossed Czerny-Turner spectrograph and the Global Ozone Monitoring Experiment (GOME instrument are compared with those obtained from airborne dual photography and retrievals using data from Along Track Scanning Radiometer (ATSR-2, respectively.

  1. Using the fuzzy modeling for the retrieval algorithms

    International Nuclear Information System (INIS)

    Mohamed, A.H

    2010-01-01

    A rapid growth in number and size of images in databases and world wide web (www) has created a strong need for more efficient search and retrieval systems to exploit the benefits of this large amount of information. However, the collection of this information is now based on the image technology. One of the limitations of the current image analysis techniques necessitates that most image retrieval systems use some form of text description provided by the users as the basis to index and retrieve images. To overcome this problem, the proposed system introduces the using of fuzzy modeling to describe the image by using the linguistic ambiguities. Also, the proposed system can include vague or fuzzy terms in modeling the queries to match the image descriptions in the retrieval process. This can facilitate the indexing and retrieving process, increase their performance and decrease its computational time . Therefore, the proposed system can improve the performance of the traditional image retrieval algorithms.

  2. Improvement of Aerosol Optical Depth Retrieval from MODIS Spectral Reflectance over the Global Ocean Using New Aerosol Models Archived from AERONET Inversion Data and Tri-axial Ellipsoidal Dust Database

    Science.gov (United States)

    Lee, J.; Kim, J.; Yang, P.; Hsu, N. C.

    2012-01-01

    New over-ocean aerosol models are developed by integrating the inversion data from the Aerosol Robotic Network (AERONET) sun/sky radiometers with a database for the optical properties of tri-axial ellipsoid particles. The new aerosol models allow more accurate retrieval of aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS) in the case of high AOD (AOD greater than 0.3). The aerosol models are categorized by using the fine-mode fraction (FMF) at 550 nm and the singlescattering albedo (SSA) at 440 nm from the AERONET inversion data to include a variety of aerosol types found around the globe. For each aerosol model, the changes in the aerosol optical properties (AOPs) as functions of AOD are considered to better represent aerosol characteristics. Comparisons of AODs between AERONET and MODIS for the period from 2003 to 2010 show that the use of the new aerosol models enhances the AOD accuracy with a Pearson coefficient of 0.93 and a regression slope of 0.99 compared to 0.92 and 0.85 calculated using the MODIS Collection 5 data. Moreover, the percentage of data within an expected error of +/-(0.03 + 0.05xAOD) is increased from 62 percent to 64 percent for overall data and from 39 percent to 51 percent for AOD greater than 0.3. Errors in the retrieved AOD are further characterized with respect to the Angstrom exponent (AE), scattering angle, SSA, and air mass factor (AMF). Due to more realistic AOPs assumptions, the new algorithm generally reduces systematic errors in the retrieved AODs compared with the current operational algorithm. In particular, the underestimation of fine-dominated AOD and the scattering angle dependence of dust-dominated AOD are significantly mitigated as results of the new algorithm's improved treatment of aerosol size distribution and dust particle nonsphericity.

  3. Improvement of aerosol optical depth retrieval from MODIS spectral reflectance over the global ocean using new aerosol models archived from AERONET inversion data and tri-axial ellipsoidal dust database

    Directory of Open Access Journals (Sweden)

    J. Lee

    2012-08-01

    Full Text Available New over-ocean aerosol models are developed by integrating the inversion data from the Aerosol Robotic Network (AERONET sun/sky radiometers with a database for the optical properties of tri-axial ellipsoid particles. The new aerosol models allow more accurate retrieval of aerosol optical depth (AOD from the Moderate Resolution Imaging Spectroradiometer (MODIS in the case of high AOD (AOD > 0.3. The aerosol models are categorized by using the fine-mode fraction (FMF at 550 nm and the single-scattering albedo (SSA at 440 nm from the AERONET inversion data to include a variety of aerosol types found around the globe. For each aerosol model, the changes in the aerosol optical properties (AOPs as functions of AOD are considered to better represent aerosol characteristics. Comparisons of AODs between AERONET and MODIS for the period from 2003 to 2010 show that the use of the new aerosol models enhances the AOD accuracy with a Pearson coefficient of 0.93 and a regression slope of 0.99 compared to 0.92 and 0.85 calculated using the MODIS Collection 5 data. Moreover, the percentage of data within an expected error of ± (0.03 + 0.05 × AOD is increased from 62% to 64% for overall data and from 39% to 5% for AOD > 0.3. Errors in the retrieved AOD are further characterized with respect to the Ångström exponent (AE, scattering angle (Θ, SSA, and air mass factor (AMF. Due to more realistic AOPs assumptions, the new algorithm generally reduces systematic errors in the retrieved AODs compared with the current operational algorithm. In particular, the underestimation of fine-dominated AOD and the scattering angle dependence of dust-dominated AOD are significantly mitigated as results of the new algorithm's improved treatment of aerosol size distribution and dust particle nonsphericity.

  4. An algorithm for hyperspectral remote sensing of aerosols: 1. Development of theoretical framework

    International Nuclear Information System (INIS)

    Hou, Weizhen; Wang, Jun; Xu, Xiaoguang; Reid, Jeffrey S.; Han, Dong

    2016-01-01

    This paper describes the first part of a series of investigations to develop algorithms for simultaneous retrieval of aerosol parameters and surface reflectance from a newly developed hyperspectral instrument, the GEOstationary Trace gas and Aerosol Sensor Optimization (GEO-TASO), by taking full advantage of available hyperspectral measurement information in the visible bands. We describe the theoretical framework of an inversion algorithm for the hyperspectral remote sensing of the aerosol optical properties, in which major principal components (PCs) for surface reflectance is assumed known, and the spectrally dependent aerosol refractive indices are assumed to follow a power-law approximation with four unknown parameters (two for real and two for imaginary part of refractive index). New capabilities for computing the Jacobians of four Stokes parameters of reflected solar radiation at the top of the atmosphere with respect to these unknown aerosol parameters and the weighting coefficients for each PC of surface reflectance are added into the UNified Linearized Vector Radiative Transfer Model (UNL-VRTM), which in turn facilitates the optimization in the inversion process. Theoretical derivations of the formulas for these new capabilities are provided, and the analytical solutions of Jacobians are validated against the finite-difference calculations with relative error less than 0.2%. Finally, self-consistency check of the inversion algorithm is conducted for the idealized green-vegetation and rangeland surfaces that were spectrally characterized by the U.S. Geological Survey digital spectral library. It shows that the first six PCs can yield the reconstruction of spectral surface reflectance with errors less than 1%. Assuming that aerosol properties can be accurately characterized, the inversion yields a retrieval of hyperspectral surface reflectance with an uncertainty of 2% (and root-mean-square error of less than 0.003), which suggests self-consistency in the

  5. Type-Dependent Responses of Ice Cloud Properties to Aerosols From Satellite Retrievals

    Science.gov (United States)

    Zhao, Bin; Gu, Yu; Liou, Kuo-Nan; Wang, Yuan; Liu, Xiaohong; Huang, Lei; Jiang, Jonathan H.; Su, Hui

    2018-04-01

    Aerosol-cloud interactions represent one of the largest uncertainties in external forcings on our climate system. Compared with liquid clouds, the observational evidence for the aerosol impact on ice clouds is much more limited and shows conflicting results, partly because the distinct features of different ice cloud and aerosol types were seldom considered. Using 9-year satellite retrievals, we find that, for convection-generated (anvil) ice clouds, cloud optical thickness, cloud thickness, and cloud fraction increase with small-to-moderate aerosol loadings (types provide valuable constraints on the modeling assessment of aerosol-ice cloud radiative forcing.

  6. Retrieval of aerosol profiles combining sunphotometer and ceilometer measurements in GRASP code

    Science.gov (United States)

    Román, R.; Benavent-Oltra, J. A.; Casquero-Vera, J. A.; Lopatin, A.; Cazorla, A.; Lyamani, H.; Denjean, C.; Fuertes, D.; Pérez-Ramírez, D.; Torres, B.; Toledano, C.; Dubovik, O.; Cachorro, V. E.; de Frutos, A. M.; Olmo, F. J.; Alados-Arboledas, L.

    2018-05-01

    In this paper we present an approach for the profiling of aerosol microphysical and optical properties combining ceilometer and sun/sky photometer measurements in the GRASP code (General Retrieval of Aerosol and Surface Properties). For this objective, GRASP is used with sun/sky photometer measurements of aerosol optical depth (AOD) and sky radiances, both at four wavelengths and obtained from AErosol RObotic NETwork (AERONET), and ceilometer measurements of range corrected signal (RCS) at 1064 nm. A sensitivity study with synthetic data evidences the capability of the method to retrieve aerosol properties such as size distribution and profiles of volume concentration (VC), especially for coarse particles. Aerosol properties obtained by the mentioned method are compared with airborne in-situ measurements acquired during two flights over Granada (Spain) within the framework of ChArMEx/ADRIMED (Chemistry-Aerosol Mediterranean Experiment/Aerosol Direct Radiative Impact on the regional climate in the MEDiterranean region) 2013 campaign. The retrieved aerosol VC profiles agree well with the airborne measurements, showing a mean bias error (MBE) and a mean absolute bias error (MABE) of 0.3 μm3/cm3 (12%) and 5.8 μm3/cm3 (25%), respectively. The differences between retrieved VC and airborne in-situ measurements are within the uncertainty of GRASP retrievals. In addition, the retrieved VC at 2500 m a.s.l. is shown and compared with in-situ measurements obtained during summer 2016 at a high-atitude mountain station in the framework of the SLOPE I campaign (Sierra Nevada Lidar AerOsol Profiling Experiment). VC from GRASP presents high correlation (r = 0.91) with the in-situ measurements, but overestimates them, MBE and MABE being equal to 23% and 43%.

  7. Sensitivity of PARASOL multi-angle photopolarimetric aerosol retrievals to cloud contamination

    NARCIS (Netherlands)

    Stap, F. A.; Hasekamp, O. P.; Roeckmann, Thomas

    2015-01-01

    An important problem in satellite remote sensing of aerosols is related to the need to perform an adequate cloud screening. If a cloud screening is applied that is not strict enough, the ground scene has the probability of residual cloud cover which causes large errors on the retrieved aerosol

  8. Aerosol optical depth retrieval over snow using AATSR data

    NARCIS (Netherlands)

    Mei, L.; Xue, Y.; Kokhanovsky, A.A.; Hoyningen-Huene, W. von; Istomina, L.; Leeuw, G. de; Burrows, J.P.; Guang, J.; Jing, Y.

    2013-01-01

    Aerosol observations over the Arctic are important because of the effects of aerosols on Arctic climate, such as their direct and indirect effects on the Earth's radiation balance and on snow albedo. Although information on aerosol properties is available from ground-based measurements, passive

  9. FRESCO+: an improved O2 A-band cloud retrieval algorithm for tropospheric trace gas retrievals

    Directory of Open Access Journals (Sweden)

    M. van Roozendael

    2008-11-01

    Full Text Available The FRESCO (Fast Retrieval Scheme for Clouds from the Oxygen A-band algorithm has been used to retrieve cloud information from measurements of the O2 A-band around 760 nm by GOME, SCIAMACHY and GOME-2. The cloud parameters retrieved by FRESCO are the effective cloud fraction and cloud pressure, which are used for cloud correction in the retrieval of trace gases like O3 and NO2. To improve the cloud pressure retrieval for partly cloudy scenes, single Rayleigh scattering has been included in an improved version of the algorithm, called FRESCO+. We compared FRESCO+ and FRESCO effective cloud fractions and cloud pressures using simulated spectra and one month of GOME measured spectra. As expected, FRESCO+ gives more reliable cloud pressures over partly cloudy pixels. Simulations and comparisons with ground-based radar/lidar measurements of clouds show that the FRESCO+ cloud pressure is about the optical midlevel of the cloud. Globally averaged, the FRESCO+ cloud pressure is about 50 hPa higher than the FRESCO cloud pressure, while the FRESCO+ effective cloud fraction is about 0.01 larger. The effect of FRESCO+ cloud parameters on O3 and NO2 vertical column density (VCD retrievals is studied using SCIAMACHY data and ground-based DOAS measurements. We find that the FRESCO+ algorithm has a significant effect on tropospheric NO2 retrievals but a minor effect on total O3 retrievals. The retrieved SCIAMACHY tropospheric NO2 VCDs using FRESCO+ cloud parameters (v1.1 are lower than the tropospheric NO2VCDs which used FRESCO cloud parameters (v1.04, in particular over heavily polluted areas with low clouds. The difference between SCIAMACHY tropospheric NO2 VCDs v1.1 and ground-based MAXDOAS measurements performed in Cabauw, The Netherlands, during the DANDELIONS campaign is about −2.12×1014molec cm−2.

  10. Retrieval of Aerosol Optical Depth Above Clouds from OMI Observations: Sensitivity Analysis, Case Studies

    Science.gov (United States)

    Torres, O.; Jethva, H.; Bhartia, P. K.

    2012-01-01

    A large fraction of the atmospheric aerosol load reaching the free troposphere is frequently located above low clouds. Most commonly observed aerosols above clouds are carbonaceous particles generally associated with biomass burning and boreal forest fires, and mineral aerosols originated in arid and semi-arid regions and transported across large distances, often above clouds. Because these aerosols absorb solar radiation, their role in the radiative transfer balance of the earth atmosphere system is especially important. The generally negative (cooling) top of the atmosphere direct effect of absorbing aerosols, may turn into warming when the light-absorbing particles are located above clouds. The actual effect depends on the aerosol load and the single scattering albedo, and on the geometric cloud fraction. In spite of its potential significance, the role of aerosols above clouds is not adequately accounted for in the assessment of aerosol radiative forcing effects due to the lack of measurements. In this paper we discuss the basis of a simple technique that uses near-UV observations to simultaneously derive the optical depth of both the aerosol layer and the underlying cloud for overcast conditions. The two-parameter retrieval method described here makes use of the UV aerosol index and reflectance measurements at 388 nm. A detailed sensitivity analysis indicates that the measured radiances depend mainly on the aerosol absorption exponent and aerosol-cloud separation. The technique was applied to above-cloud aerosol events over the Southern Atlantic Ocean yielding realistic results as indicated by indirect evaluation methods. An error analysis indicates that for typical overcast cloudy conditions and aerosol loads, the aerosol optical depth can be retrieved with an accuracy of approximately 54% whereas the cloud optical depth can be derived within 17% of the true value.

  11. RETRIEVAL OF AEROSOL PHASE FUNCTION AND POLARIZED PHASE FUNCTION FROM POLARIZATION OF SKYLIGHT FOR DIFFERENT OBSERVATION GEOMETRIES

    Directory of Open Access Journals (Sweden)

    L. Li

    2018-04-01

    Full Text Available The phase function and polarized phase function are important optical parameters, which describe scattering properties of atmospheric aerosol particles. Polarization of skylight induced by the scattering processes is sensitive to the scattering properties of aerosols. The Stokes parameters I, Q, U and the polarized radiance Lp of skylight measured by the CIMEL dual-polar sun-sky radiometer CE318- DP can be use to retrieve the phase function and polarized phase function, respectively. Two different observation geometries (i.e., the principal plane and almucantar are preformed by the CE318-DP to detect skylight polarization. Polarization of skylight depends on the illumination and observation geometries. For the same solar zenith angle, retrievals of the phase function and the polarized phase function are still affected by the observation geometry. The performance of the retrieval algorithm for the principal plane and almucantar observation geometries was assessed by the numerical experiments at two typical high and low sun’s positions (i.e. solar zenith angles are equal to 45° and 65°. Comparing the results for the principal plane and almucantar geometries, it is recommended to utilize the principal plane observations to retrieve the phase function when the solar zenith angle is small. The Stokes parameter U and the polarized radiance Lp from the almucantar observations are suggested to retrieve the polarized phase function, especially for short wavelength channels (e.g., 440 and 500 nm.

  12. Retrieval of Aerosol Phase Function and Polarized Phase Function from Polarization of Skylight for Different Observation Geometries

    Science.gov (United States)

    Li, L.; Qie, L. L.; Xu, H.; Li, Z. Q.

    2018-04-01

    The phase function and polarized phase function are important optical parameters, which describe scattering properties of atmospheric aerosol particles. Polarization of skylight induced by the scattering processes is sensitive to the scattering properties of aerosols. The Stokes parameters I, Q, U and the polarized radiance Lp of skylight measured by the CIMEL dual-polar sun-sky radiometer CE318- DP can be use to retrieve the phase function and polarized phase function, respectively. Two different observation geometries (i.e., the principal plane and almucantar) are preformed by the CE318-DP to detect skylight polarization. Polarization of skylight depends on the illumination and observation geometries. For the same solar zenith angle, retrievals of the phase function and the polarized phase function are still affected by the observation geometry. The performance of the retrieval algorithm for the principal plane and almucantar observation geometries was assessed by the numerical experiments at two typical high and low sun's positions (i.e. solar zenith angles are equal to 45° and 65°). Comparing the results for the principal plane and almucantar geometries, it is recommended to utilize the principal plane observations to retrieve the phase function when the solar zenith angle is small. The Stokes parameter U and the polarized radiance Lp from the almucantar observations are suggested to retrieve the polarized phase function, especially for short wavelength channels (e.g., 440 and 500 nm).

  13. A numerical testbed for remote sensing of aerosols, and its demonstration for evaluating retrieval synergy from a geostationary satellite constellation of GEO-CAPE and GOES-R

    International Nuclear Information System (INIS)

    Wang, Jun; Xu, Xiaoguang; Ding, Shouguo; Zeng, Jing; Spurr, Robert; Liu, Xiong; Chance, Kelly; Mishchenko, Michael

    2014-01-01

    We present a numerical testbed for remote sensing of aerosols, together with a demonstration for evaluating retrieval synergy from a geostationary satellite constellation. The testbed combines inverse (optimal-estimation) software with a forward model containing linearized code for computing particle scattering (for both spherical and non-spherical particles), a kernel-based (land and ocean) surface bi-directional reflectance facility, and a linearized radiative transfer model for polarized radiance. Calculation of gas absorption spectra uses the HITRAN (HIgh-resolution TRANsmission molecular absorption) database of spectroscopic line parameters and other trace species cross-sections. The outputs of the testbed include not only the Stokes 4-vector elements and their sensitivities (Jacobians) with respect to the aerosol single scattering and physical parameters (such as size and shape parameters, refractive index, and plume height), but also DFS (Degree of Freedom for Signal) values for retrieval of these parameters. This testbed can be used as a tool to provide an objective assessment of aerosol information content that can be retrieved for any constellation of (planned or real) satellite sensors and for any combination of algorithm design factors (in terms of wavelengths, viewing angles, radiance and/or polarization to be measured or used). We summarize the components of the testbed, including the derivation and validation of analytical formulae for Jacobian calculations. Benchmark calculations from the forward model are documented. In the context of NASA's Decadal Survey Mission GEO-CAPE (GEOstationary Coastal and Air Pollution Events), we demonstrate the use of the testbed to conduct a feasibility study of using polarization measurements in and around the O 2 A band for the retrieval of aerosol height information from space, as well as an to assess potential improvement in the retrieval of aerosol fine and coarse mode aerosol optical depth (AOD) through the

  14. Crossover Improvement for the Genetic Algorithm in Information Retrieval.

    Science.gov (United States)

    Vrajitoru, Dana

    1998-01-01

    In information retrieval (IR), the aim of genetic algorithms (GA) is to help a system to find, in a huge documents collection, a good reply to a query expressed by the user. Analysis of phenomena seen during the implementation of a GA for IR has led to a new crossover operation, which is introduced and compared to other learning methods.…

  15. Empirical analysis of aerosol and thin cloud optical depth effects on CO2 retrievals from GOSAT

    Science.gov (United States)

    Saha, A.; O'Neill, N. T.; Strong, K.; Nakajima, T.; Uchino, O.; Shiobara, M.

    2014-12-01

    Ground-based sunphotometer observations of aerosol and cloud optical properties at AEROCAN / AERONET sites co-located with TCCON (Total Carbon Column Observing Network) high resolution Fourier Transform Spectrometers (FTS) were used to investigate the aerosol and cloud influence on column-averaged dry-air mole fraction of carbon dioxide (XCO2) retrieved from the TANSO-FTS (Thermal And Near-infrared Sensor for carbon Observation - FTS) of GOSAT (Greenhouse gases Observing SATellite). This instrument employs high resolution spectra measured in the Short-Wavelength InfraRed (SWIR) band to retrieve XCO2estimates. GOSAT XCO2 retrievals are nominally corrected for the contaminating backscatter influence of aerosols and thin clouds. However if the satellite-retrieved aerosol and thin cloud optical depths applied to the CO2 correction is biased then the correction and the retrieved CO2 values will be biased. We employed independent ground based estimates of both cloud screened and non cloud screened AOD (aerosol optical depth) in the CO2 SWIR channel and compared this with the GOSAT SWIR-channel OD retrievals to see if that bias was related to variations in the (generally negative) CO2 bias (ΔXCO2= XCO2(GOSAT) - XCO2(TCCON)). Results are presented for a number of TCCON validation sites.

  16. Phase retrieval via incremental truncated amplitude flow algorithm

    Science.gov (United States)

    Zhang, Quanbing; Wang, Zhifa; Wang, Linjie; Cheng, Shichao

    2017-10-01

    This paper considers the phase retrieval problem of recovering the unknown signal from the given quadratic measurements. A phase retrieval algorithm based on Incremental Truncated Amplitude Flow (ITAF) which combines the ITWF algorithm and the TAF algorithm is proposed. The proposed ITAF algorithm enhances the initialization by performing both of the truncation methods used in ITWF and TAF respectively, and improves the performance in the gradient stage by applying the incremental method proposed in ITWF to the loop stage of TAF. Moreover, the original sampling vector and measurements are preprocessed before initialization according to the variance of the sensing matrix. Simulation experiments verified the feasibility and validity of the proposed ITAF algorithm. The experimental results show that it can obtain higher success rate and faster convergence speed compared with other algorithms. Especially, for the noiseless random Gaussian signals, ITAF can recover any real-valued signal accurately from the magnitude measurements whose number is about 2.5 times of the signal length, which is close to the theoretic limit (about 2 times of the signal length). And it usually converges to the optimal solution within 20 iterations which is much less than the state-of-the-art algorithms.

  17. MODIS Aerosol Optical Depth Bias Adjustment Using Machine Learning Algorithms

    Science.gov (United States)

    Albayrak, Arif; Wei, Jennifer; Petrenko, Maksym; Lary, David; Leptoukh, Gregory

    2011-01-01

    To monitor the earth atmosphere and its surface changes, satellite based instruments collect continuous data. While some of the data is directly used, some others such as aerosol properties are indirectly retrieved from the observation data. While retrieved variables (RV) form very powerful products, they don't come without obstacles. Different satellite viewing geometries, calibration issues, dynamically changing atmospheric and earth surface conditions, together with complex interactions between observed entities and their environment affect them greatly. This results in random and systematic errors in the final products.

  18. An improved ptychographical phase retrieval algorithm for diffractive imaging

    International Nuclear Information System (INIS)

    Maiden, Andrew M.; Rodenburg, John M.

    2009-01-01

    The ptychographical iterative engine (or PIE) is a recently developed phase retrieval algorithm that employs a series of diffraction patterns recorded as a known illumination function is translated to a set of overlapping positions relative to a target sample. The technique has been demonstrated successfully at optical and X-ray wavelengths and has been shown to be robust to detector noise and to converge considerably faster than support-based phase retrieval methods. In this paper, the PIE is extended so that the requirement for an accurate model of the illumination function is removed.

  19. Influence of Aerosols And Surface Reflectance On NO2 Retrieval Over China From 2005 to 2015

    Science.gov (United States)

    Liu, M.; Lin, J.

    2016-12-01

    Satellite observation is a powerful way to analysis annual and seasonal variations of nitrogen dioxide (NO2). However, much retrieval of vertical column densities (VCDs) of normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. In traditional retrieval, aerosols' effects are often considered as cloud. However, China has complicated aerosols type and aerosol loading. Their optical properties may be very different from the cloud. Furthermore, China has undergone big changes in land use type in recent 10 years. Traditional climatology surface reflectance data may not have representation. In order to study spatial-temporal variation of and influences of these two factors on variations and trends, we use an improved retrieval method of VCDs over China, called the POMINO, based on measurements from the Ozone Monitoring Instrument (OMI), and we compare the results of without aerosol, without surface reflectance treatments and without both to the original POMINO product from 2005 to 2015. Furthermore, we will study correspondent spatial-temporal variations of aerosols, represented by MODIS aerosol optical depth (AOD) data and CALIOP extinction data; surface reflectance, represented by MODIS bidirectional reflectance distribution function (BRDF) data.

  20. Aerosols correction of the OMI tropospheric NO2 retrievals over cloud-free scenes: Different methodologies based on the O2-O2 477 nm band

    Science.gov (United States)

    Chimot, Julien; Vlemmix, Tim; Veefkind, Pepijn; Levelt, Pieternel

    2016-04-01

    Numerous studies have drawn attention to the complexities related to the retrievals of tropospheric NO2 columns derived from satellite UltraViolet-Visible (UV-Vis) measurements in the presence of aerosols. Correction for aerosol effects will remain a challenge for the next generation of air quality satellite instruments such as TROPOMI on Sentinel-5 Precursor, Sentinel-4 and Sentinel-5. The Ozone Monitoring Instrument (OMI) instrument has provided daily global measurements of tropospheric NO2 for more than a decade. However, aerosols are not explicitly taken into account in the current operational OMI tropospheric NO2 retrieval chain (DOMINO v2 [Boersma et al., 2011]). Our study analyses 2 approaches for an operational aerosol correction, based on the use of the O2-O2 477 nm band. The 1st approach is the cloud-model based aerosol correction, also named "implicit aerosol correction", and already used in the operational chain. The OMI O2-O2 cloud retrieval algorithm, based on the Differential Optical Absorption Spectroscopy (DOAS) approach, is applied both to cloudy and to cloud-free scenes with aerosols present. Perturbation of the OMI cloud retrievals over scenes dominated by aerosols has been observed in recent studies led by [Castellanos et al., 2015; Lin et al., 2015; Lin et al., 2014]. We investigated the causes of these perturbations by: (1) confronting the OMI tropospheric NO2, clouds and MODIS AQUA aerosol products; (2) characterizing the key drivers of the aerosol net effects, compared to a signal from clouds, in the UV-Vis spectra. This study has focused on large industrialised areas like East-China, over cloud-free scenes. One of the key findings is the limitation due to the coarse sampling of the employed cloud Look-Up Table (LUT) to convert the results of the applied DOAS fit into effective cloud fraction and pressure. This leads to an underestimation of tropospheric NO2 amount in cases of particles located at elevated altitude. A higher sampling of the

  1. The Invigoration of Deep Convective Clouds Over the Atlantic: Aerosol Effect, Meteorology or Retrieval Artifact?

    Science.gov (United States)

    Koren, Ilan; Feingold, Graham; Remer, Lorraine A.

    2010-01-01

    Associations between cloud properties and aerosol loading are frequently observed in products derived from satellite measurements. These observed trends between clouds and aerosol optical depth suggest aerosol modification of cloud dynamics, yet there are uncertainties involved in satellite retrievals that have the potential to lead to incorrect conclusions. Two of the most challenging problems are addressed here: the potential for retrieved aerosol optical depth to be cloud-contaminated, and as a result, artificially correlated with cloud parameters; and the potential for correlations between aerosol and cloud parameters to be erroneously considered to be causal. Here these issues are tackled directly by studying the effects of the aerosol on convective clouds in the tropical Atlantic Ocean using satellite remote sensing, a chemical transport model, and a reanalysis of meteorological fields. Results show that there is a robust positive correlation between cloud fraction or cloud top height and the aerosol optical depth, regardless of whether a stringent filtering of aerosol measurements in the vicinity of clouds is applied, or not. These same positive correlations emerge when replacing the observed aerosol field with that derived from a chemical transport model. Model-reanalysis data is used to address the causality question by providing meteorological context for the satellite observations. A correlation exercise between the full suite of meteorological fields derived from model reanalysis and satellite-derived cloud fields shows that observed cloud top height and cloud fraction correlate best with model pressure updraft velocity and relative humidity. Observed aerosol optical depth does correlate with meteorological parameters but usually different parameters from those that correlate with observed cloud fields. The result is a near-orthogonal influence of aerosol and meteorological fields on cloud top height and cloud fraction. The results strengthen the case

  2. Coupled Retrieval of Liquid Water Cloud and Above-Cloud Aerosol Properties Using the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI)

    Science.gov (United States)

    Xu, Feng; van Harten, Gerard; Diner, David J.; Davis, Anthony B.; Seidel, Felix C.; Rheingans, Brian; Tosca, Mika; Alexandrov, Mikhail D.; Cairns, Brian; Ferrare, Richard A.; Burton, Sharon P.; Fenn, Marta A.; Hostetler, Chris A.; Wood, Robert; Redemann, Jens

    2018-03-01

    An optimization algorithm is developed to retrieve liquid water cloud properties including cloud optical depth (COD), droplet size distribution and cloud top height (CTH), and above-cloud aerosol properties including aerosol optical depth (AOD), single-scattering albedo, and microphysical properties from sweep-mode observations by Jet Propulsion Laboratory's Airborne Multiangle SpectroPolarimetric Imager (AirMSPI) instrument. The retrieval is composed of three major steps: (1) initial estimate of the mean droplet size distribution across the entire image of 80-100 km along track by 10-25 km across track from polarimetric cloudbow observations, (2) coupled retrieval of image-scale cloud and above-cloud aerosol properties by fitting the polarimetric data at all observation angles, and (3) iterative retrieval of 1-D radiative transfer-based COD and droplet size distribution at pixel scale (25 m) by establishing relationships between COD and droplet size and fitting the total radiance measurements. Our retrieval is tested using 134 AirMSPI data sets acquired during the National Aeronautics and Space Administration (NASA) field campaign ObseRvations of Aerosols above CLouds and their intEractionS. The retrieved above-cloud AOD and CTH are compared to coincident HSRL-2 (HSRL-2, NASA Langley Research Center) data, and COD and droplet size distribution parameters (effective radius reff and effective variance veff) are compared to coincident Research Scanning Polarimeter (RSP) (NASA Goddard Institute for Space Studies) data. Mean absolute differences between AirMSPI and HSRL-2 retrievals of above-cloud AOD at 532 nm and CTH are 0.03 and mean absolute differences between RSP and AirMSPI retrievals of COD, reff, and veff in the cloudbow area are 2.33, 0.69 μm, and 0.020, respectively. Neglect of smoke aerosols above cloud leads to an underestimate of image-averaged COD by 15%.

  3. Image Retrieval Algorithm Based on Discrete Fractional Transforms

    Science.gov (United States)

    Jindal, Neeru; Singh, Kulbir

    2013-06-01

    The discrete fractional transforms is a signal processing tool which suggests computational algorithms and solutions to various sophisticated applications. In this paper, a new technique to retrieve the encrypted and scrambled image based on discrete fractional transforms has been proposed. Two-dimensional image was encrypted using discrete fractional transforms with three fractional orders and two random phase masks placed in the two intermediate planes. The significant feature of discrete fractional transforms benefits from its extra degree of freedom that is provided by its fractional orders. Security strength was enhanced (1024!)4 times by scrambling the encrypted image. In decryption process, image retrieval is sensitive for both correct fractional order keys and scrambling algorithm. The proposed approach make the brute force attack infeasible. Mean square error and relative error are the recital parameters to verify validity of proposed method.

  4. Statistical intercomparison and validation of multisensory aerosol optical depth retrievals over three AERONET sites in Kenya, East Africa

    Science.gov (United States)

    Boiyo, Richard; Kumar, K. Raghavendra; Zhao, Tianliang

    2017-11-01

    Over the last two decades, a number of space-borne sensors have been used to retrieve aerosol optical depth (AOD). The reliability of these datasets over East Africa (EA), however, is an important issue in the interpretation of regional aerosol variability. This study provides an intercomparison and validation of AOD retrievals from the MODIS-Terra (DT and DB), MISR and OMI sensors against ground-based measurements from the AERONET over three sites (CRPSM_Malindi, Nairobi, and ICIPE_Mbita) in Kenya, EA during the periods 2008-2013, 2005-2009 and 2006-2015, respectively. The analysis revealed that MISR performed better over the three sites with about 82.5% of paired AOD data falling within the error envelope (EE). MODIS-DT showed good agreement against AERONET with 59.05% of paired AOD falling within the sensor EE over terrestrial surfaces with relatively high vegetation cover. The comparison between MODIS-DB and AERONET revealed an overall lower performance with lower Gfraction (48.93%) and lower correlation r = 0.58; while AOD retrieved from OMI showed less correspondence with AERONET data with lower Gfraction (68.89%) and lowest correlation r = 0.31. The monthly evaluation of AODs retrieved from the sensors against AERONET AOD indicates that MODIS-DT has the best performance over the three sites with highest correlation (0.71-0.84), lowest RMSE and spread closer to the AERONET. Regarding seasonal analysis, MISR performed well during most seasons over Nairobi and Mbita; while MODIS-DT performed better than all other sensors during most seasons over Malindi. Furthermore, the best seasonal performance of most sensors relative to AERONET data occurred during June-August (JJA) attributed to modulations induced by a precipitation-vegetation factor to AOD satellite retrieval algorithms. The study revealed the strength and weakness of each of the retrieval algorithm and forms the basis for further research on the validation of satellite retrieved aerosol products over EA.

  5. Remote Sensing of Cloud Top Height from SEVIRI: Analysis of Eleven Current Retrieval Algorithms

    Science.gov (United States)

    Hamann, U.; Walther, A.; Baum, B.; Bennartz, R.; Bugliaro, L.; Derrien, M.; Francis, P. N.; Heidinger, A.; Joro, S.; Kniffka, A.; hide

    2014-01-01

    The role of clouds remains the largest uncertainty in climate projections. They influence solar and thermal radiative transfer and the earth's water cycle. Therefore, there is an urgent need for accurate cloud observations to validate climate models and to monitor climate change. Passive satellite imagers measuring radiation at visible to thermal infrared (IR) wavelengths provide a wealth of information on cloud properties. Among others, the cloud top height (CTH) - a crucial parameter to estimate the thermal cloud radiative forcing - can be retrieved. In this paper we investigate the skill of ten current retrieval algorithms to estimate the CTH using observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard Meteosat Second Generation (MSG). In the first part we compare ten SEVIRI cloud top pressure (CTP) data sets with each other. The SEVIRI algorithms catch the latitudinal variation of the CTP in a similar way. The agreement is better in the extratropics than in the tropics. In the tropics multi-layer clouds and thin cirrus layers complicate the CTP retrieval, whereas a good agreement among the algorithms is found for trade wind cumulus, marine stratocumulus and the optically thick cores of the deep convective system. In the second part of the paper the SEVIRI retrievals are compared to CTH observations from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR) instruments. It is important to note that the different measurement techniques cause differences in the retrieved CTH data. SEVIRI measures a radiatively effective CTH, while the CTH of the active instruments is derived from the return time of the emitted radar or lidar signal. Therefore, some systematic differences are expected. On average the CTHs detected by the SEVIRI algorithms are 1.0 to 2.5 kilometers lower than CALIOP observations, and the correlation coefficients between the SEVIRI and the CALIOP data sets range between 0.77 and 0

  6. The effect of cloud screening on MAX-DOAS aerosol retrievals.

    Science.gov (United States)

    Gielen, Clio; Van Roozendael, Michel; Hendrik, Francois; Fayt, Caroline; Hermans, Christian; Pinardi, Gaia; De Backer, Hugo; De Bock, Veerle; Laffineur, Quentin; Vlemmix, Tim

    2014-05-01

    In recent years, ground-based multi-axis differential absorption spectroscopy (MAX-DOAS) has shown to be ideally suited for the retrieval of tropospheric trace gases and deriving information on the aerosol properties. These measurements are invaluable to our understanding of the physics and chemistry of the atmospheric system, and the impact on the Earth's climate. Unfortunately, MAX-DOAS measurements are often performed under strong non-clear-sky conditions, causing strong data quality degradation and uncertainties on the retrievals. Here we present the result of our cloud-screening method, using the colour index (CI), on aerosol retrievals from MAX-DOAS measurements (AOD and vertical profiles). We focus on two large data sets, from the Brussels and Beijing area. Using the CI we define 3 different sky conditions: bad (=full thick cloud cover/extreme aerosols), mediocre (=thin clouds/aerosols) and good (=clear sky). We also flag the presence of broken/scattered clouds. We further compare our cloud-screening method with results from cloud-cover fractions derived from thermic infrared measurements. In general, our method shows good results to qualify the sky and cloud conditions of MAX-DOAS measurements, without the need for other external cloud-detection systems. Removing data under bad-sky and broken-cloud conditions results in a strongly improved agreement, in both correlation and slope, between the MAX-DOAS aerosol retrievals and data from other instruments (e.g. AERONET, Brewer). With the improved AOD retrievals, the seasonal and diurnal variations of the aerosol content and vertical distribution at both sites can be investigated in further detail. By combining with additional information derived by other instruments (Brewer, lidar, ...) operated at the stations, we will further study the observed aerosol characteristics, and their influence on and by meteorological conditions such as clouds and/or the boundary layer height.

  7. Evaluating the impact of above-cloud aerosols on cloud optical depth retrievals from MODIS

    Science.gov (United States)

    Alfaro, Ricardo

    Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (visible and shortwave infrared), the impacts of above-cloud absorbing aerosols on the standard COD retrievals are evaluated. For fine-mode aerosol particles, aerosol optical depth (AOD) values diminish sharply from the visible to the shortwave infrared channels. Thus, a suppressed above-cloud particle radiance aliasing effect occurs for COD retrievals using shortwave infrared channels. Aerosol Index (AI) from the spatially and temporally collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African sub-continent. MODIS and OMI Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are used to constrain cloud phase and provide contextual above-cloud AOD values. The frequency of occurrence of above-cloud aerosols is depicted on a global scale for the spring and summer seasons from OMI and CALIOP, thus indicating the significance of the problem. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20--50% in boreal summer. We find a corresponding low COD bias of 10--20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1.0. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS visible and shortwave in channels are vulnerable to dust particle aliasing, and thus a COD impact cannot be isolated with this method. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of

  8. Critical Reflectance Derived from MODIS: Application for the Retrieval of Aerosol Absorption over Desert Regions

    Science.gov (United States)

    Wells, Kelley C.; Martins, J. Vanderlei; Remer, Lorraine A.; Kreidenweis, Sonia M.; Stephens, Graeme L.

    2012-01-01

    Aerosols are tiny suspended particles in the atmosphere that scatter and absorb sunlight. Smoke particles are aerosols, as are sea salt, particulate pollution and airborne dust. When you look down at the earth from space sometimes you can see vast palls of whitish smoke or brownish dust being transported by winds. The reason that you can see these aerosols is because they are reflecting incoming sunlight back to the view in space. The reason for the difference in color between the different types of aerosol is that the particles arc also absorbing sunlight at different wavelengths. Dust appears brownish or reddish because it absorbs light in the blue wavelengths and scatters more reddish light to space, Knowing how much light is scattered versus how much is absorbed, and knowin that as a function of wavelength is essential to being able to quantify the role aerosols play in the energy balance of the earth and in climate change. It is not easy measuring the absorption properties of aerosols when they are suspended in the atmosphere. People have been doing this one substance at a time in the laboratory, but substances mix when they are in the atmosphere and the net absorption effect of all the particles in a column of air is a goal of remote sensing that has not yet been completely successful. In this paper we use a technique based on observing the point at which aerosols change from brightening the surface beneath to darkening it. If aerosols brighten a surface. they must scatter more light to space. If they darken the surface. they must be absorbing more. That cross over point is called the critical reflectance and in this paper we show that critical reflectance is a monotonic function of the intrinsic absorption properties of the particles. This parameter we call the single scattering albedo. We apply the technique to MODIS imagery over the Sahara and Sahel regions to retrieve the single scattering albedo in seven wavelengths, compare these retrievals to ground

  9. HSRL-2 aerosol optical measurements and microphysical retrievals vs. airborne in situ measurements during DISCOVER-AQ 2013: an intercomparison study

    Directory of Open Access Journals (Sweden)

    P. Sawamura

    2017-06-01

    Full Text Available We present a detailed evaluation of remotely sensed aerosol microphysical properties obtained from an advanced, multi-wavelength high-spectral-resolution lidar (HSRL-2 during the 2013 NASA DISCOVER-AQ field campaign. Vertically resolved retrievals of fine-mode aerosol number, surface-area, and volume concentration as well as aerosol effective radius are compared to 108 collocated, airborne in situ measurement profiles in the wintertime San Joaquin Valley, California, and in summertime Houston, Texas. An algorithm for relating the dry in situ aerosol properties to those obtained by the HSRL at ambient relative humidity is discussed. We show that the HSRL-2 retrievals of ambient fine-mode aerosol surface-area and volume concentrations agree with the in situ measurements to within 25 and 10 %, respectively, once hygroscopic growth adjustments have been applied to the dry in situ data. Despite this excellent agreement for the microphysical properties, extinction and backscatter coefficients at ambient relative humidity derived from the in situ aerosol measurements using Mie theory are consistently smaller than those measured by the HSRL, with average differences of 31 ± 5 % and 53 ± 11 % for California and Texas, respectively. This low bias in the in situ estimates is attributed to the presence of coarse-mode aerosol that are detected by HSRL-2 but that are too large to be well sampled by the in situ instrumentation. Since the retrieval of aerosol volume is most relevant to current regulatory efforts targeting fine particle mass (PM2. 5, these findings highlight the advantages of an advanced 3β + 2α HSRL for constraining the vertical distribution of the aerosol volume or mass loading relevant for air quality.

  10. Absorbing Aerosols Above Cloud: Detection, Quantitative Retrieval, and Radiative Forcing from Satellite-based Passive Sensors

    Science.gov (United States)

    Jethva, H.; Torres, O.; Remer, L. A.; Bhartia, P. K.

    2012-12-01

    Light absorbing particles such as carbonaceous aerosols generated from biomass burning activities and windblown dust particles can exert a net warming effect on climate; the strength of which depends on the absorption capacity of the particles and brightness of the underlying reflecting background. When advected over low-level bright clouds, these aerosols absorb the cloud reflected radiation from ultra-violet (UV) to shortwave-IR (SWIR) and makes cloud scene darker-a phenomenon commonly known as "cloud darkening". The apparent "darkening" effect can be seen by eyes in satellite images as well as quantitatively in the spectral reflectance measurements made by space borne sensors over regions where light absorbing carbonaceous and dust aerosols overlay low-level cloud decks. Theoretical radiative transfer simulations support the observational evidence, and further reveal that the strength of the cloud darkening and its spectral signature (or color ratio) between measurements at two wavelengths are a bi-function of aerosol and cloud optical thickness (AOT and COT); both are measures of the total amount of light extinction caused by aerosols and cloud, respectively. Here, we developed a retrieval technique, named as the "color ratio method" that uses the satellite measurements at two channels, one at shorter wavelength in the visible and one at longer wavelength in the shortwave-IR for the simultaneous retrieval of AOT and COT. The present technique requires assumptions on the aerosol single-scattering albedo and aerosol-cloud separation which are supplemented by the Aerosol Robotic Network (AERONET) and space borne CALIOP lidar measurements. The retrieval technique has been tested making use of the near-UV and visible reflectance observations made by the Ozone Monitoring Instrument (OMI) and Moderate Resolution Imaging Spectroradiometer (MODIS) for distinct above-cloud smoke and dust aerosol events observed seasonally over the southeast and tropical Atlantic Ocean

  11. Evaluating the impact of aerosol particles above cloud on cloud optical depth retrievals from MODIS

    Science.gov (United States)

    Alfaro-Contreras, Ricardo; Zhang, Jianglong; Campbell, James R.; Holz, Robert E.; Reid, Jeffrey S.

    2014-05-01

    Using two different operational Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) cloud optical depth (COD) retrievals (0.86 versus 1.6 µm), we evaluate the impact of above-cloud smoke aerosol particles on near-IR (0.86 µm) COD retrievals. Aerosol Index (AI) from the collocated Ozone Monitoring Instrument (OMI) are used to identify above-cloud aerosol particle loading over the southern Atlantic Ocean, including both smoke and dust from the African subcontinent. Collocated Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation data constrain cloud phase and provide contextual above-cloud aerosol optical depth. The frequency of occurrence of above-cloud aerosol events is depicted on a global scale for the spring and summer seasons from OMI and Cloud Aerosol Lidar with Orthogonal Polarization. Seasonal frequencies for smoke-over-cloud off the southwestern Africa coastline reach 20-50% in boreal summer. We find a corresponding low COD bias of 10-20% for standard MODIS COD retrievals when averaged OMI AI are larger than 1. No such bias is found over the Saharan dust outflow region off northern Africa, since both MODIS 0.86 and 1.6 µm channels are vulnerable to radiance attenuation due to dust particles. A similar result is found for a smaller domain, in the Gulf of Tonkin region, from smoke advection over marine stratocumulus clouds and outflow into the northern South China Sea in spring. This study shows the necessity of accounting for the above-cloud aerosol events for future studies using standard MODIS cloud products in biomass burning outflow regions, through the use of collocated OMI AI and supplementary MODIS 1.6 µm COD products.

  12. Maritime Aerosol Network as a Component of AERONET - First Results and Comparison with Global Aerosol Models and Satellite Retrievals

    Science.gov (United States)

    Smirnov, A.; Holben, B. N.; Giles, D. M.; Slutsker, I.; O'Neill, N. T.; Eck, T. F.; Macke, A.; Croot, P.; Courcoux, Y.; Sakerin, S. M.; hide

    2011-01-01

    The Maritime Aerosol Network (MAN) has been collecting data over the oceans since November 2006. Over 80 cruises were completed through early 2010 with deployments continuing. Measurement areas included various parts of the Atlantic Ocean, the Northern and Southern Pacific Ocean, the South Indian Ocean, the Southern Ocean, the Arctic Ocean and inland seas. MAN deploys Microtops handheld sunphotometers and utilizes a calibration procedure and data processing traceable to AERONET. Data collection included areas that previously had no aerosol optical depth (AOD) coverage at all, particularly vast areas of the Southern Ocean. The MAN data archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we present results of AOD measurements over the oceans, and make a comparison with satellite AOD retrievals and model simulations.

  13. Maritime aerosol network as a component of AERONET – first results and comparison with global aerosol models and satellite retrievals

    Directory of Open Access Journals (Sweden)

    A. Smirnov

    2011-03-01

    Full Text Available The Maritime Aerosol Network (MAN has been collecting data over the oceans since November 2006. Over 80 cruises were completed through early 2010 with deployments continuing. Measurement areas included various parts of the Atlantic Ocean, the Northern and Southern Pacific Ocean, the South Indian Ocean, the Southern Ocean, the Arctic Ocean and inland seas. MAN deploys Microtops hand-held sunphotometers and utilizes a calibration procedure and data processing traceable to AERONET. Data collection included areas that previously had no aerosol optical depth (AOD coverage at all, particularly vast areas of the Southern Ocean. The MAN data archive provides a valuable resource for aerosol studies in maritime environments. In the current paper we present results of AOD measurements over the oceans, and make a comparison with satellite AOD retrievals and model simulations.

  14. Examining the Impact of Overlying Aerosols on the Retrieval of Cloud Optical Properties from Passive Remote Sensing

    Science.gov (United States)

    Coddington, O. M.; Pilewskie, P.; Redemann, J.; Platnick, S.; Russell, P. B.; Schmidt, K. S.; Gore, W. J.; Livingston, J.; Wind, G.; Vukicevic, T.

    2010-01-01

    Haywood et al. (2004) show that an aerosol layer above a cloud can cause a bias in the retrieved cloud optical thickness and effective radius. Monitoring for this potential bias is difficult because space ]based passive remote sensing cannot unambiguously detect or characterize aerosol above cloud. We show that cloud retrievals from aircraft measurements above cloud and below an overlying aerosol layer are a means to test this bias. The data were collected during the Intercontinental Chemical Transport Experiment (INTEX-A) study based out of Portsmouth, New Hampshire, United States, above extensive, marine stratus cloud banks affected by industrial outflow. Solar Spectral Flux Radiometer (SSFR) irradiance measurements taken along a lower level flight leg above cloud and below aerosol were unaffected by the overlying aerosol. Along upper level flight legs, the irradiance reflected from cloud top was transmitted through an aerosol layer. We compare SSFR cloud retrievals from below ]aerosol legs to satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) in order to detect an aerosol ]induced bias. In regions of small variation in cloud properties, we find that SSFR and MODIS-retrieved cloud optical thickness compares within the uncertainty range for each instrument while SSFR effective radius tend to be smaller than MODIS values (by 1-2 microns) and at the low end of MODIS uncertainty estimates. In regions of large variation in cloud properties, differences in SSFR and MODIS ]retrieved cloud optical thickness and effective radius can reach values of 10 and 10 microns, respectively. We include aerosols in forward modeling to test the sensitivity of SSFR cloud retrievals to overlying aerosol layers. We find an overlying absorbing aerosol layer biases SSFR cloud retrievals to smaller effective radii and optical thickness while nonabsorbing aerosols had no impact.

  15. Examining the impact of overlying aerosols on the retrieval of cloud optical properties from passive remote sensing

    Science.gov (United States)

    Coddington, O. M.; Pilewskie, P.; Redemann, J.; Platnick, S.; Russell, P. B.; Schmidt, K. S.; Gore, W. J.; Livingston, J.; Wind, G.; Vukicevic, T.

    2010-05-01

    Haywood et al. (2004) show that an aerosol layer above a cloud can cause a bias in the retrieved cloud optical thickness and effective radius. Monitoring for this potential bias is difficult because space-based passive remote sensing cannot unambiguously detect or characterize aerosol above cloud. We show that cloud retrievals from aircraft measurements above cloud and below an overlying aerosol layer are a means to test this bias. The data were collected during the Intercontinental Chemical Transport Experiment (INTEX-A) study based out of Portsmouth, New Hampshire, United States, above extensive, marine stratus cloud banks affected by industrial outflow. Solar Spectral Flux Radiometer (SSFR) irradiance measurements taken along a lower level flight leg above cloud and below aerosol were unaffected by the overlying aerosol. Along upper level flight legs, the irradiance reflected from cloud top was transmitted through an aerosol layer. We compare SSFR cloud retrievals from below-aerosol legs to satellite retrievals from the Moderate Resolution Imaging Spectroradiometer (MODIS) in order to detect an aerosol-induced bias. In regions of small variation in cloud properties, we find that SSFR and MODIS-retrieved cloud optical thickness compares within the uncertainty range for each instrument while SSFR effective radius tend to be smaller than MODIS values (by 1-2 μm) and at the low end of MODIS uncertainty estimates. In regions of large variation in cloud properties, differences in SSFR and MODIS-retrieved cloud optical thickness and effective radius can reach values of 10 and 10 μm, respectively. We include aerosols in forward modeling to test the sensitivity of SSFR cloud retrievals to overlying aerosol layers. We find an overlying absorbing aerosol layer biases SSFR cloud retrievals to smaller effective radii and optical thickness while nonabsorbing aerosols had no impact.

  16. The MIGHTI Wind Retrieval Algorithm: Description and Verification

    Science.gov (United States)

    Harding, Brian J.; Makela, Jonathan J.; Englert, Christoph R.; Marr, Kenneth D.; Harlander, John M.; England, Scott L.; Immel, Thomas J.

    2017-10-01

    We present an algorithm to retrieve thermospheric wind profiles from measurements by the Michelson Interferometer for Global High-resolution Thermospheric Imaging (MIGHTI) instrument on NASA's Ionospheric Connection Explorer (ICON) mission. MIGHTI measures interferometric limb images of the green and red atomic oxygen emissions at 557.7 nm and 630.0 nm, spanning 90-300 km. The Doppler shift of these emissions represents a remote measurement of the wind at the tangent point of the line of sight. Here we describe the algorithm which uses these images to retrieve altitude profiles of the line-of-sight wind. By combining the measurements from two MIGHTI sensors with perpendicular lines of sight, both components of the vector horizontal wind are retrieved. A comprehensive truth model simulation that is based on TIME-GCM winds and various airglow models is used to determine the accuracy and precision of the MIGHTI data product. Accuracy is limited primarily by spherical asymmetry of the atmosphere over the spatial scale of the limb observation, a fundamental limitation of space-based wind measurements. For 80% of the retrieved wind samples, the accuracy is found to be better than 5.8 m/s (green) and 3.5 m/s (red). As expected, significant errors are found near the day/night boundary and occasionally near the equatorial ionization anomaly, due to significant variations of wind and emission rate along the line of sight. The precision calculation includes pointing uncertainty and shot, read, and dark noise. For average solar minimum conditions, the expected precision meets requirements, ranging from 1.2 to 4.7 m/s.

  17. NASA Team 2 Sea Ice Concentration Algorithm Retrieval Uncertainty

    Science.gov (United States)

    Brucker, Ludovic; Cavalieri, Donald J.; Markus, Thorsten; Ivanoff, Alvaro

    2014-01-01

    Satellite microwave radiometers are widely used to estimate sea ice cover properties (concentration, extent, and area) through the use of sea ice concentration (IC) algorithms. Rare are the algorithms providing associated IC uncertainty estimates. Algorithm uncertainty estimates are needed to assess accurately global and regional trends in IC (and thus extent and area), and to improve sea ice predictions on seasonal to interannual timescales using data assimilation approaches. This paper presents a method to provide relative IC uncertainty estimates using the enhanced NASA Team (NT2) IC algorithm. The proposed approach takes advantage of the NT2 calculations and solely relies on the brightness temperatures (TBs) used as input. NT2 IC and its associated relative uncertainty are obtained for both the Northern and Southern Hemispheres using the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) TB. NT2 IC relative uncertainties estimated on a footprint-by-footprint swath-by-swath basis were averaged daily over each 12.5-km grid cell of the polar stereographic grid. For both hemispheres and throughout the year, the NT2 relative uncertainty is less than 5%. In the Southern Hemisphere, it is low in the interior ice pack, and it increases in the marginal ice zone up to 5%. In the Northern Hemisphere, areas with high uncertainties are also found in the high IC area of the Central Arctic. Retrieval uncertainties are greater in areas corresponding to NT2 ice types associated with deep snow and new ice. Seasonal variations in uncertainty show larger values in summer as a result of melt conditions and greater atmospheric contributions. Our analysis also includes an evaluation of the NT2 algorithm sensitivity to AMSR-E sensor noise. There is a 60% probability that the IC does not change (to within the computed retrieval precision of 1%) due to sensor noise, and the cumulated probability shows that there is a 90% chance that the IC varies by less than

  18. An iterative correction approach used to retrieve the refractive index of squid pigment aerosols

    Science.gov (United States)

    Dinneen, Sean R.; Deravi, Leila F.; Greenslade, Margaret E.

    2018-03-01

    Pigments localized within cephalopod chromatophores are important for dermal coloration. When isolated and used as materials outside of the animal, the pigments can be processed as aerosols, illustrating a potential application for spray-on-coatings. The optical features of the pigment aerosols are difficult to analyze and require a method to correct for the particle charging and solvent effects accumulated during the aerosolizing process. We describe a method to account for these effects using an innovative iterative approach tied to retrieved refractive index (RI) values. RI retrievals were obtained via the best fit between the corrected, experimentally observed extinction efficiencies compared to those calculated by Mie theory for a specific RI at selected sizes. In addition to these retrievals, the impact of solvent on the particles’ optical properties was also examined via the Maxwell-Garnett mixing rule. Ultimately, we obtained a pigment RI with a real portion (n) of 1.66 (±0.05) representing a lower limit and an imaginary portion (k) of 0.13 (±0.08)i representing an upper limit for the generated aerosols. Combined, this approach advances techniques used to retrieve RI values that benefits both atmospheric chemistry and bio-inspired materials.

  19. Trend analysis of the aerosol optical depth from fusion of MISR and MODIS retrievals over China

    International Nuclear Information System (INIS)

    Guo, Jing; Gu, Xingfa; Yu, Tao; Cheng, Tianhai; Chen, Hao

    2014-01-01

    Atmospheric aerosol plays an important role in the climate change though direct and indirect processes. In order to evaluate the effects of aerosols on climate, it is necessary to have a research on their spatial and temporal distributions. Satellite aerosol remote sensing is a developing technology that may provide good temporal sampling and superior spatial coverage to study aerosols. The Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) have provided aerosol observations since 2000, with large coverage and high accuracy. However, due to the complex surface, cloud contamination, and aerosol models used in the retrieving process, the uncertainties still exist in current satellite aerosol products. There are several observed differences in comparing the MISR and MODIS AOD data with the AERONET AOD. Combing multiple sensors could reduce uncertainties and improve observational accuracy. The validation results reveal that a better agreement between fusion AOD and AERONET AOD. The results confirm that the fusion AOD values are more accurate than single sensor. We have researched the trend analysis of the aerosol properties over China based on nine-year (2002-2010) fusion data. Compared with trend analysis in Jingjintang and Yangtze River Delta, the accuracy has increased by 5% and 3%, respectively. It is obvious that the increasing trend of the AOD occurred in Yangtze River Delta, where human activities may be the main source of the increasing AOD

  20. Aerosol particle size distribution in the stratosphere retrieved from SCIAMACHY limb measurements

    Directory of Open Access Journals (Sweden)

    E. Malinina

    2018-04-01

    Full Text Available w can be retrieved with an uncertainty of less than 20 %. The algorithm was successfully applied to the tropical region (20° N–20° S for 10 years (2002–2012 of SCIAMACHY observations in limb-viewing geometry, establishing a unique data set. Analysis of this new climatology for the particle size distribution parameters showed clear increases in the mode radius after the tropical volcanic eruptions, whereas no distinct behaviour of the absolute distribution width could be identified. A tape recorder, which describes the time lag as the perturbation propagates to higher altitudes, was identified for both parameters after the volcanic eruptions. A quasi-biannual oscillation (QBO pattern at upper altitudes (28–32 km is prominent in the anomalies of the analysed parameters. A comparison of the aerosol effective radii derived from SCIAMACHY and SAGE II data was performed. The average difference is found to be around 30 % at the lower altitudes, decreasing with increasing height to almost zero around 30 km. The data sample available for the comparison is, however, relatively small.

  1. Web multimedia information retrieval using improved Bayesian algorithm.

    Science.gov (United States)

    Yu, Yi-Jun; Chen, Chun; Yu, Yi-Min; Lin, Huai-Zhong

    2003-01-01

    The main thrust of this paper is application of a novel data mining approach on the log of user's feedback to improve web multimedia information retrieval performance. A user space model was constructed based on data mining, and then integrated into the original information space model to improve the accuracy of the new information space model. It can remove clutter and irrelevant text information and help to eliminate mismatch between the page author's expression and the user's understanding and expectation. User space model was also utilized to discover the relationship between high-level and low-level features for assigning weight. The authors proposed improved Bayesian algorithm for data mining. Experiment proved that the authors' proposed algorithm was efficient.

  2. Aerosol Retrieval Sensitivity and Error Analysis for the Cloud and Aerosol Polarimetric Imager on Board TanSat: The Effect of Multi-Angle Measurement

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2017-02-01

    Full Text Available Aerosol scattering is an important source of error in CO2 retrievals from satellite. This paper presents an analysis of aerosol information content from the Cloud and Aerosol Polarimetric Imager (CAPI onboard the Chinese Carbon Dioxide Observation Satellite (TanSat to be launched in 2016. Based on optimal estimation theory, aerosol information content is quantified from radiance and polarization observed by CAPI in terms of the degrees of freedom for the signal (DFS. A linearized vector radiative transfer model is used with a linearized Mie code to simulate observation and sensitivity (or Jacobians with respect to aerosol parameters. In satellite nadir mode, the DFS for aerosol optical depth is the largest, but for mode radius, it is only 0.55. Observation geometry is found to affect aerosol DFS based on the aerosol scattering phase function from the comparison between different viewing zenith angles or solar zenith angles. When TanSat is operated in target mode, we note that multi-angle retrieval represented by three along-track measurements provides additional 0.31 DFS on average, mainly from mode radius. When adding another two measurements, the a posteriori error decreases by another 2%–6%. The correlation coefficients between retrieved parameters show that aerosol is strongly correlated with surface reflectance, but multi-angle retrieval can weaken this correlation.

  3. Retrieval of tropospheric NO2 vertical column densities and aerosol optical properties form MAXDOAS measurements in Yangtze River Delta, China

    Science.gov (United States)

    Hao, Nan; Van. Roozendael, Michel; Ding, Aijun; Zhou, Bin; Hendrick, François; Shen, Yicheng; Wang, Tin; Valks, Pieter

    2014-05-01

    Air pollution is one of the most important environmental problems in developing Asian countries like China. Due to huge consumption of fossil fuels and rapid increase of traffic emissions in the past decades, many regions in China have been experiencing heavy air pollution. The Yangtze River Delta (YRD) region includes the mega-city Shanghai and the well-industrialized and urbanized areas of Zhejiang Province and Jiangsu Province, with over ten large cities, such as Hangzhou, Suzhou and Nanjing. Covering only 2% land area, this region produces over 20% of China's Gross Domestic Product (GDP) which makes it the most densely populated region and one of the most polluted regions in China. For instance, there more than 60% of a year was haze days with poor visibility in Shanghai over the last few years. In the YRD region, knowledge gaps still exist in the understanding of the source and transport of air pollutants because only few measurement studies have been conducted. MAX-DOAS measurements were performed in Shanghai city center and Wujiang (border of Shanghai and Jiangsu Province) from 2010 to 2012 and in Nanjing (capital of Jiangsu Province) from April 2013. A retrieval algorithm, based on an on-line implementation of the radiative transfer code LIDORT and the optimal estimation technique, has been used to provide information on aerosol extinction vertical profiles. The total aerosol optical depths (AODs) calculated from the retrieved profiles were compared to MODIS, AERONET and local PM measurements. The aerosol information was input to LIDORT to calculate NO2 air mass factors. The retrieved tropospheric NO2 vertical column densities (VCDs) were compared to in-situ and satellite NO2 measurements.

  4. Retrieval method of aerosol extinction coefficient profile by an integral lidar system and case study

    Science.gov (United States)

    Shan, Huihui; Zhang, Hui; Liu, Junjian; Wang, Shenhao; Ma, Xiaomin; Zhang, Lianqing; Liu, Dong; Xie, Chenbo; Tao, Zongming

    2018-02-01

    Aerosol extinction coefficient profile is an essential parameter for atmospheric radiation model. But it is difficult to get the full aerosol extinction profile from the ground to the tropopause especially in near ground precisely using backscattering lidar. A combined measurement of side-scattering, backscattering and Raman-scattering lidar is proposed to retrieve the aerosol extinction coefficient profile from the surface to the tropopause which covered a dynamic range of 5 orders. The side-scattering technique solves the dead zone and the overlap problem caused by the traditional lidar in the near range. Using the Raman-scattering the aerosol lidar ratio (extinction to backscatter ratio) can be obtained. The cases studies in this paper show the proposed method is reasonable and feasible.

  5. Comparative Results of AIRS/AMSU and CrIS/ATMS Retrievals Using a Scientifically Equivalent Retrieval Algorithm

    Science.gov (United States)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2016-01-01

    The AIRS Science Team Version-6 retrieval algorithm is currently producing high quality level-3 Climate Data Records (CDRs) from AIRS/AMSU which are critical for understanding climate processes. The AIRS Science Team is finalizing an improved Version-7 retrieval algorithm to reprocess all old and future AIRS data. AIRS CDRs should eventually cover the period September 2002 through at least 2020. CrIS/ATMS is the only scheduled follow on to AIRS/AMSU. The objective of this research is to prepare for generation of long term CrIS/ATMS CDRs using a retrieval algorithm that is scientifically equivalent to AIRS/AMSU Version-7.

  6. Comparative Results of AIRS AMSU and CrIS/ATMS Retrievals Using a Scientifically Equivalent Retrieval Algorithm

    Science.gov (United States)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena

    2016-01-01

    The AIRS Science Team Version 6 retrieval algorithm is currently producing high quality level-3 Climate Data Records (CDRs) from AIRSAMSU which are critical for understanding climate processes. The AIRS Science Team is finalizing an improved Version-7 retrieval algorithm to reprocess all old and future AIRS data. AIRS CDRs should eventually cover the period September 2002 through at least 2020. CrISATMS is the only scheduled follow on to AIRSAMSU. The objective of this research is to prepare for generation of a long term CrISATMS level-3 data using a finalized retrieval algorithm that is scientifically equivalent to AIRSAMSU Version-7.

  7. Maritime Aerosol Network optical depth measurements and comparison with satellite retrievals from various different sensors

    Science.gov (United States)

    Smirnov, Alexander; Petrenko, Maksym; Ichoku, Charles; Holben, Brent N.

    2017-10-01

    The paper reports on the current status of the Maritime Aerosol Network (MAN) which is a component of the Aerosol Robotic Network (AERONET). A public domain web-based data archive dedicated to MAN activity can be found at https://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html . Since 2006 over 450 cruises were completed and the data archive consists of more than 6000 measurement days. In this work, we present MAN observations collocated with MODIS Terra, MODIS Aqua, MISR, POLDER, SeaWIFS, OMI, and CALIOP spaceborne aerosol products using a modified version of the Multi-Sensor Aerosol Products Sampling System (MAPSS) framework. Because of different spatio-temporal characteristics of the analyzed products, the number of MAN data points collocated with spaceborne retrievals varied between 1500 matchups for MODIS to 39 for CALIOP (as of August 2016). Despite these unavoidable sampling biases, latitudinal dependencies of AOD differences for all satellite sensors, except for SeaWIFS and POLDER, showed positive biases against ground truth (i.e. MAN) in the southern latitudes (<50° S), and substantial scatter in the Northern Atlantic "dust belt" (5°-15° N). Our analysis did not intend to determine whether satellite retrievals are within claimed uncertainty boundaries, but rather show where bias exists and corrections are needed.

  8. Validation of Long-Term Global Aerosol Climatology Project Optical Thickness Retrievals Using AERONET and MODIS Data

    Science.gov (United States)

    Geogdzhayev, Igor V.; Mishchenko, Michael I.

    2015-01-01

    A comprehensive set of monthly mean aerosol optical thickness (AOT) data from coastal and island AErosol RObotic NETwork (AERONET) stations is used to evaluate Global Aerosol Climatology Project (GACP) retrievals for the period 1995-2009 during which contemporaneous GACP and AERONET data were available. To put the GACP performance in broader perspective, we also compare AERONET and MODerate resolution Imaging Spectroradiometer (MODIS) Aqua level-2 data for 2003-2009 using the same methodology. We find that a large mismatch in geographic coverage exists between the satellite and ground-based datasets, with very limited AERONET coverage of open-ocean areas. This is especially true of GACP because of the smaller number of AERONET stations at the early stages of the network development. Monthly mean AOTs from the two over-the-ocean satellite datasets are well-correlated with the ground-based values, the correlation coefficients being 0.81-0.85 for GACP and 0.74-0.79 for MODIS. Regression analyses demonstrate that the GACP mean AOTs are approximately 17%-27% lower than the AERONET values on average, while the MODIS mean AOTs are 5%-25% higher. The regression coefficients are highly dependent on the weighting assumptions (e.g., on the measure of aerosol variability) as well as on the set of AERONET stations used for comparison. Comparison of over-the-land and over-the-ocean MODIS monthly mean AOTs in the vicinity of coastal AERONET stations reveals a significant bias. This may indicate that aerosol amounts in coastal locations can differ significantly from those in adjacent open-ocean areas. Furthermore, the color of coastal waters and peculiarities of coastline meteorological conditions may introduce biases in the GACP AOT retrievals. We conclude that the GACP and MODIS over-the-ocean retrieval algorithms show similar ranges of discrepancy when compared to available coastal and island AERONET stations. The factors mentioned above may limit the performance of the

  9. Satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf (2005-2015)

    Science.gov (United States)

    Banks, Jamie R.; Brindley, Helen E.; Stenchikov, Georgiy; Schepanski, Kerstin

    2017-03-01

    The inter-annual variability of the dust aerosol presence over the Red Sea and the Persian Gulf is analysed over the period 2005-2015. Particular attention is paid to the variation in loading across the Red Sea, which has previously been shown to have a strong, seasonally dependent latitudinal gradient. Over the 11 years considered, the July mean 630 nm aerosol optical depth (AOD) derived from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) varies between 0.48 and 1.45 in the southern half of the Red Sea. In the north, the equivalent variation is between 0.22 and 0.66. The temporal and spatial pattern of variability captured by SEVIRI is also seen in AOD retrievals from the MODerate Imaging Spectroradiometer (MODIS), but there is a systematic offset between the two records. Comparisons of both sets of retrievals with ship- and land-based AERONET measurements show a high degree of correlation with biases of typically only sample relatively low aerosol loadings. When both records are stratified by AOD retrievals from the Multi-angle Imaging SpectroRadiometer (MISR), opposing behaviour is revealed at high MISR AODs ( > 1), with offsets of +0.19 for MODIS and -0.06 for SEVIRI. Similar behaviour is also seen over the Persian Gulf. Analysis of the scattering angles at which retrievals from the SEVIRI and MODIS measurements are typically performed in these regions suggests that assumptions concerning particle sphericity may be responsible for the differences seen.

  10. How do A-train Sensors Inter-Compare in the Retrieval of Above-Cloud Aerosol Optical Depth? A Case Study based Assessment

    Science.gov (United States)

    Jethva, H. T.; Torres, O.; Waquet, F.; Chand, D.

    2013-12-01

    Atmospheric aerosols are known to produce a net cooling effect in the cloud-free conditions. However, when present over the reflective cloud decks, absorbing aerosols such as biomass burning generated smoke and wind-blown dust can potentially exert a large positive forcing through enhanced atmospheric heating resulting from cloud-aerosol radiative interactions. The interest on this aspect of aerosol science has grown significantly in the recent years. Particularly, development of the satellite-based retrieval techniques and unprecedented knowledge on the above-cloud aerosol optical depth (ACAOD) is of great relevance. A direct validation of satellite ACAOD is a difficult task primarily due to lack of ample in situ and/or remote sensing measurements of aerosols above cloud. In these circumstances, a comparative analysis on the inter-satellite ACAOD retrievals can be performed for the sack of consistency check. Here, we inter-compare the ACAOD of biomass burning plumes observed from different A-train sensors, i.e., MODIS [Jethva et al., 2013], CALIOP [Chand et al., 2008], POLDER [Waquet et al., 2009], and OMI [Torres et al., 2012]. These sensors have been shown to acquire sensitivity and independent capabilities to detect and retrieve aerosol loading above marine stratocumulus clouds--a kind of situation often found over the southeastern Atlantic Ocean during dry burning season. A systematic one-to-one comparison reveals that, in general, all passive sensors and CALIOP-based research methods retrieve comparable ACAOD over homogeneous cloud fields. The high-resolution sensors (MODIS and CALIOP) are able to retrieve aerosols over thin clouds but with larger discrepancies. Given the different types of sensor measurements processed with different algorithms, a reasonable agreement between them is encouraging. A direct validation of satellite-based ACAOD remains an open challenge for which dedicated field measurements over the region of frequent aerosol/cloud overlap are

  11. Evaluation of AVHRR Aerosol Properties Over Mainland China from Deepblue Algorithm

    Science.gov (United States)

    Xue, Y.; Che, Y.; She, L.

    2017-12-01

    Advanced Very High Resolution Radiometer (AVHRR) on-board NOAA series satellites is the only operational senor which keeps observing surface of the Earth and cloud over 30 years since 1979. Such long time coverage helps to expand the application of AVHRR to aerosol properties retrieval over both land and ocean successfully. Recently in 2017, the Deep Blue Project has published AVHRR `Deep Blue' dataset version 001 (V001) using `Deep Blue (DB)' algorithm(Sayer et al., 2017). This dataset includes not only aerosol properties over land but also oceanic aerosol product at three periods (NOAA-11: 1989-1990, NOAA-14: 1995-1999, NOAA-18: 2006-2011). We pay much of our attention to DB's performance over mainland China. Therefore, in the presenting paper, we focus on validating AVHRR/DB dataset over different land covers in China in 2007, 2008 and 2010. Both of data from ground-based networks from the Aerosol Robotic NETwork (AERONET) and China Aerosol Remote Sensing Network (CARSNET) are used as reference data. The collocation method is to match data at a time range of of satellite pass-by and at a spatial frame of pixels around ground-based site. Totally, data from 18 AERONET and 25 CARSNET are used as shown in figure, collocating 922 matches with AERONET and 2325 matches with CARSNET. Additionally, we introduced a corrected RMS error as main evaluation metric. As a result, AVHRR/DB underestimates AOD increasingly and more uncertainties and errors will be introduced with the growth of AOD. Otherwise, the performance of AVHRR/DB are better compared with AERONET data than with CARSNET data from RMSbc of 0.35 vs. 0.42. Their Rs (0.757 vs. 0.654) prove this characteristic too. For urban areas, the performances in Beijing are better than that in Xi'an from RMSbc, otherwise RMS in Xi'an (0.324) is lower than others' (0.346 and 0.383) mainly because of small AOD observed range and low R (0.624). For croplands, those performances are at same levels with RMSbc from 0.312 to 0

  12. Coupled Retrieval of Aerosol Properties and Surface Reflection Using the Airborne Multi-angle SpectroPolarimetric Imager (AirMSPI)

    Science.gov (United States)

    Xu, F.; van Harten, G.; Kalashnikova, O. V.; Diner, D. J.; Seidel, F. C.; Garay, M. J.; Dubovik, O.

    2016-12-01

    The Airborne Multi-angle SpectroPolarimetric Imager (AirMSPI) [1] has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. In step-and-stare operation mode, AirMSPI acquires radiance and polarization data at 355, 380, 445, 470*, 555, 660*, 865*, and 935 nm (* denotes polarimetric bands). The imaged area covers about 10 km by 10 km and is observed from 9 view angles between ±67° off of nadir. We have developed an efficient and flexible code that uses the information content of AirMSPI data for a coupled retrieval of aerosol properties and surface reflection. The retrieval was built based on the multi-pixel optimization concept [2], with the use of a hybrid radiative transfer model [3] that combines the Markov Chain [4] and adding/doubling methods [5]. The convergence and robustness of our algorithm is ensured by applying constraints on (a) the spectral variation of the Bidirectional Polarization Distribution Function (BPDF) and angular shape of the Bidirectional Reflectance Distribution Function (BRDF); (b) the spectral variation of aerosol optical properties; and (c) the spatial variation of aerosol parameters across neighboring image pixels. Our retrieval approach has been tested using over 20 AirMSPI datasets having low to moderately high aerosol loadings ( 0.02550-nmSpace Sci. Rev. 16, 527 (1974).

  13. Improved ultrashort pulse-retrieval algorithm for frequency-resolved optical gating

    International Nuclear Information System (INIS)

    DeLong, K.W.; Trebino, R.

    1994-01-01

    We report on significant improvements in the pulse-retrieval algorithm used to reconstruct the amplitude and the phase of ultrashort optical pulses from the experimental frequency-resolved optical gating trace data in the polarization-gate geometry. These improvements involve the use of an intensity constraint, an overcorrection technique, and a multidimensional minimization scheme. While the previously published, basic algorithm converged for most common ultrashort pulses, it failed to retrieve pulses with significant intensity substructure. The improved composite algorithm successfully converges for such pulses. It can now retrieve essentially all pulses of practical interest. We present examples of complex waveforms that were retrieved by the improved algorithm

  14. Optimal Scheduling for Retrieval Jobs in Double-Deep AS/RS by Evolutionary Algorithms

    Directory of Open Access Journals (Sweden)

    Kuo-Yang Wu

    2013-01-01

    Full Text Available We investigate the optimal scheduling of retrieval jobs for double-deep type Automated Storage and Retrieval Systems (AS/RS in the Flexible Manufacturing System (FMS used in modern industrial production. Three types of evolutionary algorithms, the Genetic Algorithm (GA, the Immune Genetic Algorithm (IGA, and the Particle Swarm Optimization (PSO algorithm, are implemented to obtain the optimal assignments. The objective is to minimize the working distance, that is, the shortest retrieval time travelled by the Storage and Retrieval (S/R machine. Simulation results and comparisons show the advantages and feasibility of the proposed methods.

  15. Retrieval of water vapor column abundance and aerosol properties from ChemCam passive sky spectroscopy

    Science.gov (United States)

    McConnochie, Timothy H.; Smith, Michael D.; Wolff, Michael J.; Bender, Steve; Lemmon, Mark; Wiens, Roger C.; Maurice, Sylvestre; Gasnault, Olivier; Lasue, Jeremie; Meslin, Pierre-Yves; Harri, Ari-Matti; Genzer, Maria; Kemppinen, Osku; Martínez, Germán M.; DeFlores, Lauren; Blaney, Diana; Johnson, Jeffrey R.; Bell, James F.

    2018-06-01

    We derive water vapor column abundances and aerosol properties from Mars Science Laboratory (MSL) ChemCam passive mode observations of scattered sky light. This paper covers the methodology and initial results for water vapor and also provides preliminary results for aerosols. The data set presented here includes the results of 113 observations spanning from Mars Year 31 Ls = 291° (March 30, 2013) to Mars Year 33 Ls= 127° (March 24, 2016). Each ChemCam passive sky observation acquires spectra at two different elevation angles. We fit these spectra with a discrete-ordinates multiple scattering radiative transfer model, using the correlated-k approximation for gas absorption bands. The retrieval proceeds by first fitting the continuum of the ratio of the two elevation angles to solve for aerosol properties, and then fitting the continuum-removed ratio to solve for gas abundances. The final step of the retrieval makes use of the observed CO2 absorptions and the known CO2 abundance to correct the retrieved water vapor abundance for the effects of the vertical distribution of scattering aerosols and to derive an aerosol scale height parameter. Our water vapor results give water vapor column abundance with a precision of ±0.6 precipitable microns and systematic errors no larger than ±0.3 precipitable microns, assuming uniform vertical mixing. The ChemCam-retrieved water abundances show, with only a few exceptions, the same seasonal behavior and the same timing of seasonal minima and maxima as the TES, CRISM, and REMS-H data sets that we compare them to. However ChemCam-retrieved water abundances are generally lower than zonal and regional scale from-orbit water vapor data, while at the same time being significantly larger than pre-dawn REMS-H abundances. Pending further analysis of REMS-H volume mixing ratio uncertainties, the differences between ChemCam and REMS-H pre-dawn mixing ratios appear to be much too large to be explained by large scale circulations and thus

  16. Analysis of MAIAC Dust Aerosol Retrievals from MODIS Over North Africa

    Science.gov (United States)

    Lyapustin, A.; Wang, Y.; Hsu, C.; Torres, O.; Leptoukh, G.; Kalashnikova, O.; Korkin, S.

    2011-01-01

    An initial comparison of aerosol optical thickness over North Africa for year 2007 was performed between the Deep Blue and Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithms complimented with MISR and OMI data. The new MAIAC algorithm has a better sensitivity to the small dust storms than the DB algorithm, but it also has biases in the brightest desert regions indicating the need for improvement. The quarterly averaged AOT values in the Bodele depression and western downwind transport region show a good agreement among MAIAC, MISR and OMI data, while the DB algorithm shows a somewhat different seasonality.

  17. Comparison of Aerosol Optical and Microphysical Retrievals from HSRL-2 and in-Situ Measurements During DISCOVER-AQ 2013 (California and Texas

    Directory of Open Access Journals (Sweden)

    Sawamura Patricia

    2016-01-01

    Full Text Available The combination of backscatter coefficients measured at 355, 532 and 1064 nm and extinction coefficients at 355 and 532 nm (i.e. 3β+2α can be used to retrieve profiles of optical and microphysical properties of aerosols, such as effective radius, total volume concentration and total number concentration. NASA LaRC HSRL-2 is an airborne multi-wavelength high spectral resolution lidar in operation that provides the full 3β+2α dataset. HSRL-2 was deployed during DISCOVER-AQ along with other airborne and ground-based instruments that also measured many aerosol parameters in close proximity to the HSRL-2 system, allowing us to evaluate the performance of an automated and unsupervised retrieval algorithm that has been recently developed. We present the results from California (Jan/Feb 2013 and Texas (Sep 2013 DISCOVER-AQ.

  18. Retrievals of Aerosol Microphysics from Simulations of Spaceborne Multiwavelength Lidar Measurements

    Science.gov (United States)

    Whiteman, David N.; Perez-Ramírez, Daniel; Veselovskii, Igor; Colarco, Peter; Buchard, Virginie

    2017-01-01

    In support of the Aerosol, Clouds, Ecosystems mission, simulations of a spaceborne multiwavelength lidar are performed based on global model simulations of the atmosphere along a satellite orbit track. The yield for aerosol microphysical inversions is quantified and comparisons are made between the aerosol microphysics inherent in the global model and those inverted from both the model's optical data and the simulated three backscatter and two extinction lidar measurements, which are based on the model's optical data. We find that yield can be significantly increased if inversions based on a reduced optical dataset of three backscatter and one extinction are acceptable. In general, retrieval performance is better for cases where the aerosol fine mode dominates although a lack of sensitivity to particles with sizes less than 0.1 microns is found. Lack of sensitivity to coarse mode cases is also found, in agreement with earlier studies. Surface area is generally the most robustly retrieved quantity. The work here points toward the need for ancillary data to aid in the constraints of the lidar inversions and also for joint inversions involving lidar and polarimeter measurements.

  19. Low-dose multiple-information retrieval algorithm for X-ray grating-based imaging

    International Nuclear Information System (INIS)

    Wang Zhentian; Huang Zhifeng; Chen Zhiqiang; Zhang Li; Jiang Xiaolei; Kang Kejun; Yin Hongxia; Wang Zhenchang; Stampanoni, Marco

    2011-01-01

    The present work proposes a low dose information retrieval algorithm for X-ray grating-based multiple-information imaging (GB-MII) method, which can retrieve the attenuation, refraction and scattering information of samples by only three images. This algorithm aims at reducing the exposure time and the doses delivered to the sample. The multiple-information retrieval problem in GB-MII is solved by transforming a nonlinear equations set to a linear equations and adopting the nature of the trigonometric functions. The proposed algorithm is validated by experiments both on conventional X-ray source and synchrotron X-ray source, and compared with the traditional multiple-image-based retrieval algorithm. The experimental results show that our algorithm is comparable with the traditional retrieval algorithm and especially suitable for high Signal-to-Noise system.

  20. Feasibility study of aerosol retrieval for GCOM-C/SGLI with simulated data

    Science.gov (United States)

    Mukai, S.; Sano, I.; Yasumoto, M.; Nakata, M.; Nishi, N.

    2016-12-01

    The Japan Aerospace Exploration Agency (JAXA) has been developing the new Earth observing system, GCOM (Global Change Observation Mission) project, which consists of two satellite series of GCOM-W1 and GCOM-C1. The 1st GCOM-C satellite will board the SGLI (second generation global imager) to be launched in early of 2017. The SGLI has multi (19)-channels including near ultra violet (NUV) channels (380, 412 nm) and two polarization channels at red and near-infrared wavelengths of 670 and 870 nm. Global aerosol retrieval is achieved with both polarization and total radiance. It is noted that NUV measurements are available for detection of the carbonaceous aerosols. The biomass burning aerosols (BBA) generated by forest fire and/or burn agriculture have influenced on the severe air pollutions. It is known that the forest fire increases due to global warming and a climate change, and has influences on them vice versa. It is well known that this negative cycle decreases the quality of global environment and human health. In this work, we use both radiance and polarization measurements observed by GLI and POLDER-2 on Japanese ADEOS-2 satellite in 2003 as a simulated data set for coming GCOM-C/SGLI sensor. As a result the possibility of GCOM-C1/SGLI related to remote sensing for aerosols, especially in the hazardous aerosol episodes including biomass burning case, can be examined.

  1. Probability Density Functions for the CALIPSO Lidar Version 4 Cloud-Aerosol Discrimination (CAD) Algorithm

    Science.gov (United States)

    Liu, Z.; Kar, J.; Zeng, S.; Tackett, J. L.; Vaughan, M.; Trepte, C. R.; Omar, A. H.; Hu, Y.; Winker, D. M.

    2017-12-01

    In the CALIPSO retrieval algorithm, detection layers in the lidar measurements is followed by their classification as a "cloud" or "aerosol" using 5-dimensional probability density functions (PDFs). The five dimensions are the mean attenuated backscatter at 532 nm, the layer integrated total attenuated color ratio, the mid-layer altitude, integrated volume depolarization ratio and latitude. The new version 4 (V4) level 2 (L2) data products, released in November 2016, are the first major revision to the L2 product suite since May 2010. Significant calibration changes in the V4 level 1 data necessitated substantial revisions to the V4 L2 CAD algorithm. Accordingly, a new set of PDFs was generated to derive the V4 L2 data products. The V4 CAD algorithm is now applied to layers detected in the stratosphere, where volcanic layers and occasional cloud and smoke layers are observed. Previously, these layers were designated as `stratospheric', and not further classified. The V4 CAD algorithm is also applied to all layers detected at single shot (333 m) resolution. In prior data releases, single shot detections were uniformly classified as clouds. The CAD PDFs used in the earlier releases were generated using a full year (2008) of CALIPSO measurements. Because the CAD algorithm was not applied to stratospheric features, the properties of these layers were not incorporated into the PDFs. When building the V4 PDFs, the 2008 data were augmented with additional data from June 2011, and all stratospheric features were included. The Nabro and Puyehue-Cordon volcanos erupted in June 2011, and volcanic aerosol layers were observed in the upper troposphere and lower stratosphere in both the northern and southern hemispheres. The June 2011 data thus provides the stratospheric aerosol properties needed for comprehensive PDF generation. In contrast to earlier versions of the PDFs, which were generated based solely on observed distributions, construction of the V4 PDFs considered the

  2. A Novel Integrated Algorithm for Wind Vector Retrieval from Conically Scanning Scatterometers

    Directory of Open Access Journals (Sweden)

    Xuetong Xie

    2013-11-01

    Full Text Available Due to the lower efficiency and the larger wind direction error of traditional algorithms, a novel integrated wind retrieval algorithm is proposed for conically scanning scatterometers. The proposed algorithm has the dual advantages of less computational cost and higher wind direction retrieval accuracy by integrating the wind speed standard deviation (WSSD algorithm and the wind direction interval retrieval (DIR algorithm. It adopts wind speed standard deviation as a criterion for searching possible wind vector solutions and retrieving a potential wind direction interval based on the change rate of the wind speed standard deviation. Moreover, a modified three-step ambiguity removal method is designed to let more wind directions be selected in the process of nudging and filtering. The performance of the new algorithm is illustrated by retrieval experiments using 300 orbits of SeaWinds/QuikSCAT L2A data (backscatter coefficients at 25 km resolution and co-located buoy data. Experimental results indicate that the new algorithm can evidently enhance the wind direction retrieval accuracy, especially in the nadir region. In comparison with the SeaWinds L2B Version 2 25 km selected wind product (retrieved wind fields, an improvement of 5.1° in wind direction retrieval can be made by the new algorithm for that region.

  3. Satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf (2005–2015)

    KAUST Repository

    Banks, Jamie R.

    2017-07-13

    The inter-annual variability of the dust aerosol presence over the Red Sea and the Persian Gulf is analysed over the period 2005-2015. Particular attention is paid to the variation in loading across the Red Sea, which has previously been shown to have a strong, seasonally dependent latitudinal gradient. Over the 11 years considered, the July mean 630 nm aerosol optical depth (AOD) derived from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) varies between 0.48 and 1.45 in the southern half of the Red Sea. In the north, the equivalent variation is between 0.22 and 0.66. The temporal and spatial pattern of variability captured by SEVIRI is also seen in AOD retrievals from the MODerate Imaging Spectroradiometer (MODIS), but there is a systematic offset between the two records. Comparisons of both sets of retrievals with ship-and land-based AERONET measurements show a high degree of correlation with biases of < 0.08. However, these comparisons typically only sample relatively low aerosol loadings. When both records are stratified by AOD retrievals from the Multi-angle Imaging SpectroRadiometer (MISR), opposing behaviour is revealed at high MISR AODs (> 1), with offsets of C 0.19 for MODIS and 0.06 for SEVIRI. Similar behaviour is also seen over the Persian Gulf. Analysis of the scattering angles at which retrievals from the SEVIRI and MODIS measurements are typically performed in these regions suggests that assumptions concerning particle sphericity may be responsible for the differences seen.

  4. A Numerical Testbed for Remote Sensing of Aerosols, and its Demonstration for Evaluating Retrieval Synergy from a Geostationary Satellite Constellation of GEO-CAPE and GOES-R

    Science.gov (United States)

    Wang, Jun; Xu, Xiaoguang; Ding, Shouguo; Zeng, Jing; Spurr, Robert; Liu, Xiong; Chance, Kelly; Mishchenko, Michael I.

    2014-01-01

    We present a numerical testbed for remote sensing of aerosols, together with a demonstration for evaluating retrieval synergy from a geostationary satellite constellation. The testbed combines inverse (optimal-estimation) software with a forward model containing linearized code for computing particle scattering (for both spherical and non-spherical particles), a kernel-based (land and ocean) surface bi-directional reflectance facility, and a linearized radiative transfer model for polarized radiance. Calculation of gas absorption spectra uses the HITRAN (HIgh-resolution TRANsmission molecular absorption) database of spectroscopic line parameters and other trace species cross-sections. The outputs of the testbed include not only the Stokes 4-vector elements and their sensitivities (Jacobians) with respect to the aerosol single scattering and physical parameters (such as size and shape parameters, refractive index, and plume height), but also DFS (Degree of Freedom for Signal) values for retrieval of these parameters. This testbed can be used as a tool to provide an objective assessment of aerosol information content that can be retrieved for any constellation of (planned or real) satellite sensors and for any combination of algorithm design factors (in terms of wavelengths, viewing angles, radiance and/or polarization to be measured or used). We summarize the components of the testbed, including the derivation and validation of analytical formulae for Jacobian calculations. Benchmark calculations from the forward model are documented. In the context of NASA's Decadal Survey Mission GEOCAPE (GEOstationary Coastal and Air Pollution Events), we demonstrate the use of the testbed to conduct a feasibility study of using polarization measurements in and around the O2 A band for the retrieval of aerosol height information from space, as well as an to assess potential improvement in the retrieval of aerosol fine and coarse mode aerosol optical depth (AOD) through the

  5. Surface pressure retrieval from SCIAMACHY measurements in the O2 A Band: validation of the measurements and sensitivity on aerosols

    Directory of Open Access Journals (Sweden)

    B. van Diedenhoven

    2005-01-01

    Full Text Available We perform surface pressure retrievals from cloud-free Oxygen A band measurements of SCIAMACHY. These retrievals can be well validated because surface pressure is a quantity that is, in general, accurately known from meteorological models. Therefore, surface pressure retrievals and their validation provide important insight into the quality of the instrument calibration. Furthermore, they can provide insight into retrievals which are affected by similar radiation transport processes, for example the retrieval of total columns of H2O, CO, CO2 and CH4. In our retrieval aerosols are neglected. Using synthetic measurements, it is shown that for low to moderate surface albedos this leads to an underestimation of the retrieved surface pressures. For high surface albedos this generally leads to an overestimation of the retrieved surface pressures. The surface pressures retrieved from the SCIAMACHY measurements indeed show this dependence on surface albedo, when compared to the corresponding pressures from a meteorological database. However, an offset of about 20 hPa was found, which can not be caused by neglecting aerosols in the retrieval. The same offset was found when comparing the retrieved surface pressures to those retrieved from co-located GOME Oxygen A band measurements. This implies a calibration error in the SCIAMACHY measurements. By adding an offset of 0.86% of the continuum reflectance at 756 nm to the SCIAMACHY reflectance measurements, this systematic bias vanishes.

  6. A Mesoscale Analysis of Column-Integrated Aerosol Properties in Northern India During the TIGERZ 2008 Pre-Monsoon Period and a Comparison to MODIS Retrievals

    Science.gov (United States)

    Giles, D. M.; Holben, B. N.; Tripathi, S. N.; Eck, T. F.; Newcomb, W. W.; Slutsker, I.; Dickerson, R. R.; Thompson, A. M.; Wang, S.-H.; Singh, R. P.; hide

    2010-01-01

    The Indo-Gangetic Plain (IGP) of the northern Indian subcontinent produces anthropogenic pollution from urban, industrial and rural combustion sources nearly continuously and is affected by convection-induced winds driving desert and alluvial dust into the atmosphere during the premonsoon period. Within the IGP, the NASA Aerosol Robotic Network (AERONET) project initiated the TIGERZ measurement campaign in May 2008 with an intensive operational period from May 1 to June 23, 2008. Mesoscale spatial variability of aerosol optical depth (AOD, tau) measurements at 500mn was assessed at sites around Kanpur, India, with averages ranging from 0.31 to 0.89 for spatial variability study (SVS) deployments. Sites located downwind from the city of Kanpur indicated slightly higher average aerosol optical depth (delta Tau(sub 500)=0.03-0.09). In addition, SVS AOD area-averages were compared to the long-tenn Kanpur AERONET site data: Four SVS area-averages were within +/- 1 cr of the climatological mean of the Kanpur site, while one SVS was within 2sigma below climatology. For a SVS case using AERONET inversions, the 440-870mn Angstrom exponent of approximately 0.38, the 440-870mn absorption Angstrom exponent (AAE) of 1.15-1.53, and the sphericity parameter near zero suggested the occurrence of large, strongly absorbing, non-spherical aerosols over Kanpur (e.g., mixed black carbon and dust) as well as stronger absorption downwind of Kanpur. Furthermore, the 3km and lOkm Terra and Aqua MODIS C005 aerosol retrieval algorithms at tau(sub 550) were compared to the TIGERZ data set. Although MODIS retrievals at higher quality levels were comparable to the MODIS retrieval uncertainty, the total number of MODIS matchups (N) were reduced with subsequent quality levels (N=25, QA>=0; N=9,QA>=l; N=6, QA>=2; N=1, QA=3) over Kanpur during the premonsoon primarily due to the semi-bright surface, complex aerosol mixture and cloud-contaminated pixels. The TIGERZ 2008 data set provided a unique

  7. The Effects of Aerosol on the Retrieval Accuracy of NO2 Slant Column Density

    Directory of Open Access Journals (Sweden)

    Hyunkee Hong

    2017-08-01

    Full Text Available We investigate the effects of aerosol optical depth (AOD, single scattering albedo (SSA, aerosol peak height (APH, measurement geometry (solar zenith angle (SZA and viewing zenith angle (VZA, relative azimuth angle, and surface reflectance on the accuracy of NO2 slant column density using synthetic radiance. High AOD and APH are found to decrease NO2 SCD retrieval accuracy. In moderately polluted (5 × 1015 molecules cm−2 < NO2 vertical column density (VCD < 2 × 1016 molecules cm−2 and clean regions (NO2 VCD < 5 × 1015 molecules cm−2, the correlation coefficient (R between true NO2 SCDs and those retrieved is 0.88 and 0.79, respectively, and AOD and APH are about 0.1 and is 0 km, respectively. However, when AOD and APH are about 1.0 and 4 km, respectively, the R decreases to 0.84 and 0.53 in moderately polluted and clean regions, respectively. On the other hand, in heavily polluted regions (NO2 VCD > 2 × 1016 molecules cm−2, even high AOD and APH values are found to have a negligible effect on NO2 SCD precision. In high AOD and APH conditions in clean NO2 regions, the R between true NO2 SCDs and those retrieved increases from 0.53 to 0.58 via co-adding four pixels spatially, showing the improvement in accuracy of NO2 SCD retrieval. In addition, the high SZA and VZA are also found to decrease the accuracy of the NO2 SCD retrieval.

  8. Using Airborne High Spectral Resolution Lidar Data to Evaluate Combined Active Plus Passive Retrievals of Aerosol Extinction Profiles

    Science.gov (United States)

    Burton, S. P.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.; Kittaka, C.; Vaughn, M. A.; Remer, L. A.

    2010-01-01

    We derive aerosol extinction profiles from airborne and space-based lidar backscatter signals by constraining the retrieval with column aerosol optical thickness (AOT), with no need to rely on assumptions about aerosol type or lidar ratio. The backscatter data were acquired by the NASA Langley Research Center airborne High Spectral Resolution Lidar (HSRL) and by the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite. The HSRL also simultaneously measures aerosol extinction coefficients independently using the high spectral resolution lidar technique, thereby providing an ideal data set for evaluating the retrieval. We retrieve aerosol extinction profiles from both HSRL and CALIOP attenuated backscatter data constrained with HSRL, Moderate-Resolution Imaging Spectroradiometer (MODIS), and Multiangle Imaging Spectroradiometer column AOT. The resulting profiles are compared with the aerosol extinction measured by HSRL. Retrievals are limited to cases where the column aerosol thickness is greater than 0.2 over land and 0.15 over water. In the case of large AOT, the results using the Aqua MODIS constraint over water are poorer than Aqua MODIS over land or Terra MODIS. The poorer results relate to an apparent bias in Aqua MODIS AOT over water observed in August 2007. This apparent bias is still under investigation. Finally, aerosol extinction coefficients are derived from CALIPSO backscatter data using AOT from Aqua MODIS for 28 profiles over land and 9 over water. They agree with coincident measurements by the airborne HSRL to within +/-0.016/km +/- 20% for at least two-thirds of land points and within +/-0.028/km +/- 20% for at least two-thirds of ocean points.

  9. Pulse Retrieval Algorithm for Interferometric Frequency-Resolved Optical Gating Based on Differential Evolution

    OpenAIRE

    Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter

    2017-01-01

    A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove robustness of the algorithm against experimental artifacts and noise. These tests show that the i...

  10. Multi-stage phase retrieval algorithm based upon the gyrator transform.

    Science.gov (United States)

    Rodrigo, José A; Duadi, Hamootal; Alieva, Tatiana; Zalevsky, Zeev

    2010-01-18

    The gyrator transform is a useful tool for optical information processing applications. In this work we propose a multi-stage phase retrieval approach based on this operation as well as on the well-known Gerchberg-Saxton algorithm. It results in an iterative algorithm able to retrieve the phase information using several measurements of the gyrator transform power spectrum. The viability and performance of the proposed algorithm is demonstrated by means of several numerical simulations and experimental results.

  11. Multi-stage phase retrieval algorithm based upon the gyrator transform

    OpenAIRE

    Rodrigo Martín-Romo, José Augusto; Duadi, Hamootal; Alieva, Tatiana Krasheninnikova; Zalevsky, Zeev

    2010-01-01

    The gyrator transform is a useful tool for optical information processing applications. In this work we propose a multi-stage phase retrieval approach based on this operation as well as on the well-known Gerchberg-Saxton algorithm. It results in an iterative algorithm able to retrieve the phase information using several measurements of the gyrator transform power spectrum. The viability and performance of the proposed algorithm is demonstrated by means of several numerical simulations and exp...

  12. Inversion of multiwavelength Raman lidar data for retrieval of bimodal aerosol size distribution

    Science.gov (United States)

    Veselovskii, Igor; Kolgotin, Alexei; Griaznov, Vadim; Müller, Detlef; Franke, Kathleen; Whiteman, David N.

    2004-02-01

    We report on the feasibility of deriving microphysical parameters of bimodal particle size distributions from Mie-Raman lidar based on a triple Nd:YAG laser. Such an instrument provides backscatter coefficients at 355, 532, and 1064 nm and extinction coefficients at 355 and 532 nm. The inversion method employed is Tikhonov's inversion with regularization. Special attention has been paid to extend the particle size range for which this inversion scheme works to ~10 μm, which makes this algorithm applicable to large particles, e.g., investigations concerning the hygroscopic growth of aerosols. Simulations showed that surface area, volume concentration, and effective radius are derived to an accuracy of ~50% for a variety of bimodal particle size distributions. For particle size distributions with an effective radius of rims along which anthropogenic pollution mixes with marine aerosols. Measurement cases obtained from the Institute for Tropospheric Research six-wavelength aerosol lidar observations during the Indian Ocean Experiment were used to test the capabilities of the algorithm for experimental data sets. A benchmark test was attempted for the case representing anthropogenic aerosols between a broken cloud deck. A strong contribution of particle volume in the coarse mode of the particle size distribution was found.

  13. Agricultural Library Information Retrieval Based on Improved Semantic Algorithm

    OpenAIRE

    Meiling , Xie

    2014-01-01

    International audience; To support users to quickly access information they need from the agricultural library’s vast information and to improve the low intelligence query service, a model for intelligent library information retrieval was constructed. The semantic web mode was introduced and the information retrieval framework was designed. The model structure consisted of three parts: Information data integration, user interface and information retrieval match. The key method supporting retr...

  14. The first international workshop on "Advancement of POLarimetric Observations: calibration and improved aerosol retrievals": APOLO-2017

    Science.gov (United States)

    Dubovik, Oleg; Li, Zhengqiang; Mishchenko, Michael I.

    2018-06-01

    The international workshop on "Advancement of POLarimetric Observations: calibration and improved aerosol retrievals-2017" (APOLO-2017) took place in Hefei, China on 24 - 27 October 2017. This was the inaugural meeting of a planned series of workshops on satellite polarimetry aimed at addressing the rapidly growing interest of the scientific community in polarimetric remote-sensing observations from space. The workshop was held at the Anhui Institute of Optics and Fine Mechanics, Hefei, widely known for 15 years of experience in the development of research polarimetry sensors and for hosting the building in parallel of several orbital polarimeters.

  15. Aerosol Optical Depths over Oceans: a View from MISR Retrievals and Collocated MAN and AERONET in Situ Observations

    Science.gov (United States)

    Witek, Marcin L.; Garay, Michael J.; Diner, David J.; Smirnov, Alexander

    2013-01-01

    In this study, aerosol optical depths over oceans are analyzed from satellite and surface perspectives. Multiangle Imaging SpectroRadiometer (MISR) aerosol retrievals are investigated and validated primarily against Maritime Aerosol Network (MAN) observations. Furthermore, AErosol RObotic NETwork (AERONET) data from 19 island and coastal sites is incorporated in this study. The 270 MISRMAN comparison points scattered across all oceans were identified. MISR on average overestimates aerosol optical depths (AODs) by 0.04 as compared to MAN; the correlation coefficient and root-mean-square error are 0.95 and 0.06, respectively. A new screening procedure based on retrieval region characterization is proposed, which is capable of substantially reducing MISR retrieval biases. Over 1000 additional MISRAERONET comparison points are added to the analysis to confirm the validity of the method. The bias reduction is effective within all AOD ranges. Setting a clear flag fraction threshold to 0.6 reduces the bias to below 0.02, which is close to a typical ground-based measurement uncertainty. Twelve years of MISR data are analyzed with the new screening procedure. The average over ocean AOD is reduced by 0.03, from 0.15 to 0.12. The largest AOD decrease is observed in high latitudes of both hemispheres, regions with climatologically high cloud cover. It is postulated that the screening procedure eliminates spurious retrieval errors associated with cloud contamination and cloud adjacency effects. The proposed filtering method can be used for validating aerosol and chemical transport models.

  16. Retrieval of Vertical Aerosol and Trace Gas Distributions from Polarization Sensitive Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS)

    Science.gov (United States)

    Tirpitz, Jan-Lukas; Friess, Udo; Platt, Ulrich

    2017-04-01

    An accurate knowledge of the vertical distribution of trace gases and aerosols is crucial for our understanding of the chemical and dynamical processes in the lower troposphere. Their accurate determination is typically only possible by means of laborious and expensive airborne in-situ measurements but in the recent decades, numerous promising ground-based remote sensing approaches have been developed. One of them is to infer vertical distributions from "Differential Optical Absorption Spectroscopy" (DOAS) measurements. DOAS is a technique to analyze UV- and visible radiation spectra of direct or scattered sunlight, which delivers information on different atmospheric parameters, integrated over the light path from space to the instrument. An appropriate set of DOAS measurements, recorded under different viewing directions (Multi-Axis DOAS) and thus different light path geometries, provides information on the atmospheric state. The vertical profiles of aerosol properties and trace gas concentrations can be retrieved from such a set by numerical inversion techniques, incorporating radiative transfer models. The information content of measured data is rarely sufficient for a well-constrained retrieval, particularly for atmospheric layers above 1 km. We showed in first simulations that, apart from spectral properties, the polarization state of skylight is likely to provide a significant amount of additional information on the atmospheric state and thus to enhance retrieval quality. We present first simulations, expectations and ideas on how to implement and characterize a polarization sensitive Multi-Axis DOAS instrument and a corresponding profile retrieval algorithm.

  17. A Survey of Stemming Algorithms in Information Retrieval

    Science.gov (United States)

    Moral, Cristian; de Antonio, Angélica; Imbert, Ricardo; Ramírez, Jaime

    2014-01-01

    Background: During the last fifty years, improved information retrieval techniques have become necessary because of the huge amount of information people have available, which continues to increase rapidly due to the use of new technologies and the Internet. Stemming is one of the processes that can improve information retrieval in terms of…

  18. Impact of an inferior vena cava filter retrieval algorithm on filter retrieval rates in a cancer population.

    Science.gov (United States)

    Litwin, Robert J; Huang, Steven Y; Sabir, Sharjeel H; Hoang, Quoc B; Ahrar, Kamran; Ahrar, Judy; Tam, Alda L; Mahvash, Armeen; Ensor, Joe E; Kroll, Michael; Gupta, Sanjay

    2017-09-01

    Our primary purpose was to assess the impact of an inferior vena cava filter retrieval algorithm in a cancer population. Because cancer patients are at persistently elevated risk for development of venous thromboembolism (VTE), our secondary purpose was to assess the incidence of recurrent VTE in patients who underwent filter retrieval. Patients with malignant disease who had retrievable filters placed at a tertiary care cancer hospital from August 2010 to July 2014 were retrospectively studied. A filter retrieval algorithm was established in August 2012. Patients and referring physicians were contacted in the postintervention period when review of the medical record indicated that filter retrieval was clinically appropriate. Patients were classified into preintervention (August 2010-July 2012) and postintervention (August 2012-July 2014) study cohorts. Retrieval rates and clinical pathologic records were reviewed. Filter retrieval was attempted in 34 (17.4%) of 195 patients in the preintervention cohort and 66 (32.8%) of 201 patients in the postintervention cohort (P filter retrieval in the preintervention and postintervention cohorts was 60 days (range, 20-428 days) and 107 days (range, 9-600 days), respectively (P = .16). In the preintervention cohort, 49 of 195 (25.1%) patients were lost to follow-up compared with 24 of 201 (11.9%) patients in the postintervention cohort (P filter placement to death, when available. The overall survival for patients whose filters were retrieved was longer compared with the overall survival for patients whose filters were not retrieved (P filter retrieval, two patients (2.5%) suffered from recurrent VTE (n = 1 nonfatal pulmonary embolism; n = 1 deep venous thrombosis). Both patients were treated with anticoagulation without filter replacement. Inferior vena cava filter retrieval rates can be significantly increased in patients with malignant disease with a low rate (2.5%) of recurrent VTE after filter retrieval

  19. Retrieval of spectral aerosol optical thickness over land using ocean color sensors MERIS and SeaWiFS

    Directory of Open Access Journals (Sweden)

    W. von Hoyningen-Huene

    2011-02-01

    Full Text Available For the determination of aerosol optical thickness (AOT Bremen AErosol Retrieval (BAER has been developed. Method and main features on the aerosol retrieval are described together with validation and results. The retrieval separates the spectral aerosol reflectance from surface and Rayleigh path reflectance for the shortwave range of the measured spectrum of top-of-atmosphere reflectance for wavelength less than 0.670 μm. The advantage of MERIS (Medium Resolution Imaging Spectrometer on the Environmental Satellite – ENVISAT – of the European Space Agency – ESA and SeaWiFS (Sea viewing Wide Field Sensor on OrbView-2 spacecraft observations is the availability of several spectral channels in the blue and visible range enabling the spectral determination of AOT in 7 (or 6 channels (0.412–0.670 μm and additionally channels in the NIR, which can be used to characterize the surface properties. A dynamical spectral surface reflectance model for different surface types is used to obtain the spectral surface reflectance for this separation. The normalized differential vegetation index (NDVI, taken from the satellite observations, is the model input. Further surface bi-directional reflectance distribution function (BRDF is considered by the Raman-Pinty-Verstraete (RPV model. Spectral AOT is obtained from aerosol reflectance using look-up-tables, obtained from radiative transfer calculations with given aerosol phase functions and single scattering albedos either from aerosol models, given by model package "optical properties of aerosol components" (OPAC or from experimental campaigns. Validations of the obtained AOT retrieval results with data of Aerosol Robotic Network (AERONET over Europe gave a preference for experimental phase functions derived from almucantar measurements. Finally long-term observations of SeaWiFS have been investigated for 11 year trends in AOT. Western European regions have negative trends with decreasing AOT with time

  20. Enhancements to the CALIOP Aerosol Subtyping and Lidar Ratio Selection Algorithms for Level II Version 4

    Science.gov (United States)

    Omar, A. H.; Tackett, J. L.; Vaughan, M. A.; Kar, J.; Trepte, C. R.; Winker, D. M.

    2016-12-01

    This presentation describes several enhancements planned for the version 4 aerosol subtyping and lidar ratio selection algorithms of the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument. The CALIOP subtyping algorithm determines the most likely aerosol type from CALIOP measurements (attenuated backscatter, estimated particulate depolarization ratios δe, layer altitude), and surface type. The aerosol type, so determined, is associated with a lidar ratio (LR) from a discrete set of values. Some of these lidar ratios have been updated in the version 4 algorithms. In particular, the dust and polluted dust will be adjusted to reflect the latest measurements and model studies of these types. Version 4 eliminates the confusion between smoke and clean marine aerosols seen in version 3 by modifications to the elevated layer flag definitions used to identify smoke aerosols over the ocean. In the subtyping algorithms pure dust is determined by high estimated particulate depolarization ratios [δe > 0.20]. Mixtures of dust and other aerosol types are determined by intermediate values of the estimated depolarization ratio [0.075limited to mixtures of dust and smoke, the so called polluted dust aerosol type. To differentiate between mixtures of dust and smoke, and dust and marine aerosols, a new aerosol type will be added in the version 4 data products. In the revised classification algorithms, polluted dust will still defined as dust + smoke/pollution but in the marine boundary layer instances of moderate depolarization will be typed as dusty marine aerosols with a lower lidar ratio than polluted dust. The dusty marine type introduced in version 4 is modeled as a mixture of dust + marine aerosol. To account for fringes, the version 4 Level 2 algorithms implement Subtype Coalescence Algorithm for AeRosol Fringes (SCAARF) routine to detect and classify fringe of aerosol plumes that are detected at 20 km or 80 km horizontal resolution at the plume base. These

  1. The Complex Refractive Index of Volcanic Ash Aerosol Retrieved From Spectral Mass Extinction

    Science.gov (United States)

    Reed, Benjamin E.; Peters, Daniel M.; McPheat, Robert; Grainger, R. G.

    2018-01-01

    The complex refractive indices of eight volcanic ash samples, chosen to have a representative range of SiO2 contents, were retrieved from simultaneous measurements of their spectral mass extinction coefficient and size distribution. The mass extinction coefficients, at 0.33-19 μm, were measured using two optical systems: a Fourier transform spectrometer in the infrared and two diffraction grating spectrometers covering visible and ultraviolet wavelengths. The particle size distribution was measured using a scanning mobility particle sizer and an optical particle counter; values for the effective radius of ash particles measured in this study varied from 0.574 to 1.16 μm. Verification retrievals on high-purity silica aerosol demonstrated that the Rayleigh continuous distribution of ellipsoids (CDEs) scattering model significantly outperformed Mie theory in retrieving the complex refractive index, when compared to literature values. Assuming the silica particles provided a good analogue of volcanic ash, the CDE scattering model was applied to retrieve the complex refractive index of the eight ash samples. The Lorentz formulation of the complex refractive index was used within the retrievals as a convenient way to ensure consistency with the Kramers-Kronig relation. The short-wavelength limit of the electric susceptibility was constrained by using independently measured reference values of the complex refractive index of the ash samples at a visible wavelength. The retrieved values of the complex refractive indices of the ash samples showed considerable variation, highlighting the importance of using accurate refractive index data in ash cloud radiative transfer models.

  2. Sensor Performance Requirements for the Retrieval of Atmospheric Aerosols by Airborne Optical Remote Sensing

    Directory of Open Access Journals (Sweden)

    Klaus I. Itten

    2008-03-01

    Full Text Available This study explores performance requirements for the retrieval of the atmospheric aerosol optical depth (AOD by airborne optical remote sensing instruments. Independent of any retrieval techniques, the calculated AOD retrieval requirements are compared with the expected performance parameters of the upcoming hyperspectral sensor APEX at the reference wavelength of 550nm. The AOD accuracy requirements are defined to be capable of resolving transmittance differences of 0.01 to 0.04 according to the demands of atmospheric corrections for remote sensing applications. For the purposes of this analysis, the signal at the sensor level is simulated by radiation transfer equations. The resulting radiances are translated into the AOD retrieval sensitivity (Δτλaer and compared to the available measuring sensitivity of the sensor (NE ΔLλsensor. This is done for multiple signal-to-noise ratios (SNR and surface reflectance values. It is shown that an SNR of 100 is adequate for AOD retrieval at 550nm under typical remote sensing conditions and a surface reflectance of 10% or less. Such dark surfaces require the lowest SNR values and therefore offer the best sensitivity for measuring AOD. Brighter surfaces with up to 30% reflectance require an SNR of around 300. It is shown that AOD retrieval for targets above 50% surface reflectance is more problematic with the current sensor performance as it may require an SNR larger than 1000. In general, feasibility is proven for the analyzed cases under simulated conditions.

  3. Pulse retrieval algorithm for interferometric frequency-resolved optical gating based on differential evolution.

    Science.gov (United States)

    Hyyti, Janne; Escoto, Esmerando; Steinmeyer, Günter

    2017-10-01

    A novel algorithm for the ultrashort laser pulse characterization method of interferometric frequency-resolved optical gating (iFROG) is presented. Based on a genetic method, namely, differential evolution, the algorithm can exploit all available information of an iFROG measurement to retrieve the complex electric field of a pulse. The retrieval is subjected to a series of numerical tests to prove the robustness of the algorithm against experimental artifacts and noise. These tests show that the integrated error-correction mechanisms of the iFROG method can be successfully used to remove the effect from timing errors and spectrally varying efficiency in the detection. Moreover, the accuracy and noise resilience of the new algorithm are shown to outperform retrieval based on the generalized projections algorithm, which is widely used as the standard method in FROG retrieval. The differential evolution algorithm is further validated with experimental data, measured with unamplified three-cycle pulses from a mode-locked Ti:sapphire laser. Additionally introducing group delay dispersion in the beam path, the retrieval results show excellent agreement with independent measurements with a commercial pulse measurement device based on spectral phase interferometry for direct electric-field retrieval. Further experimental tests with strongly attenuated pulses indicate resilience of differential-evolution-based retrieval against massive measurement noise.

  4. Validation of ozone profile retrievals derived from the OMPS LP version 2.5 algorithm against correlative satellite measurements

    Science.gov (United States)

    Kramarova, Natalya A.; Bhartia, Pawan K.; Jaross, Glen; Moy, Leslie; Xu, Philippe; Chen, Zhong; DeLand, Matthew; Froidevaux, Lucien; Livesey, Nathaniel; Degenstein, Douglas; Bourassa, Adam; Walker, Kaley A.; Sheese, Patrick

    2018-05-01

    The Limb Profiler (LP) is a part of the Ozone Mapping and Profiler Suite launched on board of the Suomi NPP satellite in October 2011. The LP measures solar radiation scattered from the atmospheric limb in ultraviolet and visible spectral ranges between the surface and 80 km. These measurements of scattered solar radiances allow for the retrieval of ozone profiles from cloud tops up to 55 km. The LP started operational observations in April 2012. In this study we evaluate more than 5.5 years of ozone profile measurements from the OMPS LP processed with the new NASA GSFC version 2.5 retrieval algorithm. We provide a brief description of the key changes that had been implemented in this new algorithm, including a pointing correction, new cloud height detection, explicit aerosol correction and a reduction of the number of wavelengths used in the retrievals. The OMPS LP ozone retrievals have been compared with independent satellite profile measurements obtained from the Aura Microwave Limb Sounder (MLS), Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS) and Odin Optical Spectrograph and InfraRed Imaging System (OSIRIS). We document observed biases and seasonal differences and evaluate the stability of the version 2.5 ozone record over 5.5 years. Our analysis indicates that the mean differences between LP and correlative measurements are well within required ±10 % between 18 and 42 km. In the upper stratosphere and lower mesosphere (> 43 km) LP tends to have a negative bias. We find larger biases in the lower stratosphere and upper troposphere, but LP ozone retrievals have significantly improved in version 2.5 compared to version 2 due to the implemented aerosol correction. In the northern high latitudes we observe larger biases between 20 and 32 km due to the remaining thermal sensitivity issue. Our analysis shows that LP ozone retrievals agree well with the correlative satellite observations in characterizing vertical, spatial and temporal

  5. Hybrid iterative phase retrieval algorithm based on fusion of intensity information in three defocused planes.

    Science.gov (United States)

    Zeng, Fa; Tan, Qiaofeng; Yan, Yingbai; Jin, Guofan

    2007-10-01

    Study of phase retrieval technology is quite meaningful, for its wide applications related to many domains, such as adaptive optics, detection of laser quality, precise measurement of optical surface, and so on. Here a hybrid iterative phase retrieval algorithm is proposed, based on fusion of the intensity information in three defocused planes. First the conjugate gradient algorithm is adapted to achieve a coarse solution of phase distribution in the input plane; then the iterative angular spectrum method is applied in succession for better retrieval result. This algorithm is still applicable even when the exact shape and size of the aperture in the input plane are unknown. Moreover, this algorithm always exhibits good convergence, i.e., the retrieved results are insensitive to the chosen positions of the three defocused planes and the initial guess of complex amplitude in the input plane, which has been proved by both simulations and further experiments.

  6. Medical Image Retrieval Based On the Parallelization of the Cluster Sampling Algorithm

    OpenAIRE

    Ali, Hesham Arafat; Attiya, Salah; El-henawy, Ibrahim

    2017-01-01

    In this paper we develop parallel cluster sampling algorithms and show that a multi-chain version is embarrassingly parallel and can be used efficiently for medical image retrieval among other applications.

  7. Effects of local meteorology and aerosols on ozone and nitrogen dioxide retrievals from OMI and pandora spectrometers in Maryland, USA during DISCOVER-AQ 2011.

    Science.gov (United States)

    Reed, Andra J; Thompson, Anne M; Kollonige, Debra E; Martins, Douglas K; Tzortziou, Maria A; Herman, Jay R; Berkoff, Timothy A; Abuhassan, Nader K; Cede, Alexander

    An analysis is presented for both ground- and satellite-based retrievals of total column ozone and nitrogen dioxide levels from the Washington, D.C., and Baltimore, Maryland, metropolitan area during the NASA-sponsored July 2011 campaign of D eriving I nformation on S urface CO nditions from Column and VER tically Resolved Observations Relevant to A ir Q uality (DISCOVER-AQ). Satellite retrievals of total column ozone and nitrogen dioxide from the Ozone Monitoring Instrument (OMI) on the Aura satellite are used, while Pandora spectrometers provide total column ozone and nitrogen dioxide amounts from the ground. We found that OMI and Pandora agree well (residuals within ±25 % for nitrogen dioxide, and ±4.5 % for ozone) for a majority of coincident observations during July 2011. Comparisons with surface nitrogen dioxide from a Teledyne API 200 EU NO x Analyzer showed nitrogen dioxide diurnal variability that was consistent with measurements by Pandora. However, the wide OMI field of view, clouds, and aerosols affected retrievals on certain days, resulting in differences between Pandora and OMI of up to ±65 % for total column nitrogen dioxide, and ±23 % for total column ozone. As expected, significant cloud cover (cloud fraction >0.2) was the most important parameter affecting comparisons of ozone retrievals; however, small, passing cumulus clouds that do not coincide with a high (>0.2) cloud fraction, or low aerosol layers which cause significant backscatter near the ground affected the comparisons of total column nitrogen dioxide retrievals. Our results will impact post-processing satellite retrieval algorithms and quality control procedures.

  8. Experiments in Discourse Analysis Impact on Information Classification and Retrieval Algorithms.

    Science.gov (United States)

    Morato, Jorge; Llorens, J.; Genova, G.; Moreiro, J. A.

    2003-01-01

    Discusses the inclusion of contextual information in indexing and retrieval systems to improve results and the ability to carry out text analysis by means of linguistic knowledge. Presents research that investigated whether discourse variables have an impact on information and retrieval and classification algorithms. (Author/LRW)

  9. Does the Acquisition of Spatial Skill Involve a Shift from Algorithm to Memory Retrieval?

    Science.gov (United States)

    Frank, David J.; Macnamara, Brooke N.

    2017-01-01

    Performance on verbal and mathematical tasks is enhanced when participants shift from using algorithms to retrieving information directly from memory (Siegler, 1988a). However, it is unknown whether a shift to retrieval is involved in dynamic spatial skill acquisition. For example, do athletes mentally extrapolate the trajectory of the ball, or do…

  10. Simultaneous Retrieval of Aerosol and Surface Optical Properties from Combined Airborne- and Ground-Based Direct and Diffuse Radiometric Measurements

    Science.gov (United States)

    Gatebe, C. K.; Dubovik, O.; King, M. D.; Sinyuk, A.

    2010-01-01

    This paper presents a new method for simultaneously retrieving aerosol and surface reflectance properties from combined airborne and ground-based direct and diffuse radiometric measurements. The method is based on the standard Aerosol Robotic Network (AERONET) method for retrieving aerosol size distribution, complex index of refraction, and single scattering albedo, but modified to retrieve aerosol properties in two layers, below and above the aircraft, and parameters on surface optical properties from combined datasets (Cloud Absorption Radiometer (CAR) and AERONET data). A key advantage of this method is the inversion of all available spectral and angular data at the same time, while accounting for the influence of noise in the inversion procedure using statistical optimization. The wide spectral (0.34-2.30 m) and angular range (180 ) of the CAR instrument, combined with observations from an AERONET sunphotometer, provide sufficient measurement constraints for characterizing aerosol and surface properties with minimal assumptions. The robustness of the method was tested on observations made during four different field campaigns: (a) the Southern African Regional Science Initiative 2000 over Mongu, Zambia, (b) the Intercontinental Transport Experiment-Phase B over Mexico City, Mexico (c) Cloud and Land Surface Interaction Campaign over the Atmospheric Radiation Measurement (ARM) Central Facility, Oklahoma, USA, and (d) the Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) over Elson Lagoon in Barrow, Alaska, USA. The four areas are dominated by different surface characteristics and aerosol types, and therefore provide good test cases for the new inversion method.

  11. The operational cloud retrieval algorithms from TROPOMI on board Sentinel-5 Precursor

    Science.gov (United States)

    Loyola, Diego G.; Gimeno García, Sebastián; Lutz, Ronny; Argyrouli, Athina; Romahn, Fabian; Spurr, Robert J. D.; Pedergnana, Mattia; Doicu, Adrian; Molina García, Víctor; Schüssler, Olena

    2018-01-01

    This paper presents the operational cloud retrieval algorithms for the TROPOspheric Monitoring Instrument (TROPOMI) on board the European Space Agency Sentinel-5 Precursor (S5P) mission scheduled for launch in 2017. Two algorithms working in tandem are used for retrieving cloud properties: OCRA (Optical Cloud Recognition Algorithm) and ROCINN (Retrieval of Cloud Information using Neural Networks). OCRA retrieves the cloud fraction using TROPOMI measurements in the ultraviolet (UV) and visible (VIS) spectral regions, and ROCINN retrieves the cloud top height (pressure) and optical thickness (albedo) using TROPOMI measurements in and around the oxygen A-band in the near infrared (NIR). Cloud parameters from TROPOMI/S5P will be used not only for enhancing the accuracy of trace gas retrievals but also for extending the satellite data record of cloud information derived from oxygen A-band measurements, a record initiated with the Global Ozone Monitoring Experiment (GOME) on board the second European Remote-Sensing Satellite (ERS-2) over 20 years ago. The OCRA and ROCINN algorithms are integrated in the S5P operational processor UPAS (Universal Processor for UV/VIS/NIR Atmospheric Spectrometers), and we present here UPAS cloud results using the Ozone Monitoring Instrument (OMI) and GOME-2 measurements. In addition, we examine anticipated challenges for the TROPOMI/S5P cloud retrieval algorithms, and we discuss the future validation needs for OCRA and ROCINN.

  12. The operational cloud retrieval algorithms from TROPOMI on board Sentinel-5 Precursor

    Directory of Open Access Journals (Sweden)

    D. G. Loyola

    2018-01-01

    Full Text Available This paper presents the operational cloud retrieval algorithms for the TROPOspheric Monitoring Instrument (TROPOMI on board the European Space Agency Sentinel-5 Precursor (S5P mission scheduled for launch in 2017. Two algorithms working in tandem are used for retrieving cloud properties: OCRA (Optical Cloud Recognition Algorithm and ROCINN (Retrieval of Cloud Information using Neural Networks. OCRA retrieves the cloud fraction using TROPOMI measurements in the ultraviolet (UV and visible (VIS spectral regions, and ROCINN retrieves the cloud top height (pressure and optical thickness (albedo using TROPOMI measurements in and around the oxygen A-band in the near infrared (NIR. Cloud parameters from TROPOMI/S5P will be used not only for enhancing the accuracy of trace gas retrievals but also for extending the satellite data record of cloud information derived from oxygen A-band measurements, a record initiated with the Global Ozone Monitoring Experiment (GOME on board the second European Remote-Sensing Satellite (ERS-2 over 20 years ago. The OCRA and ROCINN algorithms are integrated in the S5P operational processor UPAS (Universal Processor for UV/VIS/NIR Atmospheric Spectrometers, and we present here UPAS cloud results using the Ozone Monitoring Instrument (OMI and GOME-2 measurements. In addition, we examine anticipated challenges for the TROPOMI/S5P cloud retrieval algorithms, and we discuss the future validation needs for OCRA and ROCINN.

  13. A retrieval algorithm of hydrometer profile for submillimeter-wave radiometer

    Science.gov (United States)

    Liu, Yuli; Buehler, Stefan; Liu, Heguang

    2017-04-01

    Vertical profiles of particle microphysics perform vital functions for the estimation of climatic feedback. This paper proposes a new algorithm to retrieve the profile of the parameters of the hydrometeor(i.e., ice, snow, rain, liquid cloud, graupel) based on passive submillimeter-wave measurements. These parameters include water content and particle size. The first part of the algorithm builds the database and retrieves the integrated quantities. Database is built up by Atmospheric Radiative Transfer Simulator(ARTS), which uses atmosphere data to simulate the corresponding brightness temperature. Neural network, trained by the precalculated database, is developed to retrieve the water path for each type of particles. The second part of the algorithm analyses the statistical relationship between water path and vertical parameters profiles. Based on the strong dependence existing between vertical layers in the profiles, Principal Component Analysis(PCA) technique is applied. The third part of the algorithm uses the forward model explicitly to retrieve the hydrometeor profiles. Cost function is calculated in each iteration, and Differential Evolution(DE) algorithm is used to adjust the parameter values during the evolutionary process. The performance of this algorithm is planning to be verified for both simulation database and measurement data, by retrieving profiles in comparison with the initial one. Results show that this algorithm has the ability to retrieve the hydrometeor profiles efficiently. The combination of ARTS and optimization algorithm can get much better results than the commonly used database approach. Meanwhile, the concept that ARTS can be used explicitly in the retrieval process shows great potential in providing solution to other retrieval problems.

  14. Retrieval method of aerosol extinction coefficient profile based on backscattering, side-scattering and Raman-scattering lidar

    Science.gov (United States)

    Shan, Huihui; Zhang, Hui; Liu, Junjian; Tao, Zongming; Wang, Shenhao; Ma, Xiaomin; Zhou, Pucheng; Yao, Ling; Liu, Dong; Xie, Chenbo; Wang, Yingjian

    2018-03-01

    Aerosol extinction coefficient profile is an essential parameter for atmospheric radiation model. It is difficult to get higher signal to noise ratio (SNR) of backscattering lidar from the ground to the tropopause especially in near range. Higher SNR problem can be solved by combining side-scattering and backscattering lidar. Using Raman-scattering lidar, aerosol extinction to backscatter ratio (lidar ratio) can be got. Based on side-scattering, backscattering and Raman-scattering lidar system, aerosol extinction coefficient is retrieved precisely from the earth's surface to the tropopause. Case studies show this method is reasonable and feasible.

  15. Constraining the atmospheric composition of the day-night terminators of HD 189733b: Atmospheric retrieval with aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Min [Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Irwin, Patrick G. J.; Fletcher, Leigh N.; Barstow, Joanna K. [Department of Atmospheric, Oceanic, and Planetary Physics, University of Oxford, OX1 3PU Oxford (United Kingdom); Heng, Kevin, E-mail: lee@physik.uzh.ch [Center for Space and Habitability, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2014-07-01

    A number of observations have shown that Rayleigh scattering by aerosols dominates the transmission spectrum of HD 189733b at wavelengths shortward of 1 μm. In this study, we retrieve a range of aerosol distributions consistent with transmission spectroscopy between 0.3-24 μm that were recently re-analyzed by Pont et al. To constrain the particle size and the optical depth of the aerosol layer, we investigate the degeneracies between aerosol composition, temperature, planetary radius, and molecular abundances that prevent unique solutions for transit spectroscopy. Assuming that the aerosol is composed of MgSiO{sub 3}, we suggest that a vertically uniform aerosol layer over all pressures with a monodisperse particle size smaller than about 0.1 μm and an optical depth in the range 0.002-0.02 at 1 μm provides statistically meaningful solutions for the day/night terminator regions of HD 189733b. Generally, we find that a uniform aerosol layer provide adequate fits to the data if the optical depth is less than 0.1 and the particle size is smaller than 0.1 μm, irrespective of the atmospheric temperature, planetary radius, aerosol composition, and gaseous molecules. Strong constraints on the aerosol properties are provided by spectra at wavelengths shortward of 1 μm as well as longward of 8 μm, if the aerosol material has absorption features in this region. We show that these are the optimal wavelengths for quantifying the effects of aerosols, which may guide the design of future space observations. The present investigation indicates that the current data offer sufficient information to constrain some of the aerosol properties of HD189733b, but the chemistry in the terminator regions remains uncertain.

  16. An Agent-Based Framework for E-Commerce Information Retrieval Management Using Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Floarea NASTASE

    2009-01-01

    Full Text Available The paper addresses the issue of improving retrieval performance management for retrieval from document collections that exist on the Internet. It also comes with a solution that uses the benefits of the agent technology and genetic algorithms in the process of the information retrieving management. The most important paradigms of information retrieval are mentioned having the goal to make more evident the advantages of using the genetic algorithms based one. Within the paper, also a genetic algorithm that can be use for the proposed solution is detailed and a comparative description between the dynamic and static proposed solution is made. In the end, new future directions are shown based on elements presented in this paper. The future results look very encouraging.

  17. Retrieval of Surface Lambert Albedos and Aerosols Optical Depths Using OMEGA Near-IR EPF Observations of Mars

    Science.gov (United States)

    Vincendon, M.; Langevin, Y.; Poulet, F.; Bibring, J.-P.; Gondet, B.

    2007-03-01

    We have analyzed five EPF sequences acquired by OMEGA/Mars Express in the near-IR over ice-free and ice-covered surfaces to retrieve simultaneously the Lambert albedo of the surface and the optical depth of aerosols.

  18. Phase-step retrieval for tunable phase-shifting algorithms

    Science.gov (United States)

    Ayubi, Gastón A.; Duarte, Ignacio; Perciante, César D.; Flores, Jorge L.; Ferrari, José A.

    2017-12-01

    Phase-shifting (PS) is a well-known technique for phase retrieval in interferometry, with applications in deflectometry and 3D-profiling, which requires a series of intensity measurements with certain phase-steps. Usually the phase-steps are evenly spaced, and its knowledge is crucial for the phase retrieval. In this work we present a method to extract the phase-step between consecutive interferograms. We test the proposed technique with images corrupted by additive noise. The results were compared with other known methods. We also present experimental results showing the performance of the method when spatial filters are applied to the interferograms and the effect that they have on their relative phase-steps.

  19. Algorithm for image retrieval based on edge gradient orientation statistical code.

    Science.gov (United States)

    Zeng, Jiexian; Zhao, Yonggang; Li, Weiye; Fu, Xiang

    2014-01-01

    Image edge gradient direction not only contains important information of the shape, but also has a simple, lower complexity characteristic. Considering that the edge gradient direction histograms and edge direction autocorrelogram do not have the rotation invariance, we put forward the image retrieval algorithm which is based on edge gradient orientation statistical code (hereinafter referred to as EGOSC) by sharing the application of the statistics method in the edge direction of the chain code in eight neighborhoods to the statistics of the edge gradient direction. Firstly, we construct the n-direction vector and make maximal summation restriction on EGOSC to make sure this algorithm is invariable for rotation effectively. Then, we use Euclidean distance of edge gradient direction entropy to measure shape similarity, so that this method is not sensitive to scaling, color, and illumination change. The experimental results and the algorithm analysis demonstrate that the algorithm can be used for content-based image retrieval and has good retrieval results.

  20. Quantifying the climatological cloud-free direct radiative forcing of aerosol over the Red Sea

    KAUST Repository

    Brindley, Helen; Osipov, Serega; Bantges, Richard; Smirnov, Alexander; Banks, Jamie; Levy, Robert; Prakash, P.-Jish; Stenchikov, Georgiy L.

    2015-01-01

    for assessing aerosol loading over the Sea. However, agreement between aerosol properties inferred from measurements from different instruments, and even in some cases from the same measurements using different retrieval algorithms can be poor, particularly

  1. Multiscale Distance Coherence Vector Algorithm for Content-Based Image Retrieval

    Science.gov (United States)

    Jiexian, Zeng; Xiupeng, Liu

    2014-01-01

    Multiscale distance coherence vector algorithm for content-based image retrieval (CBIR) is proposed due to the same descriptor with different shapes and the shortcomings of antinoise performance of the distance coherence vector algorithm. By this algorithm, the image contour curve is evolved by Gaussian function first, and then the distance coherence vector is, respectively, extracted from the contour of the original image and evolved images. Multiscale distance coherence vector was obtained by reasonable weight distribution of the distance coherence vectors of evolved images contour. This algorithm not only is invariable to translation, rotation, and scaling transformation but also has good performance of antinoise. The experiment results show us that the algorithm has a higher recall rate and precision rate for the retrieval of images polluted by noise. PMID:24883416

  2. Modified retrieval algorithm for three types of precipitation distribution using x-band synthetic aperture radar

    Science.gov (United States)

    Xie, Yanan; Zhou, Mingliang; Pan, Dengke

    2017-10-01

    The forward-scattering model is introduced to describe the response of normalized radar cross section (NRCS) of precipitation with synthetic aperture radar (SAR). Since the distribution of near-surface rainfall is related to the rate of near-surface rainfall and horizontal distribution factor, a retrieval algorithm called modified regression empirical and model-oriented statistical (M-M) based on the volterra integration theory is proposed. Compared with the model-oriented statistical and volterra integration (MOSVI) algorithm, the biggest difference is that the M-M algorithm is based on the modified regression empirical algorithm rather than the linear regression formula to retrieve the value of near-surface rainfall rate. Half of the empirical parameters are reduced in the weighted integral work and a smaller average relative error is received while the rainfall rate is less than 100 mm/h. Therefore, the algorithm proposed in this paper can obtain high-precision rainfall information.

  3. Information content and sensitivity of the 3β + 2α lidar measurement system for aerosol microphysical retrievals

    Science.gov (United States)

    Burton, Sharon P.; Chemyakin, Eduard; Liu, Xu; Knobelspiesse, Kirk; Stamnes, Snorre; Sawamura, Patricia; Moore, Richard H.; Hostetler, Chris A.; Ferrare, Richard A.

    2016-11-01

    There is considerable interest in retrieving profiles of aerosol effective radius, total number concentration, and complex refractive index from lidar measurements of extinction and backscatter at several wavelengths. The combination of three backscatter channels plus two extinction channels (3β + 2α) is particularly important since it is believed to be the minimum configuration necessary for the retrieval of aerosol microphysical properties and because the technological readiness of lidar systems permits this configuration on both an airborne and future spaceborne instrument. The second-generation NASA Langley airborne High Spectral Resolution Lidar (HSRL-2) has been making 3β + 2α measurements since 2012. The planned NASA Aerosol/Clouds/Ecosystems (ACE) satellite mission also recommends the 3β + 2α combination.Here we develop a deeper understanding of the information content and sensitivities of the 3β + 2α system in terms of aerosol microphysical parameters of interest. We use a retrieval-free methodology to determine the basic sensitivities of the measurements independent of retrieval assumptions and constraints. We calculate information content and uncertainty metrics using tools borrowed from the optimal estimation methodology based on Bayes' theorem, using a simplified forward model look-up table, with no explicit inversion. The forward model is simplified to represent spherical particles, monomodal log-normal size distributions, and wavelength-independent refractive indices. Since we only use the forward model with no retrieval, the given simplified aerosol scenario is applicable as a best case for all existing retrievals in the absence of additional constraints. Retrieval-dependent errors due to mismatch between retrieval assumptions and true atmospheric aerosols are not included in this sensitivity study, and neither are retrieval errors that may be introduced in the inversion process. The choice of a simplified model adds clarity to the

  4. BR-Explorer: A sound and complete FCA-based retrieval algorithm (Poster)

    OpenAIRE

    Messai , Nizar; Devignes , Marie-Dominique; Napoli , Amedeo; Smaïl-Tabbone , Malika

    2006-01-01

    In this paper we present BR-Explorer, a sound and complete biological data sources retrieval algorithm based on Formal Concept Analysis and domain ontologies. BR-Explorer addresses the problem of retrieving the relevant data sources for a given query. Initially, a formal context representing the relation between biological data sources and their metadata is provided and its corresponding concept lattice is built. Then BR-Explorer starts by generating the formal concept for the considered quer...

  5. Comparison of soil moisture retrieval algorithms based on the synergy between SMAP and SMOS-IC

    Science.gov (United States)

    Ebrahimi-Khusfi, Mohsen; Alavipanah, Seyed Kazem; Hamzeh, Saeid; Amiraslani, Farshad; Neysani Samany, Najmeh; Wigneron, Jean-Pierre

    2018-05-01

    This study was carried out to evaluate possible improvements of the soil moisture (SM) retrievals from the SMAP observations, based on the synergy between SMAP and SMOS. We assessed the impacts of the vegetation and soil roughness parameters on SM retrievals from SMAP observations. To do so, the effects of three key input parameters including the vegetation optical depth (VOD), effective scattering albedo (ω) and soil roughness (HR) parameters were assessed with the emphasis on the synergy with the VOD product derived from SMOS-IC, a new and simpler version of the SMOS algorithm, over two years of data (April 2015 to April 2017). First, a comprehensive comparison of seven SM retrieval algorithms was made to find the best one for SM retrievals from the SMAP observations. All results were evaluated against in situ measurements over 548 stations from the International Soil Moisture Network (ISMN) in terms of four statistical metrics: correlation coefficient (R), root mean square error (RMSE), bias and unbiased RMSE (UbRMSE). The comparison of seven SM retrieval algorithms showed that the dual channel algorithm based on the additional use of the SMOS-IC VOD product (selected algorithm) led to the best results of SM retrievals over 378, 399, 330 and 271 stations (out of a total of 548 stations) in terms of R, RMSE, UbRMSE and both R & UbRMSE, respectively. Moreover, comparing the measured and retrieved SM values showed that this synergy approach led to an increase in median R value from 0.6 to 0.65 and a decrease in median UbRMSE from 0.09 m3/m3 to 0.06 m3/m3. Second, using the algorithm selected in a first step and defined above, the ω and HR parameters were calibrated over 218 rather homogenous ISMN stations. 72 combinations of various values of ω and HR were used for the calibration over different land cover classes. In this calibration process, the optimal values of ω and HR were found for the different land cover classes. The obtained results indicated that the

  6. On the role of visible radiation in ozone profile retrieval from nadir UV/VIS satellite measurements: An experiment with neural network algorithms inverting SCIAMACHY data

    International Nuclear Information System (INIS)

    Sellitto, P.; Di Noia, A.; Del Frate, F.; Burini, A.; Casadio, S.; Solimini, D.

    2012-01-01

    Theoretical evidence has been given on the role of visible (VIS) radiation in enhancing the accuracy of ozone retrievals from satellite data, especially in the troposphere. However, at present, VIS is not being systematically used together with ultraviolet (UV) measurements, even when possible with one single instrument, e.g., the SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY). Reasons mainly reside in the defective performance of optimal estimation and regularization algorithms caused by inaccurate modeling of VIS interaction with aerosols or clouds, as well as in inconsistent intercalibration between UV and VIS measurements. Here we intend to discuss the role of VIS radiation when it feeds a retrieval algorithm based on Neural Networks (NNs) that does not need a forward radiative transfer model and is robust with respect to calibration errors. The NN we designed was trained with a set of ozonesondes (OSs) data and tested over an independent set of OS measurements. We compared the ozone concentration profiles retrieved from UV-only with those retrieved from UV plus VIS nadir data taken by SCIAMACHY. We found that VIS radiation was able to yield more than 10% increase of accuracy and to substantially reduce biases of retrieved profiles at tropospheric levels.

  7. Premonsoon aerosol optical properties from AERONET retrievals and its probable source fields in Eastern India urban environment (Kolkata): evaluating spatial variability and its comparison with MODIS retrievals.

    Science.gov (United States)

    Priyadharshini, B.; Verma, S.

    2015-12-01

    Aerosol characteristics were examined using Aerosol Robotic Network (AERONET) and MODIS retrievals (Moderate Resolution Imaging Spectroradiometer) during the period, February to June 2009 in Eastern India, Kolkata (KOL). AERONET retrievals results for the study period manifested an aerosol optical depth - AOD (Angstrom exponent - α) in the range 0.65 - 0.81 (0.66 - 0.97) with an intermittent influence of dust. A substantial dominance of finer (coarser) particles were found in February (April) and an equal dominance of both in June. Aerosol size distribution (ASD) revealed a high volume in fine mode during June and that in April for the coarse mode. A few areas of in and around KOL, Odisha, and Sikkim influenced AOD ascertained using the Potential source contribution function (PSCF). Cluster analysis revealed preferred pathway as continental during February and both continental and marine during March to June. Episodic days identified for dust occurrence was examined and was further corroborated by MODIS Rapid response images. Further, comparative results of seven collateral AERONET sites in India, revealed a high AOD (α) at KOL during February to May (March and April) with Fine mode - FM (Coarse mode - CM) AOD of KOL being high during March and April (February to April) than other locations. Single scattering albedo (SSA) at 0.67 μm at KOL was slightly lower during February and March, with being equivalent and or higher than other sites during April to June. Comparison of AERONET - MODIS AOD at 0.55 µm for KOL (entire study period) for the collateral days revealed underestimation of MODIS during February to April and overestimation during May and June than AERONET. AERONET - MODIS AOD comparison for seven locations, during low (February) and high (June) aerosol loading, showed good agreement for few stations and divulged discrepancy for other sites.

  8. A new stochastic algorithm for inversion of dust aerosol size distribution

    Science.gov (United States)

    Wang, Li; Li, Feng; Yang, Ma-ying

    2015-08-01

    Dust aerosol size distribution is an important source of information about atmospheric aerosols, and it can be determined from multiwavelength extinction measurements. This paper describes a stochastic inverse technique based on artificial bee colony (ABC) algorithm to invert the dust aerosol size distribution by light extinction method. The direct problems for the size distribution of water drop and dust particle, which are the main elements of atmospheric aerosols, are solved by the Mie theory and the Lambert-Beer Law in multispectral region. And then, the parameters of three widely used functions, i.e. the log normal distribution (L-N), the Junge distribution (J-J), and the normal distribution (N-N), which can provide the most useful representation of aerosol size distributions, are inversed by the ABC algorithm in the dependent model. Numerical results show that the ABC algorithm can be successfully applied to recover the aerosol size distribution with high feasibility and reliability even in the presence of random noise.

  9. Evaluating Nighttime CALIOP 0.532 micron Aerosol Optical Depth and Extinction Coefficient Retrievals

    Science.gov (United States)

    Campbell, J. R.; Tackett, J. L.; Reid, J. S.; Zhang, J.; Curtis, C. A.; Hyer, E. J.; Sessions, W. R.; Westphal, D. L.; Prospero, J. M.; Welton, E. J.; hide

    2012-01-01

    NASA Cloud Aerosol Lidar with Orthogonal Polarization (CALIOP) Version 3.01 5-km nighttime 0.532 micron aerosol optical depth (AOD) datasets from 2007 are screened, averaged and evaluated at 1 deg X 1 deg resolution versus corresponding/co-incident 0.550 micron AOD derived using the US Navy Aerosol Analysis and Prediction System (NAAPS), featuring two-dimensional variational assimilation of quality-assured NASA Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging Spectroradiometer (MISR) AOD. In the absence of sunlight, since passive radiometric AOD retrievals rely overwhelmingly on scattered radiances, the model represents one of the few practical global estimates available from which to attempt such a validation. Daytime comparisons, though, provide useful context. Regional-mean CALIOP vertical profiles of night/day 0.532 micron extinction coefficient are compared with 0.523/0.532 micron ground-based lidar measurements to investigate representativeness and diurnal variability. In this analysis, mean nighttime CALIOP AOD are mostly lower than daytime (0.121 vs. 0.126 for all aggregated data points, and 0.099 vs. 0.102 when averaged globally per normalised 1 deg. X 1 deg. bin), though the relationship is reversed over land and coastal regions when the data are averaged per normalised bin (0.134/0.108 vs. 0140/0.112, respectively). Offsets assessed within single bins alone approach +/- 20 %. CALIOP AOD, both day and night, are higher than NAAPS over land (0.137 vs. 0.124) and equal over water (0.082 vs. 0.083) when averaged globally per normalised bin. However, for all data points inclusive, NAAPS exceeds CALIOP over land, coast and ocean, both day and night. Again, differences assessed within single bins approach 50% in extreme cases. Correlation between CALIOP and NAAPS AOD is comparable during both day and night. Higher correlation is found nearest the equator, both as a function of sample size and relative signal magnitudes inherent at

  10. A Merging Algorithm for Aerosol Size Distribution from Multiple Instruments

    Czech Academy of Sciences Publication Activity Database

    Ondráček, Jakub; Ždímal, Vladimír; Smolík, Jiří; Lazaridis, M.

    2009-01-01

    Roč. 199, 1-4 (2009), s. 219-233 ISSN 0049-6979 Grant - others:MTKD(XE) CT-2004-513849 Institutional research plan: CEZ:AV0Z40720504 Keywords : aerosols * merging particle size distribution * multilognormal model Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.676, year: 2009

  11. Feasibility study of the iterative x-ray phase retrieval algorithm

    International Nuclear Information System (INIS)

    Meng Fanbo; Liu Hong; Wu Xizeng

    2009-01-01

    An iterative phase retrieval algorithm was previously investigated for in-line x-ray phase imaging. Through detailed theoretical analysis and computer simulations, we now discuss the limitations, robustness, and efficiency of the algorithm. The iterative algorithm was proved robust against imaging noise but sensitive to the variations of several system parameters. It is also efficient in terms of calculation time. It was shown that the algorithm can be applied to phase retrieval based on one phase-contrast image and one attenuation image, or two phase-contrast images; in both cases, the two images can be obtained either by one detector in two exposures, or by two detectors in only one exposure as in the dual-detector scheme

  12. Image encryption using fingerprint as key based on phase retrieval algorithm and public key cryptography

    Science.gov (United States)

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2015-09-01

    In this paper, a novel image encryption system with fingerprint used as a secret key is proposed based on the phase retrieval algorithm and RSA public key algorithm. In the system, the encryption keys include the fingerprint and the public key of RSA algorithm, while the decryption keys are the fingerprint and the private key of RSA algorithm. If the users share the fingerprint, then the system will meet the basic agreement of asymmetric cryptography. The system is also applicable for the information authentication. The fingerprint as secret key is used in both the encryption and decryption processes so that the receiver can identify the authenticity of the ciphertext by using the fingerprint in decryption process. Finally, the simulation results show the validity of the encryption scheme and the high robustness against attacks based on the phase retrieval technique.

  13. Multiwavelength Absolute Phase Retrieval from Noisy Diffractive Patterns: Wavelength Multiplexing Algorithm

    Directory of Open Access Journals (Sweden)

    Vladimir Katkovnik

    2018-05-01

    Full Text Available We study the problem of multiwavelength absolute phase retrieval from noisy diffraction patterns. The system is lensless with multiwavelength coherent input light beams and random phase masks applied for wavefront modulation. The light beams are formed by light sources radiating all wavelengths simultaneously. A sensor equipped by a Color Filter Array (CFA is used for spectral measurement registration. The developed algorithm targeted on optimal phase retrieval from noisy observations is based on maximum likelihood technique. The algorithm is specified for Poissonian and Gaussian noise distributions. One of the key elements of the algorithm is an original sparse modeling of the multiwavelength complex-valued wavefronts based on the complex-domain block-matching 3D filtering. Presented numerical experiments are restricted to noisy Poissonian observations. They demonstrate that the developed algorithm leads to effective solutions explicitly using the sparsity for noise suppression and enabling accurate reconstruction of absolute phase of high-dynamic range.

  14. Quantitative comparison of direct phase retrieval algorithms in in-line phase tomography

    International Nuclear Information System (INIS)

    Langer, Max; Cloetens, Peter; Guigay, Jean-Pierre; Peyrin, Francoise

    2008-01-01

    A well-known problem in x-ray microcomputed tomography is low sensitivity. Phase contrast imaging offers an increase of sensitivity of up to a factor of 10 3 in the hard x-ray region, which makes it possible to image soft tissue and small density variations. If a sufficiently coherent x-ray beam, such as that obtained from a third generation synchrotron, is used, phase contrast can be obtained by simply moving the detector downstream of the imaged object. This setup is known as in-line or propagation based phase contrast imaging. A quantitative relationship exists between the phase shift induced by the object and the recorded intensity and inversion of this relationship is called phase retrieval. Since the phase shift is proportional to projections through the three-dimensional refractive index distribution in the object, once the phase is retrieved, the refractive index can be reconstructed by using the phase as input to a tomographic reconstruction algorithm. A comparison between four phase retrieval algorithms is presented. The algorithms are based on the transport of intensity equation (TIE), transport of intensity equation for weak absorption, the contrast transfer function (CTF), and a mixed approach between the CTF and TIE, respectively. The compared methods all rely on linearization of the relationship between phase shift and recorded intensity to yield fast phase retrieval algorithms. The phase retrieval algorithms are compared using both simulated and experimental data, acquired at the European Synchrotron Radiation Facility third generation synchrotron light source. The algorithms are evaluated in terms of two different reconstruction error metrics. While being slightly less computationally effective, the mixed approach shows the best performance in terms of the chosen criteria.

  15. Phase-Retrieval Uncertainty Estimation and Algorithm Comparison for the JWST-ISIM Test Campaign

    Science.gov (United States)

    Aronstein, David L.; Smith, J. Scott

    2016-01-01

    Phase retrieval, the process of determining the exitpupil wavefront of an optical instrument from image-plane intensity measurements, is the baseline methodology for characterizing the wavefront for the suite of science instruments (SIs) in the Integrated Science Instrument Module (ISIM) for the James Webb Space Telescope (JWST). JWST is a large, infrared space telescope with a 6.5-meter diameter primary mirror. JWST is currently NASA's flagship mission and will be the premier space observatory of the next decade. ISIM contains four optical benches with nine unique instruments, including redundancies. ISIM was characterized at the Goddard Space Flight Center (GSFC) in Greenbelt, MD in a series of cryogenic vacuum tests using a telescope simulator. During these tests, phase-retrieval algorithms were used to characterize the instruments. The objective of this paper is to describe the Monte-Carlo simulations that were used to establish uncertainties (i.e., error bars) for the wavefronts of the various instruments in ISIM. Multiple retrieval algorithms were used in the analysis of ISIM phase-retrieval focus-sweep data, including an iterativetransform algorithm and a nonlinear optimization algorithm. These algorithms emphasize the recovery of numerous optical parameters, including low-order wavefront composition described by Zernike polynomial terms and high-order wavefront described by a point-by-point map, location of instrument best focus, focal ratio, exit-pupil amplitude, the morphology of any extended object, and optical jitter. The secondary objective of this paper is to report on the relative accuracies of these algorithms for the ISIM instrument tests, and a comparison of their computational complexity and their performance on central and graphical processing unit clusters. From a phase-retrieval perspective, the ISIM test campaign includes a variety of source illumination bandwidths, various image-plane sampling criteria above and below the Nyquist- Shannon

  16. A 1DVAR-based snowfall rate retrieval algorithm for passive microwave radiometers

    Science.gov (United States)

    Meng, Huan; Dong, Jun; Ferraro, Ralph; Yan, Banghua; Zhao, Limin; Kongoli, Cezar; Wang, Nai-Yu; Zavodsky, Bradley

    2017-06-01

    Snowfall rate retrieval from spaceborne passive microwave (PMW) radiometers has gained momentum in recent years. PMW can be so utilized because of its ability to sense in-cloud precipitation. A physically based, overland snowfall rate (SFR) algorithm has been developed using measurements from the Advanced Microwave Sounding Unit-A/Microwave Humidity Sounder sensor pair and the Advanced Technology Microwave Sounder. Currently, these instruments are aboard five polar-orbiting satellites, namely, NOAA-18, NOAA-19, Metop-A, Metop-B, and Suomi-NPP. The SFR algorithm relies on a separate snowfall detection algorithm that is composed of a satellite-based statistical model and a set of numerical weather prediction model-based filters. There are four components in the SFR algorithm itself: cloud properties retrieval, computation of ice particle terminal velocity, ice water content adjustment, and the determination of snowfall rate. The retrieval of cloud properties is the foundation of the algorithm and is accomplished using a one-dimensional variational (1DVAR) model. An existing model is adopted to derive ice particle terminal velocity. Since no measurement of cloud ice distribution is available when SFR is retrieved in near real time, such distribution is implicitly assumed by deriving an empirical function that adjusts retrieved SFR toward radar snowfall estimates. Finally, SFR is determined numerically from a complex integral. The algorithm has been validated against both radar and ground observations of snowfall events from the contiguous United States with satisfactory results. Currently, the SFR product is operationally generated at the National Oceanic and Atmospheric Administration and can be obtained from that organization.

  17. Comparison of SAR Wind Speed Retrieval Algorithms for Evaluating Offshore Wind Energy Resources

    DEFF Research Database (Denmark)

    Kozai, K.; Ohsawa, T.; Takeyama, Y.

    2010-01-01

    Envisat/ASAR-derived offshore wind speeds and energy densities based on 4 different SAR wind speed retrieval algorithms (CMOD4, CMOD-IFR2, CMOD5, CMOD5.N) are compared with observed wind speeds and energy densities for evaluating offshore wind energy resources. CMOD4 ignores effects of atmospheri...

  18. Performance of a rain retrieval algorithm using TRMM data in the Eastern Mediterranean

    Directory of Open Access Journals (Sweden)

    D. Katsanos

    2006-01-01

    Full Text Available This study aims to make a regional characterization of the performance of the rain retrieval algorithm BRAIN. This algorithm estimates the rain rate from brightness temperatures measured by the TRMM Microwave Imager (TMI onboard the TRMM satellite. In this stage of the study, a comparison between the rain estimated from Precipitation Radar (PR onboard TRMM (2A25 version 5 and the rain retrieved by the BRAIN algorithm is presented, for about 30 satellite overpasses over the Central and Eastern Mediterranean during the period October 2003–March 2004, in order to assess the behavior of the algorithm in the Eastern Mediterranean region. BRAIN was built and tested using PR rain estimates distributed randomly over the whole TRMM sampling region. Characterization of the differences between PR and BRAIN over a specific region is thus interesting because it might show some local trend for one or the other of the instrument. The checking of BRAIN results against the PR rain-estimate appears to be consistent with former results i.e. a somewhat marked discrepancy for the highest rain rates. This difference arises from a known problem that affect rain retrieval based on passive microwave radiometers measurements, but some of the higher radar rain rates could also be questioned. As an independent test, a good correlation between the rain retrieved by BRAIN and lighting data (obtained by the UK Met. Office long range detection system is also emphasized in the paper.

  19. MAX-DOAS observations of aerosols, formaldehyde and nitrogen dioxide in the Beijing area: comparison of two profile retrieval approaches

    Directory of Open Access Journals (Sweden)

    T. Vlemmix

    2015-02-01

    Full Text Available A 4-year data set of MAX-DOAS observations in the Beijing area (2008–2012 is analysed with a focus on NO2, HCHO and aerosols. Two very different retrieval methods are applied. Method A describes the tropospheric profile with 13 layers and makes use of the optimal estimation method. Method B uses 2–4 parameters to describe the tropospheric profile and an inversion based on a least-squares fit. For each constituent (NO2, HCHO and aerosols the retrieval outcomes are compared in terms of tropospheric column densities, surface concentrations and "characteristic profile heights" (i.e. the height below which 75% of the vertically integrated tropospheric column density resides. We find best agreement between the two methods for tropospheric NO2 column densities, with a standard deviation of relative differences below 10%, a correlation of 0.99 and a linear regression with a slope of 1.03. For tropospheric HCHO column densities we find a similar slope, but also a systematic bias of almost 10% which is likely related to differences in profile height. Aerosol optical depths (AODs retrieved with method B are 20% high compared to method A. They are more in agreement with AERONET measurements, which are on average only 5% lower, however with considerable relative differences (standard deviation ~ 25%. With respect to near-surface volume mixing ratios and aerosol extinction we find considerably larger relative differences: 10 ± 30, −23 ± 28 and −8 ± 33% for aerosols, HCHO and NO2 respectively. The frequency distributions of these near-surface concentrations show however a quite good agreement, and this indicates that near-surface concentrations derived from MAX-DOAS are certainly useful in a climatological sense. A major difference between the two methods is the dynamic range of retrieved characteristic profile heights which is larger for method B than for method A. This effect is most pronounced for HCHO, where retrieved profile shapes with method

  20. Complex amplitude reconstruction by iterative amplitude-phase retrieval algorithm with reference

    Science.gov (United States)

    Shen, Cheng; Guo, Cheng; Tan, Jiubin; Liu, Shutian; Liu, Zhengjun

    2018-06-01

    Multi-image iterative phase retrieval methods have been successfully applied in plenty of research fields due to their simple but efficient implementation. However, there is a mismatch between the measurement of the first long imaging distance and the sequential interval. In this paper, an amplitude-phase retrieval algorithm with reference is put forward without additional measurements or priori knowledge. It gets rid of measuring the first imaging distance. With a designed update formula, it significantly raises the convergence speed and the reconstruction fidelity, especially in phase retrieval. Its superiority over the original amplitude-phase retrieval (APR) method is validated by numerical analysis and experiments. Furthermore, it provides a conceptual design of a compact holographic image sensor, which can achieve numerical refocusing easily.

  1. Evaluation of Retrieval Algorithms for Ice Microphysics Using CALIPSO/CloudSat and Earthcare

    Directory of Open Access Journals (Sweden)

    Okamoto Hajime

    2016-01-01

    We performed several sensitivity studies to evaluate uncertainties in the retrieved ice microphysics due to ice particle orientation and shape. It was found that the implementation of orientation of horizontally oriented ice plate model in the algorithm drastically improved the retrieval results in both for nadir- and off-nadir lidar pointing periods. Differences in the retrieved microphysics between only randomly oriented ice model (3D-ice and mixture of 3D-ice and Q2Dplate model were large especially in off-nadir period, e.g., 100% in effective radius and one order in ice water content, respectively. And differences in the retrieved ice microphysics among different mixture models were smaller than about 50% for effective radius in nadir period.

  2. Development of MODIS data-based algorithm for retrieving sea surface temperature in coastal waters.

    Science.gov (United States)

    Wang, Jiao; Deng, Zhiqiang

    2017-06-01

    A new algorithm was developed for retrieving sea surface temperature (SST) in coastal waters using satellite remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua platform. The new SST algorithm was trained using the Artificial Neural Network (ANN) method and tested using 8 years of remote sensing data from MODIS Aqua sensor and in situ sensing data from the US coastal waters in Louisiana, Texas, Florida, California, and New Jersey. The ANN algorithm could be utilized to map SST in both deep offshore and particularly shallow nearshore waters at the high spatial resolution of 1 km, greatly expanding the coverage of remote sensing-based SST data from offshore waters to nearshore waters. Applications of the ANN algorithm require only the remotely sensed reflectance values from the two MODIS Aqua thermal bands 31 and 32 as input data. Application results indicated that the ANN algorithm was able to explaining 82-90% variations in observed SST in US coastal waters. While the algorithm is generally applicable to the retrieval of SST, it works best for nearshore waters where important coastal resources are located and existing algorithms are either not applicable or do not work well, making the new ANN-based SST algorithm unique and particularly useful to coastal resource management.

  3. Hybrid phase retrieval algorithm for solving the twin image problem in in-line digital holography

    Science.gov (United States)

    Zhao, Jie; Wang, Dayong; Zhang, Fucai; Wang, Yunxin

    2010-10-01

    For the reconstruction in the in-line digital holography, there are three terms overlapping with each other on the image plane, named the zero order term, the real image and the twin image respectively. The unwanted twin image degrades the real image seriously. A hybrid phase retrieval algorithm is presented to address this problem, which combines the advantages of two popular phase retrieval algorithms. One is the improved version of the universal iterative algorithm (UIA), called the phase flipping-based UIA (PFB-UIA). The key point of this algorithm is to flip the phase of the object iteratively. It is proved that the PFB-UIA is able to find the support of the complicated object. Another one is the Fienup algorithm, which is a kind of well-developed algorithm and uses the support of the object as the constraint among the iteration procedure. Thus, by following the Fienup algorithm immediately after the PFB-UIA, it is possible to produce the amplitude and the phase distributions of the object with high fidelity. The primary simulated results showed that the proposed algorithm is powerful for solving the twin image problem in the in-line digital holography.

  4. Sensitivity of Marine Warm Cloud Retrieval Statistics to Algorithm Choices: Examples from MODIS Collection 6

    Science.gov (United States)

    Platnick, Steven; Wind, Galina; Zhang, Zhibo; Ackerman, Steven A.; Maddux, Brent

    2012-01-01

    The optical and microphysical structure of warm boundary layer marine clouds is of fundamental importance for understanding a variety of cloud radiation and precipitation processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud optical thickness and effective particle size are provided, as well as the derived water path. In addition, the cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using the l.6, 2.1, and 3.7 m spectral channels. Cloud retrieval statistics are highly sensitive to how a pixel identified as being "notclear" by a cloud mask (e.g., the MOD35/MYD35 product) is determined to be useful for an optical retrieval based on a 1-D cloud model. The Collection 5 MODIS retrieval algorithm removed pixels associated with cloud'edges as well as ocean pixels with partly cloudy elements in the 250m MODIS cloud mask - part of the so-called Clear Sky Restoral (CSR) algorithm. Collection 6 attempts retrievals for those two pixel populations, but allows a user to isolate or filter out the populations via CSR pixel-level Quality Assessment (QA) assignments. In this paper, using the preliminary Collection 6 MOD06 product, we present global and regional statistical results of marine warm cloud retrieval sensitivities to the cloud edge and 250m partly cloudy pixel populations. As expected, retrievals for these pixels are generally consistent with a breakdown of the ID cloud model. While optical thickness for these suspect pixel populations may have some utility for radiative studies, the retrievals should be used with extreme caution for process and microphysical studies.

  5. Retrieval of aerosol complex refractive index from a synergy between lidar, sun photometer and in situ measurements during LISAIR experiment

    International Nuclear Information System (INIS)

    Raut, J.C.; Chazette, P.

    2007-01-01

    Particulate pollutant exchanges between the streets and the Planetary Boundary Layer (PBL), and their daily evolution linked to human activity were studied in the framework of the Lidar pour la Surveillance de l'AIR (LISAIR) experiment. This program lasted from 10 to 30 May 2005. A synergetic approach combining dedicated active (lidar) and passive (sun photometer) remote sensors as well as ground based in situ instrumentation (nephelometer, aethalometer and particle sizers) was used to investigate urban aerosol optical properties within Paris. Aerosol complex refractive indices were assessed to be 1.56-0.034 i at 355 nm and 1.59-0.040 i at 532 nm, thus leading to single-scattering albedo values between 0.80 and 0.88. These retrievals are consistent with soot components in the aerosol arising from traffic exhausts indicating that these pollutants have a radiative impact on climate. We also discussed the influence of relative humidity on aerosol properties. A good agreement was found between vertical extinction profile derived from lidar backscattering signal and retrieved from the coupling between radio sounding and ground in situ measurements. (authors)

  6. Retrieval of Dry Snow Parameters from Radiometric Data Using a Dense Medium Model and Genetic Algorithms

    Science.gov (United States)

    Tedesco, Marco; Kim, Edward J.

    2005-01-01

    In this paper, GA-based techniques are used to invert the equations of an electromagnetic model based on Dense Medium Radiative Transfer Theory (DMRT) under the Quasi Crystalline Approximation with Coherent Potential to retrieve snow depth, mean grain size and fractional volume from microwave brightness temperatures. The technique is initially tested on both noisy and not-noisy simulated data. During this phase, different configurations of genetic algorithm parameters are considered to quantify how their change can affect the algorithm performance. A configuration of GA parameters is then selected and the algorithm is applied to experimental data acquired during the NASA Cold Land Process Experiment. Snow parameters retrieved with the GA-DMRT technique are then compared with snow parameters measured on field.

  7. Retrieval of Aerosol Optical Depth Over Land by Inverse Modeling of Multi-Source Satellite Data

    NARCIS (Netherlands)

    Wu, Y.

    2018-01-01

    The Aerosol Optical Depth (AOD), a measure of the scattering and absorption of light by aerosols, has been extensively used for scientific research such as monitoring air quality near the surface due to fine particles aggregated, aerosol radiative forcing (cooling effect against the warming effect

  8. Performance analysis of algorithms for retrieval of magnetic resonance images for interactive teleradiology

    Science.gov (United States)

    Atkins, M. Stella; Hwang, Robert; Tang, Simon

    2001-05-01

    We have implemented a prototype system consisting of a Java- based image viewer and a web server extension component for transmitting Magnetic Resonance Images (MRI) to an image viewer, to test the performance of different image retrieval techniques. We used full-resolution images, and images compressed/decompressed using the Set Partitioning in Hierarchical Trees (SPIHT) image compression algorithm. We examined the SPIHT decompression algorithm using both non- progressive and progressive transmission, focusing on the running times of the algorithm, client memory usage and garbage collection. We also compared the Java implementation with a native C++ implementation of the non- progressive SPIHT decompression variant. Our performance measurements showed that for uncompressed image retrieval using a 10Mbps Ethernet, a film of 16 MR images can be retrieved and displayed almost within interactive times. The native C++ code implementation of the client-side decoder is twice as fast as the Java decoder. If the network bandwidth is low, the high communication time for retrieving uncompressed images may be reduced by use of SPIHT-compressed images, although the image quality is then degraded. To provide diagnostic quality images, we also investigated the retrieval of up to 3 images on a MR film at full-resolution, using progressive SPIHT decompression. The Java-based implementation of progressive decompression performed badly, mainly due to the memory requirements for maintaining the image states, and the high cost of execution of the Java garbage collector. Hence, in systems where the bandwidth is high, such as found in a hospital intranet, SPIHT image compression does not provide advantages for image retrieval performance.

  9. An Algorithm for Retrieving Land Surface Temperatures Using VIIRS Data in Combination with Multi-Sensors

    Science.gov (United States)

    Xia, Lang; Mao, Kebiao; Ma, Ying; Zhao, Fen; Jiang, Lipeng; Shen, Xinyi; Qin, Zhihao

    2014-01-01

    A practical algorithm was proposed to retrieve land surface temperature (LST) from Visible Infrared Imager Radiometer Suite (VIIRS) data in mid-latitude regions. The key parameter transmittance is generally computed from water vapor content, while water vapor channel is absent in VIIRS data. In order to overcome this shortcoming, the water vapor content was obtained from Moderate Resolution Imaging Spectroradiometer (MODIS) data in this study. The analyses on the estimation errors of vapor content and emissivity indicate that when the water vapor errors are within the range of ±0.5 g/cm2, the mean retrieval error of the present algorithm is 0.634 K; while the land surface emissivity errors range from −0.005 to +0.005, the mean retrieval error is less than 1.0 K. Validation with the standard atmospheric simulation shows the average LST retrieval error for the twenty-three land types is 0.734 K, with a standard deviation value of 0.575 K. The comparison between the ground station LST data indicates the retrieval mean accuracy is −0.395 K, and the standard deviation value is 1.490 K in the regions with vegetation and water cover. Besides, the retrieval results of the test data have also been compared with the results measured by the National Oceanic and Atmospheric Administration (NOAA) VIIRS LST products, and the results indicate that 82.63% of the difference values are within the range of −1 to 1 K, and 17.37% of the difference values are within the range of ±2 to ±1 K. In a conclusion, with the advantages of multi-sensors taken fully exploited, more accurate results can be achieved in the retrieval of land surface temperature. PMID:25397919

  10. SBUV version 8.6 Retrieval Algorithm: Error Analysis and Validation Technique

    Science.gov (United States)

    Kramarova, N. A.; Bhartia, P. K.; Frith, P. K.; McPeters, S. M.; Labow, R. D.; Taylor, G.; Fisher, S.; DeLand, M.

    2012-01-01

    SBUV version 8.6 algorithm was used to reprocess data from the Back Scattered Ultra Violet (BUV), the Solar Back Scattered Ultra Violet (SBUV) and a number of SBUV/2 instruments, which 'span a 41-year period from 1970 to 2011 (except a 5-year gap in the 1970s)[see Bhartia et al, 2012]. In the new version Daumont et al. [1992] ozone cross section were used, and new ozone [McPeters et ai, 2007] and cloud climatologies Doiner and Bhartia, 1995] were implemented. The algorithm uses the Optimum Estimation technique [Rodgers, 2000] to retrieve ozone profiles as ozone layer (partial column, DU) on 21 pressure layers. The corresponding total ozone values are calculated by summing ozone columns at individual layers. The algorithm is optimized to accurately retrieve monthly zonal mean (mzm) profiles rather than an individual profile, since it uses monthly zonal mean ozone climatology as the A Priori. Thus, the SBUV version 8.6 ozone dataset is better suited for long-term trend analysis and monitoring ozone changes rather than for studying short-term ozone variability. Here we discuss some characteristics of the SBUV algorithm and sources of error in the SBUV profile and total ozone retrievals. For the first time the Averaging Kernels, smoothing errors and weighting functions (or Jacobians) are included in the SBUV metadata. The Averaging Kernels (AK) represent the sensitivity of the retrieved profile to the true state and contain valuable information about the retrieval algorithm, such as Vertical Resolution, Degrees of Freedom for Signals (DFS) and Retrieval Efficiency [Rodgers, 2000]. Analysis of AK for mzm ozone profiles shows that the total number of DFS for ozone profiles varies from 4.4 to 5.5 out of 6-9 wavelengths used for retrieval. The number of wavelengths in turn depends on solar zenith angles. Between 25 and 0.5 hPa, where SBUV vertical resolution is the highest, DFS for individual layers are about 0.5.

  11. Phase Retrieval Using a Genetic Algorithm on the Systematic Image-Based Optical Alignment Testbed

    Science.gov (United States)

    Taylor, Jaime R.

    2003-01-01

    NASA s Marshall Space Flight Center s Systematic Image-Based Optical Alignment (SIBOA) Testbed was developed to test phase retrieval algorithms and hardware techniques. Individuals working with the facility developed the idea of implementing phase retrieval by breaking the determination of the tip/tilt of each mirror apart from the piston motion (or translation) of each mirror. Presented in this report is an algorithm that determines the optimal phase correction associated only with the piston motion of the mirrors. A description of the Phase Retrieval problem is first presented. The Systematic Image-Based Optical Alignment (SIBOA) Testbeb is then described. A Discrete Fourier Transform (DFT) is necessary to transfer the incoming wavefront (or estimate of phase error) into the spatial frequency domain to compare it with the image. A method for reducing the DFT to seven scalar/matrix multiplications is presented. A genetic algorithm is then used to search for the phase error. The results of this new algorithm on a test problem are presented.

  12. Key Distribution and Changing Key Cryptosystem Based on Phase Retrieval Algorithm and RSA Public-Key Algorithm

    Directory of Open Access Journals (Sweden)

    Tieyu Zhao

    2015-01-01

    Full Text Available The optical image encryption has attracted more and more researchers’ attention, and the various encryption schemes have been proposed. In existing optical cryptosystem, the phase functions or images are usually used as the encryption keys, and it is difficult that the traditional public-key algorithm (such as RSA, ECC, etc. is used to complete large numerical key transfer. In this paper, we propose a key distribution scheme based on the phase retrieval algorithm and the RSA public-key algorithm, which solves the problem for the key distribution in optical image encryption system. Furthermore, we also propose a novel image encryption system based on the key distribution principle. In the system, the different keys can be used in every encryption process, which greatly improves the security of the system.

  13. Influence of aerosols and surface reflectance on satellite NO2 retrieval: seasonal and spatial characteristics and implications for NOx emission constraints

    NARCIS (Netherlands)

    Lin, J.T.; Liu, M.Y.; Xin, J.Y.; Boersma, K.F.; Spurr, R.; Zhang, Q.; Martin, R.

    2015-01-01

    Satellite retrievals of vertical column densities (VCDs) of tropospheric nitrogen dioxide (NO2) normally do not explicitly account for aerosol optical effects and surface reflectance anisotropy that vary with space and time. Here, we conduct an improved retrieval of NO2 VCDs over China, called the

  14. Evaluation of Term Ranking Algorithms for Pseudo-Relevance Feedback in MEDLINE Retrieval.

    Science.gov (United States)

    Yoo, Sooyoung; Choi, Jinwook

    2011-06-01

    The purpose of this study was to investigate the effects of query expansion algorithms for MEDLINE retrieval within a pseudo-relevance feedback framework. A number of query expansion algorithms were tested using various term ranking formulas, focusing on query expansion based on pseudo-relevance feedback. The OHSUMED test collection, which is a subset of the MEDLINE database, was used as a test corpus. Various ranking algorithms were tested in combination with different term re-weighting algorithms. Our comprehensive evaluation showed that the local context analysis ranking algorithm, when used in combination with one of the reweighting algorithms - Rocchio, the probabilistic model, and our variants - significantly outperformed other algorithm combinations by up to 12% (paired t-test; p algorithm pairs, at least in the context of the OHSUMED corpus. Comparative experiments on term ranking algorithms were performed in the context of a subset of MEDLINE documents. With medical documents, local context analysis, which uses co-occurrence with all query terms, significantly outperformed various term ranking methods based on both frequency and distribution analyses. Furthermore, the results of the experiments demonstrated that the term rank-based re-weighting method contributed to a remarkable improvement in mean average precision.

  15. Selection Algorithm for the CALIPSO Lidar Aerosol Extinction-to-Backscatter Ratio

    Science.gov (United States)

    Omar, Ali H.; Winker, David M.; Vaughan, Mark A.

    2006-01-01

    The extinction-to-backscatter ratio (S(sub a)) is an important parameter used in the determination of the aerosol extinction and subsequently the optical depth from lidar backscatter measurements. We outline the algorithm used to determine Sa for the Cloud and Aerosol Lidar and Infrared Pathfinder Spaceborne Observations (CALIPSO) lidar. S(sub a) for the CALIPSO lidar will either be selected from a look-up table or calculated using the lidar measurements depending on the characteristics of aerosol layer. Whenever suitable lofted layers are encountered, S(sub a) is computed directly from the integrated backscatter and transmittance. In all other cases, the CALIPSO observables: the depolarization ratio, delta, the layer integrated attenuated backscatter, beta, and the mean layer total attenuated color ratio, gamma, together with the surface type, are used to aid in aerosol typing. Once the type is identified, a look-up-table developed primarily from worldwide observations, is used to determine the S(sub a) value. The CALIPSO aerosol models include desert dust, biomass burning, background, polluted continental, polluted dust, and marine aerosols.

  16. Retrieval Accuracy Assessment with Gap Detection for Case 2 Waters Chla Algorithms

    Science.gov (United States)

    Salem, S. I.; Higa, H.; Kim, H.; Oki, K.; Oki, T.

    2016-12-01

    Inland lakes and coastal regions types of Case 2 Waters should be continuously and accurately monitored as the former contain 90% of the global liquid freshwater storage, while the latter provide most of the dissolved organic carbon (DOC) which is an important link in the global carbon cycle. The optical properties of Case 2 Waters are dominated by three optically active components: phytoplankton, non-algal particles (NAP) and color dissolved organic matter (CDOM). During the last three decades, researchers have proposed several algorithms to retrieve Chla concentration from the remote sensing reflectance. In this study, seven algorithms are assessed with various band combinations from multi and hyper-spectral data with linear, polynomial and power regression approaches. To evaluate the performance of the 43 algorithm combination sets, 500,000 remote sensing reflectance spectra are simulated with a wide range of concentrations for Chla, NAP and CDOM. The concentrations of Chla and NAP vary from 1-200 (mg m-3) and 1-200 (gm m-3), respectively, and the absorption of CDOM at 440 nm has the range of 0.1-10 (m-1). It is found that the three-band algorithm (665, 709 and 754 nm) with the quadratic polynomial (3b_665_QP) indicates the best overall performance. 3b_665_QP has the least error with a root mean square error (RMSE) of 0.2 (mg m-3) and a mean absolute relative error (MARE) of 0.7 %. The less accurate retrieval of Chla was obtained by the synthetic chlorophyll index algorithm with RMSE and MARE of 35.8 mg m-3 and 160.4 %, respectively. In general, Chla algorithms which incorporates 665 nm band or band tuning technique performs better than those with 680 nm. In addition, the retrieval accuracy of Chla algorithms with quadratic polynomial and power regression approaches are consistently better than the linear ones. By analyzing Chla versus NAP concentrations, the 3b_665_QP outperforms the other algorithms for all Chla concentrations and NAP concentrations above 40

  17. Genetic Algorithm Phase Retrieval for the Systematic Image-Based Optical Alignment Testbed

    Science.gov (United States)

    Taylor, Jaime; Rakoczy, John; Steincamp, James

    2003-01-01

    Phase retrieval requires calculation of the real-valued phase of the pupil fimction from the image intensity distribution and characteristics of an optical system. Genetic 'algorithms were used to solve two one-dimensional phase retrieval problem. A GA successfully estimated the coefficients of a polynomial expansion of the phase when the number of coefficients was correctly specified. A GA also successfully estimated the multiple p h e s of a segmented optical system analogous to the seven-mirror Systematic Image-Based Optical Alignment (SIBOA) testbed located at NASA s Marshall Space Flight Center. The SIBOA testbed was developed to investigate phase retrieval techniques. Tiphilt and piston motions of the mirrors accomplish phase corrections. A constant phase over each mirror can be achieved by an independent tip/tilt correction: the phase Conection term can then be factored out of the Discrete Fourier Tranform (DFT), greatly reducing computations.

  18. Comparison of the inversion algorithms applied to the ozone vertical profile retrieval from SCIAMACHY limb measurements

    Directory of Open Access Journals (Sweden)

    A. Rozanov

    2007-09-01

    Full Text Available This paper is devoted to an intercomparison of ozone vertical profiles retrieved from the measurements of scattered solar radiation performed by the SCIAMACHY instrument in the limb viewing geometry. Three different inversion algorithms including the prototype of the operational Level 1 to 2 processor to be operated by the European Space Agency are considered. Unlike usual validation studies, this comparison removes the uncertainties arising when comparing measurements made by different instruments probing slightly different air masses and focuses on the uncertainties specific to the modeling-retrieval problem only. The intercomparison was performed for 5 selected orbits of SCIAMACHY showing a good overall agreement of the results in the middle stratosphere, whereas considerable discrepancies were identified in the lower stratosphere and upper troposphere altitude region. Additionally, comparisons with ground-based lidar measurements are shown for selected profiles demonstrating an overall correctness of the retrievals.

  19. Performance of the Falling Snow Retrieval Algorithms for the Global Precipitation Measurement (GPM) Mission

    Science.gov (United States)

    Skofronick-Jackson, Gail; Munchak, Stephen J.; Ringerud, Sarah

    2016-01-01

    Retrievals of falling snow from space represent an important data set for understanding the Earth's atmospheric, hydrological, and energy cycles, especially during climate change. Estimates of falling snow must be captured to obtain the true global precipitation water cycle, snowfall accumulations are required for hydrological studies, and without knowledge of the frozen particles in clouds one cannot adequately understand the energy and radiation budgets. While satellite-based remote sensing provides global coverage of falling snow events, the science is relatively new and retrievals are still undergoing development with challenges remaining). This work reports on the development and testing of retrieval algorithms for the Global Precipitation Measurement (GPM) mission Core Satellite, launched February 2014.

  20. From algorithmic computing to direct retrieval: evidence from number and alphabetic arithmetic in children and adults.

    Science.gov (United States)

    Barrouillet, P; Fayol, M

    1998-03-01

    A number of theories of mental arithmetic suggest that the ability to solve simple addition and subtraction problems develops from an algorithmic strategy toward a strategy based on the direct retrieval of the result from memory. In the experiment presented here, 2nd and 12th graders were asked to solve two tasks of number and alphabet arithmetic. The subjects transformed series of 1 to 4 numbers or letters (item span) by adding or subtracting an operand varying from 1 to 4 (operation span). Although both the item and operation span were associated with major and identical effects in the case of both numbers and letters at 2nd grade, such effects were clearly observable only in the case of letters for the adult subjects. This suggests the use of an algorithmic strategy for both types of material in the case of the children and for the letters only in the case of the adults, who retrieved numerical results directly from memory.

  1. Vertical separation of the atmospheric aerosol components by using poliphon retrieval in polarized micro pulse lidar (P-MPL) measurements: case studies of specific climate-relevant aerosol types

    Science.gov (United States)

    Córdoba-Jabonero, Carmen; Sicard, Michaël; Ansmann, Albert; Águila, Ana del; Baars, Holger

    2018-04-01

    POLIPHON (POlarization-LIdar PHOtometer Networking) retrieval consists in the vertical separation of two/three particle components in aerosol mixtures, highlighting their relative contributions in terms of the optical properties and mass concentrations. This method is based on the specific particle linear depolarization ratio given for different types of aerosols, and is applied to the new polarized Micro-Pulse Lidar (P-MPL). Case studies of specific climate-relevant aerosols (dust particles, fire smoke, and pollen aerosols, including a clean case as reference) observed over Barcelona (Spain) are presented in order to evaluate firstly the potential of P-MPLs measurements in combination with POLIPHON for retrieving the vertical separation of those particle components forming aerosol mixtures and their properties.

  2. Investigation of Simultaneous Effects of Aerosol Properties and Aerosol Peak Height on the Air Mass Factors for Space-Borne NO2 Retrievals

    Directory of Open Access Journals (Sweden)

    Hyunkee Hong

    2017-02-01

    Full Text Available We investigate the simultaneous effects of aerosol peak height (APH, aerosol properties, measurement geometry, and other factors on the air mass factor for NO2 retrieval at sites with high NO2 concentration. A comparison of the effects of high and low surface reflectance reveals that NO2 air mass factor (AMF values over a snowy surface (surface reflectance 0.8 are generally higher than those over a deciduous forest surface (surface reflectance 0.05. Under high aerosol optical depth (AOD conditions, the aerosol shielding effect over a high-albedo surface is revealed to reduce the path-length of light at the surface, whereas high single scattering albedo (SSA conditions (e.g., SSA = 0.95 lead to an increase in the aerosol albedo effect, which results in an increased AMF over areas with low surface reflectance. We also conducted an in-depth study of the APH effect on AMF. For an AOD of 0.1 and half width (HW of 5 km, NO2 AMF decreases by 29% from 1.36 to 0.96 as APH changes from 0 to 2 km. In the case of high-AOD conditions (0.9 and HW of 5 km, the NO2 AMF decreases by 240% from 1.85 to 0.54 as APH changes from 0 to 2 km. The AMF variation due to error in the model input parameters (e.g., AOD, SSA, aerosol shape, and APH is also examined. When APH is 0 km with an AOD of 0.4, SSA of 0.88, and surface reflectance of 0.05, a 30% error in AOD induces an AMF error of between 4.85% and −3.67%, an SSA error of 0.04 leads to NO2 VCD errors of between 4.46% and −4.77%, and a 30% error in AOD induces an AMF error of between −9.53% and 8.35% with an APH of 3 km. In addition to AOD and SSA, APH is an important factor in calculating AMF, due to the 2 km error in APH under high-SZA conditions, which leads to an NO2 VCD error of over 60%. Aerosol shape is also found to have a measureable effect on AMF under high-AOD and small relative azimuth angle (RAA conditions. The diurnal effect of the NO2 profile is also examined and discussed.

  3. A new randomized Kaczmarz based kernel canonical correlation analysis algorithm with applications to information retrieval.

    Science.gov (United States)

    Cai, Jia; Tang, Yi

    2018-02-01

    Canonical correlation analysis (CCA) is a powerful statistical tool for detecting the linear relationship between two sets of multivariate variables. Kernel generalization of it, namely, kernel CCA is proposed to describe nonlinear relationship between two variables. Although kernel CCA can achieve dimensionality reduction results for high-dimensional data feature selection problem, it also yields the so called over-fitting phenomenon. In this paper, we consider a new kernel CCA algorithm via randomized Kaczmarz method. The main contributions of the paper are: (1) A new kernel CCA algorithm is developed, (2) theoretical convergence of the proposed algorithm is addressed by means of scaled condition number, (3) a lower bound which addresses the minimum number of iterations is presented. We test on both synthetic dataset and several real-world datasets in cross-language document retrieval and content-based image retrieval to demonstrate the effectiveness of the proposed algorithm. Numerical results imply the performance and efficiency of the new algorithm, which is competitive with several state-of-the-art kernel CCA methods. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Comparison of four machine learning algorithms for their applicability in satellite-based optical rainfall retrievals

    Science.gov (United States)

    Meyer, Hanna; Kühnlein, Meike; Appelhans, Tim; Nauss, Thomas

    2016-03-01

    Machine learning (ML) algorithms have successfully been demonstrated to be valuable tools in satellite-based rainfall retrievals which show the practicability of using ML algorithms when faced with high dimensional and complex data. Moreover, recent developments in parallel computing with ML present new possibilities for training and prediction speed and therefore make their usage in real-time systems feasible. This study compares four ML algorithms - random forests (RF), neural networks (NNET), averaged neural networks (AVNNET) and support vector machines (SVM) - for rainfall area detection and rainfall rate assignment using MSG SEVIRI data over Germany. Satellite-based proxies for cloud top height, cloud top temperature, cloud phase and cloud water path serve as predictor variables. The results indicate an overestimation of rainfall area delineation regardless of the ML algorithm (averaged bias = 1.8) but a high probability of detection ranging from 81% (SVM) to 85% (NNET). On a 24-hour basis, the performance of the rainfall rate assignment yielded R2 values between 0.39 (SVM) and 0.44 (AVNNET). Though the differences in the algorithms' performance were rather small, NNET and AVNNET were identified as the most suitable algorithms. On average, they demonstrated the best performance in rainfall area delineation as well as in rainfall rate assignment. NNET's computational speed is an additional advantage in work with large datasets such as in remote sensing based rainfall retrievals. However, since no single algorithm performed considerably better than the others we conclude that further research in providing suitable predictors for rainfall is of greater necessity than an optimization through the choice of the ML algorithm.

  5. Characterizing the Vertical Distribution of Aerosols using Ground-based Multiwavelength Lidar Data

    Science.gov (United States)

    Ferrare, R. A.; Thorsen, T. J.; Clayton, M.; Mueller, D.; Chemyakin, E.; Burton, S. P.; Goldsmith, J.; Holz, R.; Kuehn, R.; Eloranta, E. W.; Marais, W.; Newsom, R. K.; Liu, X.; Sawamura, P.; Holben, B. N.; Hostetler, C. A.

    2016-12-01

    Observations of aerosol optical and microphysical properties are critical for developing and evaluating aerosol transport model parameterizations and assessing global aerosol-radiation impacts on climate. During the Combined HSRL And Raman lidar Measurement Study (CHARMS), we investigated the synergistic use of ground-based Raman lidar and High Spectral Resolution Lidar (HSRL) measurements to retrieve aerosol properties aloft. Continuous (24/7) operation of these co-located lidars during the ten-week CHARMS mission (mid-July through September 2015) allowed the acquisition of a unique, multiwavelength ground-based lidar dataset for studying aerosol properties above the Southern Great Plains (SGP) site. The ARM Raman lidar measured profiles of aerosol backscatter, extinction and depolarization at 355 nm as well as profiles of water vapor mixing ratio and temperature. The University of Wisconsin HSRL simultaneously measured profiles of aerosol backscatter, extinction and depolarization at 532 nm and aerosol backscatter at 1064 nm. Recent advances in both lidar retrieval theory and algorithm development demonstrate that vertically-resolved retrievals using such multiwavelength lidar measurements of aerosol backscatter and extinction can help constrain both the aerosol optical (e.g. complex refractive index, scattering, etc.) and microphysical properties (e.g. effective radius, concentrations) as well as provide qualitative aerosol classification. Based on this work, the NASA Langley Research Center (LaRC) HSRL group developed automated algorithms for classifying and retrieving aerosol optical and microphysical properties, demonstrated these retrievals using data from the unique NASA/LaRC airborne multiwavelength HSRL-2 system, and validated the results using coincident airborne in situ data. We apply these algorithms to the CHARMS multiwavelength (Raman+HSRL) lidar dataset to retrieve aerosol properties above the SGP site. We present some profiles of aerosol effective

  6. An efficient similarity measure for content based image retrieval using memetic algorithm

    Directory of Open Access Journals (Sweden)

    Mutasem K. Alsmadi

    2017-06-01

    Full Text Available Content based image retrieval (CBIR systems work by retrieving images which are related to the query image (QI from huge databases. The available CBIR systems extract limited feature sets which confine the retrieval efficacy. In this work, extensive robust and important features were extracted from the images database and then stored in the feature repository. This feature set is composed of color signature with the shape and color texture features. Where, features are extracted from the given QI in the similar fashion. Consequently, a novel similarity evaluation using a meta-heuristic algorithm called a memetic algorithm (genetic algorithm with great deluge is achieved between the features of the QI and the features of the database images. Our proposed CBIR system is assessed by inquiring number of images (from the test dataset and the efficiency of the system is evaluated by calculating precision-recall value for the results. The results were superior to other state-of-the-art CBIR systems in regard to precision.

  7. Algorithm of Data Reduce in Determination of Aerosol Particle Size Distribution at Damps/C

    International Nuclear Information System (INIS)

    Muhammad-Priyatna; Otto-Pribadi-Ruslanto

    2001-01-01

    The analysis had to do for algorithm of data reduction on Damps/C (Differential Mobility Particle Sizer with Condensation Particle Counter) system, this is for determine aerosol particle size distribution with range 0,01 μm to 1 μm in diameter. Damps/C (Differential Mobility Particle Sizer with Condensation Particle Counter) system contents are software and hardware. The hardware used determine of mobilities of aerosol particle and so the software used determine aerosol particle size distribution in diameter. The mobilities and diameter particle had connection in the electricity field. That is basic program for reduction of data and particle size conversion from particle mobility become particle diameter. The analysis to get transfer function value, Ω, is 0.5. The data reduction program to do conversation mobility basis become diameter basis with number efficiency correction, transfer function value, and poly charge particle. (author)

  8. Improved Algorithms for Accurate Retrieval of UV - Visible Diffuse Attenuation Coefficients in Optically Complex, Inshore Waters

    Science.gov (United States)

    Cao, Fang; Fichot, Cedric G.; Hooker, Stanford B.; Miller, William L.

    2014-01-01

    Photochemical processes driven by high-energy ultraviolet radiation (UVR) in inshore, estuarine, and coastal waters play an important role in global bio geochemical cycles and biological systems. A key to modeling photochemical processes in these optically complex waters is an accurate description of the vertical distribution of UVR in the water column which can be obtained using the diffuse attenuation coefficients of down welling irradiance (Kd()). The Sea UV Sea UVc algorithms (Fichot et al., 2008) can accurately retrieve Kd ( 320, 340, 380,412, 443 and 490 nm) in oceanic and coastal waters using multispectral remote sensing reflectances (Rrs(), Sea WiFS bands). However, SeaUVSeaUVc algorithms are currently not optimized for use in optically complex, inshore waters, where they tend to severely underestimate Kd(). Here, a new training data set of optical properties collected in optically complex, inshore waters was used to re-parameterize the published SeaUVSeaUVc algorithms, resulting in improved Kd() retrievals for turbid, estuarine waters. Although the updated SeaUVSeaUVc algorithms perform best in optically complex waters, the published SeaUVSeaUVc models still perform well in most coastal and oceanic waters. Therefore, we propose a composite set of SeaUVSeaUVc algorithms, optimized for Kd() retrieval in almost all marine systems, ranging from oceanic to inshore waters. The composite algorithm set can retrieve Kd from ocean color with good accuracy across this wide range of water types (e.g., within 13 mean relative error for Kd(340)). A validation step using three independent, in situ data sets indicates that the composite SeaUVSeaUVc can generate accurate Kd values from 320 490 nm using satellite imagery on a global scale. Taking advantage of the inherent benefits of our statistical methods, we pooled the validation data with the training set, obtaining an optimized composite model for estimating Kd() in UV wavelengths for almost all marine waters. This

  9. Validation of GOSAT XCO2 and XCH4 retrieved by PPDF-S method and evaluation of sensitivity of aerosols to gas concentrations

    Science.gov (United States)

    Iwasaki, C.; Imasu, R.; Bril, A.; Yokota, T.; Yoshida, Y.; Morino, I.; Oshchepkov, S.; Rokotyan, N.; Zakharov, V.; Gribanov, K.

    2017-12-01

    Photon path length probability density function-Simultaneous (PPDF-S) method is one of effective algorithms for retrieving column-averaged concentrations of carbon dioxide (XCO2) and methane (XCH4) from Greenhouse gases Observing SATellite (GOSAT) spectra in Short Wavelength InfraRed (SWIR) [Oshchepkov et al., 2013]. In this study, we validated XCO2 and XCH4 retrieved by the PPDF-S method through comparison with the Total Carbon Column Observing Network (TCCON) data [Wunch et al., 2011] from 26 sites including additional site of the Ural Atmospheric Station at Kourovka [57.038°N and 59.545°E], Russia. Validation results using TCCON data show that bias and its standard deviation of PPDF-S data are respectively 0.48 and 2.10 ppm for XCO2, and -0.73 and 15.77 ppb for XCH4. The results for XCO2 are almost identical with those of Iwasaki et al. [2017] for which the validation data were limited at selected 11 sites. However, the bias of XCH4 shows opposite sign against that of Iwasaki et al. [2017]. Furthermore, the data at Kourouvka showed different features particularly for XCH4. In order to investigate the causes for the differences, we have carried out simulation studies mainly focusing on the effects of aerosols which modify the light path length of solar radiation [O'Brien and Rayner, 2002; Aben et al., 2007; Oshchepkov et al., 2008]. Based on the simulation studies using multiple radiation transfer code based on Discrete Ordinate Method (DOM), Polarization System for Transfer of Atmospheric Radiation3 (Pstar3) [Ota et al., 2010], sensitivity of aerosols to gas concentrations was examined.

  10. CDRD and PNPR passive microwave precipitation retrieval algorithms: verification study over Africa and Southern Atlantic

    Science.gov (United States)

    Panegrossi, Giulia; Casella, Daniele; Cinzia Marra, Anna; Petracca, Marco; Sanò, Paolo; Dietrich, Stefano

    2015-04-01

    The ongoing NASA/JAXA Global Precipitation Measurement mission (GPM) requires the full exploitation of the complete constellation of passive microwave (PMW) radiometers orbiting around the globe for global precipitation monitoring. In this context the coherence of the estimates of precipitation using different passive microwave radiometers is a crucial need. We have developed two different passive microwave precipitation retrieval algorithms: one is the Cloud Dynamics Radiation Database algorithm (CDRD), a physically ¬based Bayesian algorithm for conically scanning radiometers (i.e., DMSP SSMIS); the other one is the Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm for cross¬-track scanning radiometers (i.e., NOAA and MetOp¬A/B AMSU-¬A/MHS, and NPP Suomi ATMS). The algorithms, originally created for application over Europe and the Mediterranean basin, and used operationally within the EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF, http://hsaf.meteoam.it), have been recently modified and extended to Africa and Southern Atlantic for application to the MSG full disk area. The two algorithms are based on the same physical foundation, i.e., the same cloud-radiation model simulations as a priori information in the Bayesian solver and as training dataset in the neural network approach, and they also use similar procedures for identification of frozen background surface, detection of snowfall, and determination of a pixel based quality index of the surface precipitation retrievals. In addition, similar procedures for the screening of not ¬precipitating pixels are used. A novel algorithm for the detection of precipitation in tropical/sub-tropical areas has been developed. The precipitation detection algorithm shows a small rate of false alarms (also over arid/desert regions), a superior detection capability in comparison with other widely used screening algorithms, and it is applicable

  11. Comparison and application of wind retrieval algorithms for small unmanned aerial systems

    Science.gov (United States)

    Bonin, T. A.; Chilson, P. B.; Zielke, B. S.; Klein, P. M.; Leeman, J. R.

    2013-07-01

    Recently, there has been an increase in use of Unmanned Aerial Systems (UASs) as platforms for conducting fundamental and applied research in the lower atmosphere due to their relatively low cost and ability to collect samples with high spatial and temporal resolution. Concurrent with this development comes the need for accurate instrumentation and measurement methods suitable for small meteorological UASs. Moreover, the instrumentation to be integrated into such platforms must be small and lightweight. Whereas thermodynamic variables can be easily measured using well-aspirated sensors onboard, it is much more challenging to accurately measure the wind with a UAS. Several algorithms have been developed that incorporate GPS observations as a means of estimating the horizontal wind vector, with each algorithm exhibiting its own particular strengths and weaknesses. In the present study, the performance of three such GPS-based wind-retrieval algorithms has been investigated and compared with wind estimates from rawinsonde and sodar observations. Each of the algorithms considered agreed well with the wind measurements from sounding and sodar data. Through the integration of UAS-retrieved profiles of thermodynamic and kinematic parameters, one can investigate the static and dynamic stability of the atmosphere and relate them to the state of the boundary layer across a variety of times and locations, which might be difficult to access using conventional instrumentation.

  12. Development and comparisons of wind retrieval algorithms for small unmanned aerial systems

    Science.gov (United States)

    Bonin, T. A.; Chilson, P. B.; Zielke, B. S.; Klein, P. M.; Leeman, J. R.

    2012-12-01

    Recently, there has been an increase in use of Unmanned Aerial Systems (UASs) as platforms for conducting fundamental and applied research in the lower atmosphere due to their relatively low cost and ability to collect samples with high spatial and temporal resolution. Concurrent with this development comes the need for accurate instrumentation and measurement methods suitable for small meteorological UASs. Moreover, the instrumentation to be integrated into such platforms must be small and lightweight. Whereas thermodynamic variables can be easily measured using well aspirated sensors onboard, it is much more challenging to accurately measure the wind with a UAS. Several algorithms have been developed that incorporate GPS observations as a means of estimating the horizontal wind vector, with each algorithm exhibiting its own particular strengths and weaknesses. In the present study, the performance of three such GPS-based wind-retrieval algorithms has been investigated and compared with wind estimates from rawinsonde and sodar observations. Each of the algorithms considered agreed well with the wind measurements from sounding and sodar data. Through the integration of UAS-retrieved profiles of thermodynamic and kinematic parameters, one can investigate the static and dynamic stability of the atmosphere and relate them to the state of the boundary layer across a variety of times and locations, which might be difficult to access using conventional instrumentation.

  13. Next Generation Aura-OMI SO2 Retrieval Algorithm: Introduction and Implementation Status

    Science.gov (United States)

    Li, Can; Joiner, Joanna; Krotkov, Nickolay A.; Bhartia, Pawan K.

    2014-01-01

    We introduce our next generation algorithm to retrieve SO2 using radiance measurements from the Aura Ozone Monitoring Instrument (OMI). We employ a principal component analysis technique to analyze OMI radiance spectral in 310.5-340 nm acquired over regions with no significant SO2. The resulting principal components (PCs) capture radiance variability caused by both physical processes (e.g., Rayleigh and Raman scattering, and ozone absorption) and measurement artifacts, enabling us to account for these various interferences in SO2 retrievals. By fitting these PCs along with SO2 Jacobians calculated with a radiative transfer model to OMI-measured radiance spectra, we directly estimate SO2 vertical column density in one step. As compared with the previous generation operational OMSO2 PBL (Planetary Boundary Layer) SO2 product, our new algorithm greatly reduces unphysical biases and decreases the noise by a factor of two, providing greater sensitivity to anthropogenic emissions. The new algorithm is fast, eliminates the need for instrument-specific radiance correction schemes, and can be easily adapted to other sensors. These attributes make it a promising technique for producing long-term, consistent SO2 records for air quality and climate research. We have operationally implemented this new algorithm on OMI SIPS for producing the new generation standard OMI SO2 products.

  14. An Empirical Algorithm for Wave Retrieval from Co-Polarization X-Band SAR Imagery

    Directory of Open Access Journals (Sweden)

    Weizeng Shao

    2017-07-01

    Full Text Available In this study, we proposed an empirical algorithm for significant wave height (SWH retrieval from TerraSAR-X/TanDEM (TS-X/TD-X X-band synthetic aperture radar (SAR co-polarization (vertical-vertical (VV and horizontal-horizontal (HH images. As the existing empirical algorithm at X-band, i.e., XWAVE, is applied for wave retrieval from HH-polarization TS-X/TD-X image, polarization ratio (PR has to be used for inverting wind speed, which is treated as an input in XWAVE. Wind speed encounters saturation in tropical cyclone. In our work, wind speed is replaced by normalized radar cross section (NRCS to avoiding using SAR-derived wind speed, which does not work in high winds, and the empirical algorithm can be conveniently implemented without converting NRCS in HH-polarization to NRCS in VV-polarization by using X-band PR. A total of 120 TS-X/TD-X images, 60 in VV-polarization and 60 in HH-polarization, with homogenous wave patterns, and the coincide significant wave height data from European Centre for Medium-Range Weather Forecasts (ECMWF reanalysis field at a 0.125° grid were collected as a dataset for tuning the algorithm. The range of SWH is from 0 to 7 m. We then applied the algorithm to 24 VV and 21 HH additional SAR images to extract SWH at locations of 30 National Oceanic and Atmospheric Administration (NOAA National Data Buoy Center (NDBC buoys. It is found that the algorithm performs well with a SWH stander deviation (STD of about 0.5 m for both VV and HH polarization TS-X/TD-X images. For large wave validation (SWH 6–7 m, we applied the empirical algorithm to a tropical cyclone Sandy TD-X image acquired in 2012, and obtained good result with a SWH STD of 0.3 m. We concluded that the proposed empirical algorithm works for wave retrieval from TS-X/TD-X image in co-polarization without external sea surface wind information.

  15. Validation of ozone profile retrievals derived from the OMPS LP version 2.5 algorithm against correlative satellite measurements

    Directory of Open Access Journals (Sweden)

    N. A. Kramarova

    2018-05-01

    Full Text Available The Limb Profiler (LP is a part of the Ozone Mapping and Profiler Suite launched on board of the Suomi NPP satellite in October 2011. The LP measures solar radiation scattered from the atmospheric limb in ultraviolet and visible spectral ranges between the surface and 80 km. These measurements of scattered solar radiances allow for the retrieval of ozone profiles from cloud tops up to 55 km. The LP started operational observations in April 2012. In this study we evaluate more than 5.5 years of ozone profile measurements from the OMPS LP processed with the new NASA GSFC version 2.5 retrieval algorithm. We provide a brief description of the key changes that had been implemented in this new algorithm, including a pointing correction, new cloud height detection, explicit aerosol correction and a reduction of the number of wavelengths used in the retrievals. The OMPS LP ozone retrievals have been compared with independent satellite profile measurements obtained from the Aura Microwave Limb Sounder (MLS, Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS and Odin Optical Spectrograph and InfraRed Imaging System (OSIRIS. We document observed biases and seasonal differences and evaluate the stability of the version 2.5 ozone record over 5.5 years. Our analysis indicates that the mean differences between LP and correlative measurements are well within required ±10 % between 18 and 42 km. In the upper stratosphere and lower mesosphere (> 43 km LP tends to have a negative bias. We find larger biases in the lower stratosphere and upper troposphere, but LP ozone retrievals have significantly improved in version 2.5 compared to version 2 due to the implemented aerosol correction. In the northern high latitudes we observe larger biases between 20 and 32 km due to the remaining thermal sensitivity issue. Our analysis shows that LP ozone retrievals agree well with the correlative satellite observations in characterizing

  16. Random projections and the optimization of an algorithm for phase retrieval

    International Nuclear Information System (INIS)

    Elser, Veit

    2003-01-01

    Iterative phase retrieval algorithms typically employ projections onto constraint subspaces to recover the unknown phases in the Fourier transform of an image, or, in the case of x-ray crystallography, the electron density of a molecule. For a general class of algorithms, where the basic iteration is specified by the difference map, solutions are associated with fixed points of the map, the attractive character of which determines the effectiveness of the algorithm. The behaviour of the difference map near fixed points is controlled by the relative orientation of the tangent spaces of the two constraint subspaces employed by the map. Since the dimensionalities involved are always large in practical applications, it is appropriate to use random matrix theory ideas to analyse the average-case convergence at fixed points. Optimal values of the γ parameters of the difference map are found which differ somewhat from the values previously obtained on the assumption of orthogonal tangent spaces

  17. Impact of Missing Passive Microwave Sensors on Multi-Satellite Precipitation Retrieval Algorithm

    Directory of Open Access Journals (Sweden)

    Bin Yong

    2015-01-01

    Full Text Available The impact of one or two missing passive microwave (PMW input sensors on the end product of multi-satellite precipitation products is an interesting but obscure issue for both algorithm developers and data users. On 28 January 2013, the Version-7 TRMM Multi-satellite Precipitation Analysis (TMPA products were reproduced and re-released by National Aeronautics and Space Administration (NASA Goddard Space Flight Center because the Advanced Microwave Sounding Unit-B (AMSU-B and the Special Sensor Microwave Imager-Sounder-F16 (SSMIS-F16 input data were unintentionally disregarded in the prior retrieval. Thus, this study investigates the sensitivity of TMPA algorithm results to missing PMW sensors by intercomparing the “early” and “late” Version-7 TMPA real-time (TMPA-RT precipitation estimates (i.e., without and with AMSU-B, SSMIS-F16 sensors with an independent high-density gauge network of 200 tipping-bucket rain gauges over the Chinese Jinghe river basin (45,421 km2. The retrieval counts and retrieval frequency of various PMW and Infrared (IR sensors incorporated into the TMPA system were also analyzed to identify and diagnose the impacts of sensor availability on the TMPA-RT retrieval accuracy. Results show that the incorporation of AMSU-B and SSMIS-F16 has substantially reduced systematic errors. The improvement exhibits rather strong seasonal and topographic dependencies. Our analyses suggest that one or two single PMW sensors might play a key role in affecting the end product of current combined microwave-infrared precipitation estimates. This finding supports algorithm developers’ current endeavor in spatiotemporally incorporating as many PMW sensors as possible in the multi-satellite precipitation retrieval system called Integrated Multi-satellitE Retrievals for Global Precipitation Measurement mission (IMERG. This study also recommends users of satellite precipitation products to switch to the newest Version-7 TMPA datasets and

  18. High Resolution Trajectory-Based Smoke Forecasts Using VIIRS Aerosol Optical Depth and NUCAPS Carbon Monoxide Retrievals

    Science.gov (United States)

    Pierce, R. B.; Smith, N.; Barnet, C.; Barnet, C. D.; Kondragunta, S.; Davies, J. E.; Strabala, K.

    2016-12-01

    We use Suomi National Polar-orbiting Partnership (S-NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Optical Depth (AOD) and combined Cross-track Infrared Sounder (CrIS) and Advanced Technology Microwave Sounder (ATMS) NOAA-Unique CrIS-ATMS Processing System (NUCAPS) carbon monoxide (CO) retrievals to initialize trajectory-based, high spatial resolution North American smoke dispersion forecasts during the May 2016 Fort McMurray wildfire in northern Alberta and the July 2016 Soberanes Fire in Northern California. These two case studies illustrate how long range transport of wild fire smoke can adversely impact surface air quality thousands of kilometers downwind and how local topographic flow can lead to complex transport patterns near the wildfire source region. The NUCAPS CO retrievals are shown to complement the high resolution VIIRS AOD retrievals by providing retrievals in partially cloudy scenes and also providing information on the vertical distribution of the wildfire smoke. This work addresses the need for low latency, web-based, high resolution forecasts of smoke dispersion for use by NWS Incident Meteorologists (IMET) to support on-site decision support services for fire incident management teams. The primary user community for the IDEA-I smoke forecasts is the Western regions of the NWS and US EPA due to the significant impacts of wildfires in these regions. Secondary users include Alaskan NWS offices and Western State and Local air quality management agencies such as the Western Regional Air Partnership (WRAP).

  19. Single-intensity-recording optical encryption technique based on phase retrieval algorithm and QR code

    Science.gov (United States)

    Wang, Zhi-peng; Zhang, Shuai; Liu, Hong-zhao; Qin, Yi

    2014-12-01

    Based on phase retrieval algorithm and QR code, a new optical encryption technology that only needs to record one intensity distribution is proposed. In this encryption process, firstly, the QR code is generated from the information to be encrypted; and then the generated QR code is placed in the input plane of 4-f system to have a double random phase encryption. For only one intensity distribution in the output plane is recorded as the ciphertext, the encryption process is greatly simplified. In the decryption process, the corresponding QR code is retrieved using phase retrieval algorithm. A priori information about QR code is used as support constraint in the input plane, which helps solve the stagnation problem. The original information can be recovered without distortion by scanning the QR code. The encryption process can be implemented either optically or digitally, and the decryption process uses digital method. In addition, the security of the proposed optical encryption technology is analyzed. Theoretical analysis and computer simulations show that this optical encryption system is invulnerable to various attacks, and suitable for harsh transmission conditions.

  20. A COMPARISON BETWEEN TWO ALGORITHMS FOR THE RETRIEVAL OF SOIL MOISTURE USING AMSR-E DATA

    Directory of Open Access Journals (Sweden)

    Simonetta ePaloscia

    2015-04-01

    Full Text Available A comparison between two algorithms for estimating soil moisture with microwave satellite data was carried out by using the datasets collected on the four Agricultural Research Service (ARS watershed sites in the US from 2002 to 2009. These sites collectively represent a wide range of ground conditions and precipitation regimes (from natural to agricultural surfaces and from desert to humid regions and provide long-term in-situ data. One of the algorithms is the artificial neural network-based algorithm developed by the Institute of Applied Physics of the National Research Council (IFAC-CNR (HydroAlgo and the second one is the Single Channel Algorithm (SCA developed by USDA-ARS (US Department of Agriculture-Agricultural Research Service. Both algorithms are based on the same radiative transfer equations but are implemented very differently. Both made use of datasets provided by the Japanese Aerospace Exploration Agency (JAXA, within the framework of Advanced Microwave Scanning Radiometer–Earth Observing System (AMSR-E and Global Change Observation Mission–Water GCOM/AMSR-2 programs. Results demonstrated that both algorithms perform better than the mission specified accuracy, with Root Mean Square Error (RMSE ≤0.06 m3/m3 and Bias <0.02 m3/m3. These results expand on previous investigations using different algorithms and sites. The novelty of the paper consists of the fact that it is the first intercomparison of the HydroAlgo algorithm with a more traditional retrieval algorithm, which offers an approach to higher spatial resolution products.

  1. Atmospheric aerosol load morphological classification and retrieved visibility based on lidar backscatter measurements

    CSIR Research Space (South Africa)

    Tesfaye, M

    2010-01-01

    Full Text Available In this paper, the tropospheric aerosol load morphological classification and its impact on temporal variation of visibility are investigated using a continuous 23-hour single channel CSIR-NLC mobile LIDAR backscatter measurement. The trajectory...

  2. Fourier phase retrieval with a single mask by Douglas-Rachford algorithms.

    Science.gov (United States)

    Chen, Pengwen; Fannjiang, Albert

    2018-05-01

    The Fourier-domain Douglas-Rachford (FDR) algorithm is analyzed for phase retrieval with a single random mask. Since the uniqueness of phase retrieval solution requires more than a single oversampled coded diffraction pattern, the extra information is imposed in either of the following forms: 1) the sector condition on the object; 2) another oversampled diffraction pattern, coded or uncoded. For both settings, the uniqueness of projected fixed point is proved and for setting 2) the local, geometric convergence is derived with a rate given by a spectral gap condition. Numerical experiments demonstrate global, power-law convergence of FDR from arbitrary initialization for both settings as well as for 3 or more coded diffraction patterns without oversampling. In practice, the geometric convergence can be recovered from the power-law regime by a simple projection trick, resulting in highly accurate reconstruction from generic initialization.

  3. Spline based iterative phase retrieval algorithm for X-ray differential phase contrast radiography.

    Science.gov (United States)

    Nilchian, Masih; Wang, Zhentian; Thuering, Thomas; Unser, Michael; Stampanoni, Marco

    2015-04-20

    Differential phase contrast imaging using grating interferometer is a promising alternative to conventional X-ray radiographic methods. It provides the absorption, differential phase and scattering information of the underlying sample simultaneously. Phase retrieval from the differential phase signal is an essential problem for quantitative analysis in medical imaging. In this paper, we formalize the phase retrieval as a regularized inverse problem, and propose a novel discretization scheme for the derivative operator based on B-spline calculus. The inverse problem is then solved by a constrained regularized weighted-norm algorithm (CRWN) which adopts the properties of B-spline and ensures a fast implementation. The method is evaluated with a tomographic dataset and differential phase contrast mammography data. We demonstrate that the proposed method is able to produce phase image with enhanced and higher soft tissue contrast compared to conventional absorption-based approach, which can potentially provide useful information to mammographic investigations.

  4. Optical image encryption using password key based on phase retrieval algorithm

    Science.gov (United States)

    Zhao, Tieyu; Ran, Qiwen; Yuan, Lin; Chi, Yingying; Ma, Jing

    2016-04-01

    A novel optical image encryption system is proposed using password key based on phase retrieval algorithm (PRA). In the encryption process, a shared image is taken as a symmetric key and the plaintext is encoded into the phase-only mask based on the iterative PRA. The linear relationship between the plaintext and ciphertext is broken using the password key, which can resist the known plaintext attack. The symmetric key and the retrieved phase are imported into the input plane and Fourier plane of 4f system during the decryption, respectively, so as to obtain the plaintext on the CCD. Finally, we analyse the key space of the password key, and the results show that the proposed scheme can resist a brute force attack due to the flexibility of the password key.

  5. Changes in atmospheric aerosol loading retrieved from space based measurements during the past decade

    Science.gov (United States)

    Yoon, J.; Burrows, J. P.; Vountas, M.; von Hoyningen-Huene, W.; Chang, D. Y.; Richter, A.; Hilboll, A.

    2013-10-01

    Atmospheric aerosol, generated from natural and anthropogenic sources, plays a key role in regulating visibility, air quality, and acid deposition. It is directly linked to and impacts on human health. It also reflects and absorbs incoming solar radiation and thereby influences the climate change. The cooling by aerosols is now recognized to have partly masked the atmospheric warming from fossil fuel combustion emissions. The role and potential management of short-lived climate pollutants such as aerosol are currently a topic of much scientific and public debate. Our limited knowledge of atmospheric aerosol and its influence on the Earth's radiation balance has a significant impact on the accuracy and error of current predictions of the future global climate change. In the past decades, environmental legislation in industrialized countries has begun to limit the release of anthropogenic pollutants. In contrast, in Asia as a result of the recent rapid economic development, emissions from industry and traffic have increased dramatically. In this study, the temporal changes/trends of atmospheric aerosols, derived from the satellite instruments MODIS (on board Terra and Aqua), MISR (Terra), and SeaWiFS (OrbView-2) during the past decade, are investigated. Whilst the aerosol optical thickness, AOT, over Western Europe decreases (i.e. by up to about -40% from 2003 to 2008) and parts of North America, a statistically significant increase (about +34% in the same period) over East China is observed and attributed to both the increase in industrial output and the Asian desert dust.

  6. An 11-year analysis of satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf

    Science.gov (United States)

    Banks, Jamie; Brindley, Helen; Schepanski, Kerstin; Stenchikov, Georgiy

    2017-04-01

    As enclosed seas bordering two large desert regions, the Saharan and Arabian deserts, the maritime environments of the Red Sea and the Persian Gulf are heavily influenced by the presence of desert dust aerosol. The inter-annual variability of dust presence over the Red Sea is analysed and presented, with respect to the summer-time latitudinal gradient in dust loading, which is at a maximum in the far south of the Red Sea and at a minimum in the far north. Two satellite aerosol optical depth (AOD) products from the Spinning Enhanced Visible and Infrared Imager (SEVIRI) and the MODerate resolution Imaging Spectroradiometer (MODIS) instruments are used to quantify this loading over the region. Over an eleven-year period from 2005-2015 the July mean SEVIRI AODs at 630 nm vary between 0.48 and 1.45 in the southern half of the Sea, while in the north this varies between 0.22 and 0.66. Inter-retrieval offsets are observed to occur at higher dust loadings, with pronounced positive MODIS-SEVIRI AOD offsets at AODs greater than 1, indicating substantial and systematic differences between the retrievals over the Red Sea at high dust loadings. These differences appear to be influenced in part by the differences in scattering angle range of the satellite measurements, implying that assumptions of particle shape introduce more substantial biases at the highest dust loadings.

  7. Analysis of CrIS ATMS and AIRS AMSU Data Using Scientifically Equivalent Retrieval Algorithms

    Science.gov (United States)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena; Blaisdell, John

    2016-01-01

    Monthly mean August 2014 Version-6.28 AIRS and CrIS products agree well with OMPS and CERES, and reasonably well with each other. Version-6.28 CrIS total precipitable water is biased dry compared to AIRS. AIRS and CrIS Version-6.36 water vapor products are both improved compared to Version-6.28. Version-6.36 AIRS and CrIS total precipitable water also shows improved agreement with each other. AIRS Version-6.36 total ozone agrees even better with OMPS than does AIRS Version-6.28, and gives reasonable results during polar winter where OMPS does not generate products. CrIS and ATMS are high spectral resolution IR and Microwave atmospheric sounders currently flying on the SNPP satellite, and are also scheduled for flight on future NPOESS satellites. CrIS/ATMS have similar sounding capabilities to those of the AIRS/AMSU sounder suite flying on EOS Aqua. The objective of this research is to develop and implement scientifically equivalent AIRS/AMSU and CrIS/ATMS retrieval algorithms with the goal of generating a continuous data record of AIRS/AMSU and CrIS/ATMS level-3 data products with a seamless transition between them in time. To achieve this, monthly mean AIRS/AMSU and CrIS/ATMS retrieved products, and more importantly their interannual differences, should show excellent agreement with each other. The currently operational AIRS Science Team Version-6 retrieval algorithm has generated 14 years of level-3 data products. A scientifically improved AIRS Version-7 retrieval algorithm is expected to become operational in 2017. We see significant improvements in water vapor and ozone in Version-7 retrieval methodology compared to Version-6.We are working toward finalization and implementation of scientifically equivalent AIRS/AMSU and CrIS/ATMS Version-7 retrieval algorithms to be used for the eventual processing of all AIRS/AMSU and CrIS/ATMS data. The latest version of our retrieval algorithm is Verison-6.36, which includes almost all the improvements we want in Version-7

  8. Seasonal nitrate algorithms for nitrate retrieval using OCEANSAT-2 and MODIS-AQUA satellite data.

    Science.gov (United States)

    Durairaj, Poornima; Sarangi, Ranjit Kumar; Ramalingam, Shanthi; Thirunavukarassu, Thangaradjou; Chauhan, Prakash

    2015-04-01

    In situ datasets of nitrate, sea surface temperature (SST), and chlorophyll a (chl a) collected during the monthly coastal samplings and organized cruises along the Tamilnadu and Andhra Pradesh coast between 2009 and 2013 were used to develop seasonal nitrate algorithms. The nitrate algorithms have been built up based on the three-dimensional regressions between SST, chl a, and nitrate in situ data using linear, Gaussian, Lorentzian, and paraboloid function fittings. Among these four functions, paraboloid was found to be better with the highest co-efficient of determination (postmonsoon: R2=0.711, n=357; summer: R2=0.635, n=302; premonsoon: R2=0.829, n=249; and monsoon: R2=0.692, n=272) for all seasons. Based on these fittings, seasonal nitrate images were generated using the concurrent satellite data of SST from Moderate Resolution Imaging Spectroradiometer (MODIS) and chlorophyll (chl) from Ocean Color Monitor (OCM-2) and MODIS. The best retrieval of modeled nitrate (R2=0.527, root mean square error (RMSE)=3.72, and mean normalized bias (MNB)=0.821) was observed for the postmonsoon season due to the better retrieval of both SST MODIS (28 February 2012, R2=0.651, RMSE=2.037, and MNB=0.068) and chl OCM-2 (R2=0.534, RMSE=0.317, and MNB=0.27). Present results confirm that the chl OCM-2 and SST MODIS retrieve nitrate well than the MODIS-derived chl and SST largely due to the better retrieval of chl by OCM-2 than MODIS.

  9. Inter-comparison of lidar and ceilometer retrievals for aerosol and Planetary Boundary Layer profiling over Athens, Greece

    Directory of Open Access Journals (Sweden)

    G. Tsaknakis

    2011-06-01

    Full Text Available This study presents an inter-comparison of two active remote sensors (lidar and ceilometer to determine the mixing layer height and structure of the Planetary Boundary Layer (PBL and to retrieve tropospheric aerosol vertical profiles over Athens, Greece. This inter-comparison was performed under various strongly different aerosol loads/types (urban air pollution, biomass burning and Saharan dust event, implementing two different lidar systems (one portable Raymetrics S.A. lidar system running at 355 nm and one multi-wavelength Raman lidar system running at 355 nm, 532 nm and 1064 nm and one CL31 Vaisala S.A. ceilometer (running at 910 nm. Spectral conversions of the ceilometer's data were performed using the Ångström exponent estimated by ultraviolet multi-filter radiometer (UV-MFR measurements. The inter-comparison was based on two parameters: the mixing layer height determined by the presence of the suspended aerosols and the attenuated backscatter coefficient. Additionally, radiosonde data were used to derive the PBL height. In general, a good agreement was found between the ceilometer and the lidar techniques in both inter-compared parameters in the height range from 500 m to 5000 m, while the limitations of each instrument are also examined.

  10. Retrieval of tropospheric NO2 using the MAX-DOAS method combined with relative intensity measurements for aerosol correction

    Directory of Open Access Journals (Sweden)

    P. F. Levelt

    2010-10-01

    Full Text Available Multi-Axis Differential Optical Absorption Spectroscopy (MAX-DOAS is a technique to measure trace gas amounts in the lower troposphere from ground-based scattered sunlight observations. MAX-DOAS observations are especially suitable for validation of tropospheric trace gas observations from satellite, since they have a representative range of several kilometers, both in the horizontal and in the vertical dimension. A two-step retrieval scheme is presented here, to derive aerosol corrected tropospheric NO2 columns from MAX-DOAS observations. In a first step, boundary layer aerosols, characterized in terms of aerosol optical thickness (AOT, are estimated from relative intensity observations, which are defined as the ratio of the sky radiance at elevation α and the sky radiance in the zenith. Relative intensity measurements have the advantage of a strong dependence on boundary layer AOT and almost no dependence on boundary layer height. In a second step, tropospheric NO2 columns are derived from differential slant columns, based on AOT-dependent air mass factors. This two-step retrieval scheme was applied to cloud free periods in a twelve month data set of observations in De Bilt, The Netherlands. In a comparison with AERONET (Cabauw site a mean difference in AOT (AERONET minus MAX-DOAS of −0.01±0.08 was found, and a correlation of 0.85. Tropospheric-NO2 columns were compared with OMI-satellite tropospheric NO2. For ground-based observations restricted to uncertainties below 10%, no significant difference was found, and a correlation of 0.88.

  11. Methanol from TES global observations: retrieval algorithm and seasonal and spatial variability

    Directory of Open Access Journals (Sweden)

    K. E. Cady-Pereira

    2012-09-01

    Full Text Available We present a detailed description of the TES methanol (CH3OH retrieval algorithm, along with initial global results showing the seasonal and spatial distribution of methanol in the lower troposphere. The full development of the TES methanol retrieval is described, including microwindow selection, error analysis, and the utilization of a priori and initial guess information provided by the GEOS-Chem chemical transport model. Retrieval simulations and a sensitivity analysis using the developed retrieval strategy show that TES: (i generally provides less than 1.0 piece of information, (ii is sensitive in the lower troposphere with peak sensitivity typically occurring between ~900–700 hPa (~1–3 km at a vertical resolution of ~5 km, (iii has a limit of detectability between 0.5 and 1.0 ppbv Representative Volume Mixing Ratio (RVMR depending on the atmospheric conditions, corresponding roughly to a profile with a maximum concentration of at least 1 to 2 ppbv, and (iv in a simulation environment has a mean bias of 0.16 ppbv with a standard deviation of 0.34 ppbv. Applying the newly derived TES retrieval globally and comparing the results with corresponding GEOS-Chem output, we find generally consistent large-scale patterns between the two. However, TES often reveals higher methanol concentrations than simulated in the Northern Hemisphere spring, summer and fall. In the Southern Hemisphere, the TES methanol observations indicate a model overestimate over the bulk of South America from December through July, and a model underestimate during the biomass burning season.

  12. A rapid place name locating algorithm based on ontology qualitative retrieval, ranking and recommendation

    Science.gov (United States)

    Fan, Hong; Zhu, Anfeng; Zhang, Weixia

    2015-12-01

    In order to meet the rapid positioning of 12315 complaints, aiming at the natural language expression of telephone complaints, a semantic retrieval framework is proposed which is based on natural language parsing and geographical names ontology reasoning. Among them, a search result ranking and recommended algorithms is proposed which is regarding both geo-name conceptual similarity and spatial geometry relation similarity. The experiments show that this method can assist the operator to quickly find location of 12,315 complaints, increased industry and commerce customer satisfaction.

  13. Retrievals of aerosol optical depth and Angström exponent from ground-based Sun-photometer data of Singapore.

    Science.gov (United States)

    Salinas, Santo V; Chew, Boon N; Liew, Soo C

    2009-03-10

    The role of aerosols in climate and climate change is one of the factors that is least understood at the present. Aerosols' direct interaction with solar radiation is a well understood mechanism that affects Earth's net radiative forcing. However, quantifying its magnitude is more problematic because of the temporal and spatial variability of aerosol particles. To enhance our understanding of the radiative effects of aerosols on the global climate, Singapore has joined the AERONET (Aerosol Robotic Network) worldwide network by contributing ground-based direct Sun measurements performed by means of a multiwavelength Sun-photometer instrument. Data are collected on an hourly basis, then are uploaded to be fully screened and quality assured by AERONET. We use a one year data record (level 1.5/2.0) of measured columnar atmospheric optical depth, spanning from November 2006 to October 2007, to study the monthly and seasonal variability of the aerosol optical depth and the Angström exponent. We performed independent retrievals of these parameters (aerosol optical depth and Angström exponent) by using the photometer's six available bands covering the near-UV to near-IR (380-1080 nm). As a validation, our independent retrievals were compared with AERONET 1.5/2.0 level direct Sun product.

  14. Retrieve Aerosol Concentration Based On Surface Model and Distribution of Concentration of PM2.5 ——A Case Study of Beijing

    Science.gov (United States)

    Cui, H.

    2017-12-01

    As China's economy continues to grow, urbanization continues to advance, along with growth in all areas to pollutant emissions in the air industry, air quality also continued to deteriorate. Aerosol concentrations as a measure of air quality of the most important part of are more and more people's attention. Traditional monitoring stations measuring aerosol concentration method is accurate, but time-consuming and can't be done simultaneously measure a large area, can only rely on data from several monitoring sites to predict the concentration of the panorama. Remote Sensing Technology retrieves aerosol concentrations being by virtue of their efficient, fast advantages gradually into sight. In this paper, by the method of surface model to start with the physical processes of atmospheric transport, innovative aerosol concentration coefficient proposed to replace the traditional aerosol concentrations, pushed to a set of retrieval of aerosol concentration coefficient method, enabling fast and efficient Get accurate air pollution target area. At the same paper also monitoring data for PM2.5 in Beijing were analyzed from different angles, from the perspective of the data summarized in Beijing PM2.5 concentration of time, space, geographical distribution and concentration of PM2.5 and explored the relationship between aerosol concentration coefficient and concentration of PM2.5.

  15. Oversampling smoothness: an effective algorithm for phase retrieval of noisy diffraction intensities.

    Science.gov (United States)

    Rodriguez, Jose A; Xu, Rui; Chen, Chien-Chun; Zou, Yunfei; Miao, Jianwei

    2013-04-01

    Coherent diffraction imaging (CDI) is high-resolution lensless microscopy that has been applied to image a wide range of specimens using synchrotron radiation, X-ray free-electron lasers, high harmonic generation, soft X-ray lasers and electrons. Despite recent rapid advances, it remains a challenge to reconstruct fine features in weakly scattering objects such as biological specimens from noisy data. Here an effective iterative algorithm, termed oversampling smoothness (OSS), for phase retrieval of noisy diffraction intensities is presented. OSS exploits the correlation information among the pixels or voxels in the region outside of a support in real space. By properly applying spatial frequency filters to the pixels or voxels outside the support at different stages of the iterative process ( i.e. a smoothness constraint), OSS finds a balance between the hybrid input-output (HIO) and error reduction (ER) algorithms to search for a global minimum in solution space, while reducing the oscillations in the reconstruction. Both numerical simulations with Poisson noise and experimental data from a biological cell indicate that OSS consistently outperforms the HIO, ER-HIO and noise robust (NR)-HIO algorithms at all noise levels in terms of accuracy and consistency of the reconstructions. It is expected that OSS will find application in the rapidly growing CDI field, as well as other disciplines where phase retrieval from noisy Fourier magnitudes is needed. The MATLAB (The MathWorks Inc., Natick, MA, USA) source code of the OSS algorithm is freely available from http://www.physics.ucla.edu/research/imaging.

  16. A New Retrieval Algorithm for OMI NO2: Tropospheric Results and Comparisons with Measurements and Models

    Science.gov (United States)

    Swartz, W. H.; Bucesla, E. J.; Lamsal, L. N.; Celarier, E. A.; Krotkov, N. A.; Bhartia, P, K,; Strahan, S. E.; Gleason, J. F.; Herman, J.; Pickering, K.

    2012-01-01

    Nitrogen oxides (NOx =NO+NO2) are important atmospheric trace constituents that impact tropospheric air pollution chemistry and air quality. We have developed a new NASA algorithm for the retrieval of stratospheric and tropospheric NO2 vertical column densities using measurements from the nadir-viewing Ozone Monitoring Instrument (OMI) on NASA's Aura satellite. The new products rely on an improved approach to stratospheric NO2 column estimation and stratosphere-troposphere separation and a new monthly NO2 climatology based on the NASA Global Modeling Initiative chemistry-transport model. The retrieval does not rely on daily model profiles, minimizing the influence of a priori information. We evaluate the retrieved tropospheric NO2 columns using surface in situ (e.g., AQS/EPA), ground-based (e.g., DOAS), and airborne measurements (e.g., DISCOVER-AQ). The new, improved OMI tropospheric NO2 product is available at high spatial resolution for the years 200S-present. We believe that this product is valuable for the evaluation of chemistry-transport models, examining the spatial and temporal patterns of NOx emissions, constraining top-down NOx inventories, and for the estimation of NOx lifetimes.

  17. The 183-WSL Fast Rain Rate Retrieval Algorithm. Part II: Validation Using Ground Radar Measurements

    Science.gov (United States)

    Laviola, Sante; Levizzani, Vincenzo

    2014-01-01

    The Water vapour Strong Lines at 183 GHz (183-WSL) algorithm is a method for the retrieval of rain rates and precipitation type classification (convectivestratiform), that makes use of the water vapor absorption lines centered at 183.31 GHz of the Advanced Microwave Sounding Unit module B (AMSU-B) and of the Microwave Humidity Sounder (MHS) flying on NOAA-15-18 and NOAA-19Metop-A satellite series, respectively. The characteristics of this algorithm were described in Part I of this paper together with comparisons against analogous precipitation products. The focus of Part II is the analysis of the performance of the 183-WSL technique based on surface radar measurements. The ground truth dataset consists of 2.5 years of rainfall intensity fields from the NIMROD European radar network which covers North-Western Europe. The investigation of the 183-WSL retrieval performance is based on a twofold approach: 1) the dichotomous statistic is used to evaluate the capabilities of the method to identify rain and no-rain clouds; 2) the accuracy statistic is applied to quantify the errors in the estimation of rain rates.The results reveal that the 183-WSL technique shows good skills in the detection of rainno-rain areas and in the quantification of rain rate intensities. The categorical analysis shows annual values of the POD, FAR and HK indices varying in the range 0.80-0.82, 0.330.36 and 0.39-0.46, respectively. The RMSE value is 2.8 millimeters per hour for the whole period despite an overestimation in the retrieved rain rates. Of note is the distribution of the 183-WSL monthly mean rain rate with respect to radar: the seasonal fluctuations of the average rainfalls measured by radar are reproduced by the 183-WSL. However, the retrieval method appears to suffer for the winter seasonal conditions especially when the soil is partially frozen and the surface emissivity drastically changes. This fact is verified observing the discrepancy distribution diagrams where2the 183-WSL

  18. Bat-Inspired Algorithm Based Query Expansion for Medical Web Information Retrieval.

    Science.gov (United States)

    Khennak, Ilyes; Drias, Habiba

    2017-02-01

    With the increasing amount of medical data available on the Web, looking for health information has become one of the most widely searched topics on the Internet. Patients and people of several backgrounds are now using Web search engines to acquire medical information, including information about a specific disease, medical treatment or professional advice. Nonetheless, due to a lack of medical knowledge, many laypeople have difficulties in forming appropriate queries to articulate their inquiries, which deem their search queries to be imprecise due the use of unclear keywords. The use of these ambiguous and vague queries to describe the patients' needs has resulted in a failure of Web search engines to retrieve accurate and relevant information. One of the most natural and promising method to overcome this drawback is Query Expansion. In this paper, an original approach based on Bat Algorithm is proposed to improve the retrieval effectiveness of query expansion in medical field. In contrast to the existing literature, the proposed approach uses Bat Algorithm to find the best expanded query among a set of expanded query candidates, while maintaining low computational complexity. Moreover, this new approach allows the determination of the length of the expanded query empirically. Numerical results on MEDLINE, the on-line medical information database, show that the proposed approach is more effective and efficient compared to the baseline.

  19. Fractional Fourier domain optical image hiding using phase retrieval algorithm based on iterative nonlinear double random phase encoding.

    Science.gov (United States)

    Wang, Xiaogang; Chen, Wen; Chen, Xudong

    2014-09-22

    We present a novel image hiding method based on phase retrieval algorithm under the framework of nonlinear double random phase encoding in fractional Fourier domain. Two phase-only masks (POMs) are efficiently determined by using the phase retrieval algorithm, in which two cascaded phase-truncated fractional Fourier transforms (FrFTs) are involved. No undesired information disclosure, post-processing of the POMs or digital inverse computation appears in our proposed method. In order to achieve the reduction in key transmission, a modified image hiding method based on the modified phase retrieval algorithm and logistic map is further proposed in this paper, in which the fractional orders and the parameters with respect to the logistic map are regarded as encryption keys. Numerical results have demonstrated the feasibility and effectiveness of the proposed algorithms.

  20. Wind Retrieval Algorithms for the IWRAP and HIWRAP Airborne Doppler Radars with Applications to Hurricanes

    Science.gov (United States)

    Guimond, Stephen Richard; Tian, Lin; Heymsfield, Gerald M.; Frasier, Stephen J.

    2013-01-01

    Algorithms for the retrieval of atmospheric winds in precipitating systems from downward-pointing, conically-scanning airborne Doppler radars are presented. The focus in the paper is on two radars: the Imaging Wind and Rain Airborne Profiler(IWRAP) and the High-altitude IWRAP (HIWRAP). The IWRAP is a dual-frequency (Cand Ku band), multi-beam (incidence angles of 30 50) system that flies on the NOAAWP-3D aircraft at altitudes of 2-4 km. The HIWRAP is a dual-frequency (Ku and Kaband), dual-beam (incidence angles of 30 and 40) system that flies on the NASA Global Hawk aircraft at altitudes of 18-20 km. Retrievals of the three Cartesian wind components over the entire radar sampling volume are described, which can be determined using either a traditional least squares or variational solution procedure. The random errors in the retrievals are evaluated using both an error propagation analysis and a numerical simulation of a hurricane. These analyses show that the vertical and along-track wind errors have strong across-track dependence with values of 0.25 m s-1 at nadir to 2.0 m s-1 and 1.0 m s-1 at the swath edges, respectively. The across-track wind errors also have across-track structure and are on average, 3.0 3.5 m s-1 or 10 of the hurricane wind speed. For typical rotated figure four flight patterns through hurricanes, the zonal and meridional wind speed errors are 2 3 m s-1.Examples of measured data retrievals from IWRAP during an eyewall replacement cycle in Hurricane Isabel (2003) and from HIWRAP during the development of Tropical Storm Matthew (2010) are shown.

  1. Algorithm to retrieve the melt pond fraction and the spectral albedo of Arctic summer ice from satellite optical data

    OpenAIRE

    Zege, E.; Malinka, A.; Katsev, I.; Prikhach, A.; Heygster, Georg; Istomina, L.; Birnbaum, Gerit; Schwarz, Pascal

    2015-01-01

    A new algorithmto retrieve characteristics (albedo and melt pond fraction) of summer ice in the Arctic fromoptical satellite data is described. In contrast to other algorithms this algorithm does not use a priori values of the spectral albedo of the sea-ice constituents (such asmelt ponds,white ice etc.). Instead, it is based on an analytical solution for the reflection from sea ice surface. The algorithm includes the correction of the sought-for ice and ponds characteristics with...

  2. Optimization of the GSFC TROPOZ DIAL retrieval using synthetic lidar returns and ozonesondes - Part 1: Algorithm validation

    Science.gov (United States)

    Sullivan, J. T.; McGee, T. J.; Leblanc, T.; Sumnicht, G. K.; Twigg, L. W.

    2015-10-01

    The main purpose of the NASA Goddard Space Flight Center TROPospheric OZone DIfferential Absorption Lidar (GSFC TROPOZ DIAL) is to measure the vertical distribution of tropospheric ozone for science investigations. Because of the important health and climate impacts of tropospheric ozone, it is imperative to quantify background photochemical ozone concentrations and ozone layers aloft, especially during air quality episodes. For these reasons, this paper addresses the necessary procedures to validate the TROPOZ retrieval algorithm and confirm that it is properly representing ozone concentrations. This paper is focused on ensuring the TROPOZ algorithm is properly quantifying ozone concentrations, and a following paper will focus on a systematic uncertainty analysis. This methodology begins by simulating synthetic lidar returns from actual TROPOZ lidar return signals in combination with a known ozone profile. From these synthetic signals, it is possible to explicitly determine retrieval algorithm biases from the known profile. This was then systematically performed to identify any areas that need refinement for a new operational version of the TROPOZ retrieval algorithm. One immediate outcome of this exercise was that a bin registration error in the correction for detector saturation within the original retrieval was discovered and was subsequently corrected for. Another noticeable outcome was that the vertical smoothing in the retrieval algorithm was upgraded from a constant vertical resolution to a variable vertical resolution to yield a statistical uncertainty of exercise was quite successful.

  3. Analysis od aerosol optical depth retrieved by MODIS and MERIS and comparison with photometer data

    International Nuclear Information System (INIS)

    Bocci, E.; Bonafoni, S.; Basili, P.; Biondi, R.; Arino, O.

    2009-01-01

    In this work a validation of aerosol optical depth (AOD) value provided by two different satellite sensor (MODIS and MERIS) is proposed. A comparison between satellite and ground-based AERONET data is carried out to verify the reliability of space borne instruments. Finally the behavior of AOD is analyzed monitoring particular events such as desert dust transport occurred on the 9 of October 2004 over the Mediterranean [it

  4. An automated phase correction algorithm for retrieving permittivity and permeability of electromagnetic metamaterials

    Directory of Open Access Journals (Sweden)

    Z. X. Cao

    2014-06-01

    Full Text Available To retrieve complex-valued effective permittivity and permeability of electromagnetic metamaterials (EMMs based on resonant effect from scattering parameters using a complex logarithmic function is not inevitable. When complex values are expressed in terms of magnitude and phase, an infinite number of permissible phase angles is permissible due to the multi-valued property of complex logarithmic functions. Special attention needs to be paid to ensure continuity of the effective permittivity and permeability of lossy metamaterials as frequency sweeps. In this paper, an automated phase correction (APC algorithm is proposed to properly trace and compensate phase angles of the complex logarithmic function which may experience abrupt phase jumps near the resonant frequency region of the concerned EMMs, and hence the continuity of the effective optical properties of lossy metamaterials is ensured. The algorithm is then verified to extract effective optical properties from the simulated scattering parameters of the four different types of metamaterial media: a cut-wire cell array, a split ring resonator (SRR cell array, an electric-LC (E-LC resonator cell array, and a combined SRR and wire cell array respectively. The results demonstrate that the proposed algorithm is highly accurate and effective.

  5. A GA-P algorithm to automatically formulate extended Boolean queries for a fuzzy information retrieval system

    OpenAIRE

    Cordón García, Oscar; Moya Anegón, Félix de; Zarco Fernández, Carmen

    2000-01-01

    [ES] Although the fuzzy retrieval model constitutes a powerful extension of the boolean one, being able to deal with the imprecision and subjectivity existing in the Information Retrieval process, users are not usually able to express their query requirements in the form of an extended boolean query including weights. To solve this problem, different tools to assist the user in the query formulation have been proposed. In this paper, the genetic algorithm-programming technique is considered t...

  6. Satellite retrievals of dust aerosol over the Red Sea and the Persian Gulf (2005–2015)

    KAUST Repository

    Banks, Jamie R.; Brindley, Helen E.; Stenchikov, Georgiy L.; Schepanski, Kerstin

    2017-01-01

    loadings. When both records are stratified by AOD retrievals from the Multi-angle Imaging SpectroRadiometer (MISR), opposing behaviour is revealed at high MISR AODs (> 1), with offsets of C 0.19 for MODIS and 0.06 for SEVIRI. Similar behaviour is also seen

  7. Unveiling aerosol-cloud interactions - Part 1: Cloud contamination in satellite products enhances the aerosol indirect forcing estimate

    Science.gov (United States)

    Christensen, Matthew W.; Neubauer, David; Poulsen, Caroline A.; Thomas, Gareth E.; McGarragh, Gregory R.; Povey, Adam C.; Proud, Simon R.; Grainger, Roy G.

    2017-11-01

    Increased concentrations of aerosol can enhance the albedo of warm low-level cloud. Accurately quantifying this relationship from space is challenging due in part to contamination of aerosol statistics near clouds. Aerosol retrievals near clouds can be influenced by stray cloud particles in areas assumed to be cloud-free, particle swelling by humidification, shadows and enhanced scattering into the aerosol field from (3-D radiative transfer) clouds. To screen for this contamination we have developed a new cloud-aerosol pairing algorithm (CAPA) to link cloud observations to the nearest aerosol retrieval within the satellite image. The distance between each aerosol retrieval and nearest cloud is also computed in CAPA. Results from two independent satellite imagers, the Advanced Along-Track Scanning Radiometer (AATSR) and Moderate Resolution Imaging Spectroradiometer (MODIS), show a marked reduction in the strength of the intrinsic aerosol indirect radiative forcing when selecting aerosol pairs that are located farther away from the clouds (-0.28±0.26 W m-2) compared to those including pairs that are within 15 km of the nearest cloud (-0.49±0.18 W m-2). The larger aerosol optical depths in closer proximity to cloud artificially enhance the relationship between aerosol-loading, cloud albedo, and cloud fraction. These results suggest that previous satellite-based radiative forcing estimates represented in key climate reports may be exaggerated due to the inclusion of retrieval artefacts in the aerosol located near clouds.

  8. Results from CrIS/ATMS Obtained Using an "AIRS Version-6 Like" Retrieval Algorithm

    Science.gov (United States)

    Susskind, Joel; Kouvaris, Louis; Iredell, Lena; Blaisdell, John

    2015-01-01

    AIRS and CrIS Version-6.22 O3(p) and q(p) products are both superior to those of AIRS Version-6.Monthly mean August 2014 Version-6.22 AIRS and CrIS products agree reasonably well with OMPS, CERES, and witheach other. JPL plans to process AIRS and CrIS for many months and compare interannual differences. Updates to thecalibration of both CrIS and ATMS are still being finalized. We are also working with JPL to develop a joint AIRS/CrISlevel-1 to level-3 processing system using a still to be finalized Version-7 retrieval algorithm. The NASA Goddard DISCwill eventually use this system to reprocess all AIRS and recalibrated CrIS/ATMS. .

  9. Simultaneous optical image compression and encryption using error-reduction phase retrieval algorithm

    International Nuclear Information System (INIS)

    Liu, Wei; Liu, Shutian; Liu, Zhengjun

    2015-01-01

    We report a simultaneous image compression and encryption scheme based on solving a typical optical inverse problem. The secret images to be processed are multiplexed as the input intensities of a cascaded diffractive optical system. At the output plane, a compressed complex-valued data with a lot fewer measurements can be obtained by utilizing error-reduction phase retrieval algorithm. The magnitude of the output image can serve as the final ciphertext while its phase serves as the decryption key. Therefore the compression and encryption are simultaneously completed without additional encoding and filtering operations. The proposed strategy can be straightforwardly applied to the existing optical security systems that involve diffraction and interference. Numerical simulations are performed to demonstrate the validity and security of the proposal. (paper)

  10. Phase retrieval problems in X-ray physics. From modeling to efficient algorithms

    International Nuclear Information System (INIS)

    Homann, Carolin

    2015-01-01

    In phase retrieval problems that occur in imaging by coherent X-ray diffraction, one tries to reconstruct information about a sample of interest from possibly noisy intensity measurements of the wave field traversing the sample. The mathematical formulation of these problems bases on some assumptions. Usually one of them is that the X-ray wave field is generated by a point source. In order to address this very idealized assumption, it is common to perform a data preprocessing step, the so-called empty beam correction. Within this work, we study the validity of this approach by presenting a quantitative error estimate. Moreover, in order to solve these phase retrieval problems, we want to incorporate a priori knowledge about the structure of the noise and the solution into the reconstruction process. For this reason, the application of a problem adapted iteratively regularized Newton-type method becomes particularly attractive. This method includes the solution of a convex minimization problem in each iteration step. We present a method for solving general optimization problems of this form. Our method is a generalization of a commonly used algorithm which makes it efficiently applicable to a wide class of problems. We also proof convergence results and show the performance of our method by numerical examples.

  11. Data Retrieval Algorithms for Validating the Optical Transient Detector and the Lightning Imaging Sensor

    Science.gov (United States)

    Koshak, W. J.; Blakeslee, R. J.; Bailey, J. C.

    2000-01-01

    A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of lightning ground strikes from an Advanced Lightning Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing, and arrival time of lightning radio emissions. Solutions for the plane (i.e., no earth curvature) are provided that implement all of these measurements. The accuracy of the retrieval method is tested using computer-simulated datasets, and the relative influence of bearing and arrival time data an the outcome of the final solution is formally demonstrated. The algorithm is sufficiently accurate to validate NASA:s Optical Transient Detector and Lightning Imaging Sensor. A quadratic planar solution that is useful when only three arrival time measurements are available is also introduced. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in sc)iirce location, Complex root results are shown to be associated with the presence of measurement errors when the lightning source lies near an outer sensor baseline of the ALDF network. For arbitrary noncollinear network geometries and in the absence of measurement errors, it is shown that the two quadratic roots are equivalent (no source location ambiguity) on the outer sensor baselines. The accuracy of the quadratic planar method is tested with computer-generated datasets, and the results are generally better than those obtained from the three-station linear planar method when bearing errors are about 2 deg.

  12. Assessment of Atmospheric Algorithms to Retrieve Vegetation in Natural Protected Areas Using Multispectral High Resolution Imagery

    Directory of Open Access Journals (Sweden)

    Javier Marcello

    2016-09-01

    Full Text Available The precise mapping of vegetation covers in semi-arid areas is a complex task as this type of environment consists of sparse vegetation mainly composed of small shrubs. The launch of high resolution satellites, with additional spectral bands and the ability to alter the viewing angle, offers a useful technology to focus on this objective. In this context, atmospheric correction is a fundamental step in the pre-processing of such remote sensing imagery and, consequently, different algorithms have been developed for this purpose over the years. They are commonly categorized as imaged-based methods as well as in more advanced physical models based on the radiative transfer theory. Despite the relevance of this topic, a few comparative studies covering several methods have been carried out using high resolution data or which are specifically applied to vegetation covers. In this work, the performance of five representative atmospheric correction algorithms (DOS, QUAC, FLAASH, ATCOR and 6S has been assessed, using high resolution Worldview-2 imagery and field spectroradiometer data collected simultaneously, with the goal of identifying the most appropriate techniques. The study also included a detailed analysis of the parameterization influence on the final results of the correction, the aerosol model and its optical thickness being important parameters to be properly adjusted. The effects of corrections were studied in vegetation and soil sites belonging to different protected semi-arid ecosystems (high mountain and coastal areas. In summary, the superior performance of model-based algorithms, 6S in particular, has been demonstrated, achieving reflectance estimations very close to the in-situ measurements (RMSE of between 2% and 3%. Finally, an example of the importance of the atmospheric correction in the vegetation estimation in these natural areas is presented, allowing the robust mapping of species and the analysis of multitemporal variations

  13. Aerosol Climate Time Series Evaluation In ESA Aerosol_cci

    Science.gov (United States)

    Popp, T.; de Leeuw, G.; Pinnock, S.

    2015-12-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. By the end of 2015 full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which are also validated. The paper will summarize and discuss the results of major reprocessing and validation conducted in 2015. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension with successor instruments of the Sentinel family will be described and the complementarity of the different satellite aerosol products

  14. Internal/external mixing of aerosol particles elemental composition retrieved from microPIXE and PIXE

    International Nuclear Information System (INIS)

    Ghermandi, G.; Cecchi, R.; Lusvarghi, L.; Laj, P.; Zappoli, S.; Ceccato, D.

    2005-01-01

    A statistical evaluation of the association between different elements contained in atmospheric aerosol particles has been made using the microPIXE technique. We derived elemental maps of Al, Si, S, Ca, Cl, K, Fe, Mg spatial distribution on the surface of a Nuclepore filter sample. The microPIXE measurements are validated by comparison to conventional PIXE and SEM-EDAX. Then, the spatial coherence of the different elements is analysed using statistical methods. The elements are not homogeneously distributed and the association among specific elements can be identified. MicroPIXE and factorial analysis can be coupled to understand the state of mixing of the different elements on the filter surface

  15. Assessing the effectiveness of Landsat 8 chlorophyll a retrieval algorithms for regional freshwater monitoring.

    Science.gov (United States)

    Boucher, Jonah; Weathers, Kathleen C; Norouzi, Hamid; Steele, Bethel

    2018-06-01

    Predicting algal blooms has become a priority for scientists, municipalities, businesses, and citizens. Remote sensing offers solutions to the spatial and temporal challenges facing existing lake research and monitoring programs that rely primarily on high-investment, in situ measurements. Techniques to remotely measure chlorophyll a (chl a) as a proxy for algal biomass have been limited to specific large water bodies in particular seasons and narrow chl a ranges. Thus, a first step toward prediction of algal blooms is generating regionally robust algorithms using in situ and remote sensing data. This study explores the relationship between in-lake measured chl a data from Maine and New Hampshire, USA lakes and remotely sensed chl a retrieval algorithm outputs. Landsat 8 images were obtained and then processed after required atmospheric and radiometric corrections. Six previously developed algorithms were tested on a regional scale on 11 scenes from 2013 to 2015 covering 192 lakes. The best performing algorithm across data from both states had a 0.16 correlation coefficient (R 2 ) and P ≤ 0.05 when Landsat 8 images within 5 d, and improved to R 2 of 0.25 when data from Maine only were used. The strength of the correlation varied with the specificity of the time window in relation to the in-situ sampling date, explaining up to 27% of the variation in the data across several scenes. Two previously published algorithms using Landsat 8's Bands 1-4 were best correlated with chl a, and for particular late-summer scenes, they accounted for up to 69% of the variation in in-situ measurements. A sensitivity analysis revealed that a longer time difference between in situ measurements and the satellite image increased uncertainty in the models, and an effect of the time of year on several indices was demonstrated. A regional model based on the best performing remote sensing algorithm was developed and was validated using independent in situ measurements and satellite

  16. A Comparison of Seasonal and Interannual Variability of Soil Dust Aerosols Over the Atlantic Ocean as Inferred by the Toms AI and AVHRR AOT Retrievals

    Science.gov (United States)

    Cakmur, R. V.; Miller, R. L.; Tegen, Ina; Hansen, James E. (Technical Monitor)

    2001-01-01

    The seasonal cycle and interannual variability of two estimates of soil (or 'mineral') dust aerosols are compared: Advanced Very High Resolution Radiometer (AVHRR) aerosol optical thickness (AOT) and Total Ozone Mapping Spectrometer (TOMS) aerosol index (AI), Both data sets, comprising more than a decade of global, daily images, are commonly used to evaluate aerosol transport models. The present comparison is based upon monthly averages, constructed from daily images of each data set for the period between 1984 and 1990, a period that excludes contamination from volcanic eruptions. The comparison focuses upon the Northern Hemisphere subtropical Atlantic Ocean, where soil dust aerosols make the largest contribution to the aerosol load, and are assumed to dominate the variability of each data set. While each retrieval is sensitive to a different aerosol radiative property - absorption for the TOMS AI versus reflectance for the AVHRR AOT - the seasonal cycles of dust loading implied by each retrieval are consistent, if seasonal variations in the height of the aerosol layer are taken into account when interpreting the TOMS AI. On interannual time scales, the correlation is low at most locations. It is suggested that the poor interannual correlation is at least partly a consequence of data availability. When the monthly averages are constructed using only days common to both data sets, the correlation is substantially increased: this consistency suggests that both TOMS and AVHRR accurately measure the aerosol load in any given scene. However, the two retrievals have only a few days in common per month so that these restricted monthly averages have a large uncertainty. Calculations suggest that at least 7 to 10 daily images are needed to estimate reliably the average dust load during any particular month, a threshold that is rarely satisfied by the AVHRR AOT due to the presence of clouds in the domain. By rebinning each data set onto a coarser grid, the availability of

  17. A new retrieval algorithm for tropospheric temperature, humidity and pressure profiling based on GNSS radio occultation data

    Science.gov (United States)

    Kirchengast, Gottfried; Li, Ying; Scherllin-Pirscher, Barbara; Schwärz, Marc; Schwarz, Jakob; Nielsen, Johannes K.

    2017-04-01

    The GNSS radio occultation (RO) technique is an important remote sensing technique for obtaining thermodynamic profiles of temperature, humidity, and pressure in the Earth's troposphere. However, due to refraction effects of both dry ambient air and water vapor in the troposphere, retrieval of accurate thermodynamic profiles at these lower altitudes is challenging and requires suitable background information in addition to the RO refractivity information. Here we introduce a new moist air retrieval algorithm aiming to improve the quality and robustness of retrieving temperature, humidity and pressure profiles in moist air tropospheric conditions. The new algorithm consists of four steps: (1) use of prescribed specific humidity and its uncertainty to retrieve temperature and its associated uncertainty; (2) use of prescribed temperature and its uncertainty to retrieve specific humidity and its associated uncertainty; (3) use of the previous results to estimate final temperature and specific humidity profiles through optimal estimation; (4) determination of air pressure and density profiles from the results obtained before. The new algorithm does not require elaborated matrix inversions which are otherwise widely used in 1D-Var retrieval algorithms, and it allows a transparent uncertainty propagation, whereby the uncertainties of prescribed variables are dynamically estimated accounting for their spatial and temporal variations. Estimated random uncertainties are calculated by constructing error covariance matrices from co-located ECMWF short-range forecast and corresponding analysis profiles. Systematic uncertainties are estimated by empirical modeling. The influence of regarding or disregarding vertical error correlations is quantified. The new scheme is implemented with static input uncertainty profiles in WEGC's current OPSv5.6 processing system and with full scope in WEGC's next-generation system, the Reference Occultation Processing System (rOPS). Results from

  18. Lensless coherent imaging of proteins and supramolecular assemblies: Efficient phase retrieval by the charge flipping algorithm.

    Science.gov (United States)

    Dumas, Christian; van der Lee, Arie; Palatinus, Lukáš

    2013-05-01

    Diffractive imaging using the intense and coherent beam of X-ray free-electron lasers opens new perspectives for structural studies of single nanoparticles and biomolecules. Simulations were carried out to generate 3D oversampled diffraction patterns of non-crystalline biological samples, ranging from peptides and proteins to megadalton complex assemblies, and to recover their molecular structure from nanometer to near-atomic resolutions. Using these simulated data, we show here that iterative reconstruction methods based on standard and variant forms of the charge flipping algorithm, can efficiently solve the phase retrieval problem and extract a unique and reliable molecular structure. Contrary to the case of conventional algorithms, where the estimation and the use of a compact support is imposed, our approach does not require any prior information about the molecular assembly, and is amenable to a wide range of biological assemblies. Importantly, the robustness of this ab initio approach is illustrated by the fact that it tolerates experimental noise and incompleteness of the intensity data at the center of the speckle pattern. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Highlights from 4STAR Sky-Scanning Retrievals of Aerosol Intensive Optical Properties from Multiple Field Campaigns with Detailed Comparisons of SSA Reported During SEAC4RS

    Science.gov (United States)

    Dunagan, Stephen E.

    2016-01-01

    The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) with AERONET (Aerosol Robotic Network)-like sky-scanning capability and adds state-of-the-art fiber-coupled grating spectrometry to yield hyperspectral measurements of direct solar irradiance and angularly resolved sky radiance. The combination of sun-tracking and sky-scanning capability enables retrievals of wavelength-dependent aerosol optical depth (AOD), mode-resolved aerosol size distribution (SD), asphericity, and complex refractive index, and thus also the scattering phase function, asymmetry parameter, single-scattering albedo (SSA), and absorption aerosol optical thickness (AAOT). From 2012 to 2014 4STAR participated in four major field campaigns: the U.S. Dept. of Energy's TCAP (Two-Column Aerosol Project) I & II campaigns, and NASA's SEAC4RS (Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys) and ARISE (Arctic Radiation - IceBridge Sea & Ice Experiment) campaigns. Establishing a strong performance record, 4STAR operated successfully on all flights conducted during each of these campaigns. Sky radiance spectra from scans in either constant azimuth (principal plane) or constant zenith angle (almucantar) were interspersed with direct beam measurements during level legs. During SEAC4RS and ARISE, 4STAR airborne measurements were augmented with flight-level albedo from the collocated Shortwave Spectral Flux Radiometer (SSFR) providing improved specification of below-aircraft radiative conditions for the retrieval. Calibrated radiances and retrieved products will be presented with particular emphasis on detailed comparisons of ambient SSA retrievals and measurements during SEAC4RS from 4STAR, AERONET, HSRL2 (High Spectral Resolution Lidar), and from in situ measurements.

  20. Coincident Aerosol and H2O Retrievals versus HSI Imager Field Campaign ReportH2O Retrievals versus HSI Imager Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Gail P. [National Oceanic and Atmospheric Administration (NOAA), Washington, DC (United States); Cipar, John [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States); Armstrong, Peter S. [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States); van den Bosch, J. [Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States)

    2016-05-01

    Two spectrally calibrated tarpaulins (tarps) were co-located at a fixed Global Positioning System (GPS) position on the gravel antenna field at the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Southern Great Plains (SGP) site. Their placement was timed to coincide with the overflight of a new hyperspectral imaging satellite. The intention was to provide an analysis of the data obtained, including the measured and retrieved spectral albedos for the calibration tarps. Subsequently, a full suite of retrieved values of H2O column, and the aerosol overburden, were to be compared to those determined by alternate SGP ground truth assets. To the extent possible, the down-looking cloud images would be assessed against the all-sky images. Because cloud contamination above a certain level precludes the inversion processing of the satellite data, coupled with infrequent targeting opportunities, clear-sky conditions were imposed. The SGP site was chosen not only as a target of opportunity for satellite validation, but as perhaps the best coincident field measurement site, as established by DOE’s ARM Facility. The satellite team had every expectation of using the information obtained from the SGP to improve the inversion products for all subsequent satellite images, including the cloud and radiative models and parameterizations and, thereby, the performance assessment for subsequent and historic image collections. Coordinating with the SGP onsite team, four visits, all in 2009, to the Central Facility occurred: • June 6-8 (successful exploratory visit to plan tarp placements, etc.) • July 18-24 (canceled because of forecast for heavy clouds) • Sep 9-12 (ground tarps placed, onset of clouds) • Nov 7-9 (visit ultimately canceled because of weather predictions). As noted, in each instance, any significant overcast prediction precluded image collection from the satellite. Given the long task-scheduling procedures

  1. MODIS/Aqua Aerosol 5-Min L2 Swath 3km - NRT

    Data.gov (United States)

    National Aeronautics and Space Administration — The new Collection 6.1 (C61) MYD04_3K product is an improved version based on algorithm changes in Dark Target (DT) Aerosol retrieval over urban areas and...

  2. An Improved Mono-Window Algorithm for Land Surface Temperature Retrieval from Landsat 8 Thermal Infrared Sensor Data

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2015-04-01

    Full Text Available The successful launch of the Landsat 8 satellite with two thermal infrared bands on February 11, 2013, for continuous Earth observation provided another opportunity for remote sensing of land surface temperature (LST. However, calibration notices issued by the United States Geological Survey (USGS indicated that data from the Landsat 8 Thermal Infrared Sensor (TIRS Band 11 have large uncertainty and suggested using TIRS Band 10 data as a single spectral band for LST estimation. In this study, we presented an improved mono-window (IMW algorithm for LST retrieval from the Landsat 8 TIRS Band 10 data. Three essential parameters (ground emissivity, atmospheric transmittance and effective mean atmospheric temperature were required for the IMW algorithm to retrieve LST. A new method was proposed to estimate the parameter of effective mean atmospheric temperature from local meteorological data. The other two essential parameters could be both estimated through the so-called land cover approach. Sensitivity analysis conducted for the IMW algorithm revealed that the possible error in estimating the required atmospheric water vapor content has the most significant impact on the probable LST estimation error. Under moderate errors in both water vapor content and ground emissivity, the algorithm had an accuracy of ~1.4 K for LST retrieval. Validation of the IMW algorithm using the simulated datasets for various situations indicated that the LST difference between the retrieved and the simulated ones was 0.67 K on average, with an RMSE of 0.43 K. Comparison of our IMW algorithm with the single-channel (SC algorithm for three main atmosphere profiles indicated that the average error and RMSE of the IMW algorithm were −0.05 K and 0.84 K, respectively, which were less than the −2.86 K and 1.05 K of the SC algorithm. Application of the IMW algorithm to Nanjing and its vicinity in east China resulted in a reasonable LST estimation for the region. Spatial

  3. An assessment of the quality of aerosol retrievals over the Red Sea and evaluation of the climatological cloud-free dust direct radiative effect in the region

    KAUST Repository

    Brindley, H.

    2015-10-20

    Ground-based and satellite observations are used in conjunction with the Rapid Radiative Transfer Model (RRTM) to assess climatological aerosol loading and the associated cloud-free aerosol direct radiative effect (DRE) over the Red Sea. Aerosol optical depth (AOD) retrievals from the Moderate Resolution Imaging Spectroradiometer and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are first evaluated via comparison with ship-based observations. Correlations are typically better than 0.9 with very small root-mean-square and bias differences. Calculations of the DRE along the ship cruises using RRTM also show good agreement with colocated estimates from the Geostationary Earth Radiation Budget instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large particles. A monthly climatology of AOD over the Red Sea is then created from 5 years of SEVIRI retrievals. This shows enhanced aerosol loading and a distinct north to south gradient across the basin in the summer relative to the winter months. The climatology is used with RRTM to estimate the DRE at the top and bottom of the atmosphere and the atmospheric absorption due to dust aerosol. These climatological estimates indicate that although longwave effects can reach tens of W m−2, shortwave cooling typically dominates the net radiative effect over the Sea, being particularly pronounced in the summer, reaching 120 W m−2 at the surface. The spatial gradient in summertime AOD is reflected in the radiative effect at the surface and in associated differential heating by aerosol within the atmosphere above the Sea. This asymmetric effect is expected to exert a significant influence on the regional atmospheric and oceanic circulation.

  4. An assessment of the quality of aerosol retrievals over the Red Sea and evaluation of the climatological cloud-free dust direct radiative effect in the region

    KAUST Repository

    Brindley, H.; Osipov, Sergey; Bantges, R.; Smirnov, A.; Banks, J.; Levy, R.; Jish Prakash, P.; Stenchikov, Georgiy L.

    2015-01-01

    Ground-based and satellite observations are used in conjunction with the Rapid Radiative Transfer Model (RRTM) to assess climatological aerosol loading and the associated cloud-free aerosol direct radiative effect (DRE) over the Red Sea. Aerosol optical depth (AOD) retrievals from the Moderate Resolution Imaging Spectroradiometer and Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instruments are first evaluated via comparison with ship-based observations. Correlations are typically better than 0.9 with very small root-mean-square and bias differences. Calculations of the DRE along the ship cruises using RRTM also show good agreement with colocated estimates from the Geostationary Earth Radiation Budget instrument if the aerosol asymmetry parameter is adjusted to account for the presence of large particles. A monthly climatology of AOD over the Red Sea is then created from 5 years of SEVIRI retrievals. This shows enhanced aerosol loading and a distinct north to south gradient across the basin in the summer relative to the winter months. The climatology is used with RRTM to estimate the DRE at the top and bottom of the atmosphere and the atmospheric absorption due to dust aerosol. These climatological estimates indicate that although longwave effects can reach tens of W m−2, shortwave cooling typically dominates the net radiative effect over the Sea, being particularly pronounced in the summer, reaching 120 W m−2 at the surface. The spatial gradient in summertime AOD is reflected in the radiative effect at the surface and in associated differential heating by aerosol within the atmosphere above the Sea. This asymmetric effect is expected to exert a significant influence on the regional atmospheric and oceanic circulation.

  5. Efficient Retrieval of Massive Ocean Remote Sensing Images via a Cloud-Based Mean-Shift Algorithm.

    Science.gov (United States)

    Yang, Mengzhao; Song, Wei; Mei, Haibin

    2017-07-23

    The rapid development of remote sensing (RS) technology has resulted in the proliferation of high-resolution images. There are challenges involved in not only storing large volumes of RS images but also in rapidly retrieving the images for ocean disaster analysis such as for storm surges and typhoon warnings. In this paper, we present an efficient retrieval of massive ocean RS images via a Cloud-based mean-shift algorithm. Distributed construction method via the pyramid model is proposed based on the maximum hierarchical layer algorithm and used to realize efficient storage structure of RS images on the Cloud platform. We achieve high-performance processing of massive RS images in the Hadoop system. Based on the pyramid Hadoop distributed file system (HDFS) storage method, an improved mean-shift algorithm for RS image retrieval is presented by fusion with the canopy algorithm via Hadoop MapReduce programming. The results show that the new method can achieve better performance for data storage than HDFS alone and WebGIS-based HDFS. Speedup and scaleup are very close to linear changes with an increase of RS images, which proves that image retrieval using our method is efficient.

  6. A physics-based algorithm for retrieving land-surface emissivity and temperature from EOS/MODIS data

    International Nuclear Information System (INIS)

    Wan, Z.; Li, Z.L.

    1997-01-01

    The authors have developed a physics-based land-surface temperature (LST) algorithm for simultaneously retrieving surface band-averaged emissivities and temperatures from day/night pairs of MODIS (Moderate Resolution Imaging Spectroradiometer) data in seven thermal infrared bands. The set of 14 nonlinear equations in the algorithm is solved with the statistical regression method and the least-squares fit method. This new LST algorithm was tested with simulated MODIS data for 80 sets of band-averaged emissivities calculated from published spectral data of terrestrial materials in wide ranges of atmospheric and surface temperature conditions. Comprehensive sensitivity and error analysis has been made to evaluate the performance of the new LST algorithm and its dependence on variations in surface emissivity and temperature, upon atmospheric conditions, as well as the noise-equivalent temperature difference (NEΔT) and calibration accuracy specifications of the MODIS instrument. In cases with a systematic calibration error of 0.5%, the standard deviations of errors in retrieved surface daytime and nighttime temperatures fall between 0.4--0.5 K over a wide range of surface temperatures for mid-latitude summer conditions. The standard deviations of errors in retrieved emissivities in bands 31 and 32 (in the 10--12.5 microm IR spectral window region) are 0.009, and the maximum error in retrieved LST values falls between 2--3 K

  7. On the suitability of global algorithms for the retrieval of SST from the north Indian Ocean using NOAA/AVHRR

    Digital Repository Service at National Institute of Oceanography (India)

    Shenoi, S.S.C.

    using satellite-sea-truth matchups for NOAA-9 and NOAA-11. The trends associated with the SST retrievals with respect to various independent parameters and simple statistics are analysed to assess the performance of the algorithms. The MCSST and NLSST...

  8. Prediction of daily fine particulate matter concentrations using aerosol optical depth retrievals from the Geostationary Operational Environmental Satellite (GOES).

    Science.gov (United States)

    Chudnovsky, Alexandra A; Lee, Hyung Joo; Kostinski, Alex; Kotlov, Tanya; Koutrakis, Petros

    2012-09-01

    Although ground-level PM2.5 (particulate matter with aerodynamic diameter < 2.5 microm) monitoring sites provide accurate measurements, their spatial coverage within a given region is limited and thus often insufficient for exposure and epidemiological studies. Satellite data expand spatial coverage, enhancing our ability to estimate location- and/or subject-specific exposures to PM2.5. In this study, the authors apply a mixed-effects model approach to aerosol optical depth (AOD) retrievals from the Geostationary Operational Environmental Satellite (GOES) to predict PM2.5 concentrations within the New England area of the United States. With this approach, it is possible to control for the inherent day-to-day variability in the AOD-PM2.5 relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles, and ground surface reflectance. The model-predicted PM2.5 mass concentration are highly correlated with the actual observations, R2 = 0.92. Therefore, adjustment for the daily variability in AOD-PM2.5 relationship allows obtaining spatially resolved PM2.5 concentration data that can be of great value to future exposure assessment and epidemiological studies. The authors demonstrated how AOD can be used reliably to predict daily PM2.5 mass concentrations, providing determination of their spatial and temporal variability. Promising results are found by adjusting for daily variability in the AOD-PM2.5 relationship, without the need to account for a wide variety of individual additional parameters. This approach is of a great potential to investigate the associations between subject-specific exposures to PM2.5 and their health effects. Higher 4 x 4-km resolution GOES AOD retrievals comparing with the conventional MODerate resolution Imaging Spectroradiometer (MODIS) 10-km product has the potential to capture PM2.5 variability within the urban domain.

  9. The Ground Flash Fraction Retrieval Algorithm Employing Differential Evolution: Simulations and Applications

    Science.gov (United States)

    Koshak, William; Solakiewicz, Richard

    2012-01-01

    The ability to estimate the fraction of ground flashes in a set of flashes observed by a satellite lightning imager, such as the future GOES-R Geostationary Lightning Mapper (GLM), would likely improve operational and scientific applications (e.g., severe weather warnings, lightning nitrogen oxides studies, and global electric circuit analyses). A Bayesian inversion method, called the Ground Flash Fraction Retrieval Algorithm (GoFFRA), was recently developed for estimating the ground flash fraction. The method uses a constrained mixed exponential distribution model to describe a particular lightning optical measurement called the Maximum Group Area (MGA). To obtain the optimum model parameters (one of which is the desired ground flash fraction), a scalar function must be minimized. This minimization is difficult because of two problems: (1) Label Switching (LS), and (2) Parameter Identity Theft (PIT). The LS problem is well known in the literature on mixed exponential distributions, and the PIT problem was discovered in this study. Each problem occurs when one allows the numerical minimizer to freely roam through the parameter search space; this allows certain solution parameters to interchange roles which leads to fundamental ambiguities, and solution error. A major accomplishment of this study is that we have employed a state-of-the-art genetic-based global optimization algorithm called Differential Evolution (DE) that constrains the parameter search in such a way as to remove both the LS and PIT problems. To test the performance of the GoFFRA when DE is employed, we applied it to analyze simulated MGA datasets that we generated from known mixed exponential distributions. Moreover, we evaluated the GoFFRA/DE method by applying it to analyze actual MGAs derived from low-Earth orbiting lightning imaging sensor data; the actual MGA data were classified as either ground or cloud flash MGAs using National Lightning Detection Network[TM] (NLDN) data. Solution error

  10. A simple algorithm to retrieve soil moisture and vegetation biomass using passive microwave measurements over crop fields

    International Nuclear Information System (INIS)

    Wigneron, J.P.; Chanzy, A.; Calvet, J.C.; Bruguier, N.

    1995-01-01

    A simple algorithm to retrieve sail moisture and vegetation water content from passive microwave measurements is analyzed in this study. The approach is based on a zeroth-order solution of the radiative transfer equations in a vegetation layer. In this study, the single scattering albedo accounts for scattering effects and two parameters account for the dependence of the optical thickness on polarization, incidence angle, and frequency. The algorithm requires only ancillary information about crop type and surface temperature. Retrievals of the surface parameters from two radiometric data sets acquired over a soybean and a wheat crop have been attempted. The model parameters have been fitted in order to achieve best match between measured and retrieved surface data. The results of the inversion are analyzed for different configurations of the radiometric observations: one or several look angles, L-band, C-band or (L-band and C-band). Sensitivity of the retrievals to the best fit values of the model parameters has also been investigated. The best configurations, requiring simultaneous measurements at L- and C-band, produce retrievals of soil moisture and biomass with a 15% estimated precision (about 0.06 m 3 /m 3 for soil moisture and 0.3 kg/m 2 for biomass) and exhibit a limited sensitivity to the best fit parameters. (author)

  11. Multiangle Imaging Spectroradiometer (MISR) Global Aerosol Optical Depth Validation Based on 2 Years of Coincident Aerosol Robotic Network (AERONET) Observations

    Science.gov (United States)

    Kahn, Ralph A.; Gaitley, Barbara J.; Martonchik, John V.; Diner, David J.; Crean, Kathleen A.; Holben, Brent

    2005-01-01

    Performance of the Multiangle Imaging Spectroradiometer (MISR) early postlaunch aerosol optical thickness (AOT) retrieval algorithm is assessed quantitatively over land and ocean by comparison with a 2-year measurement record of globally distributed AERONET Sun photometers. There are sufficient coincident observations to stratify the data set by season and expected aerosol type. In addition to reporting uncertainty envelopes, we identify trends and outliers, and investigate their likely causes, with the aim of refining algorithm performance. Overall, about 2/3 of the MISR-retrieved AOT values fall within [0.05 or 20% x AOT] of Aerosol Robotic Network (AERONET). More than a third are within [0.03 or 10% x AOT]. Correlation coefficients are highest for maritime stations (approx.0.9), and lowest for dusty sites (more than approx.0.7). Retrieved spectral slopes closely match Sun photometer values for Biomass burning and continental aerosol types. Detailed comparisons suggest that adding to the algorithm climatology more absorbing spherical particles, more realistic dust analogs, and a richer selection of multimodal aerosol mixtures would reduce the remaining discrepancies for MISR retrievals over land; in addition, refining instrument low-light-level calibration could reduce or eliminate a small but systematic offset in maritime AOT values. On the basis of cases for which current particle models are representative, a second-generation MISR aerosol retrieval algorithm incorporating these improvements could provide AOT accuracy unprecedented for a spaceborne technique.

  12. Climatology 2011: An MLS and Sonde Derived Ozone Climatology for Satellite Retrieval Algorithms

    Science.gov (United States)

    McPeters, Richard D.; Labow, Gordon J.

    2012-01-01

    The ozone climatology used as the a priori for the version 8 Solar Backscatter Ultraviolet (SBUV) retrieval algorithms has been updated. The Microwave Limb Sounder (MLS) instrument on Aura has excellent latitude coverage and measures ozone daily from the upper troposphere to the lower mesosphere. The new climatology consists of monthly average ozone profiles for ten degree latitude zones covering pressure altitudes from 0 to 65 km. The climatology was formed by combining data from Aura MLS (2004-2010) with data from balloon sondes (1988-2010). Ozone below 8 km (below 12 km at high latitudes) is based on balloons sondes, while ozone above 16 km (21 km at high latitudes) is based on MLS measurements. Sonde and MLS data are blended in the transition region. Ozone accuracy in the upper troposphere is greatly improved because of the near uniform coverage by Aura MLS, while the addition of a large number of balloon sonde measurements improves the accuracy in the lower troposphere, in the tropics and southern hemisphere in particular. The addition of MLS data also improves the accuracy of climatology in the upper stratosphere and lower mesosphere. The revised climatology has been used for the latest reprocessing of SBUV and TOMS satellite ozone data.

  13. A novel crystal-analyzer phase retrieval algorithm and its noise property.

    Science.gov (United States)

    Bao, Yuan; Wang, Yan; Li, Panyun; Wu, Zhao; Shao, Qigang; Gao, Kun; Wang, Zhili; Ju, Zaiqiang; Zhang, Kai; Yuan, Qingxi; Huang, Wanxia; Zhu, Peiping; Wu, Ziyu

    2015-05-01

    A description of the rocking curve in diffraction enhanced imaging (DEI) is presented in terms of the angular signal response function and a simple multi-information retrieval algorithm based on the cosine function fitting. A comprehensive analysis of noise properties of DEI is also given considering the noise transfer characteristic of the X-ray source. The validation has been performed with synchrotron radiation experimental data and Monte Carlo simulations based on the Geant4 toolkit combined with the refractive process of X-rays, which show good agreement with each other. Moreover, results indicate that the signal-to-noise ratios of the refraction and scattering images are about one order of magnitude better than that of the absorption image at the edges of low-Z samples. The noise penalty is drastically reduced with the increasing photon flux and visibility. Finally, this work demonstrates that the analytical method can build an interesting connection between DEI and GDPCI (grating-based differential phase contrast imaging) and is widely suitable for a variety of measurement noise in the angular signal response imaging prototype. The analysis significantly contributes to the understanding of noise characteristics of DEI images and may allow improvements to the signal-to-noise ratio in biomedical and material science imaging.

  14. Water productivity using SAFER - Simple Algorithm for Evapotranspiration Retrieving in watershed

    Directory of Open Access Journals (Sweden)

    Daniel N. Coaguila

    Full Text Available ABSTRACT The Cabeceira Comprida stream’s watershed, located in Santa Fé do Sul, São Paulo state, has great environmental importance. It is essential for supplying water to the population and generating surpluses for sewage dilution. This study aimed to evaluate the annual performance of the components of water productivity from Landsat-8 images of 2015, using the Simple Algorithm for Evapotranspiration Retrieving (SAFER, calculating the actual evapotranspiration (ETa, biomass (BIO and water productivity (WP. The annual averages of ETa, BIO and WP were 1.03 mm day-1, 36.04 kg ha-1 day-1 and 3.19 kg m-3, respectively. The average annual values of ETa for land use and occupation were 1.40, 1.23, 1.05, 0.97 and 1.08 mm day-1 for the remaining forest (RF, invasive species (IS, pasture (Pa, annual crop (AC and perennial crop (PC, respectively, with BIO of 57.64, 46.10, 36.78, 32.69, 40.03 kg ha-1 day-1 for RF, IS, Pa, AC and PC, respectively, resulting in WP of 3.94, 3.59, 3.25, 3.09, 3.35 kg m-3 for RF, IS, Pa, AC and PC, respectively. The ETa, BIO and WP adjust to the seasonality of the region, and RF and IS stood out with the highest values.

  15. Improved Temperature Sounding and Quality Control Methodology Using AIRS/AMSU Data: The AIRS Science Team Version 5 Retrieval Algorithm

    Science.gov (United States)

    Susskind, Joel; Blaisdell, John M.; Iredell, Lena; Keita, Fricky

    2009-01-01

    This paper describes the AIRS Science Team Version 5 retrieval algorithm in terms of its three most significant improvements over the methodology used in the AIRS Science Team Version 4 retrieval algorithm. Improved physics in Version 5 allows for use of AIRS clear column radiances in the entire 4.3 micron CO2 absorption band in the retrieval of temperature profiles T(p) during both day and night. Tropospheric sounding 15 micron CO2 observations are now used primarily in the generation of clear column radiances .R(sub i) for all channels. This new approach allows for the generation of more accurate values of .R(sub i) and T(p) under most cloud conditions. Secondly, Version 5 contains a new methodology to provide accurate case-by-case error estimates for retrieved geophysical parameters and for channel-by-channel clear column radiances. Thresholds of these error estimates are used in a new approach for Quality Control. Finally, Version 5 also contains for the first time an approach to provide AIRS soundings in partially cloudy conditions that does not require use of any microwave data. This new AIRS Only sounding methodology, referred to as AIRS Version 5 AO, was developed as a backup to AIRS Version 5 should the AMSU-A instrument fail. Results are shown comparing the relative performance of the AIRS Version 4, Version 5, and Version 5 AO for the single day, January 25, 2003. The Goddard DISC is now generating and distributing products derived using the AIRS Science Team Version 5 retrieval algorithm. This paper also described the Quality Control flags contained in the DISC AIRS/AMSU retrieval products and their intended use for scientific research purposes.

  16. High Spectral Resolution Lidar and MPLNET Micro Pulse Lidar Aerosol Optical Property Retrieval Intercomparison During the 2012 7-SEAS Field Campaign at Singapore

    Science.gov (United States)

    Lolli, Simone; Welton, Ellsworth J.; Campbell, James R.; Eloranta, Edwin; Holben, Brent N.; Chew, Boon Ning; Salinas, Santo V.

    2014-01-01

    From August 2012 to February 2013 a High Resolution Spectral Lidar (HSRL; 532 nm) was deployed at that National University of Singapore near a NASA Micro Pulse Lidar NETwork (MPLNET; 527 nm) site. A primary objective of the MPLNET lidar project is the production and dissemination of reliable Level 1 measurements and Level 2 retrieval products. This paper characterizes and quantifies error in Level 2 aerosol optical property retrievals conducted through inversion techniques that derive backscattering and extinction coefficients from MPLNET elastic single-wavelength datasets. MPLNET Level 2 retrievals for aerosol optical depth and extinction/backscatter coefficient profiles are compared with corresponding HSRL datasets, for which the instrument collects direct measurements of each using a unique optical configuration that segregates aerosol and cloud backscattered signal from molecular signal. The intercomparison is performed, and error matrices reported, for lower (0-5km) and the upper (>5km) troposphere, respectively, to distinguish uncertainties observed within and above the MPLNET instrument optical overlap regime.

  17. Semi-empirical Algorithm for the Retrieval of Ecology-Relevant Water Constituents in Various Aquatic Environments

    Directory of Open Access Journals (Sweden)

    Robert Shuchman

    2009-03-01

    Full Text Available An advanced operational semi-empirical algorithm for processing satellite remote sensing data in the visible region is described. Based on the Levenberg-Marquardt multivariate optimization procedure, the algorithm is developed for retrieving major water colour producing agents: chlorophyll-a, suspended minerals and dissolved organics. Two assurance units incorporated by the algorithm are intended to flag pixels with inaccurate atmospheric correction and specific hydro-optical properties not covered by the applied hydro-optical model. The hydro-optical model is a set of spectral cross-sections of absorption and backscattering of the colour producing agents. The combination of the optimization procedure and a replaceable hydro-optical model makes the developed algorithm not specific to a particular satellite sensor or a water body. The algorithm performance efficiency is amply illustrated for SeaWiFS, MODIS and MERIS images over a variety of water bodies.

  18. Total ozone column derived from GOME and SCIAMACHY using KNMI retrieval algorithms: Validation against Brewer measurements at the Iberian Peninsula

    Science.gov (United States)

    Antón, M.; Kroon, M.; López, M.; Vilaplana, J. M.; Bañón, M.; van der A, R.; Veefkind, J. P.; Stammes, P.; Alados-Arboledas, L.

    2011-11-01

    This article focuses on the validation of the total ozone column (TOC) data set acquired by the Global Ozone Monitoring Experiment (GOME) and the Scanning Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY) satellite remote sensing instruments using the Total Ozone Retrieval Scheme for the GOME Instrument Based on the Ozone Monitoring Instrument (TOGOMI) and Total Ozone Retrieval Scheme for the SCIAMACHY Instrument Based on the Ozone Monitoring Instrument (TOSOMI) retrieval algorithms developed by the Royal Netherlands Meteorological Institute. In this analysis, spatially colocated, daily averaged ground-based observations performed by five well-calibrated Brewer spectrophotometers at the Iberian Peninsula are used. The period of study runs from January 2004 to December 2009. The agreement between satellite and ground-based TOC data is excellent (R2 higher than 0.94). Nevertheless, the TOC data derived from both satellite instruments underestimate the ground-based data. On average, this underestimation is 1.1% for GOME and 1.3% for SCIAMACHY. The SCIAMACHY-Brewer TOC differences show a significant solar zenith angle (SZA) dependence which causes a systematic seasonal dependence. By contrast, GOME-Brewer TOC differences show no significant SZA dependence and hence no seasonality although processed with exactly the same algorithm. The satellite-Brewer TOC differences for the two satellite instruments show a clear and similar dependence on the viewing zenith angle under cloudy conditions. In addition, both the GOME-Brewer and SCIAMACHY-Brewer TOC differences reveal a very similar behavior with respect to the satellite cloud properties, being cloud fraction and cloud top pressure, which originate from the same cloud algorithm (Fast Retrieval Scheme for Clouds from the Oxygen A-Band (FRESCO+)) in both the TOSOMI and TOGOMI retrieval algorithms.

  19. (abstract) Using an Inversion Algorithm to Retrieve Parameters and Monitor Changes over Forested Areas from SAR Data

    Science.gov (United States)

    Moghaddam, Mahta

    1995-01-01

    In this work, the application of an inversion algorithm based on a nonlinear opimization technique to retrieve forest parameters from multifrequency polarimetric SAR data is discussed. The approach discussed here allows for retrieving and monitoring changes in forest parameters in a quantative and systematic fashion using SAR data. The parameters to be inverted directly from the data are the electromagnetic scattering properties of the forest components such as their dielectric constants and size characteristics. Once these are known, attributes such as canopy moisture content can be obtained, which are useful in the ecosystem models.

  20. Data Retrieval Algorithm and Uncertainty Analysis for a Miniaturized, Laser Heterodyne Radiometer

    Science.gov (United States)

    Miller, J. H.; Melroy, H.; Wilson, E. L.; Clarke, G. B.

    2013-12-01

    In a collaboration between NASA Goddard Space Flight Center and George Washington University, a low-cost, surface instrument is being developed that can continuously monitor key carbon cycle gases in the atmospheric column: carbon dioxide (CO2) and methane (CH4). The instrument is based on a miniaturized, laser heterodyne radiometer (LHR) using near infrared (NIR) telecom lasers. Despite relatively weak absorption line strengths in this spectral region, spectrally-resolved atmospheric column absorptions for these two molecules fall in the range of 60-80% and thus sensitive and precise measurements of column concentrations are possible. Further, because the LHR technique has the potential for sub-Doppler spectral resolution, the possibility exists for interrogating line shapes to extract altitude profiles of the greenhouse gases. From late 2012 through 2013 the instrument was deployed for a variety of field measurements including at Park Falls, Wisconsin; Castle Airport near Atwater, California; and at the NOAA Mauna Loa Observatory in Hawaii. For each subsequent campaign, improvement in the figures of merit for the instrument (notably spectral sweep time and absorbance noise) has been observed. For the latter, the absorbance noise is approaching 0.002 optical density (OD) noise on a 1.8 OD signal. This presentation presents an overview of the measurement campaigns in the context of the data retrieval algorithm under development at GW for the calculation of column concentrations from them. For light transmission through the atmosphere, it is necessary to account for variation of pressure, temperature, composition, and refractive index through the atmosphere that are all functions of latitude, longitude, time of day, altitude, etc. In our initial work we began with coding developed under the LOWTRAN and MODTRAN programs by the AFOSR (and others). We also assumed temperature and pressure profiles from the 1976 US Standard Atmosphere and used the US Naval Observatory

  1. Measurement of phase function of aerosol at different altitudes by CCD Lidar

    Science.gov (United States)

    Sun, Peiyu; Yuan, Ke'e.; Yang, Jie; Hu, Shunxing

    2018-02-01

    The aerosols near the ground are closely related to human health and climate change, the study on which has important significance. As we all know, the aerosol is inhomogeneous at different altitudes, of which the phase function is also different. In order to simplify the retrieval algorithm, it is usually assumed that the aerosol is uniform at different altitudes, which will bring measurement error. In this work, an experimental approach is demonstrated to measure the scattering phase function of atmospheric aerosol particles at different heights by CCD lidar system, which could solve the problem of the traditional CCD lidar system in assumption of phase function. The phase functions obtained by the new experimental approach are used to retrieve the aerosol extinction coefficient profiles. By comparison of the aerosol extinction coefficient retrieved by Mie-scattering aerosol lidar and CCD lidar at night, the reliability of new experimental approach is verified.

  2. XBAER-derived aerosol optical thickness from OLCI/Sentinel-3 observation

    Science.gov (United States)

    Mei, Linlu; Rozanov, Vladimir; Vountas, Marco; Burrows, John P.; Richter, Andreas

    2018-02-01

    A cloud identification algorithm used for cloud masking, which is based on the spatial variability of reflectances at the top of the atmosphere in visible wavelengths, has been developed for the retrieval of aerosol properties by MODIS. It is shown that the spatial pattern of cloud reflectance, as observed from space, is very different from that of aerosols. Clouds show a high spatial variability in the scale of a hundred metres to a few kilometres, whereas aerosols in general are homogeneous. The concept of spatial variability of reflectances at the top of the atmosphere is mainly applicable over the ocean, where the surface background is sufficiently homogeneous for the separation between aerosols and clouds. Aerosol retrievals require a sufficiently accurate cloud identification to be able to mask these ground scenes. However, a conservative mask will exclude strong aerosol episodes and a less conservative mask could introduce cloud contamination that biases the retrieved aerosol optical properties (e.g. aerosol optical depth and effective radii). A detailed study on the effect of cloud contamination on aerosol retrievals has been performed and parameters are established determining the threshold value for the MODIS aerosol cloud mask (3×3-STD) over the ocean. The 3×3-STD algorithm discussed in this paper is the operational cloud mask used for MODIS aerosol retrievals over the ocean.A prolonged pollution haze event occurred in the northeast part of China during the period 16-21 December 2016. To assess the impact of such events, the amounts and distribution of aerosol particles, formed in such events, need to be quantified. The newly launched Ocean Land Colour Instrument (OLCI) onboard Sentinel-3 is the successor of the MEdium Resolution Imaging Spectrometer (MERIS). It provides measurements of the radiance and reflectance at the top of the atmosphere, which can be used to retrieve the aerosol optical thickness (AOT) from synoptic to global scales. In this

  3. CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operations

    Science.gov (United States)

    Mugnai, A.; Smith, E. A.; Tripoli, G. J.; Bizzarri, B.; Casella, D.; Dietrich, S.; Di Paola, F.; Panegrossi, G.; Sanò, P.

    2013-04-01

    Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF) is a EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites) program, designed to deliver satellite products of hydrological interest (precipitation, soil moisture and snow parameters) over the European and Mediterranean region to research and operations users worldwide. Six satellite precipitation algorithms and concomitant precipitation products are the responsibility of various agencies in Italy. Two of these algorithms have been designed for maximum accuracy by restricting their inputs to measurements from conical and cross-track scanning passive microwave (PMW) radiometers mounted on various low Earth orbiting satellites. They have been developed at the Italian National Research Council/Institute of Atmospheric Sciences and Climate in Rome (CNR/ISAC-Rome), and are providing operational retrievals of surface rain rate and its phase properties. Each of these algorithms is physically based, however, the first of these, referred to as the Cloud Dynamics and Radiation Database (CDRD) algorithm, uses a Bayesian-based solution solver, while the second, referred to as the PMW Neural-net Precipitation Retrieval (PNPR) algorithm, uses a neural network-based solution solver. Herein we first provide an overview of the two initial EU research and applications programs that motivated their initial development, EuroTRMM and EURAINSAT (European Satellite Rainfall Analysis and Monitoring at the Geostationary Scale), and the current H-SAF program that provides the framework for their operational use and continued development. We stress the relevance of the CDRD and PNPR algorithms and their precipitation products in helping secure the goals of H-SAF's scientific and operations agenda, the former helpful as a secondary calibration reference to other algorithms in H-SAF's complete mix of algorithms. Descriptions of the algorithms' designs are provided

  4. CDRD and PNPR satellite passive microwave precipitation retrieval algorithms: EuroTRMM/EURAINSAT origins and H-SAF operations

    Directory of Open Access Journals (Sweden)

    A. Mugnai

    2013-04-01

    Full Text Available Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF is a EUMETSAT (European Organisation for the Exploitation of Meteorological Satellites program, designed to deliver satellite products of hydrological interest (precipitation, soil moisture and snow parameters over the European and Mediterranean region to research and operations users worldwide. Six satellite precipitation algorithms and concomitant precipitation products are the responsibility of various agencies in Italy. Two of these algorithms have been designed for maximum accuracy by restricting their inputs to measurements from conical and cross-track scanning passive microwave (PMW radiometers mounted on various low Earth orbiting satellites. They have been developed at the Italian National Research Council/Institute of Atmospheric Sciences and Climate in Rome (CNR/ISAC-Rome, and are providing operational retrievals of surface rain rate and its phase properties. Each of these algorithms is physically based, however, the first of these, referred to as the Cloud Dynamics and Radiation Database (CDRD algorithm, uses a Bayesian-based solution solver, while the second, referred to as the PMW Neural-net Precipitation Retrieval (PNPR algorithm, uses a neural network-based solution solver. Herein we first provide an overview of the two initial EU research and applications programs that motivated their initial development, EuroTRMM and EURAINSAT (European Satellite Rainfall Analysis and Monitoring at the Geostationary Scale, and the current H-SAF program that provides the framework for their operational use and continued development. We stress the relevance of the CDRD and PNPR algorithms and their precipitation products in helping secure the goals of H-SAF's scientific and operations agenda, the former helpful as a secondary calibration reference to other algorithms in H-SAF's complete mix of algorithms. Descriptions of the algorithms' designs are

  5. Reducing the uncertainty in background marine aerosol radiative properties using CAM5 model results and CALIPSO-retrievals

    Science.gov (United States)

    Meskhidze, N.; Gantt, B.; Dawson, K.; Johnson, M. S.; Gasso, S.

    2012-12-01

    Abundance of natural aerosols in the atmosphere strongly affects global aerosol optical depth (AOD) and influences clouds and the hydrological cycle through its ability to act as cloud condensation nuclei (CCN). Because the anthropogenic contribution to climate forcing represents the difference between the total forcing and that from natural aerosols, understanding background aerosols is necessary to evaluate the influences of anthropogenic aerosols on cloud reflectivity and persistence (so-called indirect radiative forcing). The effects of marine aerosols are explored using remotely sensed data obtained by Cloud-aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and the NCAR Community Atmosphere Model (CAM5.0), coupled with the PNNL Modal Aerosol Model. CALIPSO-provided high resolution vertical profile information about different aerosol subtypes (defined as clean continental, marine, desert dust, polluted continental, polluted dust, and biomass burning), particulate depolarization ratio (or particle non-sphericity), reported aerosol color ratio (the ratio of aerosol backscatter at the two wavelengths) and lidar ratios over different parts of the oceans are compared to model-simulations to help evaluate the contribution of biogenic aerosol to CCN budget in the marine boundary layer. Model-simulations show that over biologically productive ocean waters primary organic aerosols of marine origin can contribute up to a 20% increase in CCN (at a supersaturation of 0.2%) number concentrations. Corresponding changes associated with cloud properties (liquid water path and droplet number) can decrease global annual mean indirect radiative forcing of anthropogenic aerosol (less cooling) by ~0.1 Wm-2 (7%). This study suggests ignoring the complex chemical composition and size distribution of sea spray particles could result in considerable uncertainties in predicted anthropogenic aerosol indirect effect.

  6. New Aerosol Models for the Retrieval of Aerosol Optical Thickness and Normalized Water-Leaving Radiances from the SeaWiFS and MODIS Sensors Over Coastal Regions and Open Oceans

    Science.gov (United States)

    Ahmad, Ziauddin; Franz, Bryan A.; McClain, Charles R.; Kwiatkowska, Ewa J.; Werdell, Jeremy; Shettle, Eric P.; Holben, Brent N.

    2010-01-01

    We describe the development of a new suite of aerosol models for the retrieval of atmospheric and oceanic optical properties from the SeaWiFs and MODIS sensors, including aerosol optical thickness (tau), angstrom coefficient (alpha), and water-leaving radiance (L(sub w)). The new aerosol models are derived from Aerosol Robotic Network (AERONET) observations and have bimodal lognormal distributions that are narrower than previous models used by the Ocean Biology Processing Group. We analyzed AERONET data over open ocean and coastal regions and found that the seasonal variability in the modal radii, particularly in the coastal region, was related to the relative humidity, These findings were incorporated into the models by making the modal radii, as well as the refractive indices, explicitly dependent on relative humidity, From those findings, we constructed a new suite of aerosol models. We considered eight relative humidity values (30%, 50%, 70%, 75%, 80%, 85%, 90%. and 95%) and, for each relative humidity value, we constructed ten distributions by varying the fine-mode fraction from zero to 1. In all. 80 distributions (8Rh x 10 fine-mode fractions) were created to process the satellite data. We. also assumed that the coarse-mode particles were nonabsorbing (sea salt) and that all observed absorptions were entirely due to fine-mode particles. The composition of fine mode was varied to ensure that the new models exhibited the same spectral dependence of single scattering albedo as observed in the AERONET data,

  7. The impact of aerosol vertical distribution on aerosol optical depth retrieval using CALIPSO and MODIS data : Case study over dust and smoke regions

    NARCIS (Netherlands)

    Wu, Y.; de Graaf, M.; Menenti, M.

    2017-01-01

    Global quantitative aerosol information has been derived from MODerate Resolution Imaging SpectroRadiometer (MODIS) observations for decades since early 2000 and widely used for air quality and climate change research. However, the operational MODIS Aerosol Optical Depth (AOD) products Collection

  8. Assessment of SMOS Soil Moisture Retrieval Parameters Using Tau-Omega Algorithms for Soil Moisture Deficit Estimation

    Science.gov (United States)

    Srivastava, Prashant K.; Han, Dawei; Rico-Ramirez, Miguel A.; O'Neill, Peggy; Islam, Tanvir; Gupta, Manika

    2014-01-01

    Soil Moisture and Ocean Salinity (SMOS) is the latest mission which provides flow of coarse resolution soil moisture data for land applications. However, the efficient retrieval of soil moisture for hydrological applications depends on optimally choosing the soil and vegetation parameters. The first stage of this work involves the evaluation of SMOS Level 2 products and then several approaches for soil moisture retrieval from SMOS brightness temperature are performed to estimate Soil Moisture Deficit (SMD). The most widely applied algorithm i.e. Single channel algorithm (SCA), based on tau-omega is used in this study for the soil moisture retrieval. In tau-omega, the soil moisture is retrieved using the Horizontal (H) polarisation following Hallikainen dielectric model, roughness parameters, Fresnel's equation and estimated Vegetation Optical Depth (tau). The roughness parameters are empirically calibrated using the numerical optimization techniques. Further to explore the improvement in retrieval models, modifications have been incorporated in the algorithms with respect to the sources of the parameters, which include effective temperatures derived from the European Center for Medium-Range Weather Forecasts (ECMWF) downscaled using the Weather Research and Forecasting (WRF)-NOAH Land Surface Model and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) while the s is derived from MODIS Leaf Area Index (LAI). All the evaluations are performed against SMD, which is estimated using the Probability Distributed Model following a careful calibration and validation integrated with sensitivity and uncertainty analysis. The performance obtained after all those changes indicate that SCA-H using WRF-NOAH LSM downscaled ECMWF LST produces an improved performance for SMD estimation at a catchment scale.

  9. Evaluation of the MERIS aerosol product over land with AERONET

    Directory of Open Access Journals (Sweden)

    J. Vidot

    2008-12-01

    Full Text Available The Medium Resolution Imaging Spectrometer (MERIS launched in February 2002 on-board the ENVISAT spacecraft is making global observations of top-of-atmosphere (TOA radiances. Aerosol optical properties are retrieved over land using Look-Up Table (LUT based algorithm and surface reflectances in the blue and the red spectral regions. We compared instantaneous aerosol optical thicknesses retrieved by MERIS in the blue and the red at locations containing sites within the Aerosol Robotic Network (AERONET. Between 2002 and 2005, a set of 500 MERIS images were used in this study. The result shows that, over land, MERIS aerosol optical thicknesses are well retrieved in the blue and poorly retrieved in the red, leading to an underestimation of the Angstrom coefficient. Correlations are improved by applying a simple criterion to avoid scenes probably contaminated by thin clouds. To investigate the weakness of the MERIS algorithm, ground-based radiometer measurements have been used in order to retrieve new aerosol models, based on their Inherent Optical Properties (IOP. These new aerosol models slightly improve the correlation, but the main problem of the MERIS aerosol product over land can be attributed to the surface reflectance model in the red.

  10. Hierarchical multiple binary image encryption based on a chaos and phase retrieval algorithm in the Fresnel domain

    International Nuclear Information System (INIS)

    Wang, Zhipeng; Hou, Chenxia; Lv, Xiaodong; Wang, Hongjuan; Gong, Qiong; Qin, Yi

    2016-01-01

    Based on the chaos and phase retrieval algorithm, a hierarchical multiple binary image encryption is proposed. In the encryption process, each plaintext is encrypted into a diffraction intensity pattern by two chaos-generated random phase masks (RPMs). Thereafter, the captured diffraction intensity patterns are partially selected by different binary masks and then combined together to form a single intensity pattern. The combined intensity pattern is saved as ciphertext. For decryption, an iterative phase retrieval algorithm is performed, in which a support constraint in the output plane and a median filtering operation are utilized to achieve a rapid convergence rate without a stagnation problem. The proposed scheme has a simple optical setup and large encryption capacity. In particular, it is well suited for constructing a hierarchical security system. The security and robustness of the proposal are also investigated. (letter)

  11. Low-cost Citizen Science Balloon Platform for Measuring Air Pollutants to Improve Satellite Retrieval Algorithms

    Science.gov (United States)

    Potosnak, M. J.; Beck-Winchatz, B.; Ritter, P.

    2016-12-01

    High-altitude balloons (HABs) are an engaging platform for citizen science and formal and informal STEM education. However, the logistics of launching, chasing and recovering a payload on a 1200 g or 1500 g balloon can be daunting for many novice school groups and citizen scientists, and the cost can be prohibitive. In addition, there are many interesting scientific applications that do not require reaching the stratosphere, including measuring atmospheric pollutants in the planetary boundary layer. With a large number of citizen scientist flights, these data can be used to constrain satellite retrieval algorithms. In this poster presentation, we discuss a novel approach based on small (30 g) balloons that are cheap and easy to handle, and low-cost tracking devices (SPOT trackers for hikers) that do not require a radio license. Our scientific goal is to measure air quality in the lower troposphere. For example, particulate matter (PM) is an air pollutant that varies on small spatial scales and has sources in rural areas like biomass burning and farming practices such as tilling. Our HAB platform test flight incorporates an optical PM sensor, an integrated single board computer that records the PM sensor signal in addition to flight parameters (pressure, location and altitude), and a low-cost tracking system. Our goal is for the entire platform to cost less than $500. While the datasets generated by these flights are typically small, integrating a network of flight data from citizen scientists into a form usable for comparison to satellite data will require big data techniques.

  12. Fine Particulate Matter Predictions Using High Resolution Aerosol Optical Depth (AOD) Retrievals

    Science.gov (United States)

    Chudnovsky, Alexandra A.; Koutrakis, Petros; Kloog, Itai; Melly, Steven; Nordio, Francesco; Lyapustin, Alexei; Wang, Jujie; Schwartz, Joel

    2014-01-01

    To date, spatial-temporal patterns of particulate matter (PM) within urban areas have primarily been examined using models. On the other hand, satellites extend spatial coverage but their spatial resolution is too coarse. In order to address this issue, here we report on spatial variability in PM levels derived from high 1 km resolution AOD product of Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm developed for MODIS satellite. We apply day-specific calibrations of AOD data to predict PM(sub 2.5) concentrations within the New England area of the United States. To improve the accuracy of our model, land use and meteorological variables were incorporated. We used inverse probability weighting (IPW) to account for nonrandom missingness of AOD and nested regions within days to capture spatial variation. With this approach we can control for the inherent day-to-day variability in the AOD-PM(sub 2.5) relationship, which depends on time-varying parameters such as particle optical properties, vertical and diurnal concentration profiles and ground surface reflectance among others. Out-of-sample "ten-fold" cross-validation was used to quantify the accuracy of model predictions. Our results show that the model-predicted PM(sub 2.5) mass concentrations are highly correlated with the actual observations, with out-of- sample R(sub 2) of 0.89. Furthermore, our study shows that the model captures the pollution levels along highways and many urban locations thereby extending our ability to investigate the spatial patterns of urban air quality, such as examining exposures in areas with high traffic. Our results also show high accuracy within the cities of Boston and New Haven thereby indicating that MAIAC data can be used to examine intra-urban exposure contrasts in PM(sub 2.5) levels.

  13. Comparison of single distance phase retrieval algorithms by considering different object composition and the effect of statistical and structural noise.

    Science.gov (United States)

    Chen, R C; Rigon, L; Longo, R

    2013-03-25

    Phase retrieval is a technique for extracting quantitative phase information from X-ray propagation-based phase-contrast tomography (PPCT). In this paper, the performance of different single distance phase retrieval algorithms will be investigated. The algorithms are herein called phase-attenuation duality Born Algorithm (PAD-BA), phase-attenuation duality Rytov Algorithm (PAD-RA), phase-attenuation duality Modified Bronnikov Algorithm (PAD-MBA), phase-attenuation duality Paganin algorithm (PAD-PA) and phase-attenuation duality Wu Algorithm (PAD-WA), respectively. They are all based on phase-attenuation duality property and on weak absorption of the sample and they employ only a single distance PPCT data. In this paper, they are investigated via simulated noise-free PPCT data considering the fulfillment of PAD property and weakly absorbing conditions, and with experimental PPCT data of a mixture sample containing absorbing and weakly absorbing materials, and of a polymer sample considering different degrees of statistical and structural noise. The simulation shows all algorithms can quantitatively reconstruct the 3D refractive index of a quasi-homogeneous weakly absorbing object from noise-free PPCT data. When the weakly absorbing condition is violated, the PAD-RA and PAD-PA/WA obtain better result than PAD-BA and PAD-MBA that are shown in both simulation and mixture sample results. When considering the statistical noise, the contrast-to-noise ratio values decreases as the photon number is reduced. The structural noise study shows that the result is progressively corrupted by ring-like artifacts with the increase of structural noise (i.e. phantom thickness). The PAD-RA and PAD-PA/WA gain better density resolution than the PAD-BA and PAD-MBA in both statistical and structural noise study.

  14. 4STAR Sky-Scanning Retrievals of Aerosol Intensive Optical Properties from Multiple Field Campaigns with Detailed Comparisons of SSA Reported During SEAC4RS

    Science.gov (United States)

    Flynn, Connor; Dahlgren, R. P.; Dunagan, S.; Johnson, R.; Kacenelenbogen, M.; LeBlanc, S.; Livingston, J.; Redemann, J.; Schmid, B.; Segal Rozenhaimer, M.; hide

    2015-01-01

    The 4STAR (Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research) instrument combines airborne sun tracking capabilities of the Ames Airborne Tracking Sun Photometer (AATS-14) with AERONET-like sky-scanning capability and adds state-of-the-art fiber-coupled grating spectrometry to yield hyper spectral measurements of direct solar irradiance and angularly resolved sky radiance. The combination of sun-tracking and sky-scanning capability enables retrievals of wavelength-dependent aerosol optical depth (AOD), mode-resolved aerosol size distribution (SD), asphericity, and complex refractive index, and thus also the scattering phase function, asymmetry parameter, single-scattering albedo (SSA), and absorption aerosol optical thickness (AAOT).From 2012 to 2014 4STAR participated in four major field campaigns: the U.S. Dept. of Energy TCAP I II campaigns, and NASAs SEAC4RS and ARISE campaigns. Establishing a strong performance record, 4STAR operated successfully on all flights conducted during each of these campaigns. Sky radiance spectra from scans in either constant azimuth (principal plane) or constant zenith angle (almucantar) were interspersed with direct beam measurements during level legs. During SEAC4RS and ARISE, 4STAR airborne measurements were augmented with flight-level albedo from the collocated Shortwave Spectral Flux Radiometer (SSFR) providing improved specification of below-aircraft radiative conditions for the retrieval. Calibrated radiances and retrieved products will be presented with particular emphasis on detailed comparisons of ambient SSA retrievals and measurements during SEAC4RS from 4STAR, AERONET, HSRL2, and from in situ measurements.

  15. A Study on Retrieval Algorithm of Black Water Aggregation in Taihu Lake Based on HJ-1 Satellite Images

    International Nuclear Information System (INIS)

    Lei, Zou; Bing, Zhang; Junsheng, Li; Qian, Shen; Fangfang, Zhang; Ganlin, Wang

    2014-01-01

    The phenomenon of black water aggregation (BWA) occurs in inland water when massive algal bodies aggregate, die, and react with the toxic sludge in certain climate conditions to deprive the water of oxygen. This process results in the deterioration of water quality and damage to the ecosystem. Because charge coupled device (CCD) camera data from the Chinese HJ environmental satellite shows high potential in monitoring BWA, we acquired four HJ-CCD images of Taihu Lake captured during 2009 to 2011 to study this phenomenon. The first study site was selected near the Shore of Taihu Lake. We pre-processed the HJ-CCD images and analyzed the digital number (DN) gray values in the research area and in typical BWA areas. The results show that the DN values of visible bands in BWA areas are obviously lower than those in the research areas. Moreover, we developed an empirical retrieving algorithm of BWA based on the DN mean values and variances of research areas. Finally, we tested the accuracy of this empirical algorithm. The retrieving accuracies were89.9%, 58.1%, 73.4%, and 85.5%, respectively, which demonstrates the efficiency of empirical algorithm in retrieving the approximate distributions of BWA

  16. Steps Toward an EOS-Era Aerosol Type Climatology

    Science.gov (United States)

    Kahn, Ralph A.

    2012-01-01

    We still have a way to go to develop a global climatology of aerosol type from the EOS-era satellite data record that currently spans more than 12 years of observations. We have demonstrated the ability to retrieve aerosol type regionally, providing a classification based on the combined constraints on particle size, shape, and single-scattering albedo (SSA) from the MISR instrument. Under good but not necessarily ideal conditions, the MISR data can distinguish three-to-five size bins, two-to-four bins in SSA, and spherical vs. non-spherical particles. However, retrieval sensitivity varies enormously with scene conditions. So, for example, there is less information about aerosol type when the mid-visible aerosol optical depth (AOD) is less that about 0.15 or 0.2, or when the range of scattering angles observed is reduced by solar geometry, even though the quality of the AOD retrieval itself is much less sensitive to these factors. This presentation will review a series of studies aimed at assessing the capabilities, as well as the limitations, of MISR aerosol type retrievals involving wildfire smoke, desert dust, volcanic ash, and urban pollution, in specific cases where suborbital validation data are available. A synthesis of results, planned upgrades to the MISR Standard aerosol algorithm to improve aerosol type retrievals, and steps toward the development of an aerosol type quality flag for the Standard product, will also be covered.

  17. Aerosol layer height from synergistic use of VIIRS and OMPS

    Science.gov (United States)

    Lee, J.; Hsu, N. Y. C.; Sayer, A. M.; Kim, W.; Seftor, C. J.

    2017-12-01

    This study presents an Aerosol Single-scattering albedo and Height Estimation (ASHE) algorithm, which retrieves the height of UV-absorbing aerosols by synergistically using the Visible Infrared Imaging Radiometer Suite (VIIRS) and the Ozone Mapping and Profiler Suite (OMPS). ASHE provides height information over a much broader area than ground-based or spaceborne lidar measurements by benefitting from the wide swaths of the two instruments used. As determination of single-scattering albedo (SSA) of the aerosol layer is the most critical part for the performance and coverage of ASHE, here we demonstrate three different strategies to constrain the SSA. First, ASHE is able to retrieve the SSA of UV-absorbing aerosols when Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) provides vertical profiles of the aerosol layer of interest. Second, Aerosol Robotic Network (AERONET) inversions can directly constrain the SSA of the aerosol layer when collocated with VIIRS or OMPS. Last, a SSA climatology from ASHE, AERONET, or other data sources can be used for large-scale, aged aerosol events, for which climatological SSA is well-known, at the cost of a slight decrease in retrieval accuracy. The same algorithm can be applied to measurements of similar type, such as those made by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI), for a long-term, consistent data record.

  18. Intercomparison between CMIP5 model and MODIS satellite-retrieved data of aerosol optical depth, cloud fraction, and cloud-aerosol interactions

    Science.gov (United States)

    Sockol, Alyssa; Small Griswold, Jennifer D.

    2017-08-01

    Aerosols are a critical component of the Earth's atmosphere and can affect the climate of the Earth through their interactions with solar radiation and clouds. Cloud fraction (CF) and aerosol optical depth (AOD) at 550 nm from the Moderate Resolution Imaging Spectroradiometer (MODIS) are used with analogous cloud and aerosol properties from Historical Phase 5 of the Coupled Model Intercomparison Project (CMIP5) model runs that explicitly include anthropogenic aerosols and parameterized cloud-aerosol interactions. The models underestimate AOD by approximately 15% and underestimate CF by approximately 10% overall on a global scale. A regional analysis is then used to evaluate model performance in two regions with known biomass burning activity and absorbing aerosol (South America (SAM) and South Africa (SAF)). In SAM, the models overestimate AOD by 4.8% and underestimate CF by 14%. In SAF, the models underestimate AOD by 35% and overestimate CF by 13.4%. Average annual cycles show that the monthly timing of AOD peaks closely match satellite data in both SAM and SAF for all except the Community Atmosphere Model 5 and Geophysical Fluid Dynamics Laboratory (GFDL) models. Monthly timing of CF peaks closely match for all models (except GFDL) for SAM and SAF. Sorting monthly averaged 2° × 2.5° model or MODIS CF as a function of AOD does not result in the previously observed "boomerang"-shaped CF versus AOD relationship characteristic of regions with absorbing aerosols from biomass burning. Cloud-aerosol interactions, as observed using daily (or higher) temporal resolution data, are not reproducible at the spatial or temporal resolution provided by the CMIP5 models.

  19. Aerosol remote sensing over the ocean using MSG-SEVIRI visible images

    NARCIS (Netherlands)

    Bennouna, Y.S.; Leeuw, G. de; Piazzola, J.; Kusmierczyk‐Michulec, J.T.

    2009-01-01

    With its observational frequency of 15 minutes, the Meteosat Second Generation (MSG) geostationary satellite offers a great potential to monitor aerosol transport using Spinning Enhanced Visible and Infra-Red Imager (SEVIRI) data. To explore this potential, an algorithm for the retrieval of aerosol

  20. Two-step phase retrieval algorithm based on the quotient of inner products of phase-shifting interferograms

    International Nuclear Information System (INIS)

    Niu, Wenhu; Zhong, Liyun; Sun, Peng; Zhang, Wangping; Lu, Xiaoxu

    2015-01-01

    Based on the quotient of inner products, a simple and rapid algorithm is proposed to retrieve the measured phase from two-frame phase-shifting interferograms with unknown phase shifts. Firstly, we filtered the background of interferograms by a Gaussian high-pass filter. Secondly, we calculated the inner products of the background-filtered interferograms. Thirdly, we extracted the phase shifts by the quotient of the inner products then calculated the measured phase by an arctangent function. Finally, we tested the performance of the proposed algorithm by the simulation calculation and the experimental research for a vortex phase plate. Both the simulation calculation and the experimental result showed that the phase shifts and the measured phase with high accuracy can be obtained by the proposed algorithm rapidly and conveniently. (paper)

  1. MAX-DOAS measurements in southern China: retrieval of aerosol extinctions and validation using ground-based in-situ data

    Directory of Open Access Journals (Sweden)

    X. Li

    2010-03-01

    Full Text Available We performed MAX-DOAS measurements during the PRiDe-PRD2006 campaign in the Pearl River Delta region 50 km north of Guangzhou, China, for 4 weeks in June 2006. We used an instrument sampling at 7 different elevation angles between 3° and 90°. During 9 cloud-free days, differential slant column densities (DSCDs of O4 (O2 dimer absorptions between 351 nm and 389 nm were evaluated for 6 elevation angles. Here, we show that radiative transfer modeling of the DSCDS can be used to retrieve the aerosol extinction and the height of the boundary layer. A comparison of the aerosol extinction with simultaneously recorded, ground based nephelometer data shows excellent agreement.

  2. Constraining the Structure of Hot Jupiter Atmospheres Using a Hybrid Version of the NEMESIS Retrieval Algorithm

    Science.gov (United States)

    Badhan, Mahmuda A.; Mandell, Avi M.; Hesman, Brigette; Nixon, Conor; Deming, Drake; Irwin, Patrick; Barstow, Joanna; Garland, Ryan

    2015-11-01

    Understanding the formation environments and evolution scenarios of planets in nearby planetary systems requires robust measures for constraining their atmospheric physical properties. Here we have utilized a combination of two different parameter retrieval approaches, Optimal Estimation and Markov Chain Monte Carlo, as part of the well-validated NEMESIS atmospheric retrieval code, to infer a range of temperature profiles and molecular abundances of H2O, CO2, CH4 and CO from available dayside thermal emission observations of several hot-Jupiter candidates. In order to keep the number of parameters low and henceforth retrieve more plausible profile shapes, we have used a parametrized form of the temperature profile based upon an analytic radiative equilibrium derivation in Guillot et al. 2010 (Line et al. 2012, 2014). We show retrieval results on published spectroscopic and photometric data from both the Hubble Space Telescope and Spitzer missions, and compare them with simulations from the upcoming JWST mission. In addition, since NEMESIS utilizes correlated distribution of absorption coefficients (k-distribution) amongst atmospheric layers to compute these models, updates to spectroscopic databases can impact retrievals quite significantly for such high-temperature atmospheres. As high-temperature line databases are continually being improved, we also compare retrievals between old and newer databases.

  3. The Next-Generation Goddard Convective-Stratiform Heating Algorithm: New Retrievals for Tropical and Extra-tropical Environments

    Science.gov (United States)

    Lang, S. E.; Tao, W. K.; Iguchi, T.

    2017-12-01

    The Goddard Convective-Stratiform Heating (or CSH) algorithm has been used to estimate cloud heating over the global Tropics using TRMM rainfall data and a set of look-up-tables (LUTs) derived from a series of multi-week cloud-resolving model (CRM) simulations using the Goddard Cumulus Ensemble model (GCE). These simulations link satellite observables (i.e., surface rainfall and stratiform fraction) with cloud heating profiles, which are not directly observable. However, with the launch of GPM in 2014, the range over which such algorithms can be applied has been extended from the Tropics into higher latitudes, including cold season and synoptic weather systems. In response, the CSH algorithm and its LUTs have been revised both to improve the retrievals in the Tropics as well as expand retrievals to higher latitudes. For the Tropics, the GCE simulations used to build the LUTs were upgraded using larger 2D model domains (512 vs 256 km) and a new, improved Goddard 4-ice scheme as well as expanded with additional cases (4 land and 6 ocean in total). The new tropical LUTs are also re-built using additional metrics. Besides surface type, conditional rain intensity and stratiform fraction, the new LUTs incorporate echo top heights and low-level (0-2 km) vertical reflectivity gradients. CSH retrievals in the Tropics based on the new LUTs show significant differences from previous iterations using TRMM data or the old LUT metrics. For the Extra-tropics, 6 NU-WRF simulations of synoptic events (3 East Coast and 3 West Coast), including snow, were used to build new extra-tropical CSH LUTs. The LUT metrics for the extra-tropics are based on radar characteristics and freezing level height. The extra-tropical retrievals are evaluated with a self-consistency check approach using the model heating as `truth,' and freezing level height is used to transition CSH retrievals from the Tropics to Extra-tropics. Retrieved zonal average heating structures in the Extra-tropics are

  4. Simultaneous retrieval of aerosols and ocean properties: A classic inverse modeling approach. I. Analytic Jacobians from the linearized CAO-DISORT model

    International Nuclear Information System (INIS)

    Spurr, Robert; Stamnes, Knut; Eide, Hans; Li Wei; Zhang Kexin; Stamnes, Jakob

    2007-01-01

    In this paper and the sequel, we investigate the application of classic inverse methods based on iterative least-squares cost-function minimization to the simultaneous retrieval of aerosol and ocean properties from visible and near infrared spectral radiance measurements such as those from the SeaWiFS and MODIS instruments. Radiance measurements at the satellite are simulated directly using an accurate coupled atmosphere-ocean-discrete-ordinate radiative transfer (CAO-DISORT) code as the main component of the forward model. For this kind of cost-function inverse problem, we require the forward model to generate weighting functions (radiance partial derivatives) with respect to the aerosol and marine properties to be retrieved, and to other model parameters which are sources of error in the retrievals. In this paper, we report on the linearization of the CAO-DISORT model. This linearization provides a complete analytic differentiation of the coupled-media radiative transfer theory, and it allows the model to generate analytic weighting functions for any atmospheric or marine parameter. For high solar zenith angles, we give an implementation of the pseudo-spherical (P-S) approach to solar beam attenuation in the atmosphere in the linearized model. We summarize a number of performance enhancements such as the use of an exact single-scattering calculation to improve accuracy. We derive inherent optical property inputs for the linearized CAO-DISORT code for a simple 2-parameter bio-optical model for the marine environment coupled to a 2-parameter bimodal atmospheric aerosol medium

  5. On the retrieval of significant wave heights from spaceborne Synthetic Aperture Radar using the Max-Planck Institut algorithm.

    Science.gov (United States)

    Violante-Carvalho, Nelson

    2005-12-01

    Synthetic Aperture Radar (SAR) onboard satellites is the only source of directional wave spectra with continuous and global coverage. Millions of SAR Wave Mode (SWM) imagettes have been acquired since the launch in the early 1990's of the first European Remote Sensing Satellite ERS-1 and its successors ERS-2 and ENVISAT, which has opened up many possibilities specially for wave data assimilation purposes. The main aim of data assimilation is to improve the forecasting introducing available observations into the modeling procedures in order to minimize the differences between model estimates and measurements. However there are limitations in the retrieval of the directional spectrum from SAR images due to nonlinearities in the mapping mechanism. The Max-Planck Institut (MPI) scheme, the first proposed and most widely used algorithm to retrieve directional wave spectra from SAR images, is employed to compare significant wave heights retrieved from ERS-1 SAR against buoy measurements and against the WAM wave model. It is shown that for periods shorter than 12 seconds the WAM model performs better than the MPI, despite the fact that the model is used as first guess to the MPI method, that is the retrieval is deteriorating the first guess. For periods longer than 12 seconds, the part of the spectrum that is directly measured by SAR, the performance of the MPI scheme is at least as good as the WAM model.

  6. Developing Benthic Class Specific, Chlorophyll-a Retrieving Algorithms for Optically-Shallow Water Using SeaWiFS

    Directory of Open Access Journals (Sweden)

    Tara Blakey

    2016-10-01

    Full Text Available This study evaluated the ability to improve Sea-Viewing Wide Field-of-View Sensor (SeaWiFS chl-a retrieval from optically shallow coastal waters by applying algorithms specific to the pixels’ benthic class. The form of the Ocean Color (OC algorithm was assumed for this study. The operational atmospheric correction producing Level 2 SeaWiFS data was retained since the focus of this study was on establishing the benefit from the alternative specification of the bio-optical algorithm. Benthic class was determined through satellite image-based classification methods. Accuracy of the chl-a algorithms evaluated was determined through comparison with coincident in situ measurements of chl-a. The regionally-tuned models that were allowed to vary by benthic class produced more accurate estimates of chl-a than the single, unified regionally-tuned model. Mean absolute percent difference was approximately 70% for the regionally-tuned, benthic class-specific algorithms. Evaluation of the residuals indicated the potential for further improvement to chl-a estimation through finer characterization of benthic environments. Atmospheric correction procedures specialized to coastal environments were recognized as areas for future improvement as these procedures would improve both classification and algorithm tuning.

  7. Development of an Operational System for the Retrieval of Aerosol and Land Surface Properties from the Terra Multi-Angle Imaging SpectroRadiometer

    Science.gov (United States)

    Crean, Kathleen A.

    2003-01-01

    An operational system to retrieve atmospheric aerosol and land surface properties using data from the Multi-angle Imaging SpectroRadiometer (MISR) instrument, currently flying onboard NASA's Terra spacecraft, has been deployed. The system is in full operation, with new data products generated daily and distributed to science users worldwide. This paper describes the evolution of the system, from initial requirements definition and prototyping through design, implementation, testing, operational deployment, checkout and maintenance activities. The current status of the system and future plans for enhancement are described. Major challenges encountered during implementation are detailed.

  8. Sensing Aerosol Height in the O2 A and B Bands from Lagrange-1 Point

    Science.gov (United States)

    Xu, X.; Wang, J.; Wang, Y.; Zeng, J.; Torres, O.; Yang, Y.; Marshak, A.; Reid, J. S.; Miller, S. D.

    2017-12-01

    Aerosol vertical distribution is an important but poorly constrained variable that determines the impacts of aerosols on earth's climate and environment. Detailed aerosol profile can be probed by space-borne Lidar such as the CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization), but its spatial coverage is limited as a "curtain" captured along the Lidar's sub-orbital track. Passive techniques, though of less accuracy, can add an important augmentation due to the better spatial coverage. In this study, we present an algorithm for sensing aerosol height and optical depth using radiance measured in the oxygen A and B bands by the Earth Polychromatic Imaging Camera (EPIC), an instrument aboard the Deep Space Climate Observatory (DSCOVR) residing at Lagrange-1 point. The algorithm was applied to EPIC imagery of dust plumes over the North Atlantic Ocean. Retrieved aerosol heights and optical depths were evaluated against counterparts observed by CALIOP, Moderate Resolution Imaging Spectroradiometer (MODIS), and Aerosol Robotic Network (AERONET). The accuracies in EIPC retrieved aerosol heights and optical depths are found better than ±0.5 km and ±(0.1+10%), respectively. This study demonstrates the potential of EPIC measurements for retrieving global aerosol height multiple times daily, which are essential for evaluating aerosol profile simulated in climate models and for better estimating aerosol radiative effects.

  9. MISR Aerosol Product Attributes and Statistical Comparisons with MODIS

    Science.gov (United States)

    Kahn, Ralph A.; Nelson, David L.; Garay, Michael J.; Levy, Robert C.; Bull, Michael A.; Diner, David J.; Martonchik, John V.; Paradise, Susan R.; Hansen, Earl G.; Remer, Lorraine A.

    2009-01-01

    In this paper, Multi-angle Imaging SpectroRadiometer (MISR) aerosol product attributes are described, including geometry and algorithm performance flags. Actual retrieval coverage is mapped and explained in detail using representative global monthly data. Statistical comparisons are made with coincident aerosol optical depth (AOD) and Angstrom exponent (ANG) retrieval results from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The relationship between these results and the ones previously obtained for MISR and MODIS individually, based on comparisons with coincident ground-truth observations, is established. For the data examined, MISR and MODIS each obtain successful aerosol retrievals about 15% of the time, and coincident MISR-MODIS aerosol retrievals are obtained for about 6%-7% of the total overlap region. Cloud avoidance, glint and oblique-Sun exclusions, and other algorithm physical limitations account for these results. For both MISR and MODIS, successful retrievals are obtained for over 75% of locations where attempts are made. Where coincident AOD retrievals are obtained over ocean, the MISR-MODIS correlation coefficient is about 0.9; over land, the correlation coefficient is about 0.7. Differences are traced to specific known algorithm issues or conditions. Over-ocean ANG comparisons yield a correlation of 0.67, showing consistency in distinguishing aerosol air masses dominated by coarse-mode versus fine-mode particles. Sampling considerations imply that care must be taken when assessing monthly global aerosol direct radiative forcing and AOD trends with these products, but they can be used directly for many other applications, such as regional AOD gradient and aerosol air mass type mapping and aerosol transport model validation. Users are urged to take seriously the published product data-quality statements.

  10. Robust information encryption diffractive-imaging-based scheme with special phase retrieval algorithm for a customized data container

    Science.gov (United States)

    Qin, Yi; Wang, Zhipeng; Wang, Hongjuan; Gong, Qiong; Zhou, Nanrun

    2018-06-01

    The diffractive-imaging-based encryption (DIBE) scheme has aroused wide interesting due to its compact architecture and low requirement of conditions. Nevertheless, the primary information can hardly be recovered exactly in the real applications when considering the speckle noise and potential occlusion imposed on the ciphertext. To deal with this issue, the customized data container (CDC) into DIBE is introduced and a new phase retrieval algorithm (PRA) for plaintext retrieval is proposed. The PRA, designed according to the peculiarity of the CDC, combines two key techniques from previous approaches, i.e., input-support-constraint and median-filtering. The proposed scheme can guarantee totally the reconstruction of the primary information despite heavy noise or occlusion and its effectiveness and feasibility have been demonstrated with simulation results.

  11. Algorithm theoretical baseline for formaldehyde retrievals from S5P TROPOMI and from the QA4ECV project

    Directory of Open Access Journals (Sweden)

    I. De Smedt

    2018-04-01

    Full Text Available On board the Copernicus Sentinel-5 Precursor (S5P platform, the TROPOspheric Monitoring Instrument (TROPOMI is a double-channel, nadir-viewing grating spectrometer measuring solar back-scattered earthshine radiances in the ultraviolet, visible, near-infrared, and shortwave infrared with global daily coverage. In the ultraviolet range, its spectral resolution and radiometric performance are equivalent to those of its predecessor OMI, but its horizontal resolution at true nadir is improved by an order of magnitude. This paper introduces the formaldehyde (HCHO tropospheric vertical column retrieval algorithm implemented in the S5P operational processor and comprehensively describes its various retrieval steps. Furthermore, algorithmic improvements developed in the framework of the EU FP7-project QA4ECV are described for future updates of the processor. Detailed error estimates are discussed in the light of Copernicus user requirements and needs for validation are highlighted. Finally, verification results based on the application of the algorithm to OMI measurements are presented, demonstrating the performances expected for TROPOMI.

  12. Estimating Cloud optical thickness from SEVIRI, for air quality research, by implementing a semi-analytical cloud retrieval algorithm

    Science.gov (United States)

    Pandey, Praveen; De Ridder, Koen; van Looy, Stijn; van Lipzig, Nicole

    2010-05-01

    Clouds play an important role in Earth's climate system. As they affect radiation hence photolysis rate coefficients (ozone formation),they also affect the air quality at the surface of the earth. Thus, a satellite remote sensing technique is used to retrieve the cloud properties for air quality research. The geostationary satellite, Meteosat Second Generation (MSG) has onboard, the Spinning Enhanced Visible and Infrared Imager (SEVIRI). The channels in the wavelength 0.6 µm and 1.64 µm are used to retrieve cloud optical thickness (COT). The study domain is over Europe covering a region between 35°N-70°N and 5°W-30°E, centred over Belgium. The steps involved in pre-processing the EUMETSAT level 1.5 images are described, which includes, acquisition of digital count number, radiometric conversion using offsets and slopes, estimation of radiance and calculation of reflectance. The Sun-earth-satellite geometry also plays an important role. A semi-analytical cloud retrieval algorithm (Kokhanovsky et al., 2003) is implemented for the estimation of COT. This approach doesn't involve the conventional look-up table approach, hence it makes the retrieval independent of numerical radiative transfer solutions. The semi-analytical algorithm is implemented on a monthly dataset of SEVIRI level 1.5 images. Minimum reflectance in the visible channel, at each pixel, during the month is accounted as the surface albedo of the pixel. Thus, monthly variation of COT over the study domain is prepared. The result so obtained, is compared with the COT products of Satellite Application Facility on Climate Monitoring (CM SAF). Henceforth, an approach to assimilate the COT for air quality research is presented. Address of corresponding author: Praveen Pandey, VITO- Flemish Institute for Technological Research, Boeretang 200, B 2400, Mol, Belgium E-mail: praveen.pandey@vito.be

  13. Cloud Droplet Size and Liquid Water Path Retrievals From Zenith Radiance Measurements: Examples From the Atmospheric Radiation Measurement Program and the Aerosol Robotic Network

    Science.gov (United States)

    Chiu, J. C.; Marshak, A.; Huang, C.-H.; Varnai, T.; Hogan, R. J.; Giles, D. M.; Holben, B. N.; Knyazikhin, Y.; O'Connor, E. J.; Wiscombe, W. J.

    2012-01-01

    The ground-based Atmospheric Radiation Measurement Program (ARM) and NASA Aerosol Robotic Network (AERONET) routinely monitor clouds using zenith radiances at visible and near-infrared wavelengths. Using the transmittance calculated from such measurements, we have developed a new retrieval method for cloud effective droplet size and conducted extensive tests for non-precipitating liquid water clouds. The underlying principle is to combine a water-absorbing wavelength (i.e. 1640 nm) with a nonwater-absorbing wavelength for acquiring information on cloud droplet size and optical depth. For simulated stratocumulus clouds with liquid water path less than 300 g/sq m and horizontal resolution of 201m, the retrieval method underestimates the mean effective radius by 0.8 m, with a root-mean-squared error of 1.7 m and a relative deviation of 13 %. For actual observations with a liquid water path less than 450 gm.2 at the ARM Oklahoma site during 2007-2008, our 1.5 min-averaged retrievals are generally larger by around 1 m than those from combined ground-based cloud radar and microwave radiometer at a 5min temporal resolution. We also compared our retrievals to those from combined shortwave flux and microwave observations for relatively homogeneous clouds, showing that the bias between these two retrieval sets is negligible, but the error of 2.6 m and the relative deviation of 22% are larger than those found in our simulation case. Finally, the transmittance-based cloud effective droplet radii agree to better than 11% with satellite observations and have a negative bias of 1 m. Overall, the retrieval method provides reasonable cloud effective radius estimates, which can enhance the cloud products of both ARM and AERONET.

  14. Evaluation of Different MODIS AOD Retrieval Algorithms for PM (sub 2.5) Estimation in the Western, Midwestern and Southeastern United States with Implications for Public Health

    Science.gov (United States)

    Al-Hamdan, Mohammad; Crosson, William; Burrows, Erica; Coffield, Shane; Crane, Breanna

    2016-01-01

    This study was part of the research activities of the Center for Applied Atmospheric Research and Education (CAARE) funded by the NASA MUREP (Minority University Research and Education Project) Institutional Research Opportunity (MIRO) Program. Satellite measurements of Aerosol Optical Depth (AOD) have been shown to be correlated with ground measurements of fine particulate matter less than 2.5 microns PM (sub 2.5), which in turn has been linked to respiratory and heart diseases. The strength of the correlation between AOD and PM (sub 2.5) varies for different AOD retrieval algorithms and geographic regions. We evaluated several Moderate Resolution Imaging Spectrometer (MODIS) AOD products from different satellites (Aqua vs. Terra), retrieval algorithms (Dark Target versus Deep Blue), Collections (5.1 versus 6) and spatial resolutions (10-kilometers versus 3-kilometers) for cities in the Western, Midwestern and Southeastern U.S. We developed and validated PM (sub 2.5) prediction models using remotely-sensed AOD data, which were improved by incorporating meteorological variables (temperature, relative humidity, precipitation, wind speed, and wind direction) from the North American Land Data Assimilation System Phase 2 (NLDAS-2). Adding these meteorological data significantly improved the predictive power of all the PM (sub 2.5) models, especially in the Western U.S. Temperature, relative humidity and wind speed were the most significant meteorological variables throughout the year in the Western U.S. Wind speed was the most significant meteorological variable for the cold season while temperature was the most significant variable for the warm season in the Midwestern and Southeastern U.S. Our study re-establishes the connection between PM (sub 2.5) and public health concerns including respiratory and cardiovascular diseases (asthma, high blood pressure, coronary heart disease, heart attack, and stroke). Using PM (sub 2.5) data and health data from the Centers for

  15. A-Train Aerosol Observations Preliminary Comparisons with AeroCom Models and Pathways to Observationally Based All-Sky Estimates

    Science.gov (United States)

    Redemann, J.; Livingston, J.; Shinozuka, Y.; Kacenelenbogen, M.; Russell, P.; LeBlanc, S.; Vaughan, M.; Ferrare, R.; Hostetler, C.; Rogers, R.; hide

    2014-01-01

    We have developed a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. We compare the spatio-temporal distribution of our multi-sensor aerosol retrievals and calculations of seasonal clear-sky aerosol radiative forcing based on the aerosol retrievals to values derived from four models that participated in the latest AeroCom model intercomparison initiative. We find significant inter-model differences, in particular for the aerosol single scattering albedo, which can be evaluated using the multi-sensor A-Train retrievals. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.

  16. Aerosol Climate Time Series in ESA Aerosol_cci

    Science.gov (United States)

    Popp, Thomas; de Leeuw, Gerrit; Pinnock, Simon

    2016-04-01

    Within the ESA Climate Change Initiative (CCI) Aerosol_cci (2010 - 2017) conducts intensive work to improve algorithms for the retrieval of aerosol information from European sensors. Meanwhile, full mission time series of 2 GCOS-required aerosol parameters are completely validated and released: Aerosol Optical Depth (AOD) from dual view ATSR-2 / AATSR radiometers (3 algorithms, 1995 - 2012), and stratospheric extinction profiles from star occultation GOMOS spectrometer (2002 - 2012). Additionally, a 35-year multi-sensor time series of the qualitative Absorbing Aerosol Index (AAI) together with sensitivity information and an AAI model simulator is available. Complementary aerosol properties requested by GCOS are in a "round robin" phase, where various algorithms are inter-compared: fine mode AOD, mineral dust AOD (from the thermal IASI spectrometer, but also from ATSR instruments and the POLDER sensor), absorption information and aerosol layer height. As a quasi-reference for validation in few selected regions with sparse ground-based observations the multi-pixel GRASP algorithm for the POLDER instrument is used. Validation of first dataset versions (vs. AERONET, MAN) and inter-comparison to other satellite datasets (MODIS, MISR, SeaWIFS) proved the high quality of the available datasets comparable to other satellite retrievals and revealed needs for algorithm improvement (for example for higher AOD values) which were taken into account for a reprocessing. The datasets contain pixel level uncertainty estimates which were also validated and improved in the reprocessing. For the three ATSR algorithms the use of an ensemble method was tested. The paper will summarize and discuss the status of dataset reprocessing and validation. The focus will be on the ATSR, GOMOS and IASI datasets. Pixel level uncertainties validation will be summarized and discussed including unknown components and their potential usefulness and limitations. Opportunities for time series extension

  17. Gradient Correlation Method for the Stabilization of Inversion Results of Aerosol Microphysical Properties Retrieved from Profiles of Optical Data

    Directory of Open Access Journals (Sweden)

    Kolgotin Alexei

    2016-01-01

    Full Text Available Correlation relationships between aerosol microphysical parameters and optical data are investigated. The results show that surface-area concentrations and extinction coefficients are linearly correlated with a correlation coefficient above 0.99 for arbitrary particle size distribution. The correlation relationships that we obtained can be used as constraints in our inversion of optical lidar data. Simulation studies demonstrate a significant stabilization of aerosol microphysical data products if we apply the gradient correlation method in our traditional regularization technique.

  18. Multivariate Analysis of MODerate Resolution Imaging Spectroradiometer (MODIS Aerosol Retrievals and the Statistical Hurricane Intensity Prediction Scheme (SHIPS Parameters for Atlantic Hurricanes

    Directory of Open Access Journals (Sweden)

    Mohammed M. Kamal

    2012-09-01

    Full Text Available MODerate Resolution Imaging Spectroradiometer (MODIS aerosol retrievals over the North Atlantic spanning seven hurricane seasons are combined with the Statistical Hurricane Intensity Prediction Scheme (SHIPS parameters. The difference between the current and future intensity changes were selected as response variables. For 24 major hurricanes (category 3, 4 and 5 between 2003 and 2009, eight lead time response variables were determined to be between 6 and 48 h. By combining MODIS and SHIPS data, 56 variables were compiled and selected as predictors for this study. Variable reduction from 56 to 31 was performed in two steps; the first step was via correlation coefficients (cc followed by Principal Component Analysis (PCA extraction techniques. The PCA reduced 31 variables to 20. Five categories were established based on the PCA group variables exhibiting similar physical phenomena. Average aerosol retrievals from MODIS Level 2 data in the vicinity of UTC 1,200 and 1,800 h were mapped to the SHIPS parameters to perform Multiple Linear Regression (MLR between each response variable against six sets of predictors of 31, 30, 28, 27, 23 and 20 variables. The deviation among the predictors Root Mean Square Error (RMSE varied between 0.01 through 0.05 and, therefore, implied that reducing the number of variables did not change the core physical information. Even when the parameters are reduced from 56 to 20, the correlation values exhibit a stronger relationship between the response and predictors. Therefore, the same phenomena can be explained by the reduction of variables.

  19. Satellite remote sensing of aerosol and cloud properties over Eurasia

    Science.gov (United States)

    Sogacheva, Larisa; Kolmonen, Pekka; Saponaro, Giulia; Virtanen, Timo; Rodriguez, Edith; Sundström, Anu-Maija; Atlaskina, Ksenia; de Leeuw, Gerrit

    2015-04-01

    Satellite remote sensing provides the spatial distribution of aerosol and cloud properties over a wide area. In our studies large data sets are used for statistical studies on aerosol and cloud interaction in an area over Fennoscandia, the Baltic Sea and adjacent regions over the European mainland. This area spans several regimes with different influences on aerosol cloud interaction such as a the transition from relative clean air over Fennoscandia to more anthropogenically polluted air further south, and the influence maritime air over the Baltic and oceanic air advected from the North Atlantic. Anthropogenic pollution occurs in several parts of the study area, and in particular near densely populated areas and megacities, but also in industrialized areas and areas with dense traffic. The aerosol in such areas is quite different from that produced over the boreal forest and has different effects on air quality and climate. Studies have been made on the effects of aerosols on air quality and on the radiation balance in China. The aim of the study is to study the effect of these different regimes on aerosol-cloud interaction using a large aerosol and cloud data set retrieved with the (Advanced) Along Track Scanning Radiometer (A)ATSR Dual View algorithm (ADV) further developed at Finnish Meteorological Institute and aerosol and cloud data provided by MODIS. Retrieval algorithms for aerosol and clouds have been developed for the (A)ATSR, consisting of a series of instruments of which we use the second and third one: ATSR-2 which flew on the ERS-2 satellite (1995-2003) and AATSR which flew on the ENVISAT satellite (2002-2012) (both from the European Space Agency, ESA). The ADV algorithm provides aerosol data on a global scale with a default resolution of 10x10km2 (L2) and an aggregate product on 1x1 degree (L3). Optional, a 1x1 km2 retrieval products is available over smaller areas for specific studies. Since for the retrieval of AOD no prior knowledge is needed on

  20. Determining Best Estimates and Uncertainties in Cloud Microphysical Parameters from ARM Field Data: Implications for Models, Retrieval Schemes and Aerosol-Cloud-Radiation Interactions

    Energy Technology Data Exchange (ETDEWEB)

    McFarquhar, Greg [Univ. of Illinois, Urbana, IL (United States)

    2015-12-28

    We proposed to analyze in-situ cloud data collected during ARM/ASR field campaigns to create databases of cloud microphysical properties and their uncertainties as needed for the development of improved cloud parameterizations for models and remote sensing retrievals, and for evaluation of model simulations and retrievals. In particular, we proposed to analyze data collected over the Southern Great Plains (SGP) during the Mid-latitude Continental Convective Clouds Experiment (MC3E), the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX), the Small Particles in Cirrus (SPARTICUS) Experiment and the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign, over the North Slope of Alaska during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE), and over the Tropical Western Pacific (TWP) during The Tropical Warm Pool International Cloud Experiment (TWP-ICE), to meet the following 3 objectives; derive statistical databases of single ice particle properties (aspect ratio AR, dominant habit, mass, projected area) and distributions of ice crystals (size distributions SDs, mass-dimension m-D, area-dimension A-D relations, mass-weighted fall speeds, single-scattering properties, total concentrations N, ice mass contents IWC), complete with uncertainty estimates; assess processes by which aerosols modulate cloud properties in arctic stratus and mid-latitude cumuli, and quantify aerosol’s influence in context of varying meteorological and surface conditions; and determine how ice cloud microphysical, single-scattering and fall-out properties and contributions of small ice crystals to such properties vary according to location, environment, surface, meteorological and aerosol conditions, and develop parameterizations of such effects.In this report we describe the accomplishments that we made on all 3 research objectives.

  1. Circular contour retrieval in real-world conditions by higher order statistics and an alternating-least squares algorithm

    Science.gov (United States)

    Jiang, Haiping; Marot, Julien; Fossati, Caroline; Bourennane, Salah

    2011-12-01

    In real-world conditions, contours are most often blurred in digital images because of acquisition conditions such as movement, light transmission environment, and defocus. Among image segmentation methods, Hough transform requires a computational load which increases with the number of noise pixels, level set methods also require a high computational load, and some other methods assume that the contours are one-pixel wide. For the first time, we retrieve the characteristics of multiple possibly concentric blurred circles. We face correlated noise environment, to get closer to real-world conditions. For this, we model a blurred circle by a few parameters--center coordinates, radius, and spread--which characterize its mean position and gray level variations. We derive the signal model which results from signal generation on circular antenna. Linear antennas provide the center coordinates. To retrieve the circle radii, we adapt the second-order statistics TLS-ESPRIT method for non-correlated noise environment, and propose a novel version of TLS-ESPRIT based on higher-order statistics for correlated noise environment. Then, we derive a least-squares criterion and propose an alternating least-squares algorithm to retrieve simultaneously all spread values of concentric circles. Experiments performed on hand-made and real-world images show that the proposed methods outperform the Hough transform and a level set method dedicated to blurred contours in terms of computational load. Moreover, the proposed model and optimization method provide the information of the contour grey level variations.

  2. Accounting for the Effects of Surface BRDF on Satellite Cloud and Trace-Gas Retrievals: A New Approach Based on Geometry-Dependent Lambertian-Equivalent Reflectivity Applied to OMI Algorithms

    Science.gov (United States)

    Vasilkov, Alexander; Qin, Wenhan; Krotkov, Nickolay; Lamsal, Lok; Spurr, Robert; Haffner, David; Joiner, Joanna; Yang, Eun-Su; Marchenko, Sergey

    2017-01-01

    Most satellite nadir ultraviolet and visible cloud, aerosol, and trace-gas algorithms make use of climatological surface reflectivity databases. For example, cloud and NO2 retrievals for the Ozone Monitoring Instrument (OMI) use monthly gridded surface reflectivity climatologies that do not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun-sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian equivalent reflectivity (LER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. The geometry-dependent LER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from the Moderate Resolution Imaging Spectroradiometer (MODIS) over land and the Cox-Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare the geometry-dependent and climatological LERs for two wavelengths, 354 and 466 nm, that are used in OMI cloud algorithms to derive cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and geometry-dependent LERs is carried out. Geometry-dependent LER and corresponding retrieved cloud products are then used as inputs to our OMI NO2 algorithm. We find that replacing the climatological OMI-based LERs with geometry-dependent LERs can increase NO2 vertical columns by up to 50% in highly polluted areas; the differences include both BRDF effects and biases between the MODIS and OMI-based surface reflectance data sets. Only minor changes to NO2 columns (within 5 %) are found over unpolluted and overcast areas.

  3. Accounting for the effects of surface BRDF on satellite cloud and trace-gas retrievals: a new approach based on geometry-dependent Lambertian equivalent reflectivity applied to OMI algorithms

    Science.gov (United States)

    Vasilkov, Alexander; Qin, Wenhan; Krotkov, Nickolay; Lamsal, Lok; Spurr, Robert; Haffner, David; Joiner, Joanna; Yang, Eun-Su; Marchenko, Sergey

    2017-01-01

    Most satellite nadir ultraviolet and visible cloud, aerosol, and trace-gas algorithms make use of climatological surface reflectivity databases. For example, cloud and NO2 retrievals for the Ozone Monitoring Instrument (OMI) use monthly gridded surface reflectivity climatologies that do not depend upon the observation geometry. In reality, reflection of incoming direct and diffuse solar light from land or ocean surfaces is sensitive to the sun-sensor geometry. This dependence is described by the bidirectional reflectance distribution function (BRDF). To account for the BRDF, we propose to use a new concept of geometry-dependent Lambertian equivalent reflectivity (LER). Implementation within the existing OMI cloud and NO2 retrieval infrastructure requires changes only to the input surface reflectivity database. The geometry-dependent LER is calculated using a vector radiative transfer model with high spatial resolution BRDF information from the Moderate Resolution Imaging Spectroradiometer (MODIS) over land and the Cox-Munk slope distribution over ocean with a contribution from water-leaving radiance. We compare the geometry-dependent and climatological LERs for two wavelengths, 354 and 466 nm, that are used in OMI cloud algorithms to derive cloud fractions. A detailed comparison of the cloud fractions and pressures derived with climatological and geometry-dependent LERs is carried out. Geometry-dependent LER and corresponding retrieved cloud products are then used as inputs to our OMI NO2 algorithm. We find that replacing the climatological OMI-based LERs with geometry-dependent LERs can increase NO2 vertical columns by up to 50 % in highly polluted areas; the differences include both BRDF effects and biases between the MODIS and OMI-based surface reflectance data sets. Only minor changes to NO2 columns (within 5 %) are found over unpolluted and overcast areas.

  4. New approach to the retrieval of AOD and its uncertainty from MISR observations over dark water

    Science.gov (United States)

    Witek, Marcin L.; Garay, Michael J.; Diner, David J.; Bull, Michael A.; Seidel, Felix C.

    2018-01-01

    A new method for retrieving aerosol optical depth (AOD) and its uncertainty from Multi-angle Imaging SpectroRadiometer (MISR) observations over dark water is outlined. MISR's aerosol retrieval algorithm calculates cost functions between observed and pre-simulated radiances for a range of AODs (from 0.0 to 3.0) and a prescribed set of aerosol mixtures. The previous version 22 (V22) operational algorithm considered only the AOD that minimized the cost function for each aerosol mixture and then used a combination of these values to compute the final, best estimate AOD and associated uncertainty. The new approach considers the entire range of cost functions associated with each aerosol mixture. The uncertainty of the reported AOD depends on a combination of (a) the absolute values of the cost functions for each aerosol mixture, (b) the widths of the cost function distributions as a function of AOD, and (c) the spread of the cost function distributions among the ensemble of mixtures. A key benefit of the new approach is that, unlike the V22 algorithm, it does not rely on empirical thresholds imposed on the cost function to determine the success or failure of a particular mixture. Furthermore, a new aerosol retrieval confidence index (ARCI) is established that can be used to screen high-AOD retrieval blunders caused by cloud contamination or other factors. Requiring ARCI ≥ 0.15 as a condition for retrieval success is supported through statistical analysis and outperforms the thresholds used in the V22 algorithm. The described changes to the MISR dark water algorithm will become operational in the new MISR aerosol product (V23), planned for release in 2017.

  5. New approach to the retrieval of AOD and its uncertainty from MISR observations over dark water

    Directory of Open Access Journals (Sweden)

    M. L. Witek

    2018-01-01

    Full Text Available A new method for retrieving aerosol optical depth (AOD and its uncertainty from Multi-angle Imaging SpectroRadiometer (MISR observations over dark water is outlined. MISR's aerosol retrieval algorithm calculates cost functions between observed and pre-simulated radiances for a range of AODs (from 0.0 to 3.0 and a prescribed set of aerosol mixtures. The previous version 22 (V22 operational algorithm considered only the AOD that minimized the cost function for each aerosol mixture and then used a combination of these values to compute the final, best estimate AOD and associated uncertainty. The new approach considers the entire range of cost functions associated with each aerosol mixture. The uncertainty of the reported AOD depends on a combination of (a the absolute values of the cost functions for each aerosol mixture, (b the widths of the cost function distributions as a function of AOD, and (c the spread of the cost function distributions among the ensemble of mixtures. A key benefit of the new approach is that, unlike the V22 algorithm, it does not rely on empirical thresholds imposed on the cost function to determine the success or failure of a particular mixture. Furthermore, a new aerosol retrieval confidence index (ARCI is established that can be used to screen high-AOD retrieval blunders caused by cloud contamination or other factors. Requiring ARCI  ≥ 0.15 as a condition for retrieval success is supported through statistical analysis and outperforms the thresholds used in the V22 algorithm. The described changes to the MISR dark water algorithm will become operational in the new MISR aerosol product (V23, planned for release in 2017.

  6. Retrieval of aerosol mass load (PM10 from MERIS/Envisat top of atmosphere spectral reflectance measurements over Germany

    Directory of Open Access Journals (Sweden)

    M. Vountas

    2011-03-01

    Full Text Available Results of a new methodology for retrievals of surface particulate matter concentration (PM10 from satellite reflectance measurements over Germany are presented in this paper. The retrieval derives effective radii from Ångström-α exponents and benefits from the fitting of a smooth spectral slope from seven MERIS spectrometer channels. Comparisons with ground measurements from the air quality surveillance show standard deviations of 33.9% with −18.9% bias over Hamburg. Over rural sites a standard deviation of 17.9% (bias 12.9% is reached. We discuss critically limitations and potential applications of the retrieval. Additionally, we talk about the aspects at comparing of retrieved particulate matter with ground station measurements.

  7. Vertical profiles of aerosol optical properties and the solar heating rate estimated by combining sky radiometer and lidar measurements

    Science.gov (United States)

    Kudo, Rei; Nishizawa, Tomoaki; Aoyagi, Toshinori

    2016-07-01

    The SKYLIDAR algorithm was developed to estimate vertical profiles of aerosol optical properties from sky radiometer (SKYNET) and lidar (AD-Net) measurements. The solar heating rate was also estimated from the SKYLIDAR retrievals. The algorithm consists of two retrieval steps: (1) columnar properties are retrieved from the sky radiometer measurements and the vertically mean depolarization ratio obtained from the lidar measurements and (2) vertical profiles are retrieved from the lidar measurements and the results of the first step. The derived parameters are the vertical profiles of the size distribution, refractive index (real and imaginary parts), extinction coefficient, single-scattering albedo, and asymmetry factor. Sensitivity tests were conducted by applying the SKYLIDAR algorithm to the simulated sky radiometer and lidar data for vertical profiles of three different aerosols, continental average, transported dust, and pollution aerosols. The vertical profiles of the size distribution, extinction coefficient, and asymmetry factor were well estimated in all cases. The vertical profiles of the refractive index and single-scattering albedo of transported dust, but not those of transported pollution aerosol, were well estimated. To demonstrate the performance and validity of the SKYLIDAR algorithm, we applied the SKYLIDAR algorithm to the actual measurements at Tsukuba, Japan. The detailed vertical structures of the aerosol optical properties and solar heating rate of transported dust and smoke were investigated. Examination of the relationship between the solar heating rate and the aerosol optical properties showed that the vertical profile of the asymmetry factor played an important role in creating vertical variation in the solar heating rate. We then compared the columnar optical properties retrieved with the SKYLIDAR algorithm to those produced with the more established scheme SKYRAD.PACK, and the surface solar irradiance calculated from the SKYLIDAR

  8. Algorithm for retrieving vegetative canopy and leaf parameters from multi- and hyperspectral imagery

    Science.gov (United States)

    Borel, Christoph

    2009-05-01

    In recent years hyper-spectral data has been used to retrieve information about vegetative canopies such as leaf area index and canopy water content. For the environmental scientist these two parameters are valuable, but there is potentially more information to be gained as high spatial resolution data becomes available. We developed an Amoeba (Nelder-Mead or Simplex) based program to invert a vegetative canopy radiosity model coupled with a leaf (PROSPECT5) reflectance model and modeled for the background reflectance (e.g. soil, water, leaf litter) to a measured reflectance spectrum. The PROSPECT5 leaf model has five parameters: leaf structure parameter Nstru, chlorophyll a+b concentration Cab, carotenoids content Car, equivalent water thickness Cw and dry matter content Cm. The canopy model has two parameters: total leaf area index (LAI) and number of layers. The background reflectance model is either a single reflectance spectrum from a spectral library() derived from a bare area pixel on an image or a linear mixture of soil spectra. We summarize the radiosity model of a layered canopy and give references to the leaf/needle models. The method is then tested on simulated and measured data. We investigate the uniqueness, limitations and accuracy of the retrieved parameters on canopy parameters (low, medium and high leaf area index) spectral resolution (32 to 211 band hyperspectral), sensor noise and initial conditions.

  9. An improved triple collocation algorithm for decomposing autocorrelated and white soil moisture retrieval errors

    Science.gov (United States)

    If not properly account for, auto-correlated errors in observations can lead to inaccurate results in soil moisture data analysis and reanalysis. Here, we propose a more generalized form of the triple collocation algorithm (GTC) capable of decomposing the total error variance of remotely-sensed surf...

  10. A comparison between two algorithms for the retrieval of soil moisture using AMSR-E data

    Science.gov (United States)

    A comparison between two algorithms for estimating soil moisture with microwave satellite data was carried out by using the datasets collected on the four Agricultural Research Service (ARS) watershed sites in the US from 2002 to 2009. These sites collectively represent a wide range of ground condit...

  11. Classifying Aerosols Based on Fuzzy Clustering and Their Optical and Microphysical Properties Study in Beijing, China

    Directory of Open Access Journals (Sweden)

    Wenhao Zhang

    2017-01-01

    Full Text Available Classification of Beijing aerosol is carried out based on clustering optical properties obtained from three Aerosol Robotic Network (AERONET sites. The fuzzy c-mean (FCM clustering algorithm is used to classify fourteen-year (2001–2014 observations, totally of 6,732 records, into six aerosol types. They are identified as fine particle nonabsorbing, two kinds of fine particle moderately absorbing (fine-MA1 and fine-MA2, fine particle highly absorbing, polluted dust, and desert dust aerosol. These aerosol types exhibit obvious optical characteristics difference. While five of them show similarities with aerosol types identified elsewhere, the polluted dust aerosol has no comparable prototype. Then the membership degree, a significant parameter provided by fuzzy clustering, is used to analyze internal variation of optical properties of each aerosol type. Finally, temporal variations of aerosol types are investigated. The dominant aerosol types are polluted dust and desert dust in spring, fine particle nonabsorbing aerosol in summer, and fine particle highly absorbing aerosol in winter. The fine particle moderately absorbing aerosol occurs during the whole year. Optical properties of the six types can also be used for radiative forcing estimation and satellite aerosol retrieval. Additionally, methodology of this study can be applied to identify aerosol types on a global scale.

  12. Comparison of high order algorithms in Aerosol and Aghora for compressible flows

    Directory of Open Access Journals (Sweden)

    Mbengoue D. A.

    2013-12-01

    Full Text Available This article summarizes the work done within the Colargol project during CEMRACS 2012. The aim of this project is to compare the implementations of high order finite element methods for compressible flows that have been developed at ONERA and at INRIA for about one year, within the Aghora and Aerosol libraries.

  13. ALDF Data Retrieval Algorithms for Validating the Optical Transient Detector (OTD) and the Lightning Imaging Sensor (LIS)

    Science.gov (United States)

    Koshak, W. J.; Blakeslee, R. J.; Bailey, J. C.

    1997-01-01

    A linear algebraic solution is provided for the problem of retrieving the location and time of occurrence of lightning ground strikes from in Advanced Lightning Direction Finder (ALDF) network. The ALDF network measures field strength, magnetic bearing, and arrival time of lightning radio emissions and solutions for the plane (i.e.. no Earth curvature) are provided that implement all of these measurements. The accuracy of the retrieval method is tested using computer-simulated data sets and the relative influence of bearing and arrival time data on the outcome of the final solution is formally demonstrated. The algorithm is sufficiently accurate to validate NASA's Optical Transient Detector (OTD) and Lightning Imaging System (LIS). We also introduce a quadratic planar solution that is useful when only three arrival time measurements are available. The algebra of the quadratic root results are examined in detail to clarify what portions of the analysis region lead to fundamental ambiguities in source location. Complex root results are shown to be associated with the presence of measurement errors when the lightning source lies near an outer sensor baseline of the ALDF network. For arbitrary noncollinear network geometries and in the absence of measurement errors, it is shown that the two quadratic roots are equivalent (no source location ambiguity) on the outer sensor baselines. The accuracy of the quadratic planar method is tested with computer-generated data sets and the results are generally better than those obtained from the three station linear planar method when bearing errors are about 2 degrees.

  14. Greenhouse gas profiling by infrared-laser and microwave occultation: retrieval algorithm and demonstration results from end-to-end simulations

    Directory of Open Access Journals (Sweden)

    V. Proschek

    2011-10-01

    Full Text Available Measuring greenhouse gas (GHG profiles with global coverage and high accuracy and vertical resolution in the upper troposphere and lower stratosphere (UTLS is key for improved monitoring of GHG concentrations in the free atmosphere. In this respect a new satellite mission concept adding an infrared-laser part to the already well studied microwave occultation technique exploits the joint propagation of infrared-laser and microwave signals between Low Earth Orbit (LEO satellites. This synergetic combination, referred to as LEO-LEO microwave and infrared-laser occultation (LMIO method, enables to retrieve thermodynamic profiles (pressure, temperature, humidity and accurate altitude levels from the microwave signals and GHG profiles from the simultaneously measured infrared-laser signals. However, due to the novelty of the LMIO method, a retrieval algorithm for GHG profiling is not yet available. Here we introduce such an algorithm for retrieving GHGs from LEO-LEO infrared-laser occultation (LIO data, applied as a second step after retrieving thermodynamic profiles from LEO-LEO microwave occultation (LMO data. We thoroughly describe the LIO retrieval algorithm and unveil the synergy with the LMO-retrieved pressure, temperature, and altitude information. We furthermore demonstrate the effective independence of the GHG retrieval results from background (a priori information in discussing demonstration results from LMIO end-to-end simulations for a representative set of GHG profiles, including carbon dioxide (CO2, water vapor (H2O, methane (CH4, and ozone (O3. The GHGs except for ozone are well retrieved throughout the UTLS, while ozone is well retrieved from about 10 km to 15 km upwards, since the ozone layer resides in the lower stratosphere. The GHG retrieval errors are generally smaller than 1% to 3% r.m.s., at a vertical resolution of about 1 km. The retrieved profiles also appear unbiased, which points

  15. Photopolarimetric Retrievals of Snow Properties

    Science.gov (United States)

    Ottaviani, M.; van Diedenhoven, B.; Cairns, B.

    2015-01-01

    Polarimetric observations of snow surfaces, obtained in the 410-2264 nm range with the Research Scanning Polarimeter onboard the NASA ER-2 high-altitude aircraft, are analyzed and presented. These novel measurements are of interest to the remote sensing community because the overwhelming brightness of snow plagues aerosol and cloud retrievals based on airborne and spaceborne total reflection measurements. The spectral signatures of the polarized reflectance of snow are therefore worthwhile investigating in order to provide guidance for the adaptation of algorithms currently employed for the retrieval of aerosol properties over soil and vegetated surfaces. At the same time, the increased information content of polarimetric measurements allows for a meaningful characterization of the snow medium. In our case, the grains are modeled as hexagonal prisms of variable aspect ratios and microscale roughness, yielding retrievals of the grains' scattering asymmetry parameter, shape and size. The results agree with our previous findings based on a more limited data set, with the majority of retrievals leading to moderately rough crystals of extreme aspect ratios, for each scene corresponding to a single value of the asymmetry parameter.

  16. The Continuous Monitoring of Desert Dust using an Infrared-based Dust Detection and Retrieval Method

    Science.gov (United States)

    Duda, David P.; Minnis, Patrick; Trepte, Qing; Sun-Mack, Sunny

    2006-01-01

    Airborne dust and sand are significant aerosol sources that can impact the atmospheric and surface radiation budgets. Because airborne dust affects visibility and air quality, it is desirable to monitor the location and concentrations of this aerosol for transportation and public health. Although aerosol retrievals have been derived for many years using visible and near-infrared reflectance measurements from satellites, the detection and quantification of dust from these channels is problematic over bright surfaces, or when dust concentrations are large. In addition, aerosol retrievals from polar orbiting satellites lack the ability to monitor the progression and sources of dust storms. As a complement to current aerosol dust retrieval algorithms, multi-spectral thermal infrared (8-12 micron) data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Meteosat-8 Spinning Enhanced Visible and Infrared Imager (SEVIRI) are used in the development of a prototype dust detection method and dust property retrieval that can monitor the progress of Saharan dust fields continuously, both night and day. The dust detection method is incorporated into the processing of CERES (Clouds and the Earth s Radiant Energy System) aerosol retrievals to produce dust property retrievals. Both MODIS (from Terra and Aqua) and SEVERI data are used to develop the method.

  17. Retrieval of High-Resolution Atmospheric Particulate Matter Concentrations from Satellite-Based Aerosol Optical Thickness over the Pearl River Delta Area, China

    Directory of Open Access Journals (Sweden)

    Lili Li

    2015-06-01

    Full Text Available Satellite remote sensing offers an effective approach to estimate indicators of air quality on a large scale. It is critically significant for air quality monitoring in areas experiencing rapid urbanization and consequently severe air pollution, like the Pearl River Delta (PRD in China. This paper starts with examining ground observations of particulate matter (PM and the relationship between PM10 (particles smaller than 10 μm and aerosol optical thickness (AOT by analyzing observations on the sampling sites in the PRD. A linear regression (R2 = 0.51 is carried out using MODIS-derived 500 m-resolution AOT and PM10 concentration from monitoring stations. Data of atmospheric boundary layer (ABL height and relative humidity are used to make vertical and humidity corrections on AOT. Results after correction show higher correlations (R2 = 0.55 between extinction coefficient and PM10. However, coarse spatial resolution of meteorological data affects the smoothness of retrieved maps, which suggests high-resolution and accurate meteorological data are critical to increase retrieval accuracy of PM. Finally, the model provides the spatial distribution maps of instantaneous and yearly average PM10 over the PRD. It is proved that observed PM10 is more relevant to yearly mean AOT than instantaneous values.

  18. Retrieval Algorithms for Road Surface Modelling Using Laser-Based Mobile Mapping

    Directory of Open Access Journals (Sweden)

    Antero Kukko

    2008-09-01

    Full Text Available Automated processing of the data provided by a laser-based mobile mapping system will be a necessity due to the huge amount of data produced. In the future, vehiclebased laser scanning, here called mobile mapping, should see considerable use for road environment modelling. Since the geometry of the scanning and point density is different from airborne laser scanning, new algorithms are needed for information extraction. In this paper, we propose automatic methods for classifying the road marking and kerbstone points and modelling the road surface as a triangulated irregular network. On the basis of experimental tests, the mean classification accuracies obtained using automatic method for lines, zebra crossings and kerbstones were 80.6%, 92.3% and 79.7%, respectively.

  19. An Algorithm for Surface Current Retrieval from X-band Marine Radar Images

    Directory of Open Access Journals (Sweden)

    Chengxi Shen

    2015-06-01

    Full Text Available In this paper, a novel current inversion algorithm from X-band marine radar images is proposed. The routine, for which deep water is assumed, begins with 3-D FFT of the radar image sequence, followed by the extraction of the dispersion shell from the 3-D image spectrum. Next, the dispersion shell is converted to a polar current shell (PCS using a polar coordinate transformation. After removing outliers along each radial direction of the PCS, a robust sinusoidal curve fitting is applied to the data points along each circumferential direction of the PCS. The angle corresponding to the maximum of the estimated sinusoid function is determined to be the current direction, and the amplitude of this sinusoidal function is the current speed. For validation, the algorithm is tested against both simulated radar images and field data collected by a vertically-polarized X-band system and ground-truthed with measurements from an acoustic Doppler current profiler (ADCP. From the field data, it is observed that when the current speed is less than 0.5 m/s, the root mean square differences between the radar-derived and the ADCP-measured current speed and direction are 7.3 cm/s and 32.7°, respectively. The results indicate that the proposed procedure, unlike most existing current inversion schemes, is not susceptible to high current speeds and circumvents the need to consider aliasing. Meanwhile, the relatively low computational cost makes it an excellent choice in practical marine applications.

  20. The feasibility of retrieving vertical temperature profiles from satellite nadir UV observations: A sensitivity analysis and an inversion experiment with neural network algorithms

    International Nuclear Information System (INIS)

    Sellitto, P.; Del Frate, F.

    2014-01-01

    Atmospheric temperature profiles are inferred from passive satellite instruments, using thermal infrared or microwave observations. Here we investigate on the feasibility of the retrieval of height resolved temperature information in the ultraviolet spectral region. The temperature dependence of the absorption cross sections of ozone in the Huggins band, in particular in the interval 320–325 nm, is exploited. We carried out a sensitivity analysis and demonstrated that a non-negligible information on the temperature profile can be extracted from this small band. Starting from these results, we developed a neural network inversion algorithm, trained and tested with simulated nadir EnviSat-SCIAMACHY ultraviolet observations. The algorithm is able to retrieve the temperature profile with root mean square errors and biases comparable to existing retrieval schemes that use thermal infrared or microwave observations. This demonstrates, for the first time, the feasibility of temperature profiles retrieval from space-borne instruments operating in the ultraviolet. - Highlights: • A sensitivity analysis and an inversion scheme to retrieve temperature profiles from satellite UV observations (320–325 nm). • The exploitation of the temperature dependence of the absorption cross section of ozone in the Huggins band is proposed. • First demonstration of the feasibility of temperature profiles retrieval from satellite UV observations. • RMSEs and biases comparable with more established techniques involving TIR and MW observations

  1. Updates on the development of Deep Blue aerosol algorithm for constructing consistent long-term data records from MODIS to VIIRS

    Science.gov (United States)

    Hsu, N. Y. C.; Sayer, A. M.; Lee, J.; Kim, W. V.

    2017-12-01

    The impacts of natural and anthropogenic sources of air pollution on climate and human health have continued to gain attention from the scientific community. In order to facilitate these effects, high quality consistent long-term global aerosol data records from satellites are essential. Several EOS-era instruments (e.g., SeaWiFS, MODIS, and MISR) are able to provide such information with a high degree of fidelity. However, with the aging MODIS sensors and the launch of the VIIRS instrument on Suomi NPP in late 2011, the continuation of long-term aerosol data records suitable for climate studies from MODIS to VIIRS is needed urgently. Recently, we have successfully modified our MODIS Deep Blue algorithm to process the VIIRS data. Extensive works were performed in refining the surface reflectance determination scheme to account for the wavelength differences between MODIS and VIIRS. Better aerosol models (including non-spherical dust) are also now implemented in our VIIRS algorithm compared to the MODIS C6 algorithm. We will show the global (land and ocean) distributions of various aerosol products from Version 1 of the VIIRS Deep Blue data set. The preliminary validation results of these new VIIRS Deep Blue aerosol products using data from AERONET sunphotometers over land and ocean will be discussed. We will also compare the monthly averaged Deep Blue aerosol optical depth (AOD) from VIIRS with the MODIS C6 products to investigate if any systematic biases may exist between MODIS C6 and VIIRS AOD. The Version 1 VIIRS Deep Blue aerosol products are currently scheduled to be released to the public in 2018.

  2. Combined sphere-spheroid particle model for the retrieval of the microphysical aerosol parameters via regularized inversion of lidar data

    Science.gov (United States)

    Samaras, Stefanos; Böckmann, Christine; Nicolae, Doina

    2016-06-01

    In this work we propose a two-step advancement of the Mie spherical-particle model accounting for particle non-sphericity. First, a naturally two-dimensional (2D) generalized model (GM) is made, which further triggers analogous 2D re-definitions of microphysical parameters. We consider a spheroidal-particle approach where the size distribution is additionally dependent on aspect ratio. Second, we incorporate the notion of a sphere-spheroid particle mixture (PM) weighted by a non-sphericity percentage. The efficiency of these two models is investigated running synthetic data retrievals with two different regularization methods to account for the inherent instability of the inversion procedure. Our preliminary studies show that a retrieval with the PM model improves the fitting errors and the microphysical parameter retrieval and it has at least the same efficiency as the GM. While the general trend of the initial size distributions is captured in our numerical experiments, the reconstructions are subject to artifacts. Finally, our approach is applied to a measurement case yielding acceptable results.

  3. RAINLINK: Retrieval algorithm for rainfall monitoring employing microwave links from a cellular communication network

    Science.gov (United States)

    Uijlenhoet, R.; Overeem, A.; Leijnse, H.; Rios Gaona, M. F.

    2017-12-01

    The basic principle of rainfall estimation using microwave links is as follows. Rainfall attenuates the electromagnetic signals transmitted from one telephone tower to another. By measuring the received power at one end of a microwave link as a function of time, the path-integrated attenuation due to rainfall can be calculated, which can be converted to average rainfall intensities over the length of a link. Microwave links from cellular communication networks have been proposed as a promising new rainfall measurement technique for one decade. They are particularly interesting for those countries where few surface rainfall observations are available. Yet to date no operational (real-time) link-based rainfall products are available. To advance the process towards operational application and upscaling of this technique, there is a need for freely available, user-friendly computer code for microwave link data processing and rainfall mapping. Such software is now available as R package "RAINLINK" on GitHub (https://github.com/overeem11/RAINLINK). It contains a working example to compute link-based 15-min rainfall maps for the entire surface area of The Netherlands for 40 hours from real microwave link data. This is a working example using actual data from an extensive network of commercial microwave links, for the first time, which will allow users to test their own algorithms and compare their results with ours. The package consists of modular functions, which facilitates running only part of the algorithm. The main processings steps are: 1) Preprocessing of link data (initial quality and consistency checks); 2) Wet-dry classification using link data; 3) Reference signal determination; 4) Removal of outliers ; 5) Correction of received signal powers; 6) Computation of mean path-averaged rainfall intensities; 7) Interpolation of rainfall intensities ; 8) Rainfall map visualisation. Some applications of RAINLINK will be shown based on microwave link data from a

  4. Boyer-Moore Algorithm in Retrieving Deleted Short Message Service in Android Platform

    Science.gov (United States)

    Rahmat, R. F.; Prayoga, D. F.; Gunawan, D.; Sitompul, O. S.

    2018-02-01

    Short message service (SMS) can be used as digital evidence of disclosure of crime because it can strengthen the charges against the offenders. Criminals use various ways to destroy the evidence, including by deleting SMS. On the Android OS, SMS is stored in a SQLite database file. Deletion of SMS data is not followed by bit deletion in memory so that it is possible to rediscover the deleted SMS. Based on this case, the mobile forensic needs to be done to rediscover the short message service. The proposed method in this study is Boyer-Moore algorithm for searching string matching. An auto finds feature is designed to rediscover the short message service by searching using a particular pattern to rematch a text with the result of the hex value conversion in the database file. The system will redisplay the message for each of a match. From all the testing results, the proposed method has quite a high accuracy in rediscovering the short message service using the used dataset. The search results to rediscover the deleted SMS depend on the possibility of overwriting process and the vacuum procedure on the database file.

  5. Direct Aerosol Radiative Forcing from Combined A-Train Observations - Preliminary Comparisons with AeroCom Models and Pathways to Observationally Based All-sky Estimates

    Science.gov (United States)

    Redemann, J.; Livingston, J. M.; Shinozuka, Y.; Kacenelenbogen, M. S.; Russell, P. B.; LeBlanc, S. E.; Vaughan, M.; Ferrare, R. A.; Hostetler, C. A.; Rogers, R. R.; Burton, S. P.; Torres, O.; Remer, L. A.; Stier, P.; Schutgens, N.

    2014-12-01

    We describe a technique for combining CALIOP aerosol backscatter, MODIS spectral AOD (aerosol optical depth), and OMI AAOD (absorption aerosol optical depth) retrievals for the purpose of estimating full spectral sets of aerosol radiative properties, and ultimately for calculating the 3-D distribution of direct aerosol radiative forcing. We present results using one year of data collected in 2007 and show comparisons of the aerosol radiative property estimates to collocated AERONET retrievals. Use of the recently released MODIS Collection 6 data for aerosol optical depths derived with the dark target and deep blue algorithms has extended the coverage of the multi-sensor estimates towards higher latitudes. Initial calculations of seasonal clear-sky aerosol radiative forcing based on our multi-sensor aerosol retrievals compare well with over-ocean and top of the atmosphere IPCC-2007 model-based results, and with more recent assessments in the "Climate Change Science Program Report: Atmospheric Aerosol Properties and Climate Impacts" (2009). For the first time, we present comparisons of our multi-sensor aerosol direct radiative forcing estimates to values derived from a subset of models that participated in the latest AeroCom initiative. We discuss the major challenges that exist in extending our clear-sky results to all-sky conditions. On the basis of comparisons to suborbital measurements, we present some of the limitations of the MODIS and CALIOP retrievals in the presence of adjacent or underlying clouds. Strategies for meeting these challenges are discussed.

  6. Monitoring carbon dioxide from space: Retrieval algorithm and flux inversion based on GOSAT data and using CarbonTracker-China

    Science.gov (United States)

    Yang, Dongxu; Zhang, Huifang; Liu, Yi; Chen, Baozhang; Cai, Zhaonan; Lü, Daren

    2017-08-01

    Monitoring atmospheric carbon dioxide (CO2) from space-borne state-of-the-art hyperspectral instruments can provide a high precision global dataset to improve carbon flux estimation and reduce the uncertainty of climate projection. Here, we introduce a carbon flux inversion system for estimating carbon flux with satellite measurements under the support of "The Strategic Priority Research Program of the Chinese Academy of Sciences—Climate Change: Carbon Budget and Relevant Issues". The carbon flux inversion system is composed of two separate parts: the Institute of Atmospheric Physics Carbon Dioxide Retrieval Algorithm for Satellite Remote Sensing (IAPCAS), and CarbonTracker-China (CT-China), developed at the Chinese Academy of Sciences. The Greenhouse gases Observing SATellite (GOSAT) measurements are used in the carbon flux inversion experiment. To improve the quality of the IAPCAS-GOSAT retrieval, we have developed a post-screening and bias correction method, resulting in 25%-30% of the data remaining after quality control. Based on these data, the seasonal variation of XCO2 (column-averaged CO2 dry-air mole fraction) is studied, and a strong relation with vegetation cover and population is identified. Then, the IAPCAS-GOSAT XCO2 product is used in carbon flux estimation by CT-China. The net ecosystem CO2 exchange is -0.34 Pg C yr-1 (±0.08 Pg C yr-1), with a large error reduction of 84%, which is a significant improvement on the error reduction when compared with in situ-only inversion.

  7. The CU 2-D-MAX-DOAS instrument – Part 2: Raman scattering probability measurements and retrieval of aerosol optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Ortega, Ivan; Coburn, Sean; Berg, Larry K.; Lantz, Kathy; Michalsky, Joseph; Ferrare, Richard A.; Hair, Johnathan W.; Hostetler, Chris A.; Volkamer, Rainer

    2016-01-01

    The multiannual global mean of aerosol optical depth at 550 nm (AOD550) over land is ~0.19, and that over oceans is ~0.13. About 45 % of the Earth surface shows AOD550 smaller than 0.1. There is a need for measurement techniques that are optimized to measure aerosol optical properties under low AOD conditions. We present an inherently calibrated retrieval (i.e., no need for radiance calibration) to simultaneously measure AOD and the aerosol phase function parameter, g, based on measurements of azimuth distributions of the Raman scattering probability (RSP), the near-absolute rotational Raman scattering (RRS) intensity. We employ radiative transfer model simulations to show that for solar azimuth RSP measurements at solar elevation and solar zenith angle (SZA) smaller than 80°, RSP is insensitive to the vertical distribution of aerosols and maximally sensitive to changes in AOD and g under near-molecular scattering conditions. The University of Colorado two-dimensional Multi-AXis Differential Optical Absorption Spectroscopy (CU 2-D-MAX-DOAS) instrument was deployed as part of the Two Column Aerosol Project (TCAP) at Cape Cod, MA, during the summer of 2012 to measure direct sun spectra and RSP from scattered light spectra at solar relative azimuth angles (SRAAs) between 5 and 170°. During two case study days with (1) high aerosol load (17 July, 0.3 < AOD430 < 0.6) and (2) near-molecular scattering conditions (22 July, AOD430 < 0.13) we compare RSP-based retrievals of AOD430 and g with data from a co-located CIMEL sun photometer, Multi-Filter Rotating Shadowband Radiometer (MFRSR), and an airborne High Spectral Resolution Lidar (HSRL-2). The average difference (relative to DOAS) for AOD430 is +0.012 ± 0.023 (CIMEL), -0.012 ± 0.024 (MFRSR), -0.011 ± 0.014 (HSRL-2), and +0.023 ± 0.013 (CIMELAOD - MFRSRAOD) and yields the following

  8. Estimation of cloud optical thickness by processing SEVIRI images and implementing a semi analytical cloud property retrieval algorithm

    Science.gov (United States)

    Pandey, P.; De Ridder, K.; van Lipzig, N.

    2009-04-01

    Clouds play a very important role in the Earth's climate system, as they form an intermediate layer between Sun and the Earth. Satellite remote sensing systems are the only means to provide information about clouds on large scales. The geostationary satellite, Meteosat Second Generation (MSG) has onboard an imaging radiometer, the Spinning Enhanced Visible and Infrared Imager (SEVIRI). SEVIRI is a 12 channel imager, with 11 channels observing the earth's full disk with a temporal resolution of 15 min and spatial resolution of 3 km at nadir, and a high resolution visible (HRV) channel. The visible channels (0.6 µm and 0.81 µm) and near infrared channel (1.6µm) of SEVIRI are being used to retrieve the cloud optical thickness (COT). The study domain is over Europe covering the region between 35°N - 70°N and 10°W - 30°E. SEVIRI level 1.5 images over this domain are being acquired from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) archive. The processing of this imagery, involves a number of steps before estimating the COT. The steps involved in pre-processing are as follows. First, the digital count number is acquired from the imagery. Image geo-coding is performed in order to relate the pixel positions to the corresponding longitude and latitude. Solar zenith angle is determined as a function of latitude and time. The radiometric conversion is done using the values of offsets and slopes of each band. The values of radiance obtained are then used to calculate the reflectance for channels in the visible spectrum using the information of solar zenith angle. An attempt is made to estimate the COT from the observed radiances. A semi analytical algorithm [Kokhanovsky et al., 2003] is implemented for the estimation of cloud optical thickness from the visible spectrum of light intensity reflected from clouds. The asymptotical solution of the radiative transfer equation, for clouds with large optical thickness, is the basis of

  9. Calculations of Aerosol Radiative Forcing in the SAFARI Region from MODIS Data

    Science.gov (United States)

    Remer, L. A.; Ichoku, C.; Kaufman, Y. J.; Chu, D. A.

    2003-01-01

    SAFARI 2000 provided the opportunity to validate MODIS aerosol retrievals and to correct any assumptions in the retrieval process. By comparing MODIS retrievals with ground-based sunphotometer data, we quantified the degree to which the MODIS algorithm underestimated the aerosol optical thickness. This discrepancy was attributed to underestimating the degree of light absorption by the southern African smoke aerosol. Correcting for this underestimation of absorption, produces more realistic aerosol retrievals that allow various applications of the MODIS aerosol products. One such application is the calculation of the aerosol radiative forcing at the top and bottom of the atmosphere. The combination of MODIS accuracy, coverage, resolution and the ability to separate fine and coarse mode make this calculation substantially advanced over previous attempts with other satellites. We focus on the oceans adjacent to southern Africa and use a solar radiative transfer model to perform the flux calculations. The forcing at the top of atmosphere is calculated to be 10 W/sq m, while the forcing at the surface is -26 W/sq m. These results resemble those calculated from INDOEX data, and are most sensitive to assumptions of aerosol absorption, the same parameter that initially interfered with our retrievals.

  10. Advancing of Land Surface Temperature Retrieval Using Extreme Learning Machine and Spatio-Temporal Adaptive Data Fusion Algorithm

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2015-04-01

    Full Text Available As a critical variable to characterize the biophysical processes in ecological environment, and as a key indicator in the surface energy balance, evapotranspiration and urban heat islands, Land Surface Temperature (LST retrieved from Thermal Infra-Red (TIR images at both high temporal and spatial resolution is in urgent need. However, due to the limitations of the existing satellite sensors, there is no earth observation which can obtain TIR at detailed spatial- and temporal-resolution simultaneously. Thus, several attempts of image fusion by blending the TIR data from high temporal resolution sensor with data from high spatial resolution sensor have been studied. This paper presents a novel data fusion method by integrating image fusion and spatio-temporal fusion techniques, for deriving LST datasets at 30 m spatial resolution from daily MODIS image and Landsat ETM+ images. The Landsat ETM+ TIR data were firstly enhanced based on extreme learning machine (ELM algorithm using neural network regression model, from 60 m to 30 m resolution. Then, the MODIS LST and enhanced Landsat ETM+ TIR data were fused by Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT in order to derive high resolution synthetic data. The synthetic images were evaluated for both testing and simulated satellite images. The average difference (AD and absolute average difference (AAD are smaller than 1.7 K, where the correlation coefficient (CC and root-mean-square error (RMSE are 0.755 and 1.824, respectively, showing that the proposed method enhances the spatial resolution of the predicted LST images and preserves the spectral information at the same time.

  11. Land Surface Temperature Retrieval from MODIS Data by Integrating Regression Models and the Genetic Algorithm in an Arid Region

    Directory of Open Access Journals (Sweden)

    Ji Zhou

    2014-06-01

    Full Text Available The land surface temperature (LST is one of the most important parameters of surface-atmosphere interactions. Methods for retrieving LSTs from satellite remote sensing data are beneficial for modeling hydrological, ecological, agricultural and meteorological processes on Earth’s surface. Many split-window (SW algorithms, which can be applied to satellite sensors with two adjacent thermal channels located in the atmospheric window between 10 μm and 12 μm, require auxiliary atmospheric parameters (e.g., water vapor content. In this research, the Heihe River basin, which is one of the most arid regions in China, is selected as the study area. The Moderate-resolution Imaging Spectroradiometer (MODIS is selected as a test case. The Global Data Assimilation System (GDAS atmospheric profiles of the study area are used to generate the training dataset through radiative transfer simulation. Significant correlations between the atmospheric upwelling radiance in MODIS channel 31 and the other three atmospheric parameters, including the transmittance in channel 31 and the transmittance and upwelling radiance in channel 32, are trained based on the simulation dataset and formulated with three regression models. Next, the genetic algorithm is used to estimate the LST. Validations of the RM-GA method are based on the simulation dataset generated from in situ measured radiosonde profiles and GDAS atmospheric profiles, the in situ measured LSTs, and a pair of daytime and nighttime MOD11A1 products in the study area. The results demonstrate that RM-GA has a good ability to estimate the LSTs directly from the MODIS data without any auxiliary atmospheric parameters. Although this research is for local application in the Heihe River basin, the findings and proposed method can easily be extended to other satellite sensors and regions with arid climates and high elevations.

  12. Applications of the BIOPHYS Algorithm for Physically-Based Retrieval of Biophysical, Structural and Forest Disturbance Information

    Science.gov (United States)

    Peddle, Derek R.; Huemmrich, K. Fred; Hall, Forrest G.; Masek, Jeffrey G.; Soenen, Scott A.; Jackson, Chris D.

    2011-01-01

    Canopy reflectance model inversion using look-up table approaches provides powerful and flexible options for deriving improved forest biophysical structural information (BSI) compared with traditional statistical empirical methods. The BIOPHYS algorithm is an improved, physically-based inversion approach for deriving BSI for independent use and validation and for monitoring, inventory and quantifying forest disturbance as well as input to ecosystem, climate and carbon models. Based on the multiple-forward mode (MFM) inversion approach, BIOPHYS results were summarized from different studies (Minnesota/NASA COVER; Virginia/LEDAPS; Saskatchewan/BOREAS), sensors (airborne MMR; Landsat; MODIS) and models (GeoSail; GOMS). Applications output included forest density, height, crown dimension, branch and green leaf area, canopy cover, disturbance estimates based on multi-temporal chronosequences, and structural change following recovery from forest fires over the last century. Good correspondences with validation field data were obtained. Integrated analyses of multiple solar and view angle imagery further improved retrievals compared with single pass data. Quantifying ecosystem dynamics such as the area and percent of forest disturbance, early regrowth and succession provide essential inputs to process-driven models of carbon flux. BIOPHYS is well suited for large-area, multi-temporal applications involving multiple image sets and mosaics for assessing vegetation disturbance and quantifying biophysical structural dynamics and change. It is also suitable for integration with forest inventory, monitoring, updating, and other programs.

  13. Exploitation of cloud top characterization from three-channel IR measurements in a physical PMW rain retrieval algorithm

    Directory of Open Access Journals (Sweden)

    F. Torricella

    2006-01-01

    Full Text Available Rainfall intensity estimates by passive microwave (PMW measurements from space perform generally better over the sea surface with respect to land, due to the problems in separating true rain signatures from those produced by surfaces having similar spectral behaviour (e.g. snow, ice, desert and semiarid grounds. The screening procedure aimed at recognizing the various surface types and delimit precipitation is based on tests that rely on PMW measurements only and global thresholds. The shortcoming is that the approach tries to discard spurious precipitating features (often detected over the land-sea border thus leading to no-rain conservative tests and thresholds. The TRMM mission, with its long record of simultaneous data from the Visible and Infrared Radiometer System (VIRS, the TRMM Microwave Imager (TMI and rain profiles from the Precipitation Radar (PR allows for unambiguous testing of the usefulness of cloud top characterization in rain detection. An intense precipitation event over the North Africa is analysed exploiting a night microphysical RGB scheme applied to VIRS measurements to classify and characterize the components of the observed scenario and to discriminate the various types of clouds. This classification is compared to the rain intensity maps derived from TMI by means of the Goddard profiling algorithm and to the near-surface rain intensities derived from PR. The comparison allows to quantify the difference between the two rain retrievals and to assess the usefulness of RGB analysis in identifying areas of precipitation.

  14. Evaluation of Long-term Aerosol Data Records from SeaWiFS over Land and Ocean

    Science.gov (United States)

    Bettenhausen, C.; Hsu, C.; Jeong, M.; Huang, J.

    2010-12-01

    Deserts around the globe produce mineral dust aerosols that may then be transported over cities, across continents, or even oceans. These aerosols affect the Earth’s energy balance through direct and indirect interactions with incoming solar radiation. They also have a biogeochemical effect as they deliver scarce nutrients to remote ecosystems. Large dust storms regularly disrupt air traffic and are a general nuisance to those living in transport regions. In the past, measuring dust aerosols has been incomplete at best. Satellite retrieval algorithms were limited to oceans or vegetated surfaces and typically neglected desert regions due to their high surface reflectivity in the mid-visible and near-infrared wavelengths, which have been typically used for aerosol retrievals. The Deep Blue aerosol retrieval algorithm was developed to resolve these shortcomings by utilizing the blue channels from instruments such as the Sea-Viewing Wide-Field-of-View Sensor (SeaWiFS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) to infer aerosol properties over these highly reflective surfaces. The surface reflectivity of desert regions is much lower in the blue channels and thus it is easier to separate the aerosol and surface signals than at the longer wavelengths used in other algorithms. More recently, the Deep Blue algorithm has been expanded to retrieve over vegetated surfaces and oceans as well. A single algorithm can now follow dust from source to sink. In this work, we introduce the SeaWiFS instrument and the Deep Blue aerosol retrieval algorithm. We have produced global aerosol data records over land and ocean from 1997 through 2009 using the Deep Blue algorithm and SeaWiFS data. We describe these data records and validate them with data from the Aerosol Robotic Network (AERONET). We also show the relative performance compared to the current MODIS Deep Blue operational aerosol data in desert regions. The current results are encouraging and this dataset will

  15. The OMI Aerosol Absorption Product: An A-train application

    Science.gov (United States)

    Torres, O.; Jethva, H. T.; Ahn, C.

    2017-12-01

    Because of the uniquely large sensitivity of satellite-measured near-UV radiances to absorption by desert dust, carbonaceous and volcanic ash aerosols, observations by a variety of UV-capable sensors have been routinely used over the last forty years in both qualitative and quantitative applications for estimating the absorption properties of these aerosol types. In this presentation we will discuss a multi-sensor application involving observations from A-train sensors OMI, AIRS and CALIOP for the creation of a 13-year record of aerosol optical depth (AOD) and single scattering albedo (SSA). Determination of aerosol type, in terms of particle size distribution and refractive index, is an important algorithmic step that requires using external information. AIRS CO measurements are used as carbonaceous aerosols tracer to differentiate this aerosol type from desert dust. On the other hand, the height of the absorbing aerosol layer, an important parameter in UV aerosol retrievals, is prescribed using a CALIOP-based climatology. The combined use of these observations in the developments of the OMI long-term AOD/SSA record will be discussed along with an evaluation of retrieval results using independent observations.

  16. Regional variation of carbonaceous aerosols from space and simulations

    Science.gov (United States)

    Mukai, Sonoyo; Sano, Itaru; Nakata, Makiko; Kokhanovsky, Alexander

    2017-04-01

    Satellite remote sensing provides us with a systematic monitoring in a global scale. As such, aerosol observation via satellites is known to be useful and effective. However, before attempting to retrieve aerosol properties from satellite data, the efficient algorithms for aerosol retrieval need to be considered. The characteristics and distributions of atmospheric aerosols are known to be complicated, owing to both natural factors and human activities. It is known that the biomass burning aerosols generated by the large-scale forest fires and burn agriculture have influenced the severity of air pollution. Nevertheless the biomass burning episodes increase due to global warming and climate change and vice versa. It is worth noting that the near ultra violet (NUV) measurements are helpful for the detection of carbonaceous particles, which are the main component of aerosols from biomass burning. In this work, improved retrieval algorithms for biomass burning aerosols are shown by using the measurements observed by GLI and POLDER-2 on Japanese short term mission ADEOS-2 in 2003. The GLI sensor has 380nm channel. For detection of biomass burning episodes, the aerosol optical thickness of carbonaceous aerosols simulated with the numerical model simulations (SPRINTARS) is available as well as fire products from satellite imagery. Moreover the algorithm using shorter wavelength data is available for detection of absorbing aerosols. An algorithm based on the combined use of near-UV and violet data has been introduced in our previous work with ADEOS (Advanced Earth Observing Satellite) -2 /GLI measurements [1]. It is well known that biomass burning plume is a seasonal phenomenon peculiar to a particular region. Hence, the mass concentrations of aerosols are frequently governed with spatial and/or temporal variations of biomass burning plumes. Accordingly the satellite data sets for our present study are adopted from the view points of investigation of regional and seasonal

  17. Preliminary Analysis of Night-time Aerosol Optical Depth Retrievals at a Rural, Near-urban Site in Southern Canada

    International Nuclear Information System (INIS)

    Baibakov, K.; O'Neill, N. T.; Firanski, B.; Strawbridge, K.

    2009-01-01

    In the summer of 2007, a SPSTAR03 starphotometer was installed at Egbert, Canada (44 deg. 13' N, 79 deg. 45' W, alt 264 m) and a continuous series of initial measurements was performed between August 26 and September 19. Several sunphotometry parameters such as the aerosol optical depth (AOD) and the 'fine' and 'coarse' optical depths were extracted from the SPSTAR03 extinction spectra. The SPSTAR03 data was analyzed in conjunction with sunphotometry and zenith-pointing lidar data acquired during the same time period. Preliminary results show coarse continuity between the day- and night time AOD values (with the mean difference between the measured and the interpolated values being 0.05) as well as a qualitative correlation between the 'fine' and 'coarse' optical depths and the normalized lidar backscatter coefficient profiles. It was also found that the spectra produced with the differential two-star measurement method were sensitive to non-horizontally homogeneous differences in the line-of-sight conditions of both stars. The one-star method helps to reduce the uncertainties but requires the determination of a calibration constant.

  18. Aerosol climate time series from ESA Aerosol_cci (Invited)

    Science.gov (United States)

    Holzer-Popp, T.

    2013-12-01

    Within the ESA Climate Change Initiative (CCI) the Aerosol_cci project (mid 2010 - mid 2013, phase 2 proposed 2014-2016) has conducted intensive work to improve algorithms for the retrieval of aerosol information from European sensors AATSR (3 algorithms), PARASOL, MERIS (3 algorithms), synergetic AATSR/SCIAMACHY, OMI and GOMOS. Whereas OMI and GOMOS were used to derive absorbing aerosol index and stratospheric extinction profiles, respectively, Aerosol Optical Depth (AOD) and Angstrom coefficient were retrieved from the other sensors. Global datasets for 2008 were produced and validated versus independent ground-based data and other satellite data sets (MODIS, MISR). An additional 17-year dataset is currently generated using ATSR-2/AATSR data. During the three years of the project, intensive collaborative efforts were made to improve the retrieval algorithms focusing on the most critical modules. The team agreed on the use of a common definition for the aerosol optical properties. Cloud masking was evaluated, but a rigorous analysis with a pre-scribed cloud mask did not lead to improvement for all algorithms. Better results were obtained using a post-processing step in which sudden transitions, indicative of possible occurrence of cloud contamination, were removed. Surface parameterization, which is most critical for the nadir only algorithms (MERIS and synergetic AATSR / SCIAMACHY) was studied to a limited extent. The retrieval results for AOD, Ångström exponent (AE) and uncertainties were evaluated by comparison with data from AERONET (and a limited amount of MAN) sun photometer and with satellite data available from MODIS and MISR. Both level2 and level3 (gridded daily) datasets were validated. Several validation metrics were used (standard statistical quantities such as bias, rmse, Pearson correlation, linear regression, as well as scoring approaches to quantitatively evaluate the spatial and temporal correlations against AERONET), and in some cases

  19. Tropospheric ozone column retrieval at northern mid-latitudes from the Ozone Monitoring Instrument by means of a neural network algorithm

    Directory of Open Access Journals (Sweden)

    P. Sellitto

    2011-11-01

    Full Text Available Monitoring tropospheric ozone from space is of critical importance in order to gain more thorough knowledge on phenomena affecting air quality and the greenhouse effect. Deriving information on tropospheric ozone from UV/VIS nadir satellite spectrometers is difficult owing to the weak sensitivity of the measured radiance spectra to variations of ozone in the troposphere. Here we propose an alternative method of analysis to retrieve tropospheric ozone columns from Ozone Monitoring Instrument radiances by means of a neural network algorithm. An extended set of ozone sonde measurements at northern mid-latitudes for the years 2004–2008 has been considered as the training and test data set. The design of the algorithm is extensively discussed. Our retrievals are compared to both tropospheric ozone residuals and optimal estimation retrievals over a similar independent test data set. Results show that our algorithm has comparable accuracy with respect to both correlative methods and its performance is slightly better over a subset containing only European ozone sonde stations. Possible sources of errors are analyzed. Finally, the capabilities of our algorithm to derive information on boundary layer ozone are studied and the results critically discussed.

  20. a New Algorithm for the Aod Inversion from Noaa/avhrr Data

    Science.gov (United States)

    Sun, L.; Li, R.; Yu, H.

    2018-04-01

    The advanced very high resolution radiometer (AVHRR) data from the National Oceanic and Atmospheric Administration satellite is one of the earliest data applied in aerosol research. The dense dark vegetation (DDV) algorithm is a popular method for the present land aerosol retrieval. One of the most crucial steps in the DDV algorithm with AVHRR data is estimating the land surface reflectance (LSR). However, LSR cannot be easily estimated because of the lack of a 2.13 μm band. In this article, the moderate resolution imaging spectroradiometer (MODIS) vegetation index product (MYD13) is introduced to support the estimation of AVHRR LSR. The relationship between MODIS NDVI and the AVHRR LSR of the visible band is analysed to retrieve aerosol optical depth (AOD) from AVHRR data. Retrieval experiments are carried out in mid-eastern America. The AOD data from AErosol RObotic NETwork (AERONET) measurements are used to evaluate the aerosol retrieval from AVHRR data, the results indicate that about 74 % of the retrieved AOD are within the expected error range of ±(0.05 + 0.2), and a cross comparison of the AOD retrieval results with the MODIS aerosol product (MYD04) shows that the AOD datasets have a similar spatial distribution.

  1. Resolving the Aerosol Piece of the Global Climate Picture

    Science.gov (United States)

    Kahn, R. A.

    2017-12-01

    Factors affecting our ability to calculate climate forci