WorldWideScience

Sample records for aerosol monitoring

  1. Research on Calibration of Radioactive Aerosol Monitor

    Institute of Scientific and Technical Information of China (English)

    CHEN; Xi-lin; WU; Chang-ping; ZHANG; Xi; MENG; Jun; DIAO; Li-jun; CHEN; Ke-sheng

    2015-01-01

    Radioactive aerosol monitors were used to monitor the radioactive substance concentration or the total amounts in effluents from the nuclear facilities,in according to which evaluation was done if the national regulated discharged limitations or the designated object amounts were met

  2. Resent Progress in Research on Calibration Instrument for Radioactive Aerosol Monitor

    Institute of Scientific and Technical Information of China (English)

    CHEN; Xi-lin; CHEN; Yong-yong; WU; Chang-ping; XING; Yu; MENG; Jun; YANG; Qiao-ling

    2013-01-01

    Radioactive aerosol monitors are widely used in monitoring the radioactivity concentration of the artificial nuclides in gaseous effluents from the nuclear facilities.An on-developing calibration instrument for radioactive aerosol monitors consists of an α and β aerosol generating unit,aerosol transferring unit,measurement unit of radioactivity concentration of aerosol for instruments calibrated and the waste gas

  3. Atmospheric aerosol monitoring at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Cester, R.; Chiosso, M.; Chirin, J.; Clay, R.; Dawson, B.; Fick, B.; Filipcic, A.; Garcia, B.; Grillo, A.; Horvat, M.; Iarlori, M.; Malek, M.; Matthews, J.; Matthews,; Melo, D.; Meyhandan, R.; Mostafa, M.; Mussa, R.; Prouza, M.; Raefert, B.; Rizi, V.

    2005-07-01

    For a ground based cosmic-ray observatory the atmosphere is an integral part of the detector. Air fluorescence detectors (FDs) are particularly sensitive to the presence of aerosols in the atmosphere. These aerosols, consisting mainly of clouds and dust, can strongly affect the propagation of fluorescence and Cherenkov light from cosmic-ray induced extensive air showers. The Pierre Auger Observatory has a comprehensive program to monitor the aerosols within the atmospheric volume of the detector. In this paper the aerosol parameters that affect FD reconstruction will be discussed. The aerosol monitoring systems that have been deployed at the Pierre Auger Observatory will be briefly described along with some measurements from these systems.

  4. Evaluation of the discmini personal aerosol monitor for submicrometer sodium chloride and metal aerosols

    Science.gov (United States)

    Mills, Jessica Breyan

    This work evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride, NaCl, and spark generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, 104 particles/cm3). Particle number concentration, lung deposited surface area (LDSA) concentration, and mean size measured with the DM were compared to those measured with reference instruments, a scanning mobility particle sizer (SMPS) and a handheld condensation particle counter (CPC). Particle number concentrations measured with the DM were within 16% of those measured by the CPC for polydispersed aerosols. Poorer agreement was observed for monodispersed aerosols (+/-35% for most tests and +101% for 300-nm NaCl). LDSA concentrations measured by the DM were 96% to 155% of those estimated with the SMPS. The geometric mean diameters measured with the DM were within 30% of those measured with the SMPS for monodispersed aerosols and within 25% for polydispersed aerosols (except for the case when the aerosol contained a substantial number of particles larger than 300 nm). The accuracy of the DM is reasonable for particles smaller than 300 nm but caution should be exercised when particles larger than 300 nm are present.

  5. Monitoring of greenhouse gases and aerosols at Svalbard and Birkenes

    Energy Technology Data Exchange (ETDEWEB)

    Myhre, C.L.; Hermansen, O.; Fjaeraa, A.M.; Lunder, C.; Fiebig, M.; Schmidbauer, N.; Krognes, T.; Stebel, K.

    2012-07-01

    The report summaries the activities and results of the greenhouse gas monitoring at the Zeppelin and observatory situated on Svalbard in Arctic Norway during the period 2001-2010 and the greenhouse gas monitoring and aerosol observations from Birkenes for 2010. The monitoring programme is performed by the NILU - Norwegian Institute for Air Research and funded by the Norwegian Pollution Control Authority (SFT) (now Climate and Pollution Agency) and NILU - Norwegian Institute for Air Research.(Author)

  6. Using Satellite Aerosol Retrievals to Monitor Surface Particulate Air Quality

    Science.gov (United States)

    Levy, Robert C.; Remer, Lorraine A.; Kahn, Ralph A.; Chu, D. Allen; Mattoo, Shana; Holben, Brent N.; Schafer, Joel S.

    2011-01-01

    The MODIS and MISR aerosol products were designed nearly two decades ago for the purpose of climate applications. Since launch of Terra in 1999, these two sensors have provided global, quantitative information about column-integrated aerosol properties, including aerosol optical depth (AOD) and relative aerosol type parameters (such as Angstrom exponent). Although primarily designed for climate, the air quality (AQ) community quickly recognized that passive satellite products could be used for particulate air quality monitoring and forecasting. However, AOD and particulate matter (PM) concentrations have different units, and represent aerosol conditions in different layers of the atmosphere. Also, due to low visible contrast over brighter surface conditions, satellite-derived aerosol retrievals tend to have larger uncertainty in urban or populated regions. Nonetheless, the AQ community has made significant progress in relating column-integrated AOD at ambient relative humidity (RH) to surface PM concentrations at dried RH. Knowledge of aerosol optical and microphysical properties, ambient meteorological conditions, and especially vertical profile, are critical for physically relating AOD and PM. To make urban-scale maps of PM, we also must account for spatial variability. Since surface PM may vary on a finer spatial scale than the resolution of standard MODIS (10 km) and MISR (17km) products, we test higher-resolution versions of MODIS (3km) and MISR (1km research mode) retrievals. The recent (July 2011) DISCOVER-AQ campaign in the mid-Atlantic offers a comprehensive network of sun photometers (DRAGON) and other data that we use for validating the higher resolution satellite data. In the future, we expect that the wealth of aircraft and ground-based measurements, collected during DISCOVER-AQ, will help us quantitatively link remote sensed and ground-based measurements in the urban region.

  7. Optimization of Routine Monitoring of Workers Exposed to Plutonium Aerosols.

    Science.gov (United States)

    Davesne, Estelle; Quesne, Benoit; De Vita, Antoine; Chojnacki, Eric; Blanchardon, Eric; Franck, Didier

    2016-10-01

    In case of incidental confinement failure, mixed oxide (MOX) fuel preparation may expose workers to plutonium aerosols. Due to its potential toxicity, occupational exposure to plutonium compounds should be kept as low as reasonably achievable. To ensure the absence of significant intake of radionuclides, workers at risk of internal contamination are monitored by periodic bioassay planned in a routine monitoring programme. From bioassay results, internal dose may be estimated. However, accurate dose calculation relies on known exposure conditions, which are rarely available when the exposure is demonstrated by routine monitoring only. Therefore, internal dose calculation is subject to uncertainty from unknown exposure conditions and from activity measurement variability. The present study calculates the minimum detectable dose (MDD) for a routine monitoring programme by considering all plausible conditions of exposure and measurement uncertainty. The MDD evaluates the monitoring quality and can be used for optimization. Here, MDDs were calculated for the monitoring of workers preparing MOX fuel. Uncertain parameters were modelled by probability distributions defined according to information provided by experts of routine monitoring, of workplace radiological protection and of bioassay analysis. Results show that the current monitoring is well adapted to potential exposure. A sensitivity study of MDD highlights high dependence on exposure condition modelling. Integrating all expert knowledge is therefore crucial to obtain reliable MDD estimates, stressing the value of a holistic approach to worker monitoring.

  8. Dense Heavy Metal Aerosol Monitoring by Direct X-Ray Fluorescence

    Science.gov (United States)

    1989-06-01

    TECHNICAL REPORT BRL-TR-3003 BRL 0 sDENSE HEAVY METAL AEROSOL MONITORING BY DIRECT X-RAY FLUORESCENCE I GEORGE M. THOMSON flgDTIC ELF% CTE b JUN 16...21005-5066 /F 6261A jIN8 1001I 11. TITLE (-’mi- Sawt Cauif&aan)II DENSE HEAVY METAL AEROSOL MONITORMN BY DIRECT X-RAY FLUORESCENCE 12. PERSONAL AUTHOR(S...Before proceeding, a definition of the term "dense, heavy - metal aerosol" is in order. For present purposes, it is an aerosol in which the suspended

  9. Comparison of Aerosol Single Scattering Albedo Derived from the Ozone Monitoring Instrument with Aerosol Robotic Network Observations

    Institute of Scientific and Technical Information of China (English)

    LIU Qi; HONG Yu-Lan

    2012-01-01

    The single-scattering albedo (SSA), which quantifies radiative absorption capability, is an important optical property of aerosols. Ground-based methods have been extensively exploited to determine aerosol SSA but there were no satellite-based SSA measurements available until the advent of advanced remote sensing techniques, such as the Ozone Monitoring Instrument (OMI). Although the overall accuracy of OMI SSA is estimated to approach 0.1, its regional availability is unclear. Four-year SSA daily measurements from three Aerosol Robotic Network (AERONET) sites in China (Xianghe, Taihu, and Hong Kong) are chosen to determine the accuracy of OMI SSA in specific locations. The results show that on a global scale, the OMI SSA is systematically higher (with a mean relative bias of 3.5% and a RMS difference of ~0.06) and has poor correlation with the AERONET observations. In the Xianghe, Taihu, and Hong Kong sites, the correlation coefficients are 0.16, 0.47, and 0.44, respectively, suggesting that the distinct qualities of OMI SSA depend on geographic locations and/or dominant aerosol environments. The two types of SSA data yield the best agreement in Taihu and the worst in Hong Kong; the differing behavior is likely caused by varying levels of cloud contamination. The good consistency of the aerosol variation between the two SSA datasets on a seasonal scale is promising. These findings suggest that the current-version OMI SSA product can be applied to qualitatively characterize climatological variations of aerosol properties despite its limited accuracy as an instantaneous measurement.

  10. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth retrievals

    Directory of Open Access Journals (Sweden)

    A. R. Naeger

    2015-10-01

    Full Text Available The primary goal of this study was to generate a near-real time (NRT aerosol optical depth (AOD product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS and Suomi National Polar-orbiting Partnership (NPP Visible Infrared Imaging Radiometer Suite (VIIRS satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15 and Japan Meteorological Agency (JMA Multi-functional Transport Satellite (MTSAT-2 to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America. However, we identify several areas across the domain of interest from Asia to North America where the new product can encounter significant uncertainties due to the inclusion of the geostationary AOD retrievals. The uncertainties associated with geostationary AOD retrievals are expected to be minimized after the successful launch of the next-generation advanced NOAA GOES-R and recently launched JMA Himawari satellites. Observations from these advanced satellites will ultimately provide an enhanced understanding of the spatial and temporal distribution of aerosols over the Pacific.

  11. Comparison of the DiSCmini aerosol monitor to a handheld condensation particle counter and a scanning mobility particle sizer for submicrometer sodium chloride and metal aerosols

    OpenAIRE

    Mills, Jessica B.; Park, Jae Hong; Peters, Thomas M.

    2013-01-01

    We evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride, NaCl, and spark generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, 104 particles/cm3). Particle number concentration, lung deposited surface ...

  12. Continuous Monitoring of Nitrate and Sulfate in Aerosols with Microchip Electrophoresis

    Science.gov (United States)

    Noblitt, S. D.; Henry, C. S.; Collett, J. L.; Hering, S. V.

    2007-12-01

    Routine monitoring of aerosol composition is important since aerosols can negatively affect both the environment and health. Water-soluble inorganic ions are commonly monitored using the particle-into-liquid-sampler coupled to ion chromatography (PILS-IC). However, a less-expensive, faster, and more portable analysis system is desirable. Here, we present the coupling of microchip capillary electrophoresis (MCE) to a water-based condensation particle counter (WCPC) for rapid and continuous monitoring of chloride, nitrate, and sulfate in atmospheric aerosols. To achieve a working system, several obstacles were overcome. A working interface between the electrophoresis microchip and the WCPC sampler was developed. This interface was designed to remove insoluble particles from the analysis stream and to prevent the sampling-induced pressure gradient from altering flow in the microfluidic device. The electrophoresis separation chemistry was optimized for the small chip size, to be free from potential interfering compounds, and to operate continuously for several hours. In-field performance of the integrated system was tested with ambient aerosols. Anion analyses can be performed in less than two minutes with aerosol detection limits similar to the PILS-IC, but with greater portability and reduced cost. Coupling microfluidic devices to aerosol sampling technology proves successful for inorganic anion analysis and shows potential for faster and more sensitive measurements as well as monitoring of other water- soluble aerosol components such as organic acids, cations, and carbohydrates. The reduced cost and size relative to current technology indicate that greater deployment of monitoring stations or the advent of portable analyzers may be feasible.

  13. Monitoring and tracking the trans-Pacific transport of aerosols using multi-satellite aerosol optical depth composites

    Science.gov (United States)

    Naeger, Aaron R.; Gupta, Pawan; Zavodsky, Bradley T.; McGrath, Kevin M.

    2016-06-01

    The primary goal of this study was to generate a near-real time (NRT) aerosol optical depth (AOD) product capable of providing a comprehensive understanding of the aerosol spatial distribution over the Pacific Ocean, in order to better monitor and track the trans-Pacific transport of aerosols. Therefore, we developed a NRT product that takes advantage of observations from both low-earth orbiting and geostationary satellites. In particular, we utilize AOD products from the Moderate Resolution Imaging Spectroradiometer (MODIS) and Suomi National Polar-orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) satellites. Then, we combine these AOD products with our own retrieval algorithms developed for the NOAA Geostationary Operational Environmental Satellite (GOES-15) and Japan Meteorological Agency (JMA) Multi-functional Transport Satellite (MTSAT-2) to generate a NRT daily AOD composite product. We present examples of the daily AOD composite product for a case study of trans-Pacific transport of Asian pollution and dust aerosols in mid-March 2014. Overall, the new product successfully tracks this aerosol plume during its trans-Pacific transport to the west coast of North America as the frequent geostationary observations lead to a greater coverage of cloud-free AOD retrievals equatorward of about 35° N, while the polar-orbiting satellites provide a greater coverage of AOD poleward of 35° N. However, we note several areas across the domain of interest from Asia to North America where the GOES-15 and MTSAT-2 retrieval algorithms can introduce significant uncertainties into the new product.

  14. Evaluation of coarse and fine particulate sources using a portable aerosol monitor in a desert community.

    Science.gov (United States)

    Phalen, Robert N; Coleman, Ted

    2012-08-01

    The purpose of this study was to use a portable aerosol monitor as a preliminary screening tool to identify local sources of coarse (PM(10-2.5)) and fine (PM(2.5)) particulate matter within the Coachella Valley, a low-elevation desert community. The portable aerosol monitor proved to be useful in identifying particle sources unique to the region, namely, sand dunes with sparse ground cover (vegetation), a river wash, and diesel truck and freight train traffic. The general limitations relate to discrepancies in the fraction of PM(10-2.5) when compared to regional air quality data and a lack of accurate mass-based data.

  15. Ground-based remote sensing scheme for monitoring aerosol-cloud interactions

    NARCIS (Netherlands)

    Sarna, K.; Russchenberg, H.W.J.

    2016-01-01

    A new method for continuous observation of aerosol–cloud interactions with ground-based remote sensing instruments is presented. The main goal of this method is to enable the monitoring of the change of the cloud droplet size due to the change in the aerosol concentration. We use high-resolution mea

  16. LOCAL AIR: Local Aerosol monitoring combining in-situ and Remote Sensing observations

    Science.gov (United States)

    Mona, Lucia; Caggiano, Rosa; Donvito, Angelo; Giannini, Vincenzo; Papagiannopoulos, Nikolaos; Sarli, Valentina; Trippetta, Serena

    2015-04-01

    The atmospheric aerosols have effects on climate, environment and health. Although the importance of the study of aerosols is well recognized, the current knowledge of the characteristics and their distribution is still insufficient, and there are large uncertainties in the current understanding of the role of aerosols on climate and the environment, both on a regional and local level. Overcoming these uncertainties requires a search strategy that integrates data from multiple platforms (eg, terrestrial, satellite, ships and planes) and the different acquisition techniques (for example, in situ measurements, remote sensing, modeling numerical and data assimilation) (Yu et al., 2006). To this end, in recent years, there have been many efforts such as the creation of networks dedicated to systematic observation of aerosols (eg, European Monitoring and Evaluation Programme-EMEP, European Aerosol Research Lidar NETwork-EARLINET, MicroPulse Lidar Network- MPLNET, and Aerosol Robotic NETwork-AERONET), the development and implementation of new satellite sensors and improvement of numerical models. The recent availability of numerous data to the ground, columnar and profiles of aerosols allows to investigate these aspects. An integrated approach between these different techniques could be able to provide additional information, providing greater insight into the properties of aerosols and their distribution and overcoming the limits of each single technique. In fact, the ground measurements allow direct determination of the physico-chemical properties of aerosols, but cannot be considered representative for large spatial and temporal scales and do not provide any information about the vertical profile of aerosols. On the other hand, the remote sensing techniques from the ground and satellite provide information on the vertical distribution of atmospheric aerosols both in the Planetary Boundary Layer (PBL), mainly characterized by the presence of aerosols originating from

  17. Activity Concentration Monitoring for Alpha Radioactive Aerosol in CRARL after Reprocessing Experiments

    Institute of Scientific and Technical Information of China (English)

    WANG; Xiang-li; LIU; Ning; WANG; Xiao-rong; BAI; Yang; JIAO; Xiao-yan; XU; Xin; MA; Hao-ran

    2015-01-01

    The activity concentration for alpha radioactive aerosol in CRARL after reprocessing experiments was analyzed.Through the decay method of activity concentration monitoring,the processed result shows the background is 3.05×10-3 s-1,σ(0)=2.25×10-3,LC=2.33×10-3 Bq/m3,LD=4.66×10-3 Bq/m3.The result indicated

  18. A new method of satellite-based haze aerosol monitoring over the North China Plain and a comparison with MODIS Collection 6 aerosol products

    Science.gov (United States)

    Yan, Xing; Shi, Wenzhong; Luo, Nana; Zhao, Wenji

    2016-05-01

    With worldwide urbanization, hazy weather has been increasingly frequent, especially in the North China Plain. However, haze aerosol monitoring remains a challenge. In this paper, MODerate resolution Imaging Spectroradiometer (MODIS) measurements were used to develop an enhanced haze aerosol retrieval algorithm (EHARA). This method can work not only on hazy days but also on normal weather days. Based on 12-year (2002-2014) Aerosol Robotic Network (AERONET) aerosol property data, empirical single scattering albedo (SSA) and asymmetry factor (AF) values were chosen to assist haze aerosol retrieval. For validation, EHARA aerosol optical thickness (AOT) values, along with MODIS Collection 6 (C6) dark-pixel and deep blue aerosol products, were compared with AERONET data. The results show that the EHARA can achieve greater AOT spatial coverage under hazy conditions with a high accuracy (73% within error range) and work a higher resolution (1-km). Additionally, this paper presents a comprehensive discussion of the differences between and limitations of the EHARA and the MODIS C6 DT land algorithms.

  19. Automated high-volume aerosol sampling station for environmental radiation monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Toivonen, H.; Honkamaa, T.; Ilander, T.; Leppaenen, A.; Nikkinen, M.; Poellaenen, R.; Ylaetalo, S

    1998-07-01

    An automated high-volume aerosol sampling station, known as CINDERELLA.STUK, for environmental radiation monitoring has been developed by the Radiation and Nuclear Safety Authority (STUK), Finland. The sample is collected on a glass fibre filter (attached into a cassette), the airflow through the filter is 800 m{sup 3}/h at maximum. During the sampling, the filter is continuously monitored with Na(I) scintillation detectors. After the sampling, the large filter is automatically cut into 15 pieces that form a small sample and after ageing, the pile of filter pieces is moved onto an HPGe detector. These actions are performed automatically by a robot. The system is operated at a duty cycle of 1 d sampling, 1 d decay and 1 d counting. Minimum detectable concentrations of radionuclides in air are typically 1Ae10 x 10{sup -6} Bq/m{sup 3}. The station is equipped with various sensors to reveal unauthorized admittance. These sensors can be monitored remotely in real time via Internet or telephone lines. The processes and operation of the station are monitored and partly controlled by computer. The present approach fulfils the requirements of CTBTO for aerosol monitoring. The concept suits well for nuclear material safeguards, too 10 refs.

  20. Aerosol monitoring in the PBL over big cities using a mobile eye safe LIDAR

    Science.gov (United States)

    Sauvage, Laurent; Chazette, Patrick

    2005-10-01

    The Laboratory of Science of Climate and Environment (CEA/ CNRS) and LEOSPHERE Company have jointly developed an eye safe, rugged and unattended high resolution scanning lidar ("easy lidar", www.lidar.fr). This system has been used in the frame of the POVA program and has been used in a compact version during the LISAIR (LIdar to Survey the AIR) program in May 2005 in the Paris city, France. The mobile lidar has been used to follow aerosol particles in highways subject to heavy traffic. High spatial and temporal resolution data on the entire planetary boundary layer (1.5 m and 1s respectively) allowed to monitor for aerosol load variability on board a moving car and also to detect for local sources. We observed the doubling of the optical thickness in the morning when traffic is high in the city ring. We also have shown local effect of waste burning plants and train stations. This new type of eye safe lidar will allow to monitor continuously the entire area of a town and suburbs, in order to detect main sources of pollution (transport, traffic jams, industrial plants, natural dust), follow in real time the evolution of the PBL height and provide an estimation of the mass concentration of the aerosol in the PBL.

  1. The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, W.T.; Walker, B.A.

    1996-01-01

    Alpha continuous air monitors (CAMs) will be used at the Waste Isolation Pilot Plant (WIPP) to measure airborne transuranic radioactivity that might be present in air exhaust or in work-place areas. WIPP CAMs are important to health and safety because they are used to alert workers to airborne radioactivity, to actuate air-effluent filtration systems, and to detect airborne radioactivity so that the radioactivity can be confined in a limited area. In 1993, the Environmental Evaluation Group (EEG) reported that CAM operational performance was affected by salt aerosol, and subsequently, the WIPP CAM design and usage were modified. In this report, operational data and current theories on aerosol collection were reviewed to determine CAM quantitative performance limitations. Since 1993, the overall CAM performance appears to have improved, but anomalous alpha spectra are present when sampling-filter salt deposits are at normal to high levels. This report shows that sampling-filter salt deposits directly affect radon-thoron daughter alpha spectra and overall monitor efficiency. Previously it was assumed that aerosol was mechanically collected on the surface of CAM sampling filters, but this review suggests that electrostatic and other particle collection mechanisms are more important than previously thought. The mechanism of sampling-filter particle collection is critical to measurement of acute releases of radioactivity. 41 refs.

  2. Development of a new aerosol monitoring system and its application in Fukushima nuclear accident related aerosol radioactivity measurement at the CTBT radionuclide station in Sidney of Canada

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Weihua, E-mail: weihua.zhang@hc-sc.gc.ca [Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa, Ontario, K1A 1C1 (Canada); Bean, Marc; Benotto, Mike; Cheung, Jeff; Ungar, Kurt; Ahier, Brian [Radiation Protection Bureau, Health Canada, 775 Brookfield Road, Ottawa, Ontario, K1A 1C1 (Canada)

    2011-12-15

    A high volume aerosol sampler ('Grey Owl') has been designed and developed at the Radiation Protection Bureau, Health Canada. Its design guidance is based on the need for a low operational cost and reliable sampler to provide daily aerosol monitoring samples that can be used as reference samples for radiological studies. It has been developed to provide a constant air flow rate at low pressure drops ({approx}3 kPa for a day sampling) with variations of less than {+-}1% of the full scale flow rate. Its energy consumption is only about 1.5 kW for a filter sampling over 22,000 standard cubic meter of air. It has been demonstrated in this Fukushima nuclear accident related aerosol radioactivity monitoring study at Sidney station, B.C. that the sampler is robust and reliable. The results provided by the new monitoring system have been used to support decision-making in Canada during an emergency response. - Highlights: > A new high volume aerosol sampler ('Grey Owl') has been developed in this study. > It operates at low pressure drops with low energy consumption. > The variation of air flow rate is less than {+-}1% of the full scale. > Fukushima accident nuclide monitoring at Sidney shows that it is robust and reliable.

  3. The influence of salt aerosol on alpha radiation detection by WIPP continuous air monitors

    Energy Technology Data Exchange (ETDEWEB)

    Bartlett, W.T.; Walker, B.A. [Environmental Evaluation Group, Albuquerque, NM (United States)

    1997-08-01

    Waste Isolation Pilot Plant (WIPP) alpha continuous air monitor (CAM) performance was evaluated to determine if CAMs could detect accidental releases of transuranic radioactivity from the underground repository. Anomalous alpha spectra and poor background subtraction were observed and attributed to salt deposits on the CAM sampling filters. Microscopic examination of salt laden sampling filters revealed that aerosol particles were forming dendritic structures on the surface of the sampling filters. Alpha CAM detection efficiency decreased exponentially as salt deposits increased on the sampling filters, suggesting that sampling-filter salt was performing like a fibrous filter rather than a membrane filter. Aerosol particles appeared to penetrate the sampling-filter salt deposits and alpha particle energy was reduced. These findings indicate that alpha CAMs may not be able to detect acute releases of radioactivity, and consequently CAMs are not used as part of the WIPP dynamic confinement system. 12 refs., 12 figs., 1 tab.

  4. Detection of marine aerosols with IRS P4-Ocean Colour Monitor

    Indian Academy of Sciences (India)

    Indrani Das; M Mohan; K Krishnamoorthy

    2002-12-01

    The atmospheric correction bands 7 and 8 (765nm and 865nm respectively) of the Indian Remote Sensing Satellite IRS P4-OCM (Ocean Colour Monitor) can be used for deriving aerosol optical depth (AOD) over the oceans. A retrieval algorithm has been developed which computes the AOD using band 7 data by treating the ocean surface as a dark background after removing the Rayleigh path radiance in the sensor-detected radiances. This algorithm has been used to detect marine aerosol distributions at different coastal and offshore locations around India. A comparison between OCM derived AOD and the NOAA operational AOD shows a correlation ∼0.92 while that between OCM derived AOD and the ground-based sun photometer measurements near the coast of Trivandrum shows a correlation of ∼0.90.

  5. Submicron aerosol source apportionment of wintertime pollution in Paris, France by Double Positive Matrix Factorization (PMF2 using Aerosol Chemical Speciation Monitor (ACSM and multi-wavelength Aethalometer

    Directory of Open Access Journals (Sweden)

    J.-E. Petit

    2014-06-01

    Full Text Available Online non-refractory submicron Aerosol Mass Spectrometer (AMS measurements in urban areas have successfully allowed the apportionment of specific sources and/or physical and chemical properties of the organic fraction. However, in order to be fully representative of PM pollution, a comprehensive source apportionment analysis is needed by taking into account all major components of submicron aerosols, creating strengthened bonds between the organic components and pollution sources. We present here a novel two-step methodology to perform such an analysis, by taking advantage of high time resolution of monitoring instruments: the Aerosol Chemical Speciation Monitor (ACSM and the multi-wavelength absorption measurements (Aethalometer AE31 in Paris, France. As a first step, organic aerosols (OA were deconvoluted to hydrocarbon-like OA (HOA, Biomass Burning OA (BBOA and Oxygenated OA (OOA with Positive Matrix Factorization, and black carbon was deconvolved into its wood burning and fossil fuel combustion fractions. A second PMF analysis was then carried out with organic factors, BC fractions and inorganic species (nitrate, sulfate, ammonium, chloride, leading to a~four-factor solution allowing real-time characterization of the major sources of PM1. Outputs of this PMF2 include two dominant combustion sources (wood burning and traffic as well as semi-volatile and low-volatile secondary aerosols. While HOA is found to be emitted by both wood burning and traffic, the latter sources occurred to significantly contribute also to OOA.

  6. Long-term dust climatology in the western United States reconstructed from routine aerosol ground monitoring

    Directory of Open Access Journals (Sweden)

    D. Q. Tong

    2012-06-01

    Full Text Available This study introduces an observation-based dust identification approach and applies it to reconstruct long-term dust climatology in the western United States. Long-term dust climatology is important for quantifying the effects of atmospheric aerosols on regional and global climate. Although many routine aerosol monitoring networks exist, it is often difficult to obtain dust records from these networks, because these monitors are either deployed far away from dust active regions (most likely collocated with dense population or contaminated by anthropogenic sources and other natural sources, such as wildfires and vegetation detritus. Here we propose an approach to identify local dust events relying solely on aerosol mass and composition from general-purpose aerosol measurements. Through analyzing the chemical and physical characteristics of aerosol observations during satellite-detected dust episodes, we select five indicators to be used to identify local dust records: (1 high PM10 concentrations; (2 low PM2.5/PM10 ratio; (3 higher concentrations and percentage of crustal elements; (4 lower percentage of anthropogenic pollutants; and (5 low enrichment factors of anthropogenic elements. After establishing these identification criteria, we conduct hierarchical cluster analysis for all validated aerosol measurement data over 68 IMPROVE sites in the western United States. A total of 182 local dust events were identified over 30 of the 68 locations from 2000 to 2007. These locations are either close to the four US Deserts, namely the Great Basin Desert, the Mojave Desert, the Sonoran Desert, and the Chihuahuan Desert, or in the high wind power region (Colorado. During the eight-year study period, the total number of dust events displays an interesting four-year activity cycle (one in 2000–2003 and the other in 2004–2007. The years of 2003, 2002 and 2007 are the three most active dust periods, with 46, 31 and 24

  7. An observation-based approach to identify local natural dust events from routine aerosol ground monitoring

    Directory of Open Access Journals (Sweden)

    D. Q. Tong

    2012-02-01

    Full Text Available Dust is a major component of atmospheric aerosols in many parts of the world. Although there exist many routine aerosol monitoring networks, it is often difficult to obtain dust records from these networks, because these monitors are either deployed far away from dust active regions (most likely collocated with dense population or contaminated by anthropogenic sources and other natural sources, such as wildfires and vegetation detritus. Here we propose a new approach to identify local dust events relying solely on aerosol mass and composition from general-purpose aerosol measurements. Through analyzing the chemical and physical characteristics of aerosol observations during satellite-detected dust episodes, we select five indicators to be used to identify local dust records: (1 high PM10 concentrations; (2 low PM2.5/PM10 ratio; (3 higher concentrations and percentage of crustal elements; (4 lower percentage of anthropogenic pollutants; and (5 low enrichment factors of anthropogenic elements. After establishing these identification criteria, we conduct hierarchical cluster analysis for all validated aerosol measurement data over 68 IMPROVE sites in the Western United States. A total of 182 local dust events were identified over 30 of the 68 locations from 2000 to 2007. These locations are either close to the four US Deserts, namely the Great Basin Desert, the Mojave Desert, the Sonoran Desert, and the Chihuahuan Desert, or in the high wind power region (Colorado. During the eight-year study period, the total number of dust events displays an interesting four-year activity cycle (one in 2000–2003 and the other in 2004–2007. The years of 2003, 2002 and 2007 are the three most active dust periods, with 46, 31 and 24 recorded dust events, respectively, while the years of 2000, 2004 and 2005 are the calmest periods, all with single digit dust records. Among these deserts, the Chihuahua Desert (59 cases and the

  8. Comparison of the DiSCmini aerosol monitor to a handheld condensation particle counter and a scanning mobility particle sizer for submicrometer sodium chloride and metal aerosols.

    Science.gov (United States)

    Mills, Jessica B; Park, Jae Hong; Peters, Thomas M

    2013-01-01

    We evaluated the robust, lightweight DiSCmini (DM) aerosol monitor for its ability to measure the concentration and mean diameter of submicrometer aerosols. Tests were conducted with monodispersed and polydispersed aerosols composed of two particle types (sodium chloride [NaCl] and spark-generated metal particles, which simulate particles found in welding fume) at three different steady-state concentration ranges (Low, 10(4) particles/cm(3)). Particle number concentration, lung deposited surface area (LDSA) concentration, and mean size measured with the DM were compared with those measured with reference instruments, a scanning mobility particle sizer (SMPS), and a handheld condensation particle counter (CPC). Particle number concentrations measured with the DM were within 16% of those measured by the CPC for polydispersed aerosols. Poorer agreement was observed for monodispersed aerosols (±35% for most tests and +101% for 300-nm NaCl). LDSA concentrations measured by the DM were 96% to 155% of those estimated with the SMPS. The geometric mean diameters measured with the DM were within 30% of those measured with the SMPS for monodispersed aerosols and within 25% for polydispersed aerosols (except for the case when the aerosol contained a substantial number of particles larger than 300 nm). The accuracy of the DM is reasonable for particles smaller than 300 nm, but caution should be exercised when particles larger than 300 nm are present. [Supplementary materials are available for this article. Go to the publisher's online edition of the Journal of Occupational and Environmental Hygiene for the following free supplemental resources: manufacturer-reported capabilities of instruments used, and information from the SMPS measurements for polydispersed test particles.].

  9. Expected trace gas and aerosol retrieval accuracy of the Geostationary Environment Monitoring Spectrometer

    Science.gov (United States)

    Jeong, U.; Kim, J.; Liu, X.; Lee, K. H.; Chance, K.; Song, C. H.

    2015-12-01

    The predicted accuracy of the trace gases and aerosol retrievals from the geostationary environment monitoring spectrometer (GEMS) was investigated. The GEMS is one of the first sensors to monitor NO2, SO2, HCHO, O3, and aerosols onboard geostationary earth orbit (GEO) over Asia. Since the GEMS is not launched yet, the simulated measurements and its precision were used in this study. The random and systematic component of the measurement error was estimated based on the instrument design. The atmospheric profiles were obtained from Model for Ozone And Related chemical Tracers (MOZART) simulations and surface reflectances were obtained from climatology of OMI Lambertian equivalent reflectance. The uncertainties of the GEMS trace gas and aerosol products were estimated based on the OE method using the atmospheric profile and surface reflectance. Most of the estimated uncertainties of NO2, HCHO, stratospheric and total O3 products satisfied the user's requirements with sufficient margin. However, about 26% of the estimated uncertainties of SO2 and about 30% of the estimated uncertainties of tropospheric O3 do not meet the required precision. Particularly the estimated uncertainty of SO2 is high in winter, when the emission is strong in East Asia. Further efforts are necessary in order to improve the retrieval accuracy of SO2 and tropospheric O3 in order to reach the scientific goal of GEMS. Random measurement error of GEMS was important for the NO2, SO2, and HCHO retrieval, while both the random and systematic measurement errors were important for the O3 retrievals. The degree of freedom for signal of tropospheric O3 was 0.8 ± 0.2 and that for stratospheric O3 was 2.9 ± 0.5. The estimated uncertainties of the aerosol retrieval from GEMS measurements were predicted to be lower than the required precision for the SZA range of the trace gas retrievals.

  10. Urban air quality assessment using monitoring data of fractionized aerosol samples, chemometrics and meteorological conditions.

    Science.gov (United States)

    Yotova, Galina I; Tsitouridou, Roxani; Tsakovski, Stefan L; Simeonov, Vasil D

    2016-01-01

    The present article deals with assessment of urban air by using monitoring data for 10 different aerosol fractions (0.015-16 μm) collected at a typical urban site in City of Thessaloniki, Greece. The data set was subject to multivariate statistical analysis (cluster analysis and principal components analysis) and, additionally, to HYSPLIT back trajectory modeling in order to assess in a better way the impact of the weather conditions on the pollution sources identified. A specific element of the study is the effort to clarify the role of outliers in the data set. The reason for the appearance of outliers is strongly related to the atmospheric condition on the particular sampling days leading to enhanced concentration of pollutants (secondary emissions, sea sprays, road and soil dust, combustion processes) especially for ultra fine and coarse particles. It is also shown that three major sources affect the urban air quality of the location studied-sea sprays, mineral dust and anthropogenic influences (agricultural activity, combustion processes, and industrial sources). The level of impact is related to certain extent to the aerosol fraction size. The assessment of the meteorological conditions leads to defining of four downwind patterns affecting the air quality (Pelagic, Western and Central Europe, Eastern and Northeastern Europe and Africa and Southern Europe). Thus, the present study offers a complete urban air assessment taking into account the weather conditions, pollution sources and aerosol fractioning.

  11. The ToF-ACSM: a portable aerosol chemical speciation monitor with TOFMS detection

    Directory of Open Access Journals (Sweden)

    R. Fröhlich

    2013-11-01

    Full Text Available We present a new instrument for monitoring aerosol composition, the time-of-flight aerosol chemical speciation monitor (ToF-ACSM, combining precision state-of-the-art time-of-flight mass spectrometry with stability, reliability, and easy handling, which are necessities for long-term monitoring operations on the scale of months to years. Based on Aerodyne aerosol mass spectrometer (AMS technology, the ToF-ACSM provides continuous online measurements of chemical composition and mass of non-refractory submicron aerosol particles. In contrast to the larger AMS, the compact-sized and lower-priced ToF-ACSM does not feature particle sizing, similar to the widely-used quadrupole-ACSM (Q-ACSM. Compared to the Q-ACSM, the ToF-ACSM features a better mass resolution of M/ΔM = 600 and better detection limits on the order of −3 for a time resolution of 30 min. With simple upgrades these limits can be brought down by another factor of ~ 8. This allows for operation at higher time resolutions and in low concentration environments. The associated software packages (single packages for integrated operation and calibration and analysis provide a high degree of automation and remote access, minimising the need for trained personnel on site. Intercomparisons with Q-ACSM, C-ToF-AMS, nephelometer and scanning mobility particle sizer (SMPS measurements, performed during a first long-term deployment (> 10 months on the Jungfraujoch mountain ridge (3580 m a.s.l. in the Swiss Alps, agree quantitatively. Additionally, the mass resolution of the ToF-ACSM is sufficient for basic mass defect resolved peak fitting of the recorded spectra, providing a data stream not accessible to the Q-ACSM. This allows for quantification of certain hydrocarbon and oxygenated fragments (e.g. C3H7+ and C2H3O+, both occurring at m/Q = 43 Th, as well as improving inorganic/organic separation.

  12. Demolition and removal of radioactively contaminated concrete soil: Aerosol control and monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Newton, G.J.; Hoover, M.D.; Grace, A.C. III

    1995-12-01

    From 1963 to 1985, two concrete-lined ponds were used to reduce the volume of radioactive liquids from the Institute`s research programs. Following withdrawal of the {open_quotes}hot ponds{close_quotes} from active use, the residual sludges and plastic liners of the ponds were removed and shipped to a radioactive waste disposal site. From 1987 to 1994, the concrete structures remained undisturbed pending environmental restoration on the site. Restoration began in 1994 and was completed in 1995. Restoration involved mechanical breakup and removal of the concrete structures and removal of areas of contaminated soils from the site. This report describes the design and results of the aerosol control and monitoring program that was conducted to ensure protection of workers and the environment during the restoration process. The aerosol control and monitoring strategy developed for remediation of the ITRI hot ponds was successful both in preventing dispersion of radioactive dusts and in demonstrating that exposures of workers and offsite releases were within statutory limits.

  13. TOMS Absorbing Aerosol Index

    Data.gov (United States)

    Washington University St Louis — TOMS_AI_G is an aerosol related dataset derived from the Total Ozone Monitoring Satellite (TOMS) Sensor. The TOMS aerosol index arises from absorbing aerosols such...

  14. Development of a new aerosol monitoring system and its application in Fukushima nuclear accident related aerosol radioactivity measurement at the CTBT radionuclide station in Sidney of Canada.

    Science.gov (United States)

    Zhang, Weihua; Bean, Marc; Benotto, Mike; Cheung, Jeff; Ungar, Kurt; Ahier, Brian

    2011-12-01

    A high volume aerosol sampler ("Grey Owl") has been designed and developed at the Radiation Protection Bureau, Health Canada. Its design guidance is based on the need for a low operational cost and reliable sampler to provide daily aerosol monitoring samples that can be used as reference samples for radiological studies. It has been developed to provide a constant air flow rate at low pressure drops (∼3 kPa for a day sampling) with variations of less than ±1% of the full scale flow rate. Its energy consumption is only about 1.5 kW for a filter sampling over 22,000 standard cubic meter of air. It has been demonstrated in this Fukushima nuclear accident related aerosol radioactivity monitoring study at Sidney station, B.C. that the sampler is robust and reliable. The results provided by the new monitoring system have been used to support decision-making in Canada during an emergency response.

  15. Monitoring of aerosols in Tsukuba after Fukushima Nuclear Power Plant incident in 2011.

    Science.gov (United States)

    Kanai, Yutaka

    2012-09-01

    Artificial radionuclides were released into the atmosphere by the Fukushima Dai-ichi Nuclear Power Plant incident after a strong earthquake on 11 March 2011. Aerosol monitoring at the Geological Survey of Japan, Tsukuba, was started 20 d after the incident. Radionuclides such as (99)Mo/(99m)Tc, (132)Te/(132)I, (129 m)Te/(129)Te, (131)I, (137)Cs, (136)Cs, (134)Cs, (140)Ba/(140)La, (110 m)Ag, and (95)Nb were observed and, with the exception of (137)Cs and (134)Cs, these radionuclides decreased to below the limit of detection in the middle of June. The activity ratio of atmospheric (134)Cs/(137)Cs in aerosols decreased over time almost following physical decays. Therefore, the (134)Cs/(137)Cs activity ratio in the averaged air mass in this study could be regarded as homogeneous although those of several reactors in the Nuclear Power Plant were not ascertained. A further research on the released (137)Cs and (134)Cs would be necessary for the sedimentology of lake sediment.

  16. Long-term Measurements of Submicrometer Aerosol Chemistry at the Southern Great Plains (SGP) Using an Aerosol Chemical Speciation Monitor (ACSM)

    Energy Technology Data Exchange (ETDEWEB)

    Parworth, Caroline; Fast, Jerome D.; Mei, Fan; Shippert, Timothy R.; Sivaraman, Chitra; Tilp, Alison; Watson, Thomas; Zhang, Qi

    2015-04-01

    In this study the long-term trends of non-refractory submicrometer aerosol (NR-PM1) composition and mass concentration measured by an Aerosol Chemical Speciation Monitor (ACSM) at the U.S. Department of Energy’s Southern Great Plains (SGP) site are discussed. Over the period of 19 months (Nov. 20, 2010 – June 2012) highly time resolved (~30 min.) NR-PM1 data was recorded. Using this dataset the value-added product (VAP) of deriving organic aerosol components (OACOMP) is introduced. With this VAP, multivariate analysis of the measured organic mass spectral matrix can be performed on long term data to return organic aerosol (OA) factors that are associated with distinct sources, evolution processes, and physiochemical properties. Three factors were obtained from this VAP including two oxygenated OA (OOA) factors, differing in degrees of oxidation, and a biomass burning OA (BBOA) factor. Back trajectory analyses were performed to investigate possible sources of major NR-PM1 species at the SGP site. Organics dominated NR-PM1 mass concentration for the majority of the study with the exception of winter, when nitrate increased due to transport of precursor species from surrounding urban and agricultural areas and also due to cooler temperatures. Sulfate mass concentrations showed little seasonal variation with mixed regional and local sources. In the spring BBOA emissions increased and were mainly associated with local fires. Isoprene and carbon monoxide emission rates were computed by the Model of Emissions of Gases and Aerosols from Nature (MEGAN) to represent the spatial distribution of biogenic and anthropogenic sources, respectively. From this model there is evidence to support that biogenic emissions from the southeast contribute to SOA formation at the SGP site during the summer.

  17. A new code for spectrometric analysis for environmental radiological surveillance on monitors focused on gamma radioactivity on aerosols

    Energy Technology Data Exchange (ETDEWEB)

    De Blas, Alfredo; Tapia, Carlos; Riego, Albert; Garcia, Roger; Dies, Javier; Diaz, Pedro [Nuclear Engineering Research Group, Departament of Physics and Nuclear Engineering, Technical University of Catalonia, Barcelona (Spain); Toral, Juan [Raditel Serveis, Tarragona (Spain); Batalla, Enric [Radiological Activities Corrdination Service - SCAR, Generalitat de Catalunya. Barcelona (Spain)

    2015-07-01

    pGamma is a code developed by the NERG group of the Technical University of Catalonia - Barcelona Tech for the analysis of gamma spectra generated by the Equipment for the Continuous Measurement and Identification of Gamma Radioactivity on Aerosols with Paper Filter developed for our group and Raditel Servies company. Nowadays the code is in the process of adaptation for the monitors of the Environmental Radiological Surveillance Network of the Local Government of Catalonia (Generalitat of Catalonia), Spain. The code is a Spectrum Analysis System, it identifies the gamma emitters on the spectrum, determines its Concentration of Activity, generates alarms depending on the Activity of the emitters and generates a report. The Spectrum Analysis System includes a library with emitters of interest, NORM and artificial. The code is being used on the three stations with the aerosol monitor of the Network (Asco and Vandellos, near both Nuclear Power Plants and Barcelona). (authors)

  18. Monitoring Aerosols from Space: What We can Say, and What We Can't

    Science.gov (United States)

    Kahn, Ralph A.

    2011-01-01

    Aerosols are understood to play a significant role is the global energy balance, and especially on atmospheric as well as surface energy balances regionally. A combination of direct radiative cooling of the surface, atmospheric warming through diabatic heating, and indirect effects of aerosol on clouds are all thought to contribute to the net aerosol effect, though the magnitudes of each are both highly variable in space and time, and highly uncertain. Passive space-based remote sensing is a key tool for constraining these effects, due to the frequent, global coverage satellites can provide. However, information from such observations about total-column aerosol amount (i.e., aerosol optical depth or AOD), and especially about aerosol type, is limited. The current generation of passive aerosol remote-sensing instruments, including the Multi-angle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS) offer vast improvements over previous instruments, including AOD over water and much of the land surface, fine vs. coarse particle type over ocean from MODIS, and discrimination of about a dozen aerosol types from MISR under good retrieval conditions, based on particle size, shape, and single-scattering albedo (SSA) constraints. This presentation will summarize the capabilities and expected improvements in the currently available aerosol products, in light of required energy budget constraints. Ways of addressing the need for detailed information about particle microphysical properties, especially SSA, unobtainable from MISR or MODIS, will be discussed.

  19. Measurement of fine particulate matter nonvolatile and semi-volatile organic material with the Sunset Laboratory Carbon Aerosol Monitor.

    Science.gov (United States)

    Grover, Brett D; Kleinman, Michael; Eatough, Norman L; Eatough, Delbert J; Cary, Robert A; Hopke, Philip K; Wilson, William E

    2008-01-01

    Semi-volatile organic material (SVOM) in fine particles is not reliably measured with conventional semicontinuous carbon monitors because SVOM is lost from the collection media during sample collection. We have modified a Sunset Laboratory Carbon Aerosol Monitor to allow for the determination of SVOM. In a conventional Sunset monitor, gas-phase organic compounds are removed in the sampled airstream by a diffusion denuder employing charcoal-impregnated cellulose filter (CIF) surfaces. Subsequently, particles are collected on a quartz filter and the instrument then determines both the organic carbon and elemental carbon fractions of the aerosol using a thermal/optical method. However, some of the SVOM is lost from the filter during collection, and therefore is not determined. Because the interfering gas-phase organic compounds are removed before aerosol collection, the SVOM can be determined by filtering the particles at the instrument inlet and then replacing the quartz filter in the monitor with a charcoal-impregnated glass fiber filter (CIG), which retains the SVOM lost from particles collected on the inlet filter. The resulting collected SVOM is then determined in the analysis step by measurement of the carbonaceous material thermally evolved from the CIG filter. This concept was tested during field studies in February 2003 in Lindon, UT, and in July 2003 in Rubidoux, CA. The results obtained were validated by comparison with Particle Concentrator-Brigham Young University Organic Sampling System (PC-BOSS) results. The sum of nonvolatile organic material determined with a conventional Sunset monitor and SVOM determined with the modified Sunset monitor agree with the PC-BOSS results. Linear regression analysis of total carbon concentrations determined by the PC-BOSS and the Sunset resulted in a zero-intercept slope of 0.99 +/- 0.02 (R2 = 0.92) and a precision of sigma = +/- 1.5 microg C/m3 (8%).

  20. Continuous and real-time bioaerosol monitoring by combined aerosol-to-hydrosol sampling and ATP bioluminescence assay.

    Science.gov (United States)

    Park, Ji-Woon; Kim, Hyeong Rae; Hwang, Jungho

    2016-10-19

    We present a methodology for continuous and real-time bioaerosol monitoring wherein an aerosol-to-hydrosol sampler is integrated with a bioluminescence detector. Laboratory test was conducted by supplying an air flow with entrained test bacteria (Staphylococcus epidermidis) to the inlet of the sampler. High voltage was applied between the discharge electrode and the ground electrode of the sampler to generate air ions by corona discharge. The bacterial aerosols were charged by the air ions and sampled in a flowing liquid containing both a cell lysis buffer and adenosine triphosphate (ATP) bioluminescence reagents. While the liquid was delivered to the bioluminescence detector, sampled bacteria were dissolved by the cell lysis buffer and ATP was extracted. The ATP was reacted with the ATP bioluminescence reagents, causing light to be emitted. When the concentration of bacteria in the aerosols was varied, the ATP bioluminescence signal in relative light units (RLUs) closely tracked the concentration in particles per unit air volume (# cm(-3)), as measured by an aerosol particle sizer. The total response time required for aerosol sampling and ATP bioluminescence detection increased from 30 s to 2 min for decreasing liquid sampling flow rate from 800 to 200 μLPM, respectively. However, lower concentration of S. epidermidis aerosols was able to be detected with lower liquid sampling flow rate (1 RLU corresponded to 6.5 # cm(-3) of S. epidermidis aerosols at 200 μLPM and 25.5 # cm(-3) at 800 μLPM). After obtaining all data sets of concentration of S. epidermidis aerosols and concentration of S. epidermidis particles collected in the flowing liquid, it was found that with our bioluminescence detector, 1 RLU corresponded to 1.8 × 10(5) (±0.2 × 10(5)) # mL(-1) of S. epidermidis in liquid. After the lab-test with S. epidermidis, our bioaerosol monitoring device was located in the lobby of a building. Air sampling was conducted continuously for 90

  1. Assessing the measurement of aerosol single scattering albedo by Cavity Attenuated Phase-Shift Single Scattering Monitor (CAPS PMssa)

    Science.gov (United States)

    Perim de Faria, Julia; Bundke, Ulrich; Onasch, Timothy B.; Freedman, Andrew; Petzold, Andreas

    2016-04-01

    The necessity to quantify the direct impact of aerosol particles on climate forcing is already well known; assessing this impact requires continuous and systematic measurements of the aerosol optical properties. Two of the main parameters that need to be accurately measured are the aerosol optical depth and single scattering albedo (SSA, defined as the ratio of particulate scattering to extinction). The measurement of single scattering albedo commonly involves the measurement of two optical parameters, the scattering and the absorption coefficients. Although there are well established technologies to measure both of these parameters, the use of two separate instruments with different principles and uncertainties represents potential sources of significant errors and biases. Based on the recently developed cavity attenuated phase shift particle extinction monitor (CAPS PM_{ex) instrument, the CAPS PM_{ssa instrument combines the CAPS technology to measure particle extinction with an integrating sphere capable of simultaneously measuring the scattering coefficient of the same sample. The scattering channel is calibrated to the extinction channel, such that the accuracy of the single scattering albedo measurement is only a function of the accuracy of the extinction measurement and the nephelometer truncation losses. This gives the instrument an accurate and direct measurement of the single scattering albedo. In this study, we assess the measurements of both the extinction and scattering channels of the CAPS PM_{ssa through intercomparisons with Mie theory, as a fundamental comparison, and with proven technologies, such as integrating nephelometers and filter-based absorption monitors. For comparison, we use two nephelometers, a TSI 3563 and an Aurora 4000, and two measurements of the absorption coefficient, using a Particulate Soot Absorption Photometer (PSAP) and a Multi Angle Absorption Photometer (MAAP). We also assess the indirect absorption coefficient

  2. Integrating silicon nanowire field effect transistor, microfluidics and air sampling techniques for real-time monitoring biological aerosols.

    Science.gov (United States)

    Shen, Fangxia; Tan, Miaomiao; Wang, Zhenxing; Yao, Maosheng; Xu, Zhenqiang; Wu, Yan; Wang, Jindong; Guo, Xuefeng; Zhu, Tong

    2011-09-01

    Numerous threats from biological aerosol exposures, such as those from H1N1 influenza, SARS, bird flu, and bioterrorism activities necessitate the development of a real-time bioaerosol sensing system, which however is a long-standing challenge in the field. Here, we developed a real-time monitoring system for airborne influenza H3N2 viruses by integrating electronically addressable silicon nanowire (SiNW) sensor devices, microfluidics and bioaerosol-to-hydrosol air sampling techniques. When airborne influenza H3N2 virus samples were collected and delivered to antibody-modified SiNW devices, discrete nanowire conductance changes were observed within seconds. In contrast, the conductance levels remained relatively unchanged when indoor air or clean air samples were delivered. A 10-fold increase in virus concentration was found to give rise to about 20-30% increase in the sensor response. The selectivity of the sensing device was successfully demonstrated using H1N1 viruses and house dust allergens. From the simulated aerosol release to the detection, we observed a time scale of 1-2 min. Quantitative polymerase chain reaction (qPCR) tests revealed that higher virus concentrations in the air samples generally corresponded to higher conductance levels in the SiNW devices. In addition, the display of detection data on remote platforms such as cell phone and computer was also successfully demonstrated with a wireless module. The work here is expected to lead to innovative methods for biological aerosol monitoring, and further improvements in each of the integrated elements could extend the system to real world applications.

  3. Continuous measurements at the urban roadside in an Asian Megacity by Aerosol Chemical Speciation Monitor (ACSM: particulate matter characteristics during fall and winter seasons in Hong Kong

    Directory of Open Access Journals (Sweden)

    C. Sun

    2015-07-01

    Full Text Available Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM in the fall and winter seasons of 2013 at the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA, characterized by application of Positive Matrix Factorization (PMF, and sulfate are found dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear meal-time concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during meal times, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a~lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and influence of continental air masses.

  4. Continuous measurements at the urban roadside in an Asian megacity by Aerosol Chemical Speciation Monitor (ACSM): particulate matter characteristics during fall and winter seasons in Hong Kong

    Science.gov (United States)

    Sun, C.; Lee, B. P.; Huang, D.; Jie Li, Y.; Schurman, M. I.; Louie, P. K. K.; Luk, C.; Chan, C. K.

    2016-02-01

    Non-refractory submicron aerosol is characterized using an Aerosol Chemical Speciation Monitor (ACSM) in the fall and winter seasons of 2013 on the roadside in an Asian megacity environment in Hong Kong. Organic aerosol (OA), characterized by application of Positive Matrix Factorization (PMF), and sulfate are found to be dominant. Traffic-related organic aerosol shows good correlation with other vehicle-related species, and cooking aerosol displays clear mealtime concentration maxima and association with surface winds from restaurant areas. Contributions of individual species and OA factors to high NR-PM1 are analyzed for hourly data and daily data; while cooking emissions in OA contribute to high hourly concentrations, particularly during mealtimes, secondary organic aerosol components are responsible for episodic events and high day-to-day PM concentrations. Clean periods are either associated with precipitation, which reduces secondary OA with a lesser impact on primary organics, or clean oceanic air masses with reduced long-range transport and better dilution of local pollution. Haze events are connected with increases in contribution of secondary organic aerosol, from 30 to 50 % among total non-refractory organics, and the influence of continental air masses.

  5. Monitoring O3 and Aerosols with the NASA LaRC Mobile Ozone Lidar System

    Science.gov (United States)

    Ganoe, Rene; Gronoff, Guillaume; Berkoff, Timothy; DeYoung, Russell; Carrion, William

    2016-01-01

    The NASA's Langley Mobile Ozone Lidar (LMOL) system routinely measures tropospheric ozone and aerosol profiles, and is part of the Tropospheric Lidar Network (TOLNet). Recent upgrades to the system include a new pump laser that has tripled the transmission output power extending measurements up to 8 km in altitude during the day. In addition, software and algorithm developments have improved data output quality and enabled a real-time ozone display capability. In 2016, a number of ozone features were captured by LMOL, including the dynamics of an early-season ozone exceedance that impacted the Hampton Roads region. In this presentation, we will review current LMOL capabilities, recent air quality events observed by the system, and show a comparison of aerosol retrieval through the UV channel and the green line channel.

  6. Data quality monitoring in the presence of aerosols and other adverse atmospheric conditions with H.E.S.S

    CERN Document Server

    Hahn, J; Bernlöhr, K; Krüger, P; Lo, Y T E; Chadwick, P M; Daniel, M K; Deil, C; Gast, H; Kosack, K; Marandon, V

    2015-01-01

    Cherenkov telescope experiments, such as H.E.S.S., have been very successful in astronomical observations in the very-high-energy (VHE; E $>$ 100 GeV) regime. As an integral part of the detector, such experiments use Earth's atmosphere as a calorimeter. For the calibration and energy determination, a standard model atmosphere is assumed. Deviations of the real atmosphere from the model may therefore lead to an energy misreconstruction of primary gamma rays. To guarantee satisfactory data quality with respect to difficult atmospheric conditions, several atmospheric data quality criteria are implemented in the H.E.S.S. software. These quantities are sensitive to clouds and aerosols. Here, the Cherenkov transparency coefficient will be presented. It is a new monitoring quantity that is able to measure long-term changes in the atmospheric transparency. The Cherenkov transparency coefficient derives exclusively from Cherenkov data and is quite hardware-independent. Furthermore, its positive correlation with indepe...

  7. Monitoring the initial pulmonary absorption of two different beclomethasone dipropionate aerosols employing a human lung reperfusion model

    Directory of Open Access Journals (Sweden)

    Fritz Peter

    2005-02-01

    Full Text Available Abstract Background The pulmonary residence time of inhaled glucocorticoids as well as their rate and extend of absorption into systemic circulation are important facets of their efficacy-safety profile. We evaluated a novel approach to elucidate the pulmonary absorption of an inhaled glucocorticoid. Our objective was to monitor and compare the combined process of drug particle dissolution, pro-drug activation and time course of initial distribution from human lung tissue into plasma for two different glucocorticoid formulations. Methods We chose beclomethasone dipropionate (BDP delivered by two different commercially available HFA-propelled metered dose inhalers (Sanasthmax®/Becloforte™ and Ventolair®/Qvar™. Initially we developed a simple dialysis model to assess the transfer of BDP and its active metabolite from human lung homogenate into human plasma. In a novel experimental setting we then administered the aerosols into the bronchus of an extracorporally ventilated and reperfused human lung lobe and monitored the concentrations of BDP and its metabolites in the reperfusion fluid. Results Unexpectedly, we observed differences between the two aerosol formulations Sanasthmax®/Becloforte™ and Ventolair®/Qvar™ in both the dialysis as well as in the human reperfusion model. The HFA-BDP formulated as Ventolair®/Qvar™ displayed a more rapid release from lung tissue compared to Sanasthmax®/Becloforte™. We succeeded to explain and illustrate the observed differences between the two aerosols with their unique particle topology and divergent dissolution behaviour in human bronchial fluid. Conclusion We conclude that though the ultrafine particles of Ventolair®/Qvar™ are beneficial for high lung deposition, they also yield a less desired more rapid systemic drug delivery. While the differences between Sanasthmax®/Becloforte™ and Ventolair®/Qvar™ were obvious in both the dialysis and lung perfusion experiments, the latter

  8. Monitoring and modelling of biosphere/atmosphere exchange of gases and aerosols in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Erisman, Jan Willem [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands)]. E-mail: erisman@ecn.nl; Vermeulen, Alex [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Hensen, Arjan [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Flechard, Chris [Energy Research Centre of the Netherlands (ECN), P.O. Box 1, 1755 ZG Petten (Netherlands); Daemmgen, Ulrich [Federal Agricultural Research Centre, Institute of Agroecology, D-38116 Braunschweig, (Germany); Fowler, David [CEH, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Sutton, Mark [CEH, Bush Estate, Penicuik, Midlothian EH26 0QB (United Kingdom); Gruenhage, Ludger [Institute for Plant Ecology, Justus-Liebig-University, D-35392 Giessen (Germany); Tuovinen, Juha-Pekka [Finnish Meteorological Institute, FIN-00810 Helsinki (Finland)

    2005-02-01

    Monitoring and modelling of deposition of air pollutants is essential to develop and evaluate policies to abate the effects related to air pollution and to determine the losses of pollutants from the atmosphere. Techniques for monitoring wet deposition fluxes are widely applied. A recent intercomparison experiment, however, showed that the uncertainty in wet deposition is relatively high, up to 40%, apart from the fact that most samplers are biased because of a dry deposition contribution. Wet deposition amounts to about 80% of the total deposition in Europe with a range of 10-90% and uncertainty should therefore be decreased. During recent years the monitoring of dry deposition has become possible. Three sites have been operational for 5 years. The data are useful for model development, but also for model evaluation and monitoring of progress in policy. Data show a decline in SO{sub 2} dry deposition, whereas nitrogen deposition remained constant. Furthermore, surface affinities for pollutants changed leading to changes in deposition. Deposition models have been further developed and tested with dry deposition measurements and total deposition measurements on forests as derived from throughfall data. The comparison is reasonable given the measurement uncertainties. Progress in ozone surface exchange modelling and monitoring shows that stomatal uptake can be quantified with reasonable accuracy, but external surface uptake yields highest uncertainty. - Monitoring and modelling of the deposition of sulphur and nitrogen components and the exposure of ozone has gained much progress through the research within BIATEX.

  9. A new zenith-looking narrow-band radiometer-based system (ZEN) for dust aerosol optical depth monitoring

    Science.gov (United States)

    Almansa, A. Fernando; Cuevas, Emilio; Torres, Benjamín; Barreto, África; García, Rosa D.; Cachorro, Victoria E.; de Frutos, Ángel M.; López, César; Ramos, Ramón

    2017-02-01

    A new zenith-looking narrow-band radiometer based system (ZEN), conceived for dust aerosol optical depth (AOD) monitoring, is presented in this paper. The ZEN system comprises a new radiometer (ZEN-R41) and a methodology for AOD retrieval (ZEN-LUT). ZEN-R41 has been designed to be stand alone and without moving parts, making it a low-cost and robust instrument with low maintenance, appropriate for deployment in remote and unpopulated desert areas. The ZEN-LUT method is based on the comparison of the measured zenith sky radiance (ZSR) with a look-up table (LUT) of computed ZSRs. The LUT is generated with the LibRadtran radiative transfer code. The sensitivity study proved that the ZEN-LUT method is appropriate for inferring AOD from ZSR measurements with an AOD standard uncertainty up to 0.06 for AOD500 nm ˜ 0.5 and up to 0.15 for AOD500 nm ˜ 1.0, considering instrumental errors of 5 %. The validation of the ZEN-LUT technique was performed using data from AErosol RObotic NETwork (AERONET) Cimel Electronique 318 photometers (CE318). A comparison between AOD obtained by applying the ZEN-LUT method on ZSRs (inferred from CE318 diffuse-sky measurements) and AOD provided by AERONET (derived from CE318 direct-sun measurements) was carried out at three sites characterized by a regular presence of desert mineral dust aerosols: Izaña and Santa Cruz in the Canary Islands and Tamanrasset in Algeria. The results show a coefficient of determination (R2) ranging from 0.99 to 0.97, and root mean square errors (RMSE) ranging from 0.010 at Izaña to 0.032 at Tamanrasset. The comparison of ZSR values from ZEN-R41 and the CE318 showed absolute relative mean bias (RMB) < 10 %. ZEN-R41 AOD values inferred from ZEN-LUT methodology were compared with AOD provided by AERONET, showing a fairly good agreement in all wavelengths, with mean absolute AOD differences < 0.030 and R2 higher than 0.97.

  10. Impact of secondary inorganic aerosol and road traffic at a suburban air quality monitoring station.

    Science.gov (United States)

    Megido, L; Negral, L; Castrillón, L; Fernández-Nava, Y; Suárez-Peña, B; Marañón, E

    2017-03-15

    PM10 from a suburban site in the northwest of Spain was assessed using data from chemical determinations, meteorological parameters, aerosol maps and five-day back trajectories of air masses. Temporal variations in the chemical composition of PM10 were subsequently related to stationary/mobile local sources and long-range transport stemming from Europe and North Africa. The presence of secondary inorganic species (sulphates, nitrates and ammonium) in airborne particulate matter constituted one of the main focuses of this study. These chemical species formed 16.5% of PM10 on average, in line with other suburban background sites in Europe. However, a maximum of 47.8% of PM10 were recorded after several days under the influence of European air masses. Furthermore, the highest values of these three chemical species coincided with episodes of poor air circulation and influxes of air masses from Europe. The relationship between SO4(2-) and NH4(+) (R(2) = 0.57, p-valueair quality at the suburban site under study, with important apportionments of particulate matter coming from road traffic and as consequence of releasing precursor gases of secondary particles to the atmosphere.

  11. Optical properties of urban aerosols, aircraft emissions, and heavy-duty diesel trucks using aerosol light extinction measurements by an Aerodyne Cavity Attenuated Phase Shift Particle Extinction Monitor (CAPS PMex)

    Science.gov (United States)

    Freedman, A.; Massoli, P.; Wood, E. C.; Allan, J. D.; Fortner, E.; Yu, Z.; Herndon, S. C.; Miake-Lye, R. C.; Onasch, T. B.

    2010-12-01

    We present results of optical property characterization of ambient particulate during several field deployments where measurements of aerosol light extinction (σep) are obtained using an Aerodyne Cavity Attenuated Phase Shift Particle Extinction Monitor (CAPS PMex). The CAPS PMex is able to provide extinction measurements with 3-σ detection limit of 3 Mm-1 for 1s integration time. The CAPS PMex (630 nm) is integrated in the Aerodyne Research, Inc. (ARI) mobile laboratory where a co-located Multi Angle Absorption Photometer (MAAP) provides particle light absorption coefficient at 632 nm. The combination of the CAPS with the MAAP data allows estimating the single scattering albedo (ω) of the ambient aerosol particles. The ARI mobile laboratory was deployed in winter 2010 at the Chicago O’Hare International Airport to measure gas phase and particulate emissions from different aircraft engines, and during summer 2010 in Oakland, CA, to characterize vehicular gaseous and particulate emissions (mainly exhaust from heavy-duty diesel trucks) from the Caldecott Tunnel. We provide estimates of black carbon emission factors from individual aircraft engines and diesel trucks, in addition to characterizing the optical properties of these ambient samples studying fleet-average emissions for both light-duty passenger vehicles and heavy-duty diesel trucks. Two CAPS PMex instruments (measuring σep at 630 and 532 nm) were also deployed during the CalNex 2010 study (May 14 - June 16) at the CalTech ground site in Pasadena, CA. During the same time, a photo-acoustic spectrometer (PAS, DMT) and an aethalometer instrument (Magee Sci.) measured particle light absorption of submicron aerosol particles from the same sample line as the CAPS PMex monitors. We combine these data to provide multi-wavelength ω trends for the one-month campaign. Our results show the high potential of the CAPS as light weight, compact instrument to perform precise and accurate σep measurements of

  12. γ谱法监测环境中放射性气溶胶%Radioactive Aerosol in the Monitoring Environment by Gamma Spectrometry

    Institute of Scientific and Technical Information of China (English)

    张枫; 屈国普; 陈祥磊; 龚玉巍

    2015-01-01

    In order to monitor the radioactive aerosols in the environment more effectively , the method of meas-uring the radioactive aerosol by using the gamma spectrometry is discussed .To filter environment aerosol parti-cles on the membrane filter , a gamma spectrometer with a scintillation detector to measure the gamma energy spectra of gamma radioactive aerosol particles is used .The type and activity of radionuclides in environmental samples were obtained by the analysis of the gamma energy spectra .Experimental results show that this method can effectively monitor the radioactive aerosol and has a good ability to identify radionuclides in environmental samples .%为了更有效地对环境中放射性气溶胶进行监测,探讨了γ谱法测量放射性气溶胶的监测方法。该方法将环境中气溶胶颗粒过滤到滤膜之上,利用配以闪烁体探测器的γ谱仪测量过滤膜上的γ放射性气溶胶颗粒的γ能谱,通过γ能谱解析来获得环境样品中放射性核素类型及其活度。实验结果表明:该方法可有效地监测放射性气溶胶,对环境样品中放射性核素具有一定的鉴别能力。

  13. Seasonal monitoring and estimation of regional aerosol distribution over Po valley, northern Italy, using a high-resolution MAIAC product

    Science.gov (United States)

    Arvani, Barbara; Pierce, R. Bradley; Lyapustin, Alexei I.; Wang, Yujie; Ghermandi, Grazia; Teggi, Sergio

    2016-09-01

    In this work, the new 1 km-resolved Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm is employed to characterize seasonal PM10 - AOD correlations over northern Italy. The accuracy of the new dataset is assessed compared to the widely used Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5.1 Aerosol Optical Depth (AOD) data, retrieved at 0.55 μm with spatial resolution of 10 km (MYD04_L2). We focused on evaluating the ability of these two products to characterize both temporal and spatial distributions of aerosols within urban and suburban areas. Ground PM10 measurements were obtained from 73 of the Italian Regional Agency for Environmental Protection (ARPA) monitoring stations, spread across northern Italy, during a three-year period from 2010 to 2012. The Po Valley area (northern Italy) was chosen as the study domain because of its severe urban air pollution, resulting from it having the highest population and industrial manufacturing density in the country, being located in a valley where two surrounding mountain chains favor the stagnation of pollutants. We found that the global correlations between the bin-averaged PM10 and AOD are R2 = 0.83 and R2 = 0.44 for MYD04_L2 and for MAIAC, respectively, suggesting a greater sensitivity of the high-resolution product to small-scale deviations. However, the introduction of Relative Humidity (RH) and Planetary Boundary Layer (PBL) depth corrections allowed for a significant improvement to the bin-averaged PM - AOD correlation, which led to a similar performance: R2 = 0.96 for MODIS and R2 = 0.95 for MAIAC. Furthermore, the introduction of the PBL information in the corrected AOD values was found to be crucial in order to capture the clear seasonal cycle shown by measured PM10 values. The study allowed us to define four seasonal linear correlations that estimate PM10 concentrations satisfactorily from the remotely sensed MAIAC AOD retrieval. Overall, the results show that the high

  14. Aerosol emission monitoring in the production of silicon carbide nanoparticles by induction plasma synthesis

    Science.gov (United States)

    Thompson, Drew; Leparoux, Marc; Jaeggi, Christian; Buha, Jelena; Pui, David Y. H.; Wang, Jing

    2013-12-01

    In this study, the synthesis of silicon carbide (SiC) nanoparticles in a prototype inductively coupled thermal plasma reactor and other supporting processes, such as the handling of precursor material, the collection of nanoparticles, and the cleaning of equipment, were monitored for particle emissions and potential worker exposure. The purpose of this study was to evaluate the effectiveness of engineering controls and best practice guidelines developed for the production and handling of nanoparticles, identify processes which result in a nanoparticle release, characterize these releases, and suggest possible administrative or engineering controls which may eliminate or control the exposure source. No particle release was detected during the synthesis and collection of SiC nanoparticles and the cleaning of the reactor. This was attributed to most of these processes occurring in closed systems operated at slight underpressure. Other tasks occurring in more open spaces, such as the disconnection of a filter assembly from the reactor system and the use of compressed air for the cleaning of filters where synthesized SiC nanoparticles were collected, resulted in releases of submicrometer particles with a mode size of 170-180 nm. Observation of filter samples under scanning electron microscope confirmed that the particles were agglomerates of SiC nanoparticles.

  15. Monitoring trace metals in urban aerosols from Buenos Aires city. Determination by plasma-based techniques.

    Science.gov (United States)

    Smichowski, Patricia; Gómez, Dario R; Dawidowski, Laura E; Giné, María Fernanda; Bellato, Ana Claudia Sánchez; Reich, Silvia L

    2004-04-01

    A study was undertaken, within the framework of a 3 years national project, to assess the content of 13 elements in airborne particulate matter collected in representative zones of the metropolitan area of Buenos Aires. The sampling strategy followed consisted in collecting simultaneously 67 samples of PM10 particulate matter in 9 sampling sites covering an area of about 30 km2 during one week. The collection was performed on ash-free fibre-glass filters using high volume samplers. A combination of aqua regia and perchloric acid was used for leaching metals from filters. Key elements, namely Al, Ca, Cu, Fe, Mn, Mo, Ni, Pb, S, Sb, Sn, Zn and Zr, were determined by inductively coupled plasma-optical emission spectrometry (ICP-OES) and inductively coupled plasma-mass spectrometry (ICP-MS) at micro g g(-1) and ng g(-1) levels. Analyte concentration varied from 130 ng g(-1)(Mo) to over 30%(Ca). Multivariate statistical analysis was performed on the data set including the measured elemental compositions for the monitored period. The atmospheric concentration found for Pb confirms the decreasing levels of this element since the introduction of unleaded gasoline in 1995: 88 ng m(-3)(2001) gas imply low emissions of this element from combustion activities. To the best of our knowledge, S concentrations are reported for the first time for this city.

  16. Comparison of aerosol optical depth of UV-B monitoring and research program (UVMRP), AERONET and MODIS over continental united states

    Science.gov (United States)

    Tang, Hongzhao; Chen, Maosi; Davis, John; Gao, Wei

    2013-06-01

    The concern about the role of aerosols as to their effect in the Earth-Atmosphere system requires observation at multiple temporal and spatial scales. The Moderate Resolution Imaging Spectroradiameters (MODIS) is the main aerosol optical depth (AOD) monitoring satellite instrument, and its accuracy and uncertainty need to be validated against ground based measurements routinely. The comparison between two ground AOD measurement programs, the United States Department of Agriculture (USDA) Ultraviolet-B Monitoring and Research Program (UVMRP) and the Aerosol Robotic Network (AERONET) program, confirms the consistency between them. The intercomparison between the MODIS AOD, the AERONET AOD, and the UVMRP AOD suggests that the UVMRP AOD measurements are suited to be an alternative ground-based validation source for satellite AOD products. The experiments show that the spatial-temporal dependency between the MODIS AOD and the UVMRP AOD is positive in the sense that the MODIS AOD compare more favorably with the UVMRP AOD as the spatial and temporal intervals are increased. However, the analysis shows that the optimal spatial interval for all time windows is defined by an angular subtense of around 1° to 1.25°, while the optimal time window is around 423 to 483 minutes at most spatial intervals. The spatial-temporal approach around 1.25° & 423 minutes shows better agreement than the prevalent strategy of 0.25° & 60 minutes found in other similar investigations.

  17. Comparison of aerosol optical depth of UV-B Monitoring and Research Program (UVMRP), AERONET and MODIS over continental United States

    Institute of Scientific and Technical Information of China (English)

    Hongzhao TANG; Maosi CHEN; John DAVIS; Wei GAO

    2013-01-01

    The concern about the role of aerosols as to their effect in the Earth-Atmosphere system requires observation at multiple temporal and spatial scales.The Moderate Resolution Imaging Spectroradiameters (MODIS) is the main aerosol optical depth (AOD)monitoring satellite instrument,and its accuracy and uncertainty need to be validated against ground based measurements routinely.The comparison between two ground AOD measurement programs,the United States Department of Agriculture (USDA) Ultraviolet-B Monitoring and Research Program (UVMRP) and the Aerosol Robotic Network (AERONET) program,confirms the consistency between them.The intercomparison between the MODIS AOD,the AERONET AOD,and the UVMRP AOD suggests that the UVMRP AOD measurements are suited to be an alternative ground-based validation source for satellite AOD products.The experiments show that the spatial-temporal dependency between the MODIS AOD and the UVMRP AOD is positive in the sense that the MODIS AOD compare more favorably with the UVMRP AOD as the spatial and temporal intervals are increased.However,the analysis shows that the optimal spatial interval for all time windows is defined by an angular subtense of around 1° to 1.25°,while the optimal time window is around 423 to 483 minutes at most spatial intervals.The spatial-temporal approach around 1.25° & 423 minutes shows better agreement than the prevalent strategy of 0.25° & 60 minutes found in other similar investigations.Research Program (UVMRP),Aerosol Robotic Network (AERONET),Moderate Resolution Imaging Spectroradiameters (MODIS),validation,spatial-temporal approach

  18. Illustrating the benefit of using hourly monitoring data on secondary inorganic aerosol and its precursors for model evaluation

    NARCIS (Netherlands)

    Schaap, M.; Otjes, R.P.; Weijers, E.P.

    2010-01-01

    Secondary inorganic aerosol, most notably ammonium nitrate and ammonium sulphate, is an important contributor to ambient particulate mass and provides a means for long range transport of acidifying components. The modelling of the formation and fate of these components is challenging. Especially, th

  19. Illustrating the benefit of using hourly monitoring data on secondary inorganic aerosol and its precursors for model evaluation

    NARCIS (Netherlands)

    Schaap, M.; Otjes, R.P.; Weijers, E.P.

    2011-01-01

    Secondary inorganic aerosol, most notably ammonium nitrate and ammonium sulphate, is an important contributor to ambient particulate mass and provides a means for long range transport of acidifying components. The modelling of the formation and fate of these components is challenging. Especially, th

  20. Demonstration of the Applicability of Novel Photoacoustic Aerosol Monitor for Optical Absorption Coefficient Determination. Laboratory and Field Test.

    Science.gov (United States)

    Ajtai, T.; Schnaiter, M.; Linke, C.; Vragel, M.; Filep, Á.; Fődi, L.; Motika, G.; Bozóki, Z.; Szabó, G.

    2009-04-01

    Despite of its importance, the possibilities to determine the direct radiative forcing by atmospheric aerosols is very limited due to lack of the reliable on-line instruments. Therefore there is an increasing concern for novel methods promising more accurate and reliable results in this field. The accuracy and reliability of the available on-line instruments like SP2 (Single Particle Soot Photometer), MAAP (Multi Angle Absorption Photometer), are limited by the weakness of the spectral resolution or the sampling artefact of filter matrix during the light attenuation measurement on the deposited filter. These methods neither suitable for direct determination of the light absorption by aerosols nor dispose the capability of the source apportionment. In this work we present a novel photoacoustic based instrument for direct light absorption measurements in the atmosphere and demonstrate the suitability of that both in laboratory and field circumstances. We have developed a novel Multi Wavelength PhotoAcoustic System (WaSul-MuWaPas) based on the diode laser pumped, high repetition rate, Q-switched Nd:YAG laser and its frequency converted harmonics for direct determination of light absorption by aerosols. This instrument has designed to make in situ measurements at four different wavelengths simultaneously from the NIR to the UV wavelength range (1064nm, 532nm, 355nm, 266nm). The Wasul-MuWaPas measures directly the optical absorption coefficient on airborne particles, not belong to the integrated plate type technique (filter-free operation), operating at wide wavelength range (source apportionment possibilities), due to the possibilities of the wavelength independent cell constant determination the measurement method is absolute. Because of these the Wasul-MuWaPas system may become one of the best candidate for absorption measurements of various atmospheric aerosols such as black carbon, mineral dust, and secondary organic and inorganic aerosols as well as for source

  1. Comparison of aerosol optical depths from the Ozone Monitoring Instrument (OMI on Aura with results from airborne sunphotometry, other space and ground measurements during MILAGRO/INTEX-B

    Directory of Open Access Journals (Sweden)

    J. M. Livingston

    2009-04-01

    Full Text Available Airborne sunphotometer measurements are used to evaluate retrievals of extinction aerosol optical depth (AOD from spatially coincident and temporally near-coincident measurements by the Ozone Monitoring Instrument (OMI aboard the Aura satellite during the March 2006 Megacity Initiative-Local And Global Research Observations/Phase B of the Intercontinental Chemical Transport Experiment (MILAGRO/INTEX-B. The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS flew on nine missions over the Gulf of Mexico and four in or near the Mexico City area. Retrievals of AOD from near-coincident AATS and OMI measurements are compared for three flights over the Gulf of Mexico for flight segments when the aircraft flew at altitudes 60–70 m a.s.l., and for one flight over Mexico City when the aircraft flew ~420–590 m a.g.l. OMI-measured top of atmosphere (TOA reflectances are routinely inverted to yield aerosol products such as AOD and aerosol absorption optical depth (AAOD using two different retrieval algorithms: a near-UV (OMAERUV and a multiwavelength (OMAERO technique. This study uses the archived Collection 3 data products from both algorithms. In particular, AATS and OMI AOD comparisons are presented for AATS data acquired in 20 OMAERUV retrieval pixels (15 over water and 19 OMAERO pixels (also 15 over water. At least four pixels for one of the over-water coincidences and all pixels for the over-land case were cloud-free. Coincident AOD retrievals from 17 pixels of the Moderate Resolution Imaging Spectroradiometer (MODIS aboard Aqua are available for two of the over-water flights and are shown to agree with AATS AODs to within root mean square (RMS differences of 0.00–0.06, depending on wavelength. Near-coincident ground-based AOD measurements from ground-based sun/sky radiometers operated as part of the Aerosol Robotic Network (AERONET at three sites in and near Mexico City are also shown and are generally consistent with the AATS AODs

  2. Comparison of aerosol optical depths from the Ozone Monitoring Instrument (OMI on Aura with results from airborne sunphotometry, other space and ground measurements during MILAGRO/INTEX-B

    Directory of Open Access Journals (Sweden)

    J. M. Livingston

    2009-09-01

    Full Text Available Airborne sunphotometer measurements are used to evaluate retrievals of extinction aerosol optical depth (AOD from spatially coincident and temporally near-coincident measurements by the Ozone Monitoring Instrument (OMI aboard the Aura satellite during the March 2006 Megacity Initiative-Local And Global Research Observations/Phase B of the Intercontinental Chemical Transport Experiment (MILAGRO/INTEX-B. The 14-channel NASA Ames Airborne Tracking Sunphotometer (AATS flew on nine missions over the Gulf of Mexico and four in or near the Mexico City area. Retrievals of AOD from near-coincident AATS and OMI measurements are compared for three flights over the Gulf of Mexico for flight segments when the aircraft flew at altitudes 60–70 m above sea level, and for one flight over the Mexico City area where the aircraft was restricted to altitudes ~320–800 m above ground level over the rural area and ~550–750 m over the city. OMI-measured top of atmosphere (TOA reflectances are routinely inverted to yield aerosol products such as AOD and aerosol absorption optical depth (AAOD using two different retrieval algorithms: a near-UV (OMAERUV and a multiwavelength (OMAERO technique. This study uses the archived Collection 3 data products from both algorithms. In particular, AATS and OMI AOD comparisons are presented for AATS data acquired in 20 OMAERUV retrieval pixels (15 over water and 19 OMAERO pixels (also 15 over water. At least four pixels for one of the over-water coincidences and all pixels for the over-land case were cloud-free. Coincident AOD retrievals from 17 pixels of the Moderate Resolution Imaging Spectroradiometer (MODIS aboard Aqua are available for two of the over-water flights and are shown to agree with AATS AODs to within root mean square (RMS differences of 0.00–0.06, depending on wavelength. Near-coincident ground-based AOD measurements from ground-based sun/sky radiometers operated as part of the Aerosol Robotic Network (AERONET

  3. An assessment of the performance of the Monitor for AeRosols and GAses in ambient air (MARGA: a semi-continuous method for soluble compounds

    Directory of Open Access Journals (Sweden)

    I. C. Rumsey

    2013-09-01

    Full Text Available Ambient air monitoring as part of the US Environmental Protection Agency's (US EPA's Clean Air Status and Trends Network (CASTNet currently uses filter packs to measure weekly integrated concentrations. The US EPA is interested in supplementing CASTNet with semi-continuous monitoring systems at select sites to characterize atmospheric chemistry and deposition of nitrogen and sulfur compounds at higher time resolution than the filter pack. The Monitor for AeRosols and GAses in ambient air (MARGA measures water-soluble gases and aerosols at hourly temporal resolution. The performance of the MARGA was assessed under the US EPA Environmental Technology Verification (ETV program. The assessment was conducted in Research Triangle Park, North Carolina from 8 September–8 October 2010 and focused on gaseous SO2, HNO3 and NH3 and aerosol SO4−, NO3− and NH4+. Precision of the MARGA was evaluated by calculating the median absolute relative percent difference (MARPD between paired hourly results from duplicate MARGA units (MUs, with a performance goal of 2, SO42− and NH4+, with all three compounds passing the accuracy and precision goals by a significant margin. The performance of the MARGA in measuring NO3− could not be evaluated due to the different sampling efficiency of coarse NO3− by the MUs and the filter pack. Estimates of "fine" NO3− were calculated for the MUs and the filter pack. Using this and results from a previous study, it is concluded that if the MUs and the filter pack were sampling the same particle size, the MUs would have good agreement in terms of precision and accuracy. The MARGA performed moderately well in measuring HNO3 and NH3, though neither met the linear regression slope goals. However, recommendations for improving the measurement of HNO3 and NH3 are discussed. It is concluded that SO42−, SO2, NO3−, HNO3, NH4+ and NH3 concentrations can be measured with acceptable accuracy and precision when the MARGA is

  4. Atmospheric aerosol and gaseous pollutant concentrations in Bucharest area using first datasets from the city AQ monitoring network

    Science.gov (United States)

    Balaceanu, Cristina; Iorga, Gabriela

    2010-05-01

    City of Bucharest is the largest and most populated (about 2.8 million inhabitants) city in the Romanian Plain and encounters environmental problems and meteorology typical for several cities in southeastern Europe. City environment includes intense emissions arising from traffic (about 1 million cars per day), five thermo-electrical power-generation stations, that use both natural gas and oil derivatives for power generation and domestic heating, and from industrial sources (more than 800 small and medium plants). In the present work we performed an extensive analysis of the air pollution state for the Bucharest area (inside and outside the city) using filter measurement aerosol data PM10 and PM2.5. Data spanning over first year of continuous sampling (2005) were taken from the city Air Quality Monitoring Network, which consists of eight sampling stations: three industrial and two traffic, one EPA urban background, one suburban and one regional station located outside of Bucharest. The objective was to assess the PM10 recorded levels and their degree of compliance with the EU-legislated air quality standards and to provide a statistical investigation of the factors controlling seasonal and spatial variations of PM levels. PM10 relationships with other measured air pollutants (SO2, CO, NOx) and meteorological parameters (temperature, relative humidity, atmospheric pressure, wind velocity and direction) were investigated by statistical analysis. Back trajectory modeling and wind direction frequency distributions were used to identify the origin of the polluted air masses. Contribution of combustion (slopes) and non-combustion (intercepts) sources to PM10 recorded levels was quantified by linear analysis, for two seasonal periods: cold (15 October-14 April) and warm (15 April-14 October). PM10 and PM2.5 concentrations were compared with corresponding values in other European urban areas. Main conclusions are as follows: Traffic and industrial sites contribute to the

  5. Monitoring of inorganic ions, carbonaceous matter and mass in ambient aerosol particles with online and offline methods

    Directory of Open Access Journals (Sweden)

    H. Timonen

    2011-10-01

    Full Text Available Year-long high timeresolution measurements of major chemical components in atmospheric sub-micrometer particles were conducted at an urban background station in Finland 2006–2007. Ions were analyzed using a particle-into-liquid sampler combined with an ion chromatograph (PILS-IC, organic and elemental carbon (OC and EC by using a semicontinuos OC/EC aerosol carbon analyzer (RT-OCEC, and PM2.5 mass with a tapered element oscillating microbalance (TEOM. Long time series provides information on differences between the used measurement techniques as well as information about the diurnal and seasonal changes. Chemical mass closure was constructed by comparing the identified aerosol mass with the measured PM2.5. The sum of all components measured online (ions, particulate organic matter (POM, EC represented only 65% of the total PM2.5 mass. The difference can be explained by the difference in cutoff sizes (PM1 for online measurements, PM2.5 for total mass and by evaporation of the semivolatile/volatile components. In general, some differences in results were observed when the results of the continuous/semicontinuous instruments were compared with those of the conventional filter samplings. For non-volatile compounds, like sulfate and potassium, correlation between the filter samples and the PILS was good but greater differences were observed for the semivolatile compounds like nitrate and ammonium. For OC the results of the RT-OCEC were on average 10% larger than those of the filters. When compared to filter measurements, high resolution measurements provide important data on short pollution plumes as well as on diurnal changes. Clear seasonal and diurnal cycles were observed for nitrate and EC.

  6. Monitoring of air radioactivity at the Jungfraujoch research station: Test of a new high volume aerosol sampler

    OpenAIRE

    Flury, Thomas; Völkle, Hansruedi

    2008-01-01

    The Swiss Federal Office of Public Health (SFOPH) is responsible for the surveillance of environmental radioactivity in Switzerland and for the protection of the public from ionizing and non-ionizing radiation. In order to improve the Swiss radioactivity monitoring network, a new high volume air sampler (DIGITEL DHA-80) was tested in Fribourg and at the Jungfraujoch High Altitude Research Station at 3454 m. The filters are analyzed in the laboratory by a high purity coaxial germanium detector...

  7. Temporal variability of mineral dust in southern Tunisia: analysis of 2 years of PM10 concentration, aerosol optical depth, and meteorology monitoring

    Science.gov (United States)

    Bouet, Christel; Taieb Labiadh, Mohamed; Bergametti, Gilles; Rajot, Jean Louis; Marticorena, Béatrice; Sekrafi, Saâd; Ltifi, Mohsen; Féron, Anaïs; des Tureaux, Thierry Henry

    2016-04-01

    The south of Tunisia is a region very prone to wind erosion. During the last decades, changes in soil management have led to an increase in wind erosion. In February 2013, a ground-based station dedicated to the monitoring of mineral dust (that can be seen in this region as a proxy of the erosion of soils by wind) was installed at the Institut des Régions Arides (IRA) of Médenine (Tunisia) to document the temporal variability of mineral dust concentrations. This station allows continuous measurements of surface PM10 concentration (TEOM™), aerosol optical depth (CIMEL sunphotometer), and total atmospheric deposition of insoluble dust (CARAGA automatic sampler). The simultaneous monitoring of meteorological parameters (wind speed and direction, relative humidity, air temperature, atmospheric pressure, and precipitations) allows to analyse the factors controlling the variations of mineral dust concentration from the sub-daily to the annual scale. The results from the two first years of measurements of PM10 concentration are presented and discussed. In average on year 2014, PM10 concentration is 56 μg m-3. However, mineral dust concentration highly varies throughout the year: very high PM10 concentrations (up to 1,000 μg m-3 in daily mean) are frequently observed during wintertime and springtime, hardly ever in summer. These episodes of high PM10 concentration (when daily average PM10 concentration is higher than 240 μg m-3) sometimes last several days. By combining local meteorological data, air-masses trajectories, sunphotometer measurements, and satellite imagery, the part of the high PM10concentration due to local emissions and those linked to an advection of dusty air masses by medium and long range transport from the Sahara desert is quantified.

  8. Aerosol and fallout monitoring in France from 1959 to 2014: 55 years of improvement of the surveillance, from the sampling to the measurement

    Energy Technology Data Exchange (ETDEWEB)

    De Vismes Ott, A.; Masson, O. [Institute for Radioprotection and Nuclear Safety, IRSN (France)

    2014-07-01

    As a support for the public authorities the French Institute of Radioprotection and Nuclear Safety (IRSN) is in charge of the environment surveillance in France. The OPERA-Air (Observatoire Permanent de la Radioactivite) sampling network is part of this monitoring activity and includes, in addition to 40 low flow (10 to 80 m{sup 3}.h{sup -1}) samplers, 8 high and very high flow (namely 300 and 700 m{sup 3}.h{sup -1}) aerosol samplers. This network also comprises rain and cloud water samplers in order to observe and study the atmospheric fallout in a general way. This paper will focus on these last kinds of samples and the aerosol filters taken by the high flow and very high flow samplers and measured at trace levels in the laboratory of environmental radioactivity measurement by low level gamma ray spectrometry. The developments made during the last decades both in the sampling process and in the measurement techniques will be described. The improvement on the air samplers with higher flow, larger surface or thinner filters for a smaller counting geometry went in concert with the metrology improvements, with new measurement equipments such as low background detectors, well-type detectors or anti cosmic set up. All these implementations were and are still made in order to deal with the decreasing anthropogenic radioactivity levels in the environment, especially in its atmospheric part, and to keep the OPERA-Air network meeting its dual purpose of surveillance as well as research. The improvements in sampling and measuring will be presented as well as some results obtained thanks to them: - Determination of {sup 137}Cs at trace level in fog/clouds waters in order to study the rainout scavenging mechanism and to improve our capability in modeling radionuclide deposition. - Determination over France of trace elements at a few μBq.m{sup -3} during the Fukushima Daiichi accident such as {sup 129m}Te-{sup 129}Te, {sup 132}Te-{sup 132}I, {sup 136}Cs and {sup 140}La

  9. Analysis of Aerosol Properties in Beijing Based on Ground-Based Sun Photometer and Air Quality Monitoring Observations from 2005 to 2014

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2016-02-01

    Full Text Available Aerosol particles are the major contributor to the deterioration of air quality in China’s capital, Beijing. Using ground-based sun photometer observations from 2005 to 2014, the long-term variations in optical properties and microphysical properties of aerosol in and around Beijing were investigated in this study. The results indicated little inter-annual variations in aerosol optic depth (AOD but an increase in the fine mode AODs both in and outside Beijing. Furthermore, the single scattering albedo in urban Beijing is larger, while observations at the site that is southeast of Beijing suggested that the aerosol there has become more absorbing. The intra-annual aspects were as follow: The largest AOD and high amount of fine mode aerosols are observed in the summer. However, the result of air pollution index (API that mainly affected by the dry density of near-surface aerosol indicated that the air quality has been improving since 2006. Winter and spring were the most polluted seasons considering only the API values. The inconsistency between AOD and API suggested that fine aerosol particles may have a more important role in the deterioration of air quality and that neglecting particulate matter with aerodynamic diameter less than 2.5 μm (PM2.5 in the calculation of API might not be appropriate in air quality evaluation. Through analysis of the aerosol properties in high API days, the results suggested that the fine mode aerosol, especially PM2.5 has become a major contributor to the aerosol pollution in Beijing.

  10. Instrumentation for tropospheric aerosol characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.; Young, S.E.; Becker, C.H.; Coggiola, M.J. [SRI International, Menlo Park, CA (United States); Wollnik, H. [Giessen Univ. (Germany)

    1997-12-31

    A new instrument has been developed that determines the abundance, size distribution, and chemical composition of tropospheric and lower stratospheric aerosols with diameters down to 0.2 {mu}m. In addition to aerosol characterization, the instrument also monitors the chemical composition of the ambient gas. More than 25.000 aerosol particle mass spectra were recorded during the NASA-sponsored Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program using NASA`s DC-8 research aircraft. (author) 7 refs.

  11. Using MSG to monitor the evolution of severe convective storms over East Mediterranean Sea and Israel, and its response to aerosol loading

    Directory of Open Access Journals (Sweden)

    I. M. Lensky

    2007-08-01

    Full Text Available Convective storms over East Mediterranean sea and Israel were tracked by METEOSAT Second Generation (MSG. The MSG data was used to retrieve time series of the precipitation formation processes in the clouds, the temperature of onset of precipitation, and an indication to aerosol loading over the sea. Strong correlation was found between the aerosol loading and the depth above cloud base required for the initialization of effective precipitation processes (indicated by the effective radius = 15 µm threshold. It seems from the data presented here that the clouds' response to the aerosol loading is very short.

  12. 放射性α气溶胶监测仪数据采集系统的设计%Design of data acquisition system for radioactiveα aerosols monitor

    Institute of Scientific and Technical Information of China (English)

    陈峰; 夏晓彬; 张志宏; 蔡军; 陈明明; 涂传火

    2015-01-01

    在核设施的工作场所中要求对放射性α气溶胶进行快速、连续的监测,以保护工作人员的辐射安全。针对放射性α气溶胶的监测需求,介绍一种放射性α气溶胶监测仪多通道数据采集系统的设计。该系统采用现场可编程门阵列(Field Programmable Gate Array, FPGA)为控制核心,完成对A/D转换器、数据存储器、数据通信等模块的控制。将采集的数据放入到存储器中,实现了对探测系统产生的电压脉冲信号的连续采样,并进行模拟仿真和采样实验的验证。实验结果表明,该数据采集系统能实时、快速、高精度地完成对信号幅度的获取,满足了放射性α气溶胶监测仪的要求。%Background: In the workplace of the nuclear facilities, radioactiveα aerosols monitoring in a fast, continuous way is required for protecting workers against radiation exposure. Purpose: Based on concentrations level ofα aerosols in the workplace,α aerosol monitor was designed. The overall design scheme of the data acquisition system of the radioactiveα aerosol monitor was introduced.Methods:A Cyclonell series FPGA (Field Programmable Gate Array) chip EP2C8Q208C8 from Altera corporation was applied as the control core to complete the A/D converter of AD678, data storage, and data communication with remote computervia RS485 interface. The sample data was stored in the data memory of 64 Mbit SDRAM (Synchronous Dynamic Random Access Memory) for continuous and fast sampling. Both the numerical simulation and experimental measurements were carried out to verify the reliability of the data acquisition system.Results and Conclusion:Results show that the data acquisition system can acquire and control the detector signal for the radioactiveα aerosols monitor in real-time, high-precision and fast-speed.

  13. Aerosolized Antibiotics.

    Science.gov (United States)

    Restrepo, Marcos I; Keyt, Holly; Reyes, Luis F

    2015-06-01

    Administration of medications via aerosolization is potentially an ideal strategy to treat airway diseases. This delivery method ensures high concentrations of the medication in the targeted tissues, the airways, with generally lower systemic absorption and systemic adverse effects. Aerosolized antibiotics have been tested as treatment for bacterial infections in patients with cystic fibrosis (CF), non-CF bronchiectasis (NCFB), and ventilator-associated pneumonia (VAP). The most successful application of this to date is treatment of infections in patients with CF. It has been hypothesized that similar success would be seen in NCFB and in difficult-to-treat hospital-acquired infections such as VAP. This review summarizes the available evidence supporting the use of aerosolized antibiotics and addresses the specific considerations that clinicians should recognize when prescribing an aerosolized antibiotic for patients with CF, NCFB, and VAP.

  14. Atmospheric aerosol light scattering and polarization peculiarities

    CERN Document Server

    Patlashenko, Zh I

    2015-01-01

    This paper considers environmental problems of natural and anthropogenic atmospheric aerosol pollution and its global and regional monitoring. Efficient aerosol investigations may be achieved by spectropolarimetric measurements. Specifically second and fourth Stokes parameters spectral dependencies carry information on averaged refraction and absorption indexes and on particles size distribution functions characteristics.

  15. A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances

    Directory of Open Access Journals (Sweden)

    M. J. M. Penning de Vries

    2015-09-01

    Full Text Available Detecting the optical properties of aerosols using passive satellite-borne measurements alone is a difficult task due to the broadband effect of aerosols on the measured spectra and the influences of surface and cloud reflection. We present another approach to determine aerosol type, namely by studying the relationship of aerosol optical depth (AOD with trace gas abundance, aerosol absorption, and mean aerosol size. Our new Global Aerosol Classification Algorithm, GACA, examines relationships between aerosol properties (AOD and extinction Ångström exponent from the Moderate Resolution Imaging Spectroradiometer (MODIS, UV Aerosol Index from the second Global Ozone Monitoring Experiment, GOME-2 and trace gas column densities (NO2, HCHO, SO2 from GOME-2, and CO from MOPITT, the Measurements of Pollution in the Troposphere instrument on a monthly mean basis. First, aerosol types are separated based on size (Ångström exponent and absorption (UV Aerosol Index, then the dominating sources are identified based on mean trace gas columns and their correlation with AOD. In this way, global maps of dominant aerosol type and main source type are constructed for each season and compared with maps of aerosol composition from the global MACC (Monitoring Atmospheric Composition and Climate model. Although GACA cannot correctly characterize transported or mixed aerosols, GACA and MACC show good agreement regarding the global seasonal cycle, particularly for urban/industrial aerosols. The seasonal cycles of both aerosol type and source are also studied in more detail for selected 5° × 5° regions. Again, good agreement between GACA and MACC is found for all regions, but some systematic differences become apparent: the variability of aerosol composition (yearly and/or seasonal is often not well captured by MACC, the amount of mineral dust outside of the dust belt appears to be overestimated, and the abundance of secondary organic aerosols is underestimated in

  16. A global aerosol classification algorithm incorporating multiple satellite data sets of aerosol and trace gas abundances

    Directory of Open Access Journals (Sweden)

    M. J. M. Penning de Vries

    2015-05-01

    Full Text Available Detecting the optical properties of aerosols using passive satellite-borne measurements alone is a difficult task due to the broad-band effect of aerosols on the measured spectra and the influences of surface and cloud reflection. We present another approach to determine aerosol type, namely by studying the relationship of aerosol optical depth (AOD with trace gas abundance, aerosol absorption, and mean aerosol size. Our new Global Aerosol Classification Algorithm, GACA, examines relationships between aerosol properties (AOD and extinction Ångström exponent from the Moderate Resolution Imaging Spectroradiometer (MODIS, UV Aerosol Index from the second Global Ozone Monitoring Experiment, GOME-2 and trace gas column densities (NO2, HCHO, SO2 from GOME-2, and CO from MOPITT, the Measurements of Pollution in the Troposphere instrument on a monthly mean basis. First, aerosol types are separated based on size (Ångström exponent and absorption (UV Aerosol Index, then the dominating sources are identified based on mean trace gas columns and their correlation with AOD. In this way, global maps of dominant aerosol type and main source type are constructed for each season and compared with maps of aerosol composition from the global MACC (Monitoring Atmospheric Composition and Climate model. Although GACA cannot correctly characterize transported or mixed aerosols, GACA and MACC show good agreement regarding the global seasonal cycle, particularly for urban/industrial aerosols. The seasonal cycles of both aerosol type and source are also studied in more detail for selected 5° × 5° regions. Again, good agreement between GACA and MACC is found for all regions, but some systematic differences become apparent: the variability of aerosol composition (yearly and/or seasonal is often not well captured by MACC, the amount of mineral dust outside of the dust belt appears to be overestimated, and the abundance of secondary organic aerosols is underestimated

  17. Aerosol observation in Fengtai area, Beijing

    Institute of Scientific and Technical Information of China (English)

    Zengdong Liu; Jianguo Liu; Bei Wang; Fan Lu; Shuhua Huang; Dexia Wu; Daowen Han

    2008-01-01

    Measurements of aerosol number concentration and particulate matter with diameter less than 10μm (PM10) mass concentrations of urban background aerosols were performed in Fengtai area, Beijing in 2006. Black carbon (BC) was collected simultaneously from the ground and analyzed to determine the particulate matter components. To satisfy the interest in continuous monitoring of temporal and spatial distribution of aerosols, the relationship between extinction coefficient (visibility) measured by lidar remote sensing and the aerosol number concentration measured from the ground was derived by using statistical method. Vertical particle number concentration profile within the planetary boundary layer could be inversed through the lidar data as well as the statistical relation.

  18. Improving Aerosol and Visibility Forecasting Capabilities Using Current and Future Generations of Satellite Observations

    Science.gov (United States)

    2015-08-27

    retrievals . 15. SUBJECT TERMS ’ Aerosol, data assimilation, satellite remote sensing, visibility forecast, electro-optical propagation 16. SECURITY...innovative methods for retrieving aerosol optical depth at nighttime using Visible Infrared Imaging Radiometer Suite (VIIRS) data (Johnson et al...Orthogonal Polarization (CALIOP) aerosol and cloud layer products, as well as collocated Ozone Monitoring Instrument (OMI) Aerosol Index (Al) data and

  19. Overview of atmospheric aerosol studies in Malaysia: Known and unknown

    Science.gov (United States)

    Kanniah, Kasturi Devi; Kaskaoutis, Dimitris G.; San Lim, Hwee; Latif, Mohd Talib; Kamarul Zaman, Nurul Amalin Fatihah; Liew, Juneng

    2016-12-01

    Atmospheric aerosols particularly those originated from anthropogenic sources can affect human health, air quality and the regional climate system of Southeast Asia (SEA). Population growth, and rapid urbanization associated with economic development in the SEA countries including Malaysia have resulted in high aerosol concentrations. Moreover, transboundary smoke plumes add more aerosols to the atmosphere in Malaysia. Nevertheless, the aerosol monitoring networks and/or field studies and research campaigns investigating the various aerosol properties are not so widespread over Malaysia. In the present work, we summarize and discuss the results of previous studies that investigated the aerosol properties over Malaysia by means of various instrumentation and techniques, focusing on the use of remote sensing data to examine atmospheric aerosols. Furthermore, we identify gaps in this research field and recommend further studies to bridge these knowledge gaps. More specifically gaps are identified in (i) monitoring aerosol loading and composition over urban areas, (ii) examining the influence of dust, (iii) assessing radiative effects of aerosols, (iv) measuring and modelling fine particles and (v) quantifying the contribution of long range transport of aerosols. Such studies are crucial for understanding the optical, physical and chemical properties of aerosols and their spatio-temporal characteristics over the region, which are useful for modelling and prediction of aerosols' effects on air quality and climate system.

  20. Aerosol Observation System

    Data.gov (United States)

    Oak Ridge National Laboratory — The aerosol observation system (AOS) is the primary Atmospheric Radiation Measurement (ARM) platform for in situ aerosol measurements at the surface. The principal...

  1. 累积式放射性气溶胶连续监测仪的实验运行数据处理%Processing Methods for Operation Test Data of Radioactive Aerosols Monitor Based on Accumulation Techniques

    Institute of Scientific and Technical Information of China (English)

    傅翠明; 席萍萍; 马英豪; 谭玲龙; 沈福

    2011-01-01

    This article introduces a radioactive aerosol continuous monitor based on accumulation sampling and measuring and three methods for processing the operation data. The monitoring results are processed by the 3 methods which are applied both under the conditions of natural background and at workplaces of a nuclear facility. How the monitoring results are assessed and how to calculate the detection limit when using the 3 different methods are explained. Moreover, the advantages and disadvantages of the 3 methods are discussed.%介绍了一种按累积式采样和计数测量方式运行的α/β放射性气溶胶连续监测仪及其实验运行数据的3种处理方法。用这3种方法分别给出了在只有氡(和Th)子体的天然本底和在核设施工作场所的条件下的实验数据计算结果,并对相关的数据处理结果做出了评价,给出了3种不同数据处理方法的监测仪探测下限的计算公式,并且讨论了3种数据处理方法的优缺点以及与此有关的问题。

  2. Capstone Depleted Uranium Aerosols: Generation and Characterization

    Energy Technology Data Exchange (ETDEWEB)

    Parkhurst, MaryAnn; Szrom, Fran; Guilmette, Ray; Holmes, Tom; Cheng, Yung-Sung; Kenoyer, Judson L.; Collins, John W.; Sanderson, T. Ellory; Fliszar, Richard W.; Gold, Kenneth; Beckman, John C.; Long, Julie

    2004-10-19

    In a study designed to provide an improved scientific basis for assessing possible health effects from inhaling depleted uranium (DU) aerosols, a series of DU penetrators was fired at an Abrams tank and a Bradley fighting vehicle. A robust sampling system was designed to collect aerosols in this difficult environment and continuously monitor the sampler flow rates. Aerosols collected were analyzed for uranium concentration and particle size distribution as a function of time. They were also analyzed for uranium oxide phases, particle morphology, and dissolution in vitro. The resulting data provide input useful in human health risk assessments.

  3. Aerosol typing - key information from aerosol studies

    Science.gov (United States)

    Mona, Lucia; Kahn, Ralph; Papagiannopoulos, Nikolaos; Holzer-Popp, Thomas; Pappalardo, Gelsomina

    2016-04-01

    Aerosol typing is a key source of aerosol information from ground-based and satellite-borne instruments. Depending on the specific measurement technique, aerosol typing can be used as input for retrievals or represents an output for other applications. Typically aerosol retrievals require some a priori or external aerosol type information. The accuracy of the derived aerosol products strongly depends on the reliability of these assumptions. Different sensors can make use of different aerosol type inputs. A critical review and harmonization of these procedures could significantly reduce related uncertainties. On the other hand, satellite measurements in recent years are providing valuable information about the global distribution of aerosol types, showing for example the main source regions and typical transport paths. Climatological studies of aerosol load at global and regional scales often rely on inferred aerosol type. There is still a high degree of inhomogeneity among satellite aerosol typing schemes, which makes the use different sensor datasets in a consistent way difficult. Knowledge of the 4d aerosol type distribution at these scales is essential for understanding the impact of different aerosol sources on climate, precipitation and air quality. All this information is needed for planning upcoming aerosol emissions policies. The exchange of expertise and the communication among satellite and ground-based measurement communities is fundamental for improving long-term dataset consistency, and for reducing aerosol type distribution uncertainties. Aerosol typing has been recognized as one of its high-priority activities of the AEROSAT (International Satellite Aerosol Science Network, http://aero-sat.org/) initiative. In the AEROSAT framework, a first critical review of aerosol typing procedures has been carried out. The review underlines the high heterogeneity in many aspects: approach, nomenclature, assumed number of components and parameters used for the

  4. A general circulation model (GCM) parameterization of Pinatubo aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Lacis, A.A.; Carlson, B.E.; Mishchenko, M.I. [NASA Goddard Institute for Space Studies, New York, NY (United States)

    1996-04-01

    The June 1991 volcanic eruption of Mt. Pinatubo is the largest and best documented global climate forcing experiment in recorded history. The time development and geographical dispersion of the aerosol has been closely monitored and sampled. Based on preliminary estimates of the Pinatubo aerosol loading, general circulation model predictions of the impact on global climate have been made.

  5. Airborne Atmospheric Aerosol Measurement System

    Science.gov (United States)

    Ahn, K.; Park, Y.; Eun, H.; Lee, H.

    2015-12-01

    It is important to understand the atmospheric aerosols compositions and size distributions since they greatly affect the environment and human health. Particles in the convection layer have been a great concern in global climate changes. To understand these characteristics satellite, aircraft, and radio sonde measurement methods have usually been used. An aircraft aerosol sampling using a filter and/or impactor was the method commonly used (Jay, 2003). However, the flight speed particle sampling had some technical limitations (Hermann, 2001). Moreover, the flight legal limit, altitude, prohibited airspace, flight time, and cost was another demerit. To overcome some of these restrictions, Tethered Balloon Package System (T.B.P.S.) and Recoverable Sonde System(R.S.S.) were developed with a very light optical particle counter (OPC), impactor, and condensation particle counter (CPC). Not only does it collect and measure atmospheric aerosols depending on altitudes, but it also monitors the atmospheric conditions, temperature, humidity, wind velocity, pressure, GPS data, during the measurement (Eun, 2013). In this research, atmospheric aerosol measurement using T.B.P.S. in Ansan area is performed and the measurement results will be presented. The system can also be mounted to an unmanned aerial vehicle (UAV) and create an aerial particle concentration map. Finally, we will present measurement data using Tethered Balloon Package System (T.B.P.S.) and R.S.S (Recoverable Sonde System).

  6. Aerosol mobility size spectrometer

    Science.gov (United States)

    Wang, Jian; Kulkarni, Pramod

    2007-11-20

    A device for measuring aerosol size distribution within a sample containing aerosol particles. The device generally includes a spectrometer housing defining an interior chamber and a camera for recording aerosol size streams exiting the chamber. The housing includes an inlet for introducing a flow medium into the chamber in a flow direction, an aerosol injection port adjacent the inlet for introducing a charged aerosol sample into the chamber, a separation section for applying an electric field to the aerosol sample across the flow direction and an outlet opposite the inlet. In the separation section, the aerosol sample becomes entrained in the flow medium and the aerosol particles within the aerosol sample are separated by size into a plurality of aerosol flow streams under the influence of the electric field. The camera is disposed adjacent the housing outlet for optically detecting a relative position of at least one aerosol flow stream exiting the outlet and for optically detecting the number of aerosol particles within the at least one aerosol flow stream.

  7. Aerosol Radiative Forcing and Weather Forecasts in the ECMWF Model

    Science.gov (United States)

    Bozzo, A.; Benedetti, A.; Rodwell, M. J.; Bechtold, P.; Remy, S.

    2015-12-01

    Aerosols play an important role in the energy balance of the Earth system via direct scattering and absorpiton of short-wave and long-wave radiation and indirect interaction with clouds. Diabatic heating or cooling by aerosols can also modify the vertical stability of the atmosphere and influence weather pattern with potential impact on the skill of global weather prediction models. The Copernicus Atmosphere Monitoring Service (CAMS) provides operational daily analysis and forecast of aerosol optical depth (AOD) for five aerosol species using a prognostic model which is part of the Integrated Forecasting System of the European Centre for Medium-Range Weather Forecasts (ECMWF-IFS). The aerosol component was developed during the research project Monitoring Atmospheric Composition and Climate (MACC). Aerosols can have a large impact on the weather forecasts in case of large aerosol concentrations as found during dust storms or strong pollution events. However, due to its computational burden, prognostic aerosols are not yet feasible in the ECMWF operational weather forecasts, and monthly-mean climatological fields are used instead. We revised the aerosol climatology used in the operational ECMWF IFS with one derived from the MACC reanalysis. We analyse the impact of changes in the aerosol radiative effect on the mean model climate and in medium-range weather forecasts, also in comparison with prognostic aerosol fields. The new climatology differs from the previous one by Tegen et al 1997, both in the spatial distribution of the total AOD and the optical properties of each aerosol species. The radiative impact of these changes affects the model mean bias at various spatial and temporal scales. On one hand we report small impacts on measures of large-scale forecast skill but on the other hand details of the regional distribution of aerosol concentration have a large local impact. This is the case for the northern Indian Ocean where the radiative impact of the mineral

  8. Climatology of Aerosol Optical Properties in Southern Africa

    Science.gov (United States)

    Queface, Antonio J.; Piketh, Stuart J.; Eck, Thomas F.; Tsay, Si-Chee

    2011-01-01

    A thorough regionally dependent understanding of optical properties of aerosols and their spatial and temporal distribution is required before we can accurately evaluate aerosol effects in the climate system. Long term measurements of aerosol optical depth, Angstrom exponent and retrieved single scattering albedo and size distribution, were analyzed and compiled into an aerosol optical properties climatology for southern Africa. Monitoring of aerosol parameters have been made by the AERONET program since the middle of the last decade in southern Africa. This valuable information provided an opportunity for understanding how aerosols of different types influence the regional radiation budget. Two long term sites, Mongu in Zambia and Skukuza in South Africa formed the core sources of data in this study. Results show that seasonal variation of aerosol optical thicknesses at 500 nm in southern Africa are characterized by low seasonal multi-month mean values (0.11 to 0.17) from December to May, medium values (0.20 to 0.27) between June and August, and high to very high values (0.30 to 0.46) during September to November. The spatial distribution of aerosol loadings shows that the north has high magnitudes than the south in the biomass burning season and the opposite in none biomass burning season. From the present aerosol data, no long term discernable trends are observable in aerosol concentrations in this region. This study also reveals that biomass burning aerosols contribute the bulk of the aerosol loading in August-October. Therefore if biomass burning could be controlled, southern Africa will experience a significant reduction in total atmospheric aerosol loading. In addition to that, aerosol volume size distribution is characterized by low concentrations in the non biomass burning period and well balanced particle size contributions of both coarse and fine modes. In contrast high concentrations are characteristic of biomass burning period, combined with

  9. Aerosol distribution apparatus

    Science.gov (United States)

    Hanson, W.D.

    An apparatus for uniformly distributing an aerosol to a plurality of filters mounted in a plenum, wherein the aerosol and air are forced through a manifold system by means of a jet pump and released into the plenum through orifices in the manifold. The apparatus allows for the simultaneous aerosol-testing of all the filters in the plenum.

  10. Compact LIDAR for Aerosol Extinction Profiling from Small UAV's Project

    Data.gov (United States)

    National Aeronautics and Space Administration — It is increasingly recognized that the Arctic is a bellwether for climate change. As the Arctic region responds to climate forcings, monitoring how aerosol...

  11. Synchronised Aerosol Mass Spectrometer Measurements across Europe

    Science.gov (United States)

    Nemitz, Eiko

    2010-05-01

    Up to twelve Aerodyne Aerosol Mass Spectrometers (AMSs) were operated simultaneously at rural and background stations (EMEP and EUSAAR sites) across Europe. Measurements took place during three intensive periods, in collaboration between the European EUCAARI IP and the EMEP monitoring activities under the UNECE Convention for Long-Range Transboundary Air Pollution (CLRTAP) during three contrasting months (May 2008, Sep/Oct 2008, Feb/Mar 2009). These measurements were conducted, analysed and quality controlled carefully using a unified protocol, providing the largest spatial database of aerosol chemical composition measured with a unified online technique to date, and a unique snapshots of the European non-refractory submicron aerosol climatology. As campaign averages over all active monitoring sites, organics represent 28 to 43%, sulphate 18 to 25%, ammonium 13 to 15% and nitrate 15 to 36% of the resolved aerosol mass, with the highest relative nitrate contribution during the Feb/Mar campaign. The measurements demonstrate that in NW Europe (e.g. Ireland, UK, The Netherlands, Germany, Switzerland) the regional submicron aerosol tends to be neutralised and here nitrates make a major contribution to the aerosol mass. By contrast, periods with low nitrate and acidic aerosol were observed at sites in S and E Europe (e.g. Greece, Finland), presumably due to a combination of larger SO2 point sources in Easter Europe, smaller local NH3 sources and, in the case of Greece, higher temperatures. While at the more marine and remote sites (Ireland, Scotland, Finland) nitrate concentrations were dominated by episodic transport phenomena, at continental sites (Switzerland, Germany, Hungary) nitrate followed a clear diurnal cycle, reflecting the thermodynamic behaviour of ammonium nitrate. The datasets clearly shows spatially co-ordinated, large-scale pollution episodes of organics, sulphate and nitrate, the latter being most pronounced during the Feb/Mar campaign. At selected

  12. Aerosol measurements at the south pole during 1987. Data report

    Energy Technology Data Exchange (ETDEWEB)

    Bodhaine, B.A.; Harris, J.M.

    1992-11-01

    The Climate Monitoring and Diagnostics Laboratory (CMDL) of the National Oceanic and Atmospheric Administration (NOAA) operates an atmospheric monitoring observatory at Amundsen-Scott Station, South Pole. The aerosol measurement program consists of the continuous measurement of condensation nuclei (CN) concentration and aerosol scattering extinction coefficient. During 1987, a special aerosol experiment was conducted that included filter samples for subsequent analysis by the proton induced x-ray emission technique, diffusion battery measurements for size information in the sub-0.1 micrometer size range, and aerosol absorption measurements using an aethalometer. Surface and upper air meteorological data were also available. The purpose of the report is to present all of the aerosol data obtained during 1987.

  13. On the implications of aerosol liquid water and phase separation for organic aerosol mass

    Science.gov (United States)

    Pye, Havala O. T.; Murphy, Benjamin N.; Xu, Lu; Ng, Nga L.; Carlton, Annmarie G.; Guo, Hongyu; Weber, Rodney; Vasilakos, Petros; Wyat Appel, K.; Hapsari Budisulistiorini, Sri; Surratt, Jason D.; Nenes, Athanasios; Hu, Weiwei; Jimenez, Jose L.; Isaacman-VanWertz, Gabriel; Misztal, Pawel K.; Goldstein, Allen H.

    2017-01-01

    Organic compounds and liquid water are major aerosol constituents in the southeast United States (SE US). Water associated with inorganic constituents (inorganic water) can contribute to the partitioning medium for organic aerosol when relative humidities or organic matter to organic carbon (OM / OC) ratios are high such that separation relative humidities (SRH) are below the ambient relative humidity (RH). As OM / OC ratios in the SE US are often between 1.8 and 2.2, organic aerosol experiences both mixing with inorganic water and separation from it. Regional chemical transport model simulations including inorganic water (but excluding water uptake by organic compounds) in the partitioning medium for secondary organic aerosol (SOA) when RH > SRH led to increased SOA concentrations, particularly at night. Water uptake to the organic phase resulted in even greater SOA concentrations as a result of a positive feedback in which water uptake increased SOA, which further increased aerosol water and organic aerosol. Aerosol properties, such as the OM / OC and hygroscopicity parameter (κorg), were captured well by the model compared with measurements during the Southern Oxidant and Aerosol Study (SOAS) 2013. Organic nitrates from monoterpene oxidation were predicted to be the least water-soluble semivolatile species in the model, but most biogenically derived semivolatile species in the Community Multiscale Air Quality (CMAQ) model were highly water soluble and expected to contribute to water-soluble organic carbon (WSOC). Organic aerosol and SOA precursors were abundant at night, but additional improvements in daytime organic aerosol are needed to close the model-measurement gap. When taking into account deviations from ideality, including both inorganic (when RH > SRH) and organic water in the organic partitioning medium reduced the mean bias in SOA for routine monitoring networks and improved model performance compared to observations from SOAS. Property updates from

  14. New satellite project Aerosol-UA: Remote sensing of aerosols in the terrestrial atmosphere

    Science.gov (United States)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Mishchenko, M.; Rosenbush, V.; Ivanov, Yu.; Makarov, A.; Bovchaliuk, A.; Danylevsky, V.; Sosonkin, M.; Moskalov, S.; Bovchaliuk, V.; Lukenyuk, A.; Shymkiv, A.; Udodov, E.

    2016-06-01

    We discuss the development of the Ukrainian space project Aerosol-UA which has the following three main objectives: (1) to monitor the spatial distribution of key characteristics of terrestrial tropospheric and stratospheric aerosols; (2) to provide a comprehensive observational database enabling accurate quantitative estimates of the aerosol contribution to the energy budget of the climate system; and (3) quantify the contribution of anthropogenic aerosols to climate and ecological processes. The remote sensing concept of the project is based on precise orbital measurements of the intensity and polarization of sunlight scattered by the atmosphere and the surface with a scanning polarimeter accompanied by a wide-angle multispectral imager-polarimeter. Preparations have already been made for the development of the instrument suite for the Aerosol-UA project, in particular, of the multi-channel scanning polarimeter (ScanPol) designed for remote sensing studies of the global distribution of aerosol and cloud properties (such as particle size, morphology, and composition) in the terrestrial atmosphere by polarimetric and spectrophotometric measurements of the scattered sunlight in a wide range of wavelengths and viewing directions from which a scene location is observed. ScanPol is accompanied by multispectral wide-angle imager-polarimeter (MSIP) that serves to collect information on cloud conditions and Earth's surface image. Various components of the polarimeter ScanPol have been prototyped, including the opto-mechanical and electronic assemblies and the scanning mirror controller. Preliminary synthetic data simulations for the retrieval of aerosol parameters over land surfaces have been performed using the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm. Methods for the validation of satellite data using ground-based observations of aerosol properties are also discussed. We assume that designing, building, and launching into orbit a multi

  15. New Satellite Project Aerosol-UA: Remote Sensing of Aerosols in the Terrestrial Atmosphere

    Science.gov (United States)

    Milinevsky, G.; Yatskiv, Ya.; Degtyaryov, O.; Syniavskyi, I.; Mishchenko, Michael I.; Rosenbush, V.; Ivanov, Yu.; Makarov, A.; Bovchaliuk, A.; Danylevsky, V.; Sosonkin, M.; Moskalov, S.; Bovchaliuk, V; Lukenyuk, A.; Shymkiv, A.

    2016-01-01

    We discuss the development of the Ukrainian space project Aerosol-UA which has the following three main objectives: (1) to monitor the spatial distribution of key characteristics of terrestrial tropospheric and stratospheric aerosols; (2) to provide a comprehensive observational database enabling accurate quantitative estimates of the aerosol contribution to the energy budget of the climate system; and (3) quantify the contribution of anthropogenic aerosols to climate and ecological processes. The remote sensing concept of the project is based on precise orbital measurements of the intensity and polarization of sunlight scattered by the atmosphere and the surface with a scanning polarimeter accompanied by a wide-angle multispectral imager-polarimeter. Preparations have already been made for the development of the instrument suite for the Aerosol-UA project, in particular, of the multi-channel scanning polarimeter (ScanPol) designed for remote sensing studies of the global distribution of aerosol and cloud properties (such as particle size, morphology, and composition) in the terrestrial atmosphere by polarimetric and spectrophotometric measurements of the scattered sunlight in a wide range of wavelengths and viewing directions from which a scene location is observed. ScanPol is accompanied by multispectral wide-angle imager-polarimeter (MSIP) that serves to collect information on cloud conditions and Earths surface image. Various components of the polarimeter ScanPol have been prototyped, including the opto-mechanical and electronic assemblies and the scanning mirror controller. Preliminary synthetic data simulations for the retrieval of aerosol parameters over land surfaces have been performed using the Generalized Retrieval of Aerosol and Surface Properties (GRASP) algorithm. Methods for the validation of satellite data using ground-based observations of aerosol properties are also discussed. We assume that designing, building, and launching into orbit a multi

  16. Investigation of aerosol optical properties for remote sensing through DRAGON (distributed regional aerosol gridded observation networks) campaign in Korea

    Science.gov (United States)

    Lim, Jae-Hyun; Ahn, Joon Young; Park, Jin-Soo; Hong, You-Deok; Han, Jin-Seok; Kim, Jhoon; Kim, Sang-Woo

    2014-11-01

    Aerosols in the atmosphere, including dust and pollutants, scatters/absorbs solar radiation and change the microphysics of clouds, thus influencing the Earth's energy budget, climate, air quality, visibility, agriculture and water circulation. Pollutants have also been reported to threaten the human health. The present research collaborated with the U.S. NASA and the U.S. Aerosol Robotic Network (AERONET) is to study the aerosol characteristics in East Asia and improve the long-distance transportation monitoring technology by analyzing the observations of aerosol characteristics in East Asia during Distributed Regional Aerosol Gridded Observation Networks (DRAGON) Campaign (March 2012-May 2012). The sun photometers that measure the aerosol optical characteristics were placed evenly throughout the Korean Peninsula and concentrated in Seoul and the metropolitan area. Observation data are obtained from the DRAGON campaign and the first year (2012) observation data (aerosol optical depth and aerosol spatial distribution) are analyzed. Sun photometer observations, including aerosol optical depth (AOD), are utilized to validate satellite observations from Geostationary Ocean Color Imager (GOCI) and Moderate Resolution Imaging Spectroradiometer (MODIS). Additional analysis is performed associated with the Northeast Asia, the Korean Peninsula in particular, to determine the spatial distribution of the aerosol.

  17. Optical closure study on light-absorbing aerosols

    Science.gov (United States)

    Petzold, Andreas; Bundke, Ulrich; Freedman, Andrew; Onasch, Timothy B.; Massoli, Paola; Andrews, Elizabeth; Hallar, Anna G.

    2014-05-01

    The in situ measurement of atmospheric aerosol optical properties is an important component of quantifying climate change. In particular, the in-situ measurement of the aerosol single-scattering albedo (SSA), which is the ratio of aerosol scattering to aerosol extinction, is identified as a key challenge in atmospheric sciences and climate change research. Ideally, the complete set of aerosol optical properties is measured through optical closure studies which simultaneous measure aerosol extinction, scattering and absorption coefficients. The recent development of new optical instruments have made real-time in situ optical closure studies attainable, however, many of these instruments are state-of-the-art but not practical for routine monitoring. In our studies we deployed a suit of well-established and recently developed instruments including the cavity attenuated phase shift (CAPS) method for aerosol light extinction, multi-angle absorption photometer (MAAP) and particle soot absorption photometer (PSAP) for aerosol light absorption, and an integrating nephelometer (NEPH) for aerosol light scattering measurements. From these directly measured optical properties we calculated light absorption from extinction minus scattering (difference method), light extinction from scattering plus absorption, and aerosol single-scattering albedo from combinations CAPS + MAAP, NEPH + PSAP, NEPH + MAAP, CAPS + NEPH. Closure studies were conducted for laboratory-generated aerosols composed of various mixtures of black carbon (Regal 400R pigment black, Cabot Corp.) and ammonium sulphate, urban aerosol (Billerica, MA), and background aerosol (Storm Peak Lab.). Key questions addressed in our closure studies are: (1) how well can we measure aerosol light absorption by various methods, and (2) how well can we measure the aerosol single-scattering albedo by various instrument combinations? In particular we investigated (3) whether the combination of a CAPS and NEPH provides a reasonable

  18. Long term aerosol and trace gas measurements in Central Amazonia

    Science.gov (United States)

    Artaxo, Paulo; Barbosa, Henrique M. J.; Ferreira de Brito, Joel; Carbone, Samara; Rizzo, Luciana V.; Andreae, Meinrat O.; Martin, Scot T.

    2016-04-01

    The central region of the Amazonian forest is a pristine region in terms of aerosol and trace gases concentrations. In the wet season, Amazonia is actually one of the cleanest continental region we can observe on Earth. A long term observational program started 20 years ago, and show important features of this pristine region. Several sites were used, between then ATTO (Amazon Tall Tower Observatory) and ZF2 ecological research site, both 70-150 Km North of Manaus, receiving air masses that traveled over 1500 km of pristine tropical forests. The sites are GAW regional monitoring stations. Aerosol chemical composition (OC/EC and trace elements) is being analysed using filters for fine (PM2.5) and coarse mode aerosol as well as Aerodyne ACSM (Aerosol Chemical Speciation Monitors). VOCs are measured using PTR-MS, while CO, O3 and CO2 are routinely measured. Aerosol absorption is being studied with AE33 aethalometers and MAAP (Multi Angle Absorption Photometers). Aerosol light scattering are being measured at several wavelengths using TSI and Ecotech nephelometers. Aerosol size distribution is determined using scanning mobility particle sizer at each site. Lidars measure the aerosol column up to 12 Km providing the vertical profile of aerosol extinction. The aerosol column is measures using AERONET sun photometers. In the wet season, organic aerosol comprises 75-85% of fine aerosol, and sulfate and nitrate concentrations are very low (1-3 percent). Aerosols are dominated by biogenic primary particles as well as SOA from biogenic precursors. Black carbon in the wet season accounts for 5-9% of fine mode aerosol. Ozone in the wet season peaks at 10-12 ppb at the middle of the day, while carbon monoxide averages at 50-80 ppb. Aerosol optical thickness (AOT) is a low 0.05 to 0.1 at 550 nm in the wet season. Sahara dust transport events sporadically enhance the concentration of soil dust aerosols and black carbon. In the dry season (August-December), long range transported

  19. Studies on aerosol properties during ICARB–2006 campaign period at Hyderabad, India using ground-based measurements and satellite data

    Indian Academy of Sciences (India)

    K V S Badarinath; Shailesh Kumar Kharol

    2008-07-01

    Continuous and campaign-based aerosol field measurements are essential in understanding fundamental atmospheric aerosol processes and for evaluating their effect on global climate, environment and human life. Synchronous measurements of Aerosol Optical Depth (AOD), Black Carbon (BC) aerosol mass concentration and aerosol particle size distribution were carried out during the campaign period at tropical urban regions of Hyderabad, India. Daily satellite datasets of DMSP-OLS were processed for night-time forest fires over the Indian region in order to understand the additional sources (forest fires) of aerosol. The higher values in black carbon aerosol mass concentration and aerosol optical depth correlated well with forest fires occurring over the region. Ozone Monitoring Instrument (OMI) aerosol index (AI) variations showed absorbing aerosols over the region and correlated with ground measurements.

  20. Papers of the 15. french congress on the aerosols CFA 99; Actes du 15. congres francais sur les aerosols CFA 99

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This french congress on the aerosols took place in Paris the 8 and 9 december 1999. It was presented in four main themes: bio-aerosols and filtering; the aerosols metrology; the aerosols in the environment; aerosols physic and applications. Seven papers have been analyzed in INIS data base for their specific interest in nuclear industry. The four papers selected for ETDE cover a larger domain: annular slot samplers in turbulent flow, the air quality monitoring in France, suspension particles characterization in an urban area, application of the remote sensing to the atmospheric pollution. (A.L.B.)

  1. Measurement of Aerosols at the Pierre Auger Observatory

    CERN Document Server

    BenZvi, S Y; Cester, R; Chiosso, M; Connolly, B M; Fick, B; Filipcic, A; García, B; Grillo, A; Guarino, F; Horvat, M; Iarlori, M; Macolino, C; Malek, M; Matthews, J; Matthews, J A J; Melo, D; Meyhandan, R; Micheletti, M; Monasor, M; Mostafá, M; Mussa, R; Pallotta, J; Petrera, S; Prouza, M; Rizi, V; Roberts, M; Rojo, J R Rodriguez; Rodríguez-Frías, D; Salamida, F; Santander, M; Sequeiros, G; Sommers, P; Tonachini, A; Valore, L; Verberic, D; Visbal, E; Westerhoff, S; Wiencke, L; Zavrtanik, D; Zavrtanik, M

    2007-01-01

    The air fluorescence detectors (FDs) of the Pierre Auger Observatory are vital for the determination of the air shower energy scale. To compensate for variations in atmospheric conditions that affect the energy measurement, the Observatory operates an array of monitoring instruments to record hourly atmospheric conditions across the detector site, an area exceeding 3,000 square km. This paper presents results from four instruments used to characterize the aerosol component of the atmosphere: the Central Laser Facility (CLF), which provides the FDs with calibrated laser shots; the scanning backscatter lidars, which operate at three FD sites; the Aerosol Phase Function monitors (APFs), which measure the aerosol scattering cross section at two FD locations; and the Horizontal Attenuation Monitor (HAM), which measures the wavelength dependence of aerosol attenuation.

  2. Aerosol MTF revisited

    Science.gov (United States)

    Kopeika, Norman S.; Zilberman, Arkadi; Yitzhaky, Yitzhak

    2014-05-01

    Different views of the significance of aerosol MTF have been reported. For example, one recent paper [OE, 52(4)/2013, pp. 046201] claims that the aerosol MTF "contrast reduction is approximately independent of spatial frequency, and image blur is practically negligible". On the other hand, another recent paper [JOSA A, 11/2013, pp. 2244-2252] claims that aerosols "can have a non-negligible effect on the atmospheric point spread function". We present clear experimental evidence of common significant aerosol blur and evidence that aerosol contrast reduction can be extremely significant. In the IR, it is more appropriate to refer to such phenomena as aerosol-absorption MTF. The role of imaging system instrumentation on such MTF is addressed too.

  3. Aerosols Science and Technology

    CERN Document Server

    Agranovski, Igor

    2011-01-01

    This self-contained handbook and ready reference examines aerosol science and technology in depth, providing a detailed insight into this progressive field. As such, it covers fundamental concepts, experimental methods, and a wide variety of applications, ranging from aerosol filtration to biological aerosols, and from the synthesis of carbon nanotubes to aerosol reactors.Written by a host of internationally renowned experts in the field, this is an essential resource for chemists and engineers in the chemical and materials disciplines across multiple industries, as well as ideal supplementary

  4. Studies of aerosols advected to coastal areas

    Science.gov (United States)

    Zielinski, T.; Petelski, T.; Makuch, P.; Strzalkowska, A.; Ponczkowska, A.; Drozdowska, V.; Gutowska, D.; Kowalczyk, J.; Darecki, M.; Piskozub, J.

    2012-04-01

    Characterizing aerosols involves the specification of not only their spatial and temporal distributions but their multi-component composition, particle size distribution and physical properties as well. Due to their light attenuation and scattering properties, aerosols influence radiance measured by satellite for ocean color remote sensingmaking them highly relevant for the ocean color atmospheric correction. This paper presents the results of the studies of aerosol optical properties measured using lidars and sun photometers. We describe two case studies of the combined measurements made in two coastal zones, in Crete in 2006and in Rozewie on the Baltic Sea in 2009. The combination of lidar and sun photometer measurements provides comprehensive information on both the total aerosol optical thickness in the entire atmosphere as well as the vertical structure of aerosol optical properties. Combination of such information with air mass back-trajectories and data collected at stations located on the route of air masses provides complete picture of the aerosol variations in the study area both vertically and horizontally. We show that such combined studies are especially important in the coastal areas. Additionally, aerosol particle direct and indirect radiative effects have been identified as key uncertainties for the prediction of the future global climate. This research has been made within the framework of the NASA/AERONET Program and Polish National Grants 1276/B/P01/2010/38, PBW 1283/B/P01/2010/38, POLAR-AOD, NN 306315536 and Satellite Monitoring of the Baltic Sea Environment - SatBałtyk funded by the European Union through European Regional Development Fund contract no. POIG 01.01.02-22-011/09.

  5. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition

    Directory of Open Access Journals (Sweden)

    P. B. Russell

    2010-02-01

    Full Text Available Recent results from diverse air, ground, and laboratory studies using both radiometric and in situ techniques show that the fractions of black carbon, organic matter, and mineral dust in atmospheric aerosols determine the wavelength dependence of absorption (often expressed as Absorption Angstrom Exponent, or AAE. Taken together, these results hold promise of improving information on aerosol composition from remote measurements. The main purpose of this paper is to show that AAE values for an Aerosol Robotic Network (AERONET set of retrievals from Sun-sky measurements describing full aerosol vertical columns are also strongly correlated with aerosol composition or type. In particular, we find AAE values near 1 (the theoretical value for black carbon for AERONET-measured aerosol columns dominated by urban-industrial aerosol, larger AAE values for biomass burning aerosols, and the largest AAE values for Sahara dust aerosols. These AERONET results are consistent with results from other, very different, techniques, including solar flux-aerosol optical depth (AOD analyses and airborne in situ analyses examined in this paper, as well as many other previous results. Ambiguities in aerosol composition or mixtures thereof, resulting from intermediate AAE values, can be reduced via cluster analyses that supplement AAE with other variables, for example Extinction Angstrom Exponent (EAE, which is an indicator of particle size. Together with previous results, these results strengthen prospects for determining aerosol composition from space, for example using the Glory Aerosol Polarimetry Sensor (APS, which seeks to provide retrievals of multiwavelength single-scattering albedo (SSA and aerosol optical depth (and therefore aerosol absorption optical depth (AAOD and AAE, as well as shape and other aerosol properties. Multidimensional cluster analyses promise additional information content, for example by using the Ozone Monitoring Instrument (OMI to add AAOD

  6. SiO2 aerosol nanoparticle reactor for occupational health and safety studies.

    Science.gov (United States)

    Ostraat, Michele L; Swain, Keith A; Krajewski, James J

    2008-06-01

    Important questions are emerging about potential occupational safety, toxicological, and ecotoxicological effects and occupational inhalation exposure risks to engineered aerosol nanoparticles. Although multiple avenues are available to synthesize nanoparticles, few tools are accessible to industrial hygienists and inhalation toxicologists to produce well-characterized aerosols of known aerosol size distribution and particle number concentration that are stable, simple, and robust to operate. This article describes a SiO(2) aerosol nanoparticle reactor that has been developed as a tool for the study of the safety, health, and environmental consequences of exposure to nanoparticle synthesis and processing. The SiO(2) aerosol nanoparticle reactor is capable of stable, long-term synthesis of amorphous SiO(2) aerosol nanoparticles from d(50) = 10-70 nm at particle concentrations approximately 10(4)-10(7)particles/cm(3) that does not produce halogen-containing byproducts and does not require daily monitoring of the particle size distribution. This reactor is designed to produce a well-characterized aerosol to enable subsequent testing with a continuous, stable supply of aerosol nanoparticles (i) to facilitate inhalation toxicology studies, (ii) to measure explosion characteristics of aerosol nanoparticles, (iii) to determine the barrier efficacy for respirator filtration, bag house exhaust, and personal protective garment media challenged with diverse aerosol nanoparticles, and (iv) to develop airborne monitoring technologies for verifying workplace safety protocols. This article details reactor design, synthesis parameters, and instruments available to characterize the resulting aerosol nanoparticle size distributions.

  7. Preliminary results of the aerosol optical depth retrieval in Johor, Malaysia

    Science.gov (United States)

    Lim, H. Q.; Kanniah, K. D.; Lau, A. M. S.

    2014-02-01

    Monitoring of atmospheric aerosols over the urban area is important as tremendous amounts of pollutants are released by industrial activities and heavy traffic flow. Air quality monitoring by satellite observation provides better spatial coverage, however, detailed aerosol properties retrieval remains a challenge. This is due to the limitation of aerosol retrieval algorithm on high reflectance (bright surface) areas. The aim of this study is to retrieve aerosol optical depth over urban areas of Iskandar Malaysia; the main southern development zone in Johor state, using Moderate Resolution Imaging Spectroradiometer (MODIS) 500 m resolution data. One of the important steps is the aerosol optical depth retrieval is to characterise different types of aerosols in the study area. This information will be used to construct a Look Up Table containing the simulated aerosol reflectance and corresponding aerosol optical depth. Thus, in this study we have characterised different aerosol types in the study area using Aerosol Robotic Network (AERONET) data. These data were processed using cluster analysis and the preliminary results show that the area is consisting of coastal urban (65%), polluted urban (27.5%), dust particles (6%) and heavy pollution (1.5%) aerosols.

  8. Aerosol physical properties and their impact on climate change processes

    Science.gov (United States)

    Strzalkowska, Agata; Zielinski, Tymon; Petelski, Tomasz; Makuch, Przemyslaw; Pakszys, Paulina; Markuszewski, Piotr; Piskozub, Jacek; Drozdowska, Violetta; Gutowska, Dorota; Rozwadowska, Anna

    2013-04-01

    Characterizing aerosols involves the specification of not only their spatial and temporal distributions but their multi-component composition, particle size distribution and physical properties as well. Due to their light attenuation and scattering properties, aerosols influence radiance measured by satellite for ocean color remote sensing. Studies of marine aerosol production and transport are important for many earth sciences such as cloud physics, atmospheric optics, environmental pollution studies, and interaction between ocean and atmosphere. It was one of the reasons for the growth in the number of research programs dealing with marine aerosols. Sea salt aerosols are among the most abundant components of the atmospheric aerosol, and thus it exerts a strong influence on radiation, cloud formation, meteorology and chemistry of the marine atmosphere. An accurate understanding and description of these mechanisms is crucial to modeling climate and climate change. This work provides information on combined aerosol studies made with lidars and sun photometers onboard the ship and in different coastal areas. We concentrate on aerosol optical thickness and its variations with aerosol advections into the study area. We pay special attention to the problem of proper data collection and analyses techniques. We showed that in order to detect the dynamics of potential aerosol composition changes it is necessary to use data from different stations where measurements are made using the same techniques. The combination of such information with air mass back-trajectories and data collected at stations located on the route of air masses provides comprehensive picture of aerosol variations in the study area both vertically and horizontally. Acknowledgements: The support for this study was provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBałtyk founded by European Union through European Regional Development Fund contract No. POIG 01

  9. Detecting sulphate aerosol geoengineering with different methods

    Science.gov (United States)

    Lo, Y. T. Eunice; Charlton-Perez, Andrew J.; Lott, Fraser C.; Highwood, Eleanor J.

    2016-12-01

    Sulphate aerosol injection has been widely discussed as a possible way to engineer future climate. Monitoring it would require detecting its effects amidst internal variability and in the presence of other external forcings. We investigate how the use of different detection methods and filtering techniques affects the detectability of sulphate aerosol geoengineering in annual-mean global-mean near-surface air temperature. This is done by assuming a future scenario that injects 5 Tg yr‑1 of sulphur dioxide into the stratosphere and cross-comparing simulations from 5 climate models. 64% of the studied comparisons would require 25 years or more for detection when no filter and the multi-variate method that has been extensively used for attributing climate change are used, while 66% of the same comparisons would require fewer than 10 years for detection using a trend-based filter. This highlights the high sensitivity of sulphate aerosol geoengineering detectability to the choice of filter. With the same trend-based filter but a non-stationary method, 80% of the comparisons would require fewer than 10 years for detection. This does not imply sulphate aerosol geoengineering should be deployed, but suggests that both detection methods could be used for monitoring geoengineering in global, annual mean temperature should it be needed.

  10. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    Science.gov (United States)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2015-06-01

    Aerosol particles were characterized by an Aerodyne aerosol chemical speciation monitor along with various collocated instruments in Beijing, China, to investigate the role of fireworks (FW) and secondary aerosol in particulate pollution during the Chinese Spring Festival of 2013. Three FW events, exerting significant and short-term impacts on fine particles (PM2.5), were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW were shown to have a large impact on non-refractory potassium, chloride, sulfate, and organics in submicron aerosol (PM1), of which FW organics appeared to be emitted mainly in secondary, with its mass spectrum resembling that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated the total PM1 mass on average, accounting for 63-82% during nine PEs in this study. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impact of reduced anthropogenic emissions on aerosol chemistry in the city. Primary species showed ubiquitous reductions during the holiday period with the largest reduction being in cooking organic aerosol (OA; 69%), in nitrogen monoxide (54%), and in coal combustion OA (28%). Secondary sulfate, however, remained only slightly changed, and the SOA and the total PM2.5 even slightly increased. Our results have significant implications for controlling local primary source emissions during PEs, e.g., cooking and traffic activities. Controlling these factors might have a limited effect on improving air quality in the megacity of Beijing, due to the dominance of SPM from regional transport in aerosol particle composition.

  11. DARE : Dedicated Aerosols Retrieval Experiment

    NARCIS (Netherlands)

    Smorenburg, K.; Courrèges-Lacoste, G.B.; Decae, R.; Court, A.J.; Leeuw, G. de; Visser, H.

    2004-01-01

    At present there is an increasing interest in remote sensing of aerosols from space because of the large impact of aerosols on climate, earth observation and health. TNO has performed a study aimed at improving aerosol characterisation using a space based instrument and state-of-the-art aerosol retr

  12. A simplified empirical method for determination of aerosol hygroscopicity and composition

    Directory of Open Access Journals (Sweden)

    C. H. Chan

    2010-10-01

    Full Text Available Atmospheric aerosols have substantial influence on the Earth's radiation budget, visibility, cloud formation and precipitation. The aerosol hygroscopicity and the composition of aerosols are of vital importance for solar radiation budget calculation, cloud formation mechanism, and measurement of aerosol spatiotemporal distribution through remote sensing, such as Lidar, MODIS and sun/star photometer. In this paper, hourly averaged records of humidity, visibility and aerosol concentration, conducted in Macao, P.R.C. from 1 February 2006 to 31 December 2008 (LT, are used to estimate aerosol hygroscopicity and composition with a simplified empirical method. The result of monthly variation of aerosol hygroscopicity indicates the important role of aerosol composition on optical properties, which is in agreement with the previous study. This aerosol composition pattern is also consistent with the Asiatic Monsoon pattern and vicinity, such as Hong Kong. The monthly variation of aerosol hygroscopicity and composition also shows the necessity to consider such a factor for the aerosols monitoring by remote system and aerosols forcing simulated by climate model.

  13. MSA in Beijing aerosol

    Institute of Scientific and Technical Information of China (English)

    YUAN Hui; WANG Ying; ZHUANG Guoshun

    2004-01-01

    Methane sulphonate (MSA) and sulfate (SO42-), the main oxidation products of dimethyl sulfide (DMS), are the target of atmospheric chemistry study, as sulfate aerosol would have important impact on the global climate change. It is widely believed that DMS is mainly emitted from phytoplankton production in marine boundary layer (MBL), and MSA is usually used as the tracer of non-sea-salt sulfate (nss- SO42-) in marine and coastal areas (MSA/SO42- = 1/18). Many observations of MSA were in marine and coastal aerosols. To our surprise, MSA was frequently (>60%) detected in Beijing TSP, PM10, and PM2.5 aerosols, even in the samples collected during the dust storm period. The concentrations of MSA were higher than those measured in marine aerosols. Factor analysis, correlation analysis and meteorology analysis indicated that there was no obvious marine influence on Beijing aerosols. DMS from terrestrial emissions and dimethyl sulphoxide (DMSO) from industrial wastes could be the two possible precursors of MSA. Warm and low-pressure air masses and long time radiation were beneficial to the formation of MSA. Anthropogenic pollution from regional and local sources might be the dominant contributor to MSA in Beijing aerosol. This was the first report of MSA in aerosols collected in an inland site in China. This new finding would lead to the further study on the balance of sulfur in inland cities and its global biogeochemical cycle.

  14. Aerosol physical and optical properties in the Eastern Mediterranean Basin, Crete, from Aerosol Robotic Network data

    Directory of Open Access Journals (Sweden)

    A. Fotiadi

    2006-01-01

    Full Text Available In this study, we investigate the aerosol optical properties, namely aerosol extinction optical thickness (AOT, Angström parameter and size distribution over the Eastern Mediterranean Basin, using spectral measurements from the recently established FORTH (Foundation for Research and Technology-Hellas AERONET station in Crete, for the two-year period 2003–2004. The location of the FORTH-AERONET station offers a unique opportunity to monitor aerosols from different sources. Maximum values of AOT are found primarily in spring, which together with small values of the Angström parameter indicate dust transported from African deserts, whereas the minimum values of AOT occur in winter. In autumn, large AOT values observed at near-infrared wavelengths arise also from dust transport. In summer, large AOT values at ultraviolet (340 nm and visible wavelengths (500 nm, together with large values of the Angström parameter, are associated with transport of fine aerosols of urban/industrial and biomass burning origin. The Angström parameter values vary on a daily basis within the range 0.05–2.20, and on a monthly basis within the range 0.68–1.9. This behaviour, together with broad frequency distributions and back-trajectory analyses, indicates a great variety of aerosol types over the study region including dust, urban-industrial and biomass-burning pollution, and maritime, as well as mixed aerosol types. Large temporal variability is observed in AOT, Angström parameter, aerosol content and size. The fine and coarse aerosol modes persist throughout the year, with the coarse mode dominant except in summer. The highest values of AOT are related primarily to southeasterly winds, associated with coarse aerosols, and to a less extent to northwesterly winds associated with fine aerosols. The results of this study show that the FORTH AERONET station in Crete is well suited for studying the transport and mixing of different types of aerosols from a variety

  15. Absorption Angstrom Exponent in AERONET and related data as an indicator of aerosol composition

    Directory of Open Access Journals (Sweden)

    P. B. Russell

    2009-10-01

    Full Text Available Recent results from diverse air, ground, and laboratory studies using both radiometric and in situ techniques show that the fractions of black carbon, organic matter, and mineral dust in atmospheric aerosols determine the wavelength dependence of absorption (expressed as Absorption Angstrom Exponent, or AAE. Taken together, these results hold promise of improving information on aerosol composition from remote measurements. The purpose of this paper is to show that AAE values for Aerosol Robotic Network (AERONET retrievals from Sun-sky measurements describing the full aerosol vertical column are also strongly correlated with aerosol composition or type. In particular, we find AAE values near 1 (the theoretical value for black carbon for AERONET-measured aerosol columns dominated by urban-industrial aerosol, larger AAE values for biomass burning aerosols, and the largest AAE values for Sahara dust aerosols. Ambiguities in aerosol composition or mixtures thereof, resulting from intermediate AAE values, can be reduced via cluster analyses that supplement AAE with other variables, for example Extinction Angstrom Exponent (EAE, which is an indicator of particle size. Together with previous results, these results strengthen prospects for determining aerosol composition from space, for example using the Glory Aerosol Polarimetry Sensor (APS, which promises retrievals of multiwavelength single-scattering albedo (SSA and aerosol optical depth (and therefore aerosol absorption optical depth (AAOD and AAE, as well as shape and other aerosol properties. Cluster analyses promise additional information content, for example by using the Ozone Monitoring Instrument (OMI to add AAOD in the near ultraviolet and CALIPSO aerosol layer heights to reduce height-absorption ambiguity.

  16. Weekly patterns of aerosol in the United States

    Directory of Open Access Journals (Sweden)

    D. M. Murphy

    2008-05-01

    Full Text Available Data from the Interagency Monitoring of Protected Visual Environments (IMPROVE network of aerosol samplers and NOAA monitoring sites are examined for weekly cycles. At remote and rural sites, fine particle elemental carbon, crustal elements, and coarse particle mass had pronounced (up to 20% weekly cycles with minima on Sunday or Monday. Fine particle organic carbon and mass had smaller amplitude cycles, also with Sunday or Monday minima. There was no statistically significant weekly cycle in fine particle sulfate despite a 5 to 15% weekly cycle in power plant SO2 emissions. Although results for nitrate may be more susceptible to sampling artifacts, nitrate also showed a pronounced weekly cycle with an amplitude similar to elemental carbon. The only species found with a weekend maximum was Pb, probably from general aviation on weekends. Aerosol optical properties at NOAA monitoring sites were consistent with the IMPROVE chemical data, with significant weekly cycles in aerosol light absorption but not light scattering. These results support a large role of diesel emissions in elemental carbon aerosol over the entire United States and suggest that a large fraction of the airborne soil dust is anthropogenic. They also suggest that studies of weekly cycles in temperature, cloudiness, precipitation, or other meteorological variables should look for causes more in light-absorbing particles and possible ice nucleation by dust rather than sulfate or total aerosol. There are also implications for personal exposure and epidemiological studies of aerosol health effects.

  17. Weekly patterns of aerosol in the United States

    Directory of Open Access Journals (Sweden)

    D. M. Murphy

    2008-01-01

    Full Text Available Data from the Interagency Monitoring of Protected Visual Environments (IMPROVE network of aerosol samplers and NOAA monitoring sites are examined for weekly cycles. Fine particle elemental carbon, crustal elements, and coarse particle mass had pronounced (up to 20% weekly cycles with minima on Sunday or Monday. Fine particle organic carbon and mass had smaller amplitude cycles, also with Sunday or Monday minima. There was no statistically significant weekly cycle in fine particle sulfate despite a 10 to 15% weekly cycle in power plant SO2 emissions. Although results for nitrate must be treated with caution, it showed a pronounced weekly cycle with an amplitude similar to elemental carbon. The only species found with a weekend maximum was Pb, probably from general aviation on weekends. Aerosol optical properties at NOAA monitoring sites were consistent with the IMPROVE chemical data, with significant weekly cycles in aerosol light absorption but not light scattering. These results support a large role of diesel emissions in elemental carbon aerosol over the entire United States and suggest that a large fraction of the airborne soil dust is anthropogenic. They also suggest that studies of weekly cycles in temperature, cloudiness, or precipitation should look for causes more in light-absorbing particles and dust rather than sulfate or total aerosol. There are also implications for personal exposure and epidemiological studies of aerosol health effects.

  18. Modal aerosol dynamics modeling

    Energy Technology Data Exchange (ETDEWEB)

    Whitby, E.R.; McMurry, P.H.; Shankar, U.; Binkowski, F.S.

    1991-02-01

    The report presents the governing equations for representing aerosol dynamics, based on several different representations of the aerosol size distribution. Analytical and numerical solution techniques for these governing equations are also reviewed. Described in detail is a computationally efficient numerical technique for simulating aerosol behavior in systems undergoing simultaneous heat transfer, fluid flow, and mass transfer in and between the gas and condensed phases. The technique belongs to a general class of models known as modal aerosol dynamics (MAD) models. These models solve for the temporal and spatial evolution of the particle size distribution function. Computational efficiency is achieved by representing the complete aerosol population as a sum of additive overlapping populations (modes), and solving for the time rate of change of integral moments of each mode. Applications of MAD models for simulating aerosol dynamics in continuous stirred tank aerosol reactors and flow aerosol reactors are provided. For the application to flow aerosol reactors, the discussion is developed in terms of considerations for merging a MAD model with the SIMPLER routine described by Patankar (1980). Considerations for incorporating a MAD model into the U.S. Environmental Protection Agency's Regional Particulate Model are also described. Numerical and analytical techniques for evaluating the size-space integrals of the modal dynamics equations (MDEs) are described. For multimodal logonormal distributions, an analytical expression for the coagulation integrals of the MDEs, applicable for all size regimes, is derived, and is within 20% of accurate numerical evaluation of the same moment coagulation integrals. A computationally efficient integration technique, based on Gauss-Hermite numerical integration, is also derived.

  19. Dark Targets, Aerosols, Clouds and Toys

    Science.gov (United States)

    Remer, L. A.

    2015-12-01

    Today if you use the Thomson-Reuters Science Citations Index to search for "aerosol*", across all scientific disciplines and years, with no constraints, and you sort by number of citations, you will find a 2005 paper published in the Journal of the Atmospheric Sciences in the top 20. This is the "The MODIS Aerosol Algorithm, Products and Validation". Although I am the first author, there are in total 12 co-authors who each made a significant intellectual contribution to the paper or to the algorithm, products and validation described. This paper, that algorithm, those people lie at the heart of a lineage of scientists whose collaborations and linked individual pursuits have made a significant contribution to our understanding of radiative transfer and climate, of aerosol properties and the global aerosol system, of cloud physics and aerosol-cloud interaction, and how to measure these parameters and maximize the science that can be obtained from those measurements. The 'lineage' had its origins across the globe, from Soviet Russia to France, from the U.S. to Israel, from the Himalayas, the Sahel, the metropolises of Sao Paulo, Taipei, and the cities of east and south Asia. It came together in the 1990s and 2000s at the NASA Goddard Space Flight Center, using cultural diversity as a strength to form a common culture of scientific creativity that continues to this day. The original algorithm has spawned daughter algorithms that are being applied to new satellite and airborne sensors. The original MODIS products have been fundamental to analyses as diverse as air quality monitoring and aerosol-cloud forcing. AERONET, designed originally for the need of validation, is now its own thriving institution, and the lineage continues to push forward to provide new technology for the coming generations.

  20. Aerosols from biomass combustion

    Energy Technology Data Exchange (ETDEWEB)

    Nussbaumer, T.

    2001-07-01

    This report is the proceedings of a seminar on biomass combustion and aerosol production organised jointly by the International Energy Agency's (IEA) Task 32 on bio energy and the Swiss Federal Office of Energy (SFOE). This collection of 16 papers discusses the production of aerosols and fine particles by the burning of biomass and their effects. Expert knowledge on the environmental impact of aerosols, formation mechanisms, measurement technologies, methods of analysis and measures to be taken to reduce such emissions is presented. The seminar, visited by 50 participants from 11 countries, shows, according to the authors, that the reduction of aerosol emissions resulting from biomass combustion will remain a challenge for the future.

  1. Emergency Protection from Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Cristy, G.A.

    2001-11-13

    Expedient methods were developed that could be used by an average person, using only materials readily available, to protect himself and his family from injury by toxic (e.g., radioactive) aerosols. The most effective means of protection was the use of a household vacuum cleaner to maintain a small positive pressure on a closed house during passage of the aerosol cloud. Protection factors of 800 and above were achieved.

  2. RACORO aerosol data processing

    Energy Technology Data Exchange (ETDEWEB)

    Elisabeth Andrews

    2011-10-31

    The RACORO aerosol data (cloud condensation nuclei (CCN), condensation nuclei (CN) and aerosol size distributions) need further processing to be useful for model evaluation (e.g., GCM droplet nucleation parameterizations) and other investigations. These tasks include: (1) Identification and flagging of 'splash' contaminated Twin Otter aerosol data. (2) Calculation of actual supersaturation (SS) values in the two CCN columns flown on the Twin Otter. (3) Interpolation of CCN spectra from SGP and Twin Otter to 0.2% SS. (4) Process data for spatial variability studies. (5) Provide calculated light scattering from measured aerosol size distributions. Below we first briefly describe the measurements and then describe the results of several data processing tasks that which have been completed, paving the way for the scientific analyses for which the campaign was designed. The end result of this research will be several aerosol data sets which can be used to achieve some of the goals of the RACORO mission including the enhanced understanding of cloud-aerosol interactions and improved cloud simulations in climate models.

  3. Organic Aerosols from SÃO Paulo and its Relationship with Aerosol Absorption and Scattering Properties

    Science.gov (United States)

    Artaxo, P.; Brito, J. F.; Rizzo, L. V.

    2012-12-01

    The megacity of São Paulo with its 19 million people and 7 million cars is a challenge from the point of view of air pollution. High levels of organic aerosols, PM10, black carbon and ozone and the peculiar situation of the large scale use of ethanol fuel makes it a special case. Little is known about the impact of ethanol on air quality and human health and the increase of ethanol as vehicle fuel is rising worldwide An experiment was designed to physico-chemical properties of aerosols in São Paulo, as well as their optical properties. Aerosol size distribution in the size range of 1nm to 10 micrometers is being measured with a Helsinki University SMPS (Scanning Mobility Particle Sizer), an NAIS (Neutral ion Spectrometer) and a GRIMM OPC (Optical Particle Counter). Optical properties are being measured with a TSI Nephelometer and a Thermo MAAP (Multi Angle Absorption Photometer). A CIMEL sunphotometer from the AERONET network measure the aerosol optical depth. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to real-time VOC analysis and aerosol composition, respectively. The ACSM was operated for 3 months continuosly during teh wintertime of 2012. The measured total particle concentration typically varies between 10,000 and 30,000 cm-3 being the lowest late in the night and highest around noon and frequently exceeding 50,000 cm-3. Clear diurnal patterns in aerosol optical properties were observed. Scattering and absorption coefficients typically range between 20 and 100 Mm-1 at 450 nm, and between 10 to 40 Mm-1 at 637 nm, respectively, both of them peaking at 7:00 local time, the morning rush hour. The corresponding single scattering albedo varies between 0.50 and 0.85, indicating a significant contribution of primary absorbing particles to the aerosol population. During the first month a total of seven new particle formation events were observed with growth rates ranging from 9 to 25

  4. Patient's Guide to Aerosol Drug Delivery

    Science.gov (United States)

    ... Table of Contents Page Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 ................................................................ 1. Aerosol Drug Delivery: The Basics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2. Aerosol Drugs: The Major Categories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12 3. Aerosol Drug Delivery Devices: Small-Volume Nebulizers . . . . . . . . . . . . .17 4. Aerosol Drug ...

  5. Quantification of aerosol signal in GOES 8 visible imagery over the United States

    Science.gov (United States)

    Knapp, Kenneth R.

    2002-10-01

    Changes in the top-of-the-atmosphere reflectance due to variations in the aerosol optical depth (τ) make retrieving τ from satellite possible. This aerosol signal is greatest for non-absorbing aerosol over dark surfaces and is least (often less than zero) for absorbing aerosols over bright surfaces. In general, previous aerosol retrieval research has been in regions where the signal is known to be large, for example, aerosol over ocean or biomass burning over heavily vegetated land. This study, however, looks at the aerosol signal and its variation over North America to determine when and where τ retrieval is possible. The results show that the aerosol signal is sufficiently large for τ retrieval over most of the sites studied; exceptions are located in the southwestern United States where the surface reflectance is large. Further, this aerosol signal closely corresponds with radiative transfer simulations, which suggests that aerosol optical depth retrieval over North America and the adjoining oceans is possible from geostationary orbit. The implication is that timely (e.g., 30 min intervals) observations of aerosol are possible. Such observations could aid research efforts in pollutant transport, air quality forecasting, and wildfire monitoring.

  6. The online chemical analysis of single particles using aerosol beams and time of flight mass spectroscopy

    NARCIS (Netherlands)

    Kievit, O.; Weiss, M.; Verheijen, P.J.T.; Marijnissen, J.C.M.; Scarlett, B.

    This paper describes an on-line instrument, capable of measuring the size and chemical composition of single aerosol particles. Possible applications include monitoring aerosol reactors and studying atmospheric chemistry. The main conclusion is that a working prototype has been built and tested. It

  7. Aerosol formation yields from the reaction of catechol with ozone

    Science.gov (United States)

    Coeur-Tourneur, Cécile; Tomas, Alexandre; Guilloteau, Angélique; Henry, Françoise; Ledoux, Frédéric; Visez, Nicolas; Riffault, Véronique; Wenger, John C.; Bedjanian, Yuri

    The formation of secondary organic aerosol from the gas-phase reaction of catechol (1,2-dihydroxybenzene) with ozone has been studied in two smog chambers. Aerosol production was monitored using a scanning mobility particle sizer and loss of the precursor was determined by gas chromatography and infrared spectroscopy, whilst ozone concentrations were measured using a UV photometric analyzer. The overall organic aerosol yield ( Y) was determined as the ratio of the suspended aerosol mass corrected for wall losses ( Mo) to the total reacted catechol concentrations, assuming a particle density of 1.4 g cm -3. Analysis of the data clearly shows that Y is a strong function of Mo and that secondary organic aerosol formation can be expressed by a one-product gas-particle partitioning absorption model. The aerosol formation is affected by the initial catechol concentration, which leads to aerosol yields ranging from 17% to 86%. The results of this work are compared to similar studies reported in the literature.

  8. Radiation Transfer Model for Aerosol Events in the Earth Atmosphere

    Science.gov (United States)

    Mukai, Sonoyo; Yokomae, Takuma; Nakata, Makiko; Sano, Itaru

    Recently large scale-forest fire, which damages the Earth environment as biomass burning and emission of carbonaceous particles, frequently occurs due to the unstable climate and/or global warming tendency. It is also known that the heavy soil dust is transported from the China continent to Japan on westerly winds, especially in spring. Furthermore the increasing emis-sions of anthropogenic particles associated with continuing economic growth scatter serious air pollutants. Thus atmospheric aerosols, especially in Asia, are very complex and heavy loading, which is called aerosol event. In the case of aerosol events, it is rather difficult to do the sun/sky photometry from the ground, however satellite observation is an effective for aerosol monitoring. Here the detection algorithms from space for such aerosol events as dust storm or biomass burn-ing are dealt with multispectral satellite data as ADEOS-2/GLI, Terra/Aqua/MODIS and/or GOSAT/CAI first. And then aerosol retrieval algorithms are examined based on new radiation transfer code for semi-infinite atmosphere model. The derived space-based results are validated with ground-based measurements and/or model simulations. Namely the space-or surface-based measurements, multiple scattering calculations and model simulations are synthesized together for aerosol retrieval in this work.

  9. Aerosol processing of materials: Aerosol dynamics and microstructure evolution

    Science.gov (United States)

    Gurav, Abhijit Shankar

    Spray pyrolysis is an aerosol process commonly used to synthesize a wide variety of materials in powder or film forms including metals, metal oxides and non-oxide ceramics. It is capable of producing high purity, unagglomerated, and micrometer to submicron-size powders, and scale-up has been demonstrated. This dissertation deals with the study of aerosol dynamics during spray pyrolysis of multicomponent systems involving volatile phases/components, and aspects involved with using fuel additives during spray processes to break apart droplets and particles in order to produce powders with smaller sizes. The gas-phase aerosol dynamics and composition size distributions were measured during spray pyrolysis of (Bi, Pb)-Sr-Ca-Cu-O, and Sr-Ru-O and Bi-Ru-O at different temperatures. A differential mobility analyzer (DMA) was used in conjunction with a condensation particle counter (CPC) to monitor the gas-phase particle size distributions, and a Berner-type low-pressure impactor was used to obtain mass size distributions and size-classified samples for chemical analysis. (Bi, Pb)-Sr-Ca-Cu-O powders made at temperatures up to 700sp°C maintained their initial stoichiometry over the whole range of particle sizes monitored, however, those made at 800sp°C and above were heavily depleted in lead in the size range 0.5-5.0 mum. When the reactor temperature was raised from 700 and 800sp°C to 900sp°C, a large number ({˜}10sp7\\ #/cmsp3) of new ultrafine particles were formed from PbO vapor released from the particles and the reactor walls at the beginning of high temperature runs (at 900sp°C). The metal ruthenate systems showed generation of ultrafine particles (measurements were also used to monitor the gas-phase particle size distributions during the generation of fullerene (Csb{60}) nano-particles (30 to 50 nm size) via vapor condensation at 400-650sp°C using Nsb2 carrier gas. In general, during laboratory-scale aerosol processing of materials containing a volatile

  10. Physical metrology of aerosols; Metrologie physique des aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Boulaud, D.; Vendel, J. [CEA Saclay, 91 - Gif-sur-Yvette (France). Inst. de Protection et de Surete Nucleaire

    1996-12-31

    The various detection and measuring methods for aerosols are presented, and their selection is related to aerosol characteristics (size range, concentration or mass range), thermo-hydraulic conditions (carrier fluid temperature, pressure and flow rate) and to the measuring system conditions (measuring frequency, data collection speed, cost...). Methods based on aerosol dynamic properties (inertial, diffusional and electrical methods) and aerosol optical properties (localized and integral methods) are described and their performances and applications are compared

  11. Variability of Biomass Burning Aerosols Layers and Near Ground

    Science.gov (United States)

    Vasilescu, Jeni; Belegante, Livio; Marmureanu, Luminita; Toanca, Flori

    2016-06-01

    The aim of this study is to characterize aerosols from both chemical and optical point of view and to explore the conditions to sense the same particles in elevated layers and at the ground. Three days of continuous measurements using a multi-wavelength depolarization lidar(RALI) and a C-ToF-AMS aerosol mass spectrometer are analyzed. The presence of smoke particles was assessed in low level layers from RALI measurements. Chemical composition of submicronic volatile/semi-volatile aerosols at ground level was monitored by the CTOF AMS Several episodes of biomass burning aerosols have been identified by both techniques due to the presence of specific markers (f60, linear particle depolarization ratio, Ängström exponent).

  12. Generation of aerosolized drugs.

    Science.gov (United States)

    Wolff, R K; Niven, R W

    1994-01-01

    The expanding use of inhalation therapy has placed demands on current aerosol generation systems that are difficult to meet with current inhalers. The desire to deliver novel drug entities such as proteins and peptides, as well as complex formulations including liposomes and microspheres, requires delivery systems of improved efficiency that will target the lung in a reproducible manner. These efforts have also been spurred by the phase out of chlorofluorocarbons (CFCs) and this has included a directed search for alternative propellants. Consequently, a variety of new aerosol devices and methods of generating aerosols are being studied. This includes the use of freon replacement propellants, dry powder generation systems, aqueous unit spray systems and microprocessor controlled technologies. Each approach has advantages and disadvantages depending upon each principle of action and set of design variables. In addition, specific drugs may be better suited for one type of inhaler device vs. another. The extent to which aerosol generation systems achieve their goals is discussed together with a summary of selected papers presented at the recent International Congress of Aerosols in Medicine.

  13. The Seasonal Variations of Aerosols over East Asia as Jointly Inferred from MODIS and OMI

    Institute of Scientific and Technical Information of China (English)

    LIU Qi; DING Wei-Dong; FU Yun-Fei

    2011-01-01

    Data on aerosol optical thickness (AOT) and single scattering albedo (SSA) derived from Moderate Resolution Imaging Spectrometer (MODIS) and Ozone Monitoring Instrument (OMI) measurements, respectively, are used jointly to examine the seasonal variations of aerosols over East Asia. The seasonal signals of the total AOT are well defined and nearly similar over the land and over the ocean. These findings indicate a natural cycle of aerosols that originate primarily from natural emissions. In contrast, the small-sized aerosols represented by the fine-mode AOT, which are primarily generated over the land by human activities, do not have evident seasonalscale fluctuations. A persistent maximum of aerosol load- ings centered over the Sichuan basin is associated with considerable amounts of fine-mode aerosols throughout the year. Most regions exhibit a general spring maximum. During the summer, however, the aerosol loadings are the most marked over north central China. This occurrence may result from anthropogenic fine particles, such as sulfate and nitrate. Four typical regions were selected to perform a covariation analysis of the monthly gridded AOT and SSA. Over southwestern and southeastern China, if the aerosol loadings are small to moderate they are composed primarily of the highly absorptive aerosols. However, more substantial aerosol loadings probably represent less-absorptive aerosols. The opposite covaria- tion pattern occurring over the coastal-adjacent oceans suggests that the polluted oceanic atmosphere is closely correlated with the windward terrestrial aerosols. North central China is strongly affected by dust aerosols that show moderate absorption. This finding may explain the lower variability in the SSA that accompanies increasing aerosol loadings in this region.

  14. The partitioning of Nitric Acid between the gas phase and condensed phase of aqueous sulfate aerosols.

    Science.gov (United States)

    Mentel, T. F.; Folkers, M.; Sebald, H.; Wahner, A.

    2001-12-01

    The heterogeneous hydrolysis of N2O_5 on aqueous aerosol surfaces is an important source of atmospheric HNO3. We generated HNO3 by heterogeneous hydrolysis of N2O_5 on aqueous ammonium and sodium sulfate aerosols and studied its partitioning between the gas phase and the aerosol phase. The experiments were performed in the large aerosol chamber at the FZ-Jülich at several relative humidities. Gas phase processes and the composition of the aerosols were monitored on-line simultaneously by FTIR spectroscopy and by Steam Jet Aerosol Collection/Ion Chromatography. The aerosol size distributions in the range of 20 nm to 5 μ m were measured by differential electromobility classification and by aerodynamic particle sizing. In the presence of aqueous bisulfate and sulfate aerosols a fast heterogeneous formation HNO3 is observed. (The reaction probability of N2O_5 is about 0.02.) In the case of the acidic bisulfate aerosols the major fraction of heterogeneously formed HNO3 resides in the gas phase. For neutral sulfate aerosols a significant fraction of HNO3 is taken up by the condensed phase of the aerosols. This leads to a distinctive growth of the aerosol population during the heterogeneous hydrolysis of N2O_5, which is observable in the number size distribution as well as in IR extinction measurements. The observed partitioning of HNO3 between gas phase and aqueous aerosol phase can be quantitatively understood by a Pitzer based thermodynamic model for salt solutions of high ionic strength. The model calculations and low resolution FTIR spectroscopy demonstrate that protonation of sulfate to bisulfate is the driving force for the uptake of HNO3 in neutral sulfate aerosols.

  15. Chemical aerosol Raman detector

    Science.gov (United States)

    Aggarwal, R. L.; Farrar, L. W.; Di Cecca, S.; Amin, M.; Perkins, B. G.; Clark, M. L.; Jeys, T. H.; Sickenberger, D. W.; D'Amico, F. M.; Emmons, E. D.; Christesen, S. D.; Kreis, R. J.; Kilper, G. K.

    2017-03-01

    A sensitive chemical aerosol Raman detector (CARD) has been developed for the trace detection and identification of chemical particles in the ambient atmosphere. CARD includes an improved aerosol concentrator with a concentration factor of about 40 and a CCD camera for improved detection sensitivity. Aerosolized isovanillin, which is relatively safe, has been used to characterize the performance of the CARD. The limit of detection (SNR = 10) for isovanillin in 15 s has been determined to be 1.6 pg/cm3, which corresponds to 6.3 × 109 molecules/cm3 or 0.26 ppb. While less sensitive, CARD can also detect gases. This paper provides a more detailed description of the CARD hardware and detection algorithm than has previously been published.

  16. Analysis of intensive aerosol optical properties measured at the Jungfraujoch station

    Energy Technology Data Exchange (ETDEWEB)

    Li, F.; Nyeki, S.; Baltensperger, U.; Weingartner, E.; Lugauer, M. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    Characterisation of atmospheric aerosol optical properties at the Jungfraujoch has been conducted to deliver basic data for comparison with those from NOAA baseline atmospheric monitoring stations. (author) 2 figs., 2 refs.

  17. Stratospheric Aerosol Measurements

    Science.gov (United States)

    Pueschel, Rudolf, F.; Gore, Warren J. (Technical Monitor)

    1998-01-01

    Stratospheric aerosols affect the atmospheric energy balance by scattering and absorbing solar and terrestrial radiation. They also can alter stratospheric chemical cycles by catalyzing heterogeneous reactions which markedly perturb odd nitrogen, chlorine and ozone levels. Aerosol measurements by satellites began in NASA in 1975 with the Stratospheric Aerosol Measurement (SAM) program, to be followed by the Stratospheric Aerosol and Gas Experiment (SAGE) starting in 1979. Both programs employ the solar occultation, or Earth limb extinction, techniques. Major results of these activities include the discovery of polar stratospheric clouds (PSCs) in both hemispheres in winter, illustrations of the impacts of major (El Chichon 1982 and Pinatubo 1991) eruptions, and detection of a negative global trend in lower stratospheric/upper tropospheric aerosol extinction. This latter result can be considered a triumph of successful worldwide sulfur emission controls. The SAGE record will be continued and improved by SAGE III, currently scheduled for multiple launches beginning in 2000 as part of the Earth Observing System (EOS). The satellite program has been supplemented by in situ measurements aboard the ER-2 (20 km ceiling) since 1974, and from the DC-8 (13 km ceiling) aircraft beginning in 1989. Collection by wire impactors and subsequent electron microscopic and X-ray energy-dispersive analyses, and optical particle spectrometry have been the principle techniques. Major findings are: (1) The stratospheric background aerosol consists of dilute sulfuric acid droplets of around 0.1 micrometer modal diameter at concentration of tens to hundreds of monograms per cubic meter; (2) Soot from aircraft amounts to a fraction of one percent of the background total aerosol; (3) Volcanic eruptions perturb the sulfuric acid, but not the soot, aerosol abundance by several orders of magnitude; (4) PSCs contain nitric acid at temperatures below 195K, supporting chemical hypotheses

  18. Laboratory and field measurements of organic aerosols with the photoionization aerosol mass spectrometer

    Science.gov (United States)

    Dreyfus, Matthew A.

    Analytical methods developed to sample and characterize ambient organic aerosols often face the trade-off between long sampling times and the loss of detailed information regarding specific chemical species present. The soft, universal ionization scheme of the Photoionization Aerosol Mass Spectrometer (PIAMS) allows for identification of various chemical compounds by a signature ion, often the molecular ion. The goal of this thesis work is to apply PIAMS to both laboratory and field experiments to answer questions regarding the formation, composition, and behavior of organic aerosols. To achieve this goal, a variety of hardware and software upgrades were administered to PIAMS to optimize the instrument. Data collection and processing software were either refined or built from the ground up to simplify difficult or monotonous tasks. Additional components were added to PIAMS with the intent to automate the instrument, enhance the results, and make the instrument more rugged and user-friendly. These changes, combined with the application of an external particle concentration system (mini-Versatile Aerosol Concentration Enrichment System, m-VACES), allowed PIAMS to be suitable for field measurements of organic aerosols. Two such field campaigns were completed, both at the State of Delaware Air Quality Monitoring Site in Wilmington, Delaware: a one week period in June, 2006, and an 18 day period in October and November of 2007. A sampling method developed was capable of collecting sufficient ambient organic aerosol and analyzing it with a time resolution of 3.5 minutes. Because of this method, short term concentration changes of individual species can be tracked. Combined with meteorological data, the behavior of these species can be analyzed as a function of time or wind direction. Many compounds are found at enhanced levels during the evening/night-time hours; potentially due to the combined effects of temperature inversion, and fresh emissions in a cooler environment

  19. Light absorption by secondary organic aerosol from α-pinene: Effects of oxidants, seed aerosol acidity, and relative humidity

    Energy Technology Data Exchange (ETDEWEB)

    Song, Chen [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Now at R. J. Reynolds Tobacco Company, Winston-Salem North Carolina USA; Gyawali, Madhu [Department of Physics, University of Nevada Reno, Nevada System of Higher Education, Reno Nevada USA; Now at Desert Research Institute, Nevada System of Higher Education, Reno Nevada USA; Zaveri, Rahul A. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Shilling, John E. [Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland Washington USA; Arnott, W. Patrick [Department of Physics, University of Nevada Reno, Nevada System of Higher Education, Reno Nevada USA

    2013-10-25

    It is well known that light absorption from dust and black carbon aerosols has a warming effect on climate while light scattering from sulfate, nitrate, and sea salt aerosols has a cooling effect. However, there are large uncertainties associated with light absorption and scattering by different types of organic aerosols, especially in the near-UV and UV spectral regions. In this paper, we present the results from a systematic laboratory study focused on measuring light absorption by secondary organic aerosols (SOAs) generated from dark α-pinene + O3 and α-pinene + NOx + O3 systems in the presence of neutral and acidic sulfate seed aerosols. Light absorption was monitored using photoacoustic spectrometers at four different wavelengths: 355, 405, 532, and 870 nm. Significant light absorption at 355 and 405 nm was observed for the SOA formed from α-pinene + O3 + NO3 system only in the presence of highly acidic sulfate seed aerosols under dry conditions. In contrast, no absorption was observed when the relative humidity was elevated to greater than 27% or in the presence of neutral sulfate seed aerosols. Organic nitrates in the SOA formed in the presence of neutral sulfate seed aerosols were found to be nonabsorbing, while the light-absorbing compounds are speculated to be aldol condensation oligomers with nitroxy organosulfate groups that are formed in highly acidic sulfate aerosols. Finally and overall, these results suggest that dark α-pinene + O3 and α-pinene + NOx + O3 systems do not form light-absorbing SOA under typical atmospheric conditions.

  20. Information Content of Bistatic Lidar Observations of Aerosols from Space

    Science.gov (United States)

    Alexandrov, Mikhail D.; Mishchenko, Michael I.

    2017-01-01

    We present, for the first time, a quantitative retrieval error-propagation study for a bistatic high spectral resolution lidar (HSRL) system intended for detailed quasi-global monitoring of aerosol properties from space. Our results demonstrate that supplementing a conventional monostatic HSRL with an additional receiver flown in formation at a scattering angle close to 165 degrees dramatically increases the information content of the measurements and allows for a sufficiently accurate characterization of tropospheric aerosols. We conclude that a bistatic HSRL system would far exceed the capabilities of currently flown or planned orbital instruments in monitoring global aerosol effects on the environment and on the Earth's climate. We also demonstrate how the commonly used a priori 'regularization' methodology can artificially reduce the propagated uncertainties and can thereby be misleading as to the real retrieval capabilities of a measurement system.

  1. Seasonal characteristics of biomass burning contribution to Beijing aerosol

    Institute of Scientific and Technical Information of China (English)

    ZHENG; Xiaoyan; LIU; Xiande; ZHAO; Fenghua; DUAN; Fengkui

    2005-01-01

    110 atmospheric aerosol samples collected from November 1997 to October 1998 at two monitoring sites (Ming Tomb and Temple Heaven) in Beijing were analyzed for the concentration of organic carbon (OC) and water-soluble potassium (K+). Four biomass burning episodes, namely spring farming, summer harvesting, autumn harvesting and leaf falling were identified using the tracer of K+. Biomass burning contribution to the urban aerosol OC concentration in Beijing was estimated by regression analysis of OC and K+ concentration data. The slopes of regression analysis are similar at the two monitoring sites, presenting regional characteristics. Severe air pollution event occurred during autumn harvesting period in 1998 with substantial secondary OC formed, in which biomass burning was one of the major emission sources. Biomass burning is a prominent source of aerosol OC in Beijing and is featured by its seasonality and periodicity. It may contribute as much as 30 to 60 percent of the total OC in typical cases.

  2. Organic nitrate aerosol formation via NO3 + biogenic volatile organic compounds in the southeastern United States

    Science.gov (United States)

    Ayres, B. R.; Allen, H. M.; Draper, D. C.; Brown, S. S.; Wild, R. J.; Jimenez, J. L.; Day, D. A.; Campuzano-Jost, P.; Hu, W.; de Gouw, J.; Koss, A.; Cohen, R. C.; Duffey, K. C.; Romer, P.; Baumann, K.; Edgerton, E.; Takahama, S.; Thornton, J. A.; Lee, B. H.; Lopez-Hilfiker, F. D.; Mohr, C.; Wennberg, P. O.; Nguyen, T. B.; Teng, A.; Goldstein, A. H.; Olson, K.; Fry, J. L.

    2015-12-01

    Gas- and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOCs) and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013) in central Alabama show that a nitrate radical (NO3) reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO3 to terpenes are correlated with increase in gas- and aerosol-organic nitrate concentrations made during the campaign. Correlation of NO3 radical consumption to organic nitrate aerosol formation as measured by aerosol mass spectrometry and thermal dissociation laser-induced fluorescence suggests a molar yield of aerosol-phase monoterpene nitrates of 23-44 %. Compounds observed via chemical ionization mass spectrometry (CIMS) are correlated to predicted nitrate loss to BVOCs and show C10H17NO5, likely a hydroperoxy nitrate, is a major nitrate-oxidized terpene product being incorporated into aerosols. The comparable isoprene product C5H9NO5 was observed to contribute less than 1 % of the total organic nitrate in the aerosol phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45 % of the NOy budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO3 uptake produced nitrate aerosol mass loading at a rate comparable to that of organic nitrate produced via NO3 + BVOCs.

  3. Characterization of absorbing aerosol types using ground and satellites based observations over an urban environment

    Science.gov (United States)

    Bibi, Samina; Alam, Khan; Chishtie, Farrukh; Bibi, Humera

    2017-02-01

    In this paper, for the first time, an effort has been made to seasonally characterize the absorbing aerosols into different types using ground and satellite based observations. For this purpose, optical properties of aerosol retrieved from AErosol RObotic NETwork (AERONET) and Ozone Monitoring Instrument (OMI) were utilized over Karachi for the period 2012 to 2014. Firstly, OMI AODabs was validated with AERONET AODabs and found to have a high degree of correlation. Then, based on this validation, characterization was conducted by analyzing aerosol Fine Mode Fraction (FMF), Angstrom Exponent (AE), Absorption Angstrom Exponent (AAE), Single Scattering Albedo (SSA) and Aerosol Index (AI) and their mutual correlation, to identify the absorbing aerosol types and also to examine the variability in seasonal distribution. The absorbing aerosols were characterized into Mostly Black Carbon (BC), Mostly Dust and Mixed BC & Dust. The results revealed that Mostly BC aerosols contributed dominantly during winter and postmonsoon whereas, Mostly Dust were dominant during summer and premonsoon. These types of absorbing aerosol were also confirmed with MODerate resolution Imaging Spectroradiometer (MODIS) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) observations.

  4. Organic nitrate aerosol formation via NO3 + BVOC in the Southeastern US

    Directory of Open Access Journals (Sweden)

    B. R. Ayres

    2015-06-01

    Full Text Available Gas- and aerosol-phase measurements of oxidants, biogenic volatile organic compounds (BVOC and organic nitrates made during the Southern Oxidant and Aerosol Study (SOAS campaign, Summer 2013 in central Alabama show that nitrate radical (NO3 reaction with monoterpenes leads to significant secondary aerosol formation. Cumulative losses of NO3 to terpenes are calculated and correlated to gas and aerosol organic nitrate concentrations made during the campaign. Correlation of NO3 radical consumption to organic nitrate aerosol as measured by Aerosol Mass Spectrometry (AMS and Thermal Dissociation – Laser Induced Fluorescence (TD-LIF suggests a range of molar yield of aerosol phase monoterpene nitrates of 23–44 %. Compounds observed via chemical ionization mass spectrometry (CIMS are correlated to predicted nitrate loss to terpenes and show C10H17NO5, likely a hydroperoxy nitrate, is a major nitrate oxidized terpene product being incorporated into aerosols. The comparable isoprene product C5H9NO5 was observed to contribute less than 0.5 % of the total organic nitrate in the aerosol-phase and correlations show that it is principally a gas-phase product from nitrate oxidation of isoprene. Organic nitrates comprise between 30 and 45 % of the NOy budget during SOAS. Inorganic nitrates were also monitored and showed that during incidents of increased coarse-mode mineral dust, HNO3 uptake produced nitrate aerosol mass loading comparable to that of organic nitrate produced via NO3 + BVOC.

  5. A Comparison of the OSHA Modified NIOSH Physical and Chemical Analytical Method (P and CAM) 304 and the Dust Trak Photometric Aerosol Sampler for 0-Chlorobenzylidine Malonitrile

    Science.gov (United States)

    2013-04-02

    form of smokes, dusts, fumes and mists . Naturally occurring aerosols include airborne dusts, clouds, mists , clay particles and sandstorms. Aerosol...CS is vaporized by the heat followed by condensation to an aerosol-particulate, and is assisted in dispersal throughout the chamber by fans (41...particulate monitor that measures contaminants such as dust, smoke, fumes and mists . This device is designed to conduct monitoring in industrial

  6. Laboratory Experiments and Instrument Intercomparison Studies of Carbonaceous Aerosol Particles

    Energy Technology Data Exchange (ETDEWEB)

    Davidovits, Paul [Boston College, Chestnut Hill, MA (United States)

    2015-10-20

    ) two well-characterized source of soot particles and (b) a flow reactor for controlled OH and/or O3 oxidation of relevant gas phase species to produce well-characterized SOA particles. After formation, the aerosol particles are subjected to physical and chemical processes that simulate aerosol growth and aging. A suite of instruments in our laboratory is used to characterize the physical and chemical properties of aerosol particles before and after processing. The Time of Flight Aerosol Mass Spectrometer (ToF-AMS) together with a Scanning Mobility Particle Sizer (SMPS) measures particle mass, volume, density, composition (including black carbon content), dynamic shape factor, and fractal dimension. The–ToF-AMS was developed at ARI with Boston College participation. About 120 AMS instruments are now in service (including 5 built for DOE laboratories) performing field and laboratory studies world-wide. Other major instruments include a thermal denuder, two Differential Mobility Analyzers (DMA), a Cloud Condensation Nuclei Counter (CCN), a Thermal desorption Aerosol GC/MS (TAG) and the new Soot Particle Aerosol Mass Spectrometer (SP-AMS). Optical instrumentation required for the studies have been brought to our laboratory as part of ongoing and planned collaborative projects with colleagues from DOE, NOAA and university laboratories. Optical instruments that will be utilized include a Photoacoustic Spectrometer (PAS), a Cavity Ring Down Aerosol Extinction Spectrometer (CRD-AES), a Photo Thermal Interferometer (PTI), a new 7-wavelength Aethalometer and a Cavity Attenuated Phase Shift Extinction Monitor (CAPS). These instruments are providing aerosol absorption, extinction and scattering coefficients at a range of atmospherically relevant wavelengths. During the past two years our work has continued along the lines of our original proposal. We report on 12 completed and/or continuing projects conducted during the period 08/14 to 0814/2015. These projects are described in

  7. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore-Washington, D.C. region

    Science.gov (United States)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2016-01-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type - such as composition, size, and hygroscopicity - and to the surrounding atmosphere, such as temperature, relative humidity (RH), and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in situ atmospheric profiling in the Baltimore, MD-Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km, decreasing to 35 ng m-3 in the free troposphere (above

  8. Bio-aerosols in indoor environment: composition, health effects and analysis.

    Science.gov (United States)

    Srikanth, Padma; Sudharsanam, Suchithra; Steinberg, Ralf

    2008-01-01

    Bio-aerosols are airborne particles that are living (bacteria, viruses and fungi) or originate from living organisms. Their presence in air is the result of dispersal from a site of colonization or growth. The health effects of bio-aerosols including infectious diseases, acute toxic effects, allergies and cancer coupled with the threat of bioterrorism and SARS have led to increased awareness on the importance of bio-aerosols. The evaluation of bio-aerosols includes use of variety of methods for sampling depending on the concentration of microorganisms expected. There have been problems in developing standard sampling methods, in proving a causal relationship and in establishing threshold limit values for exposures due to the complexity of composition of bio-aerosols, variations in human response to their exposure and difficulties in recovering microorganisms. Currently bio-aerosol monitoring in hospitals is carried out for epidemiological investigation of nosocomial infectious diseases, research into airborne microorganism spread and control, monitoring biohazardous procedures and use as a quality control measure. In India there is little awareness regarding the quality of indoor air, mould contamination in indoor environments, potential source for transmission of nosocomial infections in health care facilities. There is an urgent need to undertake study of indoor air, to generate baseline data and explore the link to nosocomial infections. This article is a review on composition, sources, modes of transmission, health effects and sampling methods used for evaluation of bio-aerosols, and also suggests control measures to reduce the loads of bio-aerosols.

  9. Production of satellite-derived aerosol climate data records: current status of the ESA Aerosol_cci project

    Science.gov (United States)

    de Leeuw, Gerrit; Holzer-Popp, Thomas; Pinnock, Simon

    2015-04-01

    cloud screening in the various algorithms. Other efforts will focus on surface treatment and possible improvement of aerosol models used in the retrieval. Furthermore, the validation results, showing differences between regions, will further be analyzed in an attempt to better understand the working of different algorithms. The results, if successful, will be implemented in the various algorithms. A yearly re-processing is planned to evaluate the effect of different changes and to monitor further improvement. Each re-processing will be done on the full 17-year global ATSR-2/AATSR data set. The work on stratospheric aerosols and on absorbing aerosols is continued and a new element in Phase 2 is the inclusion of dust aerosols retrieved from thermal infrared IASI observations over a limited area. After the launch of Sentinel-3, planned for the autumn of 2015, the aerosol retrieval using SLSTR and OLCI data are planned to be included in the Aerosol_cci project. PARASOL retrieved data over a limited area will be used as a 'standard' for comparison with other sensors. A new aspect of Phase 2 are the use cases where representatives of several relevant users communities, climate, stratospheric aerosol and aerosol-cloud interaction, will evaluate the use of Aerosol_cci products in their own work as regards the usefulness and added value. This will be done in close cooperation with the data providers to further improve the products and meet users' needs, both as regards data quality and presentation. The latter also requires data availability and easy accessibility through good data management which is another important aspect in Aerosol_cci. An overview will be presented of the current status of the various aspects of the Aerosol_cci project.

  10. Combined Use of Polar and Geostationary Satellite Sensors For Aerosol Characterization Over The Ocean

    Science.gov (United States)

    Costa, M. J.; Cervino, M.; Levizzani, V.; Silva, A. M.

    Aerosol particles play an important role in the Earth's climate due to their direct and indirect interaction with the atmosphere. Monitoring of the optical properties of atmospheric aerosol is thus crucial for a radiative forcing quantification at the lo- cal, regional and global scales. Ground-based measurements provide accurate aerosol properties. However, given the strong spatial and temporal variability of tropospheric aerosols ground measurements cannot cover the global scale. On the other hand, satellite-based algorithms for aerosol retrievals presently do not match the accuracy of ground-based results. Most satellite algorithms are based on a single sensor, thus often suffering from specific limitations (poor spatial or spectral resolution, long re- visitation time, poor cloud mask). A method to exploit the synergy between the polar orbiting Global Ozone Monitoring Experiment (GOME) onboard ERS-2 and the METEOSAT geostationary system was proposed (Costa et al., 2001), aiming at increasing the accuracy of the aerosol charac- terization and monitoring of the optical thickness. A validation of the algorithm is done by comparing satellite retrievals with results obtained via independent space-time co- located ground-based measurements from AERONET (Aerosol Robotic NETwork) and from other state of the art algorithms that make use of satellite measurements such as the MODIS official aerosol product. Results of the ongoing validation are pre- sented for relevant transport events of desert dust and biomass burning aerosol over the Atlantic and Indian Oceans during year 2000. References: Costa,M.J., M.Cervino, E.Cattani, F.Torricella, V.Levizzani, and A.M.Silva, 2001: "Aerosol characterization and optical thickness retrievals using GOME and METEOSAT satellite data". Meteor. Atmos. Phys., (in press). Acknowledgements: METEOSAT imagery was kindly made available by EUMET- SAT. We thank the AERONET investigators and their staff for establishing and main- taining the

  11. Sea Spray Aerosols

    DEFF Research Database (Denmark)

    Butcher, Andrew Charles

    a relationship between plunging jet particle ux, oceanic particle ux, and energy dissipation rate in both systems. Previous sea spray aerosol studies dissipate an order of magnitude more energy for the same particle ux production as the open ocean. A scaling factor related to the energy expended in air...... emissions produced directly from bubble bursting as the result of air entrainment from breaking waves and particles generated from secondary emissions of volatile organic compounds. In the first paper, we study the chemical properties of particles produced from several sea water proxies with the use...... jet in high concentrations of surface active organics and brackish water salinities. The jet produces particles with less cloud condensation activity, implying an increase in organic material in aerosol particles produced by the plunging jet over the frit. In the second paper we determine...

  12. Aerosol Observing System (AOS) Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Jefferson, A

    2011-01-17

    The Aerosol Observing System (AOS) is a suite of in situ surface measurements of aerosol optical and cloud-forming properties. The instruments measure aerosol properties that influence the earth’s radiative balance. The primary optical measurements are those of the aerosol scattering and absorption coefficients as a function of particle size and radiation wavelength and cloud condensation nuclei (CCN) measurements as a function of percent supersaturation. Additional measurements include those of the particle number concentration and scattering hygroscopic growth. Aerosol optical measurements are useful for calculating parameters used in radiative forcing calculations such as the aerosol single-scattering albedo, asymmetry parameter, mass scattering efficiency, and hygroscopic growth. CCN measurements are important in cloud microphysical models to predict droplet formation.

  13. Aerosol characterization during project POLINAT

    Energy Technology Data Exchange (ETDEWEB)

    Hagen, D.E.; Hopkins, A.R.; Paladino, J.D.; Whitefield, P.D. [Missouri Univ., Rolla, MO (United States). Cloud and Aerosol Sciences Lab.; Lilenfeld, H.V. [McDonnell Douglas Aerospace-East, St. Louis, MO (United States)

    1997-12-31

    The objectives of the aerosol/particulate characterization measurements of project POLINAT (POLlution from aircraft emissions In the North ATlantic flight corridor) are: to search for aerosol/particulate signatures of air traffic emissions in the region of the North Atlantic Flight Corridor; to search for the aerosol/particulate component of large scale enhancement (`corridor effects`) of air traffic related species in the North Atlantic region; to determine the effective emission indices for the aerosol/particulate component of engine exhaust in both the near and far field of aircraft exhaust plumes; to measure the dispersion and transformation of the aerosol/particulate component of aircraft emissions as a function of ambient condition; to characterize background levels of aerosol/particulate concentrations in the North Atlantic Region; and to determine effective emission indices for engine exhaust particulates for regimes beyond the jet phase of plume expansion. (author) 10 refs.

  14. Acidic aerosol in urban air

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, M.; Yamaoka, S.; Miyazaki, T.; Oka, M.

    1982-01-01

    The distribution and chemical composition of acidic aerosol in Osaka City were investigated. Samples were collected at five sites in the city from June to September, 1979. Acidic aerosol was determined by the acid-base titration method, sulfate ion by barium chloride turbidimetry, nitrate ion by the xylenol method, and chloride ion by the mercury thiocyanate method. The concentration of acidic aerosol at five sites ranged from 7.7 micrograms per cubic meter to 10.0 micrograms per cubic meter, but mean concentrations in the residential area were slightly higher than those in the industrial area. When acidic aerosol concentrations were compared with concentrations of sulfate, nitrate, and chloride ions, a significant correlation was found between acidic aerosol and sulfate ion. The sum of the ion equivalents of the three types showed good correlation with the acidic aerosol equivalent during the whole period.

  15. Topics in current aerosol research

    CERN Document Server

    Hidy, G M

    1971-01-01

    Topics in Current Aerosol Research deals with the fundamental aspects of aerosol science, with emphasis on experiment and theory describing highly dispersed aerosols (HDAs) as well as the dynamics of charged suspensions. Topics covered range from the basic properties of HDAs to their formation and methods of generation; sources of electric charges; interactions between fluid and aerosol particles; and one-dimensional motion of charged cloud of particles. This volume is comprised of 13 chapters and begins with an introduction to the basic properties of HDAs, followed by a discussion on the form

  16. Growing up MODIS: Towards a mature aerosol climate data record

    Science.gov (United States)

    Levy, Robert C.

    2013-05-01

    . There are two orbiting MODIS sensors (on Terra and Aqua), and like human twins, they have had different life experiences; the result is a slightly different perspective on global aerosol distribution. To assess simple questions like "Is global aerosol increasing or decreasing?" requires detailed analyses into diverse subjects, such as instrument calibration, assumptions for gas correction, and aggregations of spatial sampling. With the recent launch of VIIRS on Suomi-NPP, there is a new addition to the aerosol monitoring "family." While preliminary indications are that it will produce a successful aerosol product, work on its position within the CDR is just beginning. In 1998, in addition to starting a new job, I joined a unique family composed of scientists around the world. I am grateful that the community has been supportive and nurturing. Of course, like in any family, there are many stories to tell. Here, at IRS-2012, I share some of my experiences of working within the collective MODIS aerosol project.

  17. Variability of aerosol vertical distribution in the Sahel

    Directory of Open Access Journals (Sweden)

    O. Cavalieri

    2010-12-01

    continent by the monsoon flow.

    During summer months, the entire Sahelian region is under the influence of Saharan dust aerosols: the air masses in low levels arrive from West Africa crossing the Sahara desert or from the Southern Hemisphere crossing the Guinea Gulf while in the upper layers air masses still originate from North, North-East. The maximum of the desert dust activity is observed in this period which is characterized by large AOD (above 0.2 and backscattering values. It also corresponds to a maximum in the extension of the aerosol vertical distribution (up to 6 km of altitude. In correspondence, a progressive cleaning up of the lowermost layers of the atmosphere is occurring, especially evident in the Banizoumbou and Cinzana sites.

    Summer is in fact characterized by extensive and fast convective phenomena.

    Lidar profiles show at times large dust events loading the atmosphere with aerosol from the ground up to 6 km of altitude. These events are characterized by large total attenuated backscattering values, and alternate with very clear profiles, sometimes separated by only a few hours, indicative of fast removal processes occurring, likely due to intense convective and rain activity.

    The inter-annual variability in the three year monitoring period is not very significant. An analysis of the aerosol transport pathways, aiming at detecting the main source regions, revealed that air originated from the Saharan desert is present all year long and it is observed in the lower levels of the atmosphere at the beginning and at the end of the year. In the central part of the year it extends upward and the lower levels are less affected by air masses from Saharan desert when the monsoon flow carries air from the Guinea Gulf and the Southern Hemisphere inland.

  18. Aerosol quantification with the Aerodyne Aerosol Mass Spectrometer: detection limits and ionizer background effects

    Directory of Open Access Journals (Sweden)

    S. Borrmann

    2009-02-01

    Full Text Available Systematic laboratory experiments were performed to investigate quantification of various species with two versions of the Aerodyne Aerosol Mass Spectrometer, a Quadrupole Aerosol Mass Spectrometer (Q-AMS and a compact Time-of-Flight Aerosol Mass Spectrometer (c-ToF-AMS. Here we present a new method to continuously determine the detection limits of the AMS analyzers during regular measurements, yielding detection limit (DL information under various measurement conditions. Minimum detection limits range from 0.03 μg m−3 (nitrate, sulfate, and chloride up to 0.5 μg m−3 (organics for the Q-AMS. Those of the c-ToF-AMS are found between 0.003 μg m−3 (nitrate, sulfate and 0.03 μg m−3 (ammonium, organics. The DL values found for the c-ToF-AMS were ~10 times lower than those of the Q-AMS, mainly due to differences in ion duty cycle. Effects causing an increase of the detection limits include long-term instrument contamination, measurement of high aerosol mass concentrations and short-term instrument history. The self-cleaning processes which reduce the instrument background after measurement of large aerosol concentrations as well as the influences of increased instrument background on mass concentration measurements are discussed. Finally, improvement of detection limits by extension of averaging time intervals, selected or reduced ion monitoring, and variation of particle-to-background measurement ratio are investigated.

  19. Controlled exposures of human volunteers to sulfate aerosols. Health effects and aerosol characterization.

    Science.gov (United States)

    Avol, E L; Jones, M P; Bailey, R M; Chang, N M; Kleinman, M T; Linn, W S; Bell, K A; Hackney, J D

    1979-08-01

    Our laboratory has undertaken the study of possible acute adverse health effects of sulfate aerosols through controlled exposures of volunteer human subjects. Both healthy and asthmatic adult men were exposed for 2-hour periods (with intermittent exercise) to ammonium sulfate, ammonium bisulfate, and sulfuric acid of particle size distributions and concentrations intended to simulate "worst case" exposures during Los Angeles smog episodes. Lung function tests were performed by the subjects on entering and before exiting from a carefully controlled environmental chamber. Subject symptoms were evluated in a standardized manner. Aerosol concentrations and size distributions were determined by an on-line computer/aerometric monitoring system; gravimetric and chemical analyses were performed on impactor and total filter samples after test exposures. We found little or no evidence of adverse health effects from 2-hour multiple-day exposures to any of the compounds at "worst case" ambient concentrations.

  20. The AERONET network: atmospheric aerosol research in Ukraine

    Science.gov (United States)

    Milinevsky, G. P.

    2013-12-01

    The AERONET network is one of the most developed ground-based networks for aerosol monitoring. Solar radiance extinction, aureole brightness and sky light polarization measurements are used by the AERONET inversion retrieval algorithm to derive a variety of aerosol particle properties and parameters that are important for estimations of aerosol influences on air quality and climate change. In 2008 the AERONET has been extended in Ukraine: in addition to Sevastopol site (operated since 2006) the sunphotometer CIMEL CE318-2 has been installed at Kyiv site. New generation of sunphotometer (CE318N) has been used widely since 2011 in various sites of Ukraine as mobile station together with portable sunphotometer Microtops II. This article presents a short description of the AERONET, its development in Ukraine and prospects for future atmospheric research.

  1. Aerosol absorption and radiative forcing

    Directory of Open Access Journals (Sweden)

    P. Stier

    2007-05-01

    Full Text Available We present a comprehensive examination of aerosol absorption with a focus on evaluating the sensitivity of the global distribution of aerosol absorption to key uncertainties in the process representation. For this purpose we extended the comprehensive aerosol-climate model ECHAM5-HAM by effective medium approximations for the calculation of aerosol effective refractive indices, updated black carbon refractive indices, new cloud radiative properties considering the effect of aerosol inclusions, as well as by modules for the calculation of long-wave aerosol radiative properties and instantaneous aerosol forcing. The evaluation of the simulated aerosol absorption optical depth with the AERONET sun-photometer network shows a good agreement in the large scale global patterns. On a regional basis it becomes evident that the update of the BC refractive indices to Bond and Bergstrom (2006 significantly improves the previous underestimation of the aerosol absorption optical depth. In the global annual-mean, absorption acts to reduce the short-wave anthropogenic aerosol top-of-atmosphere (TOA radiative forcing clear-sky from –0.79 to –0.53 W m−2 (33% and all-sky from –0.47 to –0.13 W m−2 (72%. Our results confirm that basic assumptions about the BC refractive index play a key role for aerosol absorption and radiative forcing. The effect of the usage of more accurate effective medium approximations is comparably small. We demonstrate that the diversity in the AeroCom land-surface albedo fields contributes to the uncertainty in the simulated anthropogenic aerosol radiative forcings: the usage of an upper versus lower bound of the AeroCom land albedos introduces a global annual-mean TOA forcing range of 0.19 W m−2 (36% clear-sky and of 0.12 W m−2 (92% all-sky. The consideration of black carbon inclusions on cloud radiative properties results in a small global annual-mean all-sky absorption of 0.05 W

  2. Dust layer profiling using an aerosol dropsonde

    Science.gov (United States)

    Ulanowski, Zbigniew; Kaye, Paul Henry; Hirst, Edwin; Wieser, Andreas; Stanley, Warren

    2015-04-01

    Routine meteorological data is obtained in the atmosphere using disposable radiosondes, giving temperature, pressure, humidity and wind speed. Additional measurements are obtained from dropsondes, released from research aircraft. However, a crucial property not yet measured is the size and concentration of atmospheric particulates, including dust. Instead, indirect measurements are employed, relying on remote sensing, to meet the demands from areas such as climate research, air quality monitoring, civil emergencies etc. In addition, research aircraft can be used in situ, but airborne measurements are expensive, and aircraft use is restricted to near-horizontal profiling, which can be a limitation, as phenomena such as long-range transport depend on the vertical distribution of aerosol. The Centre for Atmospheric and Instrumentation Research at University of Hertfordshire develops light-scattering instruments for the characterization of aerosols and cloud particles. Recently a range of low-cost, miniature particle counters has been created, intended for use with systems such as disposable balloon-borne radiosondes, dropsondes, or in dense ground-based sensor networks. Versions for different particle size ranges exist. They have been used for vertical profiling of aerosols such as mineral dust or volcanic ash. A disadvantage of optical particle counters that sample through a narrow inlet is that they can become blocked, which can happen in cloud, for example. Hence, a different counter version has been developed, which can have open-path geometry, as the sensing zone is defined optically rather than being delimited by the flow system. This counter has been used for ground based air-quality monitoring around Heathrow airport. The counter has also been adapted for use with radiosondes or dropsondes. The dropsonde version has been successfully tested by launching it from research aircraft together with the so-called KITsonde, developed at the Karlsruhe Institute of

  3. Connecting Water Quality With Air Quality Through Microbial Aerosols

    Science.gov (United States)

    Dueker, M. Elias

    Aerosol production from surface waters results in the transfer of aquatic materials (including nutrients and bacteria) to air. These materials can then be transported by onshore winds to land, representing a biogeochemical connection between aquatic and terrestrial systems not normally considered. In urban waterfront environments, this transfer could result in emissions of pathogenic bacteria from contaminated waters. Despite the potential importance of this link, sources, near-shore deposition, identity and viability of microbial aerosols are largely uncharacterized. This dissertation focuses on the environmental and biological mechanisms that define this water-air connection, as a means to build our understanding of the biogeochemical, biogeographical, and public health implications of the transfer of surface water materials to the near-shore environment in both urban and non-urban environments. The effects of tidal height, wind speed and fog on coastal aerosols and microbial content were first quantified on a non-urban coast of Maine, USA. Culture-based, culture-independent, and molecular methods were used to simultaneously sample microbial aerosols while monitoring meteorological parameters. Aerosols at this site displayed clear marine influence and high concentrations of ecologically-relevant nutrients. Coarse aerosol concentrations significantly increased with tidal height, onshore wind speed, and fog presence. Tidal height and fog presence did not significantly influence total microbial aerosol concentrations, but did have a significant effect on culturable microbial aerosol fallout. Molecular analyses of the microbes settling out of near-shore aerosols provided further evidence of local ocean to terrestrial transport of microbes. Aerosol and surface ocean bacterial communities shared species and in general were dominated by organisms previously sampled in marine environments. Fog presence strengthened the microbial connection between water and land through

  4. Aerosol dynamics in porous media

    NARCIS (Netherlands)

    Ghazaryan, Lilya

    2014-01-01

    In this thesis, a computational model was developed for the simulation of aerosol formation through nucleation, followed by condensation and evaporation and filtration by porous material. Understanding aerosol dynamics in porous media can help improving engineering models that are used in various in

  5. Hand calculations for transport of radioactive aerosols through sampling systems.

    Science.gov (United States)

    Hogue, Mark; Thompson, Martha; Farfan, Eduardo; Hadlock, Dennis

    2014-05-01

    Workplace air monitoring programs for sampling radioactive aerosols in nuclear facilities sometimes must rely on sampling systems to move the air to a sample filter in a safe and convenient location. These systems may consist of probes, straight tubing, bends, contractions and other components. Evaluation of these systems for potential loss of radioactive aerosols is important because significant losses can occur. However, it can be very difficult to find fully described equations to model a system manually for a single particle size and even more difficult to evaluate total system efficiency for a polydispersed particle distribution. Some software methods are available, but they may not be directly applicable to the components being evaluated and they may not be completely documented or validated per current software quality assurance requirements. This paper offers a method to model radioactive aerosol transport in sampling systems that is transparent and easily updated with the most applicable models. Calculations are shown with the R Programming Language, but the method is adaptable to other scripting languages. The method has the advantage of transparency and easy verifiability. This paper shows how a set of equations from published aerosol science models may be applied to aspiration and transport efficiency of aerosols in common air sampling system components. An example application using R calculation scripts is demonstrated. The R scripts are provided as electronic attachments.

  6. Intercomparison and closure calculations using measurements of aerosol species and optical properties during the Yosemite Aerosol Characterization Study

    Science.gov (United States)

    Malm, William C.; Day, Derek E.; Carrico, Christian; Kreidenweis, Sonia M.; Collett, Jeffrey L.; McMeeking, Gavin; Lee, Taehyoung; Carrillo, Jacqueline; Schichtel, Bret

    2005-07-01

    Physical and optical properties of inorganic aerosols have been extensively studied, but less is known about carbonaceous aerosols, especially as they relate to the non-urban settings such as our nation's national parks and wilderness areas. Therefore an aerosol characterization study was conceived and implemented at one national park that is highly impacted by carbonaceous aerosols, Yosemite. The primary objective of the study was to characterize the physical, chemical, and optical properties of a carbon-dominated aerosol, including the ratio of total organic matter weight to organic carbon, organic mass scattering efficiencies, and the hygroscopic characteristics of a carbon-laden ambient aerosol, while a secondary objective was to evaluate a variety of semi-continuous monitoring systems. Inorganic ions were characterized using 24-hour samples that were collected using the URG and Interagency Monitoring of Protected Visual Environments (IMPROVE) monitoring systems, the micro-orifice uniform deposit impactor (MOUDI) cascade impactor, as well as the semi-continuous particle-into-liquid sampler (PILS) technology. Likewise, carbonaceous material was collected over 24-hour periods using IMPROVE technology along with the thermal optical reflectance (TOR) analysis, while semi-continuous total carbon concentrations were measured using the Rupprecht and Patashnick (R&P) instrument. Dry aerosol number size distributions were measured using a differential mobility analyzer (DMA) and optical particle counter, scattering coefficients at near-ambient conditions were measured with nephelometers fitted with PM10 and PM2.5 inlets, and "dry" PM2.5 scattering was measured after passing ambient air through Perma Pure Nafion® dryers. In general, the 24-hour "bulk" measurements of various aerosol species compared more favorably with each other than with the semi-continuous data. Semi-continuous sulfate measurements correlated well with the 24-hour measurements, but were biased low by

  7. Aerosols indirectly warm the Arctic

    Directory of Open Access Journals (Sweden)

    T. Mauritsen

    2010-07-01

    Full Text Available On average, airborne aerosol particles cool the Earth's surface directly by absorbing and scattering sunlight and indirectly by influencing cloud reflectivity, life time, thickness or extent. Here we show that over the central Arctic Ocean, where there is frequently a lack of aerosol particles upon which clouds may form, a small increase in aerosol loading may enhance cloudiness thereby likely causing a climatologically significant warming at the ice-covered Arctic surface. Under these low concentration conditions cloud droplets grow to drizzle sizes and fall, even in the absence of collisions and coalescence, thereby diminishing cloud water. Evidence from a case study suggests that interactions between aerosol, clouds and precipitation could be responsible for attaining the observed low aerosol concentrations.

  8. An Indigenously Developed Insecticidal Aerosol

    Directory of Open Access Journals (Sweden)

    R. N. Varma

    1969-10-01

    Full Text Available A total of 6 "Test" insecticidal aerosols (TA-I to VI indigenously produced were tested during the years 1966-67 as suitable replacements for imported aerosols.TA-I produced deep yellow staining and a yellowish spray mist. Its capacity was only 120 ml fluid. TA-III types II and III containing modified aerosol formulation with "Esso solvent 3245" and mineral turpentine oil (Burmah Shelland Freon 12 11 (all indigenouswere comparable to he "SRA" in insecticidial efficacy. The container was also manufactured in the country and it compared well with the "SRA" in construction, resistance against rough usage and mechanical function. They were both finally approved for introduction in the services as replacement for imported aerosols. TA-IV performed well in inscticidial assessment, but the aerosols formulation. TA-V and VI were similar to TA-III types II and III respectively.

  9. The Stratospheric Aerosol and Gas Experiment III - International Space Station: Extending Long-Term Ozone and Aerosol Observations (Invited)

    Science.gov (United States)

    Eckman, R.; Zawodny, J. M.; Cisewski, M.; Gasbarre, J.; Flittner, D. E.; Hill, C.; Roell, M.; Moore, J. R.; Hernandez, G.; McCormick, M. P.

    2013-12-01

    The Stratospheric Aerosol and Gas Experiment III - International Space Station (SAGE III on ISS) will extend the global measurements of vertical profiles of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gases begun with SAGE I in 1979, enabling the detection of long-term trends. SAGE III on ISS is the fourth in a series of instruments developed for monitoring these constituents in the stratosphere and troposphere. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm, using the heritage occultation technique, utilizing both the sun and the moon. Launch to ISS is planned for early 2015 aboard a Falcon 9 spacecraft. SAGE III will investigate the spatial and temporal variability of the measured species in order to determine their role in climatological processes, biogeochemical cycles, the hydrologic cycle, and atmospheric chemistry. It will characterize tropospheric, as well as stratospheric aerosols and upper tropospheric and stratospheric clouds, and investigate their effects on the Earth's environment including radiative, microphysical, and chemical interactions. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Amongst its key objectives will be to assess the state of the recovery in the distribution of ozone, to reestablish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The ISS is ideal for Earth observing experiments; its mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. In this presentation, we describe the SAGE III on ISS mission, its implementation, current status, and concentrate on its key science objectives.

  10. The role of cloud contamination, aerosol layer height and aerosol model in the assessment of the OMI near-UV retrievals over the ocean

    Science.gov (United States)

    Gassó, Santiago; Torres, Omar

    2016-07-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm ˜ distribution, aerosol height, particle shape). It was found that the spherical shape assumption for dust in the current retrieval is the main cause of the underestimate. In addition, it is demonstrated in an example how an incorrect assumption of the aerosol height can lead to an underestimate. Nevertheless, this is not as significant as the effect of particle shape. These findings will be incorporated in a future version of the retrieval algorithm.

  11. Characterization and source apportionment of aerosol light extinction with a coupled model of CMB-IMPROVE in Hangzhou, Yangtze River Delta of China

    Science.gov (United States)

    Wang, Jiao; Zhang, Yu-fen; Feng, Yin-chang; Zheng, Xian-jue; Jiao, Li; Hong, Sheng-mao; Shen, Jian-dong; Zhu, Tan; Ding, Jing; Zhang, Qi

    2016-09-01

    To investigate the characteristics and sources of aerosol light extinction in the Yangtze River Delta of China, a campaign was carried out in Hangzhou from December 2013 to November 2014. Hourly data for air pollutants including PM2.5, SO2, NO2, O3 and CO, and aerosol optical properties including aerosol scattering coefficient and aerosol absorbing coefficient was obtained in the environmental air quality automatic monitoring station. Meteorological parameters were measured synchronously in the automated meteorology monitoring station. Additionally, around seven sets of ambient PM2.5 samples per month were collected and analyzed during the campaign. The annual mean aerosol scattering coefficient, aerosol absorbing coefficient and aerosol single scattering albedo measured in this study was 514 ± 284 Mm- 1, 35 ± 20 Mm- 1 and 94% respectively. The aerosol extinction coefficient reconstructed using the modified IMPROVE (Interagency Monitoring of Protected Visual Environment) formula was compared to the measured extinction coefficient. Better correlations could be found between the measured and reconstructed extinction coefficient when RH was under 90%. A coupled model of CMB (chemical mass balance) and modified IMPROVE was used to apportion the sources of aerosol light extinction in Hangzhou. Vehicle exhaust, secondary nitrate and secondary sulfate were identified as the most significant sources for aerosol light extinction, accounted for 30.2%, 24.1% and 15.8% respectively.

  12. Second organic aerosol formation from the ozonolysis of α-pinene in the presence of dry submicron ammonium sulfate aerosol

    Institute of Scientific and Technical Information of China (English)

    ZHAO Zhe; HAO Jiming; LI Junhua; WU Shan

    2008-01-01

    An indoor chamber facility is described for investigation of atmospheric aerosol chemistry. Two sets of α-pinene ozonolysisexperiments were conducted in the presence of dry ammonium sulfate seed particle: ozone limited experiments and α-pinene limitedexperiments. The concentration of gas phase and particle phase species was monitored continuously by on-line instruments andrecorded automatically by data sampling system. The evolution of size distribution was measured by a scanning mobility particlesizer (SMPS), and α-pinene consumed was measured using GC-FID. Secondary organic aerosol (SOA) produced for seed-free systemis 100% organic in content, resulting from a sufficient supersaturation of low volatility organics to produce homogeneous nucleationfollowed by condensation to the aerosol. Secondary organic aerosol produced in seeded system is a mixture of organic and inorganicconstituents, initially forms via condensation onto the inorganic particles, and subsequent growth occurs via absorption into the organicsurface coating the inorganic core. Although the formation process and the size distribution for seed-free system and seeded system isdifferent, the ultimate mass of SOA formed is equal, and SOA yield for the two system located in the same regression line when usingone-product model, suggesting that the presence of dry ammonium sulfate seed has no measurable effect on the total aerosol yield, and the dry seed particle acts solely as a site upon which organic deposition occurs.

  13. Modeling of pollution aerosols in Ile-de-France; Modelisation des aerosols de pollution en Ile-de-France

    Energy Technology Data Exchange (ETDEWEB)

    Hodzic, A

    2005-10-15

    The modeling of aerosols is a major stake in the understanding of the emission processes and evolution of particulates in the atmosphere. However, the parameterizations used in today's aerosol models still comprise many uncertainties. This work has been motivated by the need of better identifying the weaknesses of aerosols modeling tools and by the necessity of having new validation methods for a 3D evaluation of models. The studies have been carried out using the CHIMERE chemistry-transport model, which allows to simulate the concentrations and physico-chemical characteristics of pollution aerosols at the European scale and in Ile-de-France region. The validation approach used is based on the complementarity of the measurements performed on the ground by monitoring networks with those acquired during the ESQUIF campaign (study and simulation of air quality in Ile-de-France), with lidar and photometric measurements and with satellite observations. The comparison between the observations and the simulations has permitted to identify and reduce the modeling errors, and to characterize the aerosol properties in the vicinity of an urban area. (J.S.)

  14. Simulation study of the aerosol information content in OMI spectral reflectance measurements

    Directory of Open Access Journals (Sweden)

    B. Veihelmann

    2007-06-01

    Full Text Available The Ozone Monitoring Instrument (OMI is an imaging UV-VIS solar backscatter spectrometer and is designed and used primarily to retrieve trace gases like O3 and NO2 from the measured Earth reflectance spectrum in the UV-visible (270–500 nm. However, also aerosols are an important science target of OMI. The multi-wavelength algorithm is used to retrieve aerosol parameters from OMI spectral reflectance measurements in up to 20 wavelength bands. A Principal Component Analysis (PCA is performed to quantify the information content of OMI reflectance measurements on aerosols and to assess the capability of the multi-wavelength algorithm to discern various aerosol types. This analysis is applied to synthetic reflectance measurements for desert dust, biomass burning aerosols, and weakly absorbing anthropogenic aerosol with a variety of aerosol optical thicknesses, aerosol layer altitudes, refractive indices and size distributions. The range of aerosol parameters considered covers the natural variability of tropospheric aerosols. This theoretical analysis is performed for a large number of scenarios with various geometries and surface albedo spectra for ocean, soil and vegetation. When the surface albedo spectrum is accurately known and clouds are absent, OMI reflectance measurements have 2 to 4 degrees of freedom that can be attributed to aerosol parameters. This information content depends on the observation geometry and the surface albedo spectrum. An additional wavelength band is evaluated, that comprises the O2-O2 absorption band at a wavelength of 477 nm. It is found that this wavelength band adds significantly more information than any other individual band.

  15. Evolution of aerosol loading in Santiago de Chile between 1997 and 2014

    Science.gov (United States)

    Pistone, Kristina; Gallardo, Laura

    2015-04-01

    While aerosols produced by major cities are a significant component of anthropogenic climate forcing as well as an important factor in public health, many South American cities have not been a major focus of aerosol studies due in part to relatively few long-term observations in the region. Here we present a synthesis of the available data for the emerging megacity of Santiago, Chile. We report new results from a recent NASA AERONET (AErosol RObotic NETwork) site in the Santiago basin, combining these with previous AERONET observations in Santiago as well as with a new assessment of the 11-station air quality monitoring network currently administered by the Chilean Environment Ministry (MMA, Ministerio del Medio Ambiente) to assess changes in aerosol composition since 1997. While the average surface concentration of pollution components (specifically PM2.5 and PM10) has decreased, no significant change in total aerosol optical depth was observed. However, changes in aerosol size and composition are suggested by the proxy measurements. Previous studies have revealed limitations in purely satellite-based studies over Santiago due to biases from high surface reflection in the region, particularly in summer months (e.g. Escribano et al 2014). To overcome this difficulty and certain limitations in the air quality data, we next incorporate analysis of aerosol products from the Multi-angle Imaging SpectroRadiometer (MISR) instrument along with those from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument, both on NASA's Terra satellite, to better quantify the high bias of MODIS. Thus incorporating these complementary datasets, we characterize the aerosol over Santiago over the period 1997 to 2014, including the evolution of aerosol properties over time and seasonal dependencies in the observed trends. References: Escribano et al (2014), "Satellite Retrievals of Aerosol Optical Depth over a Subtropical Urban Area: The Role of Stratification and Surface

  16. Retrieval of Aerosol Parameters from Continuous H24 Lidar-Ceilometer Measurements

    Science.gov (United States)

    Dionisi, D.; Barnaba, F.; Costabile, F.; Di Liberto, L.; Gobbi, G. P.; Wille, H.

    2016-06-01

    Ceilometer technology is increasingly applied to the monitoring and the characterization of tropospheric aerosols. In this work, a method to estimate some key aerosol parameters (extinction coefficient, surface area concentration and volume concentration) from ceilometer measurements is presented. A numerical model has been set up to derive a mean functional relationships between backscatter and the above mentioned parameters based on a large set of simulated aerosol optical properties. A good agreement was found between the modeled backscatter and extinction coefficients and the ones measured by the EARLINET Raman lidars. The developed methodology has then been applied to the measurements acquired by a prototype Polarization Lidar-Ceilometer (PLC). This PLC instrument was developed within the EC- LIFE+ project "DIAPASON" as an upgrade of the commercial, single-channel Jenoptik CHM15k system. The PLC run continuously (h24) close to Rome (Italy) for a whole year (2013-2014). Retrievals of the aerosol backscatter coefficient at 1064 nm and of the relevant aerosol properties were performed using the proposed methodology. This information, coupled to some key aerosol type identification made possible by the depolarization channel, allowed a year-round characterization of the aerosol field at this site. Examples are given to show how this technology coupled to appropriate data inversion methods is potentially useful in the operational monitoring of parameters of air quality and meteorological interest.

  17. Wide Area Wind Field Monitoring Status & Results

    Energy Technology Data Exchange (ETDEWEB)

    Alan Marchant; Jed Simmons

    2011-09-30

    Volume-scanning elastic has been investigated as a means to derive 3D dynamic wind fields for characterization and monitoring of wind energy sites. An eye-safe volume-scanning lidar system was adapted for volume imaging of aerosol concentrations out to a range of 300m. Reformatting of the lidar data as dynamic volume images was successfully demonstrated. A practical method for deriving 3D wind fields from dynamic volume imagery was identified and demonstrated. However, the natural phenomenology was found to provide insufficient aerosol features for reliable wind sensing. The results of this study may be applicable to wind field measurement using injected aerosol tracers.

  18. Atmospheric and aerosol chemistry

    Energy Technology Data Exchange (ETDEWEB)

    McNeill, V. Faye [Columbia Univ., New York, NY (United States). Dept. of Chemical Engineering; Ariya, Parisa A. (ed.) [McGill Univ. Montreal, QC (Canada). Dept. of Chemistry; McGill Univ. Montreal, QC (Canada). Dept. of Atmospheric and Oceanic Sciences

    2014-09-01

    This series presents critical reviews of the present position and future trends in modern chemical research. Short and concise reports on chemistry, each written by the world renowned experts. Still valid and useful after 5 or 10 years. More information as well as the electronic version of the whole content available at: springerlink.com. Christian George, Barbara D'Anna, Hartmut Herrmann, Christian Weller, Veronica Vaida, D. J. Donaldson, Thorsten Bartels-Rausch, Markus Ammann Emerging Areas in Atmospheric Photochemistry. Lisa Whalley, Daniel Stone, Dwayne Heard New Insights into the Tropospheric Oxidation of Isoprene: Combining Field Measurements, Laboratory Studies, Chemical Modelling and Quantum Theory. Neil M. Donahue, Allen L. Robinson, Erica R. Trump, Ilona Riipinen, Jesse H. Kroll Volatility and Aging of Atmospheric Organic Aerosol. P. A. Ariya, G. Kos, R. Mortazavi, E. D. Hudson, V. Kanthasamy, N. Eltouny, J. Sun, C. Wilde Bio-Organic Materials in the Atmosphere and Snow: Measurement and Characterization V. Faye McNeill, Neha Sareen, Allison N. Schwier Surface-Active Organics in Atmospheric Aerosols.

  19. Secondary Organic Aerosol formation from the gas-phase reaction of catechol with ozone

    Science.gov (United States)

    Coeur-Tourneur, C.; Tomas, A.; Guilloteau, A.; Henry, F.; Ledoux, F.; Visez, N.; Riffault, V.; Wenger, J. C.; Bedjanian, Y.; Foulon, V.

    2009-04-01

    The formation of secondary organic aerosol from the gas-phase reaction of catechol (1,2-dihydroxybenzene) with ozone has been studied in two smog chambers (at the LPCA in France and at the CRAC in Ireland). Aerosol production was monitored using a scanning mobility particle sizer. The overall organic aerosol yield (Y) was determined as the ratio of the suspended aerosol mass corrected for wall losses (Mo) to the total reacted catechol concentrations, assuming a particle density of 1.4 g cm-3. Analysis of the data clearly shows that Y is a strong function of Mo and that secondary organic aerosol formation can be expressed by a one-product gas/particle partitioning absorption model. The aerosol formation is affected by the initial catechol concentration, which leads to aerosol yields ranging from 17% to 86%. The aerosol yields determined in the LPCA and CRAC smog chambers were comparable and were also in accordance with those determined in a previous study performed in EUPHORE (EUropean PHOto REactor, Spain).

  20. Evaluation and application of passive and active optical remote sensing methods for the measurement of atmospheric aerosol properties

    Energy Technology Data Exchange (ETDEWEB)

    Mielonen, T.

    2010-07-01

    Atmospheric aerosol particles affect the atmosphere's radiation balance by scattering and absorbing sunlight. Moreover, the particles act as condensation nuclei for clouds and affect their reflectivity. In addition, aerosols have negative health effects and they reduce visibility. Aerosols are emitted into the atmosphere from both natural and anthropogenic sources. Different types of aerosols have different effects on the radiation balance, thus global monitoring and typing of aerosols is of vital importance. In this thesis, several remote sensing methods used in the measurement of atmospheric aerosols are evaluated. Remote sensing of aerosols can be done with active and passive instruments. Passive instruments measure radiation emitted by the sun and the Earth while active instruments have their own radiation source, for example a black body radiator or laser. The instruments utilized in these studies were sun photometers (PFR, Cimel), lidars (POLLYXT, CALIOP), transmissiometer (OLAF) and a spectroradiometer (MODIS). Retrieval results from spaceborne instruments (MODIS, CALIOP) were evaluated with ground based measurements (PFR, Cimel). In addition, effects of indicative aerosol model assumptions on the calculated radiative transfer were studied. Finally, aerosol particle mass at the ground level was approximated from satellite measurements and vertical profiles of aerosols measured with a lidar were analyzed. For the evaluation part, these studies show that the calculation of aerosol induced attenuation of radiation based on aerosol size distribution measurements is not a trivial task. In addition to dry aerosol size distribution, the effect of ambient relative humidity on the size distribution and the optical properties of the aerosols need to be known in order to achieve correct results from the calculations. Furthermore, the results suggest that aerosol size parameters retrieved from passive spaceborne measurements depend heavily on surgace reflectance

  1. The effect of electrostatic charges on the removal of radioactive aerosols in the atmosphere by raindrops

    Science.gov (United States)

    Sow, M.; Lemaitre, P.

    2015-10-01

    In this article, we report results of self-charged water drop generated by hypodermic needle over charge values comparable to those reported in the literature during stormy rainfall. We also controllably charged aerosols particles by corona discharge and evaluate how it affects their collection efficiency. Electric charges on drops and aerosols are precisely monitored by high resolution electrometers. Our preliminary results tend to accredit the impact of electric charges in collection efficiency.

  2. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment

    OpenAIRE

    De Brito, J.; Rizzo, L. V.; Morgan, W. T.; Coe, H.; Johnson, B; Haywood, J.; LONGO, K.; Freitas, S.; Andreae, M. O.; Artaxo, P.

    2014-01-01

    This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA) field ...

  3. Aerosol composition and variability in the Baltimore-Washington, DC region

    Science.gov (United States)

    Beyersdorf, A. J.; Ziemba, L. D.; Chen, G.; Corr, C. A.; Crawford, J. H.; Diskin, G. S.; Moore, R. H.; Thornhill, K. L.; Winstead, E. L.; Anderson, B. E.

    2015-08-01

    In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites) and mass measurements of aerosol loading (PM2.5 used for air quality monitoring) must be understood. This connection varies with many factors including those specific to the aerosol type, such as composition, size and hygroscopicity, and to the surrounding atmosphere, such as temperature, relative humidity (RH) and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality) project, extensive in-situ atmospheric profiling in the Baltimore, MD-Washington, DC region was performed during fourteen flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 %) and organics (57 %). A distinct difference in composition was observed with high-loading days having a proportionally larger percentage of ammonium sulfate (up to 49 %) due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity) such that higher relative contributions of ammonium sulfate increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity causing an increase in the water content of the aerosol. Conversely, low aerosol loading days had lower ammonium sulfate and higher black carbon contributions causing lower single scattering albedos (SSAs). The average black carbon concentrations were 240 ng m-3 in the lowest 1 km decreasing to 35 ng m-3

  4. International Cooperative for Aerosol Prediction Workshop on Aerosol Forecast Verification

    Science.gov (United States)

    Benedetti, Angela; Reid, Jeffrey S.; Colarco, Peter R.

    2011-01-01

    The purpose of this workshop was to reinforce the working partnership between centers who are actively involved in global aerosol forecasting, and to discuss issues related to forecast verification. Participants included representatives from operational centers with global aerosol forecasting requirements, a panel of experts on Numerical Weather Prediction and Air Quality forecast verification, data providers, and several observers from the research community. The presentations centered on a review of current NWP and AQ practices with subsequent discussion focused on the challenges in defining appropriate verification measures for the next generation of aerosol forecast systems.

  5. Aerosol quantification with the Aerodyne Aerosol Mass Spectrometer: detection limits and ionizer background effects

    Directory of Open Access Journals (Sweden)

    F. Drewnick

    2008-10-01

    Full Text Available Systematic laboratory experiments were performed to investigate quantification of various species with two versions of the Aerodyne Aerosol Mass Spectrometer, a Q-AMS and a c-ToF-AMS. Here we present a new method to continuously determine the detection limits of the AMS analyzers during regular measurements, yielding DL information under various measurement conditions. Minimum detection limits range from 0.03 μg m−3 (nitrate, sulfate, and chloride up to 0.5 μg m−3 (organics for the Q-AMS. Those of the c-ToF-AMS are found between 0.003 μg m−3 (nitrate, sulfate and 0.03 μg m−3 (ammonium, organics. The DL values found for the c-ToF-AMS were ~10 times lower than those of the Q-AMS, mainly due to differences in ion duty cycle. Effects causing an increase of the detection limits include long-term instrument contamination, measurement of high aerosol mass concentrations and short-term instrument history. The self-cleaning processes which reduce the instrument background after measurement of large aerosol concentrations as well as the influences of increased instrument background on mass concentration measurements are discussed. Finally, improvement of detection limits by extension of averaging time intervals, selected or reduced ion monitoring, and variation of particle-to-background measurement ratio are investigated.

  6. Two-Column Aerosol Project: Aerosol Light Extinction Measurements Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Dubey, Manvendra [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Aiken, Allison [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Berg, Larry K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Freedman, Andrew [Aerodyne Research, Inc., Billerica, MA (United States); Gorkowski, Kyle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-01

    We deployed Aerodyne Research Inc.’s first Cavity Attenuated Phase Shift extinction (CAPS PMex) monitor (built by Aerodyne) that measures light extinction by using a visible-light-emitting diode (LED) as a light source, a sample cell incorporating two high-reflectivity mirrors centered at the wavelength of the LED, and a vacuum photodiode detector in Cape Cod in 2012/13 for the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s Two-Column Aerosol Project (TCAP). The efficacy of this instrument is based on the fact that aerosols are broadband scatterers and absorbers of light. The input LED is square-wave modulated and passed through the sample cell that distorts it due to exponential decay by aerosol light absorption and scattering; this is measured at the detector. The amount of phase shift of the light at the detector is used to determine the light extinction. This extinction measurement provides an absolute value, requiring no calibration. The goal was to compare the CAPS performance with direct measurements of absorption with ARM’s baseline photoacoustic soot spectrometer (PASS-3) and nephelometer instruments to evaluate its performance.

  7. The GRAPE aerosol retrieval algorithm

    Directory of Open Access Journals (Sweden)

    G. E. Thomas

    2009-11-01

    Full Text Available The aerosol component of the Oxford-Rutherford Aerosol and Cloud (ORAC combined cloud and aerosol retrieval scheme is described and the theoretical performance of the algorithm is analysed. ORAC is an optimal estimation retrieval scheme for deriving cloud and aerosol properties from measurements made by imaging satellite radiometers and, when applied to cloud free radiances, provides estimates of aerosol optical depth at a wavelength of 550 nm, aerosol effective radius and surface reflectance at 550 nm. The aerosol retrieval component of ORAC has several incarnations – this paper addresses the version which operates in conjunction with the cloud retrieval component of ORAC (described by Watts et al., 1998, as applied in producing the Global Retrieval of ATSR Cloud Parameters and Evaluation (GRAPE data-set.

    The algorithm is described in detail and its performance examined. This includes a discussion of errors resulting from the formulation of the forward model, sensitivity of the retrieval to the measurements and a priori constraints, and errors resulting from assumptions made about the atmospheric/surface state.

  8. Physico-chemical properties of aerosols in Sao Paulo, Brazil and mechanisms of secondary organic aerosol formation.

    Science.gov (United States)

    Artaxo, Paulo; Ferreira de Brito, Joel; Varanda Rizzo, Luciana; Luiza Godoy, Maria; Godoy, Jose Marcus

    2013-04-01

    Megacities emissions are increasingly becoming a global issue, where emissions from the transportation sector play an increasingly important role. Sao Paulo is a megacity with a population of about 18 million people, 7 million cars and large-scale industrial emissions. As a result of the vehicular and industrial emissions, the air quality in Sao Paulo is bellow WMO standards for aerosol particles and ozone. Many uncertainties are found on gas- and particulate matter vehicular emission factors and their following atmospheric processes, e.g. secondary organic aerosol formation. Due to the uniqueness of the vehicular fuel in Brazil, largely based on ethanol use, such characterization currently holds further uncertainties. To improve the understanding of the role of this unique emission characteristics, we are running a source apportionment study in Sao Paulo focused on the mechanisms of organic aerosol formation. One of the goals of this study is a quantitative aerosol source apportionment focused on vehicular emissions, including ethanol and gasohol (both fuels used by light-duty vehicles). This study comprises four sampling sites with continuous measurements for one year, where trace elements and organic aerosol are being measured for PM2.5 and PM10 along with real-time NOx, O3, PM10 and CO measurements. Aerosol optical properties and size distribution are being measured on a rotation basis between sampling stations. Furthermore, a Proton-Transfer-Reaction Mass Spectrometer (PTR-MS) and an Aerosol Chemical Speciation Monitor (ACSM) are used to measure in real time VOCs and aerosol composition, respectively. Trace elements were measured using XRF and OC/EC analysis was determined with a Sunset OC/EC instrument. A TSI Nephelometer with 3 wavelengths measure light scattering and a MAAP measure black carbon. Results show aerosol number concentrations ranging between 10,000 and 35,000 cm-3, mostly concentrated in the nucleation and Aitken modes, with a peak in size at 80

  9. eDPS Aerosol Collection

    Energy Technology Data Exchange (ETDEWEB)

    Venzie, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-13

    The eDPS Aerosol Collection project studies the fundamental physics of electrostatic aerosol collection for national security applications. The interpretation of aerosol data requires understanding and correcting for biases introduced from particle genesis through collection and analysis. The research and development undertaken in this project provides the basis for both the statistical correction of existing equipment and techniques; as well as, the development of new collectors and analytical techniques designed to minimize unwanted biases while improving the efficiency of locating and measuring individual particles of interest.

  10. Sources and transformations of atmospheric aerosol particles

    Science.gov (United States)

    Cross, Eben Spencer

    transported towards Europe. In this study, particles were highly processed prior to sampling, with residence times of a few days in the atmosphere. The MILAGRO campaign focused on the evolution of the Mexico City plume as it was transported north. During this study, regional and locally emitted particles were measured with residence times varying from minutes to days in the atmosphere. In both studies, the light scattering - AMS system provided detailed information about the density and composition of single particles, leading to important insights into how atmospheric processing transforms the particle properties. In Mexico City, the light scattering-AMS system was used for the first time as a true single particle mass spectrometer and revealed specific details about the atmospheric processing of primary particles from combustion sources. To quantify the radiative effects of the particles on climate, the processing and ultimate fate of primary emissions (often containing black carbon or soot) must be understood. To provide a solid basis for the interpretation of the data obtained during the field studies, experiments were conducted with a well characterized soot generation-sampling system developed by the Boston College research group. The laboratory soot source was combined with the light scattering - AMS system and a Cloud Condensation Nuclei Counter (CCNC) to measure the change in cloud-forming activity of soot particles as they are processed in the atmosphere. Because of the importance of black carbon in the atmosphere, several instruments have been developed to measure black carbon. In July of 2008, an intercomparison study of 18 instruments was conducted in the Boston College laboratory, with soot particles produced and processed to mimic a wide range of atmospherically-relevant conditions. Transformations in the physical, chemical, and optical properties of soot particles were monitored with the combined suite of aerosol instrumentation. Results from the

  11. Aerosol measurement program strategy for global aerosol backscatter model development

    Science.gov (United States)

    Bowdle, David A.

    1985-01-01

    The purpose was to propose a balanced program of aerosol backscatter research leading to the development of a global model of aerosol backscatter. Such a model is needed for feasibility studies and systems simulation studies for NASA's prospective satellite-based Doppler lidar wind measurement system. Systems of this kind measure the Doppler shift in the backscatter return from small atmospheric aerosol wind tracers (of order 1 micrometer diameter). The accuracy of the derived local wind estimates and the degree of global wind coverage for such a system are limited by the local availability and by the global scale distribution of natural aerosol particles. The discussions here refer primarily to backscatter model requirements at CO2 wavelengths, which have been selected for most of the Doppler lidar systems studies to date. Model requirements for other potential wavelengths would be similar.

  12. Ceilometer for aerosol profiling: comparison with the multiwavelength in the frame of INTERACT (INTERcomparison of Aerosol and Cloud Tracking)

    Science.gov (United States)

    Madonna, Fabio; Vande Hey, Joshua; Rosoldi, Marco; Amato, Francesco; Pappalardo, Gelsomina

    2015-04-01

    Observations of cloud base height are important for meteorology, observations of aerosols are important for air quality applications, observations of cloud cover and aerosols address key uncertainties in climate study. To improve parameterization and uncertainties of numerical models, observations provided by high resolution networks of ground-based instruments are needed. In order to achieve broad, high resolution coverage, low-cost instruments are preferable, though it is essential that the sensitivity, stability, biases and uncertainties of these instruments are well-understood. Despite of their differences from more advanced and more powerful lidars, low construction and operation cost of ceilometer, originally designed for cloud base height monitoring, has fostered their use for the quantitative study of aerosol properties. The large number of ceilometers available worldwide represent a strong motivation to investigate to which extent they can be used to fill the geographical gaps between advanced lidar stations and how their continuous data flow can be linked to existing networks of the advanced lidars, like EARLINET (European Aerosol research LIdar NETwork). In order to make the best use of existing and future ceilometer deployments, ceilometer must be better characterized. This is the purpose of the INTERACT campaign carried out in the frame of ACTRIS Transnational Access activities at CNR-IMAA Atmospheric Observatory (CIAO - 760 m a.s.l., 40.60 N, 15.72 E). In this paper, an overview of the results achieved during the campaign is provided. In particular multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol content through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking) campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60N, 15.72E), in the framework of ACTRIS (Aerosol Clouds Trace gases Research InfraStructure) FP7

  13. Stratospheric aerosol geoengineering

    Science.gov (United States)

    Robock, Alan

    2015-03-01

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5-10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  14. Aerosol Transmission of Filoviruses

    Directory of Open Access Journals (Sweden)

    Berhanu Mekibib

    2016-05-01

    Full Text Available Filoviruses have become a worldwide public health concern because of their potential for introductions into non-endemic countries through international travel and the international transport of infected animals or animal products. Since it was first identified in 1976, in the Democratic Republic of Congo (formerly Zaire and Sudan, the 2013–2015 western African Ebola virus disease (EVD outbreak is the largest, both by number of cases and geographical extension, and deadliest, recorded so far in medical history. The source of ebolaviruses for human index case(s in most outbreaks is presumptively associated with handling of bush meat or contact with fruit bats. Transmission among humans occurs easily when a person comes in contact with contaminated body fluids of patients, but our understanding of other transmission routes is still fragmentary. This review deals with the controversial issue of aerosol transmission of filoviruses.

  15. Stratospheric aerosol geoengineering

    Energy Technology Data Exchange (ETDEWEB)

    Robock, Alan [Department of Environmental Sciences, Rutgers University, 14 College Farm Road, New Brunswick, NJ 08901 (United States)

    2015-03-30

    The Geoengineering Model Intercomparison Project, conducting climate model experiments with standard stratospheric aerosol injection scenarios, has found that insolation reduction could keep the global average temperature constant, but global average precipitation would reduce, particularly in summer monsoon regions around the world. Temperature changes would also not be uniform; the tropics would cool, but high latitudes would warm, with continuing, but reduced sea ice and ice sheet melting. Temperature extremes would still increase, but not as much as without geoengineering. If geoengineering were halted all at once, there would be rapid temperature and precipitation increases at 5–10 times the rates from gradual global warming. The prospect of geoengineering working may reduce the current drive toward reducing greenhouse gas emissions, and there are concerns about commercial or military control. Because geoengineering cannot safely address climate change, global efforts to reduce greenhouse gas emissions and to adapt are crucial to address anthropogenic global warming.

  16. The Role of Cloud Contamination, Aerosol Layer Height and Aerosol Model in the Assessment of the OMI Near-UV Retrievals Over the Ocean

    Science.gov (United States)

    Gasso, Santiago; Torres, Omar

    2016-01-01

    Retrievals of aerosol optical depth (AOD) at 388 nm over the ocean from the Ozone Monitoring Instrument (OMI) two-channel near-UV algorithm (OMAERUV) have been compared with independent AOD measurements. The analysis was carried out over the open ocean (OMI and MODerate-resolution Imaging Spectrometer (MODIS) AOD comparisons) and over coastal and island sites (OMI and AERONET, the AErosol RObotic NETwork). Additionally, a research version of the retrieval algorithm (using MODIS and CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) information as constraints) was utilized to evaluate the sensitivity of the retrieval to different assumed aerosol properties. Overall, the comparison resulted in differences (OMI minus independent measurements) within the expected levels of uncertainty for the OMI AOD retrievals (0.1 for AOD less than 0.3, 30% for AOD greater than 0.3). Using examples from case studies with outliers, the reasons that led to the observed differences were examined with specific purpose to determine whether they are related to instrument limitations (i.e., pixel size, calibration) or algorithm assumptions (such as aerosol shape, aerosol height). The analysis confirms that OMAERUV does an adequate job at rejecting cloudy scenes within the instrument's capabilities. There is a residual cloud contamination in OMI pixels with quality flag 0 (the best conditions for aerosol retrieval according to the algorithm), resulting in a bias towards high AODs in OMAERUV. This bias is more pronounced at low concentrations of absorbing aerosols (AOD 388 nm approximately less than 0.5). For higher aerosol loadings, the bias remains within OMI's AOD uncertainties. In pixels where OMAERUV assigned a dust aerosol model, a fraction of them (less than 20 %) had retrieved AODs significantly lower than AERONET and MODIS AODs. In a case study, a detailed examination of the aerosol height from CALIOP and the AODs from MODIS, along with sensitivity tests, was carried out by

  17. Argon offline-AMS source apportionment of organic aerosol over yearly cycles for an urban, rural, and marine site in northern Europe

    OpenAIRE

    Bozzetti, Carlo; Sosedova, Yuliya; Xiao, Mao; Daellenbach, Kaspar R.; Ulevicius, Vidmantas; Dudoitis, Vadimas; Mordas, Genrik; Byčenkienė, Steigvilė; Plauškaitė, Kristina; Vlachou, Athanasia; Golly, Benjamin; Chazeau, Benjamin; Besombes, Jean-Luc; Baltensperger, Urs; Jaffrezo, Jean-Luc

    2017-01-01

    The widespread use of Aerodyne aerosol mass spectrometers (AMS) has greatly improved real-time organic aerosol (OA) monitoring, providing mass spectra that contain sufficient information for source apportionment. However, AMS field deployments remain expensive and demanding, limiting the acquisition of long-term datasets at many sampling sites. The offline application of aerosol mass spectrometry entailing the analysis of nebulized water extracted filter samples (offline-AMS...

  18. Do atmospheric aerosols form glasses?

    OpenAIRE

    Zobrist, B.; Marcolli, C.; Pedernera, D. A.; Koop, T.

    2008-01-01

    A new process is presented by which water soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline) solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular diffusion practically ceases. The glass transition temperatures, Tg

  19. Transformation of aerosol in Planetary Boundary Layer over the Baltic Sea

    Science.gov (United States)

    Makuch, Przemyslaw; Petelski, Tomasz; Piskozub, Jacek; Jankowski, Andrzej; Zieliński, Tymon; Rozwadowska, Anna; Markuszewski, Piotr; Zawadzka, Olga

    2013-04-01

    Aerosols are one of the most important components of the atmosphere. The content and composition of aerosols in the atmosphere depends on their origin. In maritime areas transformation of aerosols in the atmosphere may occur. This depends on many factors, such as wind speed and direction, humidity and emission from the sea surface. The transformation of aerosols in the Planetary Boundary Layer over the Baltic Sea is replacing other sources of aerosols to aerosols composed of sea salt. When the air passing over the Baltic aerosol optical thickness (AOT) initially decreases and then increases in strong winds due to increase of the marine aerosol content in the layer. This type of change can be followed with use of many numerical experiments performed on the model of the transformation of aerosols in the Planetary Boundary Layer. This model consists of two parts, dynamic and optical. The dynamic part is based on the repeated numerical solution of the equation of diffusion for different particle size and optical properties. The result of the dynamic part provides vertical profiles of aerosol size distributions. Optical module to calculate the relative cross sections for the weakening used Mie single process. We compare data from numerical experiments with data from in situ experiments and with data from MODIS (Moderate Resolution Imaging Spectroradiometer) on board of Terra and Aqua satellite. From the resulting comparisons received correlations are in order as 0.789 and 0.862. What indicates a good correlation between the data from numerical experiment and in situ data or MODIS data. Acknowledgements: The support for this study was provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBałtyk founded by European Union through European Regional Development Fund contract No. POIG 01.01.02-22-011/09

  20. CALIPSO Observations of Aerosol Properties Near Clouds

    Science.gov (United States)

    Marshak, Alexander; Varnai, Tamas; Yang, Weidong

    2010-01-01

    Clouds are surrounded by a transition zone of rapidly changing aerosol properties. Characterizing this zone is important for better understanding aerosol-cloud interactions and aerosol radiative effects as well as for improving satellite measurements of aerosol properties. We present a statistical analysis of a global dataset of CALIPSO (Cloud-Aerosol Lidar and infrared Pathfinder Satellite Observation) Lidar observations over oceans. The results show that the transition zone extends as far as 15 km away from clouds and it is ubiquitous over all oceans. The use of only high confidence level cloud-aerosol discrimination (CAD) data confirms the findings. However, the results underline the need for caution to avoid biases in studies of satellite aerosol products, aerosol-cloud interactions, and aerosol direct radiative effects.

  1. Devices and methods for generating an aerosol

    KAUST Repository

    Bisetti, Fabrizio

    2016-03-03

    Aerosol generators and methods of generating aerosols are provided. The aerosol can be generated at a stagnation interface between a hot, wet stream and a cold, dry stream. The aerosol has the benefit that the properties of the aerosol can be precisely controlled. The stagnation interface can be generated, for example, by the opposed flow of the hot stream and the cold stream. The aerosol generator and the aerosol generation methods are capable of producing aerosols with precise particle sizes and a narrow size distribution. The properties of the aerosol can be controlled by controlling one or more of the stream temperatures, the saturation level of the hot stream, and the flow times of the streams.

  2. Aerosol profile information from high resolution oxygen A-Band measurements from space

    Directory of Open Access Journals (Sweden)

    A. Geddes

    2014-06-01

    Full Text Available Aerosols are an important factor of the Earth climatic system and they play a key role for air quality and public health. Observations of the oxygen A-Band at 760 nm can provide information on the vertical distribution of aerosols from passive satellite sensors, that can be of great interest for operational monitoring applications with high coverage if the aerosol information is obtained with sufficient precision, accuracy and vertical resolution. To address this issue, retrieval simulations of the aerosol vertical profile retrieval from O2 A Band observations by GOSAT, the upcoming OCO-2 and Sentinel 5-P mission and the proposed CarbonSat mission have been carried out. Precise retrievals of AOD within the boundary layer were found to favour low resolution, high SNR instruments such as Sentinel-5 P, whereas higher resolution instruments such as OCO-2 showed greater performance at higher altitudes and in information content above the boundary layer. Accurate retrievals of the AOD in the 0–2 km range appears difficult from all studied instruments and the retrieval errors typically exceed a value of 0.05. Constraining the surface albedo is a promising and effective way of improving the retrieval of aerosol, but the required level of a priori knowledge is very high. Due to the limited information content of the aerosol profile retrieval, the use of a parameterised aerosol distribution has been assessed and we show that the AOD and height of an aerosol layer can be retrieved well if the aerosol layer is uplifted to the free troposphere but errors are often large for aerosol layers in the boundary layer. Additional errors will be introduced by incorrect assumptions on surface pressure and aerosol type which can both bias retrieved AOD and height by up to 40%. We conclude the aerosol profile retrievals from O2 A Band using existing or upcoming satellite sensors will only provide limited information on aerosols in the boundary layer but such

  3. Analysis of the Interaction and Transport of Aerosols with Cloud or Fog in East Asia from AERONET and Satellite Remote Sensing: 2012 DRAGON Campaigns and Climatological Data

    Science.gov (United States)

    Eck, T. F.; Holben, B. N.; Reid, J. S.; Lynch, P.; Schafer, J.; Giles, D. M.; Kim, J.; Kim, Y. J.; Sano, I.; Arola, A. T.; Munchak, L. A.; O'Neill, N. T.; Lyapustin, A.; Sayer, A. M.; Hsu, N. Y. C.; Randles, C. A.; da Silva, A. M., Jr.; Govindaraju, R.; Hyer, E. J.; Pickering, K. E.; Crawford, J. H.; Sinyuk, A.; Smirnov, A.

    2015-12-01

    Ground-based remote sensing observations from Aerosol Robotic Network (AERONET) sun-sky radiometers have recently shown several instances where cloud-aerosol interaction had resulted in modification of aerosol properties and/or in difficulty identifying some major pollution transport events due to aerosols being imbedded in cloud systems. Major Distributed Regional Aerosol Gridded Observation Networks (DRAGON) field campaigns involving multiple AERONET sites in Japan and South Korea during Spring of 2012 have yielded observations of aerosol transport associated with clouds and/or aerosol properties modification as a result of fog interaction. Analysis of data from the Korean and Japan DRAGON campaigns shows that major fine-mode aerosol transport events are sometimes associated with extensive cloud cover and that cloud-screening of observations often filter out significant pollution aerosol transport events. The Spectral De-convolution Algorithm (SDA) algorithm was utilized to isolate and analyze the fine-mode aerosol optical depth (AODf) signal from AERONET data for these cases of persistent and extensive cloud cover. Satellite retrievals of AOD from MODIS sensors (from Dark Target, Deep Blue and MAIAC algorithms) were also investigated to assess the issue of detectability of high AOD events associated with high cloud fraction. Underestimation of fine mode AOD by the Navy Aerosol Analysis and Prediction System (NAAPS) and by the NASA Modern-Era Retrospective Analysis For Research And Applications Aerosol Re-analysis (MERRAaero) models at very high AOD at sites in China and Korea was observed, especially for observations that are cloud screened by AERONET (Level 2 data). Additionally, multi-year monitoring at several AERONET sites are examined for climatological statistics of cloud screening of fine mode aerosol events. Aerosol that has been affected by clouds or the near-cloud environment may be more prevalent than AERONET data suggest due to inherent difficulty in

  4. Evaluation of aerosol processes between roadside and neighbourhood scale

    Science.gov (United States)

    Karl, Matthias; Kukkonen, Jaakko; Pirjola, Liisa; Keuken, Menno P.

    2015-04-01

    Particle emissions from road transport include vehicle exhaust emissions, tire/brake wear and re-suspension of road dust. Vehicle exhaust emissions usually constitute the most significant source of ultrafine particles (UFP), i.e. particles with diameters air pollution legislation. UFP emitted from road traffic are subject to complex dilution and transformation processes in the urban environment. This model study evaluates the influence of aerosol processes on PN concentration on the spatial and temporal range between the roadside, typically represented by measurements at a traffic monitoring site, and the neighbourhood scale, extending from several hundred meters to several kilometres. Several dispersion scenarios for the cities Oslo, Helsinki and Rotterdam were simulated using the multicomponent aerosol dynamics process model MAFOR, approximating dilution by a power-law function. Aerosol processes considered in this study were condensation/evaporation of n-alkanes, coagulation and the dry deposition of particles. Under typical dispersion conditions dilution clearly dominated the change of total PN on the neighbourhood scale. Dry deposition and coagulation of particles were identified to be the most important aerosol dynamical processes controlling the removal of particles from emitted from vehicular exhaust on urban time scales. The effect of condensation/evaporation of organic vapours emitted by vehicles on particle numbers and on particle size distributions was examined. A simplified parameterization for the implementation of coagulation and dry deposition of particles in urban air quality models is presented. Further work is needed to validate size segregated PN concentration distributions modelled by the urban models.

  5. Characteristics and source of black carbon aerosol over Taklimakan Desert

    Institute of Scientific and Technical Information of China (English)

    FU; S.Joshua

    2010-01-01

    Black carbon(BC) and PM10 in the center of the Taklimakan Desert were online monitored in the whole year of 2007.In addi-tion,TSP samples were also synchronously daily collected by medium-volume samplers with Whatman41 filters in the spring of 2007.BC in the dust aerosol was up to 1.14%of the total mass of PM10.A remarkable seasonal variation of BC in the aerosol was observed in the order of winter>spring>autumn>summer.The peak value of BC appeared at midnight while the lowest one in the evening each day,which was just the reverse of that in the urban area.The contribution of BC to the total mass of PM10 on non-dust storm days was~11 times of that in dust storm.Through back trajectory and principal component analysis,it was found that BC in the dust aerosol over Taklimakan Desert might be attributed to the emission from the anthropogenic activities,including domestic heating,cooking,combustion of oil and natural gas,and the medium-range transport from those oases located in the margins of the desert.The total BC aerosol from the Taklimakan Desert to be transported to the eastward downstream was estimated to be 6.3×104 ton yr-1.

  6. Type-segregated aerosol effects on regional monsoon activity: A study using ground-based experiments and model simulations

    Science.gov (United States)

    Vijayakumar, K.; Devara, P. C. S.; Sonbawne, S. M.

    2014-12-01

    Classification of observed aerosols into key types [e.g., clean-maritime (CM), desert-dust (DD), urban-industrial/biomass-burning (UI/BB), black carbon (BC), organic carbon (OC) and mixed-type aerosols (MA)] would facilitate to infer aerosol sources, effects, and feedback mechanisms, not only to improve the accuracy of satellite retrievals but also to quantify the assessment of aerosol radiative impacts on climate. In this paper, we report the results of a study conducted in this direction, employing a Cimel Sun-sky radiometer at the Indian Institute of Tropical Meteorology (IITM), Pune, India during 2008 and 2009, which represent two successive contrasting monsoon years. The study provided an observational evidence to show that the local sources are subject to heavy loading of absorbing aerosols (dust and black carbon), with strong seasonality closely linked to the monsoon annual rainfall cycle over Pune, a tropical urban station in India. The results revealed the absence of CM aerosols in the pre-monsoon as well as in the monsoon seasons of 2009 as opposed to 2008. Higher loading of dust aerosols is observed in the pre-monsoon and monsoon seasons of 2009; majority may be coated with fine BC aerosols from local emissions, leading to reduction in regional rainfall. Further, significant decrease in coarse-mode AOD and presence of carbonaceous aerosols, affecting the aerosol-cloud interaction and monsoon-rain processes via microphysics and dynamics, is considered responsible for the reduction in rainfall during 2009. Additionally, we discuss how optical depth, contributed by different types of aerosols, influences the distribution of monsoon rainfall over an urban region using the Monitoring Atmospheric Composition and Climate (MACC) aerosol reanalysis. Furthermore, predictions of the Dust REgional Atmospheric Model (DREAM) simulations combined with HYSPLIT (HYbrid Single Particle Lagrangian Integrated Trajectory) cluster model are also discussed in support of the

  7. Assessing spaceborne lidar detection and characterization of aerosols near clouds using coincident airborne lidar and other measurements

    Science.gov (United States)

    Kacenelenbogen, M. S.; Redemann, J.; Russell, P. B.; Vaughan, M.; Omar, A. H.; Burton, S. P.; Rogers, R.; Ferrare, R. A.; Hostetler, C. A.; Hair, J. W.

    2011-12-01

    The objectives are to 1) evaluate potential shortcomings in the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) aerosol height detection concerning specific biomass burning smoke events informed by airborne High Spectral Resolution Lidar (HSRL) in different cloud environments and 2) study the lidar-derived atmospheric parameters in the vicinity of clouds for the cases where smoke is within or above clouds. In the case of light absorbing aerosols like biomass burning smoke, studies show that the greater the cloud cover below the aerosols, the more likely the aerosols are to heat the planet. An accurate aerosol height assumption is also crucial to a correct retrieval of aerosol chemical composition from passive space-based measurements (through the Single Scattering Albedo (SSA) and aerosol absorption coefficient, as exemplified by aerosol retrievals using the passive Ozone Monitoring Instrument (OMI)). Strong smoke events are recognized as very difficult to quantify from space using passive (MODIS, OMI etc...) or active (CALIOP) satellite sensors for different reasons. This study is performed through (i) the selection of smoke events with coincident CALIOP and airborne HSRL aerosol observations, with smoke presence determined according to the HSRL aerosol classification data, (ii) the order of such events by range of HSRL aerosol optical depth, total color ratio and depolarization ratio (the latter two informing on the size and shape of the particles) and the evaluation of CALIOP's detection, classification and retrieval performance for each event, (iii) the study of the HSRL (or CALIOP when available) atmospheric parameters (total color ratio, volume depolarization ratio, mean attenuated backscatter) in the vicinity of clouds for each smoke event.

  8. A ten-year global record of absorbing aerosols above clouds from OMI's near-UV observations

    Science.gov (United States)

    Jethva, Hiren; Torrres, Omar; Ahn, Changwoo

    2016-05-01

    Aerosol-cloud interaction continues to be one of the leading uncertain components of climate models, primarily due to the lack of an adequate knowledge of the complex microphysical and radiative processes associated with the aerosolcloud system. The situations when aerosols and clouds are found in the same atmospheric column, for instance, when light-absorbing aerosols such as biomass burning generated carbonaceous particles or wind-blown dust overlay low-level cloud decks, are commonly found over several regional of the world. Contrary to the cloud-free scenario over dark surface, for which aerosols are known to produce a net cooling effect (negative radiative forcing) on climate, the overlapping situation of absorbing aerosols over cloud can potentially exert a significant level of atmospheric absorption and produces a positive radiative forcing at top-of-atmosphere. The magnitude of direct radiative effects of aerosols above cloud depends directly on the aerosol loading, microphysical-optical properties of the aerosol layer and the underlying cloud deck, and geometric cloud fraction. We help in addressing this problem by introducing a novel product of optical depth of absorbing aerosols above clouds retrieved from near-UV observations made by the Ozone Monitoring Instrument (OMI) on board NASA's Aura platform. The presence of absorbing aerosols above cloud reduces the upwelling radiation reflected by cloud and produces a strong `color ratio' effect in the near-UV region, which can be unambiguously detected in the OMI measurements. Physically based on this effect, the OMACA algorithm retrieves the optical depths of aerosols and clouds simultaneously under a prescribed state of atmosphere. The algorithm architecture and results from a ten-year global record including global climatology of frequency of occurrence and above-cloud aerosol optical depth, and a discussion on related future field campaigns are presented.

  9. Observations of Ozone-aerosol Correlated Behaviour in the Lower Stratosphere During the EASOE Campaign

    Science.gov (United States)

    Digirolamo, P.; Cacciani, M.; Disarra, A.; Fiocco, G.; Fua, D.; Joergensen, T. S.; Knudsen, B.; Larsen, N.

    1992-01-01

    The question of possible interactions between ozone and stratospheric aerosol has been open for a long time. Measurements carried out after the Mt. Agung and El Chicon eruptions showed evidence of negative correlations between the presence of volcanic stratospheric aerosols and ozone concentration. Evidence for negative correlations in the polar winter has been also found. It is only after the discovery of the Antarctic ozone hole that catalytic effects related to low temperature heterogeneous chemistry have become the object of much investigation, now extended to the role of volcanic aerosol in the ozone reduction. These phenomena can be the object of various interpretations, not mutually exclusive, including the effect of transport, diffuse radiation as well as heterogeneous chemistry. The present paper provides preliminary results of simultaneous measurements of ozone and aerosol, carried out at Thule, Greenland, during the winter 1991-92. The European Stratospheric Ozone Experiment (EASOE) was aimed at monitoring the winter Arctic stratosphere in order to obtain a deeper insight of the ozone destruction processes taking place in the polar regions. A large amount of aerosol was injected into the lower stratosphere by the recent eruption of Volcano Pinatubo. A lidar system, already operational in Thule since November 1990, has provided detailed measurements of the stratospheric aerosol concentration during EASOE. In the same period, a large number of ozonesondes were launched. Although no PSC formation was detected over Thule, the simultaneous measurement of the stratospheric aerosol and ozone profiles give the possibility to study interactions occurring in the stratosphere between these two constituents.

  10. A new approach for retrieving the UV-vis optical properties of ambient aerosols

    Science.gov (United States)

    Bluvshtein, Nir; Flores, J. Michel; Segev, Lior; Rudich, Yinon

    2016-08-01

    Atmospheric aerosols play an important part in the Earth's energy budget by scattering and absorbing incoming solar and outgoing terrestrial radiation. To quantify the effective radiative forcing due to aerosol-radiation interactions, researchers must obtain a detailed understanding of the spectrally dependent intensive and extensive optical properties of different aerosol types. Our new approach retrieves the optical coefficients and the single-scattering albedo of the total aerosol population over 300 to 650 nm wavelength, using extinction measurements from a broadband cavity-enhanced spectrometer at 315 to 345 nm and 390 to 420 nm, extinction and absorption measurements at 404 nm from a photoacoustic cell coupled to a cavity ring-down spectrometer, and scattering measurements from a three-wavelength integrating nephelometer. By combining these measurements with aerosol size distribution data, we retrieved the time- and wavelength-dependent effective complex refractive index of the aerosols. Retrieval simulations and laboratory measurements of brown carbon proxies showed low absolute errors and good agreement with expected and reported values. Finally, we implemented this new broadband method to achieve continuous spectral- and time-dependent monitoring of ambient aerosol population, including, for the first time, extinction measurements using cavity-enhanced spectrometry in the 315 to 345 nm UV range, in which significant light absorption may occur.

  11. Development of a high-spectral-resolution lidar for continuous observation of aerosols in South America

    Science.gov (United States)

    Jin, Yoshitaka; Sugimoto, Nobuo; Nishizawa, Tomoaki; Ristori, Pablo; Papandrea, Sebastian; Otero, Lidia; Quel, Eduardo; Mizuno, Akira

    2016-05-01

    Continuous monitoring of aerosol profiles using lidar is helpful for a quasi-real-time indication of aerosol concentration. For instance, volcanic ash concentration and its height distribution are essential information for plane flights. Depolarization ratio and multi-wavelength measurements are useful for characterizing aerosol types such as volcanic ash, smoke, dust, sea-salt, and air pollution aerosols. High spectral resolution lidar (HSRL) and Raman scattering lidar can contribute to such aerosol characterization significantly since extinction coefficients can be measured independently from backscattering coefficients. In particular, HSRL can measure aerosol extinction during daytime and nighttime with a high sensitivity. We developed an HSRL with the iodine filter method for continuous observation of aerosols at 532nm in the northern region of Argentina in the framework of the South American Environmental Atmospheric Risk Management Network (SAVER.Net)/SATREPS project. The laser wavelength of the HSRL was controlled by a feedback system to tune the laser wavelength to the center of an iodine absorption line. The stability of the laser wavelength with the system satisfied the requirement showing very small systematic errors in the retrieval of extinction and backscatter.

  12. Study of Aerosol Chemical Composition Based on Aerosol Optical Properties

    Science.gov (United States)

    Berry, Austin; Aryal, Rudra

    2015-03-01

    We investigated the variation of aerosol absorption optical properties obtained from the CIMEL Sun-Photometer measurements over three years (2012-2014) at three AERONET sites GSFC; MD Science_Center and Tudor Hill, Bermuda. These sites were chosen based on the availability of data and locations that can receive different types of aerosols from land and ocean. These absorption properties, mainly the aerosol absorption angstrom exponent, were analyzed to examine the corresponding aerosol chemical composition. We observed that the retrieved absorption angstrom exponents over the two sites, GSFC and MD Science Center, are near 1 (the theoretical value for black carbon) and with low single scattering albedo values during summer seasons indicating presence of black carbon. Strong variability of aerosol absorption properties were observed over Tudor Hill and will be analyzed based on the air mass embedded from ocean side and land side. We will also present the seasonal variability of these properties based on long-range air mass sources at these three sites. Brent Holben, NASA GSFC, AERONET, Jon Rodriguez.

  13. Global simulations of aerosol processing in clouds

    Directory of Open Access Journals (Sweden)

    C. Hoose

    2008-12-01

    Full Text Available An explicit and detailed representation of in-droplet and in-crystal aerosol particles in stratiform clouds has been introduced in the global aerosol-climate model ECHAM5-HAM. The new scheme allows an evaluation of the cloud cycling of aerosols and an estimation of the relative contributions of nucleation and collision scavenging, as opposed to evaporation of hydrometeors in the global aerosol processing by clouds. On average an aerosol particle is cycled through stratiform clouds 0.5 times. The new scheme leads to important changes in the simulated fraction of aerosol scavenged in clouds, and consequently in the aerosol wet deposition. In general, less aerosol is scavenged into clouds with the new prognostic treatment than what is prescribed in standard ECHAM5-HAM. Aerosol concentrations, size distributions, scavenged fractions and cloud droplet concentrations are evaluated and compared to different observations. While the scavenged fraction and the aerosol number concentrations in the marine boundary layer are well represented in the new model, aerosol optical thickness, cloud droplet number concentrations in the marine boundary layer and the aerosol volume in the accumulation and coarse modes over the oceans are overestimated. Sensitivity studies suggest that a better representation of below-cloud scavenging, higher in-cloud collision coefficients, or a reduced water uptake by seasalt aerosols could reduce these biases.

  14. Global simulations of aerosol processing in clouds

    Directory of Open Access Journals (Sweden)

    C. Hoose

    2008-07-01

    Full Text Available An explicit and detailed representation of in-droplet and in-crystal aerosol particles in stratiform clouds has been introduced in the global aerosol-climate model ECHAM5-HAM. The new scheme allows an evaluation of the cloud cycling of aerosols and an estimation of the relative contributions of nucleation and collision scavenging, as opposed to evaporation of hydrometeors in the global aerosol processing by clouds. On average an aerosol particle is cycled through stratiform clouds 0.5 times. The new scheme leads to important changes in the simulated fraction of aerosol scavenged in clouds, and consequently in the aerosol wet deposition. In general, less aerosol is scavenged into clouds with the new prognostic treatment than what is prescribed in standard ECHAM5-HAM. Aerosol concentrations, size distributions, scavenged fractions and cloud droplet concentrations are evaluated and compared to different observations. While the scavenged fraction and the aerosol number concentrations in the marine boundary layer are well represented in the new model, aerosol optical thickness, cloud droplet number concentrations in the marine boundary layer and the aerosol volume in the accumulation and coarse modes over the oceans are overestimated. Sensitivity studies suggest that a better representation of below-cloud scavenging, higher in-cloud collision coefficients, or a reduced water uptake by seasalt aerosols could reduce these biases.

  15. Aerosol single-scattering albedo retrieval over North Africa using critical reflectance

    Science.gov (United States)

    Wells, Kelley C.

    The sign and magnitude of the aerosol radiative forcing over bright surfaces is highly dependent on the absorbing properties of the aerosol. Thus, the determination of aerosol forcing over desert regions requires accurate information about the aerosol single-scattering albedo (SSA). However, the brightness of desert surfaces complicates the retrieval of aerosol optical properties using passive space-based measurements. The aerosol critical reflectance is one parameter that can be used to relate top-of-atmosphere (TOA) reflectance changes over land to the aerosol absorption properties, without knowledge of the underlying surface properties or aerosol loading. Physically, the parameter represents the TOA reflectance at which increased aerosol scattering due to increased aerosol loading is balanced by increased absorption of the surface contribution to the TOA reflectance. It can be derived by comparing two satellite images with different aerosol loading, assuming that the surface reflectance and background aerosol are similar between the two days. In this work, we explore the utility of the critical reflectance method for routine monitoring of spectral aerosol absorption from space over North Africa, a region that is predominantly impacted by absorbing dust and biomass burning aerosol. We derive the critical reflectance from Moderate Resolution Spectroradiometer (MODIS) Level 1B reflectances in the vicinity of two Aerosol Robotic Network (AERONET) stations: Tamanrasset, a site in the Algerian Sahara, and Banizoumbou, a Sahelian site in Niger. We examine the sensitivity of the critical reflectance parameter to aerosol physical and optical properties, as well as solar and viewing geometry, using the Santa Barbara DISORT Radiative Transfer (SBDART) model, and apply our findings to retrieve SSA from the MODIS critical reflectance values. We compare our results to AERONET-retrieved estimates, as well as to measurements of the TOA albedo and surface fluxes from the

  16. Techniques for Measuring Aerosol Attenuation using the Central Laser Facility at the Pierre Auger Observatory

    CERN Document Server

    ,

    2013-01-01

    The Pierre Auger Observatory in Malarg\\"ue, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 1018 eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that re...

  17. The characterization of atmospheric aerosols: Application to heterogeneous gas-particle reactions

    Energy Technology Data Exchange (ETDEWEB)

    Robinson, J.M.; Henson, B.F.; Wilson, K.R. [Los Alamos National Lab., NM (United States); Prather, K.A.; Noble, C.A. [Univ. of California, Riverside, CA (United States)

    1998-12-31

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project of the Los Alamos National Laboratory (LANL). The objective of this collaborative research project is the measurement and modeling of atmospheric aerosols and heterogeneous (gas/aerosol) chemical reactions. The two major accomplishments are single particle characterization of tropospheric particles and experimental investigation of simulated stratospheric particles and reactions thereon. Using aerosol time-of-flight mass spectrometry, real-time and composition measurements of single particles are performed on ambient aerosol samples. This technique allows particle size distributions for chemically distinct particle types to be described. The thermodynamics and chemical reactivity of polar stratospheric clouds are examined using vapor deposited thin ice films. Employing nonlinear optical methods, as well as other techniques, phase transitions on both water and acid ices are monitored as a function of temperature or the addition of gases.

  18. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the UK

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-05-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the UK. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA observed in

  19. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Science.gov (United States)

    McMeeking, G. R.; Morgan, W. T.; Flynn, M.; Highwood, E. J.; Turnbull, K.; Haywood, J.; Coe, H.

    2011-09-01

    Black carbon (BC) aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2) measurements of refractory BC (rBC) mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA) operated by the Facility for Airborne Atmospheric Measurements (FAAM). We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS) and used positive matrix factorization to separate hydrocarbon-like (HOA) and oxygenated organic aerosols (OOA). We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx) ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA) did change for different air masses, with lower SSA

  20. Black carbon aerosol mixing state, organic aerosols and aerosol optical properties over the United Kingdom

    Directory of Open Access Journals (Sweden)

    G. R. McMeeking

    2011-09-01

    Full Text Available Black carbon (BC aerosols absorb sunlight thereby leading to a positive radiative forcing and a warming of climate and can also impact human health through their impact on the respiratory system. The state of mixing of BC with other aerosol species, particularly the degree of internal/external mixing, has been highlighted as a major uncertainty in assessing its radiative forcing and hence its climate impact, but few in situ observations of mixing state exist. We present airborne single particle soot photometer (SP2 measurements of refractory BC (rBC mass concentrations and mixing state coupled with aerosol composition and optical properties measured in urban plumes and regional pollution over the United Kingdom. All data were obtained using instrumentation flown on the UK's BAe-146-301 large Atmospheric Research Aircraft (ARA operated by the Facility for Airborne Atmospheric Measurements (FAAM. We measured sub-micron aerosol composition using an aerosol mass spectrometer (AMS and used positive matrix factorization to separate hydrocarbon-like (HOA and oxygenated organic aerosols (OOA. We found a higher number fraction of thickly coated rBC particles in air masses with large OOA relative to HOA, higher ozone-to-nitrogen oxides (NOx ratios and large concentrations of total sub-micron aerosol mass relative to rBC mass concentrations. The more ozone- and OOA-rich air masses were associated with transport from continental Europe, while plumes from UK cities had higher HOA and NOx and fewer thickly coated rBC particles. We did not observe any significant change in the rBC mass absorption efficiency calculated from rBC mass and light absorption coefficients measured by a particle soot absorption photometer despite observing significant changes in aerosol composition and rBC mixing state. The contributions of light scattering and absorption to total extinction (quantified by the single scattering albedo; SSA did change for

  1. Aerosol Physical and Chemical Properties Before and After the Manaus Plume in the GoAmazon2014 Experiment

    Science.gov (United States)

    Artaxo, P.; Barbosa, H. M.; Ferreira De Brito, J.; Wurm, F.; Holanda, B. A.; Carbone, S.; Arana, A.; Cirino, G. G.; Souza, R. A. F. D.; Rizzo, L. V.; Martin, S. T.; Andreae, M. O.; Holben, B. N.; Schafer, J.

    2014-12-01

    As part of the GoAmazon2014 experiment, several aerosol and trace gas monitoring stations are being operated for at least one year before and after the Manaus plume. Three sites are being operated in pristine conditions, with atmospheric properties under natural biogenic conditions. These three sites called T0 are: ATTO (Amazon Tall Tower Observatory), ZF2 ecological research site and a third site called EMBRAPA. After the air masses are exposed to the Manaus plume, one site (called T2) is being operated right on the opposite side of the Negro River under the direct influence of the Manaus plume at 5 Km downwind of Manaus. Finally, at about 150 Km downwind of Manaus is the T3 Manacapuru site. Aerosol chemical composition is being analyzed using filters for fine (PM2.5) and coarse mode aerosol as well as three Aerodyne ACSM (Aerosol Chemical Speciation Monitors) instruments. Aerosol absorption is being studied with several aethalometers and MAAP (Multi Angle Absorption Photometers). Aerosol light scattering are being measured at several wavelengths using nephelometers. Aerosol size distribution is determined using scanning mobility particle sizers. The aerosol column is measures using AERONET sunphotometers before and after the Manaus plume, as well as several Lidar systems. The three sites before the Manaus plume show remarkable similar variability in aerosol concentrations and optical properties. This pattern is very different at the T2 site, with large aerosol concentrations enhancing aerosol absorption and scattering significantly. The aerosol is very oxidized before being exposed to the Manaus plume, and this pattern changes significantly for T2 and T3 sites, with a much higher presence of less oxidized aerosol. Typical ozone concentrations at mid-day before Manaus plume is a low 10-12 ppb, value that changes to 50-70 ppb for air masses suffering the influence of Manaus plume. A detailed comparison of aerosol characteristics and composition for the several

  2. Global aerosol modeling with the online NMMB/BSC Chemical Transport Model: sensitivity to fire injection height prescription and secondary organic aerosol schemes

    Science.gov (United States)

    Spada, Michele; Jorba, Oriol; Pérez García-Pando, Carlos; Tsigaridis, Kostas; Soares, Joana; Obiso, Vincenzo; Janjic, Zavisa; Baldasano, Jose M.

    2015-04-01

    We develop and evaluate a fully online-coupled model simulating the life-cycle of the most relevant global aerosols (i.e. mineral dust, sea-salt, black carbon, primary and secondary organic aerosols, and sulfate) and their feedbacks upon atmospheric chemistry and radiative balance. Following the capabilities of its meteorological core, the model has been designed to simulate both global and regional scales with unvaried parameterizations: this allows detailed investigation on the aerosol processes bridging the gap between global and regional models. Since the strong uncertainties affecting aerosol models are often unresponsive to model complexity, we choose to introduce complexity only when it clearly improves results and leads to a better understanding of the simulated aerosol processes. We test two important sources of uncertainty - the fires injection height and secondary organic aerosol (SOA) production - by comparing a baseline simulation with experiments using more advanced approaches. First, injection heights prescribed by Dentener et al. (2006, ACP) are compared with climatological injection heights derived from satellite measurements and produced through the Integrated Monitoring and Modeling System For Wildland Fires (IS4FIRES). Also global patterns of SOA produced by the yield conversion of terpenes as prescribed by Dentener et al. (2006, ACP) are compared with those simulated by the two-product approach of Tsigaridis et al. (2003, ACP). We evaluate our simulations using a variety of observations and measurement techniques. Additionally, we discuss our results in comparison to other global models within AEROCOM and ACCMIP.

  3. Factors Affecting Aerosol Radiative Forcing

    Science.gov (United States)

    Wang, Jingxu; Lin, Jintai; Ni, Ruijing

    2016-04-01

    Rapid industrial and economic growth has meant a large amount of aerosols in the atmosphere with strong radiative forcing (RF) upon the climate system. Over parts of the globe, the negative forcing of aerosols has overcompensated for the positive forcing of greenhouse gases. Aerosol RF is determined by emissions and various chemical-transport-radiative processes in the atmosphere, a multi-factor problem whose individual contributors have not been well quantified. In this study, we analyze the major factors affecting RF of secondary inorganic aerosols (SIOAs, including sulfate, nitrate and ammonium), primary organic aerosol (POA), and black carbon (BC). We analyze the RF of aerosols produced by 11 major regions across the globe, including but not limited to East Asia, Southeast Asia, South Asia, North America, and Western Europe. Factors analyzed include population size, per capita gross domestic production (GDP), emission intensity (i.e., emissions per unit GDP), chemical efficiency (i.e., mass per unit emissions) and radiative efficiency (i.e., RF per unit mass). We find that among the 11 regions, East Asia produces the largest emissions and aerosol RF, due to relatively high emission intensity and a tremendous population size. South Asia produce the second largest RF of SIOA and BC and the highest RF of POA, in part due to its highest chemical efficiency among all regions. Although Southeast Asia also has large emissions, its aerosol RF is alleviated by its lowest chemical efficiency. The chemical efficiency and radiative efficiency of BC produced by the Middle East-North Africa are the highest across the regions, whereas its RF is lowered by a small per capita GDP. Both North America and Western Europe have low emission intensity, compensating for the effects on RF of large population sizes and per capita GDP. There has been a momentum to transfer industries to Southeast Asia and South Asia, and such transition is expected to continue in the coming years. The

  4. MISR Aerosol Climatology Product V001

    Data.gov (United States)

    National Aeronautics and Space Administration — This product is 1)the microphysical and scattering characteristics of pure aerosol upon which routine retrievals are based;2)mixtures of pure aerosol to be compared...

  5. CATS Aerosol Typing and Future Directions

    Science.gov (United States)

    McGill, Matt; Yorks, John; Scott, Stan; Palm, Stephen; Hlavka, Dennis; Hart, William; Nowottnick, Ed; Selmer, Patrick; Kupchock, Andrew; Midzak, Natalie; Trepte, Chip; Vaughan, Mark; Colarco, Peter; da Silva, Arlindo

    2016-01-01

    The Cloud Aerosol Transport System (CATS), launched in January of 2015, is a lidar remote sensing instrument that will provide range-resolved profile measurements of atmospheric aerosols and clouds from the International Space Station (ISS). CATS is intended to operate on-orbit for at least six months, and up to three years. Status of CATS Level 2 and Plans for the Future:Version. 1. Aerosol Typing (ongoing): Mode 1: L1B data released later this summer; L2 data released shortly after; Identify algorithm biases (ex. striping, FOV (field of view) biases). Mode 2: Processed Released Currently working on correcting algorithm issues. Version 2 Aerosol Typing (Fall, 2016): Implementation of version 1 modifications Integrate GEOS-5 aerosols for typing guidance for non spherical aerosols. Version 3 Aerosol Typing (2017): Implementation of 1-D Var Assimilation into GEOS-5 Dynamic lidar ratio that will evolve in conjunction with simulated aerosol mixtures.

  6. Miniature Sensor for Aerosol Mass Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This SBIR project seeks to develop a miniature sensor for mass measurement of size-classified aerosols. A cascade impactor will be used to classify aerosol sample...

  7. Aerosol Emission during Human Speech

    Science.gov (United States)

    Asadi, Sima; Ristenpart, William

    2016-11-01

    The traditional emphasis for airborne disease transmission has been on coughing and sneezing, which are dramatic expiratory events that yield easily visible droplets. Recent research suggests that normal speech can release even larger quantities of aerosols that are too small to see with the naked eye, but are nonetheless large enough to carry a variety of pathogens (e.g., influenza A). This observation raises an important question: what types of speech emit the most aerosols? Here we show that the concentration of aerosols emitted during healthy human speech is positively correlated with both the amplitude (loudness) and fundamental frequency (pitch) of the vocalization. Experimental measurements with an aerodynamic particle sizer (APS) indicate that speaking in a loud voice (95 decibels) yields up to fifty times more aerosols than in a quiet voice (75 decibels), and that sounds associated with certain phonemes (e.g., [a] or [o]) release more aerosols than others. We interpret these results in terms of the egressive airflow rate associated with each phoneme and the corresponding fundamental frequency, which is known to vary significantly with gender and age. The results suggest that individual speech patterns could affect the probability of airborne disease transmission.

  8. Bio-aerosols in indoor environment: Composition, health effects and analysis

    Directory of Open Access Journals (Sweden)

    Srikanth Padma

    2008-01-01

    Full Text Available Bio-aerosols are airborne particles that are living (bacteria, viruses and fungi or originate from living organisms. Their presence in air is the result of dispersal from a site of colonization or growth. The health effects of bio-aerosols including infectious diseases, acute toxic effects, allergies and cancer coupled with the threat of bioterrorism and SARS have led to increased awareness on the importance of bio-aerosols. The evaluation of bio-aerosols includes use of variety of methods for sampling depending on the concentration of microorganisms expected. There have been problems in developing standard sampling methods, in proving a causal relationship and in establishing threshold limit values for exposures due to the complexity of composition of bio-aerosols, variations in human response to their exposure and difficulties in recovering microorganisms. Currently bio-aerosol monitoring in hospitals is carried out for epidemiological investigation of nosocomial infectious diseases, research into airborne microorganism spread and control, monitoring biohazardous procedures and use as a quality control measure. In India there is little awareness regarding the quality of indoor air, mould contamination in indoor environments, potential source for transmission of nosocomial infections in health care facilities. There is an urgent need to undertake study of indoor air, to generate baseline data and explore the link to nosocomial infections. This article is a review on composition, sources, modes of transmission, health effects and sampling methods used for evaluation of bio-aerosols, and also suggests control measures to reduce the loads of bio-aerosols.

  9. Origins of atmospheric aerosols. Basic concepts on aerosol main physical properties; L`aerosol atmospherique: ses origines quelques notions sur les principales proprietes physiques des aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Renoux, A. [Paris-12 Univ., 94 - Creteil (France). Laboratoire de Physique des aerosols et de transferts des contaminations

    1996-12-31

    Natural and anthropogenic sources of atmospheric aerosols are reviewed and indications of their concentrations and granulometry are given. Calculation of the lifetime of an atmospheric aerosol of a certain size is presented and the various modes of aerosol granulometry and their relations with photochemical and physico-chemical processes in the atmosphere are discussed. The main physical, electrical and optical properties of aerosols are also presented: diffusion coefficient, dynamic mobility and relaxation time, Stokes number, limit rate of fall, electrical mobility, optical diffraction

  10. Utilization of O4 Slant Column Density to Derive Aerosol Layer Height from a Space-Borne UV-Visible Hyperspectral Sensor: Sensitivity and Case Study

    Science.gov (United States)

    Park, Sang Seo; Kim, Jhoon; Lee, Hanlim; Torres, Omar; Lee, Kwang-Mog; Lee, Sang Deok

    2016-01-01

    The sensitivities of oxygen-dimer (O4) slant column densities (SCDs) to changes in aerosol layer height are investigated using the simulated radiances by a radiative transfer model, the linearized pseudo-spherical vector discrete ordinate radiative transfer (VLIDORT), and the differential optical absorption spectroscopy (DOAS) technique. The sensitivities of the O4 index (O4I), which is defined as dividing O4 SCD by 10(sup 40) molecules (sup 2) per centimeters(sup -5), to aerosol types and optical properties are also evaluated and compared. Among the O4 absorption bands at 340, 360, 380, and 477 nanometers, the O4 absorption band at 477 nanometers is found to be the most suitable to retrieve the aerosol effective height. However, the O4I at 477 nanometers is significantly influenced not only by the aerosol layer effective height but also by aerosol vertical profiles, optical properties including single scattering albedo (SSA), aerosol optical depth (AOD), particle size, and surface albedo. Overall, the error of the retrieved aerosol effective height is estimated to be 1276, 846, and 739 meters for dust, non-absorbing, and absorbing aerosol, respectively, assuming knowledge on the aerosol vertical distribution shape. Using radiance data from the Ozone Monitoring Instrument (OMI), a new algorithm is developed to derive the aerosol effective height over East Asia after the determination of the aerosol type and AOD from the MODerate resolution Imaging Spectroradiometer (MODIS). About 80 percent of retrieved aerosol effective heights are within the error range of 1 kilometer compared to those obtained from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) measurements on thick aerosol layer cases.

  11. ATI TDA 5A aerosol generator evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Gilles, D.A.

    1998-07-27

    Oil based aerosol ``Smoke`` commonly used for testing the efficiency and penetration of High Efficiency Particulate Air filters (HEPA) and HEPA systems can produce flammability hazards that may not have been previously considered. A combustion incident involving an aerosol generator has caused an investigation into the hazards of the aerosol used to test HEPA systems at Hanford.

  12. DARE: a dedicated aerosols retrieval instrument

    NARCIS (Netherlands)

    Court, A.J.; Smorenburg, K.; Courrèges-Lacoste, G.B.; Visser, H.; Leeuw, G. de; Decae, R.

    2004-01-01

    Satellite remote sensing of aerosols is a largely unresolved problem. A dedicated instrument aimed at aerosols would be able to reduce the large uncertainties connected to this kind of remote sensing. TNO is performing a study of a space based instrument for aerosol measurements, together with the s

  13. Classification of Dust Days by Satellite Remotely Sensed Aerosol Products

    Science.gov (United States)

    Sorek-Hammer, M.; Cohen, A.; Levy, Robert C.; Ziv, B.; Broday, D. M.

    2013-01-01

    Considerable progress in satellite remote sensing (SRS) of dust particles has been seen in the last decade. From an environmental health perspective, such an event detection, after linking it to ground particulate matter (PM) concentrations, can proxy acute exposure to respirable particles of certain properties (i.e. size, composition, and toxicity). Being affected considerably by atmospheric dust, previous studies in the Eastern Mediterranean, and in Israel in particular, have focused on mechanistic and synoptic prediction, classification, and characterization of dust events. In particular, a scheme for identifying dust days (DD) in Israel based on ground PM10 (particulate matter of size smaller than 10 nm) measurements has been suggested, which has been validated by compositional analysis. This scheme requires information regarding ground PM10 levels, which is naturally limited in places with sparse ground-monitoring coverage. In such cases, SRS may be an efficient and cost-effective alternative to ground measurements. This work demonstrates a new model for identifying DD and non-DD (NDD) over Israel based on an integration of aerosol products from different satellite platforms (Moderate Resolution Imaging Spectroradiometer (MODIS) and Ozone Monitoring Instrument (OMI)). Analysis of ground-monitoring data from 2007 to 2008 in southern Israel revealed 67 DD, with more than 88 percent occurring during winter and spring. A Classification and Regression Tree (CART) model that was applied to a database containing ground monitoring (the dependent variable) and SRS aerosol product (the independent variables) records revealed an optimal set of binary variables for the identification of DD. These variables are combinations of the following primary variables: the calendar month, ground-level relative humidity (RH), the aerosol optical depth (AOD) from MODIS, and the aerosol absorbing index (AAI) from OMI. A logistic regression that uses these variables, coded as binary

  14. Highly Resolved Paleoclimatic Aerosol Records

    DEFF Research Database (Denmark)

    Kettner, Ernesto

    In ice cores a plethora of proxies for paleoclimatic conditions is archived. Air trapped in the ice during firnification allows for direct measurements of the concentrations and isotope ratios of paleoatmospheric gases while, the isotopic composition of the ice matrix itself is related...... to paleotemperatures. Impurities in the matrix are comprised of particulate and soluble aerosols, each carrying information on its source’s activitiy and|or proximity. Opposed to gases and water isotopes, the seasonality of many aerosols is not smoothed out in the firn column so that large concentration gradients...... with frequently changing signs are preserved. Therefore, these aerosol records can be used for dating by annual layer counting. However, with increasing depth the annual layer thicknesses decreases due to pressure and ice flow and accurate dating is possible only as long as the rapid variations can be resolved...

  15. Wind reduction by aerosol particles

    Science.gov (United States)

    Jacobson, Mark Z.; Kaufman, Yoram J.

    2006-12-01

    Aerosol particles are known to affect radiation, temperatures, stability, clouds, and precipitation, but their effects on spatially-distributed wind speed have not been examined to date. Here, it is found that aerosol particles, directly and through their enhancement of clouds, may reduce near-surface wind speeds below them by up to 8% locally. This reduction may explain a portion of observed ``disappearing winds'' in China, and it decreases the energy available for wind-turbine electricity. In California, slower winds reduce emissions of wind-driven soil dust and sea spray. Slower winds and cooler surface temperatures also reduce moisture advection and evaporation. These factors, along with the second indirect aerosol effect, may reduce California precipitation by 2-5%, contributing to a strain on water supply.

  16. Aerosol retrieval experiments in the ESA Aerosol_cci project

    Directory of Open Access Journals (Sweden)

    T. Holzer-Popp

    2013-08-01

    Full Text Available Within the ESA Climate Change Initiative (CCI project Aerosol_cci (2010–2013, algorithms for the production of long-term total column aerosol optical depth (AOD datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1 a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2 a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome applied to four months of global data to identify mature algorithms, and (3 a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008 of data: qualitatively by inspection of monthly mean AOD maps and quantitatively by comparing daily gridded satellite data against daily averaged AERONET sun

  17. Aerosol retrieval experiments in the ESA Aerosol_cci project

    Science.gov (United States)

    Holzer-Popp, T.; de Leeuw, G.; Griesfeller, J.; Martynenko, D.; Klüser, L.; Bevan, S.; Davies, W.; Ducos, F.; Deuzé, J. L.; Graigner, R. G.; Heckel, A.; von Hoyningen-Hüne, W.; Kolmonen, P.; Litvinov, P.; North, P.; Poulsen, C. A.; Ramon, D.; Siddans, R.; Sogacheva, L.; Tanre, D.; Thomas, G. E.; Vountas, M.; Descloitres, J.; Griesfeller, J.; Kinne, S.; Schulz, M.; Pinnock, S.

    2013-08-01

    Within the ESA Climate Change Initiative (CCI) project Aerosol_cci (2010-2013), algorithms for the production of long-term total column aerosol optical depth (AOD) datasets from European Earth Observation sensors are developed. Starting with eight existing pre-cursor algorithms three analysis steps are conducted to improve and qualify the algorithms: (1) a series of experiments applied to one month of global data to understand several major sensitivities to assumptions needed due to the ill-posed nature of the underlying inversion problem, (2) a round robin exercise of "best" versions of each of these algorithms (defined using the step 1 outcome) applied to four months of global data to identify mature algorithms, and (3) a comprehensive validation exercise applied to one complete year of global data produced by the algorithms selected as mature based on the round robin exercise. The algorithms tested included four using AATSR, three using MERIS and one using PARASOL. This paper summarizes the first step. Three experiments were conducted to assess the potential impact of major assumptions in the various aerosol retrieval algorithms. In the first experiment a common set of four aerosol components was used to provide all algorithms with the same assumptions. The second experiment introduced an aerosol property climatology, derived from a combination of model and sun photometer observations, as a priori information in the retrievals on the occurrence of the common aerosol components. The third experiment assessed the impact of using a common nadir cloud mask for AATSR and MERIS algorithms in order to characterize the sensitivity to remaining cloud contamination in the retrievals against the baseline dataset versions. The impact of the algorithm changes was assessed for one month (September 2008) of data: qualitatively by inspection of monthly mean AOD maps and quantitatively by comparing daily gridded satellite data against daily averaged AERONET sun photometer

  18. Aerosol Transport Over Equatorial Africa

    Science.gov (United States)

    Gatebe, C. K.; Tyson, P. D.; Annegarn, H. J.; Kinyua, A. M.; Piketh, S.; King, M.; Helas, G.

    1999-01-01

    Long-range and inter-hemispheric transport of atmospheric aerosols over equatorial Africa has received little attention so far. Most aerosol studies in the region have focussed on emissions from rain forest and savanna (both natural and biomass burning) and were carried out in the framework of programs such as DECAFE (Dynamique et Chimie Atmospherique en Foret Equatoriale) and FOS (Fires of Savanna). Considering the importance of this topic, aerosols samples were measured in different seasons at 4420 meters on Mt Kenya and on the equator. The study is based on continuous aerosol sampling on a two stage (fine and coarse) streaker sampler and elemental analysis by Particle Induced X-ray Emission. Continuous samples were collected for two seasons coinciding with late austral winter and early austral spring of 1997 and austral summer of 1998. Source area identification is by trajectory analysis and sources types by statistical techniques. Major meridional transports of material are observed with fine-fraction silicon (31 to 68 %) in aeolian dust and anthropogenic sulfur (9 to 18 %) being the major constituents of the total aerosol loading for the two seasons. Marine aerosol chlorine (4 to 6 %), potassium (3 to 5 %) and iron (1 to 2 %) make up the important components of the total material transport over Kenya. Minimum sulfur fluxes are associated with recirculation of sulfur-free air over equatorial Africa, while maximum sulfur concentrations are observed following passage over the industrial heartland of South Africa or transport over the Zambian/Congo Copperbelt. Chlorine is advected from the ocean and is accompanied by aeolian dust recirculating back to land from mid-oceanic regions. Biomass burning products are transported from the horn of Africa. Mineral dust from the Sahara is transported towards the Far East and then transported back within equatorial easterlies to Mt Kenya. This was observed during austral summer and coincided with the dying phase of 1997/98 El

  19. Direct Measurement of Aerosol Absorption Using Photothermal Interferometry

    Science.gov (United States)

    Sedlacek, A. J.; Lee, J. A.

    2007-12-01

    -reducing vibrations enabling this technique to be used in field campaigns. A series of calibration and intercomparison experiments have recently been carried out in our laboratory to evaluate the performance of the PTI technique towards aerosol absorption measurement and monitoring. Since PTI is a calorimetric technique, calibration can be performed using an absorbing gas of known concentration and known absorption cross-section. Following this calibration, a series of intercomparison experiments using laboratory-generated nigrosin aerosols and a 3-? Particle Soot Absorption Photometer (PSAP) were carried out where correlation between the PTI and PSAP was measured to be 0.96±0.02. (Sedlacek and Lee, 2007) Extension of this intercomparison to the measurement of ambient aerosols reveals continued agreement between the two instruments except for periods of high relative humidity whereupon the PSAP reported a larger absorption coefficient. (Sedlacek and Lee, 2007) A discussion of the PTI technique, along with the results of this intercomparison and some preliminary results examining absorption enhancement brought about by coating black-dyed PSL particles with dibutyl phthalate will be presented. References: Sedlacek, A. J., and Lee, J., (2007) Photothermal interferometric aerosol absorption spectroscopy, Aerosol Sci. Tech. (in press). Sedlacek, A. J. (2006). Real-time detection of ambient aerosols using photothermal interferometry: Folded Jamin interferometer, Rev. Sci. Instrum. 77:064903.

  20. Characterisation of coated aerosols using optical tweezers and neutron reflectometry

    Science.gov (United States)

    Jones, S. H.; Ward, A.; King, M. D.

    2013-12-01

    Thin organic films are believed to form naturally on the surface of aerosols [1,2] and influence aerosol properties. Cloud condensation nuclei formation and chemical reactions such as aerosol oxidation are effected by the presence of thin films [3]. There is a requirement to characterise the physical properties of both the core aerosol and its organic film in order to fully understand the contribution of coated aerosols to the indirect effect. Two complementary techniques have been used to study the oxidation of thin organic films on the surface of aerosols; laser optical tweezers and neutron reflectometry. Micron sized polystyrene beads coated in oleic acid have been trapped in air using two counter propagating laser beams. Polystyrene beads are used as a proxy for solid aerosol. The trapped aerosol is illuminated with a white LED over a broadband wavelength range and the scattered light collected to produce a Mie spectrum [4]. Analysis of the Mie spectrum results in determination of the core polystyrene bead radius, the oleic acid film thickness and refractive index dispersion of the core and shell [5]. A flow of ozone gas can then be introduced into the aerosol environment to oxidise the thin film of oleic acid and the reaction followed by monitoring the changes in the Mie spectrum. The results demonstrate complete removal of the oleic acid film. We conclude that the use of a counter propagating optical trap combined with white light Mie spectroscopy can be used to study a range of organic films on different types of aerosols and their oxidation reactions. Neutron reflectometry has been used as a complementary technique to study the oxidation of monolayer films at the air-water interface in order to gain information on reaction kinetics. The oxidation of an oleic acid film at the air-water interface by the common tropospheric oxidant ozone has been studied using a Langmuir trough. Results indicate complete removal of the oleic acid film with ozone in agreement

  1. Aerosol effects on deep convective clouds: impact of changes in aerosol size distribution and aerosol activation parameterization

    Science.gov (United States)

    Ekman, A. M. L.; Engström, A.; Söderberg, A.

    2010-03-01

    A cloud-resolving model including explicit aerosol physics and chemistry is used to study the impact of aerosols on deep convective strength. More specifically, by conducting six sensitivity series we examine how the complexity of the aerosol model, the size of the aerosols and the aerosol activation parameterization influence the aerosol-induced deep convective cloud sensitivity. Only aerosol effects on liquid droplet formation are considered. We find that an increased aerosol concentration generally results in stronger convection, which for the simulated case is in agreement with the conceptual model presented by Rosenfeld et al. (2008). However, there are two sensitivity series that do not display a monotonic increase in updraft velocity with increasing aerosol concentration. These exceptions illustrate the need to: 1) account for changes in evaporation processes and subsequent cooling when assessing aerosol effects on deep convective strength, 2) better understand graupel impaction scavenging of aerosols which may limit the number of CCN at a critical stage of cloud development and thereby dampen the convection, 3) increase our knowledge of aerosol recycling due to evaporation of cloud droplets. Furthermore, we find a significant difference in the aerosol-induced deep convective cloud sensitivity when using different complexities of the aerosol model and different aerosol activation parameterizations. For the simulated case, a 100% increase in aerosol concentration results in a difference in average updraft between the various sensitivity series which is as large as the average updraft increase itself. The model simulations also show that the change in graupel and rain formation is not necessarily directly proportional to the change in updraft velocity. For example, several of the sensitivity series display a decrease of the rain amount at the lowest model level with increasing updraft velocity. Finally, an increased number of aerosols in the Aitken mode (here

  2. Aerosol effects on deep convective clouds: impact of changes in aerosol size distribution and aerosol activation parameterization

    Directory of Open Access Journals (Sweden)

    A. M. L. Ekman

    2010-03-01

    Full Text Available A cloud-resolving model including explicit aerosol physics and chemistry is used to study the impact of aerosols on deep convective strength. More specifically, by conducting six sensitivity series we examine how the complexity of the aerosol model, the size of the aerosols and the aerosol activation parameterization influence the aerosol-induced deep convective cloud sensitivity. Only aerosol effects on liquid droplet formation are considered. We find that an increased aerosol concentration generally results in stronger convection, which for the simulated case is in agreement with the conceptual model presented by Rosenfeld et al. (2008. However, there are two sensitivity series that do not display a monotonic increase in updraft velocity with increasing aerosol concentration. These exceptions illustrate the need to: 1 account for changes in evaporation processes and subsequent cooling when assessing aerosol effects on deep convective strength, 2 better understand graupel impaction scavenging of aerosols which may limit the number of CCN at a critical stage of cloud development and thereby dampen the convection, 3 increase our knowledge of aerosol recycling due to evaporation of cloud droplets. Furthermore, we find a significant difference in the aerosol-induced deep convective cloud sensitivity when using different complexities of the aerosol model and different aerosol activation parameterizations. For the simulated case, a 100% increase in aerosol concentration results in a difference in average updraft between the various sensitivity series which is as large as the average updraft increase itself. The model simulations also show that the change in graupel and rain formation is not necessarily directly proportional to the change in updraft velocity. For example, several of the sensitivity series display a decrease of the rain amount at the lowest model level with increasing updraft velocity. Finally, an increased number of aerosols in the

  3. Strategy to use the Terra Aerosol Information to Derive the Global Aerosol Radiative Forcing of Climate

    Science.gov (United States)

    Kaufman, Yoram J.; Tanre, Didier; Einaudi, Franco (Technical Monitor)

    2000-01-01

    Terra will derive the aerosol optical thickness and properties. The aerosol properties can be used to distinguish between natural and human-made aerosol. In the polar orbit Terra will measure aerosol only once a day, around 10:30 am. How will we use this information to study the global radiative impacts of aerosol on climate? We shall present a strategy to address this problem. It includes the following steps: - From the Terra aerosol optical thickness and size distribution model we derive the effect of aerosol on reflection of solar radiation at the top of the atmosphere. In a sensitivity study we show that the effect of aerosol on solar fluxes can be derived 10 times more accurately from the MODIS data than derivation of the optical thickness itself. Applications to data over several regions will be given. - Using 1/2 million AERONET global data of aerosol spectral optical thickness we show that the aerosol optical thickness and properties during the Terra 10:30 pass are equivalent to the daily average. Due to the aerosol lifetime of several days measurements at this time of the day are enough to assess the daily impact of aerosol on radiation. - Aerosol impact on the top of the atmosphere is only part of the climate question. The INDOEX experiment showed that addressing the impact of aerosol on climate, requires also measurements of the aerosol forcing at the surface. This can be done by a combination of measurements of MODIS and AERONET data.

  4. Systematic aerosol characterization by combining GOME-2 UV Aerosol Indices with trace gas concentrations

    Science.gov (United States)

    Penning de Vries, M.; Stammes, P.; Wagner, T.

    2012-04-01

    The task of determining aerosol type using passive remote sensing instruments is a daunting one. First, because the variety in aerosol (optical) properties is very large; and second, because the effect of aerosols on the detected top-of-atmosphere reflectance spectrum is smooth and mostly featureless. In addition, spectrometers like GOME-2 have a coarse spatial resolution, which makes aerosol characterization even more difficult due to interferences with clouds. On account of these problems, we do not attempt to derive aerosol properties from single measurements: instead, we combine time series of UV Aerosol Index and trace gas concentrations to derive the dominating aerosol type for each season. Aside from the Index values and trace gas concentrations themselves, the correlation between UV Aerosol Indices (which are indicative of aerosol absorption) with NO2, HCHO, and CHOCHO columns - or absence of it - provides clues to the (main) source of the aerosols in the investigated region and time range. For example: a high correlation of HCHO and Absorbing Aerosol Index points to aerosols from biomass burning, highly correlated CHOCHO, HCHO, and SCattering Index indicate biogenic secondary organic aerosols, and coinciding high NO2 concentrations with high SCattering Index values are associated with industrial and urban aerosols. We here present case studies for several regions to demonstrate the suitability of our approach. Then, we introduce a method to systematically derive the dominating aerosol type on a global scale on time scales varying from monthly to yearly.

  5. Significant atmospheric aerosol pollution caused by world food cultivation

    Science.gov (United States)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2016-05-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to its sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  6. Residual oil aerosol measurements on refrigerators and liquefiers

    Science.gov (United States)

    Pflueckhahn, D.; Anders, W.; Hellwig, A.; Knobloch, J.; Rotterdam, S.

    2014-01-01

    The purity of the process gas is essential for the reliability of refrigerators and liquefiers. Filtration and adsorption of impurities like water, nitrogen, and oil result in a major effort, cost, and maintenance in the helium process. Expensive impurity monitors for moisture, nitrogen, and hydrocarbon contents are required to identify filter failures and leakage immediately during the operation. While water and nitrogen contaminants can be detected reliably, the measurement of oil aerosols at the ppb-level is challenging. We present a novel diagnostic oil aerosol measurement system able to measure particles in the sub-μm range. This unit enabled us to evaluate and improve the oil separation system on a LINDE TCF 50 helium liquefier.

  7. Significant Atmospheric Aerosol Pollution Caused by World Food Cultivation

    Science.gov (United States)

    Bauer, Susanne E.; Tsigaridis, Kostas; Miller, Ron

    2016-01-01

    Particulate matter is a major concern for public health, causing cancer and cardiopulmonary mortality. Therefore, governments in most industrialized countries monitor and set limits for particulate matter. To assist policy makers, it is important to connect the chemical composition and severity of particulate pollution to its sources. Here we show how agricultural practices, livestock production, and the use of nitrogen fertilizers impact near-surface air quality. In many densely populated areas, aerosols formed from gases that are released by fertilizer application and animal husbandry dominate over the combined contributions from all other anthropogenic pollution. Here we test reduction scenarios of combustion-based and agricultural emissions that could lower air pollution. For a future scenario, we find opposite trends, decreasing nitrate aerosol formation near the surface while total tropospheric loads increase. This suggests that food production could be increased to match the growing global population without sacrificing air quality if combustion emission is decreased.

  8. Variability and evolution of the midlatitude stratospheric aerosol budget from 22 years of ground-based lidar and satellite observations

    Science.gov (United States)

    Khaykin, Sergey M.; Godin-Beekmann, Sophie; Keckhut, Philippe; Hauchecorne, Alain; Jumelet, Julien; Vernier, Jean-Paul; Bourassa, Adam; Degenstein, Doug A.; Rieger, Landon A.; Bingen, Christine; Vanhellemont, Filip; Robert, Charles; DeLand, Matthew; Bhartia, Pawan K.

    2017-02-01

    The article presents new high-quality continuous stratospheric aerosol observations spanning 1994-2015 at the French Observatoire de Haute-Provence (OHP, 44° N, 6° E) obtained by two independent, regularly maintained lidar systems operating within the Network for Detection of Atmospheric Composition Change (NDACC). Lidar series are compared with global-coverage observations by Stratospheric Aerosol and Gas Experiment (SAGE II), Global Ozone Monitoring by Occultation of Stars (GOMOS), Optical Spectrograph and InfraRed Imaging System (OSIRIS), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and Ozone Mapping Profiling Suite (OMPS) satellite instruments, altogether covering the time span of OHP lidar measurements. Local OHP and zonal-mean satellite series of stratospheric aerosol optical depth are in excellent agreement, allowing for accurate characterization of stratospheric aerosol evolution and variability at northern midlatitudes during the last 2 decades. The combination of local and global observations is used for a careful separation between volcanically perturbed and quiescent periods. While the volcanic signatures dominate the stratospheric aerosol record, the background aerosol abundance is found to be modulated remotely by the poleward transport of convectively cleansed air from the deep tropics and aerosol-laden air from the Asian monsoon region. The annual cycle of background aerosol at midlatitudes, featuring a minimum during late spring and a maximum during late summer, correlates with that of water vapor from the Aura Microwave Limb Sounder (MLS). Observations covering two volcanically quiescent periods over the last 2 decades provide an indication of a growth in the nonvolcanic component of stratospheric aerosol. A statistically significant factor of 2 increase in nonvolcanic aerosol since 1998, seasonally restricted to late summer and fall, is associated with the influence of the Asian monsoon and growing pollution therein.

  9. Vertical Profile of Aerosol Properties at Pico Mountain, Azores

    Science.gov (United States)

    Wright, K.; Mazzoleni, C.; Mazzoleni, L. R.; Dzepina, K.; Hueber, J.; China, S.; Sharma, N.

    2013-12-01

    Pico Mountain (2325m asl) is a dormant volcano in the archipelago of the Azores1500 km west of Lisbon, Portugal in the North Atlantic. It differs from typical mountain ranges such as the Alps or the Rockies, which are large and present a complex orography. Pico Mountain has a simple cone-like structure with only one main peak and is thousands of kilometers away from any other significant mountain range. In summer months, it is typical for air masses to move around the mountain rather than traveling up its face. This implies that often the peak of the mountain lies above the marine boundary layer in the free troposphere, while the lower part of the mountain is affected by marine clouds and marine air-masses. An atmospheric monitoring station, the Pico Mountain Observatory was established in 2001 in the summit caldera of the volcano at 2225m above sea level. The observatory is far from large populations or pollution sources, which makes the station ideal to study atmospheric gases and aerosols transported over long-ranges in the free troposphere. The station is reachable only by foot following a steep and strenuous hiking trail. In the summer of 2013 we began to collect vertical profiles of aerosol by carrying an instrumented backpack up to the summit of the mountain, with the goal of studying the vertical structure of atmospheric aerosols from the marine boundary layer to the free troposphere. The backpack was carried from the base of trail at 1200m asl. The backpack was equipped with the following instruments: 1. Nephelometer to measure light scattering from aerosol 2. 2-size optical particle counter (300-500 nm) 3. Portable micro-aethalometer to measure absorbing aerosols 4. SEM/TEM sampler to collect particles for off-line electron microscopy analysis 5. Battery powered data logger to measure relative humidity, temperature and pressure 6. GPS tracking device We provide a preliminary analysis of data collected in 2013 to gain insight on the vertical distribution

  10. Aerosols of Mongolian arid area

    Science.gov (United States)

    Golobokova, L.; Marinayte, I.; Zhamsueva, G.

    2012-04-01

    Sampling was performed in July-August 2005-2010 at Station Sain Shand (44°54'N, 110°07'E) in the Gobi desert (1000 m a.s.l.), West Mongolia. Aerosol samples were collected with a high volume sampler PM 10 (Andersen Instruments Inc., USA) onto Whatman-41 filters. The substance was extracted from the filters by de-ionized water. The solution was screened through an acetate-cellulose filter with 0.2 micron pore size. Ions of ammonium, sodium, potassium, magnesium, and calcium, as well as sulphate ions, nitrate ions, hydrocarbonate, chloride ions were determined in the filtrate by means of an atomic adsorption spectrometer Carl Zeiss Jena (Germany), a high performance liquid chromatographer «Milichrome A-02» (Russia), and an ionic chromatographer ICS-3000 (Dionex, USA). The PAH fraction was separated from aerosol samples using hexane extraction at room temperature under UV environment. The extract was concentrated to 0.1-0.2 ml and analysed by a mass-spectrometer "Agilent, GC 6890, MSD 5973 Network". Analysis of concentrations of aerosols components, their correlation ratios, and meteorological modeling show that the main factor affecting chemical composition of aerosols is a flow of contaminants transferred by air masses to the sampling area mainly from the south and south-east, as well as wind conditions of the area, dust storms in particular. Sulphate, nitrate, and ammonium are major ions in aerosol particles at Station Sain Shand. Dust-borne aerosol is known to be a sorbent for both mineral and organic admixtures. Polycyclic aromatic hydrocarbons (PAH) being among superecotoxicants play an important role among resistant organic substances. PAH concentrations were determined in the samples collected in 2010. All aerosol samples contained dominant PAHs with 5-6 benzene rings ( (benze(k)fluoranthen, benze(b)flouranthen, benze(a)pyren, benze(?)pyren, perylene, benze(g,h,i)perylene, and indene(1,2,3-c,d)pyrene). Their total quantity varied between 42 and 90

  11. A mathematical model of aerosol holding chambers

    DEFF Research Database (Denmark)

    Zak, M; Madsen, J; Berg, E

    1999-01-01

    A mathematical model of aerosol delivery from holding chambers (spacers) was developed incorporating tidal volume (VT), chamber volume (Vch), apparatus dead space (VD), effect of valve insufficiency and other leaks, loss of aerosol by immediate impact on the chamber wall, and fallout of aerosol...... in the chamber with time. Four different spacers were connected via filters to a mechanical lung model, and aerosol delivery during "breathing" was determined from drug recovery from the filters. The formula correctly predicted the delivery of budesonide aerosol from the AeroChamber (Trudell Medical, London...

  12. Remote sensing of aerosols by using polarized, directional and spectral measurements within the A-Train: the PARASOL mission

    Directory of Open Access Journals (Sweden)

    D. Tanré

    2011-04-01

    Full Text Available The aerosol remote sensing from space has started in the 1980's using observations provided by geostationary satellites or by polar orbiting platforms not specifically designed for observing aerosols. As a result, the number of retrieved parameters was limited and retrievals in the visible restricted over ocean. Over land, because of the important surface contribution, the aerosol detection was performed in the UV (or in the dark blue where most of the earth surfaces are dark enough but with overlap of multiple aerosols parameters, content, altitude and absorption. Instruments dedicated to aerosol monitoring are recently available and the POLDER instrument on board the PARASOL mission is one of them. By measuring the wavelength, angular and polarization properties of the radiance at the top of the atmosphere, in coordination with the other A-Train instruments, PARASOL can better quantify aerosol optical depths (AOD and improve the derivation of the radiative and physical properties. The instrument, the inversion schemes and the list of aerosol parameters are described. Examples of retrieved aerosol parameters are provided as well as innovative approaches and further inversion techniques.

  13. The Cloud-Aerosol Transport System (CATS): A New Lidar for Aerosol and Cloud Profiling from the International Space Station

    Science.gov (United States)

    Welton, Ellsworth J.; McGill, Mathew J.; Yorks. John E.; Hlavka, Dennis L.; Hart, William D.; Palm, Stephen P.; Colarco, Peter R.

    2012-01-01

    Spaceborne lidar profiling of aerosol and cloud layers has been successfully implemented during a number of prior missions, including LITE, ICESat, and CALIPSO. Each successive mission has added increased capability and further expanded the role of these unique measurements in wide variety of applications ranging from climate, to air quality, to special event monitoring (ie, volcanic plumes). Many researchers have come to rely on the availability of profile data from CALIPSO, especially data coincident with measurements from other A-Train sensors. The CALIOP lidar on CALIPSO continues to operate well as it enters its fifth year of operations. However, active instruments have more limited lifetimes than their passive counterparts, and we are faced with a potential gap in lidar profiling from space if the CALIOP lidar fails before a new mission is operational. The ATLID lidar on EarthCARE is not expected to launch until 2015 or later, and the lidar component of NASA's proposed Aerosols, Clouds, and Ecosystems (ACE) mission would not be until after 2020. Here we present a new aerosol and cloud lidar that was recently selected to provide profiling data from the International Space Station (ISS) starting in 2013. The Cloud-Aerosol Transport System (CATS) is a three wavelength (1064,532,355 nm) elastic backscatter lidar with HSRL capability at 532 nm. Depolarization measurements will be made at all wavelengths. The primary objective of CATS is to continue the CALIPSO aerosol and cloud profile data record, ideally with overlap between both missions and EarthCARE. In addition, the near real time (NRT) data capability ofthe ISS will enable CATS to support operational applications such as aerosol and air quality forecasting and special event monitoring. The HSRL channel will provide a demonstration of technology and a data testbed for direct extinction retrievals in support of ACE mission development. An overview of the instrument and mission will be provided, along with a

  14. Source apportionment of ambient aerosol applying PMF on AMS mobile and stationary data

    Science.gov (United States)

    Mohr, C.; Weimer, S.; Richter, R.; Decarlo, P. F.; Chirico, R.; Heringa, M. F.; Prévôt, A. S. H.; Baltensperger, U.

    2009-04-01

    Ambient aerosols are divided into the categories "primary" and "secondary", referring to particles directly emitted into the air, or formed out of precursor species such as volatile organic compounds, respectively. Main sources for primary urban aerosol and precursor species are traffic emissions, but also wood burning for domestic heating purposes especially in winter time (Alfarra et al., 2007). The quantification of various types of aerosol components is important for source identification which in turn is the basis of all mitigation activities. Positive Matrix Factorization (PMF) is a statistical based source apportionment tool that uses constrained, weighted least squares estimation to determine source profiles and strengths. PMF has been applied recently for the first time on highly time resolved organic mass spectra (Lanz et al., 2007) measured by an Aerodyne aerosol mass spectrometer (AMS) (Canagaratna et al., 2007). For the data presented here, two AMS were deployed together with additional instrumentation in the metropolitan area of Zurich in winter 2007/2008. The high-resolution time-of-flight AMS was stationed at an urban background site in the center, 30 meters from and shielded against direct traffic emissions. The quadrupole-based AMS was deployed in a mobile van allowing for on-road submicron aerosol composition measurements, and investigations into the spatial variability of aerosol concentration and composition. Results indicate that traffic emissions are the main contributor to submicron aerosol concentrations measured on-road. Hydrocarbon-like organic aerosol (HOA), a marker for traffic emissions (Lanz et al. 2007), dominates the primary aerosol mass, together with black carbon (BC). BC was monitored with the MAAP (multi angle absorption photometer). Another significant contributor to primary organic aerosol mass in downtown Zurich is domestic wood burning for heating purposes. Traffic and wood burning emissions make up roughly 50% of the total

  15. First Evaluation of the CCAM Aerosol Simulation over Africa: Implications for Regional Climate Modeling

    Science.gov (United States)

    Horowitz, H.; Garland, R. M.; Thatcher, M. J.; Naidoo, M.; van der Merwe, J.; Landman, W.; Engelbrecht, F.

    2015-12-01

    An accurate representation of African aerosols in climate models is needed to understand the regional and global radiative forcing and climate impacts of aerosols, at present and under future climate change. However, aerosol simulations in regional climate models for Africa have not been well-tested. Africa contains the largest single source of biomass-burning smoke aerosols and dust globally. Although aerosols are short-lived relative to greenhouse gases, black carbon in particular is estimated to be second only to carbon dioxide in contributing to warming on a global scale. Moreover, Saharan dust is exported great distances over the Atlantic Ocean, affecting nutrient transport to regions like the Amazon rainforest, which can further impact climate. Biomass burning aerosols are also exported from Africa, westward from Angola over the Atlantic Ocean and off the southeastern coast of South Africa to the Indian Ocean. Here, we perform the first extensive quantitative evaluation of the Conformal-Cubic Atmospheric Model (CCAM) aerosol simulation against monitored data, focusing on aerosol optical depth (AOD) observations over Africa. We analyze historical regional simulations for 1999 - 2012 from CCAM consistent with the experimental design of CORDEX at 50 km global horizontal resolution, through the dynamical downscaling of ERA-Interim data reanalysis data, with the CMIP5 emissions inventory (RCP8.5 scenario). CCAM has a prognostic aerosol scheme for organic carbon, black carbon, sulfate, and dust, and non-prognostic sea salt. The CCAM AOD at 550nm was compared to AOD (observed at 440nm, adjusted to 550nm with the Ångström exponent) from long-term AERONET stations across Africa. Sites strongly impacted by dust and biomass burning and with long continuous records were prioritized. In general, the model captures the monthly trends of the AERONET data. This presentation provides a basis for understanding how well aerosol particles are represented over Africa in

  16. High Concentration Standard Aerosol Generator.

    Science.gov (United States)

    1985-07-31

    materials. In addition to material problems, many liquids are extremely flammable or explosive when aerosolized. This can be checked by putting a small...Hochriner. D. (1975) Stub 3A 440-445. St6ber, W. Flachsbart, H. and Hochramn, D. (1970) Staub 3^, 277. Yoshida. H. Fujii, K. Yomimoto, Y. Masuda. H. and

  17. Aerosol Microphysics and Radiation Integration

    Science.gov (United States)

    2016-06-07

    1. REPORT DATE 30 SEP 2003 2. REPORT TYPE 3. DATES COVERED 00-00-2003 to 00-00-2003 4. TITLE AND SUBTITLE Aerosol Microphysics and Radiation...Airborne Radiometric Measurements.’ Bucholtz, A. (as member of CRYSTAL-FACE Science Team), NASA 2003 Group Achievement Award to CRYSTAL-FACE

  18. Climatic impacts of anthropogenic aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Iversen, T. [Oslo Univ. (Norway)

    1996-03-01

    This paper was read at the workshop ``The Norwegian Climate and Ozone Research Programme`` held on 11-12 March 1996. Anthropogenic production of aerosols is mainly connected with combustion of fossil fuel. Measured by particulate mass, the anthropogenic sulphate production is the dominating source of aerosols in the Northern Hemisphere. Particles emitted in mechanical processes, fly ash etc. are less important because of their shorter atmospheric residence time. Possible climatological effects of anthropogenic aerosols are usually classified in two groups: direct and indirect. Direct effects are alterations of the radiative heating budget due to the aerosol particles in clear air. Indirect effects involve the interaction between particles and cloud processes. A simplified one-layer radiation model gave cooling in the most polluted mid-latitude areas and heating due to soot absorption in the Arctic. This differential trend in heating rates may have significant effects on atmospheric meridional circulations, which is important for the atmosphere as a thermodynamic system. Recently the description of sulphur chemistry in the hemispheric scale dispersion model has been improved and will be used in a model for Mie scattering and absorption

  19. Aerosol and monsoon climate interactions over Asia: AEROSOL AND MONSOON CLIMATE INTERACTIONS

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhanqing [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Lau, W. K. -M. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Ramanathan, V. [Department of Atmospheric and Climate Sciences, University of California, San Diego California USA; Wu, G. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Ding, Y. [National Climate Center, China Meteorological Administration, Beijing China; Manoj, M. G. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Liu, J. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Qian, Y. [Pacific Northwest National Laboratory, Richland Washington USA; Li, J. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Zhou, T. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Fan, J. [Pacific Northwest National Laboratory, Richland Washington USA; Rosenfeld, D. [Institute of Earth Sciences, Hebrew University, Jerusalem Israel; Ming, Y. [Geophysical Fluid Dynamic Laboratory, NOAA, Princeton New Jersey USA; Wang, Y. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena California USA; Huang, J. [College of Atmospheric Sciences, Lanzhou University, Lanzhou China; Wang, B. [Department of Atmospheric Sciences, University of Hawaii, Honolulu Hawaii USA; School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing China; Xu, X. [Chinese Academy of Meteorological Sciences, Beijing China; Lee, S. -S. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Cribb, M. [Department of Atmospheric and Oceanic Science and ESSIC, University of Maryland, College Park Maryland USA; Zhang, F. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Yang, X. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Zhao, C. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Takemura, T. [Research Institute for Applied Mechanics, Kyushu University, Fukuoka Japan; Wang, K. [State Key Laboratory of Earth Surface Processes and Resource Ecology and College of Global Change and Earth System Science, Beijing Normal University, Beijing China; Xia, X. [Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing China; Yin, Y. [School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing China; Zhang, H. [National Climate Center, China Meteorological Administration, Beijing China; Guo, J. [Chinese Academy of Meteorological Sciences, Beijing China; Zhai, P. M. [Chinese Academy of Meteorological Sciences, Beijing China; Sugimoto, N. [National Institute for Environmental Studies, Tsukuba Japan; Babu, S. S. [Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram India; Brasseur, G. P. [Max Planck Institute for Meteorology, Hamburg Germany

    2016-11-15

    Asian monsoons and aerosols have been studied extensively which are intertwined in influencing the climate of Asia. This paper provides a comprehensive review of ample studies on Asian aerosol, monsoon and their interactions. The region is the primary source of aerosol emissions of varies species, influenced by distinct weather and climatic regimes. On continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulation. The atmospheric thermodynamic state may also be altered by the aerosol serving as cloud condensation nuclei or ice nuclei. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of numerous monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from biomass burning, and biogenic aerosols from vegetation are considered integral components of an intrinsic aerosol-monsoon climate system, subject to external forcings of global warming, anthropogenic aerosols, and land use and change. Future research on aerosol-monsoon interactions calls for an integrated approach and international collaborations based on long-term sustained observations, process measurements, and improved models, as well as using observations to constrain model simulations and projections.

  20. Retrieval of aerosol optical properties from OMI radiances using a multiwavelength algorithm : Application to Western Europe

    NARCIS (Netherlands)

    Curier, R.L.; Veefkind, J.P.; Braak, R.; Veihelmann, B.; Torres, O.; Leeuw, G. de

    2008-01-01

    The Ozone Monitoring Instrument (OMI) multiwavelength algorithm has been developed to retrieve aerosol optical depth using OMI-measured reflectance at the top of the atmosphere. This algorithm was further developed by using surface reflectance data from a field campaign in Cabauw (The Netherlands),

  1. Aerosol Absorption Measurements in MILAGRO.

    Science.gov (United States)

    Gaffney, J. S.; Marley, N. A.; Arnott, W. P.; Paredes-Miranda, L.; Barnard, J. C.

    2007-12-01

    During the month of March 2006, a number of instruments were used to determine the absorption characteristics of aerosols found in the Mexico City Megacity and nearby Valley of Mexico. These measurements were taken as part of the Department of Energy's Megacity Aerosol Experiment - Mexico City (MAX-Mex) that was carried out in collaboration with the Megacity Interactions: Local and Global Research Observations (MILAGRO) campaign. MILAGRO was a joint effort between the DOE, NSF, NASA, and Mexican agencies aimed at understanding the impacts of a megacity on the urban and regional scale. A super-site was operated at the Instituto Mexicano de Petroleo in Mexico City (designated T-0) and at the Universidad Technologica de Tecamac (designated T-1) that was located about 35 km to the north east of the T-0 site in the State of Mexico. A third site was located at a private rancho in the State of Hidalgo approximately another 35 km to the northeast (designated T-2). Aerosol absorption measurements were taken in real time using a number of instruments at the T-0 and T-1 sites. These included a seven wavelength aethalometer, a multi-angle absorption photometer (MAAP), and a photo-acoustic spectrometer. Aerosol absorption was also derived from spectral radiometers including a multi-filter rotating band spectral radiometer (MFRSR). The results clearly indicate that there is significant aerosol absorption by the aerosols in the Mexico City megacity region. The absorption can lead to single scattering albedo reduction leading to values below 0.5 under some circumstances. The absorption is also found to deviate from that expected for a "well-behaved" soot anticipated from diesel engine emissions, i.e. from a simple 1/lambda wavelength dependence for absorption. Indeed, enhanced absorption is seen in the region of 300-450 nm in many cases, particularly in the afternoon periods indicating that secondary organic aerosols are contributing to the aerosol absorption. This is likely due

  2. Vertical distribution of aerosols in Mexico City during MILAGRO-2006 campaign

    Directory of Open Access Journals (Sweden)

    P. A. Lewandowski

    2009-03-01

    Full Text Available On 7 March 2006, a mobile, ground-based, vertical pointing, elastic lidar system made a North-South transect through the Mexico City basin. Aerosol size distribution measurements, made concurrently, allowed calculation of the mass extinction efficiency (MEE for the lidar system (1064 nm. MEE combined with an inverted lidar extinction coefficient resulted in total aerosol vertical mass estimates with 1.5 m vertical spatial and 1 s temporal resolution.

    The results showed that the aerosol loading within the basin is about twice what is observed outside of the basin. The total aerosol base concentrations observed in the basin are of the order of 200 μg/m3 and the base levels outside are of the order of 100 μg/m3. The local heavy traffic events can introduce aerosol levels near the ground as high as 900 μg/m3. The lidar-based total aerosol loading compares with the hourly-averaged PM10 ground observations conducted by the RAMA monitoring network throughout Mexico City.

  3. Tracking of urban aerosols using combined lidar-based remote sensing and ground-based measurements

    Directory of Open Access Journals (Sweden)

    T.-Y. He

    2011-10-01

    Full Text Available A measuring campaign was performed over the neighboring towns of Nova Gorica in Slovenia and Gorizia in Italy on 24 and 25 May 2010, to investigate the concentration and distribution of urban aerosols. Tracking of two-dimensional spatial and temporal aerosol distributions was performed using scanning elastic lidar operating at 1064 nm. In addition, PM10 concentrations of particles, NOx and meteorological data were continuously monitored within the lidar scanning region. Based on the collected data, we investigated the flow dynamics and the aerosol concentrations within the lower troposphere and an evidence for daily aerosol cycles. We observed a number of cases with spatially localized increased lidar returns, which were found to be due to the presence of point sources of particulate matter. Daily aerosol concentration cycles were also clearly visible with a peak in aerosol concentration during the morning rush hours and daily maximum at around 17:00 Central European Time. We also found that the averaged horizontal atmospheric extinction within the scanning region 200 m above the ground is correlated to the PM10 concentration at the ground level with a correlation coefficient of 0.64, which may be due to relatively quiet meteorological conditions and basin-like terrain configuration.

  4. Direct radiative effect of aerosols based on PARASOL and OMI satellite observations

    Science.gov (United States)

    Lacagnina, Carlo; Hasekamp, Otto P.; Torres, Omar

    2017-02-01

    Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is -4.6 ± 1.5 W/m2 for cloud-free and -2.1 ± 0.7 W/m2 for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

  5. Direct Radiative Effect of Aerosols Based on PARASOL and OMI Satellite Observations

    Science.gov (United States)

    Lacagnina, Carlo; Hasekamp, Otto P.; Torres, Omar

    2017-01-01

    Accurate portrayal of the aerosol characteristics is crucial to determine aerosol contribution to the Earth's radiation budget. We employ novel satellite retrievals to make a new measurement-based estimate of the shortwave direct radiative effect of aerosols (DREA), both over land and ocean. Global satellite measurements of aerosol optical depth, single-scattering albedo (SSA), and phase function from PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) are used in synergy with OMI (Ozone Monitoring Instrument) SSA. Aerosol information is combined with land-surface bidirectional reflectance distribution function and cloud characteristics from MODIS (Moderate Resolution Imaging Spectroradiometer) satellite products. Eventual gaps in observations are filled with the state-of-the-art global aerosol model ECHAM5-HAM2. It is found that our estimate of DREA is largely insensitive to model choice. Radiative transfer calculations show that DREA at top-of-atmosphere is -4.6 +/- 1.5 W/sq m for cloud-free and -2.1 +/- 0.7 W/sq m for all-sky conditions, during year 2006. These fluxes are consistent with, albeit generally less negative over ocean than, former assessments. Unlike previous studies, our estimate is constrained by retrievals of global coverage SSA, which may justify different DREA values. Remarkable consistency is found in comparison with DREA based on CERES (Clouds and the Earth's Radiant Energy System) and MODIS observations.

  6. Studies of aerosol optical depth with use of Microtops sun photometers and MODIS detectors

    Science.gov (United States)

    Makuch, Przemyslaw; Zawadzka, Olga; Markowicz, Krzystof M.; Zielinski, Tymon; Petelski, Tomasz; Strzalkowska, Agata; Rozwadowska, Anna; Gutowska, Dorota

    2013-04-01

    We would like to describe the results of a research campaign aimed at the studies of aerosol optical properties in the regions of the open Baltic Sea as well as coastal areas. During the campaign we carried out simultaneous measurements of aerosol optical depth at 4 stations with use of the hand-held Microtops II sunphotometers. The studies were complemented with the MODIS aerosol data. In order to obtain the full picture of the aerosol situation over the study area we added air mass back-trajectories at various altitudes and wind fields. Such complex information facilitated the proper conclusions regarding aerosol optical depth and Angstroem exponent for the four locations and discussion of the changes of aerosol properties with distance and meteorological factors. We show that Microtops II sunphotometers are reliable instruments for field campaigns. They are easy to operate and provide good quality results. Acknowledgements: The support for this study was provided by the project Satellite Monitoring of the Baltic Sea Environment - SatBałtyk founded by European Union through European Regional Development Fund contract No. POIG 01.01.02-22-011/09.

  7. Real-time measurement of aerosol particle concentration at high temperatures; Hiukkaspitoisuuden reaaliaikainen mittaaminen korkeassa laempoetilassa

    Energy Technology Data Exchange (ETDEWEB)

    Keskinen, J.; Hautanen, J.; Laitinen, A. [Tampere Univ. of Technology (Finland). Physics

    1997-10-01

    The aim of this project is to develop a new method for continuous aerosol particle concentration measurement at elevated temperatures (up to 800-1000 deg C). The measured property of the aerosol particles is the so called Fuchs surface area. This quantity is relevant for diffusion limited mass transfer to particles. The principle of the method is as follows. First, aerosol particles are charged electrically by diffusion charging process. The charging takes place at high temperature. After the charging, aerosol is diluted and cooled. Finally, aerosol particles are collected and the total charge carried by the aerosol particles is measured. Particle collection and charge measurement take place at low temperature. Benefits of this measurement method are: particles are charged in-situ, charge of the particles is not affected by the temperature and pressure changes after sampling, particle collection and charge measurement are carried out outside the process conditions, and the measured quantity is well defined. The results of this study can be used when the formation of the fly ash particles is studied. Another field of applications is the study and the development of gasification processes. Possibly, the method can also be used for the monitoring the operation of the high temperature particle collection devices. (orig.)

  8. Aerosol classification by airborne high spectral resolution lidar observations

    Directory of Open Access Journals (Sweden)

    S. Groß

    2012-10-01

    Full Text Available During four aircraft field experiments with the DLR research aircraft Falcon in 1998 (LACE, 2006 (SAMUM-1 and 2008 (SAMUM-2 and EUCAARI, airborne High Spectral Resolution Lidar (HSRL and in situ measurements of aerosol microphysical and optical properties were performed. Altogether, the properties of six different aerosol types and aerosol mixtures – Saharan mineral dust, Saharan dust mixtures, Canadian biomass burning aerosol, African biomass burning aerosol, anthropogenic pollution aerosol, and marine aerosol have been studied. On the basis of this extensive HSRL data set, we present an aerosol classification scheme which is also capable to identify mixtures of different aerosol types. We calculated mixing lines that allowed us to determine the contributing aerosol types. The aerosol classification scheme was validated with in-situ measurements and backward trajectory analyses. Our results demonstrate that the developed aerosol mask is capable to identify complex stratifications with different aerosol types throughout the atmosphere.

  9. Estimation of aerosol optical depth at different wavelengths by multiple regression method.

    Science.gov (United States)

    Tan, Fuyi; Lim, Hwee San; Abdullah, Khiruddin; Holben, Brent

    2016-02-01

    This study aims to investigate and establish a suitable model that can help to estimate aerosol optical depth (AOD) in order to monitor aerosol variations especially during non-retrieval time. The relationship between actual ground measurements (such as air pollution index, visibility, relative humidity, temperature, and pressure) and AOD obtained with a CIMEL sun photometer was determined through a series of statistical procedures to produce an AOD prediction model with reasonable accuracy. The AOD prediction model calibrated for each wavelength has a set of coefficients. The model was validated using a set of statistical tests. The validated model was then employed to calculate AOD at different wavelengths. The results show that the proposed model successfully predicted AOD at each studied wavelength ranging from 340 nm to 1020 nm. To illustrate the application of the model, the aerosol size determined using measure AOD data for Penang was compared with that determined using the model. This was done by examining the curvature in the ln [AOD]-ln [wavelength] plot. Consistency was obtained when it was concluded that Penang was dominated by fine mode aerosol in 2012 and 2013 using both measured and predicted AOD data. These results indicate that the proposed AOD prediction model using routine measurements as input is a promising tool for the regular monitoring of aerosol variation during non-retrieval time.

  10. Aerosol and monsoon climate interactions over Asia

    Science.gov (United States)

    Li, Zhanqing; Lau, W. K.-M.; Ramanathan, V.; Wu, G.; Ding, Y.; Manoj, M. G.; Liu, J.; Qian, Y.; Li, J.; Zhou, T.; Fan, J.; Rosenfeld, D.; Ming, Y.; Wang, Y.; Huang, J.; Wang, B.; Xu, X.; Lee, S.-S.; Cribb, M.; Zhang, F.; Yang, X.; Zhao, C.; Takemura, T.; Wang, K.; Xia, X.; Yin, Y.; Zhang, H.; Guo, J.; Zhai, P. M.; Sugimoto, N.; Babu, S. S.; Brasseur, G. P.

    2016-12-01

    The increasing severity of droughts/floods and worsening air quality from increasing aerosols in Asia monsoon regions are the two gravest threats facing over 60% of the world population living in Asian monsoon regions. These dual threats have fueled a large body of research in the last decade on the roles of aerosols in impacting Asian monsoon weather and climate. This paper provides a comprehensive review of studies on Asian aerosols, monsoons, and their interactions. The Asian monsoon region is a primary source of emissions of diverse species of aerosols from both anthropogenic and natural origins. The distributions of aerosol loading are strongly influenced by distinct weather and climatic regimes, which are, in turn, modulated by aerosol effects. On a continental scale, aerosols reduce surface insolation and weaken the land-ocean thermal contrast, thus inhibiting the development of monsoons. Locally, aerosol radiative effects alter the thermodynamic stability and convective potential of the lower atmosphere leading to reduced temperatures, increased atmospheric stability, and weakened wind and atmospheric circulations. The atmospheric thermodynamic state, which determines the formation of clouds, convection, and precipitation, may also be altered by aerosols serving as cloud condensation nuclei or ice nuclei. Absorbing aerosols such as black carbon and desert dust in Asian monsoon regions may also induce dynamical feedback processes, leading to a strengthening of the early monsoon and affecting the subsequent evolution of the monsoon. Many mechanisms have been put forth regarding how aerosols modulate the amplitude, frequency, intensity, and phase of different monsoon climate variables. A wide range of theoretical, observational, and modeling findings on the Asian monsoon, aerosols, and their interactions are synthesized. A new paradigm is proposed on investigating aerosol-monsoon interactions, in which natural aerosols such as desert dust, black carbon from

  11. Incremental Reactivity Effects on Secondary Organic Aerosol Formation in Urban Atmospheres with and without Biogenic Influence

    Science.gov (United States)

    Kacarab, Mary; Li, Lijie; Carter, William P. L.; Cocker, David R., III

    2016-04-01

    Two different surrogate mixtures of anthropogenic and biogenic volatile organic compounds (VOCs) were developed to study secondary organic aerosol (SOA) formation at atmospheric reactivities similar to urban regions with varying biogenic influence levels. Environmental chamber simulations were designed to enable the study of the incremental aerosol formation from select anthropogenic (m-Xylene, 1,2,4-Trimethylbenzene, and 1-Methylnaphthalene) and biogenic (α-pinene) precursors under the chemical reactivity set by the two different surrogate mixtures. The surrogate reactive organic gas (ROG) mixtures were based on that used to develop the maximum incremental reactivity (MIR) factors for evaluation of O3 forming potential. Multiple incremental aerosol formation experiments were performed in the University of California Riverside (UCR) College of Engineering Center for Environmental Research and Technology (CE-CERT) dual 90m3 environmental chambers. Incremental aerosol yields were determined for each of the VOCs studied and compared to yields found from single precursor studies. Aerosol physical properties of density, volatility, and hygroscopicity were monitored throughout experiments. Bulk elemental chemical composition from high-resolution time of flight aerosol mass spectrometer (HR-ToF-AMS) data will also be presented. Incremental yields and SOA chemical and physical characteristics will be compared with data from previous single VOC studies conducted for these aerosol precursors following traditional VOC/NOx chamber experiments. Evaluation of the incremental effects of VOCs on SOA formation and properties are paramount in evaluating how to best extrapolate environmental chamber observations to the ambient atmosphere and provides useful insights into current SOA formation models. Further, the comparison of incremental SOA from VOCs in varying surrogate urban atmospheres (with and without strong biogenic influence) allows for a unique perspective on the impacts

  12. Aerosol characterization over the North China Plain: Haze life cycle and biomass burning impacts in summer

    Science.gov (United States)

    Sun, Yele; Jiang, Qi; Xu, Yisheng; Ma, Yan; Zhang, Yingjie; Liu, Xingang; Li, Weijun; Wang, Fei; Li, Jie; Wang, Pucai; Li, Zhanqing

    2016-03-01

    The North China Plain experiences frequent severe haze pollution during all seasons. Here we present the results from a summer campaign that was conducted at Xianghe, a suburban site located between the megacities of Beijing and Tianjin. Aerosol particle composition was measured in situ by an Aerosol Chemical Speciation Monitor along with a suite of collocated measurements during 1-30 June 2013. Our results showed that aerosol composition at the suburban site was overall similar to that observed in Beijing, which was mainly composed of organics (39%), nitrate (20%), and sulfate (18%). Positive matrix factorization of organic aerosol (OA) identified four OA factors with different sources and processes. While secondary organic aerosol dominated OA, on average accounting for 70%, biomass burning OA (BBOA) was also observed to have a considerable contribution (11%) for the entire study period. The contribution of BBOA was increased to 21% during the BB period in late June, indicating a large impact of agricultural burning on air pollution in summer. Biomass burning also exerted a significant impact on aerosol optical properties. It was estimated that ~60% enhancement of absorption at the ultraviolet spectral region was caused by the organic compounds from biomass burning. The formation mechanisms and sources of severe haze pollution episodes were investigated in a case study. The results highlighted two different mechanisms, i.e., regional transport and local sources, driving the haze life cycles differently in summer in the North China Plain. While secondary aerosol species dominated aerosol composition in the episode from regional transport, organics and black carbon comprised the major fraction in the locally formed haze episode.

  13. Preliminary characterization of submicron secondary aerosol in the amazon forest - ATTO station

    Science.gov (United States)

    Carbone, S.; Ferreira De Brito, J.; Andreae, M. O.; Pöhlker, C.; Chi, X.; Saturno, J.; Barbosa, H. M.; Artaxo, P.

    2014-12-01

    Biogenic secondary organic aerosol particles are investigated in the Amazon in the context of the GoAmazon Project. The forest naturally emits a large number of gaseous compounds; they are called the volatile organic compounds (VOCs). They are emitted through processes that are not totally understood. Part of those gaseous compounds are converted into aerosol particles, which affect the biogeochemical cycles, the radiation balance, the mechanisms involving cloud formation and evolution, among few other important effects. In this study the aerosol life-cycle is investigated at the ATTO station, which is located about 150 km northeast of Manaus, with emphasis on the natural organic component and its impacts in the ecosystem. To achieve these objectives physical and chemical aerosol properties have been investigated, such as the chemical composition with aerosol chemical speciation monitor (ACSM), nanoparticle size distribution (using the SMPS - Scanning Mobility Particle Sizer), optical properties with measurements of scattering and absorption (using nephelometers and aethalometers). Those instruments have been operating continuously since February 2014 together with trace gases (O3, CO2, CO, SO2 and NOx) analyzers and additional meteorological instruments. On average PM1 (the sum of black carbon, organic and inorganic ions) totalized 1.0±0.3 μg m-3, where the organic fraction was dominant (75%). During the beginning of the dry season (July/August) the organic aerosol presented a moderate oxygenated character with the oxygen to carbon ratio (O:C) of 0.7. In the wet season some episodes containing significant amount of chloride and backward wind trajectories suggest aerosol contribution from the Atlantic Ocean. A more comprehensive analysis will include an investigation of the different oxidized fractions of the organic aerosol and optical properties.

  14. Observation operator for the assimilation of aerosol type resolving satellite measurements into a chemical transport model

    Directory of Open Access Journals (Sweden)

    M. Schroedter-Homscheidt

    2010-11-01

    Full Text Available Modelling of aerosol particles with chemical transport models is still based mainly on static emission databases while episodic emissions cannot be treated sufficiently. To overcome this situation, a coupling of chemical mass concentration modelling with satellite-based measurements relying on physical and optical principles has been developed. This study deals with the observation operator for a component-wise assimilation of satellite measurements. It treats aerosol particles classified into water soluble, water insoluble, soot, sea salt and mineral dust containing aerosol particles in the atmospheric boundary layer as separately assimilated aerosol components. It builds on a mapping of aerosol classes used both in observation and model space taking their optical and chemical properties into account. Refractive indices for primary organic carbon particles, anthropogenic particles, and secondary organic species have been defined based on a literature review. Together with a treatment of different size distributions in observations and model state, this allows transforming the background from mass concentrations into aerosol optical depths. A two-dimensional, variational assimilation is applied for component-wise aerosol optical depths. Error covariance matrices are defined based on a validation against AERONET sun photometer measurements. Analysis fields are assessed threefold: (1 through validation against AERONET especially in Saharan dust outbreak situations, (2 through comparison with the British Black Smoke and Sulphur Dioxide Network for soot-containing particles, and (3 through comparison with measurements of the water soluble components SO4, NH4, and NO3 conducted by the EMEP (European Monitoring and Evaluation Programme network. Separately, for the water soluble, the soot and the mineral dust aerosol components a bias reduction and subsequent a root mean square error reduction is observed in the

  15. Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC) Project

    Science.gov (United States)

    Brock, C. A.; Cozic, J.; Bahreini, R.; Froyd, K. D.; Middlebrook, A. M.; McComiskey, A.; Brioude, J.; Cooper, O. R.; Stohl, A.; Aikin, K. C.; de Gouw, J. A.; Fahey, D. W.; Ferrare, R. A.; Gao, R.-S.; Gore, W.; Holloway, J. S.; Hübler, G.; Jefferson, A.; Lack, D. A.; Lance, S.; Moore, R. H.; Murphy, D. M.; Nenes, A.; Novelli, P. C.; Nowak, J. B.; Ogren, J. A.; Peischl, J.; Pierce, R. B.; Pilewskie, P.; Quinn, P. K.; Ryerson, T. B.; Schmidt, K. S.; Schwarz, J. P.; Sodemann, H.; Spackman, J. R.; Stark, H.; Thomson, D. S.; Thornberry, T.; Veres, P.; Watts, L. A.; Warneke, C.; Wollny, A. G.

    2011-03-01

    We present an overview of the background, scientific goals, and execution of the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC) project of April 2008. We then summarize airborne measurements, made in the troposphere of the Alaskan Arctic, of aerosol particle size distributions, composition, and optical properties and discuss the sources and transport of the aerosols. The aerosol data were grouped into four categories based on gas-phase composition. First, the background troposphere contained a relatively diffuse, sulfate-rich aerosol extending from the top of the sea-ice inversion layer to 7.4 km altitude. Second, a region of depleted (relative to the background) aerosol was present within the surface inversion layer over sea-ice. Third, layers of dense, organic-rich smoke from open biomass fires in southern Russia and southeastern Siberia were frequently encountered at all altitudes from the top of the inversion layer to 7.1 km. Finally, some aerosol layers were dominated by components originating from fossil fuel combustion. Of these four categories measured during ARCPAC, the diffuse background aerosol was most similar to the average springtime aerosol properties observed at a long-term monitoring site at Barrow, Alaska. The biomass burning (BB) and fossil fuel layers were present above the sea-ice inversion layer and did not reach the sea-ice surface during the course of the ARCPAC measurements. The BB aerosol layers were highly scattering and were moderately hygroscopic. On average, the layers produced a noontime net heating of ~0.1 K day-1 between 3 and 7 km and a slight cooling at the surface. The ratios of particle mass to carbon monoxide (CO) in the BB plumes, which had been transported over distances >5000 km, were comparable to the high end of literature values derived from previous measurements in wildfire smoke. These ratios suggest minimal precipitation scavenging and removal of the BB particles between the time they were

  16. Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic Climate (ARCPAC Project

    Directory of Open Access Journals (Sweden)

    C. A. Brock

    2011-03-01

    Full Text Available We present an overview of the background, scientific goals, and execution of the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC project of April 2008. We then summarize airborne measurements, made in the troposphere of the Alaskan Arctic, of aerosol particle size distributions, composition, and optical properties and discuss the sources and transport of the aerosols. The aerosol data were grouped into four categories based on gas-phase composition. First, the background troposphere contained a relatively diffuse, sulfate-rich aerosol extending from the top of the sea-ice inversion layer to 7.4 km altitude. Second, a region of depleted (relative to the background aerosol was present within the surface inversion layer over sea-ice. Third, layers of dense, organic-rich smoke from open biomass fires in southern Russia and southeastern Siberia were frequently encountered at all altitudes from the top of the inversion layer to 7.1 km. Finally, some aerosol layers were dominated by components originating from fossil fuel combustion.

    Of these four categories measured during ARCPAC, the diffuse background aerosol was most similar to the average springtime aerosol properties observed at a long-term monitoring site at Barrow, Alaska. The biomass burning (BB and fossil fuel layers were present above the sea-ice inversion layer and did not reach the sea-ice surface during the course of the ARCPAC measurements. The BB aerosol layers were highly scattering and were moderately hygroscopic. On average, the layers produced a noontime net heating of ~0.1 K day−1 between 3 and 7 km and a slight cooling at the surface. The ratios of particle mass to carbon monoxide (CO in the BB plumes, which had been transported over distances >5000 km, were comparable to the high end of literature values derived from previous measurements in wildfire smoke. These ratios suggest minimal precipitation scavenging and removal of the BB

  17. Characteristics, sources, and transport of aerosols measured in spring 2008 during the aerosol, radiation, and cloud processes affecting Arctic climate (ARCPAC project

    Directory of Open Access Journals (Sweden)

    C. A. Brock

    2010-11-01

    Full Text Available We present an overview of the background, scientific goals, and execution of the Aerosol, Radiation, and Cloud Processes affecting Arctic Climate (ARCPAC project of April 2008. We then summarize airborne measurements, made in the troposphere of the Alaskan Arctic, of aerosol particle size distributions, composition, and optical properties and discuss the sources and transport of the aerosols. The aerosol data were grouped into four categories based on gas-phase composition. First, the background troposphere contained a relatively diffuse, sulfate-rich aerosol extending from the top of the sea-ice inversion layer to 7.4 km altitude. Second, a region of depleted (relative to the background aerosol was present within the surface inversion layer over sea-ice. Third, layers of dense, organic-rich smoke from open biomass fires in Southern Russia and Southeastern Siberia were frequently encountered at all altitudes from the top of the inversion layer to 7.1 km. Finally, some aerosol layers were dominated by components originating from fossil fuel combustion.

    Of these four categories measured during ARCPAC, the diffuse background aerosol was most similar to the average springtime aerosol properties observed at a long-term monitoring site at Barrow, Alaska. The biomass burning (BB and fossil fuel layers were present above the sea-ice inversion layer and did not reach the sea-ice surface during the course of the ARCPAC measurements. The BB aerosol layers were highly scattering and were moderately hygroscopic. On average, the layers produced a noontime net heating of ~0.1 K day−1 between 2 and 7 km and a~slight cooling at the surface. The ratios of particle mass to carbon monoxide (CO in the BB plumes, which had been transported over distances >5000 km, were comparable to the high end of literature values derived from previous measurements in fresh wildfire smoke. These ratios suggest minimal precipitation scavenging and removal of

  18. Toxicity of atmospheric aerosols on marine phytoplankton

    Science.gov (United States)

    Paytan, A.; Mackey, K.R.M.; Chen, Y.; Lima, I.D.; Doney, S.C.; Mahowald, N.; Labiosa, R.; Post, A.F.

    2009-01-01

    Atmospheric aerosol deposition is an important source of nutrients and trace metals to the open ocean that can enhance ocean productivity and carbon sequestration and thus influence atmospheric carbon dioxide concentrations and climate. Using aerosol samples from different back trajectories in incubation experiments with natural communities, we demonstrate that the response of phytoplankton growth to aerosol additions depends on specific components in aerosols and differs across phytoplankton species. Aerosol additions enhanced growth by releasing nitrogen and phosphorus, but not all aerosols stimulated growth. Toxic effects were observed with some aerosols, where the toxicity affected picoeukaryotes and Synechococcus but not Prochlorococcus.We suggest that the toxicity could be due to high copper concentrations in these aerosols and support this by laboratory copper toxicity tests preformed with Synechococcus cultures. However, it is possible that other elements present in the aerosols or unknown synergistic effects between these elements could have also contributed to the toxic effect. Anthropogenic emissions are increasing atmospheric copper deposition sharply, and based on coupled atmosphere-ocean calculations, we show that this deposition can potentially alter patterns of marine primary production and community structure in high aerosol, low chlorophyll areas, particularly in the Bay of Bengal and downwind of South and East Asia.

  19. Marine Aerosols: Hygroscopocity and Aerosol-Cloud Relationships

    Science.gov (United States)

    2012-09-30

    large eddy simulation (LES) and field measurements, the latter including Twin Otter missions such as MASE I and MASE II and those involving other...continuous spectral aerosol-droplet microphysics model is presented and implemented into the Weather Research and Forecasting (WRF) model for large- eddy ...Dey, A. Sorooshian, F. J. Brechtel, Z. Wang, A. Metcalf , M. Coggon, J. Mulmenstadt, L. M. Russell, H. H. Jonsson, and J. H. Seinfeld, Atmos. Meas

  20. Do atmospheric aerosols form glasses?

    Science.gov (United States)

    Zobrist, B.; Marcolli, C.; Pedernera, D. A.; Koop, T.

    2008-09-01

    A new process is presented by which water soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline) solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular diffusion practically ceases. The glass transition temperatures, Tg, homogeneous ice nucleation temperatures, Thom, and ice melting temperatures, Tm, of various aqueous inorganic, organic and multi-component solutions are investigated with a differential scanning calorimeter. The investigated solutes are: various polyols, glucose, raffinose, levoglucosan, an aromatic compound, sulfuric acid, ammonium bisulfate and mixtures of dicarboxylic acids (M5), of dicarboxylic acids and ammonium sulfate (M5AS), of two polyols, of glucose and ammonium nitrate, and of raffinose and M5AS. The results indicate that aqueous solutions of the investigated inorganic solutes show Tg values that are too low to be of atmospheric importance. In contrast, aqueous organic and multi-component solutions readily form glasses at low but atmospherically relevant temperatures (≤230 K). To apply the laboratory data to the atmospheric situation, the measured phase transition temperatures were transformed from a concentration to a water activity scale by extrapolating water activities determined between 252 K and 313 K to lower temperatures. The obtained state diagrams reveal that the higher the molar mass of the aqueous organic or multi-component solutes, the higher Tg of their respective solutions at a given water activity. To a lesser extent, Tg also depends on the hydrophilicity of the organic solutes. Therefore, aerosol particles containing larger (≳150 g mol-1) and more hydrophobic organic molecules are more likely to form glasses at intermediate to high relative humidities in the upper troposphere

  1. Do atmospheric aerosols form glasses?

    Directory of Open Access Journals (Sweden)

    D. A. Pedernera

    2008-09-01

    Full Text Available A new process is presented by which water soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular diffusion practically ceases. The glass transition temperatures, Tg, homogeneous ice nucleation temperatures, Thom, and ice melting temperatures, Tm, of various aqueous inorganic, organic and multi-component solutions are investigated with a differential scanning calorimeter. The investigated solutes are: various polyols, glucose, raffinose, levoglucosan, an aromatic compound, sulfuric acid, ammonium bisulfate and mixtures of dicarboxylic acids (M5, of dicarboxylic acids and ammonium sulfate (M5AS, of two polyols, of glucose and ammonium nitrate, and of raffinose and M5AS. The results indicate that aqueous solutions of the investigated inorganic solutes show Tg values that are too low to be of atmospheric importance. In contrast, aqueous organic and multi-component solutions readily form glasses at low but atmospherically relevant temperatures (≤230 K. To apply the laboratory data to the atmospheric situation, the measured phase transition temperatures were transformed from a concentration to a water activity scale by extrapolating water activities determined between 252 K and 313 K to lower temperatures. The obtained state diagrams reveal that the higher the molar mass of the aqueous organic or multi-component solutes, the higher Tg of their respective solutions at a given water activity. To a lesser extent, Tg also depends on the hydrophilicity of the organic solutes. Therefore, aerosol particles containing larger (≳150 g mol−1 and

  2. Do atmospheric aerosols form glasses?

    Directory of Open Access Journals (Sweden)

    B. Zobrist

    2008-05-01

    Full Text Available A new process is presented by which water-soluble organics might influence ice nucleation, ice growth, chemical reactions and water uptake of aerosols in the upper troposphere: the formation of glassy aerosol particles. Glasses are disordered amorphous (non-crystalline solids that form when a liquid is cooled without crystallization until the viscosity increases exponentially and molecular diffusion practically ceases. The glass transition temperatures, Tg, homogeneous ice nucleation temperatures, Thom, and ice melting temperatures, Tm, of various aqueous inorganic, organic and multi-component solutions are investigated with a differential scanning calorimeter. The investigated solutes are: various polyols, glucose, raffinose, levoglucosan, an aromatic compound, sulfuric acid, ammonium bisulphate and mixtures of dicarboxylic acids (M5, of dicarboxylic acids and ammonium sulphate (M5AS, of two polyols, of glucose and ammonium nitrate, and of raffinose and M5AS. The results indicate that aqueous solutions of the investigated inorganic solutes show Tg-values that are too low to be of atmospheric importance. In contrast, aqueous organic and multi-component solutions readily form glasses at low but atmospherically relevant temperatures (≤230 K. To apply the laboratory data to the atmospheric situation, the measured phase transition temperatures were transformed from a concentration to a water activity scale by extrapolating water activities determined between 252 K and 313 K to lower temperatures. The obtained state diagrams reveal that the higher the molar mass of the aqueous organic or multi-component solutes, the higher Tg of their respective solutions at a given water activity. To a lesser extent, Tg also depends on the hydrophilicity of the organic solutes. Therefore, aerosol particles containing larger and more hydrophobic organic

  3. Aerosol Radiative Effects observed on the Coast of the Japanese Sea (Tango peninsula) during ACE-Asia

    Science.gov (United States)

    Hoeller, R.; Yabe, T.; Tohno, S.; Kasahara, M.

    2001-12-01

    The characterization of the optical properties of the atmospheric aerosol as well as its size-resolved chemical composition is on of the main objectives of ACE-Asia. This is necessary to constrain the radiative forcing by the Asian aerosol, which will become more important as emissions in this area are predicted to increase dramatically. We set up a monitoring station on the coast of the Japanese Sea (Tango Peninsula, Kyoto Prefecture) for the measurements of aerosol optical and chemical properties as well as sky radiation during ACE-Asia in spring 2001. The instrumentation at Tango includes a 3-wavelenght nephelometer (TSI 3563), an OPC (RION KC-01D), a pyrheliometer (EKO MS-53), a 5-wavelength sunphotometer (EKO MS-110A), and a pyranometer (EKO MS-801). The sunphotometer also has a near infrared channel (938 nm) for evaluations of precipitable water; visible channels are used to retrieve aerosol optical depth and Ångström exponents. Filter sampling is performed collocated to the optical measurements for subsequent analysis of elemental and ionic composition of the aerosol. Filters are also analyzed by the integrating plate method for measurements of aerosol absorption coefficients. Size-resolved chemical composition obtained from low-pressure impactor samples are used to calculate aerosol optical properties and compare them to directly measured optical properties. Quality checked parameters are henceforth input into a radiative transfer model (MODTRAN 4.0) to calculate the radiative forcing of the aerosol. This enables us to evaluate which chemical species control the optical properties and radiative forcing of the aerosol. We also compare the radiative impact of clear days with days with heavy dust loadings. >http://aerosol.energy.kyoto- u.ac.jp/~hoeller/ACEmineyama.html

  4. Cavity Attenuated Phase Shift (CAPS) Method for Airborne Aerosol Light Extinction Measurement: Instrument Validation and First Results from Field Deployment

    Science.gov (United States)

    Petzold, A.; Perim de Faria, J.; Berg, M.; Bundke, U.; Freedman, A.

    2015-12-01

    Monitoring the direct impact of aerosol particles on climate requires the continuous measurement of aerosol optical parameters like the aerosol extinction coefficient on a regular basis. Remote sensing and ground-based networks are well in place (e.g., AERONET, ACTRIS), whereas the regular in situ measurement of vertical profiles of atmospheric aerosol optical properties remains still an important challenge in quantifying climate change. The European Research Infrastructure IAGOS (In-service Aircraft for a Global Observing System; www.iagos.org) responds to the increasing requests for long-term, routine in situ observational data by using commercial passenger aircraft as measurement platform. However, scientific instrumentation for the measurement of atmospheric constituents requires major modifications before being deployable aboard in-service passenger aircraft. Recently, a compact and robust family of optical instruments based on the cavity attenuated phase shift (CAPS) technique has become available for measuring aerosol light extinction. While this technique was successfully deployed for ground-based atmospheric measurements under various conditions, its suitability for operation aboard aircraft in the free and upper free troposphere still has to be demonstrated. In this work, the modifications of a CAPS PMex instrument for measuring aerosol light extinction on aircraft, the results from subsequent laboratory tests for evaluating the modified instrument prototype, and first results from a field deployment aboard a research aircraft will be covered. In laboratory studies, the instrument showed excellent agreement (deviation < 5%) with theoretical values calculated from Rayleigh scattering cross-sections, when operated on pressurized air and CO2 at ambient and low pressure (~200 hPa). For monodisperse and polydisperse aerosols, reference aerosol extinction coefficients were calculated from measured size distributions and agreed with the CAPS PMex instrument

  5. MODIS Aerosol Optical Depth Bias Adjustment Using Machine Learning Algorithms

    Science.gov (United States)

    Albayrak, Arif; Wei, Jennifer; Petrenko, Maksym; Lary, David; Leptoukh, Gregory

    2011-01-01

    To monitor the earth atmosphere and its surface changes, satellite based instruments collect continuous data. While some of the data is directly used, some others such as aerosol properties are indirectly retrieved from the observation data. While retrieved variables (RV) form very powerful products, they don't come without obstacles. Different satellite viewing geometries, calibration issues, dynamically changing atmospheric and earth surface conditions, together with complex interactions between observed entities and their environment affect them greatly. This results in random and systematic errors in the final products.

  6. OH-initiated heterogeneous aging of highly oxidized organic aerosol

    Energy Technology Data Exchange (ETDEWEB)

    Kessler, Sean H.; Nah, Theodora; Daumit, Kelly E.; Smith, Jared D.; Leone, Stephen R.; Kolb, Charles E.; Worsnop, Douglas R.; Wilson, Kevin R.; Kroll, Jesse H.

    2011-12-05

    The oxidative evolution (“aging”) of organic species in the atmosphere is thought to have a major influence on the composition and properties of organic particulate matter, but remains poorly understood, particularly for the most oxidized fraction of the aerosol. Here we measure the kinetics and products of the heterogeneous oxidation of highly oxidized organic aerosol, with an aim of better constraining such atmospheric aging processes. Submicron particles composed of model oxidized organics—1,2,3,4-butanetetracarboxylic acid (C{sub 8}H{sub 10}O{sub 8}), citric acid (C{sub 6}H{sub 8}O{sub 7}), tartaric acid (C{sub 4}H{sub 6}O{sub 6}), and Suwannee River fulvic acid—were oxidized by gas-phase OH in a flow reactor, and the masses and elemental composition of the particles were monitored as a function of OH exposure. In contrast to our previous studies of less-oxidized model systems (squalane, erythritol, and levoglucosan), particle mass did not decrease significantly with heterogeneous oxidation. Carbon content of the aerosol always decreased somewhat, but this mass loss was approximately balanced by an increase in oxygen content. The estimated reactive uptake coefficients of the reactions range from 0.37 to 0.51 and indicate that such transformations occur at rates corresponding to 1-2 weeks in the atmosphere, suggesting their importance in the atmospheric lifecycle of organic particulate matter.

  7. Satellite observations of aerosol and CO over Mexico City

    Science.gov (United States)

    Massie, Steven T.; Gille, John C.; Edwards, David P.; Nandi, Sreela

    The development of remote sensing satellite technology potentially will lead to the technical means to monitor air pollution emitted from large cities on a global basis. This paper presents observations by the moderate resolution imaging spectroradiometer (MODIS) and measurements of pollution in the troposphere (MOPITT) experiments of aerosol optical depths and CO mixing ratios, respectively, in the vicinity of Mexico City to illustrate current satellite capabilities. MOPITT CO mixing ratios over Mexico City, averaged between January-March 2002-2005, are 19% above regional values and the CO plume extends over 10° 2 in the free troposphere at 500 hPa. Time series of Red Automatica de Monitoreo Ambiental (RAMA) PM10, and (Aerosol Robotic Network) AERONET and MODIS aerosol optical depths, and RAMA and MOPITT CO time series are inter-compared to illustrate the different perspectives of ground based and satellite instrumentation. Finally, we demonstrate, by examining MODIS and MOPITT data in April 2003, that satellite data can be used to identify episodes in which pollution form fires influences the time series of ground based and satellite observations of urban pollution.

  8. Aerosol and gamma background measurements at Basic Environmental Observatory Moussala

    Science.gov (United States)

    Angelov, Christo; Arsov, Todor; Penev, Ilia; Nikolova, Nina; Kalapov, Ivo; Georgiev, Stefan

    2016-03-01

    Trans boundary and local pollution, global climate changes and cosmic rays are the main areas of research performed at the regional Global Atmospheric Watch (GAW) station Moussala BEO (2925 m a.s.l., 42°10'45'' N, 23°35'07'' E). Real time measurements and observations are performed in the field of atmospheric chemistry and physics. Complex information about the aerosol is obtained by using a threewavelength integrating Nephelometer for measuring the scattering and backscattering coefficients, a continuous light absorption photometer and a scanning mobile particle sizer. The system for measuring radioactivity and heavy metals in aerosols allows us to monitor a large scale radioactive aerosol transport. The measurements of the gamma background and the gamma-rays spectrum in the air near Moussala peak are carried out in real time. The HYSPLIT back trajectory model is used to determine the origin of the data registered. DREAM code calculations [2] are used to forecast the air mass trajectory. The information obtained combined with a full set of corresponding meteorological parameters is transmitted via a high frequency radio telecommunication system to the Internet.

  9. Case report of latex aerosolization from a transesophageal echocardiogram machine.

    Science.gov (United States)

    Muller, Barbara A; Steelman, Victoria J

    2004-01-01

    Aerosolized natural rubber latex proteins produce latex sensitization and can cause acute allergic reactions in susceptible individuals. The objective of this study is to describe measures that should be taken to ensure a latex-safe hospital environment. A case of latex-induced anaphylaxis prompted a survey of air quality in acute care areas of a major tertiary health care center that had eliminated the use of powder-free latex gloves years earlier. Six air samples were collected using pre- and postcalibrated sampling pumps operating at 2.7 L/minute. Samples were collected in duplicate on three-piece 37-mm Teflon filters in open-faced cassettes and tested for latex allergen by inhibition immunoassay. All samples had less than the detection limit > 5 ng/m3 for aerosolized latex except for the echocardiogram suite where the transesophageal echocardiogram machine was located. After thorough cleaning of the suite and echocardiogram machine, subsequent air sampling showed no detectable latex aerosolization particles. Follow-up investigation to discover the source of contamination revealed that the department performing routine maintenance on the echocardiogram equipment used powdered latex gloves obtained outside the hospital. Employees who are latex allergic may experience symptoms even in an environment of powder-free, nonlatex gloves. The site was a contaminated transesophageal echocardiogram machine. Institutional policies should be in place to monitor employee complaints and address allergic reactions to latex.

  10. CCN activity of aliphatic amine secondary aerosol

    Directory of Open Access Journals (Sweden)

    X. Tang

    2014-01-01

    Full Text Available Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical. The particle composition can contain both secondary organic aerosol (SOA and inorganic salts. The fraction of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN activity. SOA formed from trimethylamine (TMA and butylamine (BA reactions with hydroxyl radical (OH is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ ≤ 0.25. Secondary aerosol formed from the tertiary aliphatic amine (TMA with N2O5 (source of nitrate radical, NO3, contains less volatile compounds than the primary aliphatic amine (BA aerosol. TMA + N2O5 form semi-volatile organics in low RH conditions that have κ ~ 0.20, indicative of slightly soluble organic material. As RH increases, several inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR ideal mixing rules. Higher CCN activity (κ > 0.3 was also observed for humid BA+N2O5 aerosols compared with dry aerosol (κ ~ 0.2, as a result of the formation of inorganic salts such as NH4NO3 and butylamine nitrate (C4H11N · HNO3. Compared with TMA, BA+N2O5 reactions produce more volatile aerosols. The BA+N2O5 aerosol products under humid experiments were found to be very sensitive to the temperature within the stream-wise continuous flow thermal gradient CCN counter. The CCN counter, when set above a 21 °C temperature difference, evaporates BA+N2O5 aerosol formed at RH ≥ 30%; κ ranges from 0.4 to 0.7 and is dependent on the instrument supersaturation (ss settings. The aerosol behaves non-ideally, hence simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems κ ranges from 0.2 < κ < 0.7. This work indicates that

  11. Inversion Techniques for Retrieving Detailed Aerosol Properties from Remote Sensing Observations: Achievements and Perspectives

    Science.gov (United States)

    Dubovik, O.

    2010-12-01

    The ability of aerosol particles to interact strongly with electromagnetic radiation makes aerosol one of most climatically important atmospheric component. Remote sensing using the same ability for characterizing properties of atmospheric aerosol is probably the most adequate observational approach for accessing aerosol effect in climatic studies. Indeed, the satellite remote sensing is unique technique allowing monitoring of time variability of the aerosol at regional and global scales. Compare to in situ and laboratory measurements, remote methods do not use aerosol sampling and allow accessing the properties of unperturbed ambient aerosol in the atmospheres. However, interpretation of the remote sensing observations involves data inversion that, in practice, often appears to be a sophisticated procedure leading to rather ambiguous results. Numerous publications offer a wide diversity of approaches suggesting somewhat different inversion methods. Such uncertainty in methodological guidance leads to excessive dependence of retrieval algorithms on the personalized input and preferences of the developer. This presentation highlights a continues effort on developing a concept clarifying the differences between various methods and outlining unified principles addressing such important aspects of inversion optimization as accounting for errors in the data used, inverting the data with different levels of accuracy, accounting for a priori and ancillary information, estimating retrieval errors, etc. The developed concept uses the principles of statistical estimation and suggests a generalized multi-term Least Square type formulation that complementarily unites advantages of a variety of practical inversion approaches, such as Phillips-Tikhonov-Twomey constrained inversion, Kalman filter, Newton-Gauss and Levenberg-Marquardt iterations, optimal estimation, etc. The concept will be demonstrated by successful implementations in several challenging aerosol remote sensing

  12. Marine Primary and Secondary Aerosol emissions related to seawater biogeochemistry

    Science.gov (United States)

    Sellegri, Karine; D'Anna, Barbara; Marchand, Nicolas; Charriere, Bruno; Sempere, Richard; Mas, Sebastien; Schwier, Allison; Rose, Clémence; Pey, Jorge; Langley Dewitt, Helen; Même, Aurélie; R'mili, Badr; George, Christian; Delmont, Anne

    2014-05-01

    Marine aerosol contributes significantly to the global aerosol load and consequently has an important impact on both the Earth's albedo and climate. Different factors influence the way they are produced from the sea water and transferred to the atmosphere. The sea state (whitecap coverage) and sea temperature influence the size and concentration of primarily produced particles but also biogeochemical characteristics of the sea water may influence both the physical and chemical fluxes. In order to study marine emissions, one approach is to use semicontrolled environments such as mesocosms. Within the SAM project (Sources of marine Aerosol in the Mediterranean), we characterize the primary Sea Salt Aerosol (SSA) and Secondary aerosol formation by nucleation during mesocosms experiments performed in May 2013 at the Oceanographic and Marine Station STARESO in western Corsica. We followed both water and air characteristics of three mesocosms containing an immerged part filled with 3,3 m3 of sea water and an emerged part filled with filtered natural air. Mesocosms were equipped with a pack of optical and physicochemical sensors and received different treatments: one of these mesocosms was left unchanged as control and the two others were enriched by addition of nitrates and phosphates respecting Redfield ratio (N:P = 16) in order to create different levels of phytoplanctonic activities. The set of sensors in each mesocosm was allowed to monitor the water temperature, conductivity, pH, incident light, fluorescence of chlorophyll a, and dissolved oxygen concentration. The mesocosms waters were daily sampled for chemical and biological (dissolved organic matter (i.e. DOC and CDOM), particulate matter and related polar compounds, transparent polysaccharides and nutrients concentration) and biological (chlorophyll a, virus, bacteria, phytoplankton and zooplankton concentrations) analyses. Secondary new particle formation was followed on-line in the emerged parts of the

  13. Synergistic analyses of optical and microphysical properties of agricultural crop residue burning aerosols over the Indo-Gangetic Basin (IGB)

    Science.gov (United States)

    Mishra, Amit Kumar; Shibata, Takashi

    2012-09-01

    Agriculture crop residue burning is one of the important sources of trace gas emissions and aerosol loading over the Indo-Gangetic Basin (IGB). The present study deals with the spatial variability including the vertical structure of optical and microphysical properties of aerosols, during the crop residue burning season (October and November) of 2009 over the IGB. Increased number of fire counts observed by MODIS (MODerate resolution Imaging Spectroradiometer) that is associated with high aerosol optical depth (MODIS-AOD > 0.7) and enhanced tropospheric columnar NO2 concentrations observed by OMI (Ozone Monitoring Instrument), suggests agriculture crop residue burning as a main source of aerosol loading over the IGB during October and November. PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Science coupled with Observations from a Lidar) observations show an increase in fine mode AOD (at 865 nm) from October (0.1-0.2) to November (0.2-0.3) over the IGB, which is well corroborated with MODIS observations. CALIOP (Cloud-Aerosol Lidar with Orthogonal Polarization) data shows the elevated aerosol plume (4.0-4.5 km) over the north-west IGB (associated with burning activities) that could have been caused by positive buoyancy through pyro-convection. However, large concentrations of aerosol were found below 1.0 km altitude. The averaged vertical structure of crop residue burning aerosols shows an exponential decrease with altitude (mean scale height ˜1.44 ± 0.20 km). Aerosol optical and microphysical properties coupled with backward air trajectories analyses at Kanpur indicated regional transport of biomass burning aerosols in a downwind direction from north-west IGB to south-east IGB. Aerosol classification, using AERONET (AErosol RObotic NETwork)-derived absorption properties coupled with size parameter (2006-2010) showed clear seasonal dependency of aerosol types which revealed the presence of biomass burning aerosols only during the crop

  14. Status on contamination monitoring in China

    Energy Technology Data Exchange (ETDEWEB)

    Gou Quanlu [China Institute for Radiation Protection, Taiyuan (China)

    1997-06-01

    The air contaminated by radioactive materials in nuclear enterprises and radioactive workplaces and forming radioactive aerosol and the leakage of radioactive materials in operation cause internal exposure damage in workers. It is necessary and important to monitor air and surface contaminations for the health of public and workers, and for protecting environment. At present, many institutes engage in the studies on surface contamination monitoring in China, and the government has formulated the control limits of surface contamination in the Regulations of Radiation Protection. The monitors for surface contamination monitoring are almost home-made. The methods being used often are smear test and placing surface sample test. Scintillation counters, semiconductor detectors and G-M counters have been used for detecting alpha surface contamination. Plastic scintillator meters and thin wall/window G-M counters are used for beta surface contamination. Special detectors have been designed for monitoring low energy nuclides. The status of airborne contamination monitoring in China is reported. As the studies for future, the development of the surface contamination monitor for low energy beta nuclides, especially H-3, the monitoring methods for the special shapes of surfaces, the technology of decontamination and the calibration method and device for on-line radioactive aerosol continuous monitors are taken up. (K.I.)

  15. MATRIX-VBS: implementing an evolving organic aerosol volatility in an aerosol microphysics model

    OpenAIRE

    Gao, Chloe Y.; Tsigaridis, Kostas; Bauer, Susanne E.

    2016-01-01

    We have implemented an existing aerosol microphysics scheme into a box model framework and extended it to represent gas-particle partitioning and chemical ageing of semi-volatile organic aerosols. We then applied this new research tool to investigate the effects of semi-volatile organic species on the growth, composition and mixing state of aerosol particles in case studies representing several different environments. The volatility-basis set (VBS) framework is implemented into the aerosol mi...

  16. High resolution aerosol optical thickness retrieval over the Pearl River Delta region with improved aerosol modelling

    Institute of Scientific and Technical Information of China (English)

    WONG; ManSing; NICHOL; Janet; LEE; Kwon; Ho

    2009-01-01

    Aerosol retrieval algorithms for the MODerate Resolution Imaging Spectroradiometer (MODIS) have been developed to estimate aerosol and microphysical properties of the atmosphere, which help to address aerosol climatic issues at global scale. However, higher spatial resolution aerosol products for urban areas have not been well researched mainly due to the difficulty of differentiating aerosols from bright surfaces in urban areas. Here, a new aerosol retrieval algorithm using the MODIS 500 m resolution images is described, to retrieve aerosol properties over Hong Kong and the Pearl River Delta region. The rationale of our technique is to first estimate the aerosol reflectance by decomposing the top-of-atmosphere reflectance from surface reflectance and Rayleigh path reflectance. For the determination of surface reflectance, a modified Minimum Reflectance Technique (MRT) is used, and MRT images are computed for different seasons. A strong correlation is shown between the surface reflectance of MRT images and MODIS land surface reflectance products (MOD09), with a value of 0.9. For conversion of aerosol reflectance to Aerosol Optical Thickness (AOT), comprehensive Look Up Tables (LUT) are constructed, in which aerosol properties and sun-viewing geometry in the radiative transfer calculations are taken into account. Four aerosol types, namely mixed urban, polluted urban, dust, and heavy pollution, were derived using cluster analysis on three years of AERONET measurements in Hong Kong. Their aerosol properties were input for LUT calculation. The resulting 500 m AOT images are highly correlated (r = 0.89) with AERONET sunphotometer observations in Hong Kong. This study demonstrates the applicability of aerosol retrieval at fine resolution scale in urban areas, which can assist the study of aerosol loading distribution and the impact of localized and transient pollution on urban air quality. In addition, the MODIS 500 m AOT images can be used to study cross

  17. High resolution aerosol optical thickness retrieval over the Pearl River Delta region with improved aerosol modelling

    Institute of Scientific and Technical Information of China (English)

    WONG ManSing; NICHOL Janet; LEE Kwon Ho; LI ZhanQing

    2009-01-01

    Aerosol retrieval algorithms for the MODerate Resolution Imaging Spectroradiometer (MODIS) have been developed to estimate aerosol and microphysical properties of the atmosphere, which help to address aerosol climatic issues at global scale. However, higher spatial resolution aerosol products for urban areas have not been well researched mainly due to the difficulty of differentiating aerosols from bright surfaces in urban areas. Here, a new aerosol retrieval algorithm using the MODIS 500 m resolu-tion images is described, to retrieve aerosol properties over Hong Kong and the Pearl River Delta re-gion. The rationale of our technique is to first estimate the aerosol reflectance by decomposing the top-of-atmosphere reflectance from surface reflectance and Rayleigh path reflectance. For the deter-mination of surface reflectance, a modified Minimum Reflectance Technique (MRT) is used, and MRT images are computed for different seasons. A strong correlation is shown between the surface reflec-tance of MRT images and MODIS land surface reflectance products (MOD09), with a value of 0.9. For conversion of aerosol reflectance to Aerosol Optical Thickness (AOT), comprehensive Look Up Tables (LUT) are constructed, in which aerosol properties and sun-viewing geometry in the radiative transfer calculations are taken into account. Four aerosol types, namely mixed urban, polluted urban, dust, and heavy pollution, were derived using cluster analysis on three years of AERONET measurements in Hong Kong. Their aerosol properties were input for LUT calculation. The resulting 500 m AOT images are highly correlated (r=0.89) with AERONET sunphotometer observations in Hong Kong. This study demonstrates the applicability of aerosol retrieval at fine resolution scale in urban areas, which can assist the study of aerosol loading distribution and the impact of localized and transient pollution on urban air quality. In addition, the MODIS 500 m AOT images can be used to study cross

  18. Optical and microphysical properties of atmospheric aerosols in Moldova

    Science.gov (United States)

    Aculinin, Alexandr; Smicov, Vladimir

    2010-05-01

    Measurements of aerosol properties in Kishinev, Moldova are being carried out within the framework of the international AERONET program managed by NASA/GSFC since 1999. Direct solar and sky diffuse radiances are measured by using of sunphotometer Cimel-318. Aerosol optical properties are retrieved from measured radiances by using of smart computational procedures developed by the AERONET's team. The instrument is situated at the ground-based solar radiation monitoring station giving the opportunity to make simultaneous spectral (win sunphotometer) and broadband (with the set of sensors from radiometric complex) solar radiation. Detailed description of the station and investigations in progress can be found at the http://arg.phys.asm.md. Ground station is placed in an urban environment of Kishinev city (47.00N; 28.56E; 205 m a.s.l). Summary of aerosol optical and microphysical properties retrieved from direct solar and diffuse sky radiance observations at Moldova site from September 1999 to June 2009 are presented below. Number of measurements (total): 1695 Number of measurements (for ?o, n, k): 223 Range of aerosol optical depth (AOD) @440 nm: 0.03 =0.25 Range of Ångström parameter : 0.14 (440/670/870/1020): 0.93/0.92/0.90/0.89 ±0.04 Parameters of volume particle size distribution function: (fine mode) volume median radius r v,f , μm: 0.17 ± 0.06 particle volume concentration Cv,f, μm3/μm2: 0.04 ± 0.03 (coarse mode) volume median radius rv,c , μm: 3.08 ± 0.64 particle volume concentration Cv,c, μm3/μm2: 0.03 ± 0.03 Climatic norms of AOD@500 nm and Ångström parameter at the site of observation are equal to 0.21 ± 0.06 and 1.45 ± 0.14, respectively. The aerosol type in Moldova may be considered as 'urban-industrial and mixed' in accordance with the classification of aerosol type models systematized and developed by AERONET team (O.Dubovik et al., 2002, J. Atmosph. Sci., 59, 590-608) on the basis of datasets acquired from worldwide observations at the

  19. Aerosol climatology and discrimination of aerosol types retrieved from MODIS, MISR and OMI over Durban (29.88°S, 31.02°E), South Africa

    Science.gov (United States)

    Kumar, K. Raghavendra; Yin, Yan; Sivakumar, V.; Kang, Na; Yu, Xingna; Diao, Yiwei; Adesina, A. Joseph; Reddy, R. R.

    2015-09-01

    The present study represents the characteristics of aerosol optical depth (AOD) retrieved from multiple satellite sensors (MODerate resolution Imaging Spectroradiometer (MODIS), Multi-angle Imaging SpectroRadiometer (MISR), and Ozone Monitoring Instrument (OMI)) during 2003-2013 over an urban-coastal region, Durban (DBN; 29.88°S, 31.02°E, 46 m°asl), situated on the east coast of South Africa. An intercomparison and validation of AOD is performed against the AOD measurements from ground-based AErosol RObotic NETwork (AERONET) Sunphotometer. The results revealed that MISR-AERONET comparison indicated strong correlation compared to MODIS-AERONET comparison. Also, the comparison between MODIS and MISR AODs noticed significant positive correlation over DBN with the overestimation of latter by former. Highest AOD characterizes during the spring (September-November) followed by summer (December-February) and autumn (March-May) with the lowest AOD observed during the winter (June-August) season. The Angstrom exponent (AE470-600) indicates predominance of fine-mode aerosols during spring and summer and dominance of coarse-mode aerosols in winter. A HYbrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model is used to locate the origin of airmass transport and understand the variability of aerosol source regions. Finally, the relationship between AOD and AE has been examined to classify different aerosol types and showed seasonal heterogeneity in their contribution depending upon variability in sources. This is the first ever attempt to classify aerosols over this environment.

  20. Aerosol classification by airborne high spectral resolution lidar observations

    Science.gov (United States)

    Groß, S.; Esselborn, M.; Weinzierl, B.; Wirth, M.; Fix, A.; Petzold, A.

    2013-03-01

    During four aircraft field experiments with the DLR research aircraft Falcon in 1998 (LACE), 2006 (SAMUM-1) and 2008 (SAMUM-2 and EUCAARI), airborne High Spectral Resolution Lidar (HSRL) and in situ measurements of aerosol microphysical and optical properties were performed. Altogether, the properties of six different aerosol types and aerosol mixtures - Saharan mineral dust, Saharan dust mixtures, Canadian biomass burning aerosol, African biomass burning mixture, anthropogenic pollution aerosol, and marine aerosol have been studied. On the basis of this extensive HSRL data set, we present an aerosol classification scheme which is also capable to identify mixtures of different aerosol types. We calculated mixing lines that allowed us to determine the contributing aerosol types. The aerosol classification scheme was supported by backward trajectory analysis and validated with in-situ measurements. Our results demonstrate that the developed aerosol mask is capable to identify complex stratifications with different aerosol types throughout the atmosphere.

  1. Aerosols in and Above the Bornean Rainforest

    OpenAIRE

    Robinson, Niall Hamilton

    2011-01-01

    Atmospheric aerosols affect climate directly by scattering and absorbing solar radiation, and indirectly by affecting the albedo and lifetime of clouds through their role as cloud condensation nuclei. Aerosol sources, and the processes that govern their evolution in the atmosphere are not well understood, making the aerosol effects a significant source of uncertainty in future climate predictions. The tropics experience a large solar flux meaning that any radiative forcing in this region is p...

  2. The European aerosol budget in 2006

    Directory of Open Access Journals (Sweden)

    J. M. J. Aan de Brugh

    2011-02-01

    Full Text Available This paper presents the aerosol budget over Europe in 2006 calculated with the global transport model TM5 coupled to the size-resolved aerosol module M7. Comparison with ground observations indicates that the model reproduces the observed concentrations quite well with an expected slight underestimation of PM10 due to missing emissions (e.g. resuspension. We model that a little less than half of the anthropogenic aerosols emitted in Europe are exported and the rest is removed by deposition. The anthropogenic aerosols are removed mostly by rain (95% and only 5% is removed by dry deposition. For the larger natural aerosols, especially sea salt, a larger fraction is removed by dry processes (sea salt: 70%, mineral dust: 35%. We model transport of aerosols in the jet stream in the higher atmosphere and an import of Sahara dust from the south at high altitudes. Comparison with optical measurements shows that the model reproduces the Ångström parameter very well, which indicates a correct simulation of the aerosol size distribution. However, we underestimate the aerosol optical depth. Because the surface concentrations are close to the observations, the shortage of aerosol in the model is probably at higher altitudes. We show that the discrepancies are mainly caused by an overestimation of wet-removal rates. To match the observations, the wet-removal rates have to be scaled down by a factor of about 5. In that case the modelled ground-level concentrations of sulphate and sea salt increase by 50% (which deteriorates the match, while other components stay roughly the same. Finally, it is shown that in particular events, improved fire emission estimates may significantly improve the ability of the model to simulate the aerosol optical depth. We stress that discrepancies in aerosol models can be adequately analysed if all models would provide (regional aerosol budgets, as presented in the current study.

  3. Satellite assisted aerosol correlation in a sequestered CO2 leakage controlled site

    Science.gov (United States)

    Landulfo, Eduardo; da Silva Lopes, Fábio J.; Nakaema, Walter M.; de Medeiros, José A. G.; Moreira, Andrea

    2014-10-01

    Currently one of the main challenges in CO2 storage research is to grant the development, testing and validation of accurate and efficient Measuring, Monitoring and Verification (MMV) techniques to be deployed at the final storage site, targeting maximum storage efficiency at the minimal leakage risk levels. For such task a mimetic sequestration site has been deployed in Florianopolis, Brazil, in order to verify the performance of monitoring plataforms to detect and quantify leakages of ground injected CO2, namely a Cavity Ring Down System (CRDS) - Los Gatos Research - an Eddy Covariance System (Campbell Scientific and Irgason) and meteorological tower for wind, humidity, precipitation and temperature monitoring onsite. The measurement strategy for detecting CO2 leakages can be very challenging since environmental and phytogenic influence can be very severe and play a role on determining if the values measured are unambiguous or not. One external factor to be considered is the amount of incoming solar radiation which will be the driving force for the whole experimental setup and following this reasoning the amount of aerosols in the atmospheric column can be a determinant factor influencing the experimental results. Thus the investigation of measured fluxes CO2 and its concentration with the aforementioned experimental instruments and their correlation with the aerosol data should be taken into account by means of satellite borne systems dedicated to measure aerosol vertical distribution and its optical properties, in this study we have selected CALIPSO and MODIS instrumentation to help on deriving the aerosol properties and CO2 measurements.

  4. New apparatus of single particle trap system for aerosol visualization

    Science.gov (United States)

    Higashi, Hidenori; Fujioka, Tomomi; Endo, Tetsuo; Kitayama, Chiho; Seto, Takafumi; Otani, Yoshio

    2014-08-01

    Control of transport and deposition of charged aerosol particles is important in various manufacturing processes. Aerosol visualization is an effective method to directly observe light scattering signal from laser-irradiated single aerosol particle trapped in a visualization cell. New single particle trap system triggered by light scattering pulse signal was developed in this study. The performance of the device was evaluated experimentally. Experimental setup consisted of an aerosol generator, a differential mobility analyzer (DMA), an optical particle counter (OPC) and the single particle trap system. Polystylene latex standard (PSL) particles (0.5, 1.0 and 2.0 μm) were generated and classified according to the charge by the DMA. Singly charged 0.5 and 1.0 μm particles and doubly charged 2.0 μm particles were used as test particles. The single particle trap system was composed of a light scattering signal detector and a visualization cell. When the particle passed through the detector, trigger signal with a given delay time sent to the solenoid valves upstream and downstream of the visualization cell for trapping the particle in the visualization cell. The motion of particle in the visualization cell was monitored by CCD camera and the gravitational settling velocity and the electrostatic migration velocity were measured from the video image. The aerodynamic diameter obtained from the settling velocity was in good agreement with Stokes diameter calculated from the electrostatic migration velocity for individual particles. It was also found that the aerodynamic diameter obtained from the settling velocity was a one-to-one function of the scattered light intensity of individual particles. The applicability of this system will be discussed.

  5. Topics in current aerosol research (part2)

    CERN Document Server

    Hidy, G M

    1972-01-01

    Topics in Current Aerosol Research, Part 2 contains some selected articles in the field of aerosol study. The chosen topics deal extensively with the theory of diffusiophoresis and thermophoresis. Also covered in the book is the mathematical treatment of integrodifferential equations originating from the theory of aerosol coagulation. The book is the third volume of the series entitled International Reviews in Aerosol Physics and Chemistry. The text offers significant understanding of the methods employed to develop a theory for thermophoretic and diffusiophoretic forces acting on spheres in t

  6. SMEX02 Atmospheric Aerosol Optical Properties Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of observations of atmospheric parameters including spectral aerosol optical depths, precipitable water, sky radiance distributions and...

  7. Detailed Aerosol Characterization using Polarimetric Measurements

    Science.gov (United States)

    Hasekamp, Otto; di Noia, Antonio; Stap, Arjen; Rietjens, Jeroen; Smit, Martijn; van Harten, Gerard; Snik, Frans

    2016-04-01

    Anthropogenic aerosols are believed to cause the second most important anthropogenic forcing of climate change after greenhouse gases. In contrast to the climate effect of greenhouse gases, which is understood relatively well, the negative forcing (cooling effect) caused by aerosols represents the largest reported uncertainty in the most recent assessment of the International Panel on Climate Change (IPCC). To reduce the large uncertainty on the aerosol effects on cloud formation and climate, accurate satellite measurements of aerosol optical properties (optical thickness, single scattering albedo, phase function) and microphysical properties (size distribution, refractive index, shape) are essential. There is growing consensus in the aerosol remote sensing community that multi-angle measurements of intensity and polarization are essential to unambiguously determine all relevant aerosol properties. This presentations adresses the different aspects of polarimetric remote sensing of atmospheric aerosols, including retrieval algorithm development, validation, and data needs for climate and air quality applications. During past years, at SRON-Netherlands Instite for Space Research retrieval algorithms have been developed that make full use of the capabilities of polarimetric measurements. We will show results of detailed aerosol properties from ground-based- (groundSPEX), airborne- (NASA Research Scanning Polarimeter), and satellite (POLDER) measurements. Also we will discuss observational needs for future instrumentation in order to improve our understanding of the role of aerosols in climate change and air quality.

  8. The Aerosol/Cloud/Ecosystems Mission (ACE)

    Science.gov (United States)

    Schoeberl, Mark

    2008-01-01

    The goals and measurement strategy of the Aerosol/Cloud/Ecosystems Mission (ACE) are described. ACE will help to answer fundamental science questions associated with aerosols, clouds, air quality and global ocean ecosystems. Specifically, the goals of ACE are: 1) to quantify aerosol-cloud interactions and to assess the impact of aerosols on the hydrological cycle and 2) determine Ocean Carbon Cycling and other ocean biological processes. It is expected that ACE will: narrow the uncertainty in aerosol-cloud-precipitation interaction and quantify the role of aerosols in climate change; measure the ocean ecosystem changes and precisely quantify ocean carbon uptake; and, improve air quality forecasting by determining the height and type of aerosols being transported long distances. Overviews are provided of the aerosol-cloud community measurement strategy, aerosol and cloud observations over South Asia, and ocean biology research goals. Instruments used in the measurement strategy of the ACE mission are also highlighted, including: multi-beam lidar, multiwavelength high spectra resolution lidar, the ocean color instrument (ORCA)--a spectroradiometer for ocean remote sensing, dual frequency cloud radar and high- and low-frequency micron-wave radiometer. Future steps for the ACE mission include refining measurement requirements and carrying out additional instrument and payload studies.

  9. Carbonaceous aerosols in the Western Mediterranean during summertime and their contribution to the aerosol optical properties at ground level: First results of the ChArMEx-ADRIMED 2013 intensive campaign in Corsica

    Science.gov (United States)

    Sciare, Jean; Dulac, Francois; Feron, Anais; Crenn, Vincent; Sarda Esteve, Roland; Baisnee, Dominique; Bonnaire, Nicolas; Hamonou, Eric; Mallet, Marc; Lambert, Dominique; Nicolas, Jose B.; Bourrianne, Thierry; Petit, Jean-Eudes; Favez, Olivier; Canonaco, Francesco; Prevot, Andre; Mocnik, Grisa; Drinovec, Luka; Marpillat, Alexandre; Serrie, Wilfrid

    2014-05-01

    As part of the Chemistry-Aerosol Mediterranean Experiment (ChArMEx, http://charmex.lsce.ipsl.fr/), the CORSiCA (http://www.obs-mip.fr/corsica) and the ANR-ADRIMED programs, a large set of real-time measurements of carbonaceous aerosols was deployed in June 2013 at the Cape Corsica atmospheric supersite (http://gaw.empa.ch/gawsis/reports.asp?StationID=2076203042). Submicron organic aerosols (OA) were monitored every 30 min using an Aerosol Chemical Speciation Monitor (ACSM; Aerodyne Res. Inc. MA, USA); Fine (PM2.5) Organic Carbon (OC) and Elemental Carbon (EC) were measured every 2h using an OCEC Sunset Field Instrument (Sunset Lab, OR, USA) and every 12h using a low-vol (Leckel) filter sampler running at 2.3m3/h. Equivalent Black Carbon (BC) was monitored using two Aethalometers (models AE31 and AE33, Magee Scientific, US & Aerosol d.o.o., Slovenia) and a MAAP instrument (Thermo). Quality control of this large dataset was performed through chemical mass closure studies (using co-located SMPS and TEOM-FDMS) and direct comparisons with other real-time instruments running in parallel (Particle-Into-Liquid-Sampler-Ion-Chromatograph for ions, filter sampling, ...). Source apportionment of OA was then performed using the SourceFinder software (SoFi v4.5, http://www.psi.ch/acsm-stations/me-2) allowing the distinction between hydrogen- and oxygen-like organic aerosols (HOA and OOA, respectively) and highlighting the major contribution of secondary OA in the Western Mediterranean during summer. Using this time-resolved chemical information, reconstruction of the optical aerosol properties were performed and compared with integrating nephelometer (Model 3563, TSI, US) and photoacoustic extinctiometer (PAX, DMT, US) measurements performed in parallel. Results of these different closure studies (chemical/physical/optical) are presented and discussed here in details. They highlight the central role of carbonaceous aerosols on the optical properties of aerosols at ground level

  10. OMI tropospheric NO2 air mass factors over South America: effects of biomass burning aerosols

    Science.gov (United States)

    Castellanos, P.; Boersma, K. F.; Torres, O.; de Haan, J. F.

    2015-09-01

    Biomass burning is an important and uncertain source of aerosols and NOx (NO + NO2) to the atmosphere. Satellite observations of tropospheric NO2 are essential for characterizing this emissions source, but inaccuracies in the retrieval of NO2 tropospheric columns due to the radiative effects of aerosols, especially light-absorbing carbonaceous aerosols, are not well understood. It has been shown that the O2-O2 effective cloud fraction and pressure retrieval is sensitive to aerosol optical and physical properties, including aerosol optical depth (AOD). Aerosols implicitly influence the tropospheric air mass factor (AMF) calculations used in the NO2 retrieval through the effective cloud parameters used in the independent pixel approximation. In this work, we explicitly account for the effects of biomass burning aerosols in the Ozone Monitoring Instrument (OMI) tropospheric NO2 AMF calculation for cloud-free scenes. We do so by including collocated aerosol extinction vertical profile observations from the CALIOP instrument, and aerosol optical depth (AOD) and single scattering albedo (SSA) retrieved by the OMI near-UV aerosol algorithm (OMAERUV) in the DISAMAR radiative transfer model. Tropospheric AMFs calculated with DISAMAR were benchmarked against AMFs reported in the Dutch OMI NO2 (DOMINO) retrieval; the mean and standard deviation of the difference was 0.6 ± 8 %. Averaged over three successive South American biomass burning seasons (2006-2008), the spatial correlation in the 500 nm AOD retrieved by OMI and the 532 nm AOD retrieved by CALIOP was 0.6, and 68 % of the daily OMAERUV AOD observations were within 30 % of the CALIOP observations. Overall, tropospheric AMFs calculated with observed aerosol parameters were on average 10 % higher than AMFs calculated with effective cloud parameters. For effective cloud radiance fractions less than 30 %, or effective cloud pressures greater than 800 hPa, the difference between tropospheric AMFs based on implicit and

  11. Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: Surface tension depression and secondary organic products

    CERN Document Server

    Li, Zhi; Sareen, Neha; McNeill, V Faye

    2011-01-01

    The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs) by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS) solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS), and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. A hemiacetal sulfate ester was tentatively identified in the formaldehyde-AS system. Acetaldehyde depresses surface tension to 65(\\pm2) dyn/cm in pure water and 62(\\pm1) dyn/cm in AS solutions. Surface t...

  12. Reactive processing of formaldehyde and acetaldehyde in aqueous aerosol mimics: surface tension depression and secondary organic products

    Directory of Open Access Journals (Sweden)

    Z. Li

    2011-07-01

    Full Text Available The reactive uptake of carbonyl-containing volatile organic compounds (cVOCs by aqueous atmospheric aerosols is a likely source of particulate organic material. The aqueous-phase secondary organic products of some cVOCs are surface-active. Therefore, cVOC uptake can lead to organic film formation at the gas-aerosol interface and changes in aerosol surface tension. We examined the chemical reactions of two abundant cVOCs, formaldehyde and acetaldehyde, in water and aqueous ammonium sulfate (AS solutions mimicking tropospheric aerosols. Secondary organic products were identified using Aerosol Chemical Ionization Mass Spectrometry (Aerosol-CIMS, and changes in surface tension were monitored using pendant drop tensiometry. Hemiacetal oligomers and aldol condensation products were identified using Aerosol-CIMS. A hemiacetal sulfate ester was tentatively identified in the formaldehyde-AS system. Acetaldehyde depresses surface tension to 65(±2 dyn cm−1 in pure water and 62(±1 dyn cm−1 in AS solutions. Surface tension depression by formaldehyde in pure water is negligible; in AS solutions, a 9 % reduction in surface tension is observed. Mixtures of these species were also studied in combination with methylglyoxal in order to evaluate the influence of cross-reactions on surface tension depression and product formation in these systems. We find that surface tension depression in the solutions containing mixed cVOCs exceeds that predicted by an additive model based on the single-species isotherms.

  13. Vertical profiles of aerosol optical properties over central Illinois and comparison with surface and satellite measurements

    Directory of Open Access Journals (Sweden)

    P. J. Sheridan

    2012-12-01

    Full Text Available Between June 2006 and September 2009, an instrumented light aircraft measured over 400 vertical profiles of aerosol and trace gas properties over eastern and central Illinois. The primary objectives of this program were to (1 measure the in situ aerosol properties and determine their vertical and temporal variability and (2 relate these aircraft measurements to concurrent surface and satellite measurements. The primary profile location was within 15 km of the NOAA/ESRL surface aerosol monitoring station near Bondville, Illinois. Identical instruments at the surface and on the aircraft ensured that the data from both platforms would be directly comparable and permitted a determination of how representative surface aerosol properties were of the lower column. Aircraft profiles were also conducted occasionally at two other nearby locations to increase the frequency of A-Train satellite underflights for the purpose of comparing in situ and satellite-retrieved aerosol data. Measurements of aerosol properties conducted at low relative humidity over the Bondville site compare well with the analogous surface aerosol data and do not indicate any major sampling issues or that the aerosol is radically different at the surface compared with the lowest flyby altitude of ~ 240 m above ground level. Statistical analyses of the in situ vertical profile data indicate that aerosol light scattering and absorption (related to aerosol amount decreases substantially with increasing altitude. Parameters related to the nature of the aerosol (e.g., single-scattering albedo, Ångström exponent, etc., however, are relatively constant throughout the mixed layer, and do not vary as much as the aerosol amount throughout the profile. While individual profiles often showed more variability, the median in situ single-scattering albedo was 0.93–0.95 for all sampled altitudes. Several parameters (e.g., submicrometer scattering fraction, hemispheric backscattering fraction, and

  14. Estimating aerosol emissions by assimilating observed aerosol optical depth in a global aerosol model

    Directory of Open Access Journals (Sweden)

    N. Huneeus

    2012-01-01

    Full Text Available This study estimates the emission fluxes of a range of aerosol species and aerosol precursor at the global scale. These fluxes are estimated by assimilating daily total and fine mode aerosol optical depth (AOD at 550 nm from the Moderate Resolution Imaging Spectroradiometer (MODIS into a global aerosol model of intermediate complexity. Monthly emissions are fitted homogenously for each species over a set of predefined regions. The performance of the assimilation is evaluated by comparing the AOD after assimilation against the MODIS observations and against independent observations. The system is effective in forcing the model towards the observations, for both total and fine mode AOD. Significant improvements for the root mean square error and correlation coefficient against both the assimilated and independent datasets are observed as well as a significant decrease in the mean bias against the assimilated observations. The assimilation is more efficient over land than over ocean. The impact of the assimilation of fine mode AOD over ocean demonstrates potential for further improvement by including fine mode AOD observations over continents. The Angström exponent is also improved in African, European and dusty stations. The estimated emission flux for black carbon is 14.5 Tg yr−1, 119 Tg yr−1 for organic matter, 17 Pg yr−1 for sea salt, 82.7 TgS yr−1 for SO2 and 1383 Tg yr−1 for desert dust. They represent a difference of +45%, +40%, +26%, +13% and −39% respectively, with respect to the a priori values. The initial errors attributed to the emission fluxes are reduced for all estimated species.

  15. Estimating aerosol emissions by assimilating observed aerosol optical depth in a global aerosol model

    Directory of Open Access Journals (Sweden)

    N. Huneeus

    2012-05-01

    Full Text Available This study estimates the emission fluxes of a range of aerosol species and one aerosol precursor at the global scale. These fluxes are estimated by assimilating daily total and fine mode aerosol optical depth (AOD at 550 nm from the Moderate Resolution Imaging Spectroradiometer (MODIS into a global aerosol model of intermediate complexity. Monthly emissions are fitted homogenously for each species over a set of predefined regions. The performance of the assimilation is evaluated by comparing the AOD after assimilation against the MODIS observations and against independent observations. The system is effective in forcing the model towards the observations, for both total and fine mode AOD. Significant improvements for the root mean square error and correlation coefficient against both the assimilated and independent datasets are observed as well as a significant decrease in the mean bias against the assimilated observations. These improvements are larger over land than over ocean. The impact of the assimilation of fine mode AOD over ocean demonstrates potential for further improvement by including fine mode AOD observations over continents. The Angström exponent is also improved in African, European and dusty stations. The estimated emission flux for black carbon is 15 Tg yr−1, 119 Tg yr−1 for particulate organic matter, 17 Pg yr−1 for sea salt, 83 TgS yr−1 for SO2 and 1383 Tg yr−1 for desert dust. They represent a difference of +45 %, +40 %, +26 %, +13 % and −39 % respectively, with respect to the a priori values. The initial errors attributed to the emission fluxes are reduced for all estimated species.

  16. The relationship between aerosol and cloud drop number concentrations in a global aerosol microphysics model

    Directory of Open Access Journals (Sweden)

    K. J. Pringle

    2009-01-01

    Full Text Available Empirical relationships that link cloud droplet number (CDN to aerosol number or mass are commonly used to calculate global fields of CDN for climate forcing assessments. In this work we use a sectional global model of sulfate and sea-salt aerosol coupled to a mechanistic aerosol activation scheme to explore the limitations of this approach. We find that a given aerosol number concentration produces a wide range of CDN concentrations due to variations in the shape of the aerosol size distribution. On a global scale, the dependence of CDN on the size distribution results in regional biases in predicted CDN (for a given aerosol number. Empirical relationships between aerosol number and CDN are often derived from regional data but applied to the entire globe. In an analogous process, we derive regional "correlation-relations" between aerosol number and CDN and apply these regional relations to calculations of CDN on the global scale. The global mean percentage error in CDN caused by using regionally derived CDN-aerosol relations is 20 to 26%, which is about half the global mean percentage change in CDN caused by doubling the updraft velocity. However, the error is as much as 25–75% in the Southern Ocean, the Arctic and regions of persistent stratocumulus when an aerosol-CDN correlation relation from the North Atlantic is used. These regions produce much higher CDN concentrations (for a given aerosol number than predicted by the globally uniform empirical relations. CDN-aerosol number relations from different regions also show very different sensitivity to changing aerosol. The magnitude of the rate of change of CDN with particle number, a measure of the aerosol efficacy, varies by a factor 4. CDN in cloud processed regions of persistent stratocumulus is particularly sensitive to changing aerosol number. It is therefore likely that the indirect effect will be underestimated in these important regions.

  17. The relationship between aerosol and cloud drop number concentrations in a global aerosol microphysics model

    Directory of Open Access Journals (Sweden)

    K. J. Pringle

    2009-06-01

    Full Text Available Empirical relationships that link cloud droplet number (CDN to aerosol number or mass are commonly used to calculate global fields of CDN for climate forcing assessments. In this work we use a sectional global model of sulfate and sea-salt aerosol coupled to a mechanistic aerosol activation scheme to explore the limitations of this approach. We find that a given aerosol number concentration produces a wide range of CDN concentrations due to variations in the shape of the aerosol size distribution. On a global scale, the dependence of CDN on the size distribution results in regional biases in predicted CDN (for a given aerosol number. Empirical relationships between aerosol number and CDN are often derived from regional data but applied to the entire globe. In an analogous process, we derive regional "correlation-relations" between aerosol number and CDN and apply these regional relations to calculations of CDN on the global scale. The global mean percentage error in CDN caused by using regionally derived CDN-aerosol relations is 20 to 26%, which is about half the global mean percentage change in CDN caused by doubling the updraft velocity. However, the error is as much as 25–75% in the Southern Ocean, the Arctic and regions of persistent stratocumulus when an aerosol-CDN correlation relation from the North Atlantic is used. These regions produce much higher CDN concentrations (for a given aerosol number than predicted by the globally uniform empirical relations. CDN-aerosol number relations from different regions also show very different sensitivity to changing aerosol. The magnitude of the rate of change of CDN with particle number, a measure of the aerosol efficacy, varies by a factor 4. CDN in cloud processed regions of persistent stratocumulus is particularly sensitive to changing aerosol number. It is therefore likely that the indirect effect will be underestimated in these important regions.

  18. Elevated aerosols and role of circulation parameters in aerosol vertical distribution

    Science.gov (United States)

    Prijith, S. S.; Aloysius, Marina; Mohan, Mannil; Rao, P. V. N.

    2016-01-01

    The study examines aerosol loading in different vertical layers of the atmosphere and explores the role of atmospheric circulation parameters in vertical distribution of aerosols and in its seasonal variability. Aerosol vertical distribution over the globe is examined, using long term satellite observations, by considering aerosol loading in different layers of atmosphere upto ∼6 km altitudes from surface and fractional contribution of each of these layers to total columnar aerosol loading. Aerosols are observed residing close to the surface in most of the oceanic environments, except over certain regions which are in the close proximity of continents where upper level winds are conducive for long range aerosol transport. In contrast, considerable vertical spread in aerosol distribution with strong seasonal variability, minimum occurring in winter months and maximum in summer, is observed over the continental regions. Vertical spread in aerosol distribution is observed highest over north eastern and north western parts of Africa during northern hemispheric summer, when the convection activity peaks over these regions due to large solar insolation and associated surface heating. Seasonal variation of aerosol vertical spread over both of these regions is observed in phase with variation in atmospheric convergence and vorticity. During summer months, when the aerosol vertical spread is highest, strong surface level convergence and associated cyclonic vorticity is observed along with an upper level (700-600 hPa) divergence. The surface level convergence and upper level divergence together induce an upward flow of air which carries aerosols from ground to higher altitudes. This mechanism of aerosol vertical transport is further corroborated through the correlation and regression relations of surface convergence/vorticity with aerosol loading above different elevations and hence the study reveals role of circulation parameters in aerosol vertical distribution.

  19. Temporal and spatial variability of aerosol optical depth in the Sahel region in relation to vegetation remote sensing

    Science.gov (United States)

    Holben, B. N.; Fraser, R. S.; Eck, T. F.

    1991-01-01

    In order to monitor the aerosol characteristics needed for atmospheric correction of remotely sensed data, a network of sun photometers was established in the Sahel region of Senegal, Mali, and Niger. Data analysis suggests that there is a high spatial variability of the aerosol optical thickness tau(a) in the western Sahel region. At a 67 percent confidence level the instantaneous values of tau(a) can be extrapolated approximately 270-400 km with an error tolerance of 50 percent. Spatial variability in the dry season is found to be of a similar magnitude. The ranges of variations in the NDVI in the Sahel region are shown to be approximately 0.02 and 0.01, respectively, due to commonly observed fluctuations in the aerosol optical thickness and aerosol size distribution.

  20. Laboratory Studies of Processing of Carbonaceous Aerosols by Atmospheric Oxidants/Hygroscopicity and CCN Activity of Secondary & Processed Primary Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Ziemann, P.J.; Arey, J.; Atkinson, R.; Kreidenweis, S.M.; Petters, M.D.

    2012-06-13

    to carry out reactions of representative anthropogenic and biogenic VOCs and organic particles with ozone (O3), and hydroxyl (OH), nitrate (NO3), and chlorine (Cl) radicals, which are the major atmospheric oxidants, under simulated atmospheric conditions in large-volume environmental chambers. A combination of on-line and off-line analytical techniques were used to monitor the chemical and physical properties of the particles including their hygroscopicity and CCN activity. The results of the studies were used to (1) improve scientific understanding of the relationships between the chemical composition of organic particles and their hygroscopicity and CCN activity, (2) develop an improved molecular level theoretical framework for describing these relationships, and (3) establish a large database that is being used to develop parameterizations relating organic aerosol chemical properties and SOA sources to particle hygroscopicity and CCN activity for use in regional and global atmospheric air quality and climate models.

  1. New Approach to Monitor Transboundary Particulate Pollution over Northeast Asia

    Science.gov (United States)

    Park, M. E.; Song, C. H.; Park, R. S.; Lee, Jaehwa; Kim, J.; Lee, S.; Woo, J. H.; Carmichael, G. R.; Eck, Thomas F.; Holben, Brent N.; Lee, S. S.; Song, C. K.; Hong, Y. D.

    2014-01-01

    A new approach to more accurately monitor and evaluate transboundary particulate matter (PM) pollution is introduced based on aerosol optical products from Korea's Geostationary Ocean Color Imager (GOCI). The area studied is Northeast Asia (including eastern parts of China, the Korean peninsula and Japan), where GOCI has been monitoring since June 2010. The hourly multi-spectral aerosol optical data that were retrieved from GOCI sensor onboard geostationary satellite COMS (Communication, Ocean, and Meteorology Satellite) through the Yonsei aerosol retrieval algorithm were first presented and used in this study. The GOCI-retrieved aerosol optical data are integrated with estimated aerosol distributions from US EPA Models-3/CMAQ (Community Multi-scale Air Quality) v4.5.1 model simulations via data assimilation technique, thereby making the aerosol data spatially continuous and available even for cloud contamination cells. The assimilated aerosol optical data are utilized to provide quantitative estimates of transboundary PM pollution from China to the Korean peninsula and Japan. For the period of 1 April to 31 May, 2011 this analysis yields estimates that AOD as a proxy for PM2.5 or PM10 during long-range transport events increased by 117-265% compared to background average AOD (aerosol optical depth) at the four AERONET sites in Korea, and average AOD increases of 121% were found when averaged over the entire Korean peninsula. This paper demonstrates that the use of multi-spectral AOD retrievals from geostationary satellites can improve estimates of transboundary PM pollution. Such data will become more widely available later this decade when new sensors such as the GEMS (Geostationary Environment Monitoring Spectrometer) and GOCI-2 are scheduled to be launched.

  2. [The research on remote sensing dust aerosol by using split window emissivity].

    Science.gov (United States)

    Xu, Hui; Yu, Tao; Gu, Xing-Fa; Cheng, Tian-Hai; Xie, Dong-Hai; Liu, Qian

    2013-05-01

    Dust aerosol can cause the change in the land surface emissivity in split window by radiative forcing (RF). Firstly, the present paper explained from the microscopic point of view the extinction properties of dust aerosols in the 11 and 12 microm channels, and their influence on the land surface emissivity. Secondly, on April 29, 2011, in the northern region of Inner Mongolia a strong sandstorm outbroke, and based on the analysis of the changes in land surface emissivity, this paper proposed a dust identification method by using the variation of emissivity. At last, the dust identification result was evaluated by the dust monitoring product provided by the National Satellite Meteorological Center. The result shows that under the assumption that the 12 microm emissivity equals to 1, using 11 microm relative emissivity could identify dust cover region effectively, and the 11 microm relative emissivity to a certain extent represented the intensity information of dust aerosol.

  3. Influence of cosmic radiation on aerosol and cloud formation over short time periods

    DEFF Research Database (Denmark)

    Bondo, Torsten

    This thesis describes a study of Forbush decrease events. These are rapid decreases in the cosmic ray intensity in the Earth’s atmosphere, which are caused by a temporary increased magnetic shielding at Earth due to solar eruptions. The aim is to investigate how these transient ionization phenomena...... in the atmosphere affect aerosol and cloud creation and whether it is realistic to observe Forbush decrease events in climate data. The thesis involves a theoretical examination of the ionization caused by Forbush decreases based on studies of hourly neutron monitor data and muon telescope data as proxies...... resolution satellite data and aerosol ground based measurements are presented. Here it is observed that significant decreases in the angstrom exponent from AERONET aerosols and cloud liquid water from satellites take place after the largest Forbush decreases. The timescales of this indicate...

  4. Chemical and statistical interpretation of sized aerosol particles collected at an urban site in Thessaloniki, Greece.

    Science.gov (United States)

    Tsitouridou, Roxani; Papazova, Petia; Simeonova, Pavlina; Simeonov, Vasil

    2013-01-01

    The size distribution of aerosol particles (PM0.015-PM18) in relation to their soluble inorganic species and total water soluble organic compounds (WSOC) was investigated at an urban site of Thessaloniki, Northern Greece. The sampling period was from February to July 2007. The determined compounds were compared with mass concentrations of the PM fractions for nano (N: 0.015 pollution were identified and an attempt is made to find patterns of similarity between the different sized aerosols and the seasons of monitoring. It was proven that several major latent factors are responsible for the data structure despite the size of the aerosols - mineral (soil) dust, sea sprays, secondary emissions, combustion sources and industrial impact. The seasonal separation proved to be not very specific.

  5. Characterization of aerosols produced by surgical procedures

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, H.C.; Muggenburg, B.A.; Lundgren, D.L.; Guilmette, R.A.; Snipes, M.B.; Jones, R.K. [Inhalation Toxicology Research Institute, Albuquerque, NM (United States); Turner, R.S. [Lovelace Health Systems, Albuquerque, NM (United States)

    1994-07-01

    In many surgeries, especially orthopedic procedures, power tools such as saws and drills are used. These tools may produce aerosolized blood and other biological material from bone and soft tissues. Surgical lasers and electrocautery tools can also produce aerosols when tissues are vaporized and condensed. Studies have been reported in the literature concerning production of aerosols during surgery, and some of these aerosols may contain infectious material. Garden et al. (1988) reported the presence of papilloma virus DNA in the fumes produced from laser surgery, but the infectivity of the aerosol was not assessed. Moon and Nininger (1989) measured the size distribution and production rate of emissions from laser surgery and found that particles were generally less than 0.5 {mu}m diameter. More recently there has been concern expressed over the production of aerosolized blood during surgical procedures that require power tools. In an in vitro study, the production of an aerosol containing the human immunodeficiency virus (HIV) was reported when power tools were used to cut tissues with blood infected with HIV. Another study measured the size distribution of blood aerosols produced by surgical power tools and found blood-containing particles in a number of size ranges. Health care workers are anxious and concerned about whether surgically produced aerosols are inspirable and can contain viable pathogens such as HIV. Other pathogens such as hepatitis B virus (HBV) are also of concern. The Occupational Safety and Health funded a project at the National Institute for Inhalation Toxicology Research Institute to assess the extent of aerosolization of blood and other tissues during surgical procedures. This document reports details of the experimental and sampling approach, methods, analyses, and results on potential production of blood-associated aerosols from surgical procedures in the laboratory and in the hospital surgical suite.

  6. Quantification and risks associated with bacterial aerosols near domestic greywater-treatment systems

    Energy Technology Data Exchange (ETDEWEB)

    Benami, Maya; Busgang, Allison; Gillor, Osnat; Gross, Amit, E-mail: amgross@exchange.bgu.ac.il

    2016-08-15

    Greywater (GW) reuse can alleviate water stress by lowering freshwater consumption. However, GW contains pathogens that may compromise public health. During the GW-treatment process, bioaerosols can be produced and may be hazardous to human health if inhaled, ingested, or come in contact with skin. Using air-particle monitoring, BioSampler®, and settle plates we sampled bioaerosols emitted from recirculating vertical flow constructed wetlands (RVFCW) – a domestic GW-treatment system. An array of pathogens and indicators were monitored using settle plates and by culturing the BioSampler® liquid. Further enumeration of viable pathogens in the BioSampler® liquid utilized a newer method combining the benefits of enrichment with molecular detection (MPN-qPCR). Additionally, quantitative microbial risk assessment (QMRA) was applied to assess risks of infection from a representative skin pathogen, Staphylococcus aureus. According to the settle-plate technique, low amounts (0–9.7 × 10{sup 4} CFU m{sup −2} h{sup −1}) of heterotrophic bacteria, Staphylococcus spp., Pseudomonas spp., Klebsiella pneumoniae, Enterococcus spp., and Escherichia coli were found to aerosolize up to 1 m away from the GW systems. At the 5 m distance amounts of these bacteria were not statistically different (p > 0.05) from background concentrations tested over 50 m away from the systems. Using the BioSampler®, no bacteria were detected before enrichment of the GW-aerosols. However, after enrichment, using an MPN-qPCR technique, viable indicators and pathogens were occasionally detected. Consequently, the QMRA results were below the critical disability-adjusted life year (DALY) safety limits, a measure of overall disease burden, for S. aureus under the tested exposure scenarios. Our study suggests that health risks from aerosolizing pathogens near RVFCW GW-treatment systems are likely low. This study also emphasizes the growing need for standardization of bioaerosol-evaluation techniques

  7. Monitoring Air Quality from Space using AURA Data

    Science.gov (United States)

    Gleason, James F.; Chance, Kelly V.; Fishman, Jack; Torres, Omar; Veefkind, Pepijn

    2003-01-01

    Measurements from the Earth Observing System (EOS) AURA mission will provide a unique perspective on air quality monitoring. Ozone, nitrogen dioxide, formaldehyde and aerosols from the Ozone Monitoring Instrument (OMI) and carbon monoxide from the Tropospheric Emission Spectrometer (TES) will be simultaneously measured with the spatial resolution and coverage needed for improving our understanding of air quality. AURA data products useful for air quality monitoring will be given.

  8. Remote sensing of aerosol in the terrestrial atmosphere from space: "AEROSOL-UA" mission

    Science.gov (United States)

    Yatskiv, Yaroslav; Milinevsky, Gennadi; Degtyarev, Alexander

    2016-07-01

    The distribution and properties of atmospheric aerosols on a global scale are not well known in terms of determination of their effects on climate. This mostly is due to extreme variability of aerosol concentrations, properties, sources, and types. Aerosol climate impact is comparable to the effect of greenhouse gases, but its influence is more difficult to measure, especially with respect to aerosol microphysical properties and the evaluation of anthropogenic aerosol effect. There are many satellite missions studying aerosol distribution in the terrestrial atmosphere, such as MISR/Terra, OMI/Aura, AVHHR, MODIS/Terra and Aqua, CALIOP/CALIPSO. To improve the quality of data and climate models, and to reduce aerosol climate forcing uncertainties, several new missions are planned. The gap in orbital instruments for studying aerosol microphysics has arisen after the Glory mission failed during launch in 2011. In this review paper, we describe several planned aerosol space missions, including the Ukrainian project AEROSOL-UA that will obtain the data using a multi-channel scanning polarimeter and wide-angle polarimetric camera. The mission is designed for remote sensing of the aerosol microphysics and cloud properties on a global scale.

  9. Aerosol retrieval algorithm for the characterization of local aerosol using MODIS L1B data

    Science.gov (United States)

    Wahab, A. M.; Sarker, M. L. R.

    2014-02-01

    Atmospheric aerosol plays an important role in radiation budget, climate change, hydrology and visibility. However, it has immense effect on the air quality, especially in densely populated areas where high concentration of aerosol is associated with premature death and the decrease of life expectancy. Therefore, an accurate estimation of aerosol with spatial distribution is essential, and satellite data has increasingly been used to estimate aerosol optical depth (AOD). Aerosol product (AOD) from Moderate Resolution Imaging Spectroradiometer (MODIS) data is available at global scale but problems arise due to low spatial resolution, time-lag availability of AOD product as well as the use of generalized aerosol models in retrieval algorithm instead of local aerosol models. This study focuses on the aerosol retrieval algorithm for the characterization of local aerosol in Hong Kong for a long period of time (2006-2011) using high spatial resolution MODIS level 1B data (500 m resolution) and taking into account the local aerosol models. Two methods (dark dense vegetation and MODIS land surface reflectance product) were used for the estimation of the surface reflectance over land and Santa Barbara DISORT Radiative Transfer (SBDART) code was used to construct LUTs for calculating the aerosol reflectance as a function of AOD. Results indicate that AOD can be estimated at the local scale from high resolution MODIS data, and the obtained accuracy (ca. 87%) is very much comparable with the accuracy obtained from other studies (80%-95%) for AOD estimation.

  10. Chemical markers for sea salt in IMPROVE aerosol data

    Science.gov (United States)

    White, Warren H.

    The Interagency Monitoring of PROtected Visual Environments (IMPROVE) network monitors chemically speciated fine-particle concentrations at about 170 rural or remote sites in the United States, including several in coastal settings. Sea salt is a major component of marine aerosols, and can have significant optical effects on both global and local scales. Sodium is the most commonly employed chemical marker for sea salt, but the ion is not a target of IMPROVE's routine chromatography and the element is poorly detected by IMPROVE's routine X-ray fluorescence analysis. This paper examines data from six coastal sites where sea salt is abundant, to identify more reliable signatures of fresh sea salt in routine IMPROVE data. The chloride ion measurement, by ion chromatography on a Nylon filter sampling behind a carbonate denuder, appears to represent the total concentration of this reactive species at the selected sites. It is shown to be a good predictor of conserved sea salt markers such as non-crustal strontium, calcium and potassium, as well as the portion of gravimetric mass not explained by terrestrial fractions. These conclusions may not extend to other locations where sea salt is a smaller and more aged fraction of the aerosol mix.

  11. Aerosol radiative forcing efficiency in the UV-B region over central Argentina

    Science.gov (United States)

    Palancar, Gustavo G.; Olcese, Luis E.; Lanzaco, Bethania L.; Achad, Mariana; López, María Laura; Toselli, Beatriz M.

    2016-07-01

    AEROSOL Robotic Network (AERONET), Moderate Resolution Imaging Spectroradiometer (MODIS) and global UV-B (280-315 nm) irradiance measurements and calculations were combined to investigate the effects of aerosol loading on the ultraviolet B radiation (UV-B) reaching the surface under cloudless conditions in Córdoba, Argentina. The aerosol radiative forcing (ARF) and the aerosol forcing efficiency (ARFE) were calculated for an extended period of time (2000-2013) at a ground-based monitoring site affected by different types and loading of aerosols. The ARFE was evaluated by using the aerosol optical depth (AOD) at 340 nm retrieved by AERONET at the Cordoba CETT site. The individual and combined effects of the single scattering albedo (SSA) and the solar zenith angle (SZA) on the ARFE were also analyzed. In addition, and for comparison purposes, the MODIS AOD at 550 nm was used as input in a machine learning method to better characterize the aerosol load at 340 nm and evaluate the ARFE retrieved from AOD satellite measurements. The ARFE at the surface calculated using AOD data from AERONET ranged from (-0.11 ± 0.01) to (-1.76 ± 0.20) Wm-2 with an average of -0.61 Wm-2; however, when using AOD data from MODIS (TERRA/AQUA satellites), it ranged from (-0.22 ± 0.03) to (-0.65 ± 0.07) Wm-2 with an average value of -0.43 Wm-2. At the same SZA and SSA, the maximum difference between ground and satellite-based was 0.22 Wm-2.

  12. Aerosol source apportionment from 1-year measurements at the CESAR tower in Cabauw, the Netherlands

    Science.gov (United States)

    Schlag, Patrick; Kiendler-Scharr, Astrid; Blom, Marcus Johannes; Canonaco, Francesco; Sebastiaan Henzing, Jeroen; Moerman, Marcel; Prévôt, André Stephan Henry; Holzinger, Rupert

    2016-07-01

    Intensive measurements of submicron aerosol particles and their chemical composition were performed with an Aerosol Chemical Speciation Monitor (ACSM) at the Cabauw Experimental Site for Atmospheric Research (CESAR) in Cabauw, the Netherlands, sampling at 5 m height above ground. The campaign lasted nearly 1 year from July 2012 to June 2013 as part of the EU-FP7-ACTRIS project (Q-ACSM Network). Including equivalent black carbon an average particulate mass concentration of 9.50 µg m-3 was obtained during the whole campaign with dominant contributions from ammonium nitrate (45 %), organic aerosol (OA, 29 %), and ammonium sulfate (19 %). There were 12 exceedances of the World Health Organization (WHO) PM2.5 daily mean limit (25 µg m-3) observed at this rural site using PM1 instrumentation only. Ammonium nitrate and OA represented the largest contributors to total particulate matter during periods of exceedance. Source apportionment of OA was performed season-wise by positive matrix factorization (PMF) using the multilinear engine 2 (ME-2) controlled via the source finder (SoFi). Primary organic aerosols were attributed mainly to traffic (8-16 % contribution to total OA, averaged season-wise) and biomass burning (0-23 %). Secondary organic aerosols (SOAs, 61-84 %) dominated the organic fraction during the whole campaign, particularly on days with high mass loadings. A SOA factor which is attributed to humic-like substances (HULIS) was identified as a highly oxidized background aerosol in Cabauw. This shows the importance of atmospheric aging processes for aerosol concentration at this rural site. Due to the large secondary fraction, the reduction of particulate mass at this rural site is challenging on a local scale.

  13. Heterogeneous Uptake of Gaseous N2O5 by Sulfate Aerosols

    Science.gov (United States)

    Leu, M.; Kane, S. M.; Caloz, F.

    2001-12-01

    The heterogeneous uptake of gaseous N2O5 by ammonium sulfate [(NH4)2SO4], ammonium bisulfate [NH4HSO4], and sulfuric acid [H2SO4] aerosols as a function of relative humidity has been investigated at room temperature and atmospheric pressure. Ammonium-containing aerosols were generated by a constant output atomizer and conditioned by passing through a diffusion dryer. Sulfuric acid aerosols were produced by the homogeneous reaction of SO3 and H2O in a borosilicate vessel. Addition of a dry or wet N2 flow controlled the relative humidity (RH) of these aerosol flows. Using a chemical ionization mass spectrometer (CIMS) for N2O5 concentration monitoring and a scanning mobility particle spectrometer (SMPS) for aerosol characterization, reaction probabilities (g) in the range of 0.001 to 0.1 for the uptake of N2O5 were determined as a function of RH. The results are expressed as follows: gamma[(NH4)2SO4] = 2.79 x 10-4 + 1.30 x 10-4 x (RH) -3.43 x 10-6 x (RH)2 + 7.52 x 10-8 x (RH)3, gamma[NH4HSO4] = 2.07 x 10-3 - 1.48 x 10-4 x (RH) + 8.26 x 10-6 x (RH)2, and gamma[H2SO4] = 0.052 - 2.79 x 10-4 x (RH) . We suggest that the water content and phase in the ammonium-containing aerosols control the reactivity of N2O5 while liquid-phase ionic reactions primarily dominate the uptake in sulfuric acid aerosols.

  14. The Stratospheric Aerosol and Gas Experiment (SAGE III) on the International Space Station (ISS) Mission

    Science.gov (United States)

    Cisewski, Michael; Zawodny, Joseph; Gasbarre, Joseph; Eckman, Richard; Topiwala, Nandkishore; Rodriquez-Alvarez, Otilia; Cheek, Dianne; Hall, Steve

    2014-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will provide the science community with high-vertical resolution and nearly global observations of ozone, aerosols, water vapor, nitrogen dioxide, and other trace gas species in the stratosphere and upper-troposphere. SAGE III/ISS measurements will extend the long-term Stratospheric Aerosol Measurement (SAM) and SAGE data record begun in the 1970s. The multi-decadal SAGE ozone and aerosol data sets have undergone intense scrutiny and are considered the international standard for accuracy and stability. SAGE data have been used to monitor the effectiveness of the Montreal Protocol. Key objectives of the mission are to assess the state of the recovery in the distribution of ozone, to re-establish the aerosol measurements needed by both climate and ozone models, and to gain further insight into key processes contributing to ozone and aerosol variability. The space station mid-inclination orbit allows for a large range in latitude sampling and nearly continuous communications with payloads. The SAGE III instrument is the fifth in a series of instruments developed for monitoring atmospheric constituents with high vertical resolution. The SAGE III instrument is a moderate resolution spectrometer covering wavelengths from 290 nm to 1550 nm. Science data is collected in solar occultation mode, lunar occultation mode, and limb scatter measurement mode. A SpaceX Falcon 9 launch vehicle will provide access to space. Mounted in the unpressurized section of the Dragon trunk, SAGE III will be robotically removed from the Dragon and installed on the space station. SAGE III/ISS will be mounted to the ExPRESS Logistics Carrier-4 (ELC-4) location on the starboard side of the station. To facilitate a nadir view from this location, a Nadir Viewing Platform (NVP) payload was developed which mounts between the carrier and the SAGE III Instrument Payload (IP).

  15. Ceilometer aerosol profiling vs. Raman lidar in the frame of INTERACT campaign of ACTRIS

    Science.gov (United States)

    Madonna, F.; Amato, F.; Vande Hey, J.; Pappalardo, G.

    2014-12-01

    Despite their differences from more advanced and more powerful lidars, the low construction and operation cost of ceilometers, originally designed for cloud base height monitoring, has fostered their use for the quantitative study of aerosol properties. The large number of ceilometers available worldwide represents a strong motivation to investigate both the extent to which they can be used to fill in the geographical gaps between advanced lidar stations and also how their continuous data flow can be linked to existing networks of the more advanced lidars, like EARLINET (European Aerosol Research LIdar NETwork). In this paper, multi-wavelength Raman lidar measurements are used to investigate the capability of ceilometers to provide reliable information about atmospheric aerosol content through the INTERACT (INTERcomparison of Aerosol and Cloud Tracking) campaign carried out at the CNR-IMAA Atmospheric Observatory (760 m a.s.l., 40.60° N, 15.72° E), in the framework of ACTRIS (Aerosol Clouds Trace gases Research InfraStructure) FP7 project. This work is the first time that three different commercial ceilometers with an advanced Raman lidar are compared over a period of six months. The comparison of the attenuated backscatter profiles from a multi-wavelength Raman lidar and three ceilometers (CHM15k, CS135s, CT25K) reveals differences due to the expected discrepancy in the SNR but also due to effect of changes in the ambient temperature on the short and mid-term stability of ceilometer calibration. A large instability of ceilometers in the incomplete overlap region has also been observed, making the use of a single overlap correction function for the whole duration of the campaign critical. Therefore, technological improvements of ceilometers towards their operational use in the monitoring of the atmospheric aerosol in the low and free troposphere are needed.

  16. CCN frequency distributions and aerosol chemical composition from long-term observations at European ACTRIS supersites

    Science.gov (United States)

    Decesari, Stefano; Rinaldi, Matteo; Schmale, Julia Yvonne; Gysel, Martin; Fröhlich, Roman; Poulain, Laurent; Henning, Silvia; Stratmann, Frank; Facchini, Maria Cristina

    2016-04-01

    Cloud droplet number concentration is regulated by the availability of aerosol acting as cloud condensation nuclei (CCN). Predicting the air concentrations of CCN involves knowledge of all physical and chemical processes that contribute to shape the particle size distribution and determine aerosol hygroscopicity. The relevance of specific atmospheric processes (e.g., nucleation, coagulation, condensation of secondary organic and inorganic aerosol, etc.) is time- and site-dependent, therefore the availability of long-term, time-resolved aerosol observations at locations representative of diverse environments is strategic for the validation of state-of-the-art chemical transport models suited to predict CCN concentrations. We focused on long-term (year-long) datasets of CCN and of aerosol composition data including black carbon, and inorganic as well as organic compounds from the Aerosol Chemical Speciation Monitor (ACSM) at selected ACTRIS supersites (http://www.actris.eu/). We discuss here the joint frequency distribution of CCN levels and of aerosol chemical components concentrations for two stations: an alpine site (Jungfraujoch, CH) and a central European rural site (Melpitz, DE). The CCN frequency distributions at Jungfraujoch are broad and generally correlated with the distributions of the concentrations of aerosol chemical components (e.g., high CCN concentrations are most frequently found for high organic matter or black carbon concentrations, and vice versa), which can be explained as an effect of the strong seasonality in the aerosol characteristics at the mountain site. The CCN frequency distributions in Melpitz show a much weaker overlap with the distributions of BC concentrations or other chemical compounds. However, especially at high CCN concentration levels, a statistical correlation with organic matter (OM) concentration can be observed. For instance, the number of CCN (with particle diameter between 20 and 250 nm) at a supersaturation of 0.7% is

  17. Aerosol characterizaton in El Paso-Juarez airshed using optical methods

    Science.gov (United States)

    Esparza, Angel Eduardo

    2011-12-01

    The assessment and characterization of atmospheric aerosols and their optical properties are of great significance for several applications such as air pollution studies, atmospheric visibility, remote sensing of the atmosphere, and impacts on climate change. Decades ago, the interest in atmospheric aerosols was primarily for visibility impairment problems; however, recently interest has intensified with efforts to quantify the optical properties of aerosols, especially because of the uncertainties surrounding the role of aerosols in climate change. The main objective of the optical characterization of aerosols is to understand their properties. These properties are determined by the aerosols' chemical composition, size, shape and concentration. The general purpose of this research was to contribute to a better characterization of the aerosols present in the Paso del Norte Basin. This study permits an alternative approach in the understanding of air pollution for this zone by analyzing the predominant components and their contributions to the local environment. This dissertation work had three primary objectives, in which all three are intertwined by the general purpose of the aerosol characterization in the Paso del Norte region. The first objective was to retrieve the columnar aerosol size distribution for two different cases (clean and polluted scenarios) at each season (spring, summer, fall and winter) of the year 2009. In this project, instruments placed in buildings within the University of Texas at El Paso (UTEP) as well as a monitoring site (CAMS 12) from the Texas Commission on Environmental Quality (TCEQ) provided the measurements that delimited the aerosol size distribution calculated by our model, the Environmental Physics Inverse Reconstruction (EPIRM) model. The purpose of this objective was to provide an alternate method of quantifying and size-allocating aerosols in situ, by using the optical properties of the aerosols and inversely reconstruct and

  18. Estimating marine aerosol particle volume and number from Maritime Aerosol Network data

    Directory of Open Access Journals (Sweden)

    A. M. Sayer

    2012-09-01

    Full Text Available As well as spectral aerosol optical depth (AOD, aerosol composition and concentration (number, volume, or mass are of interest for a variety of applications. However, remote sensing of these quantities is more difficult than for AOD, as it is more sensitive to assumptions relating to aerosol composition. This study uses spectral AOD measured on Maritime Aerosol Network (MAN cruises, with the additional constraint of a microphysical model for unpolluted maritime aerosol based on analysis of Aerosol Robotic Network (AERONET inversions, to estimate these quantities over open ocean. When the MAN data are subset to those likely to be comprised of maritime aerosol, number and volume concentrations obtained are physically reasonable. Attempts to estimate surface concentration from columnar abundance, however, are shown to be limited by uncertainties in vertical distribution. Columnar AOD at 550 nm and aerosol number for unpolluted maritime cases are also compared with Moderate Resolution Imaging Spectroradiometer (MODIS data, for both the present Collection 5.1 and forthcoming Collection 6. MODIS provides a best-fitting retrieval solution, as well as the average for several different solutions, with different aerosol microphysical models. The "average solution" MODIS dataset agrees more closely with MAN than the "best solution" dataset. Terra tends to retrieve lower aerosol number than MAN, and Aqua higher, linked with differences in the aerosol models commonly chosen. Collection 6 AOD is likely to agree more closely with MAN over open ocean than Collection 5.1. In situations where spectral AOD is measured accurately, and aerosol microphysical properties are reasonably well-constrained, estimates of aerosol number and volume using MAN or similar data would provide for a greater variety of potential comparisons with aerosol properties derived from satellite or chemistry transport model data. However, without accurate AOD data and prior knowledge of

  19. Characterization of urban aerosol in Cork city (Ireland using aerosol mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. Dall'Osto

    2013-05-01

    Full Text Available Ambient wintertime background urban aerosol in Cork city, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the ca. 1 350 000 single particles characterized by an Aerosol Time-of-Flight Mass Spectrometer (TSI ATOFMS were classified into five organic-rich particle types, internally mixed to different proportions with elemental carbon (EC, sulphate and nitrate, while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was characterized using a High Resolution Time-of-Flight Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS and was also found to comprise organic aerosol as the most abundant species (62%, followed by nitrate (15%, sulphate (9% and ammonium (9%, and chloride (5%. Positive matrix factorization (PMF was applied to the HR-ToF-AMS organic matrix, and a five-factor solution was found to describe the variance in the data well. Specifically, "hydrocarbon-like" organic aerosol (HOA comprised 20% of the mass, "low-volatility" oxygenated organic aerosol (LV-OOA comprised 18%, "biomass burning" organic aerosol (BBOA comprised 23%, non-wood solid-fuel combustion "peat and coal" organic aerosol (PCOA comprised 21%, and finally a species type characterized by primary extit{m/z}~peaks at 41 and 55, similar to previously reported "cooking" organic aerosol (COA, but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Correlations between the different particle types obtained by the two aerosol mass spectrometers are also discussed. Despite wood, coal and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosol mass and non-refractory total PM1, respectively.

  20. Simulation of bulk aerosol direct radiative effects and its climatic feedbacks in South Africa using RegCM4

    Science.gov (United States)

    Tesfaye, M.; Botai, J.; Sivakumar, V.; Mengistu Tsidu, G.; Rautenbach, C. J. deW.; Moja, Shadung J.

    2016-05-01

    In this study, 12 year runs of the Regional Climate Model (RegCM4) have been used to analyze the bulk aerosol radiative effects and its climatic feedbacks in South Africa. Due to the geographical locations where the aerosol potential source regions are situated and the regional dynamics, the South African aerosol spatial-distribution has a unique feature. Across the west and southwest areas, desert dust particles are dominant. However, sulfate and carbonaceous aerosols are primarily distributed over the east and northern regions of the country. Analysis of the Radiative Effects (RE) shows that in South Africa the bulk aerosols play a role in reducing the net radiation absorbed by the surface via enhancing the net radiative heating in the atmosphere. Hence, across all seasons, the bulk aerosol-radiation-climate interaction induced statistically significant positive feedback on the net atmospheric heating rate. Over the western and central parts of South Africa, the overall radiative feedbacks of bulk aerosol predominantly induces statistically significant Cloud Cover (CC) enhancements. Whereas, over the east and southeast coastal areas, it induces minimum reductions in CC. The CC enhancement and RE of aerosols jointly induce radiative cooling at the surface which in turn results in the reduction of Surface Temperature (ST: up to -1 K) and Surface Sensible Heat Flux (SSHF: up to -24 W/m2). The ST and SSHF decreases cause a weakening of the convectively driven turbulences and surface buoyancy fluxes which lead to the reduction of the boundary layer height, surface pressure enhancement and dynamical changes. Throughout the year, the maximum values of direct and semi-direct effects of bulk aerosol were found in areas of South Africa which are dominated by desert dust particles. This signals the need for a strategic regional plan on how to reduce the dust production and monitoring of the dust dispersion as well as it initiate the need of further research on different

  1. Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch

    Directory of Open Access Journals (Sweden)

    J. Cozic

    2008-01-01

    Full Text Available The chemical composition of submicron (fine mode and supermicron (coarse mode aerosol particles has been investigated at the Jungfraujoch high alpine research station (3580 m a.s.l., Switzerland as part of the GAW aerosol monitoring program since 1999. A clear seasonality was observed for all major components throughout the period with low concentrations in winter (predominantly free tropospheric aerosol and higher concentrations in summer (enhanced vertical transport of boundary layer pollutants. In addition, mass closure was attempted during intensive campaigns in March 2004, February–March 2005 and August 2005. Ionic, carbonaceous and non-refractory components of the aerosol were quantified as well as the PM1 and coarse mode total aerosol mass concentrations. A relatively low conversion factor of 1.8 for organic carbon (OC to particulate organic matter (OM was found in winter (February–March 2005. Organics, sulfate, ammonium, and nitrate were the major components of the fine aerosol fraction that were identified, while calcium and nitrate were the only two measured components contributing to the coarse mode. The aerosol mass concentrations for fine and coarse mode aerosol measured during the intensive campaigns were not typical of the long-term seasonality due largely to dynamical differences. Average fine and coarse mode concentrations during the intensive field campaigns were 1.7 μg m−3 and 2.4 μg m−3 in winter and 2.5 μg m−3 and 2.0 μg m−3 in summer, respectively. The mass balance of aerosols showed higher contributions of calcium and nitrate in the coarse mode during Saharan dust events (SDE than without SDE.

  2. Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch

    Directory of Open Access Journals (Sweden)

    J. Cozic

    2007-08-01

    Full Text Available The chemical composition of submicron (fine mode and supermicron (coarse mode aerosol particles has been investigated since 1999 within the GAW aerosol monitoring program at the high alpine research station Jungfraujoch (3580 m a.s.l., Switzerland. Clear seasonality was observed for all major components in the last 9 years with low concentrations in winter (predominantly free tropospheric aerosol and higher concentrations in summer (enhanced vertical transport of boundary layer pollutants. In addition, mass closure was attempted during intensive experiments in March 2004, February–March 2005 and August 2005. Ionic, carbonaceous and refractory components of the aerosol were quantified as well as the PM1 and coarse mode total aerosol mass concentrations. A relatively low conversion factor of 1.8 for organic carbon (OC to particulate organic matter (OM in winter (February–March 2005 was found. Organics, sulfate, ammonium, and nitrate were the major identified components of the fine aerosol fraction, while calcium and nitrate were the two major measured components in the coarse mode. The aerosol mass concentrations for fine and coarse mode aerosol during the intensive campaigns were not typical of the long term seasonality due largely to dynamical differences. Average fine and coarse mode concentrations during the intensive field campaigns were 1.7 μg m−3 and 2.4 μg m−3 in winter and 2.5 μg m−3 and 2.0 μg m−3 in summer, respectively. The mass balance of aerosols showed higher contributions of calcium and nitrate in the coarse mode during Saharan dust events (SDE than without SDE.

  3. Aerosol MALDI mass spectrometry for bioaerosol analysis

    NARCIS (Netherlands)

    Kleefsman, W.A.

    2008-01-01

    In the thesis Aerosol MALDI mass spectrometry for bioaerosol analysis is described how the aerosol mass spectrometer of the TU Delft has been further developed for the on-line analysis of bioaerosols. Due to the implemented improvements mass spectra with high resolution and a high mass range can be

  4. The European aerosol budget in 2006

    NARCIS (Netherlands)

    Aan de Brugh, J.M.J.; Schaap, M.; Vignati, E.; Dentener, F.J.; Kahnert, M.; Sofiev, M.A.; Huijnen, V.; Krol, M.C.

    2011-01-01

    This paper presents the aerosol budget over Europe in 2006 calculated with the global transport model TM5 coupled to the size-resolved aerosol module M7. Comparison with ground observations indicates that the model reproduces the observed concentrations quite well with an expected slight underestima

  5. Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS)

    Science.gov (United States)

    Gasbarre, Joseph; Walker, Richard; Cisewski, Michael; Zawodny, Joseph; Cheek, Dianne; Thornton, Brooke

    2015-01-01

    The Stratospheric Aerosol and Gas Experiment III on the International Space Station (SAGE III/ISS) mission will extend the SAGE data record from the ideal vantage point of the International Space Station (ISS). The ISS orbital inclination is ideal for SAGE measurements providing coverage between 70 deg north and 70 deg south latitude. The SAGE data record includes an extensively validated data set including aerosol optical depth data dating to the Stratospheric Aerosol Measurement (SAM) experiments in 1975 and 1978 and stratospheric ozone profile data dating to the Stratospheric Aerosol and Gas Experiment (SAGE) in 1979. These and subsequent data records, notably from the SAGE II experiment launched on the Earth Radiation Budget Satellite in 1984 and the SAGE III experiment launched on the Russian Meteor-3M satellite in 2001, have supported a robust, long-term assessment of key atmospheric constituents. These scientific measurements provide the basis for the analysis of five of the nine critical constituents (aerosols, ozone (O3), nitrogen dioxide (NO2), water vapor (H2O), and air density using O2) identified in the U.S. National Plan for Stratospheric Monitoring. SAGE III on ISS was originally scheduled to fly on the ISS in the same timeframe as the Meteor-3M mission, but was postponed due to delays in ISS construction. The project was re-established in 2009.

  6. Characteristics of Aerosol Ionic Compositions in Summer 2003 at Lin'an of Yangtze Delta Region

    Institute of Scientific and Technical Information of China (English)

    YAN Peng; ZHANG Yangmei; YANG Dongzhen; TANG Jie; ZHOU Xiuji

    2006-01-01

    With the size-resolved aerosol mass and ion composition data obtained at Lin'an regional atmospheric pollution monitoring station in July 2003, the size distributions of aerosol mass and ionic components, and the correlations between major ion pairs were analyzed. The primary results indicate that in the period of in-situ measurement, the aerosols are mainly composed of fine particles. The mass of aerosols with size less than 2.1 μm accounts for 66% of the total mass of all size ranges, in which about 50% of the mass is contributed by the particles with size less than 0.65 μm. Similar to the size distributions of aerosol mass,the water-soluble ions are mainly concentrated in the size range of <0.65μm, accounting for about 77% of the sum of analyzed ions, and the ions within the range of <2.1 μm reach 88%. The sulfate, ammonium,and potassium are the dominant ionic components in fine particles (particle size less than 2.1 μm). Ion correlation analysis suggests that the sulfates in fine particles are mostly in the compounds of (NH4)2SO4,Na2SO4, and K2SO4, but for submicron particles the sulfates are mainly in the form of (NH4)2SO4.

  7. Spatial Distribution of Carbonaceous Aerosol in the Southeastern Baltic Sea Region (Event of Grass Fires)

    Science.gov (United States)

    Dudoitis, Vadimas; Byčenkienė, Steigvilė; Plauškaitė, Kristina; Bozzetti, Carlo; Fröhlich, Roman; Mordas, Genrik; Ulevičius, Vidmantas

    2016-05-01

    The aerosol chemical composition in air masses affected by large vegetation fires transported from the Kaliningrad region (Russia) and southeast regions (Belarus and Ukraine) during early spring (March 2014) was characterized at the remote background site of Preila, Lithuania. In this study, the chemical composition of the particulate matter was studied by high temporal resolution instruments, including an Aerosol Chemical Speciation Monitor (ACSM) and a seven-wavelength aethalo-meter. Air masses were transported from twenty to several hundred kilometres, arriving at the measurement station after approximately half a day of transport. The concentration-weighted trajectory analysis suggests that organic aerosol particles are mainly transported over the Baltic Sea and the continent (southeast of Belarus). Results show that a significant fraction of the vegetation burning organic aerosol is transformed into oxidised forms in less than a half-day. Biomass burning aerosol (BBOA) was quantified from the ACSM data using a positive matrix factorization (PMF) analysis, while its spatial distribution was evaluated using air mass clustering approach.

  8. Spatial distribution of carbonaceous aerosol in the southeastern Baltic Sea region (event of grass fires

    Directory of Open Access Journals (Sweden)

    Dudoitis Vadimas

    2016-05-01

    Full Text Available The aerosol chemical composition in air masses affected by large vegetation fires transported from the Kaliningrad region (Russia and southeast regions (Belarus and Ukraine during early spring (March 2014 was characterized at the remote background site of Preila, Lithuania. In this study, the chemical composition of the particulate matter was studied by high temporal resolution instruments, including an Aerosol Chemical Speciation Monitor (ACSM and a seven-wavelength aethalometer. Air masses were transported from twenty to several hundred kilometres, arriving at the measurement station after approximately half a day of transport. The concentration-weighted trajectory analysis suggests that organic aerosol particles are mainly transported over the Baltic Sea and the continent (southeast of Belarus. Results show that a significant fraction of the vegetation burning organic aerosol is transformed into oxidised forms in less than a half-day. Biomass burning aerosol (BBOA was quantified from the ACSM data using a positive matrix factorization (PMF analysis, while its spatial distribution was evaluated using air mass clustering approach.

  9. Aerus-GEO: newly available satellite-derived aerosol optical depth product over Europe and Africa

    Science.gov (United States)

    Carrer, D.; Roujean, J. L.; Ceamanos, X.; Six, B.; Suman, S.

    2015-12-01

    The major difficulty in detecting the aerosol signal from visible and near-infrared remote sensing observations is to reach the proper separation of the components related to the atmosphere and the surface. A method is proposed to circumvent this issue by exploiting the directional and temporal dimensions of the satellite signal through the use of a semi-empirical kernel-driven model for the surface/atmosphere coupled system. This algorithm was implemented by the ICARE Data Center (http://www.icare.univ-lille1.fr), which operationally disseminates a daily AOD product at 670 nm over the MSG disk since 2014. The proposed method referred to as AERUS-GEO (Aerosol and surface albEdo Retrieval Using a directional Splitting method - application to GEO data) is applied to three spectral bands (0.6 mm, 0.8 mm, and 1.6 mm) of MSG (Meteosat Second Generation) observations, which scan Europe, Africa, and the Eastern part of South America every 15 minutes. The daily AOD estimates at 0.63μm has been extensively validated. In contrast, the Angstrom coefficient is still going through validation and we will show the differences between the MSG derived Angstrom exponent with that of CAMS (Copernicus Atmosphere Monitoring Service) near-real time aerosol product. The impact of aerosol type on the aerosol radiative forcing will be presented as a part of future development plan.

  10. Urban aerosol number size distributions

    Directory of Open Access Journals (Sweden)

    T. Hussein

    2004-01-01

    Full Text Available Aerosol number size distributions have been measured since 5 May 1997 in Helsinki, Finland. The presented aerosol data represents size distributions within the particle diameter size range 8-400nm during the period from May 1997 to March 2003. The daily, monthly and annual patterns of the aerosol particle number concentrations were investigated. The temporal variation of the particle number concentration showed close correlations with traffic activities. The highest total number concentrations were observed during workdays; especially on Fridays, and the lowest concentrations occurred during weekends; especially Sundays. Seasonally, the highest total number concentrations were observed during winter and spring and lower concentrations were observed during June and July. More than 80% of the number size distributions had three modes: nucleation mode (30nm, Aitken mode (20-100nm and accumulation mode (}$'>90nm. Less than 20% of the number size distributions had either two modes or consisted of more than three modes. Two different measurement sites were used; in the first (Siltavuori, 5.5.1997-5.3.2001, the arithmetic means of the particle number concentrations were 7000cm, 6500cm, and 1000cm respectively for nucleation, Aitken, and accumulation modes. In the second site (Kumpula, 6.3.2001-28.2.2003 they were 5500cm, 4000cm, and 1000cm. The total number concentration in nucleation and Aitken modes were usually significantly higher during workdays than during weekends. The temporal variations in the accumulation mode were less pronounced. The lower concentrations at Kumpula were mainly due to building construction and also the slight overall decreasing trend during these years. During the site changing a period of simultaneous measurements over two weeks were performed showing nice correlation at both sites.

  11. Amino acids in Arctic aerosols

    Directory of Open Access Journals (Sweden)

    E. Scalabrin

    2012-07-01

    Full Text Available Amino acids are significant components of atmospheric aerosols, affecting organic nitrogen input to marine ecosystems, atmospheric radiation balance, and the global water cycle. The wide range of amino acid reactivities suggest that amino acids may serve as markers of atmospheric transport and deposition of particles. Despite this potential, few measurements have been conducted in remote areas to assess amino acid concentrations and potential sources. Polar regions offer a unique opportunity to investigate atmospheric processes and to conduct source apportionment studies of such compounds. In order to better understand the importance of amino acid compounds in the global atmosphere, we determined free amino acids (FAAs in seventeen size-segregated aerosol samples collected in a polar station in the Svalbard Islands from 19 April until 14 September 2010. We used an HPLC coupled with a tandem mass spectrometer (ESI-MS/MS to analyze 20 amino acids to quantify compounds at fmol m−3 levels. Mean total FAA concentration was 1070 fmol m−3 where serine and glycine were the most abundant compounds in almost all samples and accounted for 45–60% of the total amino acid relative abundance. The other eighteen compounds had average concentrations between 0.3 and 98 fmol m−3. The higher amino acid concentrations were present in the ultrafine aerosol fraction (<0.49 μm and accounted for the majority of the total amino acid content. Local marine sources dominate the boreal summer amino acid concentrations, with the exception of the regional input from Icelandic volcanics.

  12. Global Estimates of Average Ground-Level Fine Particulate Matter Concentrations from Satellite-Based Aerosol Optical Depth

    Science.gov (United States)

    Van Donkelaar, A.; Martin, R. V.; Brauer, M.; Kahn, R.; Levy, R.; Verduzco, C.; Villeneuve, P.

    2010-01-01

    Exposure to airborne particles can cause acute or chronic respiratory disease and can exacerbate heart disease, some cancers, and other conditions in susceptible populations. Ground stations that monitor fine particulate matter in the air (smaller than 2.5 microns, called PM2.5) are positioned primarily to observe severe pollution events in areas of high population density; coverage is very limited, even in developed countries, and is not well designed to capture long-term, lower-level exposure that is increasingly linked to chronic health effects. In many parts of the developing world, air quality observation is absent entirely. Instruments aboard NASA Earth Observing System satellites, such as the MODerate resolution Imaging Spectroradiometer (MODIS) and the Multi-angle Imaging SpectroRadiometer (MISR), monitor aerosols from space, providing once daily and about once-weekly coverage, respectively. However, these data are only rarely used for health applications, in part because the can retrieve the amount of aerosols only summed over the entire atmospheric column, rather than focusing just on the near-surface component, in the airspace humans actually breathe. In addition, air quality monitoring often includes detailed analysis of particle chemical composition, impossible from space. In this paper, near-surface aerosol concentrations are derived globally from the total-column aerosol amounts retrieved by MODIS and MISR. Here a computer aerosol simulation is used to determine how much of the satellite-retrieved total column aerosol amount is near the surface. The five-year average (2001-2006) global near-surface aerosol concentration shows that World Health Organization Air Quality standards are exceeded over parts of central and eastern Asia for nearly half the year.

  13. A review of atmospheric aerosol measurements

    Science.gov (United States)

    McMurry, Peter H.

    Recent developments in atmospheric aerosol measurements are reviewed. The topics included complement those covered in the recent review by Chow (JAWMA 45: 320-382, 1995) which focuses on regulatory compliance measurements and filter measurements of particulate composition. This review focuses on measurements of aerosol integral properties (total number concentration, CCN concentration, optical coefficients, etc.), aerosol physical chemical properties (density, refractive index, equilibrium water content, etc.), measurements of aerosol size distributions, and measurements of size-resolved aerosol composition. Such measurements play an essential role in studies of secondary aerosol formation by atmospheric chemical transformations and enable one to quantify the contributions of various species to effects including light scattering/absorption, health effects, dry deposition, etc. Aerosol measurement evolved from an art to a science in the 1970s following the development of instrumentation to generate monodisperse calibration aerosols of known size, composition, and concentration. While such calibration tools permit precise assessments of instrument responses to known laboratory-generated aerosols, unquantifiable uncertainties remain even when carefully calibrated instruments are used for atmospheric measurements. This is because instrument responses typically depend on aerosol properties including composition, shape, density, etc., which, for atmospheric aerosols, may vary from particle-to-particle and are often unknown. More effort needs to be made to quantify measurement accuracies that can be achieved for realistic atmospheric sampling scenarios. The measurement of organic species in atmospheric particles requires substantial development. Atmospheric aerosols typically include hundreds of organic compounds, and only a small fraction (˜10%) of these can be identified by state-of-the-art analytical methodologies. Even the measurement of the total particulate organic

  14. AN OVERVIEW ON: PHARMACEUTICAL AEROSOLS

    Directory of Open Access Journals (Sweden)

    Lahkar Sunita

    2012-09-01

    Full Text Available Pulmonary drug delivery system is found to have a wide range of application in the treatment of illness as well as in the research field due to its beneficial effect over the other dosage form. It is used not only in treatment of illness of asthma and chronic obstructive pulmonary disease (COPD but also finds its application in the treatment of diseases like diabetes, angina pectoris. This review article deals with an overview of one of the pulmonary drug delivery system called pharmaceutical aerosols.

  15. AEROSOL PARTICLE COLLECTOR DESIGN STUDY

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S; Richard Dimenna, R

    2007-09-27

    A computational evaluation of a particle collector design was performed to evaluate the behavior of aerosol particles in a fast flowing gas stream. The objective of the work was to improve the collection efficiency of the device while maintaining a minimum specified air throughput, nominal collector size, and minimal power requirements. The impact of a range of parameters was considered subject to constraints on gas flow rate, overall collector dimensions, and power limitations. Potential improvements were identified, some of which have already been implemented. Other more complex changes were identified and are described here for further consideration. In addition, fruitful areas for further study are proposed.

  16. Characterization of Cooking-Related Aerosols

    Science.gov (United States)

    Niedziela, R. F.; Blanc, L. E.

    2010-12-01

    The temperatures at which food is cooked are usually high enough to drive oils and other organic compounds out of materials which are being prepared for consumption. As these compounds move away from the hot cooking surface and into the atmosphere, they can participate in chemical reactions or condense to form particles. Given the high concentration of cooking in urban areas, cooking-related aerosols likely contribute to the overall amount of particulate matter on a local scale. Reported here are results for the mid-infrared optical characterization of aerosols formed during the cooking of several meat and vegetable samples in an inert atmosphere. The samples were heated in a novel aerosol generator that is designed to collect particles formed immediately above the cooking surface and inject them into a laminar aerosol flow cell. Preliminary results for the chemical processing of cooking-related aerosols in synthetic air will also be presented.

  17. Aqueous-phase photooxidation of levoglucosan - a mechanistic study using aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS)

    Science.gov (United States)

    Zhao, R.; Mungall, E. L.; Lee, A. K. Y.; Aljawhary, D.; Abbatt, J. P. D.

    2014-09-01

    Levoglucosan (LG) is a widely employed tracer for biomass burning (BB). Recent studies have shown that LG can react rapidly with hydroxyl (OH) radicals in the aqueous phase despite many mass balance receptor models assuming it to be inert during atmospheric transport. In the current study, aqueous-phase photooxidation of LG by OH radicals was performed in the laboratory. The reaction kinetics and products were monitored by aerosol time-of-flight chemical ionization mass spectrometry (Aerosol ToF-CIMS). Approximately 50 reaction products were detected by the Aerosol ToF-CIMS during the photooxidation experiments, representing one of the most detailed product studies yet performed. By following the evolution of mass defects of product peaks, unique trends of adding oxygen (+O) and removing hydrogen (-2H) were observed among the products detected, providing useful information for determining potential reaction mechanisms and sequences. Additionally, bond-scission reactions take place, leading to reaction intermediates with lower carbon numbers. We introduce a data analysis framework where the average oxidation state (OSc) is plotted against a novel molecular property: double-bond-equivalence-to-carbon ratio (DBE/#C). The trajectory of LG photooxidation on this plot suggests formation of polycarbonyl intermediates and their subsequent conversion to carboxylic acids as a general reaction trend. We also determined the rate constant of LG with OH radicals at room temperature to be 1.08 ± 0.16 × 109 M-1 s-1. By coupling an aerosol mass spectrometer (AMS) to the system, we observed a rapid decay of the mass fraction of organic signals at mass-to-charge ratio 60 (f60), corresponding closely to the LG decay monitored by the Aerosol ToF-CIMS. The trajectory of LG photooxidation on a f44-f60 correlation plot matched closely to literature field measurement data. This implies that aqueous-phase photooxidation might be partially contributing to aging of BB particles in the

  18. Aqueous-phase photooxidation of levoglucosan - a mechanistic study using Aerosol Time of Flight Chemical Ionization Mass Spectrometry (Aerosol-ToF-CIMS)

    Science.gov (United States)

    Zhao, R.; Mungall, E. L.; Lee, A. K. Y.; Aljawhary, D.; Abbatt, J. P. D.

    2014-04-01

    Levoglucosan (LG) is a widely employed tracer for biomass burning (BB). Recent studies have shown that LG can react rapidly with hydroxyl (OH) radicals in the aqueous phase, despite many mass balance receptor models assuming it to be inert during atmospheric transport. In the current study, aqueous-phase photooxidation of LG by OH radicals was performed in the laboratory. The reaction kinetics and products were monitored by Aerosol Time of Flight Chemical Ionization Mass Spectrometry (Aerosol-ToF-CIMS). Approximately 50 reaction products were detected by the Aerosol-ToF-CIMS during the photooxidation experiments, representing one of the most detailed product studies yet performed. By following the evolution of mass defects of product peaks, unique trends of adding oxygen (+O) and removing hydrogen (-2H) were observed among the products detected, providing useful information to determine potential reaction mechanisms and sequences. As well, bond scission reactions take place, leading to reaction intermediates with lower carbon numbers. We introduce a data analysis framework where the average oxidation state (OSc) is plotted against a novel molecular property: double bond equivalence to carbon ratio (DBE / #C). The trajectory of LG photooxidation on this plot suggests formation of poly-carbonyl intermediates and their subsequent conversion to carboxylic acids as a general reaction trend. We also determined the rate constant of LG with OH radicals at room temperature to be 1.08 ± 0.16 × 109 M-1 s-1. By coupling an Aerosol Mass Spectrometer (AMS) to the system, we observed a rapid decay of the mass fraction of organic signals at mass-to-charge ratio 60 (f60), corresponding closely to the LG decay monitored by the Aerosol-ToF-CIMS. The trajectory of LG photooxidation on a f44-f60 correlation plot matched closely to literature field measurement data. This implies that aqueous-phase photooxidation might be partially contributing to aging of BB particles in the ambient

  19. Atmospheric aerosols in Amazonia and land use change: from natural biogenic to biomass burning conditions.

    Science.gov (United States)

    Artaxo, Paulo; Rizzo, Luciana V; Brito, Joel F; Barbosa, Henrique M J; Arana, Andrea; Sena, Elisa T; Cirino, Glauber G; Bastos, Wanderlei; Martin, Scot T; Andreae, Meinrat O

    2013-01-01

    In the wet season, a large portion of the Amazon region constitutes one of the most pristine continental areas, with very low concentrations of atmospheric trace gases and aerosol particles. However, land use change modifies the biosphere-atmosphere interactions in such a way that key processes that maintain the functioning of Amazonia are substantially altered. This study presents a comparison between aerosol properties observed at a preserved forest site in Central Amazonia (TT34 North of Manaus) and at a heavily biomass burning impacted site in south-western Amazonia (PVH, close to Porto Velho). Amazonian aerosols were characterized in detail, including aerosol size distributions, aerosol light absorption and scattering, optical depth and aerosol inorganic and organic composition, among other properties. The central Amazonia site (TT34) showed low aerosol concentrations (PM2.5 of 1.3 +/- 0.7 microg m(-3) and 3.4 +/- 2.0 microg m(-3) in the wet and dry seasons, respectively), with a median particle number concentration of 220 cm(-3) in the wet season and 2200 cm(-3) in the dry season. At the impacted site (PVH), aerosol loadings were one order of magnitude higher (PM2.5 of 10.2 +/- 9.0 microg m(-3) and 33.0 +/- 36.0 microg m(-3) in the wet and dry seasons, respectively). The aerosol number concentration at the impacted site ranged from 680 cm(-3) in the wet season up to 20 000 cm(-3) in the dry season. An aerosol chemical speciation monitor (ACSM) was deployed in 2013 at both sites, and it shows that organic aerosol account to 81% to the non-refractory PM1 aerosol loading at TT34, while biomass burning aerosols at PVH shows a 93% content of organic particles. Three years of filter-based elemental composition measurements shows that sulphate at the impacted site decreases, on average, from 12% of PM2.5 mass during the wet season to 5% in the dry season. This result corroborates the ACSM finding that the biomass burning contributed overwhelmingly to the organic

  20. Atmospheric responses to stratospheric aerosol geoengineering

    Science.gov (United States)

    Ferraro, Angus; Highwood, Eleanor; Charlton-Perez, Andrew

    2013-04-01

    Stratospheric aerosol geoengineering, also called solar radiation management (SRM), involves the injection of aerosol into the stratosphere to increase the planetary albedo. It has been conceieved as a policy option in response to human-induced global warming. It is well-established from modelling studies and observations following volcanic eruptions that stratospheric sulphate aerosols cause global cooling. Some aspects of the climate response, especially those involving large-scale dynamical changes, are more uncertain. This work attempts to identify the physical mechanisms operating in the climate response to stratospheric aerosol geoengineering using idealised model experiments. The radiative forcing produced by the aerosol depends on its type (species) and size. Aerosols absorb terrestrial and solar radiation, which drives stratospheric temperature change. The stratospheric temperature change also depends on aerosol type and size. We calculate the stratospheric temperature change due to geoengineering with sulphate, titania, limestone and soot in a fixed-dynamical-heating radiative model. Sulphate produces tropical heating of up to ~6 K. Titania produces much less heating, whereas soot produces much more. Most aerosols increase the meridional temperature gradient in the lower stratosphere which, by thermal wind balance, would be expected to intensify the zonal winds in the polar vortex. An intermediate-complexity general circulation model is used to investigate the dynamical response to geoengineering aerosols. Atmospheric carbon dioxide concentrations are quadrupled. The carbon dioxide forcing is then balanced using stratospheric sulphate aerosol. We assess dynamical changes in the stratosphere, for example, the frequency of stratospheric sudden warmings and the strength of the Brewer-Dobson overturning circulation. We also assess changes in the strength and position of the tropospheric jets. We compare results for sulphate with those for titania.

  1. Aerosol composition, sources and processes during wintertime in Beijing, China

    Directory of Open Access Journals (Sweden)

    Y. L. Sun

    2013-01-01

    Full Text Available Air pollution is a major environmental concern among all seasons in megacity Beijing, China. Here we present the results from a winter study that was conducted from 21 November 2011 to 20 January 2012 with an Aerodyne Aerosol Chemical Speciation Monitor (ACSM and various collocated instruments. The non-refractory submicron aerosol (NR-PM1 species vary dramatically with clean periods and pollution episodes alternating frequently. Compared to summer, wintertime submicron aerosols show much enhanced organics and chloride, which on average account for 52% and 5%, respectively of the total NR-PM1 mass. All NR-PM1 species show quite different diurnal behaviors between summer and winter. For example, the wintertime nitrate presents a gradual increase during daytime and correlates well with secondary organic aerosol (OA, indicating a dominant role of photochemical production over gas-particle partitioning. Positive matrix factorization was performed on ACSM OA mass spectra, and identified three primary OA (POA factors, i.e. hydrocarbon-like OA (HOA, cooking OA (COA, and coal combustion OA (CCOA, and one secondary factor, i.e. oxygenated OA (OOA. The POA dominates OA during wintertime, contributing 69% with the rest of 31% being SOA. Further, all POA components show pronounced diurnal cycles with the highest concentrations occurring at nighttime. CCOA is the largest primary source during the heating season, on average accounting for 33% of OA and 17% of NR-PM1. CCOA also plays a significant role in chemically-resolved particulate matter (PM pollution as its mass contribution increases linearly as a function of NR-PM1 mass loadings. The SOA however presents a reversed trend, which might indicate the limited SOA formation during high PM pollution episodes in winter. The effects of meteorology on PM pollution and aerosol processing were also explored. In particular, the sulfate mass is largely enhanced

  2. The climatology of dust aerosol over the arabian peninsula

    Directory of Open Access Journals (Sweden)

    A. Shalaby

    2015-01-01

    Full Text Available Dust storms are considered to be a natural hazard over the Arabian Peninsula, since they occur all year round with maximum intensity and frequency in Spring and Summer. The Regional Climate Model version 4 (RegCM4 has been used to study the climatology of atmospheric dust over the Arabian Peninsula from 1999 to 2012. This relatively long simulation period samples the meteorological conditions that determine the climatology of mineral dust aerosols over the Arabian Peninsula. The modeled Aerosol Optical Depth (AOD has been compared against ground-based observations of three Aerosol Robotic Network (AERONET stations that are distributed over the Arabian Peninsula and daily space based observations from the Multi-angle Imaging SpectroRadiometer (MISR, the Moderate resolution Imaging SpectroRadimeter (MODIS and Ozone Monitoring Instrument (OMI. The large scale atmospheric circulation and the land surface response that lead to dust uplifting have been analyzed. While the modeled AOD shows that the dust season extends from March to August with two pronounced maxima, one over the northern Arabian Peninsula in March with AOD equal to 0.4 and one over the southern Arabian Peninsula in July with AOD equal to 0.7, the observations show that the dust season extends from April to August with two pronounced maxima, one over the northern Arabian Peninsula in April with AOD equal to 0.5 and one over the southern Arabian Peninsula in July with AOD equal to 0.5. In spring a high pressure dominates the Arabian Peninsula and is responsible for advecting dust from southern and western part of the Arabian Peninsula to northern and eastern part of the Peninsula. Also, fast developed cyclones in northern Arabian Peninsula are responsible for producing strong dust storms over Iraq and Kuwait. However, in summer the main driver of the surface dust emission is the strong northerly wind ("Shamal" that transport dust from the northern Arabian Peninsula toward south parallel

  3. Temporal Variability and Characterization of Aerosols across the Pakistan Region during the Winter Fog Periods

    Directory of Open Access Journals (Sweden)

    Muhammad Fahim Khokhar

    2016-05-01

    Full Text Available Fog is a meteorological/environmental phenomenon which happens across the Indo-Gangetic Plains (IGP and leads to significant social and economic problems, especially posing significant threats to public health and causing disruptions in air and road traffic. Meteorological stations in Pakistan provide limited information regarding fog episodes as these provide only point observations. Continuous monitoring, as well as a spatially coherent picture of fog distribution, is possible through the use of satellite observations. This study focuses on the 2012–2015 winter fog episodes over the Pakistan region using the Moderate Resolution Image Spectrometer (MODIS, the Ozone Monitoring Instrument and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO products. The main objective of the study was to map the spatial distribution of aerosols, their types, and to identify the aerosol origins during special weather conditions like fog in Pakistan. The study also included ground monitoring of particulate matter (PM concentrations, which were conducted during the 2014–2015 winter period only. Overall, this study is part of a multi-country project supported by the International Centre for Integrated Mountain Development (ICIMOD, started in 2014–2015 winter period, whereby scientists from Bangladesh, India and Nepal have also conducted measurements at their respective sites. A significant correlation between MODIS (AOD and AERONET Station (AOD data from Lahore was identified. Mass concentration of PM10 at all sampling sites within Lahore city exceeded the National Environmental Quality Standards (NEQS levels on most of the occasions. Smoke and absorbing aerosol were found to be major constituents of winter fog in Pakistan. Furthermore, an extended span of winter fog was also observed in Lahore city during the winter of 2014–2015. The Vertical Feature Mask (VFM provided by CALIPSO satellite confirmed the low-lying aerosol

  4. Balloon-borne observations of stratospheric aerosol in Antarctica from 1972 to 1984

    Science.gov (United States)

    Hofmann, D. J.

    1985-01-01

    Stratospheric levels of particles with r or = 0.15 microns were monitored with optical particle counters in approximately monthly balloon soundings at Laramie, Wyoming (41 deg N) since 1971. These measurements were used to characterize the background stratospheric aerosol layer and the disturbed layer following major volcanic eruptions. Levels of particles with r or = 0.01 microns have also been measured with balloon-borne counters since 1973. The latter are collectively called condensation nuclei (CN) as they are characteristic of aerosol in the early stages of growth. While they dominate the size distribution in the tropsophere, they are a trace species in the undisturbed stratosphere. From 1972 until 1980, annual balloon soundings from McMurdo Station (78 deg S) and/or Amundsen-Scott Station (90 deg S), in Antarctica, have also been conducted to crudely monitor Southern Hemisphere aerosol levels. These measurements were continued in 1983 and 1984. Profiles of r 0.15 microns aerosol concentrations as measured during January at the south pole from 1972 to 1975 and in 1980 are given. The former are typical of undisturbed conditions and indicate the small degree of variability under these conditions. The latter indicates the effect of minor volcanic activity, visible in the 10 to 15 km region.

  5. The Influence of Urban Emissions on Background Aerosols and Trace Gases in Amazonia as Seen in the GoAmazon2014/2015 Experiment.

    Science.gov (United States)

    Artaxo, P.; Martin, S. T.; Barbosa, H. M.; Brito, J.; Carbone, S.; Rizzo, L. V.; Andreae, M. O.; Pöhlker, C.; Souza, R. A. F. D.

    2015-12-01

    As part of the GoAmazon2014/2015 experiment, several aerosol and trace gas monitoring stations are being operated for two years before and after the Manaus urban plume in Central Amazonia. Three sites are being operated in pristine conditions, with atmospheric properties under natural biogenic conditions. These three sites named T0 are ATTO (Amazon Tall Tower Observatory), ZF2 and EMBRAPA. After the air masses are exposed to the Manaus plume, one site (called T2) is being operated under the direct influence of the Manaus plume at 5 Km downwind. Finally, at about 150 Km downwind of Manaus is the T3 Manacapuru site. Aerosol chemical composition is being analysed using filters for fine (PM2.5) and coarse mode aerosol as well as three Aerodyne ACSM (Aerosol Chemical Speciation Monitors) instruments. Optical properties were measured with several AE33 aethalometers and MAAP, and multi wavelengths nephelometers. Aerosol size distribution is determined using scanning mobility particle sizers. The aerosol column is measures using AERONET sunphotometers before and after the Manaus plume, as well as several Lidar systems. The three sites before the Manaus plume show remarkable similar variability in aerosol concentrations and optical properties. This pattern is very different at the T2 site, with large aerosol concentrations enhancing aerosol absorption and scattering significantly as a result of the Manaus pollution plume. The aerosol is very oxidized before being exposed to the Manaus plume, and this pattern changes significantly for T2 and T3 sites, with a much higher presence of less oxidized aerosol. Typical ozone concentrations at mid-day before Manaus plume is a low 10-12 ppb, value that changes to 50-70 ppb for air masses suffering the influence of Manaus plume. Aerosol size distribution also change significantly, with stronger presence of nucleation mode particles. A detailed comparison of aerosol characteristics and composition for the several sites will be

  6. Physical characterization of incense aerosols.

    Science.gov (United States)

    Mannix, R C; Nguyen, K P; Tan, E W; Ho, E E; Phalen, R F

    1996-12-20

    Experiments were performed to study the physical characteristics of smoke aerosols generated by burning three types of stick incense in a 4 m3 clean room. Sidestream cigarette smoke was also examined under the same conditions to provide a comparison. Among the parameters measured were (a) masses of aerosol, carbon monoxide and nitrogen oxides generated by burning the incense or cigarettes, (b) rates of decay of the particles from the air, and (c) estimates of count median particle size during a 7 h period post-burning. There was variability among the types of incense studied with respect to many of the parameters. Also, as a general trend, the greater the initial particulate mass concentration, the more rapid the rate of decay of the smoke. In relation to the quantity of particulate generated, cigarette smoke was found to produce proportionally larger quantities of carbon monoxide and nitrogen oxides than did incense. Due to the fact that burning incense was found to generate large quantities of particulate (an average of greater than 45 mg/g burned, as opposed to about 10 mg/g burned for the cigarettes), it is likely, in cases in which incense is habitually burned in indoor settings, that such a practice would produce substantial airborne particulate concentrations.

  7. Organic Aerosol Production from Methylglyoxal

    Science.gov (United States)

    de Haan, D. O.; de Witt, H. L.; Tolbert, M. A.; Jimenez, J. L.

    2009-05-01

    Recent modeling suggests that methylglyoxal may form 27 percent of atmospheric SOA (8 Tg C/yr) if it is irreversibly taken up by clouds and aerosol with an uptake coefficient of 0.0029 (Fu et al. 2008 JGR 113 D15303), less than that measured in two lab studies. Once in a cloud, methylglyoxal may be chemically transformed via oxidation, self-reaction, or reaction with other compounds. All of these processes can combine to prevent re-evaporation. We describe the ability of methylglyoxal to form oligomers with itself, with methylamine, and with ammonium salts in evaporating droplets in lab simulations of cloud processing. Products and reaction kinetics are analyzed by high-resolution time-of-flight aerosol mass spectrometry (HR- ToF-AMS), electrospray ionization mass spectrometry (ESI-MS) and proton nuclear magnetic resonance (1H- NMR). Product molecules are non-volatile, and their formation is irreversible and accompanied by browning. These reactions suggest that SOA formation by methylglyoxal may be very significant.

  8. CCN activity of aliphatic amine secondary aerosol

    Science.gov (United States)

    Tang, X.; Price, D.; Praske, E.; Vu, D.; Purvis-Roberts, K.; Silva, P. J.; Cocker, D. R., III; Asa-Awuku, A.

    2014-01-01

    Aliphatic amines can form secondary aerosol via oxidation with atmospheric radicals (e.g. hydroxyl radical and nitrate radical). The particle composition can contain both secondary organic aerosol (SOA) and inorganic salts. The fraction of organic to inorganic materials in the particulate phase influences aerosol hygroscopicity and cloud condensation nuclei (CCN) activity. SOA formed from trimethylamine (TMA) and butylamine (BA) reactions with hydroxyl radical (OH) is composed of organic material of low hygroscopicity (single hygroscopicity parameter, κ ≤ 0.25). Secondary aerosol formed from the tertiary aliphatic amine (TMA) with N2O5 (source of nitrate radical, NO3), contains less volatile compounds than the primary aliphatic amine (BA) aerosol. TMA + N2O5 form semi-volatile organics in low RH conditions that have κ ~ 0.20, indicative of slightly soluble organic material. As RH increases, several inorganic amine salts are formed as a result of acid-base reactions. The CCN activity of the humid TMA-N2O5 aerosol obeys Zdanovskii, Stokes, and Robinson (ZSR) ideal mixing rules. Higher CCN activity (κ > 0.3) was also observed for humid BA+N2O5 aerosols compared with dry aerosol (κ ~ 0.2), as a result of the formation of inorganic salts such as NH4NO3 and butylamine nitrate (C4H11N · HNO3). Compared with TMA, BA+N2O5 reactions produce more volatile aerosols. The BA+N2O5 aerosol products under humid experiments were found to be very sensitive to the temperature within the stream-wise continuous flow thermal gradient CCN counter. The CCN counter, when set above a 21 °C temperature difference, evaporates BA+N2O5 aerosol formed at RH ≥ 30%; κ ranges from 0.4 to 0.7 and is dependent on the instrument supersaturation (ss) settings. The aerosol behaves non-ideally, hence simple ZSR rules cannot be applied to the CCN results from the primary aliphatic amine system. Overall, aliphatic amine aerosol systems κ ranges from 0.2 systems.

  9. Aerosol Size Distribution in the marine regions

    Science.gov (United States)

    Markuszewski, Piotr; Petelski, Tomasz; Zielinski, Tymon; Pakszys, Paulina; Strzalkowska, Agata; Makuch, Przemyslaw; Kowalczyk, Jakub

    2014-05-01

    We would like to present the data obtained during the regular research cruises of the S/Y Oceania over a period of time between 2009 - 2012. The Baltic Sea is a very interesting polygon for aerosol measurements, however, also difficult due to the fact that mostly cases of a mixture of continental and marine aerosols are observed. It is possible to measure clear marine aerosol, but also advections of dust from southern Europe or even Africa. This variability of data allows to compare different conditions. The data is also compared with our measurements from the Arctic Seas, which have been made during the ARctic EXperiment (AREX). The Arctic Seas are very suitable for marine aerosol investigations since continental advections of aerosols are far less frequent than in other European sea regions. The aerosol size distribution was measured using the TSI Laser Aerosol Spectrometer model 3340 (99 channels, measurement range 0.09 μm to 7 μm), condensation particle counter (range 0.01 μm to 3 μm) and laser particle counter PMS CSASP-100-HV-SP (range 0.5 μm to 47 μm in 45 channels). Studies of marine aerosol production and transport are important for many Earth sciences such as cloud physics, atmospheric optics, environmental pollution studies and interaction between ocean and atmosphere. All equipment was placed on one of the masts of S/Y Oceania. Measurements using the laser aerosol spectrometer and condensation particle counter were made on one level (8 meters above sea level). Measurements with the laser particle counter were performed at five different levels above the sea level (8, 11, 14, 17 and 20 m). Based on aerosol size distribution the parameterizations with a Log-Normal and a Power-Law distributions were made. The aerosol source functions, characteristic for the region were also determined. Additionally, poor precision of the sea spray emission determination was confirmed while using only the aerosol concentration data. The emission of sea spray depends

  10. Quantitative assessment of surf-produced sea spray aerosol

    NARCIS (Netherlands)

    Neele, F.P.; De Leeuw, G.; Jansen, M.; Stive, M.J.F.

    1998-01-01

    The first results are presented from a quantitative model describing the aerosol production in the surf zone. A comparison is made with aerosol produced in the surf zone as measured during EOPACE experiments in La Jolla and Monterey. The surf aerosol production was derived from aerosol concentration

  11. Applications of aerosol model in the reactor containment

    Directory of Open Access Journals (Sweden)

    Mossad Slama

    2014-10-01

    For spatially homogeneous aerosol of uniform chemical composition, the aerosol dynamic equation is solved in closed volume to simulate the radionuclide particle transport in the containment. The effects of initial conditions on the aerosol distribution, boundary layer thickness and the aerosol behaviour under source reinforcement (external source are considered.

  12. Spectral Measurements of Aerosol Absorption from UV to VISIBLE

    Science.gov (United States)

    Krotkov, N. A.; Labow, G.; Herman, J.; Bhartia, P. K.; Slusser, J.; Durham, B.; Janson, G.; Wilson, C.; Disterhoft, P.; Cede, A.; Abuhassan, N.; Eck, T. F.; Holben, B.; Bais, A.; Rapsomanikis, S.

    2007-05-01

    Amount of solar radiation reaching the Earth's surface can be strongly influenced by aerosol absorption. The aerosol absorption optical thickness (AAOT) in the visible and near IR (440 nm- 1020nm) is routinely produced from almucantar measurements made by the CIMEL instruments in the AERONET network. AAOT in the UV (300nm- 368nm) have been derived from the total and diffuse hemispherical flux measurements made by UV- Multifilter Rotating Shadowband Radiometer (UV-MFRSR, Yankee Environmental Systems, Inc.) instruments. However, no direct comparisons between these two methods exist because the CIMEL wavelengths (used in almucantar retrievals) do not overlap with the UV-MFRSR wavelengths. To enable direct comparisons between the two techniques, we have modified our UV-MFRSR, part of USDA UVB Monitoring and Research Network, by replacing standard 300nm filter with 440nm filter used in AERONET network. The instrument has been deployed at Mauna Loa Observatory, at NASA GSFC in Greenbelt, MD (July 2005 - June 2006) and during SCOUT-03 field campaign in Thessaloniki, Greece in July 2006. During these deployments the instrument's calibration was monitored daily using co-located AERONET and BREWER direct sun measurements of aerosol extinction optical thickness (AOT). Between the deployments the instrument was thoroughly calibrated at the NOAA Central UV Calibration Facility in Boulder, Colorado. We find that the UV-MSFRSR instrument is highly susceptible to calibration drifts. However, these drifts can be accurately assessed using AERONET and BREWER direct sun data. After correcting for these calibration changes, the AAOT was inferred by fitting the measurements of global and diffuse atmospheric transmittances with the forward RT model independently at each spectral channel. The AOT data and ancillary measurements of aerosol column particle size distribution and refractive index in the visible wavelengths (by CIMEL sun-sky almucantar inversions), direct -sun column NO2 and

  13. The AIRPARIF-AEROSOL project: A comprehensive source apportionment study of fine aerosols (PM2.5) in the region of Paris (France)

    Science.gov (United States)

    Sciare, Jean; Ghersi, Veronique; Bressi, Michael; Lameloise, Philippe; Bonnaire, Nicolas; Rosso, Amandine; Nicolas, Jose; Moukhtar, Sophie; Ferron, Anais; Baumier, Dominique

    2010-05-01

    With a population of about 12 millions inhabitants (20% of the French population), Greater Paris (France) is one of the most populated megacity in Europe and among the few located in developed countries. Due to its favorable geographical situation (far from other big European cities and influenced very often by clean oceanic air masses), it may be considered as a good candidate for investigating the build-up of urban air pollution from temperate industrialized countries. Particulate mass of fine aerosols with aerodynamic diameter below 2.5μm (PM2.5) is continuously monitored at several stations from great Paris for almost 8 years by the local air quality network (AIRPARIF), using a conventional on-line automatic system (R&P TEOM; see Patashnik and Rupprecht, 1991). During the period 2000-2006, levels of PM2.5 in the region of Paris have shown rather stable yearly mean values ranging 13 to 16?g/m3 whereas most of the other pollutants monitored by AIRPARIF have shown a net decrease during this period (http:\\www.airparif.asso.fr). Since the year 2007, this situation has becoming worse for particulate pollution with a net increase of the yearly mean concentration of PM2.5 (up to 21?g/m3), which increase is partly due to the use of a new PM2.5 measurement technique (R&P TEOM-FDMS instrument) enabling a proper determination of the semi-volatile fraction of fine aerosols. Although this new method greatly improves the determination of PM2.5, it has also brought PM2.5 levels in the region of Paris closer to the 25?g/m3 yearly mean targeted value recommended by Europe for 2010 (limit value for 2015). Efficient abatement policies aiming at reducing levels of PM2.5 in the region of Paris will have to be fed by preliminary PM2.5 source apportionment studies and exhaustive aerosol chemistry studies (chemical mass balance) allowing a better separation between regional to continental aerosol sources. The objective of the AIRPARIF-AEROSOL project aims to perform a spatially- and

  14. Smoke and Pollution Aerosol Effect on Cloud Cover

    Science.gov (United States)

    Kaufman, Yoram J.; Koren, Ilan

    2006-01-01

    Pollution and smoke aerosols can increase or decrease the cloud cover. This duality in the effects of aerosols forms one of the largest uncertainties in climate research. Using solar measurements from Aerosol Robotic Network sites around the globe, we show an increase in cloud cover with an increase in the aerosol column concentration and an inverse dependence on the aerosol absorption of sunlight. The emerging rule appears to be independent of geographical location or aerosol type, thus increasing our confidence in the understanding of these aerosol effects on the clouds and climate. Preliminary estimates suggest an increase of 5% in cloud cover.

  15. Infrared spectroscopic methods for the study of aerosol particles using White cell optics: Development and characterization of a new aerosol flow tube

    Science.gov (United States)

    Nájera, Juan J.; Fochesatto, Javier G.; Last, Deborah J.; Percival, Carl J.; Horn, Andrew B.

    2008-12-01

    A description of a new aerosol flow tube apparatus for measurements in situ under atmospherically relevant conditions is presented here. The system consists of a laboratory-made nebulizer generation system and a flow tube with a White cell-based Fourier transform IR for the detection system. An assessment of the White cell coupled to the flow tube was carried out by an extensive set of experiments to ensure the alignment of the infrared beam and optimize the performance of this system. The detection limit for CO was established as (1.0±0.3) ppm and 16 passes was chosen as the optimum number of passes to be used in flow tube experiments. Infrared spectroscopy was used to characterize dry aerosol particles in the flow tube. Pure particles composed of ammonium sulfate or sodium chloride ranging between 0.8 and 2.1 μm for size diameter and (0.8-4.9)×106 particles/cm3 for density number were generated by nebulization of aqueous solutions. Direct measurements of the aerosol particle size agree with size spectra retrieved from inversion of the extinction measurements using Mie calculations, where the difference residual value is in the order of 0.2%. The infrared detection limit for ammonium sulfate aerosol particles was determined as dp=0.9 μm and N =5×103 particles/cm3 with σ =1.1 by Mie calculation. Alternatively, Mie calculations were performed to determine the flexibility in varying the optical length when aerosol particles are sent by the injector. The very good agreement between the values retrieved for aerosol particles injected through the flow tube or through the injector clearly validates the estimation of the effective optical path length for the injector. To determine the flexibility in varying the reaction zone length, analysis of the extinction spectra as function of the position of the injector was carried out by monitoring the integrated area of different absorption modes of the ammonium sulfate. We conclude that the aerosol loss in the flow tube

  16. Variations in optical properties of aerosols on monsoon seasonal change and estimation of aerosol optical depth using ground-based meteorological and air quality data

    Science.gov (United States)

    Tan, F.; Lim, H. S.; Abdullah, K.; Yoon, T. L.; Holben, B.

    2014-07-01

    In this study, the optical properties of aerosols in Penang, Malaysia were analyzed for four monsoonal seasons (northeast monsoon, pre-monsoon, southwest monsoon, and post-monsoon) based on data from the AErosol RObotic NETwork (AERONET) from February 2012 to November 2013. The aerosol distribution patterns in Penang for each monsoonal period were quantitatively identified according to the scattering plots of the aerosol optical depth (AOD) against the Angstrom exponent. A modified algorithm based on the prototype model of Tan et al. (2014a) was proposed to predict the AOD data. Ground-based measurements (i.e., visibility and air pollutant index) were used in the model as predictor data to retrieve the missing AOD data from AERONET because of frequent cloud formation in the equatorial region. The model coefficients were determined through multiple regression analysis using selected data set from in situ data. The predicted AOD of the model was generated based on the coefficients and compared against the measured data through standard statistical tests. The predicted AOD in the proposed model yielded a coefficient of determination R2 of 0.68. The corresponding percent mean relative error was less than 0.33% compared with the real data. The results revealed that the proposed model efficiently predicted the AOD data. Validation tests were performed on the model against selected LIDAR data and yielded good correspondence. The predicted AOD can beneficially monitor short- and long-term AOD and provide supplementary information in atmospheric corrections.

  17. Variations in optical properties of aerosols on monsoon seasonal change and estimation of aerosol optical depth using ground-based meteorological and air quality data

    Directory of Open Access Journals (Sweden)

    F. Tan

    2014-07-01

    Full Text Available In this study, the optical properties of aerosols in Penang, Malaysia were analyzed for four monsoonal seasons (northeast monsoon, pre-monsoon, southwest monsoon, and post-monsoon based on data from the AErosol RObotic NETwork (AERONET from February 2012 to November 2013. The aerosol distribution patterns in Penang for each monsoonal period were quantitatively identified according to the scattering plots of the aerosol optical depth (AOD against the Angstrom exponent. A modified algorithm based on the prototype model of Tan et al. (2014a was proposed to predict the AOD data. Ground-based measurements (i.e., visibility and air pollutant index were used in the model as predictor data to retrieve the missing AOD data from AERONET because of frequent cloud formation in the equatorial region. The model coefficients were determined through multiple regression analysis using selected data set from in situ data. The predicted AOD of the model was generated based on the coefficients and compared against the measured data through standard statistical tests. The predicted AOD in the proposed model yielded a coefficient of determination R2 of 0.68. The corresponding percent mean relative error was less than 0.33% compared with the real data. The results revealed that the proposed model efficiently predicted the AOD data. Validation tests were performed on the model against selected LIDAR data and yielded good correspondence. The predicted AOD can beneficially monitor short- and long-term AOD and provide supplementary information in atmospheric corrections.

  18. Modelling Aerosol Dispersion in Urban Street Canyons

    Science.gov (United States)

    Tay, B. K.; Jones, D. P.; Gallagher, M. W.; McFiggans, G. B.; Watkins, A. P.

    2009-04-01

    Flow patterns within an urban street canyon are influenced by various micrometeorological factors. It also represents an environment where pollutants such as aerosols accumulate to high levels due to high volumes of traffic. As adverse health effects are being attributed to exposure to aerosols, an investigation of the dispersion of aerosols within such environments is of growing importance. In particular, one is concerned with the vertical structure of the aerosol concentration, the ventilation characteristics of the street canyon and the influence of aerosol microphysical processes. Due to the inherent heterogeneity of the aerosol concentrations within the street canyon and the lack of spatial resolution of measurement campaigns, these issues are an on-going debate. Therefore, a modelling tool is required to represent aerosol dispersion patterns to provide insights to results of past measurement campaigns. Computational Fluid Dynamics (CFD) models are able to predict detailed airflow patterns within urban geometries. This capability may be further extended to include aerosol dispersion, by an Euler-Euler multiphase approach. To facilitate the investigation, a two-dimensional, multiphase CFD tool coupled with the k-epsilon turbulence model and with the capability of modelling mixed convection flow regimes arising from both wind driven flows and buoyancy effects from heated walls was developed. Assuming wind blowing perpendicularly to the canyon axis and treating aerosols as a passive scalar, an attempt will be made to assess the sensitivities of aerosol vertical structure and ventilation characteristics to the various flow conditions. Numerical studies were performed using an idealized 10m by 10m canyon to represent a regular canyon and 10m by 5m to represent a deep one. An aerosol emission source was assigned on the centerline of the canyon to represent exhaust emissions. The vertical structure of the aerosols would inform future directives regarding the

  19. Modeling aerosol processes at the local scale

    Energy Technology Data Exchange (ETDEWEB)

    Lazaridis, M.; Isukapalli, S.S.; Georgopoulos, P.G. [Environmental and Occupational Health Sciences Inst., NJ (United States)

    1998-12-31

    This work presents an approach for modeling photochemical gaseous and aerosol phase processes in subgrid plumes from major localized (e.g. point) sources (plume-in-grid modeling), thus improving the ability to quantify the relationship between emission source activity and ambient air quality. This approach employs the Reactive Plume Model (RPM-AERO) which extends the regulatory model RPM-IV by incorporating aerosol processes and heterogeneous chemistry. The physics and chemistry of elemental carbon, organic carbon, sulfate, sodium, chloride and crustal material of aerosols are treated and attributed to the PM size distribution. A modified version of the Carbon Bond IV chemical mechanism is included to model the formation of organic aerosol, and the inorganic multicomponent atmospheric aerosol equilibrium model, SEQUILIB is used for calculating the amounts of inorganic species in particulate matter. Aerosol dynamics modeled include mechanisms of nucleation, condensation and gas/particle partitioning of organic matter. An integrated trajectory-in-grid modeling system, UAM/RPM-AERO, is under continuing development for extracting boundary and initial conditions from the mesoscale photochemical/aerosol model UAM-AERO. The RPM-AERO is applied here to case studies involving emissions from point sources to study sulfate particle formation in plumes. Model calculations show that homogeneous nucleation is an efficient process for new particle formation in plumes, in agreement with previous field studies and theoretical predictions.

  20. Condensing Organic Aerosols in a Microphysical Model

    Science.gov (United States)

    Gao, Y.; Tsigaridis, K.; Bauer, S.

    2015-12-01

    The condensation of organic aerosols is represented in a newly developed box-model scheme, where its effect on the growth and composition of particles are examined. We implemented the volatility-basis set (VBS) framework into the aerosol mixing state resolving microphysical scheme Multiconfiguration Aerosol TRacker of mIXing state (MATRIX). This new scheme is unique and advances the representation of organic aerosols in models in that, contrary to the traditional treatment of organic aerosols as non-volatile in most climate models and in the original version of MATRIX, this new scheme treats them as semi-volatile. Such treatment is important because low-volatility organics contribute significantly to the growth of particles. The new scheme includes several classes of semi-volatile organic compounds from the VBS framework that can partition among aerosol populations in MATRIX, thus representing the growth of particles via condensation of low volatility organic vapors. Results from test cases representing Mexico City and a Finish forrest condistions show good representation of the time evolutions of concentration for VBS species in the gas phase and in the condensed particulate phase. Emitted semi-volatile primary organic aerosols evaporate almost completely in the high volatile range, and they condense more efficiently in the low volatility range.

  1. Aerosol Angstrom Absorption Coefficient Comparisons during MILAGRO.

    Science.gov (United States)

    Marley, N. A.; Marchany-Rivera, A.; Kelley, K. L.; Mangu, A.; Gaffney, J. S.

    2007-12-01

    Measurements of aerosol absorption were obtained as part of the MAX-Mex component of the MILAGRO field campaign at site T0 (Instituto Mexicano de Petroleo in Mexico City) by using a 7-channel aethalometer (Thermo- Anderson) during the month of March, 2006. The absorption measurements obtained in the field at 370, 470, 520, 590, 660, 880, and 950 nm were used to determine the aerosol Angstrom absorption exponents by linear regression. Since, unlike other absorbing aerosol species (e.g. humic like substances, nitrated PAHs), black carbon absorption is relatively constant from the ultraviolet to the infrared with an Angstrom absorption exponent of -1 (1), a comparison of the Angstrom exponents can indicate the presence of aerosol components with an enhanced UV absorption over that expected from BC content alone. The Angstrom exponents determined from the aerosol absorption measurements obtained in the field varied from - 0.7 to - 1.3 during the study and was generally lower in the afternoon than the morning hours, indicating an increase in secondary aerosol formation and photochemically generated UV absorbing species in the afternoon. Twelve-hour integrated samples of fine atmospheric aerosols (Mexicano de Petroleo (IMP) and CENICA.

  2. Aerosol Chemistry of Furfural and Sugars

    Science.gov (United States)

    Srithawirat, T.; Brimblecombe, P.

    2008-12-01

    Furfural and sugars (as levoglucosan equivalent) are derived from biomass burning and contribute to aerosol composition. This study examined the potential of furfural and levoglucosan to be tracers of biomass burning. Furfural is likely to be oxidized quickly so comparison with levoglucosan may give a sense of the age of the aerosols in forest fire smoke. However, few furfural emissions are available for biomass combustion. Furfural and sugars were determined in coarse aerosols (>2.4μm aerodynamic diameter) and fine aerosols (Furfural and sugars dominated in fine fractions, especially in the UK autumn. Sugars were found at 5.96-18.37 nmol m-3 in fine mode and 1.36-5.75 nmol m-3 in coarse mode aerosols in the UK. Furfural was found at 0.18-0.91 nmol m-3 and 0.05-0.51 nmol m-3 respectively in the same aerosols. Sugars were a dominant contributor to aerosol derived from biomass burning. Sugars and furfural were about 10 and 20 times higher during haze episodes in Malaysia. Laboratory experimental simulation suggested furfural is more rapid destroyed by UV and sunlight than levoglucosan.

  3. Aerosol Distribution in The Planetary Boundary Layer Aloft a Residential Area

    Science.gov (United States)

    Hovorka, Jan; Leoni, Cecilia; Dočekalová, Veronika; Ondráček, Jakub; Zíková, Naděžda

    2016-10-01

    Atmospheric aerosol is an omnipresent component of the Earth atmosphere. Aerosol particle of diameters 1 μm defines ultrafine or coarse aerosol particles, respectively. Aerosol particle concentrations within the planetary boundary layer - PBL are measured at the ground level while their vertical profiles in the PBL are usually estimated by modelling. The aim of this study was to construct vertical concentration profiles of ultrafine and coarse aerosol particles from airborne and ground measurements conducted in an urban airshed. Airborne measurements were done by an unmanned airship, remotely controlled with GPS 10 Hz position tracking, and electrically powered with propulsion vectoring, which allows average cruising speed of 6 m.s-1. The airship carried three aerosol monitors and a temperature sensor. The monitors acquired 1 Hz data on mass concentration of coarse and number concentration of ultrafine particles. Four flight sequences were conducted on the 2nd of March 2014 above Plesna village, up-wind suburb of Ostrava in the Moravian-Silesian region of the Czech Republic. The region is a European air pollution hot-spot. Repeated flights were carried out in several height levels up to 570 m above ground level - a.g.l. Early morning flight revealed a temperature inversion in the PBL up to 70 m a.g.l. This lead to coarse particle concentrations of 50 μgm-3 below the inversion layer and 10 μgm-3 above it. Concurrently, air masses at 90-120 m a.g.l. were enriched with ultrafine particles up to 2.5x104 cm-3, which may indicate a fanning plume from a distant emission source with high emission height. During the course of the day, concentrations of ultrafine and coarse particle gradually decreased. Nevertheless, a sudden increase of ultrafine particle concentrations up to 3.7x104 cm-3 was registered at 400 m a.g.l. at noon and also after a lag of 20 min at the ground. This may indicate formation of new aerosol particles at higher altitudes, which are then transported

  4. Effects of Aerosols over the Indian Ocean

    Science.gov (United States)

    2002-01-01

    Aerosols that contain black carbon both absorb and reflect incoming sunlight. Even as these atmospheric particles reduce the amount of sunlight reaching the surface, they increase the amount of solar energy absorbed in the atmosphere, thus making it possible to both cool the surface and warm the atmosphere. The images above show satellite measurements of the region studied during the Indian Ocean Experiment (INDOEX)a vast region spanning the Arabian Sea and Bay of Bengal (west to east), and from the foot of the Himalayan Mountains, across the Indian subcontinent to the southern Indian Ocean (north to south). The Aerosol images show aerosol pollution (brownish pixels) in the lower atmosphere over the INDOEX study area, as measured by the Moderate-resolution Imaging Spectroradiometer (MODIS) aboard Terra. These were composited from March 14-21, 2001. The Albedo images show the total solar energy reflected back to space, as measured by Clouds and Earth's Radiant Energy System (CERES) aboard Terra. White pixels show high values, greens are intermediate values, and blues are low. Note how the aerosols, particularly over the ocean, increase the amount of energy reflected back to space. The Atmospheric Warming images show the absorption of the black carbon aerosols in the atmosphere. Where the aerosols are most dense, the absorption is highest. Red pixels indicate the highest levels of absorption, blues are low. The Surface Cooling images show that the aerosol particles reduce the amount of sunlight reaching the surface. Dark pixels show where the aerosols exert their cooling influence on the surface (or a high magnitude of negative radiative forcing). The bright pixels show where there is much less aerosol pollution and the incoming sunlight is relatively unaffected.

  5. Sulfur and nitrogen compounds in urban aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, R L

    1979-01-01

    This paper reports results from a detailed chemical and meteorological data base that has been accumulated for the New York City subregion. Aerosol sampling during August 1976 and February 1977 sampling periods was done only in an urban New York site and a background site at High Point, NJ. The sampling program was expanded to Brookhaven (Long Island) and New Haven, Connecticut sites during summer 1977 and winter 1978 sampling. Time resolution for aerosol filter samples was 6 hr, with some 3 hr sampling for the latter three periods. Parameters measured included chemical constituents: strong acid (quartz filters only), ammonium, sulfate and nitrate, sulfuric acid (limited data); physical parameters: aerosol size distributions by cascade impactor, cyclone sampler, EAA, on optical counter and a special diffusion battery-CNC apparatus; light scattering nephelometer and other instrumentation; chemically-speciated size classification by diffusion sampler; trace metals by atomic absorption; halogen compounds by NAA; meteorological measurements of RH, temperature, wind speed and direction; gaseous measurements of SO/sub 2/, ozone, NO/sub x/ and hydrocarbons at some locations for some sampling periods. The existence of aerosol sulfate in the ambient environment predominantly in the chemical form of sulfuric acid mostly neutralized by ammonia is now well documented. The average composition of fine particle (< 3.5 ..mu..m) sulfate in summer 1976 aerosols was approximately that letovicite ((NH/sub 4/)/sub 3/H(SO/sub 4/)/sub 2/). Based on the impactor data, about 85% of the aerosol sulfate mass was in the fine particle fraction. About 50% of this aerosol sulfate was deduced to be in the suboptical size regime (< 0.25 ..mu..m) from diffusion processor data. The H/sup +//SO/sub 4//sup 2 -/ ratio in suboptical aerosols did not significantly differ from that in fine fraction aerosol. The coarse particle sulfate was not associated with H/sup +/ or NH/sub 4//sup +/ and comprised

  6. Indirect estimation of absorption properties for fine aerosol particles using AATSR observations: a case study of wildfires in Russia in 2010

    Science.gov (United States)

    Rodriguez, E.; Kolmonen, P.; Virtanen, T. H.; Sogacheva, L.; Sundstrom, A.-M.; de Leeuw, G.

    2015-08-01

    The Advanced Along-Track Scanning Radiometer (AATSR) on board the ENVISAT satellite is used to study aerosol properties. The retrieval of aerosol properties from satellite data is based on the optimized fit of simulated and measured reflectances at the top of the atmosphere (TOA). The simulations are made using a radiative transfer model with a variety of representative aerosol properties. The retrieval process utilizes a combination of four aerosol components, each of which is defined by their (lognormal) size distribution and a complex refractive index: a weakly and a strongly absorbing fine-mode component, coarse mode sea salt aerosol and coarse mode desert dust aerosol). These components are externally mixed to provide the aerosol model which in turn is used to calculate the aerosol optical depth (AOD). In the AATSR aerosol retrieval algorithm, the mixing of these components is decided by minimizing the error function given by the sum of the differences between measured and calculated path radiances at 3-4 wavelengths, where the path radiances are varied by varying the aerosol component mixing ratios. The continuous variation of the fine-mode components allows for the continuous variation of the fine-mode aerosol absorption. Assuming that the correct aerosol model (i.e. the correct mixing fractions of the four components) is selected during the retrieval process, also other aerosol properties could be computed such as the single scattering albedo (SSA). Implications of this assumption regarding the ratio of the weakly/strongly absorbing fine-mode fraction are investigated in this paper by evaluating the validity of the SSA thus obtained. The SSA is indirectly estimated for aerosol plumes with moderate-to-high AOD resulting from wildfires in Russia in the summer of 2010. Together with the AOD, the SSA provides the aerosol absorbing optical depth (AAOD). The results are compared with AERONET data, i.e. AOD level 2.0 and SSA and AAOD inversion products. The RMSE

  7. Effects of seed aerosols on the growth of secondary organic aerosols from the photooxidation of toluene

    Institute of Scientific and Technical Information of China (English)

    HAO Li-qing; WANG Zhen-ya; HUANG Ming-qiang; FANG Li; ZHANG Wei-jun

    2007-01-01

    Hydroxyl radical (·OH)-initiated photooxidation reaction of toluene was carried out in a self-made smog chamber. Four individual seed aerosols such as ammonium sulfate, ammonium nitrate, sodium silicate and calcium chloride, were introduced into the chamber to assess their influence on the growth of secondary organic aerosols (SOA). It was found that the low concentration of seed aerosols might lead to high concentration of SOA particles. Seed aerosols would promote rates of SOA formation at the start of the reaction and inhibit its formation rate with prolonging the reaction time. In the case of cv. 9000 pt/cm3 seed aerosol load, the addition of sodium silicate induced a same effect on the SOA formation as ammonium nitrate. The influence of the four individual seed aerosols on the generation of SOA increased in the order of calcium chloride>sodium silicate and ammonium nitrate> ammonium sulfate.

  8. Optimized sparse-particle aerosol representations for modeling cloud-aerosol interactions

    Science.gov (United States)

    Fierce, Laura; McGraw, Robert

    2016-04-01

    Sparse representations of atmospheric aerosols are needed for efficient regional- and global-scale chemical transport models. Here we introduce a new framework for representing aerosol distributions, based on the method of moments. Given a set of moment constraints, we show how linear programming can be used to identify collections of sparse particles that approximately maximize distributional entropy. The collections of sparse particles derived from this approach reproduce CCN activity of the exact model aerosol distributions with high accuracy. Additionally, the linear programming techniques described in this study can be used to bound key aerosol properties, such as the number concentration of CCN. Unlike the commonly used sparse representations, such as modal and sectional schemes, the maximum-entropy moment-based approach is not constrained to pre-determined size bins or assumed distribution shapes. This study is a first step toward a new aerosol simulation scheme that will track multivariate aerosol distributions with sufficient computational efficiency for large-scale simulations.

  9. Secondary organic aerosols: Formation potential and ambient data

    DEFF Research Database (Denmark)

    Barthelmie, R.J.; Pryor, S.C.

    1997-01-01

    Organic aerosols comprise a significant fraction of the total atmospheric particle loading and are associated with radiative forcing and health impacts. Ambient organic aerosol concentrations contain both a primary and secondary component. Herein, fractional aerosol coefficients (FAC) are used...... in conjunction with measurements of volatile organic compounds (VOC) to predict the formation potential of secondary organic aerosols (SOA) in the Lower Fraser Valley (LEV) of British Columbia. The predicted concentrations of SOA show reasonable accord with ambient aerosol measurements and indicate considerable...

  10. CARES: Carbonaceous Aerosol and Radiative Effects Study Science Plan

    Energy Technology Data Exchange (ETDEWEB)

    Zaveri, RA; Shaw, WJ; Cziczo, DJ

    2010-05-27

    Carbonaceous aerosol components, which include black carbon (BC), urban primary organic aerosols (POA), biomass burning aerosols, and secondary organic aerosols (SOA) from both urban and biogenic precursors, have been previously shown to play a major role in the direct and indirect radiative forcing of climate. The primary objective of the CARES 2010 intensive field study is to investigate the evolution of carbonaceous aerosols of different types and their effects on optical and cloud formation properties.

  11. Modelling multi-component aerosol transport problems by the efficient splitting characteristic method

    Science.gov (United States)

    Liang, Dong; Fu, Kai; Wang, Wenqia

    2016-11-01

    In this paper, a splitting characteristic method is developed for solving general multi-component aerosol transports in atmosphere, which can efficiently compute the aerosol transports by using large time step sizes. The proposed characteristic finite difference method (C-FDM) can solve the multi-component aerosol distributions in high dimensional domains over large ranges of concentrations and for different aerosol types. The C-FDM is first tested to compute the moving of a Gaussian concentration hump. Comparing with the Runge-Kutta method (RKM), our C-FDM can use very large time step sizes. Using Δt = 0.1, the accuracy of our C-FDM is 10-4, but the RKM only gets the accuracy of 10-2 using a small Δt = 0.01 and the accuracy of 10-3 even using a much smaller Δt = 0.002. A simulation of sulfate transport in a varying wind field is then carried out by the splitting C-FDM, where the sulfate pollution is numerically showed expanding along the wind direction and the effects of the different time step sizes and different wind speeds are analyzed. Further, a realistic multi-component aerosol transport over an area in northeastern United States is studied. Concentrations of PM2.5 sulfate, ammonium, nitrate are high in the urban area, and low in the marine area, while sea salts of sodium and chloride mainly exist in the marine area. The normalized mean bias and the normalized mean error of the predicted PM2.5 concentrations are -6.5% and 24.1% compared to the observed data measured at monitor stations. The time series of numerical aerosol concentration distribution show that the strong winds can move the aerosol concentration peaks horizontally for a long distance, such as from the urban area to the rural area and from the marine area to the urban and rural area. Moreover, we also show the numerical time duration patterns of the aerosol concentration distributions due to the affections of the turbulence and the deposition removal. The developed splitting C-FDM algorithm

  12. Airborne Measurements of Aerosol Emissions From the Alberta Oil Sands Complex

    Science.gov (United States)

    Howell, S. G.; Clarke, A. D.; McNaughton, C. S.; Freitag, S.

    2012-12-01

    often exceeds the detection limit. There is a rough correlation between NO2 and aerosol, so it may be possible to indirectly monitor aerosol production.

  13. Formation of Oxidized Organic Aerosol (OOA) through Fog Processing in the Po Valley

    Science.gov (United States)

    Gilardoni, S.; Paglione, M.; Rinaldi, M.; Giulianelli, L.; Massoli, P.; Hillamo, R. E.; Carbone, S.; Lanconelli, C.; Laaksonen, A. J.; Russell, L. M.; Poluzzi, V.; Fuzzi, S.; Facchini, C.

    2014-12-01

    Aqueous phase chemistry might be responsible for the formation of a significant fraction of the organic aerosol (OA) observed in the atmosphere, and could explain some of the discrepancies between OA concentration and properties predicted by models and observed in the environment. Aerosol - fog interaction and its effect on submicron aerosol properties were investigated in the Po Valley (northern Italy) during fall 2011, in the framework of the Supersite project (ARPA Emilia Romagna). Composition and physical properties of submicron aerosol were measured online by a High Resolution- Time of Flight - Aerosol Mass Spectrometer (HR-TOF-AMS), a Soot Photometer - Aerosol Mass Spectrometer (SP-AMS), and a Tandem Differential Mobility Particle Sizer (TDMPS). Organic functional group analysis was performed off-line by Hydrogen - Nuclear Magnetic Resonance (H-NMR) spectrometry and by Fourier Transform Infrared (FTIR) spectrometry. Aerosol absorption, scattering, and total extinction were measured simultaneously with a Particle Soot Absorption Photometer (PSAP), a Nephelometer, and a Cavity Attenuated Phase Shift Spectrometer particle extinction monitor (CAPS PMex), respectively. Water-soluble organic carbon in fog-water was characterized off-line by HR-TOF-AMS. Fourteen distinct fog events were observed. Fog dissipation left behind an aerosol enriched in particles larger than 400 nm, typical of fog and cloud processing, and dominated by secondary species, including ammonium nitrate, ammonium sulfate and oxidized OA (OOA). Source apportionment of OA allowed us to identify OOA as the difference between total OA and primary OA (hydrocarbon like OA and biomass burning OA). The formation of OOA through fog processing is proved by the correlation of OOA concentration with hydroxyl methyl sulfonate signal and by the similarity of OOA spectra with organic mass spectra obtained by re-aerosolization of fog water samples. The oxygen to carbon ratio and the hydrogen to carbon ratio of

  14. New approach to monitor transboundary particulate pollution over northeast Asia

    Directory of Open Access Journals (Sweden)

    M. E. Park

    2013-06-01

    Full Text Available A new approach to more accurately monitor and evaluate transboundary particulate matter (PM pollution is introduced based on aerosol optical products from Korea's geostationary ocean color imager (GOCI. The area studied is northeast Asia including eastern parts of China, the Korean peninsula and Japan, where GOCI has been monitoring since June 2010. The hourly multi-spectral aerosol optical data that were retrieved from GOCI sensor onboard geostationary satellite COMS (Communication, Ocean, and Meteorology Satellite through Yonsei aerosol retrieval algorithm were first presented and used in this study. The GOCI-retrieved aerosol optical data are integrated with estimated aerosol distributions from US EPA Models-3/CMAQ v4.5.1 model simulations via data assimilation technique, thereby making the aerosol data spatially continuous and available even for cloud contamination cells. The assimilated aerosol optical data are utilized to provide quantitative estimates of transboundary PM pollution from China to the Korean peninsula and Japan. For the period of 1 April to 31 May 2011 this analysis yields estimates that AOD as a proxy for surface-level PM2.5 or PM10 during long-range transport events increased by 117–265% compared to background average AOD at the four AERONET sites in Korea, and average AOD increases of 121% were found when averaged over the entire Korean peninsula. The paper demonstrates that the use of multi-spectral AOD retrievals from geostationary satellites can improve estimates of transboundary PM pollution. Such data will become more widely available later this decade when new sensors such as GEMS (Geostationary Environment Monitoring Spectrometer and GOCI-2 are scheduled to be launched.

  15. Measurement of tropospheric CO2 and aerosol extinction profiles with Raman lidar

    Institute of Scientific and Technical Information of China (English)

    Peitao Zhao; Yinchao Zhang; Lian Wang; Kaifa Cao; Jia Su; Shunxing Hu; Huanling Hu

    2008-01-01

    A prototype Raman lidar was designed for monitoring tropospheric CO2 profile and other scientific investigatious.The third harmonic of Nd:YAG laser (354.7-nm wavelength) was used as stimulated light source to provide nighttime measurements.Filter with high rejection ratio performance was used to extract CO2 Raman signals from Rayleigh-Mie scattering signals effectively.To improve the real time monitoring function,a two-channel signal collection system was designed to collect CO2 and N2 Raman scattering signals simultaneously. The N2 Raman scattering signals were used to retrieve aerosol extinction coefficient.Typical features of CO2 concentration profile and aerosol extinction coefficient in Herei were presented.The mixing ratio of atmospheric CO2 in Hefei can reach about 360-400 ppmv.

  16. Low-cost screening for microbial contaminants in aerosols generated in a dental office.

    Science.gov (United States)

    Hubar, J Sean; Pelon, William

    2005-01-01

    It has been reported that aerosols and droplets generated by high-speed dental drills and cavitrons are contaminated with blood and bacteria and represent a potential route for transmitting disease. Bacterial cells possess a negative electrical charge, while the cathode ray tubes (CRT) that are used in computer monitors generate positively charged static electric fields. Consequently, bacteria dispersed within these aerosols could be attracted to the screens on CRT monitors. In this study, pathogenic strains of Staphylococcus aureus were found on CRT screens in different locations within the Louisiana State University School of Dentistry facility. The results suggest that surveying CRT screens is a simple method for evaluating the airborne microbial contaminants present within a dental office.

  17. Pulmonary drug delivery by powder aerosols.

    Science.gov (United States)

    Yang, Michael Yifei; Chan, John Gar Yan; Chan, Hak-Kim

    2014-11-10

    The efficacy of pharmaceutical aerosols relates to its deposition in the clinically relevant regions of the lungs, which can be assessed by in vivo lung deposition studies. Dry powder formulations are popular as devices are portable and aerosolisation does not require a propellant. Over the years, key advancements in dry powder formulation, device design and our understanding on the mechanics of inhaled pharmaceutical aerosol have opened up new opportunities in treatment of diseases through pulmonary drug delivery. This review covers these advancements and future directions for inhaled dry powder aerosols.

  18. Polarimetric Remote Sensing of Aerosols over Land

    Energy Technology Data Exchange (ETDEWEB)

    Waquet, F.; Cairns, Brian; Knobelspiesse, Kirk D.; Chowdhary, J.; Travis, Larry D.; Schmid, Beat; Mishchenko, M.

    2009-01-26

    The sensitivity of accurate polarized reflectance measurements over a broad spectral (410 -2250 nm) and angular (±60° from nadir) range to the presence of aerosols over land is analyzed and the consequent ability to retrieve the aerosol burden and microphysical model is assessed. Here we present a new approach to the correction of polarization observations for the effects of the surface that uses longer wavelength observations to provide a direct estimate of the surface polarized reflectance. This approach to surface modeling is incorporated into an optimal estimation framework for retrieving the particle number density and a detailed aerosol microphysical model: effective radius, effective variance and complex refractive index of aerosols. A sensitivity analysis shows that the uncertainties in aerosol optical thickness (AOT) increase with AOT while the uncertainties in the microphysical model decrease. Of particular note is that the uncertainty in the single scattering albedo is less than 0.05 by the time the AOT is greater than 0.2. We also find that calibration is the major source of uncertainty and that perfect angular and spectral correlation of calibration errors reduces the uncertainties in retrieved quantities compared with the case of uncorrelated errors. Finally, in terms of required spectral range, we observe that shorter wavelength (< 500 nm) observations are crucial for determining the vertical extent and imaginary refractive index of aerosols from polarized reflectance observations. The optimal estimation scheme is then tested on observations made by the Research Scanning Polarimeter during the Aerosol Lidar Validation experiment and over Southern California wild fires. These two sets of observations test the retrieval scheme under pristine and polluted conditions respectively. In both cases we find that the retrievals are within the combined uncertainties of the retrieval and the Aerosol Robotic Network Cimel products and Total Ozone Mapping

  19. Combination phenyl propionate/pheromone traps for monitoring navel orangeworm (Lepidoptera: Pyralidae) in almonds in the vicinity of mating disruption

    Science.gov (United States)

    Aerosol mating disruption is used for management of navel orangeworm, Amyelois transitella (Walker) (Lepidoptera: Pyralidae), in an increasing portion of California almonds and pistachios. This formulation suppresses pheromone monitoring traps far beyond the treatment block, potentially complicating...

  20. Secondary organic aerosol formation from the gas phase reaction of hydroxyl radicals with m-, o- and p-cresol

    Science.gov (United States)

    Henry, Françoise; Coeur-Tourneur, Cecile; Ledoux, Frédéric; Tomas, Alexandre; Menu, Dominique

    Secondary organic aerosol (SOA) formation during the atmospheric oxidation of cresols was investigated using a large smog chamber (8000 L), at atmospheric pressure, 294±2 K and low relative humidity (6-10%). Cresol oxidation was initiated by irradiation of cresol/CH 3ONO/NO/air mixtures. The cresol loss was measured by gas chromatography with a flame ionization detector (GC-FID) and the temporal evolution of the aerosol was monitored using a scanning mobility particle sizer (SMPS). The overall organic aerosol yield ( Y) was determined as the ratio of the suspended aerosol mass corrected for wall losses ( Mo) to the total reacted cresol concentrations assuming a particle density of 1.4 g cm -3. Analysis of the data clearly show that Y is a strong function of Mo and that SOA formation can be expressed by a one-product gas/particle partitioning absorption model. The aerosol formation is affected by the initial cresol concentration, which leads to aerosol yields from 9% to 42%. These results are in good agreement with a recent study performed on SOA formation from the photo-oxidation of o-cresol in a smog chamber. To our knowledge, the present work represents the first investigation of SOA formation from OH reaction with m- and p-cresol.

  1. Characterization of urban aerosol in Cork City (Ireland using aerosol mass spectrometry

    Directory of Open Access Journals (Sweden)

    M. Dall'Osto

    2012-11-01

    Full Text Available Ambient wintertime background urban aerosol in Cork City, Ireland, was characterized using aerosol mass spectrometry. During the three-week measurement study in 2009, 93% of the 1 200 000 single particles characterized by an Aerosol Time-Of-Flight Mass Spectrometer (TSI ATOFMS were classified into five organic-rich particle types, internally-mixed to different proportions with Elemental Carbon (EC, sulphate and nitrate while the remaining 7% was predominantly inorganic in nature. Non-refractory PM1 aerosol was also characterized using a High Resolution Time-Of-Flight Aerodyne Aerosol Mass Spectrometer (HR-ToF-AMS and was also found to comprise organic matter as the most abundant species (62%, followed by nitrate (15%, sulphate (9% and ammonium (9%, and then chloride (5%.

    Positive matrix factorization (PMF was applied to the HR-ToF-AMS organic matrix and a five-factor solution was found to describe the variance in the data well. Specifically, "Hydrocarbon-like" Organic Aerosol (HOA comprised 19% of the mass, "Oxygenated low volatility" Organic Aerosols (LV-OOA comprised 19%, "Biomass wood Burning" Organic Aerosol (BBOA comprised 23%, non-wood solid-fuel combustion "Peat and Coal" Organic Aerosol (PCOA comprised 21%, and finally, a species type characterized by primary m/z peaks at 41 and 55, similar to previously-reported "Cooking" Organic Aerosol (COA but possessing different diurnal variations to what would be expected for cooking activities, contributed 18%. Despite wood, cool and peat being minor fuel types used for domestic space heating in urban areas, their relatively low combustion efficiencies result in a significant contribution to PM1 aerosol mass (44% and 28% of the total organic aerosols mass and non refractory PM1, respectively.

  2. Simultaneous aerosol measurements of unusual aerosol enhancement in troposphere over Syowa Station, Antarctica

    Directory of Open Access Journals (Sweden)

    K. Hara

    2013-10-01

    Full Text Available Unusual aerosol enhancement is often observed at Syowa Station, Antarctica during winter through spring. Simultaneous aerosol measurements near the surface and in the upper atmosphere were conducted twice using a ground-based optical particle counter, a balloon-borne optical particle counter, and micro-pulse LIDAR (MPL in August and September 2012. During 13–15 August, aerosol enhancement occurred immediately after a storm condition. A high backscatter ratio and aerosol concentrations were observed from the surface to ca. 2.5 km over Syowa Station. Clouds appeared occasionally at the top of aerosol-enhanced layer during the episode. Aerosol enhancement was terminated on 15 August by strong winds caused by a cyclone's approach. In the second case on 5–7 September, aerosol number concentrations in Dp > 0.3 μm near the surface reached > 104 L−1 at about 15:00 UT on 5 September in spite of calm wind conditions, whereas MPL measurement exhibited aerosols were enhanced at about 04:00 UT at 1000–1500 m above Syowa Station. The aerosol enhancement occurred near the surface–ca. 4 km. In both cases, air masses with high aerosol enhancement below 2.5–3 km were transported mostly from the boundary layer over the sea-ice area. In addition, air masses at 3–4 km in the second case came from the boundary layer over the open-sea area. This air mass history strongly suggests that dispersion of sea-salt particles from the sea-ice surface contributes considerably to the aerosol enhancement in the lower free troposphere (about 3 km and that the release of sea-salt particles from the ocean surface engenders high aerosol concentrations in the free troposphere (3–4 km.

  3. Importance of global aerosol modeling including secondary organic aerosol formed from monoterpene

    OpenAIRE

    Goto, Daisuke; Takemura, Toshihiko; Nakajima, Teruyuki

    2008-01-01

    A global three-dimensional aerosol transport-radiation model, coupled to an atmospheric general circulation model (AGCM), has been extended to improve the model process for organic aerosols, particularly secondary organic aerosols (SOA), and to estimate SOA contributions to direct and indirect radiative effects. Because the SOA formation process is complicated and unknown, the results in different model simulations include large differences. In this work, we simulate SOA production assuming v...

  4. Nitrate aerosols today and in 2030: importance relative to other aerosol species and tropospheric ozone

    Directory of Open Access Journals (Sweden)

    S. E. Bauer

    2007-04-01

    Full Text Available Ammonium-nitrate aerosols are expected to become more important in the future atmosphere due to the expected increase in nitrate precursor emissions and the decline of ammonium-sulphate aerosols in wide regions of this planet. The GISS climate model is used in this study, including atmospheric gas- and aerosol phase chemistry to investigate current and future (2030, following the SRES A1B emission scenario atmospheric compositions. A set of sensitivity experiments was carried out to quantify the individual impact of emission- and physical climate change on nitrate aerosol formation. We found that future nitrate aerosol loads depend most strongly on changes that may occur in the ammonia sources. Furthermore, microphysical processes that lead to aerosol mixing play a very important role in sulphate and nitrate aerosol formation. The role of nitrate aerosols as climate change driver is analyzed and set in perspective to other aerosol and ozone forcings under pre-industrial, present day and future conditions. In the near future, year 2030, ammonium nitrate radiative forcing is about –0.14 W/m2 and contributes roughly 10% of the net aerosol and ozone forcing. The present day nitrate and pre-industrial nitrate forcings are –0.11 and –0.05 W/m2, respectively. The steady increase of nitrate aerosols since industrialization increases its role as a non greenhouse gas forcing agent. However, this impact is still small compared to greenhouse gas forcings, therefore the main role nitrate will play in the future atmosphere is as an air pollutant, with annual mean near surface air concentrations rising above 3 μg/m3 in China and therefore reaching pollution levels, like sulphate aerosols, in the fine particle mode.

  5. Natural Radionuclides and Isotopic Signatures for Determining Carbonaceous Aerosol Sources, Aerosol Lifetimes, and Washout Processes

    Energy Technology Data Exchange (ETDEWEB)

    Gaffney, Jeffrey [Univ. of Arkansas, Little Rock, AR (United States)

    2012-12-12

    This is the final technical report. The project description is as follows: to determine the role of aerosol radiative forcing on climate, the processes that control their atmospheric concentrations must be understood, and aerosol sources need to be determined for mitigation. Measurements of naturally occurring radionuclides and stable isotopic signatures allow the sources, removal and transport processes, as well as atmospheric lifetimes of fine carbonaceous aerosols, to be evaluated.

  6. The Two-Column Aerosol Project: Phase I - Overview and Impact of Elevated Aerosol Layers on Aerosol Optical Depth

    Energy Technology Data Exchange (ETDEWEB)

    Berg, Larry K.; Fast, Jerome D.; Barnard, James C.; Burton, Sharon; Cairns, Brian; Chand, Duli; Comstock, Jennifer M.; Dunagan, Stephen; Ferrare, Richard A.; Flynn, Connor J.; Hair, John; Hostetler, Chris A.; Hubbe, John M.; Jefferson, Anne; Johnson, Roy; Kassianov, Evgueni I.; Kluzek, Celine D.; Kollias, Pavlos; Lamer, Katia; Lantz, K.; Mei, Fan; Miller, Mark A.; Michalsky, Joseph; Ortega, Ivan; Pekour, Mikhail S.; Rogers, Ray; Russell, P.; Redemann, Jens; Sedlacek, Art; Segal Rozenhaimer, Michal; Schmid, Beat; Shilling, John E.; Shinozuka, Yohei; Springston, Stephen R.; Tomlinson, Jason M.; Tyrrell, Megan; Wilson, Jacqueline; Volkamer, Rainer M.; Zelenyuk, Alla; Berkowitz, Carl M.

    2016-01-08

    The Two-Column Aerosol Project (TCAP), which was conducted from June 2012 through June 2013, was a unique field study that was designed to provide a comprehensive data set that can be used to investigate a number of important climate science questions, including those related to aerosol mixing state and aerosol radiative forcing. The study was designed to sample the atmosphere at a number of altitudes, from near the surface to as high as 8 km, within two atmospheric columns; one located near the coast of North America (over Cape Cod, MA) and a second over the Atlantic Ocean several hundred kilometers from the coast. TCAP included the yearlong deployment of the U.S. Department of Energy’s (DOE) Atmospheric Radiation Measurement (ARM) Mobile Facility (AMF) that was located at the base of the Cape Cod column, as well as summer and winter aircraft intensive observation periods of the ARM Aerial Facility. One important finding from TCAP is the relatively common occurrence (on four of six nearly cloud-free flights) of elevated aerosol layers in both the Cape Cod and maritime columns that were detected using the nadir pointing second-generation NASA high-spectral resolution lidar (HSRL-2). These layers contributed up to 60% of the total aerosol optical depth (AOD) observed in the column. Many of these layers were also intercepted by the aircraft configured for in situ sampling, and the aerosol in the layers was found to have increased amounts of biomass burning aerosol and nitrate compared to the aerosol found near the surface.

  7. Code Development on Aerosol Behavior under Severe Accident-Aerosol Coagulation

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Kwang Soon; Kim, Sung Il; Ryu, Eun Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The behaviors of the larger aerosol particles are described usually by continuum mechanics. The smallest particles have diameters less than the mean free path of gas phase molecules and the behavior of these particles can often be described well by free molecular physics. The vast majority of aerosol particles arising in reactor accident analyses have behaviors in the very complicated regime intermediate between the continuum mechanics and free molecular limit. The package includes initial inventories, release from fuel and debris, aerosol dynamics with vapor condensation and revaporization, deposition on structure surfaces, transport through flow paths, and removal by engineered safety features. Aerosol dynamic processes and the condensation and evaporation of fission product vapors after release from fuel are considered within each MELCOR control volume. The aerosol dynamics models are based on MAEROS, a multi-section, multicomponent aerosol dynamics code, but without calculation of condensation. Aerosols can deposit directly on surfaces such as heat structures and water pools, or can agglomerate and eventually fall out once they exceed the largest size specified by the user for the aerosol size distribution. Aerosols deposited on surfaces cannot currently be resuspended.

  8. Comparison of MADE3-simulated and observed aerosol distributions with a focus on aerosol vertical profiles

    Science.gov (United States)

    Kaiser, Christopher; Hendricks, Johannes; Righi, Mattia; Jöckel, Patrick

    2016-04-01

    The reliability of aerosol radiative forcing estimates from climate models depends on the accuracy of simulated global aerosol distribution and composition, as well as on the models' representation of the aerosol-cloud and aerosol-radiation interactions. To help improve on previous modeling studies, we recently developed the new aerosol microphysics submodel MADE3 that explicitly tracks particle mixing state in the Aitken, accumulation, and coarse mode size ranges. We implemented MADE3 into the global atmospheric chemistry general circulation model EMAC and evaluated it by comparison of simulated aerosol properties to observations. Compared properties include continental near-surface aerosol component concentrations and size distributions, continental and marine aerosol vertical profiles, and nearly global aerosol optical depth. Recent studies have shown the specific importance of aerosol vertical profiles for determination of the aerosol radiative forcing. Therefore, our focus here is on the evaluation of simulated vertical profiles. The observational data is taken from campaigns between 1990 and 2011 over the Pacific Ocean, over North and South America, and over Europe. The datasets include black carbon and total aerosol mass mixing ratios, as well as aerosol particle number concentrations. Compared to other models, EMAC with MADE3 yields good agreement with the observations - despite a general high bias of the simulated mass mixing ratio profiles. However, BC concentrations are generally overestimated by many models in the upper troposphere. With MADE3 in EMAC, we find better agreement of the simulated BC profiles with HIPPO data than the multi-model average of the models that took part in the AeroCom project. There is an interesting difference between the profiles from individual campaigns and more "climatological" datasets. For instance, compared to spatially and temporally localized campaigns, the model simulates a more continuous decline in both total

  9. Sensitivity of direct climate forcing by atmospheric aerosols to aerosol size and composition

    Science.gov (United States)

    Pilinis, Christodoulos; Pandis, Spyros N.; Seinfeld, John H.

    1995-09-01

    We evaluate, using a box model, the sensitivity of direct climate forcing by atmospheric aerosols for a "global mean" aerosol that consists of fine and coarse modes to aerosol composition, aerosol size distribution, relative humidity (RH), aerosol mixing state (internal versus external mixture), deliquescence/crystallization hysteresis, and solar zenith angle. We also examine the dependence of aerosol upscatter fraction on aerosol size, solar zenith angle, and wavelength and the dependence of single scatter albedo on wavelength and aerosol composition. The single most important parameter in determining direct aerosol forcing is relative humidity, and the most important process is the increase of the aerosol mass as a result of water uptake. An increase of the relative humidity from 40 to 80% is estimated for the global mean aerosol considered to result in an increase of the radiative forcing by a factor of 2.1. Forcing is relatively insensitive to the fine mode diameter increase due to hygroscopic growth, as long as this mode remains inside the efficient scattering size region. The hysteresis/deliquescence region introduces additional uncertainty but, in general, errors less than 20% result by the use of the average of the two curves to predict forcing. For fine aerosol mode mean diameters in the 0.2-0.5 μm range direct aerosol forcing is relatively insensitive (errors less than 20%) to variations of the mean diameter. Estimation of the coarse mode diameter within a factor of 2 is generally sufficient for the estimation of the total aerosol radiative forcing within 20%. Moreover, the coarse mode, which represents the nonanthropogenic fraction of the aerosol, is estimated to contribute less than 10% of the total radiative forcing for all RHs of interest. Aerosol chemical composition is important to direct radiative forcing as it determines (1) water uptake with RH, and (2) optical properties. The effect of absorption by aerosol components on forcing is found to be

  10. Overview of ACE-Asia Spring 2001 Investigations on Aerosol Radiative Effects and Related Aerosol Properties

    Science.gov (United States)

    Russell, Philip B.; Valero, F. P. J.; Flatau, P. J.; Bergin, M.; Holben, B.; Nakajima, T.; Pilewskie, P.; Bergstrom, R.; Hipskind, R. Stephen (Technical Monitor)

    2001-01-01

    A primary, ACE-Asia objective was to quantify the interactions between aerosols and radiation in the Asia-Pacific region. Toward this end, radiometric and related aerosol measurements were made from ocean, land, air and space platforms. Models that predict aerosol fields guided the measurements and are helping integrate and interpret results. Companion overview's survey these measurement and modeling components. Here we illustrate how these components were combined to determine aerosol radiative. impacts and their relation to aerosol properties. Because clouds can obscure or change aerosol direct radiative effects, aircraft and ship sorties to measure these effects depended on predicting and finding cloud-free areas and times with interesting aerosols present. Pre-experiment satellite cloud climatologies, pre-flight aerosol and cloud forecasts, and in-flight guidance from satellite imagery all helped achieve this. Assessments of aerosol regional radiative impacts benefit from the spatiotemporal coverage of satellites, provided satellite-retrieved aerosol properties are accurate. Therefore, ACE-Asia included satellite retrieval tests, as part of many comparisons to judge the consistency (closure) among, diverse measurements. Early results include: (1) Solar spectrally resolved and broadband irradiances and optical depth measurements from the C-130 aircraft and at Kosan, Korea yielded aerosol radiative forcing efficiencies, permitting comparisons between efficiencies of ACE-Asia and INDOEX aerosols, and between dust and "pollution" aerosols. Detailed results will be presented in separate papers. (2) Based on measurements of wavelength dependent aerosol optical depth (AOD) and single scattering albedo the estimated 24-h a average aerosol radiative forcing efficiency at the surface for photosynthetically active radiation (400 - 700 nm) in Yulin, China is approx. 30 W sq m per AOD(500 nm). (3) The R/V Brown cruise from Honolulu to Sea of Japan sampled an aerosol optical

  11. Papers of the 14. french congress on aerosols CFA 98; Actes du 14. congres francais sur les aerosols CFA 98

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This french congress on the aerosols took place in Paris the 8 and 9 december 1998. It was presented in four main themes: the aerosols in the environment; the bio-aerosols, filtering and purifying; the aerosols metrology; the aerosols physic and application. Seven papers have been analyzed in INIS data base for their specific interest in nuclear industry. Eight other ones are analyzed in ETDE data base. (A.L.B.)

  12. Nitrogen fractionation in Titan's aerosols

    Science.gov (United States)

    Carrasco, Nathalie; Kuga, Maia; Marty, Bernard; Fleury, Benjamin; Marrocchi, Yves

    2016-06-01

    A strong nitrogen fractionation is found by Cassini in Titan's atmosphere with the detection of 15N-rich HCN relative to N2. Photodissociation of N2 associated or not to self-shielding might involve 15N-rich radicals prone to incorporation into forming organics. However the isotopic composition is only available for very simple gaseous N-bearing compounds, and the propagation and conservation of such a large N-isotopic fractionation upon polymerization is actually out of reach with the instruments onboard Cassini. We will therefore present a first laboratory investigation of the possible enrichment in the solid organic aerosols. We will also discuss the space instrumention required in the future to answer this pending issue on Titan.

  13. The effect of varying levels of surfactant on the reactive uptake of N2O5 to aqueous aerosol

    Directory of Open Access Journals (Sweden)

    J. A. Thornton

    2006-01-01

    Full Text Available Recent observations have detected surface active organics in atmospheric aerosols. We have studied the reaction of N2O5 on aqueous natural seawater and NaCl aerosol as a function of sodium dodecyl sulfate (SDS concentration to test the effect of varying levels of surfactant on gas-aerosol reaction rates. SDS was chosen as a proxy for naturally occurring long chain monocarboxylic acid molecules, such as palmitic or stearic acid, because of its solubility in water and well-characterized surface properties. Experiments were performed using a newly constructed aerosol flow tube coupled to a chemical ionization mass spectrometer for monitoring the gas phase, and a differential mobility analyzer/condensation particle counter for determining aerosol surface area. We find that the presence of ~3.5 wt% SDS in the aerosol, which corresponds to a monolayer surface coverage of ~2×1014 molecules cm−2, suppresses the N2O5 reaction probability, γN2O5, by approximately a factor of ten, independent of relative humidity. Consistent with this observation is a similar reduction in the rate of ClNO2 product generation measured simultaneously. However, the product yield remains nearly constant under all conditions. The degree of suppression is strongly dependent on SDS content in the aerosol, with no discernable effect at 0.1 wt% SDS, but significant suppression at what we predict to be submonolayer coverages with 0.3–0.6 wt% SDS on NaCl and natural seawater aerosols, respectively.

  14. Aerosols and criteria gases in an underground mine that uses FAME biodiesel blends.

    Science.gov (United States)

    Bugarski, Aleksandar D; Janisko, Samuel J; Cauda, Emanuele G; Patts, Larry D; Hummer, Jon A; Westover, Charles; Terrillion, Troy

    2014-10-01

    The contribution of heavy-duty haulage trucks to the concentrations of aerosols and criteria gases in underground mine air and the physical properties of those aerosols were assessed for three fuel blends made with fatty acid methyl esters biodiesel and petroleum-based ultra-low-sulfur diesel (ULSD). The contributions of blends with 20, 50, and 57% of biodiesel as well as neat ULSD were assessed using a 30-ton truck operated over a simulated production cycle in an isolated zone of an operating underground metal mine. When fueled with the B20 (blend of biodiesel with ULSD with 20% of biodiesel content), B50 (blend of biodiesel with ULSD with 50% of biodiesel content), and B57 (blend of biodiesel with ULSD with 57% of biodiesel content) blends in place of ULSD, the truck's contribution to mass concentrations of elemental and total carbon was reduced by 20, 50, and 61%, respectively. Size distribution measurements showed that the aerosols produced by the engine fueled with these blends were characterized by smaller median electrical mobility diameter and lower peak concentrations than the aerosols produced by the same engine fueled with ULSD. The use of the blends resulted in number concentrations of aerosols that were 13-29% lower than those when ULSD was used. Depending on the content of biodiesel in the blends, the average reductions in the surface area concentrations of aerosol which could be deposited in the alveolar region of the lung (as measured by a nanoparticle surface area monitor) ranged between 6 and 37%. The use of blends also resulted in slight but measurable reductions in CO emissions, as well as an increase in NOX emissions. All of the above changes in concentrations and physical properties were found to be correlated with the proportion of biodiesel in the blends.

  15. Aerosol decadal trends – Part 1: In-situ optical measurements at GAW and IMPROVE stations

    Directory of Open Access Journals (Sweden)

    B. A. Schichtel

    2012-08-01

    Full Text Available Currently many ground-based atmospheric stations include in-situ measurements of aerosol physical and optical properties, resulting in more than 20 long-term (>10 yr aerosol measurement sites in the Northern Hemisphere and Antarctica. Most of these sites are located at remote locations and monitor the aerosol particle number concentration, wavelength-dependent light scattering, backscattering, and absorption coefficients. The existence of these multi-year datasets enables the analysis of long-term trends of these aerosol parameters of the derived light scattering Ångström exponent and backscatter fraction. Since the aerosol variables are not normally distributed, three different methods (the seasonal Mann-Kendall test associated with the Sen's slope, the generalized least squares fit associated with an autoregressive bootstrap algorithm for confidence intervals, and the least-mean square fit applied to logarithms of the data were applied to detect the long-term trends and their magnitudes for each month. To allow a comparison among measurement sites with varying length of data records, trends on the most recent 10 and 15 yr periods were calculated. No significant trends were found for the three continental European sites. Statistically significant trends were found for the two European marine sites but the signs of the trends varied with aerosol property and location. Statistically significant decreasing trends for both scattering and absorption coefficient were found for most North American stations, although positive trends were found for a few desert and high-altitude sites. No significant trends in scattering coefficient were found for the Arctic or Antarctic stations, whereas the Arctic station had a negative trend in absorption coefficient.

  16. Optical, physical and chemical characteristics of Australian Desert dust aerosols: results from a field experiment

    Directory of Open Access Journals (Sweden)

    M. D. Keywood

    2009-11-01

    Full Text Available Mineral dust is one of the major components of the world's aerosol mix, having a number of impacts within the Earth system. However, the climate forcing impact of mineral dust is currently poorly constrained, with even its sign uncertain. As Australian deserts are more reddish than those in the northern hemisphere, it is important to better understand the physical, chemical and optical properties of this important aerosol. We have investigated the properties of Australian desert dust at a site in SW Queensland, which is strongly influenced by both dust and biomass burning aerosol. Three years of ground-based monitoring of spectral optical thickness has provided a statistical picture of gross aerosol properties. In November 2006 we undertook a field campaign which collected 4 sets of size-resolved aerosol samples for laboratory analysis – both ion beam analysis and ion chromatography.

    The aerosol optical depth data showed a weak seasonal cycle with an annual mean of 0.06±0.03. The Angstrom coefficient showed a stronger cycle, indicating the influence of the winter-spring burning season in Australia's north. Size distribution inversions showed a bimodal character, with the coarse mode assumed to be mineral dust, and the fine mode a mixture of biomass burning and marine biogenic material. Ion Beam Analysis was used to determine the elemental composition of all filter samples, although elemental ratios were considered the most reliable output. Scatter plots showed that Fe, Al and Ti were well correlated with Si, and Co reasonably well correlated, with the Fe/Si ratio higher than the crustal average, as expected. Scatter plots for Ca, Mn and K against Si showed clear evidence of a second population, which in some cases could be identified with a particular sample day or size fraction. Ion Chromatography was used to quantify water soluble ions for 2 of our sample sets, showing the importance of marine influences on both fine (biogenic and

  17. Comparing regional modeling (CHIMERE) and satellite observations of aerosols (PARASOL): Methodology and case study over Mexico

    Science.gov (United States)

    Stromatas, Stavros

    2010-05-01

    S. Stromatas (1), S. Turquety (1), H. Chepfer (1), L. Menut (1), B. Bessagnet (2), JC Pere (2), D. Tanré (3) . (1) Laboratoire de Météorologie Dynamique, CNRS/IPSL, École Polytechnique, 91128 Palaiseau Cedex, France, (2) INERIS, Institut National de l'Environnement Industriel et des Risques, Parc technologique ALATA, 60550 Verneuil en Halatte, FRANCE, (3) Laboratoire d'Optique Atmosphérique/CNRS Univ. des Sciences et Tech. de Lille, 59650 - Villeneuve d'Ascq, France. Atmospheric suspended particles (aerosols) have significant radiative and environmental impacts, affecting human health, visibility and climate. Therefore, they are regulated by air quality standards worldwide, and monitored by regional observation networks. Satellite observations vastly improve the horizontal and temporal coverage, providing daily distributions. Aerosols are currently estimated using aerosol optical depth (AOD) retrievals, a quantitative measure of the extinction of solar radiation by aerosol scattering and absorption between the point of observation and the top of the atmosphere. Even though remarkable progresses in aerosol modeling by chemistry-transport models (CTM) and measurement experiments have been made in recent years, there is still a significant divergence between the modeled and observed results. However, AOD retrievals from satellites remains a highly challenging task mostly because it depends on a variety of different parameters such as cloud contamination, surface reflectance contributions and a priori assumptions on aerosol types, each one of them incorporating its own difficulties. Therefore, comparisons between CTM and observations are often difficult to interpret. In this presentation, we will discuss comparisons between regional modeling (CHIMERE CTM) over Mexico and satellite observations obtained by the POLDER instrument embarked on PARASOL micro-satellite. After a comparison of the model AOD with the retrieved L2 AOD, we will present an alternative

  18. Model study on the dependence of primary marine aerosol emission on the sea surface temperature

    Directory of Open Access Journals (Sweden)

    S. Barthel

    2014-01-01

    Full Text Available Primary marine aerosol composed of sea salt and organic material is an important contributor to the global aerosol load. By comparing measurements from two EMEP (co-operative programme for monitoring and evaluation of the long-range transmissions of air-pollutants in Europe intensive campaigns in June 2006 and January 2007 with results from an atmospheric transport model this work shows that accounting for the influence of the sea surface temperature on the emission of primary marine aerosol improves the model results towards the measurements in both months. Different sea surface temperature dependencies were evaluated. Using correction functions based on Sofiev et al. (2011 and Jaeglé et al. (2011 improves the model results for coarse mode particles. In contrast, for the fine mode aerosols no best correction function could be found. The model captures the low sodium concentrations at the marine station Virolahti II (Finland, which is influenced by air masses from the low salinity Baltic Sea, as well as the higher concentrations at Cabauw (Netherlands and Auchencorth Moss (Scotland. These results indicate a shift towards smaller sizes with lower salinity for the emission of dry sea salt aerosols. Organic material was simulated as part of primary marine aerosol assuming an internal mixture with sea salt. A comparison of the model results for primary organic carbon with measurements by a Berner-impactor at Sao Vincente (Cape Verde indicated that the model underpredicted the observed organic carbon concentration. This leads to the conclusion that the formation of secondary organic material needs to be included in the model to improve the agreement with the measurements.

  19. An operational retrieval algorithm for determining aerosol optical properties in the ultraviolet

    Science.gov (United States)

    Taylor, Thomas E.; L'Ecuyer, Tristan S.; Slusser, James R.; Stephens, Graeme L.; Goering, Christian D.

    2008-02-01

    This paper describes a number of practical considerations concerning the optimization and operational implementation of an algorithm used to characterize the optical properties of aerosols across part of the ultraviolet (UV) spectrum. The algorithm estimates values of aerosol optical depth (AOD) and aerosol single scattering albedo (SSA) at seven wavelengths in the UV, as well as total column ozone (TOC) and wavelength-independent asymmetry factor (g) using direct and diffuse irradiances measured with a UV multifilter rotating shadowband radiometer (UV-MFRSR). A novel method for cloud screening the irradiance data set is introduced, as well as several improvements and optimizations to the retrieval scheme which yield a more realistic physical model for the inversion and increase the efficiency of the algorithm. Introduction of a wavelength-dependent retrieval error budget generated from rigorous forward model analysis as well as broadened covariances on the a priori values of AOD, SSA and g and tightened covariances of TOC allows sufficient retrieval sensitivity and resolution to obtain unique solutions of aerosol optical properties as demonstrated by synthetic retrievals. Analysis of a cloud screened data set (May 2003) from Panther Junction, Texas, demonstrates that the algorithm produces realistic values of the optical properties that compare favorably with pseudo-independent methods for AOD, TOC and calculated Ångstrom exponents. Retrieval errors of all parameters (except TOC) are shown to be negatively correlated to AOD, while the Shannon information content is positively correlated, indicating that retrieval skill improves with increasing atmospheric turbidity. When implemented operationally on more than thirty instruments in the Ultraviolet Monitoring and Research Program's (UVMRP) network, this retrieval algorithm will provide a comprehensive and internally consistent climatology of ground-based aerosol properties in the UV spectral range that can be used

  20. Characterization of submicron aerosols at a suburban site in central China

    Science.gov (United States)

    Wang, Qingqing; Zhao, Jian; Du, Wei; Ana, Godson; Wang, Zhenzhu; Sun, Lu; Wang, Yuying; Zhang, Fang; Li, Zhanqing; Ye, Xingnan; Sun, Yele

    2016-04-01

    We have characterized the chemical composition and sources of submicron aerosol (PM1) at a suburban site in Xinzhou in central China using an Aerosol Chemical Speciation Monitor from July 17 to September 5, 2014. The average (±1σ) PM1 concentration was 35.4 (±20.8) μg/m3 for the entire study period, indicating that Xinzhou was less polluted compared to the megacities in the North China Plain (NCP). The PM1 was mainly composed of organic aerosol and sulfate, on average accounting for 33.1% and 32.4%, respectively, followed by nitrate (14.4%) and ammonium (11.8%). Higher sulfate and lower nitrate contributions than those in megacities in the NCP elucidated an important emission source of coal combustion in central China. Three organic aerosol (OA) factors, i.e., hydrocarbon-like OA (HOA), semi-volatile oxygenated OA (SV-OOA) and low-volatility OOA (LV-OOA), were identified using positive matrix factorization. Secondary OA (=SV-OOA + LV-OOA) dominated OA, on average accounting for 82%, indicating that OA at the Xinzhou site was overall oxidized. We also observed relatively similar aerosol bulk composition and OA composition at low and high mass loading periods, and also from the different source areas, indicating that aerosol species were homogeneously distributed over a regional scale near the site for most of the time during this study. Slightly higher mass concentrations and sulfate contributions from the southern air masses were likely due to the transport from the polluted cities, such as Taiyuan to the south. In addition, the daily variation of PM1 in Xinzhou resembled that observed in Beijing, indicating that the wide-scale regional haze pollution often influences both the NCP and the central China.

  1. AEROSOL BEHAVIOR IN CHROMIUM WASTE INCINERATION

    Institute of Scientific and Technical Information of China (English)

    Suyuan Yu

    2003-01-01

    Cr2O3 is considered as the dominant incineration product during the combustion disposal of chromium waste. A hydrogen/air diffusion flame was employed to simulate the industrial process of incineration. Cr2O3 aerosols were generated inside the flame by the gas phase reaction of chromium and oxygen. Chromium came from the rapid decomposition of chromium hexacarbonyl (Cr(CO)6) at room temperature and was carried into the combustion chamber by hydrogen. Aerosol and clusters can then be easily formed in the flame by nucleation and coagulation. A two dimensional Discrete-Sectional Model (DSM) was adopted to calculate the Cr2O3 aerosol behavior. The experimental measurement method was Dynamic Light Scattering. The numerically predicted results agreed well with those of the experimental measurement. Both results show that the Cr2O3 aerosol size reached about 70 nanometers at the flame top.

  2. Photoacoustic study of airborne and model aerosols

    NARCIS (Netherlands)

    Alebic-Juretic, A.; Zetsch, C.; Doka, O.; Bicanic, D.D.

    2003-01-01

    Airborne particulates of either natural or anthropogenic origin constitute a significant portion of atmospheric pollution. Environmental xenobiotics, among which are polynuclear aromatic hydrocarbons (PAHs) and pesticides, often adsorb to aerosols and as such are transported through the atmosphere w

  3. The Aerosol, Clouds and Ecosystem (ACE) Mission

    Science.gov (United States)

    Schoeberl, M.; Remer, L.; Kahn, R.; Starr, D.; Hildebrand, P.; Colarco, P.; Diner, D.; Vane, D.; Im, E.; Behrenfeld, M.; Stephens, G.; Maring, H.; Bontempi, P.; Martins, J. V.

    2008-12-01

    The Aerosol, Clouds and Ecosystem (ACE) Mission is a second tier Decadal Survey mission designed to characterize the role of aerosols in climate forcing, especially their impact on precipitation and cloud formation. ACE also includes ocean biosphere measurements (chlorophyll and dissolved organic materials) which will be greatly improved by simultaneous measurements of aerosols. The nominal ACE payload includes lidar and multiangle spectropolarimetric polarimetric measurements of aerosols, radar measurements of clouds and multi-band spectrometer for the measurement of ocean ecosystems. An enhancement to ACE payload under consideration includes µ-wave radiometer measurements of cloud ice and water outside the nadir path of the radar/lidar beams. This talk will cover ACE instrument and science options, updates on the science team definition activity and science potential.

  4. Direct impact aerosol sampling by electrostatic precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Braden, Jason D.; Harter, Andrew G.; Stinson, Brad J.; Sullivan, Nicholas M.

    2016-02-02

    The present disclosure provides apparatuses for collecting aerosol samples by ionizing an air sample at different degrees. An air flow is generated through a cavity in which at least one corona wire is disposed and electrically charged to form a corona therearound. At least one grounded sample collection plate is provided downstream of the at least one corona wire so that aerosol ions generated within the corona are deposited on the at least one grounded sample collection plate. A plurality of aerosol samples ionized to different degrees can be generated. The at least one corona wire may be perpendicular to the direction of the flow, or may be parallel to the direction of the flow. The apparatus can include a serial connection of a plurality of stages such that each stage is capable of generating at least one aerosol sample, and the air flow passes through the plurality of stages serially.

  5. Aerosol Best Estimate Value-Added Product

    Energy Technology Data Exchange (ETDEWEB)

    Flynn, C; Turner, D; Koontz, A; Chand, D; Sivaraman, C

    2012-07-19

    The objective of the Aerosol Best Estimate (AEROSOLBE) value-added product (VAP) is to provide vertical profiles of aerosol extinction, single scatter albedo, asymmetry parameter, and Angstroem exponents for the atmospheric column above the Central Facility at the ARM Southern Great Plains (SGP) site. We expect that AEROSOLBE will provide nearly continuous estimates of aerosol optical properties under a range of conditions (clear, broken clouds, overcast clouds, etc.). The primary requirement of this VAP was to provide an aerosol data set as continuous as possible in both time and height for the Broadband Heating Rate Profile (BBHRP) VAP in order to provide a structure for the comprehensive assessment of our ability to model atmospheric radiative transfer for all conditions. Even though BBHRP has been completed, AEROSOLBE results are very valuable for environmental, atmospheric, and climate research.

  6. Atmospheric Aerosols in a Changing World

    Science.gov (United States)

    Heald, C. L.

    2015-12-01

    Aerosols in the atmosphere impact human and environmental health, visibility, and climate. Exposure to air pollution is the leading environmental cause of premature mortality world-wide. The role of aerosols on the Earth's climate represents the single largest source of uncertainty in our understanding of global radiative forcing. Tremendous strides have been made to clean up the air in recent decades, and yet poor air quality continues to plague many regions of the world, and our understanding of how global change will feedback on to aerosol sources, formation, and impacts is limited. In this talk, I will use recent results from my research group to highlight some of the key uncertainties and research topics in global aerosol lifecycle.

  7. The NASA GEOS-5 Aerosol Forecasting System

    Science.gov (United States)

    Colarco, Peter; daSilva, Arlindo; Darmenov, Anton

    2011-01-01

    The NASA Goddard Earth Observing System modeling and data assimilation environment (GEOS-5) is maintained by the Global Modeling and Assimilation Office (GMAO) at the NASA Goddard Space Flight Center. Near-realtime meteorological forecasts are produced to support NASA satellite and field missions. We have implemented in this environment an aerosol module based on the Goddard Chemistry, Aerosol, Radiation, and Transport (GOCART) model. This modeling system has previously been evaluated in the context of hindcasts based on assimilated meteorology. Here we focus on the development and evaluation of the near-realtime forecasting system. We present a description of recent efforts to implement near-realtime biomass burning emissions derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) fire radiative power products. We as well present a developing capability for improvement of aerosol forecasts by assimilation of aerosol information from MODIS.

  8. Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment

    Science.gov (United States)

    Brito, J.; Rizzo, L. V.; Morgan, W. T.; Coe, H.; Johnson, B.; Haywood, J.; Longo, K.; Freitas, S.; Andreae, M. O.; Artaxo, P.

    2014-11-01

    This paper investigates the physical and chemical characteristics of aerosols at ground level at a site heavily impacted by biomass burning. The site is located near Porto Velho, Rondônia, in the southwestern part of the Brazilian Amazon rainforest, and was selected for the deployment of a large suite of instruments, among them an Aerosol Chemical Speciation Monitor. Our measurements were made during the South American Biomass Burning Analysis (SAMBBA) field experiment, which consisted of a combination of aircraft and ground-based measurements over Brazil, aimed to investigate the impacts of biomass burning emissions on climate, air quality, and numerical weather prediction over South America. The campaign took place during the dry season and the transition to the wet season in September/October 2012. During most of the campaign, the site was impacted by regional biomass burning pollution (average CO mixing ratio of 0.6 ppm), occasionally superimposed by intense (up to 2 ppm of CO), freshly emitted biomass burning plumes. Aerosol number concentrations ranged from ~1000 cm-3 to peaks of up to 35 000 cm-3 (during biomass burning (BB) events, corresponding to an average submicron mass mean concentrations of 13.7 μg m-3 and peak concentrations close to 100 μg m-3. Organic aerosol strongly dominated the submicron non-refractory composition, with an average concentration of 11.4 μg m-3. The inorganic species, NH4, SO4, NO3, and Cl, were observed, on average, at concentrations of 0.44, 0.34, 0.19, and 0.01 μg m-3, respectively. Equivalent black carbon (BCe) ranged from 0.2 to 5.5 μg m-3, with an average concentration of 1.3 μg m-3. During BB peaks, organics accounted for over 90% of total mass (submicron non-refractory plus BCe), among the highest values described in the literature. We examined the ageing of biomass burning organic aerosol (BBOA) using the changes in the H : C and O : C ratios, and found that throughout most of the aerosol processing (O : C ≅ 0

  9. Remote sensing of aerosols over the oceans using MSG/SEVIRI imagery

    Directory of Open Access Journals (Sweden)

    F. Thieuleux

    2005-12-01

    Full Text Available The SEVIRI instrument on board Meteosat Second Generation (MSG offers new capabilities to monitor aerosol transport over the Atlantic and the Mediterranean at high temporal and spatial resolutions, in particular, Saharan dust from North Africa, biomass-burning aerosols from subtropical Africa and pollution from Europe. An inversion technique was developed to estimate both aerosol optical thickness and Angström coefficients from SEVIRI measurements at 0.63 and 0.81 µm. This method relies on an optimized set of aerosol models to ensure a fast processing of full-resolution MSG images and to allow the processing of long time series. SEVIRI images for slots 45, 49 and 53 (11:15, 12:15, 13:15 UT were processed for June 2003. The retrieved optical thicknesses and Angström coefficients are in good agreement with AERONET in-situ measurements in the Atlantic and in the Mediterranean. Monthly mean maps of both parameters are compared to that obtained with the polar orbiting sensor POLDER for June 2003. There is a good consistency between the two monthly means in terms of optical thickness, but the Angström coefficients show significant differences in the Atlantic zone which is affected by dust transport. These differences may be explained by the lack of specific non-spherical dust models within the inversion. The preliminary results presented in this paper demonstrate, nevertheless, the potential of MSG/SEVIRI for the monitoring of aerosol optical properties at high frequencies over the Atlantic and the Mediterranean.

  10. Aerosol pollution potential from major population centers

    OpenAIRE

    Kunkel, D.; Tost, H.; Lawrence, M. G.

    2012-01-01

    Major population centers (MPCs) or mega-cities represent the largest of growing urban agglomerations with major societal and environmental implications. In terms of air quality they are seen as localized but strong emission sources of aerosols and trace gases which in turn affect air pollution levels in the city or in downwind regions. In the state-of-the-art atmospheric chemistry general circulation model EMAC, generic aerosol and gas phase tracers with equal emission source strengths at 46 ...

  11. Volume versus surface nucleation in freezing aerosols

    Science.gov (United States)

    Sigurbjörnsson, Ómar F.; Signorell, Ruth

    2008-05-01

    The present study puts an end to the ongoing controversy regarding volume versus surface nucleation in freezing aerosols: Our study on nanosized aerosol particles demonstrates that current state of the art measurements of droplet ensembles cannot distinguish between the two mechanisms. The reasons are inherent experimental uncertainties as well as approximations used to analyze the kinetics. The combination of both can lead to uncertainties in the rate constants of two orders of magnitude, with important consequences for the modeling of atmospheric processes.

  12. Sensitivity of aerosol retrieval over snow surfaces

    Science.gov (United States)

    Seidel, F. C.; Painter, T. H.

    2011-12-01

    Significant amounts of black carbon and dust aerosols are transported to and accumulated in snowpacks of mountain ranges around the globe. The direct climate forcing of these particles is increasingly understood, whereas its indirect radiative forcing due to snow albedo and snow cover changes is still under investigation. In-situ and new remote sensing techniques are used to estimate snowpack properties from local to regional scales. Nevertheless, orbital and suborbital Earth observation data are difficult to analyze due to high spatial variability of the snowpack in rugged terrain. In addition, changes in atmospheric turbidity significantly complicate the estimation of snow cover characteristics and requires prior retrieval of optical and microphysical aerosol properties. Unfortunately, most aerosol retrieval techniques work only over dark surfaces. We therefore present a study on the sensitivity of aerosol optical depth (AOD) retrieval over snow surfaces. Radiative transfer calculations show that the sensitivity to surface spectral albedo depends strongly on the aerosol single scattering albedo (ratio of scattering efficiency to total extinction efficiency). Absorbing aerosol types (e.g. soot) provide a relatively good AOD retrieval sensitivity for very bright surfaces. The findings provide a basis for the development of future techniques and algorithms, which are able to concurrently retrieve snow and aerosol properties using remote sensing data. We explore these sensitivities with synthetic data and a time series of imaging spectrometer data, in situ spectral irradiance measurements, and sunphotometer measurements of AOD in the mountains of the Upper Colorado River Basin, USA. Ultimately, this research is important to map and better understand regional influences of aerosol and climate forcings on the cryosphere and water cycle in mountainous and other cold regions.

  13. Aerosol Dynamics – Mathematical Formulation, Numerical Solution

    OpenAIRE

    Pušman, Jan

    2012-01-01

    Mathematical and computer modeling of aerosols is used in a wide range of applications including atmospheric physics and chemistry, environmental protection, nuclear safety and industrial applications such as the production of nanomaterials. The aim of this work is twofold. We present a closer look at some aspects of mathematical modeling of aerosols as sub-discipline of continuum mechanics. We provide an overview of common methods and we discuss limitations on their applicability. The long-...

  14. Aerosol pollution potential from major population centers

    OpenAIRE

    D. Kunkel; Tost, H; Lawrence, M G

    2013-01-01

    Major population centers (MPCs), or megacities, represent the largest of growing urban agglomerations with major societal and environmental implications. In terms of air quality, they are seen as localized but strong emission sources of aerosols and trace gases which in turn affect air pollution levels in the city or in downwind regions. In the state-of-the-art atmospheric chemistry general circulation model EMAC, generic aerosol and gas-phase tracers with equal emission source strengths at 4...

  15. Electrically Driven Technologies for Radioactive Aerosol Abatement

    Energy Technology Data Exchange (ETDEWEB)

    David W. DePaoli; Ofodike A. Ezekoye; Costas Tsouris; Valmor F. de Almeida

    2003-01-28

    The purpose of this research project was to develop an improved understanding of how electriexecy driven processes, including electrocoalescence, acoustic agglomeration, and electric filtration, may be employed to efficiently treat problems caused by the formation of aerosols during DOE waste treatment operations. The production of aerosols during treatment and retrieval operations in radioactive waste tanks and during thermal treatment operations such as calcination presents a significant problem of cost, worker exposure, potential for release, and increased waste volume.

  16. Improved Gridded Aerosol Data for India

    Energy Technology Data Exchange (ETDEWEB)

    Gueymard, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sengupta, M. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-11-01

    Using point data from ground sites in and around India equipped with multiwavelength sunphotometers, as well as gridded data from space measurements or from existing aerosol climatologies, an improved gridded database providing the monthly aerosol optical depth at 550 nm (AOD550) and Angstrom exponent (AE) over India is produced. Data from 83 sunphotometer sites are used here as ground truth tocalibrate, optimally combine, and validate monthly gridded data during the period from 2000 to 2012.

  17. Aerosol fabrication methods for monodisperse nanoparticles

    Science.gov (United States)

    Jiang, Xingmao; Brinker, C Jeffrey

    2014-10-21

    Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.

  18. Aerosol deposition of (Cu,Ti) substituted bismuth vanadate films

    Energy Technology Data Exchange (ETDEWEB)

    Exner, Jörg, E-mail: Functional.Materials@Uni-Bayreuth.de [University of Bayreuth, Department of Functional Materials, Universitätsstraße 30, 95440 Bayreuth (Germany); Fuierer, Paul [Materials and Metallurgical Engineering Department, New Mexico Institute of Mining and Technology, Socorro, NM 87801 (United States); Moos, Ralf [University of Bayreuth, Department of Functional Materials, Universitätsstraße 30, 95440 Bayreuth (Germany)

    2014-12-31

    Bismuth vanadate, Bi{sub 4}V{sub 2}O{sub 11}, and related compounds with various metal (Me) substitutions, Bi{sub 4}(Me{sub x}V{sub 1−x}){sub 2}O{sub 11−δ}, show some of the highest ionic conductivities among the known solid oxide electrolytes. Films of Cu and Ti substituted bismuth vanadate were prepared by an aerosol deposition method, a spray coating process also described as room temperature impact consolidation. Resultant films, several microns in thickness, were dense with good adhesion to the substrate. Scanning electron microscopy and high temperature X-ray diffraction were used to monitor the effects of temperature on the structure and microstructure of the film. The particle size remained nano-scale while microstrain decreased rapidly up to 500 °C, above which coarsening and texturi