WorldWideScience

Sample records for aerosol chemical composition

  1. Aerosol Size and Chemical Composition in the Canadian High Arctic

    Science.gov (United States)

    Chang, R. Y. W.; Hayes, P. L.; Leaitch, W. R.; Croft, B.; O'Neill, N. T.; Fogal, P.; Drummond, J. R.; Sloan, J. J.

    2015-12-01

    Arctic aerosol have a strong annual cycle, with winter months dominated by long range transport from lower latitudes resulting in high mass loadings. Conversely, local emissions are more prominent in the summer months because of the decreased influence of transported aerosol, allowing us to regularly observe both transported and local aerosol. This study will present observations of aerosol chemical composition and particle number size distribution collected at the Polar Environment Artic Research Laboratory and the Alert Global Atmospheric Watch Observatory at Eureka (80N, 86W) and Alert (82N, 62W), Nunavut, respectively. Summer time observations of the number size distribution reveal a persistent mode of particles centered between 30-50 nm, with occasional bursts of smaller particles. The non-refractory aerosol chemical composition, measured by the Canadian Network for the Detection of Atmospheric Change quadrupole aerosol mass spectrometer, is primarily organic, with contributions from both aged and fresher organic aerosol. Factor analysis will be conducted to better understand these sources. The site at Eureka is more susceptible to long range transport since it is at the top of a mountain ridge (610 m above sea level) and will be compared to the site at Alert on an elevated plain (200 m above sea level). This will allow us to determine the relative contributions from processes and sources at the sites at different elevations. Comparisons with aerosol optical depth and GEOS-Chem model output will also be presented to put these surface measurements into context with the overlying and regional atmosphere. Results from this study contribute to our knowledge of aerosol in the high Arctic.

  2. Linking remotely sensed aerosol types to their chemical composition

    Science.gov (United States)

    Dawson, K. W.; Kacenelenbogen, M. S.; Johnson, M. S.; Burton, S. P.; Hostetler, C. A.; Meskhidze, N.

    2016-12-01

    Aerosol types measured during the Ship-Aircraft Bio-Optical Research (SABOR) experiment are related to GEOS-Chem model chemical composition. The application for this procedure to link model chemical components to aerosol type is desirable for understanding aerosol evolution over time. The Mahalanobis distance (DM) statistic is used to cluster model groupings of five chemical components (organic carbon, black carbon, sea salt, dust and sulfate) in a way analogous to the methods used by Burton et al. [2012] and Russell et al. [2014]. First, model-to-measurement evaluation is performed by collocating vertically resolved aerosol extinction from SABOR High Spectral Resolution LiDAR (HSRL) to the GEOS-Chem nested high-resolution data. Comparisons of modeled-to-measured aerosol extinction are shown to be within 35% ± 14%. Second, the model chemical components are calculation into five variables to calculate the DM and cluster means and covariances for each HSRL-retrieved aerosol type. The layer variables from the model are aerosol optical depth (AOD) ratios of (i) sea salt and (ii) dust to total AOD, mass ratios of (iii) total carbon (i.e. sum of organic and black carbon) to the sum of total carbon and sulfate (iv) organic carbon to black carbon, and (v) the natural log of the aerosol-to-molecular extinction ratio. Third, the layer variables and at most five out of twenty SABOR flights are used to form the pre-specified clusters for calculating DM and to assign an aerosol type. After determining the pre-specified clusters, model aerosol types are produced for the entire vertically resolved GEOS-Chem nested domain over the United States and the model chemical component distributions relating to each type are recorded. Resulting aerosol types are Dust/Dusty Mix, Maritime, Smoke, Urban and Fresh Smoke (separated into `dark' and `light' by a threshold of the organic to black carbon ratio). Model-calculated DM not belonging to a specific type (i.e. not meeting a threshold

  3. Aerosol Chemical Composition and its Effects on Cloud-Aerosol Interactions during the 2007 CHAPS Experiment

    Science.gov (United States)

    Lee, Y.; Alexander, L.; Newburn, M.; Jayne, J.; Hubbe, J.; Springston, S.; Senum, G.; Andrews, B.; Ogren, J.; Kleinman, L.; Daum, P.; Berg, L.; Berkowitz, C.

    2007-12-01

    Chemical composition of submicron aerosol particles was determined using an Aerodyne Time-of-Flight Aerosol Mass Spectrometer (AMS) outfitted on the DOE G-1 aircraft during the Cumulus Humilis Aerosol Processing Study (CHAPS) conducted in Oklahoma City area in June 2007. The primary objective of CHAPS was to investigate the effects of urban emissions on cloud aerosol interactions as a function of processing of the emissions. Aerosol composition was typically determined at three different altitudes: below, in, and above cloud, in both upwind and downwind regions of the urban area. Aerosols were sampled from an isokinetic inlet with an upper size cut-off of ~1.5 micrometer. During cloud passages, the AMS also sampled particles that were dried from cloud droplets collected using a counter-flow virtual impactor (CVI) sampler. The aerosol mass concentrations were typically below 10 microgram per cubic meter, and were dominated by organics and sulfate. Ammonium was often less than required for complete neutralization of sulfate. Aerosol nitrate levels were very low. We noted that nitrate levels were significantly enhanced in cloud droplets compared to aerosols, most likely resulting from dissolution of gaseous nitric acid. Organic to sulfate ratios appeared to be lower in cloud droplets than in aerosols, suggesting cloud condensation nuclei properties of aerosol particles might be affected by loading and nature of the organic components in aerosols. In-cloud formation of sulfate was considered unimportant because of the very low SO2 concentration in the region. A detailed examination of the sources of the aerosol organic components (based on hydrocarbons determined using a proton transfer reaction mass spectrometer) and their effects on cloud formation as a function of atmospheric processing (based on the degree of oxidation of the organic components) will be presented.

  4. Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene

    Directory of Open Access Journals (Sweden)

    E. M. Knipping

    2011-02-01

    Full Text Available The secondary organic aerosol (SOA yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS. A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS.

  5. Hygroscopic Properties and Chemical Composition of Aerosol Particles at the High Alpine Site Jungfraujoch

    Energy Technology Data Exchange (ETDEWEB)

    Weingarter, E.; Gysel, M.; Sjoegren, S.; Baltesperger, U.; Alfarra, R.; Bower, K.; Coe, H.

    2004-03-01

    The hygroscopic properties of aerosols play a significant role in atmospheric phenomena such as acid deposition, visibility degradation and climate change. Due to the hygroscopic growth of the particles, water is often the dominant component of the ambient aerosol at high relative humidity (RH) conditions. The ability to absorb water depends on the particle chemical composition, dry size, and shape. The aim of this study is to link the chemical composition of the atmospheric aerosol to its hygroscopic properties. (author)

  6. Aerosol chemical composition at Cabauw, the Netherlands as observed in two intensive periods in May 2008 and March 2009

    NARCIS (Netherlands)

    Mensah, A.A.; Holzinger, R.; Otjes, R.; Trimborn, A.; Mentel, T.F.; Brink, H. ten; Henzing, B.; Kiendler-Scharr, A.

    2012-01-01

    Observations of aerosol chemical composition in Cabauw, the Netherlands, are presented for two intensive measurement periods in May 2008 and March 2009. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and is compared to observations from aerosol

  7. Characterization of aerosol chemical composition with aerosol mass spectrometry in Central Europe: an overview

    Directory of Open Access Journals (Sweden)

    V. A. Lanz

    2010-11-01

    Full Text Available Real-time measurements of non-refractory submicron aerosols (NR-PM1 were conducted within the greater Alpine region (Switzerland, Germany, Austria, France and Liechtenstein during several week-long field campaigns in 2002–2009. This region represents one of the most important economic and recreational spaces in Europe. A large variety of sites was covered including urban backgrounds, motorways, rural, remote, and high-alpine stations, and also mobile on-road measurements were performed. Inorganic and organic aerosol (OA fractions were determined by means of aerosol mass spectrometry (AMS. The data originating from 13 different field campaigns and the combined data have been utilized for providing an improved temporal and spatial data coverage.

    The average mass concentration of NR-PM1 for the different campaigns typically ranged between 10 and 30 μg m−3. Overall, the organic portion was most abundant, ranging from 36% to 81% of NR-PM1. Other main constituents comprised ammonium (5–15%, nitrate (8–36%, sulfate (3–26%, and chloride (0–5%. These latter anions were, on average, fully neutralized by ammonium. As a major result, time of the year (winter vs. summer and location of the site (Alpine valleys vs. Plateau could largely explain the variability in aerosol chemical composition for the different campaigns and were found to be better descriptors for aerosol composition than the type of site (urban, rural etc.. Thus, a reassessment of classifications of measurements sites might be considered in the future, possibly also for other regions of the world.

    The OA data was further analyzed using positive matrix factorization (PMF and the multi-linear engine ME (factor analysis separating the total OA into its underlying components, such as oxygenated (mostly secondary organic aerosol (OOA, hydrocarbon-like and freshly emitted organic aerosol (HOA, as well as OA from biomass

  8. Chemical composition and sources of atmospheric aerosols at Djougou (Benin)

    Science.gov (United States)

    Ouafo-Leumbe, Marie-Roumy; Galy-Lacaux, Corinne; Liousse, Catherine; Pont, Veronique; Akpo, Aristide; Doumbia, Thierno; Gardrat, Eric; Zouiten, Cyril; Sigha-Nkamdjou, Luc; Ekodeck, Georges Emmanuel

    2017-06-01

    In the framework of the INDAAF (International Network to study Deposition and Atmospheric chemistry in AFrica) program, atmospheric aerosols were collected in PM2.5 and PM10 size fractions at Djougou, Benin, in the West Africa, from November, 2005 to October, 2009. Particulate carbon, ionic species, and trace metals were analyzed. Weekly PM2.5 and PM10 total mass concentrations varied between 0.7 and 47.3 µg m-3 and 1.4-148.3 µg m-3, respectively. We grouped the aerosol chemical compounds into four classes: dust, particulate organic matter (POM), elemental carbon (EC), and ions. We studied the annual variation of each class to determine their contribution in the total aerosol mass concentration and finally to investigate their potential emission sources. On an annual basis, the species presented a well-marked seasonality, with the peak of mass concentration for both sizes registered in dry season, 67 ± 2 to 86 ± 9 versus 14 ± 9 to 34 ± 5% in wet season. These values emphasized the seasonality of the emissions and the relative weak interannual standard deviation indicates the low variability of the seasonality. At the seasonal scale, major contributions to the aerosol chemistry in the dry season are: dust (26-59%), POM (30-59%), EC (5-9%), and ions (3-5%), suggesting a predominance of Sahelian and Saharan dust emissions and biomass burning source in this season. In the wet season, POM is predominant, followed by dust, EC, and ions. These results point out the contribution of surrounded biofuel combustion used for cooking and biogenic emissions during the wet season.

  9. Direct aerosol chemical composition measurements to evaluate the physicochemical differences between controlled sea spray aerosol generation schemes

    Directory of Open Access Journals (Sweden)

    D. B. Collins

    2014-11-01

    Full Text Available Controlled laboratory studies of the physical and chemical properties of sea spray aerosol (SSA must be under-pinned by a physically and chemically accurate representation of the bubble-mediated production of nascent SSA particles. Bubble bursting is sensitive to the physico-chemical properties of seawater. For a sample of seawater, any important differences in the SSA production mechanism are projected into the composition of the aerosol particles produced. Using direct chemical measurements of SSA at the single-particle level, this study presents an intercomparison of three laboratory-based, bubble-mediated SSA production schemes: gas forced through submerged sintered glass filters ("frits", a pulsed plunging-waterfall apparatus, and breaking waves in a wave channel filled with natural seawater. The size-resolved chemical composition of SSA particles produced by breaking waves is more similar to particles produced by the plunging waterfall than those produced by sintered glass filters. Aerosol generated by disintegrating foam produced by sintered glass filters contained a larger fraction of organic-enriched particles and a different size-resolved elemental composition, especially in the 0.8–2 μm dry diameter range. Interestingly, chemical differences between the methods only emerged when the particles were chemically analyzed at the single-particle level as a function of size; averaging the elemental composition of all particles across all sizes masked the differences between the SSA samples. When dried, SSA generated by the sintered glass filters had the highest fraction of particles with spherical morphology compared to the more cubic structure expected for pure NaCl particles produced when the particle contains relatively little organic carbon. In addition to an intercomparison of three SSA production methods, the role of the episodic or "pulsed" nature of the waterfall method on SSA composition was under-taken. In organic

  10. Chemical composition of aerosol in the atmospheric surface layer of the East Antarctica coastal zone

    Directory of Open Access Journals (Sweden)

    L. P. Golobokova

    2016-01-01

    Full Text Available Chemical composition of aerosol in the ground layer of the coastal zone in East Antarctica is analyzed in the article. The aerosol samples were taken in 2006–2015 during seasonal works of the Russian Antarctic Expeditions (RAE, namely, these were 52nd–53rd, 55th, and 58th–60th expeditions. Samples were taken in the 200‑km band of the sea-shore zone along routes of the research vessels (REV «Akademik Fedorov» and «Akademik Treshnikov» as well as on territories of the Russian stations Molodezhnaya and Mirny. Although the results obtained did show the wide range of the aerosol concentrations and a certain variability of their chemical composition, some common features of the variability were revealed. Thus, during the period from 2006 to 2014 a decrease of average values of the sums were noted. Spatially, a tendency of decreasing of the ion concentrations was found in the direction from the station Novolazarevskaya to the Molodezhnaya one, but the concentrations increased from the Molodezhnaya to the station Mirny. The sum of ions of the aerosol in the above mentioned coastal zone was, on the average, equal to 2.44 μg/m3, and it was larger than that on the territory of the Antarctic stations Molodezhnaya (0,29 μg/m3 and Mirny (0,50 ág / m3. The main part to the sum of the aerosol ions on the Antarctic stations was contributed by Na+, Ca2+, Cl−, SO4 2−. The main ions in aerosol composition in the coastal zone are ions Na+ and Cl−. The dominant contribution of the sea salt and SO4 2− can be traced in not only the composition of atmospheric aerosols, but also in the chemical composition of the fresh snow in the coastal areas of East Antarctica: at the Indian station Maitri, on the Larsemann Hills, and in a boring located in 55.3 km from the station Progress (K = 1.4÷6.1. It was noted that values of the coefficient of enrichment K of these ions decreases as someone moves from a shore to inland. Estimation of

  11. Estimation of aerosol water and chemical composition from AERONET at Cabauw, the Netherlands, Atmos. Chem. Phys. Discuss., 13, ,

    NARCIS (Netherlands)

    Beelen, A.J. van; Roelofs, G.J.H.; Hasekamp, O.P.; Henzing, J.S.; Röckmann, T.

    2013-01-01

    This study is of our particular interest as the quality of our chemical transport model Lotos-Euros can be improved by our understanding of the aerosol-light interaction. In this study we derive aerosol water and chemical composition by a modeling approach that combines in situ measured and remotely

  12. Decadal trends in aerosol chemical composition at Barrow, Alaska: 1976–2008

    Directory of Open Access Journals (Sweden)

    G. E. Shaw

    2009-11-01

    Full Text Available Aerosol measurements at Barrow, Alaska during the past 30 years have identified the long range transport of pollution associated with Arctic Haze as well as ocean-derived aerosols of more local origin. Here, we focus on measurements of aerosol chemical composition to assess (1 trends in Arctic Haze aerosol and implications for source regions, (2 the interaction between pollution-derived and ocean-derived aerosols and the resulting impacts on the chemistry of the Arctic boundary layer, and (3 the response of aerosols to a changing climate. Aerosol chemical composition measured at Barrow, AK during the Arctic haze season is compared for the years 1976–1977 and 1997–2008. Based on these two data sets, concentrations of non-sea salt (nss sulfate (SO4= and non-crustal (nc vanadium (V have decreased by about 60% over this 30 year period. Consistency in the ratios of nss SO4=/ncV and nc manganese (Mn/ncV between the two data sets indicates that, although emissions have decreased in the source regions, the source regions have remained the same over this time period. The measurements from 1997–2008 indicate that, during the haze season, the nss SO4= aerosol at Barrow is becoming less neutralized by ammonium (NH4+ yielding an increasing sea salt aerosol chloride (Cl deficit. The expected consequence is an increase in the release of Cl atoms to the atmosphere and a change in the lifetime of volatile organic compounds (VOCs including methane. In addition, summertime concentrations of biogenically-derived methanesulfonate (MSA and nss SO4= are increasing at a rate of 12 and 8% per year, respectively. Further research is required to assess the environmental factors behind the increasing concentrations of biogenic aerosol.

  13. Chemical composition of aerosol measurements in the air pollution plume during KORUS-AQ

    Science.gov (United States)

    Park, T.; Lee, J. B.; Lim, Y. J.; Ahn, J.; Park, J. S.; Soo, C. J.; Kim, J.; Park, S.; Lee, Y.; Desyaterik, Y.; Collett, J. L., Jr.; Lee, T.

    2017-12-01

    The Korean peninsula is a great place to study different sources of the aerosols: urban, rural and marine. In addition, Seoul is one of the large metropolitan areas in the world and has a variety of sources because half of the Korean population lives in Seoul, which comprises only 12% of the country's area. To understand the chemical composition of aerosol form long-range transport and local sources better, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed on an airborne platform (NASA DC-8 aircraft). The HR-ToF-AMS is capable of measuring non-refractory size resolved chemical composition of submicron particle(NR-PM1) in the air pollution plume, including mass concentration of organic carbon, nitrate, sulfate, and ammonium with 10 seconds time resolution. The measurements were performed twenty times research flight for understanding characteristic of the air pollution from May to June, 2016 on the South Korean peninsula during KORUS-AQ 2016 campaign. The scientific goal of this study is to characterize aerosol chemical properties and mass concentration in order to understand the role of the long-range transport from northeast Asia to South Korea, and influence of the local sources. To brief, organics dominated during all of flights. Also, organics and nitrate were dominant around energy industrial complex near by Taean, South Korea. The presentation will provide an overview of the composition of NR-PM1 measured in air pollution plumes, and deliver detail information about width, depth and spatial distribution of the pollutant in the air pollution plumes. The results of this study will provide high temporal and spatial resolved details on the air pollution plumes, which are valuable input parameters of aerosol properties for the current air quality models.

  14. Aerosol sources and their contribution to the chemical composition of aerosols in the Eastern Mediterranean Sea during summertime

    Directory of Open Access Journals (Sweden)

    J. Sciare

    2003-01-01

    Full Text Available A detailed study on the temporal variability of compounds important in controlling aerosol chemical composition was performed during a one-month experiment conducted during summer 2000 at a background site on Crete, in the Eastern Mediterranean Sea. Contribution of different aerosol sources in the Eastern Mediterranean Basin could be investigated at this location since the site is influenced by a wide range of air masses originating mainly in Europe and Africa. Chemical apportionment was performed for various air mass origins and showed a strong impact of anthropogenic emissions in the Turkey and Central Europe sectors, with black carbon (BC and non-sea-salt sulfate (nss-SO4 concentrations higher than observed in the Eastern and Western Europe sectors. High levels of non-sea-salt calcium (nss-Ca were associated with air masses from Africa but also from Central Turkey. Evidence was found that BC calculation based on light absorbance during dust events was biased. This quality-controlled high temporal resolution dataset allowed to investigate in detail the source-receptor relationships responsible for the levels of BC, nss-SO4 and sulfur dioxide (SO2, observed in Crete. Among the results obtained from this model, the major contribution of Turkey and Central Europe was confirmed in terms of anthropogenic emissions. Comparisons with remote optical properties obtained from Satellite observations (SEAWIFS north of Crete indicates that our ground based aerosol characterization was suitable for describing aerosol properties in the atmospheric column for most of the time during the campaign.

  15. Aerosol Chemical Speciation Monitor (ACSM) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Watson, Thomas B. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-08-15

    The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) measures particle mass loading and chemical composition in real time for non-refractory sub-micron aerosol particles. The ACSM is designed for long-term unattended deployment and routine monitoring applications.

  16. α-Pinene secondary organic aerosol at low temperature: chemical composition and implications for particle viscosity

    Science.gov (United States)

    Huang, Wei; Saathoff, Harald; Pajunoja, Aki; Shen, Xiaoli; Naumann, Karl-Heinz; Wagner, Robert; Virtanen, Annele; Leisner, Thomas; Mohr, Claudia

    2018-02-01

    Chemical composition, size distributions, and degree of oligomerization of secondary organic aerosol (SOA) from α-pinene (C10H16) ozonolysis were investigated for low-temperature conditions (223 K). Two types of experiments were performed using two simulation chambers at the Karlsruhe Institute of Technology: the Aerosol Preparation and Characterization (APC) chamber, and the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) chamber. Experiment type 1 simulated SOA formation at upper tropospheric conditions: SOA was generated in the AIDA chamber directly at 223 K at 61 % relative humidity (RH; experiment termed cold humid, CH) and for comparison at 6 % RH (experiment termed cold dry, CD) conditions. Experiment type 2 simulated SOA uplifting: SOA was formed in the APC chamber at room temperature (296 K) and warm dry, WD) or 21 % RH (experiment termed warm humid, WH) conditions, and then partially transferred to the AIDA chamber kept at 223 K, and 61 % RH (WDtoCH) or 30 % RH (WHtoCH), respectively. Precursor concentrations varied between 0.7 and 2.2 ppm α-pinene, and between 2.3 and 1.8 ppm ozone for type 1 and type 2 experiments, respectively. Among other instrumentation, a chemical ionization mass spectrometer (CIMS) coupled to a filter inlet for gases and aerosols (FIGAERO), deploying I- as reagent ion, was used for SOA chemical composition analysis. For type 1 experiments with lower α-pinene concentrations and cold SOA formation temperature (223 K), smaller particles of 100-300 nm vacuum aerodynamic diameter (dva) and higher mass fractions (> 40 %) of adducts (molecules with more than 10 carbon atoms) of α-pinene oxidation products were observed. For type 2 experiments with higher α-pinene concentrations and warm SOA formation temperature (296 K), larger particles ( ˜ 500 nm dva) with smaller mass fractions of adducts (models.

  17. Biomass burning aerosol over the Amazon during SAMBBA: impact of chemical composition on radiative properties

    Science.gov (United States)

    Morgan, William; Allan, James; Flynn, Michael; Darbyshire, Eoghan; Hodgson, Amy; Liu, Dantong; O'shea, Sebastian; Bauguitte, Stephane; Szpek, Kate; Langridge, Justin; Johnson, Ben; Haywood, Jim; Longo, Karla; Artaxo, Paulo; Coe, Hugh

    2014-05-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. Globally, biomass burning aerosols are thought to exert a small warming effect but with the uncertainty being 4 times greater than the central estimate. On regional scales, the impact is substantially greater, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, both in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated

  18. Aerosol Optical Properties Measured Onboard the Ronald H. Brown During ACE Asia as a Function of Aerosol Chemical Composition and Source Region

    Science.gov (United States)

    Quinn, P. K.; Coffman, D. J.; Bates, T. S.; Welton, E. J.; Covert, D. S.; Miller, T. L.; Johnson, J. E.; Maria, S.; Russell, L.; Arimoto, R.

    2004-01-01

    During the ACE Asia intensive field campaign conducted in the spring of 2001 aerosol properties were measured onboard the R/V Ronald H. Brown to study the effects of the Asian aerosol on atmospheric chemistry and climate in downwind regions. Aerosol properties measured in the marine boundary layer included chemical composition; number size distribution; and light scattering, hemispheric backscattering, and absorption coefficients. In addition, optical depth and vertical profiles of aerosol 180 deg backscatter were measured. Aerosol within the ACE Asia study region was found to be a complex mixture resulting from marine, pollution, volcanic, and dust sources. Presented here as a function of air mass source region are the mass fractions of the dominant aerosol chemical components, the fraction of the scattering measured at the surface due to each component, mass scattering efficiencies of the individual components, aerosol scattering and absorption coefficients, single scattering albedo, Angstrom exponents, optical depth, and vertical profiles of aerosol extinction. All results except aerosol optical depth and the vertical profiles of aerosol extinction are reported at a relative humidity of 55 +/- 5%. An over-determined data set was collected so that measured and calculated aerosol properties could be compared, internal consistency in the data set could be assessed, and sources of uncertainty could be identified. By taking into account non-sphericity of the dust aerosol, calculated and measured aerosol mass and scattering coefficients agreed within overall experimental uncertainties. Differences between measured and calculated aerosol absorption coefficients were not within reasonable uncertainty limits, however, and may indicate the inability of Mie theory and the assumption of internally mixed homogeneous spheres to predict absorption by the ACE Asia aerosol. Mass scattering efficiencies of non-sea salt sulfate aerosol, sea salt, submicron particulate organic

  19. Coastal Antarctic aerosol: the seasonal pattern of its chemical composition and radionuclide content

    International Nuclear Information System (INIS)

    Wagenbach, D.; Goerlach, U.; Moser, K.; Muennich, K.O.

    1988-01-01

    At the German Antarctic research station (70 degrees S, 8 degrees W), long-term observations of the chemical and radio-chemical composition of atmospheric particulate matter were started in spring 1983. Based on the analysis of high-volume aerosol filters sampled continuously for nearly 5 years, concentration records of the following aerosol components are presented here: (a) major ions (sea-salt, sulfate, nitrate); (b) cosmogenic 7 Be and terrigeneous 210 Pb; (c) trace elements (crustal Mn, heavy metal Pb). All species mentioned, with the exception of stable and radioactive Pb, show annual cycles. The maximum occurs in austral summer for 7 Be, sulfate, and crustal Mn. For sea-salt, however, the maximum is found in local autumn, and for nitrate in local spring. In local summer, the enhanced 7 Be to 210 Pb ratio is attributed to intenser large scale vertical mixing. The pattern of total sulfate seems to be controlled by the nss-sulfate production from marine organo-sulfur species during local summer, whereas in polar night, nss-sulfate shows very low or even negative concentration. Crustal aerosol (indicated by Mn) shows a mean summer contribution of 16 ng/SCM which exceeds the mean winter level by more than a factor of two. Based on a mean wash-out ratio of 0.27x10 6 observed for 210 Pb bearing aerosol particles, a Pb snow concentration of 3.0 pg/g is deduced from the mean air concentration of 11 pg/SCM. (authors)

  20. Chemical composition and source apportionment of aerosol over the Klang valley

    International Nuclear Information System (INIS)

    Shamsiah Abdul Rahman; Mohd Suhaimi Hamzah; Abdul Khalik Wood; Nazaratul Ashifa Abdullah Salim; Mohd Suhaimi Elias; Eswiza Sanuri

    2009-01-01

    This paper reports the study of aerosol chemical composition of fine particles (PM 2.5) and possible sources of air pollution over the Klang Valley, Kuala Lumpur, based on the samples collected for a period of 6 years from July 2000 to Jun 2006. Samples collected were measured for mass, black carbon and elemental content of Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, As, Br and Pb. The fine aerosol mass concentration ranged from 11 - 110 ?g/m3. Black carbon is the major component of the fine aerosol with the weight fraction of 20%, whilst S is the major elemental content with the weight fraction about 5% as relative to the fine particle mass. The factor analysis method, positive matrix factorization (PMF) was then used to confirm the possible sources. The result of PMF analysis produced five-factor sources that contribute to the fine particles in the Klang Valley area. The five factors represent sea spray, industry, motor vehicles, smoke and soil. Motor vehicle is the main source of particulates in the area, with an average contribution of 51% of the fine mass concentration, followed by industry, smoke, sea spray and soil, with average contribution of 28%, 14%, 3.6% and 2.1%, respectively. (Author)

  1. Measurements of the aerosol chemical composition and mixing state in the Po Valley using multiple spectroscopic techniques

    Science.gov (United States)

    Decesari, S.; Allan, J.; Plass-Duelmer, C.; Williams, B. J.; Paglione, M.; Facchini, M. C.; O'Dowd, C.; Harrison, R. M.; Gietl, J. K.; Coe, H.; Giulianelli, L.; Gobbi, G. P.; Lanconelli, C.; Carbone, C.; Worsnop, D.; Lambe, A. T.; Ahern, A. T.; Moretti, F.; Tagliavini, E.; Elste, T.; Gilge, S.; Zhang, Y.; Dall'Osto, M.

    2014-11-01

    The use of co-located multiple spectroscopic techniques can provide detailed information on the atmospheric processes regulating aerosol chemical composition and mixing state. So far, field campaigns heavily equipped with aerosol mass spectrometers have been carried out mainly in large conurbations and in areas directly affected by their outflow, whereas lesser efforts have been dedicated to continental areas characterised by a less dense urbanisation. We present here the results obtained at a background site in the Po Valley, Italy, in summer 2009. For the first time in Europe, six state-of-the-art spectrometric techniques were used in parallel: aerosol time-of-flight mass spectrometer (ATOFMS), two aerosol mass spectrometers (high-resolution time-of-flight aerosol mass spectrometer - HR-ToF-AMS and soot particle aerosol mass spectrometer - SP-AMS), thermal desorption aerosol gas chromatography (TAG), chemical ionisation mass spectrometry (CIMS) and (offline) proton nuclear magnetic resonance (1H-NMR) spectroscopy. The results indicate that, under high-pressure conditions, atmospheric stratification at night and early morning hours led to the accumulation of aerosols produced by anthropogenic sources distributed over the Po Valley plain. Such aerosols include primary components such as black carbon (BC), secondary semivolatile compounds such as ammonium nitrate and amines and a class of monocarboxylic acids which correspond to the AMS cooking organic aerosol (COA) already identified in urban areas. In daytime, the entrainment of aged air masses in the mixing layer is responsible for the accumulation of low-volatility oxygenated organic aerosol (LV-OOA) and also for the recycling of non-volatile primary species such as black carbon. According to organic aerosol source apportionment, anthropogenic aerosols accumulating in the lower layers overnight accounted for 38% of organic aerosol mass on average, another 21% was accounted for by aerosols recirculated in

  2. Seasonality of New Particle Formation in Vienna, Austria - Influence of Air Mass Origin and Aerosol Chemical Composition

    Czech Academy of Sciences Publication Activity Database

    Wonaschütz, A.; Demattio, A.; Wagner, R.; Burkart, J.; Zíková, Naděžda; Vodička, Petr; Ludwig, W.; Steiner, G.; Schwarz, Jaroslav; Hitzenberger, R.

    2015-01-01

    Roč. 118, OCT 2015 (2015), s. 118-126 ISSN 1352-2310 R&D Projects: GA MŠk 7AMB12AT021; GA ČR(CZ) GBP503/12/G147 Grant - others:FWF(AT) P19515-N20 Institutional support: RVO:67985858 Keywords : urban aerosol * aerosol chemical composition * new particle formation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.459, year: 2015

  3. Chemical composition and characteristics of ambient aerosols and rainwater residues during Indian summer monsoon: Insight from aerosol mass spectrometry

    Science.gov (United States)

    Chakraborty, Abhishek; Gupta, Tarun; Tripathi, Sachchida N.

    2016-07-01

    Real time composition of non-refractory submicron aerosol (NR-PM1) is measured via Aerosol mass spectrometer (AMS) for the first time during Indian summer monsoon at Kanpur, a polluted urban location located at the heart of Indo Gangetic Plain (IGP). Submicron aerosols are found to be dominated by organics followed by nitrate. Source apportionment of organic aerosols (OA) via positive matrix factorization (PMF) revealed several types of secondary/oxidized and primary organic aerosols. On average, OA are completely dominated by oxidized OA with a very little contribution from biomass burning OA. During rain events, PM1 concentration is decreased almost by 60%, but its composition remains nearly the same. Oxidized OA showed slightly more decrease than primary OAs, probably due to their higher hygroscopicity. The presence of organo nitrates (ON) is also detected in ambient aerosols. Apart from real-time sampling, collected fog and rainwater samples were also analyzed via AMS in offline mode and in the ICP-OES (Inductively coupled plasma - Optical emission spectrometry) for elements. The presence of sea salt, organo nitrates and sulfates has been observed. Rainwater residues are also dominated by organics but their O/C ratios are 15-20% lower than the observed values for ambient OA. Alkali metals such as Ca, Na, K are found to be most abundant in the rainwater followed by Zn. Rainwater residues are also found to be much less oxidized than the aerosols present inside the fog water, indicating presence of less oxidized organics. These findings indicate that rain can act as an effective scavenger of different types of pollutants even for submicron particle range. Rainwater residues also contain organo sulfates which indicate that some portion of the dissolved aerosols has undergone aqueous processing, possibly inside the cloud. Highly oxidized and possibly hygroscopic OA during monsoon period compared to other seasons (winter, post monsoon), indicates that they can act

  4. Aerosol size and chemical composition measurements at the Polar Environment Atmospheric Research Lab (PEARL) in Eureka, Nunavut

    Science.gov (United States)

    Hayes, P. L.; Tremblay, S.; Chang, R. Y. W.; Leaitch, R.; Kolonjari, F.; O'Neill, N. T.; Chaubey, J. P.; AboEl Fetouh, Y.; Fogal, P.; Drummond, J. R.

    2016-12-01

    This study presents observations of aerosol chemical composition and particle number size distribution at the Polar Environment Atmospheric Research Laboratory (PEARL) in the Canadian High Arctic (80N, 86W). The current aerosol measurement program at PEARL has been ongoing for more than a year providing long-term observations of Arctic aerosol size distributions for both coarse and fine modes. Particle nucleation events were frequently observed during the summers of 2015 and 2016. The size distribution data are also compared against similar measurements taken at the Alert Global Atmospheric Watch Observatory (82N, 62W) for July and August 2015. The nucleation events are correlated at the two sites, despite a distance of approximately 500 km, suggesting regional conditions favorable for particle nucleation and growth during this period. Size resolved chemical composition measurements were also carried out using an aerosol mass spectrometer. The smallest measured particles between 40 and 60 nm are almost entirely organic aerosol (OA) indicating that the condensation of organic vapors is responsible for particle growth events and possibly particle nucleation. This conclusion is further supported by the relatively high oxygen content of the OA, which is consistent with secondary formation of OA via atmospheric oxidation.Lastly, surface measurements of the aerosol scattering coefficient are compared against the coefficient values calculated using Mie theory and the measured aerosol size distribution. Both the actual and the calculated scattering coefficients are then compared to sun photometer measurements to understand the relationship between surface and columnar aerosol optical properties. The measurements at PEARL provide a unique combination of surface and columnar data sets on aerosols in the High Arctic, a region where such measurements are scarce despite the important impact of aerosols on Arctic climate.PEARL research is supported by the Natural Sciences and

  5. Relationship between chemical composition and oxidative potential of secondary organic aerosol from polycyclic aromatic hydrocarbons

    Science.gov (United States)

    Wang, Shunyao; Ye, Jianhuai; Soong, Ronald; Wu, Bing; Yu, Legeng; Simpson, André J.; Chan, Arthur W. H.

    2018-03-01

    Owing to the complex nature and dynamic behaviors of secondary organic aerosol (SOA), its ability to cause oxidative stress (known as oxidative potential, or OP) and adverse health outcomes remains poorly understood. In this work, we probed the linkages between the chemical composition of SOA and its OP, and investigated impacts from various SOA evolution pathways, including atmospheric oligomerization, heterogeneous oxidation, and mixing with metal. SOA formed from photooxidation of the two most common polycyclic aromatic hydrocarbons (naphthalene and phenanthrene) were studied as model systems. OP was evaluated using the dithiothreitol (DTT) assay. The oligomer-rich fraction separated by liquid chromatography dominates DTT activity in both SOA systems (52 ± 10 % for naphthalene SOA (NSOA), and 56 ± 5 % for phenanthrene SOA (PSOA)). Heterogeneous ozonolysis of NSOA was found to enhance its OP, which is consistent with the trend observed in selected individual oxidation products. DTT activities from redox-active organic compounds and metals were found to be not additive. When mixing with highly redox-active metal (Cu), OP of the mixture decreased significantly for 1,2-naphthoquinone (42 ± 7 %), 2,3-dihydroxynaphthalene (35 ± 1 %), NSOA (50 ± 6 %), and PSOA (43 ± 4 %). Evidence from proton nuclear magnetic resonance (1H NMR) spectroscopy illustrates that such OP reduction upon mixing can be ascribed to metal-organic binding interactions. Our results highlight the role of aerosol chemical composition under atmospheric aging processes in determining the OP of SOA, which is needed for more accurate and explicit prediction of the toxicological impacts from particulate matter.

  6. Wintertime aerosol chemical composition and source apportionment of the organic fraction across Ireland

    Science.gov (United States)

    Ovadnevaite, J.; Lin, C.; Ceburnis, D.; Huang, R. J. J.; O'Dowd, C. D. D.

    2017-12-01

    A national wide characterization of PM1 was studied for the first time using a high-time resolution Aerosol Chemical Speciation Monitor (ACSM) and Aethalometer in Ireland during the heating season. Dublin, the capital of Ireland, is the most polluted area with an average PM1 of 7.6 μg/m3, with frequent occurrence of peak concentration over 200 μg/m3 primarily due to solid fuels burning, while Mace Head, in the west coast, is least polluted with an average PM1 of 0.8 μg/m3 due to the distance from the emission sources. The organic aerosol is the most dominant species across Ireland, contributing 65%, 58%, 32%, 33% to total PM1 mass in Dublin, Birr, Carnsore Point, and Mace Head, respectively. Birr, a small town in the midland of Ireland, has comparable PM1 levels (4.8 μg/m3) and similar chemical compositions with that in Dublin. Carnsore Point, on the southeast coast, has similar composition with that at Mace Head, but nearly 3 times the levels of PM1 mass due to its relative closeness to other European countries. Positive matrix factorization (PMF) with the multi-linear engine (ME-2) was performed on the organic matrix to quantify the contribution of factor candidates. Peat burning was found to be the dominant factor across Ireland, contributing more than 40% of the total organic mass in Dublin and Birr while OOA is dominant at rural Carnsore Point and Mace Head. Possible geographic origins of PM1 species and organic factors using polar plots were explored. The findings of solid fuels burning (primarily peat burning) driving the pollution episodes suggest an elimination or controlled emission of solid fuels burning would reduce PM1 by at least 50%.

  7. Aerosol chemical composition at Cabauw, The Netherlands as observed in two intensive periods in May 2008 and March 2009

    Science.gov (United States)

    Mensah, A. A.; Holzinger, R.; Otjes, R.; Trimborn, A.; Mentel, Th. F.; ten Brink, H.; Henzing, B.; Kiendler-Scharr, A.

    2012-05-01

    Observations of aerosol chemical composition in Cabauw, the Netherlands, are presented for two intensive measurement periods in May 2008 and March 2009. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and is compared to observations from aerosol size distribution measurements as well as composition measurements with a Monitor for AeRosol and GAses (MARGA) based instrument and a Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometer (TD-PTR-MS). An overview of the data is presented and the data quality is discussed. In May 2008 enhanced pollution was observed with organics contributing 40% to the PM1 mass. In contrast the observed average mass loading was lower in March 2009 and a dominance of ammonium nitrate (42%) was observed. The semi-volatile nature of ammonium nitrate is evident in the diurnal cycles with maximum concentrations observed in the morning hours in May 2008 and little diurnal variation observed in March 2009. Size dependent composition data from AMS measurements are presented and show a dominance of organics in the size range below 200 nm. A higher O:C ratio of the organics is observed for May 2008 than for March 2009. Together with the time series of individual tracer ions this shows the dominance of OOA over HOA in May 2008.

  8. Aerosol chemical composition at Cabauw, The Netherlands as observed in two intensive periods in May 2008 and March 2009

    Directory of Open Access Journals (Sweden)

    A. A. Mensah

    2012-05-01

    Full Text Available Observations of aerosol chemical composition in Cabauw, the Netherlands, are presented for two intensive measurement periods in May 2008 and March 2009. Sub-micron aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS and is compared to observations from aerosol size distribution measurements as well as composition measurements with a Monitor for AeRosol and GAses (MARGA based instrument and a Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometer (TD-PTR-MS. An overview of the data is presented and the data quality is discussed. In May 2008 enhanced pollution was observed with organics contributing 40% to the PM1 mass. In contrast the observed average mass loading was lower in March 2009 and a dominance of ammonium nitrate (42% was observed. The semi-volatile nature of ammonium nitrate is evident in the diurnal cycles with maximum concentrations observed in the morning hours in May 2008 and little diurnal variation observed in March 2009. Size dependent composition data from AMS measurements are presented and show a dominance of organics in the size range below 200 nm. A higher O:C ratio of the organics is observed for May 2008 than for March 2009. Together with the time series of individual tracer ions this shows the dominance of OOA over HOA in May 2008.

  9. Chemical Composition of Aerosol from an E-Cigarette: A Quantitative Comparison with Cigarette Smoke.

    Science.gov (United States)

    Margham, Jennifer; McAdam, Kevin; Forster, Mark; Liu, Chuan; Wright, Christopher; Mariner, Derek; Proctor, Christopher

    2016-10-17

    There is interest in the relative toxicities of emissions from electronic cigarettes and tobacco cigarettes. Lists of cigarette smoke priority toxicants have been developed to focus regulatory initiatives. However, a comprehensive assessment of e-cigarette chemical emissions including all tobacco smoke Harmful and Potentially Harmful Constituents, and additional toxic species reportedly present in e-cigarette emissions, is lacking. We examined 150 chemical emissions from an e-cigarette (Vype ePen), a reference tobacco cigarette (Ky3R4F), and laboratory air/method blanks. All measurements were conducted by a contract research laboratory using ISO 17025 accredited methods. The data show that it is essential to conduct laboratory air/method measurements when measuring e-cigarette emissions, owing to the combination of low emissions and the associated impact of laboratory background that can lead to false-positive results and overestimates. Of the 150 measurands examined in the e-cigarette aerosol, 104 were not detected and 21 were present due to laboratory background. Of the 25 detected aerosol constituents, 9 were present at levels too low to be quantified and 16 were generated in whole or in part by the e-cigarette. These comprised major e-liquid constituents (nicotine, propylene glycol, and glycerol), recognized impurities in Pharmacopoeia-quality nicotine, and eight thermal decomposition products of propylene glycol or glycerol. By contrast, approximately 100 measurands were detected in mainstream cigarette smoke. Depending on the regulatory list considered and the puffing regime used, the emissions of toxicants identified for regulation were from 82 to >99% lower on a per-puff basis from the e-cigarette compared with those from Ky3R4F. Thus, the aerosol from the e-cigarette is compositionally less complex than cigarette smoke and contains significantly lower levels of toxicants. These data demonstrate that e-cigarettes can be developed that offer the potential

  10. Aerosol chemical physics

    International Nuclear Information System (INIS)

    Marlow, W.H.

    1982-01-01

    A classification of the research fields in the chemical physics of aerosol microparticles is given. The emphasis lies on the microphysics of isolated particles and clusters and on physical transformations and thermodynamics. (LDN)

  11. Chemical composition of aerosol particles and light extinction apportionment before and during the heating season in Beijing, China

    Science.gov (United States)

    Wang, Qingqing; Sun, Yele; Jiang, Qi; Du, Wei; Sun, Chengzhu; Fu, Pingqing; Wang, Zifa

    2015-12-01

    Despite extensive efforts into characterization of the sources and formation mechanisms of severe haze pollution in the megacity of Beijing, the response of aerosol composition and optical properties to coal combustion emissions in the heating season remain poorly understood. Here we conducted a 3 month real-time measurement of submicron aerosol (PM1) composition by an Aerosol Chemical Speciation Monitor and particle light extinction by a Cavity Attenuated Phase Shift extinction monitor in Beijing, China, from 1 October to 31 December 2012. The average (±σ) PM1 concentration was 82.4 (±73.1) µg/m3 during the heating period (HP, 15 November to 31 December), which was nearly 50% higher than that before HP (1 October to 14 November). While nitrate and secondary organic aerosol (SOA) showed relatively small changes, organics, sulfate, and chloride were observed to have significant increases during HP, indicating the dominant impacts of coal combustion sources on these three species. The relative humidity-dependent composition further illustrated an important role of aqueous-phase processing for the sulfate enhancement during HP. We also observed great increases of hydrocarbon-like OA (HOA) and coal combustion OA (CCOA) during HP, which was attributed to higher emissions at lower temperatures and coal combustion emissions, respectively. The relationship between light extinction and chemical composition was investigated using a multiple linear regression model. Our results showed that the largest contributors to particle extinction were ammonium nitrate (32%) and ammonium sulfate (28%) before and during HP, respectively. In addition, the contributions of SOA and primary OA to particle light extinction were quantified. The results showed that the OA extinction was mainly caused by SOA before HP and by SOA and CCOA during HP, yet with small contributions from HOA and cooking aerosol for the entire study period. Our results elucidate substantial changes of aerosol

  12. Chemical and geochemical composition of spring-summer Arctic aerosol collected at Ny Alesund, Svalbard Islands.

    Science.gov (United States)

    Udisti, Roberto; Becagli, Silvia; Caiazzo, Laura; Cappelletti, David; Giardi, Fabio; Grotti, Marco; Lucarelli, Franco; Moroni, Beatrice; Nava, Silvia; Severi, Mirko; Traversi, Rita

    2017-04-01

    Since March 2010, spring-summer (usually March - September) campaigns were continuously carried out at the Italian Gruvebadet Observatory, Ny Alesund, Svalbard Island. Aerosol was sampled by PM10 (daily) and 4-stage (4-day resolution) collector devices and size distribution was evaluated at 10 min resolution in the range 10 nm - 20 um (106 size classes by a TSI SMPS-APS integrated system). Six-year (2010-2015) PM10 and size-segregated (>10, 10-2.5, 2.5-1, metal content (major and trace metals, including Rare Earth Elements - REEs, by PIXE and ICP-MS), Pb isotopic composition (by ICP-MS) and Elemental and Organic Carbon (EC-OC) concentrations. The data set was elaborated by multi-parametric statistical analysis (Positive Matrix Factorization - PMF), in order to identifying and quantifying the contribution of the main anthropic and natural aerosol sources. Particular attention was spent in evaluating the anthropic contribution of nss-sulphate, nitrate, EC and heavy metals during the Arctic Haze in spring. The isotopic composition of Pb was used in identifying the source areas (North America, Greenland, North Europe, Siberia, Iceland) of anthropic emissions as a function of seasonality (different atmospheric circulation pathway). Crustal metals and, especially, REEs anomalies (with respect to the Chondrite-normalized profile) allowed characterizing the dust emissions from their Potential Source Areas (PSA). Biogenic markers (especially methane sulfonic acid - MSA - and bio-nss-sulphate) was used to obtain relevant information about the relationship between marine biogenic activity (primary productivity) and sea ice coverage and atmospheric conditions (irradiance, temperature, circulation pathways). The seasonal pattern of the nitrate deposition was also investigated. Chemical and geochemical measurements were compared with high-resolution size distribution and back-trajectory cluster analysis in order to understand the seasonal pattern of the contributions of long

  13. Chemical composition, sources, and aging process of submicron aerosols in Beijing: Contrast between summer and winter

    Science.gov (United States)

    Hu, Weiwei; Hu, Min; Hu, Wei; Jimenez, Jose L.; Yuan, Bin; Chen, Wentai; Wang, Ming; Wu, Yusheng; Chen, Chen; Wang, Zhibin; Peng, Jianfei; Zeng, Limin; Shao, Min

    2016-02-01

    To investigate the seasonal characteristics of submicron aerosol (PM1) in Beijing urban areas, a high-resolution time-of-flight aerosol-mass-spectrometer (HR-ToF-AMS) was utilized at an urban site in summer (August to September 2011) and winter (November to December 2010), coupled with multiple state of the art online instruments. The average mass concentrations of PM1 (60-84 µg m-3) and its chemical compositions in different campaigns of Beijing were relatively consistent in recent years. In summer, the daily variations of PM1 mass concentrations were stable and repeatable. Eighty-two percent of the PM1 mass concentration on average was composed of secondary species, where 62% is secondary inorganic aerosol and 20% secondary organic aerosol (SOA). In winter, PM1 mass concentrations changed dramatically because of the different meteorological conditions. The high average fraction (58%) of primary species in PM1 including primary organic aerosol (POA), black carbon, and chloride indicates primary emissions usually played a more important role in the winter. However, aqueous chemistry resulting in efficient secondary formation during occasional periods with high relative humidity may also contribute substantially to haze in winter. Results of past OA source apportionment studies in Beijing show 45-67% of OA in summer and 22-50% of OA in winter can be composed of SOA. Based on the source apportionment results, we found 45% POA in winter and 61% POA in summer are from nonfossil sources, contributed by cooking OA in both seasons and biomass burning OA (BBOA) in winter. Cooking OA, accounting for 13-24% of OA, is an important nonfossil carbon source in all years of Beijing and should not be neglected. The fossil sources of POA include hydrocarbon-like OA from vehicle emissions in both seasons and coal combustion OA (CCOA) in winter. The CCOA and BBOA were the two main contributors (57% of OA) for the highest OA concentrations (>100 µg m-3) in winter. The POA

  14. Optical properties of the urban aerosol and their relation to chemical composition

    International Nuclear Information System (INIS)

    Leaderer, B.P.; Stolwijk, J.A.J.

    1980-01-01

    Light extinction and resulting visibility degradation in an unsaturated precipitation-free atmosphere are determined by light absorption and scattering and are caused by a complex mix of natural components and anthropogenic pollutants. The paper reviews correlation studies relating light scattering and light extinction (visibility) to concentrations of sulfate mass, nitrate mass, the remainder of the mass, and in some cases organic aerosol mass, while accounting for variations in relative humidity. It is found that sulfate aerosol mass is the dominant chemical aerosol species affecting light scattering and extinction. The dominant effect of sulfate mass on light scattering and extinction, even when sulfates account for a relatively small fraction of the total mass, results from the fact that sulfates are secondary aerosols and are mostly found in the 0.1-1.0 micron size range

  15. Chemical composition and sources of organic aerosols over London from the ClearfLo 2012 campaigns

    Science.gov (United States)

    Finessi, Emanuela; Holmes, Rachel; Hopkins, James; Lee, James; Harrison, Roy; Hamilton, Jacqueline

    2014-05-01

    Air quality in urban areas represents a major public health issue with around one third of the European population concentrated in cities and numbers expected to increase at global scale, particularly in developing countries. Particulate matter (PM) represents a primary threat for human health as numerous studies have confirmed the association between increased levels of cardiovascular and respiratory diseases with the exposure to PM. Despite considerable efforts made in improving air quality and progressively stricter emissions regulations, the PM concentrations have not changed much over the past decades for reasons that remain unclear, and highlight that studies on PM source apportionment are required for the formulation of effective policy. We investigated the chemical composition of organic aerosol (OA) collected during two intensive field campaigns held in winter and summer 2012 in the frame of the project Clean air for London (http://www.clearflo.ac.uk/). PM samples were collected both at a city background site (North Kensington) and at a rural site 50 km southeast of London (Detling) with 8 to 24 hours sampling schedule and analysed using off-line methods. Thermal-optical analysis was used to quantify OC-EC components while a suite of soft ionization mass spectrometric techniques was deployed for detailed chemical characterization. Liquid chromatography mass Spectrometry (LC-MSn) was mostly used for the simultaneous detection and quantification of various tracers for both primary and secondary OA sources. Well-established markers for wood burning primary OA like levoglucosan and azelaic acid were quantified together with various classes of nitroaromatics including methyl-nitrocatechols that are potential tracers for wood burning secondary OA. In addition, oxidation products of biogenic VOCs such as isoprene and monoterpenes were also quantified for both seasons and sites. A non-negligible contribution from biogenic SOA to urban OA was found in summertime

  16. Chemical composition of free tropospheric aerosol for PM1 and coarse mode at the high alpine site Jungfraujoch

    Directory of Open Access Journals (Sweden)

    J. Cozic

    2008-01-01

    Full Text Available The chemical composition of submicron (fine mode and supermicron (coarse mode aerosol particles has been investigated at the Jungfraujoch high alpine research station (3580 m a.s.l., Switzerland as part of the GAW aerosol monitoring program since 1999. A clear seasonality was observed for all major components throughout the period with low concentrations in winter (predominantly free tropospheric aerosol and higher concentrations in summer (enhanced vertical transport of boundary layer pollutants. In addition, mass closure was attempted during intensive campaigns in March 2004, February–March 2005 and August 2005. Ionic, carbonaceous and non-refractory components of the aerosol were quantified as well as the PM1 and coarse mode total aerosol mass concentrations. A relatively low conversion factor of 1.8 for organic carbon (OC to particulate organic matter (OM was found in winter (February–March 2005. Organics, sulfate, ammonium, and nitrate were the major components of the fine aerosol fraction that were identified, while calcium and nitrate were the only two measured components contributing to the coarse mode. The aerosol mass concentrations for fine and coarse mode aerosol measured during the intensive campaigns were not typical of the long-term seasonality due largely to dynamical differences. Average fine and coarse mode concentrations during the intensive field campaigns were 1.7 μg m−3 and 2.4 μg m−3 in winter and 2.5 μg m−3 and 2.0 μg m−3 in summer, respectively. The mass balance of aerosols showed higher contributions of calcium and nitrate in the coarse mode during Saharan dust events (SDE than without SDE.

  17. Wintertime aerosol chemical composition, volatility, and spatial variability in the greater London area

    Directory of Open Access Journals (Sweden)

    L. Xu

    2016-02-01

    Full Text Available The composition of PM1 (particulate matter with diameter less than 1 µm in the greater London area was characterized during the Clean Air for London (ClearfLo project in winter 2012. Two high-resolution time-of-flight aerosol mass spectrometers (HR-ToF-AMS were deployed at a rural site (Detling, Kent and an urban site (North Kensington, London. The simultaneous and high-temporal resolution measurements at the two sites provide a unique opportunity to investigate the spatial distribution of PM1. We find that the organic aerosol (OA concentration is comparable between the rural and urban sites, but the contribution from different sources is distinctly different between the two sites. The concentration of solid fuel OA at the urban site is about twice as high as at the rural site, due to elevated domestic heating in the urban area. While the concentrations of oxygenated OA (OOA are well-correlated between the two sites, the OOA concentration at the rural site is almost twice that of the urban site. At the rural site, more than 70 % of the carbon in OOA is estimated to be non-fossil, which suggests that OOA is likely related to aged biomass burning considering the small amount of biogenic SOA in winter. Thus, it is possible that the biomass burning OA contributes a larger fraction of ambient OA in wintertime than what previous field studies have suggested. A suite of instruments was deployed downstream of a thermal denuder (TD to investigate the volatility of PM1 species at the rural Detling site. After heating at 250 °C in the TD, 40 % of the residual mass is OA, indicating the presence of non-volatile organics in the aerosol. Although the OA associated with refractory black carbon (rBC; measured by a soot-particle aerosol mass spectrometer only accounts for < 10 % of the total OA (measured by a HR-ToF-AMS at 250 °C, the two measurements are well-correlated, suggesting that the non-volatile organics have similar sources or have

  18. Sources of atmospheric aerosol from long-term measurements (5 years) of chemical composition in Athens, Greece.

    Science.gov (United States)

    Paraskevopoulou, D; Liakakou, E; Gerasopoulos, E; Mihalopoulos, N

    2015-09-15

    To identify the sources of aerosols in Greater Athens Area (GAA), a total of 1510 daily samples of fine (PM 2.5) and coarse (PM 10-2,5) aerosols were collected at a suburban site (Penteli), during a five year period (May 2008-April 2013) corresponding to the period before and during the financial crisis. In addition, aerosol sampling was also conducted in parallel at an urban site (Thissio), during specific, short-term campaigns during all seasons. In all these samples mass and chemical composition measurements were performed, the latest only at the fine fraction. Particulate organic matter (POM) and ionic masses (IM) are the main contributors of aerosol mass, equally contributing by accounting for about 24% of the fine aerosol mass. In the IM, nss-SO4(-2) is the prevailing specie followed by NO3(-) and NH4(+) and shows a decreasing trend during the 2008-2013 period similar to that observed for PM masses. The contribution of water in fine aerosol is equally significant (21 ± 2%), while during dust transport, the contribution of dust increases from 7 ± 2% to 31 ± 9%. Source apportionment (PCA and PMF) and mass closure exercises identified the presence of six sources of fine aerosols: secondary photochemistry, primary combustion, soil, biomass burning, sea salt and traffic. Finally, from winter 2012 to winter 2013 the contribution of POM to the urban aerosol mass is increased by almost 30%, reflecting the impact of wood combustion (dominant fuel for domestic heating) to air quality in Athens, which massively started in winter 2013. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Chemical and isotopic composition of secondary organic aerosol generated by α-pinene ozonolysis

    DEFF Research Database (Denmark)

    Meusinger, Carl; Dusek, Ulrike; King, Stephanie M.

    2017-01-01

    -NOx conditions, with OH scavengers and in the absence of seed particles. The excess of ozone and long residence time in the flow chamber ensured that virtually all α-pinene had reacted. Product SOA was collected on two sequential quartz filters. The filters were analysed offline by heating them stepwise from 100...... it is difficult to apply because neither the isotopic composition of aerosol precursors nor the fractionation of aerosol forming processes is well characterised. In this paper, SOA formation from ozonolysis of α-pinene - an important precursor and perhaps the best-known model system used in laboratory studies...... - was investigated using position-dependent and average determinations of 13C in α-pinene and advanced analysis of reaction products using thermal-desorption proton-transfer-reaction mass spectrometry (PTR-MS). The total carbon (TC) isotopic composition δ13C of the initial α-pinene was measured, and the δ13C...

  20. Evolution of biomass burning aerosol over the Amazon: airborne measurements of aerosol chemical composition, microphysical properties, mixing state and optical properties during SAMBBA

    Science.gov (United States)

    Morgan, W.; Allan, J. D.; Flynn, M.; Darbyshire, E.; Hodgson, A.; Liu, D.; O'Shea, S.; Bauguitte, S.; Szpek, K.; Johnson, B.; Haywood, J.; Longo, K.; Artaxo, P.; Coe, H.

    2013-12-01

    Biomass burning represents one of the largest sources of particulate matter to the atmosphere, resulting in a significant perturbation to the Earth's radiative balance coupled with serious impacts on public health. On regional scales, the impacts are substantial, particularly in areas such as the Amazon Basin where large, intense and frequent burning occurs on an annual basis for several months. Absorption by atmospheric aerosols is underestimated by models over South America, which points to significant uncertainties relating to Black Carbon (BC) aerosol properties. Initial results from the South American Biomass Burning Analysis (SAMBBA) field experiment, which took place during September and October 2012 over Brazil on-board the UK Facility for Airborne Atmospheric Measurement (FAAM) BAe-146 research aircraft, are presented here. Aerosol chemical composition was measured by an Aerodyne Aerosol Mass Spectrometer (AMS) and a DMT Single Particle Soot Photometer (SP2). The physical, chemical and optical properties of the aerosols across the region will be characterized in order to establish the impact of biomass burning on regional air quality, weather and climate. The aircraft sampled a range of conditions including sampling of pristine Rainforest, fresh biomass burning plumes, regional haze and elevated biomass burning layers within the free troposphere. The aircraft sampled biomass burning aerosol across the southern Amazon in the states of Rondonia and Mato Grosso, as well as in a Cerrado (Savannah-like) region in Tocantins state. This presented a range of fire conditions, in terms of their number, intensity, vegetation-type and their combustion efficiencies. Near-source sampling of fires in Rainforest environments suggested that smouldering combustion dominated, while flaming combustion dominated in the Cerrado. This led to significant differences in aerosol chemical composition, particularly in terms of the BC content, with BC being enhanced in the Cerrado

  1. Sea spray aerosol chemical composition: elemental and molecular mimics for laboratory studies of heterogeneous and multiphase reactions.

    Science.gov (United States)

    Bertram, Timothy H; Cochran, Richard E; Grassian, Vicki H; Stone, Elizabeth A

    2018-04-03

    Sea spray aerosol particles (SSA), formed through wave breaking at the ocean surface, contribute to natural aerosol particle concentrations in remote regions of Earth's atmosphere, and alter the direct and indirect effects of aerosol particles on Earth's radiation budget. In addition, sea spray aerosol serves as suspended surface area that can catalyze trace gas reactions. It has been shown repeatedly that sea spray aerosol is heavily enriched in organic material compared to the surface ocean. The selective enrichment of organic material complicates the selection of representative molecular mimics of SSA for laboratory or computational studies. In this review, we first provide a short introduction to SSA formation processes and discuss chemical transformations of SSA that occur in polluted coastal regions and remote pristine air. We then focus on existing literature of the chemical composition of nascent SSA generated in controlled laboratory experiments and field investigations. We combine the evidence on the chemical properties of nascent SSA with literature measurements of SSA water uptake to assess SSA molecular composition and liquid water content. Efforts to speciate SSA organic material into molecular classes and specific molecules have led to the identification of saccharides, alkanes, free fatty acids, anionic surfactants, dicarboxylic acids, amino acids, proteinaceous matter, and other large macromolecules. However to date, less than 25% of the organic mass of nascent SSA has been quantified at a molecular level. As discussed here, quantitative measurements of size resolved elemental ratios, combined with determinations of water uptake properties, provides unique insight on the concentration of ions within SSA as a function of particle size, pointing to a controlling role for relative humidity and the hygroscopicity of SSA organic material at small particle diameters.

  2. PM2.5 Chemical Compositions and Aerosol Optical Properties in Beijing during the Late Fall

    Directory of Open Access Journals (Sweden)

    Huanbo Wang

    2015-01-01

    Full Text Available Daily PM2.5 mass concentrations and chemical compositions together with the aerosol optical properties were measured from 8–28 November 2011 in Beijing. PM2.5 mass concentration varied from 15.6–237.5 μg∙m−3 and showed a mean value of 111.2 ± 73.4 μg∙m−3. Organic matter, NH4NO3 and (NH42SO4 were the major constituents of PM2.5, accounting for 39.4%, 15.4%, and 14.9% of the total mass, respectively, while fine soil, chloride salt, and elemental carbon together accounted for 27.7%. Daily scattering and absorption coefficients (σsc and σap were in the range of 31.1–667 Mm−1 and 8.24–158.0 Mm−1, with mean values of 270 ± 200 Mm−1 and 74.3 ± 43.4 Mm−1. Significant increases in σsc and σap were observed during the pollution accumulation episodes. The revised IMPROVE algorithm was applied to estimate the extinction coefficient (bext. On average, organic matter was the largest contributor, accounting for 44.6% of bext, while (NH42SO4, NH4NO3, elemental carbon, and fine soil accounted for 16.3% 18.0%, 18.6%, and 2.34% of bext, respectively. Nevertheless, the contributions of (NH42SO4 and NH4NO3 were significantly higher during the heavy pollution periods than those on clean days. Typical pollution episodes were also explored, and it has been characterized that secondary formation of inorganic compounds is more important than carbonaceous pollution for visibility impairment in Beijing.

  3. Proof of the chemical composition of environmental aerosols with aid of spectroscopic methods and neutron activation

    International Nuclear Information System (INIS)

    Rettenmoser, T.

    1999-01-01

    Comparing the results obtained at the three sites, the following conclusions can be drawn: The total mass concentration is significantly enhanced in the city of Salzburg. Moreover, it is higher in the rural area than in the small town; this is caused by the existence of relatively large biogenic aerosols in ambient air. However, the mass concentration distribution is greater in the small town than in the countryside, because the above mentioned aerosols of biological origin may be too big to be registered by the used instruments. Here the biggest values were again found in the city. The total activity concentration is approximately the same in the city and the small town (provided that climatic conditions were similar). Unfortunately, no corresponding measurements were made in the rural area. The activity concentration distributions are again comparable in the city and the small town. In the rural area, on the other hand, the measured values are slightly higher due to geological reasons. Finally the particle concentration distributions are similar in the small town and the rural area, while the corresponding value is slightly higher in the city. It should be noted, however, that the measuring device used in this study is slightly inaccurate in the range of the small size fractions (which are of particular importance for anthropogenic aerosols). Because of the difficulties described in the measurement section, no comparison of the elemental composition of the ambient aerosols could be made. (author)

  4. Chemical composition, sources and secondary processes of aerosols in Baoji city of northwest China

    Science.gov (United States)

    Wang, Y. C.; Huang, R.-J.; Ni, H. Y.; Chen, Y.; Wang, Q. Y.; Li, G. H.; Tie, X. X.; Shen, Z. X.; Huang, Y.; Liu, S. X.; Dong, W. M.; Xue, P.; Fröhlich, R.; Canonaco, F.; Elser, M.; Daellenbach, K. R.; Bozzetti, C.; El Haddad, I.; Prévôt, A. S. H.; Canagaratna, M. R.; Worsnop, D. R.; Cao, J. J.

    2017-06-01

    Particulate air pollution is a severe environmental problem in China, affecting visibility, air quality, climate and human health. However, previous studies focus mainly on large cities such as Beijing, Shanghai, and Guangzhou. In this study, an Aerodyne Aerosol Chemical Speciation Monitor was deployed in Baoji, a middle size inland city in northwest China from 26 February to 27 March 2014. The non-refractory submicron aerosol (NR-PM1) was dominated by organics (55%), followed by sulfate (16%), nitrate (15%), ammonium (11%) and chloride (3%). A source apportionment of the organic aerosol (OA) was performed with the Sofi (Source Finder) interface of ME-2 (Multilinear Engine), and six main sources/factors were identified and classified as hydrocarbon-like OA (HOA), cooking OA (COA), biomass burning OA (BBOA), coal combustion OA (CCOA), less oxidized oxygenated OA (LO-OOA) and more oxidized oxygenated OA (MO-OOA), which contributed 20%, 14%, 13%, 9%, 23% and 21% of total OA, respectively. The contribution of secondary components shows increasing trends from clean days to polluted days, indicating the importance of secondary aerosol formation processes in driving particulate air pollution. The formation of LO-OOA and MO-OOA is mainly driven by photochemical reactions, but significantly influenced by aqueous-phase chemistry during periods of low atmospheric oxidative capacity.

  5. Variability of Aerosols and Chemical Composition of PM10, PM2.5 and PM1 on a Platform of the Prague Underground Metro

    Czech Academy of Sciences Publication Activity Database

    Cusack, Michael; Talbot, Nicholas; Ondráček, Jakub; Minguillón, M.C.; Martins, V.; Klouda, K.; Schwarz, Jaroslav; Ždímal, Vladimír

    2015-01-01

    Roč. 118, OCT 2015 (2015), s. 176-183 ISSN 1352-2310 EU Projects: European Commission(XE) 315760 Institutional support: RVO:67985858 Keywords : subway aerosol * chemical composition * aerosol dynamics Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.459, year: 2015

  6. Long-term measurement of aerosol chemical composition in Athens, Greece.

    Science.gov (United States)

    Paraskevopoulou, Despina; Liakakou, Eleni; Theodosi, Christina; Gerasopoulos, Evangelos; Mihalopoulos, Nikolaos

    2014-05-01

    The collection of our samples was conducted for a period of five years (2008 - 2013) in Athens, Greece. The site is situated at the premises of the National Observatory of Athens on Penteli Hill, northeast Athens suburbs, and is considered an urban background station. The aim of our study was a first long-term estimation of the chemical mass closure of aerosol. For the purposes of the study, we applied three filter samplers during the sampling period: two Partisol FRM Model 2000 air samplers (one of them collecting PM10 and the other PM2.5 fractions of aerosol) and one Dichotomous Partisol auto-sampler (with PM2.5 and PM2.5-10 inlet). Aerosols were collected on Whatman QM-A quartz fiber filters and the mass of the collected samples was estimated by weighing the pre-combusted filters before and after sampling, under controlled conditions, using a microbalance. All quartz filters were analysed for organic (OC) and elemental carbon (EC) by a thermal - optical transmission technique. The concentration of water soluble organic carbon (WSOC) was defined for each filter using a total organic carbon analyzer, while the content in main water soluble ions (Cl-, Br-, NO-3, SO4-2, PO4-3, C2O4-2, NH4+, K+, Na+, Mg+2, Ca+2) was determined by ion chromatography. Additionally the filters were analyzed for trace metals by inductively coupled plasma optical emission spectrometry (ICP-OES). Aerosol chemical mass closure calculations were conducted for the PM2.5 fraction. The area of Athens is characterized by aged aerosol that can originate from the marine boundary layer, the European mainland and occasionally from North African desert areas. The contribution of dust and particulate organic matter on PM levels was estimated taking into consideration the location of the sampling site, while identification and evaluation of sources was performed. Additionally, non-sea salt concentrations of the main ions were estimated to complete the chemical closure in the extended area. According to

  7. Chemical composition, sources and evolution processes of aerosol at an urban site in Yangtze River Delta, China during wintertime

    Science.gov (United States)

    Zhang, Yunjiang; Tang, Lili; Yu, Hongxia; Wang, Zhuang; Sun, Yele; Qin, Wei; Chen, Wentai; Chen, Changhong; Ding, Aijun; Wu, Jing; Ge, Shun; Chen, Cheng; Zhou, Hong-cang

    2015-12-01

    To investigate the composition, sources and evolution processes of submicron aerosol during wintertime, a field experiment was conducted during December 1-31, 2013 in urban Nanjing, a megacity in Yangtze River Delta of China. Non-refractory submicron aerosol (NR-PM1) species were measured with an Aerodyne Aerosol Chemical Speciation Monitor. NR-PM1 is dominated by secondary inorganic aerosol (55%) and organic aerosol (OA, 42%) during haze periods. Six OA components were identified by positive matrix factorization of the OA mass spectra. The hydrocarbon-like OA and cooking-related OA represent the local traffic and cooking sources, respectively. A highly oxidized factor related to biomass burning OA accounted for 15% of the total OA mass during haze periods. Three types of oxygenated OA (OOA), i.e., a less-oxidized OOA (LO-OOA), a more-oxidized OOA (MO-OOA), and a low-volatility OOA (LV-OOA), were identified. LO-OOA is likely associated with fresh urban secondary OA. MO-OOA likely represents photochemical products showing a similar diurnal cycle to nitrate with a pronounced noon peak. LV-OOA appears to be a more oxidized factor with a pronounced noon peak. The OA composition is dominated by secondary species, especially during haze events. LO-OOA, MO-OOA and LV-OOA on average account for 11%, (18%), 24% (21%) and 23% (18%) of the total OA mass for the haze (clean) periods respectively. Analysis of meteorological influence suggested that regional transport from the northern and southeastern areas of the city is responsible for large secondary and low-volatility aerosol formation.

  8. Global and Regional Impacts of HONO on the Chemical Composition of Clouds and Aerosols

    Science.gov (United States)

    Elshorbany, Y. F.; Crutzen, P. J.; Steil, B.; Pozzer, A.; Tost, H.; Lelieveld, J.

    2014-01-01

    Recently, realistic simulation of nitrous acid (HONO) based on the HONO / NOx ratio of 0.02 was found to have a significant impact on the global budgets of HOx (OH + HO2) and gas phase oxidation products in polluted regions, especially in winter when other photolytic sources are of minor importance. It has been reported that chemistry-transport models underestimate sulphate concentrations, mostly during winter. Here we show that simulating realistic HONO levels can significantly enhance aerosol sulphate (S(VI)) due to the increased formation of H2SO4. Even though in-cloud aqueous phase oxidation of dissolved SO2 (S(IV)) is the main source of S(VI), it appears that HONO related enhancement of H2O2 does not significantly affect sulphate because of the predominantly S(IV) limited conditions, except over eastern Asia. Nitrate is also increased via enhanced gaseous HNO3 formation and N2O5 hydrolysis on aerosol particles. Ammonium nitrate is enhanced in ammonia-rich regions but not under ammonia-limited conditions. Furthermore, particle number concentrations are also higher, accompanied by the transfer from hydrophobic to hydrophilic aerosol modes. This implies a significant impact on the particle lifetime and cloud nucleating properties. The HONO induced enhancements of all species studied are relatively strong in winter though negligible in summer. Simulating realistic HONO levels is found to improve the model measurement agreement of sulphate aerosols, most apparent over the US. Our results underscore the importance of HONO for the atmospheric oxidizing capacity and corroborate the central role of cloud chemical processing in S(IV) formation

  9. Nanoparticulate cerium dioxide and cerium dioxide-titanium dioxide composite thin films on glass by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Qureshi, Uzma; Dunnill, Charles W.; Parkin, Ivan P.

    2009-01-01

    Two series of composite thin films were deposited on glass by aerosol assisted chemical vapour deposition (AACVD)-nanoparticulate cerium dioxide and nanoparticulate cerium dioxide embedded in a titanium dioxide matrix. The films were analysed by a range of techniques including UV-visible absorption spectroscopy, X-ray diffraction, scanning electron microscopy and energy dispersive analysis by X-rays. The AACVD prepared films showed the functional properties of photocatalysis and super-hydrophilicity. The CeO 2 nanoparticle thin films displaying photocatalysis and photo-induced hydrophilicity almost comparable to that of anatase titania.

  10. A review of current knowledge concerning PM2. 5 chemical composition, aerosol optical properties and their relationships across China

    Science.gov (United States)

    Tao, Jun; Zhang, Leiming; Cao, Junji; Zhang, Renjian

    2017-08-01

    To obtain a thorough knowledge of PM2. 5 chemical composition and its impact on aerosol optical properties across China, existing field studies conducted after the year 2000 are reviewed and summarized in terms of geographical, interannual and seasonal distributions. Annual PM2. 5 was up to 6 times the National Ambient Air Quality Standards (NAAQS) in some megacities in northern China. Annual PM2. 5 was higher in northern than southern cities, and higher in inland than coastal cities. In a few cities with data longer than a decade, PM2. 5 showed a slight decrease only in the second half of the past decade, while carbonaceous aerosols decreased, sulfate (SO42-) and ammonium (NH4+) remained at high levels, and nitrate (NO3-) increased. The highest seasonal averages of PM2. 5 and its major chemical components were typically observed in the cold seasons. Annual average contributions of secondary inorganic aerosols to PM2. 5 ranged from 25 to 48 %, and those of carbonaceous aerosols ranged from 23 to 47 %, both with higher contributions in southern regions due to the frequent dust events in northern China. Source apportionment analysis identified secondary inorganic aerosols, coal combustion and traffic emission as the top three source factors contributing to PM2. 5 mass in most Chinese cities, and the sum of these three source factors explained 44 to 82 % of PM2. 5 mass on annual average across China. Biomass emission in most cities, industrial emission in industrial cities, dust emission in northern cities and ship emission in coastal cities are other major source factors, each of which contributed 7-27 % to PM2. 5 mass in applicable cities. The geographical pattern of scattering coefficient (bsp) was similar to that of PM2. 5, and that of aerosol absorption coefficient (bap) was determined by elemental carbon (EC) mass concentration and its coating. bsp in ambient condition of relative humidity (RH) = 80 % can be amplified by about 1.8 times that under dry conditions

  11. Using different assumptions of aerosol mixing state and chemical composition to predict CCN concentrations based on field measurements in urban Beijing

    Science.gov (United States)

    Ren, Jingye; Zhang, Fang; Wang, Yuying; Collins, Don; Fan, Xinxin; Jin, Xiaoai; Xu, Weiqi; Sun, Yele; Cribb, Maureen; Li, Zhanqing

    2018-05-01

    Understanding the impacts of aerosol chemical composition and mixing state on cloud condensation nuclei (CCN) activity in polluted areas is crucial for accurately predicting CCN number concentrations (NCCN). In this study, we predict NCCN under five assumed schemes of aerosol chemical composition and mixing state based on field measurements in Beijing during the winter of 2016. Our results show that the best closure is achieved with the assumption of size dependent chemical composition for which sulfate, nitrate, secondary organic aerosols, and aged black carbon are internally mixed with each other but externally mixed with primary organic aerosol and fresh black carbon (external-internal size-resolved, abbreviated as EI-SR scheme). The resulting ratios of predicted-to-measured NCCN (RCCN_p/m) were 0.90 - 0.98 under both clean and polluted conditions. Assumption of an internal mixture and bulk chemical composition (INT-BK scheme) shows good closure with RCCN_p/m of 1.0 -1.16 under clean conditions, implying that it is adequate for CCN prediction in continental clean regions. On polluted days, assuming the aerosol is internally mixed and has a chemical composition that is size dependent (INT-SR scheme) achieves better closure than the INT-BK scheme due to the heterogeneity and variation in particle composition at different sizes. The improved closure achieved using the EI-SR and INT-SR assumptions highlight the importance of measuring size-resolved chemical composition for CCN predictions in polluted regions. NCCN is significantly underestimated (with RCCN_p/m of 0.66 - 0.75) when using the schemes of external mixtures with bulk (EXT-BK scheme) or size-resolved composition (EXT-SR scheme), implying that primary particles experience rapid aging and physical mixing processes in urban Beijing. However, our results show that the aerosol mixing state plays a minor role in CCN prediction when the κorg exceeds 0.1.

  12. Size-segregated aerosol in a hot-spot pollution urban area: Chemical composition and three-way source apportionment.

    Science.gov (United States)

    Bernardoni, V; Elser, M; Valli, G; Valentini, S; Bigi, A; Fermo, P; Piazzalunga, A; Vecchi, R

    2017-12-01

    In this work, a comprehensive characterisation and source apportionment of size-segregated aerosol collected using a multistage cascade impactor was performed. The samples were collected during wintertime in Milan (Italy), which is located in the Po Valley, one of the main pollution hot-spot areas in Europe. For every sampling, size-segregated mass concentration, elemental and ionic composition, and levoglucosan concentration were determined. Size-segregated data were inverted using the program MICRON to identify and quantify modal contributions of all the measured components. The detailed chemical characterisation allowed the application of a three-way (3-D) receptor model (implemented using Multilinear Engine) for size-segregated source apportionment and chemical profiles identification. It is noteworthy that - as far as we know - this is the first time that three-way source apportionment is attempted using data of aerosol collected by traditional cascade impactors. Seven factors were identified: wood burning, industry, resuspended dust, regional aerosol, construction works, traffic 1, and traffic 2. Further insights into size-segregated factor profiles suggested that the traffic 1 factor can be associated to diesel vehicles and traffic 2 to gasoline vehicles. The regional aerosol factor resulted to be the main contributor (nearly 50%) to the droplet mode (accumulation sub-mode with modal diameter in the range 0.5-1 μm), whereas the overall contribution from the two factors related to traffic was the most important one in the other size modes (34-41%). The results showed that applying a 3-D receptor model to size-segregated samples allows identifying factors of local and regional origin while receptor modelling on integrated PM fractions usually singles out factors characterised by primary (e.g. industry, traffic, soil dust) and secondary (e.g. ammonium sulphate and nitrate) origin. Furthermore, the results suggested that the information on size

  13. Influence of mineral dust transport on the chemical composition and physical properties of the Eastern Mediterranean aerosol

    Science.gov (United States)

    Koçak, M.; Theodosi, C.; Zarmpas, P.; Séguret, M. J. M.; Herut, B.; Kallos, G.; Mihalopoulos, N.; Kubilay, N.; Nimmo, M.

    2012-09-01

    Bulk aerosol samples were collected from three different coastal rural sites located around the Eastern Mediterranean, (i) Erdemli (ER), Turkey, (ii) Heraklion (HR), Crete, Greece, and (iii) Tel Shikmona (TS), Israel, during two distinct mineral dust periods (October, 2007 and April, 2008) in order to explore the temporal and geographical variability in the aerosol chemical composition. Samples were analyzed for trace elements (Al, Fe, Mn, Ca, Cr, Zn, Cu, V, Ni, Cd, Pb) and water-soluble ions (Cl-, NO3-, SO42-, C2O42-, Na+, NH4+, K+, Mg2+ and Ca2+). The dust events were categorized on the basis of Al concentrations >1000 ng m-3, SKIRON dust forecast model and 3-day back trajectories into three groups namely, Middle East, Mixed and Saharan desert. ER and TS were substantially affected by dust events originating from the Middle East, particularly in October, whilst HR was not influenced by dust transport from the Middle East. Higher AOT values were particularly associated with higher Al concentrations. Contrary to the highest Al concentration: 6300 ng m-3, TS showed relatively lower AI and AOT. Al concentrations at ER were similar for October and April, whilst OMI-AI and AOT values were ˜2 times higher in April. This might be attributed to the weak sensitivity of the TOMS instrument to absorbing aerosols near the ground and optical difference between Middle East and Saharan desert dusts. The lowest enhancement of anthropogenic aerosol species was observed at HR during dust events (nssSO42-/nssCa2+ ˜ 0.13). These species were particularly enhanced when mineral dust arrived at sites after passing through populated and industrialized urban areas.

  14. Chemical composition of size-segregated aerosols in Lhasa city, Tibetan Plateau

    Science.gov (United States)

    Wan, Xin; Kang, Shichang; Xin, Jinyuan; Liu, Bin; Wen, Tianxue; Wang, Pengling; Wang, Yuesi; Cong, Zhiyuan

    2016-06-01

    To reveal the chemical characteristics of size-segregated aerosols in the high-altitude city of Tibetan Plateau, eight-size aerosol samples were collected in Lhasa from March 2013 to February 2014. The annual mean of online PM2.5 was 25.0 ± 16.0 μg m- 3, which was much lower than Asian cities but similar with some European cities. The annual mean concentrations of organic carbon (OC, 7.92 μg m- 3 in PM2.1 and 12.66 μg m- 3 in PM9.0) and elemental carbon (EC, 1.00 μg m- 3 in PM2.1 and 1.21 μg m- 3 in PM9.0) in Lhasa aerosols were considerably lower than those heavily polluted cities such as Beijing and Xi'an, China and Kathmandu, Nepal. Sulfate, NO3-, NH4+ and Ca2 + were 0.75 ± 0.31, 0.82 ± 0.35, 0.38 ± 0.34 and 0.57 ± 0.29 μg m- 3 in fine particles while in coarse particles they were 0.57 ± 0.37, 0.73 ± 0.23, 0.07 ± 0.03 and 2.52 ± 1.37 μg m- 3, respectively. Secondary water-soluble ions composed 35.8% of the total ionic components in fine particles according to the established electroneutrality, while in coarse particles they took up only 9.3%. Ca2 + (40.6%) was the major component of the coarse particles. For seasonality, the concentrations of OC, EC, SO42 -, NH4+, K+, Ca2 +, Mg2 +, Cl- and Na+ presented higher values during late autumn and winter but were relatively lower in spring and summer. Nevertheless, NO3- was considerably higher in summer and autumn, presumably due to increased tourist-vehicle emissions. During winter and spring, [Ca2 +]/[NO3-+ SO42 -] ratios in coarse particles showed higher values of 7.31 and 6.17, respectively, emphasizing the dust influence. [NO3-]/[SO42 -] ratios in fine particles during spring, summer and autumn exceeding 1 indicated that the currently predominant vehicle exhaust makes a greater contribution to the aerosols. While more stationary sources such as coal and biomass burning existed in winter since the [NO3-]/[SO42 -] ratio was less than 1. Different sources and formation processes lead to a bimodal size

  15. Chemical and isotopic composition of secondary organic aerosol generated by alpha-pinene ozonolysis

    NARCIS (Netherlands)

    Meusinger, Carl; Dusek, Ulrike; King, Stephanie M.; Holzinger, Rupert; Rosenorn, Thomas; Sperlich, Peter; Julien, Maxime; Remaud, Gerald S.; Bilde, Merete; Rockmann, Thomas; Johnson, Matthew S.

    2017-01-01

    Secondary organic aerosol (SOA) plays a central role in air pollution and climate. However, the description of the sources and mechanisms leading to SOA is elusive despite decades of research. While stable isotope analysis is increasingly used to constrain sources of ambient aerosol, in many cases

  16. Levels, chemical composition and sources of fine aerosol particles (PM1) in an area of the Mediterranean basin

    International Nuclear Information System (INIS)

    Caggiano, Rosa; Macchiato, Maria; Trippetta, Serena

    2010-01-01

    Daily samples of fine aerosol particles (i.e., PM1, aerosol particles with an aerodynamic diameter less than 1.0 μm) were collected in Tito Scalo - Southern Italy - from April 2006 to March 2007. Measurements were performed by means of a low-volume gravimetric sampler, and each PM1 sample was analyzed by means of Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Atomic Absorption Spectrometry (GFAAS and FAAS) techniques in order to determine its content in fourteen trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Ti and Zn). During the period examined, PM1 daily concentrations ranged between 0.3 μg m -3 and 55 μg m -3 with a mean value of 8 μg m -3 , a standard deviation of 7 μg m -3 and a median value of 6 μg m -3 . As far as PM1 chemical composition is concerned, the mean values of the trace element concentrations decreased in the following order: Ca > Fe > Al > Na > K > Cr > Mg > Pb > Ni ∼ Ti ∼ Zn > Cd ∼ Cu > Mn. Principal Component Analysis (PCA) allowed the identification of three probable PM1 sources: industrial emissions, traffic and re-suspension of soil dust. Moreover, the results of a procedure applied to study the potential long-range transport contribution to PM1 chemical composition, showed that trace element concentrations do not seem to be affected by air mass origin and path. This was probably due to the strong impact of the local emission sources and the lack of the concentration measurements of some important elements and compounds that could better reveal the long-range transport influence on PM1 measurements at ground level.

  17. Levels, chemical composition and sources of fine aerosol particles (PM1) in an area of the Mediterranean basin.

    Science.gov (United States)

    Caggiano, Rosa; Macchiato, Maria; Trippetta, Serena

    2010-01-15

    Daily samples of fine aerosol particles (i.e., PM1, aerosol particles with an aerodynamic diameter less than 1.0mum) were collected in Tito Scalo - Southern Italy - from April 2006 to March 2007. Measurements were performed by means of a low-volume gravimetric sampler, and each PM1 sample was analyzed by means of Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) or Atomic Absorption Spectrometry (GFAAS and FAAS) techniques in order to determine its content in fourteen trace elements (Al, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, Pb, Ti and Zn). During the period examined, PM1 daily concentrations ranged between 0.3microgm(-3) and 55microgm(-3) with a mean value of 8 microg m(-3), a standard deviation of 7microgm(-3) and a median value of 6microgm(-3). As far as PM1 chemical composition is concerned, the mean values of the trace element concentrations decreased in the following order: Ca>Fe>Al>Na>K>Cr>Mg>Pb>Ni approximately Ti approximately Zn>Cd approximately Cu>Mn. Principal Component Analysis (PCA) allowed the identification of three probable PM1 sources: industrial emissions, traffic and re-suspension of soil dust. Moreover, the results of a procedure applied to study the potential long-range transport contribution to PM1 chemical composition, showed that trace element concentrations do not seem to be affected by air mass origin and path. This was probably due to the strong impact of the local emission sources and the lack of the concentration measurements of some important elements and compounds that could better reveal the long-range transport influence on PM1 measurements at ground level. Copyright 2009 Elsevier B.V. All rights reserved.

  18. Near Real-Time, Microchip Assay of Aerosol Chemical Composition, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — A compact, autonomous and rugged instrument to measure the concentration of inorganic ions, and possibly organic acids, in atmospheric aerosols is proposed. This...

  19. Chemical composition of individual aerosol particles from working areas in a nickel refinery.

    Science.gov (United States)

    Höflich, B L; Wentzel, M; Ortner, H M; Weinbruch, S; Skogstad, A; Hetland, S; Thomassen, Y; Chaschin, V P; Nieboer, E

    2000-06-01

    Individual aerosol particles (n = 1170) collected at work stations in a nickel refinery were analyzed by wavelength-dispersive electron-probe microanalysis. By placing arbitrary restrictions on the contents of sulfur and silicon, the particles could be divided into four main groups. Scanning electron images indicated that most of the particles examined were relatively small (refinery intermediates. The implications of the findings for aerosol speciation measurements, toxicological studies and interpretation of adverse health effects are explored.

  20. Chemical compositions, sources and evolution processes of the submicron aerosols in Nanjing, China during wintertime

    Science.gov (United States)

    Wu, Y.; He, Y.; Ge, X.; Wang, J.; Yu, H.; Chen, M.

    2016-12-01

    Elevated atmospheric particulate matter pollution is one of the most significant environmental issues in the Yangtze River Delta (YRD), China. Thus it is important to unravel the characteristics, sources and evolution processes of the ambient aerosols in order to improve the air quality. In this study, we report the real-time monitoring results on submicron aerosol particles (PM1) in suburban Nanjing during wintertime of 2015, using an Aerodyne soot particle aerosol mass spectrometer (SP-AMS). This instrument allows the fast measurement of refractory black carbon simultaneously with other aerosol components. Results show that organics was on average the most abundant species of PM1 (25.9%), but other inorganic species, such as nitrate (23.7%) and sulfate (23.3%) also comprised large mass fractions. As the sampling site is heavily influenced by various sources including industrial, traffic and other anthropogenic emissions, etc., six organic aerosol (OA) factors were identified from Positive matrix factorization (PMF) analysis of the SP-AMS OA mass spectra. These factors include three primary OA factors - a hydrocarbon-like OA, an industry-related OA (IOA) and a cooking OA (COA), and three secondary OA factors, i.e., a local OOA (LSOA), a semi-volatile OOA (SV-OOA) and a low-volatility OOA (LV-OOA). Overall, the primary organic aerosol (POA) (HOA, IOA and COA) dominated the total OA mass. Behaviors and evolution processes of these OA factors will be discussed in combining with the other supporting data.

  1. Investigations on the chemical composition of the organic fraction of tropospheric aerosols. Final report; Untersuchungen zur chemischen Zusammensetzung der organischen Komponente des troposphaerischen Aerosols. AFS-Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, T.; Warscheid, B.

    2000-07-01

    Although the knowledge about the significance of airborne particulate matter for the radiation balance of the atmosphere has increased during the last few years, several important aerosol formation mechanisms are still poorly understood. This is especially true for aerosols which are formed from volatile organic precursors from natural or anthropogenic sources (secondary organic aerosols). Therefore, the research project aimed on the development of a mass spectrometric real-time technique for the qualitative and quantitative investigations of the chemical composition of secondary organic aerosols, especially from the ozonolysis of monoterpenes (e.g. {alpha}-pinene, {beta}-pinene, sabinene, {delta}{sup 3}-carene, limonene). Using a modified atmospheric pressure chemical ionisation source (APCI), the formation of gas and particle phase products could be observed with a time resolution of about 1 second. The detection limit of the developed technique is about 100 ppt(v/v) in the positive ion mode. Based on the development of standard addition techniques, selected products were quantified in the gas and particle phase. Using isotopically labelled water also certain underlying reaction mechanisms were investigated. Another part of the project focused on the identification of low volatile reaction products by MS/MS-studies. These studies showed that the particle phase is mainly composed of several multifunctional carboxylic acids (dicarboxylic acids, oxo-carboxylic acids, hydroxy-carboxylic acids etc.). Finally, the APCI-studies gave robust evidences on the presence of strong intermolecular interactions between the different products. Since the experiments also showed a correlation between the intensity of product interactions (adduct formation) by hydrogen-bonding and new particle formation potential, the results of the project can be considered to provide an important contribution for an better understanding of nucleation events above forested areas. (orig.) [German

  2. Observations of Chemical Composition in Frost Flower Growth Process and Their Implication in Aerosol Production and Bromine Activation Chemistry

    Science.gov (United States)

    Alvarez-Aviles, L.; Simpson, W. R.; Douglas, T. A.; Sturm, M.; Perovich, D. K.

    2006-12-01

    Frost flowers are believed to be responsible for most of the salt aerosol and possibly the bromine in the gas phase during springtime in Polar Regions. Frost flowers are vapor deposited ice crystals that form on new forming sea ice and wick brine from the sea-ice surface resulting in high salinities. We propose a conceptual model of frost flower growth and chemical fractionation using chemical analysis to support this model. We also consider how the chemical composition of frost flowers can tell us about the role of frost flowers in bromine activation and aerosol production. Our conceptual model is centered in two important events that occur when sea ice grows and the ice surface temperature gets colder. Brine on the sea-ice surface is drawn up the frost flower by capillary forces, therefore the high salinity values found. Secondarily salt hydrates begin to precipitate at certain temperatures. These precipitation reactions modify the chemical composition of the frost flowers and residual brine, and are the main topic of this research. We found variability and generally depletion of sulfate as compared to sea-water composition in most of the mature frost flowers. This result is in agreement with the literature, which proposes the depletion in sulfate occurs because mirabilite (Na2SO4 · 10H2O) precipitates before the brine is wicked. The observation of some slightly sulfate-enhanced samples in addition to depleted samples indicates that the brine/frost flower environment is the location where mirabilite precipitation and separation from residual brine occurs. Frost flowers bromide enhancement factors are all, within analytical limits, identical to sea water, although nearby snow is depleted in bromide. Because of the high salt concentrations in frost flowers, significant bromine activation could occur from frost flowers without being detected by this measurement. However, if all bromide activation occurred on frost flowers, and frost flowers are not depleted in

  3. Investigation of short and long term trends in chemical composition of Eastern Mediterranean aerosols

    International Nuclear Information System (INIS)

    2011-01-01

    A collaborative study was started with the Middle East Technical University, Environmental Engineering Department in 2004 in order to determine the transport of air pollutants and their deposition rates to Eastern Mediterranean with the ultimate aim of filling the gaps in knowledge on the current status of Eastern Mediterranean air quality profile. Collection sufficient amount of representative samples, analyzes of the collected samples with high accuracy and precision and interpretation of generated data are crucial efforts. To attain this goal, EDXRF spectrometer, which is a rapid, reliable and sensitive analytical instrument, located at our center was employed in analysis of the collected samples after calibration with 'NIST 2783 Air Particles on Filter'. The effectiveness of the control strategies taken on the emissions was discussed by investigating the short and long term variations in the chemical composition of samples collected between 1993 and 2001 at Antalya station. In this context, generated data set was studied for short (daily) term, seasonal and long term variations. It has been found that short term variations in the concentrations of pollutants in short time scale are highly episodic. The concentration of measured pollutants was changed 10-20 folds in the subsequent two days. The most important factors affecting the chemical composition of pollutants in short time interval are meteorological factors such as precipitation and variations observed at the emission strength of pollutants. The declined in Pb concentrations at the Antalya station was attributed to observed decrease in Pb emissions in Europe after the introduction of leaded gasoline. Highest summer averages were reported for anthropogenic pollutants in summer months. Aegean Sea (Izmir-Aliaga) studies of the project will be completed this year

  4. Field characterization of the PM2.5 Aerosol Chemical Speciation Monitor: insights into the composition, sources, and processes of fine particles in eastern China

    Science.gov (United States)

    Zhang, Yunjiang; Tang, Lili; Croteau, Philip L.; Favez, Olivier; Sun, Yele; Canagaratna, Manjula R.; Wang, Zhuang; Couvidat, Florian; Albinet, Alexandre; Zhang, Hongliang; Sciare, Jean; Prévôt, André S. H.; Jayne, John T.; Worsnop, Douglas R.

    2017-12-01

    A PM2.5-capable aerosol chemical speciation monitor (Q-ACSM) was deployed in urban Nanjing, China, for the first time to measure in situ non-refractory fine particle (NR-PM2.5) composition from 20 October to 19 November 2015, along with parallel measurements of submicron aerosol (PM1) species by a standard Q-ACSM. Our results show that the NR-PM2.5 species (organics, sulfate, nitrate, and ammonium) measured by the PM2.5-Q-ACSM are highly correlated (r2 > 0.9) with those measured by a Sunset Lab OC  /  EC analyzer and a Monitor for AeRosols and GAses (MARGA). The comparisons between the two Q-ACSMs illustrated similar temporal variations in all NR species between PM1 and PM2.5, yet substantial mass fractions of aerosol species were observed in the size range of 1-2.5 µm. On average, NR-PM1-2.5 contributed 53 % of the total NR-PM2.5, with sulfate and secondary organic aerosols (SOAs) being the two largest contributors (26 and 27 %, respectively). Positive matrix factorization of organic aerosol showed similar temporal variations in both primary and secondary OAs between PM1 and PM2.5, although the mass spectra were slightly different due to more thermal decomposition on the capture vaporizer of the PM2.5-Q-ACSM. We observed an enhancement of SOA under high relative humidity conditions, which is associated with simultaneous increases in aerosol pH, gas-phase species (NO2, SO2, and NH3) concentrations and aerosol water content driven by secondary inorganic aerosols. These results likely indicate an enhanced reactive uptake of SOA precursors upon aqueous particles. Therefore, reducing anthropogenic NOx, SO2, and NH3 emissions might not only reduce secondary inorganic aerosols but also the SOA burden during haze episodes in China.

  5. Chemical composition, source, and process of urban aerosols during winter haze formation in Northeast China.

    Science.gov (United States)

    Zhang, Jian; Liu, Lei; Wang, Yuanyuan; Ren, Yong; Wang, Xin; Shi, Zongbo; Zhang, Daizhou; Che, Huizheng; Zhao, Hujia; Liu, Yanfei; Niu, Hongya; Chen, Jianmin; Zhang, Xiaoye; Lingaswamy, A P; Wang, Zifa; Li, Weijun

    2017-12-01

    The characteristics of aerosol particles have been poorly evaluated even though haze episodes frequently occur in winter in Northeast China. OC/EC analysis, ion chromatography, and transmission electron microscopy (TEM) were used to investigate the organic carbon (OC) and elemental carbon (EC), and soluble ions in PM 2.5 and the mixing state of individual particles during a severe wintertime haze episode in Northeast China. The organic matter (OM), NH 4 + , SO 4 2- , and NO 3 - concentrations in PM 2.5 were 89.5 μg/m 3 , 24.2 μg/m 3 , 28.1 μg/m 3 , and 32.8 μg/m 3 on the haze days, respectively. TEM observations further showed that over 80% of the haze particles contained primary organic aerosols (POAs). Based on a comparison of the data obtained during the haze formation, we generate the following synthetic model of the process: (1) Stable synoptic meteorological conditions drove the haze formation. (2) The early stage of haze formation (light or moderate haze) was mainly caused by the enrichment of POAs from coal burning for household heating and cooking. (3) High levels of secondary organic aerosols (SOAs), sulfates, and nitrates formation via heterogeneous reactions together with POAs accumulation promoted to the evolution from light or moderate to severe haze. Compared to the severe haze episodes over the North China Plain, the PM 2.5 in Northeast China analyzed in the present study contained similar sulfate, higher SOA, and lower nitrate contents. Our results suggest that most of the POAs and secondary particles were likely related to emissions from coal-burning residential stoves in rural outskirts and small boilers in urban areas. The inefficient burning of coal for household heating and cooking should be monitored during wintertime in Northeast China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Two years of near real-time chemical composition of submicron aerosols in the region of Paris using an Aerosol Chemical Speciation Monitor (ACSM) and a multi-wavelength Aethalometer

    Science.gov (United States)

    Petit, J.-E.; Favez, O.; Sciare, J.; Crenn, V.; Sarda-Estève, R.; Bonnaire, N.; Močnik, G.; Dupont, J.-C.; Haeffelin, M.; Leoz-Garziandia, E.

    2015-03-01

    parameters controlling their temporal variations (sources, meteorological parameters). Finally, a careful investigation of all the major pollution episodes observed over the region of Paris between 2011 and 2013 was performed and classified in terms of chemical composition and the BC-to-sulfate ratio used here as a proxy of the local/regional/advected contribution of PM. In conclusion, these first 2-year quality-controlled measurements of ACSM clearly demonstrate their great potential to monitor on a long-term basis aerosol sources and their geographical origin and provide strategic information in near real time during pollution episodes. They also support the capacity of the ACSM to be proposed as a robust and credible alternative to filter-based sampling techniques for long-term monitoring strategies.

  7. Aerosol chemical compositions in the North China Plain and the impact on the visibility in Beijing and Tianjin

    Science.gov (United States)

    Zou, Jianan; Liu, Zirui; Hu, Bo; Huang, Xiaojuan; Wen, Tianxue; Ji, Dongsheng; Liu, Jingyun; Yang, Yang; Yao, Qing; Wang, Yuesi

    2018-03-01

    To better understand the characteristics of the chemical compositions of aerosols comprised of water soluble ions (WSIs) and carbonaceous aerosol (CA) and their impacts on the visibility throughout the North China Plain (NCP), four experimental sampling campaigns were carried out between June 2013 and May 2014. The sampling sites were located in Beijing, Xiangshan, Tianjin, Shijiazhuang, and Qinhuangdao. The air pollution episodes mainly occurred during the autumn and winter in the NCP. With regard to different particle size distributions, the ratio of anions to cations in the fine size (0.64) was greater than that in the coarse size (0.54) in the NCP. Coefficients of divergence indicate that aerosol pollution had similar characteristics in the five cities of the NCP and that the pollutants were characterized by mutual influences and regional transfer processes. There were different non-linear correlations between the visibility and mass concentrations of PM2.5 at different relative humidity (RH) conditions. When the RH was > 70%, the visibility was light extinction coefficients (LEC) from the measured concentrations of chemical species. Organic matter (OM), ammonium nitrate (AN), and ammonium sulfate (AS) were the three dominant species that contributed to the LEC in Beijing and had the highest proportions of total contributions to the LEC in the summer, accounting for 32.2%, 25.9%, and 24.4%, respectively. The LEC of sea salts did not change much throughout the year and accounted for 4.1-5.3% in Beijing and 4.8-7.4% in Tianjin. According to the Ambient Air Quality Standard, the days were divided into pollutional days (PD) and attained days (AD). The increasing concentrations of AN, AS and OM resulted in an increase in the LEC in the NCP, which led to the occurrences of low visibility events during the autumn and winter. NH4+, NO3-, and SO42 - mainly existed as fine size particles (diameter < 2.1 μm) in Beijing (73.5%, 80.7%, and 78.0% on PD and 63.3%, 79.4%, and

  8. Estimation of aerosol water and chemical composition from AERONET Sun-sky radiometer measurements at Cabauw, the Netherlands

    NARCIS (Netherlands)

    Van Beelen, A. J.; Roelofs, G. J H; Hasekamp, O. P.; Henzing, J. S.; Röckmann, T.

    2014-01-01

    Remote sensing of aerosols provides important information on atmospheric aerosol abundance. However, due to the hygroscopic nature of aerosol particles observed aerosol optical properties are influenced by atmospheric humidity, and the measurements do not unambiguously characterize the aerosol dry

  9. Single particle analysis of eastern Mediterranean aerosol particles: Influence of the source region on the chemical composition

    Science.gov (United States)

    Clemen, Hans-Christian; Schneider, Johannes; Köllner, Franziska; Klimach, Thomas; Pikridas, Michael; Stavroulas, Iasonas; Sciare, Jean; Borrmann, Stephan

    2017-04-01

    The Mediterranean region is one of the most climatically sensitive areas and is influenced by air masses of different origin. Aerosol particles are one important factor contributing to the Earth's radiative forcing, but knowledge about their composition and sources is still limited. Here, we report on results from the INUIT-BACCHUS-ACTRIS campaign, which was conducted at the Cyprus Atmospheric Observatory (CAO, Agia Marina Xyliatou) in Cyprus in April 2016. Our results show that the chemical composition of the aerosol particles in the eastern Mediterranean is strongly dependent on their source region. The composition of particles in a size range between 150 nm and 3 μm was measured using the Aircraft-based Laser ABlation Aerosol MAss spectrometer (ALABAMA), which is a single particle laser ablation instrument using a bipolar time-of-flight mass spectrometer. The mass spectral information on cations and anions allow for the analysis of different molecular fragments. The information about the source regions results from backward trajectories using HYSPLIT Trajectory Model (Trajectory Ensemble) on hourly basis. To assess the influence of certain source regions on the air masses arriving at CAO, we consider the number of trajectories that crossed the respective source region within defined time steps. For a more detailed picture also the height and the velocity of the air masses during their overpass above the source regions will be considered. During the campaign at CAO in April 2016 three main air mass source regions were observed: 1) Northern Central Europe, likely with an enhanced anthropogenic influence (e.g. sulfate and black carbon from combustion processes, fly ash particles from power plants, characterized by Sr and Ba), 2) Southwest Europe, with a higher influence of the Mediterranean Sea including sea salt particles (characterized by, e.g., NaxCly, NaClxNOy), 3) Northern Africa/Sahara, with air masses that are expected to have a higher load of mineral dust

  10. Hygroscopic behavior and chemical composition evolution of internally mixed aerosols composed of oxalic acid and ammonium sulfate

    Science.gov (United States)

    Wang, Xiaowei; Jing, Bo; Tan, Fang; Ma, Jiabi; Zhang, Yunhong; Ge, Maofa

    2017-10-01

    Although water uptake of aerosol particles plays an important role in the atmospheric environment, the effects of interactions between components on chemical composition and hygroscopicity of particles are still not well constrained. The hygroscopic properties and phase transformation of oxalic acid (OA) and mixed particles composed of ammonium sulfate (AS) and OA with different organic to inorganic molar ratios (OIRs) have been investigated by using confocal Raman spectroscopy. It is found that OA droplets first crystallize to form OA dihydrate at 71 % relative humidity (RH), and further lose crystalline water to convert into anhydrous OA around 5 % RH during the dehydration process. The deliquescence and efflorescence point for AS is determined to be 80.1 ± 1.5 % RH and 44.3 ± 2.5 % RH, respectively. The observed efflorescence relative humidity (ERH) for mixed OA / AS droplets with OIRs of 1 : 3, 1 : 1 and 3 : 1 is 34.4 ± 2.0, 44.3 ± 2.5 and 64.4 ± 3.0 % RH, respectively, indicating the elevated OA content appears to favor the crystallization of mixed systems at higher RH. However, the deliquescence relative humidity (DRH) of AS in mixed OA / AS particles with OIRs of 1 : 3 and 1 : 1 is observed to occur at 81.1 ± 1.5 and 77 ± 1.0 % RH, respectively. The Raman spectra of mixed OA / AS droplets indicate the formation of ammonium hydrogen oxalate (NH4HC2O4) and ammonium hydrogen sulfate (NH4HSO4) from interactions between OA and AS in aerosols during the dehydration process on the time scale of hours, which considerably influence the subsequent deliquescence behavior of internally mixed particles with different OIRs. The mixed OA / AS particles with an OIR of 3 : 1 exhibit no deliquescence transition over the RH range studied due to the considerable transformation of (NH4)2SO4 into NH4HC2O4 with a high DRH. Although the hygroscopic growth of mixed OA / AS droplets is comparable to that of AS or OA at high RH during the dehydration process, Raman growth

  11. Hygroscopic behavior and chemical composition evolution of internally mixed aerosols composed of oxalic acid and ammonium sulfate

    Directory of Open Access Journals (Sweden)

    X. Wang

    2017-10-01

    Full Text Available Although water uptake of aerosol particles plays an important role in the atmospheric environment, the effects of interactions between components on chemical composition and hygroscopicity of particles are still not well constrained. The hygroscopic properties and phase transformation of oxalic acid (OA and mixed particles composed of ammonium sulfate (AS and OA with different organic to inorganic molar ratios (OIRs have been investigated by using confocal Raman spectroscopy. It is found that OA droplets first crystallize to form OA dihydrate at 71 % relative humidity (RH, and further lose crystalline water to convert into anhydrous OA around 5 % RH during the dehydration process. The deliquescence and efflorescence point for AS is determined to be 80.1 ± 1.5 % RH and 44.3 ± 2.5 % RH, respectively. The observed efflorescence relative humidity (ERH for mixed OA ∕ AS droplets with OIRs of 1 : 3, 1 : 1 and 3 : 1 is 34.4 ± 2.0, 44.3 ± 2.5 and 64.4 ± 3.0 % RH, respectively, indicating the elevated OA content appears to favor the crystallization of mixed systems at higher RH. However, the deliquescence relative humidity (DRH of AS in mixed OA ∕ AS particles with OIRs of 1 : 3 and 1 : 1 is observed to occur at 81.1 ± 1.5 and 77 ± 1.0 % RH, respectively. The Raman spectra of mixed OA ∕ AS droplets indicate the formation of ammonium hydrogen oxalate (NH4HC2O4 and ammonium hydrogen sulfate (NH4HSO4 from interactions between OA and AS in aerosols during the dehydration process on the time scale of hours, which considerably influence the subsequent deliquescence behavior of internally mixed particles with different OIRs. The mixed OA ∕ AS particles with an OIR of 3 : 1 exhibit no deliquescence transition over the RH range studied due to the considerable transformation of (NH42SO4 into NH4HC2O4 with a high DRH. Although the hygroscopic growth of mixed OA

  12. Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation

    Directory of Open Access Journals (Sweden)

    E. Asmi

    2010-05-01

    Full Text Available The Antarctic near-coastal sub-micrometre aerosol particle features in summer were characterised based on measured data on aerosol hygroscopicity, size distributions, volatility and chemical ion and organic carbon mass concentrations. Hysplit model was used to calculate the history of the air masses to predict the particle origin. Additional measurements of meteorological parameters were utilised. The hygroscopic properties of particles mostly resembled those of marine aerosols. The measurements took place at 130 km from the Southern Ocean, which was the most significant factor affecting the particle properties. This is explained by the lack of additional sources on the continent of Antarctica. The Southern Ocean was thus a likely source of the particles and nucleating and condensing vapours. The particles were very hygroscopic (HGF 1.75 at 90 nm and very volatile. Most of the sub-100 nm particle volume volatilised below 100 °C. Based on chemical data, particle hygroscopic and volatile properties were explained by a large fraction of non-neutralised sulphuric acid together with organic material. The hygroscopic growth factors assessed from chemical data were similar to measured. Hygroscopicity was higher in dry continental air masses compared with the moist marine air masses. This was explained by the aging of the marine organic species and lower methanesulphonic acid volume fraction together with the changes in the inorganic aerosol chemistry as the aerosol had travelled long time over the continental Antarctica. Special focus was directed in detailed examination of the observed new particle formation events. Indications of the preference of negative over positive ions in nucleation could be detected. However, in a detailed case study, the neutral particles dominated the particle formation process. Freshly nucleated particles had the smallest hygroscopic growth factors, which increased subsequent to particle aging.

  13. A case study of highly time-resolved evolution of aerosol chemical composition and optical properties during severe haze pollution in Shanghai, China

    Science.gov (United States)

    Zhu, W.; Cheng, Z.; Lou, S.

    2017-12-01

    Despite of extensive efforts into characterization of the sources in severe haze pollution periods in the megacity of Shanghai, the study of aerosol composition, mass-size distribution and optical properties to PM1 in the pollution periods remain poorly understood. Here we conducted a 47days real-time measurement of submicron aerosol (PM1) composition and size distribution by a High-Resolution Time-of-Flight Aerosol Mass spectrometer (HR-TOF-AMS), particle light scattering by a Cavity Attenuated Phase Shift ALBedo monitor (CAPS-ALB) and Photoacoustic Extinctionmeter (PAX) in Shanghai, China, from November 28, 2016 to January 12, 2017. The average PM1 concentration was 85.9(±14.7) μg/m3 during the pollution period, which was nearly 4 times higher than that of clean period. Increased scattering coefficient during EP was associated with higher secondary inorganic aerosols and organics. We also observed organics mass size distribution for different pollution extents showing different distribution characteristics. There were no obvious differences for ammonium nitrate and ammonium sulfate among the pollution periods, which represented single peak distributions, and peaks ranged at 650-700nm and 700nm, respectively. A strong relationship can be expected between PM1 compounds mass concentration size distribution and scattering coefficient, suggesting that chemical composition, size distribution of the particles and their variations could also contribute to the extinction coefficients. Organics and secondary inorganic species to particle light scattering were quantified. The results showed that organics and ammonium nitrate were the largest contribution to scattering coefficients of PM1. The contribution of (NH4)2SO4 to the light scattering exceeded that of NH4NO3 during clean period due to the enhanced sulfate concentrations. Our results elucidate substantial changes of aerosol composition, formation mechanisms, size distribution and optical properties due to local

  14. Complex chemical composition of colored surface films formed from reactions of propanal in sulfuric acid at upper troposphere/lower stratosphere aerosol acidities.

    Science.gov (United States)

    Van Wyngarden, A L; Pérez-Montaño, S; Bui, J V H; Li, E S W; Nelson, T E; Ha, K T; Leong, L; Iraci, L T

    Particles in the upper troposphere and lower stratosphere (UT/LS) consist mostly of concentrated sulfuric acid (40-80 wt %) in water. However, airborne measurements have shown that these particles also contain a significant fraction of organic compounds of unknown chemical composition. Acid-catalyzed reactions of carbonyl species are believed to be responsible for significant transfer of gas phase organic species into tropospheric aerosols and are potentially more important at the high acidities characteristic of UT/LS particles. In this study, experiments combining sulfuric acid (H 2 SO 4 ) with propanal and with mixtures of propanal with glyoxal and/or methylglyoxal at acidities typical of UT/LS aerosols produced highly colored surface films (and solutions) that may have implications for aerosol properties. In order to identify the chemical processes responsible for the formation of the surface films, attenuated total reflectance-Fourier transform infrared (ATR-FTIR) and 1 H nuclear magnetic resonance (NMR) spectroscopies were used to analyze the chemical composition of the films. Films formed from propanal were a complex mixture of aldol condensation products, acetals and propanal itself. The major aldol condensation products were the dimer (2-methyl-2-pentenal) and 1,3,5-trimethylbenzene that was formed by cyclization of the linear aldol condensation trimer. Additionally, the strong visible absorption of the films indicates that higher-order aldol condensation products must also be present as minor species. The major acetal species were 2,4,6-triethyl-1,3,5-trioxane and longer-chain linear polyacetals which are likely to separate from the aqueous phase. Films formed on mixtures of propanal with glyoxal and/or methylglyoxal also showed evidence of products of cross-reactions. Since cross-reactions would be more likely than self-reactions under atmospheric conditions, similar reactions of aldehydes like propanal with common aerosol organic species like glyoxal

  15. Laboratory studies of the chemical composition and cloud condensation nuclei (CCN activity of secondary organic aerosol (SOA and oxidized primary organic aerosol (OPOA

    Directory of Open Access Journals (Sweden)

    A. T. Lambe

    2011-09-01

    Full Text Available Secondary organic aerosol (SOA and oxidized primary organic aerosol (OPOA were produced in laboratory experiments from the oxidation of fourteen precursors representing atmospherically relevant biogenic and anthropogenic sources. The SOA and OPOA particles were generated via controlled exposure of precursors to OH radicals and/or O3 in a Potential Aerosol Mass (PAM flow reactor over timescales equivalent to 1–20 days of atmospheric aging. Aerosol mass spectra of SOA and OPOA were measured with an Aerodyne aerosol mass spectrometer (AMS. The fraction of AMS signal at m/z = 43 and m/z = 44 (f43, f44, the hydrogen-to-carbon (H/C ratio, and the oxygen-to-carbon (O/C ratio of the SOA and OPOA were obtained, which are commonly used to characterize the level of oxidation of oxygenated organic aerosol (OOA. The results show that PAM-generated SOA and OPOA can reproduce and extend the observed f44f43 composition beyond that of ambient OOA as measured by an AMS. Van Krevelen diagrams showing H/C ratio as a function of O/C ratio suggest an oxidation mechanism involving formation of carboxylic acids concurrent with fragmentation of carbon-carbon bonds. Cloud condensation nuclei (CCN activity of PAM-generated SOA and OPOA was measured as a function of OH exposure and characterized as a function of O/C ratio. CCN activity of the SOA and OPOA, which was characterized in the form of the hygroscopicity parameter κorg, ranged from 8.4×10−4 to 0.28 over measured O/C ratios ranging from 0.05 to 1.42. This range of κorg and O/C ratio is significantly wider than has been previously obtained. To first order, the κorg-to-O/C relationship is well represented by a linear function of the form κorg = (0.18±0.04 ×O/C + 0.03, suggesting that a simple, semi-empirical parameterization of OOA hygroscopicity and

  16. Field characterization of the PM2.5 Aerosol Chemical Speciation Monitor: insights into the composition, sources, and processes of fine particles in eastern China

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2017-12-01

    Full Text Available A PM2.5-capable aerosol chemical speciation monitor (Q-ACSM was deployed in urban Nanjing, China, for the first time to measure in situ non-refractory fine particle (NR-PM2.5 composition from 20 October to 19 November 2015, along with parallel measurements of submicron aerosol (PM1 species by a standard Q-ACSM. Our results show that the NR-PM2.5 species (organics, sulfate, nitrate, and ammonium measured by the PM2.5-Q-ACSM are highly correlated (r2 > 0.9 with those measured by a Sunset Lab OC  /  EC analyzer and a Monitor for AeRosols and GAses (MARGA. The comparisons between the two Q-ACSMs illustrated similar temporal variations in all NR species between PM1 and PM2.5, yet substantial mass fractions of aerosol species were observed in the size range of 1–2.5 µm. On average, NR-PM1−2.5 contributed 53 % of the total NR-PM2.5, with sulfate and secondary organic aerosols (SOAs being the two largest contributors (26 and 27 %, respectively. Positive matrix factorization of organic aerosol showed similar temporal variations in both primary and secondary OAs between PM1 and PM2.5, although the mass spectra were slightly different due to more thermal decomposition on the capture vaporizer of the PM2.5-Q-ACSM. We observed an enhancement of SOA under high relative humidity conditions, which is associated with simultaneous increases in aerosol pH, gas-phase species (NO2, SO2, and NH3 concentrations and aerosol water content driven by secondary inorganic aerosols. These results likely indicate an enhanced reactive uptake of SOA precursors upon aqueous particles. Therefore, reducing anthropogenic NOx, SO2, and NH3 emissions might not only reduce secondary inorganic aerosols but also the SOA burden during haze episodes in China.

  17. Influence of marine aerosols and aerotechnogenic load on chemical composition of rainwaters on small islands (ludas) of the White Sea

    Science.gov (United States)

    Gorbacheva, Tamara; Mazukhina, Svetlana; Isaeva, Ludmila; Shumilov, Oleg

    2013-04-01

    In June 2001 intensive monitoring plots were established on the island part of Kandalaksha Bay of the White Sea (the island Tonnaya Luda; 67o06'60"N; 32o24'12"E) with the installation of stationary rainwater collectors. The purpose was studying the chemical composition of rain waters in the zone of cumulative influence of marine aerosols and aerotechnogenic load. Water sampling was carried out monthly during the vegetative season of 2001 and 2002. pH of rain water was determined by potentiometric method without preliminary filtration. The samples were passed through the paper filter with the pore diameter of 1-2.5 microns, the analysis of filtrate carried out by methods of atomic emission spectrometry (K, Na) and atomic absorption spectrometry (Ca, Mg, Zn, Mn, Cu, Ni, Al, Fe), total P and P of phosphates, Si and NH4+ - by photocolorimetry, total carbon - by bichromate method, NO3-, SO42-, Cl--by ion exchange chromatography method. Balance method was chosen as a research basis to determine the interrelation of rain water organic matter and dynamics of its redistribution under the influence of natural and technogenic factors. The difference between the cations sum (including NH4+and H+) and mineral acids anions sum (SO42-, Cl-, NO3-) was identified as organic acids anions concentration (μeq l-1). The level of Na, Cl-, K, Ca, Mg, SO42-, Sr in rainwaters on the island and the remote areas is indicative of the possible influence of marine aerosols on the island part of the White Sea. The increase of Al, Cu, Ni, Cd, Co concentrations in rainwaters up to one order against the background values points to the cumulative influence of the emissions of industrial enterprises located in the region. The relative stability of pH values of rain waters during all seasons indicates to the buffer action of weak organic acids anions. The correlation analysis of ionic structure in normal concentrations has allowed us to estimate the distribution of the cationic part from the

  18. Wintertime aerosol chemical composition and source apportionment of the organic fraction in the metropolitan area of Paris

    Directory of Open Access Journals (Sweden)

    M. Crippa

    2013-01-01

    Full Text Available The effect of a post-industrial megacity on local and regional air quality was assessed via a month-long field measurement campaign in the Paris metropolitan area during winter 2010. Here we present source apportionment results from three aerosol mass spectrometers and two aethalometers deployed at three measurement stations within the Paris region. Submicron aerosol composition is dominated by the organic fraction (30–36% and nitrate (28–29%, with lower contributions from sulfate (14–16%, ammonium (12–14% and black carbon (7–13%.

    Organic source apportionment was performed using positive matrix factorization, resulting in a set of organic factors corresponding both to primary emission sources and secondary production. The dominant primary sources are traffic (11–15% of organic mass, biomass burning (13–15% and cooking (up to 35% during meal hours. Secondary organic aerosol contributes more than 50% to the total organic mass and includes a highly oxidized factor from indeterminate and/or diverse sources and a less oxidized factor related to wood burning emissions. Black carbon was apportioned to traffic and wood burning sources using a model based on wavelength-dependent light absorption of these two combustion sources. The time series of organic and black carbon factors from related sources were strongly correlated. The similarities in aerosol composition, total mass and temporal variation between the three sites suggest that particulate pollution in Paris is dominated by regional factors, and that the emissions from Paris itself have a relatively low impact on its surroundings.

  19. Insights into a dust event transported through Beijing in spring 2012: Morphology, chemical composition and impact on surface aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Wei [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502 (Japan); Niu, Hongya [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Key Laboratory of Resource Exploration Research of Hebei Province, Hebei University of Engineering, Handan, Hebei 056038 (China); Zhang, Daizhou [Faculty of Environmental and Symbiotic Sciences, Prefectural University of Kumamoto, Kumamoto 862-8502 (Japan); Wu, Zhijun [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Chen, Chen [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Beijing Municipal Environmental Monitoring Center, Beijing 100044 (China); Wu, Yusheng; Shang, Dongjie [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China); Hu, Min, E-mail: minhu@pku.edu.cn [State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871 (China)

    2016-09-15

    Multiple approaches were used to investigate the evolution of surface aerosols in Beijing during the passage of a dust event at high altitude, which was from the Gobi areas of southern Mongolia and covered a wide range of North China. Single particle analysis with electron microscope showed that the majority of coarse particles were mineral ones, and most of them were in the size range of 1–7 μm with a peak of number concentration at about 3.5 μm. Based on elemental composition and morphology, the mineral particles could be classified into several groups, including Si-rich (71%), Ca-rich (15%), Fe-rich (6%), and halite-rich (2%), etc., and they were the main contributors to the aerosol optical depth as the dust occurred. The size distributions of surface aerosols were significantly affected by the dust intrusion. The average number concentration of accumulation mode particles during the event was about 400 cm{sup −3}, which was much lower than that in heavily polluted days (6300 cm{sup −3}). At the stage of floating dust, the number concentration of accumulation mode particles decreased, and coarse particles contributed to total volume concentration of particulate matter as much as 90%. The accumulation mode particles collected in this stage were mostly in the size range of 0.2–0.5 μm, and were rectangular or spherical. They were considered to be particles consisting of ammonium sulfate. New particle formation (NPF) was observed around noon in the three days during the dust event, indicating that the passage of the dust was probably favorable for NPF. - Highlights: • A dust event transported at high altitude through Beijing was investigated. • The dust event caused high variation in surface aerosol number concentrations. • Fine particles in the floating dust period probably consisted of ammonium sulfate. • Passage of the dust induced a favorable condition for new particle formation.

  20. Insights into a dust event transported through Beijing in spring 2012: Morphology, chemical composition and impact on surface aerosols

    International Nuclear Information System (INIS)

    Hu, Wei; Niu, Hongya; Zhang, Daizhou; Wu, Zhijun; Chen, Chen; Wu, Yusheng; Shang, Dongjie; Hu, Min

    2016-01-01

    Multiple approaches were used to investigate the evolution of surface aerosols in Beijing during the passage of a dust event at high altitude, which was from the Gobi areas of southern Mongolia and covered a wide range of North China. Single particle analysis with electron microscope showed that the majority of coarse particles were mineral ones, and most of them were in the size range of 1–7 μm with a peak of number concentration at about 3.5 μm. Based on elemental composition and morphology, the mineral particles could be classified into several groups, including Si-rich (71%), Ca-rich (15%), Fe-rich (6%), and halite-rich (2%), etc., and they were the main contributors to the aerosol optical depth as the dust occurred. The size distributions of surface aerosols were significantly affected by the dust intrusion. The average number concentration of accumulation mode particles during the event was about 400 cm"−"3, which was much lower than that in heavily polluted days (6300 cm"−"3). At the stage of floating dust, the number concentration of accumulation mode particles decreased, and coarse particles contributed to total volume concentration of particulate matter as much as 90%. The accumulation mode particles collected in this stage were mostly in the size range of 0.2–0.5 μm, and were rectangular or spherical. They were considered to be particles consisting of ammonium sulfate. New particle formation (NPF) was observed around noon in the three days during the dust event, indicating that the passage of the dust was probably favorable for NPF. - Highlights: • A dust event transported at high altitude through Beijing was investigated. • The dust event caused high variation in surface aerosol number concentrations. • Fine particles in the floating dust period probably consisted of ammonium sulfate. • Passage of the dust induced a favorable condition for new particle formation.

  1. Seasonal characterization of submicron aerosol chemical composition and organic aerosol sources in the southeastern United States: Atlanta, Georgia,and Look Rock, Tennessee

    Directory of Open Access Journals (Sweden)

    S. H. Budisulistiorini

    2016-04-01

    Full Text Available A year-long near-real-time characterization of non-refractory submicron aerosol (NR-PM1 was conducted at an urban (Atlanta, Georgia, in 2012 and rural (Look Rock, Tennessee, in 2013 site in the southeastern US using the Aerodyne Aerosol Chemical Speciation Monitor (ACSM collocated with established air-monitoring network measurements. Seasonal variations in organic aerosol (OA and inorganic aerosol species are attributed to meteorological conditions as well as anthropogenic and biogenic emissions in this region. The highest concentrations of NR-PM1 were observed during winter and fall seasons at the urban site and during spring and summer at the rural site. Across all seasons and at both sites, NR-PM1 was composed largely of OA (up to 76 % and sulfate (up to 31 %. Six distinct OA sources were resolved by positive matrix factorization applied to the ACSM organic mass spectral data collected from the two sites over the 1 year of near-continuous measurements at each site: hydrocarbon-like OA (HOA, biomass burning OA (BBOA, semi-volatile oxygenated OA (SV-OOA, low-volatility oxygenated OA (LV-OOA, isoprene-derived epoxydiols (IEPOX OA (IEPOX-OA and 91Fac (a factor dominated by a distinct ion at m∕z 91 fragment ion previously observed in biogenic influenced areas. LV-OOA was observed throughout the year at both sites and contributed up to 66 % of total OA mass. HOA was observed during the entire year only at the urban site (on average 21 % of OA mass. BBOA (15–33 % of OA mass was observed during winter and fall, likely dominated by local residential wood burning emission. Although SV-OOA contributes quite significantly ( ∼  27 %, it was observed only at the urban site during colder seasons. IEPOX-OA was a major component (27–41 % of OA at both sites, particularly in spring and summer. An ion fragment at m∕z 75 is well correlated with the m∕z 82 ion associated with the aerosol mass spectrum of IEPOX

  2. Two year-long continuous monitoring of PM1 aerosol chemical composition at the Cyprus Atmospheric Observatory. Source apportionment of the Organic content and geographic origins.

    Science.gov (United States)

    Stavroulas, Iasonas; Pikridas, Michael; Oikonomou, Kostantina; Vasiliadou, Emily; Savvides, Chrysanthos; Vrekoussis, Mihalis; Mihalopoulos, Nikolaos; Gros, Valerie; Sciare, Jean

    2017-04-01

    Particulate matter with diameter smaller than 1{μ}m (PM1) induces direct and indirect effects on local and regional pollution, global climate and health. As of the beginning of 2015, the chemical composition of submicron aerosols, is continuously being monitored at the newly established Cyprus Atmospheric Observatory (CAO, http://www.cyi.ac.cy/index.php/cao.html), a national facility of the ACTRIS Research Infrastructure operated by The Cyprus Institute. Cyprus, an island located in the Eastern Mediterranean Middle East region and influenced by diverse air masses throughout the year, is ideal for monitoring photochemically aged aerosols and gaseous pollutants of both natural and anthropogenic origin. Furthermore this is a unique dataset for this area in such proximity to the Middle East, a poorly documented area in terms of atmospheric aerosol observations. An Aerodyne Quadrupole Aerosol Chemical Speciation Monitor (Q-ACSM) is currently deployed at the CAO premises (35.04N - 33.06E) situated at the rural area of Agia Marina Xyliatou on the foothill of mount Troodos at an elevation of 532m above sea level (asl). The ACSM delivers chemical composition of the major non-refractory aerosol (PM1) chemical constituents (organics, sulfate, nitrate, ammonium, chloride) with an effective (close to 100{%}) collection efficiency for particles in the diameter range of 65-700 nm at a 30 minute temporal resolution. Black Carbon (BC) was also monitored using both Magee Scientific AE-31 and AE-33 aethalometers. Quality control of the PM chemical dataset was conducted by comparison with chemical analysis performed on collocated 24-h filter samples (PM1) and comparison with 1-h PM2.5 derived from a Thermo Scientific TEOM (1400a) Monitor. Positive Matrix Factorization (PMF) was conducted and different organic aerosol factors were distinguished using the Igor based SoFi toolkit utilizing the ME-2 multilinear engine. Air mass origin was investigated for each measurement day using the

  3. Chemical Composition Based Aerosol Optical Properties According to Size Distribution and Mixture Types during Smog and Asian Dust Events in Seoul, Korea

    Science.gov (United States)

    Jung, Chang Hoon; Lee, Ji Yi; Um, Junshik; Lee, Seung Soo; Kim, Yong Pyo

    2018-02-01

    This study investigated the optical properties of aerosols involved in different meteorological events, including smog and Asian dust days. Carbonaceous components and inorganic species were measured in Seoul, Korea between 25 and 31 March 2012. Based on the measurements, the optical properties of aerosols were calculated by considering composition, size distribution, and mixing state of aerosols. To represent polydisperse size distributions of aerosols, a lognormal size distribution with a wide range of geometric mean diameters and geometric standard deviations was used. For the optical property calculations, the Mie theory was used to compute single-scattering properties of aerosol particles with varying size and composition. Analysis of the sampled data showed that the water-soluble components of organic matter increased on smog days, whereas crustal elements increased on dust days. The water content significantly influenced the optical properties of aerosols during the smog days as a result of high relative humidity and an increase in the water-soluble component. The absorption coefficients depended on the aerosol mixture type and the aerosol size distributions. Therefore, to improve our knowledge on radiative impacts of aerosols, especially the regional impacts of aerosols in East Asia, accurate measurements of aerosols, such as size distribution, composition, and mixture type, under different meteorological conditions are required.

  4. Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing

    Directory of Open Access Journals (Sweden)

    W. Hu

    2017-08-01

    Full Text Available A severe regional haze problem in the megacity Beijing and surrounding areas, caused by fast formation and growth of fine particles, has attracted much attention in recent years. In order to investigate the secondary formation and aging process of urban aerosols, four intensive campaigns were conducted in four seasons between March 2012 and March 2013 at an urban site in Beijing (116.31° E, 37.99° N. An Aerodyne high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS was deployed to measure non-refractory chemical components of submicron particulate matter (NR-PM1. The average mass concentrations of PM1 (NR-PM1+black carbon were 45.1 ± 45.8, 37.5 ± 31.0, 41.3 ± 42.7, and 81.7 ± 72.4 µg m−3 in spring, summer, autumn, and winter, respectively. Organic aerosol (OA was the most abundant component in PM1, accounting for 31, 33, 44, and 36 % seasonally, and secondary inorganic aerosol (SNA, sum of sulfate, nitrate, and ammonium accounted for 59, 57, 43, and 55 % of PM1 correspondingly. Based on the application of positive matrix factorization (PMF, the sources of OA were obtained, including the primary ones of hydrocarbon-like (HOA, cooking (COA, biomass burning OA (BBOA and coal combustion OA (CCOA, and secondary component oxygenated OA (OOA. OOA, which can be split into more-oxidized (MO-OOA and less-oxidized OOA (LO-OOA, accounted for 49, 69, 47, and 50 % in four seasons, respectively. Totally, the fraction of secondary components (OOA+SNA contributed about 60–80 % to PM1, suggesting that secondary formation played an important role in the PM pollution in Beijing, and primary sources were also non-negligible. The evolution process of OA in different seasons was investigated with multiple metrics and tools. The average carbon oxidation states and other metrics show that the oxidation state of OA was the highest in summer, probably due to both strong photochemical and aqueous-phase oxidations

  5. Seasonal variations in high time-resolved chemical compositions, sources, and evolution of atmospheric submicron aerosols in the megacity Beijing

    Science.gov (United States)

    Hu, Wei; Hu, Min; Hu, Wei-Wei; Zheng, Jing; Chen, Chen; Wu, Yusheng; Guo, Song

    2017-08-01

    A severe regional haze problem in the megacity Beijing and surrounding areas, caused by fast formation and growth of fine particles, has attracted much attention in recent years. In order to investigate the secondary formation and aging process of urban aerosols, four intensive campaigns were conducted in four seasons between March 2012 and March 2013 at an urban site in Beijing (116.31° E, 37.99° N). An Aerodyne high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) was deployed to measure non-refractory chemical components of submicron particulate matter (NR-PM1). The average mass concentrations of PM1 (NR-PM1+black carbon) were 45.1 ± 45.8, 37.5 ± 31.0, 41.3 ± 42.7, and 81.7 ± 72.4 µg m-3 in spring, summer, autumn, and winter, respectively. Organic aerosol (OA) was the most abundant component in PM1, accounting for 31, 33, 44, and 36 % seasonally, and secondary inorganic aerosol (SNA, sum of sulfate, nitrate, and ammonium) accounted for 59, 57, 43, and 55 % of PM1 correspondingly. Based on the application of positive matrix factorization (PMF), the sources of OA were obtained, including the primary ones of hydrocarbon-like (HOA), cooking (COA), biomass burning OA (BBOA) and coal combustion OA (CCOA), and secondary component oxygenated OA (OOA). OOA, which can be split into more-oxidized (MO-OOA) and less-oxidized OOA (LO-OOA), accounted for 49, 69, 47, and 50 % in four seasons, respectively. Totally, the fraction of secondary components (OOA+SNA) contributed about 60-80 % to PM1, suggesting that secondary formation played an important role in the PM pollution in Beijing, and primary sources were also non-negligible. The evolution process of OA in different seasons was investigated with multiple metrics and tools. The average carbon oxidation states and other metrics show that the oxidation state of OA was the highest in summer, probably due to both strong photochemical and aqueous-phase oxidations. It was indicated by the good correlations

  6. Chemical composition and optical properties of aerosols in the lower mixed layer and the free troposphere. Final report of the AFS project; Chemische Zusammensetzung und optische Eigenschaften des Aerosols in der freien Troposphaere. Abschlussbericht zum AFS-Projekt

    Energy Technology Data Exchange (ETDEWEB)

    Asseng, H. [Freie Univ. Berlin (Germany). Inst. fuer Weltraumwissenschaften]|[Max-Planck-Institut fuer Chemie, Mainz (Germany). Abt. Biogeochemie; Fischer, J. [Freie Univ. Berlin (Germany). Inst. fuer Weltraumwissenschaften; Helas, G. [Max-Planck-Institut fuer Chemie, Mainz (Germany). Abt. Biogeochemie; Weller, M. [Deutscher Wetterdienst, Potsdam (Germany). Meteorologisches Observatorium

    2001-08-02

    Aerosol radiative forcing is the largest unknown in current climate models and, as a result, in predicting future climate. Accurate vertically-resolved measurements of aerosol optical properties are an important element of improved climate prediction (IPCC). The present project has contributed to this objective. Jets of directly and remotely determined radiation data have been provided suitable to cut down the uncertainty of column- or layer related optical aerosol parameters. In the present case mean values and profiles of spectral scattering - and absorption coefficients have been retrieved from ground based and airborne sky-radiance/solar irradiance measurements. Available analyses of size and chemical composition of sampled particles (adjoined projects) have been also taken into consideration. The retrieved parameters have served as an input for modelling the radiative transfer exactly for the real time of measurements. Closure procedures yielded finally realistic spectral scattering - and absorption coefficients typically for the lower troposphere in a mostly rural Central European region. (orig.) [German] Die ungenuegende Kenntnis strahlungswirksamer, optischer Aerosolparameter ist laut IPCC die groesste Unbekannte bei der Modellierung des Klimas und seiner Veraenderung. Wissenschaft und Technik bemuehen sich in sog. Schliessungsexperimenten aus der Ueberbestimmung direkt und indirekt gemessener Aerosolparameter genaue(re) Kenntnis (Mittelwert/Variation) ueber deren Klimawirksamkeit zu erlangen. Im vorliegenden Projekt wurden aus verschiedenen passiven, spektralen Messungen von Streulicht und Transmission der Atmosphaere in verschiedenen Hoehen sowie aus der Beruecksichtigung von Partikelanalysen Dritter, Streu- und Absorptionskoeffizienten des Aerosols der gesamten Luftsaeule und in vertikaler Aufloesung abgeleitet. Strahlungstransportmodellierungen mit den gewonnenen Aerosolparametern als input engten ueber den Vergleich mit den Messungen deren Grad an

  7. Source apportionment of aerosol particles at a European air pollution hot spot using particle number size distributions and chemical composition.

    Science.gov (United States)

    Leoni, Cecilia; Pokorná, Petra; Hovorka, Jan; Masiol, Mauro; Topinka, Jan; Zhao, Yongjing; Křůmal, Kamil; Cliff, Steven; Mikuška, Pavel; Hopke, Philip K

    2018-03-01

    Ostrava in the Moravian-Silesian region (Czech Republic) is a European air pollution hot spot for airborne particulate matter (PM), polycyclic aromatic hydrocarbons (PAHs), and ultrafine particles (UFPs). Air pollution source apportionment is essential for implementation of successful abatement strategies. UFPs or nanoparticles of diameter hot-spot including nanoparticles, Positive Matrix Factorization (PMF) was applied to highly time resolved particle number size distributions (NSD, 14 nm-10 μm) and PM 0.09-1.15 chemical composition. Diurnal patterns, meteorological variables, gaseous pollutants, organic markers, and associations between the NSD factors and chemical composition factors were used to identify the pollution sources. The PMF on the NSD reveals two factors in the ultrafine size range: industrial UFPs (28%, number mode diameter - NMD 45 nm), industrial/fresh road traffic nanoparticles (26%, NMD 26 nm); three factors in the accumulation size range: urban background (24%, NMD 93 nm), coal burning (14%, volume mode diameter - VMD 0.5 μm), regional pollution (3%, VMD 0.8 μm) and one factor in the coarse size range: industrial coarse particles/road dust (2%, VMD 5 μm). The PMF analysis of PM 0.09-1.15 revealed four factors: SIA/CC/BB (52%), road dust (18%), sinter/steel (16%), iron production (16%). The factors in the ultrafine size range resolved with NSD have a positive correlation with sinter/steel production and iron production factors resolved with chemical composition. Coal combustion factor resolved with NSD has moderate correlation with SIA/CC/BB factor. The organic markers homohopanes correlate with coal combustion and the levoglucosan correlates with urban background. The PMF applications to NSD and chemical composition datasets are complementary. PAHs in PM 1 were found to be associated with coal combustion factor. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The effect of meteorological and chemical factors on the agreement between observations and predictions of fine aerosol composition in southwestern Ontario during BAQS-Met

    Science.gov (United States)

    Markovic, M. Z.; Hayden, K. L.; Murphy, J. G.; Makar, P. A.; Ellis, R. A.; Chang, R. Y.-W.; Slowik, J. G.; Mihele, C.; Brook, J.

    2011-04-01

    The Border Air Quality and Meteorology Study (BAQS-Met) was an intensive, collaborative field campaign during the summer of 2007 that investigated the effects of transboundary pollution, local pollution, and local meteorology on air quality in southwestern Ontario. This analysis focuses on the measurements of the inorganic constituents of particulate matter with diameter of less than 1 μm (PM1), with a specific emphasis on nitrate. We evaluate the ability of AURAMS, Environment Canada's chemical transport model, to represent regional air pollution in SW Ontario by comparing modelled aerosol inorganic chemical composition with measurements from Aerosol Mass Spectrometers (AMS) onboard the National Research Council (NRC) of Canada Twin Otter aircraft and at a ground site in Harrow, ON. The agreement between modelled and measured pNO3- at the ground site (observed mean (Mobs) = 0.50 μg m-3; modelled mean (Mmod) = 0.58 μg m-3; root mean square error (RSME) = 1.27 μg m-3) was better than aloft (Mobs = 0.32 μg m-3; Mmod = 0.09 μg m-3; RSME = 0.48 μg m-3). Possible reasons for discrepancies include errors in (i) emission inventories, (ii) atmospheric chemistry, (iii) predicted meteorological parameters, or (iv) gas/particle thermodynamics in the model framework. Using the inorganic thermodynamics model, ISORROPIA, in an offline mode, we find that the assumption of thermodynamic equilibrium is consistent with observations of gas and particle composition at Harrow. We develop a framework to assess the sensitivity of PM1 nitrate to meteorological and chemical parameters and find that errors in both the predictions of relative humidity and free ammonia (FA ≡ NH3(g) + pNH4+ - 2 · pSO42-) are responsible for the poor agreement between modelled and measured values.

  9. The chemical composition of aerosols from Wildland fires: Current state of the science and possible new directions.

    Science.gov (United States)

    Wildland fire emits a substantial quantity of aerosol to the atmosphere. These aerosols typically comprise a complex mixture of organic matter and refractory elemental or black carbon with a relatively minor contribution of inorganic matter from soils and plant micronutrients. Id...

  10. High time-resolved chemical compositions, sources and evolution for atmospheric submicron aerosols in the winter of Beijing

    Science.gov (United States)

    Min, H.; Hu, W.; Zheng, J.; Guo, S.; Wu, Y.; Zeng, L.; Lu, S.; Xie, S.; Zhang, Y.

    2017-12-01

    Severe regional haze problem in the megacity Beijing and surrounding areas has attracted much attention in recent years. In order to investigate the secondary formation and aging process of urban aerosols, intensive campaigns were conducted in the winter of 2010 and 2013 at an urban site in Beijing. An Aerodyne high resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) was deployed to measure chemical components of PM1, coupled with multiple state of the art online instruments. In the winter of 2010, PM1 mass concentrations changed dramatically along with meteorological conditions. The high average fraction (58%) of primary species in PM1 indicated that primary emissions usually played a more important role. Based on the source apportionment results, 45% POA are from non-fossil sources, contributed by cooking OA and biomass burning OA (BBOA). Cooking OA, accounting for 13-24% of OA, is an important non-fossil carbon source in all years of Beijing and should not be neglected. The fossil sources of POA include hydrocarbon-like OA from vehicle emissions and coal combustion OA (CCOA). The CCOA and BBOA were the two main contributors (57% of OA) for the highest OA concentrations (>100 μg m-3). In the winter of 2013, OOA (MO-OOA and LO-OOA), accounted for 50% of PM1, while (OOA+SNA) contributed 60-80%, suggesting that secondary formation played an important role in the PM pollution. In the winter of 2010 higher OOA/Ox (= NO2 + O3) ratio (0.49 μg m-3 ppb-1) than these ratios from western cities (0.03-0.16 μg m-3 ppb-1) was observed, which may be due to the aqueous reaction or extra SOA formation contributed by semi-VOCs from various primary sources (e.g., BBOA or CCOA). However, aqueous chemistry resulting in efficient secondary formation during occasional periods with high relative humidity may also contribute substantially to haze in winter. CCOA was only identified in winter due to domestic heating. These results signified that the comprehensive

  11. Using a moving measurement platform for determining the chemical composition of atmospheric aerosols between Moscow and Vladivostok

    Directory of Open Access Journals (Sweden)

    S. Kuokka

    2007-09-01

    Full Text Available The TROICA-9 expedition (Trans-Siberian Observations Into the Chemistry of the Atmosphere was carried out at the Trans-Siberian railway between Moscow and Vladivostok in October 2005. Measurements of aerosol physical and chemical properties were made from an observatory carriage connected to a passenger train. Black carbon (BC concentrations in fine particles (PM2.5, aerodynamic diameter <2.5 μm were measured with an aethalometer using a five-minute time resolution. Concentrations of inorganic ions and some organic compounds (Cl, NO3, SO42−, Na+, NH4+, K+, Ca2+, Mg2+, oxalate and methane sulphonate were measured continuously by using an on-line system with a 15-min time resolution. In addition, particle volume size distributions were determined for particles in the diameter range 3–850 nm using a 10-min time resolution. The continuous measurements were completed with 24-h PM2.5 filter samples stored in a refrigerator and analyzed later in a chemical laboratory. The analyses included the mass concentrations of PM2.5, ions, monosaccharide anhydrides (levoglucosan, galactosan and mannosan and trace elements (Al, As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Sb, V and Zn. The mass concentrations of PM2.5 varied in the range of 4.3–34.8 μg m−3 with an average of 21.6 μg m−3. Fine particle mass consisted mainly of BC (average 27.6%, SO42− (13.0%, NH4+ (4.1% and NO3 (1.4%. One of the major constituents was obviously organic carbon which was not determined. The contribution of BC was high compared with other studies made in Europe and Asia. High concentrations of ions, BC and particle volume were observed between Moscow and roughly 4000 km east of it, as well as close to Vladivostok

  12. Chemical composition, microstructure, and hygroscopic properties of aerosol particles at the Zotino Tall Tower Observatory (ZOTTO), Siberia, during a summer campaign

    Science.gov (United States)

    Mikhailov, E. F.; Mironov, G. N.; Pöhlker, C.; Chi, X.; Krüger, M. L.; Shiraiwa, M.; Förster, J.-D.; Pöschl, U.; Vlasenko, S. S.; Ryshkevich, T. I.; Weigand, M.; Kilcoyne, A. L. D.; Andreae, M. O.

    2015-08-01

    In this study we describe the hygroscopic properties of accumulation- and coarse-mode aerosol particles sampled at the Zotino Tall Tower Observatory (ZOTTO) in central Siberia (61° N, 89° E) from 16 to 21 June 2013. The hygroscopic growth measurements were supplemented with chemical analyses of the samples, including inorganic ions and organic/elemental carbon. In addition, the microstructure and chemical compositions of aerosol particles were analyzed by x-ray micro-spectroscopy (STXM-NEXAFS) and transmission electron microscopy (TEM). A mass closure analysis indicates that organic carbon accounted for 61 and 38 % of particulate matter (PM) in the accumulation mode and coarse mode, respectively. The water-soluble fraction of organic matter was estimated to be 52 and 8 % of PM in these modes. Sulfate, predominantly in the form of ammoniated sulfate, was the dominant inorganic component in both size modes: ~ 34 % in the accumulation mode vs. ~ 47 % in the coarse mode. The hygroscopic growth measurements were conducted with a filter-based differential hygroscopicity analyzer (FDHA) over the range of 5-99.4 % RH in the hydration and dehydration operation modes. The FDHA study indicates that both accumulation and coarse modes exhibit pronounced water uptake approximately at the same relative humidity (RH), starting at ~ 70 %, while efflorescence occurred at different humidities, i.e., at ~ 35 % RH for submicron particles vs. ~ 50 % RH for supermicron particles. This ~ 15 % RH difference was attributed to higher content of organic material in the submicron particles, which suppresses water release in the dehydration experiments. The kappa mass interaction model (KIM) was applied to characterize and parameterize non-ideal solution behavior and concentration-dependent water uptake by atmospheric aerosol samples in the 5-99.4 % RH range. Based on KIM, the volume-based hygroscopicity parameter, κv, was calculated. The κv,ws value related to the water-soluble (ws

  13. Aerosols in Northern Morocco: Input pathways and their chemical fingerprint

    Science.gov (United States)

    Benchrif, A.; Guinot, B.; Bounakhla, M.; Cachier, H.; Damnati, B.; Baghdad, B.

    2018-02-01

    The Mediterranean basin is one of the most sensitive regions in the world regarding climate change and air quality. Deserts and marine aerosols combine with combustion aerosols from maritime traffic, large urban centers, and at a larger scale from populated industrialized regions in Europe. From Tetouan city located in the North of Morocco, we attempted to better figure out the main aerosol transport pathways and their respective aerosol load and chemical profile by examining air mass back trajectory patterns and aerosol chemical compositions from May 2011 to April 2012. The back trajectory analysis throughout the sampling period led to four clusters, for which meteorological conditions and aerosol chemical characteristics have been investigated. The most frequent cluster (CL3: 39%) corresponds to polluted air masses coming from the Mediterranean Basin, characterized by urban and marine vessels emissions out of Spain and of Northern Africa. Two other polluted clusters were characterized. One is of local origin (CL1: 22%), with a marked contribution from urban aerosols (Rabat, Casablanca) and from biomass burning aerosols. The second (CL2: 32%) defines air masses from the near Atlantic Ocean, affected by pollutants emitted from the Iberian coast. A fourth cluster (CL4: 7%) is characterized by rather clean, fast and rainy oceanic air masses, influenced during their last 24 h before reaching Tetouan by similar sources with those affecting CL2, but to a lesser extent. The chemical data show that carbonaceous species are found in the fine aerosols fraction and are generally from local primary sources (low OC/EC) rather than long-range transported. In addition to fresh traffic and maritime vessel aerosols, our results suggest the contribution of local biomass burning.

  14. Effect of oxidant concentration, exposure time, and seed particles on secondary organic aerosol chemical composition and yield

    Directory of Open Access Journals (Sweden)

    A. T. Lambe

    2015-03-01

    This similarity in turn suggests that both in the flow reactor and in chambers, SOA chemical composition at low OH exposure is governed primarily by gas-phase OH oxidation of the precursors rather than heterogeneous oxidation of the condensed particles. In general, SOA yields measured in the flow reactor are lower than measured in chambers for the range of equivalent OH exposures that can be measured in both the flow reactor and chambers. The influence of sulfate seed particles on isoprene SOA yield measurements was examined in the flow reactor. The studies show that seed particles increase the yield of SOA produced in flow reactors by a factor of 3 to 5 and may also account in part for higher SOA yields obtained in the chambers, where seed particles are routinely used.

  15. Applicability of a two-step laser desorption-ionization aerosol time-of-flight mass spectrometer for determination of chemical composition of ultrafine aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Laitinen, T.

    2013-11-01

    This thesis is based on the construction of a two-step laser desorption-ionization aerosol time-of-flight mass spectrometer (laser AMS), which is capable of measuring 10 to 50 nm aerosol particles collected from urban and rural air at-site and in near real time. The operation and applicability of the instrument was tested with various laboratory measurements, including parallel measurements with filter collection/chromatographic analysis, and then in field experiments in urban environment and boreal forest. Ambient ultrafine aerosol particles are collected on a metal surface by electrostatic precipitation and introduced to the time-of-flight mass spectrometer (TOF-MS) with a sampling valve. Before MS analysis particles are desorbed from the sampling surface with an infrared laser and ionized with a UV laser. The formed ions are guided to the TOF-MS by ion transfer optics, separated according to their m/z ratios, and detected with a micro channel plate detector. The laser AMS was used in urban air studies to quantify the carbon cluster content in 50 nm aerosol particles. Standards for the study were produced from 50 nm graphite particles, suspended in toluene, with 72 hours of high power sonication. The results showed the average amount of carbon clusters (winter 2012, Helsinki, Finland) in 50 nm particles to be 7.2% per sample. Several fullerenes/fullerene fragments were detected during the measurements. In boreal forest measurements, the laser AMS was capable of detecting several different organic species in 10 to 50 nm particles. These included nitrogen-containing compounds, carbon clusters, aromatics, aliphatic hydrocarbons, and oxygenated hydrocarbons. A most interesting event occurred during the boreal forest measurements in spring 2011 when the chemistry of the atmosphere clearly changed during snow melt. On that time concentrations of laser AMS ions m/z 143 and 185 (10 nm particles) increased dramatically. Exactly at the same time, quinoline concentrations

  16. Chemical composition of cigarette smoke

    Energy Technology Data Exchange (ETDEWEB)

    Guerin, M. R.

    1979-01-01

    Cigarette smoke is a concentrated aerosol of liquid particles suspended in an atmosphere consisting mainly of nitrogen, oxygen, and carbon dioxide. While the precise chemical composition of the particulate and gaseous phases is dependent on the characteristics of the cigarette and the manner in which it is smoked, both phases contain tens of hundreds of individual constitutents. Notable among potentially hazardous constituents of smoke are tar, nicotine, carbon monoxide, nitric oxide, hydrogen cyanide, acrolein, benzo(a)pyrene, and N-nitrosamines.

  17. The effect of meteorological and chemical factors on the agreement between observations and predictions of fine aerosol composition in southwestern Ontario during BAQS-Met

    Directory of Open Access Journals (Sweden)

    M. Z. Markovic

    2011-04-01

    Full Text Available The Border Air Quality and Meteorology Study (BAQS-Met was an intensive, collaborative field campaign during the summer of 2007 that investigated the effects of transboundary pollution, local pollution, and local meteorology on air quality in southwestern Ontario. This analysis focuses on the measurements of the inorganic constituents of particulate matter with diameter of less than 1 μm (PM1, with a specific emphasis on nitrate. We evaluate the ability of AURAMS, Environment Canada's chemical transport model, to represent regional air pollution in SW Ontario by comparing modelled aerosol inorganic chemical composition with measurements from Aerosol Mass Spectrometers (AMS onboard the National Research Council (NRC of Canada Twin Otter aircraft and at a ground site in Harrow, ON. The agreement between modelled and measured pNO3 at the ground site (observed mean (Mobs = 0.50 μg m−3; modelled mean (Mmod = 0.58 μg m−3; root mean square error (RSME = 1.27 μg m−3 was better than aloft (Mobs = 0.32 μg m−3; Mmod = 0.09 μg m−3; RSME = 0.48 μg m−3. Possible reasons for discrepancies include errors in (i emission inventories, (ii atmospheric chemistry, (iii predicted meteorological parameters, or (iv gas/particle thermodynamics in the model framework. Using the inorganic thermodynamics model, ISORROPIA, in an offline mode, we find that the assumption of thermodynamic equilibrium is consistent with observations of gas and particle composition at Harrow. We develop a framework to assess the sensitivity of PM1 nitrate to meteorological and chemical parameters and find that errors in both the predictions of relative humidity and free ammonia (FA ≡ NH3(g + pNH4+ − 2 · pSO42- are responsible for

  18. Aerosol Chemical Mass Closure during the EUROTRAC-2 AEROSOL Intercomparison 2000

    Czech Academy of Sciences Publication Activity Database

    Maenhaut, W.; Schwarz, Jaroslav; Cafmeyer, J.; Chi, X.

    2002-01-01

    Roč. 186, - (2002), s. 233-237 ISSN 0168-583X Institutional research plan: CEZ:AV0Z4072921 Keywords : ion chromatography * chemical composition * atmospheric aerosols Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.158, year: 2002

  19. Fourteen months of on-line measurements of the non-refractory submicron aerosol at the Jungfraujoch (3580 m a.s.l.) - chemical composition, origins and organic aerosol sources

    Science.gov (United States)

    Fröhlich, R.; Cubison, M. J.; Slowik, J. G.; Bukowiecki, N.; Canonaco, F.; Croteau, P. L.; Gysel, M.; Henne, S.; Herrmann, E.; Jayne, J. T.; Steinbacher, M.; Worsnop, D. R.; Baltensperger, U.; Prévôt, A. S. H.

    2015-10-01

    Chemically resolved (organic, nitrate, sulfate, ammonium) data of non-refractory submicron (NR-PM1) aerosol from the first long-term deployment (27 July 2012 to 02 October 2013) of a time-of-flight aerosol chemical speciation monitor (ToF-ACSM) at the Swiss high-altitude site Jungfraujoch (JFJ; 3580 m a.s.l.) are presented. Besides total mass loadings, diurnal variations and relative species contributions during the different meteorological seasons, geographical origin and sources of organic aerosol (OA) are discussed. Backward transport simulations show that the highest (especially sulfate) concentrations of NR-PM1 were measured in air masses advected to the station from regions south of the JFJ, while lowest concentrations were seen from western regions. OA source apportionment for each season was performed using the Source Finder (SoFi) interface for the multilinear engine (ME-2). OA was dominated in all seasons by oxygenated OA (OOA, 71-88 %), with lesser contributions from local tourism-related activities (7-12 %) and hydrocarbon-like OA related to regional vertical transport (3-9 %). In summer the OOA can be separated into a background low-volatility OA (LV-OOA I, possibly associated with long-range transport) and a slightly less oxidised low-volatility OA (LV-OOA II) associated with regional vertical transport. Wood burning-related OA associated with regional transport was detected during the whole winter 2012/2013 and during rare events in summer 2013, in the latter case attributed to small-scale transport for the surrounding valleys. Additionally, the data were divided into periods with free tropospheric (FT) conditions and periods with planetary boundary layer (PBL) influence, enabling the assessment of the composition for each. Most nitrate and part of the OA are injected from the regional PBL, while sulfate is mainly produced in the FT. The south/north gradient of sulfate is also pronounced in FT air masses (sulfate mass fraction from the south: 45

  20. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean-potential impacts

    NARCIS (Netherlands)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier Gon, H.A.C. van der

    2010-01-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size

  1. Chemically aged and mixed aerosols over the Central Atlantic Ocean - Potential impacts

    NARCIS (Netherlands)

    Astitha, M.; Kallos, G.; Spyrou, C.; O'Hirok, W.; Lelieveld, J.; Denier Gon, H.A.C. van der

    2010-01-01

    Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size

  2. Influence of trace aromatics on the chemical growth mechanisms of Titan aerosol analogues

    Science.gov (United States)

    Gautier, Thomas; Sebree, Joshua A.; Li, Xiang; Pinnick, Veronica T.; Grubisic, Andrej; Loeffler, Mark J.; Getty, Stephanie A.; Trainer, Melissa G.; Brinckerhoff, William B.

    2017-06-01

    The chemical structure and formation pathways of Titan aerosols remain largely unknown. In this work, we studied the effect of trace aromatics on the chemical composition and formation pathways of laboratory analogues of Titan's organic aerosols. The aerosol analogues were produced using four different trace aromatic molecules, comprised of one or two aromatic rings, each with or without a nitrogen heteroatom. Samples were then analyzed by laser desorption/ionization Mass Spectrometry (LDMS), revealing a high variability in the sample composition depending on the trace aromatic used. Our work reveals that the final chemical structure of the aerosols depends strongly on the number of aromatic rings in the trace molecule, leading either to a polymeric or to a random co-polymeric growth of the sample. These different chemical structures can affect the physical properties of the aerosol. Future analysis of Titan's aerosols using better resolution could potentially determine whether either of the growth hypotheses are preferred.

  3. Chemical Thermodynamics of Aqueous Atmospheric Aerosols: Modeling and Microfluidic Measurements

    Science.gov (United States)

    Nandy, L.; Dutcher, C. S.

    2017-12-01

    Accurate predictions of gas-liquid-solid equilibrium phase partitioning of atmospheric aerosols by thermodynamic modeling and measurements is critical for determining particle composition and internal structure at conditions relevant to the atmosphere. Organic acids that originate from biomass burning, and direct biogenic emission make up a significant fraction of the organic mass in atmospheric aerosol particles. In addition, inorganic compounds like ammonium sulfate and sea salt also exist in atmospheric aerosols, that results in a mixture of single, double or triple charged ions, and non-dissociated and partially dissociated organic acids. Statistical mechanics based on a multilayer adsorption isotherm model can be applied to these complex aqueous environments for predictions of thermodynamic properties. In this work, thermodynamic analytic predictive models are developed for multicomponent aqueous solutions (consisting of partially dissociating organic and inorganic acids, fully dissociating symmetric and asymmetric electrolytes, and neutral organic compounds) over the entire relative humidity range, that represent a significant advancement towards a fully predictive model. The model is also developed at varied temperatures for electrolytes and organic compounds the data for which are available at different temperatures. In addition to the modeling approach, water loss of multicomponent aerosol particles is measured by microfluidic experiments to parameterize and validate the model. In the experimental microfluidic measurements, atmospheric aerosol droplet chemical mimics (organic acids and secondary organic aerosol (SOA) samples) are generated in microfluidic channels and stored and imaged in passive traps until dehydration to study the influence of relative humidity and water loss on phase behavior.

  4. Relating hygroscopicity and optical properties to chemical composition and structure of secondary organic aerosol particles generated from the ozonolysis of α-pinene

    Science.gov (United States)

    Denjean, C.; Formenti, P.; Picquet-Varrault, B.; Pangui, E.; Zapf, P.; Katrib, Y.; Giorio, C.; Tapparo, A.; Monod, A.; Temime-Roussel, B.; Decorse, P.; Mangeney, C.; Doussin, J. F.

    2015-03-01

    Secondary organic aerosol (SOA) were generated from the ozonolysis of α-pinene in the CESAM (French acronym for Experimental Multiphasic Atmospheric Simulation Chamber) simulation chamber. The SOA formation and aging were studied by following their optical, hygroscopic and chemical properties. The optical properties were investigated by determining the particle complex refractive index (CRI). The hygroscopicity was quantified by measuring the effect of relative humidity (RH) on the particle size (size growth factor, GF) and on the scattering coefficient (scattering growth factor, f(RH)). The oxygen to carbon atomic ratios (O : C) of the particle surface and bulk were used as a sensitive parameter to correlate the changes in hygroscopic and optical properties of the SOA composition during their formation and aging in CESAM. The real CRI at 525 nm wavelength decreased from 1.43-1.60 (±0.02) to 1.32-1.38 (±0.02) during the SOA formation. The decrease in the real CRI correlated to the O : C decrease from 0.68 (±0.20) to 0.55 (±0.16). In contrast, the GF remained roughly constant over the reaction time, with values of 1.02-1.07 (±0.02) at 90% (±4.2%) RH. Simultaneous measurements of O : C of the particle surface revealed that the SOA was not composed of a homogeneous mixture, but contained less oxidised species at the surface which may limit water absorption. In addition, an apparent change in both mobility diameter and scattering coefficient with increasing RH from 0 to 30% was observed for SOA after 14 h of reaction. We postulate that this change could be due to a change in the viscosity of the SOA from a predominantly glassy state to a predominantly liquid state.

  5. Nonurban aerosol composition near Beijing, China

    International Nuclear Information System (INIS)

    Winchester, J.W.; Darzi, M.; Leslie, A.C.D.; Wang, M.; Ren, L.; Lue, W.; Hansson, H.C.; Lannefors, H.

    1981-01-01

    The urban aerosol plume of Beijing has been sampled as a function of particle size and time at a site 110 km NE of the city, 9-16 March 1980, during the season for space heating by coal combustion. A fine particle mode, contained mostly in the 0.5-2 μm aerodynamic diameter range, could be distinguished from a coarse mode of dust having terrestrial composition by reference to the size distribution of Ca. Elemental composition determined by PIXE analysis for 17 elements, including S and heavy metals, indicates fine mode concentrations higher than background aerosol but with a similarity to cleaner air with respect to both relative elemental abundances and elemental particle size distributions. The results indicate that elements contained in aged coal combustion aerosol occur mainly in 0.5-2 μMAD particles, not smaller, and the aerosol is not substantially different from background aerosol except in overall concentrations. This result may simplify the prediction of the impact of coal combustion on air quality. The results also hint that the background aerosol in more remote continental areas may also be combustion derived. (orig.)

  6. Aerosol simulation including chemical and nuclear reactions

    International Nuclear Information System (INIS)

    Marwil, E.S.; Lemmon, E.C.

    1985-01-01

    The numerical simulation of aerosol transport, including the effects of chemical and nuclear reactions presents a challenging dynamic accounting problem. Particles of different sizes agglomerate and settle out due to various mechanisms, such as diffusion, diffusiophoresis, thermophoresis, gravitational settling, turbulent acceleration, and centrifugal acceleration. Particles also change size, due to the condensation and evaporation of materials on the particle. Heterogeneous chemical reactions occur at the interface between a particle and the suspending medium, or a surface and the gas in the aerosol. Homogeneous chemical reactions occur within the aersol suspending medium, within a particle, and on a surface. These reactions may include a phase change. Nuclear reactions occur in all locations. These spontaneous transmutations from one element form to another occur at greatly varying rates and may result in phase or chemical changes which complicate the accounting process. This paper presents an approach for inclusion of these effects on the transport of aerosols. The accounting system is very complex and results in a large set of stiff ordinary differential equations (ODEs). The techniques for numerical solution of these ODEs require special attention to achieve their solution in an efficient and affordable manner. 4 refs

  7. Chemical composition of wildland fire emissions

    Science.gov (United States)

    Shawn P. Urbanski; Wei Min Hao; Stephen Baker

    2009-01-01

    Wildland fires are major sources of trace gases and aerosol, and these emissions are believed to significantly influence the chemical composition of the atmosphere and the earth's climate system. The wide variety of pollutants released by wildland fire include greenhouse gases, photochemically reactive compounds, and fine and coarse particulate matter. Through...

  8. Computing Equilibrium Chemical Compositions

    Science.gov (United States)

    Mcbride, Bonnie J.; Gordon, Sanford

    1995-01-01

    Chemical Equilibrium With Transport Properties, 1993 (CET93) computer program provides data on chemical-equilibrium compositions. Aids calculation of thermodynamic properties of chemical systems. Information essential in design and analysis of such equipment as compressors, turbines, nozzles, engines, shock tubes, heat exchangers, and chemical-processing equipment. CET93/PC is version of CET93 specifically designed to run within 640K memory limit of MS-DOS operating system. CET93/PC written in FORTRAN.

  9. Chemical composition of aerosol, sea fog, and rainwater in the marine boundary layer of the northwestern North Pacific and its marginal seas

    Science.gov (United States)

    Sasakawa, Motoki; Uematsu, Mitsuo

    2002-12-01

    Samples of aerosol, sea fog, and rainwater were collected during a research cruise in the northwestern North Pacific, the Sea of Okhotsk, and the Sea of Japan in the summer of 1998. High concentrations of NO3-, nss-SO42- and NH4+ in aerosol over the Sea of Japan suggest that anthropogenic substances were transported to this region. Although the Sea of Okhotsk was covered with a clean marine air mass, the concentration of nss-SO42- was comparatively high in the aerosol samples. This nss-SO42- is probably of marine biogenic origin. The pH values of fogwater samples were measured to be fogwater collected over the Sea of Japan were higher than those in the other regions, suggesting that the sea fog scavenged anthropogenic substances. The concentration of nss-SO42- in fogwater over the Sea of Okhotsk was equivalent to that over the Sea of Japan, probably because nss-SO42- and SO2 of marine biogenic origin were scavenged by the sea fog over the Sea of Okhotsk. The pH values of rainwater samples ranged from 6.1 to 7.2 during the cruise, and acidification of the rain was not significant. The concentrations of nss-Ca2+ in the rainwater were higher than those of the fogwater. This suggests that the rain-scavenged continental CaCO3 may have existed above the lower marine boundary layer, where sea fog appeared. Comparisons of the composition of aerosol and fogwater indicated that coarse particles, such as sea salts predominantly act as condensation nuclei of sea fog droplets rather than fine particles such as (NH4)2SO4.

  10. Variations of aerosol size distribution, chemical composition and optical properties from roadside to ambient environment: A case study in Hong Kong, China

    Science.gov (United States)

    Zhang, Qian; Ning, Zhi; Shen, Zhenxing; Li, Guoliang; Zhang, Junke; Lei, Yali; Xu, Hongmei; Sun, Jian; Zhang, Leiming; Westerdahl, Dane; Gali, Nirmal Kumar; Gong, Xuesong

    2017-10-01

    This study investigated the ;roadside-to-ambient; evolution of particle physicochemical and optical properties in typical urban atmospheres of Hong Kong through collection of chemically-resolved PM2.5 data and PM2.5 size distribution at a roadside and an ambient site. Roadside particle size distribution showed typical peaks in the nuclei mode (30-40 nm) while ambient measurements peaked in the Aitken mode (50-70 nm), revealing possible condensation and coagulation growth of freshly emitted particles during aging processes. Much higher levels of anthropogenic chemical components, i.e. nitrate, sulfate, ammonium, organic carbon (OC) and elemental carbon (EC), but lower levels of OC/EC and secondary inorganic aerosols (SIA)/EC ratios appeared in roadside than ambient particles. The high OC/EC and SIA/EC ratios in ambient particles implied high contributions from secondary aerosols. Black carbon (BC), a strong light absorbing material, showed large variations in optical properties when mixed with other inorganic and organic components. Particle-bound polycyclic aromatic hydrocarbons (p-PAHs), an indicator of brown carbon (BrC), showed significant UV-absorbing ability. The average BC and p-PAHs concentrations were 3.8 and 87.6 ng m-3, respectively, at the roadside, but were only 1.5 and 18.1 ng m-3 at the ambient site, suggesting BC and p-PAHs concentrations heavily driven by traffic emissions. In contrast, PM2.5 UV light absorption coefficients (babs-BrC,370nm) at the ambient site (4.2 Mm-1) and at the roadside site (4.1 Mm-1) were similar, emphasizing that particle aging processes enhanced UV light-absorbing properties, a conclusion that was also supported by the finding that the Absorption Ångström coefficient (AAC) value at UV wavelengths (AAC_UV band) at the ambient site were ∼1.7 times higher than that at the roadside. Both aqueous reaction and photochemically produced secondary organic aerosol (SOA) for ambient aerosols contributed to the peak values of babs

  11. Aerosol composition and sources during the Chinese Spring Festival: fireworks, secondary aerosol, and holiday effects

    Science.gov (United States)

    Jiang, Q.; Sun, Y. L.; Wang, Z.; Yin, Y.

    2015-06-01

    Aerosol particles were characterized by an Aerodyne aerosol chemical speciation monitor along with various collocated instruments in Beijing, China, to investigate the role of fireworks (FW) and secondary aerosol in particulate pollution during the Chinese Spring Festival of 2013. Three FW events, exerting significant and short-term impacts on fine particles (PM2.5), were observed on the days of Lunar New Year, Lunar Fifth Day, and Lantern Festival. The FW were shown to have a large impact on non-refractory potassium, chloride, sulfate, and organics in submicron aerosol (PM1), of which FW organics appeared to be emitted mainly in secondary, with its mass spectrum resembling that of secondary organic aerosol (SOA). Pollution events (PEs) and clean periods (CPs) alternated routinely throughout the study. Secondary particulate matter (SPM = SOA + sulfate + nitrate + ammonium) dominated the total PM1 mass on average, accounting for 63-82% during nine PEs in this study. The elevated contributions of secondary species during PEs resulted in a higher mass extinction efficiency of PM1 (6.4 m2 g-1) than during CPs (4.4 m2 g-1). The Chinese Spring Festival also provides a unique opportunity to study the impact of reduced anthropogenic emissions on aerosol chemistry in the city. Primary species showed ubiquitous reductions during the holiday period with the largest reduction being in cooking organic aerosol (OA; 69%), in nitrogen monoxide (54%), and in coal combustion OA (28%). Secondary sulfate, however, remained only slightly changed, and the SOA and the total PM2.5 even slightly increased. Our results have significant implications for controlling local primary source emissions during PEs, e.g., cooking and traffic activities. Controlling these factors might have a limited effect on improving air quality in the megacity of Beijing, due to the dominance of SPM from regional transport in aerosol particle composition.

  12. Influence of physical properties and chemical composition of sample on formation of aerosol particles generated by nanosecond laser ablation at 213 nm

    Energy Technology Data Exchange (ETDEWEB)

    Hola, Marketa, E-mail: mhola@sci.muni.c [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Konecna, Veronika [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic); Mikuska, Pavel [Institute of Analytical Chemistry, Academy of Sciences of the Czech Republic v.v.i., Veveri 97, 602 00 Brno (Czech Republic); Kaiser, Jozef [Institute of Physical Engineering, Faculty of Mechanical Engineering, Brno University of Technology, Technicka 2896/2, 616 69 Brno (Czech Republic); Kanicky, Viktor [Department of Chemistry, Faculty of Science, Masaryk University, Kotlarska 2, 611 37 Brno (Czech Republic)

    2010-01-15

    The influence of sample properties and composition on the size and concentration of aerosol particles generated by nanosecond Nd:YAG laser ablation at 213 nm was investigated for three sets of different materials, each containing five specimens with a similar matrix (Co-cemented carbides with a variable content of W and Co, steel samples with minor differences in elemental content and silica glasses with various colors). The concentration of ablated particles (particle number concentration, PNC) was measured in two size ranges (10-250 nm and 0.25-17 mum) using an optical aerosol spectrometer. The shapes and volumes of the ablation craters were obtained by Scanning Electron Microscopy (SEM) and by an optical profilometer, respectively. Additionally, the structure of the laser-generated particles was studied after their collection on a filter using SEM. The results of particle concentration measurements showed a significant dominance of particles smaller than 250 nm in comparison with larger particles, irrespective of the kind of material. Even if the number of particles larger than 0.25 mum is negligible (up to 0.1%), the volume of large particles that left the ablation cell can reach 50% of the whole particle volume depending on the material. Study of the ablation craters and the laser-generated particles showed a various number of particles produced by different ablation mechanisms (particle splashing or condensation), but the similar character of released particles for all materials was observed by SEM after particle collection on the membrane filter. The created aerosol always consisted of two main structures - spherical particles with diameters from tenths to units of micrometers originally ejected from the molten surface layer and mum-sized 'fibres' composed of primary agglomerates with diameters in the range between tens and hundreds of nanometers. The shape and structure of ablation craters were in good agreement with particle concentration

  13. Chemical, physical, and optical evolution of biomass burning aerosols: a case study

    Science.gov (United States)

    Adler, G.; Flores, J. M.; Abo Riziq, A.; Borrmann, S.; Rudich, Y.

    2011-02-01

    In-situ chemical composition measurements of ambient aerosols have been used for characterizing the evolution of submicron aerosols from a large anthropogenic biomass burning (BB) event in Israel. A high resolution Time of Flight Aerosol Mass Spectrometer (HR-RES-TOF-AMS) was used to follow the chemical evolution of BB aerosols during a night-long, extensive nationwide wood burning event and during the following day. While these types of extensive BB events are not common in this region, burning of agricultural waste is a common practice. The aging process of the BB aerosols was followed through their chemical, physical and optical properties. Mass spectrometric analysis of the aerosol organic component showed that aerosol aging is characterized by shifting from less oxidized fresh BB aerosols to more oxidized aerosols. Evidence for aerosol aging during the day following the BB event was indicated by an increase in the organic mass, its oxidation state, the total aerosol concentration, and a shift in the modal particle diameter. The effective broadband refractive index (EBRI) was derived using a white light optical particle counter (WELAS). The average EBRI for a mixed population of aerosols dominated by open fires was m = 1.53(±0.03) + 0.07i(±0.03), during the smoldering phase of the fires we found the EBRI to be m = 1.54(±0.01) + 0.04i(±0.01) compared to m = 1.49(±0.01) + 0.02i(±0.01) of the aged aerosols during the following day. This change indicates a decrease in the overall aerosol absorption and scattering. Elevated levels of particulate Polycyclic Aromatic Hydrocarbons (PAHs) were detected during the entire event, which suggest possible implications for human health during such extensive event.

  14. Chemical vapor composites (CVC)

    International Nuclear Information System (INIS)

    Reagan, P.

    1993-01-01

    The Chemical Vapor Composite, CVC trademark , process fabricates composite material by simply mixing particles (powders and or fibers) with CVD reactants which are transported and co-deposited on a hot substrate. A key feature of the CVC process is the control provided by varing the density, geometry (aspect ratio) and composition of the entrained particles in the matrix material, during deposition. The process can fabricate composite components to net shape (± 0.013 mm) on a machined substrate in a single step. The microstructure of the deposit is described and several examples of different types of particles in the matrix are illustrated. Mechanical properties of SiC composite material fabricated with SiC powder and fiber will be presented. Several examples of low cost ceramic composite products will be shown. (orig.)

  15. Single particle composition measurements of artificial Calcium Carbonate aerosols

    Science.gov (United States)

    Zorn, S. R.; Mentel, T. F.; Schwinger, T.; Croteau, P. L.; Jayne, J.; Worsnop, D. R.; Trimborn, A.

    2012-12-01

    Mineral dust, with an estimated total source from natural and anthropogenic emissions of up to 2800 Tg/yr, is one of the two largest contributors to total aerosol mass, with only Sea salt having a similar source strength (up to 2600 Tg/yr). The composition of dust particles varies strongly depending on the production process and, most importantly, the source location. Therefore, the composition of single dust particles can be used both to trace source regions of air masses as well as to identify chemical aging processes. Here we present results of laboratory studies on generating artificial calcium carbonate (CaCO3) particles, a model compound for carbonaceous mineral dust particles. Particles were generated by atomizing an aqueous hydrogen carbonate solution. Water was removed using a silica diffusion dryer., then the particles were processed in an oven at temperatures up to 900°C, converting the hydrogen carbonate to its anhydrous form. The resulting aerosol was analyzed using an on-line single particle laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF). The results confirm the conversion to calcium carbonate, and validate that the produced particles indeed can be used as a model compound for carbonaceous dust aerosols.

  16. Modeling comprehensive chemical composition of weathered oil following a marine spill to predict ozone and potential secondary aerosol formation and constrain transport pathways

    Science.gov (United States)

    Drozd, Greg T.; Worton, David R.; Aeppli, Christoph; Reddy, Christopher M.; Zhang, Haofei; Variano, Evan; Goldstein, Allen H.

    2015-11-01

    Releases of hydrocarbons from oil spills have large environmental impacts in both the ocean and atmosphere. Oil evaporation is not simply a mechanism of mass loss from the ocean, as it also causes production of atmospheric pollutants. Monitoring atmospheric emissions from oil spills must include a broad range of volatile organic compounds (VOC), including intermediate-volatile and semivolatile compounds (IVOC, SVOC), which cause secondary organic aerosol (SOA) and ozone production. The Deepwater Horizon (DWH) disaster in the northern Gulf of Mexico during Spring/Summer of 2010 presented a unique opportunity to observe SOA production due to an oil spill. To better understand these observations, we conducted measurements and modeled oil evaporation utilizing unprecedented comprehensive composition measurements, achieved by gas chromatography with vacuum ultraviolet time of flight mass spectrometry (GC-VUV-HR-ToFMS). All hydrocarbons with 10-30 carbons were classified by degree of branching, number of cyclic rings, aromaticity, and molecular weight; these hydrocarbons comprise ˜70% of total oil mass. Such detailed and comprehensive characterization of DWH oil allowed bottom-up estimates of oil evaporation kinetics. We developed an evaporative model, using solely our composition measurements and thermodynamic data, that is in excellent agreement with published mass evaporation rates and our wind-tunnel measurements. Using this model, we determine surface slick samples are composed of oil with a distribution of evaporative ages and identify and characterize probable subsurface transport of oil.

  17. Atmo-metabolomics: a new measurement approach for investigating aerosol composition and ecosystem functioning.

    Science.gov (United States)

    Rivas-Ubach, A.; Liu, Y.; Sardans, J.; Tfaily, M. M.; Kim, Y. M.; Bourrianne, E.; Paša-Tolić, L.; Penuelas, J.; Guenther, A. B.

    2016-12-01

    Aerosols play crucial roles in the processes controlling the composition of the atmosphere and the functioning of ecosystems. Gaining a deeper understanding of the chemical composition of aerosols is one of the major challenges for atmospheric and climate scientists and is beginning to be recognized as important for ecological research. Better comprehension of aerosol chemistry can potentially provide valuable information on atmospheric processes such as oxidation of organics and the production of cloud condensation nuclei as well as provide an approximation of the general status of an ecosystem through the measurement of certain stress biomarkers. In this study, we describe an efficient aerosol sampling method, the metabolite extraction and the analytical procedures for the chemical characterization of aerosols, namely, the atmo-metabolome. We used mass spectrometry (MS) coupled to liquid chromatography (LC-MS), gas chromatography (GC-MS) and Fourier transform ion cyclotron resonance (FT-ICR-MS) to characterize the atmo-metabolome of two marked seasons; spring and summer. Our sampling and extraction methods demonstrated to be suitable for aerosol chemical characterization with any of the analytical platforms used in this study. The atmo-metabolome between spring and summer showed overall statistically differences. We identified several metabolites that can be attributed to pollen and other plant-related aerosols. Spring aerosols exhibit higher concentrations of metabolites linked to higher plant activity while summer samples had higher concentrations of metabolites that may reflect certain oxidative stresses in primary producers. Moreover, the elemental composition of aerosols showed clear different between seasons. Summer aerosols were generally higher in molecular weight and with higher O/C ratios, indicating higher oxidation levels and condensation of compounds relative to spring. Our method represents an advanced approach for characterizing the composition of

  18. Elemental composition and oxidation of chamber organic aerosol

    Directory of Open Access Journals (Sweden)

    P. S. Chhabra

    2011-09-01

    Full Text Available Recently, graphical representations of aerosol mass spectrometer (AMS spectra and elemental composition have been developed to explain the oxidative and aging processes of secondary organic aerosol (SOA. It has been shown previously that oxygenated organic aerosol (OOA components from ambient and laboratory data fall within a triangular region in the f44 vs. f43 space, where f44 and f43 are the ratios of the organic signal at m/z 44 and 43 to the total organic signal in AMS spectra, respectively; we refer to this graphical representation as the "triangle plot." Alternatively, the Van Krevelen diagram has been used to describe the evolution of functional groups in SOA. In this study we investigate the variability of SOA formed in chamber experiments from twelve different precursors in both "triangle plot" and Van Krevelen domains. Spectral and elemental data from the high-resolution Aerodyne aerosol mass spectrometer are compared to offline species identification analysis and FTIR filter analysis to better understand the changes in functional and elemental composition inherent in SOA formation and aging. We find that SOA formed under high- and low-NOx conditions occupy similar areas in the "triangle plot" and Van Krevelen diagram and that SOA generated from already oxidized precursors allows for the exploration of areas higher on the "triangle plot" not easily accessible with non-oxidized precursors. As SOA ages, it migrates toward the top of the triangle along a path largely dependent on the precursor identity, which suggests increasing organic acid content and decreasing mass spectral variability. The most oxidized SOA come from the photooxidation of methoxyphenol precursors which yielded SOA O/C ratios near unity. α-pinene ozonolysis and naphthalene photooxidation SOA systems have had the highest degree of mass closure in previous chemical characterization studies and also show the

  19. Sources and composition of urban aerosol particles

    Science.gov (United States)

    Vogt, M.; Johansson, C.; Mårtensson, M.; Struthers, H.; Ahlm, L.; Nilsson, D.

    2011-09-01

    From May 2008 to March 2009 aerosol emissions were measured using the eddy covariance method covering the size range 0.25 to 2.5 μm diameter (Dp) from a 105 m tower, in central Stockholm, Sweden. Supporting chemical aerosol data were collected at roof and street level. Results show that the inorganic fraction of sulfate, nitrate, ammonium and sea salt accounts for approximately 15% of the total aerosol mass removed at 0.6 μm Dp. Further heating to 300 °C caused very little additional losses road traffic (as inferred from the ratio of the incremental concentrations of nitrogen oxides (NOx) and BC measured on a densely trafficked street) and the fluxes of non-volatile material at tower level are in close agreement, suggesting a traffic source of BC. We have estimated the emission factors (EFs) for non-volatile particles <0.6 μm Dp to be 2.4±1.4 mg veh-1 km-1 based on either CO2 fluxes or traffic activity data. Light (LDV) and heavy duty vehicle (HDV) EFs were estimated using multiple linear regression and reveal that for non-volatile particulate matter in the 0.25 to 0.6 μm Dp range, the EFHDV is approximately twice as high as the EFLDV, the difference not being statistically significant.

  20. Modelling the chemically aged and mixed aerosols over the eastern central Atlantic Ocean – potential impacts

    Directory of Open Access Journals (Sweden)

    M. Astitha

    2010-07-01

    Full Text Available Detailed information on the chemical and physical properties of aerosols is important for assessing their role in air quality and climate. This work explores the origin and fate of continental aerosols transported over the Central Atlantic Ocean, in terms of chemical composition, number and size distribution, using chemistry-transport models, satellite data and in situ measurements. We focus on August 2005, a period with intense hurricane and tropical storm activity over the Atlantic Ocean. A mixture of anthropogenic (sulphates, nitrates, natural (desert dust, sea salt and chemically aged (sulphate and nitrate on dust aerosols is found entering the hurricane genesis region, most likely interacting with clouds in the area. Results from our modelling study suggest rather small amounts of accumulation mode desert dust, sea salt and chemically aged dust aerosols in this Atlantic Ocean region. Aerosols of smaller size (Aitken mode are more abundant in the area and in some occasions sulphates of anthropogenic origin and desert dust are of the same magnitude in terms of number concentrations. Typical aerosol number concentrations are derived for the vertical layers near shallow cloud formation regimes, indicating that the aerosol number concentration can reach several thousand particles per cubic centimetre. The vertical distribution of the aerosols shows that the desert dust particles are often transported near the top of the marine cloud layer as they enter into the region where deep convection is initiated. The anthropogenic sulphate aerosol can be transported within a thick layer and enter the cloud deck through multiple ways (from the top, the base of the cloud, and by entrainment. The sodium (sea salt related aerosol is mostly found below the cloud base. The results of this work may provide insights relevant for studies that consider aerosol influences on cloud processes and storm development in the Central Atlantic region.

  1. Physico-Chemical Evolution of Organic Aerosol from Wildfire Emissions

    Science.gov (United States)

    Croteau, P.; Jathar, S.; Akherati, A.; Galang, A.; Tarun, S.; Onasch, T. B.; Lewane, L.; Herndon, S. C.; Roscioli, J. R.; Yacovitch, T. I.; Fortner, E.; Xu, W.; Daube, C.; Knighton, W. B.; Werden, B.; Wood, E.

    2017-12-01

    Wildfires are the largest combustion-related source of carbonaceous emissions to the atmosphere; these include direct emissions of black carbon (BC), primary organic aerosol (POA) and semi-volatile, intermediate-volatility, and volatile organic compounds (SVOCs, IVOCs, and VOCs). However, there are large uncertainties surrounding the evolution of these carbonaceous emissions as they are physically and chemically transformed in the atmosphere. To understand these transformations, we performed sixteen experiments using an environmental chamber to simulate day- and night-time chemistry of gas- and aerosol-phase emissions from 6 different fuels at the Fire Laboratory in Missoula, MT. Across the test matrix, the experiments simulated 2 to 8 hours of equivalent day-time aging (with the hydroxyl radical and ozone) or several hours of night-time aging (with the nitrate radical). Aging resulted in an average organic aerosol (OA) mass enhancement of 28% although the full range of OA mass enhancements varied between -10% and 254%. These enhancement findings were consistent with chamber and flow reactor experiments performed at the Fire Laboratory in 2010 and 2012 but, similar to previous studies, offered no evidence to link the OA mass enhancement to fuel type or oxidant exposure. Experiments simulating night-time aging resulted in an average OA mass enhancement of 10% and subsequent day-time aging resulted in a decrease in OA mass of 8%. While small, for the first time, these experiments highlighted the continuous nature of the OA evolution as the wildfire smoke cycled through night- and day-time processes. Ongoing work is focussed on (i) quantifying bulk compositional changes in OA, (ii) comparing the near-field aging simulated in this work with far-field aging simulated during the same campaign (via a mini chamber and flow tube) and (iii) integrating wildfire smoke aging datasets over the past decade to examine the relationship between OA mass enhancement ratios, modified

  2. Chemical Properties of Brown Carbon Aerosol Generated at the Missoula Fire Sciences Laboratory

    Science.gov (United States)

    Washenfelder, R. A.; Womack, C.; Franchin, A.; Middlebrook, A. M.; Wagner, N.; Manfred, K.

    2017-12-01

    Aerosol scattering and absorption are still among the largest uncertainties in quantifying radiative forcing. Biomass burning is a major source of light-absorbing carbonaceous aerosol in the United States. These aerosol are generally classified into two categories: black carbon (graphitic-like aerosol that absorbs broadly across the ultraviolet and visible spectral regions) and brown carbon (organic aerosol that absorbs strongly in the ultraviolet and near-visible spectral regions). The composition, volatility, and chemical aging of brown carbon are poorly known, but are important to understanding its radiative effects. We deployed three novel instruments to the Missoula Fire Sciences Laboratory in 2016 to measure brown carbon absorption: a photoacoustic spectrometer, broadband cavity enhanced spectrometer, and particle-into-liquid sampler coupled to a liquid waveguide capillary cell. The instruments sampled from a shared inlet with well-characterized dilution and thermal denuding. We sampled smoke from 32 controlled burns of fuels relevant to western U.S. wildfires. We use these measurements to determine the volatility of water-soluble brown carbon, and compare this to the volatility of water-soluble organic aerosol and total organic aerosol. We further examine the wavelength-dependence of the water-soluble brown carbon absorption as a function of denuder temperature. Together this gives new information about the solubility, volatility, and chemical composition of brown carbon.

  3. XPS and EPXMA investigation and chemical speciation of aerosol samples formed in LWR core melting experiments

    International Nuclear Information System (INIS)

    Moers, H.; Jenett, H.; Kaufmann, R.; Klewe-Nebenius, H.; Pfennig, G.; Ache, H.J.

    1985-09-01

    Aerosol samples consisting of fission products and elements of light water reactor structural materials were collected during simulating in a laboratory scale the heat-up phase of a core melt accident. The aerosol particles were formed in a steam atmosphere at temperatures between 1200 and 1900 0 C of the melting charge. The investigation of the samples by use of X-ray photoelectron spectroscopy (XPS) permitted the chemical speciation of the detected aerosol constituents silver, cadmium, indium, tellurium, iodine, and cesium. A comparison of the elemental analysis results obtained from XPS with those achieved from electron probe X-ray micro analysis (EPXMA) revealed that aerosol particle surface and aerosol particle bulk are principally composed of the same elements and that these compositions vary with release temperature. In addition, quantitative differences between the composition of surface and bulk have only been observed for those aerosol samples which were collected at higher melting charge temperatures. In order to obtain direct information on chemical species below the surface selected samples were argon ion bombarded. Changes in composition and chemistry were monitored by XPS, and the results were interpreted in light of the effects, which were observed when appropriate standard samples were sputtered. (orig.) [de

  4. Mass and chemically speciated size distribution of Prague aerosol using an aerosol dryer - The influence of air mass origin

    Czech Academy of Sciences Publication Activity Database

    Schwarz, Jaroslav; Štefancová, Lucia; Maenhaut, W.; Smolík, Jiří; Ždímal, Vladimír

    2012-01-01

    Roč. 437, OCT 15 (2012), s. 348-362 ISSN 0048-9697 R&D Projects: GA ČR GA205/09/2055; GA ČR GAP209/11/1342; GA MŠk ME 941 Grant - others:SRF GU(BE) 01S01306 Institutional support: RVO:67985858 Keywords : atmospheric aerosols * mass size distribution * chemical composition Subject RIV: DI - Air Pollution ; Quality Impact factor: 3.258, year: 2012

  5. Chemical composition of patikaraparpam.

    Science.gov (United States)

    Saraswathy, A; Rani, M G; Susan, T; Purushothaman, K K

    1997-04-01

    Patikaraparpam, a Siddha formulation in prepared by trituration of potash alum with egg albumin followed by calcinatin. The three authentic laboratories made parpams as well as six commercial samples have been examined for their chemical composition. The analytical data that emerged from the analysis of the above samples showed that seven parpams contained only aluminium sulphate and they did respond to tests for potassium. An inspection of the crude drugs patikaram' available in the market established that potash alum and ammonia alum are indiscriminateldy taken for use, according to literature, only potash alum should be used in Indian system of medicine. Patikarapparapam is indicated in urinary inflammations and obstructions and is a reputed diuretic. Potassium salts are established diuretic. These studies show that the raw drugs sellers, the pharamaceutists or manufacturers of medicine and the physician as well should make sure that only potash alum is used in Indian medicine.

  6. Aerosol chemical and optical properties over the Paris area within ESQUIF project

    Directory of Open Access Journals (Sweden)

    A. Hodzic

    2006-01-01

    Full Text Available Aerosol chemical and optical properties are extensively investigated for the first time over the Paris Basin in July 2000 within the ESQUIF project. The measurement campaign offers an exceptional framework to evaluate the performances of the chemistry-transport model CHIMERE in simulating concentrations of gaseous and aerosol pollutants, as well as the aerosol-size distribution and composition in polluted urban environments against ground-based and airborne measurements. A detailed comparison of measured and simulated variables during the second half of July with particular focus on 19 and 31 pollution episodes reveals an overall good agreement for gas-species and aerosol components both at the ground level and along flight trajectories, and the absence of systematic biases in simulated meteorological variables such as wind speed, relative humidity and boundary layer height as computed by the MM5 model. A good consistency in ozone and NO concentrations demonstrates the ability of the model to reproduce the plume structure and location fairly well both on 19 and 31 July, despite an underestimation of the amplitude of ozone concentrations on 31 July. The spatial and vertical aerosol distributions are also examined by comparing simulated and observed lidar vertical profiles along flight trajectories on 31 July and confirm the model capacity to simulate the plume characteristics. The comparison of observed and modeled aerosol components in the southwest suburb of Paris during the second half of July indicates that the aerosol composition is rather correctly reproduced, although the total aerosol mass is underestimated by about 20%. The simulated Parisian aerosol is dominated by primary particulate matter that accounts for anthropogenic and biogenic primary particles (40%, and inorganic aerosol fraction (40% including nitrate (8%, sulfate (22% and ammonium (10%. The secondary organic aerosols (SOA represent 12% of the total aerosol mass, while the

  7. Size Distribution, Chemical Composition and Optical Properties of Atmospheric Dust in Israel: A Comparison of Urban and Desert Aerosols under Clear and Dusty Conditions.

    Science.gov (United States)

    1980-02-01

    counter (Royco 220). The instrument was calibrated with dry Latex particles of known sizes which were dispersed from a liquid suspension by the use of an...such spectra it is clear that samples from both sites contain significant amounts of gypsum, clay minerals, notably kaolin and montmorillonite clays...using a wavelength dispersive micro- probe. A comparison between aerosols from the Negev desert and Tel Aviv (under easterly flow) was conducted

  8. Glassy aerosols with a range of compositions nucleate ice heterogeneously at cirrus temperatures

    Directory of Open Access Journals (Sweden)

    T. W. Wilson

    2012-09-01

    Full Text Available Atmospheric secondary organic aerosol (SOA is likely to exist in a semi-solid or glassy state, particularly at low temperatures and humidities. Previously, it has been shown that glassy aqueous citric acid aerosol is able to nucleate ice heterogeneously under conditions relevant to cirrus in the tropical tropopause layer (TTL. In this study we test if glassy aerosol distributions with a range of chemical compositions heterogeneously nucleate ice under cirrus conditions. Three single component aqueous solution aerosols (raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA and levoglucosan and one multi component aqueous solution aerosol (raffinose mixed with five dicarboxylic acids and ammonium sulphate were studied in both the liquid and glassy states at a large cloud simulation chamber. The investigated organic compounds have similar functionality to oxidised organic material found in atmospheric aerosol and have estimated temperature/humidity induced glass transition thresholds that fall within the range predicted for atmospheric SOA. A small fraction of aerosol particles of all compositions were found to nucleate ice heterogeneously in the deposition mode at temperatures relevant to the TTL (<200 K. Raffinose and HMMA, which form glasses at higher temperatures, nucleated ice heterogeneously at temperatures as high as 214.6 and 218.5 K respectively. We present the calculated ice active surface site density, ns, of the aerosols tested here and also of glassy citric acid aerosol as a function of relative humidity with respect to ice (RHi. We also propose a parameterisation which can be used to estimate heterogeneous ice nucleation by glassy aerosol for use in cirrus cloud models up to ~220 K. Finally, we show that heterogeneous nucleation by glassy aerosol may compete with ice nucleation on mineral dust particles in mid-latitudes cirrus.

  9. New trajectory-driven aerosol and chemical process model Chemical and Aerosol Lagrangian Model (CALM

    Directory of Open Access Journals (Sweden)

    P. Tunved

    2010-11-01

    Full Text Available A new Chemical and Aerosol Lagrangian Model (CALM has been developed and tested. The model incorporates all central aerosol dynamical processes, from nucleation, condensation, coagulation and deposition to cloud formation and in-cloud processing. The model is tested and evaluated against observations performed at the SMEAR II station located at Hyytiälä (61° 51' N, 24° 17' E over a time period of two years, 2000–2001. The model shows good agreement with measurements throughout most of the year, but fails in reproducing the aerosol properties during the winter season, resulting in poor agreement between model and measurements especially during December–January. Nevertheless, through the rest of the year both trends and magnitude of modal concentrations show good agreement with observation, as do the monthly average size distribution properties. The model is also shown to capture individual nucleation events to a certain degree. This indicates that nucleation largely is controlled by the availability of nucleating material (as prescribed by the [H2SO4], availability of condensing material (in this model 15% of primary reactions of monoterpenes (MT are assumed to produce low volatile species and the properties of the size distribution (more specifically, the condensation sink. This is further demonstrated by the fact that the model captures the annual trend in nuclei mode concentration. The model is also used, alongside sensitivity tests, to examine which processes dominate the aerosol size distribution physical properties. It is shown, in agreement with previous studies, that nucleation governs the number concentration during transport from clean areas. It is also shown that primary number emissions almost exclusively govern the CN concentration when air from Central Europe is advected north over Scandinavia. We also show that biogenic emissions have a large influence on the amount of potential CCN observed

  10. Real-Time Characterization of Aerosol Particle Composition above the Urban Canopy in Beijing: Insights into the Interactions between the Atmospheric Boundary Layer and Aerosol Chemistry.

    Science.gov (United States)

    Sun, Yele; Du, Wei; Wang, Qingqing; Zhang, Qi; Chen, Chen; Chen, Yong; Chen, Zhenyi; Fu, Pingqing; Wang, Zifa; Gao, Zhiqiu; Worsnop, Douglas R

    2015-10-06

    Despite extensive efforts into the characterization of air pollution during the past decade, real-time characterization of aerosol particle composition above the urban canopy in the megacity Beijing has never been performed to date. Here we conducted the first simultaneous real-time measurements of aerosol composition at two different heights at the same location in urban Beijing from December 19, 2013 to January 2, 2014. The nonrefractory submicron aerosol (NR-PM1) species were measured in situ by a high-resolution aerosol mass spectrometer at near-ground level and an aerosol chemical speciation monitor at 260 m on a 325 m meteorological tower in Beijing. Secondary aerosol showed similar temporal variations between ground level and 260 m, whereas much weaker correlations were found for the primary aerosol. The diurnal evolution of the ratios and correlations of aerosol species between 260 m and the ground level further illustrated a complex interaction between vertical mixing processes and local source emissions on aerosol chemistry in the atmospheric boundary layer. As a result, the aerosol compositions at the two heights were substantially different. Organic aerosol (OA), mainly composed of primary OA (62%), at the ground level showed a higher contribution to NR-PM1 (65%) than at 260 m (54%), whereas a higher concentration and contribution (15%) of nitrate was observed at 260 m, probably due to the favorable gas-particle partitioning under lower temperature conditions. In addition, two different boundary layer structures were observed, each interacting differently with the evolution processes of aerosol chemistry.

  11. Seasonal Variations of High Time-Resolved Chemical Compositions, Sources and Evolution for Atmospheric Submicron Aerosols in the Megacity of Beijing

    Science.gov (United States)

    Hu, Min; Hu, Wei; Hu, Weiwei; Zheng, Jing; Guo, Song; Wu, Yusheng; Lu, Sihua; Zeng, Limin

    2016-04-01

    This study aims to investigate aerosol secondary formation and aging process in the megacity of Beijing. Seasonal intensive campaigns were conducted from March 2012 to March 2013 at an urban site located at the campus of Peking University (116.31° E, 37.99° N). An Aerodyne high-resolution time-of-flight aerosol mass spectrometry (HR-ToF-AMS) and other relevant instrumentations for gaseous and particulate pollutants were deployed. The average submicron aerosol (PM1) mass concentrations were 45.1 ± 45.8, 37.5 ± 31.0, 41.3 ± 42.7 and 81.7 ± 72.4 μg m-3 in spring, summer, autumn and winter, respectively. Organic matter was the most abundant component, accounting for 31%, 33%, 44% and 36% in PM1 correspondingly, followed by sulfate and nitrate. Distinct seasonal and diurnal patterns of the components of PM1 tracking primary sources (e.g., BC and HOA) and secondary formation (e.g., sulfate, nitrate, ammonium, LV-OOA and SV-OOA) were significantly influenced by primary emissions and mesoscale meteorology. Combining positive matrix factorization (PMF) analysis with the mass spectrometry of organics measured by AMS, the contributions of primary and secondary sources to submicron organic aerosols (OA) were apportioned. In spring and summer, the primary sources were hydrocarbon-like OA (HOA) and cooking OA (COA), and the secondary components were low volatility (LV-OOA) and semi-volatile oxygenated OA (SV-OOA). In winter biomass burning OA (BBOA) was also resolved. In autumn, four factors were resolved, that is, OOA, HOA, COA and BBOA. In general, OOA (sum of LV-OOA and SV-OOA) was important in OA in four seasons, accounting for about 63%, 70%, 47% and 50%, respectively. SV-OOA dominated OA in summer (44%) due to the fresh secondary formation from strong photochemical oxidations; whereas, LV-OOA was dominant in OA in winter (33%), maybe because the transported air masses were more aged in heavily polluted days. The POA (sum of HOA, COA and BBOA) in OA was dominant in

  12. Aerosol composition and source apportionment in Santiago de Chile

    Science.gov (United States)

    Artaxo, Paulo; Oyola, Pedro; Martinez, Roberto

    1999-04-01

    Santiago de Chile, São Paulo and Mexico City are Latin American urban areas that suffer from heavy air pollution. In order to study air pollution in Santiago area, an aerosol source apportionment study was designed to measure ambient aerosol composition and size distribution for two downtown sampling sites in Santiago. The aerosol monitoring stations were operated in Gotuzo and Las Condes during July and August 1996. The study employed stacked filter units (SFU) for aerosol sampling, collecting fine mode aerosol (dpsource apportionment was performed using Absolute Principal Factor Analysis (APFA). Very high aerosol concentrations were observed (up to 400 μg/m 3 PM 10). The main aerosol particle sources in Santiago are resuspended soil dust and traffic emissions. Coarse particles account for 63% of PM 10 aerosol in Gotuzo and 53% in Las Condes. A major part of this component is resuspended soil dust. In the fine fraction, resuspended soil dust accounts for 15% of fine mass, and the aerosols associated with transportation activities account for a high 64% of the fine particle mass. Sulfate particle is an important component of the aerosol in Santiago, mainly originating from gas-to-particle conversion from SO 2. In the Gotuzo site, sulfates are the highest aerosol component, accounting for 64.5% of fine mass. Direct traffic emissions are generally mixed with resuspended soil dust. It is difficult to separate the two components, because the soil dust in downtown Santiago is contaminated with Pb, Br, Cl, and other heavy metals that are also tracers for traffic emissions. Residual oil combustion is observed, with the presence of V, S and Ni. An aerosol components from industrial emissions is also present, with the presence of several heavy metals such as Zn, Cu and others. A factor with molybdenum, arsenic, copper and sulfur was observed frequently, and it results from emissions of copper smelters.

  13. Secondary organic aerosols. Chemical aging, hygroscopicity, and cloud droplet activation

    Energy Technology Data Exchange (ETDEWEB)

    Buchholz, Angela

    2011-07-06

    functional groups in this compound was adjusted to reproduce the observed growth curves. However, further information on surface tension and the ratio of the molecular mass and density of the solute is needed to predict activation behavior from hygroscopic growth measurements. A dependence of {kappa} on the ratio of primarily produced OH to initial VOC level was observed. The higher {kappa} values for low precursor concentrations could be attributed to a higher OH/VOC level. The detailed chemical composition of the gas-phase precursors had only little effect on {kappa}. In long term experiments there was no significant effect of the observed chemical aging of the particles on {kappa}. The observed low variability of {kappa} for biogenic SOA particles simplifies their treatment in global models as an average value of {kappa} = 0.1 can be used. (orig.)

  14. Assessment of microphysical and chemical factors of aerosols over seas of the Russian Artic Eastern Section

    Science.gov (United States)

    Golobokova, Liudmila; Polkin, Victor

    2014-05-01

    The newly observed kickoff of the Northern Route development drew serious attention to state of the Arctic Resource environment. Occurring climatic and environmental changes are more sensitively seen in polar areas in particular. Air environment control allows for making prognostic assessments which are required for planning hazardous environmental impacts preventive actions. In August - September 2013, RV «Professor Khlustin» Northern Sea Route expeditionary voyage took place. En-route aerosol sampling was done over the surface of the Beringov, Chukotka and Eastern-Siberia seas (till the town of Pevek). The purpose of sampling was to assess spatio-temporal variability of optic, microphysical and chemical characteristics of aerosol particles of the surface layer within different areas adjacent to the Northern Sea Route. Aerosol test made use of automated mobile unit consisting of photoelectric particles counter AZ-10, aetalometr MDA-02, aspirator on NBM-1.2 pump chassis, and the impactor. This set of equipment allows for doing measurements of number concentration, dispersed composition of aerosols within sizes d=0.3-10 mkm, mass concentration of submicron sized aerosol, and filter-conveyed aerosols sampling. Filter-conveyed aerosols sampling was done using method accepted by EMEP and EANET monitoring networks. The impactor channel was upgraded to separate particles bigger than 1 mkm in size, and the fine grain fraction settled down on it. Reverse 5-day and 10-day trajectories of air mass transfer executed at heights of 10, 1500 and 3500 m were analyzed. The heights were selected by considerations that 3000 m is the height which characterizes air mass trend in the lower troposphere. 1500 m is the upper border of the atmospheric boundary layer, and the sampling was done in the Earth's surface layer at less than 10 m. Minimum values of the bespoken microphysical characteristics are better characteristic of higher latitudes where there are no man induced sources of

  15. Chemical characteristics of submicron particles at the central Tibetan Plateau: insights from aerosol mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Xu

    2018-01-01

    Full Text Available Recent studies have revealed a significant influx of anthropogenic aerosol from South Asia to the Himalayas and Tibetan Plateau (TP during pre-monsoon period. In order to characterize the chemical composition, sources, and transport processes of aerosol in this area, we carried out a field study during June 2015 by deploying a suite of online instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS and a multi-angle absorption photometer (MAAP at Nam Co station (90°57′ E, 30°46′ N; 4730 m a.s.l. at the central of the TP. The measurements were made at a period when the transition from pre-monsoon to monsoon occurred. The average ambient mass concentration of submicron particulate matter (PM1 over the whole campaign was  ∼  2.0 µg m−3, with organics accounting for 68 %, followed by sulfate (15 %, black carbon (8 %, ammonium (7 %, and nitrate (2 %. Relatively higher aerosol mass concentration episodes were observed during the pre-monsoon period, whereas persistently low aerosol concentrations were observed during the monsoon period. However, the chemical composition of aerosol during the higher aerosol concentration episodes in the pre-monsoon season was on a case-by-case basis, depending on the prevailing meteorological conditions and air mass transport routes. Most of the chemical species exhibited significant diurnal variations with higher values occurring during afternoon and lower values during early morning, whereas nitrate peaked during early morning in association with higher relative humidity and lower air temperature. Organic aerosol (OA, with an oxygen-to-carbon ratio (O ∕ C of 0.94, was more oxidized during the pre-monsoon period than during monsoon (average O ∕ C ratio of 0.72, and an average O ∕ C was 0.88 over the entire campaign period, suggesting overall highly oxygenated aerosol in the central TP. Positive matrix factorization of the

  16. Chemical characteristics of submicron particles at the central Tibetan Plateau: insights from aerosol mass spectrometry

    Science.gov (United States)

    Xu, Jianzhong; Zhang, Qi; Shi, Jinsen; Ge, Xinlei; Xie, Conghui; Wang, Junfeng; Kang, Shichang; Zhang, Ruixiong; Wang, Yuhang

    2018-01-01

    Recent studies have revealed a significant influx of anthropogenic aerosol from South Asia to the Himalayas and Tibetan Plateau (TP) during pre-monsoon period. In order to characterize the chemical composition, sources, and transport processes of aerosol in this area, we carried out a field study during June 2015 by deploying a suite of online instruments including an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-AMS) and a multi-angle absorption photometer (MAAP) at Nam Co station (90°57' E, 30°46' N; 4730 m a.s.l.) at the central of the TP. The measurements were made at a period when the transition from pre-monsoon to monsoon occurred. The average ambient mass concentration of submicron particulate matter (PM1) over the whole campaign was ˜ 2.0 µg m-3, with organics accounting for 68 %, followed by sulfate (15 %), black carbon (8 %), ammonium (7 %), and nitrate (2 %). Relatively higher aerosol mass concentration episodes were observed during the pre-monsoon period, whereas persistently low aerosol concentrations were observed during the monsoon period. However, the chemical composition of aerosol during the higher aerosol concentration episodes in the pre-monsoon season was on a case-by-case basis, depending on the prevailing meteorological conditions and air mass transport routes. Most of the chemical species exhibited significant diurnal variations with higher values occurring during afternoon and lower values during early morning, whereas nitrate peaked during early morning in association with higher relative humidity and lower air temperature. Organic aerosol (OA), with an oxygen-to-carbon ratio (O / C) of 0.94, was more oxidized during the pre-monsoon period than during monsoon (average O / C ratio of 0.72), and an average O / C was 0.88 over the entire campaign period, suggesting overall highly oxygenated aerosol in the central TP. Positive matrix factorization of the high-resolution mass spectra of OA identified two oxygenated

  17. Aerosol composition from Tlaxcoapan, Hidalgo in central Mexico

    International Nuclear Information System (INIS)

    Martinez C, M. A.; Solis, C.; Andrade, E.; Issac O, K.; Beltran H, R. I.; Medina M, S. A.; Martinez R, G.; Ramirez R, A.; Lucho C, C. A.; Del Razo, L. M.

    2010-01-01

    Air quality mexican regulations about atmospheric aerosols refer to particle sizes and to the total suspended particle. None of these norms establishes the allowed values based on the particulate chemical composition. Mexican environmental legislation also considers as critical zones those with high concentration of contaminants in the atmosphere. One of these zones is the Tula-Vito-Apasco corridor where no chemical composition characterization in terms of trace metal associated to the air particulate matter has been made. Along this corridor near Tlaxcoapan there are important contaminant sources as petrochemical and electric power plants, metal-mechanical industry, limestone quarry and contaminated soils. In this work PIXE and Sem-EDS were applied to the PM 10 fraction collected on filters. The trace element values thus determined were compared with those of a similar critical zone. It was found that most of the coarse particles come from limestone quarry as fugitive dusts while V, Ni, Cr and Pb values are moderately high and seems to be associated to industrial activities and contaminated soil as well. (Author)

  18. Aerosol composition from Tlaxcoapan, Hidalgo in central Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Martinez C, M. A.; Solis, C.; Andrade, E. [UNAM, Instituto de Fisica, Circuito Exterior, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Issac O, K. [Universidad Autonoma del Estado de Mexico, Facultad de Medicina, Paseo Tollocan y Jesus Carranza s/n, 50120 Toluca, Estado de Mexico (Mexico); Beltran H, R. I. [Universidad Autonoma del Estado de Hidalgo, Centro de Investigaciones Quimicas, Carretera Pachuca-Tulancingo Km. 4.5, 42174 Pachuca, Hidalgo (Mexico); Medina M, S. A.; Martinez R, G.; Ramirez R, A.; Lucho C, C. A. [Universidad Politecnica de Pachuca, Programa de Ingenieria en Biotecnologia, Carretera Pachuca-Cd. Sahagun Km. 20, Ex-Hacienda de Santa Barbara, Municipio de Zempoala, Hidalgo (Mexico); Del Razo, L. M. [IPN, Centro de Investigacion y de Estudios Avanzados, Seccion Externa de Toxicologia, Ticoman, 07360 Mexico D. F. (Mexico)

    2010-02-15

    Air quality mexican regulations about atmospheric aerosols refer to particle sizes and to the total suspended particle. None of these norms establishes the allowed values based on the particulate chemical composition. Mexican environmental legislation also considers as critical zones those with high concentration of contaminants in the atmosphere. One of these zones is the Tula-Vito-Apasco corridor where no chemical composition characterization in terms of trace metal associated to the air particulate matter has been made. Along this corridor near Tlaxcoapan there are important contaminant sources as petrochemical and electric power plants, metal-mechanical industry, limestone quarry and contaminated soils. In this work PIXE and Sem-EDS were applied to the PM{sub 10} fraction collected on filters. The trace element values thus determined were compared with those of a similar critical zone. It was found that most of the coarse particles come from limestone quarry as fugitive dusts while V, Ni, Cr and Pb values are moderately high and seems to be associated to industrial activities and contaminated soil as well. (Author)

  19. Persistence of urban organic aerosols composition: Decoding their structural complexity and seasonal variability

    International Nuclear Information System (INIS)

    Matos, João T.V.; Duarte, Regina M.B.O.; Lopes, Sónia P.; Silva, Artur M.S.; Duarte, Armando C.

    2017-01-01

    Organic Aerosols (OAs) are typically defined as highly complex matrices whose composition changes in time and space. Focusing on time vector, this work uses two-dimensional nuclear magnetic resonance (2D NMR) techniques to examine the structural features of water-soluble (WSOM) and alkaline-soluble organic matter (ASOM) sequentially extracted from fine atmospheric aerosols collected in an urban setting during cold and warm seasons. This study reveals molecular signatures not previously decoded in NMR-related studies of OAs as meaningful source markers. Although the ASOM is less hydrophilic and structurally diverse than its WSOM counterpart, both fractions feature a core with heteroatom-rich branched aliphatics from both primary (natural and anthropogenic) and secondary origin, aromatic secondary organics originated from anthropogenic aromatic precursors, as well as primary saccharides and amino sugar derivatives from biogenic emissions. These common structures represent those 2D NMR spectral signatures that are present in both seasons and can thus be seen as an “annual background” profile of the structural composition of OAs at the urban location. Lignin-derived structures, nitroaromatics, disaccharides, and anhydrosaccharides signatures were also identified in the WSOM samples only from periods identified as smoke impacted, which reflects the influence of biomass-burning sources. The NMR dataset on the H–C molecules backbone was also used to propose a semi-quantitative structural model of urban WSOM, which will aid efforts for more realistic studies relating the chemical properties of OAs with their atmospheric behavior. - Highlights: • 2D NMR spectroscopy was used to decode urban organic aerosols. • Water and alkaline soluble components of urban organic aerosols have been compared. • Persistence of urban organic aerosols composition across different seasons. • Annual background profile of the structural features of urban organic aerosols. • Semi

  20. Predicting the mineral composition of dust aerosols - Part 1: Representing key processes

    Science.gov (United States)

    Perlwitz, J. P.; Pérez García-Pando, C.; Miller, R. L.

    2015-02-01

    Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, coating by heterogeneous uptake of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wet-sieved soil and the resulting aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent in a soil whose aggregates are dispersed by wet sieving during analysis. We reconstruct the undispersed size distribution of the original soil that is subject to wind erosion. An empirical constraint upon the relative emission of clay and silt is applied that further differentiates the soil and aerosol mineral composition. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to measurements from North Africa shows that the extension brings the model into better agreement, consistent with a more extensive comparison to global observations as well as measurements of elemental composition downwind of the Sahara, as described in companion articles.

  1. Chemical evolution of Titan’s aerosol analogues under VUV irradiation

    Science.gov (United States)

    Carrasco, Nathalie; Gavilan, Lisseth; Tigrine, Sarah; Vettier, Ludovic; Nahon, Laurent; Pernot, Pascal

    2017-10-01

    Since the Cassini-CAPS measurements, organic aerosols are known to be present and formed at high altitudes in the diluted and partially ionized medium that is Titan’s ionosphere [1].After production in the ionosphere, Titan’s aerosols evolve through microphysics during their sedimentation down to Titan’s surface [2]. Starting with a few nanomers size in the upper atmosphere, they reach a fractal structure of a few hundreds nanometers close to the surface [3]. During sedimentation, aerosols are also submitted to solar irradiation. As laboratory analogs of Titan’s atmospheric aerosols (tholins) show a strong UV absorption [4], we suspect that VUV irradiation could also induce a chemical evolution of Titan’s aerosols during their descent in Titan’s atmosphere.The aim of this work ist to simulate the irradiation process occuring on the aerosols in Titan’s atmosphere and to address whether this irradiation impacts the chemical composition of the organic solids. First aerosol analogues were produced in a N2-CH4 plasma discharge as thin organic films of a few hundreds of nanometers thick [5]. Then those were irradiated at Lyman-α wavelength, the strongest VUV line in the solar spectrum, with a high photon flux on a synchrotron VUV beamline. We will present and discuss the significant chemical evolutions observed on the analogues after VUV irradiation by mid-IR absorption spectroscopy.[1] Waite et al. (2009) Science , 316, p. 870[2] Lavvas et al. (2011) Astrophysical Journal, 728:80[3] Tomasko et al. (2008) Planetary and Space Science, 56, p. 669[4] Mahjoub et al. (2012) Icarus 221, P. 670[5] Carrasco et al. (2016) Planetary and Space Science, 128, p. 52

  2. Data Descriptor : Collocated observations of cloud condensation nuclei, particle size distributions, and chemical composition

    NARCIS (Netherlands)

    Schmale, Julia; Henning, Silvia; Henzing, Bas; Keskinen, Helmi; Sellegri, Karine; Ovadnevaite, Jurgita; Bougiatioti, Aikaterini; Kalivitis, Nikos; Stavroulas, Iasonas; Jefferson, Anne; Park, Minsu; Schlag, Patrick; Kristensson, Adam; Iwamoto, Yoko; Pringle, Kirsty; Reddington, Carly; Aalto, Pasi; Äijälä, Mikko; Baltensperger, Urs; Bialek, Jakub; Birmili, Wolfram; Bukowiecki, Nicolas; Ehn, Mikael; Fjæraa, Ann Mari; Fiebig, Markus; Frank, Göran; Fröhlich, Roman; Frumau, Arnoud; Furuya, Masaki; Hammer, Emanuel; Heikkinen, Liine; Herrmann, Erik; Holzinger, Rupert; Hyono, Hiroyuki; Kanakidou, Maria; Kiendler-Scharr, Astrid; Kinouchi, Kento; Kos, Gerard P A; Kulmala, Markku; Mihalopoulos, Nikolaos; Motos, Ghislain; Nenes, Athanasios; O'Dowd, Colin; Paramonov, Mikhail; Petäjä, Tuukka; Picard, David; Poulain, Laurent; Prévôt, André Stephan Henry; Slowik, Jay; Sonntag, Andre; Swietlicki, Erik; Svenningsson, Birgitta; Tsurumaru, Hiroshi; Wiedensohler, Alfred; Wittbom, Cerina; Ogren, John A.; Matsuki, Atsushi; Yum, Seong Soo; Myhre, Cathrine Lund; Carslaw, Ken; Stratmann, Frank; Gysel, Martin

    2017-01-01

    Cloud condensation nuclei (CCN) number concentrations alongside with submicrometer particle number size distributions and particle chemical composition have been measured at atmospheric observatories of the Aerosols, Clouds, and Trace gases Research InfraStructure (ACTRIS) as well as other

  3. Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation

    Directory of Open Access Journals (Sweden)

    P. Q. Fu

    2013-02-01

    Full Text Available Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m−3 (mean 47.6 ng m−3, accounting for 1.8–11.0% (4.8% of organic carbon in the marine aerosols. Primary saccharides were found to be dominant organic compound class, followed by secondary organic aerosol (SOA tracers formed from the oxidation of biogenic volatile organic compounds (VOCs such as isoprene, α-pinene and β-caryophyllene. Mannitol, the specific tracer for airborne fungal spores, was detected as the most abundant organic species in the samples with a concentration range of 0.052–53.3 ng m−3 (9.2 ng m−3, followed by glucose, arabitol, and the isoprene oxidation products of 2-methyltetrols. Biomass burning tracers such as levoglucosan are evident in all samples with trace levels. On the basis of the tracer-based method for the estimation of fungal-spore OC and biogenic secondary organic carbon (SOC, we estimate that an average of 10.7% (up to 26.2% of the OC in the marine aerosols was due to the contribution of fungal spores, followed by the contribution of isoprene SOC (mean 3.8% and α-pinene SOC (2.9%. In contrast, only 0.19% of the OC was due to the photooxidation of β-caryophyllene. This study indicates that primary organic aerosols from biogenic emissions, both from long-range transport of mid-latitude aerosols and from sea-to-air emission of marine organics, as well as secondary organic aerosols formed from the photooxidation of biogenic VOCs are important factors controlling the organic chemical composition of marine aerosols in the Arctic Ocean.

  4. Predicting the Mineral Composition of Dust Aerosols. Part 1; Representing Key Processes

    Science.gov (United States)

    Perlwitz, J. P.; Garcia-Pando, C. Perez; Miller, R. L.

    2015-01-01

    Soil dust aerosols created by wind erosion are typically assigned globally uniform physical and chemical properties within Earth system models, despite known regional variations in the mineral content of the parent soil. Mineral composition of the aerosol particles is important to their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Here, aerosol mineral composition is derived by extending a method that provides the composition of a wet-sieved soil. The extension accounts for measurements showing significant differences between the mineral fractions of the wetsieved soil and the emitted aerosol concentration. For example, some phyllosilicate aerosols are more prevalent at silt sizes, even though they are nearly absent at these diameters in a soil whose aggregates are dispersed by wet sieving. We calculate the emitted mass of each mineral with respect to size by accounting for the disintegration of soil aggregates during wet sieving. These aggregates are emitted during mobilization and fragmentation of the original undispersed soil that is subject to wind erosion. The emitted aggregates are carried far downwind from their parent soil. The soil mineral fractions used to calculate the aggregates also include larger particles that are suspended only in the vicinity of the source. We calculate the emitted size distribution of these particles using a normalized distribution derived from aerosol measurements. In addition, a method is proposed for mixing minerals with small impurities composed of iron oxides. These mixtures are important for transporting iron far from the dust source, because pure iron oxides are more dense and vulnerable to gravitational removal than most minerals comprising dust aerosols. A limited comparison to

  5. Aerosolization, Chemical Characterization, Hygroscopicity and Ice Formation of Marine Biogenic Particles

    Science.gov (United States)

    Alpert, P. A.; Radway, J.; Kilthau, W.; Bothe, D.; Knopf, D. A.; Aller, J. Y.

    2013-12-01

    The oceans cover the majority of the earth's surface, host nearly half the total global primary productivity and are a major source of atmospheric aerosol particles. However, effects of biological activity on sea spray generation and composition, and subsequent cloud formation are not well understood. Our goal is to elucidate these effects which will be particularly important over nutrient rich seas, where microorganisms can reach concentrations of 10^9 per mL and along with transparent exopolymer particles (TEP) can become aerosolized. Here we report the results of mesocosm experiments in which bubbles were generated by two methods, either recirculating impinging water jets or glass frits, in natural or artificial seawater containing bacteria and unialgal cultures of three representative phytoplankton species, Thalassiosira pseudonana, Emiliania huxleyi, and Nannochloris atomus. Over time we followed the size distribution of aerosolized particles as well as their hygroscopicity, heterogeneous ice nucleation potential, and individual physical-chemical characteristics. Numbers of cells and the mass of dissolved and particulate organic carbon (DOC, POC), TEP (which includes polysaccharide-containing microgels and nanogels >0.4 μm in diameter) were determined in the bulk water, the surface microlayer, and aerosolized material. Aerosolized particles were also impacted onto substrates for ice nucleation and water uptake experiments, elemental analysis using computer controlled scanning electron microscopy and energy dispersive analysis of X-rays (CCSEM/EDX), and determination of carbon bonding with scanning transmission X-ray microscopy and near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS). Regardless of bubble generation method, the overall concentration of aerosol particles, TEP, POC and DOC increased as concentrations of bacterial and phytoplankton cells increased, stabilized, and subsequently declined. Particles cloud formation and potential

  6. Aerosol composition and source apportionment in Santiago de Chile

    International Nuclear Information System (INIS)

    Artaxo, Paulo; Oyola, Pedro; Martinez, Roberto

    1999-01-01

    Santiago de Chile, Sao Paulo and Mexico City are Latin American urban areas that suffer from heavy air pollution. In order to study air pollution in Santiago area, an aerosol source apportionment study was designed to measure ambient aerosol composition and size distribution for two downtown sampling sites in Santiago. The aerosol monitoring stations were operated in Gotuzo and Las Condes during July and August 1996. The study employed stacked filter units (SFU) for aerosol sampling, collecting fine mode aerosol (dp 10 mass of particles smaller than 10 μm) and black carbon concentration were also measured. Particle-Induced X-ray Emission (PIXE) was used to measure the concentration of 22 trace elements at levels below 0.5 ng m -3 . Quantitative aerosol source apportionment was performed using Absolute Principal Factor Analysis (APFA). Very high aerosol concentrations were observed (up to 400 μg/m 3 PM 10 ). The main aerosol particle sources in Santiago are resuspended soil dust and traffic emissions. Coarse particles account for 63% of PM 10 aerosol in Gotuzo and 53% in Las Condes. A major part of this component is resuspended soil dust. In the fine fraction, resuspended soil dust accounts for 15% of fine mass, and the aerosols associated with transportation activities account for a high 64% of the fine particle mass. Sulfate particle is an important component of the aerosol in Santiago, mainly originating from gas-to-particle conversion from SO 2 . In the Gotuzo site, sulfates are the highest aerosol component, accounting for 64.5% of fine mass. Direct traffic emissions are generally mixed with resuspended soil dust. It is difficult to separate the two components, because the soil dust in downtown Santiago is contaminated with Pb, Br, Cl, and other heavy metals that are also tracers for traffic emissions. Residual oil combustion is observed, with the presence of V, S and Ni. An aerosol components from industrial emissions is also present, with the presence of

  7. Characteristics and Composition of Atmospheric Aerosols in Phimai, Central Thailand During BASE-ASIA

    Science.gov (United States)

    Li, Can; Tsay, Si-Chee; Hsu, N. Christina; Kim, Jin Young; Howell, Steven G.; Huebert, Barry J.; Ji, Qiang; Jeong, Myeong-Jae; Wang, Sheng-Hsiang; Hansell, Richard A.; hide

    2012-01-01

    Popular summary: Atmospheric aerosols play an important role in the Earth's climate system, and can also have adverse effects on air quality and human health. The environmental impacts of aerosols, on the other hand, are highly regional, since their temporal/spatial distribution is inhomogeneous and highly depends on the regional emission sources. To better understand the effects of aerosols, intensive field experiments are necessary to characterize the chemical and physical properties on a region-by-region basis. From late February to early May in 2006, NASA/GSFC's SMARTLabs facility was deployed at a rural site in central Thailand, Southeast Asia, to conduct a field experiment dubbed BASE-ASIA (Biomass-burning Aerosols in South East-Asia: Smoke Impact Assessment). The group was joined by scientists from the University of Hawaii and other regional institutes. Comprehensive measurements were made during the experiment, including aerosol chemical composition, optical and microphysical properties, as well as surface energetics and local . meteorology. This study analyzes part of the data from the BASE-ASIA experiment. It was found that, even for the relatively remote rural site, the aerosol loading was still substantial. Besides agricultural burning in the area, industrial pollution near the Bangkok metropolitan area, about 200 km southeast of the site, and even long-range transport from China, also contribute to the area's aerosol loading. The results indicate that aerosol pollution has developed into a regional problem for northern Indochina, and may become more severe as the region's population and economy continue to grow. Abstract: Comprehensive measurements of atmospheric aerosols were made in Phimai, central Thailand (15.l83 N, 102.565 E, elevation: 206 m) during the BASE-ASIA field experiment from late February to early May in 2006. The observed aerosol loading was sizable for this rural site (mean aerosol scattering: 108 +/- 64 Mm(exp -1); absorption: 15

  8. Elucidating determinants of aerosol composition through particle-type-based receptor modeling

    Science.gov (United States)

    McGuire, M. L.; Jeong, C.-H.; Slowik, J. G.; Chang, R. Y.-W.; Corbin, J. C.; Lu, G.; Mihele, C.; Rehbein, P. J. G.; Sills, D. M. L.; Abbatt, J. P. D.; Brook, J. R.; Evans, G. J.

    2011-08-01

    An aerosol time-of-flight mass spectrometer (ATOFMS) was deployed at a semi-rural site in southern Ontario to characterize the size and chemical composition of individual particles. Particle-type-based receptor modelling of these data was used to investigate the determinants of aerosol chemical composition in this region. Individual particles were classified into particle-types and positive matrix factorization (PMF) was applied to their temporal trends to separate and cross-apportion particle-types to factors. The extent of chemical processing for each factor was assessed by evaluating the internal and external mixing state of the characteristic particle-types. The nine factors identified helped to elucidate the coupled interactions of these determinants. Nitrate-laden dust was found to be the dominant type of locally emitted particles measured by ATOFMS. Several factors associated with aerosol transported to the site from intermediate local-to-regional distances were identified: the Organic factor was associated with a combustion source to the north-west; the ECOC Day factor was characterized by nearby local-to-regional carbonaceous emissions transported from the south-west during the daytime; and the Fireworks factor consisted of pyrotechnic particles from the Detroit region following holiday fireworks displays. Regional aerosol from farther emissions sources was reflected through three factors: two Biomass Burning factors and a highly chemically processed Long Range Transport factor. The Biomass Burning factors were separated by PMF due to differences in chemical processing which were in part elucidated by the passage of two thunderstorm gust fronts with different air mass histories. The remaining two factors, ECOC Night and Nitrate Background, represented the night-time partitioning of nitrate to pre-existing particles of different origins. The distinct meteorological conditions observed during this month-long study in the summer of 2007 provided a unique

  9. Chemical and microphysical properties of the aerosol during foggy and nonfoggy episodes: a relationship between organic and inorganic content of the aerosol

    Science.gov (United States)

    Kaul, D. S.; Gupta, T.; Tripathi, S. N.

    2012-06-01

    An extensive field measurement during winter was carried out at a site located in the Indo-Gangetic Plain (IGP) which gets heavily influenced by the fog during winter almost every year. The chemical and microphysical properties of the aerosols during foggy and nonfoggy episodes and chemical composition of the fogwater are presented. Positive matrix factorization (PMF) as a tool for the source apportionment was employed to understand the sources of pollution. Four major sources viz. biomass burning, refractory, secondary and mineral dust were identified. Aerosols properties during foggy episodes were heavily influenced by almost all the sources and they caused considerable loading of almost all the organic and inorganic species during the period. The biomass generated aerosols were removed from the atmosphere by scavenging during foggy episodes. The wet removal of almost all the species by the fog droplets was observed. The K+, water soluble organic carbon (WSOC), water soluble inorganic carbon (WSIC) and NO3- were most heavily scavenged among the species and their concentrations consequently became lower than the nonfoggy episode concentrations. The production of secondary inorganic aerosol, mainly sulfate and ammonium, during foggy episodes was considerably higher than nitrate which was rather heavily scavenged and removed by the fog droplets. The fogwater analysis showed that dissolved inorganic species play a vital role in processing of organic carbon such as the formation of organo-sulfate and organo-nitrate inside the fog droplets. The formation of organo-sulfate and organo-nitrate in aerosol and the influence of acidity on the secondary organic aerosol (SOA) formation were rather found to be negligible. The study average inorganic component of the aerosol was considerably higher than the carbonaceous component during both foggy and nonfoggy episode. The secondary production of the aerosol changed the microphysical properties of aerosol which was reflected by

  10. The Chemical Composition of Mercury

    OpenAIRE

    Nittler, Larry R.; Chabot, Nancy L.; Grove, Timothy L.; Peplowski, Patrick N.

    2017-01-01

    The chemical composition of a planetary body reflects its starting conditions modified by numerous processes during its formation and geological evolution. Measurements by X-ray, gamma-ray, and neutron spectrometers on the MESSENGER spacecraft revealed Mercury's surface to have surprisingly high abundances of the moderately volatile elements sodium, sulfur, potassium, chlorine, and thorium, and a low abundance of iron. This composition rules out some formation models for which high temperatur...

  11. Systematic Relationships Between Lidar Observables and Sizes And Mineral Composition Of Dust Aerosols

    Science.gov (United States)

    Van Diedenhoven, Bastiaan; Stangl, Alexander; Perlwitz, Jan; Fridlind, Ann M.; Chowdhary, Jacek; Cairns, Brian

    2015-01-01

    The physical and chemical properties of soil dust aerosol particles fundamentally affect their interaction with climate, including shortwave absorption and radiative forcing, nucleation of cloud droplets and ice crystals, heterogeneous formation of sulfates and nitrates on the surface of dust particles, and atmospheric processing of iron into bioavailable forms that increase the productivity of marine phytoplankton. Lidar measurements, such as extinction-to-backscatter, color and depolarization ratios, are frequently used to distinguish between aerosol types with different physical and chemical properties. The chemical composition of aerosol particles determines their complex refractive index, hence affecting their backscattering properties. Here we present a study on how dust aerosol backscattering and depolarization properties at wavelengths of 355, 532 and 1064 nm are related to size and complex refractive index, which varies with the mineral composition of the dust. Dust aerosols are represented by collections of spheroids with a range of prolate and oblate aspect ratios and their optical properties are obtained using T-matrix calculations. We find simple, systematic relationships between lidar observables and the dust size and complex refractive index that may aid the use of space-based or airborne lidars for direct retrieval of dust properties or for the evaluation of chemical transport models using forward simulated lidar variables. In addition, we present first results on the spatial variation of forward-simulated lidar variables based on a dust model that accounts for the atmospheric cycle of eight different mineral types plus internal mixtures of seven mineral types with iron oxides, which was recently implemented in the NASA GISS Earth System ModelE2.

  12. The continuous field measurements of soluble aerosol compositions at the Taipei Aerosol Supersite, Taiwan

    Science.gov (United States)

    Chang, Shih-Yu; Lee, Chung-Te; Chou, Charles C.-K.; Liu, Shaw-Chen; Wen, Tian-Xue

    The characteristics of ambient aerosols, affected by solar radiation, relative humidity, wind speed, wind direction, and gas-aerosol interaction, changed rapidly at different spatial and temporal scales. In Taipei Basin, dense traffic emissions and sufficient solar radiation for typical summer days favored the formation of secondary aerosols. In winter, the air quality in Taipei Basin was usually affected by the Asian continental outflows due to the long-range transport of pollutants carried by the winter monsoon. The conventional filter-based method needs a long time for collecting aerosols and analyzing compositions, which cannot provide high time-resolution data to investigate aerosol sources, atmospheric transformation processes, and health effects. In this work, the in situ ion chromatograph (IC) system was developed to provide 15-min time-resolution data of nine soluble inorganic species (Cl -, NO 2-, NO 3-, SO 42-, Na +, NH 4+, K +, Mg 2+ and Ca 2+). Over 89% of all particles larger than approximately 0.056 μm were collected by the in situ IC system. The in situ IC system is estimated to have a limit of detection lower than 0.3 μg m -3 for the various ambient ionic components. Depending on the hourly measurements, the pollutant events with high aerosol concentrations in Taipei Basin were associated with the local traffic emission in rush hour, the accumulation of pollutants in the stagnant atmosphere, the emission of industrial pollutants from the nearby factories, the photochemical secondary aerosol formation, and the long-range transport of pollutants from Asian outflows.

  13. Secondary organic aerosol in the global aerosolchemical transport model Oslo CTM2

    Directory of Open Access Journals (Sweden)

    I. S. A. Isaksen

    2007-11-01

    Full Text Available The global chemical transport model Oslo CTM2 has been extended to include the formation, transport and deposition of secondary organic aerosol (SOA. Precursor hydrocarbons which are oxidised to form condensible species include both biogenic species such as terpenes and isoprene, as well as species emitted predominantly by anthropogenic activities (toluene, m-xylene, methylbenzene and other aromatics. A model simulation for 2004 gives an annual global SOA production of approximately 55 Tg. Of this total, 2.5 Tg is found to consist of the oxidation products of anthropogenically emitted hydrocarbons, and about 15 Tg is formed by the oxidation products of isoprene. The global production of SOA is increased to about 69 Tg yr−1 by allowing semi-volatile species to partition to ammonium sulphate aerosol. This brings modelled organic aerosol values closer to those observed, however observations in Europe remain significantly underestimated. Allowing SOA to partition into ammonium sulphate aerosol increases the contribution of anthropogenic SOA from about 4.5% to 9.4% of the total production. Total modelled organic aerosol (OA values are found to represent a lower fraction of the measured values in winter (when primary organic aerosol (POA is the dominant OA component than in summer, which may be an indication that estimates of POA emissions are too low. Additionally, for measurement stations where the summer OA values are higher than in winter, the model generally underestimates the increase in summertime OA. In order to correctly model the observed increase in OA in summer, additional SOA sources or formation mechanisms may be necessary. The importance of NO3 as an oxidant of SOA precursors is found to vary regionally, causing up to 50%–60% of the total amount of SOA near the surface in polluted regions and less than 25% in more remote areas, if the yield of condensible oxidation products for β-pinene is used for NO3 oxidation of all terpenes

  14. Physical and chemical characterization of urban winter-time aerosols by mobile measurements in Helsinki, Finland

    Science.gov (United States)

    Pirjola, Liisa; Niemi, Jarkko V.; Saarikoski, Sanna; Aurela, Minna; Enroth, Joonas; Carbone, Samara; Saarnio, Karri; Kuuluvainen, Heino; Kousa, Anu; Rönkkö, Topi; Hillamo, Risto

    2017-06-01

    A two-week measurement campaign by a mobile laboratory van was performed in urban environments in the Helsinki metropolitan area, Finland, in winter 2012, to obtain a comprehensive view on aerosol properties and sources. The abundances and physico-chemical properties of particles varied strongly in time and space, depending on the main sources of aerosols. Four major types of winter aerosol were recognized: 1) clean background aerosol with low particle number (Ntot) and lung deposited surface area (LDSA) concentrations due to marine air flows from the Atlantic Ocean; 2) long-range transported (LRT) pollution aerosol due to air flows from eastern Europe where the particles were characterized by the high contribution of oxygenated organic aerosol (OOA) and inorganic species, particularly sulphate, but low BC contribution, and their size distribution possessed an additional accumulation mode; 3) fresh smoke plumes from residential wood combustion in suburban small houses, these particles were characterized by high biomass burning organic aerosol (BBOA) and black carbon (BC) concentrations; and 4) fresh emissions from traffic while driving on busy streets in the city centre and on the highways during morning rush hours. This aerosol was characterized by high concentration of Ntot, LDSA, small particles in the nucleation mode, as well as high hydrocarbon-like organic aerosol (HOA) and BC concentrations. In general, secondary components (OOA, NO3, NH4, and SO4) dominated the PM1 chemical composition during the LRT episode accounting for 70-80% of the PM1 mass, whereas fresh primary emissions (BC, HOA and BBOA) dominated the local traffic and wood burning emissions. The major individual particle types observed with electron microscopy analysis (TEM/EDX) were mainly related to residential wood combustion (K/S/C-rich, soot, other C-rich particles), traffic (soot, Si/Al-rich, Fe-rich), heavy fuel oil combustion in heat plants or ships (S with V-Ni-Fe), LRT pollutants (S

  15. Microbiology and atmospheric processes: chemical interactions of primary biological aerosols

    Directory of Open Access Journals (Sweden)

    L. Deguillaume

    2008-07-01

    Full Text Available This paper discusses the influence of primary biological aerosols (PBA on atmospheric chemistry and vice versa through microbiological and chemical properties and processes. Several studies have shown that PBA represent a significant fraction of air particulate matter and hence affect the microstructure and water uptake of aerosol particles. Moreover, airborne micro-organisms, namely fungal spores and bacteria, can transform chemical constituents of the atmosphere by metabolic activity. Recent studies have emphasized the viability of bacteria and metabolic degradation of organic substances in cloud water. On the other hand, the viability and metabolic activity of airborne micro-organisms depend strongly on physical and chemical atmospheric parameters such as temperature, pressure, radiation, pH value and nutrient concentrations. In spite of recent advances, however, our knowledge of the microbiological and chemical interactions of PBA in the atmosphere is rather limited. Further targeted investigations combining laboratory experiments, field measurements, and modelling studies will be required to characterize the chemical feedbacks, microbiological activities at the air/snow/water interface supplied to the atmosphere.

  16. Chemical compositions, methods of making the chemical compositions, and structures made from the chemical compositions

    Science.gov (United States)

    Yang, Lei; Cheng, Zhe; Liu, Ze; Liu, Meilin

    2015-01-13

    Embodiments of the present disclosure include chemical compositions, structures, anodes, cathodes, electrolytes for solid oxide fuel cells, solid oxide fuel cells, fuel cells, fuel cell membranes, separation membranes, catalytic membranes, sensors, coatings for electrolytes, electrodes, membranes, and catalysts, and the like, are disclosed.

  17. Optical and Chemical Characterization of Aerosols Produced from Cooked Meats

    Science.gov (United States)

    Niedziela, R. F.; Foreman, E.; Blanc, L. E.

    2011-12-01

    Cooking processes can release a variety compounds into the air immediately above a cooking surface. The distribution of compounds will largely depend on the type of food that is being processed and the temperatures at which the food is prepared. High temperatures release compounds from foods like meats and carry them away from the preparation surface into cooler regions where condensation into particles can occur. Aerosols formed in this manner can impact air quality, particularly in urban areas where the amount of food preparation is high. Reported here are the results of laboratory experiments designed to optically and chemically characterize aerosols derived from cooking several types of meats including ground beef, salmon, chicken, and pork both in an inert atmosphere and in synthetic air. The laboratory-generated aerosols are studied using a laminar flow cell that is configured to accommodate simultaneous optical characterization in the mid-infrared and collection of particles for subsequent chemical analysis by gas chromatography. Preliminary optical results in the visible and ultra-violet will also be presented.

  18. Long-term Chemical Characterization of Submicron Aerosol Particles in the Amazon Forest - ATTO Station

    Science.gov (United States)

    Carbone, S.; Brito, J.; Rizzo, L. V.; Holanda, B. A.; Cirino, G. G.; Saturno, J.; Krüger, M. L.; Pöhlker, C.; Ng, N. L.; Xu, L.; Andreae, M. O.; Artaxo, P.

    2015-12-01

    The study of the chemical composition of aerosol particles in the Amazon forest represents a step forward to understand the strong coupling between the atmosphere and the forest. For this reason submicron aerosol particles were investigated in the Amazon forest, where biogenic and anthropogenic aerosol particles coexist at the different seasons (wet/dry). The measurements were performed at the ATTO station, which is located about 150 km northeast of Manaus. At ATTO station the Aerosol chemical speciation monitor (ACSM, Aerodyne) and the Multiangle absorption photometer (MAAP, Thermo 5012) have been operated continuously from March 2014 to July 2015. In this study, long-term measurements (near-real-time, ~30 minutes) of PM1 chemical composition were investigated for the first time in this environment.The wet season presented lower concentrations than the dry season (~5 times). In terms of chemical composition, both seasons were dominated by organics (75 and 63%) followed by sulfate (11 and 13%). Nitrate presented different ratio values between the mass-to-charges 30 to 46 (main nitrate fragments) suggesting the presence of nitrate as inorganic and organic nitrate during both seasons. The results indicated that about 75% of the nitrate signal was from organic nitrate during the dry season. In addition, several episodes with elevated amount of chloride, likely in the form of sea-salt from the Atlantic Ocean, were observed during the wet season. During those episodes, chloride comprised up to 7% of the PM1. During the dry season, chloride was also observed; however, with different volatility, which suggested that Chloride was present in different form and source. Moreover, the constant presence of sulfate and BC during the wet season might be related to biomass burning emissions from Africa. BC concentration was 2.5 times higher during the dry season. Further characterization of the organic fraction was accomplished with the positive matrix factorization (PMF), which

  19. Chemical composition of lunar material.

    Science.gov (United States)

    Maxwell, J A; Abbey, S; Champ, W H

    1970-01-30

    Chemical and emission spectrographic analyses of three Apollo 11 samples, 10017-29, 10020-30, and 10084-132, are given. Major and minor constituents were determined both by conventional rock analysis methods and by a new composite scheme utilizing a lithium fluoborate method for dissolution of the samples and atomic absorption spectroscopy and colorimetry. Trace constituents were determined by optical emission spectroscopy involving a d-c arc, air-jet controlled.

  20. A size-composition resolved aerosol model for simulating the dynamics of externally mixed particles: SCRAM (v 1.0)

    Science.gov (United States)

    Zhu, S.; Sartelet, K. N.; Seigneur, C.

    2015-06-01

    The Size-Composition Resolved Aerosol Model (SCRAM) for simulating the dynamics of externally mixed atmospheric particles is presented. This new model classifies aerosols by both composition and size, based on a comprehensive combination of all chemical species and their mass-fraction sections. All three main processes involved in aerosol dynamics (coagulation, condensation/evaporation and nucleation) are included. The model is first validated by comparison with a reference solution and with results of simulations using internally mixed particles. The degree of mixing of particles is investigated in a box model simulation using data representative of air pollution in Greater Paris. The relative influence on the mixing state of the different aerosol processes (condensation/evaporation, coagulation) and of the algorithm used to model condensation/evaporation (bulk equilibrium, dynamic) is studied.

  1. Nature, Origin, Potential Composition, and Climate Impact of the Asian Tropopause Aerosol Layer (ATAL)

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Thomason, L. W.; Natarajan, M.; Bedka, K.; Wienhold, F.; Bian J.; Martinsson, B.

    2015-01-01

    Satellite observations from SAGE II and CALIPSO indicate that summertime aerosol extinction has more than doubled in the Asian Tropopause Aerosol Layer (ATAL) since the late 1990s. Here we show remote and in-situ observations, together with results from a chemical transport model (CTM), to explore the likely composition, origin, and radiative forcing of the ATAL. We show in-situ balloon measurements of aerosol backscatter, which support the high levels observed by CALIPSO since 2006. We also show in situ measurements from aircraft, which indicate a predominant carbonaceous contribution to the ATAL (Carbon/Sulfur ratios of 2- 10), which is supported by the CTM results. We show that the peak in ATAL aerosol lags by 1 month the peak in CO from MLS, associated with deep convection over Asia during the summer monsoon. This suggests that secondary formation and growth of aerosols in the upper troposphere on monthly timescales make a significant contribution to ATAL. Back trajectory calculations initialized from CALIPSO observations provide evidence that deep convection over India is a significant source for ATAL through the vertical transport of pollution to the upper troposphere.

  2. Broadband optical properties of biomass-burning aerosol and identification of brown carbon chromophores: OPTICAL AND CHEMICAL PROPERTIES OF BROWN CARBON AEROSOLS

    Energy Technology Data Exchange (ETDEWEB)

    Bluvshtein, Nir [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Lin, Peng [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Flores, J. Michel [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Segev, Lior [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Mazar, Yinon [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel; Tas, Eran [The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot Israel; Snider, Graydon [Department of Physics and Atmospheric Science, Dalhousie University, Halifax Nova Scotia Canada; Weagle, Crystal [Department of Chemistry, Dalhousie University, Halifax Nova Scotia Canada; Brown, Steven S. [Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder Colorado USA; Chemical Sciences Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder Colorado USA; Laskin, Alexander [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland Washington USA; Rudich, Yinon [Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot Israel

    2017-05-23

    The radiative effects of biomass burning aerosols on regional and global scale is substantial. Accurate modeling of the radiative effects of smoke aerosols require wavelength-dependent measurements and parameterizations of their optical properties in the UV and visible spectral ranges along with improved description of their chemical composition. To address this issue, we used a recently developed approach to retrieve the time- and spectral-dependent optical properties of ambient biomass burning aerosols between 300 and 650 nm wavelength during a regional bonfire festival in Israel. During the biomass burning event, the overall absorption at 400 nm increased by about two orders of magnitude, changing the size-weighted single scattering albedo from a background level of 0.95 to 0.7. Based on the new retrieval method, we provide parameterizations of the wavelength-dependent effective complex refractive index from 350 to 650 nm for freshly emitted and aged biomass burning aerosols. In addition, PM2.5 filter samples were collected for detailed off-line chemical analysis of the water soluble organics that contribute to light absorption. Nitrophenols were identified as the main organic species responsible for the increased absorption at 400-500 nm. These include species such as 4- nitrocatechol, 4-nitrophenol, nitro-syringol and nitro-guaiacol; oxidation-nitration products of methoxyphenols, known products of lignin pyrolysis. Our findings emphasize the importance of both primary and secondary organic aerosol from biomass burning in absorption of solar radiation and in effective radiative forcing.

  3. Insights into Submicron Aerosol Composition and Sources from the WINTER Aircraft Campaign Over the Eastern US.

    Science.gov (United States)

    Schroder, J. C.; Campuzano Jost, P.; Day, D. A.; Fibiger, D. L.; McDuffie, E. E.; Blake, N. J.; Hills, A. J.; Hornbrook, R. S.; Apel, E. C.; Weinheimer, A. J.; Campos, T. L.; Brown, S. S.; Jimenez, J. L.

    2015-12-01

    The WINTER aircraft campaign was a recent field experiment to probe the sources and evolution of gas pollutants and aerosols in Northeast US urban and industrial plumes during the winter. A highly customized Aerodyne aerosol mass spectrometer (AMS) was flown on the NCAR C-130 to characterize submicron aerosol composition and evolution. Thirteen research flights were conducted covering a wide range of conditions, including rural, urban, and marine environments during day and night. Organic aerosol (OA) was a large component of the submicron aerosol in the boundary layer. The fraction of OA (fOA) was smaller (35-40%) than in recent US summer campaigns (~60-70%). Biomass burning was observed to be an important source of OA in the boundary layer, which is consistent with recent wintertime studies that show a substantial contribution of residential wood burning to the OA loadings. OA oxygenation (O/C ratio) shows a broad distribution with a substantial fraction of smaller O/C ratios when compared to previous summertime campaigns. Since measurements were rarely made very close to primary sources (i.e. directly above urban areas), this is consistent with oxidative chemistry being slower during winter. SOA formation and aging in the NYC plume was observed during several flights and compared with summertime results from LA (CalNex) and Mexico City (MILAGRO). Additionally, an oxidation flow reactor (OFR) capable of oxidizing ambient air up to several equivalent days of oxidation was deployed for the first time in an aircraft platform. The aerosol outflow of the OFR was sampled with the AMS to provide real-time snapshots of the potential for aerosol formation and aging. For example, a case study of a flight through the Ohio River valley showed evidence of oxidation of SO2 to sulfate. The measured sulfate enhancements were in good agreement with our OFR chemical model. OFR results for SOA will be discussed.

  4. Chemical composition of Chinese palm fruit and chemical properties ...

    African Journals Online (AJOL)

    ... chemical properties and could be used as edible oils and for industrial applications. ... on it, which can provide useful information for Chinese oil palm industry. Key words: Chemical composition, palm fruit, palm oil, palm kernel oil, chemical ...

  5. Quantifying the Relationship between Organic Aerosol Composition and Hygroscopicity/CCN Activity

    Energy Technology Data Exchange (ETDEWEB)

    Ziemann, Paul J. [Univ. of California, Riverside, CA (United States); Kreidenweis, Sonia M. [Colorado State Univ., Fort Collins, CO (United States); Petters, Markus D. [North Carolina State Univ., Raleigh, NC (United States)

    2013-06-30

    The overall objective for this project was to provide the data and underlying process level understanding necessary to facilitate the dynamic treatment of organic aerosol CCN activity in future climate models. The specific objectives were as follows: (1) employ novel approaches to link organic aerosol composition and CCN activity, (2) evaluate the effects of temperature and relative humidity on organic aerosol CCN activity, and (3) develop parameterizations to link organic aerosol composition and CCN activity.

  6. A Study of Summer and Winter Highly Time-resolved Submicron Aerosol Composition Measured at a Suburban Site in Prague

    Czech Academy of Sciences Publication Activity Database

    Kubelová, Lucie; Vodička, Petr; Schwarz, Jaroslav; Cusack, Michael; Makeš, Otakar; Ondráček, Jakub; Ždímal, Vladimír

    2015-01-01

    Roč. 118, OCT 2015 (2015), s. 45-57 ISSN 1352-2310 R&D Projects: GA ČR GAP209/11/1342 Institutional support: RVO:67985858 Keywords : atmospheric aerosol * chemical composition * size distribution Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.459, year: 2015

  7. Microphysical and chemical characteristics of near-water aerosol over White and Kara Seas

    Science.gov (United States)

    Terpugova, S. A.; Polkin, V. V.; Panchenko, M. V.; Golobokova, L. P.; Kozlov, V. S.; Shmargunov, V. P.; Shevchenko, V. P.; Lisitzin, A. P.

    2009-04-01

    The results are presented of five-year-long (2003-2007) study of the spatial - temporal variability of the near-water aerosol in the water area of White and Kara Seas (55, 64, 71 and 80-th cruises of RV "Professor Shtockman"; 53 and 54-th cruises of RV "Akademik Mstislav Keldysh"). Measurements of aerosol microphysical characteristics were carried out by means of the automated mobile aerosol complex consisting of nephelometer, photoelectric counter and aethalometer. The aerosol disperse composition was studied with photoelectric counter in 256 size intervals from 0.4 to 10 m. About 1500 series of measurements were carried out in White Sea, and about 1400 series in Kara Sea. Chemical characteristics of aerosol were determined from samples collected on aerosol filters (92 samples were collected in White Sea and 48 in Kara Sea). The ion composition was determined under laboratory conditions. The H+, Na+, K+, Ca2+, Mg2+, NH4+, Cl-, NO3-, HCO3-, SO42- ions were under examination. Comparing aerosol characteristics of two seas, one can note that the mean values of the aerosol content parameters in Kara Sea are less than in White Sea. The ratio of the aerosol mass concentration are from 2 (Yamal Peninsula, northern part of Novaya Zemlya) to 9 times (Blagopoluchia Bay, Ob' Gulf). The differences in the concentration of black carbon vary from 3 (Yamal Peninsula) to 17 times (Blagopoluchia Bay). The differences in the aerosol number concentration NA are not so big. The values NA near Kara Gate, Yamal Peninsula and northern part of Novaya Zemlya are practically the same as in White Sea. The concentration NA at Ob' gulf is one order of magnitude less than in White sea. The obtained aerosol volume size distributions were approximated by the sums of two fractions, submicron and coarse, with lognormal size distributions. The mean volume size distribution of submicron fraction in White Sea is approximated by the distribution with the variance of the radius logarithm s=0.6 and modal

  8. Geochemical perspectives from a new aerosol chemical mass closure

    Directory of Open Access Journals (Sweden)

    B. Guinot

    2007-01-01

    Full Text Available The aerosol chemical mass closure is revisited and a simple and inexpensive methodology is proposed. This methodology relies on data obtained for aerosol mass, and concentration of the major ions and the two main carbon components, the organic carbon (OC and the black carbon (BC. Atmospheric particles are separated into coarse (AD>2 μm and fine (AD<2 μm fractions and are treated separately. For the coarse fraction the carbonaceous component is minor and assumption is made for the conversion factor k of OC-to-POM (Particulate Organic Matter which is fixed to the value of 1.8 accounting for secondary species. The coarse soluble calcium is shown to display a correlation (regression coefficient f, y axis intercept b with the missing mass. Conversely, the fine fraction is dominated by organic species and assumption is made for dust which is assumed to have the same f factor as the coarse mode dust. The fine mode mass obtained from chemical analyses is then adjusted to the actual weighed mass by tuning the k conversion factor. The k coefficient is kept different in the two modes due to the expected different origins of the organic particles. Using the f and k coefficient obtained from the data set, the mass closure is reached for each individual sample with an undetermined fraction less than 10%. The procedure has been applied to different urban and peri-urban environments in Europe and in Beijing and its efficiency and uncertainties on f and k values are discussed. The f and k coefficients are shown to offer consistent geochemical indications on aerosol origin and transformations. f allows to retrieve dust mass and its value accounting for Ca abundance in dust at the site of investigation may serve as an indicator of dust origin and aerosol interactions with anthropogenic acids. f values were found to vary in the 0.08–0.12 range in European urban areas, and a broader range in Beijing (0.01–0.16. As expected, k appears to be a relevant proxy for

  9. Determinação dos hidrocarbonetos saturados e policíclicos aromáticos presentes no material particulado da atmosfera amazônica Chemical composition of aerosol collected in the amazon forest

    Directory of Open Access Journals (Sweden)

    Pérola de Castro Vasconcellos

    1998-07-01

    Full Text Available It was identified and quantified several organic compounds in the atmosphere of a site into Amazon Basin with high impact of biomass burning emission. It was important to know the particulate matter composition with respect to n-alkanes and PAH associated with the particulate matter because they provided indication on the main sources contributing to airborne particles, the contribution of natural vs. man-made emission and the aging of the particles. The main classes of compounds observed were n-alkanes, PAH and nitro-PAH. It was observed the formation of nitro-PAH from photochemical reactions. The aerosol mass concentration is mainly associated with fluoranthene, pyrene and benzo(ghiperylene. Environmental and direct emissions samples (flaming and smoldering were collected and analysed.

  10. Aerosol composition studies using accelerator proton bombardment

    International Nuclear Information System (INIS)

    Nelson, J.W.; Winchester, J.W.; Akselsson, R.

    1974-01-01

    The proton beam of the Florida State University Tandem Van de Graaff Accelerator is being used to make quantitative determinations of the composition of particulate matter found in the atmosphere. Proton scattering using 16 MeV incident particle energy is employed to resolve the light elements (up to Cl), while elements Al and heavier are observed via proton induced x-ray emission analysis. In order to realize advantages of these proton excited analyses, specialized techniques are used, such as the use of uniform beams which entirely cover the area of targets of nonuniform areal density. Also, specialized air sampling equipment was built to take advantage of the small size of samples required for proton-induced analyses. The multielement character, ease of automation, and short time (several minutes) needed for analysis make these techniques attractive from the standpoint of analysis cost per sample

  11. Multisensor analyzer detector (MSAD) for low cost chemical and aerosol detection and pattern fusion

    Science.gov (United States)

    Swanson, David C.; Merdes, Daniel W.; Lysak, Daniel B., Jr.; Curtis, Richard C.; Lang, Derek C.; Mazzara, Andrew F.; Nicholas, Nicholas C.

    2002-08-01

    MSAD is being developed as a low-cost point detection chemical and biological sensor system designed around an information fusion inference engine that also allows additional sensors to be included in the detection process. The MSAD concept is based on probable cause detection of hazardous chemical vapors and aerosols of either chemical or biological composition using a small portable unit containing an embedded computer system and several integrated sensors with complementary capabilities. The configuration currently envisioned includes a Surface-Enhanced Raman Spectroscopy (SERS) sensor of chemical vapors and a detector of respirable aerosols based on Fraunhofer diffraction. Additional sensors employing Ion Mobility Spectrometry (IMS), Surface Acoustic Wave (SAW) detection, Flame Photometric Detection (FPD), and other principles are candidates for integration into the device; also, available commercial detectors implementing IMS, SAW, and FPD will be made accessible to the unit through RS232 ports. Both feature and decision level information fusion is supported using a Continuous Inference Network (CINET) of fuzzy logic. Each class of agents has a unique CINET with information inputs from a number of available sensors. Missing or low confidence sensor information is gracefully blended out of the output confidence for the particular agent. This approach constitutes a plug and play arrangement between the sensors and the information pattern recognition algorithms. We are currently doing simulant testing and developing out CINETs for actual agent testing at Edgewood Chemical and Biological Center (ECBC) later this year.

  12. Chemical properties and morphology of Marine Aerosol in the Mediterranean atmosphere: a mesocosm study

    Science.gov (United States)

    D'Anna, Barbara; Sellegri, Karine; Charrière, Bruno; Sempéré, Richard; Mas, Sébastien; Marchand, Nicolas; George, Christian; Même, Aurèlie; R'mili, Badr; Delmont, Anne; Schwier, Allison; Rose, Clémence; Colomb, Aurèlie; Pey, Jorge; Langley Dewitt, Helen

    2014-05-01

    The Mediterranean Sea is a special marine environment characterized by low biological activity and high anthropogenic pressure. It is often difficult to discriminate the contribution of Primary Sea Salt Aerosol formed at the sea surface from background level of the aerosol. An alternative tool to study the sea-air exchanges in a controlled environment is provided by the mesocosms, which represent an important link between field studies and laboratory experiments. The sea-air transfer of particles and gases was investigated in relation to water chemical composition and biological activity during a mesocosm experiment within the SAM project (Sources of marine Aerosol in the Mediterranean) at the Oceanographic and Marine Station STARESO in Western Corsica (May 2013). Three 2 m mesocosms were filled with screened (sensors and received different treatments: one was left unchanged as control and two were enriched by addition of nitrates and phosphates respecting Redfield ratio (N:P = 16). The evolution of the three systems was followed for 20 days. The set of sensors in each mesocosm was allowed to monitor, at high frequency (every 10 min), the water temperature, conductivity, pH, incident light, fluorescence of chlorophyll a and dissolved oxygen concentration. The mesocosm seawaters were daily sampled for chemical (colored dissolved organic matter, particulate matter and related polar compounds, transparent polysaccharides and nutrients concentration) and biological (chlorophyll a, virus, phytoplankton and zooplankton) analyses. Both dissolved and gaseous VOCs were also analyzed. In addition, few liters of seawater from each mesocosm were daily and immediately collected and transferred to a bubble-bursting apparatus to simulate nascent sea spray aerosol. On-line chemical analysis of the sub-micrometer fraction was performed by a TOF-AMS (Aerodyne). Off-line analysis included TEM-EDX for morphology and size distribution studies and a hybrid quadrupole-orbitrap mass

  13. Online Chemical Characterization of Food-Cooking Organic Aerosols: Implications for Source Apportionment.

    Science.gov (United States)

    Reyes-Villegas, Ernesto; Bannan, Thomas; Le Breton, Michael; Mehra, Archit; Priestley, Michael; Percival, Carl; Coe, Hugh; Allan, James D

    2018-04-11

    Food-cooking organic aerosols (COA) are one of the primary sources of submicron particulate matter in urban environments. However, there are still many questions surrounding source apportionment related to instrumentation as well as semivolatile partitioning because COA evolve rapidly in the ambient air, making source apportionment more complex. Online measurements of emissions from cooking different types of food were performed in a laboratory to characterize particles and gases. Aerosol mass spectrometer (AMS) measurements showed that the relative ionization efficiency for OA was higher (1.56-3.06) relative to a typical value of 1.4, concluding that AMS is over-estimating COA and suggesting that previous studies likely over-estimated COA concentrations. Food-cooking mass spectra were generated using AMS, and gas and particle food markers were identified with filter inlets for gases and aerosols-chemical ionization mass spectrometer (CIMS) measurements to be used in future food cooking-source apportionment studies. However, there is a considerable variability in both gas and particle markers, and dilution plays an important role in the particle mass budget, showing the importance of using these markers with caution during receptor modeling. These findings can be used to better understand the chemical composition of COA, and they provides useful information to be used in future source-apportionment studies.

  14. Size distributions and chemical properties of aerosol at Ny Ålesund, Svalbard

    Science.gov (United States)

    Covert, David S.; Heintzenberg, Jost

    Physical and chemical parameters of the arctic aerosol were investigated at Ny Ålesund, Svalbard, in March and April 1989 in connection with the third Arctic Gas and Aerosol Project (AGASP III). The number size distribution of the particles was measured over the range of 0.02-1.0 μm. Filter samples were analysed for elemental composition and two integral chemical properties, hygroscopic growth and volatility, were measured. Along with the latter measurements, the distribution of these properties at specific particle sizes, i.e. the degree of internal mixing, was determined. Both clean, marine conditions and "arctic haze" episodes were included in the series of measurements. The number size distribution indicated that the aerosol was well aged based on its narrowness and the relative low concentration of nuclei mode particles. It had a number mode at 0.22 μm diameter and geometric standard deviation of 1.4. Generally the particles exhibited uniform hygroscopic growth properties, i.e. they were largely internally mixed. The growth factor was 1.45 at 90% relative humidity. Approximately 40% of the overall particulate mass was volatile at a temperature of 50°C. The volatile fraction varied form particle to particle, i.e. the particles were externally mixed with respect to volatility.

  15. Characterizing the Asian Tropopause Aerosol Layer (ATAL) Using Satellite Observations, Balloon Measurements and a Chemical Transport Model

    Science.gov (United States)

    Fairlie, T. D.; Vernier, J.-P.; Liu, H.; Deshler, T.; Natarajan, M.; Bedka, K.; Wegner, T.; Baker, N.; Gadhavi, H.; Ratnam, M. V.; hide

    2016-01-01

    Satellite observations and numerical modeling studies have demonstrated that the Asian Summer Monsoon (ASM) provide a conduit for gas-phase pollutants in south Asia to reach the lower stratosphere. Now, observations from the CALIPSO satellite have revealed the Asian Tropopause Aerosol Layer (ATAL), a summertime accumulation of aerosols in the upper troposphere and lower stratosphere (UTLS), associated with the ASM anticyclone. The ATAL has potential implications for regional cloud properties, climate, and chemical processes in the UTLS. Here, we show in situ measurements from balloon-borne instruments, aircraft, and satellite observations, together with trajectory and chemical transport model (CTM) simulations to explore the origin, composition, physical, and optical properties of aerosols in the ATAL. In particular, we show balloon-data from our BATAL-2015 field campaign to India and Saudi Arabia in summer 2015, which includes in situ backscatter measurements from COBALD instruments, and the first observations of size and volatility of aerosols in the ATAL layer using optical particle counters (OPCs). Back trajectory calculations initialized from CALIPSO observations point to deep convection over North India as a principal source of ATAL aerosols. Available aircraft observations suggest significant sulfur and carbonaceous components to the ATAL, which is supported by simulations using the GEOS-Chem CTM. Source elimination studies conducted with the GEOS-Chem indicate that ATAL aerosols originate primary from south Asian sources, in contrast with some earlier studies.

  16. Composite study of aerosol export events from East Asia and North America

    Directory of Open Access Journals (Sweden)

    Y. Luan

    2013-02-01

    Full Text Available We use satellite observations of aerosol optical depth (AOD from the Moderate Resolution Imaging Spectrometer (MODIS together with the GEOS-Chem global chemical transport model to contrast export of aerosols from East Asia and North America during 2004–2010. The GEOS-Chem model reproduces the spatial distribution and temporal variations of Asian aerosol outflow generally well, although a low bias (−30% is found in the model fine mode AOD, particularly during summer. We use the model to identify 244 aerosol pollution export events from E. Asia and 251 export events from N. America over our 7-year study period. When these events are composited by season, we find that the AOD in the outflow is enhanced by 50–100% relative to seasonal mean values. The composite Asian plume splits into one branch going poleward to the Arctic in 3–4 days, with the other crossing the Pacific Ocean in 6–8 days. A fraction of the aerosols is trapped in the subtropical Pacific High during spring and summer. The N. American plume travels to the northeast Atlantic, reaching Europe after 4–5 days. Part of the composite plume turns anticyclonically in the Azores High, where it slowly decays. Both the Asian and N. American export events are favored by a dipole structure in sea-level pressure anomalies, associated with mid-latitude cyclone activity over the respective source regions. This dipole structure during outflow events is a strong feature for all seasons except summer, when convection becomes more important. The observed AOD in the E. Asian outflow exhibits stronger seasonality, with a spring maximum, than the N. American outflow, with a broad spring/summer maximum. The large spring AOD in the Asian outflow is the result of enhanced sulfate and dust aerosol concentrations, but is also due to a larger export efficiency of sulfate and SO2 from the Asian boundary layer relative to the N. American boundary layer. While the N. American sulfate outflow

  17. Inorganic Salt Interference on CO2+ in Aerodyne AMS and ACSM Organic Aerosol Composition Studies.

    Science.gov (United States)

    Pieber, Simone M; El Haddad, Imad; Slowik, Jay G; Canagaratna, Manjula R; Jayne, John T; Platt, Stephen M; Bozzetti, Carlo; Daellenbach, Kaspar R; Fröhlich, Roman; Vlachou, Athanasia; Klein, Felix; Dommen, Josef; Miljevic, Branka; Jiménez, José L; Worsnop, Douglas R; Baltensperger, Urs; Prévôt, André S H

    2016-10-04

    Aerodyne aerosol mass spectrometer (AMS) and Aerodyne aerosol chemical speciation monitor (ACSM) mass spectra are widely used to quantify organic aerosol (OA) elemental composition, oxidation state, and major environmental sources. The OA CO 2 + fragment is among the most important measurements for such analyses. Here, we show that a non-OA CO 2 + signal can arise from reactions on the particle vaporizer, ion chamber, or both, induced by thermal decomposition products of inorganic salts. In our tests (eight instruments, n = 29), ammonium nitrate (NH 4 NO 3 ) causes a median CO 2 + interference signal of +3.4% relative to nitrate. This interference is highly variable between instruments and with measurement history (percentiles P 10-90 = +0.4 to +10.2%). Other semi-refractory nitrate salts showed 2-10 times enhanced interference compared to that of NH 4 NO 3 , while the ammonium sulfate ((NH 4 ) 2 SO 4 ) induced interference was 3-10 times lower. Propagation of the CO 2 + interference to other ions during standard AMS and ACSM data analysis affects the calculated OA mass, mass spectra, molecular oxygen-to-carbon ratio (O/C), and f 44 . The resulting bias may be trivial for most ambient data sets but can be significant for aerosol with higher inorganic fractions (>50%), e.g., for low ambient temperatures, or laboratory experiments. The large variation between instruments makes it imperative to regularly quantify this effect on individual AMS and ACSM systems.

  18. Aerosol composition and sources in the central Arctic Ocean during ASCOS

    Science.gov (United States)

    Chang, R. Y.-W.; Leck, C.; Graus, M.; Müller, M.; Paatero, J.; Burkhart, J. F.; Stohl, A.; Orr, L. H.; Hayden, K.; Li, S.-M.; Hansel, A.; Tjernström, M.; Leaitch, W. R.; Abbatt, J. P. D.

    2011-10-01

    Measurements of submicron aerosol chemical composition were made over the central Arctic Ocean from 5 August to 8 September 2008 as a part of the Arctic Summer Cloud Ocean Study (ASCOS) using an aerosol mass spectrometer (AMS). The median levels of sulphate and organics for the entire study were 0.051 and 0.055 μ g m-3, respectively. Positive matrix factorisation was performed on the entire mass spectral time series and this enabled marine biogenic and continental sources of particles to be separated. These factors accounted for 33% and 36% of the sampled ambient aerosol mass, respectively, and they were both predominantly composed of sulphate, with 47% of the sulphate apportioned to marine biogenic sources and 48% to continental sources, by mass. Within the marine biogenic factor, the ratio of methane sulphonate to sulphate was 0.25 ± 0.02, consistent with values reported in the literature. The organic component of the continental factor was more oxidised than that of the marine biogenic factor, suggesting that it had a longer photochemical lifetime than the organics in the marine biogenic factor. The remaining ambient aerosol mass was apportioned to an organic-rich factor that could have arisen from a combination of marine and continental sources. In particular, given that the factor does not correlate with common tracers of continental influence, we cannot rule out that the organic factor arises from a primary marine source.

  19. Lidar sprectroscopy instrument (LISSI: An infrastructure facility for chemical aerosol profiling at the University of Hertfordshire

    Directory of Open Access Journals (Sweden)

    Tesche Matthias

    2018-01-01

    The new facility will open new avenues for chemical profiling of aerosol pollution from measurements of Raman scattering by selected chemical compounds, provide data that allow to close the gap between optical and microphysical aerosol profiling with lidar and enables connecting lidar measurements to parameters used in atmospheric modelling.

  20. Neutralization of Aerosolized Bio-Agents by Filled Nanocomposite Materials through Thermal and Chemical Inactivation Mechanisms

    Science.gov (United States)

    2016-06-01

    Bio -agents by Filled Nanocomposite Materials through Thermal and Chemical Inactivation Mechanisms Distribution Statement A. Approved for public...of Cincinnati Project Title: Neutralization of Aerosolized Bio -agents by Filled Nanocomposite Materials through Thermal and Chemical Inactivation...fire ball, where they will not effectively interact with any viable bio -aerosol. 1.1.4. Conclusions Cryo-milling is necessary to achieve a

  1. Aerosol composition and properties variation at the ground and over the column under different air masses advection in South Italy.

    Science.gov (United States)

    Pavese, G; Lettino, A; Calvello, M; Esposito, F; Fiore, S

    2016-04-01

    Aerosol composition and properties variation under the advection of different air masses were investigated, as case studies, by contemporary measurements over the atmospheric column and at the ground in a semi-rural site in South Italy. The absence of local strong sources in this area allowed to characterize background aerosol and to compare particle mixing effects under various atmospheric circulation conditions. Aerosol optical depth (AOD) and Ǻngström parameters from radiometric measurements allowed the detection and identification of polluted, dust, and volcanic atmospheric conditions. AODs were the input for a suitable model to evaluate the columnar aerosol composition, according to six main atmospheric components (water-soluble, soot, sea salt accumulation, sea salt coarse, mineral dus,t and biological). Scanning electron microscope (SEM) analysis of particulate sampled with a 13-stage impactor at the ground showed not only fingerprints typical of the different air masses but also the effects of transport and aging on atmospheric particles, suggesting processes that changed their chemical and optical properties. Background columnar aerosol was characterized by 72% of water-soluble and soot, in agreement with ground-based findings that highlighted 60% of contribution from anthropogenic carbonate particles and soot. In general, a good agreement between ground-based and columnar results was observed. Under the advection of trans-boundary air masses, water-soluble and soot were always present in columnar aerosol, whereas, in variable percentages, sea salt and mineral particles characterized both dust and volcanic conditions. At the ground, sulfates characterized the amorphous matrix produced in finer stages by the evaporation of solutions of organic and inorganic aerosols. Sulfates were also one of the key players involved in heterogeneous chemical reactions, producing complex secondary aerosol, as such clay-sulfate internally mixed particle externally mixed

  2. Relating hygroscopicity and composition of organic aerosol particulate matter

    CERN Document Server

    Duplissy, J; Prevot, A S H; Barmpadimos, I; Jimenez, J L; Gysel, M; Worsnop, D R; Aiken, A C; Tritscher, T; Canagaratna, M R; Collins, D R; Alfarra, M R; Metzger, A; Tomlinson, J; DeCarlo, P F; Weingartner, E; Baltensperger, U

    2011-01-01

    A hygroscopicity tandem differential mobility analyzer (HTDMA) was used to measure the water uptake (hygroscopicity) of secondary organic aerosol (SOA) formed during the chemical and photochemical oxidation of several organic precursors in a smog chamber. Electron ionization mass spectra of the non-refractory submicron aerosol were simultaneously determined with an aerosol mass spectrometer (AMS), and correlations between the two different signals were investigated. SOA hygroscopicity was found to strongly correlate with the relative abundance of the ion signal m/z 44 expressed as a fraction of total organic signal (f(44)). m/z 44 is due mostly to the ion fragment CO(2)(+) for all types of SOA systems studied, and has been previously shown to strongly correlate with organic O/C for ambient and chamber OA. The analysis was also performed on ambient OA from two field experiments at the remote site Jungfrau-joch, and the megacity Mexico City, where similar results were found. A simple empirical linear relation b...

  3. Aerosol composition and its application in air pollution monitoring

    International Nuclear Information System (INIS)

    Sadasivan, S.; Negi, B.S.; Meenakshy, V.; Nambi, K.S.V.

    1994-01-01

    Aerosol composition measurements have been carried out in our laboratory using nuclear and related techniques. A brief overview of results from the earlier studies and the scope of the present project are outlined. The analytical procedures in use along with the systems available are detailed. Changes envisaged in sampling and analysis are briefly discussed. Results of two case studies relating to air pollution which are investigated using INAA/EDXRF are presented. The work plan under the CRP is outlined. (author). 11 refs, 2 figs, 5 tabs

  4. Chemical apportionment of aerosol optical properties during the Asia-Pacific Economic Cooperation summit in Beijing, China

    Science.gov (United States)

    Han, Tingting; Xu, Weiqi; Chen, Chen; Liu, Xingang; Wang, Qingqing; Li, Jie; Zhao, Xiujuan; Du, Wei; Wang, Zifa; Sun, Yele

    2015-12-01

    We have investigated the chemical and optical properties of aerosol particles during the 2014 Asia-Pacific Economic Cooperation (APEC) summit in Beijing, China, using the highly time-resolved measurements by a high-resolution aerosol mass spectrometer and a cavity attenuated phase shift extinction monitor. The average (±σ) extinction coefficient (bext) and absorption coefficient (bap) were 186.5 (±184.5) M m-1 and 23.3 (±21.9) M m-1 during APEC, which were decreased by 63% and 56%, respectively, compared to those before APEC primarily due to strict emission controls. The aerosol composition and size distributions showed substantial changes during APEC; as a response, the mass scattering efficiency (MSE) of PM1 was decreased from 4.7 m2 g-1 to 3.5 m2 g-1. Comparatively, the average single-scattering albedo (SSA) remained relatively unchanged, illustrating the synchronous reductions of bext and bap during APEC. MSE and SSA were found to increase as function of the oxidation degree of organic aerosol (OA), indicating a change of aerosol optical properties during the aging processes. The empirical relationships between chemical composition and particle extinction were established using a multiple linear regression model. Our results showed the largest contribution of ammonium nitrate to particle extinction, accounting for 35.1% and 29.3% before and during APEC, respectively. This result highlights the important role of ammonium nitrate in the formation of severe haze pollution during this study period. We also observed very different optical properties of primary and secondary aerosol. Owing to emission controls in Beijing and surrounding regions and also partly the influences of meteorological changes, the average bext of secondary aerosol during APEC was decreased by 71% from 372.3 M m-1 to 108.5 M m-1, whereas that of primary aerosol mainly from cooking, traffic, and biomass burning emissions showed a smaller reduction from 136.7 M m-1 to 71.3 M m-1. As a result

  5. Aerosol characterization over the southeastern United States using high resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition, sources, and organic nitrates

    Science.gov (United States)

    Xu, L.; Suresh, S.; Guo, H.; Weber, R. J.; Ng, N. L.

    2015-04-01

    We deployed a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and an Aerosol Chemical Speciation Monitor (ACSM) to characterize the chemical composition of submicron non-refractory particles (NR-PM1) in the southeastern US. Measurements were performed in both rural and urban sites in the greater Atlanta area, GA and Centreville, AL for approximately one year, as part of Southeastern Center of Air Pollution and Epidemiology study (SCAPE) and Southern Oxidant and Aerosol Study (SOAS). Organic aerosol (OA) accounts for more than half of NR1 mass concentration regardless of sampling sites and seasons. Positive matrix factorization (PMF) analysis of HR-ToF-AMS measurements identified various OA sources, depending on location and season. Hydrocarbon-like OA (HOA) and cooking OA (COA) have important but not dominant contributions to total OA in urban sites. Biomass burning OA (BBOA) concentration shows a distinct seasonal variation with a larger enhancement in winter than summer. We find a good correlation between BBOA and brown carbon, indicating biomass burning is an important source for brown carbon, although an additional, unidentified brown carbon source is likely present at the rural Yorkville site. Isoprene-derived OA (Isoprene-OA) is only deconvolved in warmer months and contributes 18-36% of total OA. The presence of Isoprene-OA factor in urban sites is more likely from local production in the presence of NOx than transport from rural sites. More-oxidized and less-oxidized oxygenated organic aerosol (MO-OOA and LO-OOA, respectively) are dominant fractions (47-79%) of OA in all sites. MO-OOA correlates well with ozone in summer, but not in winter, indicating MO-OOA sources may vary with seasons. LO-OOA, which reaches a daily maximum at night, correlates better with estimated nitrate functionality from organic nitrates than total nitrates. Based on the HR-ToF-AMS measurements, we estimate that the nitrate functionality from organic nitrates

  6. COBRA: A Computational Brewing Application for Predicting the Molecular Composition of Organic Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Fooshee, David R.; Nguyen, Tran B.; Nizkorodov, Sergey A.; Laskin, Julia; Laskin, Alexander; Baldi, Pierre

    2012-05-08

    Atmospheric organic aerosols (OA) represent a significant fraction of airborne particulate matter and can impact climate, visibility, and human health. These mixtures are difficult to characterize experimentally due to the enormous complexity and dynamic nature of their chemical composition. We introduce a novel Computational Brewing Application (COBRA) and apply it to modeling oligomerization chemistry stemming from condensation and addition reactions of monomers pertinent to secondary organic aerosol (SOA) formed by photooxidation of isoprene. COBRA uses two lists as input: a list of chemical structures comprising the molecular starting pool, and a list of rules defining potential reactions between molecules. Reactions are performed iteratively, with products of all previous iterations serving as reactants for the next one. The simulation generated thousands of molecular structures in the mass range of 120-500 Da, and correctly predicted ~70% of the individual SOA constituents observed by high-resolution mass spectrometry (HR-MS). Selected predicted structures were confirmed with tandem mass spectrometry. Esterification and hemiacetal formation reactions were shown to play the most significant role in oligomer formation, whereas aldol condensation was shown to be insignificant. COBRA is not limited to atmospheric aerosol chemistry, but is broadly applicable to the prediction of reaction products in other complex mixtures for which reasonable reaction mechanisms and seed molecules can be supplied by experimental or theoretical methods.

  7. Aerosol composition, chemistry, and source characterization during the 2008 VOCALS Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.; Springston, S.; Jayne, J.; Wang, J.; Senum, G.; Hubbe, J.; Alexander, L.; Brioude, J.; Spak, S.; Mena-Carrasco, M.; Kleinman, L.; Daum, P.

    2010-03-15

    Chemical composition of fine aerosol particles over the northern Chilean coastal waters was determined onboard the U.S. DOE G-1 aircraft during the VOCALS (VAMOS Ocean-Cloud-Atmosphere-Land Study) field campaign between October 16 and November 15, 2008. SO42-, NO3-, NH4+, and total organics (Org) were determined using an Aerodyne Aerosol Mass Spectrometer, and SO42-, NO3-, NH4+, Na+, Cl-, CH3SO3-, Mg2+, Ca2+, and K+ were determined using a particle-into-liquid sampler-ion chromatography technique. The results show the marine boundary layer (MBL) aerosol mass was dominated by non- sea-salt SO42- followed by Na+, Cl-, Org, NO3-, and NH4+, in decreasing importance; CH3SO3-, Ca2+, and K+ rarely exceeded their respective limits of detection. The SO42- aerosols were strongly acidic as the equivalent NH4+ to SO42- ratio was only {approx}0.25 on average. NaCl particles, presumably of sea-salt origin, showed chloride deficits but retained Cl- typically more than half the equivalency of Na+, and are externally mixed with the acidic sulfate aerosols. Nitrate was observed only on sea-salt particles, consistent with adsorption of HNO3 on sea-salt aerosols, responsible for the Cl- deficit. Dust particles appeared to play a minor role, judging from the small volume differences between that derived from the observed mass concentrations and that calculated based on particle size distributions. Because SO42- concentrations were substantial ({approx}0.5 - {approx}3 {micro}g/m3) with a strong gradient (highest near the shore), and the ocean-emitted dimethylsulfide and its unique oxidation product, CH3SO3-, were very low (i.e., {le} 40 parts per trillion and <0.05 {micro}g/m3, respectively), the observed SO42- aerosols are believed to be primarily of terrestrial origin. Back trajectory calculations indicate sulfur emissions from smelters and power plants along coastal regions of Peru and Chile are the main sources of these SO4- aerosols. However, compared to observations, model

  8. A model study of the size and composition distribution of aerosols in an aircraft exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, A.A. [SRC `ECOLEN`, Moscow (Russian Federation)

    1997-12-31

    A two-dimensional, axisymmetric flow field model which includes water and sulphate aerosol formation represented by moments of the size and composition distribution function is used to calculate the effect of radial turbulent jet mixing on the aerosol size distribution and mean modal composition. (author) 6 refs.

  9. A model study of the size and composition distribution of aerosols in an aircraft exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Sorokin, A A [SRC ` ECOLEN` , Moscow (Russian Federation)

    1998-12-31

    A two-dimensional, axisymmetric flow field model which includes water and sulphate aerosol formation represented by moments of the size and composition distribution function is used to calculate the effect of radial turbulent jet mixing on the aerosol size distribution and mean modal composition. (author) 6 refs.

  10. The effect of varying physical and chemical characteristics of inhaled plutonium aerosols on metabolism and excretion

    International Nuclear Information System (INIS)

    Mewhinney, J.A.; Muggenburg, B.A.; McClellan, R.O.; Miglio, J.J.

    1976-01-01

    The effects of different chemical and physical parameters of plutonium aerosols on lung retention, tissue distribution and excretion patterns were evaluated in beagle dogs. Polydisperse aerosols of 239 Pu of different chemical form were produced by heating droplets nebulized from a solution of 239 PuIV in 1M HC1 to temperatures ranging from 325 0 C to 1150 0 C. Droplets containing 238 Pu(OH) 4 were treated at 1150 0 C and the resultant polydisperse aerosol used or separated into monodisperse size groups. Beagle dogs were exposed by inhalation to provide initial lung burdens in the range of 0.75 to 1.0μCi. The aerosols were characterized as to particle size and size distribution, and an in-vitro solubility measurement was made on samples of the aerosol from each animal exposure. Different production temperatures for the 239 Pu aerosols resulted in lung retention half-times that increased as the production temperature increased. The 239 Pu tissue distribution and urinary excretion patterns were correlated with lung retention. Faecal excretion was greater for aerosols produced at lower temperatures. Lung retention half-times for 238 Pu monodisperse aerosols were not greatly different from particle sizes of 0.8 and 1.9μm activity median aerodynamic diameter (AMAD). The third monodisperse aerosol intended to be 3.0μm AMAD had a bimodal particle size distribution and contained a significant fraction of readily soluble material. The 238 Pu polydisperse aerosol had a slightly lower lung retention, increased urinary excretion and translocation to tissues than the comparable 239 Pu polydisperse material. This study serves to emphasize the importance of complete analysis of the aerosol material as well as early excretion data following accidental human exposure to aerosols containing plutonium. The role of chemical form and aerosol particle size in evaluation of such cases is discussed. (author)

  11. Effect of flavoring chemicals on free radical formation in electronic cigarette aerosols.

    Science.gov (United States)

    Bitzer, Zachary T; Goel, Reema; Reilly, Samantha M; Elias, Ryan J; Silakov, Alexey; Foulds, Jonathan; Muscat, Joshua; Richie, John P

    2018-05-20

    Flavoring chemicals, or flavorants, have been used in electronic cigarettes (e-cigarettes) since their inception; however, little is known about their toxicological effects. Free radicals present in e-cigarette aerosols have been shown to induce oxidative stress resulting in damage to proliferation, survival, and inflammation pathways in the cell. Aerosols generated from e-liquid solvents alone contain high levels of free radicals but few studies have looked at how these toxins are modulated by flavorants. We investigated the effects of different flavorants on free radical production in e-cigarette aerosols. Free radicals generated from 49 commercially available e-liquid flavors were captured and analyzed using electron paramagnetic resonance (EPR). The flavorant composition of each e-liquid was analyzed by gas chromatography mass spectroscopy (GCMS). Radical production was correlated with flavorant abundance. Ten compounds were identified and analyzed for their impact on free radical generation. Nearly half of the flavors modulated free radical generation. Flavorants with strong correlations included β-damascone, δ-tetradecalactone, γ-decalactone, citral, dipentene, ethyl maltol, ethyl vanillin, ethyl vanillin PG acetal, linalool, and piperonal. Dipentene, ethyl maltol, citral, linalool, and piperonal promoted radical formation in a concentration-dependent manner. Ethyl vanillin inhibited the radical formation in a concentration dependent manner. Free radical production was closely linked with the capacity to oxidize biologically-relevant lipids. Our results suggest that flavoring agents play an important role in either enhancing or inhibiting the production of free radicals in flavored e-cigarette aerosols. This information is important for developing regulatory strategies aimed at reducing potential harm from e-cigarettes. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Desorption atmospheric pressure photoionization high-resolution mass spectrometry: a complementary approach for the chemical analysis of atmospheric aerosols.

    Science.gov (United States)

    Parshintsev, Jevgeni; Vaikkinen, Anu; Lipponen, Katriina; Vrkoslav, Vladimir; Cvačka, Josef; Kostiainen, Risto; Kotiaho, Tapio; Hartonen, Kari; Riekkola, Marja-Liisa; Kauppila, Tiina J

    2015-07-15

    On-line chemical characterization methods of atmospheric aerosols are essential to increase our understanding of physicochemical processes in the atmosphere, and to study biosphere-atmosphere interactions. Several techniques, including aerosol mass spectrometry, are nowadays available, but they all suffer from some disadvantages. In this research, desorption atmospheric pressure photoionization high-resolution (Orbitrap) mass spectrometry (DAPPI-HRMS) is introduced as a complementary technique for the fast analysis of aerosol chemical composition without the need for sample preparation. Atmospheric aerosols from city air were collected on a filter, desorbed in a DAPPI source with a hot stream of toluene and nitrogen, and ionized using a vacuum ultraviolet lamp at atmospheric pressure. To study the applicability of the technique for ambient aerosol analysis, several samples were collected onto filters and analyzed, with the focus being on selected organic acids. To compare the DAPPI-HRMS data with results obtained by an established method, each filter sample was divided into two equal parts, and the second half of the filter was extracted and analyzed by liquid chromatography/mass spectrometry (LC/MS). The DAPPI results agreed with the measured aerosol particle number. In addition to the targeted acids, the LC/MS and DAPPI-HRMS methods were found to detect different compounds, thus providing complementary information about the aerosol samples. DAPPI-HRMS showed several important oxidation products of terpenes, and numerous compounds were tentatively identified. Thanks to the soft ionization, high mass resolution, fast analysis, simplicity and on-line applicability, the proposed methodology has high potential in the field of atmospheric research. Copyright © 2015 John Wiley & Sons, Ltd.

  13. Chemical composition, secondary metabolites, in vitro gas ...

    African Journals Online (AJOL)

    Chemical composition, secondary metabolites, in vitro gas production characteristics and acceptability study of some forage for ruminant feeding in South-Western Nigeria. ... Chemical composition and qualitative analysis of saponins, phenol and steroids of the plants were determined. In vitro gas production (IVGP) was ...

  14. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Dron, J.; El Haddad, I.; Temime-Roussel, B.; Wortham, H.; Marchand, N. [Univ Aix Marseille, CNRS, Lab Chim Provence, Equipe Instrumentat and React Atmospher, UMR 6264, F-13331 Marseille 3 (France); Jaffrezo, J.L. [Univ Grenoble 1, CNRS, UMR 5183, Lab Glaciol and Geophys Environm, F-38402 St Martin Dheres (France)

    2010-07-01

    The functional group composition of various organic aerosols (OA) is investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCIMS/MS). The determinations of three functional groups contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups, R-COOH and R-CO-R' respectively) and precursor ion (nitro groups, R-NO{sub 2}) scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA) produced through photooxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounts for 1.7% (vehicular) to 13.5% (o-xylene photooxidation) of the organic carbon. Diagnostic functional group ratios are then used to tentatively discriminate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France) during a strong winter pollution event. The three functional groups under study account for a total functionalization rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to discriminate sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assess a wood burning organic carbon contribution of about 60%. Finally, examples of functional

  15. Functional group composition of ambient and source organic aerosols determined by tandem mass spectrometry

    Directory of Open Access Journals (Sweden)

    J. Dron

    2010-08-01

    Full Text Available The functional group composition of various organic aerosols (OA is investigated using a recently developed analytical approach based on atmospheric pressure chemical ionisation-tandem mass spectrometry (APCI-MS/MS. The determinations of three functional groups contents are performed quantitatively by neutral loss (carboxylic and carbonyl groups, R-COOH and R-CO-R´ respectively and precursor ion (nitro groups, R-NO2 scanning modes of a tandem mass spectrometer. Major organic aerosol sources are studied: vehicular emission and wood combustion for primary aerosol sources; and a secondary organic aerosol (SOA produced through photooxidation of o-xylene. The results reveal significant differences in the functional group contents of these source aerosols. The laboratory generated SOA is dominated by carbonyls while carboxylics are preponderate in the wood combustion particles. On the other hand, vehicular emissions are characterised by a strong nitro content. The total amount of the three functional groups accounts for 1.7% (vehicular to 13.5% (o-xylene photooxidation of the organic carbon. Diagnostic functional group ratios are then used to tentatively discriminate sources of particles collected in an urban background environment located in an Alpine valley (Chamonix, France during a strong winter pollution event. The three functional groups under study account for a total functionalisation rate of 2.2 to 3.8% of the organic carbon in this ambient aerosol, which is also dominated by carboxylic moieties. In this particular case study of a deep alpine valley during winter, we show that the nitro- and carbonyl-to-carboxylic diagnostic ratios can be a useful tool to discriminate sources. In these conditions, the total OA concentrations are highly dominated by wood combustion OA. This result is confirmed by an organic markers source apportionment approach which assess a wood burning organic carbon contribution of about 60

  16. X-ray methods for the chemical characterization of atmospheric aerosols

    International Nuclear Information System (INIS)

    Jaklevic, J.M.; Thompson, A.C.

    1981-05-01

    The development and use of several x-ray methods for the chemical characterization of atmospherical aerosol particulate samples are described. These methods are based on the emission, absorption, and scattering of x-ray photons with emphasis on the optimization for the non-destructive analysis of dilute specimens. Techniques discussed include photon induced energy dispersive x-ray fluorescence, extended x-ray absorption fine structure spectroscopy using synchrotron radiation and high-rate x-ray powder diffractometry using a position-sensitive gas proportional counter. These x-ray analysis methods were applied to the measurement of the chemical compositions of size-segregated aerosol particulate samples obtained with dichotomous samplers. The advantages of the various methods for use in such measurements are described and results are presented. In many cases, the complementary nature of the analytical information obtained from the various measurements is an important factor in the characterization of the sample. For example, the multiple elemental analyses obtained from x-ray fluorescence can be used as a cross check on the major compounds observed by powder diffraction

  17. Chemical characterisation of iron in dust and biomass burning aerosols during AMMA-SOP0/DABEX: implication for iron solubility

    Directory of Open Access Journals (Sweden)

    R. Paris

    2010-05-01

    Full Text Available The chemical composition and the soluble fraction were determined in aerosol samples collected during flights of AMMA-SOP0/DABEX campaign, which were conducted in the West African Sahel during dry season (2006. Two aerosol types are encountered in this period: dust particles (DUST and biomass burning aerosol (BB. Chemical analysis and microscope observations showed that the iron (Fe found in BB samples mainly originates from dust particles mostly internally mixed in the biomass burning layer. Chemical analyses of samples showed that the Fe solubility is lower in African dust samples than in biomass burning aerosols. Our data provide a first idea of the variability of iron dust solubility in the source region (0.1% and 3.4%. We found a relationship between iron solubility/clay content/source which partly confirms that the variability of iron solubility in this source region is related to the character and origin of the aerosols themselves. In the biomass burning samples, no relationship were found between Fe solubility and either the concentrations of acidic species (SO42−, NO3 or oxalate or the content of carbon (TC, OC, BC. Therefore, we were unable to determine what processes are involved in this increase of iron solubility. In terms of supply of soluble Fe to oceanic ecosystems on a global scale, the higher solubility observed for Fe in biomass burning could imply an indirect source of Fe to marine ecosystems. But these aerosols are probably not significant because the Sahara is easily the dominant source of Fe to the Atlantic Ocean.

  18. Elemental composition of urban aerosol collected in Florence, Italy

    International Nuclear Information System (INIS)

    Lucarelli, F.; Mando, P.A.; Nava, S.; Prati, P.; Zucchiatti, A.

    2000-01-01

    An extensive investigation is in progress aiming at the characterisation of the air particulate composition in Florence. The aim is to determine the aerosol elemental concentrations as well to identify pollution sources. For our investigation, we use the external PIXE-PIGE beam facility of the Van de Graaff accelerator of INFN at the Physics Department of the Florence University. We report here an overview of the results of the PIXE analysis of a long temporal series (about 1 yr) of PM 10 particulate collected on Millipore filters on a daily basis in three different sites (characterised by different urban settings). Daily concentrations of more than 20 elements have been obtained. From the observed elemental concentrations seasonal variation were found. A relevant decrease of S, Pb and Br levels has been found with respect to 10 yr ago. Four main sources (traffic, sulphates, soil-dust and wind-transported sea-salt) have been extracted with the help of factor analysis

  19. Molecular Diversity of Sea Spray Aerosol Particles: Impact of Ocean Biology on Particle Composition and Hygroscopicity

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, Richard E.; Laskina, Olga; Trueblood, Jonathan; Estillore, Armando D.; Morris, Holly S.; Jayarathne, Thilina; Sultana, Camile M.; Lee, Christopher; Lin, Peng; Laskin, Julia; Laskin, Alexander; Dowling, Jackie; Qin, Zhen; Cappa, Christopher; Bertram, Timothy; Tivanski, Alexei V.; Stone, Elizabeth; Prather, Kimberly; Grassian, Vicki H.

    2017-05-01

    The impact of sea spray aerosol (SSA) on climate depends on the size and chemical composition of individual particles that make-up the total SSA ensemble. While the organic fraction of SSA has been characterized from a bulk perspective, there remains a lack of understanding as to the composition of individual particles within the SSA ensemble. To better understand the molecular components within SSA particles and how SSA composition changes with ocean biology, simultaneous measurements of seawater and SSA were made during a month-long mesocosm experiment performed in an ocean-atmosphere facility. Herein, we deconvolute the composition of freshly emitted SSA devoid of anthropogenic and terrestrial influences by characterizing classes of organic compounds as well as specific molecules within individual SSA particles. Analysis of SSA particles show that the diversity of molecules within the organic fraction varies between two size fractions (submicron and supermicron) with contributions from fatty acids, monosaccharides, polysaccharides and siliceous material. Significant changes in the distribution of these compounds within individual particles are observed to coincide with the rise and fall of phytoplankton and bacterial populations within the seawater. Furthermore, water uptake is impacted as shown by hygroscopicity measurements of model systems composed of representative organic compounds. Thus, the how changes in the hygroscopic growth of SSA evolves with composition can be elucidated. Overall, this study provides an important connection between biological processes that control the composition of seawater and changes in single particle composition which will enhances our ability to predict the impact of SSA on climate.

  20. Flight-based chemical characterization of biomass burning aerosols within two prescribed burn smoke plumes

    Directory of Open Access Journals (Sweden)

    K. A. Pratt

    2011-12-01

    Full Text Available Biomass burning represents a major global source of aerosols impacting direct radiative forcing and cloud properties. Thus, the goal of a number of current studies involves developing a better understanding of how the chemical composition and mixing state of biomass burning aerosols evolve during atmospheric aging processes. During the Ice in Clouds Experiment-Layer Clouds (ICE-L in the fall of 2007, smoke plumes from two small Wyoming Bureau of Land Management prescribed burns were measured by on-line aerosol instrumentation aboard a C-130 aircraft, providing a detailed chemical characterization of the particles. After ~2–4 min of aging, submicron smoke particles, produced primarily from sagebrush combustion, consisted predominantly of organics by mass, but were comprised primarily of internal mixtures of organic carbon, elemental carbon, potassium chloride, and potassium sulfate. Significantly, the fresh biomass burning particles contained minor mass fractions of nitrate and sulfate, suggesting that hygroscopic material is incorporated very near or at the point of emission. The mass fractions of ammonium, sulfate, and nitrate increased with aging up to ~81–88 min and resulted in acidic particles. Decreasing black carbon mass concentrations occurred due to dilution of the plume. Increases in the fraction of oxygenated organic carbon and the presence of dicarboxylic acids, in particular, were observed with aging. Cloud condensation nuclei measurements suggested all particles >100 nm were active at 0.5% water supersaturation in the smoke plumes, confirming the relatively high hygroscopicity of the freshly emitted particles. For immersion/condensation freezing, ice nuclei measurements at −32 °C suggested activation of ~0.03–0.07% of the particles with diameters greater than 500 nm.

  1. Molecular corridors and parameterizations of volatility in the chemical evolution of organic aerosols

    Directory of Open Access Journals (Sweden)

    Y. Li

    2016-03-01

    Full Text Available The formation and aging of organic aerosols (OA proceed through multiple steps of chemical reaction and mass transport in the gas and particle phases, which is challenging for the interpretation of field measurements and laboratory experiments as well as accurate representation of OA evolution in atmospheric aerosol models. Based on data from over 30 000 compounds, we show that organic compounds with a wide variety of functional groups fall into molecular corridors, characterized by a tight inverse correlation between molar mass and volatility. We developed parameterizations to predict the saturation mass concentration of organic compounds containing oxygen, nitrogen, and sulfur from the elemental composition that can be measured by soft-ionization high-resolution mass spectrometry. Field measurement data from new particle formation events, biomass burning, cloud/fog processing, and indoor environments were mapped into molecular corridors to characterize the chemical nature of the observed OA components. We found that less-oxidized indoor OA are constrained to a corridor of low molar mass and high volatility, whereas highly oxygenated compounds in atmospheric water extend to high molar mass and low volatility. Among the nitrogen- and sulfur-containing compounds identified in atmospheric aerosols, amines tend to exhibit low molar mass and high volatility, whereas organonitrates and organosulfates follow high O : C corridors extending to high molar mass and low volatility. We suggest that the consideration of molar mass and molecular corridors can help to constrain volatility and particle-phase state in the modeling of OA particularly for nitrogen- and sulfur-containing compounds.

  2. The ToF-ACSM: a portable aerosol chemical speciation monitor with TOFMS detection

    Directory of Open Access Journals (Sweden)

    R. Fröhlich

    2013-11-01

    Full Text Available We present a new instrument for monitoring aerosol composition, the time-of-flight aerosol chemical speciation monitor (ToF-ACSM, combining precision state-of-the-art time-of-flight mass spectrometry with stability, reliability, and easy handling, which are necessities for long-term monitoring operations on the scale of months to years. Based on Aerodyne aerosol mass spectrometer (AMS technology, the ToF-ACSM provides continuous online measurements of chemical composition and mass of non-refractory submicron aerosol particles. In contrast to the larger AMS, the compact-sized and lower-priced ToF-ACSM does not feature particle sizing, similar to the widely-used quadrupole-ACSM (Q-ACSM. Compared to the Q-ACSM, the ToF-ACSM features a better mass resolution of M/ΔM = 600 and better detection limits on the order of −3 for a time resolution of 30 min. With simple upgrades these limits can be brought down by another factor of ~ 8. This allows for operation at higher time resolutions and in low concentration environments. The associated software packages (single packages for integrated operation and calibration and analysis provide a high degree of automation and remote access, minimising the need for trained personnel on site. Intercomparisons with Q-ACSM, C-ToF-AMS, nephelometer and scanning mobility particle sizer (SMPS measurements, performed during a first long-term deployment (> 10 months on the Jungfraujoch mountain ridge (3580 m a.s.l. in the Swiss Alps, agree quantitatively. Additionally, the mass resolution of the ToF-ACSM is sufficient for basic mass defect resolved peak fitting of the recorded spectra, providing a data stream not accessible to the Q-ACSM. This allows for quantification of certain hydrocarbon and oxygenated fragments (e.g. C3H7+ and C2H3O+, both occurring at m/Q = 43 Th, as well as improving inorganic/organic separation.

  3. Aerosol composition and source apportionment in the Mexico City Metropolitan Area with PIXE/PESA/STIM and multivariate analysis

    OpenAIRE

    K. S. Johnson; B. de Foy; B. de Foy; B. Zuberi; B. Zuberi; L. T. Molina; L. T. Molina; M. J. Molina; M. J. Molina; Y. Xie; A. Laskin; V. Shutthanandan

    2006-01-01

    Aerosols play an important role in the atmosphere but are poorly characterized, particularly in urban areas like the Mexico City Metropolitan Area (MCMA). The chemical composition of urban particles must be known to assess their effects on the environment, and specific particulate emissions sources should be identified to establish effective pollution control standards. For these reasons, samples of particulate matter ≤2.5 μm (PM2.5) were collected during the MCMA-2003 Field Campaign f...

  4. Aerosol composition and source apportionment in the Mexico City Metropolitan Area with PIXE/PESA/STIM and multivariate analysis

    OpenAIRE

    Johnson , K. S.; De Foy , B.; Zuberi , B.; Molina , L. T.; Molina , M. J.; Xie , Y.; Laskin , A.; Shutthanandan , V.

    2006-01-01

    Aerosols play an important role in the atmosphere but are poorly characterized, particularly in urban areas like the Mexico City Metropolitan Area (MCMA). The chemical composition of urban particles must be known to assess their effects on the environment, and specific particulate emissions sources should be identified to establish effective pollution control standards. For these reasons, samples of particulate matter ≤2.5 μm (PM2.5) were collected dur...

  5. Measured Mass-Normalized Optical Cross Sections For Aerosolized Organophosphorus Chemical Warfare Simulants

    National Research Council Canada - National Science Library

    Gurton, Kristan P; Felton, Melvin; Dahmani, Rachid; Ligon, David

    2007-01-01

    We present newly measured results of an ongoing experimental program established to measure optical cross sections in the mid and long wave infrared for a variety of chemical and biologically based aerosols...

  6. Particle size dependence of biogenic secondary organic aerosol molecular composition

    Science.gov (United States)

    Tu, Peijun; Johnston, Murray V.

    2017-06-01

    Formation of secondary organic aerosol (SOA) is initiated by the oxidation of volatile organic compounds (VOCs) in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process) to be distinguished from those produced by particle phase reaction (a volume-limited process). In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O / C) ratio and carbon oxidation state (OSc) were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases). Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased), the average O / C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes important.

  7. Particle size dependence of biogenic secondary organic aerosol molecular composition

    Directory of Open Access Journals (Sweden)

    P. Tu

    2017-06-01

    Full Text Available Formation of secondary organic aerosol (SOA is initiated by the oxidation of volatile organic compounds (VOCs in the gas phase whose products subsequently partition to the particle phase. Non-volatile molecules have a negligible evaporation rate and grow particles at their condensation rate. Semi-volatile molecules have a significant evaporation rate and grow particles at a much slower rate than their condensation rate. Particle phase chemistry may enhance particle growth if it transforms partitioned semi-volatile molecules into non-volatile products. In principle, changes in molecular composition as a function of particle size allow non-volatile molecules that have condensed from the gas phase (a surface-limited process to be distinguished from those produced by particle phase reaction (a volume-limited process. In this work, SOA was produced by β-pinene ozonolysis in a flow tube reactor. Aerosol exiting the reactor was size-selected with a differential mobility analyzer, and individual particle sizes between 35 and 110 nm in diameter were characterized by on- and offline mass spectrometry. Both the average oxygen-to-carbon (O ∕ C ratio and carbon oxidation state (OSc were found to decrease with increasing particle size, while the relative signal intensity of oligomers increased with increasing particle size. These results are consistent with oligomer formation primarily in the particle phase (accretion reactions, which become more favored as the volume-to-surface-area ratio of the particle increases. Analysis of a series of polydisperse SOA samples showed similar dependencies: as the mass loading increased (and average volume-to-surface-area ratio increased, the average O ∕ C ratio and OSc decreased, while the relative intensity of oligomer ions increased. The results illustrate the potential impact that particle phase chemistry can have on biogenic SOA formation and the particle size range where this chemistry becomes

  8. Microbiology and atmospheric processes: biological, physical and chemical characterization of aerosol particles

    Directory of Open Access Journals (Sweden)

    D. G. Georgakopoulos

    2009-04-01

    Full Text Available The interest in bioaerosols has traditionally been linked to health hazards for humans, animals and plants. However, several components of bioaerosols exhibit physical properties of great significance for cloud processes, such as ice nucleation and cloud condensation. To gain a better understanding of their influence on climate, it is therefore important to determine the composition, concentration, seasonal fluctuation, regional diversity and evolution of bioaerosols. In this paper, we will review briefly the existing techniques for detection, quantification, physical and chemical analysis of biological particles, attempting to bridge physical, chemical and biological methods for analysis of biological particles and integrate them with aerosol sampling techniques. We will also explore some emerging spectroscopy techniques for bulk and single-particle analysis that have potential for in-situ physical and chemical analysis. Lastly, we will outline open questions and further desired capabilities (e.g., in-situ, sensitive, both broad and selective, on-line, time-resolved, rapid, versatile, cost-effective techniques required prior to comprehensive understanding of chemical and physical characterization of bioaerosols.

  9. A European Aerosol Phenomenology - 3: Physical and Chemical 2 Characteristics of Particulate Matter from 60 Rural, Urban, and Kerbside Sites Across Europe

    Czech Academy of Sciences Publication Activity Database

    Putaud, J.-P.; Van Dingenen, R.; Alastuey, A.; Bauer, H.; Birmili, W.; Cyrys, J.; Flentje, H.; Fuzzi, S.; Gehrig, R.; Harrison, R. M.; Hansson, H.C.; Herrmann, H.; Hitzenberger, R.; Hüglin, C.; Jones, A.M.; Kasper-Giebl, A.; Kiss, G.; Kousa, A.; Kuhlbusch, T.A.J.; Löschau, G.; Maenhaut, W.; Molnar, A.; Moreno, T.; Pekkanen, J.; Perrino, C.; Pitz, M.; Puxbaum, H.; Querol, X.; Rodriguez, S.; Salma, I.; Schwarz, Jaroslav; Smolík, Jiří; Schneider, J.; Spindler, G.; ten Brink, H.; Tursic, J.; Viana, M.; Wiedensohler, A.; Raes, F.

    2010-01-01

    Roč. 44, č. 10 (2010), s. 1308-1320 ISSN 1352-2310 Institutional research plan: CEZ:AV0Z40720504 Keywords : aerosol * chemical composition * number concentration Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.226, year: 2010

  10. Sampling and chemical analysis by TXRF of size-fractionated ambient aerosols and emissions

    International Nuclear Information System (INIS)

    John, A.C.; Kuhlbusch, T.A.J.; Fissan, H.; Schmidt, K.-G-; Schmidt, F.; Pfeffer, H.-U.; Gladtke, D.

    2000-01-01

    Results of recent epidemiological studies led to new European air quality standards which require the monitoring of particles with aerodynamic diameters ≤ 10 μm (PM 10) and ≤ 2.5 μm (PM 2.5) instead of TSP (total suspended particulate matter). As these ambient air limit values will be exceeded most likely at several locations in Europe, so-called 'action plans' have to be set up to reduce particle concentrations, which requires information about sources and processes of PMx aerosols. For chemical characterization of the aerosols, different samplers were used and total reflection x-ray fluorescence analysis (TXRF) was applied beside other methods (elemental and organic carbon analysis, ion chromatography, atomic absorption spectrometry). For TXRF analysis, a specially designed sampling unit was built where the particle size classes 10-2.5 μm and 2.5-1.0 μm were directly impacted on TXRF sample carriers. An electrostatic precipitator (ESP) was used as a back-up filter to collect particles <1 μm directly on a TXRF sample carrier. The sampling unit was calibrated in the laboratory and then used for field measurements to determine the elemental composition of the mentioned particle size fractions. One of the field campaigns was carried out at a measurement site in Duesseldorf, Germany, in November 1999. As the composition of the ambient aerosols may have been influenced by a large construction site directly in the vicinity of the station during the field campaign, not only the aerosol particles, but also construction material was sampled and analyzed by TXRF. As air quality is affected by natural and anthropogenic sources, the emissions of particles ≤ 10 μm and ≤ 2.5 μm, respectively, have to be determined to estimate their contributions to the so called coarse and fine particle modes of ambient air. Therefore, an in-stack particle sampling system was developed according to the new ambient air quality standards. This PM 10/PM 2.5 cascade impactor was

  11. Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles

    Science.gov (United States)

    Pfrang, C.; Shiraiwa, M.; Pöschl, U.

    2011-07-01

    Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.

  12. Chemical characteristics of ambient aerosols contributed by cooking process at Noorpur village near Delhi (India)

    Science.gov (United States)

    Singh, Sudha; Kumar, Bablu; Gupta, Gyan Prakash; Kulshrestha, U. C.

    2013-05-01

    Combustion of fuels such as wood, crop residue and dung cakes etc. is one of the major sources of air pollution in developing countries. These fuels are still used commonly for cooking purpose in rural India. This study investigates the chemical composition of the ambient aerosols during cooking hours at a village called Noorpur (28.470 N, 77.030 E) which lies near Delhi city. Aerosol sampling was carried out during August 2011-May 2012 by using handy sampler (Envirotech model APM 821) installed at the terrace of a building (˜6m). The samples were collected on 8 hourly basis using Teflon filters. The water extract of these filters was analyzed for major anions (F-, Cl-, NO3-, SO42-) and major cations (Na+, NH4+, K+, Ca2+ Mg2+) by ion chromatography (Metrohm 883 Basic IC Plus). Results highlighted that cooking process contributed significant amount of SO42- and K+ṡ. Biomass burning is considered as a potential source of K+ in air. The high concentration of SO42- might be due to oxidation of SO2 contributed by the combustion of dung cakes. Further, the detailed results will be discussed during the conference.

  13. Chemical composition of stars in Ruprecht 106 .

    Science.gov (United States)

    François, P.

    High resolution spectra of 9 stars belonging to the globular cluster Rup 106 have been used to determine their chemical composition. The results reveal that Ruprecht 106 exhibits abundance anomalies when compared to galactic globular cluster of similar metallicity. The chemical composition of these stars is similar to what is found in Dwarf spheroidal galaxies favoring the hypothesis that Rup 106 has not been formed in our Galaxy.

  14. Effect of humidity on the composition of isoprene photooxidation secondary organic aerosol

    Directory of Open Access Journals (Sweden)

    T. B. Nguyen

    2011-07-01

    Full Text Available The effect of relative humidity (RH on the composition and concentrations of gas-phase products and secondary organic aerosol (SOA generated from the photooxidation of isoprene under high-NOx conditions was investigated. Experiments were performed with hydrogen peroxide as the OH precursor and in the absence of seed aerosol. The relative yields of most gas-phase products were the same regardless of initial water vapor concentration with exception of hydroxyacetone and glycolaldehyde, which were considerably affected by RH. A significant change was observed in the SOA composition, with many unique condensed-phase products formed under humid (90 % RH vs. dry (<2 % RH conditions, without any detectable effect on the rate and extent of the SOA mass growth. There is a 40 % reduction in the number and relative abundance of distinct particle-phase nitrogen-containing organic compounds (NOC detected by high resolution mass spectrometry. The suppression of condensation reactions, which produce water as a product, is the most important chemical effect of the increased RH. For example, the total signal from oligomeric esters of 2-methylglyceric acid was reduced by about 60 % under humid conditions and the maximum oligomer chain lengths were reduced by 7–11 carbons. Oligomers formed by addition mechanisms, without direct involvement of water, also decreased at elevated RH but to a much smaller extent. The observed reduction in the extent of condensation-type oligomerization at high RH may have substantial impact on the phase characteristics and hygroscopicity of the isoprene aerosol. The reduction in the amount of organic nitrates in the particle phase has implications for understanding the budget of NOC compounds.

  15. Sources and composition of submicron organic mass in marine aerosol particles

    Science.gov (United States)

    Frossard, Amanda A.; Russell, Lynn M.; Burrows, Susannah M.; Elliott, Scott M.; Bates, Timothy S.; Quinn, Patricia K.

    2014-11-01

    The sources and composition of atmospheric marine aerosol particles (aMA) have been investigated with a range of physical and chemical measurements from open-ocean research cruises. This study uses the characteristic functional group composition (from Fourier transform infrared spectroscopy) of aMA from five ocean regions to show the following: (i) The organic functional group composition of aMA that can be identified as mainly atmospheric primary marine (ocean derived) aerosol particles (aPMA) is 65 ± 12% hydroxyl, 21 ± 9% alkane, 6 ± 6% amine, and 7 ± 8% carboxylic acid functional groups. Contributions from photochemical reactions add carboxylic acid groups (15%-25%), shipping effluent in seawater and ship emissions add additional alkane groups (up to 70%), and coastal or continental emissions mix in alkane and carboxylic acid groups. (ii) The organic composition of aPMA is nearly identical to model-generated primary marine aerosol particles from bubbled seawater (gPMA, which has 55 ± 14% hydroxyl, 32 ± 14% alkane, and 13 ± 3% amine functional groups), indicating that its overall functional group composition is the direct consequence of the organic constituents of the seawater source. (iii) While the seawater organic functional group composition was nearly invariant across all three ocean regions studied and the ratio of organic carbon to sodium (OC/Na+) in the gPMA remained nearly constant over a broad range of chlorophyll a concentrations, the gPMA alkane group fraction appeared to increase with chlorophyll a concentrations (r = 0.66). gPMA from productive seawater had a larger fraction of alkane functional groups (42 ± 9%) compared to gPMA from nonproductive seawater (22 ± 10%), perhaps due to the presence of surfactants in productive seawater that stabilize the bubble film and lead to preferential drainage of the more soluble (lower alkane group fraction) organic components. gPMA has a hydroxyl group absorption peak location characteristic of

  16. Determination of the chemical composition, the physicochemical ...

    African Journals Online (AJOL)

    The chemical composition of the seed of Telfairia occidentalis (fluted pumpkin), the physicochemical properties of the seed oil and the amino acids profiles of the seed protein have been determined. In proximate composition, the crude fat content of 58.41% indicates that the plant seed is an oil seed. Its protein content of ...

  17. Determination of the power of multielement aerosol composition emission from distant industrial sources

    International Nuclear Information System (INIS)

    Popova, S.A.; Kutsenogij, K.P.; Chankina, O.V.

    2008-01-01

    The results from the monitoring of the temporal variability of the multielement composition of atmospheric aerosols are presented. They are used to determine the emission power of a series of elements from distant sources.

  18. Ceramic composites by chemical vapor infiltration

    International Nuclear Information System (INIS)

    Stinton, D.P.

    1987-01-01

    Composites consisting of silicon carbide matrices reinforced with continuous ceramic fibers are being developed for high-temperature structural applications. Chemical vapor deposition (CVD) techniques are very effective in fabricating composites with high strengths and exceptional fracture toughness. Mechanical properties of infiltrated composites are controlled by the strength of the interfacial bond between the fibers and matrix. This paper describes two CVD techniques and reviews the models being developed to better understand and control the infiltration process

  19. Temperature effect on physical and chemical properties of secondary organic aerosol from m-xylene photooxidation

    Directory of Open Access Journals (Sweden)

    D. R. Cocker III

    2010-04-01

    Full Text Available The chemical and physical differences of secondary organic aerosol (SOA formed at select isothermal temperatures (278 K, 300 K, and 313 K are explored with respect to density, particle volatility, particle hygroscopicity, and elemental chemical composition. A transition point in SOA density, volatility, hygroscopicity and elemental composition is observed near 290–292 K as SOA within an environmental chamber is heated from 278 K to 313 K, indicating the presence of a thermally labile compound. No such transition points are observed for SOA produced at 313 K or 300 K and subsequently cooled to 278 K. The SOA formed at the lowest temperatures (278 K is more than double the SOA formed at 313 K. SOA formed at 278 K is less hydrophilic and oxygenated while more volatile and dense than SOA formed at 300 K or 313 K. The properties of SOA formed at 300 K and 313 K when reduced to 278 K did not match the properties of SOA initially formed at 278 K. This study demonstrates that it is insufficient to utilize the enthalpy of vaporization when predicting SOA temperature dependence.

  20. Correlations between Optical, Chemical and Physical Properties ofBiomass Burn Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Hopkins, Rebecca J.; Lewis, K.; Desyaterik, Yury; Wang, Z.; Tivanski, Alexei V.; Arnott, W.P.; Laskin, Alexander; Gilles, M.K.

    2008-01-29

    Aerosols generated from burning different plant fuels were characterized to determine relationships between chemical, optical and physical properties. Single scattering albedo ({omega}) and Angstrom absorption coefficients ({alpha}{sub ap}) were measured using a photoacoustic technique combined with a reciprocal nephelometer. Carbon-to-oxygen atomic ratios, sp{sup 2} hybridization, elemental composition and morphology of individual particles were measured using scanning transmission X-ray microscopy coupled with near-edge X-ray absorption fine structure spectroscopy (STXM/NEXAFS) and scanning electron microscopy with energy dispersion of X-rays (SEM/EDX). Particles were grouped into three categories based on sp2 hybridization and chemical composition. Measured {omega} (0.4-1.0 at 405 nm) and {alpha}{sub ap} (1.0-3.5) values displayed a fuel dependence. The category with sp{sup 2} hybridization >80% had values of {omega} (<0.5) and {alpha}{sub ap} ({approx}1.25) characteristic of light absorbing soot. Other categories with lower sp2 hybridization (20 to 60%) exhibited higher {omega} (>0.8) and {alpha}{sub ap} (1.0 to 3.5) values, indicating increased absorption spectral selectivity.

  1. Chemical composition of Achatina fulica

    Directory of Open Access Journals (Sweden)

    Aboua, F.

    1990-01-01

    Full Text Available Proximate composition and mineral content were determined in snail without and with shell and shell atone from Achatina fulica. This snail has high protein (above 40 %, low fat (less than 3 % and is a relatively good source of macrominerals, including calcium, phosphorus, magnesium, potassium and sodium. Achatina fulica is an excellent source of iron but is poor in copper, zinc and manganese. The snail is very rich in calcium but very poor in phosphorus, potassium and magnesium.

  2. Effect of Heterogeneous Chemical Reactions on the Köhler Activation of Aqueous Organic Aerosols.

    Science.gov (United States)

    Djikaev, Yuri S; Ruckenstein, Eli

    2018-05-03

    We study some thermodynamic aspects of the activation of aqueous organic aerosols into cloud droplets considering the aerosols to consist of liquid solution of water and hydrophilic and hydrophobic organic compounds, taking into account the presence of reactive species in the air. The hydrophobic (surfactant) organic molecules on the surface of such an aerosol can be processed by chemical reactions with some atmospheric species; this affects the hygroscopicity of the aerosol and hence its ability to become a cloud droplet either via nucleation or via Köhler activation. The most probable pathway of such processing involves atmospheric hydroxyl radicals that abstract hydrogen atoms from hydrophobic organic molecules located on the aerosol surface (first step), the resulting radicals being quickly oxidized by ubiquitous atmospheric oxygen molecules to produce surface-bound peroxyl radicals (second step). These two reactions play a crucial role in the enhancement of the Köhler activation of the aerosol and its evolution into a cloud droplet. Taking them and a third reaction (next in the multistep chain of relevant heterogeneous reactions) into account, one can derive an explicit expression for the free energy of formation of a four-component aqueous droplet on a ternary aqueous organic aerosol as a function of four independent variables of state of a droplet. The results of numerical calculations suggest that the formation of cloud droplets on such (aqueous hydrophilic/hydrophobic organic) aerosols is most likely to occur as a Köhler activation-like process rather than via nucleation. The model allows one to determine the threshold parameters of the system necessary for the Köhler activation of such aerosols, which are predicted to be very sensitive to the equilibrium constant of the chain of three heterogeneous reactions involved in the chemical aging of aerosols.

  3. Elemental composition of the particulate matter present in the atmospheric aerosols of Sete Lagoas, MG

    International Nuclear Information System (INIS)

    Queiroz, Paula Guimaraes Moura; Jacomino, Vanusa Maria Feliciano; Menezes, Maria Angela de Barros Correia

    2007-01-01

    The main objective of this study was the identification of sources generating particulate matter in the atmospheric aerosols of Sete Lagoas, Minas Gerais. The measurement of the mineral composition was accomplished by X-ray diffractometry and the elemental concentration by neutron activation analysis. The results showed that Al, Cl, Cu, Fe, K, Mg and Na are the predominant chemical elements in the total suspended particles (TPS). The presence of Na, Ba, Cl, Cu, Eu, Fe and Sm in those particles with aerodynamic diameter smaller than 10 μm (PM 10 ), indicates that soil dust and ceramic and pig iron industries are the main sources of air quality degradation in the region. (author)

  4. The physico-chemical evolution of atmospheric aerosols and the gas-particle partitioning of inorganic aerosol during KORUS-AQ

    Science.gov (United States)

    Lee, T.; Park, T.; Lee, J. B.; Lim, Y. J.; Ahn, J.; Park, J. S.; Soo, C. J.; Desyaterik, Y.; Collett, J. L., Jr.

    2017-12-01

    Aerosols influence climate change directly by scattering and absorption and indirectly by acting as cloud condensation nuclei and some of the effects of aerosols are reduction in visibility, deterioration of human health, and deposition of pollutants to ecosystems. Urban area is large source of aerosols and aerosol precursors. Aerosol sources are both local and from long-range transport. Long-range transport processed aerosol are often dominant sources of aerosol pollution in Korea. To improve our knowledge of aerosol chemistry, Korea and U.S-Air Quality (KORUS-AQ) of Aircraft-based aerosol measurement took place in and around Seoul, Korea during May and June 2016. KORUS-AQ campaigns were conducted to study the chemical characterization and processes of pollutants in the Seoul Metropolitan area to regional scales of Korean peninsula. Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed on aircraft platforms on-board DC-8 (NASA) aircraft. We characterized aerosol chemical properties and mass concentrations of sulfate, nitrate, ammonium and organics in polluted air plumes and investigate the spatial and vertical distribution of the species. The results of studies show that organics is predominant in Aerosol and a significant fraction of the organics is oxygenated organic aerosol (OOA) at the high altitude. Both Nitrate and sulfate can partition between the gas and particle phases. The ratios for HNO3/(N(V) (=gaseous HNO3 + particulate Nitrate) and SO2/(SO2+Sulfate) were found to exhibit quite different distributions between the particles and gas phase for the locations during KORUS-AQ campaign, representing potential for formation of additional particulate nitrate and sulfate. The results of those studies can provide highly resolved temporal and spatial air pollutant, which are valuable for air quality model input parameters for aerosol behaviour.

  5. Lidar sprectroscopy instrument (LISSI): An infrastructure facility for chemical aerosol profiling at the University of Hertfordshire

    Science.gov (United States)

    Tesche, Matthias; Tatarov, Boyan; Noh, Youngmin; Müller, Detlef

    2018-04-01

    The lidar development at the University of Hertfordshire explores the feasibility of using Raman backscattering for chemical aerosol profiling. This paper provides an overview of the new facility. A high-power Nd:YAG/OPO setup is used to excite Raman backscattering at a wide range of wavelengths. The receiver combines a spectrometer with a 32-channel detector or an ICCD camera to resolve Raman signals of various chemical compounds. The new facility will open new avenues for chemical profiling of aerosol pollution from measurements of Raman scattering by selected chemical compounds, provide data that allow to close the gap between optical and microphysical aerosol profiling with lidar and enables connecting lidar measurements to parameters used in atmospheric modelling.

  6. Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE

    Science.gov (United States)

    Cziczo, D. J.; Murphy, D. M.; Hudson, P. K.; Thomson, D. S.

    2004-02-01

    The first real-time, in situ, investigation of the chemical composition of the residue of cirrus ice crystals was performed during July 2002. This study was undertaken on a NASA WB-57F high-altitude research aircraft as part of CRYSTAL-FACE, a field campaign which sought to further our understanding of the relation of clouds, water vapor, and climate by characterizing, among other parameters, anvil cirrus formed about the Florida peninsula. A counter flow virtual impactor (CVI) was used to separate cirrus ice from the unactivated interstitial aerosol particles and evaporate condensed-phase water. Residual material, on a crystal-by-crystal basis, was subsequently analyzed using the NOAA Aeronomy Laboratory's Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Sampling was performed from 5 to 15 km altitude and from 12° to 28° north latitude within cirrus originating over land and ocean. Chemical composition measurements provided several important results. Sea salt was often incorporated into cirrus, consistent with homogeneous ice formation by aerosol particles from the marine boundary layer. Size measurements showed that large particles preferentially froze over smaller ones. Meteoritic material was found within ice crystals, indicative of a relation between stratospheric aerosol particles and tropospheric clouds. Mineral dust was the dominant residue observed in clouds formed during a dust transport event from the Sahara, consistent with a heterogeneous freezing mechanism. These results show that chemical composition and size are important determinants of which aerosol particles form cirrus ice crystals.

  7. Effect of Morphology and Composition on the Hygroscopicity of Soot Aerosols

    Science.gov (United States)

    Williams, L.; Slowik, J.; Davidovits, P.; Jayne, J.; Kolb, C.; Worsnop, D.; Rudich, Y.

    2003-12-01

    Freshly generated soot aerosols are initially hydrophobic and unlikely to act as cloud condensation nuclei (CCN). However, during combustion many low vapor pressure gas products are formed that may then condense on existing soot aerosols. Additionally, soot particles may acquire coatings as they age, such as acids, salts, and oxygenated organics. An understanding of this aging process and its effect on soot hygroscopicity is necessary to address the potential of soot to act as a CCN. The transformation of soot from hydrophobic to hydrophilic is the focus of this work. An aim here is to determine the minimum coating required for hygroscopic growth. Soot particles produced by combustion of mixtures of fuel and air are size selected by a Differential Mobility Analyzer (DMA) and entrained in a laminar flow passing through a flow tube. The size selected soot particles are mixed with a controlled amount of the gas phase precursors to produce the coatings to be studied. Initial studies are focused on coatings of H2SO4, NH4NO3, and selected organics. The number of particles per unit volume of air is counted by a Condensation Particle Counter (CPC) and the particles are isokinetically sampled into an Aerosol Mass Spectrometer (AMS). Two distinct types of soot aerosols have been observed depending on the type of fuel and air mixture. With soot produced by the combustion of propane and air, the AMS shows a polydisperse particle size distribution with aerodynamic diameters ranging from 100 nm to 400 nm. The aerodynamic diameter is linearly related to the DMA-determined mobility diameter with the product density x shape factor = 1.2. The organic molecules in this soot are mostly PAH compounds. However, when kerosene is added to the propane flame, the soot particle morphology and composition is strikingly altered. While the DMA shows an essentially unchanged mobility diameter distribution, in the range 100 nm to 400, aerodynamic particle diameter is constant at about 100 nm

  8. Chemical composition of Martian fines

    Science.gov (United States)

    Clark, B. C.; Baird, A. K.; Weldon, R. J.; Tsusaki, D. M.; Schnabel, L.; Candelaria, M. P.

    1982-01-01

    Of the 21 samples acquired for the Viking X-ray fluorescence spectrometer, 17 were analyzed to high precision. Compared to typical terrestrial continental soils and lunar mare fines, the Martian fines are lower in Al, higher in Fe, and much higher in S and Cl concentrations. Protected fines at the two lander sites are almost indistinguishable, but concentration of the element S is somewhat higher at Utopia. Duricrust fragments, successfully acquired only at the Chryse site, invariably contained about 50% higher S than fines. No elements correlate positively with S, except Cl and possibly Mg. A sympathetic variation is found among the triad Si, Al, Ca; positive correlation occurs between Ti and Fe. Sample variabilities are as great within a few meters as between lander locations (4500 km apart), implying the existence of a universal Martian regolith component of constant average composition. The nature of the source materials for the regolith fines must be mafic to ultramafic.

  9. Effect of relative humidity on the composition of secondary organic aerosol from the oxidation of toluene

    Directory of Open Access Journals (Sweden)

    M. L. Hinks

    2018-02-01

    Full Text Available The effect of relative humidity (RH on the chemical composition of secondary organic aerosol (SOA formed from low-NOx toluene oxidation in the absence of seed particles was investigated. SOA samples were prepared in an aerosol smog chamber at < 2 % RH and 75 % RH, collected on Teflon filters, and analyzed with nanospray desorption electrospray ionization high-resolution mass spectrometry (nano-DESI–HRMS. Measurements revealed a significant reduction in the fraction of oligomers present in the SOA generated at 75 % RH compared to SOA generated under dry conditions. In a separate set of experiments, the particle mass concentrations were measured with a scanning mobility particle sizer (SMPS at RHs ranging from < 2 to 90 %. It was found that the particle mass loading decreased by nearly an order of magnitude when RH increased from < 2 to 75–90 % for low-NOx toluene SOA. The volatility distributions of the SOA compounds, estimated from the distribution of molecular formulas using the molecular corridor approach, confirmed that low-NOx toluene SOA became more volatile on average under high-RH conditions. In contrast, the effect of RH on SOA mass loading was found to be much smaller for high-NOx toluene SOA. The observed increase in the oligomer fraction and particle mass loading under dry conditions were attributed to the enhancement of condensation reactions, which produce water and oligomers from smaller compounds in low-NOx toluene SOA. The reduction in the fraction of oligomeric compounds under humid conditions is predicted to partly counteract the previously observed enhancement in the toluene SOA yield driven by the aerosol liquid water chemistry in deliquesced inorganic seed particles.

  10. Global chemical composition of ambient fine particulate matter for exposure assessment.

    Science.gov (United States)

    Philip, Sajeev; Martin, Randall V; van Donkelaar, Aaron; Lo, Jason Wai-Ho; Wang, Yuxuan; Chen, Dan; Zhang, Lin; Kasibhatla, Prasad S; Wang, Siwen; Zhang, Qiang; Lu, Zifeng; Streets, David G; Bittman, Shabtai; Macdonald, Douglas J

    2014-11-18

    Epidemiologic and health impact studies are inhibited by the paucity of global, long-term measurements of the chemical composition of fine particulate matter. We inferred PM2.5 chemical composition at 0.1° × 0.1° spatial resolution for 2004-2008 by combining aerosol optical depth retrieved from the MODIS and MISR satellite instruments, with coincident profile and composition information from the GEOS-Chem global chemical transport model. Evaluation of the satellite-model PM2.5 composition data set with North American in situ measurements indicated significant spatial agreement for secondary inorganic aerosol, particulate organic mass, black carbon, mineral dust, and sea salt. We found that global population-weighted PM2.5 concentrations were dominated by particulate organic mass (11.9 ± 7.3 μg/m(3)), secondary inorganic aerosol (11.1 ± 5.0 μg/m(3)), and mineral dust (11.1 ± 7.9 μg/m(3)). Secondary inorganic PM2.5 concentrations exceeded 30 μg/m(3) over East China. Sensitivity simulations suggested that population-weighted ambient PM2.5 from biofuel burning (11 μg/m(3)) could be almost as large as from fossil fuel combustion sources (17 μg/m(3)). These estimates offer information about global population exposure to the chemical components and sources of PM2.5.

  11. Photochemistry of limonene secondary organic aerosol studied with chemical ionization mass spectrometry

    Science.gov (United States)

    Pan, Xiang

    Limonene is one of the most abundant monoterpenes in the atmosphere. Limonene easily reacts with gas-phase oxidants in air such as NO3, ozone and OH. Secondary organic aerosol (SOA) is formed when low vapor pressure products condense into particles. Chemicals in SOA particles can undergo further reactions with oxidants and with solar radiation that significantly change SOA composition over the course of several days. The goal of this work was to characterize radiation induced reaction in SOA. To perform experiments, we have designed and constructed an Atmospheric Pressure Chemical Ionization Mass Spectrometer (APCIMS) coupled to a photochemical cell containing SOA samples. In APCIMS, (H2O)nH 3O+ clusters are generated in a 63Ni source and react with gaseous organic analytes. Most organic chemicals are not fragmented by the ionization process. We have focused our attention on limonene SOA prepared in two different ways. The first type of SOA is produced by oxidation of limonene by ozone; and the second type of SOA is formed by the NO3-induced oxidation of limonene. They model the SOA formed under daytime and nighttime conditions, respectively. Ozone initiated oxidation is the most important chemical sink for limonene both indoors, where it is used for cleaning purposes, and outdoors. Terpenes are primarily oxidized by reactions with NO3 at night time. We generated limonene SOA under different ozone and limonene concentrations. The resulting SOA samples were exposed to wavelength-tunable radiation in the UV-Visible range between 270 nm and 630 nm. The results show that the photodegradation rates strongly depend on radiation wavelengths. Gas phase photodegradation products such as acetone, formaldehyde, acetaldehyde, and acetic acid were shown to have different production rates for SOA formed in different concentration conditions. Even for SOA prepared under the lowest concentrations, the SOA photodegradation was efficient. The conclusion is that exposure of SOA to

  12. Organic molecular composition of marine aerosols over the Arctic Ocean in summer: contributions of primary emission and secondary aerosol formation

    OpenAIRE

    P. Q. Fu; K. Kawamura; J. Chen; B. Charrière; R. Sempéré

    2013-01-01

    Organic molecular composition of marine aerosol samples collected during the MALINA cruise in the Arctic Ocean was investigated by gas chromatography/mass spectrometry. More than 110 individual organic compounds were determined in the samples and were grouped into different compound classes based on the functionality and sources. The concentrations of total quantified organics ranged from 7.3 to 185 ng m−3 (mean 47.6 ng m−3), accounting ...

  13. Optical, physical and chemical characteristics of Australian continental aerosols: results from a field experiment

    Directory of Open Access Journals (Sweden)

    M. Radhi

    2010-07-01

    Full Text Available Mineral dust is one of the major components of the world's aerosol mix, having a number of impacts within the Earth system. However, the climate forcing impact of mineral dust is currently poorly constrained, with even its sign uncertain. As Australian deserts are more reddish than those in the Northern Hemisphere, it is important to better understand the physical, chemical and optical properties of this important aerosol. We have investigated the properties of Australian desert dust at a site in SW Queensland, which is strongly influenced by both dust and biomass burning aerosol.

    Three years of ground-based monitoring of spectral optical thickness has provided a statistical picture of gross aerosol properties. The aerosol optical depth data showed a clear though moderate seasonal cycle with an annual mean of 0.06 ± 0.03. The Angstrom coefficient showed a stronger cycle, indicating the influence of the winter-spring burning season in Australia's north. AERONET size distributions showed a generally bimodal character, with the coarse mode assumed to be mineral dust, and the fine mode a mixture of fine dust, biomass burning and marine biogenic material.

    In November 2006 we undertook a field campaign which collected 4 sets of size-resolved aerosol samples for laboratory analysis – ion beam analysis and ion chromatography. Ion beam analysis was used to determine the elemental composition of all filter samples, although elemental ratios were considered the most reliable output. Scatter plots showed that Fe, Al and Ti were well correlated with Si, and Co reasonably well correlated with Si, with the Fe/Al ratio somewhat higher than values reported from Northern Hemisphere sites (as expected. Scatter plots for Ca, Mn and K against Si showed clear evidence of a second population, which in some cases could be identified with a particular sample day or size fraction. These data may be used to attempt to build a signature of soil in this

  14. Improved modelling of sodium-spray fires and sodium-combustion aerosol chemical evolution - 15488

    International Nuclear Information System (INIS)

    Mathe, E.; Kissane, M.; Petitprez, D.

    2015-01-01

    In the context of the Generation IV Initiative, the consequences of a severe-accident in sodium-cooled fast reactor (SFR) must be studied. Being pyrophoric, sodium will burn upon contact with air in a containment creating toxic aerosols and we must take into account these fire aerosols when assessing the source term. We have developed a numerical simulation named NATRAC to calculate the mass of aerosols produced during a spray fire in a SFR severe accident. The results show that the mass of oxide aerosols can involve more than 60% of the ejected sodium. In a second part we have developed a numerical simulation named STARK based on the Cooper model that models the physico-chemical transformations of the aerosols. However, this model has never been validated and the literature does not permit to do so. In these conditions, we have designed and performed our own experiment ESSTIA to obtain the missing values of the parameters that govern Cooper model. The modified Cooper model we propose with the new parameters reproduces correctly the ESSTIA experimental data. The only parameter that has not yet been measured is the tortuosity of the sodium-fire aerosols surface layers. A dedicated experiment using real sodium-fire aerosols could eliminate any doubts about the uncertainty of the proposed Cooper model

  15. Dependence of columnar aerosol size distribution, optical properties, and chemical components on regional transport in Beijing

    Science.gov (United States)

    Wang, Shuo; Zhao, Weixiong; Xu, Xuezhe; Fang, Bo; Zhang, Qilei; Qian, Xiaodong; Zhang, Weijun; Chen, Weidong; Pu, Wei; Wang, Xin

    2017-11-01

    Seasonal dependence of the columnar aerosol optical and chemical properties on regional transport in Beijing over 10 years (from January 2005 to December 2014) were analyzed by using the ground-based remote sensing combined with backward trajectory analysis. Daily air mass backward trajectories terminated in Beijing were computed with HYSPLIT-4 model and were categorized into five clusters. The columnar mass concentrations of black carbon (BC), brown carbon (BrC), dust (DU), aerosol water content (AW), and ammonium sulfate like aerosol (AS) of each cluster were retrieved from the optical data obtained from the Aerosol Robotic NETwork (AERONET) with five-component model. It was found that the columnar aerosol properties in different seasons were changed, and they were related to the air mass origins. In spring, aerosol was dominated by coarse particles. Summer was characterized by higher single scattering albedo (SSA), lower real part of complex refractive index (n), and obvious hygroscopic growth due to humid air from the south. During autumn and winter, there was an observable increase in absorption aerosol optical thickness (AAOT) and the imaginary part of complex refraction (k), with high levels of retrieved BC and BrC. However, concentrations of BC showed less dependence on the clusters during the two seasons owing to the widely spread coal heating in north China.

  16. Unraveling different chemical fingerprints between a champagne wine and its aerosols.

    Science.gov (United States)

    Liger-Belair, Gérard; Cilindre, Clara; Gougeon, Régis D; Lucio, Marianna; Gebefügi, Istvan; Jeandet, Philippe; Schmitt-Kopplin, Philippe

    2009-09-29

    As champagne or sparkling wine is poured into a glass, the myriad of ascending bubbles collapse and radiate a multitude of tiny droplets above the free surface into the form of very characteristic and refreshing aerosols. Ultrahigh-resolution MS was used as a nontargeted approach to discriminate hundreds of surface active compounds that are preferentially partitioning in champagne aerosols; thus, unraveling different chemical fingerprints between the champagne bulk and its aerosols. Based on accurate exact mass analysis and database search, tens of these compounds overconcentrating in champagne aerosols were unambiguously discriminated and assigned to compounds showing organoleptic interest or being aromas precursors. By drawing a parallel between the fizz of the ocean and the fizz in Champagne wines, our results closely link bursting bubbles and flavor release; thus, supporting the idea that rising and collapsing bubbles act as a continuous paternoster lift for aromas in every glass of champagne.

  17. Chemical composition and strength of dolomite geopolymer composites

    Science.gov (United States)

    Aizat, E. A.; Al Bakri, A. M. M.; Liew, Y. M.; Heah, C. Y.

    2017-09-01

    The chemical composition of dolomite and the compressive strength of dolomite geopolymer composites were studied. The both composites prepared with mechanical mixer manufactured by with rotor speed of 350 rpm and curing in the oven for 24 hours at 80˚C. XRF analysis showThe dolomite raw materials contain fewer amounts of Si and Al but high Ca in its composition. Dolomite geopolymer composites with 20M of NaOH shows greater and optimum compressive strength compared to dolomite geopolymer with other NaOH molarity. This indicated better interaction of dolomite raw material and alkaline activator need high molarity of NaOH in order to increase the reactivity of dolomite.

  18. Seasonal variation of spherical aerosols distribution in East Asia based on ground and space Lidar observation and a Chemical transport model

    Science.gov (United States)

    Hara, Y.; Yumimoto, K.; Uno, I.; Shimizu, A.; Sugimoto, N.; Ohara, T.

    2009-12-01

    The anthropogenic aerosols largely impact on not only human health but also global climate system, therefore air pollution in East Asia due to a rapid economic growth has been recognized as a significant environmental problem. Several international field campaigns had been conducted to elucidate pollutant gases, aerosols characteristics and radiative forcing in East Asia. (e.g., ACE-Asia, TRACE-P, ADEC, EAREX 2005). However, these experiments were mainly conducted in springtime, therefore seasonal variation of aerosols distribution has not been clarified well yet. National Institute for Environmental Studies (NIES) has been constructing a lidar networks by automated dual wavelength / polarization Mie-lidar systems to observe the atmospheric environment in Asian region since 2001. Furthermore, from June 2006, space-borne backscatter lidar, Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), onboard NASA/CALIPSO satellite, measures continuous global aerosol and cloud vertical distribution with very high spatial resolution. In this paper, we will show the seasonal variation of aerosols distribution in East Asia based on the NIES lidar network observation, Community Multi-scale Air Quality Modeling System (CMAQ) chemical transport model simulation and CALIOP observation over the period from July 2006 to December 2008. We found that CMAQ result explains the typical seasonal aerosol characteristics by lidar observations. For example, CMAQ and ground lidar showed a summertime peak of aerosol optical thickness (AOT) at Beijing, an autumn AOT peak at Guangzhou and summertime AOT trough at Hedo, Okinawa. These characteristics are mainly controlled by seasonal variations of Asian summer/winter monsoon system. We also examined the CMAQ seasonal average aerosol extinction profiles with ground lidar and CALIOP extinction data. These comparisons clarified that the CMAQ reproduced the observed aerosol layer depth well in the downwind region. Ground lidar and CALIOP seasonal

  19. Chemical aging of single and multicomponent biomass burning aerosol surrogate particles by OH: implications for cloud condensation nucleus activity

    Directory of Open Access Journals (Sweden)

    J. H. Slade

    2015-09-01

    Full Text Available Multiphase OH and O3 oxidation reactions with atmospheric organic aerosol (OA can influence particle physicochemical properties including composition, morphology, and lifetime. Chemical aging of initially insoluble or low-soluble single-component OA by OH and O3 can increase their water solubility and hygroscopicity, making them more active as cloud condensation nuclei (CCN and susceptible to wet deposition. However, an outstanding problem is whether the effects of chemical aging on their CCN activity are preserved when mixed with other organic or inorganic compounds exhibiting greater water solubility. In this work, the CCN activity of laboratory-generated biomass burning aerosol (BBA surrogate particles exposed to OH and O3 is evaluated by determining the hygroscopicity parameter, κ, as a function of particle type, mixing state, and OH and O3 exposure applying a CCN counter (CCNc coupled to an aerosol flow reactor (AFR. Levoglucosan (LEV, 4-methyl-5-nitrocatechol (MNC, and potassium sulfate (KS serve as representative BBA compounds that exhibit different hygroscopicity, water solubility, chemical functionalities, and reactivity with OH radicals, and thus exemplify the complexity of mixed inorganic/organic aerosol in the atmosphere. The CCN activities of all of the particles were unaffected by O3 exposure. Following exposure to OH, κ of MNC was enhanced by an order of magnitude, from 0.009 to ~ 0.1, indicating that chemically aged MNC particles are better CCN and more prone to wet deposition than pure MNC particles. No significant enhancement in κ was observed for pure LEV particles following OH exposure. κ of the internally mixed particles was not affected by OH oxidation. Furthermore, the CCN activity of OH-exposed MNC-coated KS particles is similar to the OH unexposed atomized 1 : 1 by mass MNC : KS binary-component particles. Our results strongly suggest that when OA is dominated by water-soluble organic carbon (WSOC or inorganic ions

  20. The impacts of aerosol loading, composition, and water uptake on aerosol extinction variability in the Baltimore–Washington, D.C. region

    Directory of Open Access Journals (Sweden)

    A. J. Beyersdorf

    2016-01-01

    Full Text Available In order to utilize satellite-based aerosol measurements for the determination of air quality, the relationship between aerosol optical properties (wavelength-dependent, column-integrated extinction measured by satellites and mass measurements of aerosol loading (PM2.5 used for air quality monitoring must be understood. This connection varies with many factors including those specific to the aerosol type – such as composition, size, and hygroscopicity – and to the surrounding atmosphere, such as temperature, relative humidity (RH, and altitude, all of which can vary spatially and temporally. During the DISCOVER-AQ (Deriving Information on Surface conditions from Column and Vertically Resolved Observations Relevant to Air Quality project, extensive in situ atmospheric profiling in the Baltimore, MD–Washington, D.C. region was performed during 14 flights in July 2011. Identical flight plans and profile locations throughout the project provide meaningful statistics for determining the variability in and correlations between aerosol loading, composition, optical properties, and meteorological conditions. Measured water-soluble aerosol mass was composed primarily of ammonium sulfate (campaign average of 32 % and organics (57 %. A distinct difference in composition was observed, with high-loading days having a proportionally larger percentage of sulfate due to transport from the Ohio River Valley. This composition shift caused a change in the aerosol water-uptake potential (hygroscopicity such that higher relative contributions of inorganics increased the bulk aerosol hygroscopicity. These days also tended to have higher relative humidity, causing an increase in the water content of the aerosol. Conversely, low-aerosol-loading days had lower sulfate and higher black carbon contributions, causing lower single-scattering albedos (SSAs. The average black carbon concentrations were 240 ng m−3 in the lowest 1 km, decreasing to 35

  1. CHEMICAL COMPOSITION AND ANTIOXIDANT ACTIVITY OF APIS ...

    African Journals Online (AJOL)

    CHEMICAL COMPOSITION AND ANTIOXIDANT ACTIVITY OF APIS. MELLIFERA BEE POLLEN FROM NORTHWEST ALGERIA. A. Rebiai* and T.Lanez. University of El Oued, VTRS Laboratory, P.O. Box 789, 39000, El Oued, Algeria. Received: 08 November 2012 / Accepted: 23 December 2012 / Published online: 31 ...

  2. Chemical composition, physicochemical and functional properties of ...

    African Journals Online (AJOL)

    The results of chemical composition, physicochemical and functional properties for both lupin samples indicated that lupins can be used as a raw material for various food products manufacturing and provide consistency in food processing, analogous to other food legumes. Therefore, the research findings can be used by ...

  3. Chemical composition, true metabolisable energy content and ...

    African Journals Online (AJOL)

    The physical characteristics (thousand seed and hectolitre mass), chemical composition (dry matter, ash, crude protein (CP), ether extract, acid detergent fibre, neutral detergent fibre and mineral content), energy values (nitrogen corrected true metabolisable energy content (TMEn for roosters)) as well as the lysine and ...

  4. Chemical composition, antioxidant effects and antimicrobial ...

    African Journals Online (AJOL)

    Thymus vulgaris, Cinnamomum zeylanicum and Ocimum gratissimum are spices widely used as aroma enhancers and food preservatives. This work assessed the chemical composition, antioxidant and antimicrobial effect of their essential oils on some food pathogenic bacteria, namely, Staphylococcus aureus, Citrobacter ...

  5. Chemical composition, true metabolisable energy content and ...

    African Journals Online (AJOL)

    aneldavh

    116. Chemical composition, true metabolisable energy content and amino acid availability of grain legumes for poultry. T.S. Brand. 1, 2,3#. , D.A. Brandt. 1, 2,4 and C.W. ... alternatives (Wiseman, 1987; Brand et al., 1995). ..... The Ca, P and trace element concentrations for lupins, faba beans and peas recorded in the present.

  6. Size distribution measurements and chemical analysis of aerosol components

    Energy Technology Data Exchange (ETDEWEB)

    Pakkanen, T.A.

    1995-12-31

    The principal aims of this work were to improve the existing methods for size distribution measurements and to draw conclusions about atmospheric and in-stack aerosol chemistry and physics by utilizing size distributions of various aerosol components measured. A sample dissolution with dilute nitric acid in an ultrasonic bath and subsequent graphite furnace atomic absorption spectrometric analysis was found to result in low blank values and good recoveries for several elements in atmospheric fine particle size fractions below 2 {mu}m of equivalent aerodynamic particle diameter (EAD). Furthermore, it turned out that a substantial amount of analyses associated with insoluble material could be recovered since suspensions were formed. The size distribution measurements of in-stack combustion aerosols indicated two modal size distributions for most components measured. The existence of the fine particle mode suggests that a substantial fraction of such elements with two modal size distributions may vaporize and nucleate during the combustion process. In southern Norway, size distributions of atmospheric aerosol components usually exhibited one or two fine particle modes and one or two coarse particle modes. Atmospheric relative humidity values higher than 80% resulted in significant increase of the mass median diameters of the droplet mode. Important local and/or regional sources of As, Br, I, K, Mn, Pb, Sb, Si and Zn were found to exist in southern Norway. The existence of these sources was reflected in the corresponding size distributions determined, and was utilized in the development of a source identification method based on size distribution data. On the Finnish south coast, atmospheric coarse particle nitrate was found to be formed mostly through an atmospheric reaction of nitric acid with existing coarse particle sea salt but reactions and/or adsorption of nitric acid with soil derived particles also occurred. Chloride was depleted when acidic species reacted

  7. Elemental composition of aerosol particles from two atmospheric monitoring stations in the Amazon Basin

    International Nuclear Information System (INIS)

    Artaxo, P.; Gerab, F.; Rabello, M.L.C.

    1993-01-01

    One key region for the study of processes that are changing the composition of the global atmosphere is the Amazon Basin tropical rain forest. The high rate of deforestation and biomass burning is emitting large amounts of gases and fine-mode aerosol particles to the global atmosphere. Two background monitoring stations are operating continuously measuring aerosol composition, at Cuiaba, and Serra do Navio. Fine- and coarse-mode aerosol particles are being collected using stacked filter units. Particle induced X-ray emission (PIXE) was used to measure concentrations of up to 21 elements: Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Se, Br, Rb, Sr, Zr, and Pb. The elemental composition was measured at the new PIXE facility from the University of Sao Paulo, using a dedicated 5SDH tandem Pelletron nuclear accelerator. Absolute principal factor analysis (APFA) has derived absolute elemental source profiles. At the Serra do Navio sampling site a very clean background aerosol is being observed. Biogenic aerosol dominates the fine-mode mass concentration, with the presence of K, P, S, Cl, Zn, Br, and FPM. Three components dominate the aerosol composition: Soil dust particles, the natural biogenic release by the forest, and a marine aerosol component. At the Cuiaba site, during the dry season, a strong component of biomass burning is observed. An aerosol mass concentration up to 120 μg/m 3 was measured. APFA showed three components: Soil dust (Al, Ca, Ti, Mn, Fe), biomass burning (soot, FPM, K, Cl) and natural biogenic particles (K, S, Ca, Mn, Zn). The fine-mode biogenic component of both sites shows remarkable similarities, although the two sampling sites are 3000 km apart. Several essential plant nutrients like P, K, S, Ca, Ni and others are transported in the atmosphere as a result of biomass burning processes. (orig.)

  8. Persistence of urban organic aerosols composition: Decoding their structural complexity and seasonal variability.

    Science.gov (United States)

    Matos, João T V; Duarte, Regina M B O; Lopes, Sónia P; Silva, Artur M S; Duarte, Armando C

    2017-12-01

    Organic Aerosols (OAs) are typically defined as highly complex matrices whose composition changes in time and space. Focusing on time vector, this work uses two-dimensional nuclear magnetic resonance (2D NMR) techniques to examine the structural features of water-soluble (WSOM) and alkaline-soluble organic matter (ASOM) sequentially extracted from fine atmospheric aerosols collected in an urban setting during cold and warm seasons. This study reveals molecular signatures not previously decoded in NMR-related studies of OAs as meaningful source markers. Although the ASOM is less hydrophilic and structurally diverse than its WSOM counterpart, both fractions feature a core with heteroatom-rich branched aliphatics from both primary (natural and anthropogenic) and secondary origin, aromatic secondary organics originated from anthropogenic aromatic precursors, as well as primary saccharides and amino sugar derivatives from biogenic emissions. These common structures represent those 2D NMR spectral signatures that are present in both seasons and can thus be seen as an "annual background" profile of the structural composition of OAs at the urban location. Lignin-derived structures, nitroaromatics, disaccharides, and anhydrosaccharides signatures were also identified in the WSOM samples only from periods identified as smoke impacted, which reflects the influence of biomass-burning sources. The NMR dataset on the H-C molecules backbone was also used to propose a semi-quantitative structural model of urban WSOM, which will aid efforts for more realistic studies relating the chemical properties of OAs with their atmospheric behavior. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Urban aerosol in Oporto, Portugal: Chemical characterization of PM10 and PM2.5

    Science.gov (United States)

    Custódio, Danilo; Ferreira, Catarina; Alves, Célia; Duarte, Mácio; Nunes, Teresa; Cerqueira, Mário; Pio, Casimiro; Frosini, Daniele; Colombi, Cristina; Gianelle, Vorne; Karanasiou, Angeliki; Querol, Xavier

    2014-05-01

    Several urban and industrial areas in Southern Europe are not capable of meeting the implemented EU standards for particulate matter. Efficient air quality management is required in order to ensure that the legal limits are not exceeded and that the consequences of poor air quality are controlled and minimized. Many aspects of the direct and indirect effects of suspended particulate matter on climate and public health are not well understood. The temporal variation of the chemical composition is still demanded, since it enables to adopt off-set strategies and to better estimate the magnitude of anthropogenic forcing on climate. This study aims to provide detailed information on concentrations and chemical composition of aerosol from Oporto city, an urban center in Southern Europe. This city is located near the coast line in the North of Portugal, being the country's second largest urban area. Moreover, Oporto city economic prospects depend heavily on a diversified industrial park, which contribute to air quality degradation. Another strong source of air pollution is traffic. The main objectives of this study are: 1) to characterize the chemical composition of PM10 and PM2.5 by setting up an orchestra of aerosol sampling devices in a strategic place in Oporto; 2) to identify the sources of particles exploring parameters such as organic and inorganic markers (e.g. sugars as tracers for biomass burning; metals and elemental carbon for industrial and vehicular emissions); 3) to evaluate long range transport of pollutants using back trajectory analysis. Here we present data obtained between January 2013 and January 2014 in a heavy traffic roadside sampling site located in the city center. Different PM10 and PM2.5 samplers were operated simultaneously in order to collect enough mass on different filter matrixes and to fulfill the requirements of analytical methodologies. More than 100 aerosol samples were collected and then analysed for their mass concentration and

  10. Water soluble organic aerosols in the Colorado Rocky Mountains, USA: composition, sources and optical properties

    OpenAIRE

    Xie, Mingjie; Mladenov, Natalie; Williams, Mark W.; Neff, Jason C.; Wasswa, Joseph; Hannigan, Michael P.

    2016-01-01

    Atmospheric aerosols have been shown to be an important input of organic carbon and nutrients to alpine watersheds and influence biogeochemical processes in these remote settings. For many remote, high elevation watersheds, direct evidence of the sources of water soluble organic aerosols and their chemical and optical characteristics is lacking. Here, we show that the concentration of water soluble organic carbon (WSOC) in the total suspended particulate (TSP) load at a high elevation site in...

  11. Biomass burning aerosols characterization from ground based and profiling measurements

    Science.gov (United States)

    Marin, Cristina; Vasilescu, Jeni; Marmureanu, Luminita; Ene, Dragos; Preda, Liliana; Mihailescu, Mona

    2018-04-01

    The study goal is to assess the chemical and optical properties of aerosols present in the lofted layers and at the ground. The biomass burning aerosols were evaluated in low level layers from multi-wavelength lidar measurements, while chemical composition at ground was assessed using an Aerosol Chemical Speciation Monitor (ACSM) and an Aethalometer. Classification of aerosol type and specific organic markers were used to explore the potential to sense the particles from the same origin at ground base and on profiles.

  12. Linking variations in sea spray aerosol particle hygroscopicity to composition during two microcosm experiments

    Directory of Open Access Journals (Sweden)

    S. D. Forestieri

    2016-07-01

    Full Text Available The extent to which water uptake influences the light scattering ability of marine sea spray aerosol (SSA particles depends critically on SSA chemical composition. The organic fraction of SSA can increase during phytoplankton blooms, decreasing the salt content and therefore the hygroscopicity of the particles. In this study, subsaturated hygroscopic growth factors at 85 % relative humidity (GF(85 % of predominately submicron SSA particles were quantified during two induced phytoplankton blooms in marine aerosol reference tanks (MARTs. One MART was illuminated with fluorescent lights and the other was illuminated with sunlight, referred to as the "indoor" and "outdoor" MARTs, respectively. Optically weighted GF(85 % values for SSA particles were derived from measurements of light scattering and particle size distributions. The mean optically weighted SSA diameters were 530 and 570 nm for the indoor and outdoor MARTs, respectively. The GF(85 % measurements were made concurrently with online particle composition measurements, including bulk composition (using an Aerodyne high-resolution aerosol mass spectrometer and single particle (using an aerosol time-of-flight mass spectrometer measurement, and a variety of water-composition measurements. During both microcosm experiments, the observed optically weighted GF(85 % values were depressed substantially relative to pure inorganic sea salt by 5 to 15 %. There was also a time lag between GF(85 % depression and the peak chlorophyll a (Chl a concentrations by either 1 (indoor MART or 3-to-6 (outdoor MART days. The fraction of organic matter in the SSA particles generally increased after the Chl a peaked, also with a time lag, and ranged from about 0.25 to 0.5 by volume. The observed depression in the GF(85 % values (relative to pure sea salt is consistent with the large observed volume fractions of non-refractory organic matter (NR-OM comprising the SSA. The GF(85 % values

  13. Functional group analysis by H NMR/chemical derivatization for the characterization of organic aerosol from the SMOCC field campaign

    Directory of Open Access Journals (Sweden)

    E. Tagliavini

    2006-01-01

    Full Text Available Water soluble organic compounds (WSOC in aerosol samples collected in the Amazon Basin in a period encompassing the middle/late dry season and the beginning of the wet season, were investigated by H NMR spectroscopy. HiVol filter samples (PM2.5 and PM>2.5 and size-segregated samples from multistage impactor were subjected to H NMR characterization. The H NMR methodology, recently developed for the analysis of organic aerosol samples, has been improved by exploiting chemical methylation of carboxylic groups with diazomethane, which allows the direct determination of the carboxylic acid content of WSOC. The content of carboxylic carbons for the different periods and sizes ranged from 12% to 20% of total measured carbon depending on the season and aerosol size, with higher contents for the fine particles in the transition and wet periods with respect to the dry period. A comprehensive picture is presented of WSOC functional groups in aerosol samples representative of the biomass burning period, as well as of transition and semi-clean atmospheric conditions. A difference in composition between fine (PM2.5 and coarse (PM>2.5 size fractions emerged from the NMR data, the former showing higher alkylic content, the latter being largely dominated by R-O-H (or R-O-R' functional groups. Very small particles (<0.14 μm, however, present higher alkyl-chain content and less oxygenated carbons than larger fine particles (0.42–1.2 μm. More limited variations were found between the average compositions in the different periods of the campaign.

  14. Spaceborne Remote Sensing of Aerosol Type: Global Distribution, Model Evaluation and Translation into Chemical Speciation

    Science.gov (United States)

    Kacenelenbogen, M. S.; Tan, Q.; Johnson, M. S.; Burton, S. P.; Redemann, J.; Hasekamp, O. P.; Dawson, K. W.; Hair, J. W.; Ferrare, R. A.; Butler, C. F.; Holben, B. N.; Beyersdorf, A. J.; Ziemba, L. D.; Froyd, K. D.; Dibb, J. E.; Shingler, T.; Sorooshian, A.; Jimenez, J. L.; Campuzano Jost, P.; Jacob, D.; Kim, P. S.; Travis, K.; Lacagnina, C.

    2016-12-01

    It is essential to evaluate and refine aerosol classification methods applied to passive satellite remote sensing. We have developed an aerosol classification algorithm (called Specified Clustering and Mahalanobis Classification, SCMC) that assigns an aerosol type to multi-parameter retrievals by spaceborne, airborne or ground-based passive remote sensing instruments [1]. The aerosol types identified by our scheme are pure dust, polluted dust, urban-industrial/developed economy, urban-industrial/developing economy, dark biomass smoke, light biomass smoke and pure marine. We apply the SCMC method to inversions from the ground-based AErosol RObotic NETwork (AERONET [2]) and retrievals from the space-borne Polarization and Directionality of Earth's Reflectances instrument (POLDER, [3]). The POLDER retrievals that we use differ from the standard POLDER retrievals [4] as they make full use of multi-angle, multispectral polarimetric data [5]. We analyze agreement in the aerosol types inferred from both AERONET and POLDER and evaluate GEOS-Chem [6] simulations over the globe. Finally, we use in-situ observations from the SEAC4RS airborne field experiment to bridge the gap between remote sensing-inferred qualitative SCMC aerosol types and their corresponding quantitative chemical speciation. We apply the SCMC method to airborne in-situ observations from the NASA Langley Aerosol Research Group Experiment (LARGE, [7]) and the Differential Aerosol Sizing and Hygroscopicity Spectrometer Probe (DASH-SP, [8]) instruments; we then relate each coarsely defined SCMC type to a sum of percentage of individual aerosol species, using in-situ observations from the Particle Analysis by Laser Mass Spectrometry (PALMS, [9]), the Soluble Acidic Gases and Aerosol (SAGA, [10]), and the High - Resolution Time - of - Flight Aerosol Mass Spectrometer (HR ToF AMS, [11]). [1] Russell P. B., et al., JGR, 119.16 (2014) [2] Holben B. N., et al., RSE, 66.1 (1998) [3] Tanré D., et al., AMT, 4.7 (2011

  15. The Chemical Composition of Fogs and Clouds in Southern California.

    Science.gov (United States)

    Munger, James William

    Fog and clouds are frequent occurrences in Southern California. Their chemical composition is of interest due to their potential role in the transformation of sulfur and nitrogen oxides to sulfuric and nitric acid and in the subsequent deposition of those acids. In addition, cloud and fog droplets may be involved in the chemistry of low-molecular-weight carboxylic acids and carbonyl compounds. The major inorganic species in cloud and fogwater samples were NH_4^+, H ^+, NO_3^-, and SO_4^{2-}. Concentrations in fogwater samples were 1-10 times 10^ {-3} M; pH values ranged from ~eq2 to 6. Nitrate usually exceeded sulfate. Acidity depended on the availability of of NH_3 from agricultural operations. Stratus cloudwater had somewhat lower concentrations; pH values were in the range 3-4. The major factors accounting for variation in fog- or cloudwater composition were the preexisting aerosol and gas concentrations and variations in liquid water content. Deposition and entrainment or advection of different air masses were also important during extended cloud or fog episodes. The droplet size dependence of cloudwater composition was investigated on one occasion in an intercepted coastal stratus clouds. The observations were consistent with the hypothesis that small droplets form on small secondary aerosol composed of H_2SO _4, HNO_3, and their NH_4^+ salts, while large droplets form on large sea-salt and soil-dust aerosol. Species that can exist in the gas phase, such as HCl and HNO _3, may be found in either droplet-size fraction. Concentrations of S(IV) and CH_2 O in the range 100-1000 μm were observed in fogwater from urban sites in Southern California. Lower concentrations were observed in stratus clouds. The high levels of S(IV) and CH_2 O were attributed to the formation of hydroxymethanesulfonate (HMSA), the S(IV) adduct of CH_2O. Direct measurement of HMSA in fogwater samples from Bakersfield, CA were made by ion-pairing chromatography. Glyoxal and methylglyoxal

  16. Org Areo Boreal Forest Sources, compositions and properties of newly formed and regional organic aerosol in a boreal forest during the Biogenic Aerosol: Effects on Clouds and Climate Campaign

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Joel A [Univ. of Washington, Seattle, WA (United States)

    2017-12-01

    The major goals of this project were to make unique measurements, as part of the DOE sponsored Biogenic Aerosol Effects on Clouds and Climate (BAECC) campaign, of the volatility and molecular composition of organic aerosol, as well as gas-phase concentrations of oxygenated organic compounds that interact and affect organic aerosol. In addition, we aimed to conduct a similar set of measurements as part of a collaborative set of environmental simulation chamber experiments at PNNL, the aim of which was to simulate the atmospheric oxidation of key biogenic volatile organic compounds (BVOC) and study the associated formation and evolution of secondary organic aerosol (SOA). The target BVOC were a set of monoterpenes, isoprene, and related intermediates such as IEPOX. The ultimate goal of such measurements are to develop a more detailed mechanistic understanding of the sensitivity of SOA mass formation and lifetime to precursor and environmental conditions. Molecular composition and direct volatility measurements provide robust tracers of chemical processing and properties. As such, meeting these goals will allow for stronger constraints on the types of processes and their fundamental descriptions needed to simulate aerosol particle number and size, and cloud nucleating ability in regional and global earth system models.

  17. Chemical characteristics of aerosols in MABL of Bay of Bengal and ...

    Indian Academy of Sciences (India)

    the water-soluble ion composition of bulk-aerosols over BoB, in contrast to Arabian Sea, arises from advective transport of continental pollutants to the. Bay region. This is further reflected in the higher abundance of OC and EC over BoB. The near quantitative Cl. −. -depletion from sea-salts by chemi- cal interaction with ...

  18. Chemical character and probable origin of aerosols at the BARC site, Trombay

    International Nuclear Information System (INIS)

    Sequeira, R.; Kelkar, D.N.

    1975-01-01

    Measurements carried out on the dustload and concentration of sodium, potassium, ammonium, calcium, magnesium, iron, aluminium, silicon, chloride and sulphate in atmospheric air at the Bhabha Atomic Research Centre site, Trombay, the period November 1971-April 1972 have been reported. The average dustload is around 200μg/M 3 . About 50 percent of this could be accounted for, by the present analytical estimatioon of the individual chemical constituents : the water-soluble fraction obtained being 20 percent and the water-insoluble fraction accounting for the rest. Marine contribution to aerosol mass, calculated on the basis of water-soluble sodium concentration indicated that the sea is minor source of aerosols contributing 5 percent of the total aerosol mass. It was observed that the organic matter was about 20 percent of the total aerosol mass. If the local soil and fly-ash are the soil contributors to water-insoluble iron and potassium in aerosols, the respective contributions by these two sources were seen to be 13 percent and 48 percents. If all the organics and the non-marine fraction of the water-soluble mass are of industrial origin, the man-made fraction aerosols would constitute a maximum of 80 percent of the dustload in the Trombay air. The remaining 20 percent would be of natural origin, amounting to about 45 μg/M 3 , a value that represents unpolluted atmospheres. (author)

  19. The impact of aerosol composition on the particle to gas partitioning of reactive mercury.

    Science.gov (United States)

    Rutter, Andrew P; Schauer, James J

    2007-06-01

    A laboratory system was developed to study the gas-particle partitioning of reactive mercury (RM) as a function of aerosol composition in synthetic atmospheric particulate matter. The collection of RM was achieved by filter- and sorbent-based methods. Analyses of the RM collected on the filters and sorbents were performed using thermal extraction combined with cold vapor atomic fluorescence spectroscopy (CVAFS), allowing direct measurement of the RM load on the substrates. Laboratory measurements of the gas-particle partitioning coefficients of RM to atmospheric aerosol particles revealed a strong dependence on aerosol composition, with partitioning coefficients that varied by orders of magnitude depending on the composition of the particles. Particles of sodium nitrate and the chlorides of potassium and sodium had high partitioning coefficients, shifting the RM partitioning toward the particle phase, while ammonium sulfate, levoglucosan, and adipic acid caused the RM to partition toward the gas phase and, therefore, had partitioning coefficients that were lower by orders of magnitude.

  20. Microstructural, chemical and textural characterization of ZnO nanorods synthesized by aerosol assisted chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Sáenz-Trevizo, A.; Amézaga-Madrid, P.; Fuentes-Cobas, L.; Pizá-Ruiz, P.; Antúnez-Flores, W.; Ornelas-Gutiérrez, C. [Centro de Investigación en Materiales Avanzados, S.C., Chihuahua, Chihuahua 31109 (Mexico); Pérez-García, S.A. [Centro de Investigación en Materiales Avanzados, S.C., Unidad Monterrey, Apodaca, Nuevo León 66600 (Mexico); Miki-Yoshida, M., E-mail: mario.miki@cimav.edu.mx [Centro de Investigación en Materiales Avanzados, S.C., Chihuahua, Chihuahua 31109 (Mexico)

    2014-12-15

    ZnO nanorods were synthesized by aerosol assisted chemical vapor deposition onto TiO{sub 2} covered borosilicate glass substrates. Deposition parameters were optimized and kept constant. Solely the effect of different nozzle velocities on the growth of ZnO nanorods was evaluated in order to develop a dense and uniform structure. The crystalline structure was characterized by conventional X-ray diffraction in grazing incidence and Bragg–Brentano configurations. In addition, two-dimensional grazing incidence synchrotron radiation diffraction was employed to determine the preferred growth direction of the nanorods. Morphology and growth characteristics analyzed by electron microscopy were correlated with diffraction outcomes. Chemical composition was established by X-ray photoelectron spectroscopy. X-ray diffraction results and X-ray photoelectron spectroscopy showed the presence of wurtzite ZnO and anatase TiO{sub 2} phases. Morphological changes noticed when the deposition velocity was lowered to the minimum, indicated the formation of relatively vertically oriented nanorods evenly distributed onto the TiO{sub 2} buffer film. By coupling two-dimensional X-ray diffraction and computational modeling with ANAELU it was proved that a successful texture determination was achieved and confirmed by scanning electron microscopy analysis. Texture analysis led to the conclusion of a preferred growth direction in [001] having a distribution width Ω = 20° ± 2°. - Highlights: • Uniform and pure single-crystal ZnO nanorods were obtained by AACVD technique. • Longitudinal and transversal axis parallel to the [001] and [110] directions, respectively. • Texture was determined by 2D synchrotron diffraction and electron microscopy analysis. • Nanorods have its [001] direction distributed close to the normal of the substrate. • Angular spread about the preferred orientation is 20° ± 2°.

  1. Modelling of primary aerosols in the chemical transport model MOCAGE: development and evaluation of aerosol physical parameterizations

    Directory of Open Access Journals (Sweden)

    B. Sič

    2015-02-01

    Full Text Available This paper deals with recent improvements to the global chemical transport model of Météo-France MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle that consists of updates to different aerosol parameterizations. MOCAGE only contains primary aerosol species: desert dust, sea salt, black carbon, organic carbon, and also volcanic ash in the case of large volcanic eruptions. We introduced important changes to the aerosol parameterization concerning emissions, wet deposition and sedimentation. For the emissions, size distribution and wind calculations are modified for desert dust aerosols, and a surface sea temperature dependant source function is introduced for sea salt aerosols. Wet deposition is modified toward a more physically realistic representation by introducing re-evaporation of falling rain and snowfall scavenging and by changing the in-cloud scavenging scheme along with calculations of precipitation cloud cover and rain properties. The sedimentation scheme update includes changes regarding the stability and viscosity calculations. Independent data from satellites (MODIS, SEVIRI, the ground (AERONET, EMEP, and a model inter-comparison project (AeroCom are compared with MOCAGE simulations and show that the introduced changes brought a significant improvement on aerosol representation, properties and global distribution. Emitted quantities of desert dust and sea salt, as well their lifetimes, moved closer towards values of AeroCom estimates and the multi-model average. When comparing the model simulations with MODIS aerosol optical depth (AOD observations over the oceans, the updated model configuration shows a decrease in the modified normalized mean bias (MNMB; from 0.42 to 0.10 and a better correlation (from 0.06 to 0.32 in terms of the geographical distribution and the temporal variability. The updates corrected a strong positive MNMB in the sea salt representation at high latitudes (from 0.65 to 0.16, and a negative MNMB in

  2. Aerosol sampler for analysis of fine and ultrafine aerosols

    Czech Academy of Sciences Publication Activity Database

    Mikuška, Pavel; Čapka, Lukáš; Večeřa, Zbyněk

    2018-01-01

    Roč. 1020 (2018), s. 123-133 ISSN 0003-2670 R&D Projects: GA ČR(CZ) GA14-25558S Institutional support: RVO:68081715 Keywords : atmospheric aerosols * aerosol collection * chemical composition Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 4.950, year: 2016

  3. Atmospheric aerosol system: An overview

    International Nuclear Information System (INIS)

    Prospero, J.M.; Charlson, R.J.; Mohnen, V.; Jaenicke, R.; Delany, A.C.; Moyers, J.; Zoller, W.; Rahn, K.

    1983-01-01

    Aerosols could play a critical role in many processes which impact on our lives either indirectly (e.g., climate) or directly (e.g., health). However, our ability to assess these possible impacts is constrained by our limited knowledge of the physical and chemical properties of aerosols, both anthropogenic and natural. This deficiency is attributable in part to the fact that aerosols are the end product of a vast array of chemical and physical processes. Consequently, the properties of the aerosol can exhibit a great deal of variability in both time and space. Furthermore, most aerosol studies have focused on measurements of a single aerosol characteristic such as composition or size distribution. Such information is generally not useful for the assessment of impacts because the degree of impact may depend on the integral properties of the aerosol, for example, the aerosol composition as a function of particle size. In this overview we discuss recent work on atmospheric aerosols that illustrates the complex nature of the aerosol chemical and physical system, and we suggest strategies for future research. A major conclusion is that man has had a great impact on the global budgets of certain species, especially sulfur and nitrogen, that play a dominant role in the atmospheric aerosol system. These changes could conceivably affect climate. Large-scale impacts are implied because it has recently been demonstrated that natural and pollutant aerosol episodes can be propagated over great distances. However, at present there is no evidence linking anthropogenic activities with a persistent increase in aerosol concentrations on a global scale. A major problem in assessing man's impact on the atmospheric aerosol system and on global budgets is the absence of aerosol measurements in remote marine and continental areas

  4. Chemical, optical and radiative characteristics of aerosols during haze episodes of winter in the North China Plain

    Science.gov (United States)

    Ding, Jing; Zhang, Yufen; Han, Suqin; Xiao, Zhimei; Wang, Jiao; Feng, Yinchang

    2018-05-01

    Aerosol and water vapor radiative forcings, shortwave atmospheric heating rates and longwave atmospheric cooling rates were determined based on in situ physical and chemical measurements of aerosol, associated with the Mie theory and a radiative transfer model, LOWTRAN7, during the two haze episodes in the winter of 2013 in Tianjin, China. The aerosol types considered in LOWTRAN7 included rural, urban, marine, desert and custom aerosols. The default ratio of the absorption coefficient to the extinction coefficient for urban aerosol in LOWTRAN7 was approximately double of those found in this work, implying the weaker absorption ability of aerosols in the North China Plain (NCP). Moreover, the aerosol is assumed to be evenly distributed below 1 km of planetary boundary layer (PBL) on hazy days in LOWTRAN7. If the default urban aerosol optical properties and extinction profile in LOWTRAN7 is employed directly, a larger energy imbalance between the atmosphere and surface is generated and the warming effect of the aerosol is magnified. Hence, modified urban aerosol optical properties were established to replace the corresponding parameters' database in LOWTRAN7. The aerosol extinction profiles were obtained based on a 255-m meteorological tower and observed results from the studies about Tianjin. In the NCP, the aerosol had little impact on atmospheric counter radiation. The water vapor is the crucial factor that affects atmospheric counter radiation. Both modified high shortwave heating rates and longwave cooling rates occur near the surface due to the abundance of aerosol and water vapor. The modified net atmospheric heating rate near the surface is 1.2 K d-1 on hazy days and 0.3 K d-1 on non-hazy days. Compared with the default urban aerosol optical properties and its vertical distribution in LOWTRAN7, the feedback effect of the modified urban aerosol on the boundary layer may not necessarily result in a stable lower atmosphere, but depends on the aerosol light

  5. Chemical composition of Pechora Sea crude oil

    Directory of Open Access Journals (Sweden)

    Derkach S. R.

    2017-03-01

    Full Text Available The physicochemical properties of the Pechora Sea shelf oil and its chemical composition have been studied using the methods of refractometry, titrimetry, viscometry, rheometry and standard methods for the analysis of oil and petroleum products. The fractionation of oil is held at atmospheric pressure, some fractions boiling at the temperature below and above 211 °C have been received. Chemical structural-group composition of oil and its components has been investigated using a Fourier infrared (IR spectroscopy method. The density of oil has been obtained, it is equal to 24.2 API. The chemical composition analysis shows that water content in the investigated oil sample is about 0.03 % (by weight. The oil sample contains hydrocarbons (including alkanes, naphthenes, arenes and asphaltenes with resins; their content is equal to 89 and 10 % (by weight respectively. Alkane content is about 66 %, including alkanes of normal structure – about 37 %. The solidification temperature of oil sample is equal to –43 °C. This low temperature testifies obliquely low content of solid alkanes (paraffin. Bearing in mind the content of asphaltenes with resins we can refer the investigated oil sample to resinous oils. On the other hand spectral coefficient values (aromaticity quotient and aliphaticity quotient show that oil sample belongs to naphthenic oils. According to the data of Fourier IR spectroscopy contents of naphthenes and arenes are 5.9 and 17.8 % respectively. Thus, the obtained data of chemical structural-group composition of crude oil and its fractions indicate that this oil belongs to the heavy resinous naphthenic oils. The rheological parameters obtained at the shear deformation conditions characterize the crude oil as a visco-plastic medium.

  6. Chemical Composition, antioxidant activity, functional properties and ...

    African Journals Online (AJOL)

    Chemical Composition, antioxidant activity, functional properties and inhibitory action of unripe plantain ( M. Paradisiacae ) flour. ... of dry matter (48.00 ± 3.96%) and starch (31.10 ± 0.44%) but was low in phenol (1.42 ± 0.03%), protein (3.15 ± 0.042%), ash (5.50 ± 0.42%) and total soluble sugar (0.64 ± 0.001%) (p < 0.05).

  7. PIXE investigation of aerosol composition over the Zambian Copperbelt

    Science.gov (United States)

    Meter, S. L.; Formenti, P.; Piketh, S. J.; Annegarn, H. J.; Kneen, M. A.

    1999-04-01

    Atmospheric sulphate aerosol concentrations are of interest in climate change studies because of their negative climate forcing potential. Quantification of their forcing strength requires the compilation of global sulphur emission inventories to determine the magnitude of regional sources. We report on measurements of the ambient aerosol concentrations in proximity to a copper refinery in the central African Copperbelt, along the border of Zambia and the Democratic Republic of the Congo. This region is historically regarded as one of the largest African sources of sulphate aerosols. Sulphate is produced by oxidation in the atmosphere of SO 2 emitted during the pyrometallurgical processing of Cu-Co sulphide ores. Since the last quantification of sulphur emissions (late 1960s), there has been large-scale reduction in copper production and more frequent use of the leaching technique with negligible sulphur emissions. Samples were collected over four weeks, November-December 1996, at Kitwe, Zambia. A low volume two-stage time-resolving aerosol sampler (streaker) was used. Coarse and fine mode aerosols were separated at >2.5 and >10 μmad. Hourly elemental concentrations were determined by 3.2 MeV PIXE, and routinely yielded Si, S, K, Ca, Ti, Mn, Fe, Cu and Zn, above detection limits. Si, K, Ca and Fe (major crustal components) dominated the coarse elemental mass. In the fine stage, S and Si accounted for up to 80% of the measured mass, and S alone up to 60%. Time series analysis allowed the division of sulphur and crustal elements (Si, K, Ca, Fe) between (i) background concentrations representative of synoptic scale air masses; and (ii) contributions from local sources, i.e., copper smelter and re-suspended soil dust. Short duration episodes of S concentrations, up to 26 μg/m 3, were found simultaneously with enhanced Cu, Fe and Zn. Contributions from individual pyrometallurgic processes and the cobalt slag dump could be distinguished from the elemental signatures

  8. PIXE investigation of aerosol composition over the Zambian Copperbelt

    International Nuclear Information System (INIS)

    Meter, S.L.; Formenti, P.; Piketh, S.J.; Annegarn, H.J.; Kneen, M.A.

    1999-01-01

    Atmospheric sulphate aerosol concentrations are of interest in climate change studies because of their negative climate forcing potential. Quantification of their forcing strength requires the compilation of global sulphur emission inventories to determine the magnitude of regional sources. We report on measurements of the ambient aerosol concentrations in proximity to a copper refinery in the central African Copperbelt, along the border of Zambia and the Democratic Republic of the Congo. This region is historically regarded as one of the largest African sources of sulphate aerosols. Sulphate is produced by oxidation in the atmosphere of SO 2 emitted during the pyrometallurgical processing of Cu-Co sulphide ores. Since the last quantification of sulphur emissions (late 1960s), there has been large-scale reduction in copper production and more frequent use of the leaching technique with negligible sulphur emissions. Samples were collected over four weeks, November-December 1996, at Kitwe, Zambia. A low volume two-stage time-resolving aerosol sampler (streaker) was used. Coarse and fine mode aerosols were separated at >2.5 and >10 μmad. Hourly elemental concentrations were determined by 3.2 MeV PIXE, and routinely yielded Si, S, K, Ca, Ti, Mn, Fe, Cu and Zn, above detection limits. Si, K, Ca and Fe (major crustal components) dominated the coarse elemental mass. In the fine stage, S and Si accounted for up to 80% of the measured mass, and S alone up to 60%. Time series analysis allowed the division of sulphur and crustal elements (Si, K, Ca, Fe) between (i) background concentrations representative of synoptic scale air masses; and (ii) contributions from local sources, i.e., copper smelter and re-suspended soil dust. Short duration episodes of S concentrations, up to 26 μg/m 3 , were found simultaneously with enhanced Cu, Fe and Zn. Contributions from individual pyrometallurgic processes and the cobalt slag dump could be distinguished from the elemental signatures

  9. Chemical microsensors based on polymer fiber composites

    Science.gov (United States)

    Kessick, Royal F.; Levit, Natalia; Tepper, Gary C.

    2005-05-01

    There is an urgent need for new chemical sensors for defense and security applications. In particular, sensors are required that can provide higher sensitivity and faster response in the field than existing baseline technologies. We have been developing a new solid-state chemical sensor technology based on microscale polymer composite fiber arrays. The fibers consist of an insulating polymer doped with conducting particles and are electrospun directly onto the surface of an interdigitated microelectrode. The concentration of the conducting particles within the fiber is controlled and is near the percolation threshold. Thus, the electrical resistance of the polymer fiber composite is very sensitive to volumetric changes produced in the polymer by vapor absorption. Preliminary results are presented on the fabrication and testing of the new microsensor. The objective is to take advantage of the very high surface to volume ratio, low thermal mass and linear geometry of the composite fibers to produce sensors exhibiting an extremely high vapor sensitivity and rapid response. The simplicity and low cost of a resistance-based chemical microsensor makes this sensing approach an attractive alternative to devices requiring RF electronics or time-of-flight analysis. Potential applications of this technology include battlespace awareness, homeland security, environmental surveillance, medical diagnostics and food process monitoring.

  10. The composition and variability of atmospheric aerosol over Southeast Asia during 2008

    Directory of Open Access Journals (Sweden)

    W. Trivitayanurak

    2012-01-01

    Full Text Available We use a nested version of the GEOS-Chem global 3-D chemistry transport model to better understand the composition and variation of aerosol over Borneo and the broader Southeast Asian region in conjunction with aircraft and satellite observations. Our focus on Southeast Asia reflects the importance of this region as a source of reactive organic gases and aerosols from natural forests, biomass burning, and food and fuel crops. We particularly focus on July 2008 when the UK BAe-146 research aircraft was deployed over northern Malaysian Borneo as part of the ACES/OP3 measurement campaign. During July 2008 we find using the model that Borneo (defined as Borneo Island and the surrounding Indonesian islands was a net exporter of primary organic aerosol (42 kT and black carbon aerosol (11 kT. We find only 13% of volatile organic compound oxidation products partition to secondary organic aerosol (SOA, with Borneo being a net exporter of SOA (15 kT. SOA represents approximately 19% of the total organic aerosol over the region. Sulphate is mainly from aqueous-phase oxidation (68%, with smaller contributions from gas-phase oxidation (15% and advection into the regions (14%. We find that there is a large source of sea salt, as expected, but this largely deposits within the region; we find that dust aerosol plays only a relatively small role in the aerosol burden. In contrast to coincident surface measurements over Northern Borneo that find a pristine environment with evidence for substantial biogenic SOA formation we find that the free troposphere is influenced by biomass burning aerosol transported from the northwest of the Island and further afield. We find several transport events during July 2008 over Borneo associated with elevated aerosol concentrations, none of which coincide with the aircraft flights. We use MODIS aerosol optical depths (AOD data and the model to put the July campaign into a longer temporal perspective. We find that Borneo is where

  11. The composition and variability of atmospheric aerosol over Southeast Asia during 2008

    Science.gov (United States)

    Trivitayanurak, W.; Palmer, P. I.; Barkley, M. P.; Robinson, N. H.; Coe, H.; Oram, D. E.

    2012-01-01

    We use a nested version of the GEOS-Chem global 3-D chemistry transport model to better understand the composition and variation of aerosol over Borneo and the broader Southeast Asian region in conjunction with aircraft and satellite observations. Our focus on Southeast Asia reflects the importance of this region as a source of reactive organic gases and aerosols from natural forests, biomass burning, and food and fuel crops. We particularly focus on July 2008 when the UK BAe-146 research aircraft was deployed over northern Malaysian Borneo as part of the ACES/OP3 measurement campaign. During July 2008 we find using the model that Borneo (defined as Borneo Island and the surrounding Indonesian islands) was a net exporter of primary organic aerosol (42 kT) and black carbon aerosol (11 kT). We find only 13% of volatile organic compound oxidation products partition to secondary organic aerosol (SOA), with Borneo being a net exporter of SOA (15 kT). SOA represents approximately 19% of the total organic aerosol over the region. Sulphate is mainly from aqueous-phase oxidation (68%), with smaller contributions from gas-phase oxidation (15%) and advection into the regions (14%). We find that there is a large source of sea salt, as expected, but this largely deposits within the region; we find that dust aerosol plays only a relatively small role in the aerosol burden. In contrast to coincident surface measurements over Northern Borneo that find a pristine environment with evidence for substantial biogenic SOA formation we find that the free troposphere is influenced by biomass burning aerosol transported from the northwest of the Island and further afield. We find several transport events during July 2008 over Borneo associated with elevated aerosol concentrations, none of which coincide with the aircraft flights. We use MODIS aerosol optical depths (AOD) data and the model to put the July campaign into a longer temporal perspective. We find that Borneo is where the model

  12. Source identification and airborne chemical characterisation of aerosol pollution from long-range transport over Greenland during POLARCAT summer campaign 2008

    Directory of Open Access Journals (Sweden)

    J. Schmale

    2011-10-01

    Full Text Available We deployed an aerosol mass spectrometer during the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport summer campaign in Greenland in June/July 2008 on the research aircraft ATR-42. Online size resolved chemical composition data of submicron aerosol were collected up to 7.6 km altitude in the region 60 to 71° N and 40 to 60° W. Biomass burning (BB and fossil fuel combustion (FF plumes originating from North America, Asia, Siberia and Europe were sampled. Transport pathways of detected plumes included advection below 700 hPa, air mass uplifting in warm conveyor belts, and high altitude transport in the upper troposphere. By means of the Lagrangian particle dispersion model FLEXPART, trace gas analysis of O3 and CO, particle size distributions and aerosol chemical composition 48 pollution events were identified and classified into five chemically distinct categories. Aerosol from North American BB consisted of 22% particulate sulphate, while with increasing anthropogenic and Asian influence aerosol in Asian FF dominated plumes was composed of up to 37% sulphate category mean value. Overall, it was found that the organic matter fraction was larger (85% in pollution plumes than for background conditions (71%. Despite different source regions and emission types the particle oxygen to carbon ratio of all plume classes was around 1 indicating low-volatility highly oxygenated aerosol. The volume size distribution of out-of-plume aerosol showed markedly smaller modes than all other distributions with two Aitken mode diameters of 24 and 43 nm and a geometric standard deviation σg of 1.12 and 1.22, respectively, while another very broad mode was found at 490 nm (σg = 2.35. Nearly pure BB particles from North America exhibited an Aitken mode at 66 nm (σg = 1.46 and an accumulation mode diameter of 392 nm (σg = 1

  13. Source identification and airborne chemical characterisation of aerosol pollution from long-range transport over Greenland during POLARCAT summer campaign 2008

    Science.gov (United States)

    Schmale, J.; Schneider, J.; Ancellet, G.; Quennehen, B.; Stohl, A.; Sodemann, H.; Burkhart, J. F.; Hamburger, T.; Arnold, S. R.; Schwarzenboeck, A.; Borrmann, S.; Law, K. S.

    2011-10-01

    We deployed an aerosol mass spectrometer during the POLARCAT (Polar Study using Aircraft, Remote Sensing, Surface Measurements and Models, of Climate, Chemistry, Aerosols, and Transport) summer campaign in Greenland in June/July 2008 on the research aircraft ATR-42. Online size resolved chemical composition data of submicron aerosol were collected up to 7.6 km altitude in the region 60 to 71° N and 40 to 60° W. Biomass burning (BB) and fossil fuel combustion (FF) plumes originating from North America, Asia, Siberia and Europe were sampled. Transport pathways of detected plumes included advection below 700 hPa, air mass uplifting in warm conveyor belts, and high altitude transport in the upper troposphere. By means of the Lagrangian particle dispersion model FLEXPART, trace gas analysis of O3 and CO, particle size distributions and aerosol chemical composition 48 pollution events were identified and classified into five chemically distinct categories. Aerosol from North American BB consisted of 22% particulate sulphate, while with increasing anthropogenic and Asian influence aerosol in Asian FF dominated plumes was composed of up to 37% sulphate category mean value. Overall, it was found that the organic matter fraction was larger (85%) in pollution plumes than for background conditions (71%). Despite different source regions and emission types the particle oxygen to carbon ratio of all plume classes was around 1 indicating low-volatility highly oxygenated aerosol. The volume size distribution of out-of-plume aerosol showed markedly smaller modes than all other distributions with two Aitken mode diameters of 24 and 43 nm and a geometric standard deviation σg of 1.12 and 1.22, respectively, while another very broad mode was found at 490 nm (σg = 2.35). Nearly pure BB particles from North America exhibited an Aitken mode at 66 nm (σg = 1.46) and an accumulation mode diameter of 392 nm (σg = 1.76). An aerosol lifetime, including all processes from emission to

  14. Chemical ageing and transformation of diffusivity in semi-solid multi-component organic aerosol particles

    Directory of Open Access Journals (Sweden)

    C. Pfrang

    2011-07-01

    Full Text Available Recent experimental evidence underlines the importance of reduced diffusivity in amorphous semi-solid or glassy atmospheric aerosols. This paper investigates the impact of diffusivity on the ageing of multi-component reactive organic particles approximating atmospheric cooking aerosols. We apply and extend the recently developed KM-SUB model in a study of a 12-component mixture containing oleic and palmitoleic acids. We demonstrate that changes in the diffusivity may explain the evolution of chemical loss rates in ageing semi-solid particles, and we resolve surface and bulk processes under transient reaction conditions considering diffusivities altered by oligomerisation. This new model treatment allows prediction of the ageing of mixed organic multi-component aerosols over atmospherically relevant timescales and conditions. We illustrate the impact of changing diffusivity on the chemical half-life of reactive components in semi-solid particles, and we demonstrate how solidification and crust formation at the particle surface can affect the chemical transformation of organic aerosols.

  15. A seasonal time history of the size resolved composition of fine aerosol in Manchester UK

    Science.gov (United States)

    Choularton, Thomas; Martin, Claire; Allan, James; Coe, Hugh; Bower, Keith; Gallagher, Martin

    2010-05-01

    Numerous studies have been conducted in urban centres now using sophisticated instruments that measure aerosol properties needed to determine their effects on human health, air quality and climate change) showing that a significant fraction of urban aerosols (mainly from automotive sources) are composed of organic compounds with implications for human health. In this project we have produced the first seasonal aerosol composition and emission database for the City of Manchester in the UK Several recent projects have been conducted by SEAES looking at fundamental properties of urban atmospheric aerosol to understand their influence on climate. This work is now expanding through collaboration with the School of Geography & Centre for Occupational & Environmental Health to investigate urban aerosol emission impacts on human health In this paper we present a compendium of data from field campaigns in Manchester city centre over the past decade. The data are from six different campaigns, between 2001 - 2007, each campaign was between 2 weeks and 2 months long predominantly from January and June periods . The data analysis includes air parcel trajectory examination and comparisons with external data, including PM10, CO and NOx data from AURN fixed monitoring sites Six Manchester fine aerosol datasets from the past decade have been quality controlled and analysed regarding averages of the size distributions of Organic, NO3, NH4 and SO4 mass loadings. It was found that: Organic material is the largest single component of the aerosol with primary aliphatic material dominating the smallest sizes, but with oxygenated secondary organic material being important in the accumulation mode. In the accumulation mode the organic material seems to be internally mixed with sulphate and nitrate. The accumulation mode particles were effective as cloud condensation nuclei. Seasonal effects surrounding atmospheric stability and photochemistry were found to play an important role in the

  16. Chemical and physical characteristics of aerosol particles at a remote coastal location, Mace Head, Ireland, during NAMBLEX

    Directory of Open Access Journals (Sweden)

    H. Coe

    2006-01-01

    Full Text Available A suite of aerosol physical and chemical measurements were made at the Mace Head Atmospheric Research Station, Co. Galway, Ireland, a coastal site on the eastern seaboard of the north Atlantic Ocean during NAMBLEX. The data have been used in this paper to show that over a wide range of aerosol sizes there is no impact of the inter-tidal zone or the surf zone on measurements made at 7 m above ground level or higher. During the measurement period a range of air mass types were observed. During anticyclonic periods and conditions of continental outflow Aitken and accumulation mode were enhanced by a factor of 5 compared to the marine sector, whilst coarse mode particles were enhanced during westerly conditions. Baseline marine conditions were rarely met at Mace Head during NAMBLEX and high wind speeds were observed for brief periods only. The NAMBLEX experiment focussed on a detailed assessment of photochemistry in the marine environment, investigating the linkage between the HOx and the halogen radical cycles. Heterogeneous losses are important in both these cycles. In this paper loss rates of gaseous species to aerosol surfaces were calculated for a range of uptake coefficients. Even when the accommodation coefficient is unity, lifetimes due to heterogeneous loss of less than 10 s were never observed and rarely were they less than 500 s. Diffusional limitation to mass transfer is important in most conditions as the coarse mode is always significant. We calculate a minimum overestimate of 50% in the loss rate if this is neglected and so it should always be considered when calculating loss rates of gaseous species to particle surfaces. HO2 and HOI have accommodation coefficients of around 0.03 and hence we calculate lifetimes due to loss to particle surfaces of 2000 s or greater under the conditions experienced during NAMBLEX. Aerosol composition data collected during this experiment provide representative information on the input aerosol

  17. Chemical and sulphur isotope compositions of pyrite in the ...

    Indian Academy of Sciences (India)

    sulphide mineralization and their chemical evo- lution in relative .... properties and chemical compositions. Electron ..... from the sulphide lode provide clues to the chang- ing fluid ..... Raymond O L 1996 Pyrite composition and ore geneis in.

  18. The Pasadena Aerosol Characterization Observatory (PACO: chemical and physical analysis of the Western Los Angeles basin aerosol

    Directory of Open Access Journals (Sweden)

    S. P. Hersey

    2011-08-01

    in accumulation mode aerosol, while afternoon SOA production coincides with the appearance of a distinct fine mode dominated by organics. Particulate NH4NO3 and (NH42SO4 appear to be NH3-limited in regimes I and II, but a significant excess of particulate NH4+ in the hot, dry regime III suggests less SO42− and the presence of either organic amines or NH4+-associated organic acids. C-ToF-AMS data were analyzed by Positive Matrix Factorization (PMF, which resolved three factors, corresponding to a hydrocarbon-like OA (HOA, semivolatile OOA (SV-OOA, and low-volatility OOA (LV-OOA. HOA appears to be a periodic plume source, while SV-OOA exhibits a strong diurnal pattern correlating with ozone. Peaks in SV-OOA concentration correspond to peaks in DMA number concentration and the appearance of a fine organic mode. LV-OOA appears to be an aged accumulation mode constituent that may be associated with aqueous-phase processing, correlating strongly with sulfate and representing the dominant background organic component. Periods characterized by high SV-OOA and LV-OOA were analyzed by filter analysis, revealing a complex mixture of species during periods dominated by SV-OOA and LV-OOA, with LV-OOA periods characterized by shorter-chain dicarboxylic acids (higher O:C ratio, as well as appreciable amounts of nitrate- and sulfate-substituted organics. Phthalic acid was ubiquitous in filter samples, suggesting that PAH photochemistry may be an important SOA pathway in Los Angeles. Aerosol composition was related to water uptake characteristics, and it is concluded that hygroscopicity is largely controlled by organic mass fraction (OMF. The hygroscopicity parameter κ averaged 0.31 ± 0.08, approaching 0.5 at low OMF and 0.1 at high OMF, with increasing OMF suppressing hygroscopic growth and increasing critical dry diameter for CCN activation

  19. Chemical Composition of Rain Water in Lebanon

    International Nuclear Information System (INIS)

    SLIM, K.; SAAD, Z.; GHADDAR, A.; NASREDDINE, M.; KATTAN, Z.

    2000-01-01

    Samples of rainfall water were collected from fifteen stations in Lebanon during the period between October 1999 and April 2000 (the rainy season in Lebanon). Nine of these stations are distributed along the urban coastal cities, from the north to the south. The remaining 6 stations which have different altitudes ranging fom 400 m to 1200 m high are distributed in the mountainous rural areas. The concentrations of major cations (H + ,Na + , Ca 2 +, Mg 2 + and NH + 4 ) and major anions (Cl - , NO - 3 , HCO - 3 and SO 2 - 4 are determined for the first time in Lebanon. It has been found that the rain water is not acidic, due to the presence of carbonate dust particles in the atmosphere, which arise from the natural carbonate rocks, especially predominance in the mountains and internal regions of Lebanon. The high predominance of Na + and Cl - in the coastal investigated stations, is attributed to marine aerosol spray. The concentrations of SO - 4 and NO - 3 are close to the concentrations expected in typical urban areas. The correlation between the concentration of chemical species confirms the influence of natural and anthropogenic sources. (author)

  20. Aircraft-Based measurement of the physico-chemical evolution of atmospheric aerosols in the air pollution plume over a megacity and a remote area

    Science.gov (United States)

    Park, J. S.; Lee, T.; Park, T.; Lee, J. B.; Lim, Y. J.; Ahn, J.; Kim, J.; Park, S.; Collett, J. L., Jr.

    2017-12-01

    Aerosols influence climate change directly (scattering and absorption) and indirectly (cloud condensation nuclei), also adverse health effects. The Korean peninsula is a great place to study different sources of the aerosols: urban, rural and marine. In addition, Seoul is one of the large metropolitan areas in the world and has a variety of sources because half of the Korean population lives in Seoul, which comprises only 12% of the country's area. To understand the physico-chemical evolution of atmospheric aerosols in the air pollution plume over a megacity and a remote area, an Aerodyne High Resolution Time of Flight Aerosol Mass Spectrometer (HR-ToF-AMS) was deployed on an airborne platform (NASA DC-8 and Beechcraft King Air) in June, 2015 and May-June, 2016 during MAPS-Seoul and KORUS-AQ campaigns, respectively, in Korea. The HR-ToF-AMS is capable of measuring non-refractory size resolved chemical composition of submicron particle (NR-PM1). NR-PM1 includes mass concentration of organics, nitrate, sulfate, and ammonium with 10 seconds time resolution. Organics was dominated species in aerosol during all of flights. Organics and nitrate were dominant around energy industrial complex near by Taean, South Korea. The presentation will provide an overview of the composition of NR-PM1 measured in air pollution plumes, and deliver detail information about width, depth and spatial distribution of the pollutant in the air pollution plumes. The results of this study will provide high temporal and spatial resolved details on the air pollution plumes, which are valuable input parameters of aerosol properties for the current air quality models.

  1. Seasonal variations in aerosol particle composition at the puy-de-Dôme research station in France

    Directory of Open Access Journals (Sweden)

    E. J. Freney

    2011-12-01

    Full Text Available Detailed investigations of the chemical and microphysical properties of atmospheric aerosol particles were performed at the puy-de-Dôme (pdD research station (1465 m in autumn (September and October 2008, winter (February and March 2009, and summer (June 2010 using a compact Time-of-Flight Aerosol Mass Spectrometer (cToF-AMS. Over the three campaigns, the average mass concentrations of the non-refractory submicron particles ranged from 10 μg m−3 up to 27 μg m−3. Highest nitrate and ammonium mass concentrations were measured during the winter and during periods when marine modified airmasses were arriving at the site, whereas highest concentrations of organic particles were measured during the summer and during periods when continental airmasses arrived at the site. The measurements reported in this paper show that atmospheric particle composition is strongly influenced by both the season and the origin of the airmass. The total organic mass spectra were analysed using positive matrix factorisation to separate individual organic components contributing to the overall organic particle mass concentrations. These organic components include a low volatility oxygenated organic aerosol particle (LV-OOA and a semi-volatile organic aerosol particle (SV-OOA. Correlations of the LV-OOA components with fragments of m/z 60 and m/z 73 (mass spectral markers of wood burning during the winter campaign suggest that wintertime LV-OOA are related to aged biomass burning emissions, whereas organic aerosol particles measured during the summer are likely linked to biogenic sources. Equivalent potential temperature calculations, gas-phase, and LIDAR measurements define whether the research site is in the planetary boundary layer (PBL or in the free troposphere (FT/residual layer (RL. We observe that SV-OOA and nitrate particles are associated with air masses arriving from the PBL where as particle composition measured from RL

  2. Light absorption of secondary organic aerosol: Composition and contribution of nitro-aromatic compounds

    Science.gov (United States)

    Secondary organic aerosol (SOA) might affect the atmospheric radiation balance through absorbing light at shorter visible and UV wavelengths. However, the composition and optical properties of light-absorbing SOA is poorly understood. In this work, SOA filter samples were collect...

  3. Growth of BaTiO3-PVDF composite thick films by using aerosol deposition

    Science.gov (United States)

    Cho, Sung Hwan; Yoon, Young Joon

    2016-01-01

    Barium titanate (BaTiO3)-polyvinylidene fluoride (PVDF) composite thick films were grown by using aerosol deposition at room temperature with BaTiO3 and PVDF powders. To produce a uniform composition in ceramic and polymer composite films, which show a substantial difference in specific gravity, we used PVDF-coated BaTiO3 powders as the starting materials. An examination of the microstructure confirmed that the BaTiO3 were well distributed in the PVDF matrix in the form of a 0 - 3 compound. The crystallite size in the BaTiO3-PVDF composite thick films was 5 ˜ 50 times higher than that in pure BaTiO3 thick films. PVDF plays a role in suppressing the fragmentation of BaTiO3 powder during the aerosol deposition process and in controlling the relative permittivity.

  4. NOAA's National Air Quality Prediction and Development of Aerosol and Atmospheric Composition Prediction Components for NGGPS

    Science.gov (United States)

    Stajner, I.; McQueen, J.; Lee, P.; Stein, A. F.; Wilczak, J. M.; Upadhayay, S.; daSilva, A.; Lu, C. H.; Grell, G. A.; Pierce, R. B.

    2017-12-01

    NOAA's operational air quality predictions of ozone, fine particulate matter (PM2.5) and wildfire smoke over the United States and airborne dust over the contiguous 48 states are distributed at http://airquality.weather.gov. The National Air Quality Forecast Capability (NAQFC) providing these predictions was updated in June 2017. Ozone and PM2.5 predictions are now produced using the system linking the Community Multiscale Air Quality model (CMAQ) version 5.0.2 with meteorological inputs from the North American Mesoscale Forecast System (NAM) version 4. Predictions of PM2.5 include intermittent dust emissions and wildfire emissions from an updated version of BlueSky system. For the latter, the CMAQ system is initialized by rerunning it over the previous 24 hours to include wildfire emissions at the time when they were observed from the satellites. Post processing to reduce the bias in PM2.5 prediction was updated using the Kalman filter analog (KFAN) technique. Dust related aerosol species at the CMAQ domain lateral boundaries now come from the NEMS Global Aerosol Component (NGAC) v2 predictions. Further development of NAQFC includes testing of CMAQ predictions to 72 hours, Canadian fire emissions data from Environment and Climate Change Canada (ECCC) and the KFAN technique to reduce bias in ozone predictions. NOAA is developing the Next Generation Global Predictions System (NGGPS) with an aerosol and gaseous atmospheric composition component to improve and integrate aerosol and ozone predictions and evaluate their impacts on physics, data assimilation and weather prediction. Efforts are underway to improve cloud microphysics, investigate aerosol effects and include representations of atmospheric composition of varying complexity into NGGPS: from the operational ozone parameterization, GOCART aerosols, with simplified ozone chemistry, to CMAQ chemistry with aerosol modules. We will present progress on community building, planning and development of NGGPS.

  5. Investigating the composition of organic aerosol resulting from cyclohexene ozonolysis: low molecular weight and heterogeneous reaction products

    Directory of Open Access Journals (Sweden)

    J. F. Hamilton

    2006-01-01

    Full Text Available The composition of organic aerosol formed from the gas phase ozonolysis of cyclohexene has been investigated in a smog chamber experiment. Comprehensive gas chromatography with time of flight mass spectrometric detection was used to determine that dicarboxylic acids and corresponding cyclic anhydrides dominated the small gas phase reaction products found in aerosol sampled during the first hour after initial aerosol formation. Structural analysis of larger more polar molecules was performed using liquid chromatography with ion trap tandem mass spectrometry. This indicated that the majority of identified organic mass was in dimer form, built up from combinations of the most abundant small acid molecules, with frequent indication of the inclusion of adipic acid. Trimers and tetramers potentially formed via similar acid combinations were also observed in lower abundances. Tandem mass spectral data indicated dimers with either acid anhydride or ester functionalities as the linkage between monomers. High-resolution mass spectrometry identified the molecular formulae of the most abundant dimer species to be C10H16O6, C11H18O6, C10H14O8 and C11H16O8 and could be used in some cases to reduce uncertainty in exact chemical structure determination by tandem MS.

  6. Instrumentation for tropospheric aerosol characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z.; Young, S.E.; Becker, C.H.; Coggiola, M.J. [SRI International, Menlo Park, CA (United States); Wollnik, H. [Giessen Univ. (Germany)

    1997-12-31

    A new instrument has been developed that determines the abundance, size distribution, and chemical composition of tropospheric and lower stratospheric aerosols with diameters down to 0.2 {mu}m. In addition to aerosol characterization, the instrument also monitors the chemical composition of the ambient gas. More than 25.000 aerosol particle mass spectra were recorded during the NASA-sponsored Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program using NASA`s DC-8 research aircraft. (author) 7 refs.

  7. Instrumentation for tropospheric aerosol characterization

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Z; Young, S E; Becker, C H; Coggiola, M J [SRI International, Menlo Park, CA (United States); Wollnik, H [Giessen Univ. (Germany)

    1998-12-31

    A new instrument has been developed that determines the abundance, size distribution, and chemical composition of tropospheric and lower stratospheric aerosols with diameters down to 0.2 {mu}m. In addition to aerosol characterization, the instrument also monitors the chemical composition of the ambient gas. More than 25.000 aerosol particle mass spectra were recorded during the NASA-sponsored Subsonic Aircraft: Contrail and Cloud Effects Special Study (SUCCESS) field program using NASA`s DC-8 research aircraft. (author) 7 refs.

  8. Aerosol composition in a stagnant air mass impacted by dense fogs: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, D.J.; Munger, J.W.; Waldman, J.M.; Hoffman, M.R.

    1984-01-01

    Over the last two winters, our research group has been investigating the chemical composition of fogwater and haze aerosol during wintertime stagnation episodes in the San Joaquin Valley of California. The valley is encompassed by mountain ranges. During the winter a strong subsidence inversion based below the natural boundaries of the valley restricts the ventilation of the air masses below the inversion. The residence time of an air parcel in the valley under these stagnation conditions is on the order of 8 days. Because the trapped air is very humid, stagnation episodes are associated with a persistent thick haze and frequent widespread nighttime fogs. During the winter 1982-1983 the authors sampled fog and haze at one site (Bakersfield); results from this preliminary study have been discussed in detail in a previous report. In the winter 1983-1984 the scale of the program was expanded in order to test hypotheses formulated as a result of first year data. The present paper first reports briefly on the 1982-1983 results and outlines the essential conclusions. They then describe the large-scale experiment conducted during the winter of 1983-1984, and discuss some preliminary fogwater data.

  9. Connecting Organic Aerosol Climate-Relevant Properties to Chemical Mechanisms of Sources and Processing

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, Joel [Univ. of Washington, Seattle, WA (United States)

    2015-01-26

    The research conducted on this project aimed to improve our understanding of secondary organic aerosol (SOA) formation in the atmosphere, and how the properties of the SOA impact climate through its size, phase state, and optical properties. The goal of this project was to demonstrate that the use of molecular composition information to mechanistically connect source apportionment and climate properties can improve the physical basis for simulation of SOA formation and properties in climate models. The research involved developing and improving methods to provide online measurements of the molecular composition of SOA under atmospherically relevant conditions and to apply this technology to controlled simulation chamber experiments and field measurements. The science we have completed with the methodology will impact the simulation of aerosol particles in climate models.

  10. Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality

    Directory of Open Access Journals (Sweden)

    T. Moreno

    2013-02-01

    Full Text Available The regular eastward drift of transboundary aerosol intrusions from the Asian mainland into the NW Pacific region has a pervasive impact on air quality in Japan, especially during springtime. Analysis of 24-h filter samples with Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES and Mass Spectrometry (ICP-MS, and hourly Streaker with Particle Induced X-ray Emission (PIXE samples collected continuously for six weeks reveal the chemistry of successive waves of natural mineral desert dust ("Kosa" and metalliferous sulphatic pollutants arriving in western Japan during spring 2011. The main aerosol sources recognised by Positive Matrix Factorization (PMF analysis of Streaker data are mineral dust and fresh sea salt (both mostly in the coarser fraction PM2.5–10, As-bearing sulphatic aerosol (PM0.1–2.5, metalliferous sodic particulate matter (PM interpreted as aged, industrially contaminated marine aerosol, and ZnCu-bearing aerosols. Whereas mineral dust arrivals are typically highly transient, peaking over a few hours, sulphatic intrusions build up and decline more slowly, and are accompanied by notable rises in ambient concentrations of metallic trace elements such as Pb, As, Zn, Sn and Cd. The magnitude of the loss in regional air quality due to the spread and persistence of pollution from mainland Asia is especially clear when cleansing oceanic air advects westward across Japan, removing the continental influence and reducing concentrations of the undesirable metalliferous pollutants by over 90%. Our new chemical database, especially the Streaker data, demonstrates the rapidly changing complexity of ambient air inhaled during these transboundary events, and implicates Chinese coal combustion as the main source of the anthropogenic aerosol component.

  11. Fine aerosol bulk composition measured on WP-3D research aircraft in vicinity of the Northeastern United States – results from NEAQS

    Directory of Open Access Journals (Sweden)

    C. Warneke

    2007-06-01

    Full Text Available During the New England Air Quality Study (NEAQS in the summer of 2004, airborne measurements were made of the major inorganic ions and the water-soluble organic carbon (WSOC of the submicron (PM1.0 aerosol. These and ancillary data are used to describe the overall aerosol chemical characteristics encountered during the study. Fine particle mass was estimated from particle volume and a calculated density based on measured particle composition. Fine particle organic matter (OM was estimated from WSOC and a mass balance analysis. The aerosol over the northeastern United States (U.S. and Canada was predominantly sulfate and associated ammonium, and organic components, although in unique plumes additional ionic components were also periodically above detection limits. In power generation regions, and especially in the Ohio River Valley region, the aerosol tended to be predominantly sulfate (~60% μg μg−1 and apparently acidic, based on an excess of measured anions compared to cations. In all other regions where sulfate concentrations were lower and a smaller fraction of overall mass, the cations and anions were balanced suggesting a more neutral aerosol. In contrast, the WSOC and estimated OM were more spatially uniform and the fraction of OM relative to PM mass was largely influenced by sources of sulfate. The study median OM mass fraction was 40%. Throughout the study region, sulfate and organic aerosol mass were highest near the surface and decreased rapidly with increasing altitude. The relative fraction of organic mass to sulfate was similar throughout all altitudes within the boundary layer (altitude less than 2.5 km, but was significantly higher at altitude layers in the free troposphere (above 2.5 km. A number of distinct biomass burning plumes from fires in Alaska and the Yukon were periodically intercepted, mostly at altitudes between 3 and 4 km. These plumes were associated with highest aerosol concentrations of the study and were

  12. Physicochemical characterization of Capstone depleted uranium aerosols III: morphologic and chemical oxide analyses.

    Science.gov (United States)

    Krupka, Kenneth M; Parkhurst, Mary Ann; Gold, Kenneth; Arey, Bruce W; Jenson, Evan D; Guilmette, Raymond A

    2009-03-01

    The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using x-ray diffraction (XRD), and particle morphologies were examined using scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS). The oxidation state of a DU aerosol is important as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles were spherical, occasionally with dendritic or lobed surface structures. Others appear to have fractures that perhaps resulted from abrasion and comminution, or shear bands that developed from plastic deformation of the DU material. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small bits of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of Health Physics to interpret the

  13. Physicochemical Characterization of Capstone Depleted Uranium Aerosols III: Morphologic and Chemical Oxide Analyses

    International Nuclear Information System (INIS)

    Krupka, Kenneth M.; Parkhurst, MaryAnn; Gold, Kenneth; Arey, Bruce W.; Jenson, Evan D.; Guilmette, Raymond A.

    2009-01-01

    The impact of depleted uranium (DU) penetrators against an armored target causes erosion and fragmentation of the penetrators, the extent of which is dependent on the thickness and material composition of the target. Vigorous oxidation of the DU particles and fragments creates an aerosol of DU oxide particles and DU particle agglomerations combined with target materials. Aerosols from the Capstone DU aerosol study, in which vehicles were perforated by DU penetrators, were evaluated for their oxidation states using X-ray diffraction (XRD) and particle morphologies using scanning electron microscopy/energy dispersive spectrometry (SEM/EDS). The oxidation state of a DU aerosol is important as it offers a clue to its solubility in lung fluids. The XRD analysis showed that the aerosols evaluated were a combination primarily of U3O8 (insoluble) and UO3 (relatively more soluble) phases, though intermediate phases resembling U4O9 and other oxides were prominent in some samples. Analysis of particle residues in the micrometer-size range by SEM/EDS provided microstructural information such as phase composition and distribution, fracture morphology, size distribution, and material homogeneity. Observations from SEM analysis show a wide variability in the shapes of the DU particles. Some of the larger particles appear to have been fractured (perhaps as a result of abrasion and comminution); others were spherical, occasionally with dendritic or lobed surface structures. Amorphous conglomerates containing metals other than uranium were also common, especially with the smallest particle sizes. A few samples seemed to contain small chunks of nearly pure uranium metal, which were verified by EDS to have a higher uranium content exceeding that expected for uranium oxides. Results of the XRD and SEM/EDS analyses were used in other studies described in this issue of The Journal of Health Physics to interpret the results of lung solubility studies and in selecting input parameters for

  14. Chemical composition of distillers grains, a review.

    Science.gov (United States)

    Liu, KeShun

    2011-03-09

    In recent years, increasing demand for ethanol as a fuel additive and decreasing dependency on fossil fuels have resulted in a dramatic increase in the amount of grains used for ethanol production. Dry-grind is the major process, resulting in distillers dried grains with solubles (DDGS) as a major coproduct. Like fuel ethanol, DDGS has quickly become a global commodity. However, high compositional variation has been the main problem hindering its use as a feed ingredient. This review provides updated information on the chemical composition of distillers grains in terms of nutrient levels, changes during dry-grind processing, and causes for large variation. The occurrence in grain feedstock and the fate of mycotoxins during processing are also covered. During processing, starch is converted to glucose and then to ethanol and carbon dioxide. Most other components are relatively unchanged but concentrated in DDGS about 3-fold over the original feedstock. Mycotoxins, if present in the original feedstock, are also concentrated. Higher fold of increases in S, Na, and Ca are mostly due to exogenous addition during processing, whereas unusual changes in inorganic phosphorus (P) and phytate P indicate phytate hydrolysis by yeast phytase. Fermentation causes major changes, but other processing steps are also responsible. The causes for varying DDGS composition are multiple, including differences in feedstock species and composition, process methods and parameters, the amount of condensed solubles added to distiller wet grains, the effect of fermentation yeast, and analytical methodology. Most of them can be attributed to the complexity of the dry-grind process itself. It is hoped that information provided in this review will improve the understanding of the dry-grind process and aid in the development of strategies to control the compositional variation in DDGS.

  15. Tracing of aerosol sources in an urban environment using chemical, Sr isotope, and mineralogical characterization.

    Science.gov (United States)

    Duarte, Regina M B O; Matos, João T V; Paula, Andreia S; Lopes, Sónia P; Ribeiro, Sara; Santos, José Francisco; Patinha, Carla; da Silva, Eduardo Ferreira; Soares, Rosário; Duarte, Armando C

    2017-04-01

    In the framework of two national research projects (ORGANOSOL and CN-linkAIR), fine particulate matter (PM 2.5 ) was sampled for 17 months at an urban location in the Western European Coast. The PM 2.5 samples were analyzed for organic carbon (OC), water-soluble organic carbon (WSOC), elemental carbon (EC), major water-soluble inorganic ions, mineralogical, and for the first time in this region, strontium isotope ( 87 Sr/ 86 Sr) composition. Organic matter dominates the identifiable urban PM 2.5 mass, followed by secondary inorganic aerosols. The acquired data resulted also in a seasonal overview of the carbonaceous and inorganic aerosol composition, with an important contribution from primary biomass burning and secondary formation processes in colder and warmer periods, respectively. The fossil-related primary EC seems to be continually present throughout the sampling period. The 87 Sr/ 86 Sr ratios were measured on both the labile and residual PM 2.5 fractions as well as on the bulk PM 2.5 samples. Regardless of the air mass origin, the residual fractions are more radiogenic (representative of a natural crustal dust source) than the labile fractions, whose 87 Sr/ 86 Sr ratios are comparable to that of seawater. The 87 Sr/ 86 Sr ratios and the mineralogical composition data further suggest that sea salt and mineral dust are important primary natural sources of fine aerosols throughout the sampling period.

  16. Cometary Coma Chemical Composition (C4) Mission

    Science.gov (United States)

    Carle, Glenn C.; Clark, Benton C.; Knocke, Philip C.; OHara, Bonnie J.; Adams, Larry; Niemann, Hasso B.; Alexander, Merle; Veverka, Joseph; Goldstein, Raymond; Huebner, Walter; hide

    1994-01-01

    Cometary exploration remains of great importance to virtually all of space science. Because comets are presumed to be remnants of the early solar nebula, they are expected to provide fundamental knowledge as to the origin and development of the solar system as well as to be key to understanding of the source of volatiles and even life itself in the inner solar system. Clearly the time for a detailed study of the composition of these apparent messages from the past has come. A comet rendezvous mission, the Cometary Coma Chemical Composition (C4) Mission, is now being studied as a candidate for the new Discovery program. This mission is a highly-focussed and usefully-limited subset of the Cometary Rendezvous Asteroid Flyby (CRAF) Mission. The C4 mission will concentrate on measurements that will produce an understanding of the composition and physical makeup of a cometary nucleus. The core science goals of the C4 mission are 1) to determine the chemical, elemental, and isotopic composition of a cometary nucleus and 2) to characterize the chemical and isotopic nature of its atmosphere. A related goal is to obtain temporal information about the development of the cometary coma as a function of time and orbital position. The four short-period comets -- Tempel 1, Tempel 2, Churyumov-Gerasimenko, and Wirtanen -which all appear to have acceptable dust production rates, were identified as candidate targets. Mission opportunities have been identified beginning as early as 1998. Tempel I with a launch in 1999, however, remains the baseline comet for studies of and planning the C4 mission. The C4 mission incorporates two science instruments and two engineering instruments in the payload to obtain the desired measurements. The science instruments include an advanced version of the Cometary Ice and Dust Experiment (CIDEX), a mini-CIDEX with a sample collection system, an X-ray Fluorescence Spectrometer and a Pyrolysis-Gas Chromatograph, and a simplified version of the Neutral

  17. Chemical interactions between aerosols and vapors in the primary circuit of an LWR during a severe accident

    International Nuclear Information System (INIS)

    Wheatley, C.J.

    1988-01-01

    Aerosol formation, agglomeration, convection and deposition within the primary circuit of an LWR during a severe accident significantly affect the transport of fission products, even though they may compose only a small fraction of the aerosol material. Intra-particle and vapor chemical interactions are important to this through mass transfer between the aerosol and vapor. The authors will describe a model that attempts to account for these processes and of the two-way coupling that exists with the thermal hydraulics. They will discuss what agglomeration and deposition mechanisms must be included, alternatives for treating intra-particle chemical interactions, mechanisms of aerosol formation, and methods for solving the resulting equations. Results will be presented that illustrate the importance of treating the two-way coupling and the extent to which disequilibrium between the aerosol and vapor affects fission product behavior

  18. The Chemical Composition of Grape Fibre

    Directory of Open Access Journals (Sweden)

    Jolana Karovičová

    2015-05-01

    Full Text Available Dietary fibres from cereals are much more used than dietary fibres from fruits; however, dietary fibres from fruits have better quality. In recent years, for economic and environmental reasons, there has been a growing pressure to recover and exploit food wastes. Grape fibre is used to fortify baked goods, because the fibre can lower blood sugar, cut cholesterol and may even prevent colon cancer. Grape pomace is a functional ingredient in bakery goods to increase total phenolic content and dietary fibre in nourishment. The aim of this study was to determine the chemical composition of commercial fibres, obtained from different Grape sources concerning their chemical properties such as moisture, ash, fat, protein, total dietary fibre. The chemical composition of Grape fibre is known to vary depending on the Grape cultivar, growth climates, and processing conditions. The obliged characteristics of the fibre product are: total dietary fibre content above 50%, moisture lower than 9%, low content of lipids, a low energy value and neutral flavour and taste. Grape pomace represents a rich source of various high-value products such as ethanol, tartrates and malates, citric acid, Grape seed oil, hydrocolloids and dietary fibre. Used commercial Grape fibres have as a main characteristic, the high content of total dietary fibre. Amount of total dietary fibre depends on the variety of Grapes. Total dietary fibre content (TDF in our samples of Grape fibre varied from 56.8% to 83.6%. There were also determined low contents of moisture (below 9%. In the samples of Grape fibre were determined higher amount of protein (8.6 - 10.8%, mineral (1.3 - 3.8% and fat (2.8 - 8.6%. This fact opens the possibility of using both initial by-products as ingredients in the food industry, due to the effects associated with the high total dietary fibre content.

  19. Composition and sources of winter and summertime aerosols at Ny Alesund, Spitsbergen

    International Nuclear Information System (INIS)

    Maenhaut, W.; Cornille, P.; Pacyna, J.M.

    1991-01-01

    Filter samples of < 2.5 μm aerosol were collected in (late) winter of 1983, 1984, 1986, and 1987 and in the summer of 1984, 1986, and 1987 at Ny Alesund, Spitsbergen, and analyzed for over 40 elements by a combination of INAA and PIXE. The data sets of the various sampling campaigns and the combined winter and combined summer data were examined by receptor modeling, including absolute principal component analysis (APCA), chemical mass balance (CMB) and multiple linear regression (MLR) techniques. APCA yielded four components, both for the winter and for the summer aerosol. For the winter aerosol, the components were identified as a general pollution component, crustal dust, sea-salt, and a halogen (Br,I) component. The CMB and MLR calculations were used to obtain source (source region) apportionments for the anthropogenic trace elements and for sulfate. For the summer, about 50% of the sulfate was attributed to a marine biogenic source

  20. Characteristics and composition of atmospheric aerosols in Phimai, central Thailand during BASE-ASIA

    Science.gov (United States)

    Li, Can; Tsay, Si-Chee; Hsu, N. Christina; Kim, Jin Young; Howell, Steven G.; Huebert, Barry J.; Ji, Qiang; Jeong, Myeong-Jae; Wang, Sheng-Hsiang; Hansell, Richard A.; Bell, Shaun W.

    2013-10-01

    Comprehensive measurements of atmospheric aerosols were made in Phimai, central Thailand (15.183°N, 102.565°E, elevation: 206 m) during the BASE-ASIA field experiment from late February to early May in 2006. The observed aerosol loading was sizable for this rural site (mean aerosol scattering: 108 ± 64 Mm-1; absorption: 15 ± 8 Mm-1; PM10 concentration: 33 ± 17 μg m-3), and dominated by submicron particles. Major aerosol compounds included carbonaceous (OC: 9.5 ± 3.6 μg m-3; EC: 2.0 ± 2.3 μg m-3) and secondary species (SO42-: 6.4 ± 3.7 μg m-3, NH4+: 2.2 ± 1.3 μg m-3). While the site was seldom under the direct influence of large forest fires to its north, agricultural fires were ubiquitous during the experiment, as suggested by the substantial concentration of K+ (0.56 ± 0.33 μg m-3). Besides biomass burning, aerosols in Phimai during the experiment were also strongly influenced by industrial and vehicular emissions from the Bangkok metropolitan region and long-range transport from southern China. High humidity played an important role in determining the aerosol composition and properties in the region. Sulfate was primarily formed via aqueous phase reactions, and hygroscopic growth could enhance the aerosol light scattering by up to 60%, at the typical morning RH level of 85%. The aerosol single scattering albedo demonstrated distinct diurnal variation, ranging from 0.86 ± 0.04 in the evening to 0.92 ± 0.02 in the morning. This experiment marks the first time such comprehensive characterization of aerosols was made for rural central Thailand. Our results indicate that aerosol pollution has developed into a regional problem for northern Indochina, and may become more severe as the region's population and economy continue to grow.

  1. Molecular composition of rainwater and aerosol during rain events in León, Spain, using high resolution mass spectrometry.

    Science.gov (United States)

    Fee, Anna

    2017-04-01

    Anna Fee (1), Markus Kalberer (1), Roberto Fraile (2), Amaya Castro (2), Ana. I. Calvo (2), Carlos Blanco-Alegre (2), Fernanda Oduber (2) and Mário Cerqueira (3). 1 Department of Chemistry, University of Cambridge, UK. 2 Department of Applied Chemistry and Physics, IMARENAB, University of León, Spain. 3 Department of Environmental Planning, University of Aveiro, Portugal. A wide range of atmospheric compounds which are present in rainwater are often also present in aerosol. They can be taken up during cloud droplet formation (in-cloud scavenging) or washed out during precipitation (below-cloud scavenging). Such compounds including aromatic hydrocarbons and organic nitrogen containing compounds are hazardous to health. In this study, the organic chemical composition of rainwater and aerosol from rain events in León, Spain, is being analysed using high resolution mass spectrometry. Collected rainwater along with high volume and low volume filters from rain events which occurred during spring, summer and winter of 2016 have been selected for analysis. Rainwater samples were prepared using Polymeric Reversed Phase Solid Phase Extraction (SPE) and filters have been extracted in water with and without SPE. Three different SPE polymer based sorbents were tested; one for extracting neutral compounds and two which are more suitable for extracting organic compounds containing sulphate and other polar functional groups. The sorbent for extracting neutral compounds was found to yield a higher number of compounds from the sample extraction than the other two varieties. Kendrick masses, Van Krevelen plots and carbon oxidation states have been investigated to identify compounds and patterns. Preliminary results show a predominance in peaks with O/C ratios between 0.2 and 0.7 and H/C ratios between 1 and 2 in both rain and aerosol samples which indicates substituted aromatic compounds. Cellulose material and fatty acids may also be present. The rain samples also have a

  2. Elemental and iron isotopic composition of aerosols collected in a parking structure

    International Nuclear Information System (INIS)

    Majestic, Brian J.; Anbar, Ariel D.; Herckes, Pierre

    2009-01-01

    The trace metal contents and iron isotope composition of size-resolved aerosols were determined in a parking structure in Tempe, AZ, USA. Particulate matter (PM) 2.5 μm were collected. Several air toxics (e.g., arsenic, cadmium, and antimony) were enriched above the crustal average, implicating automobiles as an important source. Extremely high levels of fine copper (up to 1000 ng m -3 ) were also observed in the parking garage, likely from brake wear. The iron isotope composition of the aerosols were found to be + 0.15 ± 0.03 per mille and + 0.18 ± 0.03 per mille for the PM 2.5 μm fractions, respectively. The similarity of isotope composition indicates a common source for each size fraction. To better understand the source of iron in the parking garage, the elemental composition in four brake pads (two semi-metallic and two ceramic), two tire tread samples, and two waste oil samples were determined. Striking differences in the metallic and ceramic brake pads were observed. The ceramic brake pads contained 10-20% copper by mass, while the metallic brake pads contained about 70% iron, with very little copper. Both waste oil samples contained significant amounts of calcium, phosphorous, and zinc, consistent with the composition of some engine oil additives. Differences in iron isotope composition were observed between the source materials; most notably between the tire tread (average = + 0.02 per mille ) and the ceramic brake linings (average = + 0.65 per mille ). Differences in isotopic composition were also observed between the metallic (average = + 0.18 per mille ) and ceramic brake pads, implying that iron isotope composition may be used to resolve these sources. The iron isotope composition of the metallic brake pads was found to be identical to the aerosols, implying that brake dust is the dominant source of iron in a parking garage.

  3. Investigating the Chemical Pathways to PAH- and PANH-Based Aerosols in Titan's Atmospheric chemistry

    Science.gov (United States)

    Sciamma-O'Brien, Ella Marion; Contreras, Cesar; Ricketts, Claire Louise; Salama, Farid

    2011-01-01

    A complex organic chemistry between Titan's two main constituents, N2 and CH4, leads to the production of more complex molecules and subsequently to solid organic aerosols. These aerosols are at the origin of the haze layers giving Titan its characteristic orange color. In situ measurements by the Ion Neutral Mass Spectrometer (INMS) and Cassini Plasma Spectrometer (CAPS) instruments onboard Cassini have revealed the presence of large amounts of neutral, positively and negatively charged heavy molecules in the ionosphere of Titan. In particular, benzene (C6H6) and toluene (C6H5CH3), which are critical precursors of polycyclic aromatic hydrocarbon (PAH) compounds, have been detected, suggesting that PAHs might play a role in the production of Titan s aerosols. Moreover, results from numerical models as well as laboratory simulations of Titan s atmospheric chemistry are also suggesting chemical pathways that link the simple precursor molecules resulting from the first steps of the N2-CH4 chemistry (C2H2, C2H4, HCN ...) to benzene, and to PAHs and nitrogen-containing PAHs (or PANHs) as precursors to the production of solid aerosols.

  4. The influence of the physico-chemical form of the aerosol on the radiological consequences of notional accidental releases of radioactivity from a fast breeder reactor

    International Nuclear Information System (INIS)

    Kelly, G.N.; Jones, J.A.; Simmonds, J.R.

    1979-01-01

    The radiological consequences of a wide range of notional accidental releases from a 1300 MW(e) LMFBR (Liquid Metal-cooled Fast Breeder Reactor) were assessed in a study published by the National Radiological Protection Board (NRPB) in 1977. In that study representative values were in general adopted for each of the important parameters while recognising that in reality they could vary considerably. The present study is concerned with the sensitivity of the predicted consequences to the physico-chemical form of the released aerosol. Of particular interest is the importance of a mixed sodium-transuranium element aerosol which may be formed in accidental releases of activity from sodium cooled FBRs. Two significant findings emerge from the study. First the predicted consequences in general are relatively insensitive to the range of physico-chemical forms analysed. For generic assessments therefore it is sufficient to assume the properties of the aerosol adopted in the initial study (1 μm AMAD and each element in the oxide form); the exception concerns the estimation of the incidence of early morbidity, and to a lesser extent early mortality, but only for a limited range of release composition. The second finding is that the radiological consequences are not, contrary to what might have been expected, significantly increased for the release of a mixed sodium-element aerosol

  5. Arctic Aerosols and Sources

    DEFF Research Database (Denmark)

    Nielsen, Ingeborg Elbæk

    2017-01-01

    Since the Industrial Revolution, the anthropogenic emission of greenhouse gases has been increasing, leading to a rise in the global temperature. Particularly in the Arctic, climate change is having serious impact where the average temperature has increased almost twice as much as the global during......, ammonium, black carbon, and trace metals. This PhD dissertation studies Arctic aerosols and their sources, with special focus on black carbon, attempting to increase the knowledge about aerosols’ effect on the climate in an Arctic content. The first part of the dissertation examines the diversity...... of aerosol emissions from an important anthropogenic aerosol source: residential wood combustion. The second part, characterizes the chemical and physical composition of aerosols while investigating sources of aerosols in the Arctic. The main instrument used in this research has been the state...

  6. Tropospheric Aerosols

    Science.gov (United States)

    Buseck, P. R.; Schwartz, S. E.

    2003-12-01

    uncertainties by "the I-beams". Only an uncertainty range rather than a best estimate is presented for direct aerosol forcing by mineral dust and for indirect aerosol forcing. An assessment of the present level of scientific understanding is indicated at the bottom of the figure (reproduced by permission of Intergovernmental Panel on Climate Change). The importance of atmospheric aerosols to issues of societal concern has motivated much research intended to describe their loading, distribution, and properties and to develop understanding of the controlling processes to address such issues as air pollution, acid deposition, and climate influences of aerosols. However, description based wholly on measurements will inevitably be limited in its spatial and temporal coverage and in the limited characterization of aerosol properties. These limitations are even more serious for predictions of future emissions and provide motivation for concurrent theoretical studies and development of model-based description of atmospheric aerosols.An important long-range goal, which has already been partly realized, is to develop quantitative understanding of the processes that control aerosol loading, composition, and microphysical properties as well as the resultant optical and cloud-nucleating properties. An objective is to incorporate these results into chemical transport models that can be used for predictions. Such models are required, for example, to design approaches to achieve air quality standards and to assess and predict aerosol influences on climate change. Much current research is directed toward enhancing this understanding and to evaluating it by comparison of model results and observations. However, compared to gases, models involving particles are far more complex because of the need to specify additional parameters such as particle sizes and size distributions, compositions as a function of size, particle shapes, and temporal and spatial variations, including reactions that occur

  7. Modelling the formation and composition of secondary organic aerosol from α- and β-pinene ozonolysis using MCM v3

    Directory of Open Access Journals (Sweden)

    M. E. Jenkin

    2004-01-01

    Full Text Available The formation and detailed composition of secondary organic aerosol (SOA from the gas phase ozonolysis of α- and β-pinene has been simulated using the Master Chemical Mechanism version 3 (MCM v3, coupled with a representation of gas-to-aerosol transfer of semivolatile and involatile oxygenated products. A kinetics representation, based on equilibrium absorptive partitioning of ca. 200 semivolatile products, was found to provide an acceptable description of the final mass concentrations observed in a number of reported laboratory and chamber experiments, provided partitioning coefficients were increased by about two orders of magnitude over those defined on the basis of estimated vapour pressures. This adjustment is believed to be due, at least partially, to the effect of condensed phase association reactions of the partitioning products. Even with this adjustment, the simulated initial formation of SOA was delayed relative to that observed, implying the requirement for the formation of species of much lower volatility to initiate SOA formation. The inclusion of a simplified representation of the formation and gas-to-aerosol transfer of involatile dimers of 22 bi- and multifunctional carboxylic acids (in addition to the absorptive partitioning mechanism allowed a much improved description of SOA formation for a wide range of conditions. The simulated SOA composition recreates certain features of the product distributions observed in a number of experimental studies, but implies an important role for multifunctional products containing hydroperoxy groups (i.e. hydroperoxides. This is particularly the case for experiments in which 2-butanol is used to scavenge OH radicals, because [HO2]/[RO2] ratios are elevated in such systems. The optimized mechanism is used to calculate SOA yields from α- and β-pinene ozonolysis in the presence and absence of OH scavengers, and as a function of temperature.

  8. MINEQL, Chemical Equilibrium Composition of Aqueous Systems

    International Nuclear Information System (INIS)

    Westall, John C.; Zachary, Joseph L.; Morel, Francois M.M.; Parsons, Ralph M.; Schweingruber, M.

    1994-01-01

    1 - Description of program or function: MINEQL is a subroutine package to calculate equilibrium composition of an aqueous system, accounting for mass transfer. MINEQL-EIR contains an additional base on enthalpy and heat capacity data and has the option to do calculations at temperatures different from 25 degrees C. 2 - Method of solution: In MINEQL, the Gibbs free-energy function is minimized and mass balance chemical reaction equations are solved simultaneously. In MINEQL-EIR, the iteration scheme to solve the system of equations has been improved to make the probability of divergence very small. 3 - Restrictions on the complexity of the problem: MINEQL does not take into account mass transfer of water molecules

  9. Chemical characteristics of ambient aerosols contributed by cooking process at Noorpur village near New Delhi

    Science.gov (United States)

    Singh, Sudha

    Generally, industrial and transport sectors are considered as major contributors of air pollution but recently, biomass burning is also reported as a major source of atmospheric aerosols (1, 2) especially in the developing world where solid fuels such as dung cake, wood and crop residues are used in traditional cooking which are responsible for poor air quality, respiratory problems and radiative forcing etc .In India, most of the research has been focused on emission estimates from biomass burning and cooking. No effort has been made to understand the chemistry and sources of fine aerosols in rural areas during cooking hours. This study fills this knowledge gap and strengthens our understanding about abundance of various chemical constituents of atmospheric aerosols emitted during cooking hours.Aerosol samples were collected from village called Noorpur (28.470 N, 77.030 E) which lies near Delhi city. Sampling was carried out during August 2011-May 2012 by using handy sampler (Envirotech model APM 821) installed at the terrace of a building (~6m). The aerosol samples were collected on 8 hourly basis at a flow rate of 1 LPM. Water extracts of these filters were analyzed for major anions (F-, Cl-, NO3-, SO42-) and major cations (Na+, NH4+, K+, Ca2+ Mg2+) by ion chromatography (Metrohm 883 Basic IC Plus). During cooking period, the concentration of the major ions followed the order of Ca2+> SO42-> NO3-> Cl-> K+> NH4+> Mg2+> Na2+> F-. Among anion SO42 (5 µg/m3) showed highest value and in case of cations Ca2+ (7.32µg/m3) has highest value.

  10. Application of FIGAERO (Filter Inlet for Gases and AEROsol) coupled to a high resolution time of flight chemical ionization mass spectrometer to field and chamber organic aerosol: Implications for carboxylic acid formation and gas-particle partitioning from monoterpene oxidation

    Science.gov (United States)

    Lopez-Hilfiker, F.; Mohr, C.; Ehn, M.; Rubach, F.; Mentel, T. F.; Kleist, E.; Wildt, J.; Thornton, J. A.

    2013-12-01

    We present measurements of a large suite of gas and particle phase carboxylic acid containing compounds made with a Filter Inlet for Gas and AEROsol (FIGAERO) coupled to a high resolution time of flight chemical ionization mass spectrometer (HR-ToF-CIMS) developed at the University of Washington. A prototype operated with acetate negative ion proton transfer chemistry was deployed on the Julich Plant Atmosphere Chamber to study a-pinene oxidation, and a modified version was deployed at the SMEAR II forest station in Hyytiälä, Finland and SOAS, in Brent Alabama. We focus here on results from JPAC and Hyytiälä, where we utilized the same ionization method most selective towards carboxylic acids. In all locations, 100's of organic acid compounds were observed in the gas and particles and many of the same composition acids detected in the gas-phase were detected in the particles upon temperature programmed thermal desorption. Particulate organics detected by FIGAERO are highly correlated with organic aerosol mass measured by an AMS, providing additional volatility and molecular level information about collected aerosol. The fraction of a given compound measured in the particle phase follows expected trends with elemental composition, but many compounds would not be well described by an absorptive partitioning model assuming unity activity coefficients. Moreover the detailed structure in the thermal desorption signals reveals a contribution from thermal decomposition of large molecular weight organics and or oligomers with implications for partitioning measurements and model validation

  11. Wintertime water-soluble aerosol composition and particle water content in Fresno, California

    Science.gov (United States)

    Parworth, Caroline L.; Young, Dominique E.; Kim, Hwajin; Zhang, Xiaolu; Cappa, Christopher D.; Collier, Sonya; Zhang, Qi

    2017-03-01

    The composition and concentrations of water-soluble gases and ionic aerosol components were measured from January to February 2013 in Fresno, CA, with a particle-into-liquid sampler with ion chromatography and annular denuders. The average (±1σ) ionic aerosol mass concentration was 15.0 (±9.4) µg m-3, and dominated by nitrate (61%), followed by ammonium, sulfate, chloride, potassium, nitrite, and sodium. Aerosol-phase organic acids, including formate and glycolate, and amines including methylaminium, triethanolaminium, ethanolaminium, dimethylaminium, and ethylaminium were also detected. Although the dominant species all came from secondary aerosol formation, there were primary sources of ionic aerosols as well, including biomass burning for potassium and glycolate, sea spray for sodium, chloride, and dimethylamine, and vehicles for formate. Particulate methanesulfonic acid was also detected and mainly associated with terrestrial sources. On average, the molar concentration of ammonia was 49 times greater than nitric acid, indicating that ammonium nitrate formation was limited by nitric acid availability. Particle water was calculated based on the Extended Aerosol Inorganics Model (E-AIM) thermodynamic prediction of inorganic particle water and κ-Köhler theory approximation of organic particle water. The average (±1σ) particle water concentration was 19.2 (±18.6) µg m-3, of which 90% was attributed to inorganic species. The fractional contribution of particle water to total fine particle mass averaged at 36% during this study and was greatest during early morning and night and least during the day. Based on aqueous-phase concentrations of ions calculated by using E-AIM, the average (±1σ) pH of particles in Fresno during the winter was estimated to be 4.2 (±0.2).

  12. Constraining the atmospheric composition of the day-night terminators of HD 189733b: Atmospheric retrieval with aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae-Min [Institute for Computational Science, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland); Irwin, Patrick G. J.; Fletcher, Leigh N.; Barstow, Joanna K. [Department of Atmospheric, Oceanic, and Planetary Physics, University of Oxford, OX1 3PU Oxford (United Kingdom); Heng, Kevin, E-mail: lee@physik.uzh.ch [Center for Space and Habitability, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)

    2014-07-01

    A number of observations have shown that Rayleigh scattering by aerosols dominates the transmission spectrum of HD 189733b at wavelengths shortward of 1 μm. In this study, we retrieve a range of aerosol distributions consistent with transmission spectroscopy between 0.3-24 μm that were recently re-analyzed by Pont et al. To constrain the particle size and the optical depth of the aerosol layer, we investigate the degeneracies between aerosol composition, temperature, planetary radius, and molecular abundances that prevent unique solutions for transit spectroscopy. Assuming that the aerosol is composed of MgSiO{sub 3}, we suggest that a vertically uniform aerosol layer over all pressures with a monodisperse particle size smaller than about 0.1 μm and an optical depth in the range 0.002-0.02 at 1 μm provides statistically meaningful solutions for the day/night terminator regions of HD 189733b. Generally, we find that a uniform aerosol layer provide adequate fits to the data if the optical depth is less than 0.1 and the particle size is smaller than 0.1 μm, irrespective of the atmospheric temperature, planetary radius, aerosol composition, and gaseous molecules. Strong constraints on the aerosol properties are provided by spectra at wavelengths shortward of 1 μm as well as longward of 8 μm, if the aerosol material has absorption features in this region. We show that these are the optimal wavelengths for quantifying the effects of aerosols, which may guide the design of future space observations. The present investigation indicates that the current data offer sufficient information to constrain some of the aerosol properties of HD189733b, but the chemistry in the terminator regions remains uncertain.

  13. Eddy covariance measurements with high-resolution time-of-flight aerosol mass spectrometry: a new approach to chemically resolved aerosol fluxes

    Directory of Open Access Journals (Sweden)

    D. K. Farmer

    2011-06-01

    Full Text Available Although laboratory studies show that biogenic volatile organic compounds (VOCs yield substantial secondary organic aerosol (SOA, production of biogenic SOA as indicated by upward fluxes has not been conclusively observed over forests. Further, while aerosols are known to deposit to surfaces, few techniques exist to provide chemically-resolved particle deposition fluxes. To better constrain aerosol sources and sinks, we have developed a new technique to directly measure fluxes of chemically-resolved submicron aerosols using the high-resolution time-of-flight aerosol mass spectrometer (HR-AMS in a new, fast eddy covariance mode. This approach takes advantage of the instrument's ability to quantitatively identify both organic and inorganic components, including ammonium, sulphate and nitrate, at a temporal resolution of several Hz. The new approach has been successfully deployed over a temperate ponderosa pine plantation in California during the BEARPEX-2007 campaign, providing both total and chemically resolved non-refractory (NR PM1 fluxes. Average deposition velocities for total NR-PM1 aerosol at noon were 2.05 ± 0.04 mm s−1. Using a high resolution measurement of the NH2+ and NH3+ fragments, we demonstrate the first eddy covariance flux measurements of particulate ammonium, which show a noon-time deposition velocity of 1.9 ± 0.7 mm s−1 and are dominated by deposition of ammonium sulphate.

  14. Titan's organic aerosols: Molecular composition and structure of laboratory analogues inferred from pyrolysis gas chromatography mass spectrometry analysis

    Science.gov (United States)

    Morisson, Marietta; Szopa, Cyril; Carrasco, Nathalie; Buch, Arnaud; Gautier, Thomas

    2016-10-01

    Analogues of Titan's aerosols are of primary interest in the understanding of Titan's atmospheric chemistry and climate, and in the development of in situ instrumentation for future space missions. Numerous studies have been carried out to characterize laboratory analogues of Titan aerosols (tholins), but their molecular composition and structure are still poorly known. If pyrolysis gas chromatography mass spectrometry (pyr-GCMS) has been used for years to give clues about their chemical composition, highly disparate results were obtained with this technique. They can be attributed to the variety of analytical conditions used for pyr-GCMS analyses, and/or to differences in the nature of the analogues analyzed, that were produced with different laboratory set-ups under various operating conditions. In order to have a better description of Titan's tholin's molecular composition by pyr-GCMS, we carried out a systematic study with two major objectives: (i) exploring the pyr-GCMS analytical parameters to find the optimal ones for the detection of a wide range of chemical products allowing a characterization of the tholins composition as comprehensive as possible, and (ii) highlighting the role of the CH4 ratio in the gaseous reactive medium on the tholin's molecular structure. We used a radio-frequency plasma discharge to synthetize tholins with different concentrations of CH4 diluted in N2. The samples were pyrolyzed at temperatures covering the 200-700°C range. The extracted gases were then analyzed by GCMS for their molecular identification. The optimal pyrolysis temperature for characterizing the molecular composition of our tholins by GCMS analysis is found to be 600°C. This temperature choice results from the best compromise between the number of compounds released, the quality of the signal and the appearance of pyrolysis artifacts. About a hundred molecules are identified as pyrolysates. A common major chromatographic pattern appears clearly for all the

  15. Chemical composition of water extracts from shungite and shungite water

    International Nuclear Information System (INIS)

    Charykova, M.V.; Bornyakova, I.I.; Polekhovskij, Yu.S.; Charykov, N.A.; Kustova, E.V.; Arapov, O.V.

    2006-01-01

    Chemical analysis of water extracts from shungite-3 of Zagozhino deposit (Karelia) and natural water contacting with shungite rocks are done. Chemical composition and bactericide properties of shungite water are studied [ru

  16. Comparative Analysis on Chemical Composition of Bentonite Clays ...

    African Journals Online (AJOL)

    2017-09-12

    Sep 12, 2017 ... Comparative Analysis on Chemical Composition of Bentonite Clays. Obtained from Ashaka and ... versatile material for geotechnical engineering and as well as their demand for ..... A PhD thesis submitted to the Chemical ...

  17. Aerosol direct radiative effects over the northwest Atlantic, northwest Pacific, and North Indian Oceans: estimates based on in-situ chemical and optical measurements and chemical transport modeling

    Directory of Open Access Journals (Sweden)

    T. S. Bates

    2006-01-01

    Full Text Available The largest uncertainty in the radiative forcing of climate change over the industrial era is that due to aerosols, a substantial fraction of which is the uncertainty associated with scattering and absorption of shortwave (solar radiation by anthropogenic aerosols in cloud-free conditions (IPCC, 2001. Quantifying and reducing the uncertainty in aerosol influences on climate is critical to understanding climate change over the industrial period and to improving predictions of future climate change for assumed emission scenarios. Measurements of aerosol properties during major field campaigns in several regions of the globe during the past decade are contributing to an enhanced understanding of atmospheric aerosols and their effects on light scattering and climate. The present study, which focuses on three regions downwind of major urban/population centers (North Indian Ocean (NIO during INDOEX, the Northwest Pacific Ocean (NWP during ACE-Asia, and the Northwest Atlantic Ocean (NWA during ICARTT, incorporates understanding gained from field observations of aerosol distributions and properties into calculations of perturbations in radiative fluxes due to these aerosols. This study evaluates the current state of observations and of two chemical transport models (STEM and MOZART. Measurements of burdens, extinction optical depth (AOD, and direct radiative effect of aerosols (DRE – change in radiative flux due to total aerosols are used as measurement-model check points to assess uncertainties. In-situ measured and remotely sensed aerosol properties for each region (mixing state, mass scattering efficiency, single scattering albedo, and angular scattering properties and their dependences on relative humidity are used as input parameters to two radiative transfer models (GFDL and University of Michigan to constrain estimates of aerosol radiative effects, with uncertainties in each step propagated through the analysis. Constraining the radiative

  18. The composition of ambient and fresh biomass burning aerosols at a savannah site, South Africa

    Directory of Open Access Journals (Sweden)

    Minna Aurela

    2016-05-01

    Full Text Available Atmospheric aerosols play a key role in climate change, and have adverse effects on human health. Given South Africa�s status as a rapidly-developing country with increasing urbanisation and industrial growth, information on the quality of ambient air is important. In this study, the chemical composition of ambient particles and the particles in fresh biomass burning plumes were studied at a savannah environment in Botsalano, South Africa. The results showed that Botsalano was regularly affected by air masses that had passed over several large point sources. Air masses that had passed over the coal-fired Matimba power station in the Waterberg, or over the platinum group metal smelters in the western Bushveld Igneous Complex, contained high sulfate concentrations in the submicron ranges. These concentrations were 14 to 37 times higher compared with air masses that had passed only over rural areas. Because of the limited nature of this type of data in literature for the interior regions of southern Africa, our report serves as a valuable reference for future studies. In addition, our biomass burning study showed that potassium in the fresh smoke of burning savannah grass was likely to take the form of KCl. Clear differences were found in the ratios for potassium and levoglucosan in the smouldering and flaming phases. Our findings highlight the need for more comprehensive chamber experiments on various fuel types used in southern Africa, to confirm the ratio of important biomass burning tracer species that can be used in source apportionment studies in the future.

  19. Atmospheric aerosol compositions and sources at two national background sites in northern and southern China

    Science.gov (United States)

    Zhu, Qiao; He, Ling-Yan; Huang, Xiao-Feng; Cao, Li-Ming; Gong, Zhao-Heng; Wang, Chuan; Zhuang, Xin; Hu, Min

    2016-08-01

    Although China's severe air pollution has become a focus in the field of atmospheric chemistry and the mechanisms of urban air pollution there have been researched extensively, few field sampling campaigns have been conducted at remote background sites in China, where air pollution characteristics on a larger scale are highlighted. In this study, an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), together with an Aethalometer, was deployed at two of China's national background sites in northern (Lake Hongze site; 33.23° N, 118.33° E; altitude 21 m) and southern (Mount Wuzhi site; 18.84° N, 109.49° E; altitude 958 m) China in the spring seasons in 2011 and 2015, respectively, in order to characterize submicron aerosol composition and sources. The campaign-average PM1 concentration was 36.8 ± 19.8 µg m-3 at the northern China background (NCB) site, which was far higher than that at the southern China background (SCB) site (10.9 ± 7.8 µg m-3). Organic aerosol (OA) (27.2 %), nitrate (26.7 %), and sulfate (22.0 %) contributed the most to the PM1 mass at NCB, while OA (43.5 %) and sulfate (30.5 %) were the most abundant components of the PM1 mass at SCB, where nitrate only constituted a small fraction (4.7 %) and might have contained a significant amount of organic nitrates (5-11 %). The aerosol size distributions and organic aerosol elemental compositions all indicated very aged aerosol particles at both sites. The OA at SCB was more oxidized with a higher average oxygen to carbon (O / C) ratio (0.98) than that at NCB (0.67). Positive matrix factorization (PMF) analysis was used to classify OA into three components, including a hydrocarbon-like component (HOA, attributed to fossil fuel combustion) and two oxygenated components (OOA1 and OOA2, attributed to secondary organic aerosols from different source areas) at NCB. PMF analysis at SCB identified a semi-volatile oxygenated component (SV-OOA) and a low-volatility oxygenated

  20. Comparison of three aerosol chemical characterization techniques utilizing PTR-ToF-MS: a study on freshly formed and aged biogenic SOA

    Science.gov (United States)

    Gkatzelis, Georgios I.; Tillmann, Ralf; Hohaus, Thorsten; Müller, Markus; Eichler, Philipp; Xu, Kang-Ming; Schlag, Patrick; Schmitt, Sebastian H.; Wegener, Robert; Kaminski, Martin; Holzinger, Rupert; Wisthaler, Armin; Kiendler-Scharr, Astrid

    2018-03-01

    An intercomparison of different aerosol chemical characterization techniques has been performed as part of a chamber study of biogenic secondary organic aerosol (BSOA) formation and aging at the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber). Three different aerosol sampling techniques - the aerosol collection module (ACM), the chemical analysis of aerosol online (CHARON) and the collection thermal-desorption unit (TD) were connected to proton transfer reaction time-of-flight mass spectrometers (PTR-ToF-MSs) to provide chemical characterization of the SOA. The techniques were compared among each other and to results from an aerosol mass spectrometer (AMS) and a scanning mobility particle sizer (SMPS). The experiments investigated SOA formation from the ozonolysis of β-pinene, limonene, a β-pinene-limonene mix and real plant emissions from Pinus sylvestris L. (Scots pine). The SOA was subsequently aged by photo-oxidation, except for limonene SOA, which was aged by NO3 oxidation. Despite significant differences in the aerosol collection and desorption methods of the PTR-based techniques, the determined chemical composition, i.e. the same major contributing signals, was found by all instruments for the different chemical systems studied. These signals could be attributed to known products expected from the oxidation of the examined monoterpenes. The sampling and desorption method of ACM and TD provided additional information on the volatility of individual compounds and showed relatively good agreement. Averaged over all experiments, the total aerosol mass recovery compared to an SMPS varied within 80 ± 10, 51 ± 5 and 27 ± 3 % for CHARON, ACM and TD, respectively. Comparison to the oxygen-to-carbon ratios (O : C) obtained by AMS showed that all PTR-based techniques observed lower O : C ratios, indicating a loss of molecular oxygen either during aerosol sampling or detection. The differences in total

  1. Comparison of three aerosol chemical characterization techniques utilizing PTR-ToF-MS: a study on freshly formed and aged biogenic SOA

    Directory of Open Access Journals (Sweden)

    G. I. Gkatzelis

    2018-03-01

    Full Text Available An intercomparison of different aerosol chemical characterization techniques has been performed as part of a chamber study of biogenic secondary organic aerosol (BSOA formation and aging at the atmosphere simulation chamber SAPHIR (Simulation of Atmospheric PHotochemistry In a large Reaction chamber. Three different aerosol sampling techniques – the aerosol collection module (ACM, the chemical analysis of aerosol online (CHARON and the collection thermal-desorption unit (TD were connected to proton transfer reaction time-of-flight mass spectrometers (PTR-ToF-MSs to provide chemical characterization of the SOA. The techniques were compared among each other and to results from an aerosol mass spectrometer (AMS and a scanning mobility particle sizer (SMPS. The experiments investigated SOA formation from the ozonolysis of β-pinene, limonene, a β-pinene–limonene mix and real plant emissions from Pinus sylvestris L. (Scots pine. The SOA was subsequently aged by photo-oxidation, except for limonene SOA, which was aged by NO3 oxidation. Despite significant differences in the aerosol collection and desorption methods of the PTR-based techniques, the determined chemical composition, i.e. the same major contributing signals, was found by all instruments for the different chemical systems studied. These signals could be attributed to known products expected from the oxidation of the examined monoterpenes. The sampling and desorption method of ACM and TD provided additional information on the volatility of individual compounds and showed relatively good agreement. Averaged over all experiments, the total aerosol mass recovery compared to an SMPS varied within 80 ± 10, 51 ± 5 and 27 ± 3 % for CHARON, ACM and TD, respectively. Comparison to the oxygen-to-carbon ratios (O : C obtained by AMS showed that all PTR-based techniques observed lower O : C ratios, indicating a loss of molecular oxygen either during aerosol sampling or

  2. Aerosol composition of urban plumes passing over a rural monitoring site

    International Nuclear Information System (INIS)

    Ellestad, T.G.

    1980-01-01

    A field study conducted at a ground site 100 km north of St. Louis, Mo., to measure the aerosol composition and gaseous concentrations of urban plumes passing the site is discussed. Coarse and fine aerosol elemental concentrations, height scattering, meteorological data and concentrations of SO 2 , CO, O 3 , and NO-NO/sub x/ were measured and then analyzed together with data from associate investigators on fluorocarbon-11, total hydrocarbons, and size distributions. The results show that: (1) gaseous and elemental aerosol concentrations at the ground site 100 km from the St. Louis urban area were clearly influenced by the St. Louis urban plume, (2) the urban plumes of Chicago and Indianapolis, 350 km from the ground site, may have been detected, (3) sulfur compounds, presumably sulfates, accounted for 30-40% of the mass loading within the St. Louis urban plume, and resided almost entirely within the size range below 2.5 microns, (4) the most reliable urban-plume tracers in this study were fine Pb, fluorocarbon-11, total nonmethane hydrocarbons, and CO, and (5) over a period of several days, there may have been a regional buildup of fine S, light scattering, aerosol mass, O 3 , and NO/sub x/ and, to a lesser extent, CO and fluorocarbon-11

  3. Integrating biomass, sulphate and sea-salt aerosol responses into a microphysical chemical parcel model: implications for climate studies.

    Science.gov (United States)

    Ghosh, S; Smith, M H; Rap, A

    2007-11-15

    Aerosols are known to influence significantly the radiative budget of the Earth. Although the direct effect (whereby aerosols scatter and absorb solar and thermal infrared radiation) has a large perturbing influence on the radiation budget, the indirect effect (whereby aerosols modify the microphysical and hence the radiative properties and amounts of clouds) poses a greater challenge to climate modellers. This is because aerosols undergo chemical and physical changes while in the atmosphere, notably within clouds, and are removed largely by precipitation. The way in which aerosols are processed by clouds depends on the type, abundance and the mixing state of the aerosols concerned. A parametrization with sulphate and sea-salt aerosol has been successfully integrated within the Hadley Centre general circulation model (GCM). The results of this combined parametrization indicate a significantly reduced role, compared with previous estimates, for sulphate aerosol in cloud droplet nucleation and, consequently, in indirect radiative forcing. However, in this bicomponent system, the cloud droplet number concentration, N(d) (a crucial parameter that is used in GCMs for radiative transfer calculations), is a smoothly varying function of the sulphate aerosol loading. Apart from sea-salt and sulphate aerosol particles, biomass aerosol particles are also present widely in the troposphere. We find that biomass smoke can significantly perturb the activation and growth of both sulphate and sea-salt particles. For a fixed salt loading, N(d) increases linearly with modest increases in sulphate and smoke masses, but significant nonlinearities are observed at higher non-sea-salt mass loadings. This non-intuitive N(d) variation poses a fresh challenge to climate modellers.

  4. Changes in the physico-chemical properties of Amazonian aerosols from background conditions due to urban impacts in Central Amazonia.

    Science.gov (United States)

    Artaxo, P.; Barbosa, H. M.; Brito, J.; Carbone, S.; Fiorese, C.; Andre, B.; Rizzo, L. V.; Ditas, F.; Pöhlker, C.; Pöhlker, M. L.; Saturno, J.; Holanda, B. A.; Wang, J.; Souza, R. A. F. D.; Machado, L.; Andreae, M. O.; Martin, S. T.

    2016-12-01

    The GoAmazon 2014/15 experiment (Observations and Modeling of the Green Ocean Amazon) was a great opportunity to study how urbanization can change aerosol properties under pristine conditions in a tropical rain forest. The experiment took place from January 2014 to December 2015 in the vicinity of Manaus, Brazil, where several sampling stations were operated. Natural biogenic aerosol properties were studied in 3 sampling stations upwind of Manaus (ATTO (T0a), ZF2 (T0z) and EMBRAPA (T0e)). Urban impacted aerosols were analysed in two downwind sampling stations at Tiwa (T2) and Manacapuru (T3). Properties analysed were size distribution, scattering and absorption, composition, vertical profiles and others. Remote sensing measurements were done using AERONET and MODIS, while extensive ground based measurements were done in all sampling stations. Remote sensing measurements shows important changes in aerosol optical depth (AOD), especially in the aerosol absorption component. It was also observed a reduction in cloud droplet size downwind of Manaus for liquid phase clouds. Changes in particle number and size were also very significant, that reflected in changes in the aerosol radiative forcing (RF) before and after Manaus plume. In the dry season, an average RF of -24 w/m² was observed upwind, while -17 w/m² was observed downwind, due to large scale biomass burning aerosols. Single scattering albedo (SSA) at 550 nm changed from a high value of 0.96 upwind to 0.84 downwind due to the increase in absorbing aerosols in the wet season. In the dry season, SSA at 550nm changed from 0.95 to 0.87. Aerosol composition showed a large dominance of organic aerosols for all sites, accounting for 65-75% of PM1 non refractory aerosol. Most of these were secondary organic aerosol (SOA), with very low sulfate and nitrate concentrations. The influence of the Manaus plume on aerosol properties was more intense during the wet season, because in the dry season a significant amount of

  5. The Impact of Aerosol Particle Mixing State on the Hygroscopicity of Sea Spray Aerosol.

    Science.gov (United States)

    Schill, Steven R; Collins, Douglas B; Lee, Christopher; Morris, Holly S; Novak, Gordon A; Prather, Kimberly A; Quinn, Patricia K; Sultana, Camille M; Tivanski, Alexei V; Zimmermann, Kathryn; Cappa, Christopher D; Bertram, Timothy H

    2015-06-24

    Aerosol particles influence global climate by determining cloud droplet number concentrations, brightness, and lifetime. Primary aerosol particles, such as those produced from breaking waves in the ocean, display large particle-particle variability in chemical composition, morphology, and physical phase state, all of which affect the ability of individual particles to accommodate water and grow into cloud droplets. Despite such diversity in molecular composition, there is a paucity of methods available to assess how particle-particle variability in chemistry translates to corresponding differences in aerosol hygroscopicity. Here, an approach has been developed that allows for characterization of the distribution of aerosol hygroscopicity within a chemically complex population of atmospheric particles. This methodology, when applied to the interpretation of nascent sea spray aerosol, provides a quantitative framework for connecting results obtained using molecular mimics generated in the laboratory with chemically complex ambient aerosol. We show that nascent sea spray aerosol, generated in situ in the Atlantic Ocean, displays a broad distribution of particle hygroscopicities, indicative of a correspondingly broad distribution of particle chemical compositions. Molecular mimics of sea spray aerosol organic material were used in the laboratory to assess the volume fractions and molecular functionality required to suppress sea spray aerosol hygroscopicity to the extent indicated by field observations. We show that proper accounting for the distribution and diversity in particle hygroscopicity and composition are important to the assessment of particle impacts on clouds and global climate.

  6. Chemical evolution of organic aerosol in Los Angeles during the CalNex 2010 study

    Directory of Open Access Journals (Sweden)

    R. Holzinger

    2013-10-01

    Full Text Available During the CalNex study (15 May to 16 June 2010 a large suite of instruments was operated at the Los Angeles area ground supersite to characterize the sources and atmospheric processing of atmospheric pollution. The thermal-desorption proton-transfer-reaction mass-spectrometer (TD-PTR-MS was deployed to an urban area for the first time and detected 691 organic ions in aerosol samples, the mean total concentration of which was estimated as 3.3 μg m−3. Based on comparison to total organic aerosol (OA measurements, we estimate that approximately 50% of the OA mass at this site was directly measured by the TD-PTR-MS. Based on correlations with aerosol mass spectrometer (AMS OA components, the ions were grouped to represent hydrocarbon-like OA (HOA, local OA (LOA, semi-volatile oxygenated OA (SV-OOA, and low volatility oxygenated OA (LV-OOA. Mass spectra and thermograms of the ion groups are mostly consistent with the assumed sources and/or photochemical origin of the OA components. The mass spectra of ions representing the primary components HOA and LOA included the highest m/z, consistent with their higher resistance to thermal decomposition, and they were volatilized at lower temperatures (~ 150 °C. Photochemical ageing weakens C-C bond strengths (also resulting in chemical fragmentation, and produces species of lower volatility (through the addition of functional groups. Accordingly the mass spectra of ions representing the oxidized OA components (SV-OOA, and LV-OOA lack the highest masses and they are volatilized at higher temperatures (250–300 °C. Chemical parameters like mean carbon number (nC, mean carbon oxidation state (OSC, and the atomic ratios O / C and H / C of the ion groups are consistent with the expected sources and photochemical processing of the aerosol components. Our data suggest that chemical fragmentation gains importance over functionalization as photochemical age of OA increases. Surprisingly, the photochemical age of

  7. Capacitive behavior of Ag doped V2O5 grown by aerosol assisted chemical vapour deposition

    International Nuclear Information System (INIS)

    Vernardou, D.; Marathianou, I.; Katsarakis, N.; Koudoumas, E.; Kazadojev, I.I.; O’Brien, S.; Pemble, M.E.; Povey, I.M.

    2016-01-01

    The growth of silver doped vanadium pentoxide was performed by aerosol assisted chemical vapour deposition and found to be optimal at 450° C. Additionally, an increase in crystallinity and a change in preferred orientation of V 2 O 5 was observed upon increasing the silver content. Silver incorporation also resulted in morphological changes in the thin films from rod to pellet-like structures. For higher silver content films the amount of incorporated charge increased and reversibility and repeatability was demonstrated for 500 cycles. Electrochemical impedance spectroscopy determined that the transfer and diffusion of Li+ ions through the cathode-electrolyte interface was assisted by silver loading, hence, enhancing the capacitive performance.

  8. Aerosol composition and source apportionment in the Mexico City Metropolitan Area with PIXE/PESA/STIM and multivariate analysis

    Directory of Open Access Journals (Sweden)

    K. S. Johnson

    2006-01-01

    Full Text Available Aerosols play an important role in the atmosphere but are poorly characterized, particularly in urban areas like the Mexico City Metropolitan Area (MCMA. The chemical composition of urban particles must be known to assess their effects on the environment, and specific particulate emissions sources should be identified to establish effective pollution control standards. For these reasons, samples of particulate matter ≤2.5 μm (PM2.5 were collected during the MCMA-2003 Field Campaign for elemental and multivariate analyses. Proton-Induced X-ray Emission (PIXE, Proton-Elastic Scattering Analysis (PESA and Scanning Transmission Ion Microscopy (STIM measurements were done to determine concentrations of 19 elements from Na to Pb, hydrogen, and total mass, respectively. The most abundant elements from PIXE analysis were S, Si, K, Fe, Ca, and Al, while the major emissions sources associated with these elements were industry, wind-blown soil, and biomass burning. Wind trajectories suggest that metals associated with industrial emissions came from northern areas of the city whereas soil aerosols came from the southwest and increased in concentration during dry conditions. Elemental markers for fuel oil combustion, V and Ni, correlated with a large SO2 plume to suggest an anthropogenic, rather than volcanic, emissions source. By subtracting major components of soil and sulfates determined by PIXE analysis from STIM total mass measurements, we estimate that approximately 50% of non-volatile PM2.5 consisted of carbonaceous material.

  9. Chemically-resolved aerosol volatility measurements from two megacity field studies

    Directory of Open Access Journals (Sweden)

    J. A. Huffman

    2009-09-01

    Full Text Available The volatilities of different chemical species in ambient aerosols are important but remain poorly characterized. The coupling of a recently developed rapid temperature-stepping thermodenuder (TD, operated in the range 54–230°C with a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS during field studies in two polluted megacities has enabled the first direct characterization of chemically-resolved urban particle volatility. Measurements in Riverside, CA and Mexico City are generally consistent and show ambient nitrate as having the highest volatility of any AMS standard aerosol species while sulfate showed the lowest volatility. Total organic aerosol (OA showed volatility intermediate between nitrate and sulfate, with an evaporation rate of 0.6%·K−1 near ambient temperature, although OA dominates the residual species at the highest temperatures. Different types of OA were characterized with marker ions, diurnal cycles, and positive matrix factorization (PMF and show significant differences in volatility. Reduced hydrocarbon-like OA (HOA, a surrogate for primary OA, POA, oxygenated OA (OOA, a surrogate for secondary OA, SOA, and biomass-burning OA (BBOA separated with PMF were all determined to be semi-volatile. The most aged OOA-1 and its dominant ion, CO2+, consistently exhibited the lowest volatility, with HOA, BBOA, and associated ions for each among the highest. The similar or higher volatility of HOA/POA compared to OOA/SOA contradicts the current representations of OA volatility in most atmospheric models and has important implications for aerosol growth and lifetime. A new technique using the AMS background signal was demonstrated to quantify the fraction of species up to four orders-of-magnitude less volatile than those detectable in the MS mode, which for OA represent ~5% of the non-refractory (NR OA signal. Our results strongly imply that all OA types should be considered

  10. CHEMICAL COMPOSITION OF CAATINGA POTENTIAL FORAGES SPECIES

    Directory of Open Access Journals (Sweden)

    Dynara Layza de Souza da Silva

    2015-12-01

    Full Text Available Chemical composition of some potential forages species, natives from Caatinga region, were evaluated. Samples of Macroptilium heterophyllum, Stylosanthes humilis, Rhynchosia mínima, Desmodium tortuosum Sw. Dc, Merremia aegyptia, Mimosa tenuiflora Wild, Bauhinia cheilantha and as well Macroptilium lathyroides, Caesalpinia pyramidalis and Mimosa tenuiflora hays were collected in Rio Grande do Norte Stated, during 2011 rainy season. The analyses: dry matter (DM, crude protein (CP mineral matter (MM ether extract  (EE neutral detergent fiber (NDF, acid detergent fiber (ADF, lignin (LIG, insoluble neutral detergent nitrogen, (INDN insoluble acid detergent nitrogen, (ADIN, total phenol (TF and total tannin (TT were done at Embrapa Caprinos e Ovinos in Ceará State. Plants analyzed, as expected, for tropical species, exhibited high level of cell wall constituents, high lignifications rate and revealed substantial presence of anti nutritional compounds. However, regardless of this data, the main problem, for grazing animals, is due to its xerophytes characteristics. Most of the shrubs and trees are deciduous, losing its leaves during the dry season. In addition, herbaceous presents a very rapid lifetime cycle, germinating and senescing during the brief wet season.

  11. Chemical composition analysis and authentication of whisky.

    Science.gov (United States)

    Wiśniewska, Paulina; Dymerski, Tomasz; Wardencki, Waldemar; Namieśnik, Jacek

    2015-08-30

    Whisky (whiskey) is one of the most popular spirit-based drinks made from malted or saccharified grains, which should mature for at least 3 years in wooden barrels. High popularity of products usually causes a potential risk of adulteration. Thus authenticity assessment is one of the key elements of food product marketing. Authentication of whisky is based on comparing the composition of this alcohol with other spirit drinks. The present review summarizes all information about the comparison of whisky and other alcoholic beverages, the identification of type of whisky or the assessment of its quality and finally the authentication of whisky. The article also presents the various techniques used for analyzing whisky, such as gas and liquid chromatography with different types of detectors (FID, AED, UV-Vis), electronic nose, atomic absorption spectroscopy and mass spectrometry. In some cases the application of chemometric methods is also described, namely PCA, DFA, LDA, ANOVA, SIMCA, PNN, k-NN and CA, as well as preparation techniques such SPME or SPE. © 2014 Society of Chemical Industry.

  12. Mid-infrared mapping of Jupiter's temperatures, aerosol opacity and chemical distributions with IRTF/TEXES

    Science.gov (United States)

    Fletcher, Leigh N.; Greathouse, T. K.; Orton, G. S.; Sinclair, J. A.; Giles, R. S.; Irwin, P. G. J.; Encrenaz, T.

    2016-11-01

    Global maps of Jupiter's atmospheric temperatures, gaseous composition and aerosol opacity are derived from a programme of 5-20 μm mid-infrared spectroscopic observations using the Texas Echelon Cross Echelle Spectrograph (TEXES) on NASA's Infrared Telescope Facility (IRTF). Image cubes from December 2014 in eight spectral channels, with spectral resolutions of R ∼2000 - 12 , 000 and spatial resolutions of 2-4° latitude, are inverted to generate 3D maps of tropospheric and stratospheric temperatures, 2D maps of upper tropospheric aerosols, phosphine and ammonia, and 2D maps of stratospheric ethane and acetylene. The results are compared to a re-analysis of Cassini Composite Infrared Spectrometer (CIRS) observations acquired during Cassini's closest approach to Jupiter in December 2000, demonstrating that this new archive of ground-based mapping spectroscopy can match and surpass the quality of previous investigations, and will permit future studies of Jupiter's evolving atmosphere. The visibility of cool zones and warm belts varies from channel to channel, suggesting complex vertical variations from the radiatively-controlled upper troposphere to the convective mid-troposphere. We identify mid-infrared signatures of Jupiter's 5-μm hotspots via simultaneous M, N and Q-band observations, which are interpreted as temperature and ammonia variations in the northern Equatorial Zone and on the edge of the North Equatorial Belt (NEB). Equatorial plumes enriched in NH3 gas are located south-east of NH3-desiccated 'hotspots' on the edge of the NEB. Comparison of the hotspot locations in several channels across the 5-20 μm range indicate that these anomalous regions tilt westward with altitude. Aerosols and PH3 are both enriched at the equator but are not co-located with the NH3 plumes. The equatorial temperature minimum and PH3/aerosol maxima have varied in amplitude over time, possibly as a result of periodic equatorial brightenings and the fresh updrafts of

  13. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    Science.gov (United States)

    Zhou, C.; Zhang, X.; Gong, S.; Wang, Y.; Xue, M.

    2016-01-01

    A comprehensive aerosol-cloud-precipitation interaction (ACI) scheme has been developed under a China Meteorological Administration (CMA) chemical weather modeling system, GRAPES/CUACE (Global/Regional Assimilation and PrEdiction System, CMA Unified Atmospheric Chemistry Environment). Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN) are interactively fed online into a two-moment cloud scheme (WRF Double-Moment 6-class scheme - WDM6) and a convective parameterization to drive cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred.The results show that aerosols that interact with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content, and cloud droplet number concentrations, while decreasing the mean diameters of cloud droplets with varying magnitudes of the changes in each case and region. These interactive microphysical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48 % enhancements of threat score for 6 h precipitation in almost all regions. The aerosols that interact with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  14. Impacts of the mixing state and chemical composition on the cloud condensation nuclei (CCN) activity in Beijing during winter, 2016

    Science.gov (United States)

    Ren, J.; Zhang, F.

    2017-12-01

    Abstract.Understanding aerosol chemical composition and mixing state on CCN activity in polluted urban area is crucial to determine NCCN accurately and thus to quantify aerosol indirect effects. Aerosol hrgroscopicity, size-resolved cloud condensation nuclei (CCN) concentration and chemical composition are measured under polluted and background conditions in Beijing based on the Air Pollution and Human Health (APHH) field campaign in winter 2016. The CCN number concentration (NCCN) is predicted by using κ-Köhler theory from the PNSD and five simplified of the mixing state and chemical composition. The assumption of EIS (sulfate, nitrate and SOA internally mixed, and POA and BC externally mixed with size-resolved chemical composition) shows the best closure to predict NCCN with the ratio of predicted to measured NCCN of 0.96-1.12 both in POL and BG conditions. Under BG conditions, IB (internal mixture with bulk chemical composition) scheme achieves the best CCN closure during any periods of a day. In polluted days, EIS and IS (internal mixture with size-resolved chemical composition) scheme may achieve better closure than IB scheme due to the heterogeneity in particles composition across different size. ES (external mixture with size-resolved chemical composition) and EB (external mixture with bulk chemical composition) scheme markedly underestimate the NCCN with the ratio of predicted to measured NCCN of 0.6-0.8. In addition, we note that assumptions of size-resolved composition (IS or ES) show very limited promotes by comparing with the assumptions of bulk composition (IB or EB), furthermore, the prediction becomes worse by using size-resolved assumption in clean days. The predicted NCCN during eve-rush periods shows the most sensitivity to the five different assumptions, with ratios of the predicted and measured NCCN ranging from 0.5 to 1.4, reflecting great impacts from evening traffic and cooking sources. The result from the sensitivity examination of predict

  15. The Effect of Aerosol Hygroscopicity and Volatility on Aerosol Optical Properties During Southern Oxidant and Aerosol Study

    Science.gov (United States)

    Khlystov, A.; Grieshop, A. P.; Saha, P.; Subramanian, R.

    2014-12-01

    Secondary organic aerosol (SOA) from biogenic sources can influence optical properties of ambient aerosol by altering its hygroscopicity and contributing to light absorption directly via formation of brown carbon and indirectly by enhancing light absorption by black carbon ("lensing effect"). The magnitude of these effects remains highly uncertain. A set of state-of-the-art instruments was deployed at the SEARCH site near Centerville, AL during the Southern Oxidant and Aerosol Study (SOAS) campaign in summer 2013 to measure the effect of relative humidity and temperature on aerosol size distribution, composition and optical properties. Light scattering and absorption by temperature- and humidity-conditioned aerosols was measured using three photo-acoustic extinctiometers (PAX) at three wavelengths (405 nm, 532 nm, and 870 nm). The sample-conditioning system provided measurements at ambient RH, 10%RH ("dry"), 85%RH ("wet"), and 200 C ("TD"). In parallel to these measurements, a long residence time temperature-stepping thermodenuder (TD) and a variable residence time constant temperature TD in combination with three SMPS systems and an Aerosol Chemical Speciation Monitor (ACSM) were used to assess aerosol volatility and kinetics of aerosol evaporation. We will present results of the on-going analysis of the collected data set. We will show that both temperature and relative humidity have a strong effect on aerosol optical properties. SOA appears to increase aerosol light absorption by about 10%. TD measurements suggest that aerosol equilibrated fairly quickly, within 2 s. Evaporation varied substantially with ambient aerosol loading and composition and meteorology.

  16. Chemical composition and antioxidant activity of essential oil ...

    African Journals Online (AJOL)

    In the present work, we studied the chemical composition of the essential oil of Cistus ladanifer and Cistus libanotis growing in Eastern Morocco. The essential oils were obtained by hydrodistillation and their chemical composition was analysed using gas chromatography- mass spectrometry (GC–MS). Camphene, borneol ...

  17. Chemical composition and antifungal activity of essential oils of ...

    African Journals Online (AJOL)

    The aim of this study was to determine the chemical composition of the essential oils of Algerian citrus. They were extracted by hydrodistillation from the leaves of citrus species (orange, Bigaradier, mandarin and lemon), using gas chromatography/mass spectrometry (GC/MS). Their chemical composition and antifungal ...

  18. Fatty acid and cholesterol content, chemical composition and ...

    African Journals Online (AJOL)

    This study aimed to determine the fatty acid and chemical composition and cholesterol concentration of horsemeat, and to evaluate its taste acceptability by the Brazilian population. Horsemeat samples (M. longissimus dorsi) were obtained from a Paraná State slaughterhouse. The chemical composition revealed a low lipid ...

  19. Predicting the mineral composition of dust aerosols: Insights from elemental composition measured at the Izaña Observatory

    Science.gov (United States)

    Pérez García-Pando, Carlos; Miller, Ron L.; Perlwitz, Jan P.; Rodríguez, Sergio; Prospero, Joseph M.

    2016-10-01

    Regional variations of dust mineral composition are fundamental to climate impacts but generally neglected in climate models. A challenge for models is that atlases of soil composition are derived from measurements following wet sieving, which destroys the aggregates potentially emitted from the soil. Aggregates are crucial to simulating the observed size distribution of emitted soil particles. We use an extension of brittle fragmentation theory in a global dust model to account for these aggregates. Our method reproduces the size-resolved dust concentration along with the approximately size-invariant fractional abundance of elements like Fe and Al in the decade-long aerosol record from the Izaña Observatory, off the coast of West Africa. By distinguishing between Fe in structural and free forms, we can attribute improved model behavior to aggregation of Fe and Al-rich clay particles. We also demonstrate the importance of size-resolved measurements along with elemental composition analysis to constrain models.

  20. Size distribution and ionic composition of marine summer aerosol at the continental Antarctic site Kohnen

    Science.gov (United States)

    Weller, Rolf; Legrand, Michel; Preunkert, Susanne

    2018-02-01

    We measured aerosol size distributions and conducted bulk and size-segregated aerosol sampling during two summer campaigns in January 2015 and January 2016 at the continental Antarctic station Kohnen (Dronning Maud Land). Physical and chemical aerosol properties differ conspicuously during the episodic impact of a distinctive low-pressure system in 2015 (LPS15) compared to the prevailing clear sky conditions. The approximately 3-day LPS15 located in the eastern Weddell Sea was associated with the following: marine boundary layer air mass intrusion; enhanced condensation particle concentrations (1400 ± 700 cm-3 compared to 250 ± 120 cm-3 under clear sky conditions; mean ± SD); the occurrence of a new particle formation event exhibiting a continuous growth of particle diameters (Dp) from 12 to 43 nm over 44 h (growth rate 0.6 nm h-1); peaking methane sulfonate (MS-), non-sea-salt sulfate (nss-SO42-), and Na+ concentrations (190 ng m-3 MS-, 137 ng m-3 nss-SO42-, and 53 ng m-3 Na+ compared to 24 ± 15, 107 ± 20, and 4.1 ± 2.2 ng m-3, respectively, during clear sky conditions); and finally an increased MS- / nss-SO42- mass ratio βMS of 0.4 up to 2.3 (0.21 ± 0.1 under clear sky conditions) comparable to typical values found at coastal Antarctic sites. Throughout the observation period a larger part of MS- could be found in super-micron aerosol compared to nss-SO42-, i.e., (10 ± 2) % by mass compared to (3.2 ± 2) %, respectively. On the whole, under clear sky conditions aged aerosol characterized by usually mono-modal size distributions around Dp = 60 nm was observed. Although our observations indicate that the sporadic impacts of coastal cyclones were associated with enhanced marine aerosol entry, aerosol deposition on-site during austral summer should be largely dominated by typical steady clear sky conditions.

  1. Impact of North America on the aerosol composition in the North Atlantic free troposphere

    Directory of Open Access Journals (Sweden)

    M. I. García

    2017-06-01

    Full Text Available In the AEROATLAN project we study the composition of aerosols collected over  ∼  5 years at Izaña Observatory (located at  ∼  2400 m a.s.l. in Tenerife, the Canary Islands under the prevailing westerly airflows typical of the North Atlantic free troposphere at subtropical latitudes and midlatitudes. Mass concentrations of sub-10 µm aerosols (PM10 carried by westerly winds to Izaña, after transatlantic transport, are typically within the range 1.2 and 4.2 µg m−3 (20th and 80th percentiles. The main contributors to background levels of aerosols (PM10 within the 1st–50th percentiles  =  0.15–2.54 µg m−3 are North American dust (53 %, non-sea-salt sulfate (14 % and organic matter (18 %. High PM10 events (75th–95th percentiles  ≈  4.0–9.0 µg m−3 are prompted by dust (56 %, organic matter (24 % and non-sea-salt sulfate (9 %. These aerosol components experience a seasonal evolution explained by (i their spatial distribution in North America and (ii the seasonal shift of the North American outflow, which migrates from low latitudes in winter (∼  32° N, January–March to high latitudes in summer (∼  52° N, August–September. The westerlies carry maximum loads of non-sea-salt sulfate, ammonium and organic matter in spring (March–May, of North American dust from midwinter to mid-spring (February–May and of elemental carbon in summer (August–September. Our results suggest that a significant fraction of organic aerosols may be linked to sources other than combustion (e.g. biogenic; further studies are necessary for this topic. The present study suggests that long-term evolution of the aerosol composition in the North Atlantic free troposphere will be influenced by air quality policies and the use of soils (potential dust emitter in North America.

  2. Composition analyses of size-resolved aerosol samples taken from aircraft downwind of Kuwait, Spring 1991

    Energy Technology Data Exchange (ETDEWEB)

    Cahill, T.A.; Wilkinson, K. [Univ. of California, Davis, CA (United States); Schnell, R. [National Center for Atmospheric Research, Boulder, CO (United States)

    1992-09-20

    Analyses are reported for eight aerosol samples taken from the National Center for Atmospheric Research Electra typically 200 to 250 km downwind of Kuwait between May 19 and June 1, 1991. Aerosols were separated into fine (D{sub p} < 2.5 {mu}m) and coarse (2.5 < D{sub p} 10 {mu}m) particles for optical, gravimetric, X ray and nuclear analyses, yielding information on the morphology, mass, and composition of aerosols downwind of Kuwait. The mass of coarse aerosols ranged between 60 and 1971 {mu}g/m{sup 3} and, while dominated by soil derived aerosols, contained considerable content of sulfates and salt (NaCl) and soot in the form of fluffy agglomerates. The mass of fine aerosols varied between 70 and 785 {mu}g/m{sup 3}, of which about 70% was accounted for via compositional analyses performed in vacuum. While most components varied greatly from flight to flight, organic matter and fine soils each accounted for about 1/4 of the fine mass, while salt and sulfates contributed about 10% and 7%, respectively. The Cl/S ratios were remarkably constant, 2.4 {+-} 1.2 for coarse particles and 2.0 {+-} 0.2 for fine particles, with one flight deleted in each case. Vanadium, when observed, ranged from 9 to 27 ng/m{sup 3}, while nickel ranged from 5 to 25 ng/m{sup 3}. In fact, fine sulfates, vanadium, and nickel occurred in levels typical of Los Angeles, California, during summer 1986. The V/Ni ratio, 1.7 {+-} 0.4, was very similar to the ratios measured in fine particles from combusted Kuwaiti oil, 1.4 {+-} 0.9. Bromine, copper, zinc, and arsenic/lead were also observed at levels between 2 and 190 ng/m{sup 3}. The presence of massive amounts of fine, typically alkaline soils in the Kuwaiti smoke plumes significantly modified their behavior and probably mitigated their impacts, locally and globally. 16 refs., 1 fig., 3 tabs.

  3. Aerosol Observability and Predictability: From Research to Operations for Chemical Weather Forecasting. Lagrangian Displacement Ensembles for Aerosol Data Assimilation

    Science.gov (United States)

    da Silva, Arlindo

    2010-01-01

    A challenge common to many constituent data assimilation applications is the fact that one observes a much smaller fraction of the phase space that one wishes to estimate. For example, remotely sensed estimates of the column average concentrations are available, while one is faced with the problem of estimating 3D concentrations for initializing a prognostic model. This problem is exacerbated in the case of aerosols because the observable Aerosol Optical Depth (AOD) is not only a column integrated quantity, but it also sums over a large number of species (dust, sea-salt, carbonaceous and sulfate aerosols. An aerosol transport model when driven by high-resolution, state-of-the-art analysis of meteorological fields and realistic emissions can produce skillful forecasts even when no aerosol data is assimilated. The main task of aerosol data assimilation is to address the bias arising from inaccurate emissions, and Lagrangian misplacement of plumes induced by errors in the driving meteorological fields. As long as one decouples the meteorological and aerosol assimilation as we do here, the classic baroclinic growth of error is no longer the main order of business. We will describe an aerosol data assimilation scheme in which the analysis update step is conducted in observation space, using an adaptive maximum-likelihood scheme for estimating background errors in AOD space. This scheme includes e explicit sequential bias estimation as in Dee and da Silva. Unlikely existing aerosol data assimilation schemes we do not obtain analysis increments of the 3D concentrations by scaling the background profiles. Instead we explore the Lagrangian characteristics of the problem for generating local displacement ensembles. These high-resolution state-dependent ensembles are then used to parameterize the background errors and generate 3D aerosol increments. The algorithm has computational complexity running at a resolution of 1/4 degree, globally. We will present the result of

  4. Chemical Characterization of Submicron Aerosol Particles in São Paulo, Brazil

    Science.gov (United States)

    Ferreira De Brito, J.; Rizzo, L. V.; Godoy, J.; Godoy, M. L.; de Assunção, J. V.; Alves, N. D.; Artaxo, P.

    2013-12-01

    Megacities, large urban conglomerates with a population of 10 million or more inhabitants, are increasingly receiving attention as strong pollution hotspots with significant global impact. The emissions from such large centers in both the developed and developing parts of the world are strongly impacted by the transportation sector. The São Paulo Metropolitan Area (SPMA), located in the Southeast of Brazil, is a megacity with a population of 18 million people and 7 million vehicles, many of which fuelled by a considerably amount of anhydrous ethanol. Such fleet is considered a unique case of large scale biofuel usage worldwide. Despite the large impact on human health and atmospheric chemistry/dynamics, many uncertainties are found in terms of gas and particulate matter emissions from vehicles and their atmospheric reactivity, e.g. secondary organic aerosol formation. In order to better understand aerosol life cycle on such environment, a suite of instruments for gas and particulate matter characterization has been deployed in two sampling sites within the SPMA, including an Aerosol Chemical Speciation Monitor (ACSM). The instrumentation was deployed at the rooftop of a 45m high building in the University of São Paulo during winter/spring 2012. The site is located roughly 6km downwind of the city center with little influence from local sources. The second site is located in a downtown area, sampling at the top floor of the Public Health Faculty, approximately 10m above ground. The instrumentation was deployed at the Downtown site during summer/fall 2013. The average non-refractory submicron aerosol concentration at the University site was 6.7 μg m-3, being organics the most abundant specie (70%), followed by NO3 (12%), NH4 (8%), SO4 (8%) and Chl (2%). At the Downtown site, average aerosol concentration was 15.1 μg m-3, with Organics composing 65% of the mass, followed by NH4 (12%), NO3 (11%), SO4 (11%) and Chl (1%). The analysis of specific fragmentation

  5. Exploring sources of biogenic secondary organic aerosol compounds using chemical analysis and the FLEXPART model

    Directory of Open Access Journals (Sweden)

    J. Martinsson

    2017-09-01

    Full Text Available Molecular tracers in secondary organic aerosols (SOAs can provide information on origin of SOA, as well as regional scale processes involved in their formation. In this study 9 carboxylic acids, 11 organosulfates (OSs and 2 nitrooxy organosulfates (NOSs were determined in daily aerosol particle filter samples from Vavihill measurement station in southern Sweden during June and July 2012. Several of the observed compounds are photo-oxidation products from biogenic volatile organic compounds (BVOCs. Highest average mass concentrations were observed for carboxylic acids derived from fatty acids and monoterpenes (12. 3 ± 15. 6 and 13. 8 ± 11. 6 ng m−3, respectively. The FLEXPART model was used to link nine specific surface types to single measured compounds. It was found that the surface category sea and ocean was dominating the air mass exposure (56 % but contributed to low mass concentration of observed chemical compounds. A principal component (PC analysis identified four components, where the one with highest explanatory power (49 % displayed clear impact of coniferous forest on measured mass concentration of a majority of the compounds. The three remaining PCs were more difficult to interpret, although azelaic, suberic, and pimelic acid were closely related to each other but not to any clear surface category. Hence, future studies should aim to deduce the biogenic sources and surface category of these compounds. This study bridges micro-level chemical speciation to air mass surface exposure at the macro level.

  6. Metal fractionation of atmospheric aerosols via sequential chemical extraction: a review

    Energy Technology Data Exchange (ETDEWEB)

    Smichowski, Patricia; Gomez, Dario [Unidad de Actividad Quimica, Comision Nacional de Energia Atomica, San Martin (Argentina); Polla, Griselda [Unidad de Actividad Fisica, Comision Nacional de Energia Atomica, San Martin (Argentina)

    2005-01-01

    This review surveys schemes used to sequentially chemically fractionate metals and metalloids present in airborne particulate matter. It focuses mainly on sequential chemical fractionation schemes published over the last 15 years. These schemes have been classified into five main categories: (1) based on Tessier's procedure, (2) based on Chester's procedure, (3) based on Zatka's procedure, (4) based on BCR procedure, and (5) other procedures. The operational characteristics as well as the state of the art in metal fractionation of airborne particulate matter, fly ashes and workroom aerosols, in terms of applications, optimizations and innovations, are also described. Many references to other works in this area are provided. (orig.)

  7. Evaluation of aerosol composition changes in the last 60 years around southeastern Greenland by analyzing micro-inclusions in the SE-Dome ice core using Raman spectroscopy.

    Science.gov (United States)

    Ando, T.; Iizuka, Y.; Ohno, H.; Sugiyama, S.

    2017-12-01

    Emission regulation of anthropogenic NOX and SOX since late 90's rather caused excess atmospheric ammonium (NH3) in agricultural regions (Warner et al., 2017, Geophys. Res. Lett.). The Arctic is one of the most sensitive areas for future warming. Aerosols in the Arctic are transported from the Northern Hemisphere and mostly experience wet deposition (Breider et al., 2014, Jour. of Geophys. Res.: Atmos.). Ice cores preserve past water-soluble aerosols. From these viewpoints, ice cores from the Arctic is suitable to evaluate recent variation in aerosol composition due to human activity in the Northern Hemisphere and aerosol transportation. We analyzed ion concentrations in the ice core samples from a southeastern dome in Greenland (SE-Dome). The concentrations increased for NH4+ and decreased for SO42- after late 90's. The NH4+ increasing trend is due to excess NH3 emission in North America. Cloud nuclei formation depends on chemical form of aerosols. Thus, differences in chemical forms of these ammonium aerosols in SE-Dome samples are important to evaluate the effect on climate change in Greenland. In this study, we identified the chemical form of aerosols (water-soluble inclusions) in the SE-Dome ice core by using micro-Raman spectroscopy. SE-Dome ice core samples were collected in 2015 and enabled us to reconstruct seasonal variation owing to extremely higher accumulation rate ( 1m/yr.). The ice samples were sublimated and accumulated inclusions on the Ni sheets in a clean booth under -22 degrees Celsius. We identified CaSO4, Na2SO4, (NH4)2SO4, NaNO3, NH4NO3 by Raman spectra. This is the first report to identify ammonium salts ((NH4)2SO4 and NH4NO3) from ice core sample. In the summer samples, the relative abundances of CaSO4 and NaNO3 are lower but (NH4)2SO4 are higher than those in the spring samples. NH4+ rapidly react with SO24- under higher temperature. Higher concentration of NH3 in the warmest season possibly enhanced the formation of (NH4)2SO4 in North

  8. Does variation in mineral composition alter the short-wave light scattering properties of desert dust aerosol?

    International Nuclear Information System (INIS)

    Smith, Andrew J.A.; Grainger, Roy G.

    2014-01-01

    Mineral dust aerosol is a major component of natural airborne particulates. Using satellite measurements from the visible and near-infrared, there is insufficient information to retrieve a full microphysical and chemical description of an aerosol distribution. As such, refractive index is one of many parameters that must be implicitly assumed in order to obtain an optical depth retrieval. This is essentially a proxy for the dust mineralogy. Using a global soil map, it is shown that as long as a reasonable refractive index for dust is assumed, global dust variability is unlikely to cause significant variation in the optical properties of a dust aerosol distribution in the short-wave, and so should not greatly affect retrievals of mineral dust aerosol from space by visible and near-infrared radiometers. Errors in aerosol optical depth due to this variation are expected to be ≲1%. The work is framed around the ORAC AATSR aerosol retrieval, but is equally applicable to similar satellite retrievals. In this case, variations in the top-of-atmosphere reflectance caused by mineral variation are within the noise limits of the instrument. -- Highlights: • Global variation in dust aerosol refractive index is quantified using soil maps. • Resulting visible light scattering properties have limited variability. • Satellite aerosol retrievals do not need to account for varying dust refractive indices

  9. Changes in background aerosol composition in Finland during polluted and clean periods studied by TEM/EDX individual particle analysis

    OpenAIRE

    Niemi , J. V.; Saarikoski , S.; Tervahattu , H.; Mäkelä , T.; Hillamo , R.; Vehkamäki , H.; Sogacheva , L.; Kulmala , M.

    2006-01-01

    Aerosol samples were collected at a rural background site in southern Finland in May 2004 during pollution episode (PM1~16 µg m−3, backward air mass trajectories from south-east), intermediate period (PM1~5 µg m−3, backtrajectories from north-east) and clean period (PM1~2 µg m−3, backtrajectories from north-west/north). The elemental composition, morphology and mixing state of individual aerosol particles in three size fractions were st...

  10. Morphology, Composition, and Mixing State of Individual Aerosol Particles in Northeast China during Wintertime

    Directory of Open Access Journals (Sweden)

    Liang Xu

    2017-02-01

    Full Text Available Northeast China is located in a high latitude area of the world and undergoes a cold season that lasts six months each year. Recently, regional haze episodes with high concentrations of fine particles (PM2.5 have frequently been occurring in Northeast China during the heating period, but little information has been available. Aerosol particles were collected in winter at a site in a suburban county town (T1 and a site in a background rural area (T2. Morphology, size, elemental composition, and mixing state of individual aerosol particles were characterized by transmission electron microscopy (TEM. Aerosol particles were mainly composed of organic matter (OM and S-rich and certain amounts of soot and K-rich. OM represented the most abundant particles, accounting for 60.7% and 53.5% at the T1 and T2 sites, respectively. Abundant spherical OM particles were likely emitted directly from coal-burning stoves. Soot decreased from 16.9% at the T1 site to 4.6% at the T2 site and sulfate particles decrease from 35.9% at the T2 site to 15.7% at the T1 site, suggesting that long-range transport air masses experienced more aging processes and produced more secondary particles. Based on our investigations, we proposed that emissions from coal-burning stoves in most rural areas of the west part of Northeast China can induce regional haze episodes.

  11. Aerosol composition and microstructure in the smoky atmosphere of Moscow during the August 2010 extreme wildfires

    Science.gov (United States)

    Popovicheva, O. B.; Kistler, M.; Kireeva, E. D.; Persiantseva, N. M.; Timofeev, M. A.; Shoniya, N. K.; Kopeikin, V. M.

    2017-01-01

    This is a comprehensive study of the physicochemical characterization of multicomponent aerosols in the smoky atmosphere of Moscow during the extreme wildfires of August 2010 and against the background atmosphere of August 2011. Thermal-optical analysis, liquid and ion chromatography, IR spectroscopy, and electron microscopy were used to determine the organic content (OC) and elemental content (EC) of carbon, organic/inorganic and ionic compounds, and biomass burning markers (anhydrosaccharides and the potassium ion) and study the morphology and elemental composition of individual particles. It has been shown that the fires are characterized by an increased OC/EC ratio and high concentrations of ammonium, potassium, and sulfate ions in correlation with an increased content of levoglucosan as a marker of biomass burning. The organic compounds containing carbonyl groups point to the process of photochemical aging and the formation of secondary organic aerosols in the urban atmosphere when aerosols are emitted from forest fires. A cluster analysis of individual particles has indicated that when the smokiest atmosphere is characterized by prevailing soot/tar ball particles, which are smoke-emission micromarkers.

  12. Aerosol composition and its sources at the King Sejong Station, Antarctic peninsula

    Science.gov (United States)

    Mishra, Vinit K.; Kim, Ki-Hyun; Hong, Sungmin; Lee, Khanghyun

    The annual cycles of major metals and ions in suspended particulate matters (SPM) have been investigated at a costal site of the Antarctic Peninsula in order to elucidate temporal variations as well as major source processes responsible for their formation. The measurements had been performed from January 2000 to December 2001 at the Korean Antarctic research station, 'King Sejong' (62°13' S, 58°47' W). The observed time series of important aerosol components showed clear seasonal variation patterns, while the mean elemental concentrations (e.g., 1875 (Al), 10.3 (Ba), 0.3 (Bi), 1.3 (Cd), 1.7 pg m -3 (Co)) were generally compatible with those reported previously. The presence of high EF values with respect to both mean crustal and seawater composition (such as Bi, Cd, Cr, Cu, Ni, V, and Zn), however, suggests a possibly important role of anthropogenic processes in this remote site. In contrast, the concentrations of ionic species were not clearly distinguishable from those of other Antarctic sites; but the consideration of ionic mass balance between cations and anions pointed out the uniqueness of their source/sink processes in the study area. The major source processes of those aerosol components were also investigated using a series of statistical analyses. The overall results of our study indicated the dominance of several processes (or sources) such as sea-salt emission, secondary aerosol formation, and anthropogenic pollution from both local and distant sources.

  13. EDXRS study of aerosol composition variations in air masses crossing the North Sea

    International Nuclear Information System (INIS)

    Injuk, J.; Malderen, H. van; Grieken, R. van; Swietlicki, E.; Knox, J.M.; Schofield, R.

    1993-01-01

    X-ray emission techniques for bulk and individual particle analysis (EDXRF, EPXMA, micro-PIXE) were combined and applied in atmospheric research on the North Sea area as part of a field-study on air-sea exchange processes of particulate matter. The atmospheric loading for a number of elements was determined by EDXRF, yielding bulk concentrations for Mg, Al, Si, S, Cl, K, Ca, Cr, Mn, Fe, Ni, Cu, Zn, Br and Sr. From these EDXRF data, deposition rates were derived and, based on a classical multivariate statistical approach, different aerosol sources were identified. Complementary to this work, EPXMA combined with automated image analysis was applied to individual size-segregated aerosol particles to determine their inorganic composition, physical size and shape. Also, the first results of micro-PIXE analyses on individual North Sea aerosol particles, particularly their large-size fraction, are discussed and compared with the corresponding EPXMA results. In summary, such a joint approach with the use of different x-ray emission techniques contributed to the resolution of the mixed structure of the lower North Sea troposphere and to the determination of the atmospheric supply of material to the North Sea environment. (author)

  14. Evaluation of simulated aerosol properties with the aerosol-climate model ECHAM5-HAM using observations from the IMPACT field campaign

    NARCIS (Netherlands)

    Roelofs, G.-J.; Brink, H. ten; Kiendler-Scharr, A.; Leeuw, G. de; Mensah, A.; Minikin, A.; Otjes, R.

    2010-01-01

    In May 2008, the measurement campaign IMPACT for observation of atmospheric aerosol and cloud properties was conducted in Cabauw, The Netherlands. With a nudged version of the coupled aerosol-climate model ECHAM5-HAM we simulate the size distribution and chemical composition of the aerosol and the

  15. Origin and chemical composition of evaporite deposits

    Science.gov (United States)

    Moore, George William

    1960-01-01

    A comparative study of marine evaporite deposits forming at the present time along the pacific coast of central Mexico and evaporite formations of Permian age in West Texas Basin was made in order to determine if the modern sediments provide a basis for understanding environmental conditions that existed during deposition of the older deposits. The field work was supplemented by investigations of artificial evaporite minerals precipitated in the laboratory and by study of the chemical composition of halite rock of different geologic ages. The environment of deposition of contemporaneous marine salt deposits in Mexico is acidic, is strongly reducing a few centimeters below the surface, and teems with microscopic life. Deposition of salt, unlike that of many other sediments, is not wholly a constructional phenomenon. Permanent deposits result only if a favorable balance exists between deposition in the dry season and dissolution in the wet season. Evaporite formations chosen for special study in the West Texas Basin are, in ascending order, the Castile, Salado, and Rustler formations, which have a combined thickness of 1200 meters. The Castile formation is largely composed of gypsum rock, the Salado, halite rock, and the Rustler, quartz and carbonate sandstone. The lower part of the Castile formation is bituminous and contains limestone laminae. The Castile and Rustler formations thicken to the south at the expense of salt of the intervening Salado formation. The clastic rocks of the Rustler formation are interpreted as the deposits of a series of barrier islands north of which halite rock of the Salado was deposited. The salt is believed to have formed in shallow water of uniform density that was mixed by the wind. Where water depth exceeded the depth of the wind mixing, density stratification developed, and gypsum was deposited. Dense water of high salinity below the density discontinuity was overlain by less dense, more normally saline water which was derived from

  16. Chemical and aerosol characterisation of the troposphere over West Africa during the monsoon period as part of AMMA

    Directory of Open Access Journals (Sweden)

    C. E. Reeves

    2010-08-01

    Full Text Available During June, July and August 2006 five aircraft took part in a campaign over West Africa to observe the aerosol content and chemical composition of the troposphere and lower stratosphere as part of the African Monsoon Multidisciplinary Analysis (AMMA project. These are the first such measurements in this region during the monsoon period. In addition to providing an overview of the tropospheric composition, this paper provides a description of the measurement strategy (flights performed, instrumental payloads, wing-tip to wing-tip comparisons and points to some of the important findings discussed in more detail in other papers in this special issue.

    The ozone data exhibits an "S" shaped vertical profile which appears to result from significant losses in the lower troposphere due to rapid deposition to forested areas and photochemical destruction in the moist monsoon air, and convective uplift of ozone-poor air to the upper troposphere. This profile is disturbed, particularly in the south of the region, by the intrusions in the lower and middle troposphere of air from the southern hemisphere impacted by biomass burning. Comparisons with longer term data sets suggest the impact of these intrusions on West Africa in 2006 was greater than in other recent wet seasons. There is evidence for net photochemical production of ozone in these biomass burning plumes as well as in urban plumes, in particular that from Lagos, convective outflow in the upper troposphere and in boundary layer air affected by nitrogen oxide emissions from recently wetted soils. This latter effect, along with enhanced deposition to the forested areas, contributes to a latitudinal gradient of ozone in the lower troposphere. Biogenic volatile organic compounds are also important in defining the composition both for the boundary layer and upper tropospheric convective outflow.

    Mineral dust was found to be the most abundant and ubiquitous aerosol type in the

  17. Aerosol characterization over the southeastern United States using high-resolution aerosol mass spectrometry: spatial and seasonal variation of aerosol composition and sources with a focus on organic nitrates

    Science.gov (United States)

    Xu, L.; Suresh, S.; Guo, H.; Weber, R. J.; Ng, N. L.

    2015-07-01

    We deployed a High-Resolution Time-of-Flight Aerosol Mass Spectrometer (HR-ToF-AMS) and an Aerosol Chemical Speciation Monitor (ACSM) to characterize the chemical composition of submicron non-refractory particulate matter (NR-PM1) in the southeastern USA. Measurements were performed in both rural and urban sites in the greater Atlanta area, Georgia (GA), and Centreville, Alabama (AL), for approximately 1 year as part of Southeastern Center for Air Pollution and Epidemiology study (SCAPE) and Southern Oxidant and Aerosol Study (SOAS). Organic aerosol (OA) accounts for more than half of NR-PM1 mass concentration regardless of sampling sites and seasons. Positive matrix factorization (PMF) analysis of HR-ToF-AMS measurements identified various OA sources, depending on location and season. Hydrocarbon-like OA (HOA) and cooking OA (COA) have important, but not dominant, contributions to total OA in urban sites (i.e., 21-38 % of total OA depending on site and season). Biomass burning OA (BBOA) concentration shows a distinct seasonal variation with a larger enhancement in winter than summer. We find a good correlation between BBOA and brown carbon, indicating biomass burning is an important source for brown carbon, although an additional, unidentified brown carbon source is likely present at the rural Yorkville site. Isoprene-derived OA factor (isoprene-OA) is only deconvolved in warmer months and contributes 18-36 % of total OA. The presence of isoprene-OA factor in urban sites is more likely from local production in the presence of NOx than transport from rural sites. More-oxidized and less-oxidized oxygenated organic aerosol (MO-OOA and LO-OOA, respectively) are dominant fractions (47-79 %) of OA in all sites. MO-OOA correlates well with ozone in summer but not in winter, indicating MO-OOA sources may vary with seasons. LO-OOA, which reaches a daily maximum at night, correlates better with estimated nitrate functionality from organic nitrates than total nitrates. Based

  18. Improving aerosol interaction with clouds and precipitation in a regional chemical weather modeling system

    Directory of Open Access Journals (Sweden)

    C. Zhou

    2016-01-01

    Full Text Available A comprehensive aerosol–cloud–precipitation interaction (ACI scheme has been developed under a China Meteorological Administration (CMA chemical weather modeling system, GRAPES/CUACE (Global/Regional Assimilation and PrEdiction System, CMA Unified Atmospheric Chemistry Environment. Calculated by a sectional aerosol activation scheme based on the information of size and mass from CUACE and the thermal-dynamic and humid states from the weather model GRAPES at each time step, the cloud condensation nuclei (CCN are interactively fed online into a two-moment cloud scheme (WRF Double-Moment 6-class scheme – WDM6 and a convective parameterization to drive cloud physics and precipitation formation processes. The modeling system has been applied to study the ACI for January 2013 when several persistent haze-fog events and eight precipitation events occurred.The results show that aerosols that interact with the WDM6 in GRAPES/CUACE obviously increase the total cloud water, liquid water content, and cloud droplet number concentrations, while decreasing the mean diameters of cloud droplets with varying magnitudes of the changes in each case and region. These interactive microphysical properties of clouds improve the calculation of their collection growth rates in some regions and hence the precipitation rate and distributions in the model, showing 24 to 48 % enhancements of threat score for 6 h precipitation in almost all regions. The aerosols that interact with the WDM6 also reduce the regional mean bias of temperature by 3 °C during certain precipitation events, but the monthly means bias is only reduced by about 0.3 °C.

  19. Aerosol data assimilation in the chemical transport model MOCAGE during the TRAQA/ChArMEx campaign: aerosol optical depth

    Science.gov (United States)

    Sič, Bojan; El Amraoui, Laaziz; Piacentini, Andrea; Marécal, Virginie; Emili, Emanuele; Cariolle, Daniel; Prather, Michael; Attié, Jean-Luc

    2016-11-01

    In this study, we describe the development of the aerosol optical depth (AOD) assimilation module in the chemistry transport model (CTM) MOCAGE (Modèle de Chimie Atmosphérique à Grande Echelle). Our goal is to assimilate the spatially averaged 2-D column AOD data from the National Aeronautics and Space Administration (NASA) Moderate-resolution Imaging Spectroradiometer (MODIS) instrument, and to estimate improvements in a 3-D CTM assimilation run compared to a direct model run. Our assimilation system uses 3-D-FGAT (first guess at appropriate time) as an assimilation method and the total 3-D aerosol concentration as a control variable. In order to have an extensive validation dataset, we carried out our experiment in the northern summer of 2012 when the pre-ChArMEx (CHemistry and AeRosol MEditerranean EXperiment) field campaign TRAQA (TRAnsport à longue distance et Qualité de l'Air dans le bassin méditerranéen) took place in the western Mediterranean basin. The assimilated model run is evaluated independently against a range of aerosol properties (2-D and 3-D) measured by in situ instruments (the TRAQA size-resolved balloon and aircraft measurements), the satellite Spinning Enhanced Visible and InfraRed Imager (SEVIRI) instrument and ground-based instruments from the Aerosol Robotic Network (AERONET) network. The evaluation demonstrates that the AOD assimilation greatly improves aerosol representation in the model. For example, the comparison of the direct and the assimilated model run with AERONET data shows that the assimilation increased the correlation (from 0.74 to 0.88), and reduced the bias (from 0.050 to 0.006) and the root mean square error in the AOD (from 0.12 to 0.07). When compared to the 3-D concentration data obtained by the in situ aircraft and balloon measurements, the assimilation consistently improves the model output. The best results as expected occur when the shape of the vertical profile is correctly simulated by the direct model. We

  20. Organic composition and source apportionment of fine aerosol at Monterrey, Mexico, based on organic markers

    Directory of Open Access Journals (Sweden)

    Y. Mancilla

    2016-01-01

    burning events. Finally, source attribution results obtained using the CMB (chemical mass balance model indicate that emissions from motor vehicle exhausts are the most important, accounting for the 64 % of the PM2.5, followed by meat-cooking operations with 31 % The vegetative detritus and biomass burning had the smallest contribution (2.2 % of the PM2.5. To our knowledge, this is only the second study to explore the organic composition and source apportionment of fine organic aerosol based on molecular markers in Mexico and the first for the MMA. Particularly molecular marker were quantified by solvent extraction with dichloromethane, derivatization, and gas chromatography with mass spectrometry (GC/MS.

  1. Aerosol composition, oxidation properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation summit study

    Science.gov (United States)

    Xu, W. Q.; Sun, Y. L.; Chen, C.; Du, W.; Han, T. T.; Wang, Q. Q.; Fu, P. Q.; Wang, Z. F.; Zhao, X. J.; Zhou, L. B.; Ji, D. S.; Wang, P. C.; Worsnop, D. R.

    2015-12-01

    The mitigation of air pollution in megacities remains a great challenge because of the complex sources and formation mechanisms of aerosol particles. The 2014 Asia-Pacific Economic Cooperation (APEC) summit in Beijing serves as a unique experiment to study the impacts of emission controls on aerosol composition, size distributions, and oxidation properties. Herein, a high-resolution time-of-flight aerosol mass spectrometer was deployed in urban Beijing for real-time measurements of size-resolved non-refractory submicron aerosol (NR-PM1) species from 14 October to 12 November 2014, along with a range of collocated measurements. The average (±σ) PM1 was 41.6 (±38.9) μg m-3 during APEC, which was decreased by 53 % compared with that before APEC. The aerosol composition showed substantial changes owing to emission controls during APEC. Secondary inorganic aerosol (SIA: sulfate + nitrate + ammonium) showed significant reductions of 62-69 %, whereas organics presented much smaller decreases (35 %). The results from the positive matrix factorization of organic aerosol (OA) indicated that highly oxidized secondary organic aerosol (SOA) showed decreases similar to those of SIA during APEC. However, primary organic aerosol (POA) from cooking, traffic, and biomass-burning sources were comparable to those before APEC, indicating the presence of strong local source emissions. The oxidation properties showed corresponding changes in response to OA composition. The average oxygen-to-carbon level during APEC was 0.36 (±0.10), which is lower than the 0.43 (±0.13) measured before APEC, demonstrating a decrease in the OA oxidation degree. The changes in size distributions of primary and secondary species varied during APEC. SIA and SOA showed significant reductions in large accumulation modes with peak diameters shifting from ~ 650 to 400 nm during APEC, whereas those of POA remained relatively unchanged. The changes in aerosol composition, size distributions, and oxidation

  2. Hybrid chemical vapour and nanoceramic aerosol assisted deposition for multifunctional nanocomposite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Warwick, Michael E.A.; Dunnill, Charles W.; Goodall, Josie; Darr, Jawwad A.; Binions, Russell, E-mail: uccarbi@ucl.ac.uk

    2011-07-01

    Hybrid atmospheric pressure chemical vapour and aerosol assisted deposition via the reaction of vanadium acetylacetonate and a suspension of preformed titanium dioxide or cerium dioxide nanoparticles, led to the production of vanadium dioxide nanocomposite thin films on glass substrates. The preformed nanoparticle oxides used for the aerosol were synthesised using a continuous hydrothermal flow synthesis route involving the rapid reaction of a metal salt solution with a flow of supercritical water in a flow reactor. Multifunctional nanocomposite thin films from the hybrid deposition process were characterised using scanning electron microscopy, X-ray diffraction and X-ray photoelectron spectroscopy. The functional properties of the films were evaluated using variable temperature optical measurements to assess thermochromic behaviour and methylene blue photodecolourisation experiments to assess photocatalytic activity. The tests show that the films are multifunctional in that they are thermochromic (having a large change in infra-red reflectivity upon exceeding the thermochromic transition temperature) and have significant photocatalytic activity under irradiation with 254 nm light.

  3. Changes in background aerosol composition in Finland during polluted and clean periods studied by TEM/EDX individual particle analysis

    Directory of Open Access Journals (Sweden)

    J. V. Niemi

    2006-01-01

    Full Text Available Aerosol samples were collected at a rural background site in southern Finland in May 2004 during pollution episode (PM1~16 µg m−3, backward air mass trajectories from south-east, intermediate period (PM1~5 µg m−3, backtrajectories from north-east and clean period (PM1~2 µg m−3, backtrajectories from north-west/north. The elemental composition, morphology and mixing state of individual aerosol particles in three size fractions were studied using transmission electron microscopy (TEM coupled with energy dispersive X-ray (EDX microanalyses. The TEM/EDX results were complemented with the size-segregated bulk chemical measurements of selected ions and organic and elemental carbon. Many of the particles in PM0.2–1 and PM1–3.3 size fractions were strongly internally mixed with S, C and/or N. The major particle types in PM0.2–1 samples were 1 soot and 2 (ammoniumsulphates and their mixtures with variable amounts of C, K, soot and/or other inclusions. Number proportions of those two particle groups in PM0.2–1 samples were 0–12% and 83–97%, respectively. During the pollution episode, the proportion of Ca-rich particles was very high (26–48% in the PM1–3.3 and PM3.3–11 samples, while the PM0.2–1 and PM1–3.3 samples contained elevated proportions of silicates (22–33%, metal oxides/hydroxides (1–9% and tar balls (1–4%. These aerosols originated mainly from polluted areas of Eastern Europe, and some open biomass burning smoke was also brought by long-range transport. During the clean period, when air masses arrived from the Arctic Ocean, PM1–3.3 samples contained mainly sea salt particles (67–89% with a variable rate of Cl substitution (mainly by NO3−. During the intermediate period, the PM1–3.3 sample contained porous (sponge-like Na-rich particles (35% with abundant S, K and O. They might originate from the burning of wood pulp wastes of paper industry. The proportion of biological particles and C-rich fragments

  4. Fabrication and characterization of aerosol-jet printed strain sensors for multifunctional composite structures

    Science.gov (United States)

    Zhao, Da; Liu, Tao; Zhang, Mei; Liang, Richard; Wang, Ben

    2012-11-01

    Traditional multifunctional composite structures are produced by embedding parasitic parts, such as foil sensors, optical fibers and bulky connectors. As a result, the mechanical properties of the composites, especially the interlaminar shear strength (ILSS), could be largely undermined. In the present study, we demonstrated an innovative aerosol-jet printing technology for printing electronics inside composite structures without degrading the mechanical properties. Using the maskless fine feature deposition (below 10 μm) characteristics of this printing technology and a pre-cure protocol, strain sensors were successfully printed onto carbon fiber prepregs to enable fabricating composites with intrinsic sensing capabilities. The degree of pre-cure of the carbon fiber prepreg on which strain sensors were printed was demonstrated to be critical. Without pre-curing, the printed strain sensors were unable to remain intact due to the resin flow during curing. The resin flow-induced sensor deformation can be overcome by introducing 10% degree of cure of the prepreg. In this condition, the fabricated composites with printed strain sensors showed almost no mechanical degradation (short beam shearing ILSS) as compared to the control samples. Also, the failure modes examined by optical microscopy showed no difference. The resistance change of the printed strain sensors in the composite structures were measured under a cyclic loading and proved to be a reliable mean strain gauge factor of 2.2 ± 0.06, which is comparable to commercial foil metal strain gauge.

  5. Aircraft measurements over Europe of an air pollution plume from Southeast Asia – aerosol and chemical characterization

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2007-01-01

    Full Text Available An air pollution plume from Southern and Eastern Asia, including regions in India and China, was predicted by the FLEXPART particle dispersion model to arrive in the upper troposphere over Europe on 24–25 March 2006. According to the model, the plume was exported from Southeast Asia six days earlier, transported into the upper troposphere by a warm conveyor belt, and travelled to Europe in a fast zonal flow. This is confirmed by the retrievals of carbon monoxide (CO from AIRS satellite measurements, which are in excellent agreement with the model results over the entire transport history. The research aircraft DLR Falcon was sent into this plume west of Spain on 24 March and over Southern Europe on 25 March. On both days, the pollution plume was found close to the predicted locations and, thus, the measurements taken allowed the first detailed characterization of the aerosol content and chemical composition of an anthropogenic pollution plume after a nearly hemispheric transport event. The mixing ratios of CO, reactive nitrogen (NOy and ozone (O3 measured in the Asian plume were all clearly elevated over a background that was itself likely elevated by Asian emissions: CO by 17–34 ppbv on average (maximum 60 ppbv and O3 by 2–9 ppbv (maximum 22 ppbv. Positive correlations existed between these species, and a ΔO3/ΔCO slope of 0.25 shows that ozone was formed in this plume, albeit with moderate efficiency. Nucleation mode and Aitken particles were suppressed in the Asian plume, whereas accumulation mode aerosols were strongly elevated and correlated with CO. The suppression of the nucleation mode was likely due to the large pre-existing aerosol surface of the transported larger particles. Super-micron particles, likely desert dust, were found in part of the Asian pollution plume and also in surrounding cleaner air. The aerosol light absorption coefficient was enhanced in the plume (average values for individual plume encounters 0.25–0

  6. Boundary layer aerosol size distribution, mass concentration and mineralogical composition in Morocco and at Cape Verde Islands during SAMUM I-II

    Science.gov (United States)

    Kandler, K.; Lieke, K.

    2009-04-01

    The Saharan Mineral Dust Experiment (SAMUM) is dedicated to the understanding of the radiative effects of mineral dust. Two major field experiments were performed: A first joint field campaign took place at Ouarzazate and near Zagora, southern Morocco, from May 13 to June 7, 2006. Aircraft and ground based measurements of aerosol physical and chemical properties were carried out to collect a data set of surface and atmospheric columnar information within a major dust source. This data set combined with satellite data provides the base of the first thorough columnar radiative closure tests in Saharan dust. A second field experiment was conducted during January-February 2008, in the Cape Verde Islands region, where about 300 Tg of mineral dust are transported annually from Western Africa across the Atlantic towards the Caribbean Sea and the Amazon basin. Along its transport path, the mineral dust is expected to influence significantly the radiation budget - by direct and indirect effects - of the subtropical North Atlantic. We are lacking a radiative closure in the Saharan air plume. One focus of the investigation within the trade wind region is the spatial distribution of mixed dust/biomass/sea salt aerosol and their physical and chemical properties, especially with regard to radiative effects. We report on measurements of size distributions, mass concentrations and mineralogical composition conducted at the Zagora (Morocco) and Praia (Cape Verde islands) ground stations. The aerosol size distribution was measured from 20 nm to 500

  7. Advancing Consumer Product Composition and Chemical ...

    Science.gov (United States)

    This presentation describes EPA efforts to collect, model, and measure publically available consumer product data for use in exposure assessment. The development of the ORD Chemicals and Products database will be described, as will machine-learning based models for predicting chemical function. Finally, the talk describes new mass spectrometry-based methods for measuring chemicals in formulation and articles. This presentation is an invited talk to the ICCA-LRI workshop "Fit-For-Purpose Exposure Assessments For Risk-Based Decision Making". The talk will share EPA efforts to characterize the components of consumer products for use in exposure assessment with the international exposure science community.

  8. Chemical modification of flax reinforced polypropylene composites

    CSIR Research Space (South Africa)

    Jacob John, Maya

    2009-04-01

    Full Text Available This paper presents an experimental study on the static and dynamic mechanical properties of nonwoven based flax fibre reinforced polypropylene composites. The effect of zein modification on flax fibres is also reported. Flax nonwovens were treated...

  9. Atmospheric aerosol compositions and sources at two national background sites in northern and southern China

    Directory of Open Access Journals (Sweden)

    Q. Zhu

    2016-08-01

    Full Text Available Although China's severe air pollution has become a focus in the field of atmospheric chemistry and the mechanisms of urban air pollution there have been researched extensively, few field sampling campaigns have been conducted at remote background sites in China, where air pollution characteristics on a larger scale are highlighted. In this study, an Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS, together with an Aethalometer, was deployed at two of China's national background sites in northern (Lake Hongze site; 33.23° N, 118.33° E; altitude 21 m and southern (Mount Wuzhi site; 18.84° N, 109.49° E; altitude 958 m China in the spring seasons in 2011 and 2015, respectively, in order to characterize submicron aerosol composition and sources. The campaign-average PM1 concentration was 36.8 ± 19.8 µg m−3 at the northern China background (NCB site, which was far higher than that at the southern China background (SCB site (10.9 ± 7.8 µg m−3. Organic aerosol (OA (27.2 %, nitrate (26.7 %, and sulfate (22.0 % contributed the most to the PM1 mass at NCB, while OA (43.5 % and sulfate (30.5 % were the most abundant components of the PM1 mass at SCB, where nitrate only constituted a small fraction (4.7 % and might have contained a significant amount of organic nitrates (5–11 %. The aerosol size distributions and organic aerosol elemental compositions all indicated very aged aerosol particles at both sites. The OA at SCB was more oxidized with a higher average oxygen to carbon (O ∕ C ratio (0.98 than that at NCB (0.67. Positive matrix factorization (PMF analysis was used to classify OA into three components, including a hydrocarbon-like component (HOA, attributed to fossil fuel combustion and two oxygenated components (OOA1 and OOA2, attributed to secondary organic aerosols from different source areas at NCB. PMF analysis at SCB identified a semi-volatile oxygenated

  10. Size-specific composition of aerosols in the El Chichon volcanic cloud

    Science.gov (United States)

    Woods, D. C.; Chuan, R. L.

    1983-01-01

    A NASA U-2 research aircraft flew sampling missions in April, May, July, November, and December 1982 aimed at obtaining in situ data in the stratospheric cloud produced from the March-April 1982 El Chichon eruptions. Post flight analyses provided information on the aerosol composition and morphology. The particles ranged in size from smaller than 0.05 m to larger than 20 m diameter and were quite complex in composition. In the April, May, and July samples the aerosol mass was dominated by magmatic and lithic particles larger than about 3 m. The submicron particles consisted largely of sulfuric acid. Halite particles, believed to be related to a salt dome beneath El Chichon, were collected in the stratosphere in April and May. On the July 23 flight, copper-zinc oxide particles were collected. In July, November, and December, in addition to the volcanic ash and acid particles, carbon-rich particles smaller than about 0.1 m aerodynamic diameter were abundant.

  11. Origins and composition of fine atmospheric carbonaceous aerosol in the Sierra Nevada Mountains, California

    Directory of Open Access Journals (Sweden)

    D. R. Worton

    2011-10-01

    Full Text Available In this paper we report chemically resolved measurements of organic aerosol (OA and related tracers during the Biosphere Effects on Aerosols and Photochemistry Experiment (BEARPEX at the Blodgett Forest Research Station, California from 15 August–10 October 2007. OA contributed the majority of the mass to the fine atmospheric particles and was predominately oxygenated (OOA. The highest concentrations of OA were during sporadic wildfire influence when aged plumes were impacting the site. In situ measurements of particle phase molecular markers were dominated by secondary compounds and along with gas phase compounds could be categorized into six factors or sources: (1 aged biomass burning emissions and oxidized urban emissions, (2 oxidized urban emissions (3 oxidation products of monoterpene emissions, (4 monoterpene emissions, (5 anthropogenic emissions and (6 local methyl chavicol emissions and oxidation products. There were multiple biogenic components that contributed to OA at this site whose contributions varied diurnally, seasonally and in response to changing meteorological conditions, e.g. temperature and precipitation events. Concentrations of isoprene oxidation products were larger when temperatures were higher during the first half of the campaign (15 August–12 September due to more substantial emissions of isoprene and enhanced photochemistry. The oxidation of methyl chavicol, an oxygenated terpene emitted by ponderosa pine trees, contributed similarly to OA throughout the campaign. In contrast, the abundances of monoterpene oxidation products in the particle phase were greater during the cooler conditions in the latter half of the campaign (13 September–10 October, even though emissions of the precursors were lower, although the mechanism is not known. OA was correlated with the anthropogenic tracers 2-propyl nitrate and carbon monoxide (CO, consistent with previous observations, while being comprised of mostly non-fossil carbon

  12. Variation in the chemical composition, physical characteristics and ...

    African Journals Online (AJOL)

    Variation in the chemical composition, physical characteristics and energy values of cereal grains produced in the Western Cape area of South Africa. TS Brand, CW Cruywagen, DA Brandt, M Viljoen, WW Burger ...

  13. Antimicrobial activity and chemical compositions of Turkish propolis ...

    African Journals Online (AJOL)

    negative bacteria and its chemical composition were evaluated by the method of agar-well diffusion and GC-MS, respectively. Some typical compounds samples were identified in the propolis samples. Principal component analysis revealed that the ...

  14. WOOD STOVE EMISSIONS: PARTICLE SIZE AND CHEMICAL COMPOSITION

    Science.gov (United States)

    The report summarizes wood stove particle size and chemical composition data gathered to date. [NOTE: In 1995, EPA estimated that residential wood combustion (RWC), including fireplaces, accounted for a significant fraction of national particulate matter with aerodynamic diameter...

  15. Relationship between bacterial density and chemical composition of ...

    African Journals Online (AJOL)

    TUOYO

    Key words: Bacterial density, chemical composition, oxidation pond, sewage, tropics. INTRODUCTION ... pond for about two weeks during which algae, bacteria and other organisms act ..... Chloride can serve as nutrient for micro- organisms ...

  16. Chemical compositions and antimicrobial activity of twig essential ...

    African Journals Online (AJOL)

    Aghomotsegin

    2016-03-09

    Mar 9, 2016 ... The chemical composition of twig essential oils of Xylopia malayana, Xylopia elliptica and Xylopia fusca were analyzed ... brown or dark green in colors and fragrant. .... extraction used and geographic origin of plant studied.

  17. An investigation into the chemical composition of alternative invertebrate prey

    NARCIS (Netherlands)

    Oonincx, D.G.A.B.; Dierenfeld, E.S.

    2012-01-01

    The aim of this study was to determine the chemical composition of eight invertebrate species and evaluate their suitability as alternative prey. The species selected were rusty red cockroaches (Blatta lateralis), six-spotted cockroaches (Eublaberus distanti), Madagascar hissing cockroaches

  18. Chemical composition and microbial load of cheese produced using ...

    African Journals Online (AJOL)

    Aframomum sceptrum) on the chemical composition and microbial load of cheese was evaluated in a Completely Randomized Design. Cheese produced with 1% bear berry (Aframomum sceptrum) had the highest (P < 0.05) crude protein content ...

  19. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.

    Science.gov (United States)

    McNeill, V Faye

    2015-02-03

    Over the past decade, it has become clear that aqueous chemical processes occurring in cloud droplets and wet atmospheric particles are an important source of organic atmospheric particulate matter. Reactions of water-soluble volatile (or semivolatile) organic gases (VOCs or SVOCs) in these aqueous media lead to the formation of highly oxidized organic particulate matter (secondary organic aerosol; SOA) and key tracer species, such as organosulfates. These processes are often driven by a combination of anthropogenic and biogenic emissions, and therefore their accurate representation in models is important for effective air quality management. Despite considerable progress, mechanistic understanding of some key aqueous processes is still lacking, and these pathways are incompletely represented in 3D atmospheric chemistry and air quality models. In this article, the concepts, historical context, and current state of the science of aqueous pathways of SOA formation are discussed.

  20. PHYSICOCHEMICAL PROPERTIES OF THE SOLID COMPONENT OF WELDING AEROSOL. I. PHASE COMPOSITION

    Directory of Open Access Journals (Sweden)

    T. L. Rakitskaya

    2015-02-01

    Full Text Available The phase composition of the solid component of welding aerosol (SCWA obtained as a result of metal welding with electrodes of ANO-4 and TsL-11 types manufactured according to ISO 2560 E432R 21 and ISO E19.9NbB20 standards, respectively, and differing in com-position of their wires and coatings was determined with the help of a Siemens D500 diffrac- a Siemens D500 diffrac-tometer supplied with the manufacturer’s software. Four and thirteen phases were identified in SCWA-ANO-4 and SCWA-TsL-11, respectively. Evaluation of crystallite sizes by the use of the Scherer equation showed that the crystallites formed in the course of welding with a TsL-11 type electrode are larger than those in the case of an ANO-4 type one: 65-89 nm and 30-49 nm, respectively.

  1. Evaluation of chemical composition of defect wine distillates

    OpenAIRE

    Mihaljević Žulj, Marin; Posavec, Barbara; Škvorc, Melanija; Tupajić, Pavica

    2016-01-01

    The aim of this study was to evaluate the chemical composition of the distillate obtained from wine with off-flavour. The chemical composition of wine distillates obtained by distillation of Chardonnay wine with oxidation off-flavour was investigated. Distillation of wine was carried out using a simple distillation pot still by double distillation and separation the different portion of the first fraction. Volatile compounds of wine and wine distillates (acetaldehyde, ethyl acetate, methanol ...

  2. Nanostructured Thin Film Synthesis by Aerosol Chemical Vapor Deposition for Energy Storage Applications

    Science.gov (United States)

    Chadha, Tandeep S.

    Renewable energy sources offer a viable solution to the growing energy demand while mitigating concerns for greenhouse gas emissions and climate change. This has led to a tremendous momentum towards solar and wind-based energy harvesting technologies driving efficiencies higher and costs lower. However, the intermittent nature of these energy sources necessitates energy storage technologies, which remain the Achilles heel in meeting the renewable energy goals. This dissertation focusses on two approaches for addressing the needs of energy storage: first, targeting direct solar to fuel conversion via photoelectrochemical water-splitting and second, improving the performance of current rechargeable batteries by developing new electrode architectures and synthesis processes. The aerosol chemical vapor deposition (ACVD) process has emerged as a promising single-step approach for nanostructured thin film synthesis directly on substrates. The relationship between the morphology and the operating parameters in the process is complex. In this work, a simulation based approach has been developed to understand the relationship and acquire the ability of predicting the morphology. These controlled nanostructured morphologies of TiO2 , compounded with gold nanoparticles of various shapes, are used for solar water-splitting applications. Tuning of light absorption in the visible-light range along with reduced electron-hole recombination in the composite structures has been demonstrated. The ACVD process is further extended to a novel single-step synthesis of nanostructured TiO2 electrodes directly on the current collector for applications as anodes in lithium-ion batteries, mainly for electric vehicles and hybrid electric vehicles. The effect of morphology of the nanostructures has been investigated via experimental studies and electrochemical transport modelling. Results demonstrate the exceptional performance of the single crystal one-dimensional nanostructures over granular

  3. Chemical characterization and source apportionment of submicron aerosols measured in Senegal during the 2015 SHADOW campaign

    Science.gov (United States)

    Rivellini, Laura-Hélèna; Chiapello, Isabelle; Tison, Emmanuel; Fourmentin, Marc; Féron, Anaïs; Diallo, Aboubacry; N'Diaye, Thierno; Goloub, Philippe; Canonaco, Francesco; Prévôt, André Stephan Henry; Riffault, Véronique

    2017-09-01

    The present study offers the first chemical characterization of the submicron (PM1) fraction in western Africa at a high time resolution, thanks to collocated measurements of nonrefractory (NR) species with an Aerosol Chemical Speciation Monitor (ACSM), black carbon and iron concentrations derived from absorption coefficient measurements with a 7-wavelength Aethalometer, and total PM1 determined by a TEOM-FDMS (tapered element oscillating microbalance-filtered dynamic measurement system) for mass closure. The field campaign was carried out over 3 months (March to June 2015) as part of the SHADOW (SaHAran Dust Over West Africa) project at a coastal site located in the outskirts of the city of Mbour, Senegal. With an averaged mass concentration of 5.4 µg m-3, levels of NR PM1 in Mbour were 3 to 10 times lower than those generally measured in urban and suburban polluted environments. Nonetheless the first half of the observation period was marked by intense but short pollution events (NR PM1 concentrations higher than 15 µg m-3), sea breeze phenomena and Saharan desert dust outbreaks (PM10 up to 900 µg m-3). During the second half of the campaign, the sampling site was mainly under the influence of marine air masses. The air masses on days under continental and sea breeze influences were dominated by organics (36-40 %), whereas sulfate particles were predominant (40 %) for days under oceanic influence. Overall, measurements showed that about three-quarters of the total PM1 were explained by NR PM1, BC (black carbon) and Fe (a proxy for dust) concentrations, leaving approximately one-quarter for other refractory species. A mean value of 4.6 % for the Fe / PM1 ratio was obtained. Source apportionment of the organic fraction, using positive matrix factorization (PMF), highlighted the impact of local combustion sources, such as traffic and residential activities, which contribute on average to 52 % of the total organic fraction. A new organic aerosol (OA) source

  4. Dust in the Sky: Atmospheric Composition. Modeling of Aerosol Optical Thickness

    Science.gov (United States)

    Chin, Mian; Ginoux, Paul; Kinne, Stefan; Torres, Omar; Holben, Brent; Duncan, Bryan; Martin, Randall; Logan, Jennifer; Higurashi, Akiko; Nakajima, Teruyuki

    2000-01-01

    Aerosol is any small particle of matter that rests suspended in the atmosphere. Natural sources, such as deserts, create some aerosols; consumption of fossil fuels and industrial activity create other aerosols. All the microscopic aerosol particles add up to a large amount of material floating in the atmosphere. You can see the particles in the haze that floats over polluted cities. Beyond this visible effect, aerosols can actually lower temperatures. They do this by blocking, or scattering, a portion of the sun's energy from reaching the surface. Because of this influence, scientists study the physical properties of atmospheric aerosols. Reliable numerical models for atmospheric aerosols play an important role in research.

  5. Transforming a Simple Commercial Glue into Highly Robust Superhydrophobic Surfaces via Aerosol-Assisted Chemical Vapor Deposition.

    Science.gov (United States)

    Zhuang, Aoyun; Liao, Ruijin; Lu, Yao; Dixon, Sebastian C; Jiamprasertboon, Arreerat; Chen, Faze; Sathasivam, Sanjayan; Parkin, Ivan P; Carmalt, Claire J

    2017-12-06

    Robust superhydrophobic surfaces were synthesized as composites of the widely commercially available adhesives epoxy resin (EP) and polydimethylsiloxane (PDMS). The EP layer provided a strongly adhered micro/nanoscale structure on the substrates, while the PDMS was used as a post-treatment to lower the surface energy. In this study, the depositions of EP films were taken at a range of temperatures, deposition times, and substrates via aerosol-assisted chemical vapor deposition (AACVD). A novel dynamic deposition temperature approach was developed to create multiple-layered periodic micro/nanostructures that significantly improved the surface mechanical durability. Water droplet contact angles (CA) of 160° were observed with droplet sliding angles (SA) frequently UV testing (365 nm, 3.7 mW/cm 2 , 120 h) were carried out to exhibit the environmental stability of the films. Self-cleaning behavior was demonstrated in clearing the surfaces of various contaminating powders and aqueous dyes. This facile and flexible method for fabricating highly durable superhydrophobic polymer films points to a promising future for AACVD in their scalable and low-cost production.

  6. KNOWLEDGE DATABASE ON CHEMICAL AND AEROSOL HAZARDS CHEMPYŁ AVAILABLE IN CIOP-PIB PORTAL

    Directory of Open Access Journals (Sweden)

    Elżbieta Dobrzyńska

    2016-12-01

    Full Text Available CHEMPYŁ database, which is available on the website of the Central Institute for Labour Protection – National Research Institute, is a source of information for employers, employees and specialists of health and safety in the field of chemical and aerosol hazards at the workplace. The most useful materials in this field, collected in one place in the database are aimed to help in the efficient management of occupational risks associated with the presence of hazardous chemical substances and its mixtures in the working environment. The online CHEMPYŁ database contains sets of definitions, legal acts, database of hazardous chemicals and dusts, as well as the measurement results in form of sixteen separate sections and subsections. The database of measurement results is a collection of practical information on exposure to harmful chemical substances, the results of their qualitative and quantitative measurements in air at the exemplary workplaces or exemplary technological processes from various economy sectors and occupational risk assessment connected with it. The database on hazardous chemicals covers over five hundred and sixty substances, mainly with fixed values of maximum admissible concentrations in Poland, but also more than a thousand substances classified as carcinogenic and mutagenic according to the CLP Regulation, and this material is continuously expanded. Extensive materials are collected in the sections on assessment of occupational exposure to chemicals and dust, as well as risk assessment associated with their use and/or presence at the workplace. Apart from the materials on risk assessment in inhalation and dermal exposure or risk of explosion and fire, data were complemented with non-measurement methods for assessing exposure and occupational risk for carcinogenic and mutagenic substances, and methods to assess the risks associated with chemical substances of nanometric dimensions. Forum, which was created in 2015, allows

  7. Chemical composition of essential oil of Psidium cattleianum var ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the essential oil composition of Psidium cattleianum var. lucidum from South Africa. The essential oils were extracted by hydrodistillation and the components were identified by gas chromatography coupled to mass spectrometry (GC-MS) to determine the chemical composition of the ...

  8. Chemical composition and nutritional value of boiled Christmas ...

    African Journals Online (AJOL)

    A study was conducted to determine the chemical composition and the nutritive value of boiled Christmas bush (Alchornea cordifolia) for starter broiler chickens. Dried Christmas bush fruits (Capsules + seed) were boiled for 30 minutes, sundried and ground into meal. The meal was analyzed for proximate composition and ...

  9. Chemical composition of the early universe

    NARCIS (Netherlands)

    Harwit, M; Spaans, M

    2003-01-01

    A prediction of standard inflationary cosmology is that the elemental composition of the medium out of which the earliest stars and galaxies condensed consisted primarily of hydrogen and helium (4)He, with small admixtures of deuterium, lithium (7)Li, and (3)He. The most redshifted quasars,

  10. Source apportionment of submicron organic aerosol collected from Atlanta, Georgia, during 2014-2015 using the aerosol chemical speciation monitor (ACSM)

    Science.gov (United States)

    Rattanavaraha, Weruka; Canagaratna, Manjula R.; Budisulistiorini, Sri Hapsari; Croteau, Philip L.; Baumann, Karsten; Canonaco, Francesco; Prevot, Andre S. H.; Edgerton, Eric S.; Zhang, Zhenfa; Jayne, John T.; Worsnop, Douglas R.; Gold, Avram; Shaw, Stephanie L.; Surratt, Jason D.

    2017-10-01

    The Aerodyne Aerosol Chemical Speciation Monitor (ACSM) was redeployed at the Jefferson Street (JST) site in downtown Atlanta, Georgia (GA) for 1 year (March 20, 2014-February 08, 2015) to chemically characterize non-refractory submicron particulate matter (NR-PM1) in near real-time and to assess whether organic aerosol (OA) types and amounts change from year-to-year. Submicron organic aerosol (OA) mass spectra were analyzed by season using multilinear engine (ME-2) to apportion OA subtypes to potential sources and chemical processes. A suite of real-time collocated measurements from the Southeastern Aerosol Research and Characterization (SEARCH) network was compared with ME-2 factor solutions to aid in the interpretation of OA subtypes during each season. OA tracers measured from high-volume filter samples using gas chromatography interfaced with electron ionization-mass spectrometry (GC/EI-MS) also aided in identifying OA sources. The initial application of ME-2 to the yearlong ACSM dataset revealed that OA source apportionment by season was required to better resolve sporadic OA types. Spring and fall OA mass spectral datasets were separated into finer periods to capture potential OA sources resulting from non-homogeneous emissions during transitioning periods. NR-PM1 was highest in summer (16.7 ± 8.4 μg m-3) and lowest in winter (8.0 ± 5.7 μg m-3), consistent with prior studies. OA dominated NR-PM1 mass (56-74% on average) in all seasons. Hydrocarbon-like OA (HOA) from primary emissions was observed in all seasons, averaging 5-22% of total OA mass. Strong correlations of HOA with carbon monoxide (CO) (R = 0.71-0.88) and oxides of nitrogen (NOx) (R = 0.55-0.79) indicated that vehicular traffic was the likely source. Biomass burning OA (BBOA) was observed in all seasons, with lower contributions (2%) in summer and higher in colder seasons (averaging 8-20% of total OA mass). BBOA correlated strongly with levoglucosan (R = 0.78-0.95) during colder seasons

  11. Ethylene vinylacetate copolymer and nanographite composite as chemical vapour sensor

    International Nuclear Information System (INIS)

    Stepina, Santa; Sakale, Gita; Knite, Maris

    2013-01-01

    Polymer-nanostructured carbon composite as chemical vapour sensor is described, made by the dissolution method of a non-conductive polymer, ethylene vinylacetate copolymer, mixed with conductive nanographite particles (carbon black). Sensor exhibits relative electrical resistance change in chemical vapours, like ethanol and toluene. Since the sensor is relatively cheap, easy to fabricate, it can be used in air quality monitoring and at industries to control hazardous substance concentration in the air, for example, to protect workers from exposure to chemical spills

  12. A new material for chemical industry - wood polymer composites

    International Nuclear Information System (INIS)

    Majali, A.B.; Patil, N.D.

    1979-01-01

    The paper outlines the advantages of the radiation cured wood-polymer composites (WPC) for application in certain critical areas of chemical industry. The wood-polymer composite made filterpress frames and plates were tested in a chemical plant. The entire exercise is elaborated. The radiation cured wood exhibited a considerably extended useful life in alkaline and acidic solutions. Composites based on teak wood showed a remarkable improvement with a nominal polymer loading of 10%. The reports of accelerated aging test of WPC are also presented. (auth.)

  13. Chemical Composition, antioxidant activity, functional properties and ...

    African Journals Online (AJOL)

    ajl yemi

    2011-11-23

    Nov 23, 2011 ... matter (48.00 ± 3.96%) and starch (31.10 ± 0.44%) but was low in phenol (1.42 ± 0.03%), protein (3.15 ±. 0.042%), ash .... protein diet need. The unripe plantain flour was found to contain low quantities of ash which reflected its mineral contents. Table 2. Phytochemical composition of unripe plantain flour.

  14. Graphene composites containing chemically bonded metal oxides

    Indian Academy of Sciences (India)

    the oxide layers are chemically bonded to graphene (Zhang ... sists of three glass chambers, one to contain the metal halide. (TiCl4, SiCl4 ... In this step, the metal halide reacts with the oxygen function- ... 1·0 g of FeCl3 were vigorously stirred in 30 ml of ethylene ... Reaction with water vapour results in hydrolysis of the un-.

  15. Chemical and Physical Properties of Individual Aerosol Particles Characterized in Sacramento, CA during CARES Field Campaign

    Science.gov (United States)

    Zelenyuk, A.; Beranek, J.; Vaden, T.; Imre, D. G.; Zaveri, R. A.

    2011-12-01

    We present results of measurements conducted by our Single Particle Mass Spectrometer, SPLAT II, in Sacramento, CA over the month of June 2010. SPLAT II measured the size of 195 million particles, and compositions of 10 million particles. In addition to size and composition, SPLAT II simultaneously measured size, density and composition of 121,000 individual particles. These measurements were conducted 2 - 3 times per day, depending on conditions. The data show that throughout the day particles were relatively small (<200 nm), and the vast majority were composed of oxygenated organics mixed with various amounts of sulfate. In addition, we characterized fresh and processed soot, biomass burning aerosol, organic amines, fresh and processed sea salt, and few dust particles. The data show a reproducible diurnal pattern in aerosol size distributions, number concentrations, and compositions. Early in the day, number concentrations were low, particles were very small, and the size distributions peaked at ~70 nm. At this time of the day, 80 nm particles had a density of 1.3 g cm-3; while the density of 200 nm particles was 1.6 g cm-3, consistent with our mass spectra showing that smaller particles were composed of organics mixed with ~10% sulfates, while larger particles were composed mostly of sulfate mixed with a small amount of organics. Later in the day, secondary organic aerosols (SOA) formation led to a number of nucleation events that significantly increased the number concentrations of very small particles. By mid-afternoon, as more SOA formed and condensed, particles increased in size the number concentrations of particles larger than 70 nm increased and the densities of particles 80 to 200 nm particles was ~1.3 g cm-3. The vast majority of these particles were composed of oxygenated organics mixed with a ~10% sulfate. In other words they were SOA particles mixed with a small amount of sulfate. The mass spectra of these particles shows that there were two types of

  16. Changes in chemical components of aerosol particles in different haze regions in China from 2006 to 2013 and contribution of meteorological factors

    Science.gov (United States)

    Zhang, X. Y.; Wang, J. Z.; Wang, Y. Q.; Liu, H. L.; Sun, J. Y.; Zhang, Y. M.

    2015-11-01

    significant changes. In the Pearl River Delta (PRD) area, the regional background concentrations of the major chemical components were similar to those in the YRD, accounting for approximately 60-80 % of those in HBP. Since 2010, a decline has been found for winter concentrations, which can be partially attributable to persistently improving meteorological conditions and emission cutting with an emphasis on coal combustion in this area. In addition to the scattered and centralized coal combustion for heating, burning biomass fuels contributed to the large increase in concentrations of carbonaceous aerosol in major haze regions in winter, except in the PRD. No obvious changes were found for the proportions of each chemical components of PM10 from 2006 to 2013. Among all of the emissions recorded in chemical compositions in 2013, coal combustion was still the largest anthropogenic source of aerosol pollution in various areas in China, with a higher sulfate proportion of PM10 in most areas of China, and OC was normally ranked third. PM10 concentrations increased by approximately 25 % in January of 2013 relative to 2012, which caused persistent haze-fog events in HBP; emissions also reduced by approximately 35 % in Beijing and its vicinity (BIV) in late autumn of 2014, thereby producing the Asia Pacific Economic Cooperation (APEC) blue (extremely good air quality); thus, one can expect that the persistent haze-fog events would be reduced significantly in the BIV, if approx. one-third of the 2013 winter emissions were reduced, which can also be viewed as the upper limit of atmospheric aerosol pollution capacity in this area.

  17. Accessing the Impact of Sea-Salt Emissions on Aerosol Chemical Formation and Deposition Over Pearl River Delta, China

    Science.gov (United States)

    Fan, Q.; Wang, X.; Liu, Y.; Wu, D.; Chan, P. W.; Fan, S.; Feng, Y.

    2015-12-01

    Sea-salt aerosol (SSA) emissions have a significant impact on aerosol pollution and haze formation in the coastal areas. In this study, Models-3/CMAQ modeling system was utilized to access the impact of SSA emissions on aerosol chemical formation and deposition over Pearl River Delta (PRD), China in July 2006. More SSAs were transported inland from the open-ocean under the southeast wind in summertime. Two experiments (with and without SSA emissions in the CMAQ model) were set up to compare the modeling results with each other. The results showed that the increase of sulfate concentrations were more attributable to the primary emissions of coarse SO42- particles in SSA, while the increase of nitrate concentrations were more attributable to secondary chemical formations, known as the mechanisms of chloride depletion in SSA. In the coastal areas, 17.62 % of SO42-, 26.6% of NO3- and 38.2% of PM10 were attributed to SSA emissions, while those portions were less than 1% in the inland areas. The increases of PM10 and its components due to SSA emissions resulted in higher deposition fluxes over PRD, particularly in the coastal areas, except for the wet deposition of nitrate. Nitrate was more sensitive to SSA emissions in chemical formations than sulfate and dry deposition of aerosol was also more sensitive than that for wet deposition. Process analysis of sulfate and nitrate was applied to find out the difference of physical and chemical mechanisms between Guangzhou (the inland areas) and Zhuhai (the coastal areas). The negative contributions of dry deposition process to both sulfate and nitrate concentrations increased if SSA emissions were taken into account in the model, especially for Zhuhai. The negative contributions of cloud process also increased due to cloud scavenging and wet deposition process. In the coastal area, the gas-to-particle conversions became more active with high contributions of aerosol process to nitrate concentrations.

  18. A case study of the highly time-resolved evolution of aerosol chemical and optical properties in urban Shanghai, China

    Directory of Open Access Journals (Sweden)

    Y. Huang

    2013-04-01

    Full Text Available Characteristics of the chemical and optical properties of aerosols in urban Shanghai and their relationship were studied over a three-day period in October 2011. A suite of real-time instruments, including an Aerosol Time-Of-Flight Mass Spectrometer (ATOFMS, a Monitor for AeRosols and GAses (MARGA, a Cavity Ring Down Spectrometer (CRDS, a nephelometer and a Scanning Mobility Particle Sizer (SMPS, was employed to follow the quick changes of the aerosol properties within the 72 h sampling period. The origin of the air mass arriving in Shanghai during this period shifted from the East China Sea to the northwest area of China, offering a unique opportunity to observe the evolution of aerosols influenced by regional transport from the most polluted areas in China. According to the meteorological conditions and temporal characterizations of the chemical and optical properties, the sampling period was divided into three periods. During Period 1 (00:00–23:00 LT, 13 October, the aerosols in urban Shanghai were mainly fresh and the single scattering albedo varied negatively with the emission of elemental carbon, indicating that local sources dominated. Period 2 (23:00 LT on 13 October to 10:00 LT on 15 October was impacted by regionally transported pollutants and had the highest particulate matter (PM mass loading and the lowest particle acidity, characterized by large fractions of aged particles and high secondary ion (nitrate, sulfate and ammonium mass concentrations. Comparison between ATOFMS particle acidity and quantitative particle acidity by MARGA indicated the significance of semi-quantitative calculation in ATOFMS. Two sub-periods were identified in Period 2 based on the scattering efficiency of PM1 mass. Period 3 (from 10:00 LT on 15 October to 00:00 LT on 16 October had a low PM1/PM10 ratio and a new particle formation event. The comparison of these sub-periods highlights the influence of particle mixing state on aerosol optical properties

  19. Comparison of physical chemical properties of powders and respirable aerosols of industrial mixed uranium and plutonium oxide fuels

    International Nuclear Information System (INIS)

    Eidson, A.F.

    1982-01-01

    Studies were performed to characterize physical and chemical properties which may be important in determining the metabolism of accidentally released, inhaled aerosols of industrial mixed uranium and plutonium oxide fuels and to compare the properties of bulk powders and the respirable fraction they include. X-ray diffraction measurements showed that analysis of mixed-oxide powders from four process steps served to characterize their respirable fractions. IR spectroscopy was useful as a method to detect organic binders that were not observed by X-ray diffraction methods. Both X-ray diffraction and IR spectroscopy methods can be used in combination to identify the sources of a complex aerosol that might be released from more than one fabrication step. Isotopic distributions in powders and aerosols showed that information important for radiation dose to tissue calculations or Pu lung burden estimates can be obtained by analysis of powders. (U.K.)

  20. Aerosol composition, oxidative properties, and sources in Beijing: results from the 2014 Asia-Pacific Economic Cooperation Summit study

    Science.gov (United States)

    Xu, W. Q.; Sun, Y. L.; Chen, C.; Du, W.; Han, T. T.; Wang, Q. Q.; Fu, P. Q.; Wang, Z. F.; Zhao, X. J.; Zhou, L. B.; Ji, D. S.; Wang, P. C.; Worsnop, D. R.

    2015-08-01

    The mitigation of air pollution in megacities remains a great challenge because of the complex sources and formation mechanisms of aerosol particles. The 2014 Asia- Pacific Economic Cooperation (APEC) summit in Beijing serves as a unique experiment to study the impacts of emission controls on aerosol composition, size distributions, and oxidative properties. Herein, a high-resolution time-of-flight aerosol mass spectrometer was deployed in urban Beijing for real-time measurements of size-resolved non-refractory submicron aerosol (NR-PM1) species from 14 October to 12 November 2014, along with a range of collocated measurements. The average (±σ) PM1 was 41.6 (±38.9) μg m-3 during APEC, which was decreased by 53 % compared with that before APEC. The aerosol composition showed substantial changes owing to emission controls during APEC. Secondary inorganic aerosols (SIA = sulfate + nitrate + ammonium) showed significant reductions of 62-69 %, whereas organics presented much smaller decreases (35 %). The results from the positive matrix factorization of organic aerosols (OA) indicated that highly oxidized secondary OA (SOA) showed decreases similar to those of SIA during APEC. However, primary OA (POA) from cooking, traffic, and biomass burning sources were comparable to those before APEC, indicating the presence of strong local source emissions. The oxidation properties showed corresponding changes in response to OA composition. The average oxygen-to-carbon level during APEC was 0.36 (±0.10), which is lower than the 0.43 (±0.13) measured before APEC, demonstrating a decrease in the OA oxidation degree. The changes in size distributions of primary and secondary species varied during APEC. SIA and SOA showed significant reductions in large accumulation modes with peak diameters shifting from ~ 650 to 400 nm during APEC, whereas those of POA remained relatively unchanged. The changes in aerosol composition, size distributions, and oxidation degrees during the aging

  1. Chemically-resolved volatility measurements of organic aerosol fom different sources.

    Science.gov (United States)

    Huffman, J A; Docherty, K S; Mohr, C; Cubison, M J; Ulbrich, I M; Ziemann, P J; Onasch, T B; Jimenez, J L

    2009-07-15

    A newly modified fast temperature-stepping thermodenuder (TD) was coupled to a High Resolution Time-of-Flight Aerosol Mass Spectrometer for rapid determination of chemically resolved volatility of organic aerosols (OA) emitted from individual sources. The TD-AMS system was used to characterize primary OA (POA) from biomass burning, trash burning surrogates (paper and plastic), and meat cooking as well as chamber-generated secondary OA (SOA) from alpha-pinene and gasoline vapor. Almost all atmospheric models represent POA as nonvolatile, with no allowance for evaporation upon heating or dilution, or condensation upon cooling. Our results indicate that all OAs observed show semivolatile behavior and that most POAs characterized here were at least as volatile as SOA measured in urban environments. Biomass-burning OA (BBOA) exhibited a wide range of volatilities, but more often showed volatility similar to urban OA. Paper-burning resembles some types of BBOA because of its relatively high volatility and intermediate atomic oxygen-to-carbon (O/C) ratio, while meat-cooking OAs (MCOA) have consistently lower volatility than ambient OA. Chamber-generated SOA under the relatively high concentrations used intraditional experiments was significantly more volatile than urban SOA, challenging extrapolation of traditional laboratory volatility measurements to the atmosphere. Most OAs sampled show increasing O/C ratio and decreasing H/C (hydrogen-to-carbon) ratio with temperature, further indicating that more oxygenated OA components are typically less volatile. Future experiments should systematically explore a wider range of mass concentrations to more fully characterize the volatility distributions of these OAs.

  2. submitter On the composition of ammonia–sulfuric-acid ion clusters during aerosol particle formation

    CERN Document Server

    Schobesberger, S; Bianchi, F; Rondo, L; Duplissy, J; Kürten, A; Ortega, I K; Metzger, A; Schnitzhofer, R; Almeida, J; Amorim, A; Dommen, J; Dunne, E M; Ehn, M; Gagné, S; Ickes, L; Junninen, H; Hansel, A; Kerminen, V -M; Kirkby, J; Kupc, A; Laaksonen, A; Lehtipalo, K; Mathot, S; Onnela, A; Petäjä, T; Riccobono, F; Santos, F D; Sipilä, M; Tomé, A; Tsagkogeorgas, G; Viisanen, Y; Wagner, P E; Wimmer, D; Curtius, J; Donahue, N M; Baltensperger, U; Kulmala, M; Worsnop, D R

    2015-01-01

    The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new-particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia $(NH_3)$ and sulfuric acid $(H-2SO_4)$. Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small $NH_3–H_2SO_4$ clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from 10. Positively charged clusters grew on average by Δm/Δn = 1.05 and were only observed at sufficiently high $[NH_3]$ / $[H_2SO_4]$. The $H_2SO_4$ molecules of these clusters are partially neutralized by $NH_3$, in close resemblance...

  3. Inhalation toxicology of industrial plutonium and uranium oxide aerosols I. Physical chemical characterization

    International Nuclear Information System (INIS)

    Eidson, A.F.; Mewhinney, J.A.

    1978-01-01

    In the fabrication of mixed plutonium and uranium oxide fuel, large quantities of dry powders are processed, causing dusty conditions in glove box enclosures. Inadvertent loss of glove box integrity or failure of air filter systems can lead to human inhalation exposure. Powdered samples and aerosol samples of these materials obtained during two fuel fabrication process steps have been obtained. A regimen of physical chemical tests of properties of these materials has been employed to identify physical chemical properties which may influence their biological behavior and dosimetry. Materials to be discussed are 750 deg. C heat-treated, mixed uranium and plutonium oxides obtained from the ball milling operation and 1750 deg. C heat-treated, mixed uranium and plutonium oxides obtained from the centerless grinding of fuel pellets. Results of x-ray diffraction studies have shown that the powder generated by the centerless grinding of fuel pellets is best described as a solid solution of UO x and PuO x consistent with its temperature history. In vitro dissolution studies of both mixed oxide materials indicate a generally similar dissolution rate for both materials. In one solvent, the material with the higher temperature history dissolves more rapidly. The x-ray diffraction and in vitro dissolution results as well as preliminary results of x-ray photoelectron spectroscopic analyses will be compared and the implications for the associated biological studies will be discussed. (author)

  4. Asian industrial lead inputs to the North Pacific evidenced by lead concentrations and isotopic compositions in surface waters and aerosols.

    Science.gov (United States)

    Gallon, Céline; Ranville, Mara A; Conaway, Christopher H; Landing, William M; Buck, Clifton S; Morton, Peter L; Flegal, A Russell

    2011-12-01

    Recent trends of atmospheric lead deposition to the North Pacific were investigated with analyses of lead in aerosols and surface waters collected on the fourth Intergovernmental Oceanographic Commission Contaminant Baseline Survey from May to June, 2002. Lead concentrations of the aerosols varied by 2 orders of magnitude (0.1-26.4 pmol/m(3)) due in part to variations in dust deposition during the cruise. The ranges in lead aerosol enrichment factors relative to iron (1-119) and aluminum (3-168) were similar, evidencing the transport of Asian industrial lead aerosols across the North Pacific. The oceanic deposition of some of those aerosols was substantiated by the gradient of lead concentrations of North Pacific waters, which varied 3-fold (32.7-103.5 pmol/kg), were highest along with the Asian margin of the basin, and decreased eastward. The hypothesized predominance of Asian industrial lead inputs to the North Pacific was further corroborated by the lead isotopic composition of ocean surface waters ((206)Pb/(207)Pb = 1.157-1.169; (208)Pb/(206)Pb = 2.093-2.118), which fell within the range of isotopic ratios reported in Asian aerosols that are primarily attributed to Chinese industrial lead emissions.

  5. Chemical food composition: implications for atherosclerosis prevention.

    Science.gov (United States)

    Scherr, Carlos; Ribeiro, Jorge Pinto

    2011-01-01

    To compare the fatty acid and cholesterol content in food acquired in Brazil with the composition found in the most frequently used reference tables in the country. The fatty acid and cholesterol content in 41 food items frequently used in our country and the various directions to prepare them were reviewed by using specific methodology and the information was compared to the tables adopted by Unicamp and UNIFESP. According to Unicamp table, the cholesterol content found in parmesan cheese was 100.7 mg/100 g, while it was 68 mg/100 g in UNIFESP table, that is, a 48% (p UNIFESP table is American in origin.

  6. Outdoor and Indoor Aerosol Size, Number, Mass and Compositional Dynamics at an Urban Background Site during Warm Season.

    Czech Academy of Sciences Publication Activity Database

    Talbot, Nicholas; Kubelová, Lucie; Makeš, Otakar; Cusack, Michael; Ondráček, Jakub; Vodička, Petr; Schwarz, Jaroslav; Ždímal, Vladimír

    2016-01-01

    Roč. 131, APR 2016 (2016), s. 171-184 ISSN 1352-2310 EU Projects: European Commission(XE) 315760 - HEXACOMM Institutional support: RVO:67985858 Keywords : aerosol * composition * dissociation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.629, year: 2016

  7. Variation in global chemical composition of PM2.5: emerging results from SPARTAN

    Science.gov (United States)

    Snider, Graydon; Weagle, Crystal L.; Murdymootoo, Kalaivani K.; Ring, Amanda; Ritchie, Yvonne; Stone, Emily; Walsh, Ainsley; Akoshile, Clement; Anh, Nguyen Xuan; Balasubramanian, Rajasekhar; Brook, Jeff; Qonitan, Fatimah D.; Dong, Jinlu; Griffith, Derek; He, Kebin; Holben, Brent N.; Kahn, Ralph; Lagrosas, Nofel; Lestari, Puji; Ma, Zongwei; Misra, Amit; Norford, Leslie K.; Quel, Eduardo J.; Salam, Abdus; Schichtel, Bret; Segev, Lior; Tripathi, Sachchida; Wang, Chien; Yu, Chao; Zhang, Qiang; Zhang, Yuxuan; Brauer, Michael; Cohen, Aaron; Gibson, Mark D.; Liu, Yang; Vanderlei Martins, J.; Rudich, Yinon; Martin, Randall V.

    2016-08-01

    The Surface PARTiculate mAtter Network (SPARTAN) is a long-term project that includes characterization of chemical and physical attributes of aerosols from filter samples collected worldwide. This paper discusses the ongoing efforts of SPARTAN to define and quantify major ions and trace metals found in fine particulate matter (PM2.5). Our methods infer the spatial and temporal variability of PM2.5 in a cost-effective manner. Gravimetrically weighed filters represent multi-day averages of PM2.5, with a collocated nephelometer sampling air continuously. SPARTAN instruments are paired with AErosol RObotic NETwork (AERONET) sun photometers to better understand the relationship between ground-level PM2.5 and columnar aerosol optical depth (AOD).We have examined the chemical composition of PM2.5 at 12 globally dispersed, densely populated urban locations and a site at Mammoth Cave (US) National Park used as a background comparison. So far, each SPARTAN location has been active between the years 2013 and 2016 over periods of 2-26 months, with an average period of 12 months per site. These sites have collectively gathered over 10 years of quality aerosol data. The major PM2.5 constituents across all sites (relative contribution ± SD) are ammoniated sulfate (20 % ± 11 %), crustal material (13.4 % ± 9.9 %), equivalent black carbon (11.9 % ± 8.4 %), ammonium nitrate (4.7 % ± 3.0 %), sea salt (2.3 % ± 1.6 %), trace element oxides (1.0 % ± 1.1 %), water (7.2 % ± 3.3 %) at 35 % RH, and residual matter (40 % ± 24 %).Analysis of filter samples reveals that several PM2.5 chemical components varied by more than an order of magnitude between sites. Ammoniated sulfate ranges from 1.1 µg m-3 (Buenos Aires, Argentina) to 17 µg m-3 (Kanpur, India in the dry season). Ammonium nitrate ranged from 0.2 µg m-3 (Mammoth Cave, in summer) to 6.8 µg m-3 (Kanpur, dry season). Equivalent black carbon ranged from 0.7 µg m-3 (Mammoth Cave) to over 8 µg m-3 (Dhaka, Bangladesh and Kanpur

  8. Chemical composition of Lake Orta sediments

    Directory of Open Access Journals (Sweden)

    Monica BELTRAMI

    2001-08-01

    Full Text Available Lake Orta (18.2 km2, 1.3 km3, 143 m max. depth has been severely polluted since industrialisation of its watershed began in 1926, at which time the lake began to receive industrial effluents containing high concentrations of copper and ammonia. Chromium-, nickel-, and zinc-rich effluents from plating factories have also contributed to pollution levels, and pH -levels dropped below 4.0 as a result of the oxidation of ammonia to nitrates. More than 60 papers have documented the evolution of the chemical characteristics of both water and sediment, and the sudden decline of plankton, as well as benthos and fish. As a remedial action the lake was limed from May 1989 to June 1990 with 10,900 tons of CaCO3. The treatment was immediately effective in raising the pH and decreasing the metal concentrations in the water column, and plankton and fish communities quickly rebounded. However, the chemical characteristics of sediments were influenced by the liming to a much lesser extent. Since 900 tons of copper and the same amount of chromium were contained in the top 10 cm of sediment, it appears likely that the sediment could potentially act as a current and future source of these metals to the water column. This observation has resulted in the implementation of a vigorous monitoring regime to track the post-liming recovery of Lake Orta.

  9. Organic aerosol composition and sources in Pasadena, California, during the 2010 CalNex campaign

    Science.gov (United States)

    Hayes, P. L.; Ortega, A. M.; Cubison, M. J.; Froyd, K. D.; Zhao, Y.; Cliff, S. S.; Hu, W. W.; Toohey, D. W.; Flynn, J. H.; Lefer, B. L.; Grossberg, N.; Alvarez, S.; Rappenglück, B.; Taylor, J. W.; Allan, J. D.; Holloway, J. S.; Gilman, J. B.; Kuster, W. C.; de Gouw, J. A.; Massoli, P.; Zhang, X.; Liu, J.; Weber, R. J.; Corrigan, A. L.; Russell, L. M.; Isaacman, G.; Worton, D. R.; Kreisberg, N. M.; Goldstein, A. H.; Thalman, R.; Waxman, E. M.; Volkamer, R.; Lin, Y. H.; Surratt, J. D.; Kleindienst, T. E.; Offenberg, J. H.; Dusanter, S.; Griffith, S.; Stevens, P. S.; Brioude, J.; Angevine, W. M.; Jimenez, J. L.

    2013-08-01

    Organic aerosols (OA) in Pasadena are characterized using multiple measurements from the California Research at the Nexus of Air Quality and Climate Change (CalNex) campaign. Five OA components are identified using positive matrix factorization including hydrocarbon-like OA (HOA) and two types of oxygenated OA (OOA). The Pasadena OA elemental composition when plotted as H : C versus O : C follows a line less steep than that observed for Riverside, CA. The OOA components from both locations follow a common line, however, indicating similar secondary organic aerosol (SOA) oxidation chemistry at the two sites such as fragmentation reactions leading to acid formation. In addition to the similar evolution of elemental composition, the dependence of SOA concentration on photochemical age displays quantitatively the same trends across several North American urban sites. First, the OA/ΔCO values for Pasadena increase with photochemical age exhibiting a slope identical to or slightly higher than those for Mexico City and the northeastern United States. Second, the ratios of OOA to odd-oxygen (a photochemical oxidation marker) for Pasadena, Mexico City, and Riverside are similar, suggesting a proportional relationship between SOA and odd-oxygen formation rates. Weekly cycles of the OA components are examined as well. HOA exhibits lower concentrations on Sundays versus weekdays, and the decrease in HOA matches that predicted for primary vehicle emissions using fuel sales data, traffic counts, and vehicle emission ratios. OOA does not display a weekly cycle—after accounting for differences in photochemical aging —which suggests the dominance of gasoline emissions in SOA formation under the assumption that most urban SOA precursors are from motor vehicles.

  10. Stratospheric aerosols and precursor gases

    Science.gov (United States)

    1982-01-01

    Measurements were made of the aerosol size, height and geographical distribution, their composition and optical properties, and their temporal variation with season and following large volcanic eruptions. Sulfur-bearing gases were measured in situ in the stratosphere, and studied of the chemical and physical processes which control gas-to-particle conversion were carried out in the laboratory.

  11. THE CHEMICAL COMPOSITION OF PRAESEPE (M44)

    Energy Technology Data Exchange (ETDEWEB)

    Boesgaard, Ann Merchant; Roper, Brian W.; Lum, Michael G., E-mail: boes@ifa.hawaii.edu, E-mail: brianwroper@gmail.com, E-mail: mikelum@ifa.hawaii.edu [Visiting astronomer, W. M. Keck Observatory jointly operated by the California Institute of Technology and the University of California. (United States)

    2013-09-20

    Star clusters have long been used to illuminate both stellar evolution and Galactic evolution. They also hold clues to the chemical and nucleosynthetic processes throughout the history of the Galaxy. We have taken high signal-to-noise (S/N), high-resolution spectra of 11 solar-type stars in the Praesepe open cluster to determine the chemical abundances of 16 elements: Li, C, O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Fe, Ni, Y, and Ba. We have determined Fe from Fe I and Fe II lines and find [Fe/H] = +0.12 ±0.04. We find that Li decreases with temperature due to increasing Li depletion in cooler stars; it matches the Li-temperature pattern found in the Hyades. The [C/Fe] and [O/Fe] abundances are below solar and lower than the field star samples due to the younger age of Praesepe (0.7 Gyr) than the field stars. The alpha-elements, Mg, Si, Ca, and Ti, have solar ratios with respect to Fe, and are also lower than the field star samples. The Fe-peak elements, Cr and Ni, track Fe and have solar values. The neutron capture element [Y/Fe] is found to be solar, but [Ba/Fe] is enhanced relative to solar and to the field stars. Three Praesepe giants were studied by Carrera and Pancino; they are apparently enhanced in Na, Mg, and Ba relative to the Praesepe dwarfs. The Na enhancement may indicate proton-capture nucleosynthesis in the Ne → Na cycling with dredge-up into the atmospheres of the red giants.

  12. Penetration of sub-micron aerosol droplets in composite cylindrical filtration elements

    International Nuclear Information System (INIS)

    Geurts, Bernard J.; Pratte, Pascal; Stolz, Steffen; Stabbert, Regina; Poux, Valerie; Nordlund, Markus; Winkelmann, Christoph

    2011-01-01

    Advection-diffusion transport of aerosol droplets in composite cylindrical filtration elements is analyzed and compared to experimental data. The penetration, characterizing the fraction of droplets that passes through the pores of a filtration element, is quantified for a range of flow rates. The advection-diffusion transport in a laminar Poiseuille flow is treated numerically for slender pores using a finite difference approach in cylindrical coordinates. The algebraic dependence of the penetration on the Peclet number as predicted theoretically, is confirmed by experimental findings at a variety of aspect ratios of the cylindrical pores. The effective penetration associated with a composite filtration element consisting of a set of parallel cylindrical pores is derived. The overall penetration of heterogeneous composite filtration elements shows an algebraic dependence to the fourth power on the radii of the individual pores that are contained. This gives rise to strong variations in the overall penetration in cases with uneven distributions of pore sizes, highly favoring filtration by the larger pores. The overall penetration is computed for a number of basic geometries, providing a point of reference for filtration design and experimental verification.

  13. Spatial distribution and temporal variation of chemical species in the bulk atmospheric aerosols collected at the Okinawa archipelago, Japan

    Science.gov (United States)

    Handa, D.; Somada, Y.; Ijyu, M.; Azechi, S.; Nakaema, F.; Arakaki, T.; Tanahara, A.

    2009-12-01

    The economic development and population growth in recent Asia have been increasing air pollution. A computer simulation study showed that air pollutants emitted from Asian continent could spread quickly within northern hemisphere. We initiated a study to elucidate the special distribution and chemical characterization of atmospheric aerosols around Okinawa archipelago, Japan. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location in Asia is well suited for studying long-range transport of air pollutants in East Asia because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. We simultaneously collected bulk aerosol samples by using the same types of high volume air samplers at Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS, Okinawa Island), Kume Island (ca. 160 km south-west of CHAAMS) and Minami-daitou Island (ca. 320 km south-east of CHAAMS). We determined the concentrations of water-soluble anions, cations and dissolved organic carbon (DOC) using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. We report and discuss spatial distribution and temporal variation of chemical species concentrations in bulk atmospheric aerosols collected during July, 2008 to July, 2009. We determine “background” concentration of chemical components in Okinawa archipelago. We then compare each chemical component among CHAAMS, Kume Island and Minami-daito Island to elucidate the influence of the long-range transport of chemical species from Asian continent.

  14. SAFARI 2000 Physical and Chemical Properties of Aerosols, Dry Season 2000

    Data.gov (United States)

    National Aeronautics and Space Administration — SAFARI 2000 provided an opportunity to study aerosol particles produced by savanna burning. We used analytical transmission electron microscopy (TEM), including...

  15. Optical, physical and chemical properties of aerosols transported to a coastal site in the western Mediterranean: a focus on primary marine aerosols

    Directory of Open Access Journals (Sweden)

    M. Claeys

    2017-06-01

    Full Text Available As part of the ChArMEx-ADRIMED campaign (summer 2013, ground-based in situ observations were conducted at the Ersa site (northern tip of Corsica; 533 m a.s.l. to characterise the optical, physical and chemical properties of aerosols. During the observation period, a major influence of primary marine aerosols was detected (22–26 June, with a mass concentration reaching up to 6.5 µg m−3 and representing more than 40 % of the total PM10 mass concentration. Its relatively low ratio of chloride to sodium (average of 0.57 indicates a fairly aged sea salt aerosol at Ersa. In this work, an original data set, obtained from online real-time instruments (ATOFMS, PILS-IC has been used to characterise the ageing of primary marine aerosols (PMAs. During this PMA period, the mixing of fresh and aged PMAs was found to originate from both local and regional (Gulf of Lion emissions, according to local wind measurements and FLEXPART back trajectories. Two different aerosol regimes have been identified: a dust outbreak (dust originating from Algeria/Tunisia, and a pollution period with aerosols originating from eastern Europe, which includes anthropogenic and biomass burning sources (BBP. The optical, physical and chemical properties of the observed aerosols, as well as their local shortwave (SW direct radiative effect (DRE in clear-sky conditions, are compared for these three periods in order to assess the importance of the direct radiative impact of PMAs compared to other sources above the western Mediterranean Basin. As expected, AERONET retrievals indicate a relatively low local SW DRF during the PMA period with mean values of −11 ± 4 at the surface and −8 ± 3 W m−2 at the top of the atmosphere (TOA. In comparison, our results indicate that the dust outbreak observed at our site during the campaign, although of moderate intensity (AOD of 0.3–0.4 at 440 nm and column-integrated SSA of 0.90–0.95, induced a local

  16. Composition and sources of carbonaceous aerosols in Northern Europe during winter

    NARCIS (Netherlands)

    Glasius, M.; Hansen, A.M.K.; Claeys, M.; Henzing, J.S.; Jedynska, A.D.; Kasper-Giebl, A.; Kistler, M.; Kristensen, K.; Martinsson, J.; Maenhaut, W.; Nøjgaard, J.K.; Spindler, G.; Stenström, K.E.; Swietlicki, E.; Szidat, S.; Simpson, D.; Yttri, K.E.

    2018-01-01

    Sources of elemental carbon (EC) and organic carbon (OC) in atmospheric aerosols (carbonaceous aerosols) were investigated by collection of weekly aerosol filter samples at six background sites in Northern Europe (Birkenes, Norway; Vavihill, Sweden; Risoe, Denmark; Cabauw and Rotterdam in The

  17. Application of PIXE technique to studies on global warming/cooling effect of atmospheric aerosols

    International Nuclear Information System (INIS)

    Kasahara, M.; Hoeller, R.; Tohno, S.; Onishi, Y.; Ma, C.-J.

    2002-01-01

    During the last decade, the importance of global warming has been recognized worldwide. Atmospheric aerosols play an important role in the global warming/cooling effects. The physicochemical properties of aerosol particles are fundamental to understanding such effects. In this study, the PIXE technique was applied to measure the average chemical properties of aerosols. Micro-PIXE was also applied to investigate the mixing state of the individual aerosol particle. The chemical composition data were used to estimate the optical properties of aerosols. The average values of aerosol radiative forcing were -1.53 w/m 2 in Kyoto and +3.3 w/m 2 in Nagoya, indicating cooling and warming effects respectively. The difference of radiative forcing in the two cities may be caused by the large difference in chemical composition of aerosols

  18. Analysis of cloud condensation nuclei composition and growth kinetics using a pumped counterflow virtual impactor and aerosol mass spectrometer

    Directory of Open Access Journals (Sweden)

    J. G. Slowik

    2011-08-01

    Full Text Available We present a new method of determining the size and composition of CCN-active aerosol particles. Method utility is illustrated through a series of ambient measurements. A continuous-flow thermal-gradient diffusion chamber (TGDC, pumped counterflow virtual impactor (PCVI, and Aerodyne time-of-flight mass spectrometer (AMS are operated in series. Ambient particles are sampled into the TGDC, where a constant supersaturation is maintained, and CCN-active particles grow to ~2.5 ± 0.5 μm. The output flow from the TGDC is directed into the PCVI, where a counterflow of dry N2 gas opposes the particle-laden flow, creating a region of zero axial velocity. This stagnation plane can only be traversed by particles with sufficient momentum, which depends on their size. Particles that have activated in the TGDC cross the stagnation plane and are entrained in the PCVI output flow, while the unactivated particles are diverted to a pump. Because the input gas is replaced by the counterflow gas with better than 99 % efficiency at the stagnation plane, the output flow consists almost entirely of dry N2 and water evaporates from the activated particles. In this way, the system yields an ensemble of CCN-active particles whose chemical composition and size are analyzed using the AMS. Measurements of urban aerosol in downtown Toronto identified an external mixture of CCN-active particles consisting almost entirely of ammonium nitrate and ammonium sulfate, with CCN-inactive particles of the same size consisting of a mixture of ammonium nitrate, ammonium sulfate, and organics. We also discuss results from the first field deployment of the TGDC-PCVI-AMS system, conducted from mid-May to mid-June 2007 in Egbert, Ontario, a semirural site ~80 km north of Toronto influenced both by clean air masses from the north and emissions from the city. Organic-dominated particles sampled during a major biogenic event exhibited higher CCN activity and/or faster

  19. Chemical composition and microstructure of Bauhinia grains.

    Science.gov (United States)

    Amonsou, Eric O; Siwela, Muthulisi; Dlamini, Nomusa

    2014-09-01

    Bauhinia is a leguminous plant species found in almost every part of the world, including southern Africa. In this study, grain composition and protein body microstructure of two indigenous southern African Bauhinia species, B. galpinii and B. petersiana were determined. Protein (38 g/100 g) and fat (23 g/100 g) were the major constituents of Bauhinia. Bauhinia grains also contained substantial amounts of zinc (6 mg/100 g) and iron (3 mg/100 g) when compared to FAO/WHO standards. The parenchyma cells of Bauhinia showed spherical protein bodies with globoids inclusions and these were surrounded by lipids. However, the protein bodies of B. petersiana were smaller in size (7 ± 3 μm) than those of B. galpinii (13 ± 4 μm). The microstructure of protein bodies in Bauhinia is very similar to that of soya, suggesting that the processing technology developed for soya protein may be adopted for Bauhinia.

  20. Aerosol volatility in a boreal forest environment

    Science.gov (United States)

    Häkkinen, S. A. K.; ńijälä, M.; Lehtipalo, K.; Junninen, H.; Virkkula, A.; Worsnop, D. R.; Kulmala, M.; Petäjä, T.; Riipinen, I.

    2012-04-01

    Climate and health effects of atmospheric aerosols are determined by their properties such as their chemical composition. Aerosol chemical composition can be studied indirectly by measuring volatility of aerosol particles. The volatility of submicron aerosol particles (20-500 nm) was studied in a boreal forest site at SMEAR II (Station for Measuring Ecosystem-Atmosphere Relations II) station (Vesala et al., 1998) in Hyytiälä, Finland, during 01/2008-05/2010. The instrument used for the measurements was VDMPS (Volatility Differential Mobility Particle Sizer), which consists of two separate instruments: DMPS (Differential Mobility Particle Sizer, Aalto et al., 2001) and TD (Thermodenuder, Wehner et al., 2002). Aerosol evaporation was examined by heating the aerosol and comparing the total aerosol mass before and after heating. In the VDMPS system ambient aerosol sample was heated up to temperatures ranging from 80 °C to 280 °C. The higher the heating temperature was the more aerosol material was evaporated. There was a non-volatile residual present in aerosol particles when heated up to 280 °C. This residual explained (20±8)% of the total aerosol mass. Aerosol non-volatile mass fraction was highest during winter and smallest during summer months. The role of black carbon in the observed non-volatile residual was determined. Black carbon explained 40 to 90% of the non-volatile mass. Especially during colder seasons noticeable amount of non-volatile material, something else than black carbon, was observed. According to Kalberer et al. (2004) some atmospheric organic species can form polymers that have high evaporation temperatures. Also low-volatile organic salts may contribute to the non-volatile aerosol (Smith et al., 2010). Aerosol mass composition measured directly with AMS (Aerosol Mass Spectrometer, Jayne et al., 2000) was analyzed in order to examine the properties of the non-volatile material (other than black carbon). The AMS measurements were performed

  1. Evaluation of anthropogenic influence on thermodynamics, gas and aerosol composition of city air

    Science.gov (United States)

    Uzhegova, Nina; Belan, Boris; Antokhin, Pavel; Zhidovkhin, Evgenii; Ivlev, Georgii; Kozlov, Artem; Fofonov, Aleksandr

    2010-05-01

    In the last 40-50 years there is a global tendency of urbanisation, which is a consequence of most countries' economical development. Concurrently, the issue of environment's ecological state has become critical. Urban air pollution is among the most important ecological problems nowadays. World Health Organization (WHO) points out certain "classical" polluting agents: carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO2), sulphur dioxide (SO2), troposphere ozone (O3) (studied here), as well as lead, carbon dioxide (CO2), aldehydes, soot, benzpyrene and dredges (including dust, haze and smoke) [1]. An evaluation of antropogenic component's weight in the thermodynamical conditions and gas and aerosol composition of a city's atmosphere (by the example of Tomsk) is given in this paper. Tomsk is located at the South of West Siberia and is the administrative center of Tomsk region. The city's area is equal to 294,6 km2. Its population is 512.6 thousands of people. The overall number of registered motor vehicles in the city in 2008 was 131 700. That is, every fourth city inhabitant has a personal car. From 2002 to 2008 the number of motor vehicles in Tomsk has increased by 25 thousands units [2]. This increase consists mostly of passenger cars. There is also a positive trend in fuel consumtion by the city's industries and motor vehicles - from 2004 to 2007 it has increased by 10%. Such a quick rate of transport quantity's increase in the city provides reason to suggest an unfavorable ecological situation in Tomsk. For this study we have used the AKV-2 mobile station designed by the SB RAS Institute of Atmospheric Optics. The station's equipment provides the following measurements [3]: air temperature and humidity; aerosol disperse composition in 15 channels with a particle size range of 0.3-20 µm by use of the Grimm-1.108 aerosol spectrometer; NO, NO2, O3, SO2, CO, CO2 concentration. This paper describes a single experiment conducted in Tomsk. Date of

  2. Retrieving global aerosol sources from satellites using inverse modeling

    Directory of Open Access Journals (Sweden)

    O. Dubovik

    2008-01-01

    Full Text Available Understanding aerosol effects on global climate requires knowing the global distribution of tropospheric aerosols. By accounting for aerosol sources, transports, and removal processes, chemical transport models simulate the global aerosol distribution using archived meteorological fields. We develop an algorithm for retrieving global aerosol sources from satellite observations of aerosol distribution by inverting the GOCART aerosol transport model.

    The inversion is based on a generalized, multi-term least-squares-type fitting, allowing flexible selection and refinement of a priori algorithm constraints. For example, limitations can be placed on retrieved quantity partial derivatives, to constrain global aerosol emission space and time variability in the results. Similarities and differences between commonly used inverse modeling and remote sensing techniques are analyzed. To retain the high space and time resolution of long-period, global observational records, the algorithm is expressed using adjoint operators.

    Successful global aerosol emission retrievals at 2°×2.5 resolution were obtained by inverting GOCART aerosol transport model output, assuming constant emissions over the diurnal cycle, and neglecting aerosol compositional differences. In addition, fine and coarse mode aerosol emission sources were inverted separately from MODIS fine and coarse mode aerosol optical thickness data, respectively. These assumptions are justified, based on observational coverage and accuracy limitations, producing valuable aerosol source locations and emission strengths. From two weeks of daily MODIS observations during August 2000, the global placement of fine mode aerosol sources agreed with available independent knowledge, even though the inverse method did not use any a priori information about aerosol sources, and was initialized with a "zero aerosol emission" assumption. Retrieving coarse mode aerosol emissions was less successful

  3. Characterization of distinct Arctic aerosol accumulation modes and their sources

    DEFF Research Database (Denmark)

    Lange, R.; Dall'Osto, M.; Skov, H.

    2018-01-01

    -August). By association to chemical composition, cloud condensation nuclei properties, and meteorological variables, three typical accumulation mode aerosol clusters were identified: Haze (32% of the time), Bimodal (14%) and Aged (6%). In brief: (1) Haze accumulation mode aerosol shows a single mode at 150 nm, peaking...

  4. Organics, Meteoritic Material, and other Elements in High Altitude Aerosols

    Science.gov (United States)

    Mahoney, M.; Murphy, D. M.; Thomson, D. S.

    1998-01-01

    Recent in situ measurements of the chemical composition of single aerosol particles at altitudes up to 19 km have revealed a number of surprising features about ambient particles. Upper tropospheric aerosols in the study region often contained more organic material than sulfate.

  5. Numerical Validation of Chemical Compositional Model for Wettability Alteration Processes

    Science.gov (United States)

    Bekbauov, Bakhbergen; Berdyshev, Abdumauvlen; Baishemirov, Zharasbek; Bau, Domenico

    2017-12-01

    Chemical compositional simulation of enhanced oil recovery and surfactant enhanced aquifer remediation processes is a complex task that involves solving dozens of equations for all grid blocks representing a reservoir. In the present work, we perform a numerical validation of the newly developed mathematical formulation which satisfies the conservation laws of mass and energy and allows applying a sequential solution approach to solve the governing equations sep